

GEOMETRY-BASED MODELING OF DISPERSION IN CORE-SHELL

PARTICLE MEDIA

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE HATİPOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

CHEMICAL ENGINEERING

SEPTEMBER 2017

Approval of the thesis:

GEOMETRY-BASED MODELING OF DISPERSION IN CORE-SHELL

PARTICLE MEDIA

Submitted by EMRE HATİPOĞLU in the partial fulfillment of the requirements for

the degree of Master of Science in Chemical Engineering Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halil Kalıpçılar

Head of Department, Chemical Engineering

Asst. Prof. Dr. Harun Koku

Supervisor, Chemical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Deniz Üner

Chemical Engineering Dept., METU

Asst. Prof. Dr. Harun Koku

Chemical Engineering Dept., METU

Prof. Dr. Pınar Çalık

Chemical Engineering Dept., METU

Assoc. Prof. Dr. Çerağ Dilek-Hacıhabiboğlu

Chemical Engineering Dept., METU

Asst. Prof. Dr. Eda Çelik Akdur

Chemical Engineering Dept., Hacettepe University

 Date: 07.09.2017

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name : Emre Hatipoğlu

 Signature :

v

ABSTRACT

GEOMETRY-BASED MODELING OF DISPERSION IN CORE-SHELL

PARTICLE MEDIA

Hatipoğlu, Emre

M.Sc., Department of Chemical Engineering

 Supervisor : Asst. Prof. Dr. Harun Koku

September 2017, 203 pages

Dispersion is an important physical phenomenon that heavily influences performances

of systems such as chromatographic separation processes. Mathematical modeling of

this phenomenon is therefore widely investigated. This thesis study investigates

dispersion of random-walking particles, or tracers, around core-shell particles, a type

of recently commercialized spherical and porous stationary phase used in liquid

chromatography that has a solid impermeable core that limits diffusion near the center

and a porous shell covering the core. A random-walk approach was used for modelling

the diffusion events, coupled with an external fluid velocity field to simulate

convection and diffusion simultaneously. Impermeable boundaries of an unbound,

without wall-effects, liquid chromatography column packed with core-shell particles

were created using basic principles of analytical geometry, defining core-shell

vi

particles as a collection of a large core spheres and much smaller shell side spheres

coated around the core based on actual microscopy images of core-shell particles.

Reconstruction method was very similar to the actual production methods of these type

of materials where a silica core sphere is coated by silica nanospheres to create a core-

shell particle with a very homogeneous geometry. Analytically reconstructed

geometry was visually inspected using CAD images and found to be appropriate. The

core-shell particle geometry was then copied into a periodic random jammed packing

of monodisperse hardspheres generated independently by a software and scaled in size

such that core-shell particles would flush-fit inside the hardsphere that make the

random packing. Random packing of hardspheres were also used as the system

boundaries of fluid flow calculations. Assuming no flow would occur inside the pores

of core-shell particles, velocity field of the fluid flow obtained by these calculations

were used in couple with random-walk diffusion to simulate dispersion in the periodic

random jammed packing of core-shell particles. Predictions of the dispersion model

were quantized in terms of reduced plate height at different operating Peclet numbers

and the results were compared with experimental data found in the literature.

Predictions of the model compares very well with the experimental data with

deviations clearly explainable by the differences between the simulated system and the

experimental system. Therefore the analytical geometry based reconstruction method

of the core-shell particles was successful and it can potentially pose an alternative to

complicated imaging and image processing for similar system geometries.

Keywords: Random-walk Diffusion, Dispersion, Analytical Geometry, Core-Shell,

Chromatography

vii

ÖZ

ÇEKİRDEK-KABUK PARÇACIK ORTAMLARINDA KÜTLE DAĞILMASININ

GEOMETRİ TABANLI MODELLENMESİ

Hatipoğlu, Emre

Yüksek Lisans, Kimya Mühendisliği Bölümü

 Tez Yöneticisi : Yrd. Doç. Dr. Harun Koku

Eylül 2017, 203 sayfa

Kütle dağılması, kromatografik ayırma işlemleri gibi bazı sistemlerin performansını

oldukça ileri seviyede etkileyen bir fiziksel olaydır. Dolayısıyla bu olayın

matematiksel olarak modellenmesi yaygın bir şekilde çalışılmaktadır. Bu tez

çalışması, sıvı kromatografisinde son yıllarda ticari olarak kullanılmaya başlanan bir

durağan faz malzemesi olan, geçirimsiz bir çekirdek ve bu çekirdeğin etrafını kaplayan

gözenekli bir tabakadan oluşan küresel çekirdek-kabuk parçacıklarının etrafında

rastgele-yürüyüz yapan noktasal parçacıklara ait kütle dağılması olayını incelemeyi

amaçlamaktadır. Ayrı olarak hesaplanan bir akışkan hız alanı, rastgele-yürüyüş

metodu kullanan bir difüzyon modeliyle birlikte kullanılarak konveksiyon ve difüzyon

olaylarını birlikte açıklayabilen bir kütle dağılması modeli oluşturulmuştur. Duvar

etkilerinin olmadığı, çekirdek-kabuk parçacıklarla istiflenmiş sonsuz genişlikte teorik

viii

bir sıvı kromatografi kolonu bu çalışmada basit analitik geometri prensipleri

kullanılarak yeniden oluşturulmuştur. İlk aşamada, çekirdek- kabuk parçacıklar,

mikroskop görüntüleri ve gerçek üretim metodları göz önünde bulundurularak büyük

bir çekirdek küresinin etrafına katman-katman yerleştirilmiş kabuk kürelerinden

oluşacak şekilde matematiksel olarak yeniden inşa edilmiştir. Sonrasında ise aynı

büyüklükteki kürelerden oluşan periyodik olarak rastgele ve sıkıca istiflenmiş

kürelerin geometrisi ayrı bir yazılımla oluşturulmuş, istiflenmiş küre geometrisi ise

yeniden inşa edilen çekirdek-kabuk parçacıkların tam olarak periyodik istifteki

kürelerin içine sığabileceği şekilde yeniden ölçeklendirilmiş ve nihayet periyodik

olarak rastgele istiflenmiş bir çekirdek-kabuk parçacık geometrisi elde edilmiştir.

Oluşturulan çekirdek parçacık geometrisi bilgisayar yardımlı çizim teknikleri

kullanılarak görsel olarak incelenmiş ve uygun bulunmuştur. İstiflenmiş küre

geometrisi ayrıca akışkan hız alanı hesaplanmasında kullanılmış, ve çekirdek-kabuk

parçacıkların gözenekli kısımlarında akışın olmayacağı varsayılarak elde edilen

akışkan hız alanı rastgele-yürüyüş modeliyle birleştirilerek çekirdek-kabuk

malzemelerin etrafında kütle dağılımını tahmin edebilen bir matematiksel model

oluşturulmuştur. Modelin tahminleri lteratürde bulunan uygun deneysel verilerle

karşılaştırılmıştır. Model tahminleri ve deneysel verilerin aralarındaki farklar ise

simülasyon sistemi ve deneysel sistem arasındaki temel farklar göz önünde

bulundurularak açıklanabilmiştir. Sonuç olarak, çekirdek-kabuk malzemelerin analitik

geometri prensipleri kullanılarak yeniden oluşturulmasının, benzer sistemlerde

kullanılabilecek olan başarılı bir yöntem olduğu ortaya çıkmıştır. Bu yöntem

görüntüleme ve görüntü işleme gibi zahmetli ve külfetli prosedürlere alternatif

oluşturabilir.

Anahtar Kelimeler: Rastgele-yürüyüş Difüzyon, Kütle Dağılımı, Analitik Geometri,

Çekirdek-Kabuk, Kromatografi

ix

To family and friends,

x

ACKNOWLEDGMENTS

First and foremost, I would like to serve my gratitudes to my thesis supervisor, Asst.

Prof. Dr. Harun Koku for his support and help. I am very grateful for the opportunities

he presented me, that otherwise would most possibly not occur. His knowledge and

diligence has always inspired me and always will.

I feel extremely lucky to have great friends all of whom I share darkest memories and

brightest hopes of our lives, and even a profession with. I cannot thank enough to Veysi

Halvacı, Zeynep Karakaş, Arzu Arslan Bozdağ, Berna Sezgin and Deniz Kaya for

keeping me sane by their companionship on and off campus, their valuable advices,

opinions, conversations on life and academia. I would like to thank to Görkem Bircan,

Ekin Nural, Oğuzhan Paçal, Ali Dinç Bozat and Emre Can Ersoy, who are not different

than a brother to me, for their life-long friendships and supports.

I want to thank to my beloved brother, Eren Hatipoğlu, for his love, support and

friendship. Lastly, I would like to thank to my parents for their support, love and for

encouraging me to take on this M.Sc. programme. Without them, this work literally

would not exist.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES ... xv

LIST OF FIGURES .. xvi

LIST OF SYMBOLS .. xxviii

CHAPTERS

 1. INTRODUCTION... 1

 2. LITERATURE SURVEY ... 5

 2.1. Liquid Chromatography ... 5

2.1.1. Overview .. 5

2.1.2. Porous Stationary Phases in Liquid Chromatography 8

 2.2. Core-Shell Particles .. 9

2.2.1. Overview .. 9

2.2.2. Production Methods and Imaging .. 11

 2.3. Modelling of Diffusion and Dispersion ... 15

2.3.1. Continuum Solutions .. 15

2.3.2. Random-Walk Diffusion .. 16

xii

2.3.3. Particle Tracking Methods for Dispersion ... 18

2.3.4. Dispersion Models Related to Core-Shell Particles 20

2.3.5. Time Scales and Dimensionless Measures of Time 23

 3. METHODS .. 25

 3.1 Diffusion Model .. 26

3.1.1 Free Molecular Diffusion .. 26

3.1.2 Impermeability & Collision Control ... 29

3.1.3 Periodical Boundaries ... 32

3.1.4. Initial Conditions .. 35

 3.2. Construction of the Core-Shell Particle Geometry .. 36

3.2.1. Strategy ... 36

3.2.2. Single Layer Core-Shell Particle Geometry ... 37

3.2.3. Generalization to Multiple Shell-Layers .. 40

 3.3 Periodical Random Packing of Core-Shell Particles ... 42

3.3.1. Random Packings of Monodisperse Hardspheres 43

3.3.2. Visualization & Inspection of the Random Jammed Packing of

Hardspheres .. 44

3.3.3. Combination of Core-Shell Particle and Hardsphere Packing Geometries

 .. 46

3.3.4. Integration of Core-Shell Packing Geometry and Collision Control 47

 3.4. Simulation of Fluid Flow in a Random Packing of Monodisperse Hardspheres

 in COMSOL .. 49

 3.5. Integration of the Diffusion and Fluid Flow .. 52

 3.6. Software Implementation of the Model ... 53

3.6.1. Free Molecular Diffusion ... 53

3.6.2. Computation and Storage of Impermeable Boundaries 54

xiii

3.6.3. Adapting the Free Molecular Diffusion Code to Simulate Impermeability

 .. 55

3.6.4. Storage of Velocity Field ... 57

3.6.5. Adaptation of Diffusion Program to Simulate Dispersion 57

3.6.6. Parallelization of Diffusion and Dispersion Programs............................. 59

3.6.7. A Summary of Interactions Between Software Components 59

 4. RESULTS AND DISCUSSION ... 63

 4.1. Simulation of Diffusion in Stagnant Media ... 63

4.1.1. Validation of the Free Diffusion Program ... 63

4.1.2. Validation of Periodic Boundaries and Collision Control 65

4.1.3. Validation of Core-Shell Particle Geomtery .. 69

4.1.4. Validation of Core-Shell Packing Geometry ... 74

4.1.5. Diffusion in Random Jammed Packing of Core-Shell Particles 75

 4.2. Fluid Flow Simulations .. 80

4.2.1. Validation of Periodic Flow Conditions .. 80

4.2.2. Stokes Flow Range Inside the Packing .. 84

 4.3. Dispersion Model ... 86

4.3.1. Validation of Dispersion Model by Simulating Taylor Dispersion in a

Pipe ... 86

4.3.2. Longitudinal Dispersion Coefficients of Tracers 88

4.3.2.1. In the Random Packing of Monodisperse Hardspheres 88

4.3.2.2. In the Random Packing of Core-Shell Particles 91

4.3.2.3. Reduced Plate Heights in an Unbound Liquid Chromatography Column

 .. 95

 5. CONCLUSIONS ... 107

 6. RECOMMENDATIONS .. 111

xiv

REFERENCES ... 113

APPENDICES

 A. FORTRAN CODES ... 119

A.1. Validation of Free Diffusion Program .. 119

A.2. Validation of Periodic Boundaries ... 121

A.3. Validation of Core-Shell Particle Geometry and Packing 123

A.4. Diffusion/Dispersion in Random Jammed Packing of Core-Shell Particles

 .. 127

 B. DISPERSION COEFFICIENTS .. 143

B.1. In Taylor Dispersion Simulation .. 143

B.2. In the Random Packing of Monodisperse Hardspheres 150

B.3. In the Random Packing of Core-Shell Particles 157

 C. FORTRAN IMPLEMENTATIONS ... 169

C.1. Free Molecular Diffusion ... 169

C.2. Computation and Storage of Impermeable Boundaries 175

C.3. Adapting Free Molecular Diffusion Code to Simulate Impermeability ... 185

C.4. Storage of Velocity Field .. 187

C.5. Tri-linear Interpolation of Velocity Vectors ... 189

C.6. Adaptation of Diffusion Program to Simulate Dispersion 193

C.7. Parallelization of Diffusion and Dispersion Programs 196

 D. FLOWCHARTS ... 199

D.1. Diffusion/Dispersion Algorithm ... 199

D.2. Collision Control Algorithm .. 201

D.3. Overall Work Flowchart ... 203

xv

LIST OF TABLES

Table 1: A summary of diffusion simulations. Results for double layer core-shell

particles are averaged for Run 1 and Run 2 due to very close values in both runs. ... 80

Table 2: Maximum and average Reynolds numbers in the velocity fields, average

velocity components and average velocity magnitudes obtained from the solutions at

pressure drops between 400 and 24000 Pa. ... 84

Table 3: Volume-average velocity magnitudes in the linearly scaled velocity field at

different Peclet numbers, corresponding estimated asymptotic time-slopes of 𝜎𝐿
2 and

normalized longitudinal dispersion coefficients. ... 90

Table 4: Volume-average velocity magnitudes in the linearly scaled velocity field at

different Peclet numbers, corresponding estimated time-slopes of 𝜎𝐿
2 and normalized

longitudinal dispersion coefficients. .. 93

Table 5: Volume-average z-components of velocity in the linearly scaled velocity field

at different Peclet numbers, corresponding plate heights and reduced plate heights

calculated by Equation (55) using variance slopes determined previously in Table 4.

.. 96

Table C.1: Declared main parameters and variables and corresponding strings and their

declaration types used for free diffusion model. .. 172

Table C.2: Additional strings declared for the free diffusion code as necessary

parameters for calculations. ... 176

Table C.3: Declared parameters and variables and corresponding strings and their

declaration types for the code fragment that calculates a core-shell particle geometry.

.. 178

xvi

LIST OF FIGURES

Figure 1: Band-broadening process. A rectangular concentration band morphs into a

Gaussian shaped concentration band due to dispersion in the chromatographic system

.. 6

Figure 2: Basic visual representation of a core-shell particle, with impermeable solid

core sphere and porous shell coated around it. .. 9

Figure 3: Improved C-branches in columns using core-shell particles (Halo) compared

to the columns packed with fully porous particles (Silica-B). Left: Small molecules

performance. Right: Large molecules performance (Adopted from the work of Gritti

et al. (2007) with permission). .. 10

Figure 4: Images of commercially available core-shell particles. Attention for

smoothness and similar sizes of the entire particles (top left and right) and the

morphology of the shell layers (bottom) (Adopted from the work of Gritti et al. (2010)

with permission). ... 12

Figure 5: Representative flowchart of the layer-by-layer coating of solid core with

nanospheres. Charged polymers are removed by heat treatment, their space becomes

the pores between nanospheres coated in layers (Adopted from the work of Hayes et

al. (2014) with permission) .. 13

Figure 6: Digital reconstruction of capillary packed with core-shell particles. Core

spheres and shell areas are clearly visible in grey and yellow respectively. Capillary

walls are highlighted in dark shade (Adopted from the work of Bruns and Tallarek

(2011) with permission). .. 14

xvii

Figure 7: Distributions of shell thickness, core diameter and entire particle diameter of

core-shell particles in the reconstructed portion of the capillary column, as determined

by image-processing techniques (Adopted from the work of Bruns and Tallarek (2011)

with permission). ... 14

Figure 8: Path followed by a random-walking particle in 2-D. Start and end points

shown in red. Darker blue paths are sampled multiple times by the particle. 17

Figure 9: Ranges of transchannel (black brackets) -due to channeling of flow through

narrow high porosity regions along the column- and interchannel (red brackets) -due

to radial or transverse flow caused by the fluctuations in the porosity profile across the

column- contributions to the dispersion, or plate height in a chromatographic system

(Adopted from the work of Daneyko et al. (2015) with permission). 22

Figure 10: An arbitrary 2-D system. Dark shade areas are bound by two impermeable

walls, the circle (𝑥2 + 𝑦2 = 25) and the line (𝑥 = 25). Diffusion domain is the area

illustrated in lighter shade. ... 31

Figure 11: Specular Reflection and Bounce-Back methods (Szymczak and Ladd,

2003). Left side of impermeable wall is solid, right side allows diffusion.

.. 31

Figure 12: An illustration for the use of periodic boundaries to create an infinite array

of circles in an ordered arrangement. Main periodic cell and a circular impermeable

zone inside it are represented in solid red color, while the impermeable zones

effectively created by the periodic boundaries are in dotted blue color. All points

indicated by several small blue triangles are equivalent to the point indicated by the

small red triangle in the main periodic cell. Crystal structure of the system extends to

infinity without any bounds. .. 33

Figure 13: Rough visual representation of core-shell particle reconstruction. Different

elements of the particle geometry (large core spheres and some of smaller shell

spheres) and concepts created related to the calculations which are auxiliary circles

(dashed circles, passing through the center of smaller shell spheres), sphere of

influence (sphere with dot-dashed boundary) are visualized. 39

xviii

Figure 14: OpenSCAD images of the random jammed packing of monodisperse

hardspheres. Cubic unit cell is visible in transparent. Left: Packing of 50 monodisperse

spheres originally generated by the Skoge et al. code. Right: Packing after adding the

required copies for two selected spheres, painted in red and black. Complementary

copies of the red and black spheres are colored orange (near the corners) and grey (at

the back-right), respectively. ... 45

Figure 15: Left: Entire geometry of the system. Right: Fluid domain. 49

Figure 16: Two sets of periodic flow conditions with zero pressure difference. 50

Figure 17: Left: Periodic flow condition with a set ∆𝑃. Right: Fine mesh generated by

COMSOL Multiphysics. .. 51

Figure 18: Interaction chart summarizing input/output relations between different

software. .. 61

Figure 19: Normalized time dependent diffusion coefficients predicted by the model

with respect to time. Results are for three different time steps, and a tracer population

of 4000. Legend shows ∆𝑡 values used for corresponding data set. 64

Figure 20: Normalized time dependent diffusion coefficients predicted by the model

with respect to time. Results are for 𝑁 = (500,1000,2000,4000) and ∆𝑡 = 10−5𝑠 .

Legend shows 𝑁 values used for corresponding data set. .. 64

Figure 21: Two different side views of final collision sites between every tracer and

the packing produced by the periodic boundaries from a single impermeable boundary

defined in the main periodic cell. Units for all axis are in 𝜇𝑚.The red frame indicates

the scale and approximate position of a single periodic cell in the system. 66

Figure 22: Local collision sites around the boundary defined in the main periodic cell.

Left: Collision sites in point injection simulation. Right: Collision sites in distributed

injection simulation. The box corresponds to the dimensions and the position of the

main periodic cell. .. 67

xix

Figure 23: Normalized transient diffusion coefficients predicted by the model in

simple cubic equivalent periodic cell, for random-step sizes between ∆𝑙 = 𝑑/10 and

∆𝑙 = 𝑑/40. .. 68

Figure 24: Section views of single layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. .. 70

Figure 25: Section views of double layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. .. 70

Figure 26: Section views of triple layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8. .. 71

Figure 27: Shell porosity of a core-shell particle with certain 𝜑 values vs. the amount

of shell layers it has. Note the convergence of shell porosity to 0.477 as 𝑛𝑙 approaches

to infinity. .. 72

Figure 28: Entire porosities of core-shell particle with certain 𝜑 values (indicated as

“CP #” in legend) vs. the amount of shell layers it has. ... 73

Figure 29: Random jammed packings of 100 single layer core-shell particles with

𝑟𝑝 = 2.5 𝜇𝑚. The main periodic cell is visible in translucent grey color. Left: Core-

shell particles with 𝜑 = 0.7. Right: Core-shell particles with 𝜑 = 0.8. 75

Figure 30: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

core-shell particles with single shell layer and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3

decimals. .. 76

Figure 31: Normalized time-dependent diffusivity in the packing of 3.4 𝜇𝑚 in

diameter core-shell particles with single shell layer and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2

decimals. .. 78

xx

Figure 32: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

core-shell particles with 2 shell layers and core-to-particle ratio of 0.77. Normalized

effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3 decimals. . 78

Figure 33: Normalized time-dependent diffusivity in the packing of 3.4 𝜇𝑚 in

diameter core-shell particles with 2 shell layers and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2

decimals. .. 79

Figure 34: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

and 3.4 𝜇𝑚 in diameter core-shell particles with 3 shell layers and core-to-particle ratio

of 0.655. Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two diameters in 2

significant figures. ... 79

Figure 35: Contour plots of velocity field z-components at the periodic boundary

couple parallel to xy-plane. Left: Top view of the main periodic cell. Right: Bottom

view of the main periodic cell. ... 81

Figure 36: Contour plots of velocity field z-components at the periodic boundary

couple parallel to yz-plane. Left: Right side view of the main periodic cell. Right: Left

side view of the main periodic cell. ... 82

Figure 37: Contour plots of velocity field z-components at the periodic boundary

couple parallel to zx-plane. Left: Back view of the main periodic cell. Right: Front

view of the main periodic cell. ... 82

Figure 38: Longitudinal dispersion coefficients in a pipe, predicted by Taylor

Dispersion Model (1953) and the dispersion model built in the thesis study, at different

Peclet numbers. Both axis are logarithmic. Note the deviation between two models at

low Pe. ... 87

Figure 39: Longitudinal displacement variance vs. time at Peclet numbers 10 (top) and

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to

the right. ... 89

xxi

Figure 40: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the

model vs. 𝑃𝑒. ... 90

Figure 41: Longitudinal displacement variance vs. time at Peclet numbers 1 (top) and

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to

the right. ... 92

Figure 42: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the

model vs. 𝑃𝑒. ... 94

Figure 43: Reduced plate height of tracer ensemble vs. Peclet number. 97

Figure 44: Reduced plate heights predicted by the model and experimental reduced

plate height data for non-retained small molecule; uracil. Experimental data was taken

from the study of Guiochon and Gritti (2011). .. 97

Figure 45: Reduced plate height vs. Pe predicted by simulations done with tracer bulk

diffusion coefficients 1160 𝜇𝑚2/𝑠 (A) and 110 𝜇𝑚2/𝑠 (B). 99

Figure 46: Experimental reduced plate height data of Guiochon and Gritti (2011)

extended to 𝑃𝑒 = 100 by Knox equation best fit with 𝐴 = 0.80, 𝐵 = 1.77 and 𝐶 = 0.

Reduced plate heights predicted by the model is also available, along with the best

fitted Knox curve with 𝐴 = 0.53, 𝐵 = 1.25 and 𝐶 = 0.02, for comparison. 100

Figure 47: Extended Giddings model equations fit (dotted lines) to simulation data (A)

and the experimental data from the study of Gritti & Guiochon (2011) (B).

Contributions to reduced plate heights from transchannel eddy dispersion, interchannel

eddy dispersion, intra-particle mass transfer limitations and longitudinal diffusion are

dashed lines. ... 103

Figure 48: Comparison of longitudinal diffusion contributions to reduced plate heights

predicted by the model to experimental data. ... 104

Figure 49: Comparison of transchannel eddy diffusion contributions to reduced plate

heights predicted by the model to experimental data. ... 104

xxii

Figure 50: Comparison of interchannel channel eddy diffusion contributions to

reduced plate heights predicted by the model to experimental data. 105

Figure 51: Comparison of intra-particle mass transfer limitation contributions to

reduced plate heights predicted by the model to experimental data. 105

Figure B.1: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1.13. Fit

parameters are, 𝐴 = 186.2 and 𝑘 = 54.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 143

Figure B.2: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2.25. Fit

parameters are, 𝐴 = 222.4 and 𝑘 = 93.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 144

Figure B.3: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 22.5. Fit

parameters are, 𝐴 = 1264.6 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 144

Figure B.4: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45.0. Fit

parameters are, 𝐴 = 4593.4 and 𝑘 = 632.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 145

Figure B.5: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 67.5. Fit

parameters are, 𝐴 = 9922.0 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 145

Figure B.6: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90.1. Fit

parameters are, 𝐴 = 17859.5 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 146

Figure B.7: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 112.6. Fit

parameters are, 𝐴 = 29542.8 and 𝑘 = 201.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 146

xxiii

Figure B.8: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 225.2. Fit

parameters are, 𝐴 = 113724.9 and 𝑘 = 439.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 147

Figure B.9: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 450.4. Fit

parameters are, 𝐴 = 430558.9 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 147

Figure B.10: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 675.5. Fit

parameters are, 𝐴 = 987587.8 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 148

Figure B.11: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit

parameters are, 𝐴 = 1759189 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 148

Figure B.12: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit

parameters are, 𝐴 = 2786138 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 149

Figure B.13: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit

parameters are, 𝐴 = 2167.8 and 𝑘 = 118.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 150

Figure B.14: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit

parameters are, 𝐴 = 3143.8 and 𝑘 = 139.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 151

Figure B.15: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit

parameters are, 𝐴 = 4436.9 and 𝑘 = 184.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 151

Figure B.16: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit

parameters are, 𝐴 = 5520.0 and 𝑘 = 183.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 152

xxiv

Figure B.17: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit

parameters are, 𝐴 = 7170.6 and 𝑘 = 187.5. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 152

Figure B.18: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit

parameters are, 𝐴 = 7597.7 and 𝑘 = 306.9. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 153

Figure B.19: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit

parameters are, 𝐴 = 9539.2 and 𝑘 = 256.82. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 153

Figure B.20: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit

parameters are, 𝐴 = 10425.2 and 𝑘 = 377.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 154

Figure B.21: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 60. Fit

parameters are, 𝐴 = 13117.7 and 𝑘 = 370.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 154

Figure B.22: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 70. Fit

parameters are, 𝐴 = 16003.4 and 𝑘 = 381.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 155

Figure B.23: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 80. Fit

parameters are, 𝐴 = 19331.5 and 𝑘 = 589.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 155

Figure B.24: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90. Fit

parameters are, 𝐴 = 21591.7 and 𝑘 = 621.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 156

Figure B.25: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit

parameters are, 𝐴 = 25076.5 and 𝑘 = 695.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 156

xxv

Figure B.26: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1. Fit

parameters are, 𝐴 = 173.9 and 𝑘 = 16.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 157

Figure B.27: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2. Fit

parameters are, 𝐴 = 242.1 and 𝑘 = 29.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 157

Figure B.28: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 3. Fit

parameters are, 𝐴 = 311.7 and 𝑘 = 56.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 158

Figure B.29: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 4. Fit

parameters are, 𝐴 = 425.0 and 𝑘 = 52.8. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 159

Figure B.30: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 5. Fit

parameters are, 𝐴 = 538.2 and 𝑘 = 80.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 159

Figure B.31: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 6. Fit

parameters are, 𝐴 = 645.5 and 𝑘 = 124.4. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 160

Figure B.32: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 7. Fit

parameters are, 𝐴 = 850.4 and 𝑘 = 54.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right. 160

Figure B.33: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 8. Fit

parameters are, 𝐴 = 1014.5 and 𝑘 = 73.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 161

Figure B.34: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 9. Fit

parameters are, 𝐴 = 1109.5 and 𝑘 = 102.8. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 161

xxvi

Figure B.35: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 10. Fit

parameters are, 𝐴 = 1369.5 and 𝑘 = 77.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 162

Figure B.36: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit

parameters are, 𝐴 = 2342.0 and 𝑘 = 137.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 162

Figure B.37: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit

parameters are, 𝐴 = 3520.5 and 𝑘 = 135.8. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 163

Figure B.38: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit

parameters are, 𝐴 = 4855.0 and 𝑘 = 146.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 163

Figure B.39: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit

parameters are, 𝐴 = 6454.7 and 𝑘 = 191.0 Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 164

Figure B.40: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit

parameters are, 𝐴 = 8003.9 and 𝑘 = 195.9. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 164

Figure B.41: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit

parameters are, 𝐴 = 10003.1 and 𝑘 = 214.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 165

Figure B.42: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit

parameters are, 𝐴 = 12122.3 and 𝑘 = 198.3. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.......................... 165

Figure B.43: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit

parameters are, 𝐴 = 14021.3 and 𝑘 = 223.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 166

xxvii

Figure B.44: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 75. Fit

parameters are, 𝐴 = 26705.8 and 𝑘 = 256.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 166

Figure B.45: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit

parameters are, 𝐴 = 39604.1 and 𝑘 = 299.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right. 167

Figure C.1: A basic visual representation of VF array (large blue cube on left) and an

interpolation cell (small unit cube high-lighted with red) for a tracer (black dot) with

indicated local position. Edge of the interpolation cell is at (n, n+1, 1), where P𝐸
1 is

placed at. Magnified view of the interpolation cell on the right shows the arangement

of numbered velocity vectors. Normalized position of the tracer inside the interpolation

is illustrated by black dotted lines. ... 191

xxviii

LIST OF SYMBOLS

H Height equivalent to a theoretical plate, or plate height

h Reduced plate height

𝑑𝑝 Particle diameter (core-shell, sphere)

𝐷, 𝐷𝐴𝐵 Bulk diffusivity

𝐷𝑒𝑓𝑓 Effective diffusivity

𝐷𝐿 Longitudinal dispersion coefficient

𝐿 Characteristic length

𝐿𝑝𝑐 Length of the periodic cell

𝑁 Number of tracers used in a simulation

𝑛𝑎𝑢𝑥,𝑘 Number of auxiliary circles around the core sphere or the kth sphere of

influence

𝑛𝑙 Number of shell layers in a core-shell particle

𝑛𝑠 Number of random-steps a single tracer takes in a simulation

𝑛ssa,i,k Number of shell-side spheres that can be placed around the ith

auxiliary circle of the kth sphere of influence

𝑛𝑠𝑠𝑒,𝑘 Number of shell-side spheres that can be fit around the equator of core

sphere, or the kth sphere of influence

xxix

P𝑗,𝑖,𝑘 A vector that has the coordinates of the center points of jth shell-side

sphere centered on the ith auxiliary circle in the kth shell layer of the

core-shell geometry as its components

𝑃𝑒 Peclet number

raux,i,k Radius of the ith auxiliary circle of the the kth sphere of influence

𝑟𝑐 Radius of the core of a core-shell particle

𝑟ℎ𝑠 Radius of monodisperse hardspheres in the random jammed packing

𝑟𝑝 Radius of a core-shell particle

𝑟𝑠 Radius of the shell-side spheres of a core-shell particle

𝑟𝑠𝑜𝑖 Radius of a sphere of influence

𝑅𝑒 Reynolds number

𝑡𝑠 Duration of the diffusion/dispersion event in a simulation

𝑢 Fluid velocity vector

𝑢𝑧 Superficial fluid velocity

𝛸 A vector that has the coordinates of a tracers position as its components

𝛸𝐿 Counter-part of 𝛸 localized in the main periodic cell

Greek Symbols

∝𝑘, ∝𝑐,𝑘 Spread angles and corrected spread angles between shell-side spheres

placed around the equator of the core sphere or the kth sphere of

influence

βi,k, βc,i,k Spread angles and corrected spread angles between shell-side spheres

placed around the ith auxiliary circle of the kth sphere of influence

𝜀 Void fraction

xxx

∆𝑙 Random-step size

∆𝑃 Pressure drop

∆𝑡 Time increment, or time-step of random-walk

𝜑 Core-to-particle diameter or radii ratio of a core-shell particle

𝛷 Floor function

ξ Unit vector with random direction

𝜇 Viscosity

𝜌 Density

𝜎𝐿
2 Longitudinal position variance

𝜏 Characteristic time

𝜏𝐶 Convective time

𝜏𝐷 Diffusive time

ϑ Velocity field tensor

1

CHAPTER 1

INTRODUCTION

Dispersion, which can loosely be defined as the random spreading of concentrated

mass due to bulk and molecular motion, is an important phenomena that affects

performances of frequently encountered systems in chemical engineering.

Chromatographic separations for example, are processes where dispersion, also

referred to as band-broadening in chromatography, controls the majority of the

separation performance.

Liquid chromatography is a separation process that takes advantage of different

affinities of analytes or species in the mixture to the stationary phase to separate the

mixture travelling along with the liquid mobile phase. Dispersion, or band-broadening,

in liquid chromatography is typically quantized using the terms plate height or reduced

plate height (Giddings,1965) which are very closely related to the longitudinal

dispersion coefficient in the system (Maier et al., 2000). The quest for reducing

dispersion in liquid chromatography column gave birth to different types of stationary

phases such as fully porous spherical particles, monoliths and core-shell particles.

Core-shell particles constitute a specific type of stationary phase for high performance

liquid chromatography columns. They were first introduced as a new concept by

Horvath et al. (1967) 50 years ago, and are now widely used for purification of small

molecules and peptides. Solid cores of these particles do not allow diffusion,

effectively reducing the band broadening otherwise would be caused by analyte

molecules unnecessarily spending very long time diffusing through tortuous pore

2

space that would be available in place of the solid core (Macnair et al., 1997). As a

result of the reduced path length of diffusion inside the particle, internal mass transfer

limitations in core-shell particles -especially for larger molecules- are very low for

core-shell particles compared to fully porous ones. This difference in the mass transfer

limitations gives core-shell particles a considerable advantage over fully porous

particles at superficial velocities near minimum plate height and beyond (Gritti et al.,

2007). Modern day commercial core-shell particles are typically produced with layer-

by-layer preparation methods, a type of controlled growth process, (Gritti & Guiochon,

2011) that provides a narrow particle size, shell thickness and core size distributions

(Bruns and Tallarek, 2011). These properties of core-shell particles makes them a good

candidate for an example system to build a mathematical model that can predict

dispersion around columns packed with these particles.

The equation of continuity and preservation of mass and momentum is typically

invoked in modeling of diffusion and dispersion. However, continuum solutions of the

governing equations can only be obtained for systems with relatively simple

geometries (Choi et al., 2017) (Rani et al., 2017) (Wu and Chen, 2015). Even if the

continuum solutions are obtained for systems with relatively more complex

geometries, analytical solutions might yield results with poor accuracy (Sattin, 2008).

Accordingly, numerical solution becomes the sole option, which are prone to

numerical errors such as numerical dispersion. Fortunately there is an alternative

approach for modeling of diffusion an dispersion, the random-walk and particle

tracking methods. Since the random-motion of a point like tracer in stagnant and

unhindered media results in the probability distribution of a tracer, the chance to find

a tracer at a certain point after a certain amount of random steps are taken by it, which

is mathematically identical to the analytical solution of the heat equation in the same

system with same initial and boundary conditions (Chicone, 2017). The size of the

random-step and corresponding time increment during the random walk is calculated

by the Einstein’s mean squared displacement formula, later given in Equation (14). If

the random-walk experiment is repeated for a large amount of individual tracers, the

mean squared displacement of all tracers becomes proportional to their diffusivity in

the system. For systems with no-flux boundary conditions, impermeability is

3

simulated by collision control between tracers and the impermeable boundaries which

can be done by simply using tracer positions and the equations describing the

impermeable boundaries inside inequalities (Szymczak and Ladd, 2003). Random-

walk models coupled with external velocity fields calculated separately resembles an

Euler approximation of Fokker-Planck equation, which is mathematically analogous

to the classic advection-diffusion equation (Maier et al., 2000). The coupled model is

commonly referred to as particle tracking method of modeling dispersion and it is

frequently used throughout the literature. There is already a particle tracking model by

Daneyko et al. (2015) that can simulate dispersion of small molecules in unbound core-

shell columns, but the model uses an effective medium approach (that uses an effective

shell diffusivity, instead of defining the boundary geometry inside the shell side of the

core-shell particles) for intraparticle diffusion.

This thesis work focuses on reconstructing a boundary system based on the production

methods and microscopy images of modern core-shell particles using basic principles

of analytical geometry and building a model that simulates dispersion in the

reconstructed system using the principles of particle tracking methods and mainly

open-source software. Analytical geometry methods allows minimal computer

memory requirements for the storage of reconstructed boundary system that is

essentially a collection of center coordinates of spheres. This method also allows

taking on a microscopic approach to diffusion where diffusing mass is represented by

point-like tracers with bulk diffusivity. Effective diffusivity inside the reconstructed

core-shell particles is met innately due to collision control with definite pore structure

in the system. In addition, the simple simulation model created in this study can

potentially be scaled-up for wider applications involving large, adsorbing-desorbing

and reacting molecules or even simulations of dispersion inside entire packings, given

required facilities are available.

The rest of the thesis is organized as follows:

A literature survey in Chapter 2 is presented for introducing more detail related to the

topic. In Chapter 3: Methods, every phase of the study leading to the final product,

including the procedures for reconstructing a general core-shell particle geometry by

4

using only three user-given variables (core-to-particle ratio, particle diameter, amount

of shell layers) and extending the geometry into a random packing, building a basic

random-walk free diffusion model and coupling it with the boundary system,

calculating fluid flow in the packing of core-shell particles and integrating the random-

walk diffusion model with velocity field to finalize particle tracking simulation of

dispersion. Application of these methods on utilized software, that is free form Fortran

95 programming language for this thesis study, is explained in detail in appendices.

In Chapter 4: Results & Discussion, validations of Fortran programs carrying out the

calculations of the model, visualizations of the reconstructed boundary system and

their inspection, predictions of the diffusion and dispersion simulations and their

comparisons with experimental and theoretical data found in the literature are given

and discussed. Conclusions and recommendations about the thesis study in Chapter 5

and Chapter 6, respectively, followed by the Appendices, mark the end for the thesis.

5

CHAPTER 2

LITERATURE SURVEY

2.1. Liquid Chromatography

2.1.1. Overview

Liquid chromatography is a separation process that takes advantage of different

affinities of analytes or species in the mixture to the stationary phase to separate the

mixture travelling along with the liquid mobile phase. A key factor that strongly

influences separation performance in chromatography is dispersion, also commonly

referred to as band-broadening, as roughly visualized in Figure 1, which is a measure

of variance, 𝜎𝐿
2, in the residence time distributions of concentrated bands of analyte

that travel through the column.

Height equivalent to a theoretical plate, plate height in short, is the main term used in

common that describes the performance of a chromatography column. Different plate

heights for different species in the analyte mixture is responsible for distinct peaks

visible in a typical chromatogram. Plate height of a species is defined as, by Giddings

(1965):

H =
𝛿𝜎𝐿

2

𝛿𝑧
 (1)

6

Where 𝜎𝐿
2 is the variance in the elution band, ‘z’ is the longitudinal position. Plate

heights are typically reduced by the average particle diameter in columns packed with

spherical particles to get the dimensionless parameter, reduced plate height, described

as ℎ = 𝐻/𝑑𝑝. Plate height relation given in Equation (1) is very closely related to

longitudinal dispersion coefficient in the column by the superficial mobile phase

velocity, 𝑢𝑧. If longitudinal position, z, is substituted by (t𝑢𝑧) the equation for transient

dispersion coefficient is obtained and if the time derivative in the equation is constant

the equation gives the Fickian dispersion coefficient in the conventional advection and

convection equation (Maier et al., 2000), given in Equation (2), which is proportional

to the time slope of the variance in residence times of tracers throughout a column that

determines the shape of a chromatographic band. In other words, dispersion coefficient

and plate height, or dispersion and band-broadening in a chromatography column are

practically the same things with different names.

𝐷𝐿 =
𝐻𝑢𝑧

2
=

1

2

𝛿𝜎𝐿
2

𝛿𝑡
 (2)

Figure 1: Band-broadening process. A rectangular concentration band morphs into a

Gaussian shaped concentration band due to dispersion in the chromatographic system.

7

Hence, plate heights in a liquid chromatography column is in fact only related to the

dispersion event in the system. Dispersion then, relates to certain characteristics of the

system boundaries or physical properties of the mobile phase or the analyte. Still,

reduced plate heights in different columns should emphasize differences in system

boundaries due to the nature of reduced variables.

The most basic characterization of a liquid chromatography column can be made by

fitting a van Deemter curve (van Deemter et al., 1956) to the experimentally

determined data and determining the parameters A, B and C.

h = A +
B

Pe
+ CPe (3)

The A term is regarded as a measure of the contributions resulting from the column

geometry, structure of the packing and possible consequent flow irregularities

throughout the column. The B term is the measure of plate height contributions due to

longitudinal diffusion and the C term is a measure of mass transfer limitations in the

system, such as adsorption of analyte molecules or highly tortuous diffusion of large

molecules through the pores present in the system. Pe is the Peclet Number,

𝑃𝑒 = 𝐿. 𝑢𝑠/𝐷𝐴𝐵, which is a dimensionless parameter that compares advective mass

transfer in the system to the diffusive mass transfer, i.e. higher Pe corresponds to

greater advection in the system. Another basic model is the Knox Equation (Knox,

2002) that uses similar fit parameters with similar physical significance, but the A term

is modified with a power (typically 1/3) of Peclet number:

h = APe1/3 +
B

Pe
+ CPe (4)

There are also more advanced models, some of which will be introduced later, but all

of them are based on these main contribution parameters in van Deemter equation.

8

2.1.2. Porous Stationary Phases in Liquid Chromatography

The inverse relation between chromatographic column performance and dispersion

motivates the developement of different porous stationary phases in liquid

chromatography. Fully porous spherical stationary phase materials are well-

understood, have well-established production techniques and are commonly used in

liquid chromatography (Guiochon and Gritti, 2011). However they can reduce column

efficiency at high speed separations very drastically, especially for large molecules

due to very high internal mass transfer resistances (Macnair et al., 1997). They are

still often preferred in liquid chromatography systems due to their high capacity.

Monolithic stationary phases are also commonly used and relatively new materials in

liquid chromatography. Monoliths allow similar mobile phase flow rates at lower

pressure gradients compared to spherical stationary phases due to their macroporous

structure and low mass transfer limitations near the por surfaces due to macropore

structure makes them efficient (Hlushkou et al., 2010). Second generation monoliths

that became commercially available back in 2012 are even more efficient due to their

radial homogeneity reducing velocity biases across the column, but the competition

between spherical packing columns and monolithic columns still continues as progress

in these areas still have momentum (Hormann and Tallarek, 2014).

Another relatively new stationary phase is core-shell particles, which is an older

concept than monoliths but a still developing one due to its perhaps premature

emergence near the era where fully porous particles were improving very rapidly in

performance and popularity (Guiochon and Gritti, 2011). Core-shell particles are

separately discussed in the next section.

9

2.2. Core-Shell Particles

2.2.1. Overview

Core-Shell particles, also frequently referred to as superficially-porous particles, or

pellicular particles, are a type of porous stationary phase used in chromatography.

They consist of a solid, impermeable core and a porous shell that allows obstructed

diffusion coated around the core, as roughly visualized in Figure 2.

Figure 2: Basic visual representation of a core-shell particle, with impermeable solid

core sphere and porous shell coated around it.

Shell

Core

(Impermeabl

e

Shell

rp

rc

10

The impermeable solid core of the particles reduce the intra-particle mass transfer

limitations encountered especially at high Peclet numbers and for large molecules as a

very early study -that can be considered one of the first to explore the concept- reveals

in which pellicular ion exchangers with a stationary phase resembling modern-day

core-shell particles were investigated by Horvath et al. (1967). Dead volume created

by the solid core intrinsically allows even more limited diffusion inside the core-shell

particle compared to a fully porous particle, reducing the intra-particle residence times

and relatively dispersion, leading to improved band-broadening in columns (Macnair

et al., 1997). These improvements achieved by core-shell particles brings their

performance close to that of fully-porous particles with smaller diameters, with the

added benefit of requiring less pressure drop to operate at a similar efficiency (Gritti

& Guiochon, 2012).

Figure 3: Improved C-branches in columns using core-shell particles (Halo) compared

to the columns packed with fully porous particles (Silica-B). Left: Small molecules

performance. Right: Large molecules performance (Adopted from the work of Gritti

et al. (2007) with permission).

11

Oldest core-shell type particles were quite large in diameter compared to modern ones.

Kirkland’s (1969) study investigates the performances of early superficially porous

particles ranging from 37 to 63 microns in diameter and a shell thickness of only 1/30

of the particle diameter. Another early study related to core-shell particles by Done

and Knox (1972) investigates the performance of commercially available (at the time)

core-shell particle series with average diameters ranging from 29 to 109 microns. In

contrast, modern day core-shell particles are typically much smaller, possibly due to

improvements in production methods over the years, such as the 5 micron “Poroshell”

particles whose performance was investigated in another study of Kirkland et al.

(2000) and 2.7 micron Halo particles investigated in Gritti et al.’s study (2007).

Although such small sizes, newer core-shell particles such as Poroshell and Halo have

much greater core-to-particle ratios compared to older ones. This gives new generation

of core-shell particles a comparable capacity to fully porous particles at a smaller

diameter, and also improved plate heights seen in Figure 3 (Guiochon & Gritti, 2011).

2.2.2. Production Methods and Imaging

Modern core-shell particles are prepared by coating solid silica spheres with shell

layers. Core spheres are typically produced based on the method suggested very early

on by Stöber et al. (1968), in which a process was proposed for controlled growth of

monodisperse spherical silica particles that can help increase the size of seed spheres

quite homogenously. Once the core-spheres are prepared, they are coated with a porous

layer in a similar procedure proposed by Stöber and Fink, then the coated silica sphere

is again used as a seed sphere and coated with another layer and so on (Gritti &

Guiochon, 2011). Figure 5 displays a simplified visual representation of this process.

This controlled growth approach to preparation of core-shell particles leads to very

homogeneously spherical particles rather than egg-shaped ones. There are relatively

earlier research on methods for controlling the pore sizes in such mesoporous materials

and allowing production of particles with greater pore size while keeping the pore-size

distribution as narrow as possible (Ma et al., 2003).

12

Gritti et al. (2010) inspects the performance of an HPLC column packed with

commercially available core-shell particles, produced in a ‘layer-by-layer’ approach.

According to the information provided by the manufacturers of these commercial

particles in their work, these particles have a very narrow particle and pore size

distributions and they confirm these by SEM images of the particles at different zoom

levels. A very striking image that belongs to one of these particles is in Figure 4, where

the solid silica core and incredibly smooth shell layers with very small silica

nanospheres are very clearly visible.

Figure 4: Images of commercially available core-shell particles. Attention for

smoothness and similar sizes of the entire particles (top left and right) and the

13

morphology of the shell layers (bottom) (Adopted from the work of Gritti et al. (2010)

with permission).

Bruns and Tallarek (2011) used confocal microscopy for imaging a portion of an entire

capillary column packed with commercial Kinetex core-shell particles and

reconstructed the packing geometry in 3-D (Figure 6), which is an important study for

deeper understanding of the effects of packing preparation methods and particle

properties on the morphology of the packing. Using image-processing techniques, they

confirmed the narrow size distributions of the modern core-shell particle. Additionally,

they also found that the size distributions of the core spheres and distributions of shell

thickness in these particles are also very narrow (Figure 7).

Figure 5: Representative flowchart of the layer-by-layer coating of solid core with

nanospheres. Charged polymers are removed by heat treatment, their space becomes

the pores between nanospheres coated in layers (Adopted from the work of Hayes et

al. (2014) with permission)

14

Figure 6: Digital reconstruction of capillary packed with core-shell particles. Core

spheres and shell areas are clearly visible in grey and yellow respectively. Capillary

walls are highlighted in dark shade (Adopted from the work of Bruns and Tallarek

(2011) with permission).

Figure 7: Distributions of shell thickness, core diameter and entire particle diameter of

core-shell particles in the reconstructed portion of the capillary column, as determined

by image-processing techniques (Adopted from the work of Bruns and Tallarek (2011)

with permission).

15

2.3. Modelling of Diffusion and Dispersion

2.3.1. Continuum Solutions

Transient diffusion without externally-induced flow is described by the heat equation

without generation terms, which is analogous to the Fick’s second law, assuming a

dilute medium where density and diffusion coefficient is constant. In one dimensions,

the equation is the following (Choi et al., 2017)

𝛿𝐶

𝛿𝑡
= 𝐷

𝛿2𝐶

𝛿𝑥2
 (5)

The general solution for the heat equation given in Equation (5), for a general initial

condition 𝐶(𝑥, 0) = 𝑓(𝑥) with open boundaries was given in the study of Zhukovsky

and Srivastava (2017) as,

C(x, t) =
1

√4𝜋𝐷𝑡
∫ 𝑒−

(𝑥−𝜀)2

4𝐷𝑡 𝑓(𝜀)𝑑𝜀
∞

−∞

 (6)

If the initial concentration profile is described by delta function 𝛿(𝑥 − 𝜇), Equation

(6) transforms into a general gaussian distribution with variance 𝜎2 = 2𝐷.

C(x, t) =
1

√4𝜋𝐷𝑡
𝑒−

(𝑥−𝜇)2

4𝐷𝑡 (7)

In the study of Choi et al. (2017) other analytical solutions, some tailed and skewed

probability distributions, for the heat equation with similar initial conditions but in a

finite domain is proposed and proven to be solutions to the heat equation. These type

of solutions would probably be applied to some analogous systems that might be

encountered in chemical engineering. However proposing a similar solution and

reversing to prove it is a solution for the heat equation in a system with complicated

16

geometry, such as a core-shell packing, would be extremely challenging if not

impossible.

𝛿𝐶

𝛿𝑡
+ 𝑢

𝛿𝐶

𝛿𝑥
= 𝐷

𝛿2𝐶

𝛿𝑥2
 (8)

Analytical solutions for advection-diffusion equation, given in Equation (8), is also

available for different systems throughout the literature. Rani et al. (2017) derived

analytical solutions for the transport of reduced and oxidized species to a rotating disc

electrode for both transient and steady-state cases, with a depletion rate boundary

condition at the surface of the cylinder, and a fairly complex velocity field around the

electrode. They claim the solutions to be fairly accurate. Still, the solutions are one

dimensional and for a relatively simple boundary geometry.

In the study of Wu and Chen (2015), they propose a one dimensional transient

analytical solution for a Taylor dispersion in a packed bed that uses averaged phase

properties. The solution takes on a macroscopic approach to the problem in which

individual contributions to dispersion from different mechanisms cannot be separately

quantized.

There are also numerical solutions of the mass balance and continuity equations, even

derived for chromatographic systems involving core-shell particles (Kaczmarski and

Guiochon, 2007). However these models use approximation methods such as lumping

around the core-shell particles and are prone to numerical dispersion.

2.3.2. Random-Walk Diffusion

The random-walk and diffusion analogy first came up with the introduction of well-

known mean squared displacement formula by Einstein (for n dimensions, ∆𝑥 =

√𝑛2𝐷𝐴𝐵∆𝑡), where it was revealed that the random displacements of diffusing

particles in a certain time interval was proportional to the square root of the length of

17

that time interval. This finding was later used to show that the probability density

function of the random-walking particle position, which has a variance equal to 𝐷𝐴𝐵,

becomes identical to the analytical solution of the heat equation for transient diffusion

of a species initially point-injected to a free, stagnant diffusion domain as ∆𝑥 and ∆𝑡

approaches infinitely small amounts. In other words, the random-walk experiment

repeated for a large number of times, or simultaneously for a large number of random-

walking particles, results in a distribution of random-walking particles that resembles

the normalized concentration profile of diffusing species. Since the integral of normal

distribution throughout the entire real domain is equal to unity, so is the normalized

concentration profile of random-walking particle ensemble after the experiment is

repeated a large number of times. This effectively is equivalent to a mass balance in

the system and it is innate to random-walks (Chicone, 2017).

Figure 8: Path followed by a random-walking particle in 2-D. Start and end points

shown in red. Darker blue paths are sampled multiple times by the particle.

Certain types of boundary conditions such as no-flux or constant-concentration can be

adapted to random-walk models. For no-flux boundaries, Szymczak and Ladd (2003)

proposes specular-reflection, can also be referred to as mirror reflection, or rejection

Start

End

18

methods for the simulation of impermeability at the boundary. According to their

study, specular-reflection method is the only one that can yield close to 100% accurate

results but the rejection method has much less computing power demand and it can

estimate nearly flat concentration profiles at the proximity of impermeable boundaries.

These methods are discussed in further detail in Chapter 3.

Random-walk simulations of diffusion are used in different research areas. Gentile

et al. (2015) uses a random-walk method to estimate local diffusion coefficients in a

square-shaped capillary system, a potentially interesting study for the field of

microfluidics where local transport properties are important. Khirevich et al. (2011)

also uses a random-walk based diffusion model to probe the effect of microstructure

of different spherical packings they generated, on the event of diffusion. Modified

versions of random-walk diffusion models are even used for modelling so called

“anomalous diffusion” phenomena where a non-linear relation between mean-squared

displacements and time is observed (Angstmann et al., 2015). Examples can be

increased. Random-walk approach for simulating diffusion can be concluded to be a

robust and well-established method.

2.3.3. Particle Tracking Methods for Dispersion

Random-walk diffusion models are typically coupled with an external velocity field to

simulate dispersion. The Fokker-Planck equation, given in Equation (9), describes the

relation between the position of a random-walking particle affected by the drag forces

in a velocity field and the total velocity that particle would have at that position due to

random motion and the drag forces acting on it (Chen et al., 2017).

dx(t) = f(t, x(t))dt + g(t, x(t))dW(t) (9)

The ‘f’ and ‘g’ functions in the equation are the velocity field and diffusion coefficient

respectively. Under fully developed flow conditions (f = f(x(t))) and constant bulk

19

diffusivity (g(t, x(t)) = 𝑐), an Euler approximation of Fokker-Planck equation very

closely resembles the random-walk equation with an advective term added. In fact,

Fokker-Planck equation is analogous to classic advection-diffusion equation under

these conditions (Maier et al., 2000). This approximation of Fokker-Planck equation

is used in particle tracking methods for the simulation of dispersion.

In the study of Widiatmojo et al. (2016) particle tracking methods were invoked to

create a mathematical model of gas dispersion in underground tunnel systems. They

created a simplified network of Taylor channels based on the tunnel network of some

Kushiro Coal Mine and carried out the particle tracking simulations. Their simulation

predictions are in almost perfect agreement with the actual gas measurements taken

from Kushiro Coal Mine despite the usage of simplified system geometry. Brutz and

Rajaram (2017), in another study, develops a particle tracking method based model to

investigate dispersion of contaminants throughout fractured rock formations,

essentially a porous media. Their results show very good agreements of particle

tracking simulations with the analytical solutions for dispersion. Wang and Cardenas

(2015) in a similar study involving fractured rock formations extends to three

dimensions and reproduces similar results that supports the accuracy of particle

tracking methods in approximating the analytical solutions for classic advection-

diffusion equation.

Particle tracking models of dispersion are also developed for chromatographic

systems. For example, Koku et al. (2012) reconstructs a monolithic stationary phase

environment based on microscopy images of a monolithic media and uses the

reconstructed geometry to simulate fluid flow and finally dispersion in a theoretical

chromatography column using a particle tracking approach for modelling the

phenomenon. It would be important to point out that the mentioned study was based

on the Ph.D. thesis study of Koku (2011).

20

2.3.4. Dispersion Models Related to Core-Shell Particles

Kaczmarski and Guiochon (2007) proposes several different models based on the

combination of mass balances of the components in the system in mobile phase and in

the stationary phase. The most general model proposed in that study is the general rate

model, which does not have any simplifications besides the main assumptions that are

isothermal system, fully-developed steady incompressible flow, no radial

concentration gradient, adsorption at equilibrium, non-transient dispersion and no flow

in the shell sides of core-shell particles. Lumped pore diffusion model they propose

simplifies the diffusion in shell side by using a volume-averaged concentration in the

mass balance of species in stationary phase, introducing an internal mass transfer

resistance term that can only be estimated. Equilibrium-dispersive model further

simplifies the previous models by assuming the mass transfer resistances are

negligible. They use the residence time distributions predicted by numerical solutions

of these models to calculate plate heights for different molecules in the same column.

Cavazzini et al. (2007), in another study, compares the general rate model predictions

of Kaczmarski and Guiochon (2007) with experimental data. According to the

comparisons, main problem with these models is the fact that it neglects radial

contributions in the flowing mobile phase leading to an underestimation of plate height

values at lower mobile phase velocities.

Another model that predicts dispersion in core-shell packings was developed by

Daneyko et al. (2015) based on Giddings theory of coupled eddy diffusion (1963),

which are given in Equations (10) and (11). The model is still empirical, but it can

predict the plate height contributions from short (transchannel) and long (interchannel)

range inter-particle channels (see Figure 9) separately by making use of parameters,

𝜆′
𝑖 and 𝜔′

𝑖, related to the packing geometry. Contributions from longitudinal diffusion

and mass transfer resistances related to the core-shell particles are represented by h𝐿

and h𝐶 terms respectively.

h = h𝐿 + h𝑠ℎ𝑜𝑟𝑡(1) + h𝑙𝑜𝑛𝑔(2) + h𝐶 (10)

21

h =
2𝐷𝑒𝑓𝑓

𝐷𝐴𝐵𝑅(𝑃𝑒)
+

2𝜆′
1

1 + (2𝜆′
1 𝜔′

1⁄)(𝑃𝑒−1)
+

2𝜆′2

1 + (𝐷𝑒𝑓𝑓 𝐷𝐴𝐵⁄)(2𝜆′
2 𝜔′

2⁄)(𝑃𝑒−1)
+ 𝐶(𝑃𝑒)

(11)

Daneyko et al. (2015) carried out particle tracking simulations of dispersion that takes

place in random packings of core-shell particles in the same study they developed the

modified Giddings theory. In their simulations, they adopt an effective medium

approach where the core-shell particles are defined only by two parameters, core-to-

particle ratio and effective diffusivity in the porous shell side. Effective medium

approach allowed them to confirm the effectiveness of the simulations on the analysis

of plate height contributions rising from different parts of the system. In addition, they

state that the particle tracking approach in simulating dispersion can be coupled with

digital reconstructions of chromatographic beds with morphological information

retrieved from the actual tomography or microscopy images of the beds to

computationally analyze dispersion in these type of columns even in more detail and

accuracy. Studies of Bruns and Tallarek (2011) and Bruns et al. (2012) proves that

microscopy images of capillaries packed with core-shell particles can be used for

digital reconstruction of the system geometries with great convenience and even shell

and core sides of particles are clearly distinguishable. Still, for the particle tracking

simulations, either the effective medium approach must be used or individual core-

shell particles must also be reconstructed using microscopy images.

22

Figure 9: Ranges of transchannel (black brackets) -due to channeling of flow through

narrow high porosity regions along the column- and interchannel (red brackets) -due

to radial or transverse flow caused by the fluctuations in the porosity profile across the

column- contributions to the dispersion, or plate height in a chromatographic system

(Adopted from the work of Daneyko et al. (2015) with permission).

23

2.3.5. Time Scales and Dimensionless Measures of Time

Time scales in diffusion and dispersion events are important due to the transient nature

of these events in systems with tortuous geometries. This behaviour of diffusion is

experimentally observed in nuclear magnetic resonance studies involving pulsed-field-

gradient techniques, where the time dependent diffusion coefficient of fluid molecules

traveling through a porous media can be obtained and it is observed to be approaching

an asymptotic effective diffusivity value in open pore structures after a certain amount

of time (Latour et al., 1995) (Sen, 2004). Dispersion also behaves similarly and it is

experimentally observed in the study of Gritti et al. (2014). In that study, they

investigate a concept called “Parallel Segmented Flow Chromatography (PSFC)”,

where standard columns were effectively transformed into narrower columns by

sending only the middle part of the outlet stream to outlet detector by splitting the flow

in the center region after a short axial distance using an end-fitting. Comparing the

chromatograms from standard columns and PSFC columns, they conclude that the

plate height gain in PSFC columns is due to pre-asymptotic operation of the column,

before the analyte travels for enough time to sample the entire radial distance in the

column.

Commonly used time scales in the literature for diffusion and dispersion are diffusive-

time (𝜏𝐷) and convective-time (𝜏𝐶), defined by the Equations (12) and (13).

𝜏𝐷 =
𝐿2

𝐷𝐴𝐵
 (12)

𝜏𝐶 =
𝐿

𝑢𝑧
 (13)

Note the units of 𝜏𝐷 and 𝜏𝐶 are in seconds. 𝜏𝐷 very closely resembles the mean squared-

displacement formula of Einstein, it represents the amount of time required for a

diffusing species with diffusion coefficient 𝐷𝐴𝐵 to sample a distance equal to 𝐿, which

24

is the characteristic length in the system. One can see that the ratio of diffusive time to

convective time in a system becomes identical to the Peclet Number in that system,

𝑃𝑒 = 𝜏𝐷/𝜏𝐶 = 𝐿𝑢𝑧/𝐷𝐴𝐵.

There are different variances of 𝜏𝐷 in different studies, for example in a study by

Khirevich et al. (2011) 𝜏𝐷 is defined as a dimensionless time measure 𝜏𝐷 =

𝑡/(𝑑𝑝
2/2𝐷𝑒𝑓𝑓) , time required for a random-walker in the random packing they

generated to travel a distance of a sphere diameter with the effective diffusivity inside

the packing, which is essentially a direct application of Einstein’s formula in 1-D. In

some other similar study by Maier et al. (2000), that involves particle tracking

simulations of dispersion in periodic random packings of monodisperse spheres,

diffusive time is defined as 𝜏𝐷 = 𝑡/(𝑑𝑝
2/𝐷𝐴𝐵). This definition uses bulk diffusivity

instead of effective diffusivity, it still stands for more or less the same time-scale

considering 𝐷𝑒𝑓𝑓 is around ~1.5 times 𝐷𝐴𝐵 in random packings of spheres. In the same

study, 𝜏𝐶 is again defined as the dimensionless version of the one given in Equation

(13), 𝜏𝐶 = 𝑡𝐿/𝑢𝑧. Khirevich et al. (2009) in another study uses transverse dispersion

coefficient 𝐷𝑇 instead of diffusion coefficients in the definition of diffusive-time as

𝜏𝐷 = 𝑡(𝑑𝑝
2/2𝐷𝑇). Although the definitions of 𝜏𝐷 is different in the latest two studies

mentioned, they both essentially predict that the longitudinal dispersion in the system

reaches asymptotic behavior after ~0.1𝜏𝐷 seconds if the diffusive-time is defined as

in Equation (12).

25

CHAPTER 3

METHODS

Construction of the dispersion model in this work consists following main procedures.

 Simulation of diffusion, in free and constrained media.

 Creation of core-shell particle geometry.

 Creation of periodic monodisperse random packings of hardspheres.

 Simulation of fluid flow in the boundary system.

Except for the dependency of fluid flow simulation on the hardsphere-packing

geometry, these listed procedures can be independently developed and combined

together to create a mathematical model that predicts the behaviour of dispersion in a

chromatographic system involving core-shell particles as the stationary phase. The

model has certain underlying assumptions, which limits its range, which will be stated

in this dedicated chapter, along with detailed descriptions of the procedures. Their

implementation on computers using mainly the Fortran programming language, as

well as other software that are MS Excel, Octave and OpenSCAD and the integration

of fluid flow and diffusion models are explained in Appedix C.

26

3.1 Diffusion Model

3.1.1 Free Molecular Diffusion

In Chapter 1 and Chapter 2, it has been discussed that random-walk particle tracking

(RWPT) approach is a highly effective way for direct modelling of molecular diffusion

in systems with high geometrical complexity, where continuum solutions are hard to

obtain. RWPT methods use Einstein’s relation to discretize the amount of

displacement, ∆𝑙, a Brownian particle (tracer) undergoes in a certain time interval, ∆𝑡,

depending on the molecular diffusivity of these particles.

∆𝑙 = √2𝐷𝐴𝐵∆𝑡 (14)

Using the relation given in equation (14), time-dependent position vectors of tracers

in one dimension are expressed by the following equation.

Where 𝛏 is a vector that results from addition of unit vectors with a random direction.

Initial positions of tracers can be varied.

Equation (15) is equally valid for diffusion in higher dimensions since for isotropic

diffusion random-walking particles will still have equal probability of proceeding in

every possible direction, although this probability will decrease in value as more

directions of movement are introduced (i.e. a random-walking particle in 1-D has a

50% chance to go either direction while a random-walking particle in 3-D has 16.7%

chance to proceed in any of the 6 possible directions). In any case, magnitude of the

net displacement vector, ∆𝑙, becomes ∆𝑙√𝑑 for diffusion in d dimensions.

Equation (14) allows choosing either ∆𝑙 or ∆𝑡 as the basis and calculation of the other

depending on the choice. Conventionally a suitable ∆𝑙 value is chosen, depending on

𝚾(t + ∆t) = 𝚾(t) + 𝛏∆𝑙 (15)

27

the size and shape of impermeable boundaries in the system, which will be discussed

in section 4.1.2. Order of magnitude in ∆𝑡 selection for free diffusion is discussed in

the section 4.1.1 where the verification of basic random-walk algorithm is shown.

The total number of random steps a single tracer takes throughout the simulation is

then calculated simply by dividing duration of diffusion event, 𝑡𝑠, by ∆𝑡.

𝑛𝑠 =
𝑡𝑠

∆𝑡
 (16)

The diffusion coefficient of tracers is back-calculated using the initial and final

positions of the tracers. The total displacement of a tracer is calculated by using its

initial and final cartesian coordinates in the distance formula. For an ensemble of N

tracers that are simulated to undergo diffusion for 𝑡𝑠 seconds, molecular diffusion

coefficient can be calculated by using following equation, which is basically the

reversed version of Einstein’s relation.

D𝐴𝐵 =
∑ (∆𝑋𝑖)2𝑛

𝑖=1

𝑁

1

2. 𝑑. 𝑡𝑠
 (17)

In a free diffusion event with open boundaries and no impermeable walls, Equation

(17) is expected to yield the same D𝐴𝐵 value as the input diffusion coefficient value.

As a matter of fact, it should yield this same value regardless of the simulation duration

given. Therefore, it can be used for the verification of random-walk algorithm.

The model has underlying assumptions that affect the accuracy of it under certain

circumstances. The assumptions are as follows.

1. No interaction between tracers.

2. Infinitesimal (point) tracers.

3. Constant & Isotropic free diffusion coefficient throughout the system.

4. Non-retained tracers (no adsorption in the system).

5. No chemical reactions.

6. Stagnant diffusion media.

28

Assumptions 1, 2 and 3 imply that the results obtained from the model would not

accurately predict diffusion behavior of larger molecules, such as large proteins, that

might have diffusion coefficients that change depending on their charge, molecular

interactions and size. Still, the results would be comparable to experimental

diffusion/dispersion coefficient data obtained by using small molecules in analyte

level concentrations. Assumption 4 indicates that, if there are any impermeable

boundaries in the system, any adsorption-desorption mechanism that may occur

between boundaries and diffusing species in a real physical system is ignored. This

becomes especially important in a system with pores. Adsorption event further affects

the effective diffusivity of molecules in these pores, whereas the absence of adsorption

allows diffusion only affected by the tortuosity of the pore structure. Assumption 5

supports constant free diffusion coefficient assumption and it guarantees the material

balance of trace ensemble. Assumption 6 is the final assumption of the random-walk

diffusion model. However it is a temporary assumption that is needed to verify the

validity of random-walk diffusion algorithm, as the main purpose of this study is to

construct a model that explains diffusion and convection together. All in all, the

assumptions from 1 to 5 can be very well acceptable for columns used for analytical

purposes that involve separation of small molecules.

With the equations and the assumptions introduced, the basic algorithm for random-

walk simulation in open boundaries is given below. This algorithm will be added

features throughout this chapter, as different aspects of diffusion and dispersion is

explored and coupled with the random-walk diffusion model in empty media.

1. Set N.

2. Set D𝐴𝐵.

3. Set simulation time, 𝑡𝑠.

4. Set ∆𝑡 and calculate ∆𝑙 using Equation (14)

5. Determine total number of random steps, using Equation (16).

6. Set initial positions for all tracers.

7. Generate 𝑛𝑠 amount of unit vectors with random directions.

8.

29

9. Displace each tracer 𝑛𝑠 times using Equation (15).

10. Use Equation (17) to recalculate D𝐴𝐵 and compare with initially set value.

3.1.2 Impermeability & Collision Control

Impermeable walls are defined as boundaries which prohibit any mass flux beyond the

bound system. The equation of continuity emposes a Neumann boundary condition at

impermeable walls of the system, such that the concentration profiles at those

boundaries must satisfy the equation:

∇𝑐 = 0 (18)

In random-walk methods, these no-flux conditions are typically simulated by simply

monitoring positions of tracers, detecting boundary violations and preventing any

tracer from traveling beyond the diffusion domain bound by impermeable walls. The

mathematical implementation of this strategy uses the position vectors of tracers along

with analytical equations representing shapes and locations of impermeable

boundaries The impermeable regions in a system can be conveniently defined using

analytical inequalities. Figure 10 illustrates a diffusion domain, bound by one circular

and one linear impermeable walls, which essentially includes every point outside

impermeable areas defined as the set of inequalities 𝑥 > 25 and 𝑥2 + 𝑦2 < 25. If

position of any Brownian particle in the system satisfies any of these inequalities after

a random step is taken, then a collision between the particle and boundary is detected.

Hence, the particle must be returned back to the diffusion domain.

Szymczak and Ladd (2003) suggest specular reflection, or mirror reflection, as the

most reliable solution to effectively move Brownian particles back into diffusion

domain, as it is the only method that yields zero gradient near impermeable boundaries

in the system. According to their definition of specular reflection, a tracer that crosses

an impermeable boundary is returned to such a point in the diffusion domain that

corresponds to the mirror image of the tracer’s position across the impermeable

30

boundary with respect to the boundary itself. This very closely resembles an elastic

collision of a ball against a fixed straight-wall that has incomparably larger mass than

the ball itself, in which case, if the velocity of the ball is known, its trajectory can

easily be calculated even if it hits the wall at an angle. However, this is a considerably

more complicated calculation if the wall has a curvature to it such as the circular

boundary seen in Figure 11, as the problem in this case involves tangent lines near the

point of contact between the boundary and the tracer. Then the boundary equation and

the equation for the line that passes through two time-adjacent positions of the tracer

before and after it crosses the boundary must be used to calculate the point of contact.

Only then the tangent line to the curved wall at this point of contact can be found and

used as the axis of mirror for the tracer. Considering the fact that a statistically

significant population of tracers should be used in the simulation that results in a large

count of collisions especially in a simulation involving a porous geometry, the specular

reflection method should account for a significant portion of the computational

requirements of such a simulation. In the same study of Szymczak and Ladd (2003), a

method with much less computational demand is also suggested and it is called the

bounce-back method. The bounce-back method simply returns any trans-boundary

tracers back to their position inside the diffusion domain right before the collision.

However, this method is shown to be not working as well near the boundaries as the

specular reflection method. According to their simulations, the bounce-back method

yields non-zero concentration gradients near the boundaries. However the

concentration profile similar to the concentration profile yielded by specular reflection

method, translated towards the boundary by a constant equal to the step-size of the

tracer. This finding points to the fact that bounce-back method causes a numerical

mass flux into the impermeable boundary, therefore increasing the effective diffusivity

of tracer ensemble in the system. In other words, it effectively increases the space

where diffusion is allowed. Still, the non-zero concentration gradient caused by

bounce-back method is shown to be very small and its effect on the effective diffusivity

will be neglected for the sake of reducing computational requirements of the model.

Therefore, the bounce-back method is selected in this algorithm.

31

Figure 10: An arbitrary 2-D system. Dark shade areas are bound by two impermeable

walls, the circle (𝑥2 + 𝑦2 = 25) and the line (𝑥 = 25). Diffusion domain is the area

illustrated in lighter shade.

Figure 11: Specular Reflection and Bounce-Back methods (Szymczak and Ladd,

2003). Left side of impermeable wall is solid, right side allows diffusion. X(t) is the

position of the tracer before collision. Tracer takes a random-step to the position

X(t+Δt) which lies beyond the impermeable wall, and is reflected (either by mirror

reflection or bounce-back) back to the position X’(t+Δt) in diffusion domain.

X(t)

Impermeable Impermeable

 Wall Wall

X’(t+Δt)

X(t)

X(t+Δt)

X’(t+Δt)

X(t+Δt)

Specular (Mirror) Reflection Bounce-Back Reflection

32

After the introduction of impermeable boundaries and collision control, random-walk

algorithm evolves into the following shape. Changed and added steps are in italic.

1. Set n.

2. Set D𝐴𝐵.

3. Set simulation time, 𝑡𝑠.

4. Set ∆𝑡 and calculate ∆𝑙 using Equation (14)

5. Determine total number of random steps, using Equation (16).

6. Set boundary equations.

7. Set initial positions for all tracers.

8. Generate 𝑛𝑠 amount of unit vectors with random directions.

9. Displace a single tracer, for one step using Equation (15).

10. Use 𝜲(𝑡 + ∆𝑡) in each boundary equation to check for collisions. If collision

occurs, set 𝜲(𝑡 + ∆𝑡) = 𝜲(𝑡).

11. Repeat 9 and 10 until all tracers have taken 𝑛𝑠 random steps each.

12. Use Equation (17) to recalculate D𝐴𝐵 and compare with initially set value.

One should realize that recalculated time-dependent D𝐴𝐵 values converges to a value

lower than the input value of D𝐴𝐵, especially if the simulated system involves a

tortuous pore structure. This occurrence is a very well-known property of diffusion in

porous media, where the effective diffusion coefficient of diffusing species is a certain

fraction of its free diffusion coefficient depending on the tortuosity of the pore

structure.

3.1.3 Periodical Boundaries

In the previous section, it was explained how impermeability can be simulated by

checking collisions between the tracers and impermeable boundaries. For smaller

systems, such as the one depicted in Figure 10, storing information about the

boundaries is rather simple since the example system has only 2 boundaries. However,

a very large system like a packing of hardspheres may contain millions of spherical

33

boundaries depending on the size of hardspheres and packing container. In such cases,

millions of sphere equations must be stored in memory for the collision control to be

possible. To work around this impracticality, periodical boundaries in random-walk

simulations are typically used. This type of a boundary uses a crystal unit cell system

and virtually creates an infinitely large crystal structure of that unit cell. Figure 12

shows a basic illustration of how periodical boundaries can be used to create an

infinitely large ensemble of circles by saving only one circle equation to memory. This

becomes possible by defining a “local” tracer position, which is the main unit cell

(where the boundaries are defined) equivalent of the global tracer position.

Figure 12: An illustration for the use of periodic boundaries to create a 2-D infinite

array of circles in an ordered arrangement. Main periodic cell and a circular

impermeable zone inside it are represented in solid red color, while the impermeable

zones effectively created by the periodic boundaries are in dotted blue color. All points

indicated by several small blue triangles are equivalent to the point indicated by the

small red triangle in the main periodic cell. Crystal structure of the system extends to

infinity without any bounds.

34

Let us assume a 2-D rectangular unit cell with dimensions 𝑊 x 𝐿, cornered at the

origin, occupying the corner of the first quadrant. The equivalent local position, 𝚾𝑳, of

a tracer wandering about a global position point (𝑥𝑔, 𝑦𝑔) is then calculated by the

following equation.

𝚾𝑳 = (𝑥𝑔 − Φ(𝑥𝑔/𝑊). 𝑊, 𝑦𝑔 − Φ(𝑦𝑔/𝐿). 𝑊) (19)

Where Φ is a function that truncates its input to the nearest integer smaller than the

input. Negative inputs are truncated down, for example Φ(−0,6) = −1 while

Φ(0,6) = 0. It is, in fact, similar to “Floor” function used in several different

programming languages.

Using the local tracer position to carry out collision control in the main unit cell is

mathematically equivalent to translating impermeable boundary geometries defined in

the main unit cell to the unit cell where the global tracer position is contained and

carrying out collision control in that unit cell. Either way, if any collision occurs in the

main unit cell, the global position is also set to the last known position before the

collision, therefore creating infinitely many impermeable areas. Upon the addition of

periodical boundaries, the random-walk algorithm is updated as following. Changed

and added steps are, again, in italic.

1. Set N.

2. Set DAB.

3. Set simulation time, ts.

4. Set ∆t and calculate ∆l using Equation (14)

5. Determine total number of random steps, using Equation (16).

6. Set boundary equations.

7. Set initial positions for all tracers.

8. Generate ns amount of unit vectors with random directions.

9. Displace a single tracer, for one step using Equation (15).

10. Calculate 𝜲𝑳(𝑡 + ∆𝑡) using 𝜲(𝑡 + ∆𝑡) in Equation (19).

35

11. Use 𝜲𝑳(𝑡 + ∆𝑡) in each boundary equation to check for collisions. If collision

occurs, set 𝜲(𝑡 + ∆𝑡) = 𝜲(𝑡).

12. Repeat 9 and 10 until all tracers have taken ns random steps each.

13. Use Equation (17) to recalculate DAB and compare with initially set value.

3.1.4. Initial Conditions

Initial distributions of the tracers are important considering the random-walk method

is a discrete representation of the continuum solutions. There can be other types of

initial concentration profiles defined as initial conditions for a system, however this

study uses only point injection or bulk (homogeneous) injection type initial conditions.

Point injection sets initial positions for all tracers to the same point, very much like a

dirac delta function. Bulk or homogeneous injection, on the other hand assigns random

initial positions to every tracer in a pre-determined volume, such as the diffusion-

available volume in the main periodic cell.

The difference between these two initial condition types becomes important in a

system with impermeable boundaries. All tracers in a tracer ensemble with a point

injection type initial condition is bound to move across the same regular grid since the

random-step size of all tracers are the same. Therefore one should expect dead zones

around curved impermeable boundaries that cannot be sampled by any of the tracers

due to discretization. In a homogeneously distributed tracer ensemble, on the other

hand, every individual tracer still moves according to a regular grid but the grid is

private for each tracer and relative positions of the grids are covering as much volume

as possible throughout the system due to random initial positions of the tracers.

Therefore bulk injection must be expected to have less dead volume around curved

boundaries. This important difference between two initial condition types are

discussed over the results given in section 4.1.2 of Chapter 4.

36

3.2. Construction of the Core-Shell Particle Geometry

3.2.1. Strategy

During the literature investigation, it was seen that some of the geometries such as a

monolithic medium or a polydisperse spherical packing can be reconstructed digitally

by using different imaging techniques and post-processing of these images, and these

reconstructed geometries can be used in particle tracking simulation. However it was

also revealed that these reconstruction methods are often experimentally difficult,

computationally expensive and have high memory demand. Koku et al. (2012) reveal

in their study that a digital reconstruction of a monolithic medium of size 18x14x18

micrometers cubed occupies over 150 gigabytes of memory. The main reason for such

a requirement is the fact that the irregular shape of monolithic medium must be saved

pixel by pixel to obtain an accurate representation of impermeable areas in the system.

This problem is not exclusive to only monoliths and it will persist as long as the same

method is used.

Core-Shell particles have a very suitable geometry to simplify the digital

reconstruction approach in an attempt to eliminate these memory requirements. It was

already discussed how these particles have a quite distinct geometry, thanks to the

synthesis methods, that can be represented as almost perfectly arranged shell side

spheres around a large core sphere. Therefore it is very convenient to represent a core-

shell particle as an ensemble of analytical geometry entities, in other words, a group

of radius and center coordinates data that represents each and every sphere that

contributes to the entire core-shell particle geometry. This simpler analytical geometry

approach is advantageos for certain reasons.

- It reduces memory demand, independent of any parameter that defines the

exact geometry, such as shell thickness or number of shell layers. The data that

represents a single element of the geometry is only the center point and the

radius of that spherical element, which is always less than the requirements of

image representation.

37

- It allows creating core-shell particle geometries with different shell thickness,

radius and number of shell layers. This is a very important attribute of the

approach since it will easily approximate the geometry of a real core-shell

particle, given that its radius and shell thickness is known. Even the number of

shell layers in a real core-shell can be identified using microscopy images and

used as an input parameter.

- Created geometry is innately suitable for scaling due to the contributing

elements being spheres, it will preserve shape after scaling, and it can easily be

translated. Therefore it can easily be used in reconstructing monodisperse and

-if wanted- polydisperse packings of core-shell particles.

- It will eliminate problems due to image-based reconstruction such as sampling

errors.

- Most importantly, it is highly compatible with the diffusion/dispersion model

being built in study.

The only drawback of this approach is the fact that it can only create a highly idealized

core-shell particle geometry that is made of perfect spheres, closest elements to each

other would be at least tangent to each other without any overlaps. Still, the approach

is worth trying since it gets rid of the effort-intensive imaging process.

3.2.2. Single Layer Core-Shell Particle Geometry

Parameters that define the characteristics of a core-shell particle are entire particle

radius (𝑟𝑝), core radius (𝑟𝑐) and the number of shell layers (𝑛𝑙). Another parameter

called core-to-particle ratio (𝜑 = 𝑟𝑐 𝑟𝑝⁄) is introduced for convenience. Then radius of

shell-side spheres (𝑟𝑠) for a single layer core-shell particle can easily be calculated

using 𝑟𝑠 = 𝑟𝑝(1 − 𝜑) 2⁄ .

In the first step of reconstruction, imaginary geometrical entities called auxiliary

circles are introduced. An auxiliary circle is an imaginary circle hovering around the

core sphere, on which there lies center points of a certain number of shell side spheres

38

such that these shell side spheres would be tangent to core sphere and they would also

be at closest tangent to other shell side spheres centered on the neighboring auxiliary

circle. Total number of auxiliary circles and amount of shell side spheres on these

circles varies depending on 𝜑 and 𝑟𝑠. A clear visualization of auxiliary circles can be

seen in Figure 13.

Maximum number of auxiliary circles that can be placed around the core spheres is

determined by figuring out how many shell side spheres can be placed around the

equatorial circle of core sphere (𝑛𝑠𝑠𝑒), that are tangent to the circle and tangent to each

other at closest distance. Imagine two shell side spheres tangent to each other and core

sphere at its equatorial circle. Setting the center point of core sphere at the origin as

basis, spread angle (∝) between the line passing through the center of core sphere and

the first shell sphere, and the line passing through the center of core sphere and the

second shell sphere can be found by the following Equation (20), making use of

isosceles triangle formed by center points of these three spheres. Then 𝑛𝑠𝑠𝑒 is

calculated by the phi function introduced previously: 𝑛𝑠𝑠𝑒 = Φ(2𝜋/∝).

∝= 2arcsin (
𝑟𝑠

𝑟𝑠 + 𝑟𝑐
) (20)

Depending on 𝑛𝑠𝑠𝑒 being even or odd, maximum amount of auxiliary circles, 𝑛𝑎𝑢𝑥,

changes. One can visualize the auxiliary circles that can be placed around a core sphere

with 𝑛𝑠𝑠𝑒 = 12 by imagining an analog clock where 𝑛𝑎𝑢𝑥 = 5. A core sphere with

𝑛𝑠𝑠𝑒 = 11 also has 𝑛𝑎𝑢𝑥 = 5 but only the appropriate part of the piecewise function

given in Equation (21) can calculate the correct value of 𝑛𝑎𝑢𝑥 .

naux = {
Φ((nsse − 2)/ 2), for even nsse

Φ(nsse/2), for odd nsse
 (21)

If the auxiliary circles are given number tags, from 1 to naux and starting from top to

bottom, radii of these circles can be calculated by making use of right triangles. Since

initially approximated spread angle changes due to truncations involved in calculating

39

𝑛𝑠𝑠𝑒, a corrected spread angle between auxiliary circles is calculated by ∝𝑐= 2𝜋 𝑛𝑠𝑠𝑒⁄ .

Then the radius of the ith auxiliary circle (raux,i) can be calculated by Equation (22).

Figure 13: Rough visual representation of core-shell particle reconstruction. Different

elements of the particle geometry (large core spheres and some of smaller shell

spheres) and concepts created related to the calculations which are auxiliary circles

(dashed circles, passing through the center of smaller shell spheres), sphere of

influence (sphere with dot-dashed boundary) are visualized.

raux,i = sin(𝑖 ∝𝑐) . (𝑟𝑠 + 𝑟𝑐) (22)

The planes hosting auxiliary circles are all parallel to xy-plane and the z-coordinates

of each auxiliary circle (zaux,i) can be calculated using the same right triangles. Note

that, any shell side sphere centered on an auxiliary circle will share the same z-

coordinate with that auxiliary circle.

zaux,i = cos(𝑖 ∝𝑐) . (𝑟𝑠 + 𝑟𝑐) (23)

40

The maximum number of shell side spheres that can be placed on the ith auxiliary

circle (𝑛ssa,i) can be calculated in a similar manner to the calculation of naux. First a

spread angle on that circle βi = 2arcsin (𝑟𝑠 raux,i⁄) is defined. Then 𝑛ssa,i is calculated

by: 𝑛ssa,i = Φ(2𝜋/βi). Then the corrected spread angle becomes βc,i = 2𝜋 𝑛ssa,i⁄

In the final step, x and y coordinates of the center points of shell side spheres placed

an ith auxiliary circle can be calculated making use of more right triangles, similar to

the ones used for the calculations of raux,i and zaux,i. Equations (24) and (25) calculate

the x and y coordinates of the center point of jth shell side sphere centered on ith

auxiliary circle respectively. These equations centers the 1st shell sphere on x-axis as

basis and tags each shell side sphere on ith auxiliary circle from 1 to 𝑛ssa,i counter-

clockwise. Z-coordinates of the shell side spheres are already determined by zi,j =

zaux,i as mentioned previously.

𝑥𝑗,𝑖 = cos ((𝑗 − 1)βc,i) . raux,i (24)

𝑦𝑗,𝑖 = sin ((𝑗 − 1)βc,i) . raux,i (25)

Only remaining shell side spheres are one or two that needs to be placed tangent to the

poles of core sphere depending on the value of 𝑛𝑠𝑠𝑒 being divisible by 4 or not. If

divisible, all four quadrant points around the equator gets a sphere therefore two polar

spheres are added. If not, region around the south pole becomes too narrow to fit

another sphere for a realistic geometry. Their center points are predetermined without

calculation. Sphere near the north pole is centered at the point 𝜂(0,0, 𝑟𝑠 + 𝑟𝑐) and the

one near the south pole at 𝜎(0,0, −𝑟𝑠 − 𝑟𝑐).

3.2.3. Generalization to Multiple Shell-Layers

In the previous section, all required equations to calculate every element that creates

an ideal single-layer core-shell particle geometry was explained and given. However

core-shell particles often have more than one layer and variable shell thickness.

41

Thicker shells with a single layer would not realistically represent the void fraction in

shell layer. Therefore the method should be extended to multiple shell-layers.

Introducing another helpful concept called a sphere of influence is a solution for the

generalization of the method to cover multiple layers. A sphere of influence can be

defined as an imaginary sphere that tightly wraps around core sphere and the first shell-

layer around it. One can imagine this sphere of influence as a temporarily assigned,

conceptual core sphere with a combined radius 𝑟𝑠𝑜𝑖 = 2𝑟𝑠 + 𝑟𝑐. As a matter of fact, the

actual core sphere can be thought as the zeroth sphere of influence. Then the elements

of another layer on top of the first one can be calculated by the same equations by

setting 𝑟𝑐 = 𝑟𝑠𝑜𝑖. This procedure can be repeated for 𝑛𝑙 number of times to create a

core-shell geometry with 𝑛𝑙 layers.

For a core-shell particle with 𝑛𝑙 layers, radius of shell side spheres is calculated by the

equation: 𝑟𝑠 = 𝑟𝑝(1 − 𝜑) 2𝑛𝑙⁄ . Introducing the subscript k, which refers to the

variables belonging to the elements located in kth layer, to the variables explained in

previous section, equations evolve into the following. Note that k starts from 0 and

ends at the value of 𝑛𝑙 with 𝑟𝑠𝑜𝑖,𝑘 = 2𝑘𝑟𝑠 + 𝑟𝑐.

∝𝑘= 2arcsin (
𝑟𝑠

𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘
) (26)

𝑛𝑠𝑠𝑒,𝑘 = Φ(2𝜋/∝𝑘) (27)

naux,k = {
 Φ((nsse,k − 2)/ 2), for even nsse,k

Φ(nsse,k/ 2), for odd nsse,k
 (28)

∝𝑐,𝑘=
2𝜋

𝑛𝑠𝑠𝑒,𝑘
 (29)

raux,i,k = sin(𝑖𝑘 ∝𝑐𝑘) . (𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘) (30)

42

zaux,i,k = cos(𝑖𝑘 ∝𝑐𝑘) . (𝑟𝑠 + 𝑟𝑠𝑜𝑖,𝑘) (31)

βi,k = 2arcsin (
𝑟𝑠

raux,i,k
) (32)

𝑛ssa,i,k = Φ(2𝜋/βi,k) (33)

β𝑐,𝑖,𝑘 =
2𝜋

𝑛𝑠𝑠𝑎,𝑖,𝑘
 (34)

𝑥𝑗,𝑖,𝑘 = cos ((𝑗 − 1)βc,i,k) . raux,i,k (35)

𝑦𝑗,𝑖,𝑘 = sin ((𝑗 − 1)βc,i,k) . raux,i,k (36)

The resulting geometry is represented by vectors 𝐏𝑗,𝑖,𝑘 pointing to the centers of each

and every spherical element in the geometry, where the components of center point

vectors are defined as in the following equations.

𝑃1
𝑖,𝑗,𝑘

= 𝑥𝑗,𝑖,𝑘 (37)

𝑃2
𝑖,𝑗,𝑘

= 𝑦𝑗,𝑖,𝑘 (38)

𝑃3
𝑖,𝑗,𝑘

= 𝑧𝑗,𝑖,𝑘 = zaux,i,k (39)

3.3 Periodical Random Packing of Core-Shell Particles

In the previous section, a method that utilizes basic principles of analytical geometry

to allow reconstruction of a core-shell particle geometry was introduced. The method

provides all defining parameters, being radii and center point vector components,

43

required for analytical representations of all elements in core-shell particle geometry.

The resulting geometry can easily be translated across the coordinate system by using

a translation vector on every element that collectively creates the entire geometry. The

translation can be repeated an arbitrary amount of times to creates copies of the core-

shell geometry without directly calculating the parameters for each core-shell particles.

The translation vectors needed to copy a core-shell particle geometry into a random

jammed packing are center point vectors of a computationally generated random

jammed packing of hardpheres, the construction of which is described in the next

section.

3.3.1. Random Packings of Monodisperse Hardspheres

Skoge et al. (2006), in their work related to maximally jammed packings of

hyperspheres, investigate some properties of the periodic random jammed packings of

spheres they generated using a modified Lubachevsky-Stillinger algorithm and

generously share the computer code they created for their work with any researcher

who needs it. If set to three dimensions, the algorithm calculates radius of spheres as

well as center point vectors of all spheres in the main periodic unit cell with a single

input that defines how many spheres are present in the packing. A periodic random

jammed packing of 50 monodisperse spheres (𝑛ℎ𝑠 = 50) with a radius

𝑟ℎ𝑠 = 0.142079 (depends on how many spheres there are in the unit cell, 𝑛ℎ𝑠) and void

fraction 0.355 was generated in a unit cube (periodic cell length: 𝐿𝑝𝑐 = 1) cornered at

origin and used in diffusion/dispersion model by using the code Skoge et al. provided.

For the sake of consistency, the same random jammed packing used in all simulations

done for obtaining the results. The effect of this preference is discussed in the results

and discussion chapter.

44

3.3.2. Visualization & Inspection of the Random Jammed Packing of

Hardspheres

Computer generated visuals of the monodisperse spherical packing to be used in

diffusion and dispersion simulations was done using an open source computer aided

drawing program called OpenSCAD. Upon the visual inspection of generated packing

a very crucial aspect of the packing for the model reveals itself. Packing generated by

the code clearly has all 50 spheres centered in the unit cube however some of those

spheres partially cross the boundaries defined by the unit cell. Consequently if the

periodic unit cube is arranged into a crystal structure, these ‘invading’ spheres would

partially appear in the main periodic unit cell even if their center point resides in the

neighboring periodic cells. This prevents direct usage of the generated packing in the

model because the specific collision control mechanism applied in this study needs

access to parameters that define all main unit cell volume occupied by impermeable

elements in the system. The problem can be solved by detecting invading spheres and

including them in the packing in addition to 50 originally generated spheres.

The most convenient and systematic way that comes to mind for detection of invading

spheres is to determine center points that lie within a radius distance inside the

boundaries of the unit cube. If the hardspheres have a radius 𝑟ℎ𝑠 and ith sphere in the

packing has its center point at 𝑷𝒉𝒔
𝑖 , extreme points on their surface in positive and

negative x,y and z directions can be found by separate addition and substraction of 𝑟ℎ𝑠

on the compoents of the center point vector, ([𝑃ℎ𝑠,1
𝑖 ± 𝑟ℎ𝑠] 𝑃ℎ𝑠,2

𝑖 𝑃ℎ𝑠,3
𝑖), (𝑃ℎ𝑠,1

𝑖 [𝑃ℎ𝑠,2
𝑖 ±

𝑟ℎ𝑠] 𝑃ℎ𝑠,3
𝑖) and (𝑃ℎ𝑠,1

𝑖 𝑃ℎ𝑠,2
𝑖 [𝑃ℎ𝑠,3

𝑖 ± 𝑟ℎ𝑠]). If an extreme point lies beyond unit cube

boundaries (any component is greater than 1 or less than 0), that sphere crosses the

boundaries of its periodic cell. For the specific packing used in this work, individual

hardspheres in the packing crossed over to 1, 2, 3 or 5 neighboring periodic cells. To

be exact, 20 spheres crossed over to a single, 2 spheres to 2, 7 spheres to 3, and a single

sphere to 5 other neighboring cells, making a total of 50 other spheres that need to be

added into the packing in order for collision control to be properly carried out. Hence

the sphere count inside the random packing increases to 100.

45

Figure 14 demonstrates the original packing and a partially modified version of it side

by side. Red sphere seen in the figure is the one detected to be crossing over to 5 other

cells, hence 5 copies of it is added to the packing (depicted in orange) that would

otherwise be invading the main periodic cells from the neighboring cells. The figure

also shows a black sphere crossing over to only one other neighboring cell. Therefore

a single copy of it is added into the packing, which is visible at the back in grey. It

would be important to point out that the packing on the right side of the figure, only

demonstrates the inspection and manual modification method, therefore it is not the

final packing used in any part of the model, since there are more over-hanging spheres

in the packing that needs additional complementary copies to complete the procedure.

Figure 14: OpenSCAD images of the random jammed packing of monodisperse

hardspheres. Cubic unit cell is visible in transparent. Left: Packing of 50 monodisperse

spheres originally generated by the Skoge et al. code. Right: Packing after adding the

required copies for two selected spheres, painted in red and black. Complementary

copies of the red and black spheres are colored orange (near the corners) and grey (at

the back-right), respectively.

46

3.3.3. Combination of Core-Shell Particle and Hardsphere Packing Geometries

Calculations of center point vector components for all the elements in reconstructed

core-shell particle geometry was explained in the section 3.2.3. Center point vectors

of the spheres in generated random packing is used as translation vectors to create all

additional copies of calculated core-shell particle geometry. Labeling hardspheres in

the packing from 1 to 100 and introducing a new dummy index l, representing the

number tag of hardsphere inside of which core-shell geometry is copied, center point

vectors of all spherical elements in the random jammed packing of core-shell particles

can be calculated by Equation (40).

𝐏𝑗,𝑖,𝑘,𝑙 = 𝐏𝑗,𝑖,𝑘 + 𝐏𝒉𝒔
𝑙 (40)

However, before translating the core shell particles the packing geometry must be

scaled such that a core-shell particle with a radius 𝑟𝑝 would flush fit inside a hardsphere

in the random packing, since the packing generation results in a cube of unit

dimensions and spheres with diameter that varies with respect to the desired number

of spheres in the packing as mentioned previously. Vectors pointing to the center

points of the hardspheres can be scaled by a factor of 𝑟𝑝/𝑟ℎ𝑠 and the spheres in the

packing would still preserve their shape and relative positions while shrinking or

expanding to match the size of the core-shell particle. It is possible because the scaling

is basically done based on similar right triangles. The scaling is done by simply

multiplying all components of 𝐏𝒉𝒔
𝑙 by the ratio 𝑟𝑝/𝑟ℎ𝑠.

𝐏𝒉𝒔
𝑙 = 𝐏𝒉𝒔

𝑙
𝑟𝑝

𝑟ℎ𝑠
 (41)

Scaling also changes the length 𝐿𝑝𝑐 of the periodic cell by the same factor. Since the

original cell was a unit cube, scaled length of the cube becomes 𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠.

𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠 (42)

47

3.3.4. Integration of Core-Shell Packing Geometry and Collision Control

Information contained in 𝐏𝑗,𝑖,𝑘,𝑙 is complete. The center points of any element in any

shell layer of core-shell particle and core spheres of particles in the packing is easily

accessible once 𝐏𝑗,𝑖,𝑘,𝑙 is calculated for all j, i, k and l. 𝐏𝒉𝒔
𝑙 can be used along with

these data in sequence to carry out collision control around a specific shell-layer only,

without having to check any other elements in the geometry.

(Pℎ𝑠,1
𝑙 2

− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (Pℎ𝑠,2
𝑙 2

− 𝛸𝐿,2(𝑡 + ∆𝑡)2)

 + (Pℎ𝑠,3
𝑙 2

− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤ 𝑟ℎ𝑠
2

(43)

If the inequality given in Equation (43) holds for any l, the tracer must be traveling

inside a core-shell particle. It may have been collided with an element of core-shell

particle, or it may still be traveling in the pore space without colliding. If the inequality

given in Equation (43) does not hold for every l, then the tracer is in inter-particle

space hence a collision did not occur. Let us use the dummy index value 𝑙𝑡 for the

corresponding core-shell particle tracer travels in.

(Pℎ𝑠,1
𝑙𝑡

2
− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (Pℎ𝑠,2

𝑙𝑡
2

− 𝛸𝐿,2(𝑡 + ∆𝑡)2)

 + (Pℎ𝑠,3
𝑙𝑡

2
− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤ 𝑟𝑠𝑜𝑖,𝑘

2

(44)

The inequality given by Equation (44) helps determine the shell layer in which the

tracer is traveling. If the inequality is tested for different values of 𝑟𝑠𝑜𝑖,𝑘 for 𝑘 = 0. . 𝑛𝑙,

the first value of 𝑘 the inequality holds for is the layer where tracer is currently travels

in. If the inequality holds for 𝑘 = 0, then the tracer is known to collide with the core

sphere, 𝚾(t + ∆t) = 𝚾(t) is set (bounce-back occurs) and there is no need to check

other elements for collision. If the inequality holds for 𝑘 > 0, other elements in the

corresponding layer, tagged by dummy index value 𝑘𝑡, must also be checked for

collision.

48

(P1
𝑗,𝑖,𝑘𝑡,𝑙𝑡

2
− 𝛸𝐿,1(𝑡 + ∆𝑡)2) + (P2

𝑗,𝑖,𝑘𝑡,𝑙𝑡
22

− 𝛸𝐿,2(𝑡 + ∆𝑡)2)

 + (P3
𝑗,𝑖,𝑘𝑡,𝑙𝑡

2
− 𝛸𝐿,3(𝑡 + ∆𝑡)2) ≤ 𝑟𝑠

2

(45)

If the inequality given by Equation (45) holds for any value of 𝑖 = 0. . naux,k and 𝑗 =

0. . nssa,i,k, then tracer ends up in the corresponding shell-side sphere hence a collision

occurs. Then 𝚾(t + ∆t) = 𝚾(t) must be set and tracer must proceed taking its next

random step.

After the construction of boundary system, the algorithm changes to:

1. Set n.

2. Set DAB.

3. Set simulation time, ts.

4. Set ∆t and calculate ∆l using Equation (14)

5. Determine total number of random steps, using Equation (16).

6. Calculate 𝐏𝑗,𝑖,𝑘,𝑙 for all 100 core-shell particles in the packing, using Equation

(40).

7. Set initial positions for all tracers.

8. Generate ns amount of unit vectors with random directions.

9. Displace a single tracer, for one step using Equation (15).

10. Calculate 𝚾𝐋(t + ∆t) using 𝚾(t + ∆t) in Equation (19).

11. Use 𝜲𝑳(𝑡 + ∆𝑡) and 𝐏𝒉𝒔
𝑙 in Equation (43) to determine if tracer travels in inter-

particle void space (true) or not (false). If true, go to step 14. Else proceed to

next step.

12. Use 𝜲𝑳(𝑡 + ∆𝑡), 𝑟𝑠𝑜𝑖,𝑘 and 𝐏𝒉𝒔
𝑙 Equation (44) to determine in which shell layer

the tracer is traveling in. If tracer is in zeroth layer (core sphere), detect

collision and go to step 14. Else proceed to next step.

49

13. If step 11 is false, use 𝜲𝑳(𝑡 + ∆𝑡) and 𝐏𝑗,𝑖,𝑘,𝑙 of all elements in corresponding

shell layer determined in previous step in Equation (45) to check for collision.

If collision is detected, set 𝚾(t + ∆t) = 𝚾(t).

14. Return to step 10 until all tracers have taken ns random steps each.

15. Use Equation (17) to recalculate DAB and compare with initially set value.

A flowchart of the diffusion/dispersion algorithm can be seen in Appendix D.1. In the

flow chart, bypassing the steps related to fluid flow or simply assuming a velocity field

with velocity vectors of magnitude zero gives the algorithm for diffusion.

3.4. Simulation of Fluid Flow in a Random Packing of Monodisperse Hardspheres

in COMSOL

The simulation of fluid flow was carried out using COMSOL. Liquid water at room

temperature was selected as the fluid. The system geometry was the visually inspected

and modified random packing of hardspheres mentioned in section 3.3.2.

Figure 15: Left: Entire geometry of the system. Right: Fluid domain.

x
y

z

50

COMSOL allows importing certain CAD file formats to be used as boundaries for the

modules. Geometry of the packing can be rendered in a compatible file format by

OpenSCAD and imported to COMSOL. However the rendered files contained rough

surfaces on hardspheres, preventing mesh generation. This problem related to

geometry importing could not be solved, therefore all 100 spheres in the packing were

scaled such that diameter of the hardspheres in the packing would be equal to 5 𝜇𝑚,

which is the selected diameter of core-shell particles that were used in dispersion

simulations, and all 100 hardspheres were manually added into the geometry. Finally,

a cube geometry representing the main periodic cell with dimensions as defined in

Equation (42) by 𝐿𝑝𝑐 = 𝑟𝑝/𝑟ℎ𝑠 = 2.5/0.14 ≅ 17.6 𝜇𝑚, was added to be chosen as the

domain that will be defined as the fluid. System geometry is shown in Figure 15, left.

The laminar Flow module was added to the component in model builder, since

chromatographic velocities are almost always in the laminar flow region. Fluid domain

was selected as the cube, at normal temperature and fluid properties was defined as

“From material” belonging to physical property data of liquid water provided by

COMSOL. Selected fluid domain can be seen in Figure 15, right.

Figure 16: Two sets of periodic flow conditions with zero pressure difference.

x
y

z

51

Initial values of the velocity field and pressure in the system were set to zero. All

boundaries in the fluid domain were set to no slip boundary conditions. Then two sets

of periodic flow conditions were added for opposing boundaries perpendicular to xy-

plane, that are the faces of the cube, and pressure difference between two pairs of

opposing faces of the cube was set to zero Pascals in periodic flow conditions, shown

in Figure 16. Finally another periodic flow condition was defined for the opposing pair

of surfaces on the cube that are parallel to the xy-plane, as seen in the left of Figure

17, and the pressure difference between these boundaries was set to several different

values in Pa, based on typical flow rates in core-shell particle operations as illustrated

in more detail in the section 4.2.1 of the next chapter. Inlet and outlet boundary

conditions were disabled. Selected boundaries in the three periodic flow conditions

override previously defined selection of no slip boundaries and hardspheres become

the only no slip boundaries in the system. The results for all pressure difference values

in periodic flow conditions with non-zero pressure drop are given and discussed in

sections under 4.2. in Chapter 4.

Figure 17: Left: Periodic flow condition with a set ∆𝑃. Right: Fine mesh generated by

COMSOL Multiphysics.

x
y

z

Flow Direction

52

Meshes used in finite-element iterations are left in control of COMSOL, with a ‘Fine’

element size. Finally, a stationary study was added into the model builder and the

steady-state velocity fields were obtained.

3.5. Integration of the Diffusion and Fluid Flow

Integrating separately developed random-walk diffusion model and velocity field

obtained from the numerical continuum solution of flow equations in the system

creates a particle tracking model that can explain dispersion. Recall that, Fokker-

Planck equation given by Equation (9), under steady-state flow conditions and with a

constant diffusion coefficient throughout the system becomes analogous to advection-

diffusion equation and the random-walk diffusion equation given in Equation (15) with

the addition of displacement due to external velocity field resembles an Euler

approximation of Fokker-Planck Equation in the form:

𝚾(t + ∆t) = 𝚾(t) + 𝛝(𝚾(t))∆t + 𝛏∆𝑙 (46)

This simple modification to Equation (15) converts entire diffusion model into a

dispersion model that can use the same system geometry and collision control

mechanism. Displacement due to the velocity field requires the velocity vector

components at the current position of the tracer, 𝛝(𝚾(t)), that can be obtained by tri-

linear interpolation of the nearest velocity vectors around and with respect to the local

position of the tracer. Interpolation subroutine prepared for the study is explained in

detail, in Appendix C.5. A flowchart of the dispersion algorithm can be seen in

Appendix D.1.

Longitudinal displacement data is collected at a certain frequency for each tracer

during the calculations for each tracer. The displacement data of the tracers is then

easily converted to the variance of the longitudinal displacements of the entire tracer

53

ensemble to obtain a time-dependent longitudinal position variance. Then the time-

dependent longitudinal position variance can be fitted an asymptotic function

(explained in section 3.6.5) to find the asymptotic longitudinal dispersion coefficient

of the tracer ensemble using the relation given in Equation (2). Dispersion coefficients

can also be converted to the more appropriate plate height and reduced plate height

values commonly used in chromatography terminology for referring to dispersion,

using Equation (1).

3.6. Software Implementation of the Model

Implementation of the random-walk free diffusion model, computation and storage of

core-shell packing boundaries, adapting random-walk model and preparing an

appropriate collision control mechanism for the calculated system boundaries, storage

of the external velocity field in computer memory, an adapted tri-linear interpolation

subroutine for the stored velocity field and integration of the external velocity field

with the random-walk model using free form Fortran are all explained in detail in

Appendix C.

Following sections only includes some of the important remarks on the software

implementation of the diffusion and dispersion models around core-shell particles.

Reader is suggested to read the appendices for detailed information related to the

programming done for this specific work.

3.6.1. Free Molecular Diffusion

The most important aspect in the implementation of random-walk diffusion on

software is the random number generation. Computers cannot generate true random

numbers. Instead, they use special subroutines that can generate uniformly distributed

pseudo-random numbers based on an initial seed and every other pseudo-random

54

number is generated by using the previous one as the new seed. Therefore the

generated pseudo-random numbers are only seemingly random if the numbers are used

in a sequence. Considering this, random-walk must proceed until a tracer takes

required number of random steps to complete the duration of the simulation before the

next tracer begins its random-steps. Otherwise the unit vector with random direction,

𝛏, in the Equation (15) might not contain random values at all.

In this work, the total displacements, or the transverse/longitudinal displacements, of

individual tracers were saved to an independent matrix in a certain frequency during

the execution of random-walk. After each and every tracer finishes all random-steps,

this time-dependent displacement data was then converted into more convenient time-

dependent diffusion coefficient -or time-dependent longitudinal position variance

(which is then used for estimating longitudinal dispersion coefficients) for the case of

dispersion- of the tracer ensemble. For free diffusion, time-dependent diffusion

coefficient is expected to be not deviating from the input value except for the random

fluctuations due to the probabilistic nature of the random-walk method.

3.6.2. Computation and Storage of Impermeable Boundaries

Previously, a method was proposed explained in detail how an ideal core-shell particle

can be reconstructed by using basic principles of analytical geometry by using 3 user-

defined parameters; core-to-particle ratio (𝜑), number of shell layers (𝑛𝑙) and core-

shell particle radius (𝑟𝑝). Proposed method allows systematic calculation of the

geometry elements. Total amount of elements in the system geometry as well as the

exact positions of each and every element including in which core-shell particle and

which shell layer they are located in are very well known after the calculations. This

is very important for developing an efficient collision control mechanism for the

model. Geometry data therefore, is systematically stored in higher-dimensional

matrices allocated enough computer memory.

55

3.6.3. Adapting the Free Molecular Diffusion Code to Simulate Impermeability

In the section 3.1.2, basic principles of collision control which uses mathematical

expressions that define the geometry of impermeable boundaries was explained. Later,

a method that uses basic principles of analytical geometry was presented for digital

reconstruction of a core-shell particle as spherical elements and this method was

implemented on computer using Fortran programming language to finally obtain a four

dimensional array that contains every parameter that defines the impermeable

boundaries in a system of core-shell particles in a random jammed packing. The

objective is to adapt the basic collision control mechanism in an efficient way so that

impermeability at any point in the system is properly simulated.

A sphere centered at the point (𝑥0, 𝑦0, 𝑧0) with a radius 𝑟 is defined by the sphere

equation.

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2 (47)

Then, the inequalities given in Equations (48) and (49), represents all points inside and

outside the sphere defined by Equation (47), respectively, as well as the surface of the

sphere itself.

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2 (48)

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≥ 𝑟2 (49)

These inequalities are used in a control structure to determine whether a tracer is inside

any of the spherical elements that create the impermeable boundaries or not, by

replacing (𝑥0, 𝑦0, 𝑧0) with the components of center point vectors and 𝑟 by the radius

of a specific sphere element, and dependent variables x,y,z by the local position 𝚾𝐋(t +

∆t) of a tracer. In order to make sure that a tracer is not in an impermeable volume

hence a collision could not have occured, all sphere elements in the system must fail

to satisfy the inequality given in Equation (48). However, one might appreciate the

extraordinarily large amount of spherical elements that need to be tested before no

56

collision is detected. Therefore, the following algorithm is suggested in order to

decrease total amount of control calculations needed to check all sphere elements.

1. Use 𝚾𝐋(t + ∆t), 𝑟ℎ𝑠 and RJP in Equation (48) for all hardspheres one by one,

determine if tracer resides in any of the hardspheres in random jammed

packing.

a. If Equation (48) is not satisfied by any hardsphere, tracer is in inter-

particle void space. Proceed to next random step.

b. If Equation (48) is satisfied by any hardsphere, tracer resides in that

hardsphere and might be in one of the core-shell particle elements.

Proceed to next step of the collision control algorithm.

2. Use 𝚾𝐋(t + ∆t), 𝑟𝑠𝑜𝑖,𝑘, and RJP elements that belong to corresponding

hardsphere detected in previous step, in Equation (48) for all spheres of

influence one by one, determine the shell layer tracer currently resides in. The

first sphere of influence that satisfies Equation (48) belongs to the shell layer

that hosts tracer. Proceed to next step of the collision control algorithm.

3. Use 𝚾𝐋(t + ∆t), 𝑟𝑠𝑜𝑖,𝑘, and CSPRJP elements that belong to corresponding shell

layer detected in previous step, in Equation (48) for all shell side elements in

that shell layer one by one.

a. If Equation (48) is not satisfied by any of the shell layer elements, tracer

is in the pore space of core-shell particle hence no collision occured.

Proceed to next random step.

b. If Equation (48) is satisfied by any of the shell layer elements, tracer

resides in the impermeable volume of that element hence a collision is

detected. Stop checking remaining boundary elements and use bounce-

back method and set 𝚾(t + ∆t) = 𝚾(t) to return tracer to its last known

position outside impermeable volume. Proceed to next random step.

57

3.6.4. Storage of Velocity Field

COMSOL Multiphysics can create a data table of the velocity components of the

vectors in the velocity field, on a user defined regular grid. For this work, a regular

grid with 101 nodes in each dimension (one node per 1/100 of the periodic cell length)

was used. The exported text file that contains the data table was around 200 mb in size.

Number of nodes used in the grid and the size of the exported file has a cubic relation,

for example using 10 times more nodes in each dimension would require 1000 times

more hard disk space (200 GB, in this case) as well as memory considering the velocity

field must be read and written to memory during the execution of the code. Therefore

this must be considered while extracting the velocity field from the application. The

data table also contains velocity components that cannot possibly be read by Fortran

code, due to its incompatible format with the Fortran. This might also be the case for

other different programming languages, therefore the table must be first arranged into

a compatible format by using a different platform. Octave was used in this work to

convert the velocity field data into a Fortran-compatible format.

3.6.5. Adaptation of Diffusion Program to Simulate Dispersion

The dispersion code essentially differs from the diffusion code only by the reading

storage of the external velocity field and the added displacement term in the random-

walk equation ([𝛝(𝚾(t))∆t] term in Equation (46)). Calculation of the core-shell

packing geometry and collision control are the same as in the diffusion model.

However the interpolation algorithm (explained in Appendix C.5) requires an

additional calculation of local position prior to the random and flow displacement of

the tracer. Integration of the random-walk diffusion model, the velocity field and

interpolation subroutine using Fortran is explained in detail in Appendix C.6.

For this study, random-step size of tracers were selected as either 10% of the diameter

of shell-side spheres or 1% of the entire core-shell particle diameter, whichever is the

58

smallest. While selecting a more refined random-step size, one should be aware of the

fact that random-step size, ∆𝑙, is inversely proportional to the square root of the time

increment, ∆𝑡, which directly influences the total amount of random-steps each tracer

needs to take for the duration of simulation hence the wall-clock time of the execution.

For example, halving the value of ∆𝑙 increases the wall-clock time four times and such

refinements on ∆𝑙 might quickly lead to extremely long execution times for the

computations given that the computer being used has enough memory to store required

random-numbers.

Longitudinal dispersion coefficient is not directly calculated by the Fortran program.

The reason behind it is related to the probabilistic nature of the model, as well as the

actual nature of hydrodynamic dispersion. Random-walk creates fluctuations in

variance, making it very hard to estimate over short time intervals. Longitudinal

dispersion coefficient is by definition proportional to the time derivative of

longitudinal displacement variance and it increases until reaching an asymptotic value.

Therefore variance data was manually fitted an asymptotic function with decaying

positive slope using a spreadsheet calculator, to estimate the time derivative of

longitudinal displacement variance of tracer ensemble. Fitted function is given in

Equation (50).

F(t) = A(t +
1

k
e−kt −

1

k
) (50)

𝐹(𝑡) is the integral of function 𝑓(𝑡), given in the following equation, with boundary

conditions f(0) = 0 and f(t)𝑡→∞ = 𝐴. The parameter A is equal to 𝛿𝜎𝐿
2 𝛿𝑡⁄ |𝑡→∞ and

the parameter k is the decay rate of the increase in 𝛿𝜎𝐿
2 𝛿𝑡⁄ .

f(t) = A(1 − 𝑒−𝑘𝑡) (51)

Non-linear solver available in Excel can find the best fitting parameters to the variance

data and the longitudinal dispersion coefficient is equal to half of the asymptotic time

slope of the 𝜎𝐿
2, which is finally estimated as 𝐴/2. It is important to point out that, the

59

parameters A and 𝑘 does not necessarily have physical significance. They are just

fitting parameters to estimate the asymptotic slope of the time-dependent variance.

3.6.6. Parallelization of Diffusion and Dispersion Programs

Due to the nature of random-walk and particle tracking methods, they are very intense

iterative approaches for modelling these phenomenon. Regular serial execution of the

programs written to carry out iterations might take very long time. Parallel computing

can partially reduce the wall-clock times of the codes by distributing the computational

load amongst available CPU threads. The model built in this study is very suitable for

parallel computing. There is, however, a very important point that needs to be

considered during the parallelization of the program that is the pseudo-random number

generation. Fractions of the code that carries out the random number generation must

be excluded from the parallel-worksharing region of the code (in other words, a thread

must wait until the other thread completes generating its sequence of numbers) to avoid

disruption in the sequence of pseudo-random numbers generated for random-

displacements of the tracers. Otherwise, individual threads might ‘steal’ some of the

pseudo-random numbers from the random number sequence of another thread, risking

tracers to move according to a sequence of numbers that are not uniformly distributed.

See Appendix C.7 for more details about the parallelization of the Fortran codes

written for this study.

3.6.7. A Summary of Interactions Between Software Components

The dispersion model in its final state mainly depends on the Fortran code written in

the study, however there are still other software, COMSOL, Octave, random packing

generator, OpensCAD and a spreadsheet calculator (MS Excel) used in either in the

process or obtaining the results. A flowchart representation of the overall work done

60

from the beginning to obtaining final results can be seen in Appendix D.3. Tasks taken

on by each software can be summarized as follows.

Fortran code,

 Calculates core-shell particle geometry.

 Uses modified random jammed packing of hardspheres to generate core-shell

packing.

 Carries out the actual simulation of dispersion.

Random packing generator written by Skoge et al. (2006),

 Generates random jammed packings of monodisperse hardspheres in periodic

unit cells.

OpenSCAD is used for,

 Visual inspection of original random packing of hardspheres and its

modification

 Visual inspection of created core-shell particle geometry, modified random

packing, as well as the core-shell packing geometry.

COMSOL Multiphysics,

 Uses modified random jammed packing of monodisperse hardspheres to

simulate fluid flow.

 Creates data tables for the velocity field obtained from the fluid flow

simulation.

Octave,

 Re-organizes the data table into a certain format that can be used in Fortran.

MS Excel is used for,

 Modification of the original random packing of hardspheres to include

invading spheres from neighboring periodic cells.

61

 Calculating dispersion coefficients from the variance data obtained from

dispersion model by fitting an asymptotic function to the data points.

Figure 18: Interaction chart summarizing input/output relations between different

software.

Different software interactions are visually demonstrated in Figure 18. Relations

numbered in the figure are explained below.

1. Generated packing is sent to and read by a Fortran code

2. Generated packing is imported to Excel for calculating extreme points on

hardspheres and detecting invading spheres.

Packing

Generator

1

3 &6

4

12

14

5 7

13

8

10

9

11

2

OpenSCAD

Excel

Octave

COMSOL

Various CAD

Images

Snapshots

Main

Results

Fortran Code

62

3. Fortran generates a script that commands OpenSCAD to create an image of the

generated packing.

4. OpenSCAD image along with extreme points of hardspheres calculated in

Excel is used to visually determine how many copies of invading spheres need

to be added to packing geometry.

5. Final modified packing geometry is read by Fortran code.

6. Fortran generates a script that commands OpenSCAD to create an image of the

generated packing. Image is investigated, making sure hardspheres are

properly replicated near periodic boundaries.

7. Modified packing geometry is read by dispersion code, and the packing of

core-shell particles is created.

8. Modified packing geometry is used in COMSOL to create the system geometry

in COMSOL simulation.

9. COMSOL creates a data table for the velocity field and the data table is sent to

Octave. Octave reads the velocity field and re-organizes it into a certain format

that can be used in Fortran.

10. Dispersion code reads velocity field from data file re-organized by Octave,

proceeds simulating dispersion in the random packing of core-shell particles.

11. COMSOL is used for taking snapshot of the system geometry as well as

contour plots and velocity vectors.

12. Various CAD images of core-shell particle and packing geometry is created.

13. Dispersion is simulated, variance data of tracer displacements is output into a

file.

14. Variance data is imported to Excel to calculate dispersion coefficients and

reduced plate heights as the final results.

63

CHAPTER 4

RESULTS AND DISCUSSION

4.1. Simulation of Diffusion in Stagnant Media

4.1.1. Validation of the Free Diffusion Program

Fortran program that simulates free molecular diffusion was tested by running it for

various combinations of tracer population and set ∆𝑡 values, for a one second diffusion

event.

Diffusion coefficients were calculated every 0.001 𝑠 and saved during simulation to

obtain time-dependent diffusivity data containing 1000 data points. Simulation was

repeated for a tracer population 𝑁 = 1000 using a set of different time steps

∆𝑡 = (10−3, 10−4, 10−5).

𝐷0 = 𝐷𝐴𝐵(𝑡)/𝐷𝐴𝐵 (52)

In an unobstructed environment, diffusion coefficient is expected to be constant.

Figure 19 shows normalized time-dependent diffusion coefficients, 𝐷0 defined by

Equation (52) for simulations carried out at different time increments. Sample means

of 𝐷0 is 1% different from unity for all ∆𝑡. Choosing a finer ∆𝑡 only reduces the

variance of the predictions.

64

Figure 19: Normalized time dependent diffusion coefficients predicted by the model

with respect to time. Results are for three different time steps, and a tracer population

of 4000. Legend shows ∆𝑡 values in seconds used for corresponding data set.

Figure 20: Normalized time dependent diffusion coefficients predicted by the model

with respect to time. Results are for 𝑁 = (500,1000,2000,4000) and ∆𝑡 = 10−5𝑠 .

Legend shows 𝑁 values used for corresponding data set.

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

D
0

Time (s)

Δt=0.001 s

Δt=0.0001 s

Δt=0.00001 s

0.85

0.9

0.95

1

1.05

1.1

1.15

0 0.2 0.4 0.6 0.8 1

D
0

Time (s)

500

1000

2000

4000

65

Free diffusion simulations were also conducted for a constant ∆𝑡 = 10−5𝑠 and for 4

different tracer populations. Time dependent diffusion coefficient data was again

normalized by the input value of 𝐷𝐴𝐵.

Figure 20 shows that using larger tracer populations increases the precision of

prediction as the results for the run where 𝑁 = 4000 has, by far, the least standart

deviation (0.006) compared to other simulations with 2000, 1000 and 500 tracers

(0.011, 0.032 and 0.028 respectively). Mean values of diffusion coefficients are also

shown in the figure. Maximum deviation of average 𝐷0 from the unity is 5% in the

simulation with 𝑁 = 500, which can be expected from a coarse simulation using such

a small population. The other runs with higher tracer populations have around 1% error

from the expected value of 𝐷0. Considering the decreasing standard deviations and

error in higher tracer populations, the free diffusion algorithm and the corresponding

Fortran code can be confirmed to accurately simulate diffusion.

4.1.2. Validation of Periodic Boundaries and Collision Control

Calculation of local tracer positions and the validity of periodic boundaries was tested

by preparing a diffusion simulation with a single spherical boundary defined in the

main periodic cell. Main periodic cell was defined as a cube with 5 𝜇𝑚 dimensions

and a sphere 𝑑 = 5 𝜇𝑚 in diameter and centered in the geometric middle of the cube

was used as the system. Diffusion of 5000 tracers, all placed at the origin with a point

injection type initial condition, was simulated for 0.5 seconds of real time by setting

∆𝑙 = 0.5 𝜇𝑚 and calculating ∆𝑡 accordingly. The last collision sites, positions of

tracers before they are returned to diffusion domain by the bounce back method,

between each tracer and the impermeable sphere was saved and visualized in a 3-D

scatter plot.

66

Figure 21: Two different side views of final collision sites between every tracer and

the packing produced by the periodic boundaries from a single impermeable boundary

defined in the main periodic cell. Units for all axis are in 𝜇𝑚.The red frame indicates

the scale and approximate position of a single periodic cell in the system.

Spherical impermeable volumes surrounded by collision sites are very distinct in the

3-D scatter plots given in Figure 21, as well as the smaller available volume between

the spheres. These visuals can confirm that periodic boundaries are successful at

creating an infinite arrangement of boundaries defined in the main periodic cell.

Simulation was also repeated for a homogeneously distributed injection of tracers into

the available space in the main periodic cell, to compare the local collision sites around

the sphere located in the main periodic cell.

Point injection type initial conditions inevitably cause all tracers to randomly move in

the same grid due to the uniform magnitude of random-displacement ∆𝑙, therefore

collision sites for all tracers around the impermeable boundary lay on the same fixed

points around the sphere. Figure 22, left, shows very sharp laddering occurring around

the impermeable sphere for a simulation with point injection. However, when the

initial positions of tracers are randomly distributed throughout the space in the periodic

cell that allows diffusion, laddering is smoothened since each and every tracer gets a

different random movement grid. Figure 22, right, clearly demonstrates the effect of

67

Figure 22: Local collision sites around the boundary defined in the main periodic cell.

Left: Collision sites in point injection simulation. Right: Collision sites in distributed

injection simulation. The box corresponds to the dimensions and the position of the

main periodic cell.

choosing a distributed injection type initial condition on the geometry sampled by

tracers. Sparse collision sites near the periodic cell faces, shown in Figure 22, are due

to defined ∆𝑙 value. These regions are narrower than the random-step size,

consequently preventing a large portion of tracers to sample them in case of distributed

injection, and all tracers in case of point injection. This effectively reduces the void

fraction and tortuosity of the system. Since the narrow regions are not sampled by

tracers, volume of these regions are practically treated as an impermeable zone.

Transient diffusion coefficients normalized by free diffusion coefficient 𝐷𝐴𝐵, as

described in Equation (52), in the same simple cubic equivalent system geometry was

also obtained from simulations with ∆𝑙 values of 𝑑/10, 𝑑/20, 𝑑/30 and 𝑑/40 in order

to observe the effect of excluded free volume near the narrow regions between spheres

due to usage of coarse step sizes. Asymptotic normalized diffusion coefficient 𝐷0 was

found to be 0.60, 0.66, 0.67 and 0.71 for simulations with ∆𝑙 values of 𝑑/10, 𝑑/20,

𝑑/30 and 𝑑/40 respectively. 𝐷0 vs. time graphs are shown in Figure 23.

68

Figure 23: Normalized transient diffusion coefficients predicted by the model in

simple cubic equivalent periodic cell, for random-step sizes between ∆𝑙 = 𝑑/10 and

∆𝑙 = 𝑑/40.

The results for the simulations clearly show the effect of dead volume inadvertently

generated due to the selection of a large ∆𝑙. Smaller ∆𝑙 reduces the dead volume, hence

the higer effective diffusivity predicted by the model. Kim and Chen (2006) conducted

a similar study on the prediction of effective diffusion coefficients in ordered and

random packings of spheres by random-walk simulations. They have found, for simple

cubic arrangements of spheres, normalized effective diffusivity must be approximately

0.72 when random-step size ∆𝑙 = 𝑑/100 below which -they claim- dead volumes

become very negligible. The model successfully predicts similar results to the

independent study of Kim and Chen. However a coarse random-step size had to be

selected for the diffusion and dispersion simulations in the packings of core-shell

particles, results of which are discussed later, due to memory and processing power

limitations in this study. Since ∆𝑡 is proportional to the square of ∆𝑙, finer choices for

random-step size can quickly lead to incredibly small ∆𝑡 and consequently very large

amount of random steps. Therefore memory requirement and wall-clock time of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.20 0.40 0.60 0.80 1.00

D
0

Time (s)

d/10

d/20

d/30

d/40

69

simulations are also increased proportionally, thus halving ∆𝑡 will quadrouple the

required memory and wall-clock time. Fortunately, the consequences are consistent

and reproducible, and can be taken into account while comparing model predictions to

any available experimental data.

4.1.3. Validation of Core-Shell Particle Geomtery

An analytical core-shell particle geometry was proposed and an analytical geometry

approach was used to present a procedure for calculating each and every element that

collectively makes up a core-shell particle. This procedure was implemented on

computer by Fortran and the Fortran code that calculates the geometry of a single core-

shell particle was tested by visual inspection of core-shell geometries with different

properties created by the code. The code was compiled into a dedicated program that

only calculates the geometry and uses a format resembling OpenSCAD syntax to write

a script that can be read by OpenSCAD. Following code generates the script and saves

it to a text file.

OPEN (#, FILE="CORE-SHELL SCRIPT.TXT", STATUS="UNKNOWN",

ACTION="WRITE")

DO I=1,NOL

 DO J=1,SC(J)

 WRITE(#,*)”translate([“, CPGCC(I,J,1), ”,” , CPGCC(I,J,2),&

 & “,”, CPGCC(I,J,3), “])”

 WRITE(#,*)”sphere(“, CPGCC(I,J,4), “, $fn=10);”

 ENDDO

ENDDO

Figures 24, 25 and 26 shows section views of core-shell particles 5 𝜇𝑚 in diameter

with core-to-particle ratios 0.7 and 0.8, and with a single, double and triple layers

respectively. Sections are taken as two symmetric octants of the particle geometry.

Cross sections of cut elements are in green color.

70

Figure 24: Section views of single layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8.

Figure 25: Section views of double layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8.

71

Figure 26: Section views of triple layer core-shell particles. Left: Particle with 𝜑 =

0.7. Right: Particle with 𝜑 = 0.8.

Visuals clearly show that the geometry calculations are done by the Fortran code as

intended. Shell side spheres do not overlap or cross over to another shell layer or to

core sphere. Layers are clearly distinguishable. Defining input parameters 𝛹, 𝑟𝑝 and

𝑛𝑙 seem to be working properly to determine the final shape of the core-shell geometry,

as the code is able to create particle with different 𝛹 and 𝑛𝑙, and radii of shell side

spheres are appropriately determined. Therefore the algorithm and the code for re-

construction of core-shell particles is safe to be used in diffusion and dispersion codes.

Shell porosity, and the entire particle porosity of the re-constructed geometries were

also calculated. Since the amount of shell spheres are known, calculated as a necessary

parameter for array allocation during runtime, the pore volume of the core-shell

particle can simply be calculated by substracting the volumes of all elements in the

geometry from the volume of outer-most sphere of influence. Similarly, pore volume

of the shell layer only can be found by substracting from the shell volume only.

72

Figure 27: Shell porosity of a core-shell particle with certain 𝜑 values vs. the amount

of shell layers it has. Note the convergence of shell porosity to 0.477 as 𝑁 approaches

to infinity.

Single layer core shell particles have a coarser structure compared to real core-shell

particles. Consequently they would have an overestimated porosity. Real particles

typically have multiple shell layers, and Figure 27 clearly shows how shell porosity

can rapidly change especially at a small number of shell layers and smaller core-to

particle ratios. In order to obtain a more accurate approximation of the real geometry,

at least 2 or 3 shell layers must be calculated. A very large number of layers would

also lead to more unrealistic results, since the shell layers of a real core-shell particle

can only be made so thin with the current production methods, also it will lead to very

large amount of shell side spheres in the layers and will drastically slow down the

collision control since every spherical element in the layer is checked for collision

according to the algorithm. Figure 27 also shows an interesting result, where the shell

porosity converges to a certain value as the amount of shell layers is increased.

Converged porosity is ~0.477, which is the porosity of a simple cubic packing of

monodisperse hardspheres. As the number of layers in the calculated geometry

approaches to infinity, the radius of shell side spheres becomes closer and closer to

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0 5 10 15 20 25 30

Sh
el

l P
o

ro
si

ty

Number of Shell Layers

ϕ=0.90

ϕ=0.85

ϕ=0.80

ϕ=0.75

ϕ=0.70

ϕ=0.65

ϕ=0.60

73

zero and the curvature of core sphere becomes less and less ‘apparent’ to shell spheres.

As a result, the shell side starts acting like a simple cubic packing of spheres.

Figure 28: Entire porosities of core-shell particle with certain 𝜑 values vs. the amount

of shell layers it has.

Porosity of the entire particle takes the dead volume of non-porous core sphere into

account, therefore is different for different core-to-particle ratios, 𝜑. Figure 28 shows

how the porosity of the entire particle changes with respect to amount of shell layers

for core-shell particles with different core-to-particle ratios. Particles with higher 𝜑 is

better represented by a greater amount of shell layers for a better estimation of the

porosity of a real core-shell particle. Dependency of the particle porosity on number

of shell layers especially becomes more noticeable for 𝜑 < 0.8 since shell volume

becomes greater than the volume of core sphere at 𝜑 ≅ 0.794, hence the shell porosity

starts having more impact on the porosity of entire core-shell particle. Therefore, after

this point, it is more reasonable to segment the shell-side into several layers of spheres

rather than a single layer of comparatively large spheres to avoid distortion in porosity

values. For example, a core-shell particle with 𝜑 = 0.75 has a shell thickness of

(1 − 𝜑)𝑟𝑝 = 0.25𝑟𝑝 and it can be represented as a core-shell geometry with 𝑛𝑙 =

0.25𝑟𝑝/0.1𝑟𝑝 = 2.5 ≅ 3 shell layers to avoid distortion in porosity values.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 5 10 15 20 25 30

P
ar

ti
cl

e
P

o
ro

si
ty

Number of Shell Layers

ϕ=0.90

ϕ=0.85

ϕ=0.80

ϕ=0.75

ϕ=0.70

ϕ=0.65

ϕ=0.60

74

4.1.4. Validation of Core-Shell Packing Geometry

Random jammed packing of core-shell particles calculated by the model was visually

inspected in a similar manner to the packing of hardspheres as described in section

3.3.2. and individual core-shell geometries in the previous section. Two packing

geometries containing core-shell particles with 𝜑 = 0.7 and 𝜑 = 0.8 were calculated

and a Fortran code was used to generate an OpenSCAD script, using the information

contained in CSPRJP array (Refer to Appendix C for the details on Fortran strings used

in the codes), which are the center points and radii of all elements in the packing

geometry. Core-shell particles were set to have only a single layer, for multi-layer

particles contain very large amounts of spherical elements that needs to be rendered

by the computer. A packing containing triple layer core-shell particles with 𝜑 = 0.7

contains around 270,000 geometry elements which could not be rendered by the

available computers, whereas the packing with single layer core-shell particle that has

𝜑 = 0.8 contains around 25,000 elements and the computer was able to render it

although changing the view incredibly slowed the computer.

75

Figure 29: Random jammed packings of 100 single layer core-shell particles with

𝑟𝑝 = 2.5 𝜇𝑚. The main periodic cell is visible in translucent grey color. Left: Core-

shell particles with 𝜑 = 0.7. Right: Core-shell particles with 𝜑 = 0.8.

Inspected packings of core-shell particles are seen in Figure 29. Renderings do not

show any overlaps between core-shell particles or any abnormal large distance

between them, an indication for successful scaling of hardsphere packing and

successful translation of calculated core-shell particle geometry into the scaled packing

of hardspheres. These visuals confirm that the system boundaries are calculated and

stored properly. Hence they can be used in diffusion and dispersion simulations.

4.1.5. Diffusion in Random Jammed Packing of Core-Shell Particles

Diffusion of solute tracers were simulated in the packing of core-shell particles with

𝜑 = 0.77 with 1 and 2 shell layers, and 𝜑 = 0.655 with 3 shell layers was simulated.

Bulk diffusivity of tracers were set as 110𝜇𝑚2/𝑠, a typical diffusivity for small

proteins based on lysozyme (Bauer et al., 2016). Simulation was run for two different

particle diameters, 5 𝜇𝑚 and 3.4 𝜇𝑚 based on the dimensions of some commercially

76

available core-shell particles introduced in the literature survey chapter, and the

duration of simulation was set as five times diffusive time measure, 5𝜏𝐷 =

5(𝑑𝑝)2/𝐷𝐴𝐵. Time-dependent normalized diffusivity was defined as 𝐷0 = 𝐷𝐴𝐵(𝑡)/

𝐷𝐴𝐵. Normalized effective diffusivity was calculated as the mean of 𝐷0 data for 𝑡/𝜏𝐷 ≥

1. 500 data points were extracted from the simulation throughout the entire duration.

75000 tracers were used in each simulation. Random-step size were set to 10% of the

diameters of shell spheres for all runs. Initial positions for all tracers are selected

randomly, inside the inter-particle void space in the main periodic cell. Note that the

initial condition is not a point injection but a homogeneous distribution of tracers

throughout the inter-particle void space in the main periodic cell.

Figures 30 and 31 show the effective diffusivity values predicted by the model, for

core-shell particles with different diameters but the same geometry defining

parameters (i.e. the number of shell layers and core-to-particle diameter ratio).

Predicted 𝐷0,𝑒𝑓𝑓 is the same for repeated simulations for particles with both diameters,

only differing after third decimal point. Since the defining parameters are the same for

both diameters, tortuosity of the packing geometry must be and is practically the same.

Or, in other words, calculated geometries for the packings of core-shell particles with

diameters 5 𝜇𝑚 and 3.4 𝜇𝑚 are two different scaled versions of the exact same

geometry. Therefore these results are consistent. Normalized time-dependent

diffusivity for the same particles, but with 2 shell layers instead of 1 are given in Figure

32 and 33. Simulations predict the same 𝐷0,𝑒𝑓𝑓 values as in single layer particles. This

is also a self consistent result, considering the entire particle porosity changes a very

small amount between 1 layer and 2 layer geometries (check Figure 28 in section 4.1.3)

and the reflection of this change on the entire volume available for diffusion in the

core-shell packing is almost zero. However, these results would definitely change if

solute tracers were assigned a finite size, unlike point tracers used in this study. Finite-

sized probes would not be able to sample spaces where point tracers can freely roam.

Therefore, the consistency of the results between coarse and finer core-shell particle

geometries is only valid for simulations of diffusion or dispersion of small molecules.

77

Simulation predictions for normalized time-dependent diffusivity in a packing of triple

layer core-shell particles with 𝜑 = 0.655 is given in Figure 34. 𝐷0,𝑒𝑓𝑓 for particles

with different diameters is the same, due to almost identical tortuosity, but the effect

of extra diffusion volume that becomes available for 𝜑 = 0.655 (see Figure 28 for the

apparent change in the entire particle porosity between core-to-particle ratios 𝜑 =

0.655 and 𝜑 = 0.77) is clearly distinguishable in the ~2.5% increase in effective

diffusivity. Diffusion predictions of the model are self consistent but more importantly

of physical coherence, although direct comparisons with any experimental results

would not be plausible or at least very hard to speculate on since, especially for these

small size core-shell particles, differences in packing geometry in experiments and the

packing used in the simulations would effect 𝐷0,𝑒𝑓𝑓 quite significantly compared to

actual contributions from core-shell particles. In dispersion, these differences would

be amplified and the predictions of the model can be compared to an available data

and discussed.

Figure 30: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

core-shell particles with single shell layer and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3

decimals.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0 1 2 3 4 5

D
0

t/τD

φ = 0.77
D0,eff = 0.727

1 Layer, 5 micron, 1st run 1 layer, 5 micron, 2nd run

78

Figure 31: Normalized time-dependent diffusivity in the packing of 3.4 𝜇𝑚 in

diameter core-shell particles with single shell layer and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2

decimals.

Figure 32: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

core-shell particles with 2 shell layers and core-to-particle ratio of 0.77. Normalized

effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 3 decimals.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0 1 2 3 4 5

D
0

t/τD

φ = 0.77
D0,eff = 0.721 (1st run)

0.724 (2nd run)

1 Layer, 3.4 micron, 1st run 1 layer, 3.4 micron, 2nd run

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0 1 2 3 4 5

D
0

t/τD

φ = 0.77
D0,eff = 0.726

2 layer, 5 micron, 1st run 2 layer, 5 micron, 2nd run

79

Figure 33: Normalized time-dependent diffusivity in the packing of 3.4 𝜇𝑚 in

diameter core-shell particles with 2 shell layers and core-to-particle ratio of 0.77.

Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two simulation runs in first 2

decimals.

Figure 34: Normalized time-dependent diffusivity in the packing of 5 𝜇𝑚 in diameter

and 3.4 𝜇𝑚 in diameter core-shell particles with 3 shell layers and core-to-particle ratio

of 0.655. Normalized effective diffusivity, 𝐷0,𝑒𝑓𝑓 is the same for two diameters in 2

significant figures.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0 1 2 3 4 5

D
0

t/τD

φ = 0.77
D0,eff = 0.726 (1st run)

0.725 (2nd run)

2 layer, 3.4 micron, 1st run 2 layer, 3.4 micron, 2nd run

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0 1 2 3 4 5

D
0

t/τD

φ = 0.655
D0,eff = 0.743 (5 µm)

0.744 (3.4 µm)

3 layer, 5 micron 3 layer, 3.4 micron

80

Table 1: A summary of diffusion simulations. Results for double layer core-shell

particles are averaged for Run 1 and Run 2 due to very close values in both runs.

𝜑 = 0.77 𝜑 = 0.665

Single Layer Particle Double Layer

Particle

Triple Layer

Particle Run 1 Run 2

𝑑𝑝 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚 3.4 𝜇𝑚 5 𝜇𝑚

𝐷0,𝑒𝑓𝑓 0.721 0.727 0.724 0.727 0.726 0.726 0.744 0.743

4.2. Fluid Flow Simulations

4.2.1. Validation of Periodic Flow Conditions

Simulation of water flow through the generated packing of hardspheres and obtaining

the velocity field from the results were explained in section 3.4. Boundaries parallel to

xy-plane were set as periodic flow conditions, such that the pressure difference

between these boundaries would be a certain non-zero pressure drop value ∆𝑃 ≠ 0 so

that flow occurs in positive z-direction. Opposing boundaries parallel to zy-plane and

zx-plane were also set as periodic flow conditions, with no apparent pressure

gradient, ∆𝑃 = 0 , in x and y directions. These boundary conditions assure the

continuity of velocity field at the specified boundaries by definition, as in COMSOL

they are defined as the velocity profile at the specified boundaries being equal to each

other.

In order to validate the periodic boundary conditions set in the system, firstly the

COMSOL model was computed as setting the pressure gradient in z-direction to

∆𝑃 = 400 𝑃𝑎, an approximate pressure drop that would occur across the dimensions

of the periodic cell (~18𝜇𝑚) estimated from Ergun Equation. Typical superficial

velocities the HPLC columns are operated at, determined by the flow rate and inner-

diameter of the column, was used in Ergun Equation to estimate the pressure drop in

the flow direction across the main periodic cell with length ~17,6 𝜇𝑚. In an HPLC

81

column with 4.6 𝑚𝑚 inner diameter operating at 1 𝑚𝐿/𝑚𝑖𝑛 flow rate, superficial

velocity of the mobile phase is very close to 1 𝑚𝑚/𝑠. Corresponding pressure drop in

the column over a length of 17,6 𝜇𝑚 was calculated in Ergun Equation (Bird et al.,

2007) by using void fraction of random close packings 𝜀 = 0.355 and viscosity and

density of water, a typical mobile phase, at 25𝑜𝐶. Pressure drop under specified

conditions was found to be ~877 𝑃𝑎.

∆𝑃

𝜌𝑢𝑧
2

𝑑𝑝

𝐿

𝜀3

1 − 𝜀
= 150

(1 − 𝜀)𝜇

𝑑𝑝𝜌𝑢𝑧
+

7

4
 (53)

Contour plots of the z-components of velocity vectors, right at the periodic boundary

couples were compared. Figures 35, 36 and 37 are showing the contour plots of

periodic boundary couples parallel to xy, yz and zx-planes respectively. Plots show the

same z-components for the velocity field at the boundaries, as it would be expected

from the periodic flow conditions. Plots on the left and right sides of figures seem to

be mirror images of each other with respect to y,z and x-axis due to the flip-rotation

of view. If one of the boundaries is viewed from the opposite side, it would look

exactly the same as the other.

Figure 35: Contour plots of velocity field z-components at the periodic boundary

couple parallel to xy-plane. Left: Top view of the main periodic cell. Right: Bottom

view of the main periodic cell.

82

Figure 36: Contour plots of velocity field z-components at the periodic boundary

couple parallel to yz-plane. Left: Right side view of the main periodic cell. Right: Left

side view of the main periodic cell.

Figure 37: Contour plots of velocity field z-components at the periodic boundary

couple parallel to zx-plane. Left: Back view of the main periodic cell. Right: Front

view of the main periodic cell.

83

Velocity components at the periodic boundary couples were also compared

quantitatively using Fortran. The velocity field was read by the Fortran code and stored

into the VF array as described in Appendix C.4 and components of the velocity vectors

on the boundary couples were compared. For fine resolution, 93.2% of the grid nodes

on the coupled boundary surfaces have less than 1% difference in the z-components

of velocity vectors and 96.5% have less than 5% difference. Therefore velocity profiles

at the boundary couples are very close to each other and can practically be considered

the same. This supports the contour plots and confirms periodic flow conditions are

calculated properly. Matching velocity profiles at the boundaries also confirm that the

random jammed packing of hardspheres was properly modified manually, as described

in section 3.3.2. Otherwise, either the solution would not converge or it would

converge to erroneously different velocity profiles at coupled periodic boundaries.

Grid dependence of the solution was also tested by running the COMSOL simulation

at normal and coarse resolutions in addition to fine resolution. For normal and coarse

resolutions, 93.6% and 93.1% of the nodes have less than 1%, 95.1% and 95.6% have

less than 5% difference respectively, very close to that of fine resolution results. The

x and y components were not compared since they are significantly smaller (around

1% of the z-component in average) than z-components. It can be concluded that the

resolution does not affect the validity of periodic boundaries. Also, the average

velocity magnitude throughout the entire velocity field changes by 2% and 2.7%

relative to fine resolution, for normal and coarse meshes respectively. The x and y

components are significantly different in lower resolutions. Yet the directions of the

velocity vectors are not affected significantly, due to very small size of x and y

components relative to z-components. Therefore the entire velocity field can be

considered grid independent. Still, the velocity field obtained from fine resolution is

used in the simulations of dispersion, later presented in this chapter.

84

4.2.2. Stokes Flow Range Inside the Packing

Determination of Stokes Flow range in the packing of hardspheres was required for

practical purposes. Velocity field that belongs to a Stokes Flow, or Creeping Flow, is

linearly scalable since the inertial terms in the equation of continuity are negligible

compared to linear viscous terms. Linear scaling of the velocity field allows

calculating once and using the same velocity field to simulate dispersion at different

Peclet numbers determined by the average superficial velocity in the system linearly

scaled from the original velocity field obtained.

Fluid flow simulations for five different ∆𝑃 values (400, 800, 8000, 16000 and 24000

Pa) around the Ergun Equation estimation, as explained in the previous section, were

carried out and the velocity fields obtained at each pressure drop was analyzed. Table

2 shows the maximum Reynolds numbers occurring in the nodes, as well as the

volume-average Reynolds numbers of all nodes in the 101x101x101 grid and average

velocity components and velocity magnitudes for all five simulations.

Table 2: Maximum and average Reynolds numbers in the velocity fields, average

velocity components and average velocity magnitudes obtained from the solutions at

pressure drops between 400 and 24000 Pa.

∆𝑃

(𝑃𝑎)
𝑅𝑒𝑚𝑎𝑥 𝑅𝑒𝑎𝑣𝑔

Volume average of velocity
components (𝑚/𝑠) |𝑢|𝑎𝑣𝑔

(𝑚/𝑠)

% Difference with
linear scaling

𝑢𝑥 𝑢𝑦 𝑢𝑧 Avg. Max.

400 0.05 0.004 -4.35x10-6 -4.35 x10-6 5.39 x10-4 6.48 x10-4 - -

800 0.10 0.007 -8.70 x10-6 -8.70 x10-6 1.08 x10-3 1.30 x10-3 0.005 0.02

8000 1.03 0.073 -8.71 x10-5 -8.71 x10-5 1.08 x10-2 1.30 x10-2 0.088 0.38

16000 2.06 0.145 -1.74 x10-4 -1.74 x10-4 2.16 x10-2 2.59 x10-2 0.181 0.78

24000 3.09 0.218 -2.62 x10-4 -2.62 x10-4 3.24 x10-2 3.89 x10-2 0.273 1.17

85

Maximum Reynolds number in any of the grid nodes becomes closer to even turbulent

flow limit of the water for ∆𝑃 = 24 𝑘𝑃𝑎 , however these are only calculated for the

velocity vector with greatest magnitude in the entire velocity field. Local Reynolds

numbers can reach up to 30 before Stokes Flow loses its validity around high-velocity

regions in a random close packing of monodisperse spheres and eddy seeds start

popping up (Hlushkou & Tallarek, 2006), whereas the maximum local Reynolds

number is between 1 and 2 in this specific packing being dealt with. Average Reynolds

number in the packing becomes greater than the Stokes Flow limit, conservatively

assumed as 𝑅𝑒 = 0.1 in this thesis study, after pressure drop across the periodic cell

reaches some value between 8 𝑘𝑃𝑎 and 16 𝑘𝑃𝑎. Therefore the error caused by linear

scaling should start increasing after this value. In order to observe this error, velocity

field obtained for ∆𝑃 = 400 𝑃𝑎 was linearly scaled to match the velocity fields

obtained by direct solutions of velocity fields that belong to other pressure drop values

800 𝑃𝑎, 8 𝑘𝑃𝑎, 16 𝑘𝑃𝑎 and 24 𝑘𝑃𝑎. Average magnitudes of the velocity vectors

linearly scaled to ∆𝑃 = 800 𝑃𝑎 and ∆𝑃 = 8 𝑘𝑃𝑎 have 0.005% and 0.088% absolute

error with respect to direct solutions. Average absolute errors for the velocity vectors

linearly scaled to ∆𝑃 = 16 𝑘𝑃𝑎 and ∆𝑃 = 24 𝑘𝑃𝑎 was found to be 0.181% and

0.273% respectively. However, maximum absolute errors for local velocity vectors

reaches 0.78% and 1.17% for scaling to ∆𝑃 = 16 𝑘𝑃𝑎 and ∆𝑃 = 24 𝑘𝑃𝑎 solutions,

compared to 0.02% and 0.38% maximum absolute error when the velocity field

solution for ∆𝑃 = 400 𝑃𝑎 is linearly scaled to the solutions for ∆𝑃 = 800 𝑃𝑎 and

∆𝑃 = 8 𝑘𝑃𝑎 respectively. It is still a small error but considering the average Reynolds

number at the same pressure drop, it would not be safe to assume the scaled velocity

vectors would have the same directions above the Stokes Flow limit 𝑅𝑒 = 0.1, which

occurs at ∆𝑃𝑆𝐹𝐿 ≅ 11 𝑘𝑃𝑎 and 𝑢𝑧,𝑆𝐹𝐿 ≅ 0.015 𝑚/𝑠.

The range of Peclet numbers that dispersion can safely be simulated depends on the

bulk diffusion coefficient of solute tracers, given as an input parameter for the

simulation. Limiting Peclet number, 𝑃𝑒𝑆𝐹𝐿, can simply be calculated by its defining

equation. The characteristic length in the packing is equal to the diameter of spheres

in the packing, 𝑑𝑝.

86

𝑃𝑒𝑆𝐹𝐿 =
𝑑𝑝𝑢𝑧,𝑆𝐹𝐿

𝐷𝐴𝐵
 (54)

Equation (54) will be used in discussions related to simulations of dispersion in the

random jammed packing of core-shell particles.

4.3. Dispersion Model

4.3.1. Validation of Dispersion Model by Simulating Taylor Dispersion in a Pipe

The Fortran code written for simulating dispersion was tested by simulating Taylor

dispersion of a tracer ensemble at Peclet numbers ranging from near 0 to 1000, in a

pipe with 𝑑𝑝 = 1 𝜇𝑚 diameter. The analytical solution for mass dispersion is readily

available for this case (Taylor, 1953), which enables an opportunity for validating the

code. Flow of water through the pipe with was simulated in COMSOL and the velocity

field was obtained in a 101x101x101 grid similar to that used in simulations of

dispersion in core-shell packings. The velocity field was read by the Fortran program

the same way and the same trilinear interpolation subroutine was used. Velocity field

solution was linearly scaled in Stokes Flow range to simulate Taylor dispersion of

2000 tracers at up to 𝑃𝑒 ≅ 900. Simulation duration was set to 0.2 seconds, a

considerably high duration with respect to minimum required time for transient

behavior of dispersion to stop and reach steady-state, which is the amount of time

needed for all tracers to sample entire velocity field, 𝜏𝑚𝑖𝑛 = 𝑑𝑝𝑖𝑝𝑒
2/6𝐷𝐴𝐵, which is

equal to 0.038 seconds for this case. Longitudinal position variance data of the tracer

ensemble with respect to time was obtained from the simulation and the data was used

to determine time slopes of longitudinal position variance of tracer ensemble (See

Appendix B.1 for variance vs. time plots). Then the longitudinal dispersion

coefficients were calculated using the equation 𝐷𝐿 = 0.5(𝛿𝜎𝐿
2 𝛿𝑡⁄).

87

Figure 38: Longitudinal dispersion coefficients in a pipe, predicted by Taylor

Dispersion Model (1953) and the dispersion model built in the thesis study, at different

Peclet numbers. Both axis are logarithmic. Note the deviation between two models at

low Pe.

Predictions of the prepared dispersion model matches with the Taylor Dispersion

Model developed by Geoffrey Taylor (1953) which has reasonable accuracy compared

to experiments carried out for the same study. Deviation of two models at low Peclet

numbers occurs due to the fact that Taylor model is linear and it does not take the

contributions from axial diffusion into account while predicting dispersion

coefficients. Therefore it erroneously underestimates longitudinal dispersion

coefficients at low Pe, as opposed to the random-walk based dispersion model, where

the contributions from diffusion are very apparent as the distance traveled by tracers

due to random-steps taken. 𝐷𝐿 even approaches around the input solute tracer diffusion

coefficient, 110𝜇𝑚2/𝑠, as Peclet number approaches zero. It can be concluded that

the dispersion code works properly and predicts accurate results. Therefore it can be

used for simulating dispersion in packings of core-shell particles.

1 10 100 1000

1

10

100

1,000

10,000

100,000

1,000,000

Pe

D
L
(μ

m
2
/s

)

Taylor Prediction

Model Prediction

88

4.3.2. Longitudinal Dispersion Coefficients of Tracers

4.3.2.1. In the Random Packing of Monodisperse Hardspheres

Dispersion of solute tracers were simulated in a packing of Monodisperse hardspheres

with 𝑑𝑝 = 5 𝜇𝑚. The velocity field for water flow through the periodic cell with

∆𝑃 = 400 𝑃𝑎, inspected in section 4.2.2, was used as the main velocity field and

linearly scaled to obtain results at different Peclet numbers. Bulk diffusion coefficient

of tracers was set as 𝐷𝐴𝐵 = 110 𝜇𝑚2/𝑠. Tracers were randomly distributed into the

inter-particle space between hardspheres as the initial condition. Duration of

simulation was set to either ten times the convective time measure 𝜏𝐶 = 2𝑟𝑝/𝑢𝑎𝑣𝑔,

defined as the time required for a tracer moving at the average fluid velocity to travel

a distance equal to the diameter of spheres in the packing, or 0.2 times the diffusive

time measure 𝜏𝐷 = (2𝑟𝑝)2/𝐷𝐴𝐵, which is equal to 2 times the the minimum required

time for dispersion to reach asymptotic behaviour, whichever is the greatest. This

ensures that at low Pe, tracers will sample at least 3 periodic cells and also the

simulation would proceed for enough time at higher Pe to allow reaching asymptotic

behavior. Variance vs. time data was collected from the simulations carried out at

various peclet numbers and fit an asymptotic curve, given by Equation (50) in section

3.6.5, which estimates the time slope of variance as the parameter A. Variance data

and fitted curves at 𝑃𝑒 = 10 and 𝑃𝑒 = 50, and dispersion coefficients are given in

Figure 39. Other variance and dispersion coefficient data obtained from the

simulations carried out at the rest of Peclet numbers are in Appendix B.2.

89

Figure 39: Longitudinal displacement variance vs. time at Peclet numbers 10 (top) and

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to

the right.

Average mobile phase velocities, Peclet numbers and normalized longitudinal

dispersion coefficients predicted at the corresponding Peclet numbers are given in

Table 3. A longitudinal dispersion coefficient vs. Peclet number graph is also given in

Figure 40.

0

100

200

300

400

500

600

700

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

90

Table 3: Volume-average velocity magnitudes in the linearly scaled velocity field at

different Peclet numbers, corresponding estimated asymptotic time-slopes of 𝜎𝐿
2 and

normalized longitudinal dispersion coefficients.

𝒖𝒂𝒗𝒈 (𝝁𝒎/𝒔) 𝑷𝒆 𝜹𝝈𝑳
𝟐/𝜹𝒕 (𝝁𝒎/𝒔) 𝑫𝑳/𝑫𝑨𝑩

220 10 1.26 x103 5.7

330 15 2.17 x103 9.8

440 20 3.14 x103 14.2

550 25 4.44 x103 20.1

660 30 5.52 x103 25.0

770 35 7.17 x103 32.5

880 40 7.60 x103 34.5

990 45 9.54 x103 43.3

1100 50 1.04 x104 47.3

1320 60 1.31 x104 59.6

1540 70 1.60 x104 72.7

1760 80 1.93 x104 87.8

1980 90 2.16 x104 98.1

2200 100 2.51 x104 113.9

Figure 40: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the

model vs. 𝑃𝑒.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

D
L/

D
A

B

Pe

91

Longitudinal dispersion coefficients predicted by the model in an unbound packing of

hardspheres are in good agreement with experimental data of Han et al. (1985) and a

compilation of other experimentally determined dispersion coefficients present in the

same work, in which the dispersion coefficients follow a straight line between roughly

similar values in the same range of Peclet numbers. Reader is referred to the article of

Han et al. (1985) for these experimental data, since the figure containing the data could

not be ‘digitized’ and permissions for using the figure here directly could not be

received.

As an end note for the section, one should not forget that the fit parameters A and k

are not necessarily physically significant. They are only fit parameters to estimate the

asymptotic slope of the time dependent longitudinal position variance.

4.3.2.2. In the Random Packing of Core-Shell Particles

Dispersion in the random packing of core-shell particles were simulated in the same

packing geometry as in the previous section, dispersion in packing of hardspheres,

where this time the hardspheres were replaced by core-shell particles with the same

diameter, 𝜑 = 0.73 and 𝑛𝑙 = 3. Velocity field that belongs to the water flow through

the periodic cell with ∆𝑃 = 400 𝑃𝑎, again, was used as the base velocity field that can

be linearly scaled within creeping flow range. Initial conditions were also the same.

Tracers were randomly distributed into the inter-particle space between core-shell

particles, initially. Same bulk diffusion coefficient was used and durations of

simulations were also determined by the same reasoning. Determination of

longitudinal dispersion coefficient was similarly done using variance vs. time data.

Variance data and fitted curves at 𝑃𝑒 = 1 and 𝑃𝑒 = 50, and dispersion coefficients

are given in Figure 41. Other variance and dispersion coefficient data obtained from

the simulations carried out at the rest of Peclet numbers are in Appendix B.3.

Average mobile phase velocities, Peclet numbers and normalized longitudinal

dispersion coefficients predicted at the corresponding Peclet numbers are given in

92

Table 4. A longitudinal dispersion coefficient vs. Peclet number graph is also given in

Figure 42.

Figure 41: Longitudinal displacement variance vs. time at Peclet numbers 1 (top) and

50 (bottom). Longitudinal dispersion coefficient vs. time is on the secondary axis to

the right.

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

100

200

300

400

500

600

700

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

93

Table 4: Volume-average velocity magnitudes in the linearly scaled velocity field at

different Peclet numbers, corresponding estimated time-slopes of 𝜎𝐿
2 and normalized

longitudinal dispersion coefficients.

𝒖𝒂𝒗𝒈 (𝝁𝒎/𝒔) 𝑷𝒆 𝜹𝝈𝑳
𝟐/𝜹𝒕 (𝝁𝒎/𝒔) 𝑫𝑳/𝑫𝑨𝑩

22 1 1.74 x102 0.8

44 2 2.42 x102 1.1

66 3 3.12 x102 1.4

88 4 4.25 x102 1.9

110 5 5.38 x102 2.4

132 6 6.46 x102 2.9

154 7 8.50 x102 3.9

176 8 1.01 x103 4.6

198 9 1.11 x103 5.0

220 10 1.37 x103 6.2

330 15 2.34 x103 10.6

440 20 3.52 x103 16.0

550 25 4.86 x103 22.1

660 30 6.45 x103 29.3

770 35 8.00 x103 36.4

880 40 1.00 x104 45.5

990 45 1.21 x104 55.1

1100 50 1.40 x104 63.7

1650 75 2.67 x104 121.4

2200 100 3.96 x104 180.0

94

Figure 42: Normalized longitudinal dispersion coefficients, 𝐷𝐿/𝐷𝐴𝐵, predicted by the

model vs. 𝑃𝑒.

Results show a linear increase in the normalized dispersion coefficients after the Pe in

the system becomes large enough for the convection to take over the dispersion

mechanism, as it should be expected from the simulation. However there is a barely

noticeable increase in 𝐷𝐿 after 𝑃𝑒 = 50 mark (although the reduced plate height

graphs given in the next section makes it more noticeable after that Pe), where

longitudinal displacements of tracers must have already been started to be dominated

by the intra-particle diffusion limitations and mechanical dispersion and following a

straight line. This occurrence must be related to, with strong possibility, the

contribution of velocity auto-correlation as it was explored in the study of Maier et al.

(2000). They had found that periodic arrays of spherical random packings are prone to

velocity auto-correlation, which consequently overestimates 𝐷𝐿 compared to what it

would have been in a non-periodic random packing of spheres, because tracers in

periodic arrays can get caught by a high velocity region and repeatedly sample these

same high velocities in the periodic array a large amount of times before they can

diffuse away to low velocity regions. They found that the contributions from velocity

0.1

1

10

100

1000

1 10 100

D
L/

D
A

B

Pe

95

auto-correlation eventually decay. However the decay rate depends on the ratio of

main periodic cell length to sphere diameter, 𝐿𝑝𝑐/2𝑟𝑝, where higher ratios allow

quicker decay of velocity auto-correlation. In a spherical packing with similar 𝐿𝑝𝑐/2𝑟𝑝

to the packing used in this thesis study, they found that partially decayed auto-

correlation contribution to 𝐷𝐿 starts increasing again at around 10𝜏𝐶. At exactly 𝑃𝑒 =

50, dispersion code starts using 0.2𝜏𝐷 as the simulation duration because the average

mobile phase velocity in the system increases to such a turning point that 10𝜏𝐶

becomes less than 0.2𝜏𝐷. Consequently, velocity auto-correlation kicks in causing the

unexpected increase in the predicted 𝐷𝐿. This also limits the model to work in the range

0 < 𝑃𝑒 < 50 without the effects of velocity auto-correlation. This occurrence cannot

be related to linear scaling of the velocity field because the limiting Peclet number for

Stokes Flow, 𝑃𝑒𝑆𝐹𝐿, is greater than 600 for tracer 𝐷𝐴𝐵 used in simulations.

4.3.2.3. Reduced Plate Heights in an Unbound Liquid Chromatography Column

Longitudinal dispersion coefficients of tracers obtained in the previous section were

converted to reduced plate heights in order to be able to compare the predictions of the

model to experimental data, since the dispersion coefficient data is typically available

as reduced plate heights of HPLC columns determined by peak parking method which

is quite similar to the way this dispersion model is used for obtaining dispersion

coefficients.

Recall that, plate heights in chromatography columns are defined as proportional to

the derivative of longitudinal position variance of the analyte, or the tracer ensemble

in theoretical case, with respect to longitudinal distance. If normalized by the diameter

of core-shell particles in the column, reduced plate height values for the column is

obtained. Accordingly, 𝐷𝐿 can be divided by superficial mobile phase velocity 𝑢𝑧 and

core-shell particle radius 𝑟𝑝 for conversion to dimensionless reduced plate height ℎ, as

in the following equation.

96

ℎ =
𝐻

2𝑟𝑝
=

𝐷𝐿

𝑢𝑧𝑟𝑝
=

1

𝑢𝑧𝑑𝑝

𝛿𝜎𝐿
2

𝛿𝑡
=

1

𝑑𝑝

𝛿𝜎𝐿
2

𝛿𝑧
 (55)

Reduced plate heights were calculated using longitudinal dispersion coefficients

obtained in the previous section, at the same corresponding Peclet numbers. Average

longitudinal velocity component 𝑢𝑧, as well as corresponding Peclet numbers,

predicted plate heights and reduced plate heights at these Peclet numbers are given in

Table 5. A graphical representation of h vs. Pe is also available in Figure 43.

Table 5: Volume-average z-components of velocity in the linearly scaled velocity field

at different Peclet numbers, corresponding plate heights and reduced plate heights

calculated by Equation (55) using variance slopes determined previously in Table 4.

𝑷𝒆 𝒖𝒛 (𝝁𝒎/𝒔) 𝑯 𝒉

1 18.31 9.50 1.90

2 36.62 6.61 1.32

3 54.93 5.67 1.13

4 73.24 5.80 1.16

5 91.55 5.88 1.18

6 109.86 5.88 1.18

7 128.17 6.63 1.33

8 146.48 6.93 1.39

9 164.79 6.73 1.35

10 183.10 7.48 1.50

15 274.66 8.53 1.71

20 366.21 9.61 1.92

25 457.76 10.61 2.12

30 549.31 11.75 2.35

35 640.86 12.49 2.50

40 732.41 13.66 2.73

45 823.97 14.71 2.94

50 915.52 15.32 3.06

75 1373.28 19.45 3.89

100 1831.04 21.63 4.33

97

Figure 43: Reduced plate height of tracer ensemble vs. Peclet number.

Figure 44: Reduced plate heights predicted by the model and experimental reduced

plate height data for non-retained small molecule; uracil. Experimental data was taken

from the study of Guiochon and Gritti (2011).

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

h

Pe

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30

h

Pe

Simulation

Experiment

98

Reduced plate height predictions of the model compares well with experimental data

collected by Guiochon and Gritti (2011), as seen in Figure 44. The experimental data

belongs to uracil, a non-retained small molecule, analysed in a column with 4.6 𝑚𝑚

diameter and 150 𝑚𝑚 length, packed with 𝑑𝑝 = 2.6 𝜇𝑚 Kinetex-C18 core-shell

particles that have 0.35 𝜇𝑚 shell thickness which corresponds to 𝜑 = 0.73. Uracil as

a non-retained small molecule shares characteristics with dimensionless and non-

adsorbed point tracers and the core-shell particles in used in this experimental study is

practically the same as the core-shell geometry used in simulations of this work. The

only difference between the experimental system and simulation system is the

presence of wall effects, in the Pe interval the experiment was carried on. Mobile phase

flow in confined systems like HPLC columns are typically divided into wall region,

transition region and bulk regions in related studies, such as Bruns et al.’s (2012),

Daneyko et al.’s (2011) and Khirevich et al.’s (2012). In these studies, it was pointed

out that the porosity of the packing increases drastically near wall regions compared

to the bulk region that lies around the center of the column. Consequently, mobile

phase velocity profile follows a similar trend to the porosity profile across the packing,

as detected by also in the study of Das et al. (2017), causing drastic flow irregularities

which creates additional contribution to the plate height that would not exist in an

unconfined packing. This effect is shown to be more visible in columns with smaller

diameter and at lower Peclet numbers -or Reynolds numbers- in all of these studies.

Considering the model only represents the bulk region in an HPLC column, majority

of the difference between the model and experimental data of Guiochon and Gritti

(2011) can be explained by the effects of confinement. The model underestimates

dispersion in the column near the minimum reduced plate heights, and predictions of

reduced plate heights converges to that of confined HPLC column at higher Peclet

numbers as the wall effects start losing their dominance. In another series of studies

released by Gritti and Guiochon (2013, 2013) and Gritti et al. (2014) effects of so-

called “Parallel Segmented Flow Chromatography”, PSFC in short, on the plate

heights in columns was shown. According to their description, PSFC takes advantage

of transient behavior of dispersion to improve the plate heights in analytical columns

by splitting the outlet and taking measurements only from the middle section of the

99

column where less biased bulk flow occurs. Their results comparing standart columns

and PSFC columns are consistent with the comparison of model predictions to

experimental data given in Figure 44, for retained and non-retained solutes. However

they are not directly comparable, since data is available for a very short range of Pe

and the characteristics of the core-shell particle used in the experiment is unclear. Still,

their findings support the predictions of the model. The difference, also, cannot be

caused by the input bulk diffusivity assigned to tracers 𝐷𝐴𝐵 = 110 𝜇𝑚2/𝑠, compared

to bulk diffusivity of uracil in water, which is around 1160 𝜇𝑚2/𝑠 (Song et al., 2016).

In fact, reduced plate height vs. Peclet number plots for dispersion simulations carried

out in the range 0 < 𝑃𝑒 < 20 can be seen in Figure 45, and they are very similar to

the main results. In reduced variables, simply no difference is observed. Higher tracer

diffusivity only reduces Peclet number at Stokes Flow limit, to ~70 for 𝐷𝐴𝐵 =

1160 𝜇𝑚2/𝑠.

Figure 45: Reduced plate height vs. Pe predicted by simulations done with tracer bulk

diffusion coefficients 1160 𝜇𝑚2/𝑠 (A) and 110 𝜇𝑚2/𝑠 (B).

0

1

2

3

0 5 10 15 20

h

Pe

A

B

100

Experimental data of Guiochon and Gritti (2011) was extended to 𝑃𝑒 = 100 by fitting

a Knox (2002) equation to it for full comparison with model predictions, since the

experimental data was only available for 0 < 𝑃𝑒 < 27. Figure 46 shows extended data

along with the predictions of the model.

Figure 46: Experimental reduced plate height data of Guiochon and Gritti (2011)

extended to 𝑃𝑒 = 100 by Knox equation best fit with 𝐴 = 0.80, 𝐵 = 1.77 and 𝐶 = 0.

Reduced plate heights predicted by the model is also available, along with the best

fitted Knox curve with 𝐴 = 0.53, 𝐵 = 1.25 and 𝐶 = 0.02, for comparison.

𝐴 and 𝐵 terms of the experimental data is greater than the terms of Knox curve best

fitted to model predictions, which can be explained by flow irregularities and

consequent trans-column velocity bias present in the confined column, as explained

before. Best fit 𝐶 terms are 0 and 0.2, very small values that are characteristic to core-

shell particles thanks to solid cores. Still, the 𝐶 term for the model predicts greater

plate height contribution from intra-particle mass transfer compared to the

0 20 40 60 80 100

1

2

3

4

Pe

h

Simulation

Experiment

Simulation Knox

Experiment Knox

101

experimental data. There can be three reasons for it. First, contribution from velocity

auto-correlation after is certainly present but this would be minimally reflected on the

fit parameter since most of the data is at low Pe where the effects of velocity auto-

correlation contributions are very small. Second, the effect of discretization mentioned

in section 4.1.2 equally applies to the core-shell particle geometry, effectively and

artificially decreasing the volume available for diffusion in the shell layer. Unlike

tracers, uracil molecules would freely sample narrow regions in the shell layer with a

higher effective diffusivity, hence the smaller 𝐶 term. Third, the assumption that intra-

particle flow does not occur starts losing its validity at higher Peclet numbers.

Development of a mobile phase flow in the shell side would enhance intra-particle

mass transfer and reduce the plate height contribution from the 𝐶 term. Although the

intra-particle Peclet number would be very small for a core-shell particle like Kinetex-

C18 (Heeter & Liapis, 1996), still the model does not have that small intra-particle fluid

velocity. It is most probably the second and third reasons has the most contribution to

the differences in 𝐶 terms best fitted to data. This justification can also be supported

by the predictions of effective medium based model created by Daneyko et al. (2015)

where individual contributions of diffusion, flow irregularities and intra-particle mass

transfer limitations were determined computationally and intra-particle resistances

was found to becoming more and more contributing to the plate heights as the Pe

increases in the system.

Extended version of Giddings model (1963) for core-shell particles -which was

introduced in Chapter 2- built by Daneyko et al. (2015) was used to determine the

individual contributions to plate heights, as mentioned just previously, for the total

reduced plate height predictions of thesis model and experiments of Gritti & Guiochon

(2011). Void fraction of the column used in the experiment was assumed as 0.4, as

suggested in the related study. Void fraction of the periodic packing was 0.355. Shell

porosity of the core-shell particles were set as 0.49, determined from Figure 27 in

section 4.1.3. Normalized effective diffusivity in the packing was taken as 0.73, an

approximate value extracted from the results in section 4.1.5. Same value was assumed

to be true for the experiment column, although the higher void fraction in the physical

packing in the column is higher than that of periodic packing used in simulations. This

102

would result in a slight underestimation of effective diffusivity in the column, and

overestimation of longitudinal diffusion and interchannel dispersion contributions.

Modified Giddings model fits and individual contributions from longitudinal

diffusion, interchannel dispersion, transchannel dispersion and intra-particle mass

transfer limitations to both simulation and experiment data can be seen in Figure 47,

in the range of Pe experimental data was available. Comparison of individual

contributions to plate height between the experimental system and the system used in

simulation can also be seen through Figures 48 to 51.

Transchannel eddy dispersion is significantly higher for the experiment. This can be

explained by the greater void fraction in the column, compared to the periodic packing

used in the simulations, as well as the higher void fraction areas near the column walls

where the higher superficial velocity than the bulk region causes additional dispersion.

The wall effects must also cause a slight radial flow from the bulk region towards near

the column walls, consequently the plate height contribution from interchannel eddy

dispersion must become slightly greater in the confined system. Modified Giddings

model certainly detects this slight difference between simulation data and

experimental data. Still the 𝐶 term, related to intra-particle mass transfer limitation, is

again greater for the simulated data, 0.020 compared to a smaller 0.013. As the

modified Giddings model relies on more detail than Knox equation, it would be safe

to assume that the overestimation of intra-particle mass transfer limitations by the

simulation is not as severe as the fit Knox parameter. It can simply be explained by the

stagnant mobile phase assumed in the shell layers and the dead volume in the shell

layer resulting from random-walk discretization.

103

Figure 47: Extended Giddings model equations fit (dotted lines) to simulation data (A)

and the experimental data from the study of Gritti & Guiochon (2011) (B).

Contributions to reduced plate heights from transchannel eddy dispersion, interchannel

eddy dispersion, intra-particle mass transfer limitations and longitudinal diffusion are

dashed lines.

0

1

2

3

4

1 10

h

Pe

(A)

Ext. Giddings.

Simulations

Transch. Eddy

Interch. Eddy

Intra-Particle

Long. Diff.

0

1

2

3

4

1 10

h

Pe

(B)

Ext. Giddings.

Gritti&Guiochon

Transch. Eddy

Interch. Eddy

Intra-Particle

Long. Diff.

104

Figure 48: Comparison of longitudinal diffusion contributions to reduced plate heights

predicted by the model to experimental data.

Figure 49: Comparison of transchannel eddy diffusion contributions to reduced plate

heights predicted by the model to experimental data.

0

1

2

3

4

5

0 5 10 15 20 25 30

h

Pe

Model Long. Diff. Experiment Long. Diff.

0

1

2

0 5 10 15 20 25 30

h

Pe

Model Transch. Eddy Experiment Transch. Eddy

105

Figure 50: Comparison of interchannel channel eddy diffusion contributions to

reduced plate heights predicted by the model to experimental data.

Figure 51: Comparison of intra-particle mass transfer limitation contributions to

reduced plate heights predicted by the model to experimental data.

0

1

0 5 10 15 20 25 30

h

Pe

Model Interch. Eddy Experiment Interch. Eddy

0

1

0 5 10 15 20 25 30

h

Pe

Model Intra-Particle Experiment Intra-Particle

106

107

CHAPTER 5

CONCLUSIONS

A dispersion model that simulates dispersion of small molecules in an unbound liquid

chromatography column was created throughout the thesis study. As the preliminary

steps of building the model, random-walk diffusion simulations in unhindered stagnant

media and periodic simulations with basic no-flux boundaries were prepared and their

predictions were used to confirm validity of algorithms and Fortran codes.

An analytical geometry approach was adopted for reconstruction of core-shell

particles. Core-to-particle ratio, particle diameter and amount of shell layers in the

particle were used as defining parameters of the particle geometry to calculate center

coordinates of spherical elements that collectively creates an ideal core-shell particle,

coating a large core sphere with smaller shell side spheres very similar to actual

production methods of core-shell particles. Resulting geometry was visually inspected

by creating CAD images of the particle using the open-source drawing software,

OpenSCAD. Then a periodic random jammed packing of 50 monodisperse

hardspheres inside a unit cube was computationally generated using an algorithm

developed Skoge et al. (2006). Packing of hardspheres was also inspected using

OpenSCAD and it was found to be not usable directly in the simulations due to

exclusion of any spheres located in neighboring periodic cells that would also appear

in the main periodic cell. These spheres were dubbed invading spheres and they were

manually inserted into the packing, rising total amount of spheres in the packing to

100. Corrected packing was easily scaled such that diameters of spheres in the packing

108

would be equal to that of reconstructed core-shell particles. Then the calculated

geometry of core-shell particle was translated into each sphere in the packing to create

the core-shell packing geometry. The packing geometry was also inspected using

OpenSCAD and was found to be appropriate to use in collision control. Diffusion in

the geometry was simulated for different core-shell particles and the predictions of

effective diffusivity throughout the entire system was found to be of physically

reasonable.

Pore-space of the core-shell particles was assumed to be stagnant, and corrected

hardsphere packing geometry was used in COMSOL to obtain velocity field of

periodic flow of water in the system geometry. Periodic boundaries were confirmed

both visually by contour plots and direct comparison of the velocity profile at the

coupled boundaries. Velocity field was obtained for different pressure gradients across

the system. Stokes Flow limit for the system was determined by linear scaling and

comparison of scaled velocity field and separately solved velocity field. A limiting

Peclet number definition was derived and considered while carrying out the

simulations.

A trilinear interpolation subroutine was written for interpolating velocity vectors near

grid nodes and separately obtained velocity field was integrated to diffusion model to

create a dispersion model. Dispersion model and interpolation subroutine was tested

by simulating Taylor dispersion in a pipe. Predictions of the model in the pipe was in

good agreement with the predictions of correlation derived by Taylor. Then dispersion

in core-shell packing was simulated at different Peclet numbers. Predictions of the

simulation was found to be in good agreement with experimentally obtained reduced

plate height data found in the literature. Deviations of the model predictions from the

experimental data were discussed. Lower reduced plate height values predicted by the

model at lower Peclet numbers, the lower A and B terms in a Van Deemter type

equation, were found to be due to effects of confinement being non-existent in the

simulated geometry since periodic boundaries effectively creates an unbound column.

The model was found to be over-predicting internal mass transfer resistances in the

core-shell particles, the C term, most possibly due to dead-zones created by relatively

109

coarse definition of random-step size as 10% of the diameter of a shell side sphere

where no path followed by a tracer can lead to. Although velocity recorrelation in

simulations and stagnant pore-space assumption might also have minor contributions

for the overestimation of the C term.

Overall, the dispersion model created for the study was found to be successfully

predicting dispersion event in a very complex system like a random packing of porous

materials, with explainable effects of simplifying assumptions. Basic analytical

geometry approach for digital reconstruction of core-shell particles seems to be

successful. Similar approaches for different systems might also be used for creating

memory efficient simulations.

110

111

CHAPTER 6

RECOMMENDATIONS

Several recommendations for similar studies that can possibly be conducted in the

future, or continuation of this specific study can be made as follows.

- Finer choice for the step-size of the random-walk should increase the accuracy

of the model at higher Peclet numbers. However the non-linear relation

between step-size and time increment must be very seriously taken into

account, since reducing the step-size by a factor will increase the amount of

random-steps that needs to be taken by a tracer by the square of the same factor

which can dramatically increase the wall-clock time of Fortran programs.

- Point-like tracers can be assigned a finite size and shape, spherical preferably,

and modifying the collision control algorithm accordingly would allow

simulating dispersion of large molecules like some globular non-adsorbing

proteins. This might also eliminate the need for finer step-size for better

accuracy at high Pe if the tracer size is comparable to the chosen step-size.

- Bounce-back method applied when a collision is detected, requires less

processing power but, for better accuracy, specular-reflection can be traded-off

with wall-clock time.

- Adsorption-desorption could potentially be integrated to the model by using a

probabilistic subroutine that would be invoked upon detecting collisions

between tracers and the impermeable boundaries.

112

- COMSOL is an easy but non-free solution for fluid flow problem. For the

liberation of the work from all software copyrights, velocity field can be

obtained by Lattice-Boltzmann methods alike on open-source software such as

Octave or Fortran.

- Velocity auto-correlation is known to be less apparent in periodic cells of

random packings with greater cell length to sphere diameter ratios. The results

are self-consistent in this study due to similar simulation durations in terms of

convective-time measure. However using a more appropriate periodic packing

would also increase the accuracy of the model as well as computation times.

113

REFERENCES

Angstmann, C. N., Donnelly, I. C., Henry, B. I., & Nichols, J. A. (2015). A discrete

time random walk model for anomalous diffusion. Journal of Computational Physics,

293, 53–69. https://doi.org/10.1016/j.jcp.2014.08.003

Bauer, K. C., Göbel, M., Schwab, M.-L., Schermeyer, M.-T., & Hubbuch, J. (2016).

Concentration-dependent changes in apparent diffusion coefficients as indicator for

colloidal stability of protein solutions. International Journal of Pharmaceutics, 511(1),

276–287. https://doi.org/10.1016/j.ijpharm.2016.07.007

Bruns, S., Stoeckel, D., Smarsly, B. M., & Tallarek, U. (2012). Influence of particle

properties on the wall region in packed capillaries. Journal of Chromatography A,

1268, 53–63. https://doi.org/10.1016/j.chroma.2012.10.027

Bruns, S., & Tallarek, U. (2011). Physical reconstruction of packed beds and their

morphological analysis: Core-shell packings as an example. Journal of

Chromatography A, 1218(14), 1849–1860.

https://doi.org/10.1016/j.chroma.2011.02.013

Brutz, M., & Rajaram, H. (2017). Coarse-scale particle tracking approaches for

contaminant transport in fractured rock. Applied Mathematical Modelling, 41, 549–

561. https://doi.org/10.1016/j.apm.2016.09.023

Busani, O. (2017). Finite dimensional Fokker–Planck equations for continuous time

random walk limits. Stochastic Processes and Their Applications, 127(5), 1496–1516.

https://doi.org/10.1016/j.spa.2016.08.008

Cavazzini, A., Gritti, F., Kaczmarski, K., Marchetti, N., & Guiochon, G. (2007). Mass-

transfer kinetics in a shell packing material for chromatography. Analytical Chemistry,

79(15), 5972–5979. https://doi.org/10.1021/ac070571a

Chen, F., Han, Y., Li, Y., & Yang, X. (2017). Periodic solutions of Fokker–Planck

equations. Journal of Differential Equations, 263(1), 285–298.

https://doi.org/10.1016/j.jde.2017.02.032

Chicone, C. (2017). Random Walks and Diffusion. An Invitation to Applied

Mathematics. https://doi.org/10.1016/B978-0-12-804153-6.50009-9

114

Choi, B. S., Kang, H., & Choi, M. Y. (2017). Emergence of heavy-tailed skew

distributions from the heat equation. Physica A: Statistical Mechanics and Its

Applications, 470, 88–93. https://doi.org/10.1016/j.physa.2016.11.095

Daneyko, A., Höltzel, A., Khirevich, S., & Tallarek, U. (2011). Influence of the

particle size distribution on hydraulic permeability and eddy dispersion in bulk

packings. Analytical Chemistry, 83(10), 3903–3910.

https://doi.org/10.1021/ac200424p

Daneyko, A., Hlushkou, D., Baranau, V., Khirevich, S., Seidel-Morgenstern, A., &

Tallarek, U. (2015). Computational investigation of longitudinal diffusion, eddy

dispersion, and trans-particle mass transfer in bulk, random packings of core-shell

particles with varied shell thickness and shell diffusion coefficient. Journal of

Chromatography A, 1407, 139–156. https://doi.org/10.1016/j.chroma.2015.06.047

Das, S., Deen, N. G., & Kuipers, J. A. M. (2017). A DNS study of flow and heat

transfer through slender fixed-bed reactors randomly packed with spherical particles.

Chemical Engineering Science, 160(October 2016), 1–19.

https://doi.org/10.1016/j.ces.2016.11.008

Dentz, M., Kang, P. K., & Le Borgne, T. (2015). Continuous time random walks for

non-local radial solute transport. Advances in Water Resources, 82, 16–26.

https://doi.org/10.1016/j.advwatres.2015.04.005

Done, J. N., & Knox, J. H. (1972). The Performance of Packings in High Speed Liquid

Chromatography II. ZIPAX® The Effect of Particle Size. Journal of Chromatographic

Science , 10(10), 606–612. https://doi.org/10.1093/chromsci/10.10.606

Gao, Q., & Zou, M. Y. (2016). An analytical solution for two and three dimensional

nonlinear Burgers’ equation. Applied Mathematical Modelling, 45, 255–270.

https://doi.org/10.1016/j.apm.2016.12.018

Gentile, F. S., Santo, I. De, D’Avino, G., Rossi, L., Romeo, G., Greco, F., …

Maffettone, P. L. (2015). Hindered Brownian diffusion in a square-shaped geometry.

Journal of Colloid and Interface Science, 447, 25–32.

https://doi.org/10.1016/j.jcis.2015.01.055

Gharib, M., Khezri, M., & Foster, S. J. (2017). Meshless and analytical solutions to

the time-dependent advection-diffusion-reaction equation with variable coefficients

and boundary conditions. Applied Mathematical Modelling, 49, 220–242.

https://doi.org/10.1016/j.apm.2017.04.033

Giddings, J. C. (1963). Reduced plate height equation: a common link between

chromatographic methods. Journal of Chromatography, 13, 301–304.

https://doi.org/10.1016/S0021-9673(01)95123-4

Giddings, J. C. (1965). Dynamics of Chromatography: Principles and Theory. New

York: Marcel Dekker, Inc.

115

Giesche, H. (1994). Synthesis of monodispersed silica powders I. Particle properties

and reaction kinetics. Journal of the European Ceramic Society, 14(3), 189–204.

https://doi.org/10.1016/0955-2219(94)90087-6

Gritti, F., Cavazzini, A., Marchetti, N., & Guiochon, G. (2007). Comparison between

the efficiencies of columns packed with fully and partially porous C18-bonded silica

materials. Journal of Chromatography A, 1157(1–2), 289–303.

https://doi.org/10.1016/j.chroma.2007.05.030

Gritti, F., & Guiochon, G. (2012). Measurement of the eddy dispersion term in

chromatographic columns. II. Application to new prototypes of 2.3 and 3.2mm I.D.

monolithic silica columns. Journal of Chromatography A, 1227, 82–95.

https://doi.org/10.1016/j.chroma.2011.12.065

Gritti, F., & Guiochon, G. (2013). Effect of parallel segmented flow chromatography

on the height equivalent to a theoretical plate II - Performances of 4.6mm×30mm

columns packed with 2.6μm Accucore-C18 superficially porous particles. Journal of

Chromatography A, 1314(70), 44–53. https://doi.org/10.1016/j.chroma.2013.08.060

Gritti, F., & Guiochon, G. (2013). Effect of parallel segmented flow chromatography

on the height equivalent to a theoretical plate II - Performances of 4.6mm×30mm

columns packed with 2.6μm Accucore-C18 superficially porous particles. Journal of

Chromatography A, 1314, 44–53. https://doi.org/10.1016/j.chroma.2013.08.060

Gritti, F., Leonardis, I., Shock, D., Stevenson, P., Shalliker, A., & Guiochon, G.

(2010). Performance of columns packed with the new shell particles, Kinetex-C18.

Journal of Chromatography A, 1217(10), 1589–1603.

https://doi.org/10.1016/j.chroma.2009.12.079

Gritti, F., Pynt, J., Soliven, A., Dennis, G. R., Shalliker, R. A., & Guiochon, G. (2014).

Effect of parallel segmented flow chromatography on the height equivalent to a

theoretical plate III - Influence of the column length, particle diameter, and the

molecular weight of the analyte on the efficiency gain. Journal of Chromatography A,

1333, 32–44. https://doi.org/10.1016/j.chroma.2014.01.055

Guiochon, G., & Gritti, F. (2011). Shell particles, trials, tribulations and triumphs.

Journal of Chromatography A, 1218(15), 1915–1938.

https://doi.org/10.1016/j.chroma.2011.01.080

Hayes, R., Ahmed, A., Edge, T., & Zhang, H. (2014). Core-shell particles: Preparation,

fundamentals and applications in high performance liquid chromatography. Journal of

Chromatography A, 1357, 36–52. https://doi.org/10.1016/j.chroma.2014.05.010

Hlushkou, D., Bruns, S., & Tallarek, U. (2010). High-performance computing of flow

and transport in physically reconstructed silica monoliths. Journal of Chromatography

A, 1217(23), 3674–3682. https://doi.org/10.1016/j.chroma.2010.04.004

Hormann, K., & Tallarek, U. (2013). Analytical silica monoliths with submicron

macropores: Current limitations to a direct morphology-column efficiency scaling.

Journal of Chromatography A, 1312, 26–36.

https://doi.org/10.1016/j.chroma.2013.08.087

116

Hormann, K., & Tallarek, U. (2014). Mass transport properties of second-generation

silica monoliths with mean mesopore size from 5 to 25nm. Journal of Chromatography

A, 1365, 94–105. https://doi.org/10.1016/j.chroma.2014.09.004

Horvath, C. G., Preiss, B. A., & Lipsky, S. R. (1967). Fast liquid chromatography: an

investigation of operating parameters and the separation of nucleotides on pellicular

ion exchangers. Analytical Chemistry, 39(12), 1422–8.

https://doi.org/10.1021/ac60256a003

Jansi Rani, P. G., Kirthiga, M., Molina, A., Laborda, E., & Rajendran, L. (2017).

Analytical solution of the convection-diffusion equation for uniformly accessible

rotating disk electrodes via the homotopy perturbation method. Journal of

Electroanalytical Chemistry, 799(April), 175–180.

https://doi.org/10.1016/j.jelechem.2017.05.053

Kaczmarski, K., & Guiochon, G. (2007). Modeling of the mass-transfer kinetics in

chromatographic columns packed with shell and pellicular particles. Analytical

Chemistry, 79(12), 4648–4656. https://doi.org/10.1021/ac070209w

Khirevich, S., Höltzel, A., Daneyko, A., Seidel-Morgenstern, A., & Tallarek, U.

(2011). Structure-transport correlation for the diffusive tortuosity of bulk,

monodisperse, random sphere packings. Journal of Chromatography A, 1218(37),

6489–6497. https://doi.org/10.1016/j.chroma.2011.07.066

Khirevich, S., Höltzel, A., Seidel-Morgenstern, A., & Tallarek, U. (2009). Time and

length scales of eddy dispersion in chromatographic beds. Analytical Chemistry,

81(16), 7057–7066. https://doi.org/10.1021/ac901187d

Khirevich, S., Höltzel, A., Seidel-Morgenstern, A., & Tallarek, U. (2012). Geometrical

and topological measures for hydrodynamic dispersion in confined sphere packings at

low column-to-particle diameter ratios. Journal of Chromatography A, 1262, 77–91.

https://doi.org/10.1016/j.chroma.2012.08.086

Kim, A. S., & Chen, H. (2006). Diffusive tortuosity factor of solid and soft cake layers:

A random walk simulation approach. Journal of Membrane Science, 279(1–2), 129–

139. https://doi.org/10.1016/j.memsci.2005.11.042

Kirkland, J. J. (1969). Controlled surface porosity supports for high-speed gas and

liquid chromatography. Analytical Chemistry, 41(1), 218–220.

https://doi.org/10.1021/ac60270a054

Kirkland, J. J., Truszkowski, F. A., Dilks, C. H., & Engel, G. S. (2000). Superficially

porous silica microspheres for fast high-performance liquid chromatography of

macromolecules. Journal of Chromatography A, 890(1), 3–13.

https://doi.org/10.1016/S0021-9673(00)00392-7

Knox, J. H. (2002). Band dispersion in chromatography - A universal expression for

the contribution from the mobile zone. Journal of Chromatography A, 960(1–2), 7–18.

https://doi.org/10.1016/S0021-9673(02)00240-6

117

Koku, H. (2011). Microstructure-based analysis and simulation of flow and mass

transfer in chromatographic stationary phases (Ph.D Thesis, 2011). University of

Delaware.

Koku, H., Maier, R. S., Schure, M. R., & Lenhoff, A. M. (2012). Modeling of

dispersion in a polymeric chromatographic monolith. Journal of Chromatography A,

1237, 55–63. https://doi.org/10.1016/j.chroma.2012.03.005

Latour, L. L., Kleinberg, R. L., Mitra, P. P., & Sotak, C. H. (1995). Pore-Size

Distributions and Tortuosity in Heterogeneous Porous Media. Journal of Magnetic

Resonance, Series A. https://doi.org/10.1006/jmra.1995.1012

Ma, Y., Qi, L., Ma, J., Wu, Y., Liu, O., & Cheng, H. (2003). Large-pore mesoporous

silica spheres: Synthesis and application in HPLC. Colloids and Surfaces A:

Physicochemical and Engineering Aspects, 229(1–3), 1–8.

https://doi.org/10.1016/j.colsurfa.2003.08.010

Maier, R. S., Kroll, D. M., Bernard, R. S., Howington, S. E., Peters, J. F., & Davis, H.

T. (2000). Pore-scale simulation of dispersion. Physics of Fluids, 12(8), 2065–2079.

https://doi.org/10.1063/1.870452

Müllner, T., Unger, K. K., & Tallarek, U. (2016). Characterization of microscopic

disorder in reconstructed porous materials and assessment of mass transport-relevant

structural descriptors. New J. Chem., 3993–4015.

https://doi.org/10.1039/C5NJ03346B

Reising, A. E., Godinho, J. M., Jorgenson, J. W., & Tallarek, U. (2017). Bed

morphological features associated with an optimal slurry concentration for

reproducible preparation of efficient capillary ultrahigh pressure liquid

chromatography columns. Journal of Chromatography A, 1504, 71–82.

https://doi.org/10.1016/j.chroma.2017.05.007

Sabelfeld, K. K. (2017). A mesh free floating random walk method for solving

diffusion imaging problems. Statistics & Probability Letters, 121, 6–11.

https://doi.org/10.1016/j.spl.2016.10.006

Sattin, F. (2008). Fick’s law and Fokker-Planck equation in inhomogeneous

environments. Physics Letters, Section A: General, Atomic and Solid State Physics,

372(22), 3941–3945. https://doi.org/10.1016/j.physleta.2008.03.014

Sen, P. N. (2004). Time-dependent diffusion coefficient as a probe of geometry.

Concepts in Magnetic Resonance Part A: Bridging Education and Research, 23(1), 1–

21. https://doi.org/10.1002/cmr.a.20017

Skoge, M., Donev, A., Stillinger, F. H., & Torquato, S. (2007). Publisher’s note:

Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review E -

Statistical, Nonlinear, and Soft Matter Physics, 75(2), 1–11.

https://doi.org/10.1103/PhysRevE.75.029901

Song, H., Vanderheyden, Y., Adams, E., Desmet, G., & Cabooter, D. (2016).

Extensive database of liquid phase diffusion coefficients of some frequently used test

118

molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid

chromatography. Journal of Chromatography A, 1455, 102–112.

https://doi.org/10.1016/j.chroma.2016.05.054

Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica

spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–

69. https://doi.org/10.1016/0021-9797(68)90272-5

Szymczak, P., & Ladd, A. J. C. (2003). Boundary conditions for stochastic solutions

of the convection-diffusion equation. Physical Review E, 68(3), 36704.

https://doi.org/10.1103/PhysRevE.68.036704

Taylor, G. (1953). Dispersion of Soluble Matter in Solvent Flowing Slowly through a

Tube. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 219(1137), 186–203. https://doi.org/10.1098/rspa.1953.0139

Van Deemter, J. J., Klinkenberg, A., & Zuiderweg, F. J. (1956). Longitudinal diffusion

and resistance to mass transfer as causes of nonideality in chromatography. Chemical

Engineering Science, 5(6), 271–289. https://doi.org/10.1016/0009-2509(56)80003-1

Wang, L., & Cardenas, M. B. (2015). An efficient quasi-3D particle tracking-based

approach for transport through fractures with application to dynamic dispersion

calculation. Journal of Contaminant Hydrology, 179, 47–54.

https://doi.org/10.1016/j.jconhyd.2015.05.007

Widiatmojo, A., Sasaki, K., Widodo, N. P., Sugai, Y., Sahzabi, A. Y., & Nguele, R.

(2016). Predicting gas dispersion in large scale underground ventilation: A particle

tracking approach. Building and Environment, 95, 171–181.

https://doi.org/10.1016/j.buildenv.2015.07.025

Wu, Z., & Chen, G. Q. (2015). Axial diffusion effect on concentration dispersion.

International Journal of Heat and Mass Transfer, 84, 571–577.

https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.045

Yang, B., & Liu, S. (2017). Closed-form analytical solutions of transient heat

conduction in hollow composite cylinders with any number of layers. International

Journal of Heat and Mass Transfer, 108, 907–917.

https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.020

Zhukovsky, K. V., & Srivastava, H. M. (2017). Analytical solutions for heat diffusion

beyond Fourier law. Applied Mathematics and Computation, 293, 423–437.

https://doi.org/10.1016/j.amc.2016.08.038

119

APPENDIX A

FORTRAN CODES

A.1. Validation of Free Diffusion Program

PROGRAM FREEDIFFUSION

IMPLICIT NONE

DOUBLE PRECISION :: DAB,DURATION,DT,DX,PI,FREQ,SUMM

INTEGER :: MAXRNG,NP,NS,B,AODP,I,J,K

DOUBLE PRECISION, ALLOCATABLE :: POSITIONOLD(:,:),POSITIONNEW(:,:)

DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DABVSTIME(:)

DOUBLE PRECISION, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:)

DAB=100

DURATION=1

NP=4000

DT=DURATION/100000

DX=SQRT(2*DAB*DT)

NS=DURATION/DT

MAXRNG=NS

ALLOCATE(NUMBERSX(MAXRNG))

ALLOCATE(NUMBERSY(MAXRNG))

ALLOCATE(NUMBERSZ(MAXRNG))

FREQ=DURATION/1000

B=INT(FREQ/DT)

AODP=INT(NS/B)

ALLOCATE(POSITIONNEW(NP,NS))

ALLOCATE(POSITIONOLD(NP,NS))

ALLOCATE(DISPLACEMENT(NP,AODP))

PI=ACOS(-1.0)

!!SETTING INITIAL POSITIONS!!

DO I=1,NP

 POSITIONOLD(I,1)=0

 POSITIONOLD(I,2)=0

 POSITIONOLD(I,3)=0

ENDDO

!!RANDOM-WALK!!

CALL INIT_RANDOM_SEED()

DO I=1,NP

120

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 DO J=1,NS

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX)

 POSITIONOLD (I,1)=POSITIONNEW (I,1)

 POSITIONOLD (I,2)=POSITIONNEW (I,2)

 POSITIONOLD (I,3)=POSITIONNEW (I,3)

 IF (MOD(J,B).EQ.0) THEN

 DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)&

 2+ POSITIONNEW(I,2)2+ POSITIONNEW(I,3)**2)

 ENDIF

 ENDDO

 WRITE(*,*) "FINISHED TRACER:",I

ENDDO

!!DATA TREATMENT AND SAVING TO FILE!!

ALLOCATE(DABVSTIME(AODP))

OPEN(10, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE')

DO I=1,AODP

 SUMM=0

 DO J=1,NP

 SUMM=SUMM+DISPLACEMENT(J,I)**2

 ENDDO

 DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT)

 WRITE(10,*) DABVSTIME(I)

ENDDO

CONTAINS

!!SUBROUTINES!!

SUBROUTINE NUMBERS(NX,NY,NZ)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG)

INTEGER:: A

DO A=1,MAXRNG

 CALL RANDOM_NUMBER (NX(A))

 NX(A)=COS((FLOOR(2*NX(A)))*PI)

 CALL RANDOM_NUMBER (NY(A))

 NY(A)=COS((FLOOR(2*NY(A)))*PI)

 CALL RANDOM_NUMBER (NZ(A))

 NZ(A)=COS((FLOOR(2*NZ(A)))*PI)

ENDDO

END SUBROUTINE NUMBERS

SUBROUTINE INIT_RANDOM_SEED()

INTEGER :: I, N, CLOCK

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED

CALL RANDOM_SEED(SIZE = N)

ALLOCATE(SEED(N))

CALL SYSTEM_CLOCK(COUNT=CLOCK)

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /)

CALL RANDOM_SEED(PUT = SEED)

DEALLOCATE(SEED)

END SUBROUTINE

END PROGRAM FREEDIFFUSION

121

A.2. Validation of Periodic Boundaries

PROGRAM DIFFUSIONPERIODIC

IMPLICIT NONE

DOUBLE PRECISION :: DAB,DURATION,DT,DX,PI,FREQ,SUMM

INTEGER :: MAXRNG,NP,NS,B,AODP,I,J,K

DOUBLE PRECISION, ALLOCATABLE :: POSITIONOLD(:,:),POSITIONNEW(:,:)

DOUBLE PRECISION, ALLOCATABLE :: POSITIONI(:,:)

DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DABVSTIME(:)

DOUBLE PRECISION, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:)

DOUBLE PRECISION, ALLOCATABLE :: COLLISIONSITES(:,:)

DOUBLE PRECISION :: PLOCAL(3),C(3),R,LPC

!!SETTING SPHERE CENTER AND RADIUS

LPC=5

C(1)=LPC/2

C(2)=LPC/2

C(3)=LPC/2

R=LPC/2

DAB=100

NP=5000

DX=R/10

DT=(DX**2)/(2*DAB)

DURATION=3*LPC*LPC/(6*DAB)

NS=INT(DURATION/DT)

DURATION=NS*DT

write(*,*)duration, ns, dt

MAXRNG=NS

ALLOCATE(NUMBERSX(MAXRNG))

ALLOCATE(NUMBERSY(MAXRNG))

ALLOCATE(NUMBERSZ(MAXRNG))

FREQ=DURATION/399

B=INT(FREQ/DT)

AODP=INT(NS/B)

ALLOCATE(POSITIONNEW(NP,NS))

ALLOCATE(POSITIONOLD(NP,NS))

ALLOCATE(POSITIONI(NP,NS))

ALLOCATE(DISPLACEMENT(NP,AODP))

ALLOCATE(COLLISIONSITES(NP,3))

PI=ACOS(-1.0)

!!SETTING INITIAL POSITIONS!!

CALL INIT_RANDOM_SEED()

!RANDOM DISTRIBUTION

DO I=1,NP

100 CALL RANDOM_NUMBER(POSITIONOLD(I,1))

 POSITIONOLD(I,1)=POSITIONOLD(I,1)*LPC

 CALL RANDOM_NUMBER(POSITIONOLD(I,2))

 POSITIONOLD(I,2)=POSITIONOLD(I,2)*LPC

 CALL RANDOM_NUMBER(POSITIONOLD(I,3))

 POSITIONOLD(I,3)=POSITIONOLD(I,3)*LPC

 PLOCAL(1)=MODULO(POSITIONOLD(I,1),LPC)

 PLOCAL(2)=MODULO(POSITIONOLD(I,2),LPC)

 PLOCAL(3)=MODULO(POSITIONOLD(I,3),LPC)

 IF ((((PLOCAL(1)-C(1))**2)+((PLOCAL(2)-C(2))**2)+&

 &((PLOCAL(3)-C(3))**2)).LE.(R**2)) GOTO 100

 POSITIONI(I,1)=POSITIONOLD(I,1)

 POSITIONI(I,2)=POSITIONOLD(I,2)

 POSITIONI(I,3)=POSITIONOLD(I,3)

ENDDO

!POINT INJECTION

DO I=1,NP

122

 POSITIONOLD(I,1)=0

 POSITIONOLD(I,2)=0

 POSITIONOLD(I,3)=0

ENDDO

!!SELECT ONE INITIAL CONDITION, COMMENT THE OTHER

!!RANDOM-WALK!!

CALL INIT_RANDOM_SEED()

DO I=1,NP

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 DO J=1,NS

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX)

 PLOCAL(1)=MODULO(POSITIONNEW(I,1),LPC)

 PLOCAL(2)=MODULO(POSITIONNEW(I,2),LPC)

 PLOCAL(3)=MODULO(POSITIONNEW(I,3),LPC)

 IF ((((PLOCAL(1)-C(1))**2)+((PLOCAL(2)-C(2))**2)+&

 &((PLOCAL(3)-C(3))**2)).LE.(R**2)) THEN

 POSITIONNEW (I,1)=POSITIONOLD (I,1)

 POSITIONNEW (I,2)=POSITIONOLD (I,2)

 POSITIONNEW (I,3)=POSITIONOLD (I,3)

 PLOCAL(1)=MODULO(POSITIONNEW(I,1),LPC)

 PLOCAL(2)=MODULO(POSITIONNEW(I,2),LPC)

 PLOCAL(3)=MODULO(POSITIONNEW(I,3),LPC)

 COLLISIONSITES(I,1)=PLOCAL(1)

 COLLISIONSITES(I,2)=PLOCAL(2)

 COLLISIONSITES(I,3)=PLOCAL(3)

 ENDIF

 POSITIONOLD (I,1)=POSITIONNEW (I,1)

 POSITIONOLD (I,2)=POSITIONNEW (I,2)

 POSITIONOLD (I,3)=POSITIONNEW (I,3)

 IF (MOD(J,B).EQ.0) THEN

 DISPLACEMENT(I,J/B)=SQRT((POSITIONNEW(I,1)-POSITIONI(I,1))**2+ &

 &(POSITIONNEW(I,2)-POSITIONI(I,2))**2+ (POSITIONNEW(I,3)-

POSITIONI(I,3))**2)

 ENDIF

 ENDDO

 WRITE(*,*) "FINISHED TRACER:",I

ENDDO

!!DATA TREATMENT AND SAVING TO FILE!!

ALLOCATE(DABVSTIME(AODP))

!DIFFUSIVITY

OPEN(10, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE')

WRITE(10,*)AODP

WRITE(10,*)DURATION

DO I=1,AODP

 SUMM=0

 DO J=1,NP

 SUMM=SUMM+DISPLACEMENT(J,I)**2

 ENDDO

 DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT)

 WRITE(10,*) DABVSTIME(I)

123

ENDDO

!COLLISION SITES

OPEN(20, FILE='COLLISION.TXT',STATUS='NEW',ACTION='WRITE')

DO I=1,NP

WRITE(20,*)COLLISIONSITES(I,1),COLLISIONSITES(I,2),COLLISIONSITES(I,3)

ENDDO

CONTAINS

!!SUBROUTINES!!

SUBROUTINE NUMBERS(NX,NY,NZ)

IMPLICIT NONE

DOUBLE PRECISION, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG)

INTEGER:: A

DO A=1,MAXRNG

 CALL RANDOM_NUMBER (NX(A))

 NX(A)=COS((FLOOR(2*NX(A)))*PI)

 CALL RANDOM_NUMBER (NY(A))

 NY(A)=COS((FLOOR(2*NY(A)))*PI)

 CALL RANDOM_NUMBER (NZ(A))

 NZ(A)=COS((FLOOR(2*NZ(A)))*PI)

ENDDO

END SUBROUTINE NUMBERS

SUBROUTINE INIT_RANDOM_SEED()

INTEGER :: I, N, CLOCK

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED

CALL RANDOM_SEED(SIZE = N)

ALLOCATE(SEED(N))

CALL SYSTEM_CLOCK(COUNT=CLOCK)

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /)

CALL RANDOM_SEED(PUT = SEED)

DEALLOCATE(SEED)

END SUBROUTINE

END PROGRAM DIFFUSIONPERIODIC

A.3. Validation of Core-Shell Particle Geometry and Packing

PROGRAM CORESHELLMULTILAYER

IMPLICIT NONE

INTEGER :: I,J,K,L,M,N

INTEGER :: NOL,NOSRJP

INTEGER, ALLOCATABLE :: NOAC(:),NOSOACINT(:,:),NOSISL(:),NOSS(:),SC(:)

DOUBLE PRECISION :: PI,PR,CPRATIO,RCORE,RSHELL,ALPHA,RRATIO,RRJP

REAL, ALLOCATABLE :: RAUX(:,:),ZAUX(:,:),RSOI(:),NOSOAC(:,:)

REAL, ALLOCATABLE :: PGCC(:,:,:,:),CPGCC(:,:,:)

REAL, ALLOCATABLE :: RJP(:,:),CSPRJP(:,:,:,:)

INTEGER(8) :: TOTALSHELL,B,AODP,MAXRNG,RNGDUMMY

DOUBLE PRECISION :: POROSITY,POROSITYSHELL,FREQ,SUMDSQ,SUMDISP,MEANDISP,VARIANCE

DOUBLE PRECISION, ALLOCATABLE :: DISPDAT(:,:),DISPDATL(:,:)

DOUBLE PRECISION, ALLOCATABLE :: DABVSTIME(:),DSPRCO(:)

PI=ACOS(-1.0)

PR=5.0/2

CPRATIO=0.8

NOL=1

RCORE=PR*CPRATIO

RSHELL=(PR-RCORE)/(NOL*2)

!CALCULATE THE NUMBER OF AUX. CIRCLES IN EACH SHELL LAYER

ALLOCATE(NOSS(NOL))

ALLOCATE(NOAC(NOL))

 DO I=1,NOL

124

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 IF (MOD(NOSS(I),2).EQ.0) THEN

 NOAC(I)=INT((NOSS(I)-2)/2.0)

 ELSE

 NOAC(I)=FLOOR(REAL(NOSS(I)/2.0))

 ENDIF

 RCORE=RCORE+RSHELL*2

 ENDDO

RCORE=PR*CPRATIO

!CALCULATE RADII,Z-COORD. OF, AND NUMBER OF SHELL SPHERES ON, EACH AUX. CIRCLE

ALLOCATE(RSOI(NOL))

ALLOCATE(RAUX(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC)))

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC)))

 DO I=1,NOL

 RSOI(I)=RCORE+2*RSHELL

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 ALPHA=2*PI/NOSS(I)

 DO J=1,NOAC(I)

 RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

 DO J=1,NOAC(I)

 NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J))

 NOSOACINT(I,J)=INT(NOSOAC(I,J))

 ENDDO

 DO J=1,NOAC(I)

 ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

 RCORE=RSOI(I)

 ENDDO

RCORE=PR*CPRATIO

!CALCULATE TOTAL NUMBER OF SHELL SPHERES IN EACH LAYER

ALLOCATE(NOSISL(NOL))

 DO I=1,NOL

 NOSISL(I)=0

 ENDDO

 DO I=1,NOL

 DO J=1,NOAC(I)

 NOSISL(I)=NOSISL(I)+NOSOACINT(I,J)

 ENDDO

 ENDDO

 DO I=1,NOL

 IF (MOD(NOSS(I),4).EQ.0) THEN

 NOSISL(I)=NOSISL(I)+2

 ELSE

 NOSISL(I)=NOSISL(I)+1

 ENDIF

 ENDDO

 NOSISL(1)=NOSISL(1)+1

125

!CALCULATE CENTER COORDINATES OF SHELL SPHERES

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4))

 DO I=1,NOL

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 ALPHA=2*PI/NOSOACINT(I,J)

 PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA)

 PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA)

 PGCC(I,J,K,3)=ZAUX(I,J)

 PGCC(I,J,K,4)=RSHELL

 ENDDO

 ENDDO

 ENDDO

!COMBINE PGCC DIMENSIONS, ADD POLAR SHELL SPHERES AND CORE SPHERE

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL)+1,4))

ALLOCATE(SC(NOL))

 !COMBINING 2ND AND 3RD DIMENSIONS OF PGCC

 DO I=1,NOL

 SC(I)=0

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 SC(I)=SC(I)+1

 CPGCC(I,SC(I),1)=PGCC(I,J,K,1)

 CPGCC(I,SC(I),2)=PGCC(I,J,K,2)

 CPGCC(I,SC(I),3)=PGCC(I,J,K,3)

 CPGCC(I,SC(I),4)=PGCC(I,J,K,4)

 ENDDO

 ENDDO

 ENDDO

 !ADDING POLAR SHELL SPHERES CENTER COORDINATES

 DO I=1,NOL

 IF (MOD(NOSS(I),2).EQ.0) THEN

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 CPGCC(I,SC(I)+2,1)=0

 CPGCC(I,SC(I)+2,2)=0

 CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL)

 CPGCC(I,SC(I)+2,4)=RSHELL

 SC(I)=SC(I)+2

 ELSE

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 SC(I)=SC(I)+1

 ENDIF

 ENDDO

 !ADDING CORE SPHERE CENTER COORDINATES

 CPGCC(1,SC(1)+1,1)=0

 CPGCC(1,SC(1)+1,2)=0

 CPGCC(1,SC(1)+1,3)=0

126

 CPGCC(1,SC(1)+1,4)=RCORE

 SC(1)=SC(1)+1

!READING HARSPHERE PACKING GEOMETRY

OPEN (30, FILE= "packing.dat", STATUS="OLD", ACTION="READ")

300 FORMAT(F16.8,2F17.8)

ALLOCATE (RJP(NOSRJP,3))

 DO I=1,NOSRJP

 READ(30,300)RJP(I,1),RJP(I,2),RJP(I,3)

 ENDDO

 DO I=1,NOSRJP

 DO J=1,3

 RJP(I,J)=(RJP(I,J))*RRATIO

 ENDDO

 ENDDO

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4))

!COPYING CORE-SHELL PARTICLES INTO THE PACKING

 !XYZ COORDINATES ONLY

 DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 DO L=1,3

 CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L)

 ENDDO

 ENDDO

 ENDDO

 ENDDO

 !RADIUS ONLY

 DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 CSPRJP(I,J,K,4)=CPGCC(J,K,4)

 ENDDO

 ENDDO

 ENDDO

!GENERATING OPENSCAD SCRIPT OF CORE-SHELL PACKING GEOMETRY FOR VISUAL INSPECTION

OPEN (40, FILE= "CORE-SHELL SCRIPT.TXT", STATUS="UNKNOWN", ACTION="WRITE")

WRITE(40,*)"union(csp) {"

DO I=1,NOSRJP

DO J=1,NOL

 DO K=1,SC(J)

 WRITE(40,*)"translate([", CSPRJP(I,J,K,1), "," , CSPRJP(I,J,K,2),&

 & ",", CSPRJP(I,J,K,3), "])"

 WRITE(40,*)"sphere(", CSPRJP(I,J,K,4), ", $fn=50);"

 ENDDO

ENDDO

ENDDO

WRITE(40,*)"}"

END PROGRAM CORESHELLMULTILAYER

!TO GENERATE THE SCRIPT FOR A SINGLE CORE-SHELL PARTICLE, SKIP

127

!”READING HARSPHERE PACKING GEOMETRY” AND “COPYING CORE-SHELL !PARTICLES INTO THE

PACKING”, REMOVE THE OUTER-MOST DO LOOP IN THE !LAST NESTED DO LOOPS AND CHANGE THE

“CSPRJP(I,J,K,’1-4’)” WITH !“CPGCC(J,K,1-4)”

A.4. Diffusion/Dispersion in Random Jammed Packing of Core-Shell Particles

!LINE NUMBERS,

!FOR FILES: MULTIPLES OF 10, EXCEPT MULTIPLES OF 100

!FOR FORMAT: ODD MULTIPLES OF 100

!FOR GOTO: EVEN MULTIPLES OF 100

PROGRAM CORESHELLDISPERSION

IMPLICIT NONE

INTEGER :: I,J,K,L,M,N

!!!

!!!

!DECLARATIONS - GEOMETRY RELATED

!!!

INTEGER :: NOL,NOSRJP

INTEGER(8), ALLOCATABLE :: NOAC(:),NOSOACINT(:,:),NOSISL(:),NOSS(:),SC(:)

DOUBLE PRECISION :: PI,PR,CPRATIO,RCORE,RSHELL,ALPHA,RRATIO,RRJP

REAL, ALLOCATABLE :: RAUX(:,:),ZAUX(:,:),RSOI(:),NOSOAC(:,:)

REAL, ALLOCATABLE :: PGCC(:,:,:,:),CPGCC(:,:,:)

REAL, ALLOCATABLE :: RJP(:,:),CSPRJP(:,:,:,:)

!!!

!!!

!!!

!!!

!DECLARATIONS - DIFFUSION RELATED

!!!

INTEGER(8) :: NP,NS,COLLISIONCOUNT,MAXDIST

DOUBLE PRECISION :: DAB,DT,DX,DURATION,DIFTIME,DIVIDER,POLD(3),PNEW(3)

DOUBLE PRECISION :: SOIC(3),PLOC(3),DURATIOND

DOUBLE PRECISION, ALLOCATABLE :: POSITIONI(:,:),POSITIONOLD(:,:),POSITIONNEW(:,:)

REAL, ALLOCATABLE :: NUMBERSX(:),NUMBERSY(:),NUMBERSZ(:)

DOUBLE PRECISION, ALLOCATABLE :: PLOCAL(:)

!!!

!!!

!!!

!!!

!DECLARATIONS - FLUID MECHANICS RELATED

!!!

INTEGER :: GRID

DOUBLE PRECISION :: CFSF,MAGSUM,MAG,PEAVG,PE,DURATIONC,UAVG

DOUBLE PRECISION, ALLOCATABLE :: VF(:,:,:,:),VELOCITY(:)

!!!

!!!

!!!

!!!

!DECLARATIONS - DATA EXTRACTION RELATED

!!!

INTEGER(8) :: TOTALSHELL,B,AODP,MAXRNG,RNGDUMMY

DOUBLE PRECISION :: POROSITY,POROSITYSHELL,FREQ,SUMDSQ,SUMDISP,MEANDISP,VARIANCE

128

DOUBLE PRECISION, ALLOCATABLE :: DISPLACEMENT(:,:),DISPDATL(:,:)

DOUBLE PRECISION, ALLOCATABLE :: DABVSTIME(:),DSPRCO(:)

CHARACTER(LEN=30) :: DATETAG

!!!

!!!

!!!

!!!

!DEFINITIONS - GEOMETRY RELATED

!!!

!ALPHA: HOLDS THE ANGLE OF SEPARATION BETWEEN AUX.CIRCLES AND SHELL SPHERES ON

! THESE CIRCLES.

!PI: AS IN 3.14

PI=ACOS(-1.0)

!PR: RADIUS OF ENTIRE CORE-SHELL PARTICLE (IN MICROMETERS)

PR=5.0/2

!CPRATIO: CORE TO PARTICLE RADII RATIO

CPRATIO=0.73

!NOL: NUMBER OF SHELL LAYERS

NOL=3

!RCORE:RADIUS OF CORE SPHERE

RCORE=PR*CPRATIO

!RSHELL: RADIUS OF SHELL SPHERES

RSHELL=(PR-RCORE)/(NOL*2)

!::SC: SPHERE COUNTER IN A CERTAIN LAYER (LAYER)

! NECESSARY FOR KEEPING TRACK OF HOW MANY SHELL SPHERES THERE ARE

! IN EACH SHELL LAYER SINCE SOME ELEMENTS IN CPGCC WILL BE EMPTY.

!::RAUX: RADIUS OF A CERTAIN AUX. CIRCLE (LAYER,CIRCLE NUMBER)

!::ZAUX: Z-COORD. OF A CERTAIN AUX. CIRCLE (LAYER,CIRCLE NUMBER)

! DETERMINES Z-COORD. OF SHELL SPHERES ON THAT AUX. CIRCLE

!::RSOI: RADIUS OF A CERTAIN SPHERE OF INFLUENCE FROM INSIDE TO OUTSIDE

!::NOAC: NUMBER OF AUX.CIRCLES IN A CERTAIN SHELL LAYER (LAYER)

!::NOSOAC: NUMBER OF SHELL SPHERES ON A CERTAIN AUX. CIRCLE

 (LAYER,CIRCLE NUMBER)

! REAL TYPE, FOR THE SAKE OF CALCULATIONS

!::NOSOACINT: INTEGER COUNTERPART OF NOSOAC

! HOLDS INTEGER PARTS OF THE ELEMENTS IN NOSOAC

!::NOSISL: TOTAL NUMBER OF SHELL SPHERES IN A CERTAIN SHELL LAYER (LAYER)

!::NOSS: NUMBER OF SHELL SPHERES THAT CAN BE PLACED AROUND THE EQUATOR

! DETERMINES NOAC AND NOSISL (LAYER)

!::PGCC: CENTER COORDINATES OF THE SPHERES IN PROTOTYPE GEOMETRY

! (LAYER, NOAC, NOSOAC, 4)

! ELEMENTS (:,:,:,4) ARE X,Y,Z COORDINATES AND SPHERE RADIUS

ACCORDINGLY

! IE. (2,1,1,3) IS THE Z-COORD OF THE FIRST SHELL SPHERE LOCATED ON THE

! FIRST AUX.CIRCLE OF THE SECOND SHELL LAYER

!::CPGCC: ANOTHER VERSION OF PGCC WITH 2ND AND 3RD DIMENSIONS COMBINED INTO ONE

! (LAYER,SHELL SPHERE NUMBER,4)

129

!!!

!NOSRJP: NUMBER OF SPHERES IN RANDOM JAMMED PACKING OF HARDSPHERES

NOSRJP=100 !DO NOT CHANGE

!RRJP: RADIUS OF HARDSPHERES IN RANDOM JAMMED PACKING OF HARDSPHERES

RRJP=0.2841570815121517/2 !DO NOT CHANGE

!RRATIO: RADII RATIO OF CORE-SHELL PARTICLE TO HARDSPHERES

RRATIO=PR/RRJP

!::RJP: RANDOM JAMMED PACKING OF HARDSPHERES IN UNIT CUBE (NOSRJP,3)

! HOLD CENTER COORDINATES OF HARDSPHERES IN THE PACKING

!::CSPRJP: CORE-SHELL PARTICLES IN RANDOM JAMMED PACKING

! HOLDS CENTER COORDINATES AND RADII OF CORE-SHELL PARTICLE ELEMENTS

! IN RANDOM JAMMED PACKING

! (NOSRJP,NOL,SHELL SPHERE NUMBER,4)

!!!

!!!

!!!

!!!

!DEFINITIONS - DIFFUSION RELATED

!!!

!DAB: DIFFUSION COEFFICIENT OF TRACERS (IN MICROMETER^2/SEC)

DAB=110

!NP: NUMBER OF TRACERS

NP=5000

!DX: RANDOM-STEP SIZE IN ALL AXIS

DX=RSHELL*0.2

WRITE(*,*)"DX:",DX

!DX=SQRT(2*DT*DAB)

!DT: TIME INCREMENT OF RANDOM-WALK (IN SEC)

DT=(DX**2)/(2.0*REAL(DAB))

!DT=0.00000284091

WRITE(*,*)"DT:",DT

!DURATION: DURATION OF THE EVENT (IN SEC)

! CHOSEN AS DIFFUSE TIME OR 15 X CONVECTIVE TIME (GREATER ONE)

! CONVECTIVE TIME (DURATIONC) IS CALCULATED IN FLUID MECHANICS

! DEFINITIONS

DURATIOND=0.2*((2*PR)**2)/(DAB)

!NS: TOTAL NUMBER OF RANDOM STEPS THAT WILL BE TAKEN BY A SINGLE TRACER

! DEFINED AFTER DURATION IS DETERMINED AT FLUID MECHANICS DEFINITIONS

!::POSITIONI: HOLDS INITIAL POSITIONS OF TRACERS

 (NP,3)

ALLOCATE(POSITIONI(NP,3))

!::POSITIONOLD: HOLDS POSITIONS OF TRACER FROM THE PREVIOUS STEP (NP,3)

ALLOCATE(POSITIONOLD(NP,3))

!::POSITIONNEW: HOLDS THE CALCULATED NEW POSITIONS OF TRACERS

 (NP,3)

ALLOCATE(POSITIONNEW(NP,3))

!MAXRNG: MAXIMUM AMOUNT OF RANDOM NUMBERS TO BE HOLD

!RNGDUMMY: KEEPS TRACK OF RANDOM NUMBER USAGE IN NUMBERSX/Y/Z ARRAYS

130

!::NUMBERSX: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN X-AXIS

!::NUMBERSY: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Y-AXIS

!::NUMBERSZ: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Z-AXIS

!COLLISIONCOUNT: COUNTS THE TOTAL NUMBER OF ENCOUNTERS BETWEEN BOUNDARIES AND

! TRACERS. ASSIGNED VALUES LATER IN THE CODE.

!::PLOCAL: HOLDS LOCALIZED COORDINATES OF TRACERS. RELATED TO PERIODIC BOUNDARIES

ALLOCATE(PLOCAL(3))

!!!

!!!

!!!

!!!

!DEFINITIONS - DATA EXTRACTION

!!!

!DATETAG: HOLDS THE DATE FOR FILE NAMES

CALL FDATE(DATETAG)

!POROSITY: VOID VOLUME TO ENTIRE VOLUME RATIO FOR AN ENTIRE CORE-SHELL PARTICLE

!POROSITYSHELL: VOID VOLUME TO ENTIRE VOLUME RATIO FOR SHELL SIDE ONLY

!TOTALSHELL: TOTAL NUMBER OF SPHERES IN SHELL SIDE

!FREQ: FREQUENCY OF DISPLACEMENT DATA EXTRACTION.

! I.E. ONCE EVERY 'FREQ' SECONDS

!B: EQUIVALENT AMOUNT OF RANDOM-STEPS REQUIRED FOR 'FREQ' SECONDS TO PASS

!AODP: TOTAL AMOUNT OF DATA POINTS COLLECTED

!::DISPDAT: DISPLACEMENT DATA (NP,AMOUNT OF DATA POINTS)

! HOLDS TRANSVERSE DISPLACEMENTS FOR DISPERSION SIMULATIONS

!::DABVSTIME: HOLDS CALCULATED DIFFUSION COEFFICIENT DATA (AMOUNT OF DATA POINTS)

!SUMDSQ: SUM OF SQUARED DISPLACEMENT FOR ALL TRACERS

!DISPDATL:: LONGITUDINAL DISPLACEMENT DATA

!DSPRCO:: HOLDS DISPERSION COEFFICIENTS

!MEANDISP: MEAN OF TRACER DISPLACEMENTS (L OR T)

!SUMDISP: SUM OF TRACER DISPLACEMENTS (L OR T)

!VARIANCE: VARIANCE OF TRACER DISPLACEMENTS (L OR T)

!!!

!!!

!!!

!!!

!OPEN FILES & FORMAT LINES

!!!

OPEN(10, FILE='VF.TXT',STATUS='OLD',ACTION='READ') !VELOCITY FIELD - READ

131

100 FORMAT(98X,3ES34.15E2) !VELOCITY

FIELD FORMAT

OPEN (20, FILE="SIM SUMMARY "//DATETAG//".TXT", & !SUMMARY FILE

&STATUS="UNKNOWN", ACTION="WRITE")

OPEN (30, FILE="PACKING.DAT", STATUS="OLD", & !RANDOM PACKING - READ

&ACTION="READ")

300 FORMAT(F16.8,2F17.8) !RANDOM

PACKING FORMAT

!OPEN (40, FILE="DAB VS TIME "//DATETAG//".TXT", & !DIFFUSIVITY DATA FILE

!&STATUS="UNKNOWN", ACTION="WRITE") !WORKS FOR

DIFFUSIVITY ONLY

500 FORMAT(F14.5)

 !DATA OUTPUT FORMAT

OPEN (50, FILE="LDISP VAR "//DATETAG//".TXT", & !LONGITUDINAL

DISPLACEMENT

&STATUS="UNKNOWN", ACTION="WRITE") !VARIANCE DATA

OUTPUT FILE

!!!

!!!

!!!

!!!

!DEFINITIONS - FLIUD MECHANICS

!!!

!PE: DESIRED PECLET NUMBER (STOKES FLOW BECOMES NOT APPLICABLE FOR PE>500)

PE=6.0

!GRID: DIMENSIONS OF THE VELOCITY FIELD ARRAY

GRID=101

!VF: VELOCITY FIELD DATA IN REGULAR GRID

! (X,Y,Z,VELOCITY VECTOR COMPONENT)

ALLOCATE(VF(GRID,GRID,GRID,3))

 !READ DATA

 DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 READ(10,100) VF(I,J,K,1),VF(I,J,K,2),VF(I,J,K,3)

 ENDDO

 ENDDO

 ENDDO

 !CALCULATE AVERAGE PE

 MAGSUM=0.0

 DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 MAG=SQRT(VF(I,J,K,1)**2+VF(I,J,K,2)**2+VF(I,J,K,3)**2)

 MAGSUM=MAGSUM+MAG

 ENDDO

 ENDDO

 ENDDO

 UAVG=1000000*MAGSUM/(GRID**3)

 WRITE(*,*)"AVERAGE U:",UAVG

 PEAVG=2*PR*UAVG/DAB

 WRITE(*,*)"AVERAGE PE:",PEAVG

 !CFSF: CREEPING FLOW SCALING FACTOR

 CFSF=PE/PEAVG

132

 WRITE(*,*)"CFSF:",CFSF

 !DURATIONC: CONVECTIVE TIME

 DURATIONC=10*(2*PR)/(UAVG*CFSF)

 WRITE(*,*)"10xCONVECTIVE TIME:",DURATIONC

 WRITE(*,*)"0.2xDIFFUSIVE TIME:",DURATIOND

 DURATION=MAX(DURATIOND,DURATIONC)

 NS=INT(DURATION/DT)

 WRITE(*,*)"NS:",NS

 DURATION=NS*DT

 !CALCULATE AVERAGE Z-COMPONENT

 MAGSUM=0.0

 DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 MAG=VF(I,J,K,3)

 MAGSUM=MAGSUM+MAG

 ENDDO

 ENDDO

 ENDDO

 UAVG=1000000*MAGSUM/(GRID**3)

 WRITE(*,*)"AVERAGE U-z:",UAVG*CFSF

 !SCALE FOR DT AND CONVERT TO MICROMETERS/SECOND

 DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 DO L=1,3

 VF(I,J,K,L)=VF(I,J,K,L)*DT*CFSF*1000000.0

 ENDDO

 ENDDO

 ENDDO

 ENDDO

!VELOCITY: INTERPOLATED VELOCITY VECTOR COMPONENTS

! ALREADY SCALED FOR DT

ALLOCATE(VELOCITY(3))

!!!

!DEPENDENT DECLARATIONS FROM DATA EXTRACTION DEFINITIONS

!FREQ: FREQUENCY OF DISPLACEMENT DATA EXTRACTION.

! I.E. ONCE EVERY 'FREQ' SECONDS

FREQ=DURATION/1000.0

!B: EQUIVALENT AMOUNT OF RANDOM-STEPS REQUIRED FOR 'FREQ' SECONDS TO PASS

B=FREQ/DT

!AODP: TOTAL AMOUNT OF DATA POINTS COLLECTED

AODP=NS/B

NS=AODP*B

DURATION=NS*DT

WRITE(*,*)"DURATION:",DURATION

!::DISPDAT: DISPLACEMENT DATA (NP,AMOUNT OF DATA POINTS)

! HOLDS TRANSVERSE DISPLACEMENTS FOR DISPERSION SIMULATIONS

ALLOCATE(DISPDAT(NP,AODP))

!::DABVSTIME: HOLDS CALCULATED DIFFUSION COEFFICIENT DATA (AMOUNT OF DATA POINTS)

ALLOCATE(DABVSTIME(AODP))

!SUMDSQ: SUM OF SQUARED DISPLACEMENT FOR ALL TRACERS

!DISPDATL:: LONGITUDINAL DISPLACEMENT DATA

ALLOCATE(DISPDATL(NP,AODP))

!DSPRCO:: HOLDS DISPERSION COEFFICIENTS

ALLOCATE(DSPRCO(AODP))

!!!

!DEPENDENT DECLARATIONS FROM DIFFUSION DEFINITIONS

!MAXRNG: MAXIMUM AMOUNT OF RANDOM NUMBERS TO BE HOLD

MAXRNG=NS

133

!::NUMBERSX: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN X-AXIS

ALLOCATE(NUMBERSX(MAXRNG))

!::NUMBERSY: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Y-AXIS

ALLOCATE(NUMBERSY(MAXRNG))

!::NUMBERSZ: HOLDS RANDOM NUMBERS (-1 OR +1) FOR STEPS TAKEN IN Z-AXIS

ALLOCATE(NUMBERSZ(MAXRNG))

!!!

!!!

!!!

!!!

!CALCULATE THE NUMBER OF AUX. CIRCLES IN EACH SHELL LAYER

!!!

ALLOCATE(NOSS(NOL))

ALLOCATE(NOAC(NOL))

 DO I=1,NOL

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 IF (MOD(NOSS(I),2).EQ.0) THEN

 NOAC(I)=INT((NOSS(I)-2)/2)

 ELSE

 NOAC(I)=FLOOR(REAL(NOSS(I)/2))

 ENDIF

 RCORE=RCORE+RSHELL*2

 ENDDO

RCORE=PR*CPRATIO

!!!

!!!

!!!

!!!

!CALCULATE RADII,Z-COORD. OF, AND NUMBER OF SHELL SPHERES ON, EACH AUX. CIRCLE

!!!

ALLOCATE(RSOI(NOL))

ALLOCATE(RAUX(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC)))

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC)))

 DO I=1,NOL

 RSOI(I)=RCORE+2*RSHELL

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 ALPHA=2*PI/NOSS(I)

 DO J=1,NOAC(I)

 RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

 DO J=1,NOAC(I)

 NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J))

 NOSOACINT(I,J)=INT(NOSOAC(I,J))

 ENDDO

 DO J=1,NOAC(I)

134

 ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

 RCORE=RSOI(I)

 ENDDO

RCORE=PR*CPRATIO

!!!

!!!

!!!

!!!

!CALCULATE TOTAL NUMBER OF SHELL SPHERES IN EACH LAYER

!!!

ALLOCATE(NOSISL(NOL))

 DO I=1,NOL

 NOSISL(I)=0

 ENDDO

 DO I=1,NOL

 DO J=1,NOAC(I)

 NOSISL(I)=NOSISL(I)+NOSOACINT(I,J)

 ENDDO

 ENDDO

 DO I=1,NOL

 IF (MOD(NOSS(I),2).EQ.0) THEN

 NOSISL(I)=NOSISL(I)+2

 ELSE

 NOSISL(I)=NOSISL(I)+1

 ENDIF

 ENDDO

 NOSISL(1)=NOSISL(1)+1

!!!

!!!

!!!

!!!

!CALCULATE CENTER COORDINATES OF SHELL SPHERES

!!!

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4))

 DO I=1,NOL

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 ALPHA=2*PI/NOSOACINT(I,J)

 PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA)

 PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA)

 PGCC(I,J,K,3)=ZAUX(I,J)

 PGCC(I,J,K,4)=RSHELL

 ENDDO

 ENDDO

 ENDDO

!!!

!!!

135

!!!

!!!

!COMBINE PGCC DIMENSIONS, ADD POLAR SHELL SPHERES AND CORE SPHERE

!!!

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL),4))

ALLOCATE(SC(NOL))

 !COMBINING 2ND AND 3RD DIMENSIONS OF PGCC

 DO I=1,NOL

 SC(I)=0

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 SC(I)=SC(I)+1

 CPGCC(I,SC(I),1)=PGCC(I,J,K,1)

 CPGCC(I,SC(I),2)=PGCC(I,J,K,2)

 CPGCC(I,SC(I),3)=PGCC(I,J,K,3)

 CPGCC(I,SC(I),4)=PGCC(I,J,K,4)

 ENDDO

 ENDDO

 ENDDO

 !ADDING POLAR SHELL SPHERES CENTER COORDINATES

 DO I=1,NOL

 IF (MOD(NOSS(I),2).EQ.0) THEN

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 CPGCC(I,SC(I)+2,1)=0

 CPGCC(I,SC(I)+2,2)=0

 CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL)

 CPGCC(I,SC(I)+2,4)=RSHELL

 SC(I)=SC(I)+2

 ELSE

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 SC(I)=SC(I)+1

 ENDIF

 ENDDO

 !ADDING CORE SPHERE CENTER COORDINATES

 CPGCC(1,SC(1)+1,1)=0

 CPGCC(1,SC(1)+1,2)=0

 CPGCC(1,SC(1)+1,3)=0

 CPGCC(1,SC(1)+1,4)=RCORE

 SC(1)=SC(1)+1

!!!

!!!

!!!

!!!

!DATA EXTRACTION - SUMMARY OF CORE-SHELL GEOMETRY

136

!!!

 WRITE(20,*)"---"

 WRITE(20,*)"GEOMETRY"

 WRITE(20,*)"---"

 WRITE(20,*)"RADIUS (MICROMETER):",PR

 WRITE(20,*)"CORE RADIUS (MICROMETER):",RCORE

 WRITE(20,*)"SHELL RADIUS (MICROMETER):",RSHELL

 WRITE(20,*)"NUMBER OF AUX CIRCLES IN"

 DO I=1,NOL

 WRITE(20,*)" LAYER",I,":",NOAC(I)

 ENDDO

 WRITE(20,*)"NUMBER OF SPHERES ON"

 DO I=1,NOL

 WRITE(20,*)"LAYER",I

 DO J=1,NOAC(I)

 WRITE(20,*)" AUX. CIRCLE",J,":",NOSOACINT(I,J)

 ENDDO

 ENDDO

 WRITE(20,*)"NUMBER OF SHELL SPHERES IN"

 DO I=1,NOL

 IF (I.EQ.1) THEN

 WRITE(20,*)" LAYER",I,":",SC(I)-1

 ELSE

 WRITE(20,*)" LAYER",I,":",SC(I)

 ENDIF

 ENDDO

 TOTALSHELL=SUM(SC)-1

 WRITE(20,*)" TOTAL:",TOTALSHELL

 !((4/3)*PI*(RSHELL^3)*(SUM(SC)-1)): TOTAL SHELL SPHERE VOLUME

 !(4/3)*PI*(RCORE^3): CORE SPHERE VOLUME

 !(4/3)*PI*(PR^3): ENTIRE VOLUME

 !((4/3)*PI*(PR^3)-(4/3)*PI*(RCORE^3)): SHELL VOLUME

 POROSITY=(((4/3)*PI*(PR**3))-(((4/3)*PI*(RSHELL**3)*(SUM(SC)-

1))+((4/3)*PI*&

 &(RCORE**3))))/((4/3)*PI*(PR**3))

 POROSITYSHELL=(((4/3)*PI*(PR**3)-(4/3)*PI*(RCORE**3))-

((4/3)*PI*(RSHELL**3)&

 &*(SUM(SC)-1)))/((4/3)*PI*(PR**3)-(4/3)*PI*(RCORE**3))

 WRITE(20,*)"POROSITY:",POROSITY

 WRITE(20,*)"SHELL POROSITY:",POROSITYSHELL

 WRITE(20,*)"---"

 WRITE(20,*)"DIFFUSION"

 WRITE(20,*)"---"

 WRITE(20,*)"DAB (MICROMETER^2/S):",DAB

 WRITE(20,*)"TIME INCREMENT(S):",DT

 WRITE(20,*)"STEP SIZE (MICROMETER):",DX

 WRITE(20,*)"DIFFUSIVE TIME (FOR DP):",DIFTIME*DIVIDER

 WRITE(20,*)"NUMBER OF TRACERS:",NP

 WRITE(20,*)"NUMBER OF RANDOM STEPS PER TRACER:",NS

137

 WRITE(20,*)"DURATION:", DURATION

 WRITE(20,*)"---"

 WRITE(20,*)"FLOW"

 WRITE(20,*)"---"

 WRITE(20,*)"SCALING FACTOR(BASE 400 PA):",CFSF

 WRITE(20,*)"PECLET NUMBER:", PE

 WRITE(*,*)" TOTAL SHELL SPHERES:",TOTALSHELL

!!!

!!!

!!!

!!!

!READING & SCALING RANDOM JAMMED PACKING OF HARDSPHERES

!!!

ALLOCATE (RJP(NOSRJP,3))

 DO I=1,NOSRJP

 READ(30,300)RJP(I,1),RJP(I,2),RJP(I,3)

 ENDDO

 DO I=1,NOSRJP

 DO J=1,3

 RJP(I,J)=(RJP(I,J))*RRATIO

 ENDDO

 ENDDO

!!!

!!!

!!!

!!!

!PLACING CORE-SHELL GEOMETRY INTO HARDSPHERES INSIDE THE PACKING

!!!

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4))

 !XYZ COORDINATES ONLY

 DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 DO L=1,3

 CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L)

 ENDDO

 ENDDO

 ENDDO

 ENDDO

 !RADIUS ONLY

 DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 CSPRJP(I,J,K,4)=CPGCC(J,K,4)

 ENDDO

138

 ENDDO

 ENDDO

!!!

!!!

!!!

!!!

!DETERMINING INITIAL CONDITIONS OF TRACERS

!RANDOMLY PLACED THROUGHOUT THE INTER-PARTICLE SPACE

!NO TRACER STARTS INSIDE THE PORES OF ANY CORE-SHELL PARTICLE

!!!

CALL INIT_RANDOM_SEED()

 DO I=1,NP

 COLLISIONCOUNT=0

200 CALL RANDOM_NUMBER(NUMBERSX(1))

 CALL RANDOM_NUMBER(NUMBERSY(1))

 CALL RANDOM_NUMBER(NUMBERSZ(1))

 POSITIONI(I,1)=(NUMBERSX(1))*RRATIO

 POSITIONI(I,2)=(NUMBERSY(1))*RRATIO

 POSITIONI(I,3)=(NUMBERSZ(1))*RRATIO

 PLOCAL(1)=POSITIONI(I,1)

 PLOCAL(2)=POSITIONI(I,2)

 PLOCAL(3)=POSITIONI(I,3)

 DO J=1,NOSRJP

 IF ((((PLOCAL(1)-RJP(J,1))**2)+((PLOCAL(2)-

RJP(J,2))**2)+((PL&

 &OCAL(3)-RJP(J,3))**2)).LE. (PR**2)) THEN

 COLLISIONCOUNT=COLLISIONCOUNT+1

 GOTO 200

 ENDIF

 ENDDO

! WRITE(*,*) "TRACER (",I,") PLACED AFTER (",COLLISIONCOUNT,") TRIES."

 DO J=1,3

 POSITIONOLD(I,J)=POSITIONI(I,J)

 ENDDO

 ENDDO

!!!

!!!

!!!

!!!

!RANDOM-WALK & DISPERSION EVENT

!!!

CALL INIT_RANDOM_SEED()

 !$omp parallel do

private(j,k,l,m,plocal,numbersx,numbersy,numbersz,rngdummy,maxdist,velocity,pold,pn

ew,soic,ploc)

 DO I=1,NP

139

 !$omp critical

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 !$omp end critical

 DO J=1,NS

 !!!COMMENT THIS BLOCK, AND CONVECTIVE TERMS BELOW FOR DIFFUSION

ONLY

 !CALCULATE LOCAL POSITION FOR INTERPOLATION

 PLOCAL(1)=MODULO(POSITIONOLD(I,1),RRATIO)

 PLOCAL(2)=MODULO(POSITIONOLD(I,2),RRATIO)

 PLOCAL(3)=MODULO(POSITIONOLD(I,3),RRATIO)

 !CALL INTERPOLATION

 !!$omp critical

 CALL GIMME_VELOCITY(PLOCAL,VF,RRATIO,GRID,VELOCITY)

 !!$omp end critical

 !!!/COMMENT THIS BLOCK, AND CONVECTIVE TERMS BELOW FOR

DIFFUSION ONLY

 !MOVE TRACERS

(OLDPOSITION+DIFFUSIVETERM+CONVECTIVETERM)

 RNGDUMMY=INT(MOD((J-1),MAXRNG))+1

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(RNGDUMMY)*DX)+VELOCITY(1)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(RNGDUMMY)*DX)+VELOCITY(2)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(RNGDUMMY)*DX)+VELOCITY(3)

 PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO)

 PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO)

 PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO)

 !CHECKING IF THE TRACER IS IN INTER-PARTICLE

SPACE OR NOT

 DO K=1,NOSRJP

 IF ((((PLOCAL(1)-

RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2&

 &)+((PLOCAL(3)-RJP(K,3))**2))

.LE.(PR**2)) THEN

 !!!COMMENT THIS BLOCK FOR SIMLATIONS IN

HARDSPHERE PACKING ONLY

 !CHECKING IN WHICH SHELL LAYER

THE TRACER IS

 DO L=1,NOL

 IF ((((PLOCAL(1)-

RJP(K,1))**2)+((PLOCAL(2)-RJP(&

 &K,2))**2)+((PLOCAL(3)-RJP(K,3))**2)) .LE.(&

 &RSOI(L)**2))

THEN

 !CHECKING ALL

SPHERES IN THE SHELL LAYER

 DO M=1,SC(L)

 IF

((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+(&

 &(PLOCAL(2)-CSPRJP(K,L,M,2))**2)+((&

 &PLOCAL(3)-CSPRJP(K,L,M,3))**2)) &

 &.LE.(CSPRJP(K,L,M,4)**2)) THEN

 !!!/COMMENT THIS BLOCK FOR SIMLATIONS IN

HARDSPHERE PACKING ONLY

140

 POSITIONNEW(I,1)=POSITIONOLD(I,1)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)

 GOTO 400

 !!!COMMENT THIS BLOCK FOR SIMLATIONS IN

HARDSPHERE PACKING ONLY

 ENDIF

 ENDDO

 ENDIF

 ENDDO

 !!!/COMMENT THIS BLOCK FOR SIMLATIONS IN

HARDSPHERE PACKING ONLY

 ENDIF

 ENDDO

400 POSITIONOLD(I,1)=POSITIONNEW(I,1)

 POSITIONOLD(I,2)=POSITIONNEW(I,2)

 POSITIONOLD(I,3)=POSITIONNEW(I,3)

 IF (MOD(J,B).EQ.0) THEN

 !LONGITUDINAL DISPLACEMENTS (USED IN DISPERSION

SIMULATIONS)

 DISPDATL(I,J/B)=ABS(POSITIONNEW(I,3)-

POSITIONI(I,3))

 !TOTAL DISPLACEMENTS (USED IN DIFFUSION

SIMULATIONS)

 ! DISPLACEMENT(I,J/B)=SQRT((POSITIONNEW(I,1)-

POSITIONI(I,1))**2+&

 ! &(POSITIONNEW(I,2)-

POSITIONI(I,2))**2+(POSITIONNEW(I,3)-PO&

 ! &SITIONI(I,3))**2)

 ENDIF

 ENDDO

600 WRITE(*,*)"FINISHED TRACER:",I

 ENDDO

 !$omp end parallel do

!!!

!!!

!COMMENT 'THE OTHER' DATA EXTRACTION.

!I.E. COMMENT DIFFUSIVITY DATA BLOCK FOR DISPERSION SIMULATIONS

!!!

!!!

!DATA EXTRACTION - LONGITUDINAL DISPERSION COEFFICIENT

!!!

 DO I=1,AODP

 SUMDISP=0.0

 DO J=1,NP

 SUMDISP=SUMDISP+DISPDATL(J,I)

 ENDDO

141

 MEANDISP=SUMDISP/NP

 VARIANCE=0.0

 DO J=1,NP

 VARIANCE=VARIANCE+(((DISPDATL(J,I)-MEANDISP)**2)/NP)

 ENDDO

 DSPRCO(I)=0.5*(VARIANCE/(I*B*DT))

 WRITE(50,500) VARIANCE

 ENDDO

!!!

!!!

!!!

!!!

!DATA EXTRACTION - TIME DEPENDENT DIFFUSIVITY

!!!

! DO I=1,AODP

 ! SUMM=0

 ! DO J=1,NP

 ! SUMM=SUMM+DISPLACEMENT(J,I)**2

 ! ENDDO

 ! DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT)

 ! WRITE(40,500) DABVSTIME(I)

! ENDDO

!!!

!!!

!!!

!!!

!WRITING START AND END DATES OF COMPUTATION TO SIMLULATION SUMMARY

!!!

WRITE(20,*)"---"

WRITE(20,*)"COMPUTATION HAD"

WRITE(20,*)"STARTED ON:",DATETAG

WRITE(*,*)"STARTED ON:",DATETAG

CALL FDATE(DATETAG)

WRITE(20,*)"ENDED ON:",DATETAG

WRITE(*,*)"ENDED ON:",DATETAG

!!

!!

CONTAINS

SUBROUTINE INIT_RANDOM_SEED()

!SETS RANDOM SEED USING SYSTEM CLOCK

INTEGER :: I, N, CLOCK

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED

CALL RANDOM_SEED(SIZE = N)

ALLOCATE(SEED(N))

CALL SYSTEM_CLOCK(COUNT=CLOCK)

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /)

CALL RANDOM_SEED(PUT = SEED)

DEALLOCATE(SEED)

END SUBROUTINE

142

!!!

SUBROUTINE NUMBERS(NX,NY,NZ)

!GENERATES RANDOM NUMBERS, EITHER -1 OR +1

IMPLICIT NONE

REAL, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG)

INTEGER:: A

DO A=1,MAXRNG

 CALL RANDOM_NUMBER (NX(A))

 NX(A)=COS((FLOOR(2*NX(A)))*PI)

 CALL RANDOM_NUMBER (NY(A))

 NY(A)=COS((FLOOR(2*NY(A)))*PI)

 CALL RANDOM_NUMBER (NZ(A))

 NZ(A)=COS((FLOOR(2*NZ(A)))*PI)

ENDDO

END SUBROUTINE NUMBERS

!!!

SUBROUTINE GIMME_VELOCITY(LOCALP,VFI,LENGTH,GRIDD,VEL)

!TRILINEAR INTERPOLATION SUBROUTINE

IMPLICIT NONE

INTEGER, INTENT(IN) :: GRIDD

DOUBLE PRECISION, INTENT(IN) :: VFI(GRIDD,GRIDD,GRIDD,3)

DOUBLE PRECISION, INTENT(IN) :: LOCALP(3),LENGTH

DOUBLE PRECISION, INTENT(OUT) :: VEL(3)

DOUBLE PRECISION :: XUNIT,YUNIT,ZUNIT,MAIN(8),FIRST(4),SECOND(2)

INTEGER :: EDGE(3),DUMMY

!FIELD ARRAY INCLUDES GRID^3 UNIT CUBES THAT HOLD

!VELOCITY VECTORS INSIDE PERIODIC CUBE

!FIND WHICH UNIT CUBE THE TRACER IS IN

EDGE(1)=INT(LOCALP(1)/(LENGTH/100))+1

EDGE(2)=INT(LOCALP(2)/(LENGTH/100))+1

EDGE(3)=INT(LOCALP(3)/(LENGTH/100))+1

!FIND NORMALIZED POSITION OF TRACER INSIDE UNIT CUBE

XUNIT=MOD(LOCALP(1),(LENGTH/100))/(LENGTH/100)

YUNIT=MOD(LOCALP(2),(LENGTH/100))/(LENGTH/100)

ZUNIT=MOD(LOCALP(3),(LENGTH/100))/(LENGTH/100)

!INTERPOLATE (COMPONENT BY COMPONENT)

DO DUMMY=1,3

!SET VECTOR COMPONENT AT 8 CORNERS OF UNIT CUBE

MAIN(1)=VFI(EDGE(1),EDGE(2),EDGE(3),DUMMY)

MAIN(2)=VFI(EDGE(1)+1,EDGE(2),EDGE(3),DUMMY)

MAIN(3)=VFI(EDGE(1),EDGE(2),EDGE(3)+1,DUMMY)

MAIN(4)=VFI(EDGE(1)+1,EDGE(2),EDGE(3)+1,DUMMY)

MAIN(5)=VFI(EDGE(1),EDGE(2)+1,EDGE(3),DUMMY)

MAIN(6)=VFI(EDGE(1)+1,EDGE(2)+1,EDGE(3),DUMMY)

MAIN(7)=VFI(EDGE(1),EDGE(2)+1,EDGE(3)+1,DUMMY)

MAIN(8)=VFI(EDGE(1)+1,EDGE(2)+1,EDGE(3)+1,DUMMY)

!INTERPOLATE ALONG X-AXIS (REDUCES TO BILINEAR)

FIRST(1)=MAIN(1)+((MAIN(2)-MAIN(1))*XUNIT)

FIRST(2)=MAIN(3)+((MAIN(4)-MAIN(3))*XUNIT)

FIRST(3)=MAIN(5)+((MAIN(6)-MAIN(5))*XUNIT)

FIRST(4)=MAIN(7)+((MAIN(8)-MAIN(7))*XUNIT)

!INTERPOLATE ALONG Z-AXIS (REDUCES TO LINEAR)

SECOND(1)=FIRST(1)+((FIRST(2)-FIRST(1))*ZUNIT)

SECOND(2)=FIRST(3)+((FIRST(4)-FIRST(3))*ZUNIT)

!INTERPOLATE ALONG Y-AXIS

VEL(DUMMY)=SECOND(1)+((SECOND(2)-SECOND(1))*YUNIT)

ENDDO

END SUBROUTINE GIMME_VELOCITY

!!!

END PROGRAM CORESHELLDISPERSION

143

APPENDIX B

DISPERSION COEFFICIENTS

B.1. In Taylor Dispersion Simulation

Figure B.1: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1.13. Fit

parameters are, 𝐴 = 186.2 and 𝑘 = 54.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

144

Figure B.2: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2.25. Fit

parameters are, 𝐴 = 222.4 and 𝑘 = 93.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

Figure B.3: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 22.5. Fit

parameters are, 𝐴 = 1264.6 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

20

40

60

80

100

120

0

5

10

15

20

25

30

35

40

45

50

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

100

200

300

400

500

600

700

0

50

100

150

200

250

300

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

145

Figure B.4: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45.0. Fit

parameters are, 𝐴 = 4593.4 and 𝑘 = 632.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.5: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 67.5. Fit

parameters are, 𝐴 = 9922.0 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

500

1000

1500

2000

2500

0

100

200

300

400

500

600

700

800

900

1000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

0

500

1000

1500

2000

2500

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

146

Figure B.6: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90.1. Fit

parameters are, 𝐴 = 17859.5 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.7: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 112.6. Fit

parameters are, 𝐴 = 29542.8 and 𝑘 = 201.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

500

1000

1500

2000

2500

3000

3500

4000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

2000

4000

6000

8000

10000

12000

14000

16000

0

1000

2000

3000

4000

5000

6000

7000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

147

Figure B.8: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 225.2. Fit

parameters are, 𝐴 = 113724.9 and 𝑘 = 439.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.9: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 450.4. Fit

parameters are, 𝐴 = 430558.9 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

10000

20000

30000

40000

50000

60000

0

5000

10000

15000

20000

25000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

50000

100000

150000

200000

250000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

148

Figure B.10: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 675.5. Fit

parameters are, 𝐴 = 987587.8 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.11: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit

parameters are, 𝐴 = 1759189 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

100000

200000

300000

400000

500000

600000

0

50000

100000

150000

200000

250000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0

50000

100000

150000

200000

250000

300000

350000

400000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

149

Figure B.12: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 900.8. Fit

parameters are, 𝐴 = 2786138 and 𝑘 ≫ 1000. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0

100000

200000

300000

400000

500000

600000

0.00 0.05 0.10 0.15 0.20 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff

150

B.2. In the Random Packing of Monodisperse Hardspheres

Figure B.13: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit

parameters are, 𝐴 = 2167.8 and 𝑘 = 118.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

200

400

600

800

1000

1200

0

50

100

150

200

250

300

350

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

151

Figure B.14: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit

parameters are, 𝐴 = 3143.8 and 𝑘 = 139.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.15: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit

parameters are, 𝐴 = 4436.9 and 𝑘 = 184.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

200

400

600

800

1000

1200

1400

1600

1800

0

50

100

150

200

250

300

350

400

0 0.02 0.04 0.06 0.08 0.1 0.12

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

500

1000

1500

2000

2500

0

50

100

150

200

250

300

350

400

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

152

Figure B.16: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit

parameters are, 𝐴 = 5520.0 and 𝑘 = 183.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.17: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit

parameters are, 𝐴 = 7170.6 and 𝑘 = 187.5. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

300

350

400

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

153

Figure B.18: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit

parameters are, 𝐴 = 7597.7 and 𝑘 = 306.9. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.19: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit

parameters are, 𝐴 = 9539.2 and 𝑘 = 256.82. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

500

1000

1500

2000

2500

3000

3500

4000

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05 0.06

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05 0.06

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

154

Figure B.20: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit

parameters are, 𝐴 = 10425.2 and 𝑘 = 377.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.21: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 60. Fit

parameters are, 𝐴 = 13117.7 and 𝑘 = 370.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

1000

2000

3000

4000

5000

6000

0

50

100

150

200

250

300

350

400

450

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

7000

0

100

200

300

400

500

600

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

155

Figure B.22: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 70. Fit

parameters are, 𝐴 = 16003.4 and 𝑘 = 381.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.23: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 80. Fit

parameters are, 𝐴 = 19331.5 and 𝑘 = 589.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

100

200

300

400

500

600

700

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

2000

4000

6000

8000

10000

12000

0

100

200

300

400

500

600

700

800

900

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

156

Figure B.24: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 90. Fit

parameters are, 𝐴 = 21591.7 and 𝑘 = 621.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.25: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit

parameters are, 𝐴 = 25076.5 and 𝑘 = 695.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

2000

4000

6000

8000

10000

12000

0

100

200

300

400

500

600

700

800

900

1000

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

2000

4000

6000

8000

10000

12000

14000

0

200

400

600

800

1000

1200

0.00 0.01 0.02 0.03 0.04 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

157

B.3. In the Random Packing of Core-Shell Particles

Figure B.26: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 1. Fit

parameters are, 𝐴 = 173.9 and 𝑘 = 16.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

158

Figure B.27: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 2. Fit

parameters are, 𝐴 = 242.1 and 𝑘 = 29.6. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

Figure B.28: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 3. Fit

parameters are, 𝐴 = 311.7 and 𝑘 = 56.9. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

0

20

40

60

80

100

120

140

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

159

Figure B.29: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 4. Fit

parameters are, 𝐴 = 425.0 and 𝑘 = 52.8. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

Figure B.30: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 5. Fit

parameters are, 𝐴 = 538.2 and 𝑘 = 80.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

0

50

100

150

200

250

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

50

100

150

200

250

300

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

160

Figure B.31: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 6. Fit

parameters are, 𝐴 = 645.5 and 𝑘 = 124.4. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.32: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 7. Fit

parameters are, 𝐴 = 850.4 and 𝑘 = 54.7. Longitudinal dispersion coefficient (𝜇𝑚2/𝑠)

vs. time (s) plot is also on the secondary axis to the right.

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

161

Figure B.33: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 8. Fit

parameters are, 𝐴 = 1014.5 and 𝑘 = 73.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.34: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 9. Fit

parameters are, 𝐴 = 1109.5 and 𝑘 = 102.8. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

100

200

300

400

500

600

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

100

200

300

400

500

600

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

162

Figure B.35: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 10. Fit

parameters are, 𝐴 = 1369.5 and 𝑘 = 77.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.36: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 15. Fit

parameters are, 𝐴 = 2342.0 and 𝑘 = 137.2. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

100

200

300

400

500

600

700

800

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

300

350

400

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

163

Figure B.37: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 20. Fit

parameters are, 𝐴 = 3520.5 and 𝑘 = 135.8. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.38: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 25. Fit

parameters are, 𝐴 = 4855.0 and 𝑘 = 146.0. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

50

100

150

200

250

300

350

400

0 0.02 0.04 0.06 0.08 0.1 0.12

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

500

1000

1500

2000

2500

3000

0

50

100

150

200

250

300

350

400

450

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

164

Figure B.39: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 30. Fit

parameters are, 𝐴 = 6454.7 and 𝑘 = 191.0 Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.40: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 35. Fit

parameters are, 𝐴 = 8003.9 and 𝑘 = 195.9. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

500

1000

1500

2000

2500

3000

3500

0

50

100

150

200

250

300

350

400

450

500

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

50

100

150

200

250

300

350

400

450

500

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

165

Figure B.41: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 40. Fit

parameters are, 𝐴 = 10003.1 and 𝑘 = 214.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.42: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 45. Fit

parameters are, 𝐴 = 12122.3 and 𝑘 = 198.3. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

1000

2000

3000

4000

5000

6000

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

1000

2000

3000

4000

5000

6000

7000

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

166

Figure B.43: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 50. Fit

parameters are, 𝐴 = 14021.3 and 𝑘 = 223.6. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

Figure B.44: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 75. Fit

parameters are, 𝐴 = 26705.8 and 𝑘 = 256.1. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

100

200

300

400

500

600

700

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

0

2000

4000

6000

8000

10000

12000

14000

16000

0

200

400

600

800

1000

1200

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

167

Figure B.45: Longitudinal position variance (𝜇𝑚2) vs. time (s) at 𝑃𝑒 = 100. Fit

parameters are, 𝐴 = 39604.1 and 𝑘 = 299.7. Longitudinal dispersion coefficient

(𝜇𝑚2/𝑠) vs. time (s) plot is also on the secondary axis to the right.

0

5000

10000

15000

20000

25000

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

D
L

σ
L2

Time

Simulation Results Fit Data Disp. Coeff.

168

169

APPENDIX C

FORTRAN IMPLEMENTATIONS

Fortran programming language is often preferred for scientific computations. Its roots

extend across a very long time, it has open source well written compilers as well as

having open source parallel computing modules and online resources available.

Therefore it is very suitable for the application of the model being created on computer.

In the next three sections, details of creating a free form Fortran program to carry out

calculations required for the model will be explained.

C.1. Free Molecular Diffusion

Random-walk simulations of free molecular diffusion was explained in section 3.1.1.

and it was shown that Equation (15) is the main equation that calculates random motion

of tracers and an algorithm was presented. Variables and parameters that need to be

declared at the beginning of the code as well as the types and strings used for

corresponding variables or parameters are given in Table C.1. There are other Fortran

strings, which do not appear in the equation given in section 3.1, that needed to be

declared throughout the code as auxiliary variables to carry out calculations and a list

of them can be found at the end of this section.

170

Table C.1: Declared main parameters and variables and corresponding strings and their

declaration types used for free diffusion model.

Parameter/Variable String Type

𝐷𝐴𝐵 DAB Real

𝑡𝑠 DURATION Real

𝑛 NP Integer

∆𝑡 DT Real

∆𝑙 DX Real

𝑛𝑠 NS Integer

𝛏 (components)

NUMBERSX,

NUMBERSY,

NUMBERSZ

Real, Rank=1,

Allocatable

𝚾(t) POSITIONOLD
Real, Rank=2,

Allocatable

𝚾(t + ∆t) POSITIONNEW
Real, Rank=2,

Allocatable

∆𝑋𝑖 DISPLACEMENT
Real, Rank=2,

Allocatable

𝐷𝐴𝐵 (re-calculated) DABVSTIME
Real, Rank=1,

Allocatable

All the strings in program appear in declarations and fixed parameters are calculated

by the following code. Note, decimal is lost during the calculation of 𝑛𝑠 due to type

conversion. Therefore duration of the simulation may effectively decrease if the result

is not an integer. Still the amount of decrement is very negligible since ∆𝑡 is typically

chosen as a very small fraction of a second and 𝑡𝑠 is very large compared to it. Duration

can be re-calculated to get rid of this negligible error.

DAB=𝐷𝐴𝐵

DURATION=𝑡𝑠

NP=𝑛

DT=∆𝑡
DX=SQRT(2*DAB*DT)

NS=DURATION/DT

DURATION= DT*NS

ALLOCATE(POSITIONNEW(NP,NS))

ALLOCATE(POSITIONOLD(NP,NS))

171

The vector 𝛏 in Equation (15) was declared as individual components as rank 1 arrays

with allocatable size. The reason behind it is the fact that amount of random numbers

required, which is equal to 𝑛𝑠, is variable depending on 𝑡𝑠 and ∆𝑡. Declaring a new

string, MAXRNG (Integer), which determines how many random numbers will be

generated and written in 𝛏 component arrays, as well as the size alllocated to them.

MAXRNG was set equal to 𝑛𝑠 in the simulations done in this work so that all random

numbers required for a single tracer is pre-generated. It can also be set to a lesser

number and new random numbers can be generated upon running out of random

numbers, if memory is limited.

MAXRNG=NS

ALLOCATE(NUMBERSX(MAXRNG))

ALLOCATE(NUMBERSY(MAXRNG))

ALLOCATE(NUMBERSZ(MAXRNG))

Random number generation (RNG) subroutines are available in GFortran compiler

libraries. RANDOM_NUMBER is one of them but it only generates pseudo-random numbers

in the interval 0 ≤ 𝑅𝑁𝐺 < 1. Therefore a subroutine which converts random numbers

into either +1 or -1 was written. This subroutine makes use of Fortran’s FLOOR function

and cosinus function to carry out the conversion. Declaring another parameter string

PI of type real, as in the number π, and the conversion subroutine is given as:

PI=ACOS(-1.0)

SUBROUTINE NUMBERS(NX,NY,NZ)

IMPLICIT NONE

REAL, INTENT(OUT):: NX(MAXRNG),NY(MAXRNG),NZ(MAXRNG)

INTEGER:: A

DO A=1,MAXRNG

 CALL RANDOM_NUMBER (NX(A))

 NX(A)=COS((FLOOR(2*NX(A)))*PI)

 CALL RANDOM_NUMBER (NY(A))

 NY(A)=COS((FLOOR(2*NY(A)))*PI)

 CALL RANDOM_NUMBER (NZ(A))

 NZ(A)=COS((FLOOR(2*NZ(A)))*PI)

ENDDO

END SUBROUTINE NUMBERS

172

To explain more clearly, subroutine first assigns a value in the interval 0 ≤ 𝑅𝑁𝐺 < 1

to a component array element, then uses 2 times the assigned value in FLOOR function

to convert the result into 0 or 1, then multiplies the converted value with π and gives

input to COS function. COS gets 0 or π as equally likely inputs to yield +1 or -1

respectively.

A useful subroutine was found available as open source code in several different online

Fortran resources as an example. GFortran compiler’s RANDOM_SEED routine, if not

given input, repeatedly selects the same initial seed every time the program is executed

hence causing RANDOM_NUMBER to generate same sequence of pseudo-random numbers.

The open source subroutine that uses system clock and modifies it through a function

to set a random initial seed was used in the code. As a result, program generates

different sequences of random numbers for every execution. The subroutine can be

seen below.

SUBROUTINE INIT_RANDOM_SEED()

INTEGER :: I, N, CLOCK

INTEGER, DIMENSION(:), ALLOCATABLE :: SEED

CALL RANDOM_SEED(SIZE = N)

ALLOCATE(SEED(N))

CALL SYSTEM_CLOCK(COUNT=CLOCK)

SEED = CLOCK + 37 * (/ (I - 1, I = 1, N) /)

CALL RANDOM_SEED(PUT = SEED)

DEALLOCATE(SEED)

END SUBROUTINE

Actual random-walk part of the code is based on Equation (15). Initial positions of all

tracers are set to origin, based on a point injection initial condition. Then tracers are

randomly moved one by one. Therefore calculations of next tracer waits until the

previous tracer finishes taking 𝑛𝑠 amount of random steps. RNG is done in bulk for

each tracer. Declaring a new real string FREQ (frequency of data collection in seconds,

i.e. once every FREQ seconds) two new integer strings AODP (for amount of data points)

and B (equivalent amount of random-steps required for FREQ seconds to pass) for the

allocation of DISPLACEMENT to collect data at equally distant time intervals during

random-walk. This study sets FREQ=DURATION/1000 unless stated otherwise.

173

FREQ=DURATION/1000

B=INT(FREQ/DT)

AODP=INT(NS/B)

ALLOCATE(DISPLACEMENT(NP,AODP))

!!SETTING INITIAL POSITIONS!!

DO I=1,NP

 POSITIONOLD(I,1)=0

 POSITIONOLD(I,2)=0

 POSITIONOLD(I,3)=0

ENDDO

!!RANDOM-WALK!!

CALL INIT_RANDOM_SEED()

DO I=1,NP

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 DO J=1,NS

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+(NUMBERSX(J)*DX)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+(NUMBERSY(J)*DX)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+(NUMBERSZ(J)*DX)

 POSITIONOLD (I,1)=POSITIONNEW (I,1)

 POSITIONOLD (I,2)=POSITIONNEW (I,2)

 POSITIONOLD (I,3)=POSITIONNEW (I,3)

 IF (MOD(J,B).EQ.0) THEN

 DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)&

 2+ POSITIONNEW(I,2)2+ POSITIONNEW(I,3)**2)

 ENDIF

 ENDDO

ENDDO

Displacement data collected during random-walk phase is compiled into D𝐴𝐵 data by

using Equation (17) (𝑡𝑠 swapped with elapsed time when the data was taken),

intrinsically creating a set of data that represents the time evolution of diffusion

coefficient. A new real string SUMM that can be used as a dummy to hold any

summation, was declared. Results are written in a file right after calculation.

Optionally, formatting and character string allocation to output file name to prevent

any over-writes after re-execution of the program, can be done. In the case of diffusion

in free environments, time dependent D𝐴𝐵 should not deviate from input value except

for random fluctuations that can occur due to probabilistic nature of random-walk

method.

ALLOCATE(DABVSTIME(AODB))

OPEN(#, FILE='DAB VS TIME DATA.TXT',STATUS='NEW',ACTION='WRITE')

174

DO I=1,AODP

 SUMM=0

 DO J=1,NP

 SUMM=SUMM+DISPLACEMENT(J,I)**2

 ENDDO

 DABVSTIME(I)=(SUMM/NP)/(6*I*B*DT)

 WRITE(#,*) DABVSTIME(I)

ENDDO

A list of Fortran strings that appear in the program, but not in the equations in section

3.1 is given in Table C.2.

Table C.2: Additional strings declared for the free diffusion code as necessary

parameters for calculations.

String Definition Type

MAXRNG

Size allocated to

NUMBERS arrays. Set

equal to NS for this study.

Integer

PI
Ratio of circumference to

diameter.
Real

FREQ

Size of the time interval

for data collection. Collect

data once every FREQ

seconds.

Real

AODP
Amount of data points

collected for the duration
Integer

B

Amount of random-steps

equivalent for FREQ

seconds to pass

Integer

DISPLACEMENT

Holds spatial

displacements of all

tracers at different times

Real, Rank=2,

Allocatable

175

C.2. Computation and Storage of Impermeable Boundaries

In the sections 3.2.2 and 3.2.3, it was explained how an ideal mathematical

representation of a multiple layer core-shell particle was created by using basic

principles of analytical geometry. Reconstructed core-shell geometry was entirely

made of spherical elements. Components of center point vectors for each element, total

amount of them present in the geometry, as well as information regarding the exact

locations of these elements in the core-shell particle such as the layer and auxiliary

circle number was shown to be calculated using Equations (26) to (36). Systematic

calculation and storage of the calculated parameters is very crucial for implementing

an efficient application of collision control, as will be explained in the next section.

Main objective is to store all parameters that define the geometry of every element in

the periodic random jammed packing of core-shell particles.

Variables and parameters declared in the Fortran code that calculates the geometry is

listed in Table C.3. There are other Fortran strings, which do not appear in the equation

given in section 3.2, that needed to be declared throughout the code as auxiliary

variables to carry out calculations and a list of them can be found at the end of this

section.

Calculation of the core-shell geometry follows the same steps in section 3.2.2

generalized for multiple layers. Core-Shell particle radius (𝑟𝑝), number of shell layers

(𝑛𝑙) and core-to-particle ratio (𝜑) is given as input to calculate core radius (𝑟𝑐) and

shell side spheres radii (𝑟𝑠). Arrays that hold the values for 𝑛𝑠𝑠𝑒,𝑘 and naux,k are

allocated to have a size equal to defined number of shell layers. Then spread angle and

𝑛𝑠𝑠𝑒,𝑘 is calculated. Finally a control structure determines the value of naux,k before

setting core radius equal to the radius of next sphere of influence. Do loop calculates

the vales for all shell layers. After the loop, core radius is set to original value. Note

that this code does not calculate anything other than amount of auxiliary circles that

can be placed in each individual layer. Reason is the fact that the values of naux,k for

each layer is needed to be known in order to allocate memory to arrays that hold the

other information.

176

Table C.3: Declared parameters and variables and corresponding strings and their

declaration types for the code fragment that calculates a core-shell particle geometry.

Parameter/Variable String Type

𝑟𝑝 PR Real

𝑛𝑙 NOL Integer

𝛹 CPRATIO Real

𝑟𝑐 RCORE Real

𝑟𝑠 RSHELL Real

𝑟𝑠𝑜𝑖,𝑘 RSOI
Real, Rank=1,

Allocatable

∝𝑘 ALPHA Real

𝑛𝑠𝑠𝑒,𝑘 NOSS
Real, Rank=1,

Allocatable

𝑛𝑠𝑠𝑎,𝑘
Uses the same string as

𝑛𝑠𝑠𝑒,𝑘
-

naux,k NOAC
Real, Rank=1,

Allocatable

∝𝑐,𝑘 Uses the same string as ∝𝑘 -

raux,i,k RAUX
Real, Rank=2,

Allocatable

zaux,i,k ZAUX
Real, Rank=2

Allocatable

βi,k Uses the same string as ∝𝑘 -

𝑛ssa,i,k NOSOAC, NOSOACINT
Real, Rank=2

Allocatable

β𝑐,𝑖,𝑘 Uses the same string as ∝𝑘 -

𝑥𝑗,𝑖,𝑘, 𝑦𝑗,𝑖,𝑘
Do not have dedicated

strings
-

𝐏𝑗,𝑖,𝑘 PGCC
Real, Rank=4

Allocatable

PR=𝑟𝑝

NOL=𝑛𝑙

CPRATIO= 𝛹

177

RCORE=PR*CPRATIO

ALLOCATE(NOSS(NOL))

ALLOCATE(NOAC(NOL))

DO I=1,NOL

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 IF (MOD(NOSS(I),2).EQ.0) THEN

 NOAC(I)=INT((NOSS(I)-2)/2)

 ELSE

 NOAC(I)=FLOOR(REAL(NOSS(I)/2))

 ENDIF

 RCORE=RCORE+RSHELL*2

ENDDO

RCORE=PR*CPRATIO

The amount of auxiliary circles in outer shell layers is different and greater than

previous shell layers. However the arrays ZAUX, RAUX, NOSOAC and NOSOACINT (defined

as integer counterpart of NOSOAC for convenience because direct usage of integer type

array in a calculation involving real types causes problems) must have enough size to

hold information regarding every shell layer. Therefore they were allocated the

maximum value of NOAC array to their second dimension and they will have non-

assigned array elements for inner shell layers. This does not cause any problem since

the empty array elements are not going to be accessed. Following code allocates

mentioned arrays and calculates the values for them. Inner loops are separately written

for easier reading of the code.

ALLOCATE(RSOI(NOL))

ALLOCATE(RAUX(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOAC(NOL,MAXVAL(NOAC)))

ALLOCATE(NOSOACINT(NOL,MAXVAL(NOAC)))

ALLOCATE(ZAUX(NOL,MAXVAL(NOAC)))

DO I=1,NOL

 RSOI(I)=RCORE+2*RSHELL

 ALPHA=ASIN(RSHELL/(RSHELL+RCORE))*2

 NOSS(I)=FLOOR(2*PI/ALPHA)

 ALPHA=2*PI/NOSS(I)

 DO J=1,NOAC(I)

 RAUX(I,J)=SIN(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

178

 DO J=1,NOAC(I)

 NOSOAC(I,J)=PI/ASIN(RSHELL/RAUX(I,J))

 NOSOACINT(I,J)=INT(NOSOAC(I,J))

 ENDDO

 DO J=1,NOAC(I)

 ZAUX(I,J)=COS(J*ALPHA)*(RCORE+RSHELL)

 ENDDO

 RCORE=RSOI(I)

ENDDO

RCORE=PR*CPRATIO

Now that the amounts of auxiliary circles in each layer and the amounts of shell side

spheres on these auxiliary circles are known, corrected spread angle can be calculated

for each and every auxiliary circle and the PGCC (initials: particle geometry center

coordinates) array that holds center point vector components of shell side spheres can

be allocated and assigned values for components 𝑥𝑗,𝑖,𝑘 and 𝑦𝑗,𝑖,𝑘 by using Equations

(35) and (36) respectively to its first two elements in dimension 4. as well as the z-

components and a radius to 3rd and 4th elements. For example, the elements (2,7,16,3)

and (2,7,16,4) of PGCC array hold the z-component of center point vector and the radius

for the 16th shell sphere centered on the 7th auxiliary circle in 2nd shell layer

respectively.

ALLOCATE(PGCC(NOL,MAXVAL(NOAC),MAXVAL(NOSOACINT),4))

DO I=1,NOL

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 ALPHA=2*PI/NOSOACINT(I,J)

 PGCC(I,J,K,1)=RAUX(I,J)*COS((K-1)*ALPHA)

 PGCC(I,J,K,2)=RAUX(I,J)*SIN((K-1)*ALPHA)

 PGCC(I,J,K,3)=ZAUX(I,J)

 PGCC(I,J,K,4)=RSHELL

 ENDDO

 ENDDO

ENDDO

179

 PGCC array at this point only holds information about shell side elements of the

geometry except two spheres that need to be placed tangent to the poles of the core

sphere or additional spheres of influence. The core sphere must be added into the array

and the amount of polar spheres that needs to be added may differ depending on input

parameters therefore a control structure is needed to determine the amount.

Additionally, 2nd and 3rd dimensions of PGCC array can be combined into a single one

that holds information about all elements located in a shell layer. In order to combine

these dimensions, number of shell side elements in each shell layer must be calculated

by the following code. An integer array NOSISL (initials: number of spheres in shell

layer) with rank 1 that holds the amount of spherical elements in each shell layer is

declared, allocated size equal to the number of shell layers and all array elements are

assigned the initial value 0. All contributions from all auxiliary spheres located in all

shell layers are calculated by the nested do loop and finally the amount of polar spheres

that needs to be added for each layer is determined by the control structure inside the

last do loop. For convenience, core sphere is adopted as a first shell layer element

contributes one more count to the amount of elements in the first shell layer.

ALLOCATE(NOSISL(NOL))

DO I=1,NOL

 NOSISL(I)=0

ENDDO

DO I=1,NOL

 DO J=1,NOAC(I)

 NOSISL(I)=NOSISL(I)+NOSOACINT(I,J)

 ENDDO

ENDDO

DO I=1,NOL

 IF (MOD(NOSS(I),4).EQ.0) THEN

 NOSISL(I)=NOSISL(I)+2

 ELSE

 NOSISL(I)=NOSISL(I)+1

 ENDIF

ENDDO

NOSISL(1)=NOSISL(1)+1

180

In order not to deallocate PGCC array, another rank 3 array CPGCC (initials: combined

PGCC) was declared and dimensions are allocated 𝑛𝑙, maximum value in NOSISL and 4

respectively, similar to PGCC. CPGCC array has the same size for each shell layer but it

has non-assigned array elements for any possible inner shell layer since inner layers

have less spherical elements than outer layers. Again, this does not give rise to any

problems since the non-assigned elements will not be accessed by the program because

another rank 1 array called SC (initials: sphere count) is declared and allocated size

equal to number of shell layers to hold exact amounts of assigned array elements for

each layer. First, the new arrays are allocated and the existing elements in PGCC is

transferred into CPGCC by the following code.

ALLOCATE(CPGCC(NOL,MAXVAL(NOSISL),4))

ALLOCATE(SC(NOL))

DO I=1,NOL

 SC(I)=0

 DO J=1,NOAC(I)

 DO K=1,NOSOACINT(I,J)

 SC(I)=SC(I)+1

 CPGCC(I,SC(I),1)=PGCC(I,J,K,1)

 CPGCC(I,SC(I),2)=PGCC(I,J,K,2)

 CPGCC(I,SC(I),3)=PGCC(I,J,K,3)

 CPGCC(I,SC(I),4)=PGCC(I,J,K,4)

 ENDDO

 ENDDO

ENDDO

181

Then polar elements are added to the CPGCC by the following code.

DO I=1,NOL

 IF (MOD(NOSS(I),4).EQ.0) THEN

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 CPGCC(I,SC(I)+2,1)=0

 CPGCC(I,SC(I)+2,2)=0

 CPGCC(I,SC(I)+2,3)=-(RSOI(I)-RSHELL)

 CPGCC(I,SC(I)+2,4)=RSHELL

 SC(I)=SC(I)+2

 ELSE

 CPGCC(I,SC(I)+1,1)=0

 CPGCC(I,SC(I)+1,2)=0

 CPGCC(I,SC(I)+1,3)=RSOI(I)-RSHELL

 CPGCC(I,SC(I)+1,4)=RSHELL

 SC(I)=SC(I)+1

 ENDIF

ENDDO

Finally the core sphere is added as the last array element of the 2nd dimension of CPGCC

by the following code.

 CPGCC(1,SC(1)+1,1)=0

 CPGCC(1,SC(1)+1,2)=0

 CPGCC(1,SC(1)+1,3)=0

 CPGCC(1,SC(1)+1,4)=RCORE

 SC(1)=SC(1)+1

After the calculations done until this point, CPGCC array holds very detailed

information about the core-shell particle geometry, including center coordinates and

radius of all elements creating the geometry itself, as well as at which shell layer the

element is located in. The geometry stored in CPGCC is ready to undergo a geometric

translation in order to create the packing geometry. As the first step, program reads a

file that includes the components of center point vectors that belong to 100 hardspheres

in the random jammed packing initially created as a packing of 50 spheres by the

program written by Skoge et al. (2006) and modified in this study by adding 50 more

invading spheres from neighboring periodic cells. However center point vectors of

182

hardspheres must be resized first, such that the radius of hardspheres would be equal

to the radius of the core-shell particle.

A new integer string NOSRJP (initials: number of spheres in random jammed packing)

is declared and set equal to 100, which is the amount of hardspheres that has their

partial or total volume lying inside the main periodic cell as it was found in section

3.3.2. Then a real string RRJP is declared to hold radius of hardspheres in random

jammed packing along with the real string RRATIO which is the ratio of core-shell

particle radius to hardsphere radius.

NOSRJP=100

RRJP=0.2841570815121517/2

RRATIO=PR/RRJP

Then another rank 2 array RJP (initials: random jammed packing) was declared and

allocated NOSRJP and 3 to dimensions 1 and 2 respectively, which holds the

components of center point vectors of 100 hardspheres read from the file made ready

previously. Then all the components in RJP was rescaled by a factor of RRATIO. Note

that this rescaling also effectively changes the dimensions of the original unit cube

whence the packing was generated by the program of Skoge et al. (2006) from unity

to RRATIO. Therefore the value of RRATIO must be used in the calculation of local

positions of tracers.

OPEN (#, FILE="RJP.DAT", STATUS="OLD", ACTION="READ")

ALLOCATE (RJP(NOSRJP,3))

DO I=1,NOSRJP

 READ(#,’format’)RJP(I,1),RJP(I,2),RJP(I,3)

ENDDO

DO I=1,NOSRJP

 DO J=1,3

 RJP(I,J)=(RJP(I,J))*RRATIO

 ENDDO

ENDDO

183

In the final step, a rank 4 array CSPRJP, which is to be hold center coordinates and

radius of all core-shell particle elements in the packing, was declared and allocated

sizes NOSRJP, 𝑛𝑙, maximum value of SC and 4 to its dimensions respectively. Then the

center point vectors held by CPGCC was translated by the following code.

ALLOCATE(CSPRJP(NOSRJP,NOL,MAXVAL(SC),4))

DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 DO L=1,3

 CSPRJP(I,J,K,L)=RJP(I,L)+CPGCC(J,K,L)

 ENDDO

 ENDDO

 ENDDO

ENDDO

Radius values of the elements had to be separately assigned by the following code due

to rank and size of RJP.

DO I=1,NOSRJP

 DO J=1,NOL

 DO K=1,SC(J)

 CSPRJP(I,J,K,4)=CPGCC(J,K,4)

 ENDDO

 ENDDO

ENDDO

Final product, CSPRJP holds every information related to any element of the

impermeable boundaries in the system of core-shell particles arranged in a random

jammed packing. In the following section, adaptation of free diffusion program to

include a collision control mechanism that uses this array is explained.

A list of Fortran strings that appear in the codes given in this section, but not in the

equations in section 3.2.3 is given in Table C.4.

184

Table C.4: Additional strings declared for the code taking care of calculating and

storing a random packing of core-shell particles as necessary parameters for

calculations.

String Definition Type

CPGCC

Another version of PGCC

where its 2nd and 3rd

dimensions are combined

into a single one

representing an entire shell

layer

Real, Rank=3,

Allocatable

SC
Holds amounts of spheres

in shell layers

Real, Rank=1,

Allocatable

NOSRJP
Amount of hardspheres in

modified random packing
Integer

RJP

Center points of

hardspheres in modified

random packing

Real, Rank=2,

Allocatable

RRATIO

Ratio of core-shell

diameter to hardsphere

diameter

Real

CSPRJP

Holds center points and

radii of every spherical

geometry element inside

the random packing of

core-shell particles

Real, Rank=4,

Allocatable

185

C.3. Adapting Free Molecular Diffusion Code to Simulate Impermeability

The collision control algorithm given in section 3.6.3 in Chapter 3 was implemented

to the Fortran code given in section 3.4.1 which governs the actual random-walking

part, by using additional individual nested do loops inside the master loop to carry out

necessary calculations required by the control structures in collision control algorithm

and adding a function that calculates local positions of tracers.

CALL INIT_RANDOM_SEED()

DO I=1,NP

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 DO J=1,NS

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+NUMBERSX(J)*DX

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+NUMBERSY(J)*DX

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+NUMBERSZ(J)*DX

 !CALCULATING LOCAL POSITION VECTOR COMPONENTS

 PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO)

 PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO)

 PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO)

 !COLLISION CONTROL ALGORITHM STEP 1

 DO K=1,NOSRJP

 IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2)&

 &+((PLOCAL(3)-RJP(K,3))**2)).LE.(PR**2)) THEN

 !COLLISION CONTROL ALGORITHM STEP 2

 DO L=1,NOL

 IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**&

 &2) +((PLOCAL(3)-RJP(K,3))**2)) .LE. (RSOI(L)**2)) THEN

 !COLLISION CONTROL ALGORITHM STEP 3

 DO M=1,SC(L)

 IF ((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+((PLOCAL(2)-CS&

 &PRJP(K,L,M,2))**2) +((PLOCAL(3)-CSPRJP(K,L,M,3))**2&

 &)).LE.(CSPRJP(K,L,M,4)**2)) THEN

 POSITIONNEW(I,1)=POSITIONOLD(I,1)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)

 GOTO 200

 ENDIF

186

 ENDDO

 ENDIF

 ENDDO

 ENDIF

200 IF (MOD(J,B).EQ.0) THEN

 DISPLACEMENT(I,J/B)=SQRT(POSITIONNEW(I,1)**2+ POSITIONNE&

 &W(I,2)**2+ POSITIONNEW(I,3)**2)

 ENDIF

 POSITIONOLD(I,1)=POSITIONNEW(I,1)

 POSITIONOLD(I,2)=POSITIONNEW(I,2)

 POSITIONOLD(I,3)=POSITIONNEW(I,3)

 ENDDO

ENDDO

If the condition in algorithm step 1.a is met, program by-passes any nested do loops

inside the 3rd loop. If step 1.b is satisfied, then step 2 is inevitably carried out, 4th do

loop is iterated and the shell layer that needs to be checked, which is represented by

do loop dummy index L, is detected by the control structure. Then step 3 is applied by

the inner-most nested do loop in the code. If the control structure fails to satisfy the

condition after checking all elements in the shell layer, condition in step 3.a is met,

program exits to 2nd do loop, data is collected and global position variable are

swapped for the next random step. If the the control structure satisfies the inequality

for any shell layer element, collision is detected, global position of tracer is set to

previous global position before the collision, program is forced to exit to 2nd do loop

by GOTO command to prevent any possible unnecessary iterations remaining for the

rest of shell layer elements. Then data is collected and global position variable are

swapped for the next random step. The algorithm in this state requires the least amount

of control structure executions, which are major contributors to wall-clock time of the

program, required for the simulation of impermeability.

187

C.4. Storage of Velocity Field

Fortran program created section 3.4 can simulate diffusion in a random packing of

core-shell particles by approximating the diffusion event as random motion of a large

amount of tracers. In the latter sections 3.5 and 3.6, flow of water through the periodic

random packing was simulated to obtain a velocity field in the system and it was

explained that random-walk models can be coupled with a velocity field to simulate

dispersion. The Fortran program for diffusion is modified and added new features to

convert it for dispersion. There are three main modification steps.

1. Reading and storing the velocity field obtained from a different platform.

2. An innate trilinear interpolation mechanism for the stored discrete velocity

field.

3. Changing the structure of random-walk loop in the program.

COMSOL Multiphysics creates data tables of selected dependent variables calculated

at the nodes of a user defined regular grid. Velocity field inside the exact packing used

in diffusion model was extracted from the results of fluid flow simulation done using

COMSOL, by defining a regular grid of 101 nodes in each axis, equally separated from

each other by a length equal to 1/100 of the cubic periodic cell length. The data table

contained velocity field components at an ordered sequence of nodes, output file was

re-organized into a certain format by using Octave so that the format can be used in

Fortran code to properly read the file.

These data can be written on a four dimensional array, first three dimensions of which

holds normalized node coordinates while velocity components are held by the 4th

dimension of the array. Following code opens the file containing data, allocates

memory to rank 4 VF array and assigns read data to array elements.

GRID=101

ALLOCATE(VF(GRID,GRID,GRID,3))

DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 READ(10,100) VF(I,J,K,1),VF(I,J,K,2),VF(I,J,K,3)

188

 ENDDO

 ENDDO

ENDDO

If the velocity field is obtained for a system in Stokes Flow limits (𝑅𝑒 ≤ 0.1), then the

velocity field is eligible for linear scaling. If the original velocity field read from data

file has an average Peclet Number 𝑃𝑒0, then another velocity profile corresponding to

and arbitrary 𝑃𝑒 can be calculated by the following code.

PE= 𝑃𝑒

PE0=𝑃𝑒0

DO I=1,101

 DO J=1,101

 DO K=1,101

 DO L=1,3

 VF(I,J,K,L)=VF(I,J,K,L)*(PE/PE0)

 ENDDO

 ENDDO

 ENDDO

ENDDO

Of course, the Reynold Number for the superficial velocity city value corresponding

to chosen 𝑃𝑒 must also not exceed Stokes Flow limits.

189

C.5. Tri-linear Interpolation of Velocity Vectors

Velocity vectors at the points other the the nodes are calculated by trilinear

interpolation. A dedicated subroutine was written for this purpose. A rank 1 array with

3 elements, VEL was declared for holding the interpolated vector components. The

subroutine takes 5 arguments which are local tracer position, velocity field, periodic

cell length, size of first three dimensions in velocity field array and VEL respectively

and returns interpolated velocity components to the array VEL.

For a given local position of a tracer in the main periodic cell, components of a scaled

position (𝚾𝑳
𝑆𝑐𝑎𝑙𝑒𝑑) with respect to regular grid spacing used in data extraction (𝐿𝑛𝑠 =

𝐿𝑝𝑐/100) can be calculated by the Equation 56.

𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 = Χ𝐿,𝑖/𝐿𝑛𝑠 (56)

Then, the cubic unit cell in which the interpolation must be carried out (interpolation

cell), is defined by the positions of the closest 8 velocity vectors to the scaled local

position. Position (𝐏𝑬) components of the interpolation cell edge with smallest position

components is then found by the Equation 57. Note, the components will be integers

in the interval 1 ≤ Χ𝐸,𝑖 ≤ 101

P𝐸,𝑖 = Φ(𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑) + 1 (57)

If the edges of interpolation cell is numbered as seen in Figure C.1, then position points

of all edges can be found by the Equations (58) to (65).

P𝐸
1 = (P𝐸,1, P𝐸,2, P𝐸,3) (58)

P𝐸
2 = (P𝐸,1 + 1, P𝐸,2, P𝐸,3) (59)

P𝐸
3 = (P𝐸,1, P𝐸,2, P𝐸,3 + 1) (60)

P𝐸
4 = (P𝐸,1 + 1, P𝐸,2, P𝐸,3 + 1) (61)

P𝐸
5 = (P𝐸1, P𝐸,2 + 1, P𝐸,3) (62)

190

P𝐸
6 = (P𝐸,1 + 1, P𝐸,2 + 1, P𝐸,3) (63)

P𝐸
7 = (P𝐸,1, P𝐸,2 + 1, P𝐸,3 + 1) (64)

P𝐸
8 = (P𝐸,1 + 1, P𝐸,2 + 1, P𝐸,3 + 1) (65)

After the edges of interpolation cell is calculated, velocity components at the

corresponding edge points are called from VF array and assigned to each edge.

Since the interpolation cell is a unit cube, a normalized tracer position inside the

interpolation cell (𝚾𝑳𝒏) can be defined as having the components:

Χ𝐿𝑛,𝑖 =
Χ𝐿,𝑖 − Φ(𝑋𝐿,𝑖

𝑠𝑐𝑎𝑙𝑒𝑑). 𝐿𝑛𝑠

𝐿𝑛𝑠
= 𝑋𝐿,𝑖

𝑠𝑐𝑎𝑙𝑒𝑑 − Φ(𝑋𝐿,𝑖
𝑠𝑐𝑎𝑙𝑒𝑑) (66)

Normalized tracer position can be used as the interpolation point in a unit interpolation

cell cornered at the origin and occupying the edge of first octant. It is equivalent to

interpolating velocity components in the cell defined by points calculated in Equations

(67) to (68) but these points are just used for locating velocity components in VF array.

Additionally, using normalized tracer position simplifies interpolation equations by

getting rid of intersection terms in the line equations.

191

Figure C.1: A basic visual representation of VF array (large blue cube on left) and an

interpolation cell (small unit cube high-lighted with red) for a tracer (black dot) with

indicated local position. Edge of the interpolation cell is at (n, n+1, 1), where P𝐸
1 is

placed at. Magnified view of the interpolation cell on the right shows the arangement

of numbered velocity vectors. Normalized position of the tracer inside the interpolation

is illustrated by black dotted lines.

An algorithm that uses the equations given in this section is presented below.

1. Read local tracer position, velocity field, periodic cell length and amount of

nodes in one dimension of the cubic velocity field array.

2. Determine the position of reference edge of interpolation cell by Equations (69)

and (70).

3. Determine normalized tracer position in the interpolation cell by using

Equation (71).

4. Locate velocity vectors in VF using the location of interpolation cell calculated

by Equations (72) to (73) and assign the first velocity component to

corresponding edges.

5. Interpolate.

1 n-1 n n+1 n+2 n+3 101

1
 .
..

..
..

..
..
.

n
-1

 n

 n

+
1

n

+
2

 n

+
3

 .
..

..
..

 1
0

1

P𝐸
8 P𝐸

7

P𝐸
5 P𝐸

6

P𝐸
1 P𝐸

2

P𝐸
3 P𝐸

4

Χ𝐿𝑛,1 Χ𝐿𝑛,2

Χ𝐿𝑛,3

192

6. Repeat steps 4 and 5 for remaining two velocity components.

Following Fortran subroutine is an implementation of the interpolation algorithm.

Actual interpolation is carried out inside the do loop individually for each velocity

vector component. Neighboring points along lines parallel to x-axis is interpolated

first, reducing the system to bilinear. Then second interpolation is done along z-axis.

Finally, remaining two points are interpolated along y-axis to obtain velocity

components at the local position 𝚾𝑳 of tracer.

SUBROUTINE GIMME_VELOCITY(LOCALP,FIELD,LENGTH,GRID,VEL)

IMPLICIT NONE

!INTERPOLATION ALGORITHM STEP 1

INTEGER, INTENT(IN) :: GRID

DOUBLE PRECISION, INTENT(IN) :: FIELD(GRID,GRID,GRID,3)

DOUBLE PRECISION, INTENT(IN) :: LOCALP(3),LENGTH

DOUBLE PRECISION, INTENT(OUT) :: VEL(3)

DOUBLE PRECISION :: XUNIT,YUNIT,ZUNIT,MAIN(8),FIRST(4),SECOND(2)

INTEGER :: EDGE(3),DUMMY

!INTERPOLATION ALGORITHM STEP 2

EDGE(1)=INT(LOCALP(1)/(LENGTH/100))+1

EDGE(2)=INT(LOCALP(2)/(LENGTH/100))+1

EDGE(3)=INT(LOCALP(3)/(LENGTH/100))+1

!INTERPOLATION ALGORITHM STEP 3

XUNIT=MOD(LOCALP(1),(LENGTH/100))/(LENGTH/100)

YUNIT=MOD(LOCALP(2),(LENGTH/100))/(LENGTH/100)

ZUNIT=MOD(LOCALP(3),(LENGTH/100))/(LENGTH/100)

DO DUMMY=1,3

 !INTERPOLATION ALGORITHM STEP 4

 MAIN(1)=FIELD(EDGE(1),EDGE(2),EDGE(3),DUMMY)

 MAIN(2)=FIELD(EDGE(1)+1,EDGE(2),EDGE(3),DUMMY)

 MAIN(3)=FIELD(EDGE(1),EDGE(2),EDGE(3)+1,DUMMY)

 MAIN(4)=FIELD(EDGE(1)+1,EDGE(2),EDGE(3)+1,DUMMY)

 MAIN(5)=FIELD(EDGE(1),EDGE(2)+1,EDGE(3),DUMMY)

 MAIN(6)=FIELD(EDGE(1)+1,EDGE(2)+1,EDGE(3),DUMMY)

 MAIN(7)=FIELD(EDGE(1),EDGE(2)+1,EDGE(3)+1,DUMMY)

 MAIN(8)=FIELD(EDGE(1)+1,EDGE(2)+1,EDGE(3)+1,DUMMY)

 !INTERPOLATION ALGORITHM STEP 5 (REDUCES TO BILINEAR)

 FIRST(1)=MAIN(1)+((MAIN(2)-MAIN(1))*XUNIT)

 FIRST(2)=MAIN(3)+((MAIN(4)-MAIN(3))*XUNIT)

 FIRST(3)=MAIN(5)+((MAIN(6)-MAIN(5))*XUNIT)

 FIRST(4)=MAIN(7)+((MAIN(8)-MAIN(7))*XUNIT)

 !INTERPOLATION ALGORITHM STEP 5 (REDUCES TO LINEAR)

 SECOND(1)=FIRST(1)+((FIRST(2)-FIRST(1))*ZUNIT)

 SECOND(2)=FIRST(3)+((FIRST(4)-FIRST(3))*ZUNIT)

 !INTERPOLATION ALGORITHM STEP 5

193

 VEL(DUMMY)=SECOND(1)+((SECOND(2)-SECOND(1))*YUNIT)

ENDDO

END SUBROUTINE GIMME_VELOCITY

C.6. Adaptation of Diffusion Program to Simulate Dispersion

Equation (15) given in the section 3.1.1 was modified into the Equation (74) to include

a convective displacement term alongside the random displacement. Convective

displacement by definition is the distance a tracer travels in a time interval ∆t

according to the velocity (𝝑) of the fluid at the current position of the tracer.

𝚾(t + ∆t) = 𝚾(t) + 𝛏∆𝑙 + ∆t𝝑(Χ1(t), Χ2(t), Χ3(t)) (75)

Velocity field obtained from the fluid flow simulation done in COMSOL was

transferred to VF array. The array contains velocity components in SI units. This array

is converted to contain components of net displacement vectors to be used in Equation

(75) by multiplying all of its elements by ∆t. This modification does not affect trilinear

interpolation subroutine since VF still contains vector components.

 DO I=1,GRID

 DO J=1,GRID

 DO K=1,GRID

 DO L=1,3

 VF(I,J,K,L)=VF(I,J,K,L)*DT

 ENDDO

 ENDDO

 ENDDO

 ENDDO

With the changes made to Equation (15) and addition of interpolation subroutine, the

last code fragment given in section 3.4.3, which calculates random-walk of tracers in

a random jammed packing of core-shell particles, needs 3 main alterations.

1. Equation (15) must be changed to Equation (75).

194

2. Apart from the local positions 𝚾𝐋(t + ∆t) needed for collision control, local

positions of tracers before displacement, 𝚾𝐋(t), must also be calculated

prior to the execution of interpolation subroutine since Equation (75)

depends on it.

3. Extracted data changes to cover only longitudinal displacement, since it is

the only point of interest.

A rank 1 array VELOCITY with size 3 is declared, given to interpolation subroutine as

argument, and is holding interpolated net displacement vectors due to fluid flow. After

the modifications on diffusion code, dispersion code is completed and given below.

CALL INIT_RANDOM_SEED()

DO I=1,NP

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 DO J=1,NS

 !ADDITIONAL CALCULATION OF LOCAL POSITION

 PLOCAL(1)=MODULO(POSITIONOLD(I,1),RRATIO)

 PLOCAL(2)=MODULO(POSITIONOLD(I,2),RRATIO)

 PLOCAL(3)=MODULO(POSITIONOLD(I,3),RRATIO)

 CALL GIMME_VELOCITY(PLOCAL,VF,RRATIO,GRID,VELOCITY)

 !ALTERATION OF EQUATION (15) INTO EQUATION (76)

 POSITIONNEW(I,1)=POSITIONOLD(I,1)+NUMBERSX(J)*DX+VELOCITY(1)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)+NUMBERSY(J)*DX+VELOCITY(2)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)+NUMBERSZ(J)*DX+VELOCITY(3)

 PLOCAL(1)=MODULO(POSITIONNEW(I,1),RRATIO)

 PLOCAL(2)=MODULO(POSITIONNEW(I,2),RRATIO)

 PLOCAL(3)=MODULO(POSITIONNEW(I,3),RRATIO)

 DO K=1,NOSRJP

 IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**2)&

 &+((PLOCAL(3)-RJP(K,3))**2)).LE.(PR**2)) THEN

 DO L=1,NOL

 IF ((((PLOCAL(1)-RJP(K,1))**2)+((PLOCAL(2)-RJP(K,2))**&

 &2) +((PLOCAL(3)-RJP(K,3))**2)) .LE. (RSOI(L)**2)) THEN

 DO M=1,SC(L)

 IF ((((PLOCAL(1)-CSPRJP(K,L,M,1))**2)+((PLOCAL(2)-CS&

 &PRJP(K,L,M,2))**2) +((PLOCAL(3)-CSPRJP(K,L,M,3))**2&

 &)).LE.(CSPRJP(K,L,M,4)**2)) THEN

195

 POSITIONNEW(I,1)=POSITIONOLD(I,1)

 POSITIONNEW(I,2)=POSITIONOLD(I,2)

 POSITIONNEW(I,3)=POSITIONOLD(I,3)

 GOTO 200

 ENDIF

 ENDDO

 ENDIF

 ENDDO

 ENDIF

200 IF (MOD(J,B).EQ.0) THEN

 !ALTERATION TO DATA EXTRACTION

 DISPLACEMENT(I,J/B)=ABS(POSITIONNEW(I,3)-POSITIONI(I,3))

 ENDIF

 POSITIONOLD(I,1)=POSITIONNEW(I,1)

 POSITIONOLD(I,2)=POSITIONNEW(I,2)

 POSITIONOLD(I,3)=POSITIONNEW(I,3)

 ENDDO

ENDDO

Collected longitudinal displacement data taken at equally distant times, is treated to

calculate variance of longitudinal displacements of all tracers in the tracer ensemble.

Two new real strings VARIANCE and MEANDISP are declared to hold intermediate values

during the calculations, where the first also holds the final variance value. Following

code fragment carries out data treatment and writes time dependent variance data to a

file.

OPEN (#, FILE="LDISP VAR.TXT", STATUS="UNKNOWN", ACTION="WRITE")

DO I=1,AODP

 SUMDISP=0.0

 DO J=1,NP

 SUMDISP=SUMDISP+ DISPLACEMENT (J,I)

 ENDDO

 MEANDISP=SUMDISP/NP

 VARIANCE=0.0

 DO J=1,NP

 VARIANCE=VARIANCE+(((DISPLACEMENT(J,I)-MEANDISP)&

 &**2)/NP)

 ENDDO

 WRITE(#,’format’) VARIANCE

196

ENDDO

C.7. Parallelization of Diffusion and Dispersion Programs

Parallelization of Fortran programs was done by using OpenMP. It is an open source

extension for open source GFortran compiler. Making use of pragmas otherwise

invisible to the compiler, OpenMP forces other available processor threads to execute

the program in parallel with each other. Depending on the fraction of the code that is

parallelizable, wall-clock time of the program is significantly improved.

OpenMP pragmas are in comment form and only recognized by the compiler if the

directive “-fopenmp” is added to compilation directives. At the start of parallel region,

“!$omp parallel” pragma is used. Parallel region is terminated at the line “!$omp end

parallel” appears. Do loop iterations in the program can be shared between available

threads by “!omp do” and “!omp end do” placed at the start and end of the loop

respectively. If not specified, load is distributed to each available thread equally. In the

diffusion and dispersion programs, only the loops taking care of random-walk

iterations were placed inside a parallel region by using combined directives “!$omp

parallel do” and “!omp end parallel do” since the other sections of the program does

not have a significant contribution to wall-clock times. If required, certain sections of

the parallel region can be marked with “!$omp critical” and “!omp end critical”

pragmas. In the critical region, procedures are executed in series.

One thing that is really problematic in parallel computing is pseudo-random number

generation. RNG subroutines readily available in the compilers use a seed to generate

a pseudo-random number, then previous pseudo-random number is used as seed to

generate the next random number in the sequence. Entire sequence of these random

numbers are actually generated based on a function and predictable for a given initial

seed, but since they are uniformly distributed they can be treated as random numbers,

hence they are pseudo-random numbers.

197

During parallel execution of the program, an individual thread gets a subset of the

entire sequence of pseudo-numbers that are collectively generated by all processor

threads. However these subsets of numbers might not be uniformly distributed. If each

individual thread is wanted to use a uniformly distributed sequence of pseudo random

numbers, there is only two solutions to the problem.

1. Use a dedicated pseudo-random number generator for each thread

2. Do not allow parallel execution during pseudo-random number generation.

First option might be a subject to mathematics or computer engineering research but it

is beyond the interests of even this study, considering heavy usage of Fortran.

However, the second option required much less knowledge in mathematics and

computer engineering and a feasible option for proper parallelization of the model.

Fortran programs written for Diffusion and Dispersion models already pre-generates

and stores all required random numbers required for a tracer to complete its random

motion. Recall, the arrays NUMBERSX, NUMBERSY and NUMBERSZ are of size total amount

of number steps ,NS, and they are assigned values +1 or -1 at random in a single line

of code by the subroutine NUMBERS.

!$omp critical

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

!$omp end critical

If the RNG line is protected by a critical region, very simply defined by the code given

above, any thread that tries to execute the NUMBERS subroutine must wait until the other

thread finishes generating random numbers for the tracer it is occupied with.

Effectively, this is no different than the entire non-parallellized programs since every

tracer uses a complete sequence of random numbers to take random steps.

Another important factor that needs to be considered for parallelization procedure is

the variables that is re-assigned throughout the parallel region in the program.

Boundary dummies for do loops as well as read-only variables previously defined and

used in the parallel region are safe. However any other user-defined variable may cause

problems in the parallel region. Common variables in both programs that may cause

198

problems are PLOCAL, NUMBERSX, NUMBERSY and NUMBERSZ while VELOCITY was

introduced only for dispersion program. These strings must be marked as ‘private’ at

the beginning of the parallel region so that each thread independently calculate new

values for these variables throughout the execution. Marking is done by simply

attaching “private([string1, string2, ..])” directive at the end of the starting

pragma. After the parallelization, main iteration loop looks like the following.

!$omp parallel do private(plocal, numbersx, numbersy, numbersz,

velocity)

DO I=1,NP

 !$omp critical

 CALL NUMBERS(NUMBERSX,NUMBERSY,NUMBERSZ)

 !$omp end critical

 .

 .!SECOND DO BLOCK HERE

 .

ENDDO

!$omp end parallel do

Note that, POSITIONOLD and POSITIONNEW arrays as well as DISPLACEMENT, also

assigned new values in the parallel region. However the new values are not assigned

more than once to a single element in these arrays. Therefore they do not cause any

inconveniency and not included in the private list.

199

APPENDIX D

FLOWCHARTS

D.1. Diffusion/Dispersion Algorithm

Set DAB, N, ts, Δl and calculate Δt, ns

Read random jammed packing of

monodisperse hardspheres from file

Calculate core-shell particle

geometry using input parameters

Scale the packing of hardspheres and

translate the calculated core-shell

geometry into the packing

Set initial positions of tracers throughout the inter-particle

void space inside the main periodic cell using a bulk

injection type initial condition

Read velocity field from file, set

Peclet number and linearly scale the

velocity field

200

Select the next tracer. Generate

all random displacements for the

tracer at once.

Displace the tracer one step using equation:

𝚾(t + ∆t) = 𝚾(t) + 𝛝(𝚾(t))∆t + 𝛏∆𝑙

Did collision

occur?

Reflect the tracer using

bounce-back method

𝜲(t + ∆t) = 𝜲(t)

Is duration

over?

Set the new position as the

old position for next step

𝜲(t) = 𝜲(t + ∆t)

Yes

No

Yes

No

Appendix D.2

Are all tracers

completed?

Yes

No

End

201

D.2. Collision Control Algorithm

Check the following inequality for all core-shell particles

centered at points (𝑥0, 𝑦0, 𝑧0) in the packing using the

local coordinates of the tracer at location 𝚾(t + ∆t) and

radius of core-shell particles

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2

Does the inequality

hold for any core-

shell particle?

No

The tracer is in inter-

particle space. Collision

did not occur.

The tracer is inside the core-shell particle the inequality holds

for. Check the following inequality one by one for all spheres

of influence sharing the center point (𝑥0, 𝑦0, 𝑧0) with the core-

shell particle using the local coordinates of the tracer at

location 𝜲(t + ∆t) and radius of spheres of influence.

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦
0

)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2

Does the inequality

hold for the sphere

of influence?

Check the next

sphere of

influence

Yes

Yes No

202

The tracer is inside the shell layer right beneath the sphere of

influence the inequality holds for. Check the following inequality

one by one for all shell-side spheres with the center points

(𝑥0, 𝑦0, 𝑧0) in that shell layer using the local coordinates of the

tracer at location 𝜲(t + ∆t) and radius of shell side spheres.

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦
0
)2 + (𝑧 − 𝑧0)2 ≤ 𝑟2

Does the inequality

hold for the first

sphere of influence?

Yes

No

Tracer

collided

with the

core sphere

Does the inequality

hold for the shell-

side sphere?

Check the

next shell-

side sphere

No

Are all shell-side

spheres checked?

Tracer

collided with

the shell-side

sphere

Yes

No

Yes

The tracer is in

intraparticle pore space.

Collision did not occur.

203

D.3. Overall Work Flowchart

Generate random

jammed packing

of hardspheres

Generate

OpenSCAD Script

using Fortran

Detect ‘invading’ or

overhanging spheres

in the packing using

Excel

Add required copies

of detected spheres

based on visuals in

OpenSCAD

Periodic-ready random

jammed packing of

hardspheres

Fortran reads periodic-

ready random jammed

packing of hardspheres.

Fortran calculates a core-

shell particle geometry

Core-shell geometry and packing

geometry is integrated in Fortran to

create a packing of core-shell particles

A script is generated using

Fortran and these calculated

geometries are visually

inspected in OpenSCAD.

Simulation of diffusion

in random packing of

core-shell particles

using Fortran

Fluid flow velocity

field from COMSOL
Format change using Octave

Simulation of dispersion

in random packing of

core-shell particles

using Fortran

Results:

DAB vs. time

σL
2 vs. time

Curve fitting in Excel. Results:

Longitudinal dispersion coefficients

Plate heights and reduced plate heights

