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Dispersion is an important physical phenomenon that heavily influences performances 

of systems such as chromatographic separation processes. Mathematical modeling of 

this phenomenon is therefore widely investigated. This thesis study investigates 

dispersion of random-walking particles, or tracers, around core-shell particles, a type 

of recently commercialized spherical and porous stationary phase used in liquid 

chromatography that has a solid impermeable core that limits diffusion near the center 

and a porous shell covering the core. A random-walk approach was used for modelling 

the diffusion events, coupled with an external fluid velocity field to simulate 

convection and diffusion simultaneously. Impermeable boundaries of an unbound, 

without wall-effects, liquid chromatography column packed with core-shell particles 

were created using basic principles of analytical geometry, defining core-shell 
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particles  as a collection of a large core spheres and much smaller shell side spheres 

coated around the core based on actual microscopy images of core-shell particles. 

Reconstruction method was very similar to the actual production methods of these type 

of materials where a silica core sphere is coated by silica nanospheres to create a core-

shell particle with a very homogeneous geometry. Analytically reconstructed 

geometry was visually inspected using CAD images and found to be appropriate. The 

core-shell particle geometry was then copied into a periodic random jammed packing 

of monodisperse hardspheres generated independently by a software and scaled in size 

such that core-shell particles would flush-fit inside the hardsphere that make the 

random packing. Random packing of hardspheres were also used as the system 

boundaries of fluid flow calculations. Assuming no flow would occur inside the pores 

of core-shell particles, velocity field of the fluid flow obtained by these calculations 

were used in couple with random-walk diffusion to simulate dispersion in the periodic 

random jammed packing of core-shell particles. Predictions of the dispersion model 

were quantized in terms of reduced plate height at different operating Peclet numbers 

and the results were compared with experimental data found in the literature. 

Predictions of the model compares very well with the experimental data with 

deviations clearly explainable by the differences between the simulated system and the 

experimental system. Therefore the analytical geometry based reconstruction method 

of the core-shell particles was successful and it can potentially pose an alternative to 

complicated imaging and image processing for similar system geometries. 
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ÖZ 

 

 

ÇEKİRDEK-KABUK PARÇACIK ORTAMLARINDA KÜTLE DAĞILMASININ 

GEOMETRİ TABANLI MODELLENMESİ 
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Kütle dağılması, kromatografik ayırma işlemleri gibi bazı sistemlerin performansını 

oldukça ileri seviyede etkileyen bir fiziksel olaydır. Dolayısıyla bu olayın 

matematiksel olarak modellenmesi yaygın bir şekilde çalışılmaktadır. Bu tez 

çalışması, sıvı kromatografisinde son yıllarda ticari olarak kullanılmaya başlanan bir 

durağan faz malzemesi olan, geçirimsiz bir çekirdek ve bu çekirdeğin etrafını kaplayan 

gözenekli bir tabakadan oluşan küresel çekirdek-kabuk parçacıklarının etrafında 

rastgele-yürüyüz yapan noktasal parçacıklara ait kütle dağılması olayını incelemeyi 

amaçlamaktadır. Ayrı olarak hesaplanan bir akışkan hız alanı, rastgele-yürüyüş 

metodu kullanan bir difüzyon modeliyle birlikte kullanılarak konveksiyon ve difüzyon 

olaylarını birlikte açıklayabilen bir kütle dağılması modeli oluşturulmuştur. Duvar 

etkilerinin olmadığı, çekirdek-kabuk parçacıklarla istiflenmiş sonsuz genişlikte teorik 
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bir sıvı kromatografi kolonu bu çalışmada basit analitik geometri prensipleri 

kullanılarak yeniden oluşturulmuştur. İlk aşamada, çekirdek- kabuk parçacıklar, 

mikroskop görüntüleri ve gerçek üretim metodları göz önünde bulundurularak büyük 

bir çekirdek küresinin etrafına katman-katman yerleştirilmiş kabuk kürelerinden 

oluşacak şekilde matematiksel olarak yeniden inşa edilmiştir. Sonrasında ise aynı 

büyüklükteki kürelerden oluşan periyodik olarak rastgele ve sıkıca istiflenmiş 

kürelerin geometrisi ayrı bir yazılımla oluşturulmuş, istiflenmiş küre geometrisi ise 

yeniden inşa edilen çekirdek-kabuk parçacıkların tam olarak periyodik istifteki 

kürelerin içine sığabileceği şekilde yeniden ölçeklendirilmiş ve nihayet periyodik 

olarak rastgele istiflenmiş bir çekirdek-kabuk parçacık geometrisi elde edilmiştir. 

Oluşturulan çekirdek parçacık geometrisi bilgisayar yardımlı çizim teknikleri 

kullanılarak görsel olarak incelenmiş ve uygun bulunmuştur. İstiflenmiş küre 

geometrisi ayrıca akışkan hız alanı hesaplanmasında kullanılmış, ve çekirdek-kabuk 

parçacıkların gözenekli kısımlarında akışın olmayacağı varsayılarak elde edilen 

akışkan hız alanı rastgele-yürüyüş modeliyle birleştirilerek çekirdek-kabuk 

malzemelerin etrafında kütle dağılımını tahmin edebilen bir matematiksel model 

oluşturulmuştur. Modelin tahminleri lteratürde bulunan uygun deneysel verilerle 

karşılaştırılmıştır. Model tahminleri ve deneysel verilerin aralarındaki farklar ise 

simülasyon sistemi ve deneysel sistem arasındaki temel farklar göz önünde 

bulundurularak açıklanabilmiştir. Sonuç olarak, çekirdek-kabuk malzemelerin analitik 

geometri prensipleri kullanılarak yeniden oluşturulmasının, benzer sistemlerde 

kullanılabilecek olan başarılı bir yöntem olduğu ortaya çıkmıştır. Bu yöntem 

görüntüleme ve görüntü işleme gibi zahmetli ve külfetli prosedürlere alternatif 

oluşturabilir. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Dispersion, which can loosely be defined as the random spreading of concentrated 

mass due to bulk and molecular motion, is an important phenomena that affects 

performances of frequently encountered systems in chemical engineering. 

Chromatographic separations for example, are processes where dispersion, also 

referred to as band-broadening in chromatography, controls the majority of the 

separation performance.  

Liquid chromatography is a separation process that takes advantage of different 

affinities of analytes or species in the mixture to the stationary phase to separate the 

mixture travelling along with the liquid mobile phase. Dispersion, or band-broadening, 

in liquid chromatography is typically quantized using the terms plate height or reduced 

plate height (Giddings,1965) which are very closely related to the longitudinal 

dispersion coefficient in the system (Maier et al., 2000). The quest for reducing 

dispersion in liquid chromatography column gave birth to different types of stationary 

phases such as fully porous spherical particles, monoliths and core-shell particles. 

Core-shell particles constitute a specific type of stationary phase for high performance 

liquid chromatography columns. They were first introduced as a new concept by 

Horvath et al. (1967) 50 years ago, and are now widely used for purification of small 

molecules and peptides. Solid cores of these particles do not allow diffusion, 

effectively reducing the band broadening otherwise would be caused by analyte 

molecules unnecessarily spending very long time diffusing through tortuous pore 
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space that would be available in place of the solid core (Macnair et al., 1997). As a 

result of the reduced path length of diffusion inside the particle, internal mass transfer 

limitations in core-shell particles -especially for larger molecules- are very low for 

core-shell particles compared to fully porous ones. This difference in the mass transfer 

limitations gives core-shell particles a considerable advantage over fully porous 

particles at superficial velocities near minimum plate height and beyond (Gritti et al., 

2007). Modern day commercial core-shell particles are typically produced with layer-

by-layer preparation methods, a type of controlled growth process, (Gritti & Guiochon, 

2011) that provides a narrow particle size, shell thickness and core size distributions 

(Bruns and Tallarek, 2011). These properties of core-shell particles makes them a good 

candidate for an example system to build a mathematical model that can predict 

dispersion around columns packed with these particles. 

The equation of continuity and preservation of mass and momentum is typically 

invoked in modeling of diffusion and dispersion. However, continuum solutions of the 

governing equations can only be obtained for systems with relatively simple 

geometries (Choi et al., 2017) (Rani et al., 2017) (Wu and Chen, 2015). Even if the 

continuum solutions are obtained for systems with relatively more complex 

geometries, analytical solutions might yield results with poor accuracy (Sattin, 2008). 

Accordingly, numerical solution becomes the sole option, which are prone to 

numerical errors such as numerical dispersion. Fortunately there is an alternative 

approach for modeling of diffusion an dispersion, the random-walk and particle 

tracking methods. Since the random-motion of a point like tracer in stagnant and 

unhindered media results in the probability distribution of a tracer, the chance to find 

a tracer at a certain point after a certain amount of random steps are taken by it, which 

is mathematically identical to the analytical solution of the heat equation in the same 

system with same initial and boundary conditions (Chicone, 2017). The size of the 

random-step and corresponding time increment during the random walk is calculated 

by the Einstein’s mean squared displacement formula, later given in Equation (14). If 

the random-walk experiment is repeated for a large amount of individual tracers, the 

mean squared displacement of all tracers becomes proportional to their diffusivity in 

the system. For systems with no-flux boundary conditions, impermeability is 
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simulated by collision control between tracers and the impermeable boundaries which 

can be done by simply using tracer positions and the equations describing the 

impermeable boundaries inside inequalities (Szymczak and Ladd, 2003). Random-

walk models coupled with external velocity fields calculated separately resembles an 

Euler approximation of Fokker-Planck equation, which is mathematically analogous 

to the classic advection-diffusion equation (Maier et al., 2000). The coupled model is 

commonly referred to as particle tracking method of modeling dispersion and it is 

frequently used throughout the literature. There is already a particle tracking model by 

Daneyko et al. (2015) that can simulate dispersion of small molecules in unbound core-

shell columns, but the model uses an effective medium approach (that uses an effective 

shell diffusivity, instead of defining the boundary geometry inside the shell side of the 

core-shell particles) for intraparticle diffusion. 

This thesis work focuses on reconstructing a boundary system based on the production 

methods and microscopy images of modern core-shell particles using basic principles 

of analytical geometry and building a model that simulates dispersion in the 

reconstructed system using the principles of particle tracking methods and mainly 

open-source software. Analytical geometry methods allows minimal computer 

memory requirements for the storage of reconstructed boundary system that is 

essentially a collection of center coordinates of spheres. This method also allows 

taking on a microscopic approach to diffusion where diffusing mass is represented by 

point-like tracers with bulk diffusivity. Effective diffusivity inside the reconstructed 

core-shell particles is met innately due to collision control with definite pore structure 

in the system. In addition, the simple simulation model created in this study can 

potentially be scaled-up for wider applications involving large, adsorbing-desorbing 

and reacting molecules or even simulations of dispersion inside entire packings, given 

required facilities are available. 

The rest of the thesis is organized as follows: 

A literature survey in Chapter 2 is presented for introducing more detail related to the 

topic. In Chapter 3: Methods, every phase of the study leading to the final product, 

including the procedures for reconstructing a general core-shell particle geometry by 
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using only three user-given variables (core-to-particle ratio, particle diameter, amount 

of shell layers) and extending the geometry into a random packing, building a basic 

random-walk free diffusion model and coupling it with the boundary system, 

calculating fluid flow in the packing of core-shell particles and integrating the random-

walk diffusion model with velocity field to finalize particle tracking simulation of 

dispersion. Application of these methods on utilized software, that is free form Fortran 

95 programming language for this thesis study, is explained in detail in appendices. 

In Chapter 4: Results & Discussion, validations of Fortran programs carrying out the 

calculations of the model, visualizations of the reconstructed boundary system and 

their inspection, predictions of the diffusion and dispersion simulations and their 

comparisons with experimental and theoretical data found in the literature are given 

and discussed. Conclusions and recommendations about the thesis study in Chapter 5 

and Chapter 6, respectively, followed by the Appendices, mark the end for the thesis.  
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

2.1. Liquid Chromatography 

 

2.1.1. Overview 

 

Liquid chromatography is a separation process that takes advantage of different 

affinities of analytes or species in the mixture to the stationary phase to separate the 

mixture travelling along with the liquid mobile phase. A key factor that strongly 

influences separation performance in chromatography is dispersion, also commonly 

referred to as band-broadening, as roughly visualized in Figure 1, which is a measure 

of variance, 𝜎𝐿
2, in the residence time distributions of concentrated bands of analyte 

that travel through the column. 

Height equivalent to a theoretical plate, plate height in short, is the main term used in 

common that describes the performance of a chromatography column. Different plate 

heights for different species in the analyte mixture is responsible for distinct peaks 

visible in a typical chromatogram. Plate height of a species is defined as, by Giddings 

(1965): 

H =
𝛿𝜎𝐿

2

𝛿𝑧
 (1) 
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Where 𝜎𝐿
2 is the variance in the elution band, ‘z’ is the longitudinal position. Plate 

heights are typically reduced by the average particle diameter in columns packed with 

spherical particles to get the dimensionless parameter, reduced plate height, described 

as ℎ = 𝐻/𝑑𝑝. Plate height relation given in Equation (1) is very closely related to 

longitudinal dispersion coefficient in the column by the superficial mobile phase 

velocity, 𝑢𝑧. If longitudinal position, z, is substituted by (t𝑢𝑧) the equation for transient 

dispersion coefficient is obtained and if the time derivative in the equation is constant 

the equation gives the Fickian dispersion coefficient in the conventional advection and 

convection equation (Maier et al., 2000), given in Equation (2), which is proportional 

to the time slope of the variance in residence times of tracers throughout a column that 

determines the shape of a chromatographic band. In other words, dispersion coefficient 

and plate height, or dispersion and band-broadening in a chromatography column are 

practically the same things with different names. 

𝐷𝐿 =
𝐻𝑢𝑧

2
=

1

2

𝛿𝜎𝐿
2

𝛿𝑡
 (2) 

 

 

 

 

Figure 1: Band-broadening process. A rectangular concentration band morphs into a 

Gaussian shaped concentration band due to dispersion in the chromatographic system. 
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Hence, plate heights in a liquid chromatography column is in fact only related to the 

dispersion event in the system. Dispersion then, relates to certain characteristics of the 

system boundaries or physical properties of the mobile phase or the analyte. Still, 

reduced plate heights in different columns should emphasize differences in system 

boundaries due to the nature of reduced variables. 

The most basic characterization of a liquid chromatography column can be made by 

fitting a van Deemter curve (van Deemter et al., 1956) to the experimentally 

determined data and determining the parameters A, B and C.  

h = A +
B

Pe
+ CPe (3) 

 

The A term is regarded as a measure of the contributions resulting from the column 

geometry, structure of the packing and possible consequent flow irregularities 

throughout the column. The B term is the measure of plate height contributions due to 

longitudinal diffusion and the C term is a measure of mass transfer limitations in the 

system, such as adsorption of analyte molecules or highly tortuous diffusion of large 

molecules through the pores present in the system. Pe is the Peclet Number,              

𝑃𝑒 = 𝐿. 𝑢𝑠/𝐷𝐴𝐵, which is a dimensionless parameter that compares advective mass 

transfer in the system to the diffusive mass transfer, i.e. higher Pe corresponds to 

greater advection in the system. Another basic model is the Knox Equation (Knox, 

2002) that uses similar fit parameters with similar physical significance, but the A term 

is modified with a power (typically 1/3) of Peclet number: 

h = APe1/3 +
B

Pe
+ CPe (4) 

 

There are also more advanced models, some of which will be introduced later, but all 

of them are based on these main contribution parameters in van Deemter equation. 
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2.1.2. Porous Stationary Phases in Liquid Chromatography 

 

The inverse relation between chromatographic column performance and dispersion 

motivates the developement of different porous stationary phases in liquid 

chromatography. Fully porous spherical stationary phase materials are well-

understood, have well-established production techniques and are commonly used in 

liquid chromatography (Guiochon and Gritti, 2011). However they can reduce column 

efficiency at high speed separations very drastically, especially for large molecules 

due to very high internal mass transfer resistances (Macnair et al., 1997).  They are 

still often preferred in liquid chromatography systems due to their high capacity. 

Monolithic stationary phases are also commonly used and relatively new materials in 

liquid chromatography. Monoliths allow similar mobile phase flow rates at lower 

pressure gradients compared to spherical stationary phases due to their macroporous 

structure and low mass transfer limitations near the por surfaces due to macropore 

structure makes them efficient (Hlushkou et al., 2010). Second generation monoliths 

that became commercially available back in 2012 are even more efficient due to their 

radial homogeneity reducing velocity biases across the column, but the competition  

between spherical packing columns and monolithic columns still continues as progress 

in these areas still have momentum (Hormann and Tallarek, 2014).  

Another relatively new stationary phase is core-shell particles, which is an older 

concept than monoliths but a still developing one due to its perhaps premature 

emergence near the era where fully porous particles were improving very rapidly in 

performance and popularity (Guiochon and Gritti, 2011). Core-shell particles are 

separately discussed in the next section. 

 

 

 



 

 

9 

 

 

2.2. Core-Shell Particles 

 

2.2.1. Overview 

 

Core-Shell particles, also frequently referred to as superficially-porous particles, or 

pellicular particles, are a type of porous stationary phase used in chromatography. 

They consist of a solid, impermeable core and a porous shell that allows obstructed 

diffusion coated around the core, as roughly visualized in Figure 2.  

 

 

 

Figure 2: Basic visual representation of a core-shell particle, with impermeable solid 

core sphere and porous shell coated around it. 
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The impermeable solid core of the particles reduce the intra-particle mass transfer 

limitations encountered especially at high Peclet numbers and for large molecules as a 

very early study -that can be considered one of the first to explore the concept- reveals 

in which pellicular ion exchangers with a stationary phase resembling modern-day 

core-shell particles were investigated by Horvath et al. (1967). Dead volume created 

by the solid core intrinsically allows even more limited diffusion inside the core-shell 

particle compared to a fully porous particle, reducing the intra-particle residence times 

and relatively dispersion, leading to improved band-broadening in columns (Macnair 

et al., 1997).  These improvements achieved by core-shell particles brings their 

performance close to that of  fully-porous particles with smaller diameters, with the 

added benefit of requiring less pressure drop to operate at a similar efficiency (Gritti 

& Guiochon, 2012).  

 

 

 

Figure 3: Improved C-branches in columns using core-shell particles (Halo) compared 

to the columns packed with fully porous particles (Silica-B). Left: Small molecules 

performance. Right: Large molecules performance (Adopted from the work of Gritti 

et al. (2007) with permission). 
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Oldest core-shell type particles were quite large in diameter compared to modern ones. 

Kirkland’s (1969) study investigates the performances of early superficially porous 

particles ranging from 37 to 63 microns in diameter and a shell thickness of only 1/30 

of the particle diameter. Another early study related to core-shell particles by Done 

and Knox (1972) investigates the performance of commercially available (at the time) 

core-shell particle series with average diameters ranging from 29 to 109 microns. In 

contrast, modern day core-shell particles are typically much smaller, possibly due to 

improvements in production methods over the years, such as the 5 micron “Poroshell” 

particles whose performance was investigated in another study of Kirkland et al. 

(2000) and 2.7 micron Halo particles investigated in Gritti et al.’s study (2007). 

Although such small sizes, newer core-shell particles such as Poroshell and Halo have 

much greater core-to-particle ratios compared to older ones. This gives new generation 

of core-shell particles a comparable capacity to fully porous particles at a smaller 

diameter, and also improved plate heights seen in Figure 3 (Guiochon & Gritti, 2011). 

 

2.2.2. Production Methods and Imaging 

 

Modern core-shell particles are prepared by coating solid silica spheres with shell 

layers. Core spheres are typically produced based on the method suggested very early 

on by Stöber et al. (1968), in which a process was proposed for controlled growth of 

monodisperse spherical silica particles that can help increase the size of seed spheres 

quite homogenously. Once the core-spheres are prepared, they are coated with a porous 

layer in a similar procedure proposed by Stöber and Fink, then the coated silica sphere 

is again used as a seed sphere and coated with another layer and so on (Gritti & 

Guiochon, 2011). Figure 5 displays a simplified visual representation of this process. 

This controlled growth approach to preparation of core-shell particles leads to very 

homogeneously spherical particles rather than egg-shaped ones. There are relatively 

earlier research on methods for controlling the pore sizes in such mesoporous materials 

and allowing production of particles with greater pore size while keeping the pore-size 

distribution as narrow as possible (Ma et al., 2003).  
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Gritti et al. (2010) inspects the performance of an HPLC column packed with 

commercially available core-shell particles, produced in a ‘layer-by-layer’ approach. 

According to the information provided by the manufacturers of these commercial 

particles in their work, these particles have a very narrow particle and pore size 

distributions and they confirm these by SEM images of the particles at different zoom 

levels. A very striking image that belongs to one of these particles is in Figure 4, where 

the solid silica core and incredibly smooth shell layers with very small silica 

nanospheres are very clearly visible.  

 

 

Figure 4: Images of commercially available core-shell particles. Attention for 

smoothness and similar sizes of the entire particles (top left and right) and the 
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morphology of the shell layers (bottom) (Adopted from the work of Gritti et al. (2010) 

with permission). 

 

 

Bruns and Tallarek (2011) used confocal microscopy for imaging a portion of an entire 

capillary column packed with commercial Kinetex core-shell particles and 

reconstructed the packing geometry in 3-D (Figure 6), which is an important study for 

deeper understanding of the effects of packing preparation methods and particle 

properties on the morphology of the packing. Using image-processing techniques, they 

confirmed the narrow size distributions of the modern core-shell particle. Additionally, 

they also found that the size distributions of the core spheres and distributions of shell 

thickness in these particles are also very narrow (Figure 7).  

 

 

 

Figure 5: Representative flowchart of the layer-by-layer coating of solid core with 

nanospheres. Charged polymers are removed by heat treatment, their space becomes 

the pores between nanospheres coated in layers (Adopted from the work of Hayes et 

al.  (2014) with permission) 
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Figure 6: Digital reconstruction of capillary packed with core-shell particles. Core 

spheres and shell areas are clearly visible in grey and yellow respectively. Capillary 

walls are highlighted in dark shade (Adopted from the work of Bruns and Tallarek 

(2011) with permission). 

 

 

Figure 7: Distributions of shell thickness, core diameter and entire particle diameter of 

core-shell particles in the reconstructed portion of the capillary column, as determined 

by image-processing techniques (Adopted from the work of Bruns and Tallarek (2011) 

with permission). 
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2.3. Modelling of Diffusion and Dispersion 

 

2.3.1. Continuum Solutions 

 

Transient diffusion without externally-induced flow is described by the heat equation 

without generation terms, which is analogous to the Fick’s second law, assuming a 

dilute medium where density and diffusion coefficient is constant. In one dimensions, 

the equation is the following (Choi et al., 2017) 

𝛿𝐶

𝛿𝑡
= 𝐷

𝛿2𝐶

𝛿𝑥2
 (5) 

 

The general solution for the heat equation given in Equation (5), for a general initial 

condition 𝐶(𝑥, 0) = 𝑓(𝑥) with open boundaries was given in the study of Zhukovsky 

and Srivastava (2017) as, 

C(x, t) =
1

√4𝜋𝐷𝑡
∫ 𝑒−

(𝑥−𝜀)2

4𝐷𝑡 𝑓(𝜀)𝑑𝜀
∞

−∞

 (6) 

 

If the initial concentration profile is described by delta function 𝛿(𝑥 − 𝜇), Equation 

(6) transforms into a general gaussian distribution with variance 𝜎2 = 2𝐷. 

C(x, t) =
1

√4𝜋𝐷𝑡
𝑒−

(𝑥−𝜇)2

4𝐷𝑡  (7) 

 

In the study of Choi et al. (2017) other analytical solutions, some tailed and skewed 

probability distributions, for the heat equation with similar initial conditions but in a 

finite domain is proposed and proven to be solutions to the heat equation. These type 

of solutions would probably be applied to some analogous systems that might be 

encountered in chemical engineering. However proposing a similar solution and 

reversing to prove it is a solution for the heat equation in a system with complicated 
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geometry, such as a core-shell packing, would be extremely challenging if not 

impossible. 

𝛿𝐶

𝛿𝑡
+ 𝑢

𝛿𝐶

𝛿𝑥
= 𝐷

𝛿2𝐶

𝛿𝑥2
 (8) 

 

Analytical solutions for advection-diffusion equation, given in Equation (8), is also 

available for different systems throughout the literature. Rani et al. (2017) derived 

analytical solutions for the transport of reduced and oxidized species to a rotating disc 

electrode for both transient and steady-state cases, with a depletion rate boundary 

condition at the surface of the cylinder, and a fairly complex velocity field around the 

electrode. They claim the solutions to be fairly accurate. Still, the solutions are one 

dimensional and for a relatively simple boundary geometry.  

In the study of Wu and Chen (2015), they propose a one dimensional transient 

analytical solution for a Taylor dispersion in a packed bed that uses averaged phase 

properties. The solution takes on a macroscopic approach to the problem in which 

individual contributions to dispersion from different mechanisms cannot be separately 

quantized. 

There are also numerical solutions of the mass balance and continuity equations, even 

derived for chromatographic systems involving core-shell particles (Kaczmarski and 

Guiochon, 2007). However these models use approximation methods such as lumping 

around the core-shell particles and are prone to numerical dispersion.  

 

2.3.2. Random-Walk Diffusion 

 

The random-walk and diffusion analogy first came up with the introduction of well-

known mean squared displacement formula by Einstein (for n dimensions, ∆𝑥 =

√𝑛2𝐷𝐴𝐵∆𝑡), where it was revealed that the random displacements of diffusing 

particles in a certain time interval was proportional to the square root of the length of 
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that time interval. This finding was later used to show that the probability density 

function of the random-walking particle position, which has a variance equal to 𝐷𝐴𝐵,  

becomes identical to the analytical solution of the heat equation for transient diffusion 

of a species initially point-injected to a free, stagnant diffusion domain as ∆𝑥 and ∆𝑡 

approaches infinitely small amounts. In other words, the random-walk experiment 

repeated for a large number of times, or simultaneously for a large number of random-

walking particles, results in a distribution of random-walking particles that resembles 

the normalized concentration profile of diffusing species. Since the integral of normal 

distribution throughout the entire real domain is equal to unity, so is the normalized 

concentration profile of random-walking particle ensemble after the experiment is 

repeated a large number of times. This effectively is equivalent to a mass balance in 

the system and it is innate to random-walks (Chicone, 2017). 

 

Figure 8: Path followed by a random-walking particle in 2-D. Start and end points 

shown in red. Darker blue paths are sampled multiple times by the particle. 

 

 

Certain types of boundary conditions such as no-flux or constant-concentration can be 

adapted to random-walk models. For no-flux boundaries, Szymczak and Ladd (2003) 

proposes specular-reflection, can also be referred to as mirror reflection, or rejection 

Start 

End 
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methods for the simulation of impermeability at the boundary. According to their 

study, specular-reflection method is the only one that can yield close to 100% accurate 

results but the rejection method has much less computing power demand and it can 

estimate nearly flat concentration profiles at the proximity of impermeable boundaries. 

These methods are discussed in further detail in Chapter 3.  

Random-walk simulations of diffusion are used in different research areas. Gentile      

et al. (2015) uses a random-walk method to estimate local diffusion coefficients in a 

square-shaped capillary system, a potentially interesting study for the field of 

microfluidics where local transport properties are important. Khirevich et al. (2011) 

also uses a random-walk based diffusion model to probe the effect of microstructure 

of different spherical packings they generated, on the event of diffusion. Modified 

versions of random-walk diffusion models are even used for modelling so called 

“anomalous diffusion” phenomena where a non-linear relation between mean-squared 

displacements and time is observed (Angstmann et al., 2015). Examples can be 

increased. Random-walk approach for simulating diffusion can be concluded to be a 

robust and well-established method. 

 

2.3.3. Particle Tracking Methods for Dispersion 

 

Random-walk diffusion models are typically coupled with an external velocity field to 

simulate dispersion. The Fokker-Planck equation, given in Equation (9), describes the 

relation between the position of a random-walking particle affected by the drag forces 

in a velocity field and the total velocity that particle would have at that position due to 

random motion and the drag forces acting on it (Chen et al., 2017). 

dx(t) = f(t, x(t))dt + g(t, x(t))dW(t) (9) 

 

The ‘f’ and ‘g’ functions in the equation are the velocity field and diffusion coefficient 

respectively. Under fully developed flow conditions (f = f(x(t))) and constant bulk 
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diffusivity (g(t, x(t)) = 𝑐), an Euler approximation of Fokker-Planck equation very 

closely resembles the random-walk equation with an advective term added. In fact, 

Fokker-Planck equation is analogous to classic advection-diffusion equation under 

these conditions (Maier et al., 2000). This approximation of Fokker-Planck equation 

is used in particle tracking methods for the simulation of dispersion. 

In the study of Widiatmojo et al. (2016) particle tracking methods were invoked to 

create a mathematical model of gas dispersion in underground tunnel systems. They 

created a simplified network of Taylor channels based on the tunnel network of some 

Kushiro Coal Mine and carried out the particle tracking simulations. Their simulation 

predictions are in almost perfect agreement with the actual gas measurements taken 

from Kushiro Coal Mine despite the usage of simplified system geometry. Brutz and 

Rajaram (2017), in another study, develops a particle tracking method based model to 

investigate dispersion of contaminants throughout fractured rock formations, 

essentially a porous media. Their results show very good agreements of particle 

tracking simulations with the analytical solutions for dispersion. Wang and Cardenas 

(2015) in a similar study involving fractured rock formations extends to three 

dimensions and reproduces similar results that supports the accuracy of particle 

tracking methods in approximating the analytical solutions for classic advection-

diffusion equation.   

Particle tracking models of dispersion are also developed for chromatographic 

systems. For example, Koku et al. (2012) reconstructs a monolithic stationary phase 

environment based on microscopy images of a monolithic media and uses the 

reconstructed geometry to simulate fluid flow and finally dispersion in a theoretical 

chromatography column using a particle tracking approach for modelling the 

phenomenon. It would be important to point out that the mentioned study was based 

on the Ph.D. thesis study of Koku (2011). 
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2.3.4. Dispersion Models Related to Core-Shell Particles 

 

Kaczmarski and Guiochon (2007) proposes several different models based on the 

combination of mass balances of the components in the system in mobile phase and in 

the stationary phase. The most general model proposed in that study is the general rate 

model, which does not have any simplifications besides the main assumptions that are 

isothermal system, fully-developed steady incompressible flow, no radial 

concentration gradient, adsorption at equilibrium, non-transient dispersion and no flow 

in the shell sides of core-shell particles. Lumped pore diffusion model they propose 

simplifies the diffusion in shell side by using a volume-averaged concentration in the 

mass balance of species in stationary phase, introducing an internal mass transfer 

resistance term that can only be estimated. Equilibrium-dispersive model further 

simplifies the previous models by assuming the mass transfer resistances are 

negligible. They use the residence time distributions predicted by numerical solutions 

of these models to calculate plate heights for different molecules in the same column. 

Cavazzini et al. (2007), in another study, compares the general rate model predictions 

of Kaczmarski and Guiochon (2007) with experimental data. According to the 

comparisons, main problem with these models is the fact that it neglects radial 

contributions in the flowing mobile phase leading to an underestimation of plate height 

values at lower mobile phase velocities. 

Another model that predicts dispersion in core-shell packings was developed by 

Daneyko et al. (2015) based on Giddings theory of coupled eddy diffusion (1963), 

which are given in Equations (10) and (11). The model is still empirical, but it can 

predict the plate height contributions from short (transchannel) and long (interchannel) 

range inter-particle channels (see Figure 9) separately by making use of parameters, 

𝜆′
𝑖 and 𝜔′

𝑖, related to the packing geometry. Contributions from longitudinal diffusion 

and mass transfer resistances related to the core-shell particles are represented by h𝐿 

and h𝐶 terms respectively. 

h = h𝐿 + h𝑠ℎ𝑜𝑟𝑡(1) + h𝑙𝑜𝑛𝑔(2) + h𝐶 (10) 
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h =
2𝐷𝑒𝑓𝑓

𝐷𝐴𝐵𝑅(𝑃𝑒)
+

2𝜆′
1

1 + (2𝜆′
1 𝜔′

1⁄ )(𝑃𝑒−1)
+ 

        
2𝜆′2

1 + (𝐷𝑒𝑓𝑓 𝐷𝐴𝐵⁄ )(2𝜆′
2 𝜔′

2⁄ )(𝑃𝑒−1)
+ 𝐶(𝑃𝑒) 

(11) 

 

Daneyko et al. (2015) carried out particle tracking simulations of dispersion that takes 

place in random packings of core-shell particles in the same study they developed the 

modified Giddings theory. In their simulations, they adopt an effective medium 

approach where the core-shell particles are defined only by two parameters, core-to-

particle ratio and effective diffusivity in the porous shell side. Effective medium 

approach allowed them to confirm the effectiveness of the simulations on the analysis 

of plate height contributions rising from different parts of the system. In addition, they 

state that the particle tracking approach in simulating dispersion can be coupled with 

digital reconstructions of chromatographic beds with morphological information 

retrieved from the actual tomography or microscopy images of the beds to 

computationally analyze dispersion in these type of columns even in more detail and 

accuracy. Studies of Bruns and Tallarek (2011) and Bruns et al. (2012) proves that 

microscopy images of capillaries packed with core-shell particles can be used for 

digital reconstruction of the system geometries with great convenience and even shell 

and core sides of particles are clearly distinguishable. Still, for the particle tracking 

simulations, either the effective medium approach must be used or individual core-

shell particles must also be reconstructed using microscopy images.   
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Figure 9: Ranges of transchannel (black brackets) -due to channeling of flow through 

narrow high porosity regions along the column- and interchannel (red brackets) -due 

to radial or transverse flow caused by the fluctuations in the porosity profile across the 

column- contributions to the dispersion, or plate height in a chromatographic system 

(Adopted from the work of Daneyko et al. (2015) with permission). 
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2.3.5. Time Scales and Dimensionless Measures of Time 

 

Time scales in diffusion and dispersion events are important due to the transient nature 

of these events in systems with tortuous geometries. This behaviour of diffusion is 

experimentally observed in nuclear magnetic resonance studies involving pulsed-field-

gradient techniques, where the time dependent diffusion coefficient of fluid molecules 

traveling through a porous media can be obtained and it is observed to be approaching 

an asymptotic effective diffusivity value in open pore structures after a certain amount 

of time (Latour et al., 1995) (Sen, 2004). Dispersion also behaves similarly and it is 

experimentally observed in the study of Gritti et al. (2014). In that study, they 

investigate a concept called “Parallel Segmented Flow Chromatography (PSFC)”, 

where standard columns were effectively transformed into narrower columns by 

sending only the middle part of the outlet stream to outlet detector by splitting the flow 

in the center region after a short axial distance using an end-fitting. Comparing the 

chromatograms from standard columns and PSFC columns, they conclude that the 

plate height gain in PSFC columns is due to pre-asymptotic operation of the column, 

before the analyte travels for enough time to sample the entire radial distance in the 

column.  

Commonly used time scales in the literature for diffusion and dispersion are diffusive-

time (𝜏𝐷) and convective-time (𝜏𝐶), defined by the Equations (12) and (13). 

𝜏𝐷 =
𝐿2

𝐷𝐴𝐵
  (12) 

 

𝜏𝐶 =
𝐿

𝑢𝑧
 (13) 

 

Note the units of 𝜏𝐷 and 𝜏𝐶 are in seconds. 𝜏𝐷 very closely resembles the mean squared-

displacement formula of Einstein, it represents the amount of time required for a 

diffusing species with diffusion coefficient 𝐷𝐴𝐵 to sample a distance equal to 𝐿, which 
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is the characteristic length in the system. One can see that the ratio of diffusive time to 

convective time in a system becomes identical to the Peclet Number in that system,  

𝑃𝑒 = 𝜏𝐷/𝜏𝐶 = 𝐿𝑢𝑧/𝐷𝐴𝐵. 

There are different variances of 𝜏𝐷 in different studies, for example in a study by 

Khirevich et al. (2011) 𝜏𝐷 is defined as a dimensionless time measure 𝜏𝐷 =

𝑡/(𝑑𝑝
2/2𝐷𝑒𝑓𝑓) , time required for a random-walker in the random packing they 

generated to travel a distance of a sphere diameter with the effective diffusivity inside 

the packing, which is essentially a direct application of Einstein’s formula in 1-D. In 

some other similar study by Maier et al. (2000), that involves particle tracking 

simulations of dispersion in periodic random packings of monodisperse spheres, 

diffusive time is defined as 𝜏𝐷 = 𝑡/(𝑑𝑝
2/𝐷𝐴𝐵). This definition uses bulk diffusivity 

instead of effective diffusivity, it still stands for more or less the same time-scale 

considering 𝐷𝑒𝑓𝑓 is around ~1.5 times 𝐷𝐴𝐵 in random packings of spheres. In the same 

study, 𝜏𝐶 is again defined as the dimensionless version of the one given in Equation 

(13), 𝜏𝐶 = 𝑡𝐿/𝑢𝑧. Khirevich et al. (2009) in another study uses transverse dispersion 

coefficient 𝐷𝑇 instead of diffusion coefficients in the definition of diffusive-time as 

𝜏𝐷 = 𝑡(𝑑𝑝
2/2𝐷𝑇). Although the definitions of 𝜏𝐷 is different in the latest two studies 

mentioned, they both essentially predict that the longitudinal dispersion in the system 

reaches asymptotic behavior after ~0.1𝜏𝐷  seconds if the diffusive-time is defined as 

in Equation (12).   
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CHAPTER 3 

 

 

METHODS 

 

 

 

Construction of the dispersion model in this work consists following main procedures. 

 Simulation of diffusion, in free and constrained media. 

 Creation of core-shell particle geometry. 

 Creation of periodic monodisperse random packings of hardspheres. 

 Simulation of fluid flow in the boundary system. 

Except for the dependency of fluid flow simulation on the hardsphere-packing 

geometry, these listed procedures can be independently developed and combined 

together to create a mathematical model that predicts the behaviour of dispersion in a 

chromatographic system involving core-shell particles as the stationary phase. The 

model has certain underlying assumptions, which limits its range, which will be stated 

in this dedicated chapter, along with detailed descriptions of the procedures. Their 

implementation on computers using mainly the Fortran programming language, as 

well as other software that are MS Excel, Octave and OpenSCAD and the integration 

of fluid flow and diffusion models are explained in Appedix C. 
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3.1 Diffusion Model 

 

3.1.1 Free Molecular Diffusion 

 

In Chapter 1 and Chapter 2, it has been discussed that random-walk particle tracking 

(RWPT) approach is a highly effective way for direct modelling of molecular diffusion 

in systems with high geometrical complexity, where continuum solutions are hard to 

obtain. RWPT methods use Einstein’s relation to discretize the amount of 

displacement, ∆𝑙,  a Brownian particle (tracer) undergoes in a certain time interval, ∆𝑡, 

depending on the molecular diffusivity of  these particles.  

∆𝑙 = √2𝐷𝐴𝐵∆𝑡 (14) 

  

Using the relation given in equation (14), time-dependent position vectors of tracers 

in one dimension are expressed by the following equation. 

 

Where 𝛏 is a vector that results from addition of unit vectors with a random direction. 

Initial positions of tracers can be varied.  

Equation (15) is equally valid for diffusion in higher dimensions since for isotropic 

diffusion random-walking particles will still have equal probability of proceeding in 

every possible direction, although this probability will decrease in value as more 

directions of movement are introduced (i.e. a random-walking particle in 1-D has a 

50% chance to go either direction while a random-walking particle in 3-D has 16.7% 

chance to proceed in any of the 6 possible directions). In any case, magnitude of the 

net displacement vector, ∆𝑙, becomes ∆𝑙√𝑑 for diffusion in d dimensions. 

Equation (14) allows choosing either ∆𝑙 or ∆𝑡 as the basis and calculation of the other 

depending on the choice. Conventionally a suitable ∆𝑙 value is chosen, depending on 

𝚾(t + ∆t) = 𝚾(t) + 𝛏∆𝑙 (15) 
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the size and shape of impermeable boundaries in the system, which will be discussed 

in section 4.1.2. Order of magnitude in ∆𝑡 selection for free diffusion is discussed in 

the section 4.1.1 where the verification of basic random-walk algorithm is shown.  

The total number of random steps a single tracer takes throughout the simulation is 

then calculated simply by dividing duration of diffusion event, 𝑡𝑠, by ∆𝑡. 

𝑛𝑠 =
𝑡𝑠

∆𝑡
 (16) 

 

The diffusion coefficient of tracers is back-calculated using the initial and final 

positions of the tracers. The total displacement of a tracer is calculated by using its 

initial and final cartesian coordinates in the distance formula. For an ensemble of N 

tracers that are simulated to undergo diffusion for 𝑡𝑠  seconds, molecular diffusion 

coefficient can be calculated by using following equation, which is basically the 

reversed version of Einstein’s relation. 

D𝐴𝐵 =
∑ (∆𝑋𝑖)2𝑛

𝑖=1

𝑁

1

2. 𝑑. 𝑡𝑠
 (17) 

 

In a free diffusion event with open boundaries and no impermeable walls, Equation 

(17) is expected to yield the same D𝐴𝐵 value as the input diffusion coefficient value. 

As a matter of fact, it should yield this same value regardless of the simulation duration 

given. Therefore, it can be used for the verification of random-walk algorithm. 

The model has underlying assumptions that affect the accuracy of it under certain 

circumstances. The assumptions are as follows. 

1. No interaction between tracers. 

2. Infinitesimal (point) tracers. 

3. Constant & Isotropic free diffusion coefficient throughout the system. 

4. Non-retained tracers (no adsorption in the system). 

5. No chemical reactions. 

6. Stagnant diffusion media. 
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Assumptions 1, 2 and 3 imply that the results obtained from the model would not 

accurately predict diffusion behavior of larger molecules, such as large proteins, that 

might have diffusion coefficients that change depending on their charge, molecular 

interactions and size. Still, the results would be comparable to experimental 

diffusion/dispersion coefficient data obtained by using small molecules in analyte 

level concentrations. Assumption 4 indicates that, if there are any impermeable 

boundaries in the system, any adsorption-desorption mechanism that may occur 

between boundaries and diffusing species in a real physical system is ignored. This 

becomes especially important in a system with pores. Adsorption event further affects 

the effective diffusivity of molecules in these pores, whereas the absence of adsorption 

allows diffusion only affected by the tortuosity of the pore structure. Assumption 5 

supports constant free diffusion coefficient assumption and it guarantees the material 

balance of trace ensemble. Assumption 6 is the final assumption of the random-walk 

diffusion model. However it is a temporary assumption that is needed to verify the 

validity of random-walk diffusion algorithm, as the main purpose of this study is to 

construct a model that explains diffusion and convection together. All in all, the 

assumptions from 1 to 5 can be very well acceptable for columns used for analytical 

purposes that involve separation of small molecules. 

With the equations and the assumptions introduced, the basic algorithm for random-

walk simulation in open boundaries is given below. This algorithm will be added 

features throughout this chapter, as different aspects of diffusion and dispersion is 

explored and coupled with the  random-walk diffusion model in empty media. 

1. Set N.  

2. Set D𝐴𝐵. 

3. Set simulation time, 𝑡𝑠.  

4. Set ∆𝑡 and calculate ∆𝑙 using Equation (14) 

5. Determine total number of random steps, using Equation (16). 

6. Set initial positions for all tracers.  

7. Generate 𝑛𝑠 amount of unit vectors with random directions. 

8.  
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9. Displace each tracer 𝑛𝑠 times using Equation (15). 

10. Use Equation (17) to recalculate D𝐴𝐵 and compare with initially set value. 

 

3.1.2 Impermeability & Collision Control 

 

Impermeable walls are defined as boundaries which prohibit any mass flux beyond the 

bound system. The equation of continuity emposes a Neumann boundary condition at 

impermeable walls of the system, such that the concentration profiles at those 

boundaries must satisfy the equation:  

∇𝑐 = 0 (18) 

 

In random-walk methods, these no-flux conditions are typically simulated by simply 

monitoring positions of tracers, detecting boundary violations and preventing any 

tracer from traveling beyond the diffusion domain bound by impermeable walls. The 

mathematical implementation of this strategy uses the position vectors of tracers along 

with analytical equations representing shapes and locations of impermeable 

boundaries The impermeable regions in a system can be conveniently defined using  

analytical inequalities. Figure 10 illustrates a diffusion domain, bound by one circular 

and one linear impermeable walls, which essentially includes every point outside 

impermeable areas defined as the set of inequalities 𝑥 > 25 and 𝑥2 + 𝑦2 < 25. If 

position of any Brownian particle in the system satisfies any of these inequalities after 

a random step is taken, then a collision between the particle and boundary is detected. 

Hence, the particle must be returned back to the diffusion domain. 

Szymczak and Ladd (2003) suggest specular reflection, or mirror reflection, as the 

most reliable solution to effectively move Brownian particles back into diffusion 

domain, as it is the only method that yields zero gradient near impermeable boundaries 

in the system. According to their definition of specular reflection, a tracer that crosses 

an impermeable boundary is returned to such a point in the diffusion domain that 

corresponds to the mirror image of the tracer’s position across the impermeable 
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boundary with respect to the boundary itself. This very closely resembles an elastic 

collision of a ball against a fixed straight-wall that has incomparably larger mass than 

the ball itself, in which case, if the velocity of the ball is known, its trajectory can 

easily be calculated even if it hits the wall at an angle. However, this is a considerably 

more complicated calculation if the wall has a curvature to it such as the circular 

boundary seen in Figure 11, as the problem in this case involves tangent lines near the 

point of contact between the boundary and the tracer. Then the boundary equation and 

the equation for the line that passes through two time-adjacent positions of the tracer 

before and after it crosses the boundary must be used to calculate the point of contact. 

Only then the tangent line to the curved wall at this point of contact can be found and 

used as the axis of mirror for the tracer. Considering the fact that a statistically 

significant population of tracers should be used in the simulation that results in a large 

count of collisions especially in a simulation involving a porous geometry, the specular 

reflection method should account for a significant portion of the computational 

requirements of such a simulation. In the same study of Szymczak and Ladd (2003), a 

method with much less computational demand is also suggested and it is called the 

bounce-back method. The bounce-back method simply returns any trans-boundary 

tracers back to their position inside the diffusion domain right before the collision. 

However, this method is shown to be not working as well near the boundaries as the 

specular reflection method. According to their simulations, the bounce-back method 

yields non-zero concentration gradients near the boundaries. However the 

concentration profile similar to the concentration profile yielded by specular reflection 

method, translated towards the boundary by a constant equal to the step-size of the 

tracer. This finding points to the fact that bounce-back method causes a numerical 

mass flux into the impermeable boundary, therefore increasing the effective diffusivity 

of tracer ensemble in the system. In other words, it effectively increases the space 

where diffusion is allowed. Still, the non-zero concentration gradient caused by 

bounce-back method is shown to be very small and its effect on the effective diffusivity 

will be neglected for the sake of reducing computational requirements of the model. 

Therefore, the bounce-back method is selected in this algorithm.  
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Figure 10: An arbitrary 2-D system. Dark shade areas are bound by two impermeable 

walls, the circle (𝑥2 + 𝑦2 = 25) and the line (𝑥 = 25). Diffusion domain is the area 

illustrated in lighter shade. 

 

  

Figure 11: Specular Reflection and Bounce-Back methods (Szymczak and Ladd, 

2003). Left side of impermeable wall is solid, right side allows diffusion. X(t) is the 

position of the tracer before collision. Tracer takes a random-step to the position 

X(t+Δt) which lies beyond the impermeable wall, and is reflected (either by mirror 

reflection or bounce-back) back to the position X’(t+Δt) in diffusion domain. 

 

X(t) 

Impermeable       Impermeable 

      Wall              Wall 

X’(t+Δt) 

X(t) 

X(t+Δt) 

X’(t+Δt) 

X(t+Δt) 

Specular (Mirror) Reflection Bounce-Back Reflection 
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After the introduction of impermeable boundaries and collision control, random-walk 

algorithm evolves into the following shape. Changed and added steps are in italic. 

1. Set n.  

2. Set D𝐴𝐵. 

3. Set simulation time, 𝑡𝑠.  

4. Set ∆𝑡 and calculate ∆𝑙 using Equation (14) 

5. Determine total number of random steps, using Equation (16). 

6. Set boundary equations. 

7. Set initial positions for all tracers.  

8. Generate 𝑛𝑠 amount of unit vectors with random directions. 

9. Displace a single tracer, for one step using Equation (15). 

10. Use 𝜲(𝑡 + ∆𝑡) in each boundary equation to check for collisions. If collision 

occurs, set 𝜲(𝑡 + ∆𝑡) = 𝜲(𝑡). 

11. Repeat 9 and 10 until all tracers have taken 𝑛𝑠 random steps each. 

12. Use Equation (17) to recalculate D𝐴𝐵 and compare with initially set value. 

One should realize that recalculated time-dependent D𝐴𝐵 values converges to a value 

lower than the input value of D𝐴𝐵, especially if the simulated system involves a 

tortuous pore structure. This occurrence is a very well-known property of diffusion in 

porous media, where the effective diffusion coefficient of diffusing species is a certain 

fraction of its free diffusion coefficient depending on the tortuosity of the pore 

structure. 

 

3.1.3 Periodical Boundaries 

 

In the previous section, it was explained how impermeability can be simulated by 

checking collisions between the tracers and impermeable boundaries. For smaller 

systems, such as the one depicted in Figure 10, storing information about the 

boundaries is rather simple since the example system has only 2 boundaries. However, 

a very large system like a packing of hardspheres may contain millions of spherical 
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boundaries depending on the size of hardspheres and packing container. In such cases, 

millions of sphere equations must be stored in memory for the collision control to be 

possible. To work around this impracticality, periodical boundaries in random-walk 

simulations are typically used. This type of a boundary uses a crystal unit cell system 

and virtually creates an infinitely large crystal structure of that unit cell. Figure 12 

shows a basic illustration of how periodical boundaries can be used to create an 

infinitely large ensemble of circles by saving only one circle equation to memory. This 

becomes possible by defining a “local” tracer position, which is the main unit cell 

(where the boundaries are defined) equivalent of the global tracer position. 

 

 

  

Figure 12: An illustration for the use of periodic boundaries to create a 2-D infinite 

array of circles in an ordered arrangement. Main periodic cell and a circular 

impermeable zone inside it are represented in solid red color, while the impermeable 

zones effectively created by the periodic boundaries are in dotted blue color. All points 

indicated by several small blue triangles are equivalent to the point indicated by the 

small red triangle in the main periodic cell. Crystal structure of the system extends to 

infinity without any bounds. 
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Let us assume a 2-D rectangular unit cell with dimensions 𝑊 x 𝐿, cornered at the 

origin, occupying the corner of the first quadrant. The equivalent local position, 𝚾𝑳, of 

a tracer wandering about a global position point (𝑥𝑔, 𝑦𝑔) is then calculated by the 

following equation. 

𝚾𝑳 = (𝑥𝑔 − Φ(𝑥𝑔/𝑊). 𝑊, 𝑦𝑔 − Φ(𝑦𝑔/𝐿). 𝑊)  (19) 

 

Where Φ is a function that truncates its input to the nearest integer smaller than the 

input. Negative inputs are truncated down, for example Φ(−0,6) = −1 while 

Φ(0,6) = 0. It is, in fact, similar to “Floor” function used in several different 

programming languages.  

Using the local tracer position to carry out collision control in the main unit cell is 

mathematically equivalent to translating impermeable boundary geometries defined in 

the main unit cell to the unit cell where the global tracer position is contained and 

carrying out collision control in that unit cell. Either way, if any collision occurs in the 

main unit cell, the global position is also set to the last known position before the 

collision, therefore creating infinitely many impermeable areas. Upon the addition of 

periodical boundaries, the random-walk algorithm is updated as following.  Changed 

and added steps are, again, in italic. 

1. Set N.  

2. Set DAB. 

3. Set simulation time, ts.  

4. Set ∆t and calculate ∆l using Equation (14) 

5. Determine total number of random steps, using Equation (16). 

6. Set boundary equations. 

7. Set initial positions for all tracers.  

8. Generate ns amount of unit vectors with random directions. 

9. Displace a single tracer, for one step using Equation (15). 

10. Calculate 𝜲𝑳(𝑡 + ∆𝑡) using 𝜲(𝑡 + ∆𝑡) in  Equation (19). 



 

 

35 

 

11. Use 𝜲𝑳(𝑡 + ∆𝑡) in each boundary equation to check for collisions. If collision 

occurs, set 𝜲(𝑡 + ∆𝑡) = 𝜲(𝑡). 

12. Repeat 9 and 10 until all tracers have taken ns random steps each. 

13. Use Equation (17) to recalculate DAB and compare with initially set value. 

 

3.1.4. Initial Conditions 

 

Initial distributions of the tracers are important considering the random-walk method 

is a discrete representation of the continuum solutions. There can be other types of 

initial concentration profiles defined as initial conditions for a system, however this 

study uses only point injection or bulk (homogeneous) injection type initial conditions. 

Point injection sets initial positions for all tracers to the same point, very much like a 

dirac delta function. Bulk or homogeneous injection, on the other hand assigns random 

initial positions to every tracer in a pre-determined volume, such as the diffusion-

available volume in the main periodic cell.  

The difference between these two initial condition types becomes important in a 

system with impermeable boundaries. All tracers in a tracer ensemble with a point 

injection type initial condition is bound to move across the same regular grid since the 

random-step size of all tracers are the same. Therefore one should expect dead zones 

around curved impermeable boundaries that cannot be sampled by any of the tracers 

due to discretization. In a homogeneously distributed tracer ensemble, on the other 

hand, every individual tracer still moves according to a regular grid but the grid is 

private for each tracer and relative positions of the grids are covering as much volume 

as possible throughout the system due to random initial positions of the tracers. 

Therefore bulk injection must be expected to have less dead volume around curved 

boundaries. This important difference between two initial condition types are 

discussed over the results given in section 4.1.2 of Chapter 4. 
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3.2. Construction of the Core-Shell Particle Geometry 

 

3.2.1. Strategy 

 

During the literature investigation, it was seen that some of the geometries such as a 

monolithic medium or a polydisperse spherical packing can be reconstructed digitally 

by using different imaging techniques and post-processing of these images, and these 

reconstructed geometries can be used in particle tracking simulation. However it was 

also revealed that these reconstruction methods are often experimentally difficult, 

computationally expensive and have high memory demand. Koku et al. (2012) reveal 

in their study that a digital reconstruction of a monolithic medium of size 18x14x18 

micrometers cubed occupies over 150 gigabytes of memory. The main reason for such 

a requirement is the fact that the irregular shape of monolithic medium must be saved 

pixel by pixel to obtain an accurate representation of impermeable areas in the system. 

This problem is not exclusive to only monoliths and it will persist as long as the same 

method is used.  

Core-Shell particles have a very suitable geometry to simplify the digital 

reconstruction approach in an attempt to eliminate these memory requirements. It was 

already discussed how these particles have a quite distinct geometry, thanks to the 

synthesis methods, that can be represented as almost perfectly arranged shell side 

spheres around a large core sphere. Therefore it is very convenient to represent a core-

shell particle as an ensemble of analytical geometry entities, in other words, a group 

of radius and center coordinates data that represents each and every sphere that 

contributes to the entire core-shell particle geometry. This simpler analytical geometry 

approach is advantageos for certain reasons. 

- It reduces memory demand, independent of any parameter that defines the 

exact geometry, such as shell thickness or number of shell layers. The data that 

represents a single element of the geometry is only the center point and the 

radius of that spherical element, which is always less than the requirements of 

image representation. 
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- It allows creating core-shell particle geometries with different shell thickness, 

radius and number of shell layers. This is a very important attribute of the 

approach since it will easily approximate the geometry of a real core-shell 

particle, given that its radius and shell thickness is known. Even the number of 

shell layers in a real core-shell can be identified using microscopy images and 

used as an input parameter. 

- Created geometry is innately suitable for scaling due to the contributing 

elements being spheres, it will preserve shape after scaling, and it can easily be 

translated. Therefore it can easily be used in reconstructing monodisperse and 

-if wanted- polydisperse packings of core-shell particles. 

- It will eliminate problems due to image-based reconstruction such as sampling 

errors. 

- Most importantly, it is highly compatible with the diffusion/dispersion model 

being built in study. 

The only drawback of this approach is the fact that it can only create a highly idealized 

core-shell particle geometry that is made of perfect spheres, closest elements to each 

other would be at least tangent to each other without any overlaps. Still, the approach 

is worth trying since it gets rid of the effort-intensive imaging process.  

 

3.2.2. Single Layer Core-Shell Particle Geometry 

 

Parameters that define the characteristics of a core-shell particle are entire particle 

radius (𝑟𝑝), core radius (𝑟𝑐) and the number of shell layers (𝑛𝑙). Another parameter 

called core-to-particle ratio (𝜑 = 𝑟𝑐 𝑟𝑝⁄ ) is introduced for convenience. Then radius of 

shell-side spheres (𝑟𝑠) for a single layer core-shell particle can easily be calculated 

using 𝑟𝑠 = 𝑟𝑝(1 − 𝜑) 2⁄ . 

In the first step of reconstruction, imaginary geometrical entities called auxiliary 

circles are introduced. An auxiliary circle is an imaginary circle hovering around the 

core sphere, on which there lies center points of a certain number of shell side spheres 
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such that these shell side spheres would be tangent to core sphere and they would also 

be at closest tangent to other shell side spheres centered on the neighboring auxiliary 

circle. Total number of auxiliary circles and amount of shell side spheres on these 

circles varies depending on 𝜑 and 𝑟𝑠.  A clear visualization of auxiliary circles can be 

seen in Figure 13. 

Maximum number of auxiliary circles that can be placed around the core spheres is 

determined by figuring out how many shell side spheres can be placed around the 

equatorial circle of core sphere (𝑛𝑠𝑠𝑒), that are tangent to the circle and tangent to each 

other at closest distance. Imagine two shell side spheres tangent to each other and core 

sphere at its equatorial circle. Setting the center point of core sphere at the origin as 

basis, spread angle (∝) between the line passing through the center of core sphere and 

the first shell sphere, and the line passing through the center of core sphere and the 

second shell sphere can be found by the following Equation (20), making use of 

isosceles triangle formed by center points of these three spheres. Then 𝑛𝑠𝑠𝑒 is 

calculated by the phi function introduced previously: 𝑛𝑠𝑠𝑒 = Φ(2𝜋/∝).   

∝= 2arcsin (
𝑟𝑠

𝑟𝑠 + 𝑟𝑐
) (20) 

 

Depending on 𝑛𝑠𝑠𝑒 being even or odd, maximum amount of auxiliary circles, 𝑛𝑎𝑢𝑥, 

changes. One can visualize the auxiliary circles that can be placed around a core sphere 

with 𝑛𝑠𝑠𝑒 = 12 by imagining an analog clock where 𝑛𝑎𝑢𝑥 = 5. A core sphere with 

𝑛𝑠𝑠𝑒 = 11 also has  𝑛𝑎𝑢𝑥 = 5 but only the appropriate part of the piecewise function 

given in Equation (21) can calculate the correct value of 𝑛𝑎𝑢𝑥 .   

naux = { 
Φ((nsse − 2)/ 2), for even nsse

Φ(nsse/2), for odd nsse
 (21) 

 

If the auxiliary circles are given number tags, from 1 to naux and starting from top to 

bottom, radii of these circles can be calculated by making use of right triangles. Since 

initially approximated spread angle changes due to truncations involved in calculating 
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𝑛𝑠𝑠𝑒, a corrected spread angle between auxiliary circles is calculated by ∝𝑐= 2𝜋 𝑛𝑠𝑠𝑒⁄ . 

Then the radius of the ith auxiliary circle (raux,i) can be calculated by Equation (22).  

 

 

Figure 13: Rough visual representation of core-shell particle reconstruction. Different 

elements of the particle geometry (large core spheres and some of smaller shell 

spheres) and concepts created related to the calculations which are auxiliary circles 

(dashed circles, passing through the center of smaller shell spheres), sphere of 

influence (sphere with dot-dashed boundary) are visualized. 

 

 

raux,i = sin(𝑖 ∝𝑐) . (𝑟𝑠 + 𝑟𝑐) (22) 

 

The planes hosting auxiliary circles are all parallel to xy-plane and the z-coordinates 

of each auxiliary circle (zaux,i) can be calculated using the same right triangles. Note 

that, any shell side sphere centered on an auxiliary circle will share the same z-

coordinate with that auxiliary circle. 

zaux,i = cos(𝑖 ∝𝑐) . (𝑟𝑠 + 𝑟𝑐) (23) 
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The maximum number of shell side spheres that can be placed on the ith auxiliary 

circle (𝑛ssa,i)  can be calculated in a similar manner to the calculation of naux. First a 

spread angle on that circle βi = 2arcsin (𝑟𝑠 raux,i⁄ ) is defined. Then 𝑛ssa,i is calculated 

by: 𝑛ssa,i = Φ(2𝜋/βi). Then the corrected spread angle becomes βc,i = 2𝜋 𝑛ssa,i⁄  

In the final step, x and y coordinates of the center points of shell side spheres placed 

an ith  auxiliary circle can be calculated making use of more right triangles, similar to 

the ones used for the calculations of raux,i and zaux,i. Equations (24) and (25) calculate 

the x and y coordinates of the center point of  jth shell side sphere centered on ith 

auxiliary circle respectively. These equations centers the 1st shell sphere on x-axis as 

basis and tags each shell side sphere on ith auxiliary circle from 1 to 𝑛ssa,i counter-

clockwise.  Z-coordinates of the shell side spheres are already determined by zi,j =

zaux,i as mentioned previously. 

𝑥𝑗,𝑖 = cos ((𝑗 − 1)βc,i) . raux,i (24) 

𝑦𝑗,𝑖 = sin ((𝑗 − 1)βc,i) . raux,i (25) 

 

Only remaining shell side spheres are one or two that needs to be placed tangent to the 

poles of core sphere depending on the value of 𝑛𝑠𝑠𝑒 being divisible by 4 or not. If 

divisible, all four quadrant points around the equator gets a sphere therefore two polar 

spheres are added. If not, region around the south pole becomes too narrow to fit 

another sphere for a realistic geometry. Their center points are predetermined without 

calculation. Sphere near the north pole is centered at the point 𝜂(0,0, 𝑟𝑠 + 𝑟𝑐) and the 

one near the south pole at 𝜎(0,0, −𝑟𝑠 − 𝑟𝑐). 

 

3.2.3. Generalization to Multiple Shell-Layers 

 

In the previous section, all required equations to calculate every element that creates 

an ideal single-layer core-shell particle geometry was explained and given. However 

core-shell particles often have more than one layer and variable shell thickness. 
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Thicker shells with a single layer would not realistically represent the void fraction in 

shell layer. Therefore the method should be extended to multiple shell-layers. 

Introducing another helpful concept called a sphere of influence is a solution for the 

generalization of the method to cover multiple layers. A sphere of influence can be 

defined as an imaginary sphere that tightly wraps around core sphere and the first shell-

layer around it. One can imagine this sphere of influence as a temporarily assigned, 

conceptual core sphere with a combined radius 𝑟𝑠𝑜𝑖 = 2𝑟𝑠 + 𝑟𝑐. As a matter of fact, the 

actual core sphere can be thought as the zeroth sphere of influence. Then the elements 

of another layer on top of the first one can be calculated by the same equations by 

setting 𝑟𝑐 = 𝑟𝑠𝑜𝑖. This procedure can be repeated for 𝑛𝑙 number of times to create a 

core-shell geometry with 𝑛𝑙 layers. 

For a core-shell particle with 𝑛𝑙 layers, radius of shell side spheres is calculated by the 

equation: 𝑟𝑠 = 𝑟𝑝(1 − 𝜑) 2𝑛𝑙⁄ . Introducing the subscript k, which refers to the 

variables belonging to the elements located in kth layer, to the variables explained in 

previous section, equations evolve into the following. Note that k starts from 0 and 

ends at the value of 𝑛𝑙 with 𝑟𝑠𝑜𝑖,𝑘 = 2𝑘𝑟𝑠 + 𝑟𝑐. 

∝𝑘= 2arcsin (
𝑟𝑠

𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘
) (26) 

𝑛𝑠𝑠𝑒,𝑘 = Φ(2𝜋/∝𝑘) (27) 

 
 

 

naux,k = {
 Φ((nsse,k − 2)/ 2), for even nsse,k

Φ(nsse,k/ 2), for odd nsse,k
 (28) 

 

∝𝑐,𝑘=
2𝜋

𝑛𝑠𝑠𝑒,𝑘
 (29) 

 

raux,i,k = sin(𝑖𝑘 ∝𝑐𝑘) . (𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘) (30) 
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zaux,i,k = cos(𝑖𝑘 ∝𝑐𝑘) . (𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘) (31) 

 

βi,k = 2arcsin (
𝑟𝑠

raux,i,k
) (32) 

 

𝑛ssa,i,k = Φ(2𝜋/βi,k) (33) 

 

β𝑐,𝑖,𝑘 =
2𝜋

𝑛𝑠𝑠𝑎,𝑖,𝑘
 (34) 

 

𝑥𝑗,𝑖,𝑘 = cos ((𝑗 − 1)βc,i,k) . raux,i,k (35) 

 

𝑦𝑗,𝑖,𝑘 = sin ((𝑗 − 1)βc,i,k) . raux,i,k (36) 

  

The resulting geometry is represented by vectors 𝐏𝑗,𝑖,𝑘 pointing to the centers of each 

and every spherical element in the geometry, where the components of center point 

vectors are defined as in the following equations. 

𝑃1
𝑖,𝑗,𝑘

= 𝑥𝑗,𝑖,𝑘 (37) 

𝑃2
𝑖,𝑗,𝑘

= 𝑦𝑗,𝑖,𝑘 (38) 

𝑃3
𝑖,𝑗,𝑘

= 𝑧𝑗,𝑖,𝑘 = zaux,i,k (39) 

 

3.3 Periodical Random Packing of Core-Shell Particles 

 

In the previous section, a method that utilizes basic principles of analytical geometry 

to allow reconstruction of a core-shell particle geometry was introduced. The method 

provides all defining parameters, being radii and center point vector components, 
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required for analytical representations of all elements in core-shell particle geometry. 

The resulting geometry can easily be translated across the coordinate system by using 

a translation vector on every element that collectively creates the entire geometry. The 

translation can be repeated an arbitrary amount of times to creates copies of the core-

shell geometry without directly calculating the parameters for each core-shell particles. 

The translation vectors needed to copy a core-shell particle geometry into a random 

jammed packing are center point vectors of a computationally generated random 

jammed packing of hardpheres, the construction of which is described in the next 

section. 

 

3.3.1. Random Packings of Monodisperse Hardspheres 

 

Skoge et al. (2006), in their work related to maximally jammed packings of 

hyperspheres, investigate some properties of the periodic random jammed packings of 

spheres they generated using a modified Lubachevsky-Stillinger algorithm and 

generously share the computer code they created for their work with any researcher 

who needs it. If set to three dimensions, the algorithm calculates radius of spheres as 

well as center point vectors of all spheres in the main periodic unit cell with a single 

input that defines how many spheres are present in the packing. A periodic random 

jammed packing of 50 monodisperse spheres (𝑛ℎ𝑠 = 50) with a radius                        

𝑟ℎ𝑠 = 0.142079  (depends on how many spheres there are in the unit cell, 𝑛ℎ𝑠) and void 

fraction 0.355 was generated in a unit cube (periodic cell length: 𝐿𝑝𝑐 = 1) cornered at 

origin and used in diffusion/dispersion model by using the code Skoge et al. provided. 

For the sake of consistency, the same random jammed packing used in all simulations 

done for obtaining the results. The effect of this preference is discussed in the results 

and discussion chapter. 
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3.3.2. Visualization & Inspection of the Random Jammed Packing of 

Hardspheres 

 

Computer generated visuals of the monodisperse spherical packing to be used in 

diffusion and dispersion simulations was done using an open source computer aided 

drawing program called OpenSCAD. Upon the visual inspection of generated packing 

a very crucial aspect of the packing for the model reveals itself. Packing generated by 

the code clearly has all 50 spheres centered in the unit cube however some of those 

spheres partially cross the boundaries defined by the unit cell. Consequently if the 

periodic unit cube is arranged into a crystal structure, these ‘invading’ spheres would 

partially appear in the main periodic unit cell even if their center point resides in the 

neighboring periodic cells. This prevents direct usage of the generated packing in the 

model because the specific collision control mechanism applied in this study needs 

access to parameters that define all main unit cell volume occupied by impermeable 

elements in the system. The problem can be solved by detecting invading spheres and 

including them in the packing in addition to 50 originally generated spheres.  

The most convenient and systematic way that comes to mind for detection of invading 

spheres is to determine center points that lie within a radius distance inside the 

boundaries of the unit cube. If the hardspheres have a radius 𝑟ℎ𝑠 and ith sphere in the 

packing has its center point at 𝑷𝒉𝒔
𝑖 , extreme points on their surface in positive and 

negative x,y and z directions can be found by separate addition and substraction of 𝑟ℎ𝑠 

on the compoents of the center point vector, ([𝑃ℎ𝑠,1
𝑖 ± 𝑟ℎ𝑠] 𝑃ℎ𝑠,2

𝑖  𝑃ℎ𝑠,3
𝑖 ), (𝑃ℎ𝑠,1

𝑖  [𝑃ℎ𝑠,2
𝑖 ±

𝑟ℎ𝑠] 𝑃ℎ𝑠,3
𝑖 ) and (𝑃ℎ𝑠,1

𝑖  𝑃ℎ𝑠,2
𝑖  [𝑃ℎ𝑠,3

𝑖 ± 𝑟ℎ𝑠]). If an extreme point lies beyond unit cube 

boundaries (any component is greater than 1 or less than 0), that sphere crosses the 

boundaries of its periodic cell. For the specific packing used in this work, individual 

hardspheres in the packing crossed over to 1, 2, 3 or 5 neighboring periodic cells. To 

be exact, 20 spheres crossed over to a single, 2 spheres to 2, 7 spheres to 3, and a single 

sphere to 5 other neighboring cells, making a total of 50 other spheres that need to be 

added into the packing in order for collision control to be properly carried out. Hence 

the sphere count inside the random packing increases to 100. 
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Figure 14 demonstrates the original packing and a partially modified version of it side 

by side. Red sphere seen in the figure is the one detected to be crossing over to 5 other 

cells, hence 5 copies of it is added to the packing (depicted in orange) that would 

otherwise be invading the main periodic cells from the neighboring cells. The figure 

also shows a black sphere crossing over to only one other neighboring cell. Therefore 

a single copy of it is added into the packing, which is visible at the back in grey. It 

would be important to point out that the packing on the right side of the figure, only 

demonstrates the inspection and manual modification method, therefore it is not the 

final packing used in any part of the model, since there are more over-hanging spheres 

in the packing that needs additional complementary copies to complete the procedure.  

 

Figure 14: OpenSCAD images of the random jammed packing of  monodisperse 

hardspheres. Cubic unit cell is visible in transparent. Left: Packing of 50 monodisperse 

spheres originally generated by the Skoge et al. code. Right: Packing after adding the 

required copies for two selected spheres, painted in red and black. Complementary 

copies of the red and black spheres are colored orange (near the corners) and grey (at 

the back-right), respectively.  
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3.3.3. Combination of Core-Shell Particle and Hardsphere Packing Geometries 

 

Calculations of center point vector components for all the elements in reconstructed 

core-shell particle geometry was explained in the section 3.2.3. Center point vectors 

of the spheres in generated random packing is used as translation vectors to create all 

additional copies of calculated core-shell particle geometry. Labeling hardspheres in 

the packing from 1 to 100  and introducing a new dummy index l, representing the 

number tag of hardsphere inside of which core-shell geometry is copied, center point 

vectors of all spherical elements in the random jammed packing of core-shell particles 

can be calculated by Equation (40). 

𝐏𝑗,𝑖,𝑘,𝑙 = 𝐏𝑗,𝑖,𝑘 + 𝐏𝒉𝒔
𝑙   (40) 

However, before translating the core shell particles the packing geometry must be 

scaled such that a core-shell particle with a radius 𝑟𝑝 would flush fit inside a hardsphere 

in the random packing, since the packing generation results in a cube of unit 

dimensions and spheres with diameter that varies with respect to the desired number 

of spheres in the packing as mentioned previously. Vectors pointing to the center 

points of the hardspheres can be scaled by a factor of 𝑟𝑝/𝑟ℎ𝑠 and the spheres in the 

packing would still preserve their shape and relative positions while shrinking or 

expanding to match the size of the core-shell particle. It is possible because the scaling 

is basically done based on similar right triangles. The scaling is done by simply 

multiplying all components of 𝐏𝒉𝒔
𝑙  by the ratio 𝑟𝑝/𝑟ℎ𝑠. 

𝐏𝒉𝒔
𝑙 = 𝐏𝒉𝒔

𝑙
𝑟𝑝

𝑟ℎ𝑠
 (41) 

Scaling also changes the length 𝐿𝑝𝑐 of the periodic cell by the same factor. Since the 

original cell was a unit cube, scaled length of the cube becomes 𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠. 

𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠 (42) 
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3.3.4. Integration of Core-Shell Packing Geometry and Collision Control 

 

Information contained in 𝐏𝑗,𝑖,𝑘,𝑙 is complete. The center points of any element in any 

shell layer of core-shell particle and core spheres of particles in the packing is easily 

accessible once 𝐏𝑗,𝑖,𝑘,𝑙 is calculated for all  j, i, k and l. 𝐏𝒉𝒔
𝑙  can be used along with 

these data in sequence to carry out collision control around a specific shell-layer only, 

without having to check any other elements in the geometry.  

(Pℎ𝑠,1
𝑙 2

− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (Pℎ𝑠,2
𝑙 2

− 𝛸𝐿,2(𝑡 + ∆𝑡)2) 

                                                                          + (Pℎ𝑠,3
𝑙 2

− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤  𝑟ℎ𝑠
2 

(43) 

 

If the inequality given in Equation (43) holds for any l, the tracer must be traveling 

inside a core-shell particle. It may have been collided with an element of core-shell 

particle, or it may still be traveling in the pore space without colliding. If the inequality 

given in Equation (43) does not hold for every l, then the tracer is in inter-particle 

space hence a collision did not occur. Let us use the dummy index value 𝑙𝑡 for the 

corresponding core-shell particle tracer travels in. 

(Pℎ𝑠,1
𝑙𝑡

2
− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (Pℎ𝑠,2

𝑙𝑡
2

− 𝛸𝐿,2(𝑡 + ∆𝑡)2) 

                                                                     + (Pℎ𝑠,3
𝑙𝑡

2
− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤  𝑟𝑠𝑜𝑖,𝑘

2 

(44) 

 

The inequality given by Equation (44) helps determine the shell layer in which the 

tracer is traveling. If the inequality is tested for different values of 𝑟𝑠𝑜𝑖,𝑘 for 𝑘 = 0. . 𝑛𝑙, 

the first value of 𝑘 the inequality holds for is the layer where tracer is currently travels 

in. If the inequality holds for 𝑘 = 0, then the tracer is known to collide with the core 

sphere, 𝚾(t + ∆t) = 𝚾(t) is set (bounce-back occurs) and there is no need to check 

other elements for collision. If the inequality holds for 𝑘 > 0,  other elements in the 

corresponding layer, tagged by dummy index value 𝑘𝑡, must also be checked for 

collision. 
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(P1
𝑗,𝑖,𝑘𝑡,𝑙𝑡

2
− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (P2

𝑗,𝑖,𝑘𝑡,𝑙𝑡
22

− 𝛸𝐿,2(𝑡 + ∆𝑡)2) 

                                                                       + (P3
𝑗,𝑖,𝑘𝑡,𝑙𝑡

2
− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤  𝑟𝑠

2 

(45) 

 

If the inequality given by Equation (45) holds for any value of 𝑖 = 0. . naux,k and 𝑗 =

0. . nssa,i,k, then tracer ends up in the corresponding shell-side sphere hence a collision 

occurs. Then 𝚾(t + ∆t) = 𝚾(t) must be set and tracer must proceed taking its next 

random step. 

After the construction of boundary system, the algorithm changes to: 

1. Set n.  

2. Set DAB. 

3. Set simulation time, ts.  

4. Set ∆t and calculate ∆l using Equation (14) 

5. Determine total number of random steps, using Equation (16). 

6. Calculate 𝐏𝑗,𝑖,𝑘,𝑙 for all 100 core-shell particles in the packing, using Equation 

(40). 

7. Set initial positions for all tracers.  

8. Generate ns amount of unit vectors with random directions. 

9. Displace a single tracer, for one step using Equation (15). 

10. Calculate 𝚾𝐋(t + ∆t) using 𝚾(t + ∆t) in  Equation (19). 

11. Use 𝜲𝑳(𝑡 + ∆𝑡) and 𝐏𝒉𝒔
𝑙  in Equation (43) to determine if tracer travels in inter-

particle void space (true) or not (false). If true, go to step 14. Else proceed to 

next step. 

12. Use 𝜲𝑳(𝑡 + ∆𝑡), 𝑟𝑠𝑜𝑖,𝑘 and 𝐏𝒉𝒔
𝑙  Equation (44) to determine in which shell layer 

the tracer is traveling in. If tracer is in zeroth layer (core sphere), detect 

collision and go to step 14. Else proceed to next step. 
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13. If step 11 is false, use 𝜲𝑳(𝑡 + ∆𝑡) and 𝐏𝑗,𝑖,𝑘,𝑙 of all elements in corresponding 

shell layer determined in previous step in Equation (45) to check for collision. 

If collision is detected, set 𝚾(t + ∆t) = 𝚾(t). 

14. Return to step 10 until all tracers have taken ns random steps each. 

15. Use Equation (17) to recalculate DAB and compare with initially set value. 

A flowchart of the diffusion/dispersion algorithm can be seen in Appendix D.1. In the 

flow chart, bypassing the steps related to fluid flow or simply assuming a velocity field 

with velocity vectors of magnitude zero gives the algorithm for diffusion. 

 

3.4. Simulation of Fluid Flow in a Random Packing of Monodisperse Hardspheres 

in COMSOL 

 

The simulation of fluid flow was carried out using COMSOL. Liquid water at room 

temperature was selected as the fluid. The system geometry was the visually inspected 

and modified random packing of hardspheres mentioned in section 3.3.2.  

 

 

 

Figure 15: Left: Entire geometry of the system. Right: Fluid domain.  
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COMSOL allows importing certain CAD file formats to be used as boundaries for the 

modules. Geometry of the packing can be rendered in a compatible file format by 

OpenSCAD and imported to COMSOL. However the rendered files contained rough 

surfaces on hardspheres, preventing mesh generation. This problem related to 

geometry importing could not be solved, therefore all 100 spheres in the packing were 

scaled such that diameter of the hardspheres in the packing would be equal to 5 𝜇𝑚, 

which is the selected diameter of core-shell particles that were used in dispersion 

simulations, and all 100 hardspheres were manually added into the geometry. Finally, 

a cube geometry representing the main periodic cell with dimensions as defined in 

Equation (42) by 𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠 = 2.5/0.14 ≅ 17.6  𝜇𝑚, was added to be chosen as the 

domain that will be defined as the fluid. System geometry is shown in Figure 15, left.  

The laminar Flow module was added to the component in model builder, since 

chromatographic velocities are almost always in the laminar flow region. Fluid domain 

was selected as the cube, at normal temperature and fluid properties was defined as 

“From material” belonging to physical property data of liquid water provided by 

COMSOL. Selected fluid domain can be seen in Figure 15, right. 

 

 

 

Figure 16: Two sets of periodic flow conditions with zero pressure difference.  
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Initial values of the velocity field and pressure in the system were set to zero. All 

boundaries in the fluid domain were set to no slip boundary conditions. Then two sets 

of periodic flow conditions were added for opposing boundaries perpendicular to xy-

plane, that are the faces of the cube, and pressure difference between two pairs of 

opposing faces of the cube was set to zero Pascals in periodic flow conditions, shown 

in Figure 16. Finally another periodic flow condition was defined for the opposing pair 

of surfaces on the cube that are parallel to the xy-plane, as seen in the left of Figure 

17, and the pressure difference between these boundaries was set to several different 

values in Pa, based on typical flow rates in core-shell particle operations as illustrated 

in more detail in the section 4.2.1 of the next chapter. Inlet and outlet boundary 

conditions were disabled. Selected boundaries in the three periodic flow conditions 

override previously defined selection of no slip boundaries and hardspheres become 

the only no slip boundaries in the system. The results for all pressure difference values 

in periodic flow conditions with non-zero pressure drop are given and discussed in 

sections under 4.2. in Chapter 4. 

 

 

 

Figure 17: Left: Periodic flow condition with a set ∆𝑃. Right: Fine mesh generated by 

COMSOL Multiphysics. 
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Meshes used in finite-element iterations are left in control of COMSOL, with a ‘Fine’ 

element size.  Finally, a stationary study was added into the model builder and the 

steady-state velocity fields were obtained. 

 

3.5. Integration of the Diffusion and Fluid Flow 

 

Integrating separately developed random-walk diffusion model and velocity field 

obtained from the numerical continuum solution of flow equations in the system 

creates a particle tracking model that can explain dispersion. Recall that, Fokker-

Planck equation given by Equation (9), under steady-state flow conditions and with a 

constant diffusion coefficient throughout the system becomes analogous to advection-

diffusion equation and the random-walk diffusion equation given in Equation (15) with 

the addition of displacement due to external velocity field resembles an Euler 

approximation of Fokker-Planck Equation in the form: 

𝚾(t + ∆t) = 𝚾(t) + 𝛝(𝚾(t))∆t + 𝛏∆𝑙 (46) 

 

This simple modification to Equation (15) converts entire diffusion model into a 

dispersion model that can use the same system geometry and collision control 

mechanism. Displacement due to the velocity field requires the velocity vector 

components at the current position of the tracer, 𝛝(𝚾(t)), that can be obtained by tri-

linear interpolation of the nearest velocity vectors around and with respect to the local 

position of the tracer. Interpolation subroutine prepared for the study is explained in 

detail, in Appendix C.5. A flowchart of the dispersion algorithm can be seen in 

Appendix D.1. 

Longitudinal displacement data is collected at a certain frequency for each tracer 

during the calculations for each tracer. The displacement data of the tracers is then 

easily converted to the variance of the longitudinal displacements of the entire tracer 



 

 

53 

 

ensemble to obtain a time-dependent longitudinal position variance. Then the time-

dependent longitudinal position variance can be fitted an asymptotic function 

(explained in section 3.6.5) to find the asymptotic longitudinal dispersion coefficient 

of the tracer ensemble using the relation given in Equation (2). Dispersion coefficients 

can also be converted to the more appropriate plate height and reduced plate height 

values commonly used in chromatography terminology for referring to dispersion, 

using Equation (1). 

 

3.6. Software Implementation of the Model 

 

Implementation of the random-walk free diffusion model, computation and storage of 

core-shell packing boundaries, adapting random-walk model and preparing an 

appropriate collision control mechanism for the calculated system boundaries, storage 

of the external velocity field in computer memory, an adapted tri-linear interpolation 

subroutine for the stored velocity field and integration of the external velocity field 

with the random-walk model using free form Fortran are all explained in detail in 

Appendix C.  

Following sections only includes some of the important remarks on the software 

implementation of the diffusion and dispersion models around core-shell particles. 

Reader is suggested to read the appendices for detailed information related to the 

programming done for this specific work.  

 

3.6.1. Free Molecular Diffusion  

 

The most important aspect in the implementation of random-walk diffusion on 

software is the random number generation. Computers cannot generate true random 

numbers. Instead, they use special subroutines that can generate uniformly distributed 

pseudo-random numbers based on an initial seed and every other pseudo-random 
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number is generated by using the previous one as the new seed. Therefore the 

generated pseudo-random numbers are only seemingly random if the numbers are used 

in a sequence. Considering this, random-walk must proceed until a tracer takes 

required number of random steps to complete the duration of the simulation before the 

next tracer begins its random-steps. Otherwise the unit vector with random direction, 

𝛏,  in the Equation (15) might not contain random values at all. 

In this work, the total displacements, or the transverse/longitudinal displacements, of 

individual tracers were saved to an independent matrix in a certain frequency during 

the execution of random-walk. After each and every tracer finishes all random-steps, 

this time-dependent displacement data was then converted into more convenient time-

dependent diffusion coefficient -or time-dependent longitudinal position variance 

(which is then used for estimating longitudinal dispersion coefficients) for the case of 

dispersion- of the tracer ensemble. For free diffusion, time-dependent diffusion 

coefficient is expected to be not deviating from the input value except for the random 

fluctuations due to the probabilistic nature of the random-walk method. 

 

3.6.2. Computation and Storage of Impermeable Boundaries 

 

Previously, a method was proposed explained in detail how an ideal core-shell particle 

can be reconstructed by using basic principles of analytical geometry by using 3 user-

defined parameters; core-to-particle ratio (𝜑), number of shell layers (𝑛𝑙) and core-

shell particle radius (𝑟𝑝). Proposed method allows systematic calculation of the 

geometry elements. Total amount of elements in the system geometry as well as the 

exact positions of each and every element including in which core-shell particle and 

which shell layer they are located in are very well known after the calculations. This 

is very important for developing an efficient collision control mechanism for the 

model. Geometry data therefore, is systematically stored in higher-dimensional 

matrices allocated enough computer memory.  
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3.6.3. Adapting the Free Molecular Diffusion Code to Simulate Impermeability 

 

In the section 3.1.2, basic principles of collision control which uses mathematical 

expressions that define the geometry of impermeable boundaries was explained. Later, 

a method that uses basic principles of analytical geometry was presented for digital 

reconstruction of a core-shell particle as spherical elements and this method was 

implemented on computer using Fortran programming language to finally obtain a four 

dimensional array that contains every parameter that defines the impermeable 

boundaries in a system of core-shell particles in a random jammed packing. The 

objective is to adapt the basic collision control mechanism in an efficient way so that 

impermeability at any point in the system is properly simulated.  

A sphere centered at the point (𝑥0, 𝑦0, 𝑧0) with a radius 𝑟 is defined by the sphere 

equation. 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2 (47) 

 

Then, the inequalities given in Equations (48) and (49), represents all points inside and 

outside the sphere defined by Equation (47), respectively, as well as the surface of the 

sphere itself. 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2 (48) 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≥ 𝑟2 (49) 

 

These inequalities are used in a control structure to determine whether a tracer is inside 

any of the spherical elements that create the impermeable boundaries or not, by 

replacing (𝑥0, 𝑦0, 𝑧0) with the components of center point vectors and 𝑟 by the radius 

of a specific sphere element, and dependent variables x,y,z by the local position 𝚾𝐋(t +

∆t) of a tracer. In order to make sure that a tracer is not in an impermeable volume 

hence a collision could not have occured, all sphere elements in the system must fail 

to satisfy the inequality given in Equation (48). However, one might appreciate the 

extraordinarily large amount of spherical elements that need to be tested before no 
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collision is detected. Therefore, the following algorithm is suggested in order to 

decrease total amount of control calculations needed to check all sphere elements. 

1. Use 𝚾𝐋(t + ∆t), 𝑟ℎ𝑠 and RJP in Equation (48) for all hardspheres one by one, 

determine if tracer resides in any of the hardspheres in random jammed 

packing. 

a. If Equation (48) is not satisfied by any hardsphere, tracer is in inter-

particle void space. Proceed to next random step. 

b. If Equation (48) is satisfied by any hardsphere, tracer resides in that 

hardsphere and might be in one of the core-shell particle elements. 

Proceed to next step of the collision control algorithm. 

2. Use 𝚾𝐋(t + ∆t), 𝑟𝑠𝑜𝑖,𝑘, and RJP elements that belong to corresponding 

hardsphere detected in previous step, in Equation (48) for all spheres of 

influence one by one, determine the shell layer tracer currently resides in. The 

first sphere of influence that satisfies Equation (48) belongs to the shell layer 

that hosts tracer. Proceed to next step of the collision control algorithm. 

3. Use 𝚾𝐋(t + ∆t), 𝑟𝑠𝑜𝑖,𝑘, and CSPRJP elements that belong to corresponding shell 

layer detected in previous step, in Equation (48) for all shell side elements in 

that shell layer one by one. 

a. If Equation (48) is not satisfied by any of the shell layer elements, tracer 

is in the pore space of core-shell particle hence no collision occured. 

Proceed to next random step. 

b. If Equation (48) is satisfied by any of the shell layer elements, tracer 

resides in the impermeable volume of that element hence a collision is 

detected. Stop checking remaining boundary elements and use bounce-

back method and set 𝚾(t + ∆t) = 𝚾(t) to return tracer to its last known 

position outside impermeable volume. Proceed to next random step. 
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3.6.4. Storage of Velocity Field 

 

COMSOL Multiphysics can create a data table of the velocity components of the 

vectors in the velocity field, on a user defined regular grid. For this work, a regular 

grid with 101 nodes in each dimension (one node per 1/100 of the periodic cell length) 

was used. The exported text file that contains the data table was around 200 mb in size. 

Number of nodes used in the grid and the size of the exported file has a cubic relation, 

for example using 10 times more nodes in each dimension would require 1000 times 

more hard disk space (200 GB, in this case) as well as memory considering the velocity 

field must be read and written to memory during the execution of the code. Therefore 

this must be considered while extracting the velocity field from the application. The 

data table also contains velocity components that cannot possibly be read by Fortran 

code, due to its incompatible format with the Fortran. This might also be the case for 

other different programming languages, therefore the table must be first arranged into 

a compatible format by using a different platform. Octave was used in this work to 

convert the velocity field data into a Fortran-compatible format.  

 

3.6.5. Adaptation of Diffusion Program to Simulate Dispersion 

 

The dispersion code essentially differs from the diffusion code only by the reading 

storage of the external velocity field and the added displacement term in the random-

walk equation ( [𝛝(𝚾(t))∆t] term in Equation (46)). Calculation of the core-shell 

packing geometry and collision control are the same as in the diffusion model. 

However the interpolation algorithm (explained in Appendix C.5) requires an 

additional calculation of local position prior to the random and flow displacement of 

the tracer. Integration of the random-walk diffusion model, the velocity field and 

interpolation subroutine using Fortran is explained in detail in Appendix C.6. 

For this study, random-step size of tracers were selected as either 10% of the diameter 

of shell-side spheres or 1% of the entire core-shell particle diameter, whichever is the 
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smallest. While selecting a more refined random-step size, one should be aware of the 

fact that random-step size, ∆𝑙, is inversely proportional to the square root of the time 

increment, ∆𝑡, which directly influences the total amount of random-steps each tracer 

needs to take for the duration of simulation hence the wall-clock time of the execution. 

For example, halving the value of ∆𝑙 increases the wall-clock time four times and such 

refinements on ∆𝑙 might quickly lead to extremely long execution times for the 

computations given that the computer being used has enough memory to store required 

random-numbers. 

Longitudinal dispersion coefficient is not directly calculated by the Fortran program. 

The reason behind it is related to the probabilistic nature of the model, as well as the 

actual nature of hydrodynamic dispersion. Random-walk creates fluctuations in 

variance, making it very hard to estimate over short time intervals. Longitudinal 

dispersion coefficient is by definition proportional to the time derivative of 

longitudinal displacement variance and it increases until reaching an asymptotic value. 

Therefore variance data was manually fitted an asymptotic function with decaying 

positive slope using a spreadsheet calculator, to estimate the time derivative of 

longitudinal displacement variance of tracer ensemble. Fitted function is given in 

Equation (50). 

F(t) = A(t +
1

k
e−kt −

1

k
) (50) 

 

𝐹(𝑡) is the integral of function 𝑓(𝑡), given in the following equation, with boundary 

conditions f(0) = 0 and f(t)𝑡→∞ = 𝐴. The parameter A is equal to 𝛿𝜎𝐿
2 𝛿𝑡⁄ |𝑡→∞ and 

the parameter k is the decay rate of the increase in 𝛿𝜎𝐿
2 𝛿𝑡⁄ . 

f(t) = A(1 − 𝑒−𝑘𝑡) (51) 

 

Non-linear solver available in Excel can find the best fitting parameters to the variance 

data and the longitudinal dispersion coefficient is equal to half of the asymptotic time 

slope of the 𝜎𝐿
2, which is finally estimated as 𝐴/2. It is important to point out that, the 
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parameters A and 𝑘 does not necessarily have physical significance. They are just 

fitting parameters to estimate the asymptotic slope of the time-dependent variance. 

 

3.6.6. Parallelization of Diffusion and Dispersion Programs 

 

Due to the nature of random-walk and particle tracking methods, they are very intense 

iterative approaches for modelling these phenomenon. Regular serial execution of the 

programs written to carry out iterations might take very long time. Parallel computing 

can partially reduce the wall-clock times of the codes by distributing the computational 

load amongst available CPU threads. The model built in this study is very suitable for 

parallel computing. There is, however, a very important point that needs to be 

considered during the parallelization of the program that is the pseudo-random number 

generation. Fractions of the code that carries out the random number generation must 

be excluded from the parallel-worksharing region of the code (in other words, a thread 

must wait until the other thread completes generating its sequence of numbers) to avoid 

disruption in the sequence of pseudo-random numbers generated for random-

displacements of the tracers. Otherwise, individual threads might ‘steal’ some of the 

pseudo-random numbers from the random number sequence of another thread, risking 

tracers to move according to a sequence of numbers that are not uniformly distributed. 

See Appendix C.7 for more details about the parallelization of the Fortran codes 

written for this study. 

 

3.6.7. A Summary of Interactions Between Software Components 

 

The dispersion model in its final state mainly depends on the Fortran code written in 

the study, however there are still other software, COMSOL, Octave, random packing 

generator, OpensCAD and a spreadsheet calculator (MS Excel) used in either in the 

process or obtaining the results. A flowchart representation of the overall work done 
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from the beginning to obtaining final results can be seen in Appendix D.3. Tasks taken 

on by each software can be summarized as follows.  

Fortran code, 

 Calculates core-shell particle geometry. 

 Uses modified random jammed packing of hardspheres to generate core-shell 

packing. 

 Carries out the actual simulation of dispersion. 

Random packing generator written by Skoge et al. (2006), 

 Generates random jammed packings of monodisperse hardspheres in periodic 

unit cells. 

OpenSCAD is used for, 

 Visual inspection of original random packing of hardspheres and its 

modification 

 Visual inspection of created core-shell particle geometry, modified random 

packing, as well as the core-shell packing geometry. 

COMSOL Multiphysics, 

 Uses modified random jammed packing of monodisperse hardspheres to 

simulate fluid flow. 

 Creates data tables for the velocity field obtained from the fluid flow 

simulation. 

Octave, 

 Re-organizes the data table into a certain format that can be used in Fortran. 

MS Excel is used for, 

 Modification of the original random packing of hardspheres to include 

invading spheres from neighboring periodic cells. 
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 Calculating dispersion coefficients from the variance data obtained from 

dispersion model by fitting an asymptotic function to the data points. 

 

 

 

Figure 18: Interaction chart summarizing input/output relations between different 

software. 

 

 

Different software interactions are visually demonstrated in Figure 18. Relations 

numbered in the figure are explained below. 

1. Generated packing is sent to and read by a Fortran code 

2. Generated packing is imported to Excel for calculating extreme points on 

hardspheres and detecting invading spheres. 
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3. Fortran generates a script that commands OpenSCAD to create an image of the 

generated packing. 

4. OpenSCAD image along with extreme points of hardspheres calculated in 

Excel is used to visually determine how many copies of invading spheres need 

to be added to packing geometry. 

5. Final modified packing geometry is read by Fortran code. 

6. Fortran generates a script that commands OpenSCAD to create an image of the 

generated packing. Image is investigated, making sure hardspheres are 

properly replicated near periodic boundaries. 

7. Modified packing geometry is read by dispersion code, and the packing of 

core-shell particles is created. 

8. Modified packing geometry is used in COMSOL to create the system geometry 

in COMSOL simulation. 

9. COMSOL creates a data table for the velocity field and the data table is sent to 

Octave. Octave reads the velocity field and re-organizes it into a certain format 

that can be used in Fortran. 

10. Dispersion code reads velocity field from data file re-organized by Octave, 

proceeds simulating dispersion in the random packing of core-shell particles. 

11. COMSOL is used for taking snapshot of the system geometry as well as 

contour plots and velocity vectors. 

12. Various CAD images of core-shell particle and packing geometry is created. 

13. Dispersion is simulated, variance data of tracer displacements is output into a 

file. 

14. Variance data is imported to Excel to calculate dispersion coefficients and 

reduced plate heights as the final results. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

 

4.1. Simulation of Diffusion in Stagnant Media 

 

4.1.1. Validation of the Free Diffusion Program 

 

Fortran program that simulates free molecular diffusion was tested by running it for 

various combinations of tracer population and set ∆𝑡 values, for a one second diffusion 

event.  

Diffusion coefficients were calculated every 0.001 𝑠 and saved during simulation to 

obtain time-dependent diffusivity data containing 1000 data points. Simulation was 

repeated for a tracer population 𝑁 = 1000 using a set of different time steps             

∆𝑡 = (10−3, 10−4, 10−5).  

𝐷0 = 𝐷𝐴𝐵(𝑡)/𝐷𝐴𝐵 (52) 

 

In an unobstructed environment, diffusion coefficient is expected to be constant. 

Figure 19 shows normalized time-dependent diffusion coefficients, 𝐷0 defined by 

Equation (52) for simulations carried out at different time increments. Sample means 

of 𝐷0 is 1% different from unity for all ∆𝑡. Choosing a finer ∆𝑡 only reduces the 

variance of the predictions. 
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Figure 19: Normalized time dependent diffusion coefficients predicted by the model 

with respect to time. Results are for three different time steps, and a tracer population 

of 4000. Legend shows ∆𝑡  values in seconds used for corresponding data set. 

 

 

Figure 20: Normalized time dependent diffusion coefficients predicted by the model 

with respect to time. Results are for 𝑁 = (500,1000,2000,4000) and ∆𝑡 = 10−5𝑠 . 

Legend shows 𝑁 values used for corresponding data set. 
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Free diffusion simulations were also conducted for a constant ∆𝑡 = 10−5𝑠 and for 4 

different tracer populations. Time dependent diffusion coefficient data was again 

normalized by the input value of 𝐷𝐴𝐵. 

Figure 20 shows that using larger tracer populations increases the precision of 

prediction as the results for the run where 𝑁 = 4000 has, by far, the least standart 

deviation (0.006) compared to other simulations with 2000, 1000 and 500 tracers 

(0.011, 0.032 and 0.028 respectively). Mean values of diffusion coefficients are also 

shown in the figure. Maximum deviation of average 𝐷0 from the unity is 5% in the 

simulation with 𝑁 = 500, which can be expected from a coarse simulation using such 

a small population. The other runs with higher tracer populations have around 1% error 

from the expected value of 𝐷0. Considering the decreasing standard deviations and 

error in higher tracer populations, the free diffusion algorithm and the corresponding 

Fortran code can be confirmed to accurately simulate diffusion. 

 

4.1.2. Validation of Periodic Boundaries and Collision Control 

 

Calculation of local tracer positions and the validity of periodic boundaries was tested 

by preparing a diffusion simulation with a single spherical boundary defined in the 

main periodic cell. Main periodic cell was defined as a cube with 5 𝜇𝑚 dimensions 

and a sphere 𝑑 = 5 𝜇𝑚 in diameter and centered in the geometric middle of the cube 

was used as the system. Diffusion of 5000 tracers, all placed at the origin with a point 

injection type initial condition, was simulated for 0.5 seconds of real time by setting 

∆𝑙 = 0.5 𝜇𝑚 and calculating ∆𝑡 accordingly. The last collision sites, positions of 

tracers before they are returned to diffusion domain by the bounce back method, 

between each tracer and the impermeable sphere was saved and visualized in a 3-D 

scatter plot.  
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Figure 21: Two different side views of final collision sites between every tracer and 

the packing produced by the periodic boundaries from a single impermeable boundary 

defined in the main periodic cell. Units for all axis are in 𝜇𝑚.The red frame indicates 

the scale and approximate position of a single periodic cell in the system. 

 

 

Spherical impermeable volumes surrounded by collision sites are very distinct in the 

3-D scatter plots given in Figure 21, as well as the smaller available volume between 

the spheres. These visuals can confirm that periodic boundaries are successful at 

creating an infinite arrangement of boundaries defined in the main periodic cell. 

Simulation was also repeated for a homogeneously distributed injection of tracers into 

the available space in the main periodic cell, to compare the local collision sites around 

the sphere located in the main periodic cell. 

Point injection type initial conditions inevitably cause all tracers to randomly move in 

the same grid due to the uniform magnitude of random-displacement ∆𝑙, therefore 

collision sites for all tracers around the impermeable boundary lay on the same fixed 

points around the sphere. Figure 22, left, shows very sharp laddering occurring around 

the impermeable sphere for a simulation with point injection. However, when the 

initial positions of tracers are randomly distributed throughout the space in the periodic 

cell that allows diffusion, laddering is smoothened since each and every tracer gets a 

different random  movement grid. Figure 22, right, clearly demonstrates the effect of   
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Figure 22: Local collision sites around the boundary defined in the main periodic cell. 

Left: Collision sites in point injection simulation. Right: Collision sites in distributed 

injection simulation. The box corresponds to the dimensions and the position of the 

main periodic cell. 

 

 

choosing a distributed injection type initial condition on the geometry sampled by 

tracers. Sparse collision sites near the periodic cell faces, shown in Figure 22, are due 

to defined ∆𝑙 value. These regions are narrower than the random-step size, 

consequently preventing a large portion of tracers to sample them in case of distributed 

injection, and all tracers in case of point injection. This effectively reduces the void 

fraction and tortuosity of the system. Since the narrow regions are not sampled by 

tracers, volume of these regions are practically treated as an impermeable zone.  

Transient diffusion coefficients normalized by free diffusion coefficient 𝐷𝐴𝐵, as 

described in Equation (52), in the same simple cubic equivalent system geometry was 

also obtained from simulations with ∆𝑙 values of 𝑑/10, 𝑑/20, 𝑑/30 and 𝑑/40 in order 

to observe the effect of excluded free volume near the narrow regions between spheres 

due to usage of coarse step sizes. Asymptotic normalized diffusion coefficient 𝐷0 was 

found to be 0.60, 0.66, 0.67 and 0.71 for simulations with ∆𝑙 values of 𝑑/10, 𝑑/20, 

𝑑/30 and 𝑑/40  respectively. 𝐷0 vs. time graphs are shown in Figure 23. 
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Figure 23: Normalized transient diffusion coefficients predicted by the model in 

simple cubic equivalent periodic cell, for random-step sizes between ∆𝑙 = 𝑑/10 and 

∆𝑙 = 𝑑/40. 

 

 

The results for the simulations clearly show the effect of dead volume inadvertently 

generated due to the selection of a large ∆𝑙. Smaller ∆𝑙 reduces the dead volume, hence 

the higer effective diffusivity predicted by the model. Kim and Chen (2006) conducted 

a similar study on the prediction of effective diffusion coefficients in ordered and 

random packings of spheres by random-walk simulations. They have found, for simple 

cubic arrangements of spheres, normalized effective diffusivity must be approximately 

0.72  when random-step size ∆𝑙 = 𝑑/100 below which -they claim- dead volumes 

become very negligible. The model successfully predicts similar results to the 

independent study of Kim and Chen. However a coarse random-step size had to be 

selected for the diffusion and dispersion simulations in the packings of core-shell 

particles, results of which are discussed later, due to memory and processing power 

limitations in this study. Since ∆𝑡 is proportional to the square of ∆𝑙, finer choices for 

random-step size can quickly lead to incredibly small ∆𝑡 and consequently very large 

amount of random steps. Therefore memory requirement and wall-clock time of the 
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simulations are also increased proportionally, thus halving ∆𝑡 will quadrouple the 

required memory and wall-clock time. Fortunately, the consequences are consistent 

and reproducible, and can be taken into account while comparing model predictions to 

any available experimental data.  

 

4.1.3. Validation of Core-Shell Particle Geomtery 

 

An analytical core-shell particle geometry was proposed and an analytical geometry 

approach was used to present a procedure for calculating each and every element that 

collectively makes up a core-shell particle. This procedure was implemented on 

computer by Fortran and the Fortran code that calculates the geometry of a single core-

shell particle was tested by visual inspection of core-shell geometries with different 

properties created by the code. The code was compiled into a dedicated program that 

only calculates the geometry and uses a format resembling OpenSCAD syntax to write 

a script that can be read by OpenSCAD. Following code generates the script and saves 

it to a text file. 

OPEN (#, FILE="CORE-SHELL SCRIPT.TXT", STATUS="UNKNOWN", 

ACTION="WRITE") 

 

DO I=1,NOL 

  DO J=1,SC(J) 

 

        WRITE(#,*)”translate([“, CPGCC(I,J,1), ”,” , CPGCC(I,J,2),& 

        & “,”, CPGCC(I,J,3), “])” 

        WRITE(#,*)”sphere(“, CPGCC(I,J,4), “, $fn=10);” 

 

  ENDDO 

ENDDO  

 

Figures 24, 25 and 26 shows section views of core-shell particles 5 𝜇𝑚 in diameter 

with core-to-particle ratios 0.7 and 0.8, and with a single, double and triple layers 

respectively. Sections are taken as two symmetric octants of the particle geometry. 

Cross sections of cut elements are in green color.  

 



 

 

70 

 

 

Figure 24: Section views of single layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. 

 

 

 

Figure 25: Section views of double layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. 
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Figure 26: Section views of triple layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. 

 

 

Visuals clearly show that the geometry calculations are done by the Fortran code as 

intended. Shell side spheres do not overlap or cross over to another shell layer or to 

core sphere. Layers are clearly distinguishable. Defining input parameters 𝛹, 𝑟𝑝 and 

𝑛𝑙 seem to be working properly to determine the final shape of the core-shell geometry, 

as the code is able to create particle with different 𝛹 and 𝑛𝑙, and radii of shell side 

spheres are appropriately determined. Therefore the algorithm and the code for re-

construction of core-shell particles is safe to be used in diffusion and dispersion codes. 

Shell porosity, and the entire particle porosity of the re-constructed geometries were 

also calculated. Since the amount of shell spheres are known, calculated as a necessary 

parameter for array allocation during runtime, the pore volume of the core-shell 

particle can simply be calculated by substracting the volumes of all elements in the 

geometry from the volume of outer-most sphere of influence. Similarly, pore volume 

of the shell layer only can be found by substracting from the shell volume only. 
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Figure 27: Shell porosity of a core-shell particle with certain 𝜑 values vs. the amount 

of shell layers it has. Note the convergence of shell porosity to 0.477 as 𝑁 approaches 

to infinity. 

 

 

Single layer core shell particles have a coarser structure compared to real core-shell 

particles. Consequently they would have an overestimated porosity. Real particles 

typically have multiple shell layers, and Figure 27 clearly shows  how shell porosity 

can rapidly change especially at a small number of shell layers and smaller core-to 

particle ratios. In order to obtain a more accurate approximation of the real geometry, 

at least 2 or 3 shell layers must be calculated. A very large number of layers would 

also lead to more unrealistic results, since the shell layers of a real core-shell particle 

can only be made so thin with the current production methods, also it will lead to very 

large amount of shell side spheres in the layers and will drastically slow down the 

collision control since every spherical element in the layer is checked for collision 

according to the algorithm.  Figure 27 also shows an interesting result, where the shell 

porosity converges to a certain value as the amount of shell layers is increased. 

Converged porosity is ~0.477, which is the porosity of a simple cubic packing of 

monodisperse hardspheres. As the number of layers in the calculated geometry 

approaches to infinity, the radius of shell side spheres becomes closer and closer to 
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zero and the curvature of core sphere becomes less and less ‘apparent’ to shell spheres. 

As a result, the shell side starts acting like a simple cubic packing of spheres. 

 

Figure 28: Entire porosities of core-shell particle with certain 𝜑 values vs. the amount 

of shell layers it has. 

 

 

Porosity of the entire particle takes the dead volume of non-porous core sphere into 

account, therefore is different for different core-to-particle ratios, 𝜑. Figure 28 shows 

how the porosity of the entire particle changes with respect to amount of shell layers 

for core-shell particles with different core-to-particle ratios. Particles with higher 𝜑 is 

better represented by a greater amount of shell layers for a better estimation of the 

porosity of a real core-shell particle. Dependency of the particle porosity on number 

of shell layers especially becomes more noticeable for 𝜑 < 0.8 since shell volume 

becomes greater than the volume of core sphere at 𝜑 ≅ 0.794, hence the shell porosity 

starts having more impact on the porosity of entire core-shell particle. Therefore, after 

this point, it is more reasonable to segment the shell-side into several layers of spheres 

rather than a single layer of comparatively large spheres to avoid distortion in porosity 

values. For example, a core-shell particle with 𝜑 = 0.75 has a shell thickness of 

(1 − 𝜑)𝑟𝑝 = 0.25𝑟𝑝 and it can be represented as a core-shell geometry with 𝑛𝑙 =

0.25𝑟𝑝/0.1𝑟𝑝 = 2.5 ≅ 3 shell layers to avoid distortion in porosity values.  
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4.1.4. Validation of Core-Shell Packing Geometry 

 

Random jammed packing of core-shell particles calculated by the model was visually 

inspected in a similar manner to the packing of hardspheres as described in section 

3.3.2. and individual core-shell geometries in the previous section. Two packing 

geometries containing core-shell particles with 𝜑 = 0.7 and 𝜑 = 0.8 were calculated 

and a Fortran code was used to generate an OpenSCAD script, using the information 

contained in CSPRJP array (Refer to Appendix C for the details on Fortran strings used 

in the codes), which are the center points and radii of all elements in the packing 

geometry. Core-shell particles were set to have only a single layer, for multi-layer 

particles contain very large amounts of spherical elements that needs to be rendered 

by the computer. A packing containing triple layer core-shell particles with 𝜑 = 0.7 

contains around 270,000 geometry elements which could not be rendered by the 

available computers, whereas the packing with single layer core-shell particle that has 

𝜑 = 0.8 contains around 25,000 elements and the computer was able to render it 

although changing the view incredibly slowed the computer.  
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Figure 29: Random jammed packings of 100 single layer core-shell particles with   

𝑟𝑝 = 2.5 𝜇𝑚. The main periodic cell is visible in translucent grey color. Left: Core-

shell particles with 𝜑 = 0.7. Right: Core-shell particles with 𝜑 = 0.8. 

 

 

Inspected packings of core-shell particles are seen in Figure 29. Renderings do not 

show any overlaps between core-shell particles or any abnormal large distance 

between them, an indication for successful scaling of hardsphere packing and 

successful translation of calculated core-shell particle geometry into the scaled packing 

of hardspheres. These visuals confirm that the system boundaries are calculated and 

stored properly. Hence they can be used in diffusion and dispersion simulations.  

 

4.1.5. Diffusion in Random Jammed Packing of Core-Shell Particles 

 

Diffusion of solute tracers were simulated in the packing of core-shell particles with 

𝜑 = 0.77 with 1 and 2 shell layers, and 𝜑 = 0.655 with 3 shell layers was simulated. 

Bulk diffusivity of tracers were set as 110𝜇𝑚2/𝑠, a typical diffusivity for small 

proteins based on lysozyme (Bauer et al., 2016). Simulation was run for two different 

particle diameters, 5 𝜇𝑚 and 3.4 𝜇𝑚 based on the dimensions of some commercially 
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available core-shell particles introduced in the literature survey chapter, and the 

duration of simulation was set as five times diffusive time measure, 5𝜏𝐷 =

5(𝑑𝑝)2/𝐷𝐴𝐵. Time-dependent normalized diffusivity was defined as 𝐷0 = 𝐷𝐴𝐵(𝑡)/

𝐷𝐴𝐵. Normalized effective diffusivity was calculated as the mean of 𝐷0 data for 𝑡/𝜏𝐷 ≥

1. 500 data points were extracted from the simulation throughout the entire duration. 

75000 tracers were used in each simulation. Random-step size were set to 10% of the 

diameters of shell spheres for all runs. Initial positions for all tracers are selected 

randomly, inside the inter-particle void space in the main periodic cell. Note that the 

initial condition is not a point injection but a homogeneous distribution of tracers 

throughout the inter-particle void space in the main periodic cell. 

Figures 30 and 31 show the effective diffusivity values predicted by the model, for 

core-shell particles with different diameters but the same geometry defining 

parameters (i.e. the number of shell layers and core-to-particle diameter ratio). 

Predicted 𝐷0,𝑒𝑓𝑓 is the same for repeated simulations for particles with both diameters, 

only differing after third decimal point. Since the defining parameters are the same for 

both diameters, tortuosity of the packing geometry must be and is practically the same. 

Or, in other words, calculated geometries for the packings of core-shell particles with 

diameters 5 𝜇𝑚 and 3.4 𝜇𝑚 are two different scaled versions of the exact same 

geometry. Therefore these results are consistent. Normalized time-dependent 

diffusivity for the same particles, but with 2 shell layers instead of 1 are given in Figure 

32 and 33. Simulations predict the same 𝐷0,𝑒𝑓𝑓 values as in single layer particles. This 

is also a self consistent result, considering the entire particle porosity changes a very 

small amount between 1 layer and 2 layer geometries (check Figure 28 in section 4.1.3) 

and the reflection of this change on the entire volume available for diffusion in the 

core-shell packing is almost zero. However, these results would definitely change if 

solute tracers were assigned a finite size, unlike point tracers used in this study. Finite-

sized probes would not be able to sample spaces where point tracers can freely roam. 

Therefore, the consistency of the results between coarse and finer core-shell particle 

geometries is only valid for simulations of diffusion or dispersion of small molecules.  
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Simulation predictions for normalized time-dependent diffusivity in a packing of triple 

layer core-shell particles with 𝜑 = 0.655 is given in Figure 34. 𝐷0,𝑒𝑓𝑓 for particles 

with different diameters is the same, due to almost identical tortuosity, but the effect 

of extra diffusion volume that becomes available for 𝜑 = 0.655 (see Figure 28 for the 

apparent change in the entire particle porosity between core-to-particle ratios 𝜑 =

0.655 and 𝜑 = 0.77)  is clearly distinguishable in the ~2.5% increase in effective 

diffusivity. Diffusion predictions of the model are self consistent but more importantly 

of physical coherence, although direct comparisons with any experimental results 

would not be plausible or at least very hard to speculate on since, especially for these 

small size core-shell particles, differences in packing geometry in experiments and the 

packing used in the simulations would effect 𝐷0,𝑒𝑓𝑓 quite significantly compared to 

actual contributions from core-shell particles. In dispersion, these differences would 

be amplified and the predictions of the model can be compared to an available data 

and discussed.  

 

 

Figure 30: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter 

core-shell particles with single shell layer and core-to-particle ratio of 0.77. 

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3 

decimals. 
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Figure 31: Normalized time-dependent diffusivity in the packing of 3.4 𝜇𝑚 in 

diameter core-shell particles with single shell layer and core-to-particle ratio of 0.77. 

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2 

decimals. 

 

 

Figure 32: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter 

core-shell particles with 2 shell layers and core-to-particle ratio of 0.77. Normalized 

effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3 decimals. 
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Figure 33: Normalized time-dependent diffusivity in the packing of  3.4 𝜇𝑚 in 

diameter core-shell particles with 2 shell layers and core-to-particle ratio of 0.77. 

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2 

decimals. 

 

Figure 34: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter 

and 3.4 𝜇𝑚 in diameter core-shell particles with 3 shell layers and core-to-particle ratio 

of 0.655. Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two diameters in 2 

significant figures. 
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Table 1: A summary of diffusion simulations. Results for double layer core-shell 

particles are averaged for Run 1 and Run 2 due to very close values in both runs. 

 

𝜑 = 0.77 𝜑 = 0.665 

Single Layer Particle Double Layer 

Particle 

Triple Layer 

Particle Run 1 Run 2 

𝑑𝑝 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚 

𝐷0,𝑒𝑓𝑓 0.721 0.727 0.724 0.727 0.726 0.726 0.744 0.743 

 

4.2. Fluid Flow Simulations 

 

4.2.1. Validation of Periodic Flow Conditions 

 

Simulation of water flow through the generated packing of hardspheres and obtaining 

the velocity field from the results were explained in section 3.4. Boundaries parallel to 

xy-plane were set as periodic flow conditions, such that the pressure difference 

between these boundaries would be a certain non-zero pressure drop value ∆𝑃 ≠ 0 so 

that flow occurs in positive z-direction. Opposing boundaries parallel to zy-plane and 

zx-plane were also set as periodic flow conditions, with no apparent pressure 

gradient, ∆𝑃 = 0 , in x and y directions. These boundary conditions assure the 

continuity of velocity field at the specified boundaries by definition, as in COMSOL 

they are defined as the velocity profile at the specified boundaries being equal to each 

other. 

In order to validate the periodic boundary conditions set in the system, firstly the 

COMSOL model was computed as setting the pressure gradient in z-direction to   

∆𝑃 = 400 𝑃𝑎, an approximate pressure drop that would occur across the dimensions 

of the periodic cell (~18𝜇𝑚) estimated from Ergun Equation. Typical superficial 

velocities the HPLC columns are operated at, determined by the flow rate and inner-

diameter of the column, was used in Ergun Equation to estimate the pressure drop in 

the flow direction across the main periodic cell with length ~17,6 𝜇𝑚. In an HPLC 
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column with 4.6 𝑚𝑚 inner diameter operating at 1 𝑚𝐿/𝑚𝑖𝑛 flow rate, superficial 

velocity of the mobile phase is very close to 1 𝑚𝑚/𝑠. Corresponding pressure drop in 

the column over a length of 17,6 𝜇𝑚 was calculated in Ergun Equation (Bird et al., 

2007) by using void fraction of random close packings 𝜀 = 0.355 and viscosity and 

density of water, a typical mobile phase, at 25𝑜𝐶. Pressure drop under specified 

conditions was found to be ~877 𝑃𝑎.  

∆𝑃

𝜌𝑢𝑧
2

𝑑𝑝

𝐿

𝜀3

1 − 𝜀
= 150

(1 − 𝜀)𝜇

𝑑𝑝𝜌𝑢𝑧
+

7

4
 (53) 

 

Contour plots of the z-components of velocity vectors, right at the periodic boundary 

couples were compared. Figures 35, 36 and 37 are showing the contour plots of 

periodic boundary couples parallel to xy, yz and zx-planes respectively. Plots show the 

same z-components for the velocity field at the boundaries, as it would be expected 

from the periodic flow conditions. Plots on the left and right sides of figures seem to 

be mirror images of each other with respect to y,z and x-axis due to the flip-rotation 

of view. If one of the boundaries is viewed from the opposite side, it would look 

exactly the same as the other.  

 

Figure 35: Contour plots of velocity field z-components at the periodic boundary 

couple parallel to xy-plane. Left: Top view of the main periodic cell. Right: Bottom 

view of the main periodic cell. 
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Figure 36: Contour plots of velocity field z-components at the periodic boundary 

couple parallel to yz-plane. Left: Right side view of the main periodic cell. Right: Left 

side view of the main periodic cell. 

 

 

Figure 37: Contour plots of velocity field z-components at the periodic boundary 

couple parallel to zx-plane. Left: Back view of the main periodic cell. Right: Front 

view of the main periodic cell. 
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Velocity components at the periodic boundary couples were also compared 

quantitatively using Fortran. The velocity field was read by the Fortran code and stored 

into the VF array as described in Appendix C.4 and components of the velocity vectors 

on the boundary couples were compared. For fine resolution, 93.2% of the grid nodes 

on the coupled boundary surfaces have less than 1% difference in the z-components  

of velocity vectors and 96.5% have less than 5% difference. Therefore velocity profiles 

at the boundary couples are very close to each other and can practically be considered 

the same. This supports the contour plots and confirms periodic flow conditions are 

calculated properly. Matching velocity profiles at the boundaries also confirm that the 

random jammed packing of hardspheres was properly modified manually, as described 

in section 3.3.2. Otherwise, either the solution would not converge or it would 

converge to erroneously different velocity profiles at coupled periodic boundaries. 

Grid dependence of the solution was also tested by running the COMSOL simulation 

at normal and coarse resolutions in addition to fine resolution. For normal and coarse 

resolutions, 93.6% and 93.1% of the nodes have less than 1%,  95.1% and 95.6% have 

less than 5% difference respectively, very close to that of fine resolution results. The 

x and y components were not compared since they are significantly smaller (around 

1% of the z-component in average) than z-components. It can be concluded that the 

resolution does not affect the validity of periodic boundaries. Also, the average 

velocity magnitude throughout the entire velocity field changes by 2% and 2.7% 

relative to fine resolution, for normal and coarse meshes respectively. The x and y 

components are significantly different in lower resolutions. Yet the directions of the 

velocity vectors are not affected significantly, due to very small size of x and y 

components relative to z-components. Therefore the entire velocity field can be 

considered grid independent. Still, the velocity field obtained from fine resolution is 

used in the simulations of dispersion, later presented in this chapter. 
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4.2.2. Stokes Flow Range Inside the Packing 

 

Determination of Stokes Flow range in the packing of hardspheres was required for 

practical purposes. Velocity field that belongs to a Stokes Flow, or Creeping Flow, is 

linearly scalable since the inertial terms in the equation of continuity are negligible 

compared to linear viscous terms. Linear scaling of the velocity field allows 

calculating once and using the same velocity field to simulate dispersion at different 

Peclet numbers determined by the average superficial velocity in the system linearly 

scaled from the original velocity field obtained. 

Fluid flow simulations for five different ∆𝑃 values (400, 800, 8000, 16000 and 24000 

Pa) around the Ergun Equation estimation, as explained in the previous section, were 

carried out and the velocity fields obtained at each pressure drop was analyzed. Table 

2 shows the maximum Reynolds numbers occurring in the nodes, as well as the 

volume-average Reynolds numbers of all nodes in the 101x101x101 grid and average 

velocity components and velocity magnitudes for all five simulations. 

 

 

Table 2: Maximum and average Reynolds numbers in the velocity fields, average 

velocity components and average velocity magnitudes obtained from the solutions at 

pressure drops between 400 and 24000 Pa.  

∆𝑃 

(𝑃𝑎) 
𝑅𝑒𝑚𝑎𝑥 𝑅𝑒𝑎𝑣𝑔 

Volume average of velocity 
components (𝑚/𝑠) |𝑢|𝑎𝑣𝑔 

(𝑚/𝑠) 

% Difference with 
linear scaling 

𝑢𝑥 𝑢𝑦 𝑢𝑧 Avg. Max. 

400 0.05 0.004 -4.35x10-6 -4.35 x10-6 5.39 x10-4 6.48 x10-4 - - 

800 0.10 0.007 -8.70 x10-6 -8.70 x10-6 1.08 x10-3 1.30 x10-3 0.005 0.02 

8000 1.03 0.073 -8.71 x10-5 -8.71 x10-5 1.08 x10-2 1.30 x10-2 0.088 0.38 

16000 2.06 0.145 -1.74 x10-4 -1.74 x10-4 2.16 x10-2 2.59 x10-2 0.181 0.78 

24000 3.09 0.218 -2.62 x10-4 -2.62 x10-4 3.24 x10-2 3.89 x10-2 0.273 1.17 
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Maximum Reynolds number in any of the grid nodes becomes closer to even turbulent 

flow limit of the water for ∆𝑃 = 24 𝑘𝑃𝑎 , however these are only calculated for the 

velocity vector with greatest magnitude in the entire velocity field. Local Reynolds 

numbers can reach up to 30 before Stokes Flow loses its validity around high-velocity 

regions in a random close packing of monodisperse spheres and eddy seeds start 

popping up (Hlushkou & Tallarek, 2006), whereas the maximum local Reynolds 

number is between 1 and 2 in this specific packing being dealt with. Average Reynolds 

number in the packing becomes greater than the Stokes Flow limit, conservatively 

assumed as 𝑅𝑒 = 0.1 in this thesis study, after pressure drop across the periodic cell 

reaches some value between 8 𝑘𝑃𝑎 and 16 𝑘𝑃𝑎. Therefore the error caused by linear 

scaling should start increasing after this value. In order to observe this error, velocity 

field obtained for ∆𝑃 = 400 𝑃𝑎 was linearly scaled to match the velocity fields 

obtained by direct solutions of velocity fields that belong to other pressure drop values 

800 𝑃𝑎, 8 𝑘𝑃𝑎, 16 𝑘𝑃𝑎 and 24 𝑘𝑃𝑎. Average magnitudes of the velocity vectors 

linearly scaled to ∆𝑃 = 800 𝑃𝑎  and ∆𝑃 = 8 𝑘𝑃𝑎 have 0.005% and 0.088% absolute 

error with respect to direct solutions. Average absolute errors for the velocity vectors 

linearly scaled to ∆𝑃 = 16 𝑘𝑃𝑎  and ∆𝑃 = 24 𝑘𝑃𝑎 was found to be 0.181% and 

0.273% respectively. However, maximum absolute errors for local velocity vectors 

reaches 0.78% and 1.17% for scaling to ∆𝑃 = 16 𝑘𝑃𝑎 and ∆𝑃 = 24 𝑘𝑃𝑎 solutions, 

compared to 0.02% and 0.38% maximum absolute error when the velocity field 

solution for ∆𝑃 = 400 𝑃𝑎 is linearly scaled to the solutions for ∆𝑃 = 800 𝑃𝑎  and 

∆𝑃 = 8 𝑘𝑃𝑎 respectively. It is still a small error but considering the average Reynolds 

number at the same pressure drop, it would not be safe to assume the scaled velocity 

vectors would have the same directions above the Stokes Flow limit 𝑅𝑒 = 0.1, which 

occurs at  ∆𝑃𝑆𝐹𝐿 ≅ 11 𝑘𝑃𝑎 and 𝑢𝑧,𝑆𝐹𝐿 ≅ 0.015 𝑚/𝑠. 

The range of Peclet numbers that dispersion can safely be simulated depends on the 

bulk diffusion coefficient of solute tracers, given as an input parameter for the 

simulation. Limiting Peclet number, 𝑃𝑒𝑆𝐹𝐿, can simply be calculated by its defining 

equation. The characteristic length in the packing is equal to the diameter of spheres 

in the packing, 𝑑𝑝. 
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𝑃𝑒𝑆𝐹𝐿 =
𝑑𝑝𝑢𝑧,𝑆𝐹𝐿

𝐷𝐴𝐵
 (54) 

 

Equation (54) will be used in discussions related to simulations of dispersion in the 

random jammed packing of core-shell particles.  

 

4.3. Dispersion Model 

 

4.3.1. Validation of Dispersion Model by Simulating Taylor Dispersion in a Pipe 

 

The Fortran code written for simulating dispersion was tested by simulating Taylor 

dispersion of a tracer ensemble at Peclet numbers ranging from near 0 to 1000, in a 

pipe with 𝑑𝑝 = 1 𝜇𝑚 diameter. The analytical solution for mass dispersion is readily 

available for this case (Taylor, 1953), which enables an opportunity for validating the 

code. Flow of water through the pipe with was simulated in COMSOL and the velocity 

field was obtained in a 101x101x101 grid similar to that used in simulations of 

dispersion in core-shell packings. The velocity field was read by the Fortran program 

the same way and the same trilinear interpolation subroutine was used. Velocity field 

solution was linearly scaled in Stokes Flow range to simulate Taylor dispersion of 

2000 tracers at up to 𝑃𝑒 ≅ 900. Simulation duration was set to 0.2 seconds, a 

considerably high duration with respect to minimum required time for transient 

behavior of dispersion to stop and reach steady-state, which is the amount of time 

needed for all tracers to sample entire velocity field, 𝜏𝑚𝑖𝑛 = 𝑑𝑝𝑖𝑝𝑒
2/6𝐷𝐴𝐵, which is 

equal to 0.038 seconds for this case. Longitudinal position variance data of the tracer 

ensemble with respect to time was obtained from the simulation and the data was used 

to determine time slopes of longitudinal position variance of tracer ensemble (See 

Appendix B.1 for variance vs. time plots). Then the longitudinal dispersion 

coefficients were calculated using the equation 𝐷𝐿 = 0.5(𝛿𝜎𝐿
2 𝛿𝑡⁄ ). 
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Figure 38: Longitudinal dispersion coefficients in a pipe, predicted by Taylor 

Dispersion Model (1953) and the dispersion model built in the thesis study, at different 

Peclet numbers. Both axis are logarithmic. Note the deviation between two models at 

low Pe. 

 

 

Predictions of the prepared dispersion model matches with the Taylor Dispersion 

Model developed by Geoffrey Taylor (1953) which has reasonable accuracy compared 

to experiments carried out for the same study. Deviation of two models at low Peclet 

numbers occurs due to the fact that Taylor model is linear and it does not take the 

contributions from axial diffusion into account while predicting dispersion 

coefficients. Therefore it erroneously underestimates longitudinal dispersion 

coefficients at low Pe, as opposed to the random-walk based dispersion model, where 

the contributions from diffusion are very apparent as the distance traveled by tracers 

due to random-steps taken. 𝐷𝐿 even approaches around the input solute tracer diffusion 

coefficient, 110𝜇𝑚2/𝑠, as Peclet number approaches zero. It can be concluded that 

the dispersion code works properly and predicts accurate results. Therefore it can be 

used for simulating dispersion in packings of core-shell particles. 
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4.3.2. Longitudinal Dispersion Coefficients of Tracers 

 

4.3.2.1. In the Random Packing of Monodisperse Hardspheres 

 

Dispersion of solute tracers were simulated in a packing of Monodisperse hardspheres 

with 𝑑𝑝 = 5 𝜇𝑚. The velocity field for water flow through the periodic cell with   

∆𝑃 = 400 𝑃𝑎, inspected in section 4.2.2, was used as the main velocity field and 

linearly scaled to obtain results at different Peclet numbers. Bulk diffusion coefficient 

of tracers was set as 𝐷𝐴𝐵 = 110 𝜇𝑚2/𝑠. Tracers were randomly distributed into the 

inter-particle space between hardspheres as the initial condition. Duration of 

simulation was set to either ten times the convective time measure 𝜏𝐶 = 2𝑟𝑝/𝑢𝑎𝑣𝑔, 

defined as the time required for a tracer moving at the average fluid velocity to travel 

a distance equal to the diameter of spheres in the packing, or 0.2 times the diffusive 

time measure 𝜏𝐷 = (2𝑟𝑝)2/𝐷𝐴𝐵, which is equal to 2 times the the minimum required 

time for dispersion to reach asymptotic behaviour, whichever is the greatest. This 

ensures that at low Pe, tracers will sample at least 3 periodic cells and also the 

simulation would proceed for enough time at higher Pe to allow reaching asymptotic 

behavior. Variance vs. time data was collected from the simulations carried out at 

various peclet numbers and fit an asymptotic curve, given by Equation (50) in section 

3.6.5, which estimates the time slope of variance as the parameter A. Variance data 

and fitted curves at 𝑃𝑒 = 10 and 𝑃𝑒 = 50, and dispersion coefficients are given in 

Figure 39. Other variance and dispersion coefficient data obtained from the 

simulations carried out at the rest of Peclet numbers are in Appendix B.2.  
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Figure 39: Longitudinal displacement variance vs. time at Peclet numbers 10 (top) and 

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to 

the right. 

 

 

Average mobile phase velocities, Peclet numbers and normalized longitudinal 

dispersion coefficients predicted at the corresponding Peclet numbers are given in 

Table 3. A longitudinal dispersion coefficient vs. Peclet number graph is also given in 

Figure 40. 
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Table 3: Volume-average velocity magnitudes in the linearly scaled velocity field at 

different Peclet numbers, corresponding estimated asymptotic time-slopes of 𝜎𝐿
2 and 

normalized longitudinal dispersion coefficients. 

𝒖𝒂𝒗𝒈 (𝝁𝒎/𝒔) 𝑷𝒆 𝜹𝝈𝑳
𝟐/𝜹𝒕 (𝝁𝒎/𝒔) 𝑫𝑳/𝑫𝑨𝑩 

220 10 1.26 x103 5.7 

330 15 2.17 x103 9.8 

440 20 3.14 x103 14.2 

550 25 4.44 x103 20.1 

660 30 5.52 x103 25.0 

770 35 7.17 x103 32.5 

880 40 7.60 x103 34.5 

990 45 9.54 x103 43.3 

1100 50 1.04 x104 47.3 

1320 60 1.31 x104 59.6 

1540 70 1.60 x104 72.7 

1760 80 1.93 x104 87.8 

1980 90 2.16 x104 98.1 

2200 100 2.51 x104 113.9 

 

 

 

Figure 40: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the 

model vs. 𝑃𝑒. 
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Longitudinal dispersion coefficients predicted by the model in an unbound packing of 

hardspheres are in good agreement with experimental data of Han et al. (1985) and a 

compilation of other experimentally determined dispersion coefficients present in the 

same work, in which the dispersion coefficients follow a straight line between roughly 

similar values in the same range of Peclet numbers. Reader is referred to the article of 

Han et al. (1985) for these experimental data, since the figure containing the data could 

not be ‘digitized’ and permissions for using the figure here directly could not be 

received. 

As an end note for the section, one should not forget that the fit parameters A and k 

are not necessarily physically significant. They are only fit parameters to estimate the 

asymptotic slope of the time dependent longitudinal position variance. 

 

4.3.2.2. In the Random Packing of Core-Shell Particles 

 

Dispersion in the random packing of core-shell particles were simulated in the same 

packing geometry as in the previous section, dispersion in packing of hardspheres, 

where this time the hardspheres were replaced by core-shell particles with the same 

diameter, 𝜑 = 0.73 and 𝑛𝑙 = 3. Velocity field that belongs to the water flow through 

the periodic cell with ∆𝑃 = 400 𝑃𝑎, again, was used as the base velocity field that can 

be linearly scaled within creeping flow range. Initial conditions were also the same. 

Tracers were randomly distributed into the inter-particle space between core-shell 

particles, initially. Same bulk diffusion coefficient was used and durations of 

simulations were also determined by the same reasoning. Determination of 

longitudinal dispersion coefficient was similarly done using variance vs. time data. 

Variance data and fitted curves at 𝑃𝑒 = 1 and 𝑃𝑒 = 50, and dispersion coefficients 

are given in Figure 41. Other variance and dispersion coefficient data obtained from 

the simulations carried out at the rest of Peclet numbers are in Appendix B.3. 

Average mobile phase velocities, Peclet numbers and normalized longitudinal 

dispersion coefficients predicted at the corresponding Peclet numbers are given in 
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Table 4. A longitudinal dispersion coefficient vs. Peclet number graph is also given in 

Figure 42. 

 

 

 

 

 

Figure 41: Longitudinal displacement variance vs. time at Peclet numbers 1 (top) and 

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to 

the right.  
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Table 4: Volume-average velocity magnitudes in the linearly scaled velocity field at 

different Peclet numbers, corresponding estimated time-slopes of 𝜎𝐿
2 and normalized 

longitudinal dispersion coefficients. 

𝒖𝒂𝒗𝒈 (𝝁𝒎/𝒔) 𝑷𝒆 𝜹𝝈𝑳
𝟐/𝜹𝒕 (𝝁𝒎/𝒔) 𝑫𝑳/𝑫𝑨𝑩 

22 1 1.74 x102 0.8 

44 2 2.42 x102 1.1 

66 3 3.12 x102 1.4 

88 4 4.25 x102 1.9 

110 5 5.38 x102 2.4 

132 6 6.46 x102 2.9 

154 7 8.50 x102 3.9 

176 8 1.01 x103 4.6 

198 9 1.11 x103 5.0 

220 10 1.37 x103 6.2 

330 15 2.34 x103 10.6 

440 20 3.52 x103 16.0 

550 25 4.86 x103 22.1 

660 30 6.45 x103 29.3 

770 35 8.00 x103 36.4 

880 40 1.00 x104 45.5 

990 45 1.21 x104 55.1 

1100 50 1.40 x104 63.7 

1650 75 2.67 x104 121.4 

2200 100 3.96 x104 180.0 
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Figure 42: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the 

model vs. 𝑃𝑒. 

 

 

Results show a linear increase in the normalized dispersion coefficients after the Pe in 
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mechanism, as it should be expected from the simulation. However there is a barely 

noticeable increase in 𝐷𝐿 after 𝑃𝑒 = 50 mark (although the reduced plate height 

graphs given in the next section makes it more noticeable after that Pe), where 

longitudinal displacements of tracers must have already been started to be dominated 

by the intra-particle diffusion limitations and mechanical dispersion and following a 

straight line. This occurrence must be related to, with strong possibility,  the 

contribution of velocity auto-correlation as it was explored in the study of Maier et al. 

(2000). They had found that periodic arrays of spherical random packings are prone to 

velocity auto-correlation, which consequently overestimates 𝐷𝐿 compared to what it 

would have been in a non-periodic random packing of spheres, because tracers in 

periodic arrays can get caught by a high velocity region and repeatedly sample these 
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auto-correlation eventually decay. However the decay rate depends on the ratio of 

main periodic cell length to sphere diameter, 𝐿𝑝𝑐/2𝑟𝑝, where higher ratios allow 

quicker decay of velocity auto-correlation. In a spherical packing with similar 𝐿𝑝𝑐/2𝑟𝑝 

to the packing used in this thesis study, they found that partially decayed auto-

correlation contribution to 𝐷𝐿 starts increasing again at around 10𝜏𝐶. At exactly 𝑃𝑒 =

50, dispersion code starts using 0.2𝜏𝐷 as the simulation duration because the average 

mobile phase velocity in the system increases to such a turning point that 10𝜏𝐶 

becomes less than 0.2𝜏𝐷. Consequently, velocity auto-correlation kicks in causing the 

unexpected increase in the predicted 𝐷𝐿. This also limits the model to work in the range 

0 < 𝑃𝑒 < 50 without the effects of velocity auto-correlation. This occurrence cannot 

be related to linear scaling of the velocity field because the limiting Peclet number for 

Stokes Flow, 𝑃𝑒𝑆𝐹𝐿, is greater than 600 for tracer 𝐷𝐴𝐵 used in simulations. 

 

4.3.2.3. Reduced Plate Heights in an Unbound Liquid Chromatography Column 

 

Longitudinal dispersion coefficients of tracers obtained in the previous section were 

converted to reduced plate heights in order to be able to compare the predictions of the 

model to experimental data, since the dispersion coefficient data is typically available 

as reduced plate heights of HPLC columns determined by peak parking method which 

is quite similar to the way this dispersion model is used for obtaining dispersion 

coefficients.  

Recall that, plate heights in chromatography columns are defined as proportional to 

the derivative of longitudinal position variance of the analyte, or the tracer ensemble 

in theoretical case, with respect to longitudinal distance. If normalized by the diameter 

of core-shell particles in the column, reduced plate height values for the column is 

obtained. Accordingly, 𝐷𝐿 can be divided by superficial mobile phase velocity 𝑢𝑧 and 

core-shell particle radius 𝑟𝑝 for conversion to dimensionless reduced plate height ℎ, as 

in the following equation. 
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ℎ =
𝐻

2𝑟𝑝
=

𝐷𝐿

𝑢𝑧𝑟𝑝
=

1

𝑢𝑧𝑑𝑝

𝛿𝜎𝐿
2

𝛿𝑡
=

1

𝑑𝑝

𝛿𝜎𝐿
2

𝛿𝑧
 (55) 

 

Reduced plate heights were calculated using longitudinal dispersion coefficients 

obtained in the previous section, at the same corresponding Peclet numbers. Average 

longitudinal velocity component 𝑢𝑧, as well as corresponding Peclet numbers, 

predicted plate heights and reduced plate heights at these Peclet numbers are given in 

Table 5. A graphical representation of h vs. Pe is also available in Figure 43. 

 

 

Table 5: Volume-average z-components of velocity in the linearly scaled velocity field 

at different Peclet numbers, corresponding plate heights and reduced plate heights 

calculated by Equation (55) using variance slopes determined previously in Table 4. 

𝑷𝒆 𝒖𝒛 (𝝁𝒎/𝒔) 𝑯 𝒉 

1 18.31 9.50 1.90 

2 36.62 6.61 1.32 

3 54.93 5.67 1.13 

4 73.24 5.80 1.16 

5 91.55 5.88 1.18 

6 109.86 5.88 1.18 

7 128.17 6.63 1.33 

8 146.48 6.93 1.39 

9 164.79 6.73 1.35 

10 183.10 7.48 1.50 

15 274.66 8.53 1.71 

20 366.21 9.61 1.92 

25 457.76 10.61 2.12 

30 549.31 11.75 2.35 

35 640.86 12.49 2.50 

40 732.41 13.66 2.73 

45 823.97 14.71 2.94 

50 915.52 15.32 3.06 

75 1373.28 19.45 3.89 

100 1831.04 21.63 4.33 
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Figure 43: Reduced plate height of tracer ensemble vs. Peclet number. 

 

 

 

Figure 44: Reduced plate heights predicted by the model and experimental reduced 

plate height data for non-retained small molecule; uracil. Experimental data was taken 

from the study of Guiochon and Gritti (2011). 
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Reduced plate height predictions of the model compares well with experimental data 

collected by Guiochon and Gritti (2011), as seen in Figure 44. The experimental data 

belongs to uracil, a non-retained small molecule, analysed in a column with 4.6 𝑚𝑚 

diameter and 150 𝑚𝑚 length, packed with 𝑑𝑝 = 2.6 𝜇𝑚 Kinetex-C18 core-shell 

particles that have 0.35 𝜇𝑚 shell thickness which corresponds to 𝜑 = 0.73. Uracil as 

a non-retained small molecule shares characteristics with dimensionless and non-

adsorbed point tracers and the core-shell particles in used in this experimental study is 

practically the same as the core-shell geometry used in simulations of this work. The 

only difference between the experimental system and simulation system is the 

presence of wall effects, in the Pe interval the experiment was carried on. Mobile phase 

flow in confined systems like HPLC columns are typically divided into wall region, 

transition region and bulk regions in related studies, such as Bruns et al.’s (2012), 

Daneyko et al.’s (2011) and Khirevich et al.’s (2012). In these studies, it was pointed 

out that the porosity of the packing increases drastically near wall regions compared 

to the bulk region that lies around the center of the column. Consequently, mobile 

phase velocity profile follows a similar trend to the porosity profile across the packing, 

as detected by also in the study of Das et al. (2017), causing drastic flow irregularities 

which creates additional contribution to the plate height that would not exist in an 

unconfined packing. This effect is shown to be more visible in columns with smaller 

diameter and at lower Peclet numbers -or Reynolds numbers- in all of these studies. 

Considering the model only represents the bulk region in an HPLC column, majority 

of the difference between the model and experimental data of  Guiochon and Gritti 

(2011) can be explained by the effects of confinement. The model underestimates 

dispersion in the column near the minimum reduced plate heights, and predictions of 

reduced plate heights converges to that of confined HPLC column at higher Peclet 

numbers as the wall effects start losing their dominance. In another series of studies 

released by Gritti and Guiochon (2013, 2013) and Gritti et al. (2014) effects of so-

called “Parallel Segmented Flow Chromatography”, PSFC in short, on the plate 

heights in columns was shown. According to their description, PSFC takes advantage 

of transient behavior of dispersion to improve the plate heights in analytical columns 

by splitting the outlet and taking measurements only from the middle section of the 
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column where less biased bulk flow occurs. Their results comparing standart columns 

and PSFC columns are consistent with the comparison of model predictions to 

experimental data given in Figure 44, for retained and non-retained solutes. However 

they are not directly comparable, since data is available for a very short range of Pe 

and the characteristics of the core-shell particle used in the experiment is unclear. Still, 

their findings support the predictions of the model. The difference, also, cannot be 

caused by the input bulk diffusivity assigned to tracers 𝐷𝐴𝐵 = 110 𝜇𝑚2/𝑠, compared 

to bulk diffusivity of uracil in water, which is around 1160 𝜇𝑚2/𝑠 (Song et al., 2016). 

In fact, reduced plate height vs. Peclet number plots for dispersion simulations carried 

out in the range 0 < 𝑃𝑒 < 20 can be seen in Figure 45, and they are very similar to 

the main results. In reduced variables, simply no difference is observed. Higher tracer 

diffusivity only reduces Peclet number at Stokes Flow limit, to ~70 for 𝐷𝐴𝐵 =

1160 𝜇𝑚2/𝑠. 

 

 

 

Figure 45: Reduced plate height vs. Pe predicted by simulations done with tracer bulk 

diffusion coefficients 1160 𝜇𝑚2/𝑠 (A) and 110 𝜇𝑚2/𝑠 (B). 
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Experimental data of Guiochon and Gritti (2011) was extended to 𝑃𝑒 = 100 by fitting 

a Knox (2002) equation to it for full comparison with model predictions, since the 

experimental data was only available for 0 < 𝑃𝑒 < 27. Figure 46 shows extended data 

along with the predictions of the model. 

 

 

 

Figure 46: Experimental reduced plate height data of Guiochon and Gritti (2011) 

extended to 𝑃𝑒 = 100 by Knox equation best fit with 𝐴 = 0.80, 𝐵 = 1.77 and 𝐶 = 0. 

Reduced plate heights predicted by the model is also available, along with the best 

fitted Knox curve with 𝐴 = 0.53, 𝐵 = 1.25 and 𝐶 = 0.02, for comparison. 
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experimental data. There can be three reasons for it. First, contribution from velocity 

auto-correlation after is certainly present but this would be minimally reflected on the 

fit parameter since most of the data is at low Pe where the effects of  velocity auto-

correlation contributions are very small. Second, the effect of discretization mentioned 

in section 4.1.2 equally applies to the core-shell particle geometry, effectively and 

artificially decreasing the volume available for diffusion in the shell layer. Unlike 

tracers, uracil molecules would freely sample narrow regions in the shell layer with a 

higher effective diffusivity, hence the smaller 𝐶 term. Third, the assumption that intra-

particle flow does not occur starts losing its validity at higher Peclet numbers. 

Development of a mobile phase flow in the shell side would enhance intra-particle 

mass transfer and reduce the plate height contribution from the 𝐶 term. Although the 

intra-particle Peclet number would be very small for a core-shell particle like Kinetex-

C18 (Heeter & Liapis, 1996), still the model does not have that small intra-particle fluid 

velocity. It is most probably the second and third reasons has the most contribution to 

the differences in 𝐶 terms best fitted to data. This justification can also be supported 

by the predictions of effective medium based model created by Daneyko et al. (2015) 

where individual contributions of diffusion, flow irregularities and intra-particle mass 

transfer limitations were determined computationally and intra-particle resistances 

was found to becoming more and more contributing to the plate heights as the Pe 

increases in the system. 

Extended version of Giddings model (1963) for core-shell particles -which was 

introduced in Chapter 2- built by Daneyko et al. (2015) was used to determine the 

individual contributions to plate heights, as mentioned just previously, for the total 

reduced plate height predictions of thesis model and experiments of Gritti & Guiochon 

(2011). Void fraction of the column used in the experiment was assumed as 0.4, as 

suggested in the related study. Void fraction of the periodic packing was 0.355. Shell 

porosity of the core-shell particles were set as 0.49, determined from Figure 27 in 

section 4.1.3. Normalized effective diffusivity in the packing was taken as 0.73, an 

approximate value extracted from the results in section 4.1.5. Same value was assumed 

to be true for the experiment column, although the higher void fraction in the physical 

packing in the column is higher than that of periodic packing used in simulations. This 
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would result in a slight underestimation of effective diffusivity in the column, and 

overestimation of longitudinal diffusion and interchannel dispersion contributions. 

Modified Giddings model fits and individual contributions from longitudinal 

diffusion, interchannel dispersion, transchannel dispersion and intra-particle mass 

transfer limitations to both simulation and experiment data can be seen in Figure 47, 

in the range of Pe experimental data was available. Comparison of individual 

contributions to plate height between the experimental system and the system used in 

simulation can also be seen through Figures 48 to 51. 

Transchannel eddy dispersion is significantly higher for the experiment. This can be 

explained by the greater void fraction in the column, compared to the periodic packing 

used in the simulations, as well as the higher void fraction areas near the column walls 

where the higher superficial velocity than the bulk region causes additional dispersion. 

The wall effects must also cause a slight radial flow from the bulk region towards near 

the column walls, consequently the plate height contribution from interchannel eddy 

dispersion must become slightly greater in the confined system. Modified Giddings 

model certainly detects this slight difference between simulation data and 

experimental data. Still the 𝐶 term, related to intra-particle mass transfer limitation, is 

again greater for the simulated data, 0.020 compared to a smaller 0.013. As the 

modified Giddings model relies on more detail than Knox equation, it would be safe 

to assume that the overestimation of intra-particle mass transfer limitations by the 

simulation is not as severe as the fit Knox parameter. It can simply be explained by the 

stagnant mobile phase assumed in the shell layers and the dead volume in the shell 

layer resulting from random-walk discretization. 
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Figure 47: Extended Giddings model equations fit (dotted lines) to simulation data (A) 

and the experimental data from the study of Gritti & Guiochon (2011) (B). 

Contributions to reduced plate heights from transchannel eddy dispersion, interchannel 

eddy dispersion, intra-particle mass transfer limitations and longitudinal diffusion are 

dashed lines. 
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Figure 48: Comparison of longitudinal diffusion contributions to reduced plate heights 

predicted by the model to experimental data. 

 

Figure 49: Comparison of transchannel eddy diffusion contributions to reduced plate 

heights predicted by the model to experimental data. 
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Figure 50: Comparison of interchannel channel eddy diffusion contributions to 

reduced plate heights predicted by the model to experimental data. 

 

Figure 51: Comparison of intra-particle mass transfer limitation contributions to 

reduced plate heights predicted by the model to experimental data. 
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CHAPTER 5

 

 

CONCLUSIONS 

 

 

 

A dispersion model that simulates dispersion of small molecules in an unbound liquid 

chromatography column was created throughout the thesis study. As the preliminary 

steps of building the model, random-walk diffusion simulations in unhindered stagnant 

media and periodic simulations with basic no-flux boundaries were prepared and their 

predictions were used to confirm validity of algorithms and Fortran codes.  

An analytical geometry approach was adopted for reconstruction of core-shell 

particles. Core-to-particle ratio, particle diameter and amount of shell layers in the 

particle were used as defining parameters of the particle geometry to calculate center 

coordinates of spherical elements that collectively creates an ideal core-shell particle, 

coating a large core sphere with smaller shell side spheres very similar to actual 

production methods of core-shell particles. Resulting geometry was visually inspected 

by creating CAD images of the particle using the open-source drawing software, 

OpenSCAD. Then a periodic random jammed packing of  50 monodisperse 

hardspheres inside a unit cube was computationally generated using an algorithm 

developed Skoge et al. (2006). Packing of hardspheres was also inspected using 

OpenSCAD and it was found to be not usable directly in the simulations due to 

exclusion of any spheres located in neighboring periodic cells that would also appear 

in the main periodic cell. These spheres were dubbed invading spheres and they were 

manually inserted into the packing, rising total amount of spheres in the packing to 

100. Corrected packing was easily scaled such that diameters of spheres in the packing 
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would be equal to that of reconstructed core-shell particles. Then the calculated 

geometry of core-shell particle was translated into each sphere in the packing to create 

the core-shell packing geometry. The packing geometry was also inspected using 

OpenSCAD and was found to be appropriate to use in collision control. Diffusion in 

the geometry was simulated for different core-shell particles and the predictions of 

effective diffusivity throughout the entire system was found to be of physically 

reasonable. 

Pore-space of the core-shell particles was assumed to be stagnant, and corrected 

hardsphere packing geometry was used in COMSOL to obtain velocity field of 

periodic flow of water in the system geometry. Periodic boundaries were confirmed 

both visually by contour plots and direct comparison of the velocity profile at the 

coupled boundaries. Velocity field was obtained for different pressure gradients across 

the system. Stokes Flow limit for the system was determined by linear scaling and 

comparison of scaled velocity field and separately solved velocity field. A limiting 

Peclet number definition was derived and considered while carrying out the 

simulations. 

A trilinear interpolation subroutine was written for interpolating velocity vectors near 

grid nodes and separately obtained velocity field was integrated to diffusion model to 

create a dispersion model. Dispersion model and interpolation subroutine was tested 

by simulating Taylor dispersion in a pipe. Predictions of the model in the pipe was in 

good agreement with the predictions of correlation derived by Taylor. Then dispersion 

in core-shell packing was simulated at different Peclet numbers. Predictions of the 

simulation was found to be in good agreement with experimentally obtained reduced 

plate height data found in the literature. Deviations of the model predictions from the 

experimental data were discussed. Lower reduced plate height values predicted by the 

model at lower Peclet numbers, the lower A and B terms in a Van Deemter type 

equation, were found to be due to effects of confinement being non-existent in the 

simulated geometry since periodic boundaries effectively creates an unbound column. 

The model was found to be over-predicting internal mass transfer resistances in the 

core-shell particles, the C term, most possibly due to dead-zones created by relatively 
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coarse definition of random-step size as 10% of the diameter of a shell side sphere 

where no path followed by a tracer can lead to. Although velocity recorrelation in 

simulations and stagnant pore-space assumption might also have minor contributions 

for the overestimation of the C term.  

Overall, the dispersion model created for the study was found to be successfully 

predicting dispersion event in a very complex system like a random packing of porous 

materials, with explainable effects of simplifying assumptions. Basic analytical 

geometry approach for digital reconstruction of core-shell particles seems to be 

successful. Similar approaches for different systems might also be used for creating 

memory efficient simulations. 
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CHAPTER 6

 

 

RECOMMENDATIONS 

 

 

 

Several recommendations for similar studies that can possibly be conducted in the 

future, or continuation of this specific study can be made as follows. 

- Finer choice for the step-size of the random-walk should increase the accuracy 

of the model at higher Peclet numbers. However the non-linear relation 

between step-size and time increment must be very seriously taken into 

account, since reducing the step-size by a factor will increase the amount of 

random-steps that needs to be taken by a tracer by the square of the same factor 

which can dramatically increase the wall-clock time of Fortran programs. 

- Point-like tracers can be assigned a finite size and shape, spherical preferably, 

and modifying the collision control algorithm accordingly would allow 

simulating dispersion of large molecules like some globular non-adsorbing 

proteins. This might also eliminate the need for finer step-size for better 

accuracy at high Pe if the tracer size is comparable to the chosen step-size. 

- Bounce-back method applied when a collision is detected, requires less 

processing power but, for better accuracy, specular-reflection can be traded-off 

with wall-clock time. 

- Adsorption-desorption could potentially be integrated to the model by using a 

probabilistic subroutine that would be invoked upon detecting collisions 

between tracers and the impermeable boundaries. 
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- COMSOL is an easy but non-free solution for fluid flow problem. For the 

liberation of the work from all software copyrights, velocity field can be 

obtained by Lattice-Boltzmann methods alike on open-source software such as 

Octave or Fortran. 

- Velocity auto-correlation is known to be less apparent in periodic cells of 

random packings with greater cell length to sphere diameter ratios. The results 

are self-consistent in this study due to similar simulation durations in terms of 

convective-time measure. However using a more appropriate periodic packing 

would also increase the accuracy of the model as well as computation times. 
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APPENDIX A

 

 

FORTRAN CODES 

 

 

 

A.1. Validation of Free Diffusion Program 

PROGRAM FREEDIFFUSION 

IMPLICIT NONE 

DOUBLE PRECISION :: DAB,DURATION,DT,DX,PI,FREQ,SUMM 

INTEGER :: MAXRNG,NP,NS,B,AODP,I,J,K 

DOUBLE PRECISION, ALLOCATABLE :: POSITIONOLD(:,:),POSITIONNEW(:,:) 

DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DABVSTIME(:) 

DOUBLE PRECISION, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:) 

 

DAB=100 

DURATION=1 

NP=4000 

DT=DURATION/100000 

DX=SQRT(2*DAB*DT) 

NS=DURATION/DT 

 

MAXRNG=NS 

ALLOCATE(NUMBERSX(MAXRNG)) 

ALLOCATE(NUMBERSY(MAXRNG)) 

ALLOCATE(NUMBERSZ(MAXRNG)) 

 

FREQ=DURATION/1000 

B=INT(FREQ/DT) 

AODP=INT(NS/B) 

ALLOCATE(POSITIONNEW(NP,NS)) 

ALLOCATE(POSITIONOLD(NP,NS)) 

ALLOCATE(DISPLACEMENT(NP,AODP)) 

 

PI=ACOS(-1.0) 

 

!!SETTING INITIAL POSITIONS!! 

DO I=1,NP 

    POSITIONOLD(I,1)=0 

    POSITIONOLD(I,2)=0 

    POSITIONOLD(I,3)=0 

ENDDO 

 

!!RANDOM-WALK!! 

CALL INIT_RANDOM_SEED() 

DO I=1,NP 
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  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

 

  DO J=1,NS 

    POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX) 

    POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX) 

    POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX) 

    POSITIONOLD (I,1)=POSITIONNEW (I,1) 

    POSITIONOLD (I,2)=POSITIONNEW (I,2) 

    POSITIONOLD (I,3)=POSITIONNEW (I,3) 

     IF (MOD(J,B).EQ.0) THEN 

      DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)& 

      **2+ POSITIONNEW(I,2)**2+ POSITIONNEW(I,3)**2) 

     ENDIF 

  ENDDO 

  WRITE(*,*) "FINISHED TRACER:",I 

ENDDO 

 

!!DATA TREATMENT AND SAVING TO FILE!! 

ALLOCATE(DABVSTIME(AODP)) 

 

OPEN(10, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE') 

 

DO I=1,AODP 

  SUMM=0 

  DO J=1,NP 

    SUMM=SUMM+DISPLACEMENT(J,I)**2 

  ENDDO 

  DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT) 

  WRITE(10,*) DABVSTIME(I) 

ENDDO 

 

 

CONTAINS 

!!SUBROUTINES!! 

SUBROUTINE NUMBERS(NX,NY,NZ) 

IMPLICIT NONE 

DOUBLE PRECISION, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG) 

INTEGER:: A 

DO A=1,MAXRNG 

  CALL RANDOM_NUMBER (NX(A))     

  NX(A)=COS((FLOOR(2*NX(A)))*PI) 

  CALL RANDOM_NUMBER (NY(A)) 

  NY(A)=COS((FLOOR(2*NY(A)))*PI) 

  CALL RANDOM_NUMBER (NZ(A)) 

  NZ(A)=COS((FLOOR(2*NZ(A)))*PI) 

ENDDO 

END SUBROUTINE NUMBERS 

 

SUBROUTINE INIT_RANDOM_SEED() 

INTEGER :: I, N, CLOCK 

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED 

CALL RANDOM_SEED(SIZE = N) 

ALLOCATE(SEED(N)) 

CALL SYSTEM_CLOCK(COUNT=CLOCK) 

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /) 

CALL RANDOM_SEED(PUT = SEED) 

DEALLOCATE(SEED) 

END SUBROUTINE 

 

END PROGRAM FREEDIFFUSION 
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A.2. Validation of Periodic Boundaries 

PROGRAM DIFFUSIONPERIODIC 

IMPLICIT NONE 

DOUBLE PRECISION :: DAB,DURATION,DT,DX,PI,FREQ,SUMM 

INTEGER :: MAXRNG,NP,NS,B,AODP,I,J,K 

DOUBLE PRECISION, ALLOCATABLE :: POSITIONOLD(:,:),POSITIONNEW(:,:) 

DOUBLE PRECISION, ALLOCATABLE :: POSITIONI(:,:) 

DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DABVSTIME(:) 

DOUBLE PRECISION, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:) 

DOUBLE PRECISION, ALLOCATABLE :: COLLISIONSITES(:,:) 

DOUBLE PRECISION :: PLOCAL(3),C(3),R,LPC 

 

!!SETTING SPHERE CENTER AND RADIUS 

LPC=5 

C(1)=LPC/2 

C(2)=LPC/2 

C(3)=LPC/2 

R=LPC/2 

 

DAB=100 

NP=5000 

DX=R/10 

DT=(DX**2)/(2*DAB) 

DURATION=3*LPC*LPC/(6*DAB) 

 

NS=INT(DURATION/DT) 

DURATION=NS*DT 

write(*,*)duration, ns, dt 

MAXRNG=NS 

ALLOCATE(NUMBERSX(MAXRNG)) 

ALLOCATE(NUMBERSY(MAXRNG)) 

ALLOCATE(NUMBERSZ(MAXRNG)) 

 

FREQ=DURATION/399 

B=INT(FREQ/DT) 

AODP=INT(NS/B) 

ALLOCATE(POSITIONNEW(NP,NS)) 

ALLOCATE(POSITIONOLD(NP,NS)) 

ALLOCATE(POSITIONI(NP,NS)) 

ALLOCATE(DISPLACEMENT(NP,AODP)) 

ALLOCATE(COLLISIONSITES(NP,3)) 

 

PI=ACOS(-1.0) 

 

!!SETTING INITIAL POSITIONS!! 

CALL INIT_RANDOM_SEED() 

 

!RANDOM DISTRIBUTION 

DO I=1,NP 

100 CALL RANDOM_NUMBER(POSITIONOLD(I,1)) 

    POSITIONOLD(I,1)=POSITIONOLD(I,1)*LPC 

 CALL RANDOM_NUMBER(POSITIONOLD(I,2)) 

    POSITIONOLD(I,2)=POSITIONOLD(I,2)*LPC 

 CALL RANDOM_NUMBER(POSITIONOLD(I,3)) 

    POSITIONOLD(I,3)=POSITIONOLD(I,3)*LPC 

  

    PLOCAL(1)=MODULO(POSITIONOLD(I,1),LPC) 

    PLOCAL(2)=MODULO(POSITIONOLD(I,2),LPC) 

    PLOCAL(3)=MODULO(POSITIONOLD(I,3),LPC)  

  

 IF ((((PLOCAL(1)-C(1))**2)+((PLOCAL(2)-C(2))**2)+& 

    &((PLOCAL(3)-C(3))**2)).LE.(R**2)) GOTO 100 

  

 POSITIONI(I,1)=POSITIONOLD(I,1) 

 POSITIONI(I,2)=POSITIONOLD(I,2) 

 POSITIONI(I,3)=POSITIONOLD(I,3) 

ENDDO 

 

!POINT INJECTION 

DO I=1,NP 
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    POSITIONOLD(I,1)=0 

 

    POSITIONOLD(I,2)=0 

 

    POSITIONOLD(I,3)=0 

 

ENDDO 

!!SELECT ONE INITIAL CONDITION, COMMENT THE OTHER 

 

!!RANDOM-WALK!! 

CALL INIT_RANDOM_SEED() 

 

DO I=1,NP 

 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

 

  DO J=1,NS 

    POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX) 

    POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX) 

    POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX) 

    PLOCAL(1)=MODULO(POSITIONNEW(I,1),LPC) 

    PLOCAL(2)=MODULO(POSITIONNEW(I,2),LPC) 

    PLOCAL(3)=MODULO(POSITIONNEW(I,3),LPC) 

     

    IF ((((PLOCAL(1)-C(1))**2)+((PLOCAL(2)-C(2))**2)+& 

    &((PLOCAL(3)-C(3))**2)).LE.(R**2)) THEN 

     

 POSITIONNEW (I,1)=POSITIONOLD (I,1) 

    POSITIONNEW (I,2)=POSITIONOLD (I,2) 

    POSITIONNEW (I,3)=POSITIONOLD (I,3) 

 

    PLOCAL(1)=MODULO(POSITIONNEW(I,1),LPC) 

    PLOCAL(2)=MODULO(POSITIONNEW(I,2),LPC) 

    PLOCAL(3)=MODULO(POSITIONNEW(I,3),LPC) 

     

 COLLISIONSITES(I,1)=PLOCAL(1) 

 COLLISIONSITES(I,2)=PLOCAL(2) 

 COLLISIONSITES(I,3)=PLOCAL(3) 

 

    ENDIF 

     

 POSITIONOLD (I,1)=POSITIONNEW (I,1) 

    POSITIONOLD (I,2)=POSITIONNEW (I,2) 

    POSITIONOLD (I,3)=POSITIONNEW (I,3) 

     

     IF (MOD(J,B).EQ.0) THEN 

      DISPLACEMENT(I,J/B)=SQRT((POSITIONNEW(I,1)-POSITIONI(I,1))**2+ & 

   &(POSITIONNEW(I,2)-POSITIONI(I,2))**2+ (POSITIONNEW(I,3)-

POSITIONI(I,3))**2) 

     ENDIF 

      

  ENDDO 

  WRITE(*,*) "FINISHED TRACER:",I 

ENDDO 

 

 

!!DATA TREATMENT AND SAVING TO FILE!! 

ALLOCATE(DABVSTIME(AODP)) 

 

!DIFFUSIVITY 

OPEN(10, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE') 

WRITE(10,*)AODP 

WRITE(10,*)DURATION 

DO I=1,AODP 

  SUMM=0 

  DO J=1,NP 

    SUMM=SUMM+DISPLACEMENT(J,I)**2 

  ENDDO 

  DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT) 

  WRITE(10,*) DABVSTIME(I) 
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ENDDO 

 

!COLLISION SITES 

OPEN(20, FILE='COLLISION.TXT',STATUS='NEW',ACTION='WRITE') 

DO I=1,NP 

WRITE(20,*)COLLISIONSITES(I,1),COLLISIONSITES(I,2),COLLISIONSITES(I,3) 

ENDDO 

 

 

CONTAINS 

!!SUBROUTINES!! 

SUBROUTINE NUMBERS(NX,NY,NZ) 

IMPLICIT NONE 

DOUBLE PRECISION, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG) 

INTEGER:: A 

DO A=1,MAXRNG 

  CALL RANDOM_NUMBER (NX(A))     

  NX(A)=COS((FLOOR(2*NX(A)))*PI) 

  CALL RANDOM_NUMBER (NY(A)) 

  NY(A)=COS((FLOOR(2*NY(A)))*PI) 

  CALL RANDOM_NUMBER (NZ(A)) 

  NZ(A)=COS((FLOOR(2*NZ(A)))*PI) 

ENDDO 

END SUBROUTINE NUMBERS 

 

SUBROUTINE INIT_RANDOM_SEED() 

INTEGER :: I, N, CLOCK 

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED 

CALL RANDOM_SEED(SIZE = N) 

ALLOCATE(SEED(N)) 

CALL SYSTEM_CLOCK(COUNT=CLOCK) 

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /) 

CALL RANDOM_SEED(PUT = SEED) 

DEALLOCATE(SEED) 

END SUBROUTINE 

 

END PROGRAM DIFFUSIONPERIODIC 

 

 

A.3. Validation of Core-Shell Particle Geometry and Packing 

PROGRAM CORESHELLMULTILAYER 

IMPLICIT NONE 

INTEGER :: I,J,K,L,M,N 

INTEGER :: NOL,NOSRJP 

INTEGER, ALLOCATABLE :: NOAC(:),NOSOACINT(:,:),NOSISL(:),NOSS(:),SC(:) 

DOUBLE PRECISION :: PI,PR,CPRATIO,RCORE,RSHELL,ALPHA,RRATIO,RRJP 

REAL, ALLOCATABLE :: RAUX(:,:),ZAUX(:,:),RSOI(:),NOSOAC(:,:) 

REAL, ALLOCATABLE :: PGCC(:,:,:,:),CPGCC(:,:,:) 

REAL, ALLOCATABLE :: RJP(:,:),CSPRJP(:,:,:,:) 

INTEGER(8) :: TOTALSHELL,B,AODP,MAXRNG,RNGDUMMY 

DOUBLE PRECISION :: POROSITY,POROSITYSHELL,FREQ,SUMDSQ,SUMDISP,MEANDISP,VARIANCE 

DOUBLE PRECISION, ALLOCATABLE :: DISPDAT(:,:),DISPDATL(:,:) 

DOUBLE PRECISION, ALLOCATABLE :: DABVSTIME(:),DSPRCO(:) 

 

PI=ACOS(-1.0) 

PR=5.0/2 

CPRATIO=0.8 

NOL=1 

RCORE=PR*CPRATIO 

RSHELL=(PR-RCORE)/(NOL*2) 

 

!CALCULATE THE NUMBER OF AUX. CIRCLES IN EACH SHELL LAYER 

ALLOCATE(NOSS(NOL)) 

ALLOCATE(NOAC(NOL)) 

 

 DO I=1,NOL 
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  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA) 

   

   IF (MOD(NOSS(I),2).EQ.0) THEN 

    NOAC(I)=INT((NOSS(I)-2)/2.0) 

    ELSE 

    NOAC(I)=FLOOR(REAL(NOSS(I)/2.0)) 

   ENDIF 

  RCORE=RCORE+RSHELL*2  

 

 ENDDO 

RCORE=PR*CPRATIO 

 

!CALCULATE RADII,Z-COORD. OF, AND NUMBER OF SHELL SPHERES ON, EACH AUX. CIRCLE 

ALLOCATE(RSOI(NOL)) 

ALLOCATE(RAUX(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC))) 

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC))) 

 

 DO I=1,NOL 

   

  RSOI(I)=RCORE+2*RSHELL 

  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA) 

  ALPHA=2*PI/NOSS(I) 

   

  DO J=1,NOAC(I) 

   RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL) 

  ENDDO 

   

  DO J=1,NOAC(I) 

   NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J)) 

   NOSOACINT(I,J)=INT(NOSOAC(I,J)) 

  ENDDO 

   

  DO J=1,NOAC(I) 

   ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL) 

  ENDDO 

   

  RCORE=RSOI(I) 

   

 ENDDO 

  

RCORE=PR*CPRATIO 

 

 

!CALCULATE TOTAL NUMBER OF SHELL SPHERES IN EACH LAYER 

ALLOCATE(NOSISL(NOL)) 

 

 DO I=1,NOL 

  NOSISL(I)=0 

 ENDDO 

  

 DO I=1,NOL 

  DO J=1,NOAC(I) 

   NOSISL(I)=NOSISL(I)+NOSOACINT(I,J) 

  ENDDO 

 ENDDO 

 

 DO I=1,NOL 

  IF (MOD(NOSS(I),4).EQ.0) THEN 

   NOSISL(I)=NOSISL(I)+2 

   ELSE 

   NOSISL(I)=NOSISL(I)+1 

  ENDIF 

 ENDDO 

  

 NOSISL(1)=NOSISL(1)+1 
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!CALCULATE CENTER COORDINATES OF SHELL SPHERES 

 

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4)) 

  

 DO I=1,NOL 

  DO J=1,NOAC(I) 

   DO K=1,NOSOACINT(I,J) 

    

    ALPHA=2*PI/NOSOACINT(I,J) 

     

    PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA) 

    PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA) 

    PGCC(I,J,K,3)=ZAUX(I,J) 

    PGCC(I,J,K,4)=RSHELL 

     

   ENDDO 

  ENDDO    

 ENDDO 

 

!COMBINE PGCC DIMENSIONS, ADD POLAR SHELL SPHERES AND CORE SPHERE 

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL)+1,4)) 

ALLOCATE(SC(NOL)) 

 

 !COMBINING 2ND AND 3RD DIMENSIONS OF PGCC 

 DO I=1,NOL 

  SC(I)=0 

  DO J=1,NOAC(I) 

   DO K=1,NOSOACINT(I,J) 

    

    SC(I)=SC(I)+1   

    CPGCC(I,SC(I),1)=PGCC(I,J,K,1) 

    CPGCC(I,SC(I),2)=PGCC(I,J,K,2) 

    CPGCC(I,SC(I),3)=PGCC(I,J,K,3) 

    CPGCC(I,SC(I),4)=PGCC(I,J,K,4) 

     

   ENDDO 

  ENDDO  

 ENDDO 

  

 !ADDING POLAR SHELL SPHERES CENTER COORDINATES 

 DO I=1,NOL 

  IF (MOD(NOSS(I),2).EQ.0) THEN 

   

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

 

   CPGCC(I,SC(I)+2,1)=0 

   CPGCC(I,SC(I)+2,2)=0 

   CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL) 

   CPGCC(I,SC(I)+2,4)=RSHELL 

    

   SC(I)=SC(I)+2 

    

   ELSE 

 

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

    

   SC(I)=SC(I)+1 

    

  ENDIF 

 ENDDO 

 

 !ADDING CORE SPHERE CENTER COORDINATES   

 CPGCC(1,SC(1)+1,1)=0 

 CPGCC(1,SC(1)+1,2)=0 

 CPGCC(1,SC(1)+1,3)=0 
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 CPGCC(1,SC(1)+1,4)=RCORE 

 SC(1)=SC(1)+1 

 

!READING HARSPHERE PACKING GEOMETRY 

OPEN (30, FILE= "packing.dat", STATUS="OLD", ACTION="READ") 

300 FORMAT(F16.8,2F17.8) 

 

ALLOCATE (RJP(NOSRJP,3)) 

 

 DO I=1,NOSRJP 

  READ(30,300)RJP(I,1),RJP(I,2),RJP(I,3) 

 ENDDO 

 

 DO I=1,NOSRJP 

  DO J=1,3 

   RJP(I,J)=(RJP(I,J))*RRATIO 

  ENDDO 

 ENDDO 

  

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4)) 

 

!COPYING CORE-SHELL PARTICLES INTO THE PACKING  

 !XYZ COORDINATES ONLY 

 DO I=1,NOSRJP 

  DO J=1,NOL 

   DO K=1,SC(J) 

    DO L=1,3 

     

     CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L) 

 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

 

 !RADIUS ONLY 

 DO I=1,NOSRJP 

  DO J=1,NOL 

   DO K=1,SC(J) 

         

     CSPRJP(I,J,K,4)=CPGCC(J,K,4) 

 

   ENDDO 

  ENDDO 

 ENDDO  

 

 

!GENERATING OPENSCAD SCRIPT OF CORE-SHELL PACKING GEOMETRY FOR VISUAL INSPECTION 

OPEN (40, FILE= "CORE-SHELL SCRIPT.TXT", STATUS="UNKNOWN", ACTION="WRITE") 

 

 

WRITE(40,*)"union(csp) {" 

DO I=1,NOSRJP 

DO J=1,NOL 

  DO K=1,SC(J) 

 

        WRITE(40,*)"translate([", CSPRJP(I,J,K,1), "," , CSPRJP(I,J,K,2),& 

        & ",", CSPRJP(I,J,K,3), "])" 

  WRITE(40,*)"sphere(", CSPRJP(I,J,K,4), ", $fn=50);"  

   

  ENDDO 

ENDDO  

ENDDO 

WRITE(40,*)"}" 

 

 

END PROGRAM CORESHELLMULTILAYER 

 

!TO GENERATE THE SCRIPT FOR A SINGLE CORE-SHELL PARTICLE, SKIP 
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!”READING HARSPHERE PACKING GEOMETRY” AND “COPYING CORE-SHELL !PARTICLES INTO THE 

PACKING”, REMOVE THE OUTER-MOST DO LOOP IN THE !LAST NESTED DO LOOPS AND CHANGE THE 

“CSPRJP(I,J,K,’1-4’)” WITH !“CPGCC(J,K,1-4)” 

 

A.4. Diffusion/Dispersion in Random Jammed Packing of Core-Shell Particles 

!LINE NUMBERS, 

!FOR FILES: MULTIPLES OF 10, EXCEPT MULTIPLES OF 100 

!FOR FORMAT: ODD MULTIPLES OF 100 

!FOR GOTO: EVEN MULTIPLES OF 100 

 

PROGRAM CORESHELLDISPERSION 

IMPLICIT NONE 

INTEGER :: I,J,K,L,M,N 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DECLARATIONS - GEOMETRY RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

INTEGER :: NOL,NOSRJP 

INTEGER(8), ALLOCATABLE :: NOAC(:),NOSOACINT(:,:),NOSISL(:),NOSS(:),SC(:) 

DOUBLE PRECISION :: PI,PR,CPRATIO,RCORE,RSHELL,ALPHA,RRATIO,RRJP 

REAL, ALLOCATABLE :: RAUX(:,:),ZAUX(:,:),RSOI(:),NOSOAC(:,:) 

REAL, ALLOCATABLE :: PGCC(:,:,:,:),CPGCC(:,:,:) 

REAL, ALLOCATABLE :: RJP(:,:),CSPRJP(:,:,:,:) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DECLARATIONS - DIFFUSION RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

INTEGER(8) :: NP,NS,COLLISIONCOUNT,MAXDIST 

DOUBLE PRECISION :: DAB,DT,DX,DURATION,DIFTIME,DIVIDER,POLD(3),PNEW(3) 

DOUBLE PRECISION :: SOIC(3),PLOC(3),DURATIOND 

DOUBLE PRECISION, ALLOCATABLE :: POSITIONI(:,:),POSITIONOLD(:,:),POSITIONNEW(:,:) 

REAL, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:) 

DOUBLE PRECISION, ALLOCATABLE :: PLOCAL(:) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DECLARATIONS - FLUID MECHANICS RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

INTEGER :: GRID 

DOUBLE PRECISION :: CFSF,MAGSUM,MAG,PEAVG,PE,DURATIONC,UAVG 

DOUBLE PRECISION, ALLOCATABLE :: VF(:,:,:,:),VELOCITY(:) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DECLARATIONS - DATA EXTRACTION RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

INTEGER(8) :: TOTALSHELL,B,AODP,MAXRNG,RNGDUMMY 

DOUBLE PRECISION :: POROSITY,POROSITYSHELL,FREQ,SUMDSQ,SUMDISP,MEANDISP,VARIANCE 
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DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DISPDATL(:,:) 

DOUBLE PRECISION, ALLOCATABLE :: DABVSTIME(:),DSPRCO(:) 

CHARACTER(LEN=30) :: DATETAG 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITIONS - GEOMETRY RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!ALPHA: HOLDS THE ANGLE OF SEPARATION BETWEEN AUX.CIRCLES AND SHELL SPHERES ON 

!  THESE CIRCLES. 

 

!PI: AS IN 3.14 

PI=ACOS(-1.0) 

 

!PR: RADIUS OF ENTIRE CORE-SHELL PARTICLE (IN MICROMETERS) 

PR=5.0/2 

 

!CPRATIO: CORE TO PARTICLE RADII RATIO 

CPRATIO=0.73 

 

!NOL: NUMBER OF SHELL LAYERS 

NOL=3 

 

!RCORE:RADIUS OF CORE SPHERE 

RCORE=PR*CPRATIO 

 

 

!RSHELL: RADIUS OF SHELL SPHERES 

RSHELL=(PR-RCORE)/(NOL*2) 

 

!::SC: SPHERE COUNTER IN A CERTAIN LAYER   (LAYER) 

!    NECESSARY FOR KEEPING TRACK OF HOW MANY SHELL SPHERES THERE ARE 

!    IN EACH SHELL LAYER SINCE SOME ELEMENTS IN CPGCC WILL BE EMPTY.  

 

!::RAUX: RADIUS OF A CERTAIN AUX. CIRCLE  (LAYER,CIRCLE NUMBER) 

 

!::ZAUX: Z-COORD. OF A CERTAIN AUX. CIRCLE  (LAYER,CIRCLE NUMBER) 

!   DETERMINES Z-COORD. OF SHELL SPHERES ON THAT AUX. CIRCLE 

 

!::RSOI: RADIUS OF A CERTAIN SPHERE OF INFLUENCE FROM INSIDE TO OUTSIDE 

 

!::NOAC: NUMBER OF AUX.CIRCLES IN A CERTAIN SHELL LAYER   (LAYER) 

 

!::NOSOAC: NUMBER OF SHELL SPHERES ON A CERTAIN AUX. CIRCLE 

 (LAYER,CIRCLE NUMBER) 

!     REAL TYPE, FOR THE SAKE OF CALCULATIONS 

 

!::NOSOACINT: INTEGER COUNTERPART OF NOSOAC 

!     HOLDS INTEGER PARTS OF THE ELEMENTS IN NOSOAC 

 

!::NOSISL: TOTAL NUMBER OF SHELL SPHERES IN A CERTAIN SHELL LAYER (LAYER) 

 

!::NOSS: NUMBER OF SHELL SPHERES THAT CAN BE PLACED AROUND THE EQUATOR 

!   DETERMINES NOAC AND NOSISL  (LAYER) 

 

!::PGCC: CENTER COORDINATES OF THE SPHERES IN PROTOTYPE GEOMETRY 

!   (LAYER, NOAC, NOSOAC, 4)  

!   ELEMENTS (:,:,:,4) ARE X,Y,Z COORDINATES AND SPHERE RADIUS 

ACCORDINGLY 

!    IE. (2,1,1,3) IS THE Z-COORD OF THE FIRST SHELL SPHERE LOCATED ON THE  

!   FIRST AUX.CIRCLE OF THE SECOND SHELL LAYER 

 

!::CPGCC: ANOTHER VERSION OF PGCC WITH 2ND AND 3RD DIMENSIONS COMBINED INTO ONE 

!    (LAYER,SHELL SPHERE NUMBER,4) 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!NOSRJP: NUMBER OF SPHERES IN RANDOM JAMMED PACKING OF HARDSPHERES 

NOSRJP=100     !DO NOT CHANGE 

 

!RRJP: RADIUS OF HARDSPHERES IN RANDOM JAMMED PACKING OF HARDSPHERES 

RRJP=0.2841570815121517/2 !DO NOT CHANGE 

 

!RRATIO: RADII RATIO OF CORE-SHELL PARTICLE TO HARDSPHERES 

RRATIO=PR/RRJP 

 

!::RJP: RANDOM JAMMED PACKING OF HARDSPHERES IN UNIT CUBE (NOSRJP,3) 

!  HOLD CENTER COORDINATES OF HARDSPHERES IN THE PACKING 

 

!::CSPRJP: CORE-SHELL PARTICLES IN RANDOM JAMMED PACKING 

!     HOLDS CENTER COORDINATES AND RADII OF CORE-SHELL PARTICLE ELEMENTS  

!     IN RANDOM JAMMED PACKING 

!     (NOSRJP,NOL,SHELL SPHERE NUMBER,4) 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITIONS - DIFFUSION RELATED 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DAB: DIFFUSION COEFFICIENT OF TRACERS (IN MICROMETER^2/SEC) 

DAB=110 

 

!NP: NUMBER OF TRACERS 

NP=5000 

 

!DX: RANDOM-STEP SIZE IN ALL AXIS 

DX=RSHELL*0.2 

WRITE(*,*)"DX:",DX 

!DX=SQRT(2*DT*DAB) 

 

!DT: TIME INCREMENT OF RANDOM-WALK (IN SEC) 

DT=(DX**2)/(2.0*REAL(DAB)) 

!DT=0.00000284091 

WRITE(*,*)"DT:",DT 

 

!DURATION: DURATION OF THE EVENT (IN SEC) 

!     CHOSEN AS DIFFUSE TIME OR 15 X CONVECTIVE TIME (GREATER ONE) 

!     CONVECTIVE TIME (DURATIONC) IS CALCULATED IN FLUID MECHANICS  

!     DEFINITIONS 

DURATIOND=0.2*((2*PR)**2)/(DAB) 

 

!NS: TOTAL NUMBER OF RANDOM STEPS THAT WILL BE TAKEN BY A SINGLE TRACER 

!  DEFINED AFTER DURATION IS DETERMINED AT FLUID MECHANICS DEFINITIONS 

 

!::POSITIONI: HOLDS INITIAL POSITIONS OF TRACERS      

 (NP,3) 

ALLOCATE(POSITIONI(NP,3)) 

 

!::POSITIONOLD: HOLDS POSITIONS OF TRACER FROM THE PREVIOUS STEP  (NP,3) 

ALLOCATE(POSITIONOLD(NP,3)) 

 

!::POSITIONNEW: HOLDS THE CALCULATED NEW POSITIONS OF TRACERS   

 (NP,3) 

ALLOCATE(POSITIONNEW(NP,3)) 

 

!MAXRNG: MAXIMUM AMOUNT OF RANDOM NUMBERS TO BE HOLD 

 

!RNGDUMMY: KEEPS TRACK OF RANDOM NUMBER USAGE IN NUMBERSX/Y/Z ARRAYS 
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!::NUMBERSX: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN X-AXIS 

 

!::NUMBERSY: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Y-AXIS 

 

!::NUMBERSZ: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Z-AXIS 

 

!COLLISIONCOUNT: COUNTS THE TOTAL NUMBER OF ENCOUNTERS BETWEEN BOUNDARIES AND 

!     TRACERS. ASSIGNED VALUES LATER IN THE CODE. 

 

!::PLOCAL: HOLDS LOCALIZED COORDINATES OF TRACERS. RELATED TO PERIODIC BOUNDARIES 

ALLOCATE(PLOCAL(3)) 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITIONS - DATA EXTRACTION 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DATETAG: HOLDS THE DATE FOR FILE NAMES 

CALL FDATE(DATETAG) 

 

!POROSITY: VOID VOLUME TO ENTIRE VOLUME RATIO FOR AN ENTIRE CORE-SHELL PARTICLE 

 

!POROSITYSHELL: VOID VOLUME TO ENTIRE VOLUME RATIO FOR SHELL SIDE ONLY 

 

!TOTALSHELL: TOTAL NUMBER OF SPHERES IN SHELL SIDE 

 

!FREQ: FREQUENCY OF DISPLACEMENT DATA EXTRACTION.  

!    I.E. ONCE EVERY 'FREQ' SECONDS 

 

!B: EQUIVALENT AMOUNT OF RANDOM-STEPS REQUIRED FOR 'FREQ' SECONDS TO PASS 

 

!AODP: TOTAL AMOUNT OF DATA POINTS COLLECTED 

 

!::DISPDAT: DISPLACEMENT DATA  (NP,AMOUNT OF DATA POINTS) 

!     HOLDS TRANSVERSE DISPLACEMENTS FOR DISPERSION SIMULATIONS 

 

!::DABVSTIME: HOLDS CALCULATED DIFFUSION COEFFICIENT DATA (AMOUNT OF DATA POINTS) 

 

!SUMDSQ: SUM OF SQUARED DISPLACEMENT FOR ALL TRACERS 

 

!DISPDATL:: LONGITUDINAL DISPLACEMENT DATA 

 

!DSPRCO:: HOLDS DISPERSION COEFFICIENTS 

 

!MEANDISP: MEAN OF TRACER DISPLACEMENTS (L OR T) 

 

!SUMDISP: SUM OF TRACER DISPLACEMENTS (L OR T) 

 

!VARIANCE: VARIANCE OF TRACER DISPLACEMENTS (L OR T) 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!OPEN FILES & FORMAT LINES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

OPEN(10, FILE='VF.TXT',STATUS='OLD',ACTION='READ')  !VELOCITY FIELD - READ 
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100 FORMAT(98X,3ES34.15E2)         !VELOCITY 

FIELD FORMAT 

 

 

OPEN (20, FILE="SIM SUMMARY "//DATETAG//".TXT", & !SUMMARY FILE 

&STATUS="UNKNOWN", ACTION="WRITE") 

 

OPEN (30, FILE="PACKING.DAT", STATUS="OLD", &  !RANDOM PACKING - READ 

&ACTION="READ") 

300 FORMAT(F16.8,2F17.8)       !RANDOM 

PACKING FORMAT 

 

!OPEN (40, FILE="DAB VS TIME "//DATETAG//".TXT", & !DIFFUSIVITY DATA FILE 

!&STATUS="UNKNOWN", ACTION="WRITE")     !WORKS FOR 

DIFFUSIVITY ONLY 

 

500 FORMAT(F14.5)        

 !DATA OUTPUT FORMAT 

 

OPEN (50, FILE="LDISP VAR "//DATETAG//".TXT", &  !LONGITUDINAL 

DISPLACEMENT 

&STATUS="UNKNOWN", ACTION="WRITE")     !VARIANCE DATA 

OUTPUT FILE 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEFINITIONS - FLIUD MECHANICS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!PE: DESIRED PECLET NUMBER (STOKES FLOW BECOMES NOT APPLICABLE FOR PE>500) 

PE=6.0 

 

!GRID: DIMENSIONS OF THE VELOCITY FIELD ARRAY 

GRID=101 

!VF: VELOCITY FIELD DATA IN REGULAR GRID 

!  (X,Y,Z,VELOCITY VECTOR COMPONENT) 

ALLOCATE(VF(GRID,GRID,GRID,3)) 

 

 !READ DATA 

 DO I=1,GRID 

  DO J=1,GRID 

   DO K=1,GRID 

    READ(10,100) VF(I,J,K,1),VF(I,J,K,2),VF(I,J,K,3) 

   ENDDO 

  ENDDO 

 ENDDO 

  

 !CALCULATE AVERAGE PE 

 MAGSUM=0.0 

 DO I=1,GRID 

  DO J=1,GRID 

   DO K=1,GRID 

   

 MAG=SQRT(VF(I,J,K,1)**2+VF(I,J,K,2)**2+VF(I,J,K,3)**2) 

    MAGSUM=MAGSUM+MAG 

   ENDDO 

  ENDDO 

 ENDDO  

  

 UAVG=1000000*MAGSUM/(GRID**3) 

 WRITE(*,*)"AVERAGE U:",UAVG 

 PEAVG=2*PR*UAVG/DAB 

 WRITE(*,*)"AVERAGE PE:",PEAVG 

 !CFSF: CREEPING FLOW SCALING FACTOR 

 CFSF=PE/PEAVG 
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 WRITE(*,*)"CFSF:",CFSF 

 !DURATIONC: CONVECTIVE TIME 

 DURATIONC=10*(2*PR)/(UAVG*CFSF) 

 WRITE(*,*)"10xCONVECTIVE TIME:",DURATIONC 

 WRITE(*,*)"0.2xDIFFUSIVE TIME:",DURATIOND 

 DURATION=MAX(DURATIOND,DURATIONC) 

 NS=INT(DURATION/DT) 

 WRITE(*,*)"NS:",NS 

 DURATION=NS*DT 

  

 !CALCULATE AVERAGE Z-COMPONENT 

 MAGSUM=0.0 

 DO I=1,GRID 

  DO J=1,GRID 

   DO K=1,GRID 

    MAG=VF(I,J,K,3) 

    MAGSUM=MAGSUM+MAG 

   ENDDO 

  ENDDO 

 ENDDO 

 UAVG=1000000*MAGSUM/(GRID**3) 

 WRITE(*,*)"AVERAGE U-z:",UAVG*CFSF 

  

 !SCALE FOR DT AND CONVERT TO MICROMETERS/SECOND 

 DO I=1,GRID 

  DO J=1,GRID 

   DO K=1,GRID 

    DO L=1,3 

    VF(I,J,K,L)=VF(I,J,K,L)*DT*CFSF*1000000.0 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

 

!VELOCITY: INTERPOLATED VELOCITY VECTOR COMPONENTS 

!     ALREADY SCALED FOR DT 

ALLOCATE(VELOCITY(3)) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEPENDENT DECLARATIONS FROM DATA EXTRACTION DEFINITIONS 

!FREQ: FREQUENCY OF DISPLACEMENT DATA EXTRACTION.  

!    I.E. ONCE EVERY 'FREQ' SECONDS 

FREQ=DURATION/1000.0 

 

!B: EQUIVALENT AMOUNT OF RANDOM-STEPS REQUIRED FOR 'FREQ' SECONDS TO PASS 

B=FREQ/DT 

 

!AODP: TOTAL AMOUNT OF DATA POINTS COLLECTED 

AODP=NS/B 

NS=AODP*B 

DURATION=NS*DT 

WRITE(*,*)"DURATION:",DURATION 

 

!::DISPDAT: DISPLACEMENT DATA  (NP,AMOUNT OF DATA POINTS) 

!     HOLDS TRANSVERSE DISPLACEMENTS FOR DISPERSION SIMULATIONS 

ALLOCATE(DISPDAT(NP,AODP)) 

 

!::DABVSTIME: HOLDS CALCULATED DIFFUSION COEFFICIENT DATA (AMOUNT OF DATA POINTS) 

ALLOCATE(DABVSTIME(AODP)) 

 

!SUMDSQ: SUM OF SQUARED DISPLACEMENT FOR ALL TRACERS 

 

!DISPDATL:: LONGITUDINAL DISPLACEMENT DATA 

ALLOCATE(DISPDATL(NP,AODP)) 

 

!DSPRCO:: HOLDS DISPERSION COEFFICIENTS 

ALLOCATE(DSPRCO(AODP)) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DEPENDENT DECLARATIONS FROM DIFFUSION DEFINITIONS 

!MAXRNG: MAXIMUM AMOUNT OF RANDOM NUMBERS TO BE HOLD 

MAXRNG=NS 
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!::NUMBERSX: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN X-AXIS 

ALLOCATE(NUMBERSX(MAXRNG)) 

 

!::NUMBERSY: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Y-AXIS 

ALLOCATE(NUMBERSY(MAXRNG)) 

 

!::NUMBERSZ: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Z-AXIS 

ALLOCATE(NUMBERSZ(MAXRNG)) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!CALCULATE THE NUMBER OF AUX. CIRCLES IN EACH SHELL LAYER 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE(NOSS(NOL)) 

ALLOCATE(NOAC(NOL)) 

 

 DO I=1,NOL 

  

  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA) 

   

   IF (MOD(NOSS(I),2).EQ.0) THEN 

    NOAC(I)=INT((NOSS(I)-2)/2) 

    ELSE 

    NOAC(I)=FLOOR(REAL(NOSS(I)/2)) 

   ENDIF 

  RCORE=RCORE+RSHELL*2  

 

 ENDDO 

RCORE=PR*CPRATIO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

   

   

   

   

   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!CALCULATE RADII,Z-COORD. OF, AND NUMBER OF SHELL SPHERES ON, EACH AUX. CIRCLE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE(RSOI(NOL)) 

ALLOCATE(RAUX(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC))) 

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC))) 

 

 DO I=1,NOL 

   

  RSOI(I)=RCORE+2*RSHELL 

  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA) 

  ALPHA=2*PI/NOSS(I) 

   

  DO J=1,NOAC(I) 

   RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL) 

  ENDDO 

   

  DO J=1,NOAC(I) 

   NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J)) 

   NOSOACINT(I,J)=INT(NOSOAC(I,J)) 

  ENDDO 

   

  DO J=1,NOAC(I) 
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   ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL) 

  ENDDO 

   

  RCORE=RSOI(I) 

   

 ENDDO 

  

RCORE=PR*CPRATIO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!CALCULATE TOTAL NUMBER OF SHELL SPHERES IN EACH LAYER 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

ALLOCATE(NOSISL(NOL)) 

 

 DO I=1,NOL 

  NOSISL(I)=0 

 ENDDO 

  

 DO I=1,NOL 

  DO J=1,NOAC(I) 

   NOSISL(I)=NOSISL(I)+NOSOACINT(I,J) 

  ENDDO 

 ENDDO 

 

 DO I=1,NOL 

  IF (MOD(NOSS(I),2).EQ.0) THEN 

   NOSISL(I)=NOSISL(I)+2 

   ELSE 

   NOSISL(I)=NOSISL(I)+1 

  ENDIF 

 ENDDO 

  

 NOSISL(1)=NOSISL(1)+1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!CALCULATE CENTER COORDINATES OF SHELL SPHERES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4)) 

  

 DO I=1,NOL 

  DO J=1,NOAC(I) 

   DO K=1,NOSOACINT(I,J) 

    

    ALPHA=2*PI/NOSOACINT(I,J) 

     

    PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA) 

    PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA) 

    PGCC(I,J,K,3)=ZAUX(I,J) 

    PGCC(I,J,K,4)=RSHELL 

     

   ENDDO 

  ENDDO    

 ENDDO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!COMBINE PGCC DIMENSIONS, ADD POLAR SHELL SPHERES AND CORE SPHERE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL),4)) 

ALLOCATE(SC(NOL)) 

 

 !COMBINING 2ND AND 3RD DIMENSIONS OF PGCC 

 DO I=1,NOL 

  SC(I)=0 

  DO J=1,NOAC(I) 

   DO K=1,NOSOACINT(I,J) 

    

    SC(I)=SC(I)+1   

    CPGCC(I,SC(I),1)=PGCC(I,J,K,1) 

    CPGCC(I,SC(I),2)=PGCC(I,J,K,2) 

    CPGCC(I,SC(I),3)=PGCC(I,J,K,3) 

    CPGCC(I,SC(I),4)=PGCC(I,J,K,4) 

     

   ENDDO 

  ENDDO  

 ENDDO 

  

 !ADDING POLAR SHELL SPHERES CENTER COORDINATES 

 DO I=1,NOL 

  IF (MOD(NOSS(I),2).EQ.0) THEN 

   

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

 

   CPGCC(I,SC(I)+2,1)=0 

   CPGCC(I,SC(I)+2,2)=0 

   CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL) 

   CPGCC(I,SC(I)+2,4)=RSHELL 

    

   SC(I)=SC(I)+2 

    

   ELSE 

 

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

    

   SC(I)=SC(I)+1 

    

  ENDIF 

 ENDDO 

 

 !ADDING CORE SPHERE CENTER COORDINATES   

 CPGCC(1,SC(1)+1,1)=0 

 CPGCC(1,SC(1)+1,2)=0 

 CPGCC(1,SC(1)+1,3)=0 

 CPGCC(1,SC(1)+1,4)=RCORE 

 SC(1)=SC(1)+1 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DATA EXTRACTION - SUMMARY OF CORE-SHELL GEOMETRY 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"GEOMETRY" 

  

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"RADIUS (MICROMETER):",PR 

  

 WRITE(20,*)"CORE RADIUS (MICROMETER):",RCORE 

  

 WRITE(20,*)"SHELL RADIUS (MICROMETER):",RSHELL 

  

 WRITE(20,*)"NUMBER OF AUX CIRCLES IN" 

 DO I=1,NOL 

  WRITE(20,*)" LAYER",I,":",NOAC(I) 

 ENDDO 

  

 WRITE(20,*)"NUMBER OF SPHERES ON" 

 DO I=1,NOL 

  WRITE(20,*)"LAYER",I 

  DO J=1,NOAC(I) 

   WRITE(20,*)"  AUX. CIRCLE",J,":",NOSOACINT(I,J) 

  ENDDO 

 ENDDO 

  

 WRITE(20,*)"NUMBER OF SHELL SPHERES IN" 

 DO I=1,NOL 

  IF (I.EQ.1) THEN 

  WRITE(20,*)" LAYER",I,":",SC(I)-1 

  ELSE 

  WRITE(20,*)" LAYER",I,":",SC(I) 

  ENDIF 

 ENDDO 

 TOTALSHELL=SUM(SC)-1 

 WRITE(20,*)" TOTAL:",TOTALSHELL 

 

 !((4/3)*PI*(RSHELL^3)*(SUM(SC)-1)): TOTAL SHELL SPHERE VOLUME 

 !(4/3)*PI*(RCORE^3): CORE SPHERE VOLUME 

 !(4/3)*PI*(PR^3): ENTIRE VOLUME 

 !((4/3)*PI*(PR^3)-(4/3)*PI*(RCORE^3)): SHELL VOLUME 

 POROSITY=(((4/3)*PI*(PR**3))-(((4/3)*PI*(RSHELL**3)*(SUM(SC)-

1))+((4/3)*PI*& 

    &(RCORE**3))))/((4/3)*PI*(PR**3)) 

 POROSITYSHELL=(((4/3)*PI*(PR**3)-(4/3)*PI*(RCORE**3))-

((4/3)*PI*(RSHELL**3)& 

    &*(SUM(SC)-1)))/((4/3)*PI*(PR**3)-(4/3)*PI*(RCORE**3)) 

     

 WRITE(20,*)"POROSITY:",POROSITY 

  

 WRITE(20,*)"SHELL POROSITY:",POROSITYSHELL 

  

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"DIFFUSION" 

  

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"DAB (MICROMETER^2/S):",DAB 

  

 WRITE(20,*)"TIME INCREMENT(S):",DT 

  

 WRITE(20,*)"STEP SIZE (MICROMETER):",DX 

  

 WRITE(20,*)"DIFFUSIVE TIME (FOR DP):",DIFTIME*DIVIDER 

  

 WRITE(20,*)"NUMBER OF TRACERS:",NP 

  

 WRITE(20,*)"NUMBER OF RANDOM STEPS PER TRACER:",NS  
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 WRITE(20,*)"DURATION:", DURATION 

  

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"FLOW" 

  

 WRITE(20,*)"-------------------------------------------------------" 

  

 WRITE(20,*)"SCALING FACTOR(BASE 400 PA):",CFSF 

 

 WRITE(20,*)"PECLET NUMBER:", PE 

  

 WRITE(*,*)" TOTAL SHELL SPHERES:",TOTALSHELL 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!READING & SCALING RANDOM JAMMED PACKING OF HARDSPHERES 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE (RJP(NOSRJP,3)) 

 

 DO I=1,NOSRJP 

  READ(30,300)RJP(I,1),RJP(I,2),RJP(I,3) 

 ENDDO 

 

 DO I=1,NOSRJP 

  DO J=1,3 

   RJP(I,J)=(RJP(I,J))*RRATIO 

  ENDDO 

 ENDDO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!PLACING CORE-SHELL GEOMETRY INTO HARDSPHERES INSIDE THE PACKING 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4)) 

  

 !XYZ COORDINATES ONLY 

 DO I=1,NOSRJP 

  DO J=1,NOL 

   DO K=1,SC(J) 

    DO L=1,3 

     

     CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L) 

 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

 

 !RADIUS ONLY 

 DO I=1,NOSRJP 

  DO J=1,NOL 

   DO K=1,SC(J) 

         

     CSPRJP(I,J,K,4)=CPGCC(J,K,4) 

 

   ENDDO 



 

 

138 

 

  ENDDO 

 ENDDO  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DETERMINING INITIAL CONDITIONS OF TRACERS 

!RANDOMLY PLACED THROUGHOUT THE INTER-PARTICLE SPACE 

!NO TRACER STARTS INSIDE THE PORES OF ANY CORE-SHELL PARTICLE 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

CALL INIT_RANDOM_SEED() 

 

 DO I=1,NP 

  

  COLLISIONCOUNT=0 

200  CALL RANDOM_NUMBER(NUMBERSX(1)) 

  CALL RANDOM_NUMBER(NUMBERSY(1)) 

  CALL RANDOM_NUMBER(NUMBERSZ(1)) 

   

  POSITIONI(I,1)=(NUMBERSX(1))*RRATIO 

  POSITIONI(I,2)=(NUMBERSY(1))*RRATIO 

  POSITIONI(I,3)=(NUMBERSZ(1))*RRATIO 

   

  PLOCAL(1)=POSITIONI(I,1) 

  PLOCAL(2)=POSITIONI(I,2)    

  PLOCAL(3)=POSITIONI(I,3) 

   

   DO J=1,NOSRJP 

    

    IF ((((PLOCAL(1)-RJP(J,1))**2)+((PLOCAL(2)-

RJP(J,2))**2)+((PL& 

     &OCAL(3)-RJP(J,3))**2)).LE. (PR**2)) THEN  

      

     COLLISIONCOUNT=COLLISIONCOUNT+1 

     GOTO 200 

      

    ENDIF 

     

   ENDDO 

    

!  WRITE(*,*) "TRACER (",I,") PLACED AFTER (",COLLISIONCOUNT,") TRIES." 

 

   DO J=1,3 

    POSITIONOLD(I,J)=POSITIONI(I,J) 

   ENDDO 

 ENDDO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!RANDOM-WALK & DISPERSION EVENT 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

CALL INIT_RANDOM_SEED() 

 

 !$omp parallel do 

private(j,k,l,m,plocal,numbersx,numbersy,numbersz,rngdummy,maxdist,velocity,pold,pn

ew,soic,ploc) 

 DO I=1,NP 
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  !$omp critical 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

  !$omp end critical 

    

   DO J=1,NS 

   !!!COMMENT THIS BLOCK, AND CONVECTIVE TERMS BELOW FOR DIFFUSION 

ONLY  

    !CALCULATE LOCAL POSITION FOR INTERPOLATION 

    PLOCAL(1)=MODULO(POSITIONOLD(I,1),RRATIO) 

    PLOCAL(2)=MODULO(POSITIONOLD(I,2),RRATIO) 

    PLOCAL(3)=MODULO(POSITIONOLD(I,3),RRATIO)  

   

 

    !CALL INTERPOLATION 

    !!$omp critical 

    CALL GIMME_VELOCITY(PLOCAL,VF,RRATIO,GRID,VELOCITY) 

    !!$omp end critical 

   !!!/COMMENT THIS BLOCK, AND CONVECTIVE TERMS BELOW FOR 

DIFFUSION ONLY 

     

    !MOVE TRACERS 

(OLDPOSITION+DIFFUSIVETERM+CONVECTIVETERM) 

    RNGDUMMY=INT(MOD((J-1),MAXRNG))+1 

   

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(RNGDUMMY)*DX)+VELOCITY(1) 

   

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(RNGDUMMY)*DX)+VELOCITY(2) 

   

   

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(RNGDUMMY)*DX)+VELOCITY(3)  

 

    PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO) 

    PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO) 

    PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO) 

     

     !CHECKING IF THE TRACER IS IN INTER-PARTICLE 

SPACE OR NOT 

     DO K=1,NOSRJP 

    

      IF ((((PLOCAL(1)-

RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2& 

       &)+((PLOCAL(3)-RJP(K,3))**2)) 

.LE.(PR**2)) THEN 

    

      !!!COMMENT THIS BLOCK FOR SIMLATIONS IN 

HARDSPHERE PACKING ONLY 

       !CHECKING IN WHICH SHELL LAYER 

THE TRACER IS 

       DO L=1,NOL 

        

        IF ((((PLOCAL(1)-

RJP(K,1))**2)+((PLOCAL(2)-RJP(& 

        

 &K,2))**2)+((PLOCAL(3)-RJP(K,3))**2)) .LE.(& 

         &RSOI(L)**2)) 

THEN 

         

         !CHECKING ALL 

SPHERES IN THE SHELL LAYER 

         DO M=1,SC(L) 

         

          IF 

((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+(& 

          

 &(PLOCAL(2)-CSPRJP(K,L,M,2))**2)+((& 

          

 &PLOCAL(3)-CSPRJP(K,L,M,3))**2)) & 

          

 &.LE.(CSPRJP(K,L,M,4)**2)) THEN 

      !!!/COMMENT THIS BLOCK FOR SIMLATIONS IN 

HARDSPHERE PACKING ONLY  
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 POSITIONNEW(I,1)=POSITIONOLD(I,1) 

         

 POSITIONNEW(I,2)=POSITIONOLD(I,2)    

         

 POSITIONNEW(I,3)=POSITIONOLD(I,3) 

     

          GOTO 400 

       

      !!!COMMENT THIS BLOCK FOR SIMLATIONS IN 

HARDSPHERE PACKING ONLY        

          ENDIF 

     

         ENDDO 

     

        ENDIF 

     

       ENDDO 

      !!!/COMMENT THIS BLOCK FOR SIMLATIONS IN 

HARDSPHERE PACKING ONLY  

       

      ENDIF 

    

     ENDDO 

    

400     POSITIONOLD(I,1)=POSITIONNEW(I,1) 

    POSITIONOLD(I,2)=POSITIONNEW(I,2) 

    POSITIONOLD(I,3)=POSITIONNEW(I,3)  

 

    IF (MOD(J,B).EQ.0) THEN 

     !LONGITUDINAL DISPLACEMENTS (USED IN DISPERSION 

SIMULATIONS) 

     DISPDATL(I,J/B)=ABS(POSITIONNEW(I,3)-

POSITIONI(I,3)) 

     !TOTAL DISPLACEMENTS (USED IN DIFFUSION 

SIMULATIONS) 

     ! DISPLACEMENT(I,J/B)=SQRT((POSITIONNEW(I,1)-

POSITIONI(I,1))**2+& 

     ! &(POSITIONNEW(I,2)-

POSITIONI(I,2))**2+(POSITIONNEW(I,3)-PO& 

     ! &SITIONI(I,3))**2) 

    ENDIF 

     

   ENDDO 

    

600  WRITE(*,*)"FINISHED TRACER:",I 

   

 ENDDO  

 !$omp end parallel do 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

!COMMENT 'THE OTHER' DATA EXTRACTION.  

!I.E. COMMENT DIFFUSIVITY DATA BLOCK FOR DISPERSION SIMULATIONS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!DATA EXTRACTION - LONGITUDINAL DISPERSION COEFFICIENT  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 DO I=1,AODP 

   

  SUMDISP=0.0 

   

  DO J=1,NP 

   SUMDISP=SUMDISP+DISPDATL(J,I) 

  ENDDO 
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  MEANDISP=SUMDISP/NP 

   

  VARIANCE=0.0 

   

  DO J=1,NP 

   VARIANCE=VARIANCE+(((DISPDATL(J,I)-MEANDISP)**2)/NP) 

  ENDDO 

   

  DSPRCO(I)=0.5*(VARIANCE/(I*B*DT)) 

   

  WRITE(50,500) VARIANCE 

     

 ENDDO 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

  

  

  

  

  

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!DATA EXTRACTION - TIME DEPENDENT DIFFUSIVITY 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

! DO I=1,AODP 

  ! SUMM=0 

  ! DO J=1,NP 

    ! SUMM=SUMM+DISPLACEMENT(J,I)**2 

  ! ENDDO 

  ! DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT) 

  ! WRITE(40,500) DABVSTIME(I) 

! ENDDO  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!WRITING START AND END DATES OF COMPUTATION TO SIMLULATION SUMMARY 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

WRITE(20,*)"-----------------------------------------------------------" 

WRITE(20,*)"COMPUTATION HAD" 

WRITE(20,*)"STARTED ON:",DATETAG 

WRITE(*,*)"STARTED ON:",DATETAG 

CALL FDATE(DATETAG) 

WRITE(20,*)"ENDED ON:",DATETAG 

WRITE(*,*)"ENDED ON:",DATETAG 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

 

CONTAINS 

 

SUBROUTINE INIT_RANDOM_SEED() 

!SETS RANDOM SEED USING SYSTEM CLOCK 

INTEGER :: I, N, CLOCK 

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED 

CALL RANDOM_SEED(SIZE = N) 

ALLOCATE(SEED(N)) 

CALL SYSTEM_CLOCK(COUNT=CLOCK) 

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /) 

CALL RANDOM_SEED(PUT = SEED) 

DEALLOCATE(SEED) 

END SUBROUTINE 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

SUBROUTINE NUMBERS(NX,NY,NZ) 

!GENERATES RANDOM NUMBERS, EITHER -1 OR +1 

IMPLICIT NONE 

REAL, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG) 

INTEGER:: A 

DO A=1,MAXRNG 

 CALL RANDOM_NUMBER (NX(A)) 

 NX(A)=COS((FLOOR(2*NX(A)))*PI) 

 CALL RANDOM_NUMBER (NY(A)) 

 NY(A)=COS((FLOOR(2*NY(A)))*PI) 

 CALL RANDOM_NUMBER (NZ(A)) 

 NZ(A)=COS((FLOOR(2*NZ(A)))*PI) 

ENDDO 

END SUBROUTINE NUMBERS 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

SUBROUTINE GIMME_VELOCITY(LOCALP,VFI,LENGTH,GRIDD,VEL) 

!TRILINEAR INTERPOLATION SUBROUTINE 

IMPLICIT NONE 

INTEGER, INTENT(IN) :: GRIDD 

DOUBLE PRECISION, INTENT(IN) :: VFI(GRIDD,GRIDD,GRIDD,3) 

DOUBLE PRECISION, INTENT(IN) :: LOCALP(3),LENGTH 

DOUBLE PRECISION, INTENT(OUT) :: VEL(3) 

DOUBLE PRECISION :: XUNIT,YUNIT,ZUNIT,MAIN(8),FIRST(4),SECOND(2) 

INTEGER :: EDGE(3),DUMMY 

!FIELD ARRAY INCLUDES GRID^3 UNIT CUBES THAT HOLD 

!VELOCITY VECTORS INSIDE PERIODIC CUBE 

 

!FIND WHICH UNIT CUBE THE TRACER IS IN 

EDGE(1)=INT(LOCALP(1)/(LENGTH/100))+1 

EDGE(2)=INT(LOCALP(2)/(LENGTH/100))+1 

EDGE(3)=INT(LOCALP(3)/(LENGTH/100))+1 

 

!FIND NORMALIZED POSITION OF TRACER INSIDE UNIT CUBE 

XUNIT=MOD(LOCALP(1),(LENGTH/100))/(LENGTH/100) 

YUNIT=MOD(LOCALP(2),(LENGTH/100))/(LENGTH/100) 

ZUNIT=MOD(LOCALP(3),(LENGTH/100))/(LENGTH/100) 

 

!INTERPOLATE (COMPONENT BY COMPONENT) 

DO DUMMY=1,3 

 

!SET VECTOR COMPONENT AT 8 CORNERS OF UNIT CUBE 

MAIN(1)=VFI(EDGE(1),EDGE(2),EDGE(3),DUMMY) 

MAIN(2)=VFI(EDGE(1)+1,EDGE(2),EDGE(3),DUMMY) 

MAIN(3)=VFI(EDGE(1),EDGE(2),EDGE(3)+1,DUMMY) 

MAIN(4)=VFI(EDGE(1)+1,EDGE(2),EDGE(3)+1,DUMMY) 

MAIN(5)=VFI(EDGE(1),EDGE(2)+1,EDGE(3),DUMMY) 

MAIN(6)=VFI(EDGE(1)+1,EDGE(2)+1,EDGE(3),DUMMY) 

MAIN(7)=VFI(EDGE(1),EDGE(2)+1,EDGE(3)+1,DUMMY) 

MAIN(8)=VFI(EDGE(1)+1,EDGE(2)+1,EDGE(3)+1,DUMMY) 

 

!INTERPOLATE ALONG X-AXIS (REDUCES TO BILINEAR) 

FIRST(1)=MAIN(1)+((MAIN(2)-MAIN(1))*XUNIT) 

FIRST(2)=MAIN(3)+((MAIN(4)-MAIN(3))*XUNIT) 

FIRST(3)=MAIN(5)+((MAIN(6)-MAIN(5))*XUNIT) 

FIRST(4)=MAIN(7)+((MAIN(8)-MAIN(7))*XUNIT) 

 

!INTERPOLATE ALONG Z-AXIS (REDUCES TO LINEAR) 

SECOND(1)=FIRST(1)+((FIRST(2)-FIRST(1))*ZUNIT) 

SECOND(2)=FIRST(3)+((FIRST(4)-FIRST(3))*ZUNIT) 

 

!INTERPOLATE ALONG Y-AXIS 

VEL(DUMMY)=SECOND(1)+((SECOND(2)-SECOND(1))*YUNIT) 

 

ENDDO 

 

END SUBROUTINE GIMME_VELOCITY 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

END PROGRAM CORESHELLDISPERSION  

 



 

 

143 

 

 

APPENDIX B 

 

 

DISPERSION COEFFICIENTS

 

 

 

B.1. In Taylor Dispersion Simulation 

 

 

Figure B.1: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1.13. Fit 

parameters are, 𝐴 = 186.2 and 𝑘 = 54.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.2: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2.25. Fit 

parameters are, 𝐴 = 222.4 and 𝑘 = 93.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.3: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 22.5. Fit 

parameters are, 𝐴 = 1264.6 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.4: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45.0. Fit 

parameters are, 𝐴 = 4593.4 and 𝑘 = 632.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.5: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 67.5. Fit 

parameters are, 𝐴 = 9922.0 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.6: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90.1. Fit 

parameters are, 𝐴 = 17859.5 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.7: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 112.6. Fit 

parameters are, 𝐴 = 29542.8 and 𝑘 = 201.2. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.8: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 225.2. Fit 

parameters are, 𝐴 = 113724.9 and 𝑘 = 439.2. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.9: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 450.4. Fit 

parameters are, 𝐴 = 430558.9 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.10: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 675.5. Fit 

parameters are, 𝐴 = 987587.8 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.11: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit 

parameters are, 𝐴 = 1759189 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.12: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit 

parameters are, 𝐴 = 2786138 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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B.2. In the Random Packing of Monodisperse Hardspheres 

 

 

Figure B.13: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit 

parameters are, 𝐴 = 2167.8 and 𝑘 = 118.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.14: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit 

parameters are, 𝐴 = 3143.8 and 𝑘 = 139.0. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.15: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit 

parameters are, 𝐴 = 4436.9 and 𝑘 = 184.7. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.16: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit 

parameters are, 𝐴 = 5520.0 and 𝑘 = 183.7. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.17: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit 

parameters are, 𝐴 = 7170.6 and 𝑘 = 187.5. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.18: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit 

parameters are, 𝐴 = 7597.7 and 𝑘 = 306.9. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.19: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit 

parameters are, 𝐴 = 9539.2 and 𝑘 = 256.82. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.20: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit 

parameters are, 𝐴 = 10425.2 and 𝑘 = 377.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.21: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 60. Fit 

parameters are, 𝐴 = 13117.7 and 𝑘 = 370.0. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.22: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 70. Fit 

parameters are, 𝐴 = 16003.4 and 𝑘 = 381.7. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.23: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 80. Fit 

parameters are, 𝐴 = 19331.5 and 𝑘 = 589.6. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.24: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90. Fit 

parameters are, 𝐴 = 21591.7 and 𝑘 = 621.0. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.25: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit 

parameters are, 𝐴 = 25076.5 and 𝑘 = 695.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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B.3. In the Random Packing of Core-Shell Particles 

 

 

Figure B.26: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1. Fit 

parameters are, 𝐴 = 173.9 and 𝑘 = 16.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.27: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2. Fit 

parameters are, 𝐴 = 242.1 and 𝑘 = 29.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.28: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 3. Fit 

parameters are, 𝐴 = 311.7 and 𝑘 = 56.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 

0

20

40

60

80

100

120

140

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.



 

 

159 

 

 

Figure B.29: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 4. Fit 

parameters are, 𝐴 = 425.0 and 𝑘 = 52.8. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.30: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 5. Fit 

parameters are, 𝐴 = 538.2 and 𝑘 = 80.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.31: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 6. Fit 

parameters are, 𝐴 = 645.5 and 𝑘 = 124.4. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.32: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 7. Fit 

parameters are, 𝐴 = 850.4 and 𝑘 = 54.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠) 

vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.33: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 8. Fit 

parameters are, 𝐴 = 1014.5 and 𝑘 = 73.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.34: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 9. Fit 

parameters are, 𝐴 = 1109.5 and 𝑘 = 102.8. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.35: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 10. Fit 

parameters are, 𝐴 = 1369.5 and 𝑘 = 77.2. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.36: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit 

parameters are, 𝐴 = 2342.0 and 𝑘 = 137.2. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.37: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit 

parameters are, 𝐴 = 3520.5 and 𝑘 = 135.8. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.38: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit 

parameters are, 𝐴 = 4855.0 and 𝑘 = 146.0. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.39: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit 

parameters are, 𝐴 = 6454.7 and 𝑘 = 191.0 Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.40: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit 

parameters are, 𝐴 = 8003.9 and 𝑘 = 195.9. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.41: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit 

parameters are, 𝐴 = 10003.1 and 𝑘 = 214.6. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.42: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit 

parameters are, 𝐴 = 12122.3 and 𝑘 = 198.3. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.43: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit 

parameters are, 𝐴 = 14021.3 and 𝑘 = 223.6. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

 

Figure B.44: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 75. Fit 

parameters are, 𝐴 = 26705.8 and 𝑘 = 256.1. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 
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Figure B.45: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit 

parameters are, 𝐴 = 39604.1 and 𝑘 = 299.7. Longitudinal dispersion coefficient 

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 

 

  

0

5000

10000

15000

20000

25000

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.



 

 

168 

 

  



 

 

169 

 

APPENDIX C 

 

 

FORTRAN IMPLEMENTATIONS

 

 

 

Fortran programming language is often preferred for scientific computations. Its roots 

extend across a very long time, it has open source well written compilers as well as 

having open source parallel computing modules and online resources available. 

Therefore it is very suitable for the application of the model being created on computer. 

In the next three sections, details of creating a free form Fortran program to carry out 

calculations required for the model will be explained. 

 

C.1. Free Molecular Diffusion 

 

Random-walk simulations of free molecular diffusion was explained in  section 3.1.1. 

and it was shown that Equation (15) is the main equation that calculates random motion 

of tracers and an algorithm was presented. Variables and parameters that need to be 

declared at the beginning of the code as well as the types and strings used for 

corresponding variables or parameters are given in Table C.1. There are other Fortran 

strings, which do not appear in the equation given in section 3.1, that needed to be 

declared throughout the code as auxiliary variables to carry out calculations and a list 

of them can be found at the end of this section. 
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Table C.1: Declared main parameters and variables and corresponding strings and their 

declaration types used for free diffusion model. 

Parameter/Variable String Type 

𝐷𝐴𝐵 DAB Real 

𝑡𝑠 DURATION Real 

𝑛 NP Integer 

∆𝑡 DT Real 

∆𝑙 DX Real 

𝑛𝑠 NS Integer 

𝛏 (components) 

NUMBERSX, 

NUMBERSY, 

NUMBERSZ 

Real, Rank=1, 

Allocatable 

𝚾(t) POSITIONOLD 
Real, Rank=2, 

Allocatable 

𝚾(t + ∆t) POSITIONNEW 
Real, Rank=2, 

Allocatable 

∆𝑋𝑖 DISPLACEMENT 
Real, Rank=2, 

Allocatable 

𝐷𝐴𝐵 (re-calculated) DABVSTIME 
Real, Rank=1, 

Allocatable 

 

All the strings in program appear in declarations and fixed parameters are calculated 

by the following code. Note, decimal is lost during the calculation of 𝑛𝑠 due to type 

conversion. Therefore duration of the simulation may effectively decrease if the result 

is not an integer. Still the amount of decrement is very negligible since ∆𝑡 is typically 

chosen as a very small fraction of a second and 𝑡𝑠 is very large compared to it. Duration 

can be re-calculated to get rid of this negligible error. 

DAB=𝐷𝐴𝐵 

DURATION=𝑡𝑠 

NP=𝑛 

DT=∆𝑡 
DX=SQRT(2*DAB*DT) 

NS=DURATION/DT 

DURATION= DT*NS 

ALLOCATE(POSITIONNEW(NP,NS)) 

ALLOCATE(POSITIONOLD(NP,NS)) 
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The vector 𝛏 in Equation (15) was declared as individual components as rank 1 arrays 

with allocatable size. The reason behind it is the fact that amount of random numbers 

required, which is equal to 𝑛𝑠, is variable depending on 𝑡𝑠 and ∆𝑡. Declaring a new 

string, MAXRNG (Integer), which determines how many random numbers will be 

generated and written in 𝛏 component arrays, as well as the size alllocated to them. 

MAXRNG was set equal to 𝑛𝑠 in the simulations done in this work so that all random 

numbers required for a single tracer is pre-generated. It can also be set to a lesser 

number and new random numbers can be generated upon running out of random 

numbers, if memory is limited. 

MAXRNG=NS 

ALLOCATE(NUMBERSX(MAXRNG)) 

ALLOCATE(NUMBERSY(MAXRNG)) 

ALLOCATE(NUMBERSZ(MAXRNG)) 

 

Random number generation (RNG) subroutines are available in GFortran compiler 

libraries. RANDOM_NUMBER is one of them but it only generates pseudo-random numbers 

in the interval 0 ≤ 𝑅𝑁𝐺 < 1. Therefore a subroutine which converts random numbers 

into either +1 or -1 was written. This subroutine makes use of Fortran’s FLOOR function 

and cosinus function to carry out the conversion. Declaring another parameter string 

PI of type real, as in the number π, and the conversion subroutine is given as: 

PI=ACOS(-1.0) 

 

SUBROUTINE NUMBERS(NX,NY,NZ) 

IMPLICIT NONE 

REAL, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG) 

INTEGER:: A 

DO A=1,MAXRNG 

  CALL RANDOM_NUMBER (NX(A))     

  NX(A)=COS((FLOOR(2*NX(A)))*PI) 

  CALL RANDOM_NUMBER (NY(A)) 

  NY(A)=COS((FLOOR(2*NY(A)))*PI) 

  CALL RANDOM_NUMBER (NZ(A)) 

  NZ(A)=COS((FLOOR(2*NZ(A)))*PI) 

ENDDO 

END SUBROUTINE NUMBERS 
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To explain more clearly, subroutine first assigns a value in the interval 0 ≤ 𝑅𝑁𝐺 < 1 

to a component array element, then uses 2 times the assigned value in FLOOR function 

to convert the result into 0 or 1, then multiplies the converted value with π  and gives 

input to COS function. COS gets 0 or π as equally likely inputs to yield +1 or -1 

respectively. 

A useful subroutine was found available as open source code in several different online 

Fortran resources as an example. GFortran compiler’s RANDOM_SEED routine, if not 

given input, repeatedly selects the same initial seed every time the program is executed 

hence causing RANDOM_NUMBER to generate same sequence of pseudo-random numbers. 

The open source subroutine that uses system clock and modifies it through a function 

to set a random initial seed was used in the code. As a result, program generates 

different sequences of random numbers for every execution. The subroutine can be 

seen below. 

SUBROUTINE INIT_RANDOM_SEED() 

INTEGER :: I, N, CLOCK 

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED 

CALL RANDOM_SEED(SIZE = N) 

ALLOCATE(SEED(N)) 

CALL SYSTEM_CLOCK(COUNT=CLOCK) 

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /) 

CALL RANDOM_SEED(PUT = SEED) 

DEALLOCATE(SEED) 

END SUBROUTINE 

 

Actual random-walk part of the code is based on Equation (15). Initial positions of all 

tracers are set to origin, based on a point injection initial condition. Then tracers are 

randomly moved one by one. Therefore calculations of next tracer waits until the 

previous tracer finishes taking 𝑛𝑠 amount of random steps. RNG is done in bulk for 

each tracer. Declaring a new real string FREQ (frequency of data collection in seconds, 

i.e. once every FREQ seconds) two new integer strings  AODP (for amount of data points) 

and B (equivalent amount of random-steps required for FREQ seconds to pass) for the 

allocation of DISPLACEMENT to collect data at equally distant time intervals during 

random-walk. This study sets FREQ=DURATION/1000 unless stated otherwise. 
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FREQ=DURATION/1000 

B=INT(FREQ/DT) 

AODP=INT(NS/B) 

 

ALLOCATE(DISPLACEMENT(NP,AODP)) 

 

!!SETTING INITIAL POSITIONS!! 

DO I=1,NP 

    POSITIONOLD(I,1)=0 

    POSITIONOLD(I,2)=0 

    POSITIONOLD(I,3)=0 

ENDDO 

 

!!RANDOM-WALK!! 

CALL INIT_RANDOM_SEED() 

 

DO I=1,NP 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

  DO J=1,NS 

    POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX) 

    POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX) 

    POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX) 

    POSITIONOLD (I,1)=POSITIONNEW (I,1) 

    POSITIONOLD (I,2)=POSITIONNEW (I,2) 

    POSITIONOLD (I,3)=POSITIONNEW (I,3) 

     IF (MOD(J,B).EQ.0) THEN 

      DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)& 

      **2+ POSITIONNEW(I,2)**2+ POSITIONNEW(I,3)**2) 

     ENDIF 

  ENDDO 

ENDDO 

 

Displacement data collected during random-walk phase is compiled into D𝐴𝐵 data by 

using Equation (17) (𝑡𝑠 swapped with elapsed time when the data was taken), 

intrinsically creating a set of data that represents the time evolution of diffusion 

coefficient. A new real string SUMM that can be used as a dummy to hold any 

summation, was declared. Results are written in a file right after calculation. 

Optionally, formatting and character string allocation to output file name to prevent 

any over-writes after re-execution of the program, can be done. In the case of diffusion 

in free environments, time dependent D𝐴𝐵 should not deviate from input value except 

for random fluctuations that can occur due to probabilistic nature of random-walk 

method. 

ALLOCATE(DABVSTIME(AODB)) 

 

OPEN(#, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE') 

 



 

 

174 

 

DO I=1,AODP 

  SUMM=0 

  DO J=1,NP 

    SUMM=SUMM+DISPLACEMENT(J,I)**2 

  ENDDO 

  DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT) 

  WRITE(#,*) DABVSTIME(I) 

ENDDO 

 

A list of Fortran strings that appear in the program, but not in the equations in section 

3.1 is given in Table C.2. 

Table C.2: Additional strings declared for the free diffusion code as necessary 

parameters for calculations. 

String Definition Type 

MAXRNG 

Size allocated to 

NUMBERS arrays. Set 

equal to NS for this study. 

Integer 

PI 
Ratio of circumference to 

diameter. 
Real 

FREQ 

Size of the time interval 

for data collection. Collect 

data once every FREQ 

seconds. 

Real 

AODP 
Amount of data points 

collected for the duration 
Integer 

B 

Amount of random-steps 

equivalent for FREQ 

seconds to pass 

Integer 

DISPLACEMENT 

Holds spatial 

displacements of all 

tracers at different times 

Real, Rank=2, 

Allocatable 
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C.2. Computation and Storage of Impermeable Boundaries 

 

In the sections 3.2.2 and 3.2.3, it was explained how an ideal mathematical 

representation of a multiple layer core-shell particle was created by using basic 

principles of analytical geometry. Reconstructed core-shell geometry was entirely 

made of spherical elements. Components of center point vectors for each element, total 

amount of them present in the geometry, as well as information regarding the exact 

locations of these elements in the core-shell particle such as the layer and auxiliary 

circle number was shown to be calculated using Equations (26) to (36). Systematic 

calculation and storage of the calculated parameters is very crucial for implementing 

an efficient application of collision control, as will be explained in the next section. 

Main objective is to store all parameters that define the geometry of every element in 

the periodic random jammed packing of core-shell particles. 

Variables and parameters declared in the Fortran code that calculates the geometry is 

listed in Table C.3. There are other Fortran strings, which do not appear in the equation 

given in section 3.2, that needed to be declared throughout the code as auxiliary 

variables to carry out calculations and a list of them can be found at the end of this 

section. 

Calculation of the core-shell geometry follows the same steps in section 3.2.2 

generalized for multiple layers. Core-Shell particle radius (𝑟𝑝), number of shell layers 

(𝑛𝑙) and core-to-particle ratio (𝜑) is given as input to calculate core radius (𝑟𝑐) and 

shell side spheres radii (𝑟𝑠). Arrays that hold the values for 𝑛𝑠𝑠𝑒,𝑘 and naux,k are 

allocated to have a size equal to defined number of shell layers. Then spread angle and 

𝑛𝑠𝑠𝑒,𝑘 is calculated. Finally a control structure determines the value of naux,k before 

setting core radius equal to the radius of next sphere of influence. Do loop calculates 

the vales for all shell layers. After the loop, core radius is set to original value. Note 

that this code does not calculate anything other than amount of auxiliary circles that 

can be placed in each individual layer. Reason is the fact that the values of naux,k for 

each layer is needed to be known in order to allocate memory to arrays that hold the 

other information. 
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Table C.3: Declared parameters and variables and corresponding strings and their 

declaration types for the code fragment that calculates a core-shell particle geometry. 

Parameter/Variable String Type 

𝑟𝑝 PR Real 

𝑛𝑙 NOL Integer 

𝛹 CPRATIO Real 

𝑟𝑐 RCORE Real 

𝑟𝑠 RSHELL Real 

𝑟𝑠𝑜𝑖,𝑘 RSOI 
Real, Rank=1, 

Allocatable 

∝𝑘 ALPHA Real 

𝑛𝑠𝑠𝑒,𝑘 NOSS 
Real, Rank=1, 

Allocatable 

𝑛𝑠𝑠𝑎,𝑘 
Uses the same string as 

𝑛𝑠𝑠𝑒,𝑘 
- 

naux,k NOAC 
Real, Rank=1, 

Allocatable 

∝𝑐,𝑘 Uses the same string as ∝𝑘 - 

raux,i,k RAUX 
Real, Rank=2, 

Allocatable 

zaux,i,k ZAUX 
Real, Rank=2 

Allocatable 

βi,k Uses the same string as ∝𝑘 - 

𝑛ssa,i,k NOSOAC, NOSOACINT 
Real, Rank=2 

Allocatable 

β𝑐,𝑖,𝑘 Uses the same string as ∝𝑘 - 

𝑥𝑗,𝑖,𝑘, 𝑦𝑗,𝑖,𝑘 
Do not have dedicated 

strings 
- 

𝐏𝑗,𝑖,𝑘 PGCC 
Real, Rank=4 

Allocatable 

 

 

 

PR=𝑟𝑝 

NOL=𝑛𝑙 

CPRATIO= 𝛹 
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RCORE=PR*CPRATIO 

 

ALLOCATE(NOSS(NOL)) 

ALLOCATE(NOAC(NOL)) 

 

DO I=1,NOL 

  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA)              

    IF (MOD(NOSS(I),2).EQ.0) THEN 

    NOAC(I)=INT((NOSS(I)-2)/2) 

    ELSE 

    NOAC(I)=FLOOR(REAL(NOSS(I)/2)) 

    ENDIF 

  RCORE=RCORE+RSHELL*2 

ENDDO 

 

RCORE=PR*CPRATIO 

 

 

The amount of auxiliary circles in outer shell layers is different and greater than 

previous shell layers. However the arrays ZAUX, RAUX, NOSOAC and NOSOACINT (defined 

as integer counterpart of NOSOAC for convenience because direct usage of integer type 

array in a calculation involving real types causes problems) must have enough size to 

hold information regarding every shell layer. Therefore they were allocated the 

maximum value of NOAC array to their second dimension and they will have non-

assigned array elements for inner shell layers. This does not cause any problem since 

the empty array elements are not going to be accessed. Following code allocates 

mentioned arrays and calculates the values for them. Inner loops are separately written 

for easier reading of the code. 

ALLOCATE(RSOI(NOL)) 

ALLOCATE(RAUX(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC))) 

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC))) 

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC))) 

 

DO I=1,NOL 

  RSOI(I)=RCORE+2*RSHELL 

  ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2 

  NOSS(I)=FLOOR(2*PI/ALPHA) 

  ALPHA=2*PI/NOSS(I) 

 

    DO J=1,NOAC(I) 

      RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL) 

    ENDDO 
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    DO J=1,NOAC(I) 

      NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J)) 

      NOSOACINT(I,J)=INT(NOSOAC(I,J)) 

    ENDDO 

 

    DO J=1,NOAC(I) 

      ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL) 

    ENDDO 

 

  RCORE=RSOI(I) 

ENDDO 

 

RCORE=PR*CPRATIO 

 

Now that the amounts of auxiliary circles in each layer and the amounts of shell side 

spheres on these auxiliary circles are known, corrected spread angle can be calculated 

for each and every auxiliary circle and the PGCC (initials: particle geometry center 

coordinates) array that holds center point vector components of shell side spheres can 

be allocated and assigned values for components 𝑥𝑗,𝑖,𝑘 and 𝑦𝑗,𝑖,𝑘 by using Equations 

(35) and (36) respectively to its first two elements in dimension 4. as well as the z-

components and a radius to 3rd and 4th elements. For example, the elements (2,7,16,3) 

and (2,7,16,4) of PGCC array hold the z-component of center point vector and the radius 

for the 16th shell sphere centered on the 7th auxiliary circle in 2nd shell layer 

respectively. 

 

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4)) 

  

DO I=1,NOL 

  DO J=1,NOAC(I) 

    DO K=1,NOSOACINT(I,J) 

      ALPHA=2*PI/NOSOACINT(I,J) 

      PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA) 

      PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA) 

      PGCC(I,J,K,3)=ZAUX(I,J) 

      PGCC(I,J,K,4)=RSHELL 

    ENDDO 

  ENDDO    

ENDDO 
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 PGCC array at this point only holds information about shell side elements of the 

geometry except two spheres that need to be placed tangent to the poles of the core 

sphere or additional spheres of influence. The core sphere must be added into the array 

and the amount of polar spheres that needs to be added may differ depending on input 

parameters therefore a control structure is needed to determine the amount. 

Additionally, 2nd and 3rd dimensions of PGCC array can be combined into a single one 

that holds information about all elements located in a shell layer. In order to combine 

these dimensions, number of shell side elements in each shell layer must be calculated 

by the following code. An integer array NOSISL (initials: number of spheres in shell 

layer) with rank 1 that holds the amount of spherical elements in each shell layer is 

declared, allocated size equal to the number of shell layers and all array elements are 

assigned the initial value 0. All contributions from all auxiliary spheres located in all 

shell layers are calculated by the nested do loop and finally the amount of polar spheres 

that needs to be added for each layer is determined by the control structure inside the 

last do loop. For convenience, core sphere is adopted as a first shell layer element 

contributes one more count to the amount of elements in the first shell layer. 

 

ALLOCATE(NOSISL(NOL)) 

 

DO I=1,NOL 

  NOSISL(I)=0 

ENDDO 

 

DO I=1,NOL 

  DO J=1,NOAC(I) 

    NOSISL(I)=NOSISL(I)+NOSOACINT(I,J) 

  ENDDO 

ENDDO 

 

DO I=1,NOL 

 

  IF (MOD(NOSS(I),4).EQ.0) THEN 

    NOSISL(I)=NOSISL(I)+2 

  ELSE 

    NOSISL(I)=NOSISL(I)+1 

  ENDIF 

ENDDO 

 

NOSISL(1)=NOSISL(1)+1 
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In order not to deallocate PGCC array, another rank 3 array CPGCC (initials: combined 

PGCC) was declared and dimensions are allocated 𝑛𝑙, maximum value in NOSISL and 4 

respectively, similar to PGCC. CPGCC array has the same size for each shell layer but it 

has non-assigned array elements for any possible inner shell layer since inner layers 

have less spherical elements than outer layers. Again, this does not give rise to any 

problems since the non-assigned elements will not be accessed by the program because 

another rank 1 array called SC (initials: sphere count) is declared and allocated size 

equal to number of shell layers to hold exact amounts of assigned array elements for 

each layer. First, the new arrays are allocated and the existing elements in PGCC is 

transferred into CPGCC by the following code. 

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL),4)) 

ALLOCATE(SC(NOL)) 

 

DO I=1,NOL 

  SC(I)=0 

  DO J=1,NOAC(I) 

    DO K=1,NOSOACINT(I,J) 

 

      SC(I)=SC(I)+1   

      CPGCC(I,SC(I),1)=PGCC(I,J,K,1) 

      CPGCC(I,SC(I),2)=PGCC(I,J,K,2) 

      CPGCC(I,SC(I),3)=PGCC(I,J,K,3) 

      CPGCC(I,SC(I),4)=PGCC(I,J,K,4) 

 

    ENDDO 

  ENDDO  

ENDDO 
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Then polar elements are added to the CPGCC by the following code. 

DO I=1,NOL 

 

  IF (MOD(NOSS(I),4).EQ.0) THEN 

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

 

   CPGCC(I,SC(I)+2,1)=0 

   CPGCC(I,SC(I)+2,2)=0 

   CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL) 

   CPGCC(I,SC(I)+2,4)=RSHELL 

   SC(I)=SC(I)+2 

  ELSE 

   CPGCC(I,SC(I)+1,1)=0 

   CPGCC(I,SC(I)+1,2)=0 

   CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL 

   CPGCC(I,SC(I)+1,4)=RSHELL 

   SC(I)=SC(I)+1 

  ENDIF 

 

ENDDO 

 

Finally the core sphere is added as the last array element of the 2nd dimension of CPGCC 

by the following code. 

 CPGCC(1,SC(1)+1,1)=0 

 CPGCC(1,SC(1)+1,2)=0 

 CPGCC(1,SC(1)+1,3)=0 

 CPGCC(1,SC(1)+1,4)=RCORE 

 SC(1)=SC(1)+1 

 

After the calculations done until this point, CPGCC array holds very detailed 

information about the core-shell particle geometry, including center coordinates and 

radius of all elements creating the geometry itself, as well as at which shell layer the 

element is located in. The geometry stored in CPGCC is ready to undergo a geometric 

translation in order to create the packing geometry. As the first step, program reads a 

file that includes the components of center point vectors that belong to 100 hardspheres 

in  the random jammed packing initially created as a packing of 50 spheres by the 

program written by Skoge et al. (2006) and modified in this study by adding 50 more 

invading spheres from neighboring periodic cells. However center point vectors of 
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hardspheres must be resized first, such that the radius of hardspheres would be equal 

to the radius of the core-shell particle. 

A new integer string NOSRJP (initials: number of spheres in random jammed packing) 

is declared and set equal to 100, which is the amount of hardspheres that has their 

partial or total volume lying inside the main periodic cell as it was found in section 

3.3.2. Then a real string RRJP is declared to hold radius of hardspheres in random 

jammed packing along with the real string RRATIO which is the ratio of core-shell 

particle radius to hardsphere radius.  

NOSRJP=100 

RRJP=0.2841570815121517/2 

RRATIO=PR/RRJP 

 

Then another rank 2 array RJP (initials: random jammed packing) was declared and 

allocated NOSRJP and 3 to dimensions 1 and 2 respectively, which holds the 

components of center point vectors of 100 hardspheres read from the file made ready 

previously. Then all the components in RJP was rescaled by a factor of RRATIO. Note 

that this rescaling also effectively changes the dimensions of the original unit cube 

whence the packing was generated by the program of Skoge et al. (2006) from unity 

to RRATIO. Therefore the value of RRATIO must be used in the calculation of local 

positions of tracers. 

OPEN (#, FILE="RJP.DAT", STATUS="OLD", ACTION="READ") 

 

ALLOCATE (RJP(NOSRJP,3)) 

 

DO I=1,NOSRJP 

 

  READ(#,’format’)RJP(I,1),RJP(I,2),RJP(I,3) 

 

ENDDO 

 

DO I=1,NOSRJP 

  DO J=1,3 

 

    RJP(I,J)=(RJP(I,J))*RRATIO 

 

  ENDDO 

ENDDO 
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In the final step, a rank 4 array CSPRJP, which is to be hold center coordinates and 

radius of all core-shell particle elements in the packing, was declared and allocated 

sizes NOSRJP, 𝑛𝑙, maximum value of SC and 4 to its dimensions respectively. Then the 

center point vectors held by CPGCC was translated by the following code. 

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4)) 

 

DO I=1,NOSRJP 

  DO J=1,NOL 

    DO K=1,SC(J) 

      DO L=1,3 

 

        CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L) 

 

      ENDDO 

    ENDDO 

  ENDDO 

ENDDO 

 

Radius values of the elements had to be separately assigned by the following code due 

to rank and size of RJP.  

DO I=1,NOSRJP 

  DO J=1,NOL 

    DO K=1,SC(J) 

         

      CSPRJP(I,J,K,4)=CPGCC(J,K,4) 

 

    ENDDO 

  ENDDO 

ENDDO  

 

Final product, CSPRJP holds every information related to any element of the 

impermeable boundaries in the system of core-shell particles arranged in a random 

jammed packing. In the following section, adaptation of free diffusion program to 

include a collision control mechanism that uses this array is explained. 

A list of Fortran strings that appear in the codes given in this section, but not in the 

equations in section 3.2.3 is given in Table C.4. 
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Table C.4: Additional strings declared for the code taking care of calculating and 

storing a random packing of core-shell particles as necessary parameters for 

calculations. 

String Definition Type 

CPGCC 

Another version of PGCC 

where its 2nd and 3rd 

dimensions are combined 

into a single one 

representing an entire shell 

layer 

Real, Rank=3, 

Allocatable 

SC 
Holds amounts of spheres 

in shell layers 

Real, Rank=1, 

Allocatable 

NOSRJP 
Amount of hardspheres in 

modified random packing 
Integer 

RJP 

Center points of 

hardspheres in modified 

random packing 

Real, Rank=2, 

Allocatable 

RRATIO 

Ratio of core-shell 

diameter to hardsphere 

diameter 

Real 

CSPRJP 

Holds center points and 

radii of every spherical 

geometry element inside 

the random packing of 

core-shell particles 

Real, Rank=4, 

Allocatable 
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C.3. Adapting Free Molecular Diffusion Code to Simulate Impermeability 

 

The collision control algorithm given in section 3.6.3 in Chapter 3 was implemented 

to the Fortran code given in section 3.4.1 which governs the actual random-walking 

part, by using additional individual nested do loops inside the master loop to carry out 

necessary calculations required by the control structures in collision control algorithm 

and adding a function that calculates local positions of tracers. 

CALL INIT_RANDOM_SEED() 

 

DO I=1,NP 

 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

    

  DO J=1,NS 

 

    POSITIONNEW(I,1)=POSITIONOLD(I,1)+NUMBERSX(J)*DX 

    POSITIONNEW(I,2)=POSITIONOLD(I,2)+NUMBERSY(J)*DX 

    POSITIONNEW(I,3)=POSITIONOLD(I,3)+NUMBERSZ(J)*DX 

     

    !CALCULATING LOCAL POSITION VECTOR COMPONENTS 

    PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO) 

    PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO) 

    PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO) 

        

    !COLLISION CONTROL ALGORITHM STEP 1 

    DO K=1,NOSRJP 

    

      IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2)& 

      &+((PLOCAL(3)-RJP(K,3))**2)).LE.(PR**2)) THEN 

 

      !COLLISION CONTROL ALGORITHM STEP 2 

      DO L=1,NOL 

        

        IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**& 

        &2) +((PLOCAL(3)-RJP(K,3))**2)) .LE. (RSOI(L)**2)) THEN 

         

        !COLLISION CONTROL ALGORITHM STEP 3 

        DO M=1,SC(L) 

         

          IF ((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+((PLOCAL(2)-CS& 

          &PRJP(K,L,M,2))**2) +((PLOCAL(3)-CSPRJP(K,L,M,3))**2& 

          &)).LE.(CSPRJP(K,L,M,4)**2)) THEN 

          

          POSITIONNEW(I,1)=POSITIONOLD(I,1) 

          POSITIONNEW(I,2)=POSITIONOLD(I,2)    

          POSITIONNEW(I,3)=POSITIONOLD(I,3)    

  

          GOTO 200 

           

     ENDIF    
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        ENDDO    

   ENDIF   

 ENDDO 

 ENDIF  

 

200 IF (MOD(J,B).EQ.0) THEN 

      DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)**2+ POSITIONNE& 

      &W(I,2)**2+ POSITIONNEW(I,3)**2) 

    ENDIF 

 

    POSITIONOLD(I,1)=POSITIONNEW(I,1) 

    POSITIONOLD(I,2)=POSITIONNEW(I,2) 

    POSITIONOLD(I,3)=POSITIONNEW(I,3)  

 

  ENDDO 

     

ENDDO 

 

If the condition in algorithm step 1.a is met, program by-passes any nested do loops 

inside the 3rd loop. If step 1.b is satisfied, then step 2 is inevitably carried out, 4th do 

loop is iterated and the shell layer that needs to be checked, which is represented by 

do loop dummy index L, is detected by the control structure. Then step 3 is applied by 

the inner-most nested do loop in the code. If the control structure fails to satisfy the 

condition after checking all elements in the shell layer, condition in step 3.a is met, 

program exits to 2nd do loop, data is collected and global position variable are 

swapped for the next random step. If the the control structure satisfies the inequality 

for any shell layer element, collision is detected, global position of tracer is set to 

previous global position before the collision, program is forced to exit to 2nd do loop 

by GOTO command to prevent any possible unnecessary iterations remaining for the 

rest of shell layer elements. Then data is collected and global position variable are 

swapped for the next random step. The algorithm in this state requires the least amount 

of control structure executions, which are major contributors to wall-clock time of the 

program, required for the simulation of impermeability. 
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C.4. Storage of Velocity Field 

 

Fortran program created section 3.4  can simulate diffusion in a random packing of 

core-shell particles by approximating the diffusion event as random motion of a large 

amount of tracers. In the latter sections 3.5 and 3.6, flow of water through the periodic 

random packing was simulated to obtain a velocity field in the system and it was 

explained that random-walk models can be coupled with a velocity field to simulate 

dispersion. The Fortran program for diffusion is modified and added new features to 

convert it for dispersion. There are three main modification steps.  

1. Reading and storing the velocity field obtained from a different platform. 

2. An innate trilinear interpolation mechanism for the stored discrete velocity 

field. 

3. Changing the structure of random-walk loop in the program. 

COMSOL Multiphysics creates data tables of selected dependent variables calculated 

at the nodes of a user defined regular grid. Velocity field inside the exact packing used 

in diffusion model was extracted from the results of fluid flow simulation done using 

COMSOL, by defining a regular grid of 101 nodes in each axis, equally separated from 

each other by a length equal to 1/100 of the cubic periodic cell length. The data table 

contained velocity field components at an ordered sequence of nodes, output file was 

re-organized into a certain format by using Octave so that the format can be used in 

Fortran code to properly read the file.  

These data can be written on a four dimensional array, first three dimensions of which 

holds normalized node coordinates while velocity components are held by the 4th 

dimension of the array. Following code opens the file containing data, allocates 

memory to rank 4 VF array and assigns read data to array elements. 

GRID=101 

ALLOCATE(VF(GRID,GRID,GRID,3)) 

 

DO I=1,GRID 

  DO J=1,GRID 

    DO K=1,GRID 

 

      READ(10,100) VF(I,J,K,1),VF(I,J,K,2),VF(I,J,K,3) 
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    ENDDO 

  ENDDO 

ENDDO 

 

If the velocity field is obtained for a system in Stokes Flow limits (𝑅𝑒 ≤ 0.1), then the 

velocity field is eligible for linear scaling. If the original velocity field read from data 

file has an average Peclet Number 𝑃𝑒0, then another velocity profile corresponding to 

and arbitrary 𝑃𝑒 can be calculated by the following code. 

PE= 𝑃𝑒 

PE0=𝑃𝑒0 

DO I=1,101 

  DO J=1,101 

    DO K=1,101 

      DO L=1,3 

        VF(I,J,K,L)=VF(I,J,K,L)*(PE/PE0) 

      ENDDO 

    ENDDO 

  ENDDO 

ENDDO 

 

Of course, the Reynold Number for the superficial velocity city value corresponding 

to chosen 𝑃𝑒 must also not exceed Stokes Flow limits. 
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C.5. Tri-linear Interpolation of Velocity Vectors 

 

Velocity vectors at the points other the the nodes are calculated by trilinear 

interpolation. A dedicated subroutine was written for this purpose. A rank 1 array with 

3 elements, VEL was declared for holding the interpolated vector components. The 

subroutine takes 5 arguments which are local tracer position, velocity field, periodic 

cell length, size of first three dimensions in velocity field array and VEL respectively 

and returns interpolated velocity components to the array VEL.  

For a given local position of a tracer in the main periodic cell, components of a scaled 

position (𝚾𝑳
𝑆𝑐𝑎𝑙𝑒𝑑) with respect to regular grid spacing used in data extraction (𝐿𝑛𝑠 =

𝐿𝑝𝑐/100) can be calculated by the Equation 56. 

𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 = Χ𝐿,𝑖/𝐿𝑛𝑠 (56) 

 

Then, the cubic unit cell in which the interpolation must be carried out (interpolation 

cell), is defined by the positions of the closest 8 velocity vectors to the scaled local 

position. Position (𝐏𝑬) components of the interpolation cell edge with smallest position 

components is then found by the Equation 57. Note, the components will be integers 

in the interval 1 ≤ Χ𝐸,𝑖 ≤ 101 

P𝐸,𝑖 = Φ(𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑) + 1 (57) 

 

If the edges of interpolation cell is numbered as seen in Figure C.1, then position points 

of all edges can be found by the Equations (58) to (65). 

P𝐸
1 = (P𝐸,1, P𝐸,2, P𝐸,3) (58) 

P𝐸
2 = (P𝐸,1 + 1, P𝐸,2, P𝐸,3) (59) 

P𝐸
3 = (P𝐸,1, P𝐸,2, P𝐸,3 + 1) (60) 

P𝐸
4 = (P𝐸,1 + 1, P𝐸,2, P𝐸,3 + 1) (61) 

P𝐸
5 = (P𝐸1, P𝐸,2 + 1, P𝐸,3) (62) 
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P𝐸
6 = (P𝐸,1 + 1, P𝐸,2 + 1, P𝐸,3) (63) 

P𝐸
7 = (P𝐸,1, P𝐸,2 + 1, P𝐸,3 + 1) (64) 

P𝐸
8 = (P𝐸,1 + 1, P𝐸,2 + 1, P𝐸,3 + 1) (65) 

 

After the edges of interpolation cell is calculated, velocity components at the 

corresponding edge points are called from VF array and assigned to each edge.  

Since the interpolation cell is a unit cube, a normalized tracer position inside the 

interpolation cell (𝚾𝑳𝒏) can be defined as having the components: 

Χ𝐿𝑛,𝑖 =
Χ𝐿,𝑖 − Φ(𝑋𝐿,𝑖

𝑠𝑐𝑎𝑙𝑒𝑑). 𝐿𝑛𝑠

𝐿𝑛𝑠
= 𝑋𝐿,𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 − Φ(𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑) (66) 

  

Normalized tracer position can be used as the interpolation point in a unit interpolation 

cell cornered at the origin and occupying the edge of first octant. It is equivalent to 

interpolating velocity components in the cell defined by points calculated in Equations 

(67) to (68) but these points are just used for locating velocity components in VF array. 

Additionally, using normalized tracer position simplifies interpolation equations by 

getting rid of intersection terms in the line equations. 
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Figure C.1: A basic visual representation of VF array (large blue cube on left) and an 

interpolation cell (small unit cube high-lighted with red) for a tracer (black dot) with 

indicated local position. Edge of the interpolation cell is at (n, n+1, 1), where P𝐸
1 is 

placed at. Magnified view of the interpolation cell on the right shows the arangement 

of numbered velocity vectors. Normalized position of the tracer inside the interpolation 

is illustrated by black dotted lines. 

 

 

An algorithm that uses the equations given in this section is presented below. 

1. Read local tracer position, velocity field, periodic cell length and amount of 

nodes in one dimension of the cubic velocity field array. 

2. Determine the position of reference edge of interpolation cell by Equations (69) 

and (70). 

3. Determine normalized tracer position in the interpolation cell by using 

Equation (71). 

4. Locate velocity vectors in VF using the location of interpolation cell calculated 

by Equations (72) to (73) and assign the first velocity component to 

corresponding edges. 

5. Interpolate. 
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6. Repeat steps 4 and 5 for remaining two velocity components. 

Following Fortran subroutine is an implementation of the interpolation algorithm. 

Actual interpolation is carried out inside the do loop individually for each velocity 

vector component. Neighboring points along lines parallel to x-axis is interpolated 

first, reducing the system to bilinear. Then second interpolation is done along z-axis. 

Finally, remaining two points are interpolated along y-axis to obtain velocity 

components at the local position 𝚾𝑳 of tracer. 

SUBROUTINE GIMME_VELOCITY(LOCALP,FIELD,LENGTH,GRID,VEL) 

IMPLICIT NONE 

 

!INTERPOLATION ALGORITHM STEP 1 

INTEGER, INTENT(IN) :: GRID 

DOUBLE PRECISION, INTENT(IN) :: FIELD(GRID,GRID,GRID,3) 

DOUBLE PRECISION, INTENT(IN) :: LOCALP(3),LENGTH 

DOUBLE PRECISION, INTENT(OUT) :: VEL(3) 

DOUBLE PRECISION :: XUNIT,YUNIT,ZUNIT,MAIN(8),FIRST(4),SECOND(2) 

INTEGER :: EDGE(3),DUMMY 

 

!INTERPOLATION ALGORITHM STEP 2 

EDGE(1)=INT(LOCALP(1)/(LENGTH/100))+1 

EDGE(2)=INT(LOCALP(2)/(LENGTH/100))+1 

EDGE(3)=INT(LOCALP(3)/(LENGTH/100))+1 

 

!INTERPOLATION ALGORITHM STEP 3 

XUNIT=MOD(LOCALP(1),(LENGTH/100))/(LENGTH/100) 

YUNIT=MOD(LOCALP(2),(LENGTH/100))/(LENGTH/100) 

ZUNIT=MOD(LOCALP(3),(LENGTH/100))/(LENGTH/100) 

 

DO DUMMY=1,3 

  !INTERPOLATION ALGORITHM STEP 4 

  MAIN(1)=FIELD(EDGE(1),EDGE(2),EDGE(3),DUMMY) 

  MAIN(2)=FIELD(EDGE(1)+1,EDGE(2),EDGE(3),DUMMY) 

  MAIN(3)=FIELD(EDGE(1),EDGE(2),EDGE(3)+1,DUMMY) 

  MAIN(4)=FIELD(EDGE(1)+1,EDGE(2),EDGE(3)+1,DUMMY) 

  MAIN(5)=FIELD(EDGE(1),EDGE(2)+1,EDGE(3),DUMMY) 

  MAIN(6)=FIELD(EDGE(1)+1,EDGE(2)+1,EDGE(3),DUMMY) 

  MAIN(7)=FIELD(EDGE(1),EDGE(2)+1,EDGE(3)+1,DUMMY) 

  MAIN(8)=FIELD(EDGE(1)+1,EDGE(2)+1,EDGE(3)+1,DUMMY) 

 

  !INTERPOLATION ALGORITHM STEP 5 (REDUCES TO BILINEAR) 

  FIRST(1)=MAIN(1)+((MAIN(2)-MAIN(1))*XUNIT) 

  FIRST(2)=MAIN(3)+((MAIN(4)-MAIN(3))*XUNIT) 

  FIRST(3)=MAIN(5)+((MAIN(6)-MAIN(5))*XUNIT) 

  FIRST(4)=MAIN(7)+((MAIN(8)-MAIN(7))*XUNIT) 

 

  !INTERPOLATION ALGORITHM STEP 5 (REDUCES TO LINEAR) 

  SECOND(1)=FIRST(1)+((FIRST(2)-FIRST(1))*ZUNIT) 

  SECOND(2)=FIRST(3)+((FIRST(4)-FIRST(3))*ZUNIT) 

 

  !INTERPOLATION ALGORITHM STEP 5 
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  VEL(DUMMY)=SECOND(1)+((SECOND(2)-SECOND(1))*YUNIT) 

ENDDO 

 

END SUBROUTINE GIMME_VELOCITY 

  

 

C.6. Adaptation of Diffusion Program to Simulate Dispersion 

 

Equation (15) given in the section 3.1.1 was modified into the Equation (74) to include 

a convective displacement term alongside the random displacement. Convective 

displacement by definition is the distance a tracer travels in a time interval ∆t  

according to the velocity (𝝑) of the fluid at the current position of the tracer. 

𝚾(t + ∆t) = 𝚾(t) + 𝛏∆𝑙 + ∆t𝝑(Χ1(t), Χ2(t), Χ3(t)) (75) 

 

Velocity field obtained from the fluid flow simulation done in COMSOL was 

transferred to VF array. The array contains velocity components in SI units. This array 

is converted to contain components of net displacement vectors to be used in Equation 

(75) by multiplying all of its elements by ∆t. This modification does not affect trilinear 

interpolation subroutine since VF still contains vector components. 

 DO I=1,GRID 

  DO J=1,GRID 

   DO K=1,GRID 

    DO L=1,3 

    VF(I,J,K,L)=VF(I,J,K,L)*DT 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

 

With the changes made to Equation (15) and addition of interpolation subroutine, the 

last code fragment given in section 3.4.3, which calculates random-walk of tracers in 

a random jammed packing of core-shell particles, needs 3 main alterations. 

1. Equation (15) must be changed to Equation (75). 
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2. Apart from the local positions 𝚾𝐋(t + ∆t) needed for collision control, local 

positions of tracers before displacement, 𝚾𝐋(t),  must also be calculated 

prior to the execution of interpolation subroutine since Equation (75) 

depends on it.  

3. Extracted data changes to cover only longitudinal displacement, since it is 

the only point of interest. 

A rank 1 array VELOCITY with size 3 is declared, given to interpolation subroutine as 

argument, and is holding interpolated net displacement vectors due to fluid flow. After 

the modifications on diffusion code, dispersion code is completed and given below. 

CALL INIT_RANDOM_SEED() 

 

DO I=1,NP 

 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

    

  DO J=1,NS 

      !ADDITIONAL CALCULATION OF LOCAL POSITION 

 PLOCAL(1)=MODULO(POSITIONOLD(I,1),RRATIO) 

 PLOCAL(2)=MODULO(POSITIONOLD(I,2),RRATIO) 

 PLOCAL(3)=MODULO(POSITIONOLD(I,3),RRATIO) 

 

 CALL GIMME_VELOCITY(PLOCAL,VF,RRATIO,GRID,VELOCITY) 

 

    !ALTERATION OF EQUATION (15) INTO EQUATION (76) 

    POSITIONNEW(I,1)=POSITIONOLD(I,1)+NUMBERSX(J)*DX+VELOCITY(1) 

    POSITIONNEW(I,2)=POSITIONOLD(I,2)+NUMBERSY(J)*DX+VELOCITY(2) 

    POSITIONNEW(I,3)=POSITIONOLD(I,3)+NUMBERSZ(J)*DX+VELOCITY(3) 

     

    PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO) 

    PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO) 

    PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO) 

        

    DO K=1,NOSRJP 

    

      IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2)& 

      &+((PLOCAL(3)-RJP(K,3))**2)).LE.(PR**2)) THEN 

 

      DO L=1,NOL 

        

        IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**& 

        &2) +((PLOCAL(3)-RJP(K,3))**2)) .LE. (RSOI(L)**2)) THEN 

         

        DO M=1,SC(L) 

         

          IF ((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+((PLOCAL(2)-CS& 

          &PRJP(K,L,M,2))**2) +((PLOCAL(3)-CSPRJP(K,L,M,3))**2& 

          &)).LE.(CSPRJP(K,L,M,4)**2)) THEN 
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          POSITIONNEW(I,1)=POSITIONOLD(I,1) 

          POSITIONNEW(I,2)=POSITIONOLD(I,2)    

          POSITIONNEW(I,3)=POSITIONOLD(I,3)    

  

          GOTO 200 

           

     ENDIF    

        ENDDO    

   ENDIF   

 ENDDO 

 ENDIF  

 

200 IF (MOD(J,B).EQ.0) THEN 

                          !ALTERATION TO DATA EXTRACTION  

      DISPLACEMENT(I,J/B)=ABS(POSITIONNEW(I,3)-POSITIONI(I,3))     

    ENDIF 

 

    POSITIONOLD(I,1)=POSITIONNEW(I,1) 

    POSITIONOLD(I,2)=POSITIONNEW(I,2) 

    POSITIONOLD(I,3)=POSITIONNEW(I,3)  

 

  ENDDO 

     

ENDDO 

 

Collected longitudinal displacement data taken at equally distant times, is treated to 

calculate variance of longitudinal displacements of all tracers in the tracer ensemble. 

Two new real strings VARIANCE and MEANDISP are declared to hold intermediate values 

during the calculations, where the first also holds the final variance value. Following 

code fragment carries out data treatment and writes time dependent variance data to a 

file. 

OPEN (#, FILE="LDISP VAR.TXT", STATUS="UNKNOWN", ACTION="WRITE")  

 

DO I=1,AODP 

  SUMDISP=0.0 

   

  DO J=1,NP 

    SUMDISP=SUMDISP+ DISPLACEMENT (J,I) 

  ENDDO 

   

  MEANDISP=SUMDISP/NP 

  VARIANCE=0.0 

   

  DO J=1,NP 

    VARIANCE=VARIANCE+(((DISPLACEMENT(J,I)-MEANDISP)& 

    &**2)/NP) 

  ENDDO 

   

  WRITE(#,’format’) VARIANCE 
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ENDDO 

 

 

C.7. Parallelization of Diffusion and Dispersion Programs 

 

Parallelization of Fortran programs was done by using OpenMP. It is an open source 

extension for open source GFortran compiler. Making use of pragmas otherwise 

invisible to the compiler, OpenMP forces other available processor threads to execute 

the program in parallel with each other. Depending on the fraction of the code that is 

parallelizable, wall-clock time of the program is significantly improved. 

OpenMP pragmas are in comment form and only recognized by the compiler if the 

directive “-fopenmp” is added to compilation directives. At the start of parallel region, 

“!$omp parallel” pragma is used. Parallel region is terminated at the line “!$omp end 

parallel” appears. Do loop iterations in the program can be shared between available 

threads by  “!omp do” and “!omp end do” placed at the start and end of the loop 

respectively. If not specified, load is distributed to each available thread equally. In the 

diffusion and dispersion programs, only the loops taking care of random-walk 

iterations were placed inside a parallel region by using combined directives “!$omp 

parallel do” and “!omp end parallel do” since the other sections of the program does 

not have a significant contribution to wall-clock times. If required, certain sections of 

the parallel region can be marked with “!$omp critical” and “!omp end critical” 

pragmas. In the critical region, procedures are executed in series. 

One thing that is really problematic in parallel computing is pseudo-random number 

generation. RNG subroutines readily available in the compilers use a seed to generate 

a pseudo-random number, then previous pseudo-random number is used as seed to 

generate the next random number in the sequence. Entire sequence of these random 

numbers are actually generated based on a function and predictable for a given initial 

seed, but since they are uniformly distributed they can be treated as random numbers, 

hence they are pseudo-random numbers.  
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During parallel execution of the program, an individual thread gets a subset of the 

entire sequence of pseudo-numbers that are collectively generated by all processor 

threads. However these subsets of numbers might not be uniformly distributed. If each 

individual thread is wanted to use a uniformly distributed sequence of pseudo random 

numbers, there is only two solutions to the problem. 

1. Use a dedicated pseudo-random number generator for each thread 

2. Do not allow parallel execution during pseudo-random number generation. 

First option might be a subject to mathematics or computer engineering research but it 

is beyond the interests of even this study, considering heavy usage of Fortran. 

However, the second option required much less knowledge in mathematics and 

computer engineering and a feasible option for proper parallelization of the model. 

Fortran programs written for Diffusion and Dispersion models already pre-generates 

and stores all required random numbers required for a tracer to complete its random 

motion. Recall, the arrays NUMBERSX, NUMBERSY and NUMBERSZ are of size total amount 

of number steps ,NS, and they are assigned values +1 or -1 at random in a single line 

of code by the subroutine NUMBERS.  

!$omp critical 

  CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

!$omp end critical 

 

If the RNG line is protected by a critical region, very simply defined by the code given 

above, any thread that tries to execute the NUMBERS subroutine must wait until the other 

thread finishes generating random numbers for the tracer it is occupied with. 

Effectively, this is no different than the entire non-parallellized programs since every 

tracer uses a complete sequence of random numbers to take random steps. 

Another important factor that needs to be considered for parallelization procedure is 

the variables that is re-assigned throughout the parallel region in the program. 

Boundary dummies for do loops as well as read-only variables previously defined and 

used in the parallel region are safe. However any other user-defined variable may cause 

problems in the parallel region. Common variables in both programs that may cause 
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problems are PLOCAL, NUMBERSX, NUMBERSY and NUMBERSZ while VELOCITY was 

introduced only for dispersion program. These strings must be marked as ‘private’ at 

the beginning of the parallel region so that each thread independently calculate new 

values for these variables throughout the execution. Marking is done by simply 

attaching “private([string1, string2, ..])” directive at the end of the starting 

pragma. After the parallelization, main iteration loop looks like the following. 

!$omp parallel do private(plocal, numbersx, numbersy, numbersz, 

velocity) 

DO I=1,NP 

   

  !$omp critical 

    CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ) 

  !$omp end critical 

  . 

  .!SECOND DO BLOCK HERE 

  . 

ENDDO 

!$omp end parallel do 

 

Note that, POSITIONOLD and POSITIONNEW arrays as well as DISPLACEMENT, also 

assigned new values in the parallel region. However the new values are not assigned 

more than once to a single element in these arrays. Therefore they do not cause any 

inconveniency and not included in the private list.  
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APPENDIX D 

 

 

FLOWCHARTS

 

 

 

D.1. Diffusion/Dispersion Algorithm 

 

Set DAB, N, ts, Δl and calculate Δt, ns 

Read random jammed packing of 

monodisperse hardspheres from file 

Calculate core-shell particle 

geometry using input parameters 

Scale the packing of hardspheres and 

translate the calculated core-shell 

geometry into the packing 

Set initial positions of tracers throughout the inter-particle 

void space inside the main periodic cell using a bulk 

injection type initial condition 

Read velocity field from file, set 

Peclet number and linearly scale the 

velocity field 
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Select the next tracer. Generate 

all random displacements for the 

tracer at once. 

Displace the tracer one step using equation:  

𝚾(t + ∆t) = 𝚾(t) + 𝛝(𝚾(t))∆t + 𝛏∆𝑙 

Did collision 

occur? 

Reflect the tracer using 

bounce-back method 

𝜲(t + ∆t) = 𝜲(t) 

Is duration 

over? 

Set the new position as the 

old position for next step 

𝜲(t) = 𝜲(t + ∆t) 

Yes 

No 

Yes 

No 

Appendix D.2 

Are all tracers 

completed? 

Yes 

No 

End 
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D.2. Collision Control Algorithm 

 

Check the following inequality for all core-shell particles 

centered at points (𝑥0, 𝑦0, 𝑧0) in the packing using the 

local coordinates of the tracer at location 𝚾(t + ∆t) and 

radius of core-shell particles 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2 

Does the inequality 

hold for any core-

shell particle? 

No 

The tracer is in inter-

particle space. Collision 

did not occur. 

The tracer is inside the core-shell particle the inequality holds 

for. Check the following inequality one by one for all spheres 

of influence sharing the center point (𝑥0, 𝑦0, 𝑧0) with the core-

shell particle using the local coordinates of the tracer at 

location 𝜲(t + ∆t) and radius of spheres of influence. 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦
0

)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2 

Does the inequality 

hold for the sphere 

of influence? 

Check the next 

sphere of 

influence 

Yes 

Yes No 
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The tracer is inside the shell layer right beneath the sphere of 

influence the inequality holds for. Check the following inequality 

one by one for all shell-side spheres with the center points 

(𝑥0, 𝑦0, 𝑧0) in that shell layer using the local coordinates of the 

tracer at location 𝜲(t + ∆t) and radius of shell side spheres. 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦
0
)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2 

Does the inequality 

hold for the first 

sphere of influence? 

Yes 

No 

Tracer 

collided 

with the 

core sphere 

Does the inequality 

hold for the shell-

side sphere? 

Check the 

next shell-

side sphere 

No 

Are all shell-side 

spheres checked? 

Tracer 

collided with 

the shell-side 

sphere 

Yes 

No 

Yes 

The tracer is in  

intraparticle pore space. 

Collision did not occur. 
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D.3. Overall Work Flowchart 

 

Generate random 

jammed packing 

of hardspheres 

Generate 

OpenSCAD Script 

using Fortran 

Detect ‘invading’ or 

overhanging spheres 

in the packing using 

Excel 

Add required copies 

of detected spheres 

based on visuals in 

OpenSCAD 

Periodic-ready random 

jammed packing of 

hardspheres 

Fortran reads periodic-

ready random jammed 

packing of hardspheres.  

Fortran calculates a core-

shell particle geometry  

Core-shell geometry and packing 

geometry is integrated in Fortran to 

create a packing of core-shell particles  

A script is generated using 

Fortran and these calculated 

geometries are visually 

inspected in OpenSCAD. 

Simulation of diffusion 

in random packing of 

core-shell particles 

using Fortran 

Fluid flow velocity 

field from COMSOL 
Format change using Octave 

Simulation of dispersion 

in random packing of 

core-shell particles 

using Fortran 

Results: 

DAB vs. time  

σL
2 vs. time  

Curve fitting in Excel. Results: 

Longitudinal dispersion coefficients 

Plate heights and reduced plate heights 




