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ABSTRACT 

 

PREDICTABILITY OF MONTHLY STREAMFLOW DISCHARGE 

USING REMOTE SENSING PRECIPITATION DATA BY DATA DRIVEN 

MODELS  

 

 

ÇOLAK, Mehmet Ali 

M.Sc., Department of Civil Engineering 

Supervisor: Assist. Prof. Dr. Mustafa Tuğrul YILMAZ 

August 2017, 131 pages 

 

 Predictability of stream flow has been the focus of many studies involving 

water resources management and hydroelectric energy production. Many hydrologic 

models have been developed to predict future and current streamflow at various time 

lags and locations. However, these physically-based models require reanalyzed future 

data sets (particularly precipitation forcing data) to predict future streamflow. 

Alternatively, data driven models can also provide predictions without the need of 

future projections by relying on the strong seasonality and autocorrelation that exist in 

the streamflow data. In this study, a data driven approach has been taken to predict 

monthly streamflow data sets utilizing precipitation data sets and using various linear 

and non-linear methods. Streamflow predictions of Coruh Basin have been performed 

using both the Tropical Rainfall Measurement Mission (TRMM) and the ground-based 

station precipitation (MGM) data sets between years 2000 – 2011. Predictions are 

validated using independent streamflow measurements acquired from General 

Directorate of State Hydraulic Works (DSI). A Simple Linear Regression Model 

(SLR), a Multiple Linear Regression Model (MLR), an Artificial Neural Network 

Model (MLP), and two Copula Models (Normal Copula and Frank Copula) are 

constructed and their predictions are cross-compared with the climatology- and 

persistence-based predictions. To further investigate the source of the predictive skills 

of these methods, separate predictions are made using the standardized anomaly 
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components of data sets [after climatology (long year monthly mean) components are 

removed and standardized by dividing by the standard deviation of the data] and 

complete data sets (normal/non-standardized data sets retaining both anomaly and 

climatology components). Results show the best predictions are obtained from the 

climatology-based predictions of the stations for the complete data sets while 

persistence-based predictions are also strong. Predictions using standardized anomaly 

data sets are improved when long-term climatology values added. These climatology 

added predictions show above 0.90 correlations, showing heavy majority of the 

predictive skill and the relation between the precipitation and the streamflow data sets 

are due to the strong seasonality impacting both variables.  

 

Key Words: Monthly Streamflow Prediction, Rainfall-Runoff Modeling, Copulas, 

TRMM Data, Artificial Neural Networks (ANN), Climatology, Persistence 
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ÖZ 

 

VERİ GÜDÜMLÜ YÖNTEMLER İLE UYDU YAĞIŞ VERİLERİ 

KULLANILARAK AYLIK AKARSU DEBİSİ TAHMİNİ 

 

ÇOLAK, Mehmet Ali 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Danışman:Yard. Doç. Dr. Mustafa Tuğrul YILMAZ 

Ağustos 2017, 131 Sayfa 

 

 Akarsularda akım tahmini birçok bilimsel ve endüstriyel çalışmanın konusu 

olagelmiştir. Bu amaçla, farklı zaman ölçeklerini kullanan birçok hidrolojik model 

geliştirilmiştir. Ancak bu fiziksel modeller, özellikle yağış verilerini kullanan 

modeller, akarsu debisi tahmininde gelecekte olması düşünülen verilere ihtiyaç 

duyarlar. Bu modellere alternatif olarak, veri güdümlü modellerle de gelecek verilerine 

ihtiyaç duymadan tahminler yapılabilmektedir. Bu çalışmada, yağış verilerinden 

yararlanılarak, lineer ve lineer olmayan modeller kullanılarak, veri güdümlü yaklaşım 

ile aylık akarsu debisi tahmin edilmiştir. Debi tahminleri Çoruh Havzası için yapılmış, 

Tropik Yağış Ölçüm Misyonu (TRMM) ve Meteoroloji Genel Müdürülüğü (MGM) 

yer ölçüm istasyonlarının 2000-2011 yılları arası  yağış ölçümlerinden 

faydalanılmıştır. Akarsu debisi tahminlerinin geçerliliği; Devlet Su İşleri (DSİ) 

tarafından sağlanan, yağış ölçümlerinden bağımsız olarak gerçekleştirilen akarsu debi 

ölçümlerinden yararlanılarak test edilmiştir. Bu çalışmada bir Basit Lineer Regresyon 

Modeli (SLR), bir Çoklu Lineer Regresyon (MLR) Modeli, bir Yapay Sinir Ağları 

Modeli (MLP) ile iki Kopula (NC ve FC) modeli oluşturulmuş ve debi tahminleri 

akarsu akımının klimatolojisi ve tutarlılığı ile karşılaştırılmıştır. Metodların akarsu 

debisi tahmin edebilirlik özelliklerini araştırmak için veri setlerinin standartlaştırılmış 

anomali bileşenleri [klimatoloji (uzun yıllar ortalaması) bileşenleri çıkarılıp ve 

standart sapmalarına bölünerek elde edilen veri setleri] ve bütün data setleri 

(klimatoloji ve anomali bileşenlerini içerisinde barındıran) ile birbirinden bağımsız 

tahminler yapılmıştır. Hesaplamalar sonucunda standartlaştırılmamış veri setleriyle en 
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iyi sonuçlar akarsu akımının klimatoloji tabanlı tahminlerinden elde edilmiş ve 

tutarlılık tabanlı akarsu akım tahminlerinin yaklaşık olarak aynı korelasyon 

değerlerine sahip olduğu gözlemlenmiştir. Uzun yıllar klimatoloji bileşenleri 

standartlaştırılmış veri setleriyle yapılan tahminlere eklendiğinde, tahminlerde ileri 

derecede gelişmeler olduğu gözlemlenmiştir. Klimatoloji bileşenlerinin eklenmiş 

olduğu tahminler, gerçek zamanlı gözlemlerle 0.90 değerinin üzerinde korelasyonlar 

göstermiştir. Bu durum yağış-akış ilişkisi ve debi tahminlerindeki birincil bileşenin 

güçlü mevsimsellik etkisi olduğunu göstermiş ve her iki tip veri seti (yağış ve akarsu 

debisi) içinde bu bileşenin ne kadar etkili olduğunu vurgulamıştır.  

Anahtar Kelimeler: Aylık Akarsu Akım Tahmini, Yağış-Akım İlişkisi Modeli, 

Kopula, TRMM Verileri, Yapay Sinir Ağları Modeli (YSA), Klimatoloji, Tutarlılık 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Problem Definition and Motivation of the Study  

Streamflow predictions in a specific catchment are desirable and have a major role in 

many industrial and scientific fields such as flood risk management for flood-sensitive 

areas, energy optimization and planning purposes for hydroelectric energy production, 

irrigation water management for agricultural fields, droughts, culture fishing, etc. 

Therefore, acquisition of reliable predictions of streamflow has a crucial importance, 

especially for human life and economy. Improved hydrological predictions are useful 

tools for management of water resources, disaster planning, and agriculture.  

Hydropower is the most important renewable energy source in the world. 

Approximately 17% of world’s electricity demand is supplied by the hydropower IEA, 

2006). In Turkey, 32% of the electricity demand is supplied from the hydropower 

(EPDK, 2012). In this aspect efficient use of water resources is critical for the 

economy. Under many uncertain hydrologic and climatologic conditions, hydropower 

energy optimization and reservoir operation become very challenging. Having 

knowledge about the discharge of the river provides a vision for planning and 

maximization of the energy generation. Optimal hydropower energy generation in 

dams can be achieved with different approaches. Constructing a rule curve for optimal 

reservoir operation is one of them where rule curves describe how much storage must 

be maintained in a reservoir at different times in a year to ensure that discharge 

requirements can always be met (U.S. Army Corps of Engineers, 1985). Therefore, 
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having skillful streamflow data predictions are very important in long-term reservoir 

operations and management in the context of hydropower generation.   

Floods are one of the most threatening disasters of all as it may cause loss of lives and 

property very quickly. Misuse of the land, destruction of the forest for a variety of 

reasons, wrong selection of the settlement and industrial area, infrastructure failure, 

rapid population growth, the corrupted balance between soil, water and plants are 

contributing factors to the damage of the floods, particularly in developing countries. 

Every year, over one million people are affected by floods and 40% of the damage of 

goods in the world is caused by the floods (World Disaster Report (2012), The 

International Federation of Red Cross and Red Crescent Societies). Therefore, skillful 

streamflow data predictions are very critical for accurate flood predictions and early 

warning systems.  

However, the hydrological cycle is one of the most complex processes to understand. 

The composition of streamflow contains many different variables within itself e.g., 

precipitation, groundwater, soil moisture which may have to be estimated accurately 

over large regions. Most particularly precipitation rate is strongly non-Gaussian, 

discontinuous and at most weakly predictable at larger time scales (Yılmaz 2010) and 

runoff predictions are very difficult due to the existence of many uncertainties.  

It has been around 40 years since remote sensing-based data sets have been used in 

hydrological data analysis studies. Today, many of the satellites can observe the earth 

surface for the purpose of retrieving information about rainfall, runoff, soil moisture 

content etc., while observation of the same variables using ground stations could be 

impractical. On the other hand, the added utility of remote sensing data in hydrological 

applications should be explicitly tested. 

Stations are seemed to be the most accurate way of obtaining ground through data. 

However, it may not always be feasible to obtain good quality station-based data sets 

that represent large regions. On the other hand, remote sensing-based data sets are in 

many aspects very useful in estimation of ground conditions. It is known that predicted 

streamflow values obtained only rainfall data may not yield accurate predictions 

because streamflow composition has many other components like groundwater, soil 
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moisture, evaporation rate, snow melting etc. Models that are using only one 

component as an input cannot explain the complete variability. Despite, no 

precipitation falls during dry periods of the year, streamflow can be still observed, 

while the variability in streamflow may not be explained with only rainfall component. 

Potentially snow melting or groundwater feeds the streamflow on these periods. 

Addition of other data sets into the data driven approach may increase the model 

accuracy but the availability of additional data sets might be problematic to acquire 

over certain regions.  

Actually, streamflow data itself in long-term comprises that unexplainable 

phenomenon in itself due to the strong seasonality. Climatology (long-term mean) 

component for a certain month or a season of streamflow can explain the phenomena 

because streamflow value in dry periods comprises snow melting or groundwater data. 

It is thought that, in a sort of way, the addition of climatology component of 

streamflow as an input to a rainfall-runoff prediction model will significantly increase 

the model accuracy. 

 

1.2 Literature Review 

 

1.2.1 Review on Earlier Studies on Runoff Prediction Methods 

Streamflow prediction models based on precipitation data can be classified according 

to randomness, spatial variation, and time variability. These models can be grouped as 

deterministic, stochastic or statistic, neural network, conceptual or simplified physical 

models, and distributed physical models. Because the data sets might be problematic 

to acquire for constructing and calibrating conceptual and physical models (Kokkonen 

and Jakeman, 2001), data-driven hydrological methods have been begun to use in the 

field of hydrology (Besaw et al. 2009). 

Conceptual models are simplified versions of hydrological processes (Chiew and 

McMahon, 1994). Physics-based rainfall-runoff models need huge amounts of data to 

train, validate and (VanderKwaak and Loague, 2001). Multiple linear regression 
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(MLR) and artificial neural networks (ANNs) are commonly used conceptual methods 

(Wang et al., 2008).  

Various methods were developed in the past to simulate and predict the streamflow as 

the composition of historical rainfall and runoff recordings. Method accuracy is 

gaining importance, the core of method selection depends on the availability and 

quality of the historical data. In the following section, a literature review on the 

application of various regression analysis, copula methods, and ANN modeling for 

some hydrological researches are summarized. 

Regression-based rainfall-runoff models (SLR, MLR) are simple data driven models 

which make a prediction from the historical data. Regression techniques provide a fast 

way of calculating the precipitation-based streamflow predictions.  

Garen (1992) proposed several techniques to obtain accurate results from regression 

models which are using only known at forecast time, cross validation, principal 

components regression and systematic searching for optimal or near-optimal 

combinations of variables.  

Post et al. (1999) constructed a daily lumped conceptual rainfall-runoff model which 

consisted of 16 small catchments. For many reasons like the variability of catchment 

topology, temperature etc., results were varying from catchment to catchment.  

Rasouli et al. (2011) used a Global Circulation Forecasting model (NOAA), climate 

indices with local meteorologic - hydrologic observations to make a comparison study 

on streamflow prediction with three models; a neural network model (Bayesian NN), 

a support vector model, and a Gaussian model. They compared the performance of 

these models with a multiple linear regression model. As a result, they showed that 

non-linear models generally outperformed. On the other hand, they showed that the 

best streamflow predictions come from local observations.  

ANN has been widely accepted as useful tools only during the 1990’s (Callan, 2006). 

In this chapter, some of the applications of ANNs as a Rainfall-Runoff process 

calculation is summarized.  
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Minns et al. (1996) used a 3-layer feed-forward type ANN with a series of numerical 

experiments to test the closeness of fit that can be achieved. Models with one and two 

hidden layered ANN showed that an extra hidden layer improves the performance of 

model (Minns et al.,1996). 

In the case study of Lineares-Rodriguez et al. (2015) a model for one day-ahead daily 

streamflow with ANN approach is presented. Different from early works, they used a 

new runoff index to test ANN input. This index obtained by combining two different 

variables which belong to the weather research and forecasting mesoscale model. ANN 

model simulation skills and model accuracy improved with this new index. With a 

persistence index (PI) of 0.81 and an R2 value of 0.95 they proved that their model 

performance was satisfactory.  

Birikundavyi et al. (2002) investigated the performance of neural networks as potential 

models capable of forecasting daily streamflow. By the mean square error and Nash 

coefficients-based comparison they showed that artificial neural networks results are 

superior to the ones obtained with a classic autoregressive model coupled with a 

Kalman filter.  

Budu (2014) used artificial neural networks and multiple linear regression models with 

wavelets and moving average methods to predict daily reservoir inflows. In the study, 

real time observations are decomposed into subseries using different wavelet NN 

functions with discrete wavelet transform and then the proper subseries are taken as 

inputs to NN for forecasting reservoir inflow. Calibration is made by 7 years of data, 

and remaining data are used for the validation. The comparison made by the Nash–

Sutcliffe efficiency coefficient, RMSE, and correlation coefficient with two NN 

models, one MLR model, and one moving average model. Results showed that wavelet 

model performance was the best and multiple linear regression approaches had 

efficient inflow hydrograph.  

Garbrecht (2006) made Monthly Rainfall-Runoff Simulation and compared three 

alternative ANN design to investigate the effect of seasonal rainfall-runoff variations. 

The main difference of designs is the way in which the effects of seasonal climate and 

runoff variations were incorporated into the network. The important conclusion to the 
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investigation is that a separate network for each month reflects the seasonal rainfall 

runoff variations, ends up with better results (Garbrecht, 2006).  

A copula is a multivariate distribution function. Recently, Copula functions have been 

a useful tool for various problems in hydrology and water resources studies and 

applications. Especially in the field of drought analysis copulas gives accurate results. 

Besides, copula functions have a significant role in the fields that flood frequency 

analysis, rainfall intensity-duration frequency analysis.  

Lee et al. (2008) studied Copula usage in stochastic streamflow simulation. Different 

copula functions used in order to utilize non-parametric and parametric functions for 

fitting the distribution of the real time observed data and serial dependence structure. 

The advantages and disadvantages of different copula time series models were 

investigated by comparing the statistics of the generated data. The results showed that 

the benefits of using the copula functions are only marginally different from other 

method results.  

Samaniego et al. (2010) find a procedure to measure dissimilarity that is estimated 

from coupled empirical copula functions of streamflow to calculate a metric. By using 

a multiscale parameter regionalization technique hydrologic model parameters were 

regionalized. Transfer function parameters were found via calibration of the model. 

The streamflow in an ungauged basin was found as an ensemble streamflow 

prediction. Reasonable results are obtained with the proposed technique in ungauged 

basins.  

Sugimoto et al. (2016) used copulas as a tool to investigate the effect of climate change 

with existing long-term discharge records. They used copula asymmetry and copula 

distances to identify the nonsymmetrical property of discharge data and variability and 

interdependency. As a result of the study, they specified the climatic regime change 

periods of Neckar catchment. 

Bezak et al. (2016) studied flash floods and rainfall. Copula-based IDF curves and 

empirical rainfall thresholds are used in the study. By using high-resolution rainfall 

data, they constructed an IDF curve on the Frank copula function for several rainfall 
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stations. After the analyses that showed rainfall characteristics triggering flash floods 

and landslides are different. 

Persistence of streamflow indicates that sequences of river flow in the historical record 

that are similar to the recent past provide valuable information in the near future 

(Svensson, 2014). In the literature, there are several studies which are using persistence 

approach as a benchmark. Dralle et al. (2015), Glenn et al. (2004), Owens et al. (2003) 

made comprehensive discussion in their studies. Persistence approach is generally 

used for calculating the climatological indicators. Some meteorological studies of 

Namias J. (1952) and Van Den Dool (1982) are good examples on this topic.  

Svensson (2014) studied on seasonal river flow forecast by using hydrological 

persistence and historical flow analogs. Results show that the forecasts based on the 

persistence of the previous month’s flow generally outperform the analogs approach 

in her study.  

Climatology of the streamflow indicates the mean of specific time periods, gives 

insights about the seasonal variations. In this study, monthly mean of historical 

streamflow data is used. Mean is the most commonly used statistical starting point of 

comparison.  

One of the probable future work of this study considered as the effect of regulations 

on the streamflow predictions. Data used in this study is chosen in unregulated time 

periods. In this aspect study of Sayama et al. (2006) must be mentioned. In their study, 

investigation of alteration of the hydrological cycle caused by environmental change 

according to the actual conditions would not be qualified for make predictions in an 

ungauged basin. The motivation of the study was to investigate the effects of dam 

reservoirs to the flow regime changes. They end up such a conclusion that human 

factors make an alteration in hydrological cycle in a catchment and flood potential. 

This makes the real time observations not directly applicable for future predictions. 
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1.2.2 Studies Focusing on Rainfall-Runoff Predictions over Turkey 

A study from Turkey was made by Bakis and Goncu (2015). They used regression 

analysis as a tool for filling the missing data of Zab River obtained from the flow 

gauging stations related to the correlations and drainage area-ratio method. As a result, 

they concluded, when compared with the observed data; both filling methods resulted 

in large deviations. 

Kisi (2003) used an ANN model and an Auto-Regressive Model to forecast daily river 

flow, investigated the appropriate ANN architecture for hydrologic modeling for 

Filyos Stream with a 2-year period of streamflow data. Three different ANN models 

are used and the results are compared with an AR model. In the study, the comparison 

showed that ANNs provide the better results for daily streamflow forecasting.  

Kentel (2009) used past precipitation and associated river flow data in an ANN 

algorithm for Guvenc Basin and made predictions of future river flows. Also in her 

study, she investigated impacts of various input patterns, a number of training cycles, 

and initial values assigned to the weights of the connections identified direct mapping 

from inputs to outputs without consideration of the complex relationships among the 

dependent and independent variables of the hydrological process. Also, Kentel (2009) 

used a fuzzy c-means algorithm to cluster the training and validation input vectors with 

regular and extreme events. Main reason behind this usage is that the user will have an 

idea about the risk of the ANN model to generate unreliable results. 

Another ANN study on rainfall-runoff modeling is performed by Gumus et al. (2010). 

In this study, authors have assessed the ability of MLR, ANN model to predict the 

runoff over Euphrates River Basin using gauged based precipitation data. They 

obtained promising results with ANN model and concluded that ANN models can be 

easily used in rainfall-runoff modeling. 

Kara and Yildiz (2014) performed a bivariate analysis of the relation between 

precipitation and runoff over Hirfanli Dam Basin. Two elliptical and three 

Archimedean copula functions have been tested to model the dependence structure 

between the hydrological variables. They used different graphical tools and numerical 

techniques for the appropriate model selection, parameter estimation and goodness of 
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fit. Their results indicated that Clayton and Student-t class copula functions are more 

appropriate to model the dependence structure between the precipitation and the runoff 

over their study area. 

 

1.3 Main Purpose of the Study 

The main purpose of this study is to investigate the predictability of runoff using 

precipitation data over Coruh Basin using Simple and Multiple Linear Regression, 

ANN, and Copula methods and their predictive skills are compared against the 

commonly used benchmarks, climatology- and persistence-based predictions. More 

specifically in this study; 

 Intercomparison of the predictive skill of simple linear regression, multiple 

linear regression, ANN, and copula methods is done. 

 The predictive skills of methods are compared against climatology and 

persistence benchmarks to better understand the added skill via these methods, 

quantifying the predictive skill of climatology components compared to the anomaly 

components and filling the gap between the inter-comparison of Copula, climatology-

and persistence-based predictions of streamflow over Turkey. 

 The predictions using above methods are made both the remote – sensing and 

station-based precipitation data to quantify the added utility of remote sensing-based 

precipitation in runoff predictions compared with the predictions using gauge-based 

precipitation data. Moreover, by this investigation, added utility of areal average 

precipitation data sets to single point station data in streamflow predictions are 

performed and compared. 
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CHAPTER 2 

 

 

METHODOLOGY 

 

 

 

2.1. Prediction Models 

In this study, runoff predictions utilizing precipitation data are made. A Simple Linear 

Regression Model (SLR) and a Multiple Linear Regression Model (MLR) is 

constructed to simplify the relationship between the rainfall-runoff process and to get 

benefit from the ability to gain simple results of the regression models. An Artificial 

Neural Network Model (MLP) is constructed to get benefit from its ability to deal with 

the complexity and learning algorithm. Two Copula Models (Normal Copula and 

Frank Copula) are constructed to get benefit from its ability to separate marginal 

distribution from the dependent nature of the variables. All of the results that gained 

from these models will be compared with hydrologic Climatology and Persistence 

characteristics of the monthly state of streamflow. The following section provides brief 

information about the history of data driven prediction models which are used in this 

study 

Regression analysis is the most common analysis method in hydrology. Analysis 

based on a relation made between a dependent variable and one independent variable. 

Analysis process shows the impact of changes in an independent variable on the 

dependent variable that we wish to predict. It is also a tool for explaining the relations 

of a variable is affected directly by another or both variables affected by common 

factors that are unknown (Web-1). Regression analysis can be used for the filling of 

the missing data in a series on a polynomial relationship between the observations or 

validation of the series (Fung, 2006).  
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The term “Regression” firstly used at the eighteen century by Francis Galton, who has 

many studies on genetics. While he was studying on sweet pea plant and trying to 

explain the phenomenon about the relationship between heights of the descendants of 

the plant, the study laid the foundations of modern linear regression analysis. After 

Galton, his lab researcher Karl Pearson developed the correlation concept. An Early 

form of his work was the least squared error approach and he stated that the main 

problem in regression analysis is to establish most suitable description between the 

variables (Stanton, 2001). 

The method of least squares is a procedure to determine the best fit line to data. The 

method gets its name from the way the unknown statistics are computed. The method 

estimates parameters by minimizing the sum of the squared deviations between the 

variables. Results are obtained using basic calculus and specifically the property of a 

quadratic expression’s minimum value. The point must be considered in the least 

squared estimates is its high sensitivity to the outliers. This is a consequence of 

squaring the variations between the variables (Encyclopedia of Research Design, 

vol.1, Method of Least Squares, 2010). 

Artificial Neural Networks (ANN) are widely used prediction models in hydrological 

studies. Methodology originally comes from the struggle that understanding the 

information processing of the human nervous system. Despite there are still too many 

unknowns about the information processing of the human brain, neural network 

approach to problem-solving tries to mirror that process of the neurons. A neuron 

collects the information from other neurons with a structure called dendrites. Then a 

neuron sends this information signal as an output through the structure called axon, 

every neuron connects to many other neurons through synapses. Synapses convert the 

signal from the axon into electrical signal form and these electrical signals send to the 

brain for the purpose of processing by connections of thousands of neurons. Every 

neuron can be thought as a single processing section. By changing the effect of a 

neuron over the other, learning occurs. (Stufflebeam,2008) Figure 2.1 shows the 

structure of the single neuron information process in the human brain. 
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Figure 2.1 Structure of a single neuron information process in the human brain 

 

Early understandings about neural networks belong to neurophysiologist Warren 

McCulloch (1943). After computers become advanced in the 1950s, it was possible to 

build some models which could imitate human neural network interactions and at 

1980s ANN models started to use much scientific research. ANNs are the calculation 

tool of information through interactions among neurons (or nodes). Model runs inputs 

and outputs as variables of the nonlinear function. Mirroring the natural behavior of 

human neural network system ANN has the advantages of learning ability. Ability to 

response as a result of input data. Synapses in the biology known as the weights in the 

ANN. Weights are constants that use to calculate the output of the process. It is a 

practical tool to carry out complex hydrologic calculations (Reingold & Nightingale, 

1999, History of Neural Networks). 

ANN Models have a withstanding success in the use of rainfall-runoff modeling. A 

multilayer perceptron is the most commonly used ANN method which gives 

satisfactory results in modeling hydrologic process to predict the short run streamflow 

discharge. 
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Copula theory first appeared in Frechet’s study (1951). On his study about the given 

distribution function of two random variables defined on the same probability space, 

the bivariate distribution function of marginal of this two random variables. In Sklar’s 

1959 study resulted in very important conclusions by constructing a new class of 

functions which he called as “Copula” for Frechet’s work (Durante and Sempi, 2009). 

The copula is a latin word for “link”. 

Sklar and Schweizer published the book “Probabilistic Metric Spaces” in 1983. This 

book considered the main source of basic information on copulas. At the end of the 

90’s Copula Theory become popular (Durante and Sempi, 2009). Since the beginning 

of the 2000’s Copulas have become a tool for hydrological studies especially in the 

field of drought analysis. Over a decade many important results still are to be 

discovered and derived (Salvadori, 2007). 

The predictive skills of these methods have to be compared against a benchmark so 

that their true skill can be understood. In this study, Climatology and Persistence of 

monthly state of streamflow are used as benchmarks. To further investigate the source 

of the predictive skills of these methods, separate predictions are made using the 

standardized anomaly components of data sets (after -climatology/long year monthly 

mean- components are removed and standardized by dividing the standard deviation 

of the data) and complete data sets (normal/non-standardized data sets retaining both 

anomaly and climatology components). 80% of the data is used for training and 20% 

of the data is used for validation. Long data sets (42 years of observations) are divided 

into 34 years of training and 8 years of validation and short data sets (12 years of 

observations) are divided into 9 years of training and 3 years of validation 
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2.1.1. Linear Regression Model 

Many problems in engineering and science involve exploring the relationships 

between two or more variables. While established relations are mostly used to predict 

the dependent variable using the independent one. Least squared based Linear 

Regression method (1806 Legendre, 1810 Gauss) is perhaps the oldest yet one of the 

most used prediction methods. 

Regression analysis is a method to find a linear relationship between two variables. 

Figure 2.2 (also known as scatter plot) shows the linear relationship between the 

variables “streamflow” on the horizontal axis and “precipitation” on the vertical axis. 

The simplest relationship consists of a straight line.  

 

 

Figure 2.2 Sample regression line and observed data scatter plot 
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Regression calculations find the optimum values of the regression parameters (slope 

and intercept) that minimize the sum of the squared errors. A form of the regression 

formula is as follows (Levine et al. 2013). 

 

ܻ ߚ	= ଵߚ	+ ܺ                  (2.1)ߝ	+

 

Where; β0 is intercepted for the population, β1 is the slope for the population, εi is the 

random error in predictions i, ܻ is the dependent variable (sometimes referred to as 

the response variable) for observation i and ܺ is the independent variable (sometimes 

referred to as the explanatory variable) for observation i 

The solution for the calculation of the slope ߚଵ, 

 

ଵߚ =
ௌௌ
ௌௌ

                 (2.2) 

 

where; 

SSXY = ∑ ( ܺ − തܺ)( ܻ − തܻ)
ୀଵ                (2.3) 

 

= ∑ ܺ ܻ

ୀଵ  - (∑ 

సభ )(∑ 
సభ )


      

 

SSX =  ∑ ( ܺ − ത̇ܺ)ଶ
ୀଵ                          (2.4) 

 

      = ∑ ܺ
ଶ

ୀଵ −	 (∑ 
సభ )మ
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Computation of the intercept,ߚ, 

 

ߚ =	 തܻ ଵߚ	− തܺ              (2.5) 

 

where,  

തܻ = 	∑ 
సభ


                (2.6) 

 

തܺ = 	∑ 
సభ


                (2.7) 

 

2.1.2. Multiple Linear Regression Model 

As in the SLR model, again the purpose in MLR is to obtain least square estimates 

which minimize the total sum squared error term. When more than one predictor 

variable included in the calculations, effects of all variables can be observed from the 

predictions. Once the relations between the multiple variables and the dependent 

variable we can make more accurate predictions and use all the information. Due to 

lack of data, in this study, squared values of precipitation is used as a second predictor.  

General MLR model (Shedden, 2016); 

 

ܻ ߚ	= ଵߚ	+ ଵܺ + ଶܺଶߚ ܺߚ	+	⋯+                 (2.8)ߝ	+

 

where β0 is the “intercept,” β1 …… βk are “slopes” or “coefficients”. These coefficients 

are fixed or constant but unknown values. ε is a random variable that is independent 

of Xs with “0” mean and variance of σ2. Errors are not correlated with each other and 

not correlated with other predictors. Estimates can be calculated by using linear 

algebra; 



18 
 

By taking all observation into an n-dimensional vector, called “response vector” 

(Shedden, 2016); 

 

ܻ = 	

⎝

⎜
⎛

ଵܻ

ଶܻ.
.
ܻ⎠

⎟
⎞

                 (2.9) 

 

 

Then by putting all predictors into an n.p+1 matrix, design matrix is obtained; 

 

ܺ = 	 ൦൮
1
1.
1

ଵܺଵ ଵܺ
ܺଶଵ ܺଶ. .
ܺ ܺ

൲൪               (2.10) 

 

It is important that first column of the design matrix be formed of 1s. After that packing 

the coefficients and intercepts into a p+1 dimensional matrix, we obtain a vector called 

slope vector. 

 

ߚ =	

⎝

⎜
⎛

ߙ
ଵߚ
ଶߚ
.
⎠ߚ

⎟
⎞

                 (2.11) 
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At last, we put the error terms into an n-dimensional another vector called error vector. 

 

ߝ = 	

⎝

⎜
⎛
ߝ
ଵߝ
ଶߝ
.
⎠ߝ

⎟
⎞

                 (2.12) 

 

Model is become ܻ = ߚ	 ଵߚ	+ ଵܺ + ଶܺଶߚ ܺߚ	+	⋯+  , can be written inߝ	+

algebraic form of ; 

 

ܻ = ߚܺ	                   (2.13)ߝ	+

Note that ܺ  is the matrix vector product. For estimating the β like in linear regression ߚ

least squares approach will be used. By minimizing the error formulation; 

 

∑ ൫ ܻ − ߙ	 ଵߚ	− ܺ,ଵ ߚ	⋯− ܺ,൯               (2.14) 

 

Obtained formulation is,  

 

መߚ = 	 (ܺ′ܺ)ିଵܺ′ܻ          (2.15) 

 

Where ܺ′ܺ and (ܺ′ܺ)ିଵ are p+1 x p+1 symmetric vectors. ܺᇱܻ is a p+1 dimensional 

vector. Then, 

 

ܻ = መߚܺ	  = |X(ܺ′ܺ)ିଵܺ′ܻ                (2.16) 
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ܻ is the best prediction obtained from the multiple linear regression calculations. 

 

2.1.3. ANN Model  

ANN Models mimic the neurons in the human brain. Connections generally called 

nodes or units. Information processing occurs in form of signals through these 

connections. Each unit has its own weight which shows the strength of the participation 

of the node into the calculation. Also, the weight of a node determines the effect of the 

variable on the process. In the process, a linear or nonlinear transformation function is 

applied to the nodes to determine its output signal. In this study, Multi-Layer 

Perceptron (MLP) is used. Figure 2.3 shows General Layout of an ANN Model 

(ASCE, 2000).   

 

 

Figure 2.3 General layout of an ann model (ASCE, 2000) 

 

Figure 2.4 shows the schematic diagram of a single node, bj is the threshold value or 

generally called bias. Wijs are weights and Xis are inputs for the node. ݂  is the threshold 
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function and lastly yj is the net output signal of the node. The below function defines 

the operation. 

 

 

Figure 2.4 Schematic diagram of a single node in an ann (ASCE, 2000)  

 

ܻ = 	݂൫ܺ. ܹ −	 ܾ൯                (2.17) 

 

The function f in the figure is called an activation function or threshold function. 

Commonly used form of an activation function is sigmoid function and general form 

of a sigmoid function is as follows; 

 

 ௧݂ =	
ଵ

ଵାష
                (2.18) 

 

MLP uses the back propagation algorithm for training, which is the most popular 

neural network type. In the algorithm, weights are iteratively changing to minimize 

the errors of the weights. The main strength of a network come to this capability of 

training. First, the input of the data set passes through the network then calculated 

output is compared with the measured or observed output. On this stage error 

calculation made and then this error term propagates backward through the network to 

each node. Weights are recalculated according to adjustment of the error term of each 

node. 
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Step by step calculations of a Feed Forward MLP algorithm as follows (ASCE, 2000), 

Input unit enters the process from the input layer and receives the signal, xi, (i = 1, 2, 

…..n) and sends this signal to the next layer. Every hidden unit (Hj, j =1, 2,….. p) 

receives their weighted input values.  

 

݅ܪ ݊ = ݒ	                 (2.19)ݒݔ∑	+

 

Where ݒ is the connection weight and ݒ is the bias value, perform a sigmoid 

function to calculate their output value; 

 

ܪ = 	݂൫݅ܪ ݊൯                 (2.20) 

 

 

Then these values transfer to the following layer. Each output nodes (Yk, where k = 1, 

2, .....m) sums its weighted input signals, 

 

ܻ݅ ݊ ݓ	= +	∑ℎݓ                (2.21) 

 

and then again performs its threshold function to compute output signals. 

 

ܻ = 	݂(ܻ݅݊)                 (2.22) 
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At this stage Back-Propagation error calculated. Every output nodes that receive the 

desired value regarding the input value takes its error term.  

 

ߜ = 	 ݐ) −  )݂′(ܻ݅݊)               (2.23)ݕ

 

Weight correction and bias correction factors calculated, 

Weight correction factor, 

 

ݓߣ =                   (2.24)ܪߜ߲	

 

Bias correction factor, 

 

ݓߣ =                   (2.25)ߜߙ	

 

Calculated ߜ error information term sends to nodes in the previous layer. Each hidden 

unit gets its delta inputs from next layer, 

 

݅ߜ ݊ =	∑ ݓߜ                  (2.26) 

 

and multiplies by the derivative of threshold function for calculation of error term. 

After that again weight correction term to update ݒ and bias correction term to update 

 . are calculatedݒ

 

ߜ ݅ߜ	= ݂݊′൫݅ܪ ݊൯                (2.27) 
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ݒ∇                    (2.28)ݔߜ߲	=

 

ݒ∇                    (2.29)ߜߙ	=

 

Each output node restores by adding these corrections (ASCE, 2000).  

New weights, 

 

(ݓ݁݊)ݓ = (݈݀)ݓ + ݓߣ	                  (2.30) 

 

New Bias, 

 

(ݓ݁݊)ݒ = (݈݀)ݒ +                  (2.31)ݒߣ	

 

After new weights and biases are calculated error term between the desired output and 

recalculated one compare to each other, if error term is not in the acceptable range, 

correction of weights and biases are iterated respectively. 

 

2.1.4. Copula Models 

Copulas have wide usage areas, such as risk management, biology and recently used 

in hydrology and water resources management related fields. Especially in the field of 

drought analysis and flood risk analysis, there are many promising studies made by 

using copulas.  

Copulas are simply the joint distribution of random variables, and also an extremely 

beneficial technique that allows forming a multivariate distribution function from 

univariate distribution functions (Bloomfield, 2013). Copula theory uses the marginal 

distributions to create a joint distribution. This is the main power of the Copula Theory. 
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The core of the Copula Theory comes from the Sklar’s theorem (Bloomfield, 2013). 

Given two random variables X and Y, estimation of their univariate CDFs are trivial 

and the sample data sets are often sufficient, while the analytical solution for the joint 

CDFs is not immediately clear. At this point, copula functions link univariate CDFs 

and create their multivariate (e.g., bivariate or trivariate) CDFs (Afsar, 2016). For 

variables X, Y; ܨ(ܺ, ܻ)	represents the joint cumulative distribution, ܨ(ܺ) and ܨ(ܻ) 

are the marginal distribution of X and Y, there exist a unique copula ܨ)ܥ(ܺ),  ((ܻ)ܨ

(De Michelle, 2003).  

 

,ܺ)ܨ ܻ) 	= ,(ܺ)ܨ)ܥ	  (ܻ))           (2.32)ܨ

 

If there are N different random variables than general form of the formula can be 

shown (De Michelle, 2003), 

 

)భమ……..ಿܨ ଵܺ, ܺଶ… . . ܺே) 	= )భܨ)ܥ	 ଵܺ),  ே(ܺே))  (2.33)ܨ………మ(ܺଶ)ܨ

 

Copula Density : 

 

 Assume ܨ( ଵܺ, ܺଶ… . . ܺே) 	= )భܨ]ܥ	 ଵܺ),  ே(ܺே)] and F and C areܨ………మ(ܺଶ)ܨ

differentiable, joint probability density function of events (De Michelle, 2003),; 

 

ி(௫భ,௫మ,……௫ಿ)
ிభ(௫భ)ிమ(௫మ)……ிಿ(௫ಿ)

	= )భܨൣܥ	 ଵܺ),  ே(ܺே)൧  (2.34)ܨ………మ(ܺଶ)ܨ

 

There are many classes of copulas available like Archimedean, Elliptic, Extreme Value 

etc. In this study, Normal Copula Function from the Elliptical copula family and Frank 

Copula Function from the Archimedean Copula Family are used.  
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Normal Copula (NC) Function: 

 

,ݔ)ேܥ (ݕ = (ݕ,ݔ)ܨ
(ݕ)ݕܨ(ݔ)ݔܨ

= 	 ∫ ∫ ଵ

ଶగ(ଵିఘమ)భ మൗ
∅షభ(௬)
ିஶ ݁ି

ೣమషమഐೣశమ

మ(భషഐమ)∅షభ(௫)
ିஶ  (2.35)    ݕ݀ݔ݀

 

Where; ߩ is the copula dependence parameter, x and y are two dependent univariate 

variables, ∅ is the CDF of standard univariate gaussian distribution, respectively.  

 

Frank Copula (FC) Function: 

 

,ݔ)ிܥ (ݕ = (ݕ,ݔ)ܨ
(ݕ)ݕܨ(ݔ)ݔܨ

=	ିଵ
ఈ
ln(1 + (షഀିଵ)(షഀೊିଵ)

షഀିଵ
)          (2.36) 

 

Where; ߙ is the copula dependence parameter, x and y are two dependent univariate 

variables, respectively. 

 

2.2. Climatology and Persistence Benchmarks 

In the absence of reliable predictors, a good estimate that can be made is the mean of 

the random variable. For example, for a Gaussian white noise process with “0” mean 

and “0” autocorrelation, given the availability of the entire time series of this variable, 

the best guess for the future predictions is the mean value (here “0”). Another example; 

given only monthly streamflow observations are available over a region between 

January 1901 and December 2000. A climatological prediction for January 2001 could 

be obtained as the average of 100 values of all January observations between 1901 and 

2000.  

In this way, a separate prediction can be made for each month, while these monthly 

predictions would be constant for any given year. Such a prediction would be valuable 

particularly over regions with strong seasonality as a result of snow melting, 
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groundwater feed or seasonally changing rainfall variability. There except for 

streamflow data, no other data available is present. 

 

2.2.1. Climatology 

Climatology type forecast is a simple way of making hydrologic predictions. It is 

making forecasts by using simple statistics. The idea behind the climatology method 

is forecast the same value for every event that occurs in the same time periods 

(prediction for month “A” is the average of all observations of “A”s), the mean.  

(Web-2 can be checked on this topic). 

Precipitation is random in time for a region, so as a result of randomness in hydrologic 

cycle streamflow has a tendency of vary over time. If there is no other prediction about 

streamflow, climatology concept gives the knowledge of basic variation of the 

streamflow over time. In lack of information, knowing the monthly streamflow 

variability provides efficient information. Figure 2.5 shows an example for monthly 

climatology time series. 

 

Figure 2.5 Example of a monthly climatology time series (E23A004) 

 

General formula of Mean, 

 

ߤ = 	∑ ୶
సభ
୬

       (2.37) 

 

Where, ݔ are the random values of same time periods, n is the number of observations. 
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2.2.2. Persistence  

Among all of the forecasting methods, Persistence method is the easiest and most 

applicable one because the method predicts the tomorrow’s hydrological event as same 

as today’s event.  

A disadvantage of persistence approach is it may not catch relationship between events 

as a rainfall-runoff model if the distribution of events has so much of variations in 

time. Persistence concept is very useful for short term predictions, but main power of 

persistence is to make long range forecasts when it used with the climatology of the 

event. In this study, observed standardized anomalies of the previous month is used to 

predict following month’s streamflow predictions (following month’s observed 

standardized anomaly taken as the following month’s observed standardized anomaly) 

(Web-3 can be checked on this topic). The following section provides brief 

information about calculation of persistence, 

 

First step, calculation of the Mean ߤ, 

 

,௧ߤ =	
∑ ୶,౪
సభ
୬

   t = 1,2,3....12    (2.38) 

 

Second step, calculation of the Standard Deviation, 

 

,௧ߪ = ටଵ

∑ ൫ݔ,௧ ,௧൯ߤ	−

ଶ
ୀଵ      (2.39) 

 

Third step, finding standardized anomalies of streamflow (Svensson,2014), 

 

ܽ,௧ = 	
௫,ି	ఓ,
ఙ,

                   (2.40) 
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Fourth step, calculation of persistence-based prediction, 

 

,௧ାଵ =	ܽ,௧ ∗ ௧ାଵߪ  ௧ାଵ                    (2.41)ߤ	+

 

Where, ,௧ାଵ is the following month’s persistence-based prediction, ܽ,௧ is the 

standardized anomaly of the previous month, ߤ is the mean of the monthly 

observations, ߪ௧ାଵ is the standard deviation of following month, n is the number of 

observations. 

For example; 

 

,௨௬ =	ܽ,௨௬ ∗ ௨௬ߪ	 ௨௬ߤ	+       (2.42)  

 

In general, autocorrelation coefficient greater than 0.50 for a streamflow time series, 

it is expected that the persistence approach would provide better results than the 

climatology approach. 

 

2.3. Complete and Standardized Anomaly Data Set Predictions 

To further investigate the source of the predictive skills of these methods, separate 

predictions are made using the standardized anomaly components of data sets (after -

climatology/long year monthly mean- components are removed and standardized by 

dividing the standard deviation of the data) and complete data sets (normal/non-

standardized data sets retaining both anomaly and climatology components). 80% of 

the data is used for training and 20% of the data is used for validation. Long data sets 

(42 years of observations) are divided into 34 years of training and 8 years of validation 

and short data sets (12 years of observations) are divided into 9 years of training and 

3 years of validation. Following section provides detailed information about complete 
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data set prediction methodology and standardized anomaly component data set 

predictions.  

 

2.3.1. Complete Data Set Predictions 

In this prediction methodology traditional way in Rainfall-Runoff models are 

followed. First input data sets (DSI Flow Station data sets v.s. MGM and TRMM 

Precipitation data sets) are introduced to models (SLR, MLR, ANN, Copulas). Figure 

2.6 shows the input time series of streamflow and precipitation data sets to the models. 

In the presentation, only 12 years (2000-2011) of data is shown as a time series but in 

the calculations, 42 years (1970-2011) of data is used. Figure 2.6 shows an example 

input time series in traditional rainfall-runoff models.  

 

Figure 2.6 Example input time series of streamflow and precipitation to the models 

 

80% of the data (34 years – 408 months) is used for training and 20% of the data (8 

years – 96 months) of the data is used for validation.  

Finally, predictions compared with climatology and hydrologic persistence of 

streamflow. Figure 2.7 shows an example of the complete data set predictions (results 

which are obtained from the data of this study as an example). In this figure, 3 years 
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of real observations, Climatology and Persistence validation time series and SLR and 

MLR validation time series are shown in the figure.  

 

 

Figure 2.7 Example Complete Data set Predictions 

 

2.3.2. Standardized Anomaly Data Set Predictions 

In this methodology, predictions made with standardized anomaly components of data 

sets after –climatology (long year monthly mean), components are removed and 

standardized by dividing the standard deviation of the data. By this way, predictions 

are made with the deviations of the data. First monthly mean of 42 years of data (b) 

(12 years for short data sets) is calculated. Then, this monthly means of long years 

(climatology component) subtracted from the complete data set (a) (observations). 

Hereby, anomaly component of data has been calculated (c). Figure 2.8 shows an 

example of complete data and its climatology and anomaly components (i.e., complete 

dataset = climatology + anomaly). 
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Figure 2.8 Climatology (b) and anomaly (c) components of complete (a) streamflow 

time series  

Then anomaly component of the data is divided by the standard deviations of the data 

and standardized anomalies of flow data have been obtained. Figure 2.9 shows the 

standardized anomaly component of flow data. 

 

Figure 2.9 Streamflow data standardized anomalies 



33 
 

Same calculations made for the precipitation data as well. Figure 2.10 and Figure 2.11 

shows calculations of climatology and anomaly components of precipitation data and 

precipitation anomalies of data (c = a - b). 

 

Figure 2.10 Climatology (b) and anomaly (c) components of complete (a) 

precipitation time series 

 

 

Figure 2.11 Precipitation data standardized anomalies 
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Once standardized anomalies of precipitation and flow data are obtained, in this 

methodology, these standardized anomalies introduced the models (SLR, MLR, ANN, 

Copulas) instead of the complete data sets. After predicted standardized anomalies of 

flow data obtained from models, next step is de-standardization. Predicted anomalies 

of flow data are de-standardized with multiplying with the standard deviation of the 

flow data. Figure 2.12 shows the acquiring steps of final predictions (only SLR output 

is used in the presentation). 

 

 

Figure 2.12 Anomaly (a) and climatology (b) components of predicted streamflow 

 

Lastly, by adding the climatology component of flow data to predicted de-standardized 

anomalies of flow data (a+b), calculations are terminated. Figure 2.13 shows the SLR 

model final prediction with observations, climatology component, and persistence-

based prediction together (results which are obtained from the data of this study as an 

example). Results show that predictions of SLR model which are using standardized 

data are improved when long-term climatology values added. 
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Figure 2.13 Example final streamflow climatology added prediction 

 

2.4. Study Area 

 

2.4.1. General Layout of Basin 

Coruh River Basin located in northeastern region of Turkey. The basin has 19.872km2 

drainage area in Turkey and 2.090km2 drainage area in Georgia (Web-4). Figure 2.14 

shows the location of the Coruh Basin in Turkey. As a result of the steep elevation 

change in the basin, the Coruh River is the fastest flowing river in Turkey and the third 

fastest in the world. 

The total length of the Coruh River (412km) and the steep topography change provides 

the basin one of the highest electricity generation potential in Turkey (27% of the total 

energy potential; Coruh River Basin Projects Report, 2009). In this study, Coruh Basin 

is selected as the study area because of its high hydropower generation potential (i.e., 

therefore prediction of streamflow is of interest for many users) while unregulated 

streamflow observations and long historical datasets are still available over the basin 

despite this potential. 
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Figure 2.14 Location of Coruh Basin 

 

Coruh River is born from Civilikaya Hill, part of the Mescit Mountains and is located 

in the north of the Erzurum Plateau. Coruh River later flows through the Eastern 

Anatolian and Eastern Black Sea region that flows into the Black Sea near the city of 

Batumi, Georgia (Web-4). The total length of Coruh River is 431km, while 410km 

flows through Turkey 21km flows in Georgia. Tortum and Oltu streams are the main 

streams of the Coruh River from Turkey and Adzharis from Georgia. Coruh River has 

a mean annual runoff of 6.824hm3. Observed mean discharge of the river is 200m3/s, 

maximum discharge is 2.431m3/s and minimum discharge is 38 m3/s (Web-4). Coruh 

basin has the highest erosion potential among all of the basins of Turkey. This high 

erosion potential is driven by the speed of the river, which is one of the fastest flowing 

rivers in the world. This study covers the upper and middle stream of the Coruh River 

and one tributary river called Berhal Creek. Figure 2.15 shows the general layout of 

the Coruh Basin. 
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Figure 2.15 Coruh Basin 

 

2.4.2. Basin Geography and Slope Properties  

Coruh Basin is located in the orogenic belt. Toward north-northeast lies the black sea 

mountains and in the line of northeast-southwest lies the Mescit and Yalnizcam 

Mountains. From east to the west direction this mountain has a formation which 

reaches 4000m height due to east direction. Morphology of the mountains is generally 

formed of metamorphic rocks, mica schists, quartzite, granite, and schist. Coruh Basin 

mountains subside from the north of the Kackar Mountains. Highest mountains of the 

region as follows, Karadag (2300m), Arafek (2300m), Karayol (2750m), Ziyaret 

(2000m), Geberet (2413m), Horasan (2830m), Kurdevan (3050m), Ayvan (2000m), 

Arsiyan (3160m), Morete (2500m), and Karcal (3428m). This mountainside has deep 

valley formation where the Coruh River lies through this deep valley formation. 

(Figure 2.16) 
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Figure 2.16 DEM Map of Coruh Basin 
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2.4.3. Vegetation Cover and Climatology  

The Northern region of the basin has the characteristic of the black sea climate. 

Locations, that near East-Black Sea Region like Hopa and Kemalpasa have high 

annual precipitation. Average annual precipitation of this region is measured as 

2754mm. Maximum streamflow values occur in May while maximum precipitation 

occur in April and October for any given year in Coruh Basin. Toward inland, the 

climate is in transition to continental climate characteristics. Some annual average 

meteorological station measurements are as follows; Borcka (1250mm), Artvin 

(689mm), Ardanuc (446mm), Yusufeli (295mm), Ispır (440mm), and Oltu (353mm) 

(Web-4). Figure 2.17 shows the general layout of the vegetation cover and heights of 

the basin. 

 

 

Figure 2.17 General layout of vegetation cover of Coruh Basin 
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Coruh Basin located in Colchic Region of Euro-Siberian Region Flora Zone. 

Mediterranean originated endemic taxons are also seen between the 200-400 m 

elevations (Web-4). Forest formation of basin spreads as, perhumid mild broad-leaved 

trees (Chestnut Forests, Beech Forest, and Mountain Alder Forests), moist and cold 

sandarac trees, dry forest and some bush formations.  

 

2.4.4. Regulated Regions of the Basin 

Coruh River, with the remarkable energy potential, has been attracted attention and 

many projects have been developed since 1962 by the Electrical Works Study 

Administrations (EİE). The energy potential of the river was calculated as %27 of the 

total energy potential of Turkey. Total head of the river that can be used to product 

energy is 1420m. There are 10 dams on the main stream (6 of them locates upper and 

middle sections of the stream) and 17 different dams and runoff-river type 

hydroelectric power plant projects on the tributary streams. These dams and power 

plants will regulate the river flow in the basin when the ongoing projects will be 

completed (Coruh River Basin Projects Report, 2009).  

Table 2.1 gives brief information about the upper and middle stream dams. The 

following section provides information about the regulated regions and dams on the 

river.  

 

Table 2.1 Coruh Basin upper and middle stream dams 

 

 

Dams
Annual Mean 

Flow
(m³/s)

Drenaige Area
(km²)

Total Head
(m)

Maximum 
Operation

Level
(m)

Installed Capacity
(MW)

Annual
Energy 

Production
(GWh)

Laleli 879,16 4759,00 138,00 1480,00 102,00 244,55
Ispir 950,00 5100,00 195,00 1342,00 54,00 327,50
Gullubag 1288,00 5915,00 105,00 1147,00 96,00 284,50
Aksu 1492,00 6388,00 107,00 1042,00 130,00 344,40
Arkun 1743,56 6853,00 225,00 953,00 245,00 788,40
Yusufeli 3995,00 15250,00 196,30 712,00 558,00 1705,00
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Upper Stream Projects of the Basin; 

Laleli (Under Construction) Dam and HEPP: 

Laleli Dam is the first dam on the river which is located in Bayburt province. The 

annual mean flow of the dam section is 879,16m3 and area of the precipitation are 

4759.00km2. Total head of the project is 138.00m and annual planned capacity is 

244.55GWh energy (Coruh River Basin Projects Report, 2009).  

Ispir (2014) Dam and HEPP: 

Ispir Dam is the second dam on the river which is located on the downstream of the 

Laleli Dam in Erzurum province. The annual mean flow of the dam section is 

950.00m3 and area of the precipitation are 5100.00km2. Total head of the project is 

195.00m and annual planned capacity is 327.50GWh energy (Coruh River Basin 

Projects Report, 2009). 

Gullubag (2013) Dam and HEPP: 

Gullubag Dam is the third dam on the river which is located in Erzurum province. The 

annual mean flow of the dam section is 1288.00m3 and area of the precipitation are 

5915.00km2. Total head of the project is 105.00m and annual planned capacity is 

284.50GWh energy (Coruh River Basin Projects Report, 2009). 

Aksu (Under Construction) Dam and HEPP: 

Aksu Dam is the fourth dam on the river which is located in Erzurum province. The 

annual mean flow of the dam section is 1492.00m3 and area of the precipitation are 

6388.00km2. Total head of the project is 107.00m and annual planned capacity is 

344.40GWh energy (Coruh River Basin Projects Report, 2009). 

Arkun (2014) Dam and HEPP: 

The fifth dam of the river, Arkun Dam, is located downstream of the Aksu Dam and 

located in Erzurum province. The annual mean flow of the dam section is 1743.56m3 

and area of the precipitation are 6853.00km2. Total head of the project is 225.00m and 

annual planned capacity is 788.40GWh energy (Coruh River Basin Projects Report, 

2009). 
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Middle Stream Projects of the Basin; 

Yusufeli (Under construction) Dam and HEPP: 

The first dam of the Middle Stream of the Basin, Yusufeli Dam, is located downstream 

of the Arkun Dam and located in Artvin province. The annual mean flow of the dam 

section is 3995.00m3 and area of the precipitation are 15,250.00km2. Total head of the 

project is 196.30m and annual planned capacity is 1705.00GWh energy (Coruh River 

Basin Projects Report, 2009). 

 

2.5. Data Sets  

In this study monthly runoff discharge predictions are made over 6 streamflow 

observation stations maintained by General Directorate of State Hydraulic Works 

(DSI) using precipitation data obtained from three ground-based stations that are 

maintained by Turkish State Meteorological Service (MGM) and remote sensing based 

precipitation data that are maintained by the Tropical Rainfall Measuring Mission 

(TRMM). MGM and DSI perform the measurement of meteorologic and hydraulic 

observations in Turkey. In this study, calculations made for monthly average of 42 

years of MGM and DSI observations. Data period is chosen as 1970 -2011. TRMM is 

a collective mission between National Aeronautics and Space Administration (NASA) 

and the Japan Aerospace Exploration (JAXA), provided 17 years of precipitation data. 

In this study, calculations made for monthly average of 12 years. The time interval is 

chosen as 2000 -2011.  

Coruh Basin is divided into 6 sub-basins with regarding the catchment areas of the 

observation stations. TRMM pixel grid and MGM precipitation data coupled with 

these flow observation stations. Figure 2.18 shows the Sub-Basins and locations of 

TRMM measurement pixels and ground-based observation stations. Information about 

the coupling the data sets are provided in the following section. 

 



43 
 

 

Figure 2.18 Sub-Basins and locations of TRMM measurement pixels and land 

observation stations 
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2.5.1. TRMM Precipitation Data 

The Tropical Rainfall Measuring Mission (TRMM) is a collective mission between 

National Aeronautics and Space Administration (NASA) and Japan Aerospace 

Exploration (JAXA) provided 17 years of precipitation data. TRMM carried 5 

instruments: 3-sensor rainfall and 2 related instruments. Names of sensors are as 

following; TMI – TRMM Microwave Imaging, VIRS – Visible Infrared Scanner, PR 

– Precipitation Radar, LIS – Lightning Imaging Sensor, CERES – Clouds and Earth’s 

Radiant Energy System. For seventeen years TRMM satellite helped to understand the 

hydrologic cycle of the climate system of the tropical and sub-tropical regions of the 

earth. Launched in November 1997 and stopped receiving observations on April 15, 

2015. TRMM delivered valuable scientific data about global precipitation and 

lightning (Web-5).  

In this study, TRMM 3B42 V7 daily precipitation product is used by converting into 

monthly average precipitation value. 25kmx25km Pixels size is used. Figure 2.19 

shows the TRMM pixels which cover the Coruh Basin (indices shown in Figure 2.19 

is only for demonstration purposes). 

 

 

Figure 2.19 TRMM pixels and sub-basins 
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The TRMM data set became the standard satellite measurement for precipitation and 

improved our understanding of tropical cyclone structure and evolution, convective 

system properties, lightning-storm relationships, climate and weather modeling, and 

human impacts on rainfall. The data also added utility to calculations such as flood 

and drought risk mapping and weather forecasting. 

 

2.5.2. MGM Gauge-based Precipitation Data 

MGM performs the measurement of meteorologic observations in Turkey. MGM was 

founded in 1937 to make observations, provide forecast, climatological data and 

archive data. MGM provides meteorological data obtained from manual and automatic 

meteorologic observation stations all over the Turkey. In this study, daily precipitation 

data obtained from ground-based manual observation station data for the years 1970 

to 2011 is used. Figure 2.20 shows the MGM observation station locations over digital 

elevation map. 

  

 

Figure 2.20 MGM meteorological station locations over DEM map 
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 17089 – Bayburt Center Meteorologic Observation Station Data 

 17666 – Erzurum Oltu Meteorologic Observation Station Data 

 17668 – Erzurum Tortum Meteorologic Observation Station Data 

 

2.5.3. DSI Gauge-based Streamflow Data 

DSI) performs the measurement of hydrologic observations in Turkey. DSI was 

founded in 1954 and has a vision about protection, management, and development of 

water resources and responsible for providing hydrologic data sets to the public 

(www.DSI.gov.tr). In this study six DSI streamflow observation station data that 

covers the years 1970 to 2011 is used. Figure 2.21 shows DSI Streamflow Observation 

Station Locations. 

 

 

 Figure 2.21 DSI streamflow observation station locations 
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 E23A004 – Bayburt Coruh River Flow Observation Station 

 E23A005 – Peterek Coruh River Flow Observation Station 

 E23A016 – Ispir Bridge Coruh River Flow Observation Station 

 E23A020 – Laleli Coruh River Flow Observation Station 

 E23A021 – Dutdere Parhal Creek Flow Observation Station 

 E23A023 – Ishan Bridge Oltu Creek Flow Observation Station 

 

2.6. Runoff Predictions 

Monthly runoff predictions over each of six DSI stations are made using three different 

data sets. These data sets are respectively; DSI streamflow observation station data 

coupled with nearest MGM Station rainfall data, DSI streamflow observation station 

data coupled with TRMM Single Pixel (only pixel which covers the DSI streamflow 

observation station location) precipitation data and lastly DSI streamflow observation 

station data coupled with TRMM Catchment Average (all TRMM measurement pixels 

which cover the sub-basin of DSI streamflow observation station) rainfall.  

Figure 18 shows the Sub-Basins and locations of TRMM measurement pixels and land 

observation stations. Following sections provide detailed information about the data 

coupling with respect to DSI observation stations.  
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2.6.1. Station E23A004 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A004. Figure 2.22 shows the catchment area of the 

DSI streamflow observation station E23A004 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A004 Streamflow Data coupled with MGM 17089 station rainfall data  

 DSI E23A004 Streamflow Data coupled with TRMM Pixel no 1.5 data (Pixel 

no 1.5 covers the station E23A004) 

 DSI E23A004 Streamflow Data coupled with average of TRMM Pixels no 1.5, 

1.6, 2.5, 2.6, 3.5, 3.6, 4.5, 4.6, 5.5 data (Pixels cover the catchment area of 

E23A004 station) 

 

 

Figure 2.22 Location map of Station E23A004 and related MGM Station and TRMM 

Pixels 
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2.6.2. Station E23A005 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A005. Figure 2.23 shows the catchment area of the 

DSI streamflow observation station E23A005 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A005 Streamflow Data coupled with MGM 17666 station rainfall data  

 DSI E23A005 Streamflow Data coupled with TRMM Pixel no 6.3 data (Pixel 

no 6.3 covers the station E23A005) 

 DSI E23A005 Streamflow Data coupled with average of TRMM Pixels no 0.4, 

0.5, 0.6, 1.4, 1.5, 1.6, 2.4, 2.5, 2.6, 3.4, 3.5, 3.6, 4.3, 4.4, 4.5, 5.3, 5.4, 6.3, 6.4 

data (Pixels cover the catchment area of E23A005 station) 

 

 

Figure 2.23 Location map of Station E23A005 and related MGM Station and TRMM 

Pixels 
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2.6.3. Station E23A016 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A016. Figure 2.24 shows the catchment area of the 

DSI streamflow observation station E23A016 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A016 Streamflow Data coupled with MGM 17666 station rainfall data  

 DSI E23A016 Streamflow Data coupled with TRMM Pixel no 4.4 data (Pixel 

no 4.4 covers the station E23A016) 

 DSI E23A016 Streamflow Data coupled with average of TRMM Pixels no 0.4, 

0.5, 0.6, 1.4, 1.5, 1.6, 2.4, 2.5, 2.6, 3.4, 3.5, 3.6, 4.3, 4.4, 4.5, data (Pixels cover 

the catchment area of E23A016 station) 

 

 

Figure 2.24 Location map of Station E23A016 and related MGM Station and TRMM 

Pixels 
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2.6.4. Station E23A020 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A020. Figure 2.25 shows the catchment area of the 

DSI streamflow observation station E23A020 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A020 Streamflow Data coupled with MGM 17089 station rainfall data  

 DSI E23A020 Streamflow Data coupled with TRMM Pixel no 3.5 data (Pixel 

no 3.5 covers the station E23A020) 

 DSI E23A020 Streamflow Data coupled with average of TRMM Pixels no 0.4, 

0.5, 0.6, 1.4, 1.5, 1.6, 2.4, 2.5, 2.6, 3.4, 3.5, 3.6, 4.5, data (Pixels cover the 

catchment area of E23A020 station) 

 

Figure 2.25 Location map of Station E23A020 and related MGM Station and 

TRMM Pixels 
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2.6.5. Station E23A021 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A021. Figure 2.26 shows the catchment area of the 

DSI streamflow observation station E23A021 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A021 Streamflow Data coupled with MGM 17668 station rainfall data  

 DSI E23A021 Streamflow Data coupled with TRMM Pixel no 6.3 data (Pixel 

no 6.3 covers the station E23A021) 

 DSI E23A021 Streamflow Data coupled with average of TRMM Pixels no5.2, 

5.3, 6.2, 6.3 data (Pixels cover the catchment area of E23A021 station) 

 

 

Figure 2.26 Location map of Station E23A021 and related MGM Station and TRMM 

Pixels 
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2.6.6. Station E23A023 

Three different rainfall-runoff data sets are coupled for the flow predictions of DSI 

streamflow observation station E23A023. Figure 2.27 shows the catchment area of the 

DSI streamflow observation station E23A023 and location, TRMM measurement 

pixels and MGM rainfall observation station locations. Below three scenarios are 

performed to investigate the relationship between precipitation and runoff in detail. 

 

 DSI E23A023 Streamflow Data coupled with MGM 17668 station rainfall data  

 DSI E23A023 Streamflow Data coupled with TRMM Pixel no 7.3 data (Pixel 

no 7.3 covers the station E23A023) 

 DSI E23A023 Streamflow Data coupled with average of TRMM Pixels no 5.4, 

5.5, 6.4, 6.5, 7.3, 7.4, 7.5, 8.3, 8.4, 8.5, 9.3, 9.4, 9.5, 10.3, 10.4 data (Pixels 

cover the catchment area of E23A023 station) 

 

 

Figure 2.27 Location map of Station E23A023 and related MGM Station and 

TRMM Pixels 
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2.7. Performance Statistics 

Generally, in statistical analysis, data split into two parts where some are reserved for 

the training while the remaining part is reserved for the validation. Statistician must be 

sure about the data set is the best set, which, lead the statistician to reliable results. 

This is really difficult and critical for forecasting. The point must be taken into 

consideration is that the training data set must include all kind of observation in it. The 

following section gives brief information on performance statistics to evaluate 

different model prediction performances. 

 

Correlation Coefficient  

The correlation coefficient is used to describe the relation between two or more 

variables. It is a degree of consistency between the variables. Correlation value 

between the observed and predicted streamflow data is calculated as follows; 

 

,ݎ =	
(∑)ି(∑)(∑)

ඥ[(∑మ)ି(∑)మ][(∑మ)ି(∑)మ]
    (2.43) 

 

Where, ݎ, is the correlation coefficient between the observed data and predicted 

values of streamflow “o” is the observation, “p” is the predicted value and n is number 

of data. 

 

Mean Error; 

Mean Error is used to describe the average of all errors between the observed and 

predicted streamflow data. Where “e” is the error.  

 

݁ =  −        (2.44)
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ߤ =	
∑ 
సభ
୬

      (2.45) 

 

Standard Deviation of Data and Standard Deviation of Error; 

Standard Deviation of Data and Standard Error of Predicted Data is used to describe 

standardized deviations of data and error terms. Greater standard deviation in error 

than the standard deviation of data indicates the unuseful predictions. 

 

௫ߪ = ටଵ

∑ ݔ) ௫)ଶߤ	−
ୀଵ                    (2.46) 

 

Root Mean Squared Error; 

Root Mean Squared Error is used to describe the square root of the mean of the square 

of all errors.  

 

ܧܵܯܴ =	ටଵ

∑݁ଶ                       (2.47) 
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CHAPTER 3 

 

 

RESULTS and DISCUSSIONS 

 

 

 

3.1. Analysis of Precipitation Data 

MGM ground-based precipitation data sets and related TRMM observation data sets 

compared and correlation coefficients between full-time series, climatology 

components, and anomaly components are given in Table 3.1. 

 

Table 3.1 Correlations between MGM station data and TRMM product 

 

  

In the calculations nearest MGM observation station data and TRMM pixel data which 

covers the related DSI streamflow stations are coupled. As the distance between the 

MGM station and TRMM Pixel (which covers the DSI Streamflow Station) increases, 

poor correlations are obtained. In that cases, TRMM Catchment Average data sets are 

provided relatively better correlations with the MGM ground-based precipitation 

observations.  

Climatology CompleteTS Anomaly Comp. Climatology CompleteTS Anomaly Comp. Climatology CompleteTS Anomaly Comp.

MGM 
-

TRMM 
Single Pixel

(Climatology)

MGM 
-

TRMM 
Single Pixel
(Complete
TimeSerie)

MGM 
-

TRMM 
Single Pixel
(Anomaly

Component)

MGM 
-

TRMM
Catchment

Average
(Climatology)

MGM 
-

TRMM
Catchment

Average
(Complete
TimeSerie)

MGM 
-

TRMM
Catchment

Average
(Anomaly)

TRMM
Single
Pixel

-
TRMM

Catchment
Average

(Climatology)

TRMM
Single
Pixel

-
TRMM

Catchment
Average

(Complete
TimeSerie)

TRMM
Single
Pixel

-
TRMM

Catchment
Average

(Anomaly
Component)

E23A004 0,666 0,649 0,648 0,766 0,703 0,672 0,986 0,972 0,966
E23A005 0,640 0,656 0,668 0,683 0,656 0,659 0,947 0,903 0,891
E23A016 0,649 0,597 0,588 0,686 0,652 0,653 0,918 0,934 0,944
E23A020 0,712 0,664 0,654 0,700 0,654 0,632 0,991 0,978 0,975
E23A021 0,343 0,500 0,598 0,745 0,569 0,499 0,851 0,910 0,936
E23A023 0,350 0,545 0,661 0,802 0,756 0,735 0,790 0,891 0,945

Stations

Correlations Between Precipitation Datasets
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On the other hand, correlation coefficient values between climatology components of 

data sets are expected to show higher values than the full-time series and anomaly 

component correlations. Anomaly component correlation coefficient values are 

expected to show lower values. In this aspect, MGM ground-based observations and 

TRMM satellite measurements show some inconsistency.  

 

3.2. Analysis of Streamflow Data 

Another correlation calculation is made for the DSI station observations between years 

1970 and 2011. In the absence of data for a specific station or an ungauged region of 

the basin other station observations can provide insights about the region or can be 

used to complete missing data in the time series. Table 3.2 shows the correlations 

between the DSI Streamflow Observation stations.  

 

Table 3.2 Correlations between the DSI streamflow observation station data 

 

 

It is expected that Persistence-Based predictions would provide better correlation 

results for a streamflow time series with a lag-1 autocorrelation coefficient greater than 

0.50 than the Climatology-Based Predictions. Table 3.3 shows the lag-1 

autocorrelations, mean values, standard deviations and % of the variability of the DSI 

Streamflow Observation stations data.  

 

 

 

Correlations E23A004 E23A005 E23A016 E23A020 E23A021 E23A023
E23A004 1,000 0,968 0,967 0,973 0,828 0,941
E23A005 0,968 1,000 0,979 0,970 0,883 0,935
E23A016 0,967 0,979 1,000 0,985 0,810 0,909
E23A020 0,973 0,970 0,985 1,000 0,788 0,909
E23A021 0,828 0,883 0,810 0,788 1,000 0,805
E23A023 0,941 0,935 0,909 0,909 0,805 1,000
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Table 3.3 DSI streamflow observation stations data statistics and autocorrelation 

values 

 

 

Deviations of streamflow data show that climatology component of streamflow data 

contains more than 80% of variability while anomaly component contains 

approximately 20% of total variability. 

The hypsometric curve of the basin (Figure 3.1) shows that the elevation of the basin 

changes between the 0m and 4000m and approximately 40% of the basin surface area 

is above the 2000m elevation. This condition causes great temperature changes 

between higher and lower places of the basin. Precipitation that falls to the basin is 

preserved in form of snow due to this temperature changes on the higher grounds and, 

with the increasing temperatures in April and May, melting snow participates to the 

streamflow forming peak values of streamflow.  

 

 

Figure 3.1 Hypsometric curve of the Coruh Basin 

Full TimeSerie Climatology Anomaly Full TimeSerie Climatology Anomaly Full TimeSerie Climatology Anomaly
E23A004 0,60 15,512 15,959 -0,447 16,531 15,011 6,924 100 82,46 17,54
E23A005 0,67 69,194 69,194 0,000 73,146 66,465 30,541 100 82,57 17,43
E23A016 0,63 38,983 38,983 0,000 44,316 40,110 18,843 100 81,92 18,08
E23A020 0,62 29,387 29,387 0,000 33,671 30,374 14,530 100 81,38 18,62
E23A021 0,70 14,058 14,058 0,000 13,252 12,453 4,533 100 88,30 11,70
E23A023 0,55 33,506 32,708 0,798 33,847 28,301 18,566 100 69,91 30,09

Mean Standard Deviation % of Variability of Data
Stations

Lag-1
Auto

Correlation
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3.3. Streamflow Predictions 

Streamflow predictions are made for each of 6 available streamflow observations. 

These predictions are made using 3 different precipitation data sets (MGM ground-

based observations, TRMM Single Pixel and TRMM Catchment Average 

measurements). 6 different methods (SLR, MLR, ANN, Copula, Climatology, and 

Persistence) used with 2 different data set components (complete data sets and 

anomaly components only). Climatology and Persistence predictions form the 

benchmarks that the predictions are compared against. 
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3.3.1. Station E23A004 

 

3.3.1.1. Predictions Using Meteorology Data 

Figure 3.2 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.4. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Persistence-

Based predictions provided the best result for the streamflow data while Climatology-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.2 Station E23A004 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.4 Performance statistics of station E23A004 with meteorology data - complete data 

set predictions 

 

Similar results are obtained from the SLR, MLR and MLP models but showing under 

0.60 correlation. Copula functions couldn’t identify a skillful relationship for complete 

data sets as the other models. To further investigate the source of the predictive skills 

of these methods, additional predictions are made using the standardized anomaly 

components of data sets. Figure 3.3 shows the validation time series of the anomaly 

component predictions. 

 

 

Figure 3.3 Station E23A004 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 
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Addition of climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.50 to above 0.90 with decreasing RMSE values and mean 

error. Performance statistics of validation time series are provided in Table 3.5. 

 

Table 3.5 Performance statistics of station E23A004 with meteorology data – anomaly 

component data set predictions 
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3.3.1.2. Predictions Using TRMM Single Pixel Data 

Figure 3.4 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.6. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Persistence-

Based predictions provided the best result for the streamflow data while Climatology-

Based predictions of the streamflow have over 0.90 correlations with the validation 

data.  

  

 

Figure 3.4 Station E23A004 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.6 Performance statistics of station E23A004 with TRMM single pixel data - 

complete data set predictions 

 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.30 correlation and some artificial skills. These models could not 

identify a skillful relationship between the Rainfall and Runoff mainly due to lack of 

data. 9 years of monthly streamflow data and precipitation data could not train the 

models.  

 

Figure 3.5 Station E23A004 DSI streamflow data v.s. TRMM single pixel precipitation data 

anomaly component data set predictions 
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.5 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error. Performance statistics of validation time series are provided in Table 3.7. 

 

Table 3.7 Performance statistics of station E23A004 with TRMM single pixel data – 

anomaly component data set predictions 
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3.3.1.3. Predictions Using TRMM Catchment Average Data  

Figure 3.6 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.8. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Persistence-

Based predictions provided the best result for the streamflow data while Climatology-

Based predictions of the streamflow have over 0.90 correlations with the validation 

data.  

  

 

Figure 3.6 Station E23A004 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.8 Performance statistics of station E23A004 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.30 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.7 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.7 Station E23A004 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.9. 

 

Table 3.9 Performance statistics of station E23A004 with catchment average data – anomaly 

component data set predictions 
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3.3.2. Station E23A005 

 

3.3.2.1. Predictions Using Meteorology Data 

Figure 3.8 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.10. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.8 Station E23A005 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.10 Performance statistics of station E23A005 with meteorology data - complete data 

set predictions 

 

 

Similar results are obtained from the SLR and MLR models but showing 0.60 

correlation. MLP model seems to identify the relationship but showing 0.40 

correlation. Copula functions couldn’t identify a skillful relationship for complete data 

sets.  

 

 

Figure 3.9 Station E23A005 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 
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To further investigate the source of the predictive skills of these methods, additional 

predictions are made using the standardized anomaly components of data sets. Figure 

3.9 shows the validation time series of the anomaly component predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP, and Copula 

models increased from 0.40 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.11. 

 

Table 3.11 Performance statistics of station E23A005 with meteorology data – anomaly 

component data set predictions 
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3.3.2.2. Predictions Using TRMM Single Pixel Data 

Figure 3.10 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.12. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.10 Station E23A005 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.12 Performance statistics of station E23A005 with TRMM single pixel data - 

complete data set predictions 

 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.30 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not be enough to train the models.  

 

 

Figure 3.11 Station E23A005 DSI streamflow data v.s. TRMM single pixel 

precipitation data anomaly component data set predictions 
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.11 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.13. 

 

Table 3.13 Performance statistics of station E23A005 with TRMM single pixel data – 

anomaly component data set predictions 
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3.3.2.3. Predictions Using TRMM Catchment Average Data  

Figure 3.12 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.14. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.12 Station E23A005 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.14 Performance statistics of station E23A005 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

 

 

Figure 3.13 Station E23A005 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.13 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.15. 

 

Table 3.15 Performance statistics of station E23A005 with catchment average data – 

anomaly component data set predictions 
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3.3.3. Station E23A016 

 

3.3.3.1. Predictions Using Meteorology Data 

Figure 3.14 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.16. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.14 Station E23A016 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.16 Performance statistics of station E23A016 with meteorology data - complete data 

set predictions 

 

Similar results are obtained from the SLR and MLR models but showing 0.20 

correlation. Copula functions couldn’t identify a skillful relationship for complete data 

sets. MLP model is showed some artificial results. To further investigate the source of 

the predictive skills of these methods, additional predictions are made using the 

standardized anomaly components of data sets. Figure 3.15 shows the validation time 

series of the anomaly component predictions. 

 

 

Figure 3.15 Station E23A016 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.17. 

 

Table 3.17 Performance statistics of station E23A016 with meteorology data – anomaly 

component data set predictions 
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3.3.3.2. Predictions Using TRMM Single Pixel Data 

Figure 3.16 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.18. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.16 Station E23A016 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.18 Performance statistics of station E23A016 with TRMM single pixel data - 

complete data set predictions 

 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

 

 

Figure 3.17 Station E23A016 DSI streamflow data v.s. TRMM single pixel precipitation data 

anomaly component data set predictions 
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.17 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.19. 

 

Table 3.19 Performance statistics of station E23A016 with TRMM single pixel data – 

anomaly component data set predictions 
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3.3.3.3. Predictions Using TRMM Catchment Average Data  

Figure 3.18 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.20. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.18 Station E23A016 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.20 Performance statistics of station E23A016 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.19 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.19 Station E23A016 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.21. 

 

Table 3.21 Performance statistics of station E23A016 with catchment average data – 

anomaly component data set predictions 
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3.3.4. Station E23A020 

 

3.3.4.1. Predictions Using Meteorology Data 

Figure 3.20 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.22. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.20 Station E23A020 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.22 Performance statistics of station E23A020 with meteorology data - complete data 

set predictions 

 

Similar results are obtained from the SLR, MLR and MLP models but showing 0.60 

correlation. Copula functions couldn’t identify a skillful relationship for complete data 

sets. To further investigate the source of the predictive skills of these methods, 

additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.21 shows the validation time series of the anomaly component 

predictions. 

 

 

Figure 3.21 Station E23A020 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,931 0,882 0,600 0,604 0,604 0,586 0,578
Standard Deviation of Observation 38,335 38,335 38,335 38,335 38,335 38,335 38,335
Standard Deviation of Errors 14,913 19,861 31,025 30,837 30,988 32,848 34,209
Mean Error 4,685 -1,217 2,069 1,994 2,114 13,878 14,694
RMSE 15,557 19,794 30,933 30,740 30,899 35,501 37,067
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.60 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.23. 

 

Table 3.23 Performance statistics of station E23A020 with meteorology data – anomaly 

component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,931 0,882 0,935 0,934 0,930 0,931 0,934
Standard Deviation of Observation 38,335 38,335 38,335 38,335 38,335 38,335 38,335
Standard Deviation of Errors 14,913 19,861 14,750 14,753 15,745 14,167 14,499
Mean Error 4,685 -1,217 5,259 5,153 -0,525 5,701 6,718
RMSE 15,557 19,794 15,587 15,555 15,671 15,203 15,911
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics



91 
 

3.3.4.2. Predictions Using TRMM Single Pixel Data 

Figure 3.22 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.24. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.22 Station E23A020 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.24 Performance statistics of station E23A020 with TRMM single pixel data - 

complete data set predictions 

 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.30 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

 

 

Figure 3.23 Station E23A020 DSI streamflow data v.s. TRMM single pixel 

precipitation data anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,951 0,923 0,214 0,258 0,131 0,106 0,135
Standard Deviation of Observation 33,128 33,128 33,128 33,128 33,128 33,128 33,128
Standard Deviation of Errors 10,289 15,124 32,378 32,007 33,667 32,944 32,852
Mean Error 1,822 -2,379 1,265 1,652 1,236 17,144 17,486
RMSE 10,307 15,101 31,950 31,602 33,219 36,730 36,811
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.23 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.30 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.25. 

 

Table 3.25 Performance statistics of station E23A020 with TRMM single pixel data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,951 0,923 0,957 0,957 0,948 0,946 0,949
Standard Deviation of Observation 33,128 33,128 33,128 33,128 33,128 33,128 33,128
Standard Deviation of Errors 10,289 15,124 9,593 9,673 10,566 12,485 12,394
Mean Error 1,822 -2,379 2,061 2,015 1,383 7,756 7,895
RMSE 10,307 15,101 9,681 9,748 10,509 14,550 14,549
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics
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3.3.4.3. Predictions Using TRMM Catchment Average Data  

Figure 3.24 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.26. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

  

Figure 3.24 Station E23A020 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.26 Performance statistics of station E23A020 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.25 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.25 Station E23A020 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,951 0,923 0,167 0,227 0,038 0,044 0,046
Standard Deviation of Observation 33,128 33,128 33,128 33,128 33,128 33,128 33,128
Standard Deviation of Errors 10,289 15,124 32,923 32,453 34,738 33,201 33,124
Mean Error 1,822 -2,379 1,314 1,890 0,319 17,719 18,187
RMSE 10,307 15,101 32,489 32,055 34,254 37,224 37,383
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.27. 

 

Table 3.27 Performance statistics of station E23A020 with catchment average data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,951 0,923 0,955 0,953 0,942 0,952 0,951
Standard Deviation of Observation 33,128 33,128 33,128 33,128 33,128 33,128 33,128
Standard Deviation of Errors 10,289 15,124 9,956 10,110 11,253 12,140 12,254
Mean Error 1,822 -2,379 2,146 1,976 0,774 7,886 8,012
RMSE 10,307 15,101 10,048 10,163 11,123 14,335 14,498
Mean of Observations 29,387 29,387 29,387 29,387 29,387 29,387 29,387

Performance Statistics
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3.3.5. Station E23A021 

 

3.3.5.1. Predictions Using Meteorology Data 

Figure 3.26 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.28. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.26 Station E23A021 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.28 Performance statistics of station E23A021 with meteorology data - complete data 

set predictions 

 

Similar results are obtained from the SLR, MLR and MLP models but showing 0.60 

correlation. Copula models couldn’t identify a skillful relationship for complete data 

sets. To further investigate the source of the predictive skills of these methods, 

additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.27 shows the validation time series of the anomaly component 

predictions. 

 

 

Figure 3.27 Station E23A021 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,885 0,572 0,566 0,573 0,613 0,608
Standard Deviation of Observation 14,164 14,164 14,164 14,164 14,164 14,164 14,164
Standard Deviation of Errors 4,891 6,850 11,724 11,835 11,672 13,762 13,730
Mean Error 1,429 -0,189 -0,356 -0,526 -0,438 7,586 7,569
RMSE 5,071 6,817 11,668 11,785 11,619 15,651 15,616
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.50 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.29. 

 

Table 3.29 Performance statistics of station E23A021 with meteorology data – anomaly 

component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,885 0,938 0,936 0,905 0,909 0,927
Standard Deviation of Observation 14,164 14,164 14,164 14,164 14,164 14,164 14,164
Standard Deviation of Errors 4,891 6,850 4,969 5,069 7,258 6,184 5,428
Mean Error 1,429 -0,189 1,635 1,605 -0,923 1,187 1,364
RMSE 5,071 6,817 5,207 5,292 7,278 6,265 5,570
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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3.3.5.2. Predictions Using TRMM Single Pixel Data 

Figure 3.28 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.30. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.28 Station E23A021 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.30 Performance statistics of station E23A021 with TRMM single pixel data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.30 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.29 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.29 Station E23A021 DSI streamflow data v.s. TRMM single pixel precipitation data 

anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,961 0,938 0,209 0,223 0,118 0,167 0,229
Standard Deviation of Observation 13,879 13,879 13,879 13,879 13,879 13,879 13,879
Standard Deviation of Errors 3,920 4,858 13,576 13,538 14,028 13,687 13,593
Mean Error 0,978 -0,255 -0,268 -0,205 -0,669 5,571 5,991
RMSE 3,987 4,797 13,389 13,350 13,848 14,601 14,681
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.31. 

 

Table 3.31 Performance statistics of station E23A021 with TRMM single pixel data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,961 0,938 0,964 0,961 0,964 0,961 0,964
Standard Deviation of Observation 13,879 13,879 13,879 13,879 13,879 13,879 13,879
Standard Deviation of Errors 3,920 4,858 3,701 3,847 3,699 4,283 4,239
Mean Error 0,979 -0,255 0,009 -0,108 0,625 2,823 2,968
RMSE 3,987 4,796 3,650 3,795 3,700 5,080 5,126
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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3.3.5.3. Predictions Using TRMM Catchment Average Data  

Figure 3.30 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.32. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.30 Station E23A021 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.32 Performance statistics of station E23A021 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.31 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.31 Station E23A021 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,961 0,938 0,033 0,148 0,118 0,172 0,172
Standard Deviation of Observation 13,879 13,879 13,879 13,879 13,879 13,879 13,879
Standard Deviation of Errors 3,920 4,858 13,902 13,730 13,879 13,700 13,700
Mean Error 0,978 -0,255 0,255 0,325 2,943 0,532 0,532
RMSE 3,987 4,797 13,710 13,541 13,998 13,519 13,519
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.33. 

 

Table 3.33 Performance statistics of station E23A021 with catchment average data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,961 0,938 0,965 0,964 0,962 0,961 0,964
Standard Deviation of Observation 13,879 13,879 13,879 13,879 13,879 13,879 13,879
Standard Deviation of Errors 3,920 4,858 3,703 3,723 3,817 3,894 5,135
Mean Error 0,979 -0,255 0,267 0,246 0,828 1,005 4,763
RMSE 3,987 4,796 3,661 3,680 3,854 3,969 6,952
Mean of Observations 14,058 14,058 14,058 14,058 14,058 14,058 14,058

Performance Statistics
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3.3.6. Station E23A023 

 

3.3.6.1. Predictions Using Meteorology Data 

Figure 3.32 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.34. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.32 Station E23A023 DSI streamflow data v.s. meteorology precipitation data 

complete data set predictions 
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Table 3.34 Performance statistics of station E23A023 with meteorology data - complete data 

set predictions 

 

Similar results are obtained from the SLR and MLR models but showing 0.60 

correlation. Copula functions couldn’t identify a skillful relationship for complete data 

sets. MLP model is also provided results that showing 0.60 correlation.To further 

investigate the source of the predictive skills of these methods, additional predictions 

are made using the standardized anomaly components of data sets. Figure 3.33 shows 

the validation time series of the anomaly component predictions. 

 

 

Figure 3.33 Station E23A023 DSI streamflow data v.s. meteorology precipitation data 

anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,925 0,701 0,604 0,609 0,633 0,551 0,551
Standard Deviation of Observation 36,453 36,453 36,453 36,453 36,453 36,453 36,453
Standard Deviation of Errors 14,819 31,101 29,071 28,971 28,242 35,938 35,912
Mean Error 7,582 3,709 2,812 2,225 1,982 22,071 22,060
RMSE 16,577 31,160 29,056 28,905 28,164 42,015 41,986
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.50 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.35. 

 

Table 3.35 Performance statistics of station E23A023 with meteorology data – anomaly 

component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,925 0,701 0,921 0,918 0,903 0,894 0,918
Standard Deviation of Observation 36,453 36,453 36,453 36,453 36,453 36,453 36,453
Standard Deviation of Errors 14,819 31,102 14,643 14,864 21,651 16,811 14,498
Mean Error 7,582 3,709 7,029 7,037 -0,674 7,132 8,495
RMSE 16,577 31,161 16,174 16,376 21,548 18,181 16,738
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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3.3.6.2. Predictions Using TRMM Single Pixel Data 

Figure 3.34 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.36. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

  

 

Figure 3.34 Station E23A023 DSI streamflow data v.s. TRMM single pixel precipitation data 

complete data set predictions 
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Table 3.36 Performance statistics of station E23A023 with TRMM single pixel data - 

complete data set predictions 

 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.20 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data and showed artificial skills 

in predictions. 9 years of monthly streamflow data and precipitation data could not 

train the models.  

 

Figure 3.35 Station E23A023 DSI streamflow data v.s. TRMM single pixel precipitation data 

anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,863 0,106 0,220 0,171 0,065 0,093
Standard Deviation of Observation 35,399 35,399 35,399 35,399 35,399 35,399 35,399
Standard Deviation of Errors 12,954 20,468 35,206 34,544 34,887 35,375 35,270
Mean Error 8,487 -0,661 11,796 12,953 8,921 16,900 22,642
RMSE 15,335 20,193 36,663 36,440 35,537 38,759 41,498
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.35 shows the validation time series of the anomaly component 

predictions. 

Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.20 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.37. 

 

Table 3.37 Performance statistics of station E23A023 with TRMM single pixel data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,863 0,926 0,925 0,933 0,933 0,934
Standard Deviation of Observation 35,399 35,399 35,399 35,399 35,399 35,399 35,399
Standard Deviation of Errors 12,955 20,468 15,807 15,852 13,488 15,405 16,640
Mean Error 8,488 -0,660 11,874 11,857 8,781 12,714 14,898
RMSE 15,336 20,192 19,594 19,619 15,937 19,808 22,162
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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3.3.6.3. Predictions Using TRMM Catchment Average Data  

Figure 3.36 shows the validation time series of the predictions and performance 

statistics of validation time series are provided in Table 3.38. Overall correlations and 

RMSE values show a consistent pattern; the methods with higher correlation values 

have lower RMSE value. Among all the complete data set predictions, Climatology-

Based predictions provided the best result for the streamflow data while Persistence-

Based predictions of the streamflow have approximately 0.90 correlations with the 

validation data.  

 

 

Figure 3.36 Station E23A023 DSI streamflow data v.s. TRMM catchment average 

precipitation data complete data set predictions 
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Table 3.38 Performance statistics of station E23A023 with TRMM catchment average data - 

complete data set predictions 

 

Similar results are obtained from the SLR, MLR, MLP and Copula models but 

showing under 0.40 correlation. These models could not identify a skillful relationship 

between the Rainfall and Runoff mainly due to lack of data. 9 years of monthly 

streamflow data and precipitation data could not train the models.  

Additional predictions are made using the standardized anomaly components of data 

sets. Figure 3.37 shows the validation time series of the anomaly component 

predictions. 

 

Figure 3.37 Station E23A023 DSI streamflow data v.s. TRMM catchment average 

precipitation data anomaly component data set predictions 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,863 0,368 0,351 0,305 0,367 0,444
Standard Deviation of Observation 35,399 35,399 35,399 35,399 35,399 35,399 35,399
Standard Deviation of Errors 12,954 20,468 33,225 33,603 34,307 33,328 32,633
Mean Error 8,487 -0,661 8,420 7,705 3,363 15,699 14,954
RMSE 15,335 20,193 33,825 34,017 33,994 36,420 35,482
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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Addition of Climatology component to the standardized anomaly component 

predictions showed above 0.90 correlations, these improved predictions are shoving 

heavy majority of the predictive skill and the relation between the precipitation and 

the streamflow data sets are due to the strong seasonality.  

Correlations of predictions which are obtained from the SLR, MLR, MLP and Copula 

models increased from 0.30 to above 0.90 with decreasing RMSE values and mean 

error term. Performance statistics of validation time series are provided in Table 3.39. 

 

Table 3.39 Performance statistics of station E23A023 with catchment average data – 

anomaly component data set predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Climatology Persistence SLR MLR MLP NC FC
Corelations 0,940 0,863 0,908 0,923 0,926 0,938 0,935
Standard Deviation of Observation 35,399 35,399 35,399 35,399 35,399 35,399 35,399
Standard Deviation of Errors 12,955 20,468 16,448 15,594 14,298 14,594 14,632
Mean Error 8,488 -0,660 10,658 10,907 8,739 12,176 11,907
RMSE 15,336 20,192 19,407 18,851 16,587 18,849 18,706
Mean of Observations 33,506 33,506 33,506 33,506 33,506 33,506 33,506

Performance Statistics
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3.4. Discussion of Predictions 

The summary of the correlations of complete data set predictions and anomaly 

component predictions with the streamflow validation time series are shown in Table 

3.40 and Table 3.41.  

Table 3.40 Summary of the correlations of complete data set predictions with the streamflow 

validation time series 

 

Table 3.41 Summary of the correlations of anomaly component data set predictions with the 

streamflow validation time series 

 

Station Climatology Persistence SLR MLR MLP NC FC
E23A004 0,919 0,919 0,531 0,531 0,545 0,453 0,551
E23A005 0,931 0,884 0,604 0,605 0,437 0,432 0,427
E23A016 0,922 0,859 0,253 0,253 0,458 0,431 0,441
E23A020 0,931 0,882 0,600 0,604 0,604 0,586 0,578
E23A021 0,940 0,885 0,572 0,566 0,573 0,613 0,608
E23A023 0,925 0,701 0,604 0,609 0,633 0,551 0,551
E23A004 0,919 0,919 0,103 0,233 -0,123 0,111 0,111
E23A005 0,931 0,884 0,228 0,268 0,238 0,139 0,152
E23A016 0,922 0,859 0,225 0,138 0,157 0,040 0,160
E23A020 0,931 0,882 0,214 0,258 0,131 0,106 0,135
E23A021 0,940 0,885 0,209 0,223 0,118 0,167 0,229
E23A023 0,925 0,701 0,106 0,220 0,171 0,065 0,093
E23A004 0,919 0,919 0,198 0,250 -0,043 0,196 0,166
E23A005 0,931 0,884 0,154 0,205 0,065 0,007 0,037
E23A016 0,922 0,859 0,182 0,215 0,084 0,063 0,073
E23A020 0,931 0,882 0,167 0,227 0,038 0,044 0,046
E23A021 0,940 0,885 0,033 0,148 0,118 0,172 0,172
E23A023 0,925 0,701 0,368 0,351 0,305 0,367 0,444TR
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Station Climatology Persistence SLR MLR MLP NC FC
E23A004 0,919 0,919 0,918 0,916 0,913 0,917 0,920
E23A005 0,931 0,884 0,928 0,924 0,938 0,939 0,941
E23A016 0,922 0,859 0,918 0,921 0,930 0,929 0,925
E23A020 0,931 0,882 0,935 0,934 0,930 0,931 0,934
E23A021 0,940 0,885 0,938 0,936 0,905 0,909 0,927
E23A023 0,925 0,701 0,921 0,918 0,903 0,894 0,918
E23A004 0,919 0,919 0,963 0,962 0,962 0,967 0,967
E23A005 0,931 0,884 0,945 0,940 0,946 0,941 0,935
E23A016 0,922 0,859 0,929 0,925 0,945 0,928 0,930
E23A020 0,931 0,882 0,957 0,957 0,948 0,946 0,949
E23A021 0,940 0,885 0,964 0,961 0,964 0,961 0,964
E23A023 0,925 0,701 0,926 0,925 0,933 0,933 0,934
E23A004 0,919 0,919 0,965 0,965 0,963 0,969 0,966
E23A005 0,931 0,884 0,946 0,944 0,943 0,944 0,945
E23A016 0,922 0,859 0,928 0,927 0,932 0,928 0,930
E23A020 0,931 0,882 0,955 0,953 0,942 0,952 0,951
E23A021 0,940 0,885 0,965 0,964 0,962 0,961 0,964
E23A023 0,925 0,701 0,908 0,923 0,926 0,938 0,935
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Overall results show that the best predictions are obtained from the climatology-based 

predictions of the stations for the complete data sets while persistence-based 

predictions have approximately 0.90 correlations with the observations. However, 

predictions which are using standardized anomaly component with different models 

are improved when long-term climatology values added as it is expected. These 

improved predictions indicate that the relation between the precipitation and the 

streamflow data sets are due to the strong seasonality. The results that the perfect 

knowledge of seasonality of the streamflow (i.e., climatology-based predictions) yield 

much better prediction that the prediction models (regression, ANN, and copula) may 

be primarily because the prediction models fail to accurately estimate the seasonality 

component of the streamflow while perfect knowledge of seasonality yield a much 

better prediction because the variability of the seasonality component of the 

streamflow data is much higher (~80%, Table 3.3) than the anomaly component 

(~20%). 

Supporting these results, the anomaly predictions are made and then the perfect 

knowledge of the seasonality is added to yield a quantitative streamflow forecast, the 

skill (i.e., correlations) of the predictions increase to above 0.90. These results signify 

the choice of prediction model has secondary importance compared to accurate 

knowledge of seasonality of the streamflow data; perfect knowledge of the higher 

variability component of streamflow data (i.e., seasonality) primarily drives the skill 

of the predictions, while the inter annual deviations from these climatological 

components (i.e., anomalies) only marginally impact the overall accuracy of the 

complete time series predictions. 

On the other hand, for drought related studies and the secondary energy generation 

(i.e., additional energy that can be generated in case additional hydropower potential 

is available in addition to the firm energy that is guaranteed to be supplied 95% of the 

time) the streamflow data anomalies (i.e., deviations from the long term means) are 

more important particularly for future energy generation planning studies (i.e., the 

future decisions about the quantity of water to be used for electricity generation 

compared to other usages like irrigation or the decision to generate more electricity 
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with excess water during high water seasons can be better done by using better 

anomaly predictions). This shows despite the seasonality component of the streamflow 

dominates the complete time series related statistics, anomaly component predictions 

have crucial effect for many applications. For such applications the skill and the choice 

of the prediction models (e.g., regression, ANN, copula) becomes very critical.  

Correlations of real-time observations and predictions are improved from 0.20 to 

above 0.90 after long-term climatology values added. Added utility of climatology 

component show that the climatology component generates the main part of predictive 

skills. The main reason that streamflow climatology contains approximately 80% of 

total variability. These results showed that the main driver of the streamflow for the 

Coruh Basin is not the precipitation but snow-melting. Geological composition of the 

basin causes this condition. Despite, maximum streamflow values occur in May while 

maximum precipitation occurs in April and October for any given year in Coruh Basin. 

So, this condition shows that the main driver of streamflow of Coruh Basin is snow 

melting meaning that the temperature. Temperature data may provide better results 

than the precipitation data in streamflow predictions over Coruh Basin.  

Among all the models that used for the calculations (SLR, MLR, MLP, NC, FC); MLR 

model provided the best results for the complete data set predictions while copula 

functions have the worst model performances. SLR and FC model performances are 

improved when the long-term climatology components added to the anomaly based 

predictions. Figure 3.38 and Figure 3.39 shows the averaged overall model correlation 

performances with different precipitation data sets and different components of the 

data sets.  
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Figure 3.38 Overall average model correlations of complete data set predictions 

 

 

Figure 3.39 Overall average model correlations of anomaly component data set predictions 

 

Considering the complete time series correlations between the TRMM single pixel 

estimates and station-based datasets are between 0.50 and 0.66 and correlations 

between the TRMM catchment average estimates and station-based datasets are 

between 0.57 and 0.76 (Table 3.1), the averaging operator applied in the vicinity of 

ground station increasing the correlations between the TRMM estimates and the 

station observations. On the other hand, this performance improvement is reduced with 

the increase of catchment area size; for larger catchments the TRMM catchment 

average precipitation estimates are less skillful than the single pixel estimates. These 

results imply TRMM individual pixel estimates may have random errors that can be 

reduced via spatial filtering techniques over relatively small catchments. 

Model streamflow prediction performances in general vary; however, for TRMM 

single pixel vs TRMM catchment average precipitation-based prediction results only 
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marginally improve even though the catchment average TRMM precipitation 

estimates considerably better represent the station-based precipitation datasets than 

single pixel TRMM estimates (Table 3.40). This result shows TRMM precipitation 

errors are not low enough to be skillfully utilized in streamflow predictions over Coruh 

basin using the prediction methods investigated here. This signifies the local station-

based precipitation observations are important in streamflow predictions as they have 

the ability to catch the local climatic variability.  

Stations with smaller drainage area, like E23A021, has improved predictions utilizing 

the catchment average precipitation than the single pixel precipitation observations. 

For the predictions using TRMM catchment average precipitation data sets, the 

prediction skills and the errors are not very sensitive to the drainage area size; the 

prediction results are only marginally different. But results show that the importance 

of remote sensing data usage in rainfall-runoff modeling. Despite, local observations 

provided the best results, anomaly-based predictions which are obtained from the 

remote sensing data also provided strong results as with the local observations. Having 

short time series (Total 12 years – 9 years for training) cause some problems to train 

the models with the TRMM data.  

Over certain basins, the monthly streamflow discharge rates are dominated by the 

seasonality of the snow melt and the ground water contribution: during the early spring 

months the streamflow discharge rates are heavily impacted by the snow melt 

contribution while the low discharge rate during summer months as a direct result of 

the reduced precipitation rates and ground water levels. Considering the total 

streamflow discharge rates time series signal can be decomposed into seasonality (i.e., 

low frequency and slowly varying component) and anomaly (i.e., high frequency and 

frequently varying component) components, the knowledge of the seasonality alone 

may give valuable predictive information related with the streamflow discharge rate 

itself. Given there is heavy snow melt and the precipitation seasonality over some 

basins in Turkey (i.e., the highest and the lowest flows occur during the spring and the 

summer months respectively, while the difference between the highest and the lowest 

values is great compared to the overall variability of the time series), the climatology 
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of the snow melt (primarily driven by temperature) and the precipitation heavily 

dominates the streamflow discharge rates. Accordingly, the climatology of the 

streamflow rates alone may serve a skillful streamflow discharge rate predictor for any 

year given the climatology of the historical data are available. This is why the 

climatology-based predictions proved to be very skillful compared to predictions made 

using other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 
 

CHAPTER 4 

 

 

SUMMARY and CONCLUSION 

 

 

 

Streamflow data sets are predicted using precipitation data sets utilizing Simple Linear 

Regression (SLR), Multiple Linear Regression (MLR), Artificial Neural Network 

Model (MLP) and Copula (Normal Copula and Frank Copula) methods. The 

predictions are compared with benchmarks obtained using climatology- and 

persistence-based streamflow predictions, where climatology of the streamflow is 

heavily dominated by the seasonality of the snow melt (early spring) and the 

temperature over Coruh basin. To further investigate the source of the predictive skills 

of these methods, separate predictions are made using the standardized anomaly 

components of data sets (after climatology components are removed) and complete 

data sets (non-standardized data sets retaining both anomaly and climatology 

components). Separate monthly predictions are made utilizing station- (total 42 years 

observations) and remote sensing TRMM-based (total 12 years estimations) monthly 

precipitation data sets over six streamflow observation station locations over Coruh 

Basin in Turkey.  

Results show that climatology benchmark-based streamflow predictions for the 

complete data sets have the highest correlations (>0.90) with the actual observations 

while persistence-based predictions are only marginally lower than these predictions. 

In general, MLP and Copula functions could not identify a skillful relationship 

between rainfall-runoff processes for both predictions using the complete data sets; 

however, the prediction skills are improved when anomaly predictions are made and 

the true seasonality (i.e., the component with highest variability) component is added 

to these anomaly predictions. These poor results using the prediction models are 
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primarily because of the poor streamflow seasonality component prediction of the 

predictions models. These results imply the significance of the estimation of true 

climatology in the streamflow estimates over Coruh river basin where the streamflow 

time series complete data set variability is heavily dominated by the climatology 

component rather than anomaly component.  

Predictions using the ground station-based precipitation are more skillful than the 

predictions using the remote sensing-based precipitation data sets using the complete 

streamflow data sets. These results signify the importance of true precipitation data 

sets reflecting the local climatology of the study area. When the true seasonality is 

added to the anomaly-based streamflow predictions, the skills of the predictions 

become closer to the highest obtained climatology- and persistence-based streamflow 

predictions.  

Climatology is the component with the highest skill (because both precipitation and 

streamflow data sets have very strong seasonality). So, in the absence of any 

precipitation or any other data set that can be used as predictor, the use of climatology 

or the persistence-based predictions may provide skillful-enough estimates.  

To make better predictions, if the true long-term seasonality of the streamflow data 

sets are known, then anomaly based predictions using regression, ANN, and Copula 

models can be implemented and then the true seasonality information can be added to 

these anomaly predictions.  

Because there are only a few studies investigating Rainfall-Runoff relation on Coruh 

Basin this study has valuable results for the applications over the basin. Results are 

valuable for dams that are planning to be built for hydropower energy generation 

purposes. Knowing the amount of discharges that come in different time intervals to 

the reservoir area, results of this study can be used for the reservoir operations and 

energy optimization for the individual dams that located in the upper and middle 

stream of the basin. Minimization of the amount of the spilled water or maximization 

of the secondary energy generation particularly during wet seasons are topics of future 

energy generation plans; hence such studies may benefit from investigations presented 
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in this study that utilizes streamflow and precipitation information to predict 

streamflow rates. 

In this study only precipitation data sets are used as predictors; as a follow up, future 

studies could also include temperature data sets as another predictor where temperature 

also show very strong seasonality and primarily drive the snow melt over Coruh basin.   

Averaging the TRMM Pixels in order to obtain TRMM catchment average data may 

cause some loss of information. Alternatively, another study with ANN and Copula 

models can be made by not averaging the TRMM pixels but taking every pixel data as 

a separate input. For example, if there are n pixels that cover the sub-basin of ground 

streamflow observation station, then there will be n sets of precipitation data sets that 

can be used as input to predictive models (Meher, 2014).  

Regulations of the streamflow over Coruh River Upper and Middle streams began in 

year of 2012. Another future study can be made in the context of investigation of the 

regulation effects on streamflow predictions over Coruh Basin, where the climatology-

based predictions might still prove skillful.  
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