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ABSTRACT

DECODING COGNITIVE STATES USING THE BAG OF WORDS MODEL
ON FMRI TIME SERIES

Sucu, Güneş

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Emre Akbaş

September 2017, 64 pages

Bag-of-words (BoW) modeling has yielded successful results in document and image

classification tasks. In this study, we explore the use of BoW for cognitive state classi-

fication. We estimate a set of common patterns embedded in the Functional Magnetic

Resonance Imaging (fMRI) time series recorded in three dimensional voxel coordi-

nates by clustering the Blood Oxygen Level Dependent (BOLD) responses. We use

these common patterns, called the code-words, to encode activities of both individ-

ual voxels and group of voxels, and obtain BoW representations on which we train

linear classifiers. We experimented with a number of different BoW representations

such as encoding spatial and functional neighbors, spatial pooling, and soft and hard

encoding. Our experimental results show that, on a multiclass fMRI dataset, the hard

BoW encoding, when applied to individual voxels, significantly improves the classi-

fication accuracy (an average 7.22% increase when applied on average intensity per

voxel and an average 15.52% increase when applied to raw intensity time series per

voxel) compared to a classical multi voxel pattern analysis (MVPA) method. This
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preliminary result gives us a clue to generate a code-book for fMRI data which may

be used to represent a variety of cognitive states to study the human brain.

Keywords: fMRI, Bag of Words, Brain Decoding, Code-word
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ÖZ

FMRG ZAMAN SERİLERİ ÜZERİNDE KELİME TORBASI MODELİ
KULLANILARAK BİLİŞSEL DURUMLARIN KODUNUN ÇÖZÜLMESİ

Sucu, Güneş

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Emre Akbaş

Eylül 2017, 64 sayfa

Kelime torbası modellemesi döküman ve imge sınıflandırması çalışmalarında başarılı

sonuçlar ortaya koymuştur. Bu çalışmada, algısal durumların sınıflandırması için Ke-

lime Torbası yönteminin kullanımı incelenmektedir. Üç boyutlu voksel koordinatla-

rında kaydedilen Fonksiyonel Manyetik Rezonans Görüntüleme (fMRG) zaman seri-

sinde gömülü yaygın bir dizi küme, Kan Oksijen Seviyesine Bağımlı (KOSB) yanıtlar

kümelenerek hesaplanmaktadır. Hem bireysel voksellerin hem de voksel gruplarının

faaliyetlerini kodlamak için kod kelimeleri adı verilen bu yaygın kalıplar kullanıl-

maktadır ve üzerinde doğrusal sınıflandırıcılar eğittiğimiz Kelime Torbası gösterim-

leri elde edilmektedir. Çalışmamızda, uzaysal ve fonsiyonel komşuları kodlama, ko-

numsal havuzlama ve hafif ve ağır kodlama gibi farklı Kelime Torbası gösterimleri

denenmiştir. Deneysel sonuçlarımız, bireysel voksellere uygulandığında ağır Kelime

Torbası kodlamasının klasik bir çoklu voksel desen analizi (ÇVDA) yöntemine göre

çok sınıflı bir veri setinde sınıflandırma doğruluğunu önemli ölçüde geliştirdiğini gös-
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termektedir (voksel başına ortalama yoğunlukta uygulandığında ortalama %7.22 ar-

tış ve voksel başına ham zaman serisi yoğunluğuna uygulandığında ortalama %15.52

artış). Bu ön sonuç, fMRG verisiyle insan beynini incelemek için çeşitli algısal du-

rumları gösterecek bir kod kitabı üretmek adına bir ipucu vermektedir.

Anahtar Kelimeler: fMRG, Kelime Torbası, Beyin Şifresini Çözme, Kod Kelimesi
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CHAPTER 1

INTRODUCTION

How does the human brain function? It is one of the most important questions the

mankind has been trying to answer throughout the history of humanity. As this mys-

terious organ is the most complicated structure in the human body, a complete answer

to this question has been elusive for scientists.

Thanks to the technological advances, with the use of functional Magnetic Resonance

Imaging (fMRI), activations in the brain can be pictured in the decade we are in.

fMRI is a non-invasive method and it is widely used in the experiments conducted

for analyzing how human brain works. Now, fMRI is the dominant technique used to

understand how human brain functions.

fMRI images reveal the brain functioning according to the changes in blood oxygen

level (details can be found in Section 2.1). The changes in blood oxygen level create

a response named Hemodynamic Response (HR). This response is the result of the

neuronal activation and characterized by a Hemodynamic Response Function (HRF)

[8] (Figure 2.2) which is represented by a time series. This time series contains in-

tensity values on which models are built. However, these intensity values cannot be

obtained at the level of a neuron. fMRI images are constructed in units of voxels.

A voxel corresponds to a three-dimensional cubic space in a specific location of the

brain tissue. A voxel in an fMRI image is analogous to a pixel in a conventional RGB

image. Depending on the resolution used, they might contain thousands or millions

of neurons.
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1.1 The Problem: Cognitive State Classification

The problem that we address in this thesis is known as cognitive state classification

or decoding. In this problem, the goal is to predict the cognitive state of a human at a

given moment by analyzing the (fMRI) image of her/his brain around that moment.

Although the brain has a diverse variety of patterns for different cognitive states, it

also shares some structural and functional properties in common. One major chal-

lenge is to decipher these common patterns from the functional magnetic resonance

imaging (fMRI) data. The patterns can then be used to represent different cognitive

tasks. The main goal of this study is to develop a model that uses a set of code-words

which can be used to represent and classify the cognitive states.

The smallest unit of fMRI data is called a “voxel”. In brain decoding experiments

using fMRI, during the memory encoding and retrieval process voxel intensity values

are recorded. During the experiments, samples from different classes are viewed

by the subjects. Here, the purpose is to classify these samples using the recorded

voxel intensity values. So that, first features are extracted from the fMRI data using a

training and test set. Then, these features are used to train and test a selected classifier.

A popular group of methods to recognize the brain activity patterns from BOLD re-

sponses is the multi-voxel pattern analysis (MVPA) methods [31, 35], where a cogni-

tive state is represented by a feature vector extracted from the voxel intensity values

measured in fMRI data [52]. In MVPA approaches, the full spatial pattern of the brain

is taken into consideration so that they try to find how (rather than where) the infor-

mation is encoded. Patterns are considered as the vectors of voxel intensity values.

MVPA methods employ voxel intensity values as features to a classification algo-

rithm. The representational power of the extracted features is measured by the perfor-

mance of a classifier, which is trained by a set of labeled features. There are a variety

of methods available in the literature to extract features from the fMRI recordings.

Among them, a simple method is to take the average value of the BOLD responses

measured at each voxel during a cognitive stimulus [12, 22], or to define each brain

volume as a sample [34, 36].
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1.2 Proposed Method

The proposed methods in this thesis aim to contribute to the innovations in decoding

cognitive states of human brain using fMRI. We draw inspiration from numerous

successful applications [14, 17, 27, 48] of the bag-of-words model in the computer

vision literature.

There are three main steps in using the bag-of-words model for a classification prob-

lem:

1. Constructing a dictionary of code-words in an unsupervised manner,

2. Encoding the images using the dictionary and optionally applying spatial pool-

ing,

3. Training a classifier on the encoding vectors.

Each of these steps involves many choices. For example, in the first step, one should

decide what kind of pre-processing to apply to voxel intensities and which metric to

use while forming the dictionary. Similarly, in the second step, one can use either

a hard encoding or a soft encoding method. We elaborate on all of these choices in

Chapter 3.

We propose to use the bag-of-words model to generate a code-book and to decode

the cognitive states by using fMRI data. In our method, we create code-books of

various sizes from the raw fMRI data and then match every time series in the raw

data to a code-word from the code-book. By doing so we represent each voxel, or a

group of voxels by a histogram of k bins where k is the size of the code-book. As

the ultimate goal, we aim to create a meaningful brain alphabet where the code-words

have functional or anatomical correspondences. This work is a small step towards our

goal.

Applying the bag-of-words model to an fMRI dataset is not a straightforward practice.

One should make decisions over many questions such as:

3



• Should we pre-process voxel intensities or just use them in raw form?

• How should we pre-process voxel intensities?

• What metric should we use while forming the code-words?

• Should we use hard-encoding or soft-encoding?

• Should we do voxel selection first?

• Should we use spatial pooling or just apply the model to individual voxels?

• Should we include voxel neighborhoods in the model? Should we use func-

tional or spatial neighborhood?

We aimed to do an extensive experimental study where we employed a wide range

of BoW models on fMRI data. We applied it on average of time series and raw time

series and obtained a significant classification accuracy improvement compared to the

baseline MVPA models. We also applied the BoW model on zero-mean time series

(trends) and average of time series combined with zero-mean time series. Addition-

ally, we tried to utilize spatial pooling, voxel selection and neighborhood information

and analyzed their results. Lastly, in order to further validate our model we applied it

on a different dataset. Details of our experimental work can be found in Chapter 4.

1.3 Novelties and Contributions

To the best of our knowledge, there are only two studies [16, 49] where the bag-of-

words model was applied in the analysis of fMRI data. We differ from these two

works in the following ways.

• In previous work, the focus was not on encoding the voxels individually. Sol-

maz et al. [49] encoded the whole brain as a single entity. This is the extreme

point of spatial pooling (more on this in Chapter 3). In another study, Ertugrul

et al. [16] encoded the arc-weights of the meshes constructed on anatomical

regions level.
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• Another main focus, which is not presented in previous work, is that the current

work analyzes both functional and spatial neighborhood among the voxels. In

[16], the neighborhood information was only used on anatomical regions level.

• In this work, we employed a wide variety of BoW techniques to decode the

cognitive states. Such a comprehensive application of BoW (details of which

are explained in Chapter 4) does not exist in previous work.

• The major conclusion of this work is that, when applied in an appropriate way

the bag-of-words model yields a par or better performance compared to the

baseline MVPA models presented in the literature. Therefore, the proposed

methods appear to be a promising alternative to the classical MVPA methods

in the classification of various cognitive states.

Parts of the work presented in this thesis appeared in the following publication:

• G. Sucu, E. Akbas, I. Oztekin, E. Mizrak, F. T. Yarman Vural, "Decoding cogni-

tive states using the bag of words model on fMRI time series." 1st International

Workshop on Machine Learning for Understanding the Brain (MLUB), Sig-

nal Processing and Communication Application Conference (SIU), 2016 24th.

IEEE, 2016

1.4 Outline of the Thesis

In Chapter 2, a brief summary of fMRI is presented. In addition, a general overview

of MVPA techniques used to classify cognitive states of brain is provided. Finally,

the BoW model, on which this thesis is built, is introduced.

Chapter 3 introduces the proposed methods to decode cognitive states. Here, the moti-

vation behind this study is discussed first. Then the BoW encoding models improving

the classification performance are explained in detail.

Chapter 4 presents the analysis of the proposed methods in Chapter 3. Here, the
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results of the experiments and the classification performance comparisons of the pro-

posed methods and the MVPA techniques are provided.

In Chapter 5, the overall outcomes of this study are discussed and the possible direc-

tions of this work are pointed out.
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CHAPTER 2

AN OVERVIEW OF FUNCTIONAL MAGNETIC RESONANCE IMAGING

(FMRI), MULTI-VOXEL PATTERN ANALYSIS (MVPA) AND BAG OF

WORDS (BOW)

In this chapter, in order to provide information to the reader, one of the currently pop-

ular neuroimaging techniques, fMRI, is presented. Also current multi voxel pattern

analysis methods (MVPA) are overviewed to show the reader how cognitive states

are decoded. Finally, the backbone of this study, the bag of words (BoW) model, is

introduced to the reader and details of how this model is used in the literature are

explained.

2.1 Functional Magnetic Resonance Imaging (fMRI)

As the brain images help to understand the complicated structures of the brain, visual-

ization of brain functioning is one of the breakthroughs of this century. With the help

of the innovations in neuroimaging, functional neuroimaging methods have become

popular in detecting activation of brain regions while the subject performs a cognitive

task. During the cognitive task to which the subject is exposed, the neuroimaging

technique helps reveal the active parts of the brain. Therefore, the functional methods

in neuroimaging are now the most powerful tools to understand how brain works.

One of the most popular neuroimaging techniques used in visualizing the brain ac-

tivations is Functional Magnetic Resonance Imaging (fMRI). As the name implies,

the scanner has three main components, "magnetic", "resonance" and "imaging" [20],
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respectively.

• Magnetic: The scanner creates a static magnetic field while aligning nuclei of

atoms in the human body. This gives the name of the first component. Nuclei of

hydrogen atoms(protons) are used by the MRI machine as the body contains a

lot of water. With the help of a powerful electro-magnet, MRI scanner creates a

static magnetic field as the first step. This field is about 3 - 4 teslas(T) and 50000

times greater than the field the earth creates. Therefore, it has the capacity to

affect the magnetic nuclei of hydrogen. Without this huge magnetic field, the

protons would head to random directions. With this strong magnetic field, they

are aligned in the same direction in the scanner. This is called equilibrium state.

• Resonance: After the alignment of the nuclei, the radiofrequency coils of MRI

scanner emit electromagnetic waves that resonate at a particular frequency to

perturb the equilibrium by disturbing the nuclei [20]. In this phase named "res-

onance", the atoms are excited and absorb the energy the radiofrequency pulse

emits. After that, the hydrogen atoms return to the equilibrium point and release

the energy as the radiofrequency pulse is stopped. Although there is a contin-

uous static field in the MRI scanner, the radiofrequency fields are created for

short periods and then disappear. The radiofrequency coils detect the released

energy which is defined as MR signals. But it cannot be directly employed for

imaging because it does not contain any spatial information.

• Imaging: In this phase, MR signals are converted into the brain images. Most

of the current scanners use the technique mentioned in the work done by Lauter-

bur et. al. [26]. In order to generate 2D and 3D MRI images, three orthogonal

gradients are used in this work. Nuclei of atoms at different locations shake

in different speeds as the gradient coils create additional magnetic fields. The

spatial information is extracted using Fourier analysis.

Functional Magnetic Resonance Imaging (fMRI) is a technique which measures the

changes in brain functioning. The difference between fMRI and MRI is that fMRI
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(a) An fMRI image showing brain activations

(Source: [1]). (b) An MRI image of head (Source: [2]).

Figure 2.1: fMRI vs MRI

visualizes the activity of the brain (Figure 2.1a) while MRI shows only the anatomical

structure (Figure 2.1b).

Therefore, images of fMRI scans show the activity in the anatomical structure of the

brain [3] whereas images of MRI scans show the anatomical structure of the brain.

However, the neuronal activity is not directly imaged by fMRI. It visualizes physio-

logical changes correlated with neuronal activity of the brain [20].

In the study conducted by Pauling and Coryell [43], it was found that magnetic be-

haviour of hemoglobin differs depending on whether it is bound to oxygen or not.

The magnetic moment of oxygenated hemoglobin is zero as it does not have any

unpaired electrons(diamagnetic). On the contrary, deoxygenated hemoglobin (dHb)

has unpaired electrons so it is paramagnetic and has strong magnetic moment. Since

arterials having oxygenated blood does not distort the magnetic field around the tis-

sue, higher level of MR signal intensity is obtained where blood is oxygenated [51],

[39]. The active brain regions can be found with MRI by detecting the changes in

blood oxygenation [38], [40]. Measuring these changes also determines the blood-

oxygenation-level-dependent (BOLD) contrast.

An active neuron needs some energy to return to its original state. This energy comes
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Figure 2.2: Hemodynamic Response Function (HRF), from [19].

with blood flow to the brain. With this blood flow, glucose and oxygen are trans-

ported to the active area. Therefore, neurons can return to their original state. Oxy-

gen bounds to deoxygenated hemoglobin. So with the decrease in dHB, MR signal

increases in the activated regions. As a result, fMRI based on BOLD contrast gives in-

formation about the activity in the brain by measuring the oxygenation level of blood.

Some of the early studies using BOLD based fMRI can be found in the literature [7],

[25] [41]. fMRI based on BOLD is still the most powerful tool for visualizing the

brain activity.

Hemodynamic Response (HR) is the increase in MR signal and it is the result of

the neuronal activation. This response is characterized by a Hemodynamic Response

Function (HRF) [8] (Figure 2.2). As it is seen in Figure 2.2, there is an initial dip

following the start of a neuronal activity. Cause of this can be the initial oxygen

extraction. The peak value is the maximum value in BOLD HR signal and achieved

nearly 4 to 6s after the stimulus. The undershoot point comes after the activity stops

in the neuron and the BOLD HR signal decreases below the original level. In time,

the signal again recovers itself to the original level. In our fMRI experiments, the

average of time-series and the whole time-series of the given stimulus are used.

During each fMRI scan, 2D slices of brain are formed with the recorded BOLD sig-

nal measurements. After that, these slices are accumulated and 3D brain images are

formed. As these images are three dimensional, they are partitioned into voxels (vol-

umetric pixels) [8]. Voxels are the smallest spatial units of fMRI data, and depending

on the resolution used, they might contain thousands of neurons.
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2.2 Multi-voxel Pattern Analysis (MVPA)

The non-invasive nature of the functional magnetic resonance imaging (fMRI) has

increased the power of researchers to analyze the human brain. At the first studies

conducted using fMRI, researchers concentrated on detecting the active brain regions

under a specific cognitive task [30]. In the experiments, subjects are exposed to a

stimuli of a particular cognitive task. For each trial fMRI measurements are recorded.

After that, by averaging the fMRI recordings, the active parts of the brain can be

detected. In this approach the focus is on the individual voxels so that it is called

univariate approach.

On the other hand, recent studies focus on the full spatial pattern of the brain instead

of the univariate approach and try to recognize this full pattern [37]. This approach

is called multi-voxel pattern analysis (MVPA). MVPA approaches seek to find the

answer of how the information is encoded instead of trying to find where the infor-

mation is encoded. As a result, MVPA methods enable the identification of non-local

relationships between the brain and the specific cognitive task [45]. In the MVPA

based fMRI studies, patterns are considered as the vectors of voxel intensity values.

MVPA methods have four main steps [37]:

• Feature Selection: In this phase, the noisy voxels, which may reduce the clas-

sification performance, are eliminated with the help of the feature selection

algorithms. Therefore, the voxels carrying information are kept.

• Pattern assembly: In this phase, brain patterns are extracted from the data. A

label is given to each pattern according to the experimental condition generated

by the pattern.

• Classifier training: In this phase, the training set is constructed by selecting a

subset of samples that belongs to different cognitive tasks. A classifier is trained

with this training set. Therefore, a function mapping between the experimental

condition and the brain pattern is obtained.
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• Generalization: Here, the model generated in the previous phase is used to

predict the labels of the test samples [53]. In this way the model is tested with

the test samples. The generalization performance of the classifier is measured

with the accuracy of the classifier.

There are some advantages of MVPA methods compared to the univariate methods.

First of all, there may be knowledge loss in the univariate methods since the voxels

with insignificant response to a cognitive task are eliminated. But these voxels can

give information about the cognitive task in terms of presence and absence of it [37].

On the other hand, in MVPA methods the weak information can be collected from

different spatial points in an effective way. Secondly, spatial patterns that may carry

significant information can disappear as a result of the spatial smoothing used in

the most of the univariate methods. Lastly, MVPA methods take the combination

of different brain regions into account as it can be informative about the cognitive

task although they are not so individually. Univariate methods do not consider this

information.

In the last decade, several studies using MVPA approaches to decode cognitive states

have been carried out. Haxby et al. [18] showed that multi-voxel patterns drawn from

brain activity in ventral temporal cortex can be used to distinguish different cogni-

tive states. In this study, objects from different categories (faces, cats, non-sense

objects and man-made objects) were viewed by the subjects. This study showed that

faces and objects representations have an overlap and they are distributed in ventral

temporal cortex. However, with the use of MVPA methods, they could not find the

different patterns for these categories coming from distinct responses in different re-

gions. Additionally, Kamitani et al. [23] used MVPA methods in the orientation

detection problem. Davatzikos et al. [15] also used MVPA approaches to recognize

the discriminative patterns of brain activities with fMRI data recorded during a truth-

telling or lying experiment. In the study conducted by Mitchell et al. [32], MVPA

methods were used to decode the cognitive states in the experiment in which the

subjects are presented a sentence or a picture. There are also subclasses (an ambigu-

ous or non-ambiguous sentence and twelve categories of pictures) in the experiment.
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MVPA approaches were also used for memory retrieval tasks. Polyn et al. [44] used

these methods to detect the similarity of the patterns of brain activity in the encod-

ing and the retrieval phases. In this experiment, pictures from three different classes

were viewed by the subjects in the encoding phase. In the retrieval phase, they were

expected to remember these pictures.

In some of the studies, MVPA approaches were used for illness diagnosis. In the work

conducted by Craddock et al. [13], resting state functional connectivity patterns ob-

tained from healthy participants and patients with major depression were provided as

features to Support Vector Machines (SVM). Therefore, they distinguished the activa-

tions of healthy participants and patients using MVPA techniques. In addition, Shen et

al. [47] discriminated between schizophrenic patients and healthy participants using

the resting state functional connectivity patterns in machine learning tools. Moreover,

MVPA methods were used for discriminating the brain activations of healthy people

and patients with Autism Spectrum Disorder (ASD) [11].

In all of the studies mentioned above, brain activation patterns were recorded as fMRI

data and used for decoding cognitive states with the help of MVPA methods. In these

studies, the purpose is to discriminate between the brain activity patterns of different

cognitive tasks.

fMRI has the power of measuring and imaging the individual voxel intensities and

classical MVPA methods use these intensity values as features to the classifiers. How-

ever, this is not adequate to fully decode the complex structure of the brain. As a

result, more complicated models are necessary to analyze the brain functioning. With

this motivation we employed the bag-of-words model to decode the cognitive states.

In the next section, we give a summary of this approach with the examples from the

literature.
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2.3 Bag of Words (BoW)

The BoW model was first used in the context of text categorization [21, 50]. Later

it has been adopted to computer vision problems such as image classification [14]

and image retrieval [48]. Csurka et al. [14] extracted affine invariant descriptors of

image patches and then used vector quantization methods to form the visual words

from these descriptors. In another work, Sivic and Zisserman [48] used a similar

approach to form their visual words and applied it to object and scene retrieval in

videos. After its introduction to computer vision community, the BoW model has

rapidly become a preferred baseline model in object and image classification tasks,

and several variations [17, 27] have been proposed.

Despite its widespread use in the computer vision community, the BoW model has

not been frequently used in neuroimage related machine learning problems. To the

best of our knowledge, the work done by Solmaz et al. [49] is one of the studies that

employed the BoW model on fMRI data. They proposed a BoW method to classify

Attention Deficit Hyperactivity Disorder (ADHD) conditioned subjects and control

subjects using fMRI data of resting state brains. In their method, they have con-

structed a network of voxels based on the correlation between any two voxels and

used a BoW model to capture the features of the network. Practically, they repre-

sented a whole fMRI image by a histogram of words where each word represented

a certain level of activity in a network of voxels. They also applied the same model

to raw intensity time-series of the voxels and represented each image by a histogram.

Finally, they concatenated these two histograms and trained a Support Vector Ma-

chine (SVM) for classification. Our method differs from the work of Solmaz et al.

[49] in two ways. First, we do not use the BoW model to encode the whole brain as

a single entity, instead we apply the BoW model to individual voxels and to anatomi-

cal regions. And second, we pre-process (e.g. demeaning and averaging) the BOLD

intensities before feeding them to the BoW model. In another work done by Ertugrul

et al. [16] the BoW model has been used on fMRI data. In their method, they have

constructed networks(meshes) of anatomical regions. After that, they have calculated

the arc-weights of these meshes. Finally, they have encoded these arc-weights with
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the BoW techniques to classify the fMRI images. Our method differs from the work

of Ertugrul et al. [16] in two ways. First, we do not use the BoW model to encode

the whole brain in anatomical regions level, instead we apply the BoW model to in-

dividual voxels. And second, they encode the arc-weights of the meshes constructed

of anatomical regions, but we encode directly the voxel intensities.

15



16



CHAPTER 3

THE BAG-OF-WORDS MODEL

In this chapter, we describe the bag-of-words model which is the representation model

that we use to encode fMRI images. Originally used in the context of information

retrieval and text document classification [21, 50], it is a simplifying representation

model which emphasizes the frequencies of discrete words and ignores their spatial

location. In the following, we first give a motivational account of how a simple bag-

of-words encoding could solve the non-linear XOR problem (which cannot be directly

solved by linear classifiers) and then describe how we used it to encode fMRI images.

3.1 Motivation

Consider the logical exclusive-OR (XOR) problem which is a good example for lin-

early inseparable patterns. In this problem the classes cannot be separated with a

single line.

x

y

x3

x1

x4

x2

Figure 3.1: The exclusive-OR (XOR) problem.
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In Figure 3.1 the red data points x1 and x4 represent the negative class and the green

data points x2 and x3 represent the positive class. A linear classifier cannot produce a

perfect classification for this problem. However, if we utilize a bag-of-words encod-

ing, then the resulting representation would be perfectly solvable by linear classifiers.

To see this, let us first cluster these data points using k-means with k = 4. x1, x2,

x3, and x4 will become the means of the clusters c1, c2, c3, and c4, respectively. Now,

let us represent each datapoint with a vector of length k where we set the ith entry of

this vector to 1 if the datapoint belongs to the ith cluster (otherwise, the entry is set to

0). This is known as the hard-encoding method which we describe in Section 3.3.2.1.

Here are the resulting representation vectors:

• r1 = [1 0 0 0]T for x1,

• r2 = [0 1 0 0]T for x2,

• r3 = [0 0 1 0]T for x3,

• r4 = [0 0 0 1]T for x4.

Let us now consider the linear decision boundary given by w = [0 1 1 0]T . Con-

sidering that wT r1 = 0, wT r4 = 0 and wT r2 = 1, wT r3 = 1 these points are now

perfectly separable by a linear decision boundary (As can be seen the data points be-

longing to the negative class have the value 0 and the data points belonging to the

positive class have the value 1). This is a simple but convincing example where using

k-means and hard-encoding could help us solve non-linear classification problems.

This is the motivation behind our decision to use the bag-of-words model to tackle

the fMRI classification problem.

3.2 Dataset representation and notation

An fMRI dataset D consists of N images and their class labels,
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Table 3.1: The notations used in the thesis.

Symbol Explanation

D Dataset of fMRI images.

xi ith image.

yi Class label of the ith image, a scalar.

vij jth voxel of the ith image.

M Number of voxels in an image.

p(·) Pre-processing function applied on a voxel.

fi Feature vector representing the ith image.

c A code-word in a dictionary. c` is the `th code-word in the dictionary.

K Size of the dictionary, i.e. the number of code-words in the dictionary.

D = {(xi, yi)}Ni=1, (3.1)

where yi ∈ {1, 2, . . . , C} and C is the number of classes. An image xi consists of M

voxels,

xi = {vij}Mj=1, (3.2)

where each voxel, vij , is a time series, i.e. a vector, of BOLD intensity values. The

3D location of each voxel is fixed and known.

In Table 3.1, we present the notations and symbols used in the current and the next

chapters.
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3.3 The bag-of-words model

Using the bag-of-words model for a classification problem involves three steps:

1. Constructing a dictionary of words in an unsupervised manner,

2. Encoding the examples (e.g. images or documents) using the dictionary and

optionally applying spatial pooling,

3. Training a classifier on the encoding vectors.

In the following subsections, we describe each of these steps.

3.3.1 Constructing the dictionary

Before we construct the dictionary (or generate the code-words), we first pass the

time series vector of each voxel through a pre-processing function, p(·). Using p(·),
we either take the mean of the time series or make it a zero-mean vector.

Let S be the set of all pre-processed voxel time series in the training set, that is

S = {p(vij) | i ∈ TrainSet, ∀j}. (3.3)

We use the k-means clustering algorithm [29] to construct the dictionary. Here, the

parameter K defines the size of the dictionary, i.e. the number of code-words. The

k-means algorithm groups the similar elements in S under the same cluster. We

experimented with two similarity metrics: (i) Euclidean distance (Equation 3.4) and

(ii) Pearson correlation (Equation 3.5).

d(m1,m2) = (m1 −m2)(m1 −m2)
T . (3.4)

Equation 3.4 represents the squared Euclidean distance. It is the distance between

two row matrices of same size, namely, m1 and m2.

20



d(m1,m2) = 1− (m1 − ~m1)(m2 − ~m2)
T√

(m1 − ~m1)(m1 − ~m1)T
√
(m2 − ~m2)(m2 − ~m2)T

, (3.5)

where

• ~m1 =
1
p
(
∑p

j=1 m1j)~1p ,

• ~m2 =
1
p
(
∑p

j=1 m2j)~1p ,

• ~1p is a row vector of p ones.

Equation 3.5 represents the Pearson correlation distance. It is the distance between

two row matrices of same size, namely, m1 and m2.

The clustering algorithm produces a set of k centers, {c1, c2, . . . , cK}. Assuming that

these centers are the most representative features of the patterns in each cluster, we

call them the code-words.

3.3.2 Encoding the examples

In the encoding step, we map each image to a feature vector f . To do this, there

are two different options for encoding the images, namely, soft encoding and hard

encoding. There is also an optional spatial pooling operation which we will elaborate

in Subsection 3.3.2.2. The following two subsections describe the hard and the soft

encoding methods.

3.3.2.1 Hard Encoding

In hard-encoding, a voxel vij is encoded by a one-hot1 activation vector aij whose all

but the nth element are zeros. aij(n) = 1 where

1 Only one entry is 1, others are 0s.
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n = argmin
k
||ck − p(vij)||22. (3.6)

In effect, this encoding represents each voxel by the index of the cluster center that is

most similar to it.

The BoW encoding of an fMRI image, xi, can be computed in two different ways. (1)

encoding each voxel individually, (2) encoding voxels in groups, a technique which

is known as spatial pooling.

In the first method, we concatenate all the activation vectors of an image’s voxels. To

be precise, the feature vector for the ith image is

fi = [ai1, ai2, . . . , aiM ]. (3.7)

The second method, i.e. spatial pooling, is described in the next subsection.

3.3.2.2 Spatial pooling

In spatial pooling [27], voxels are first grouped in a pre-defined way and then the

image encoding is computed. The pre-defined grouping can correspond to anatomical

brain regions or some arbitrary grouping as well. Let the voxel groupings be denoted

by R1, R2, . . . , RG where G is the number of total groups, each group specifies a set

of voxels and |Ri| is the number of voxels in group Ri. Then, the feature vector for

the ith image is

fi =

[
1

|R1|
∑
j∈R1

aij,
1

|R2|
∑
j∈R2

aij, . . . ,
1

|RG|
∑
j∈RG

aij

]
. (3.8)

Here, pooling operation is simply averaging. Although there are alternatives to aver-

aging (e.g. taking the max), in this work we only experimented with averaging.
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3.3.2.3 Soft Encoding

In the soft-encoding method, the winner-take-all mechanism of the hard-encoding

method is softened. In this work, we follow Coates et al. [9], [10] and compute the

BoW encoding for each voxel as follows.

First, activation of each voxel for each cluster center is computed as

aijk = max{0, µ(z)− zk}, (3.9)

where zk = ||p(vij)− ck||2 and µ(z) is the mean of the elements of z. If the distance

to the centroid ck is above average, this activation takes the value of 0, otherwise, it

takes a value that is reversely proportional to its distance to the cluster center (hence,

the activation value becomes a similarity value). In effect, this creates a competition

between features as it causes nearly half of the features to be set to 0.

Finally, the feature vector fi is computed using one of two ways: (1) encoding indi-

vidual voxels as in Equation 3.7 or (2) groupings voxels spatially, i.e. spatial pooling,

as in Equation 3.8.

3.3.3 Training a classifier

Finally, we train linear SVMs on the BoW encodings (i.e. the feature vectors fis) of

the training images. Here, we optimize the C parameter in SVM using K-fold cross

validation.

3.4 Chapter summary

In this chapter, we first give the motivation behind why we used the bag-of-words

model in cognitive state classification with fMRI data. After that, the dataset repre-

sentation is presented and the notations used in the chapter are described. Finally, the

bag-of-words model, which is the representation model that we use to encode fMRI
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images, is described. Each of the three steps(constructing the dictionary, encoding

the fMRI images and training the classifier) is explained in detail.
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CHAPTER 4

EXPERIMENTS

In this chapter, we describe the experiments we conducted. First, we describe the

main dataset we used in our experiments and present a basic exploratory analysis of

the data. This analysis guides us in forming our experimental questions. Then, we

present two baseline MVPA results with which we compare the results we obtain

using the BoW modeling. Finally, we present BoW results on another dataset as

a validation of our proposed method. In addition, we also report performances of

two neural network models, namely multi-layer perceptron and convolutional neural

network.

4.1 The dataset: Emotional Memory Retrieval Dataset

The main dataset we used in this work is a neuroimage (or image) dataset collected

from 12 human subjects. For each subject, there are 210 training and 210 testing

images. Each image in the dataset belongs to one of four classes.

The dataset was originally collected for an emotional memory retrieval experiment

[33] where the stimuli consisted of two neutral (kitchen utensils and furniture) and two

emotional (fear and disgust) categories of images. Each trial started with a 12-second

fixation period followed by a 6-second encoding period. In the encoding period, par-

ticipants were presented with 5 images from the same category (See Figure 4.1), each

image lasting 1200 milliseconds on the screen. Following the fifth image, a 12-second

delay period was presented in which participants solved three math problems consist-
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Figure 4.1: Time series intensity generation in a voxel.

ing of addition or subtraction of two randomly selected two-digit numbers. Following

the third math problem, a 2-second retrieval period started in which participants were

presented with a test image from the same category and indicated whether the image

was a member of the current study list or not. The reader is referred to [33] for further

details. For neuroimage classification, we employed measurements obtained during

the encoding and retrieval phases as our training and testing data, respectively.

Figure 4.1 summarizes the entire experimental process. A randomly selected voxel

is depicted in an axial slice. An fMRI time series is recorded at this voxel, for each

stimulus for all the 4 classes. Also the intensity values of a sample response obtained

from this voxel are visualized here.

4.1.1 Pre-processing

We applied spatial normalization [6] to the raw fMRI data using MATLAB’s Statisti-

cal Parametric Mapping (SPM) toolbox [5]. We normalized the brain of each subject

to a standard template [6]. The voxel size was set to 4x4x4 = 64mm3. The resulting

number of voxels in each fMRI image was 22917.
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Figure 4.2: Histogram of voxel intensity values.

4.2 Basic Exploratory Data Analysis

In order to plan our classification experiments, first we need to have a basic under-

standing of the data. In this section, we present a very basic exploratory analysis of the

dataset. This analysis gave us intuition about how should we plan our experiments.

Each voxel vij in the dataset has a time series consisting of 6 intensity measurements.

We first explored how these intensity values are distributed. Figure 4.2 gives the

histogram of voxel intensity values. The histogram gets dense around value 157 and

has a heavy tail towards the smaller values. We have N images and for each image

M voxels in the dataset. So there exist N×M many voxels in total. We take all these

voxels and put them in an order as each voxel is located on top of another voxel. So

we get aN×M by 6 matrix. Next, we ran the k-means clustering method [29] on this

matrix, each row of which is the 6-dimensional time series, i.e. vectors representing

voxel intensity over time, for various k values and visualized the resulting cluster

centers. For relatively small k values, we observed that the cluster centers had similar

shapes, i.e. how the time series changed (increased or decreased) over time, but

had different average intensities (See Figure 4.3). For relatively large k values, we

observed some variations in shape.

In order to capture the time series change patterns, i.e. the shapes, more effectively,

we made each voxel’s time series a zero-mean vector by subtracting the average in-

tensity of each voxel from its time series. Then, we ran k-means again on these zero-
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Figure 4.3: A sample of cluster centers produced by k-means on the raw time series

vectors in the dataset. Note that three cluster centers ((a), (b) and (d)) have similar

shapes (i.e. increasing intensity) but different average intensity (values in the y-axis).

mean time series and the resulting cluster centers demonstrated a variety of shapes.

A set of samples is given in Figure 4.4 where we can observe some clear shapes,

i.e. trends, such as decreasing (Figure 4.4a), increasing (Figure 4.4b), decreasing and

then increasing (Figure 4.4c), or increasing and then decreasing (Figure 4.4d).

Based on the results of our exploratory analysis, we asked the following questions

which helped us design our experimental work:

• Does average intensity per voxel have any discriminative information?

• Does zero-mean time series per voxel (i.e. only the intensity trend) have any

discriminative information?
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Figure 4.4: A sample of cluster centers produced by k-means on the zero-mean time

series vectors in the dataset. Different shapes, i.e. trends, become obvious when the

time series vectors are made zero-mean and unit-variance.
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• Which of the two items above has more discriminative information? And if we

combine them, will there be a gain in terms of classification accuracy?

• Does including spatial or functional neighbors to the modeling increase the

classification accuracy?

• Does spatial pooling (e.g. with respect to anatomical brain regions) increase

the classification accuracy?

• Does voxel selection together bag-of-words modeling help improve the classi-

fication accuracy?

In the following sections, we first present baseline MVPA results with which we

compare our various bag-of-words modeling results.

4.3 Baseline MVPA Results

We decode cognitive brain states, i.e. which class of image the subject was looking at,

by automatically classifying subjects’ fMRI data using linear SVM. In the following,

we describe how we feed the data to the linear SVM without processing the data using

the bag-of-words model. In each SVM experiment reported in this work, we selected

the optimal C parameter value by doing 5-fold cross-validation on the training set.

We established two baseline performances by training linear SVMs on raw voxel

intensity values without applying any BoW encoding.

4.3.1 Linear SVM on Raw Time Series

Here, we used voxel intensity time series without any pre-processing, i.e. the pre-

processing function is the identity function: p(x) = x. We form a feature vector

fi for the ith image by concatenating all the vij vectors (for j = 1 . . .M ). In this

case, for each subject the training data was a 210x137502 matrix where N = 210 is

the number of training neuroimages, each neuroimage has M = 22917 voxels, each
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Table 4.1: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on raw time series.

Subjects Accuracies

S1 32.86%

S2 33.81%

S3 26.19%

S4 30.00%

S5 25.24%

S6 52.86%

S7 41.90%

S8 33.81%

S9 29.05%

S10 28.57%

S11 35.24%

S12 35.24%

AVERAGE 33.73%

voxel has 6-dimensional time series of intensity values and 22917x6 = 137502. We

trained a linear SVM on (fi, yi) pairs in the training set. The average classification

accuracy1 over 12 different datasets was 33.73%± 2.10% where 2.10% represent

one standard-error2. The percent correct classification rates per subject are presented

in Table 4.1.

4.3.2 Linear SVM on Average of Time Series

Here, we set another baseline performance where we used the average intensity of

the time series to represent a voxel. That is, the pre-processing function in this case is

p(vij) =
1
6

∑6
l=1 vij(l). We form a feature vector fi for the ith image by concatenating

1 Percent correctly predicted testing labels.
2 Standard error is equal to the bootstrapped standard error of the mean. That is, firstly, new samples are

generated, then, means of these samples are calculated, finally, the standard deviation of these means gives the
bootstrapped standard error.

31



Table 4.2: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series.

Subjects Accuracies

S1 34.76%

S2 35.24%

S3 33.81%

S4 31.43%

S5 32.86%

S6 68.57%

S7 51.90%

S8 40.00%

S9 29.05%

S10 25.24%

S11 39.52%

S12 42.38%

AVERAGE 38.73%

the average intensity value at each voxel, i.e. fi = [p(vi1), p(vi2), . . . , p(viM)]. This

reduced the training matrix size to the number of images times the number of voxels,

i.e. 210x22917. The classification accuracy was 38.73%± 3.22%. The result is

shown in Table 4.2.

4.4 Bag-of-words Modeling Results

Looking at the baseline results, one can hypothesize that the average intensity over

time per voxel has more discriminative information than the intensity time series. In

this section, we explore whether the same is true when we apply the BoW encoding.

In our preliminary experiments on this dataset, hard-encoding (Subsection 3.3.2.1)

consistently yield better performance than soft-encoding (Subsection 3.3.2.3), for this

reason, all of the results we report on this dataset in the following are based on hard-
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encoding.

4.4.1 Average of Time Series + BoW

Table 4.3: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series with BoW.

Subjects Accuracies

S1 38.10%

S2 51.43%

S3 44.29%

S4 49.05%

S5 38.57%

S6 69.52%

S7 55.24%

S8 50.00%

S9 35.24%

S10 35.24%

S11 42.86%

S12 41.90%

AVERAGE 45.95%

Here, we applied BoW encoding to average intensities of individual voxels. Specifi-

cally, the pre-processing function is p(vij) =
1
6

∑6
l=1 vij(l) and we run the k-means

method on all p(vij) ∀i, j (in the training set) to obtain the code-words. The acti-

vation vector aij for voxel vij is computed as described in Section 3.3.2.1, Equation

(3.6). We form a feature vector fi for the ith image by concatenating the activation

vectors, i.e. fi = [ai1, ai2, · · · , aiM ].

We set the value of k using cross-validation on the training set as follows. We ran-

domly split the training set of each subject into 70% training and 30% evaluation sets.

Then, for various values of k, we trained a linear SVM on the training set and evalu-
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Figure 4.5: The number of clusters (k) versus classification accuracy on a random

70%-30% split of the training sets of each subject. Error bars denote one standard

error (over 12 measurements).

ated the SVM on the evaluation set. Figure 4.5 gives the cross-validation results. The

optimal value of k turned out be 20. Values lower than 20 and larger than 20 resulted

in worse validation performances.

Using the optimal setting (k = 20), on the whole training and testing sets, linear

SVM’s average accuracy over 12 subjects was 45.95%±2.73%. This result is shown

in Table 4.3.

4.4.2 Trend (zero-mean time series) + BoW

Here, we applied the BoW encoding to time series trends. The pre-processing func-

tion used in this case was p(vij) = vij − 1
6

∑6
l=1 vij(l). The optimal number of

clusters in this case was 50. The average classification accuracy was 25.24%±0.84%

(shown in Table 4.4).

4.4.3 Average of Time Series + Trend + BoW

Here, we concatenated the two BoW models described above, i.e. the average inten-

sity BoW (k = 20) and the trend BoW (k = 50). The average classification accuracy

for this case was 32.66%± 0.77% (shown in Table 4.5).
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Table 4.4: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the time series trends with BoW.

Subjects Accuracies

S1 26.67%

S2 25.71%

S3 24.29%

S4 29.05%

S5 25.71%

S6 20.48%

S7 21.43%

S8 30.48%

S9 27.62%

S10 25.24%

S11 21.90%

S12 24.29%

AVERAGE 25.24%

4.4.4 Raw Time Series + BoW

Here, we used voxel intensity time series without any pre-processing, i.e. the pre-

processing function is the identity function: p(x) = x, and we run the k-means

method on all p(vij) ∀i, j (in the training set) to obtain the code-words. The activa-

tion vector aij for voxel vij is computed as described in Subsection 3.3.2.1, Equation

(3.6). We form a feature vector fi for the ith image by concatenating the activation

vectors, i.e. fi = [ai1, ai2, · · · , aiM ].

We set the value of k using cross-validation on the training set as follows. We ran-

domly split the training set of each subject into 70% training and 30% evaluation sets.

Then, for various values of k, we trained a linear SVM on the training set and evalu-

ated the SVM on the evaluation set. The optimal value of k turned out be 50. Values

lower than 50 and larger than 50 resulted in worse validation performances.
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Table 4.5: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the time series + time series trends with BoW.

Subjects Accuracies

S1 30.00%

S2 34.29%

S3 31.43%

S4 32.86%

S5 29.05%

S6 38.57%

S7 33.33%

S8 36.19%

S9 32.86%

S10 30.95%

S11 29.52%

S12 32.86%

AVERAGE 32.66%

Using the optimal setting (k = 50), on the whole training and testing sets, linear

SVM’s average accuracy over 12 subjects was 49.25%±2.48%. This result is shown

in Table 4.6.

This method gave the most significant results in this work since the performance

increase is 15.52% compared to the results in Subsection 4.3.1. This is the largest

classification accuracy increase over its MVPA counterpart in this work.

4.4.5 BoW with Spatial Pooling

In all the previous experiments we reported above, BoW encoding was applied to

individual voxels and the resulting activation vectors were concatenated to form the

image feature vector. In this section, we spatially pool the activation vectors within

each anatomical region of the brain. Specifically, we form the feature vector for the
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Table 4.6: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the raw time series with BoW.

Subjects Accuracies

S1 42.86%

S2 55.24%

S3 47.14%

S4 50.95%

S5 45.24%

S6 70.95%

S7 57.14%

S8 52.86%

S9 40.95%

S10 37.62%

S11 44.29%

S12 45.71%

AVERAGE 49.25%

ith image as follows

fi =

[
1

|R1|
∑
j∈R1

aij,
1

|R2|
∑
j∈R2

aij, . . . ,
1

|R116|
∑

j∈R116

aij

]
, (4.1)

where Rl is an anatomical region and |Rl| represents the number of voxels in that

region. Activation vectors were computed on average voxel intensities. This method

gave an average classification accuracy of 25.95%± 0.72% (shown in Table 4.7).

4.4.6 BoW with Voxel Selection

Here, we first performed voxel selection using the MATLAB’s relieff function [4],

[24]. Optimal setting for this case was selecting 3000 voxels. After that we applied

the model in Subsection 4.4.1. The average classification accuracy for this case was

37



Table 4.7: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series with spatial pooling

BoW.

Subjects Accuracies

S1 28.57%

S2 25.24%

S3 26.19%

S4 26.19%

S5 25.24%

S6 25.24%

S7 23.33%

S8 30.95%

S9 24.29%

S10 27.14%

S11 28.10%

S12 20.95%

AVERAGE 25.95%

44.21% ± 3.10% (shown in Table 4.8). As this model did not outperform the model

in Subsection 4.4.1, we did not apply it on raw time series.

4.4.7 BoW with Spatial and Functional Neighborhood

We also tried to utilize neighborhood information in decoding the cognitive states.

Both spatial and functional neighborhood experiments were performed. Since the

most significant classification accuracy increase was obtained in Subsection 4.4.4,

these experiment were carried out only with voxel intensity time series.
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Table 4.8: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series with voxel selection

and BoW.

Subjects Accuracies

S1 38.57%

S2 49.52%

S3 46.67%

S4 42.38%

S5 30.00%

S6 71.90%

S7 55.24%

S8 39.05%

S9 35.71%

S10 32.86%

S11 43.81%

S12 44.76%

AVERAGE 44.21%

4.4.7.1 Spatial Neighborhood

Definition 4.1. Spatial Neighborhood: For each voxel v, we set v as the center

voxel and define the neighborhood of voxel v within a radius r by n(v, r) = {u ∈
V |d(v, u) < r}. Here V is the set of voxels and d(v, u) is the Euclidean distance

between the spatial coordinates of v and u in 3-dimensional space.

Here, for each voxel v, we first detect the n many nearest neighbors(voxels) as ex-

plained in Definition 4.1 and concatenate them with the voxel v. After that we apply

the model mentioned in Subsection 4.4.4. Here, the optimal number of neighbors is

4. The average classification accuracy for this case was 45.71% ± 2.43% (shown in

Table 4.9).
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Table 4.9: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the raw time series with spatial neighborhood and

BoW.

Subjects Accuracies

S1 40.00%

S2 53.81%

S3 43.33%

S4 47.62%

S5 40.95%

S6 66.67%

S7 51.90%

S8 48.57%

S9 36.19%

S10 34.76%

S11 43.81%

S12 40.95%

AVERAGE 45.71%

4.4.7.2 Functional Neighborhood

Definition 4.2. Functional Neighborhood: Let Xv(t) denote the intensity time se-

ries of voxel v. We first set the similarity measure metric as Pearson correlation. Now

to detect the functionally nearest neighbor of voxel v, we calculate the similarity be-

tween intensity time series Xv(t) and Xu(t) for all the voxel pairs v, u ∈ V . Then we

select the voxels having p of the highest similarity with v.

Here, for each voxel v, we first detect the n many nearest neighbors(voxels) as ex-

plained in Definition 4.2 and concatenate them with the voxel v. After that we apply

the model mentioned in Subsection 4.4.4. Here, the optimal number of neighbors is

4. The average classification accuracy for this case was 46.07% ± 2.43% (shown in

Table 4.10).
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Table 4.10: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the raw time series with functional neighborhood

and BoW.

Subjects Accuracies

S1 43.33%

S2 51.43%

S3 41.90%

S4 46.67%

S5 40.95%

S6 68.57%

S7 52.86%

S8 49.52%

S9 37.62%

S10 35.71%

S11 42.38%

S12 41.90%

AVERAGE 46.07%

Here, we also notice that nearly half of the functionally nearest neighbors are also the

half of the spatially nearest neighbors of the specific voxel v.

4.4.8 Raw Time Series + BoW with Pearson Correlation

Here we applied the model in Subsection 4.4.4 with a minor difference. It is in the

phase of dictionary construction. Until this experiment, we used Euclidean distance as

the distance metric of k-means algorithm. However, here we used Pearson correlation

as the distance metric. What we tried to answer is how changing the distance metric

affects the classification performance. The average classification accuracy for this

case was 24.29%± 0.82% (shown in Table 4.11).
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Table 4.11: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the time series with Pearson Correlation BoW.

Subjects Accuracies

S1 26.19%

S2 21.90%

S3 22.86%

S4 29.05%

S5 23.33%

S6 18.10%

S7 25.24%

S8 26.67%

S9 27.62%

S10 25.24%

S11 22.86%

S12 22.38%

AVERAGE 24.29%

4.4.9 Summary

In this section, we summarize the bag-of-words modeling results on the emotional

memory retrieval dataset (Section 4.1). In Table 4.12, we present all of the subject-

averaged results. As can be seen here, the most promising results were obtained when

we applied the BoW model with hard encoding to the raw time series and the average

of the time series intensities of voxels. We see that extending the experiments with

spatial pooling, voxel selection, adding neighborhood and using Pearson correlation

as distance matrix resulted in losing discriminative information.

4.4.10 Deep Learning Experiments Results

We also did some preliminary deep learning experiments on this dataset. We used

Multilayer Perceptron (MLP) [46] and Convolutional Neural Network (CNN) [28]
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Table 4.12: Classification accuracies (percent correct on testing labels) of baseline

and proposed methods.

Method Accuracy
B

as
el

in
e

Raw time series 33.73%± 2.10%

Average of time series 38.73%± 3.22%

B
oW

Time series + BoW 49.25%± 2.48%

Average + BoW 45.95%± 2.73%

Trend + BoW 25.24%± 0.84%

Average + Trend + BoW 32.66%± 0.77%

Average + Spatial pooling BoW 25.95%± 0.72%

Average + Voxel selection + BoW 44.21%± 3.10%

Time series + Spatial neighborhood + BoW 45.71%± 2.43%

Time series + Functional neighborhood + BoW 46.07%± 2.43%

Time series + BoW with Pearson Correlation 24.29%± 0.82%

models with several different architectures and parameters. The results reported here

are by no means complete or comprehensive. Nonetheless, they are at least useful

for a machine learning practitioner who aims to use deep learning models on fMRI

images.

4.4.10.1 Multilayer Perceptron (MLP) experiments

We used the data of two different subjects and experimented with

1. different number of layers (between 2 and 4, inclusive),

2. different number of hidden neurons per layer (8, 16, 32, 64, 128),

3. different activation non-linearities (ReLU, leaky ReLU and sigmoid),
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4. different batch sizes (16, 32, 64),

5. different learning methods (Adam, SGD, RMSProp) and

6. using or not using batch-normalization layers.

Among all these different variants, only the batch-normalization made a significant

difference. In short, we observed two distinct network behaviors: (1) no or almost

zero learning, (2) learning but overfitting.

As a representative result for the first behavior (i.e. no or almost zero learning), we

report the performance of a 3 layer MLP without any batch-normalization layers. The

details of this architecture can be found in Figure 4.6 and the accuracy, loss plots can

be seen in Figure 4.7.

When we added a batch-normalization layer right after the input (Figure 4.8), the

behavior of the MLP changed qualitatively; it started to learn, however, it showed

overfitting (Figure 4.9). Adding batch-normalization to any other place (e.g. in be-

tween a linear dense layer and its subsequent activation non-linearity) did not change

the behavior.

4.4.10.2 Convolutional Neural Network (CNN)

Here, we used the CNN model with similar architectural and parametrical variations

as we did with the MLPs, however, we could not get any CNN to obtain better-than-

chance accuracy on the test set. We believe that this extreme overfitting is due to the

fact that the number of training images (210) is very low. A representative architecture

is given in Figure 4.10 and the accuracy, loss plots are presented in Figure 4.11.

4.4.11 The results of other studies conducted on this dataset

In the work done by Ertugrul et al. [42], functionally local meshes are constructed

around each voxel of the brain volume using a functional neighborhood system. They
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Figure 4.6: The architecture of the Multilayer Perceptron model. Here, the activation

layers use the ReLU (rectified linear unit) non-linearity.
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Figure 4.7: Accuracy and loss when we used MLP without batch normalization.

use Pearson correlation to specify the functional neighbors. After that, they estimate

the edge weights of these meshes and feed these weights directly to the classification

algorithm. The average classification accuracy obtained with this method is 66.56%.

4.5 Validation of Our Methods on Another Dataset

Given the success of our proposed method on an fMRI dataset (see Section 4.1), we

asked whether we can replicate the same success on another fMRI dataset. Below,

we describe this additional dataset used in this work. We did not do a comprehensive

bag-of-words evaluation on this dataset due to time constraints. We evaluated one of

our best performing BoW method (hard-encoding on average of time series) to see if

it produces a similar improvement as it did on the emotional memory retrieval dataset.

We also evaluated soft-encoding on average of time series and compared the results.
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Figure 4.8: MLP model with batch normalization.
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Figure 4.9: Accuracy and loss when we used MLP with batch normalization.

4.5.1 Visual Object Recognition Experiment Dataset

This dataset is the secondary dataset we used in this work. It was used to validate

the success we obtained in the first dataset on which we applied our model. It is a

neuroimage dataset collected from 5 human subjects. Each neuroimage in the dataset

belongs to one of two classes. For each subject, there are 216 images. Each neuroim-

age was normalized by the standard normalization step of preprocessing of the raw

fMRI data. This normalization is done by Matlab’s Statistical Parametric Mapping

(SPM) toolbox [5]. We normalized the brain of each subject to a standard template

[6]. The voxel size was set to 4x4x4 = 64mm3.

The dataset was originally collected for a visual object recognition experiment where

the stimuli consisted of gray-scale images belonging to two categories, namely, birds

and flowers. Participants performed a one-back repetition detection task in this exper-

iment. Each trial started with a 4-second stimulus presentation period followed by a

8-second rest period. A Siemens 3T Magnetom TRIO MRI System was used for this
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Figure 4.10: CNN model.
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Figure 4.11: Accuracy and loss when we used CNN.

experiment. Functional images were acquired using a gradient EPI sequence (TR =

2000 msec, TE = 30 msec, flip angle = 90, 34 interleaved axial slices). Since our TR

= 2000 msec, for each trial we get 6 measurements. In this experiment there were 6

sessions each of which consists of 36 trials. Therefore, for a single subject 216 trials

in total were obtained.

A pre-defined train/test split is not given for this dataset. For this reason, we randomly

split the dataset into 50% training and 50% testing. We repeated this 10 times.

4.6 Baseline MVPA Results

Here, we set the baseline performance where we used the average intensity of the

time series to represent a voxel. That is, the pre-processing function in this case is

p(vij) =
1
6

∑6
l=1 vij(l). We form a feature vector fi for the ith image by concatenating

the average intensity value at each voxel, i.e. fi = [p(vi1), p(vi2), . . . , p(viM)]. This
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Table 4.13: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series.

Subjects Accuracies

S1 76.39%

S2 75.74%

S3 79.07%

S4 82.22%

S5 69.91%

AVERAGE 76.67%

reduced the training matrix size to the number of images times the number of voxels.

The classification accuracy was 76.67%± 1.83%. The result is shown in Table 4.13.

4.7 Bag-of-words Modeling Results on Visual Object Recognition Experiment

Dataset

4.7.1 Soft Encoding Results

Table 4.14: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series with soft encoding

BoW.

Subjects Accuracies

S1 74.54%

S2 77.41%

S3 78.98%

S4 82.56%

S5 69.72%

AVERAGE 76.64%

Here, we applied BoW encoding to average intensities of individual voxels. Specifi-
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cally, the pre-processing function is p(vij) =
1
6

∑6
l=1 vij(l) and we run the k-means

method on all p(vij) ∀i, j (in the training set) to obtain the code-words. The acti-

vation vector aij for voxel vij is computed as described in Section 3.3.2.3, Equation

(3.9). We form a feature vector fi for the ith image by concatenating the activation

vectors, i.e. fi = [ai1, ai2, · · · , aiM ]. Linear SVM’s average accuracy over 5 subjects

was 76.64%± 1.93%. This result is shown in Table 4.14.

Here, we notice that when compared to the baseline results (Section 4.6), the classi-

fication accuracies of two subjects (Subject2 and Subject 4) were increased with soft

encoding.

4.7.2 Hard Encoding Results

Table 4.15: Classification accuracies (percent correct on testing labels) for each sub-

ject, when we apply linear SVM on the average of time series with hard encoding

BoW.

Subjects Accuracies

S1 59.54%

S2 60.65%

S3 57.22%

S4 72.11%

S5 59.44%

AVERAGE 61.79%

Here, we applied BoW encoding to average intensities of individual voxels. Specifi-

cally, the pre-processing function is p(vij) =
1
6

∑6
l=1 vij(l) and we run the k-means

method on all p(vij) ∀i, j (in the training set) to obtain the code-words. The acti-

vation vector aij for voxel vij is computed as described in Section 3.3.2.1, Equation

(3.6). We form a feature vector fi for the ith image by concatenating the activation

vectors, i.e. fi = [ai1, ai2, · · · , aiM ]. Linear SVM’s average accuracy over 5 subjects

was 61.79%± 2.37%. This result is shown in Table 4.15.
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4.7.3 Summary

Table 4.16: Classification accuracies (percent correct on testing labels) of baseline

and proposed methods.

Method Accuracy
B

as
el

in
e

Average of time series 76.67%± 1.83%

B
oW

Average + BoW with soft encoding 76.64%± 1.93%

Average + BoW with hard encoding 61.79%± 2.37%

Interestingly, the BoW method that produced the best result on our main dataset, did

worse than the standard MVPA method on this dataset. However, when we replaced

hard-encoding with soft-encoding, the performance of BoW increased but did not

outperform the MVPA baseline. Since these results are based on 10 random splits

of the dataset, we performed a paired t-test for each subject in order to test whether

BoW and MVPA results are significantly different from each other. For all subjects,

the test failed to reject the null-hypothesis (i.e. BoW and MVPA results are coming

from the same distribution) at α = 0.05 significance level (p = 0.26 for S1, p = 0.93

for S2, p = 0.13 for S3, p = 0.38 for S4, and p = 0.23 for S5).
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CHAPTER 5

CONCLUSION

In this thesis, we used the BoW method to encode the voxel intensities of fMRI data

in various ways. When we apply the hard BoW encoding model to individual vox-

els, there was a 7.22% improvement in average classification accuracy when applied

on average intensity per voxel and a 15.52% improvement in average classification

accuracy when applied to raw intensity time series per voxel compared to a classi-

cal multi voxel pattern analysis (MVPA) method. This is a promising result which

encourages us to further explore the use of BoW model in encoding neuroimages.

Based on the results we reported in the previous section, we draw the following con-

clusions.

• Average intensity (i.e. representing each voxel with its average intensity over

time) has more discriminative information than the intensity time series accord-

ing to MVPA results.

• Applying the BoW encoding only to the average of the time series has discrim-

inative information.

• Applying the BoW encoding only to the raw time series has discriminative

information.

• Applying the BoW encoding only to the trend of the time series (i.e. zero-mean

intensity time series vectors) does not have any discriminative information (it

produces chance-level classification accuracy).
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• Applying the BoW encoding to the combination of the trend of the time series

and average of time series has some minor discriminative information (it pro-

duces a classification accuracy of 32.66% which is a little bit higher than the

chance level).

• Applying the BoW encoding with spatial pooling using anatomical brain re-

gions did not improve the classification accuracy. In fact, it degraded the accu-

racy to the chance level, which indicates the importance of the (voxel) location

information in the task at hand.

• Applying the BoW encoding with voxel selection to the average of the time se-

ries has some discriminative information but it did not outperform the "average

+ BoW" case.

• Applying the BoW encoding with spatial neighborhood to the time series has

some discriminative information but it did not outperform the "time series +

BoW" case.

• Applying the BoW encoding with functional neighborhood to the time series

has some discriminative information but it did not outperform the "time series

+ BoW" case.

• Applying the BoW encoding with Pearson correlation as the distance metric

to the time series does not have any discriminative information (it produces

chance-level classification accuracy).

One should note that above conclusions are valid in the context of a specific fMRI

dataset and linear SVM classifiers. In order to draw more general conclusions, further

experimental work should be done using additional datasets.

Possible future directions of this study can be listed as follows:

• In order to further validate the methods used here, experiments can be repeated

on different and larger datasets with higher number of subjects and cognitive

stimuli.
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• Feature selection algorithms can be effectively applied before the dictionary

construction phase of our proposed method. In this way, we can extract our

code-words using the voxels having the most discriminative information.

• While constructing our model, instead of using raw voxel intensity values, we

can use the Pearson correlation values. In this way, we can use the functional

neighborhood in a more efficient way.

• In order to increase classification accuracy, a discriminative model representing

the relationship among the voxels can be constructed.

• Also deep learning techniques can be integrated with the methods used in this

thesis, as they are powerful tools used frequently in pattern recognition prob-

lems.
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