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ABSTRACT

NEW MODELING AND ANALYSIS METHODS FOR MICRO-PLATES

Aghazadeh, Reza
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Serkan Dag
Co-Supervisor: Assoc. Prof. Dr. Ender Cigeroglu

September 2017, 99 pages

This study presents strain gradient elasticity based procedures for static
bending, free vibration and buckling analyses of functionally graded rectangular
micro-plates subjected to mechanical and thermal loadings. Mathematically the
non-classical modified couple stress and classical elasticity theories are the two
special cases of the new model. The methods developed allow taking into account
spatial variations of length scale parameters of strain gradient elasticity and
modified couple stress theory. Governing partial differential equations and
boundary conditions are derived by following variational approaches and applying
Hamilton’s principle. Displacement field is expressed in a unified way to produce
numerical results in accordance with Kirchhoff, Mindlin, and third order shear
deformation theories. All material properties, including the length scale
parameters, are assumed to be functions of the plate thickness coordinate in the
derivations. Developed equations are solved numerically by means of differential
quadrature method. Proposed procedures are verified through comparisons made
to the results available in the literature for certain limiting cases. Further
numerical results are provided to illustrate the effects of material and geometric
parameters upon static deflection, vibration frequency, and critical buckling load.

Presented numerical results clearly illustrate size effect at micro-scale, impact of



length scale parameter variations and influence of initial thermal stresses upon

mechanical behavior of functionally graded rectangular micro-plates.
Keywords: functionally graded micro-plates; strain gradient elasticity; modified

couple stress theory; length scale parameters; thermal stresses; bending; free

vibrations; buckling
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0z

MIiKRO-PLAKLAR ICIN YENI MODELLEME VE ANALIZ
TEKNIKLERI

Aghazadeh, Reza
Doktora, Makina Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr Serkan Dag
Es Tez Yoneticisi: Dog. Dr. Ender Cigeroglu

Eyliil 2017, 99 sayfa

Bu arastirma mekanik veya termal yilikleme altindaki fonksiyonel
derecelendirilmis mikro-plaklarin statik egilme, serbest titresim ve burkulma
analizleri i¢in gerinim gradyani elastisitesine dayali yeni yontemler ortaya
koymaktadir. Matematiksel olarak, klasik olmayan modifiye edilmis kuvvet ¢ifti
gerilmesi ve Klasik elastisiste teorileri, yeni modelin 6zel halleridir. Gelistirilen
yontemler, gerinim gradyan1 ve modifiye edilmis kuvve cifti gerilmesi teorilerinin
uzunluk oOlgegi parametrelerindeki uzaysal degisimlerinin hesaba katilmasini
miimkiin kilmaktadir. Yonetici kismi diferansiyel denklemler ve sinir kosullari
varyasyonel yontemler ve Hamilton prensibi uygulanarak tiiretilmistir.
Yerdegistirme alani, Kirchhoff, Mindlin ve tgilincii derece kayma deformasyon
teorilerine gore sayisal sonuclar liretmek icin birlesik bir sekilde ifade edilmistir.
Tiretmede uzunluk Olcegi parametreleri de dahil olmak {izere tiim malzeme
ozellikleri plagin kalinlik koordinatinin fonksiyonlar1 olarak varsayilmistir.
Gelistirilen denklemler sayisal olarak, diferansiyel kare yapma (quadrature)
metodu ile ¢oziilmiistiir. Onerilen yontemler, bazi kisitlayict durumlar igin
literatlirde mevcut sonuglar ile karsilagtirmalar yapilarak dogrulanmistir. Malzeme
ve geometrik parametrelerin statik yerdegistirme, titresim frekansi, ve kritik

burkulma yiikii lizerinde etkilerini gostermek ic¢in ayrintili sayisal sonuglar

vii



verilmigtir. Sunulan sayisal sonuglar, mikro Slgekte boyutun, uzunluk olgegi
parametre  degisiminin  ve baslangic termal gerilmelerin  fonksiyonel
derecelendirilmis dikdortgen mikro-plaklarin mekanik davranisina olan etkilerini
acikga gostermektedir.

Anahtar kelimeler: fonksiyonel derecelendirilmis mikro-plaklar; gerinim
gradyani elastisitesi; modifiye edilmis kuvve cifti gerilmesi teorisi; uzunluk 6l¢egi

parametreleri; termal gerilmeler; egilme; serbest titresim; burkulma
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Small scale structures such as micron-sized beams and plates are commonly used
in micro-electro-mechanical system (MEMS) devices such as micro-sensors, micro-
actuators, and micro-resonators. For an accurate and comprehensive design of
MEMS devices, the mechanical features of micro-structures should be examined. For
example, in a micro-mechanical gyroscope to avoid bias there is need to study
dynamic behavior and estimate the resonant frequency of sensitive element [1, 2]. As
other examples of technological applications requiring thorough understanding of
design considerations in small-scale structures, one can mention nano-plate resonator
[3] and micro-valves in micro-fluidic applications [4]. It is experimentally observed
that, micro-scale structures exhibit size-dependent mechanical behavior [5-7].
Traditional continuum theories fail to predict the size effect in small-scale structures
due to lack of a length scale parameter. Various higher-order continuum theories
have been proposed to address the size-dependency. These theories employ one or
more intrinsic length scale parameters. Among examples of such theoretical
frameworks, we can mention nonlocal elasticity [8], surface elasticity [9], strain
gradient theories [6, 10] and couple stress theories [11-13]. Strain gradient theory
(SGT) introduced by Lam et al. [6] and modified couple stress theory (MCST)
proposed by Yang et al. [13] are the two most commonly used higher order
continuum theories in investigations involving small-scale structures. Strain gradient

theory is derived by taking into account the second order deformation gradient



beside the classical first order deformation gradient, resulting in three material length
scale parameters in constitutive relations. Yang et al. [13] incorporated the concept
of moment of couples into classical couple stress theory and put forward modified
couple stress theory, which employs a single length scale parameter.

The main objective of this study is to put forward new methods for the analysis of
functionally graded micro-plates that are under the effect of mechanical or thermal
loading. As the higher order continuum theory, strain gradient theory is used in the
derivation of system of governing equations and boundary conditions. Shear
deformation plate theories are employed, so that, it is feasible to take into account
the distribution of shear stress through the thickness of plates. The study is
undertaken to be able to develop new analysis methods that can take into account
thermal effects and the spatial variations in the length scale parameters of

functionally graded materials.

1.2 Literature Survey

Using modified couple stress and strain gradient theories, researchers have
developed various models to investigate behavior of homogeneous micro-plates
undergoing static bending, free vibrations, and buckling. Akgoéz and Civalek [14],
Asghari [15], Jomehzadeh et al. [16], Tsiatas [17], Yin et al. [18], Farokhi and
Ghayesh [19], Simsek et al. [20], Zhong et al. [21], Wang et al. [22] adopted
Kirchhoff plate model and analyzed mechanical behavior of homogeneous micro-
plates in accordance with modified couple stress theory. Note that in Kirchhoff plate
model the effects of transverse shear deformation is neglected. In a number of
studies, Mindlin plate model, i.e. first order shear deformation theory, and modified
couple stress theory are utilized to examine structural mechanics problems of small-
scale plates [23, 24]. Farokhi and Ghayesh [25] used third-order shear deformation
theory in conjunction with modified couple stress theory. Lazopoulos [26],
Ramezani [27], Wang et al. [28], Akgoz and Civalek [29], Ansari et al. [30],
Ramezani [31] adopted strain gradient theory to capture the size effect in

homogeneous micro-plates.



It should be noted that the afore-cited studies are carried out for micro-plates
made of homogeneous materials. Functionally graded materials (FGMs) are
inhomogeneous composites which are processed by combining the best properties of
two distinct phases. FGMs possess smooth spatial variation in the volume fractions
of constituents. The gradual variation of composition across the volume of FGMs
prevents high stress concentrations and makes FGMs ideal to be used in harsh
working conditions such as high-temperature environment. Although FGMs were
initially developed as thermal barrier materials in aerospace structures [32, 33],
nowadays they have found widespread applications from their use in high
temperature environment [34] to electronics [35] and biomedical industry [36, 37].
In recent years, incorporation of functionally graded materials (FGMs) into small-
scale structures has become feasible with advances in manufacturing technologies
such as magnetron sputtering [38], chemical vapor deposition [39], and modified soft
lithography [40]. As a result, structural problems involving functionally graded
micro-beams and micro-plates have attracted researchers’ attention. In a number of
studies modified couple stress theory in accordance with Kirchhoff plate model is
used to examine behavior of functionally graded small-scale structures [41-44]. In
research work conducted by Ke et al. [45], Thai and Choi [42], Lou and He [44],
Noori and Jomehzadeh [43] and Mahmoud and Shaat [46], modified couple stress
theory is used in conjunction with Mindlin plate model to examine the problems
regarding FGM micro-plates. Examples of studies based on modified couple stress
theory and third order shear deformation plate model include the articles by Kim and
Reddy [47], Reddy and Kim [48], Kim and Reddy [49] and Thai and Kim [50]. Li
and Pan [51] and Thai and Vo [52] put forward functionally graded micro-plate
models based on modified couple stress theory and sinusoidal shear deformation
plate model. In a study by Mohseni et al. [53] modified couple stress theory along
with higher-order shear and normal deformable plate theory is used to assess static
bending behavior of functionally graded rectangular micro-plates. Salehipour et al.
[54] developed a model based on modified couple stress and three-dimensional
elasticity theories to analyze free vibrations of functionally graded micro-plates.

Strain gradient theory is also utilized to examine behavior of functionally graded



small-scale structures. Farahmand et al. [55] employed strain gradient theory and
Kirchhoff plate model for free vibration analysis of functionally graded micro-plates.
In research work conducted by Sahmani and Ansari [56] and Mohammadimehr et al.
[57], strain gradient theory is used in conjunction with third order shear deformation
plate model to solve problems regarding FGM micro-plates. Examples of studies
based on strain gradient theory and first order shear deformation theory include the
articles by Ansari et al. [58], Gholami and Ansari [59], and Shenas and Malekzadeh
[60].

In all studies mentioned in the foregoing paragraph, length scale parameters of
functionally graded micro-plates are assumed to be constants. However, this is a
strictly simplifying assumption since the length scale parameter is itself a material
property [61-64]; and similar to the other material properties of a functionally graded
medium it should vary as a function of spatial coordinates. For examlpe, , in strain
gradient theory, the three length scale parameters are defined in terms of shear
modulus and material parameters associated with higher-order deformation
measures. In modified couple stress theory, the length scale parameter is defined as
the square root of the ratio of modulus of curvature to shear modulus [61, 64]. Both
modulus of curvature and shear modulus are material properties indicating that the
length scale parameter is itself a material property. As an another example implying
the length scale parameter to be material constant, we can mention polymers for
which the material length scale parameter depends on chain stiffness, chain
interactions and cross-link density which are micro-structural properties of
constituent [63]. Thus, for a functionally graded micro-structure, all of the length
scale parameters are themselves material properties, whose spatial variations need to
be represented by suitable functions that depend on the coordinates.

There are several studies in the literature that account for the spatial variation of
the length scale parameter. Kahrobaiyan et al. [65] and Aghazadeh et al. [66]
incorporated through-the-thickness variation of the length scale parameter into the
analysis of functionally graded micro-beams. Eshraghi et al. [67], Eshraghi et al. [68]
solved problems involving micro-scale FGM annular plates by considering the

variation of length scale parameter. Alipour Ghassabi et al. [69] applied nonlocal



elasticity to examine free vibrations of rectangular nano-plates having a spatially
variable nonlocal parameter. However, in the technical literature, there are no strain
gradient theory based studies that take into account smooth spatial variations of the
three length scale parameters of micro-scale functionally graded rectangular plates.
Note that developments presented in Aghazadeh et al. [66] and Kahrobaiyan et al.
[65] are applicable for beams, those given in Eshraghi et al. [67] and Eshraghi et al.
[68] are valid for annular plates and those described in Alipour Ghassabi et al. [69]
are derived in accordance with nonlocal elasticity. Analysis of rectangular FGM
micro-plates by means of strain gradient theory requires derivation and solution of
completely different partial differential equations compared to those considered in
these articles. One of the main objectives in the present study is to put forward strain
gradient theory based bending, free vibrations and buckling solutions for
functionally graded rectangular micro-plates, that possess spatially variable length
scale parameters.

The micro-structural elements usually operate under thermomechanical
conditions, leading to thermal stresses developed in these structures. The bending,
vibrational and buckling characteristics of micro-structures are very sensitive to
induced thermal stresses. FGM micro-structures can be idealized to have a high
performance in thermal environments and, therefore, they have found increasing
applications in MEMS as cooling unit, thermal barrier and other heat transfer
devices. Therefore, it is essential to account for thermal effects in modeling and
analyzing functionally graded micro-beams and micro-plates. Although there are
studies regarding the thermal analysis of FGM plates by employing classical
elasticity theory in the literature [70-73], there is not sufficient effort to address
mechanical problems of micro-plates undergoing thermal loads in technical
literature. Mirsalehi et al. [74] developed a modified couple stress based model to
investigate stability of functionally graded micro-plate. Based on modified couple
stress theory, Reddy and Kim [48] put forward a third order shear deformation
thermally loaded micro-plate model. In their work no numerical results are
presented. Eshraghi et al. [68] used modified couple stress theory in conjunction with

unified plate model to treat mechanical problems of functionally graded annular and



circular micro-plates in thermal environment. Ansari et al. [58] investigated the
effects of boundary conditions, size, and volume fraction exponent of functionally
graded micro-plates on the temperature difference required for buckling. Shenas and
Malekzadeh [60] and Ghorbani Shenas and Malekzadeh [75] presented a strain
gradient based formulation for free vibration analysis of micro-scale functionally
graded plates in thermal environment possessing quadrilateral and isosceles

triangular shapes, respectively.

1.3 Motivation and Scope of Study

The main objective in this study on one hand is to put forward a general plate
model capable of capturing size effect in small scale FGM plates with variable
length scale parameters; on the other hand is to investigate the effects of temperature
change on mechanical behavior of micro-plates. The study is organized as follows:

In CHAPTER 2, governing partial differential equations and associated boundary
conditions for bending, free vibrations, and buckling of rectangular FGM micro-
plates are derived in accordance with strain gradient theory. Hamilton’s principle is
utilized in derivations. All material properties, including the three length scale
parameters of strain gradient elasticity, are assumed to be functions of the thickness
coordinate. Displacement field of the rectangular micro-plate is expressed in a
unified way to be able to produce numerical results corresponding to three different
plate theories, which are Kirchhoff, Mindlin, and third order shear deformation
theories.

In CHAPTER 3, on the basis of differential quadrature method (DQM), a solution
procedure is developed to solve equation system comprising partial differential
equations and boundary conditions. In order to produce numerical results, MATLAB
software is utilized to implement developed numerical technique.

In CHAPTER 4, parametric analyses and related numerical results are presented.
Developed procedures are verified through comparisons made with the results
available for limiting cases in the literature. In analysis of free vibrations under

thermal conditions, thermally induced initial displacements and thermal stresses are



also computed. Presented numerical results illustrate influences of length scale
parameter variation, geometric and material parameters, and temperature change
upon static deflections, vibration frequencies, and critical buckling loads of
functionally graded rectangular micro-plates.

Finally, in CHAPTER 5, a conclusion is given and future work is discussed






CHAPTER 2

FORMULATION

2.1 Shear Deformation Plate Theories

Figure 1 depicts a functionally graded rectangular micro-plate having a thickness

h. Mid-plane of the undeformed plate is coincident with x, —x, plane. Deformed
shape of the mid-plane in x, —x, plane is also shown in Figure 1. Displacements of
any point at time t along x,, x, and x, directions are denoted by u,, u, and u,,

respectively; and can be expressed in a unified form as given below:

Uy (X0 X Xg, 1) =U (X0 X, 1) = X, + (%)6, (%, %, 1), (L.1)
Uy (X0 X, X, £) = V(X X, 1) = %W+ T (%) 6, (%, %,,1), 1.2)
Ug (X, X5, X, 1) = W( X, X5, 1), (1.3)

Where u, v and w are displacements of the mid-plane along x, X, and X,
respectively; 6, and 6, are transverse shear strains of any point on the mid-plane
due to bending in x, —X; and x, — X, planes; and a comma stands for differentiation.
Transverse shear strains 6, and 6, are written in terms of rotations ¢, and ¢, of the

transverse normal at x, =0 about X, and x, axes as follows:

(% % 1) =W, (X0, %,t) + 6 (%, %, 1), (2.1)

‘92(X1'X27t):W,x2(X1’X2’t)+¢2(x1ixzit)- (2-2)



Shape function f in Eq. (1) controls through-the-thickness distributions of
transverse shear strain and stress. In the present study, we produce numerical results
for three different plate theories, namely Kirchhoff plate theory (KPT), Mindlin plate
theory (MPT), and third order shear deformation theory (TSDT). f-functions

corresponding to these theories are given by

0, for KPT,
Xa, for MPT,
)= % 3
2
x{ —4igj, for TSDT.
3h
0\
X3 Ceramic X3, Ug
X2 oy
q
l " Metal
NP7~ -
$ h - Xy, Ug
X 1
! b Deformed configuration

Figure 1. Functionally graded rectangular micro-plate configuration and deformed shape.

Note that in Kirchhoff plate theory transverse shear strain is assumed to be zero.
Mindlin plate theory presumes constant transverse shear on the cross section. In third
order shear deformation theory, transverse shear has a parabolic distribution.

2.2 Strain Gradient Theory

According to strain gradient theory (SGT), strain energy of the micro-plate is written

as:
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U= %I(O'ij (8ij _aATé‘u')"’ Pi7i z'i(jt)ni(jt) + m;Z;)dV’ @
Q

o; in Eg. (4) is the Kronecker delta; o is Cauchy stress; ¢; is strain;

P;, ri(j}), m; are higher order stress tensors; y, denotes dilatation gradient vector;

Ui(jlk) represents deviatoric stretch gradient tensor; y; is symmetric curvature tensor;

AT is temperature change from stress-free state temperature T,, « is the coefficient

of thermal expansion; and Q is volume. Deformation measures in Eq. (4) are
defined by

& =%(ui’j +uj'i), (5.1)
7i = 5mm,i7 (52)
1 1
ni(ji) = %(gjk,i & T Eijx ) - Eé‘” (gmm,k +280m ) - E{éjk (gmm,i + ngi,m)
+64 (Enm; + 2gmj,m)}, (5.3)
s 1
Xij = E(eipngj,p * €ipg€ai,p ) (5.4)

e; here designates alternating tensor. By substituting displacement field given in

Eqg. (1) into Eq. (5), &, 7, Ui(jlk) and y; are derived as:

ij !

_ou_ dw .00

Eg =— = Xg——+ , 6.1
11 aXl 3 6X12 6X1 ( )
2
=y TW, 1 0% 6.2)
OX, OX; OX,

2
g mp, ot LoV Ow 1,06 1,00 6.3)
20X, 20X oX0X, 2 0OX, 2 O0X
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1 1
&3 = &3 = > £, (6.4)

1 1
€ =&y = > f'o,, (6.5)

- + - X , 6.6
T Tk, o Coxad | o owox, €6
2 2 3 3 2 2
v, = o°u +8\2/ 38\’3\/—x3 82W 801+f8022’ 6.7)
OX0X,  OX; OX; OX; OX, OX%,0X, OX;
2 2
W w0620 68)
oX,  OX; oX, oX,
o _ 2(0u 10u o cw 3 ow 9% 1,0
77111:g o2 202 X T o Ll R
X, 20X, OXO0X, oX, 2 " Ox0X, oX 2 0%
2
L1 00 | (6.9)
2 OX,0X,
W _2( du 1o v _dw 3w &%
T2 T Toxox, 20¢ o Cad 2 °oxiox, | oo,
2 2
_Ef 0 62’2 0 62’2 21 "o, |, (6.10)
20X oxX; 2
2 2
ggzl[a_vjﬁ_vj_zf'%-zf'%j, (6.11)
S\ ox;  0x o, OX,
2 2 2 3 3 2
=== 28T aZY 7Y g T 1o TN g1 T
150 oxox, ox5  0X OX, OX, OX, OX,0X,
2 2
+4fa€2-3fa—9;—f"92} (6.12)
OX; OX;
1(,0°'w 0w 06, 00,
O =gl =gl =4 - 8 L2 2, 6.13
Thiz = M1 = Tha 15( P Xf 8X§ %, ox, ( )
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ou o o’V o*w o*w
77£2)1 771(2)2 77511)2 [ 3_ +4—+8 +3%—— 12X, 2
15 ox: ox: oxox, OX, OX,0X,
2 2
i 4f862’1—f"91+8f 0%, :
ox; OX; OX,0X,
1( o°w  o°w .06, ,00,
G _ 0 0 _
Mooz = M3z =T =~ 4— 2f'—-8f" ]
223 7 1322 7 11232 15( axiz a 2 8X1 axz
1(,0°u &u 0% o’w o'w
M _ ) — ) L fg0U OU 3 IW 3y
M531 = Thss = T3 15[ 2 X12 8X22 XX, 35 X13 3 8X18X22
2 2
862}1+f86 -41"0, + 2f892 ,
OX; ox; OX,0X,
1(, ¢ 62 o’V o*w o*w
= nfh =g s S el T
15\ 0Ox,0x, ax1 ox% OX;) OX; OX,
2 2 2
wf 20 0 922 +3f 0 922 —-4ft"0, |,
OX,0X, X, OX;
1 8 w .00, .00,
===l === 3 T 2 2]
2
. 1(2 o*w f,aezj’
0X,0X, 0%,
2
Zzszz_lzaw_]“%’
2\ OX.0X, oX,
pa=—o| 1212,
2\ 0X, 0%,
. . o'w  o*w 06, .,00
X2 =X = 2_2 t2—+f—=-f—
4 OX; ox; 0%, OX,
2 2 2 2
PP N BRI BLCI S A W i T
axlax OX; O0X%,0X, OX;
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(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)



. . 1 u o 0%6, N 0°6,
In=Xn="|-—+ -f—=+f"g+f 2|, (6.24)
4{ OX, OX.0X, OX; OX,0X,
Constitutive relations of strain gradient theory are expressed as
oy, (1 o 0 0 0 | &, — AT
Oy c v 1 0 0 0 &,y —OAT
Op 1 = .7 0 0 1-v 0 0 &y (7.1)
o, 100 0 k(-v) 0 £
Oy 00 0 0 k.(1-0)|| &x
P, = 2uls7;, (7.2)
o) = 24lny), (7.3)
mﬁ = 2,u|§;(§. (7.4)

where E is modulus of elasticity, v is Poisson’s ratio, x4 is shear modulus, K, is
shear correction factor which is equal to unity in KPT and TSDT; and 5/6 in MPT,
and I, i=0,12, are length scale parameters. All of the material properties,
including the length scale parameters I, i=0,1,2, are assumed to be functions of
the thickness coordinate X,. Note that in modified couple stress theory (MCST)
proposed by Yang and Shen [70] 1, exists as the only nonzero length scale parameter

and classical elasticity theory lacks length scale parameter to capture size effect.

2.3 Derivation of Governing Equations and Boundary Conditions Using

Hamilton’s principle

Partial differential equations of motion and boundary conditions are derived by

using Hamilton’s principle, which postulates that

51 (K=(U-w))dt=o0, ®)
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where K, U, and W are kinetic energy, total strain energy, and work done by
external forces, respectively.

The kinetic energy of the micro-plate is obtained by

A ORI

where p is mass density; Using integration by parts and Green’s theorem and
assuming that the initial and final configurations of the plate respectively at t =t

and t=t, are prescribed, the first variation of kinetic energy on the time interval

[t,,t,] can be reached

3 2
5[ " Kdt =" Tu_), oW 20 s,
4 b ° ot? 5X18t ot

3 4 3 2 3 2
TR A A A L A i P
ox,ot ox, ot ox,ot ot ox,ot ot
B AN Y VA Y T AL g 8 P
‘ot2 toxott U oat? Lox, ot P oaxiot?t  ox,ot?
2 3 2 2
1,2y, 2 D% g, [ 1,2 | swldadt
o et Cat ra

ou o*w 0%,
+<j>r((|l " |26X18t2 1 | ow

Y o*w 06,
+ |, ——1 +1 n, ow (dT 10
( 1 a_tz 2 axzatz 4 8t j J ( )

where A is the area occupied by the mid-plane of the micro-plate; and I is the

boundary curve enclosing the area A. The inertia terms are given by

h

o1l b, L s} = [3 P () {L X, X, £ F, 2 elx, (11)

2

15



In the present study as the external forces the effects of distributed loading

q(,,X,) and the in-plane buckling loads P, and P, will be considered. Note that

q(x,,%,) is applied transversely and P, and P, are applied axially along x, and x,

directions, respectively. Consequently, the work done by the external forces is of the
form:

1 ow) ow )
W = { qwdA+E£{PX1 (&J +P, [a_xz] JdA. (12)

Substituting the variations of strain energy, kinetic energy and work into Eq. (8),
employing Eq. (2) and considering the arbitrariness of ou, ov, ow, d¢, and o¢, the

following governing equations of motion are derived, with the help of integration by

parts and Green’s theorem,

ou:

oMy N My OB’ 0P 20Ty 10Ty L2 0T
ox, X, ox oxox, 5 % 5 ox5 5oxox,

_§ 62T122 n § aszgl _ ﬂ 62T2021 n § aszgl n l azTegl n E 62T3%2
50x0%x, 5 x° 5 ox; 5 ox 5 oxF 50ox0X,

JLovg 19y | du w4

=1 +(1,— + 13.1
20x0x, 2 ox2 ot (1 l)axlat2 ° ot? 131
oV:
M, oMy, OB OB 207y 10Ty, 20T
ox,  OX ~ Oxox, oOx; 5oxox, 5 ox 5 ox
_ﬁ ale?.Z +§62T122 _§82T2%l +262T3%1 +162T3%2 +§62T3%2
50x 5 ox° 50x0x, 50x0x, 5 ox2 5 ox
2y 0 2y 0 2 3 2
_15Y33_£6Y23 :|Oa_\2/+(|3_|1) 6W2+|36¢;2 (13.2)
2 OX 2 0X0X, ot OX,0t ot
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oW
ML OME O EML M MG M OM
OX; OX, OX; OX; OX,0X, OX,0X,  OX OX,
_83P11 . aSPlZ ~ 83P11 N 83P12 _83P21 . 63P22 ~ 63P21 . 83P22 N 82P30 _62P33
ox.  ox>  oxOX; oxox. ox;  ox;  Oxiox, Ox‘ox, oOxZ  ox
+ o° PSO _ o’ |333 _ 2 83T1111 2 asTlil + § 83T1111 _ 2 asTlil _1 aBTlil _ 1 aTlil

ox;  oxX 5 0% 5 ox 5oxox; 50xox; 50x0x; 5 ox
_ Z 63T2122 +253T2222 + § 63T2122 _ l 83T2222 _Z 63T2222 _ l aTziz
5 0x; 5 ox; 50x'ox, 50x0x, 50xox, 5 0x,
_1 62T3%3 + E a2T3333 _ l aZngs + Z 52T3?és + § 83T1112 _ § 63Tﬁ2 _E 83T1112
50 5o 5o0x 50 5 0% 5 0x 5oxox
+f 83Tﬁ2 + § 83T1i2 _ 1 8Tﬁz + ﬂ 62T1(1)3 _ § 0 leis _ E 52T123 + E 0 leis
50x70x, 5ox'ox, 50, 5 & 50 5 ox 5 ox
+ § 83T2121 _§ 63T2221 _ E astlzl + § 83T2221 + ﬂ 63T2221 _ 1 aTZil
5 0x) 5 ox 5 o0xox; 50x0x. 50x0x 5 ox
_1 82T2%3 + g 82T2323 + ﬂ azTZgS _ § 62T2323 + § 63T3131 _ § 63T3231 + § a3T3131
50 5o 5o 5o 50 5 0% 5ox0%
2 63T3231 _ 1 63T3§1 +E8T321 + § 63T3132 _§83T3232 + § asTslaz

50x0x. 50xx; 5 0x 5 ox; 5 0x  5oxox,
_1 63T3232 _Z 63Tséz +f 6Taéz 42 62T1(2)3 _4 alezs . 82Y12 + 1 62Y131
50x’0x, 50x’0x, 5 X,  OXOX, OXOX, OXOX, 2 O%0X,
OVA 10 oG 1aD oD 10%3 1oV 10w
OX0X, 20%0%X, OxZ 2 ox5 oxX 2 0x5 20%x, 2 0%

2 2 2 2 2
+q—Pa\QI—Xa\£V+P°a\;V+PX°a\2/+ 0 ow
Toxk oxs  Moxt T ox v Ox,0X,
o°u v o*w
(1, = 1)) =2 (1, = 1) -2 (21, -1, —1,) -2
(1, S)axiatz (1, 3)6x26t2 (21 -1, 5)8x128t2
o'w o*w o’ 0%
+(2|4_|2_|5)6x§6’t2 +1, e +( 4_|5)—8x16:2 +(|4_|5)6x28iz (13.3)
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o, -

aMlzl + 8Mlzz ~M2 - 82Pl2 . 82 F)22 + aP33 _Ealeil l@zTﬁl +1T4

ox, X, U oxox, ox 5 ox2 5 ox: 5™
+§ aZ-I-zzzz _28T3333 _§ azTﬁz +§8T33 §82T2?21 _ﬂaszzzl +1-|-4 _EaTzzs

50x0%, 5 o 50x0x, 5 5 ox 5 ax 5% 5o
+§ 82T3231 +1 82Tslél _ﬂ-l-4 +Z 62T3232 ) 8T1§3

2 2 331

S ox 5 ox, 5 5 OX,0X, OX,
+18st2 _1ovy +18Y1§ L1 0*Yys +152Yz§ 1.

20x, 20, 2o 20xox, 2ox 2%

du o*w o’

= |3¥+(|5 - |4)6X18t2 +1, 6t21 (13.4)
0, :
M7, . My, M2 o°R*  O°F} s P’ 20Ty,

X,  ox 2ooxox, ox2  0Ox, 50X,

laZTzzzz _Easzzzz +l 4 _gaTsés _ﬂaZTliz +§aZT1i2 _'_1 4 _EaTlsls

5o 5o 5% 5o, 5o 5o 5" 5o
_§ aszzzl +§ a-I-z?’zs +E 82T3§>1 +1 82T3§>2 +§ aszéz _ET4 ) aTlZS

2 2 332

Soxox, 5 ox, 50x0x, 5 0x 5 ox, 5 0%,
_laYli _i_laYs?é _laYé _182Y1§ +1 4 _1 aZYzé

20% 20x 2 2 27 206x0x,

o%v o*w o’
=1, —+(Il. -1 +1 2 13.5
3 8t2 ( 5 4)8X28t2 5 atZ ( )

and the boundary conditions read
ou=0 or

MO — aF)10 _ l 8P20 _ 3 aTl?.l + 1 8ng2 _ ﬂ aTliz + § aTZOZl + § 8T3031 + 1 8ng2

Yoox, 2éx, 50x 5 50x, 506x 50x 5

+1% n +| Mo _lapzo +£8T121 _'_laTz(;z _ﬂaTl(l)z _ﬂm-zgl

4 ox, | " ¥ 206x, 56x, 50x 50 5 X

50x, 50x 40x 20X )° '
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5a—u:0 or

0¥,

2 3 3 PP 1 4 T2, Y2

[Plo +§T121 _gngl _gngl)nxl +[72_§ng2 +ET122 _%_f n, = 0
ou
o—=0 or

0X,

P_ZO_&_FETO _&_ﬁ n + _Tl_%-+£TO _T3_(:)31_£ n =0
2 5 5% 5 4 /)*x | 5 5% 5 2%
ov=0 or

0 _l aplo +£8Tl(;l +£8T2(322 _ﬂaTlgz _ﬂangl +£8T321 +18T3%2
¥ 26x, 50x, 50 56X 50x, 50X 5 &
_E%_E% n + 0 _lal:)lo_apzo_i_la-rlgl_ga-rzgz
g 2 20 & 500 50
J30TE, AOTH 0TS 3aTg, 1oVA) o
50x, 50 b5ox 5ox, 40 )"

5&:0 or
%,
—ﬁwLiTﬁz_&+ﬁ n, + Fio_i"‘ﬂ-rzgl_&—Fﬁ nxz:O
5 5 5 2 2 5 5 5 4
5ﬂ=0 or
0X,

pC T2 T Yo
[%—%WLgngl _%"'? nx1 +(on +§T2%2 _gTﬁz _gngzjnxz =0
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ow=0 or

|

_l_

+

+§ 82-|-3131 _ § 82T3i1 _ 1 82T3231

+

+

My, Mj My, oMy, | MS - aZF;ll . 62F;12 _ OB R
0%, 0%, 0X, OX, X 0%, OX0X, OX.0X,
aF’so _ aF):as _E alelll +Z aleil _1 a2T1i1 _1T4 +§ aTzlzz _E a2T2222
x ox 5 5o 5 axX 5 5ax0x, 5oxox,
1 aTs%s +E 5T3§s _E 82T1112 +§ aleiz +ﬂ aTl(i’S _§ aTli3
Sox, 50X 50x0X, 50x0X, 50X 5 0X
§ 82T2121 _§ 82T2221 +ﬂ62T2221 _1T4 _1 6T2023 +gi2323
50 5o 5o 5% 50x 50
4_, 30T, 20°Th
5k 50X 50X 5 50x0% 5OoxoX
Oy 50T 10Yy 1Y, 10%, Y 10Y; 1., ow j
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2owox, owox, ox:  ox
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OX, 0X, 0X, 0X,

JOP OP) 3O 20Ty 207y, 107, 1o, 20Ty,

X, OXx, 50x0x, 50, 5 & 5 ox2 5% 5 ox
181-3%3 +38T3§3 +§62T1112 +ﬂ62T1i2 _E@ZTﬁZ _1T4 _161-123 +28T1i3
50 5& 5 5o 5 5% 58 50K
E 62Tzlzl +§ 62T2221 + ﬂ aTz(;s _§ 8T2323

S5 OXx0Xx, S0X0Xx, 5 0x, 5 0X,

+§ 82T3131 _ E 62T3231 i § 62-I-s132 _ 1 82T322 _§ 6ZTefaz n 4-|-4

+

50x0x, 50xdx, 5 ox2 5 ox2 5 ox2 5 %
Mgy _,0Tps L0YS 10Y 1Y, oYy 10%; 1., ow sz]nxz

ox, Ox, 20%x 20%x 2% X 2% 22 ox

o*w
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+((Il_l3)?+(2”_'2_'5)W+(|“_'5) athJnXZ

20

(14.7)



5@:0 or

X
OB _oR’ op oR}

3 E aTllll _ Z aTlil _ § aTzlzz
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+oT - =T —= =T —=T3 +
5% 5% 5o, 50, 5% 5 5o 5

Tl TZ Tl T2
_szgs +§ 2323 _Ea 331 +§6 331 _§5 332 +§8 332 +Y1(2) _lYlg n, -0
5 5 Sox, 50% 50 50 2 ?

2

o 0 \Q/ =0 or
2 2 3 3 3 3
(_Pll + RLZ _ngln + ngil + gTzl?_l _gTzzzl + gTslsl _gTszsljnxl
3 3 12 12 3 3

+(_P21 + I:)22 + gTzlzz _gTzzzz _ETlllz +€Tﬁ2 +ET3132 _ETSZB‘Z]nxz =0

2
o 0 \ZV =0 or

)

3 3 12 12 3 3
[_Pll + Plz + ngjil _ngil - €T2121 + ETZél + gTslsl - gT:%glj nx1

2 2 3 3 3 3
+(_P21 + P22 - gTzl?_z + gTzzzz + ngllz - ngiz + gTalzz - gTszaz j nx2 =0
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ox, 20x, °® 5oéx 5aox 5 =
40T, 8 30Th 2.4 +38T3231+18T3232+1Y3+18Yl§]n

[Mlzl aRLZ 1 aPz2 4+ p3 _ZaTﬁl +18T2222 12-|-3

5ox, 5 50x 5% 50y 50 22 40

M2 = l 8P22 + 1 aTlil + 1 aT2222 _ﬂ aTliZ _ﬂ aT2221 4 1 aTazsl + 1 aT3232
“ 20x, 56x, 50 5éox 56x, 50x 5 0

YR v? oY, Y2
+2T1§3+£—ﬁ+£—13+£—23 n =0 (14.12)
2 2 40x 20X 2
5%=0 or
%
2 2 2 3 2 3 2 I:)22 T2222 4 2 T3§2 Ylg
Pl +ngll—gT221—gT33l nX1+ 7—?4'51-112—?—7 n><2 =0 (1413)
of
o—+=0 or
oX,

o9, =0 or

M 2 _1 aplz + 1 aTlil + l 8T?_Zzz _ﬂ aTliZ _f aTzi_l + 1 6T3231 + 1 8T3232
¥ 20x, 50x, 5 50x 50 5 5 6x

1,5 1,5 10Y) 1aY223Jn

PNt a4 ax

(MZ _lﬁ_ﬁ+p3+liﬁl_3%_g1’3 +38T1i2 2'|'3
22

20x, ox ° 50y 50 5 50, 5%

T2 T2 T. \&
_gh+§-r23‘23+la 331 +§M_1Yé _Ea 23 |’]X2 =0 (1415)
oX, 5 Sox S5ox, 2 4 0Ox
5%:0 or
2

2 2 2 2 2 2 2
—T2£+ET1§2—T3i+YL3 n, + i—h+ﬂT2221—T3i+Yﬁ n,=0 (14.16)
5 5 5 2 ' 2 5 5 5 4 2
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50
oX,

2 2 T2 YZ

=0 or

n, and n, are the direction cosines of unit normal of the boundary of mid-plane;

P,, P, and B’  are thermally induced initial in-plane forces determined from a

static thermal bending analysis; M, P, T and Y are utilized to denote the stress
resultants through the plate thickness, respectively. These stress resultants are

expressed as

n . eh _
M = [ ougidx (1=0,12), My, =[30,¢0x (i=0,1 2),
2 2
n . _
My, = leho-lzé,id)% (i =01 2)’ My, = J:zhalsé/idxs (' = 3),
2 2
n
My, = J:ZQ lopale) 8 (i = 3) (15.1)
2

h h

R =[apdn (1=0,12), P =[3ps0 (=01 2)
2 2

h

P =[% P (=0, 3) (15.2)

h ) h
T1i11 = _[_2 Tl(i)lé/idxs (i =0, 1 2 4)’ T2I22 = IZ

h -
2

LTl (1=0,1, 2, 4),
2
_ u _ h
Ty = _[_thg)aé/idxs (i =0, 3)’ T, = j_zhffi)zgidxs (i =0,1 2, 4),
2 2
h

h
T1|13 = J‘_zﬂrl(i)sé/id)% (i =0, 3)’ T2|21 = I_ngg)lé/idxa (i =0, 1 2, 4)'
2 2

h h
Ty = I_Zgrglz)sgidxs (i =0, 3)’ Ty = _[_Zgr§é)1§idxs (i =0,1 2 4),
2 2

h

E i >y -
Top = [A e (i=0,1 2, 4), Ti=[3eagdx (i=0 3), (15.3)
2

h
2
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n o b _

Y1|1 = _[_Zh mlslé/idx3 (i =0, 3)’ Yzlz = J_ZE m§2§idxa (' =0, 3),
2 2
h

Yy, = [Fmsgidx, (i =3),
2

~h ooh

Y, =[3migdx, (i=0,3), Yi=[3migdy (=0, 2 4),

2 2

h
Yos = J._Zg M4 X (i =0, 2, 4)
2

(15.4)

where ¢, =1 & =X, &, =1, ;=F1"and £, =f". A prime mark is used for

differentiation with respect to Xx,.

By inserting the expressions for stress resultants given in Eq. (15) into governing

equations and boundary conditions, and introducing the following parameters

h

> E(x
{Ail’Bll’Dll’ F111F22’F33} = J._Zgﬁ{l’ X3’X§' f ’Xsf' fz}dxs)

ME(x)v (X
{ALll’ Bli1 Dy Fans Fiass FLBS} = .[zh %
2 1_V(X3)

{A_)5' B55’ D55’ F44’ F46’ F47’ F48’ F55’ F57’ FBG’ F67’ FGS}
E(x)

-[—22(1+v(x3))

{A’)SO’ BSSO' D550' I:440' I:460’ I:470’ I:480’ I:550’ I:570’ F660’ I:670’ F680}

(16.1)

j){l,xs,x32,f,x3f,f2}dx3, (16.2)

{Lxg 03, 2,10 o f F 2 F 0 F2 F o frldxg,  (16.3)

h 2
:J?M{%&z,fz,ff",f,ng,f'2,f',f"z,f",xsf"}dx3, (16.4)
2

(1+v(x))

{A:)Sl’ 8551’ D551’ I:441’ F461' F471’ I:481’ I:551’ I:571’ F661’ I:671’ F681}

h 2
:jzM{l,xs,xsz,fz,ff",f,xsf,f'2,f‘,f"z,f",xsf"}dxs, (16.5)

. 2(1+v(x,))
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{A552’ 8552’ D552’ F442’ I:462’ I:472’ I:482’ I:552’ l:572’ I:662’ I:672’ F682}

h 2
:J‘_Zhw{lx X f2 ff f,X3f,f'z,f',f"z,f",XSf"}dxa, (166)

2(1+v (%))

(A B Frd = j?z(l_El()—)((;)s))a(XS){l, %, FIAT(x)dx,  (16.7)

equations of motion are obtained in terms of displacements as the following form
ou:

4 o‘u 8 o'u
(_2'%50 _gAssle*'[_E A551 Asszj

o*u
X0 A11 Ass %

+(_2A350 _gAsm _%Aaszj

4 o*v 4 o*v
+| —2A, —— —2A., ——
( Asso 15 As Assz] X1 6 ( Asso 15 A5 Assz ) 6X1 8X
o%v 4 4 o°w
(As ALll) 8X16X (‘2 I:470 + 28550 + g BSSl - g F471j%

8 8 o°w
+ 45550 - 4F47o + g BSSl - g F471JW
2

4 4 o°w 2 o°w
+| -2 I:470 + 28550 +— B551 - F471J + ( F Bll +— F671J 3
5 5 ox;

5 OX, 0%,
2 o*w 4 ol 8 1 o',
+| Ry =By +g F67ljm+(_2|:470 _g I:471] 8 ¢il ( 15 = Fan — 4 F472j57§1
4 1 o', 2 o’
+ _2F470 _E Fi _Z l:472] 8X125)1(22 +(F11 +€ F671j 5X121

2 1.\ 4 1 o'
+ F47 + E F671 + Z I:672 j_Zl + (_2 F470 B E F471 * Z F472 J ﬁxisaj(z

2

4 1 o' 4 1 o)
+ _2F470 _E Fyy + Z F472j5)(1—8)2(3+(FL11 +Fy +E Fens _Z szj@)(l—@)z(
2 2

CO0(An) | du L o*w %4,

axl IoatZ +(3_1)8X16t2+|3 a.tZ !

(17.1)
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oV :

4 o'u 4 o‘u
-2 - -2 -
( Asso 15 As Asszj X1 8 ( Asso As Asszj 8X1 6X
o%u o'v o*v
(As ALll) ox 6 (_1_ A551 A552 ] [_2 Asso Asmj
1 o
+| =2 Aaso - § A551 4 A552 6X1 8X Ass A11
4 4 oW 4 4
+ 2F47o + ZB550 += 5 B551 - g I:471j 6X (28550 5 8551 - 2F47o - g F471j4—
2
8 8 j o°w ( 2 ja3w
+| 4By, + =By, —4F g ——Fpy | ——+| Fy =B, +=F,., |—
550 5 551 470 5 471 d X12 6x§ 11 11 5 671 GXS

2 o’w 4 1 o'e
+ F11 - Bll + g FGHJM + (_2F470 _E l:471 + Z I:472 J 3X138§(2

4 1 o' 4 1 o)
+ _2F47o _E I:471 +— F472j—13 +(F|_11 + F47 + E F671 - F672j—1

4 X, 0% 4 OX,0X,
8 1 o'e 4 o'e
T _E Fin _Z F472ja_xl42+[_2|:470 _g F471JK32
4 1 o'e 2 1 o°¢
+| —2F 4 _5 Fin _Z F472jaxlz—a)2(2+(|:47 +E Fen +Z Fm)@_xfz
2

2 ¢, 0(An) . v o*w 3¢

+ Fll+gF67lj 8X§2 - ox, =1, a2 +(|3 - Il)axzatz +1; 8t22 )
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oW :

4 4 o°u 8 8 o°u
(_2 Bsso + 2F470 - g B551 +—= F471j§ ( 48550 + 4F47o 5 B551 += F471JW
1 2

5 5

4 4 o°u ( j83
+| -2B... +2F,,, ——B... +—-F j—+ B.-F.—-ZF
550 470 5 551 5 471 axlaxg 11 11 671 a 3

2
5
2 o%u 4 4 o°v
+ Bn - I:11 _g F67l m*‘ _28550 + 2F470 _g BSSl += 5 I:471 8 AU5

+| 2By, + 2F,; — g’ B, + g F““j%

+| —4Bg, +4F,,, — g B, + 2 ij 6222;2 +(B11 -k, - % F671)2—;\£

+| B, —F, - % Fm]% + (ZD550 +2F,,, —4F + g D, + g Fo— 8 F481j2%v

+| 2D, + 2F,,, —4F 4, + g D, + g F. —% 481j267\gl

+| 6D, +6F,,, —12F,4, + % D, + % F.. —2—;' 4&}%

+{ 6D,y + 6F,, —12F,q, + % D,,, + % Fous - 254 ij affeg(g

+| =D, +2F,, - F, -2A, - 2F,, + 4F,, - %A:, g Fiet —% F., + % F.,
g o1 — Ay —— Fasy F572]2%V + (—D11 +2F,, - F; -2A, - 2k, + 4F,,

—% A — % Fie — % Fas, + % R+ 4 Fees — As, — = Fisy F572j2%v

+(—2 D, +4F,, - —-4A,, -4F,, +8F,, — % A, —g 161 — % Fo, + % F,
L8k o'w

OX; OX; 4

1

S

4 5 OX;
o4
OX X’

8
+ (4F440 480 5 F441 - F481J

8
5
4 4 o°¢
+ 2F44o 2 F480 += 5 F441 g FABJW + (Fzz F -2 Fsso +2 I:570
2
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8 1 o*w
5 Foar = 2As, = Fiso 2F572]T+(k5|:55+EF661+_F662j6_X12

o*w 4 4 o°
+ K F55 + F661 +— Fesz] 6X (2F440 - 2F480 + g I:441 I F481];¢1
2

s
5
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4

32 16 2 1 1 o
_E I:551 + E 571+ g 681 Z I:552 + E F572j 8X¢31 +(':22 - Fss - 2F550 + 2F57o _g F461
1
1

32 16 2 1 0%, 8 1 0
_E I:551 + E I:571 + g F681 - Z F552 + E F572j 8X18)1( (k I:55 +—= 15 F661 4 Fsaz]%

4 4_ % o°¢
+ (2 I:440 -2 F480 + g I:441 5 F481j 6X22 (2 I:440 2 F480 441 F481] 6X14 6?(2
8 8 ¢
"{4':440 - 4F480 + g I:441 5 F481j 8X2 8?( + ( Fzz F -2 I:550 +2 I:570 5 F461
32 16 2 1 1 83¢ 4
_E I:551 + E 571+ g 681 Z I:552 += F572j732 + (Fzz - F33 - 2|:550 + 2':570 - g F461
2

2
32 16 2 1 1 % 8 1 o
_E Fagy + E Fo7y + g Foa1 — Z Foso + E FS?Z)@XZ—(;XZ + (ksts + E Foe + Z FGGZ)G_XE

0*Ww o*w POaW POaW opo o°w _ (BTll Tll)

-p 2 _p
B oxt  ox: toxk % oxd e OX,0X, ox;
o’u v o'w
%_(Il— I\%)a)(iat2 +(|1— |3)W+(2|4 —1,—- IS)W
2
o'w o°w o° 0°
I R L +(|4_|5)8X1§ #(1-15) gtz, (17.3)
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0P, :

4 1 o‘u 4 1 o‘u
(_2 l:470 471] 5 4 +( 471 472} (3X4 + (_2F47o - E I:471 - Z F472j 8X12@X2
2 2
=

2 o°u 2 1 o°u
+ F11+5F671jaxl +( 47*‘15 F671+4F672Ja 2

4 1 1 o'v
+| -2 I:470 - E l:471 +— 4 472) +( 2F470 471 + Z I:472 ]m

4 1 o%v 4 4 o°w
+| Fy +Fpp + E For — Z Foz. JM + (_2F440 +2F,q — g Fous + g FABle

8 8 o°w 4
+| —AFu0 +4Fe — g Fugy + g ijm + (_2 Fio + 2F g0 — g Fisy
4 o°w 4 32 16 2
+§ F481)W + (_Fzz + Py + 2Fg50 —2F50 + g Fes + E 551 E Fony _g Foes
2
1 1 o*w 4 32 16
+— 4 F552 2 F572j¥ + (_Fzz + F33 + 2l:550 - 2|:570 + g F461 + E l:551 - E I:571
1
2 1 1 o*w 8 1 oW
e Foe1 + 2 —Fegp — > For j8x17 + (_ks Fos — 15 Foe1 — 2 Feso ja
4 o'e, 1 o',
+ —2 I:440 5 I:441] ox l4 ( 441 442) axgl
4 1 4 32 1 o°
+| -2 F44o 3 441 4 F442j 2 (Fss + 2F550 += 5 F461 15 F551 + Z F552j£
4 4 1 ‘4 8 1
+ I:44 15 F4Gl +5 3 I:551 += 2 F462 + I:552) 8X - [_ks I:55 15 F661 Z F662j¢1
2
4 1 ‘e 4 1 o'¢
+| -2 I:440 - E l:441 + Z F442 jm + (_2 I:440 - E l:441 +— 4 F442j 8X18)2(2
8 4 1 3 0%
+ FL33 + F44 + 2F550 +E F461 +g F551 _E 462 _Z 552)@
o(F 2 3
_ (8T11)=|3;g+(|5_|4)86;v2 aatfl’ (17.4)
X, X,
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09, :

4 1 d‘u 4 1 o'u
(_2 Fio =z Fars + Z Fir j— + (_2 Fio = Fars + Z I:472j

15 O, 0%, 15 m
+| Ry, +F, + % Fort _%FWJ%
+| —2F,;, —% Fr —% ij%+(ﬁ7 +%F671 +%F672j%
+| Fy, +§ F671j2—)2(:2’+[—2|:440 +2F 5 —g Fou +g F481]§7\§v

8 8 j o*w
+| —AF, 4 4F g — = Fpy + = Frgy |
440 480 5 441 481 axiz axg

4
5 + (_2 I:440 + 2F480 - g I:441

4 o°w 4 32 16 2

+g 481) 5X148X2 + (_Fzz + F33 + 2F550 - 2F57o + g F461 + E I:551 - E I:571 - g F681
1 1 o*w 4 32 16

+Z F., — r F.,, j_f + (—Fzz +F; + 2R, -2, + 3 Fo + A Fos, — T Foy

2 1 1 o*w 8 1 oW
_g F681 + Z I:552 - E I:572 j— + (_ks I:55 - E F661 - Z Fsez]

OX20X, ox,
+| —2F 0 —% Fo + % Fu j@fg—g;z + (—ZF440 —% Fo + % Fi j@i:—;l(ﬁ
+| Fl + Fy +2F, + % Fo + g Fee, —% Fie —% Fsszj;;:—;l(z
+ —%Fm —%F44zj%+[—2F440 _%F““j%

4 1 o'e 4 4 1 °¢
+ _2F44o _5 I:441 _Z F442)m +(F44 + E F461 + 5 I:551 + E F462 + FsszjaTzz
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1
4 32 1 o°¢ 8 1
+ F33 + 2F550 + g F461 + = I:551 +— Fsszj 8X22 + (_ks F55 ™ F661 T Feez J¢2

15 4 2 15 4
6 F 2 3 2
- (T11)=|362’+(|5—|4) 8W2+|Sa‘fz.
ox, ot ox,ot ot

and the corresponding boundary conditions are determined as
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ou=0 or
[(_2 Asso A:m} oy ( A::so A551 A552 j 8)2 8X Au 2_U
o%v

+ Aa Asslj oy (_2'6‘550 + % '%51 + % A552 j axi 5X A1_11

5 5 OXy

2 2 o'w 2 o*w
+ 38550 _3F470 +ngs1 B F471j— (F B += 5 Fe71]

5 " ) ox2ox: ox?
+| Fly —B, + % F.., —% F.., )‘22722 ( 2F,, — ij aaj?
+| —2F,, + % F, + % F472jai;—g;2+(ﬁn + 125 F,.— ; ij of, ATMJ
oAt Amj [ Aro =2 A 7 A j aZ;x Al

5 5 XX, 5

4 1 o*w 8 1 o’
+ 2F47 _2855+EF671+_F67ZJ—+( = Fan — I:472j_1

8 OX,0X, 15 4 ox;
+| =Fur0 —%Fm —%F472]6§—§;2+(F47 +%F671 +%F672j2_2
+ —%Fm +%F472J%+[—F470 —% Fin +%F472j6>a(13—§>2<§
+| Fp; JF%F671 _%FWJZ_@”XZ =0,
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4 4 o'w 2 2 o'w
+ _2F470 + ZB550 + g BSSl - F471JW + (_Fuo + Bsso - g BSSl += I:471j_
1

6 6 o'w 6 6 o'w
+ Bsso - I:470 +— B551 T ijé‘— + (_szo + Bsso + g Bss1 e F471jm
2

(18.1)
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5& =0 or

((2&50 4 Asmjaz _2&51227?{2&50 AS“)@ZX

+[2F470 PRI FJ ZTW

+[ 2B, +2F,, + 2 B, — 2 Fm) af:@x é For1 2)\:\/1 +(2F470 +%F471]22_x?

16 o°u 8 o’V
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2 2 o*w 8 8 o*w
+ I:470 - Bsso + g B551 s I:471j_ + (_8550 + l:470 - g B551 +—- I:471j—
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2 2
8 1 o°¢ 2 o°¢
+ E Fin _g Fir ja_xfz +[':470 _E F471j§22
2
+ _£F671 +£F672j¢2]nx =0, (18.2)
15 8 ’

32



56—u_0 or
0X,

16 o°u 8 o°v o%v
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2 az¢ 8 1 o’
—zFn—+ (15 Fuy + 4 I:472j 6X21

471 2
5 X 5

2 16 o’
+(_ 15 Fors — 672) 15 —F - 472} 5X15)2(2 jnxz =0,
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+ —% Fon +%F672]%+(F470 +g Fi +%F472j aijg)l(z
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Ay —— A J o%,0%, + [15 A552 j A551
8
5

1
4
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5

Although all types of boundary conditions including combinations of clamped
(C), simply supported (S) and free (F) can be achieved by using Eq. (18), in the
present study, all edges clamped (CCCC) and all edges simply supported (SSSS)
micro-plates are considered to generate numerical results. The boundary conditions
for all edges clamped (CCCC) micro-plate are given by

At edges x, =0,a
_u_, W ow_o'w_ . _ 04 _

¢ =—"-=0, (19.1)

At edges x, =0,b

Yy =% 0 (192
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Also, the boundary conditions associated with all edges simply supported are in

the form

Atedges x, =0,a

ou w0
—=V= = 2 =;¢1:¢2: ,
X % 0%

ux0, Mo Moo 4.0 .o (20.1)
0%, X 0%,

At edges x, =0,b
2
u:ﬂzwzé\;\/=¢1=%:0,
OX, OX; OX,

ve0, Moo Moo %o 4.0 (20.2)

oX, oX, OX,

where a and b are the length and width of functionally graded micro-plate,

respectively, as depicted in Figure 1.
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CHAPTER 3

NUMERICAL SOLUTION

3.1 Differential Quadrature Method

Differential quadrature method is employed to solve the system comprising
governing partial differential equations and boundary conditions. The technique,
which was originally proposed by Bellman and Casti [76], is based on approximating

derivative of a function by a weighted sum of functional values. m" derivative of a

function z(x,t) with respect to x at a point X; is represented as:

a"z(x.t) _
v hex Zc” z(x;,t), i=1,2..,N (21)
N here is the number of nodes, and ci(j'“) are the weighting coefficients for the

" derivative. The coefficients are available in the book by Shu [77]. Figure 2

depicts discretization of the mid-plane of the FGM micro-plate. N, and N, in the
figure are numbers of grid points in X, and X, directions, respectively. Using DQM,
derivatives of a function z(x,y,t) ata point (i, j), i =1, ..., N, and j=1,..,N,,

are expressed as:

% Z (20000 |y ) (22.1)
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Telsx ), Zﬂ,k( (4.%.8) | ) (22.2)

X,
" (x, %t iﬁ NZa N(2(%% ) |y ) (22.3)
axlaxz = jl = ik 2 )

where a ) and ﬂ are the weighting coefficients for the m" derivative in x, and

X, directions. An important factor influencing stability of DQM is the distribution of

grid points. In the present study, we used Chebyshev-Gauss-Lobatto points, which

result in a more stable procedure compared to uniform grid points [78]. Chebyshev-
Gauss-Lobatto points for a two dimensional setting 0<x <1 and 0<x, <1, are

given by

Xy, =1{1cos(”(i _1)J}, i=1,2,..,N_, (23.1)
2 N, -1 !

X, l{1—cos(”(j _1)}, 1=1,2,..,N,. (23.2)
2 N, -1 2

Xy JA
=N,
ij+1
SN (NI (5
ij-1
2
=1 >
i=1 2 e i=NX1 Xq, 1

Figure 2. Discretization of a plate mid-plane.
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3.2 Static Thermal Bending Analysis

Before proceeding to the free vibration analysis of functionally graded micro-

plate in thermal environment, the initial stress state and hence initial in-plane forces

P,. P, and P/, must be determined from static thermal bending problem. The

static problem whose solution gives the thermally induced initial displacements is
obtained by dropping inertia related terms, initial in-plane forces including thermally
induced and mechanical in-plane loads and distributed load in Egs. (17) and (18).

Once the static thermal displacements are worked out, B}, B’ and P/ ~are

evaluated by inserting these displacements respectively in M., MY, and M) given

by Eq. (15). For all edges clamped, since thermally induced initial displacements are
zero, in-plane forces are obtained as follows:

Px? =—Au, sz =—A Px(l)xz =0 (24)

3.3 Static Bending

For a rectangular FGM micro-plate under static loading, unknown generalized
displacement vector d is defined as follows:

d={fu,}" fof o) ) ()] forp=1 2 L N XN, (29

where {u,}, {v,}, {w,}, {4,} and {4, } are unknown vectors with N, xN,

elements. When MPT or TSDT is employed in numerical analysis, the displacement

vector d comprises of 5xN, xN, components. However, in the computations
based on KPT, d contains 3xN, xN, = unknown displacements because governing

equations associated with ¢ and ¢, are not included.
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Eliminating in-plane forces and the terms including time derivatives; and utilizing
DQM, governing equations and boundary conditions are recast into the following

matrix form:

Dd+Q =0, (26)

in which D is coefficient matrix associated with grid points, and Q is forcing vector
resulting from distributed loading. For grid points located on the boundaries, i.e.
i=1, j=1 i=N, and j=N, in Figure 2, boundary conditions are

implemented. If there are more than one conditions on a boundary, the nodes next to

the boundary grid points, i =2, j =2, i =N, —-1and j =N, -1, may be used to

apply boundary equations.
3.4 Free Vibrations

The total displacement is the sum of static thermal displacement vector d° and
dynamic displacement vector d. By inserting the total displacement vector d +d° in
governing equations and boundary conditions and knowing that d° satisfies the
thermal static equilibrium, the governing equations in terms of dynamic
displacements are obtained in which the nonhomogeneous terms are dropped.

To conduct the free vibration analysis the dynamic displacement vector is defined

in the following form

d=d%e'"", (27)

where o represents the natural frequency and d” is the vibration mode shape vector

consisting of dynamic displacement vectors of field variables

a ={fu, ) ) ) ) ()] forp=L 2 NN, (9

Substitution of Eq. (27) into governing equations leads to
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D,d” +D,d" —»’Md" =0. (29)

where d* and d* are dynamic displacement vectors for boundary and internal

points, respectively; D, and D, are coefficient matrices associated with boundary

and internal points; and M is mass matrix. Using Eq. (27) and boundary conditions
one finds
B,d*+B,d" =0. (30)

B, and B, are coefficient matrices obtained from boundary conditions associated

with boundary and internal points, respectively. Combining Egs. (29) and (30), we
derive the eigenvalue problem:

{K-o'M} d" =0. (31)

K here is stiffness matrix given by

K =-D,B;'B, +D,. (32)

3.5 Buckling

In buckling analysis, the in-plane loading is comprised of externally applied
biaxial mechanical loading with P,=P, =P and initial forces P?, PXZ and Pxfxz

due to static thermal bending problem. Similar to the vibration formulation, buckling

solution procedure leads to an eigenvalue problem. However, instead of mass matrix
M, a coefficient matrix X is generated from the derivative terms 6°w/ox’ and

d*w/ox2. The eigenvalue problem is derived in the following form:

{K-PX} d, =0. (33)
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The smallest eigenvalue P computed from Eqg. (33) is the critical buckling load

of the rectangular FGM micro-plate, and d, is buckling mode shape vector.
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CHATER 4

NUMERICAL RESULTS

On the base of numerical method described in previous section static bending,
free vibration and buckling analyses of micro-plates with all edges simply-supported
(SSSS) and all edges clamped (CCCC) have been established.

4.1 Functionally Graded Material

The geometry of a small-scale functionally graded rectangular plate is depicted in
Figure 1. The mechanical properties of the functionally graded micro-plate are

assumed to be functions of the thickness coordinate x,. It is assumed that the
material of micro-plate varies from metal phase at x,=-h/2 to ceramic at
X, =h/2. The volume fraction V of each phase material is determined by the

following power-law

c

V,(%)=(05+x,/h)", V. +V, =1 (34)

where the subscripts ¢ and m represent ceramic and metallic constituents,

respectively and n is the volume fraction exponent. A typical effective material

property Z of a functionally graded micro-plate such as Young’s modulus E(xs),
Poisson’s ratio v(X;), density p(x,), material length scale parameters I (x,),

i=0,1,2, coefficient of thermal expansion «(X,) and thermal conductivity k(x,)

vary continuously along the thickness according to the rule of mixture
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Z(%)=ZN, (%) +Z,V, (%), (35)

The particular metal-ceramic functionally graded micro-plate considered in
parametric analyses, unless otherwise stated, is made of aluminum (Al) and silicon
carbide (SiC) for which, according to Eshraghi et al. [68], material properties are

given as

E, =427 GPa, E, =70 GPa, (36.1)

v, =017, v, =03, (36.2)

p, =3100 kg/m®, p_ = 2702 kg/m?®, (36.3)
a, =43(10)° UK, a,=23.0(10)" 1K, (36.4)
k, =65 W/(mK), k, =204 W/(mK). (36.5)

Since there is not sufficient characterization data in the literature on length scale
parameters, approximate values are used for functionally graded small-scale
structures [56, 59]. In the present study, length scale parameters of strain gradient

theory of the metallic phase are taken as I, =1, =1, =I=15xm; and those of the

ceramic component are defined as b, =1, =1, =2l where g is length scale

parameter ratio. Similarly, the length scale parameter associated with modified

couple stress theory of metallic component is assumed to be | =1 =15xm; and that
of ceramic phase is characterized by using length scale parameter ratio g as |, = gl .
Note that when g =1, length scale parameters are constant within the micro-plate.
Any positive g value other than unity implies spatial length scale parameter

variations.
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4.2 Convergence Study

In order to study the convergence of DQM, first dimensionless transverse natural
frequencies of simply-supported micro-plate are provided in Table 1. Dimensionless

natural frequency is defined as

2
E):w%«/pm/Em. (37)
The results for three different elasticity theories, namely, classical theory (CT),
MCST and SGT are generated, by using third order shear deformation plate model. It
can be seen that for better accuracy and convergence of results the number of grid

points can be chosenas N, =N, =11.

Table 1. Convergence study on first dimensionless transverse natural frequencies of SSSS
micro-plate, | =15 um, I/h =0.4, a/h =10, b/a=1.0,n = 2.0, # = 2.0.

Ny, <N, CT MCST SGT
9x9 8.3671 14.9849 24.6728
11x11 8.3672 14.9851 24.6706
13x13 8.3672 14,9851 24.6706
15%15 8.3672 14.9851 24.6706

4.3 Numerical Results in Absence of Thermal Effets

4.3.1 Static bending

In order to be able to verify the developed procedures, we first present some
comparisons to the static bending results provided by Ansari et al. [30]. Table 1
tabulates comparisons regarding normalized maximum deflection w,,/h of a
simply-supported homogeneous micro-plate under uniform loading q. Maximum
deflection occurs at the mid-point of the simply-supported plate. Material properties
are given by:

E=144GPa, p=1220kg/m®, |,=1,=1,=1=17.6um. (38)
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The results are generated in accordance with Mindlin plate model and strain

gradient theory. The excellent agreement between the deflections is indicative of the

high degree of accuracy attained by the application of the developed procedures.

Note that Ansari et al. [30] used finite element method (FEM) and proposed a new

size-dependent triangular plate element to capture size effect in micro-plates.

Table 2. Comparisons of the dimensionless deflection (wmax/h) for a homogeneous micro-plate, v

=0.3, b/a=1.0,q = 1000 N/m2

a/h h/l
1.0 2.0 5.0
10 Present 3.3427E-5 8.0393E-5 2.0811E-4
Reference [30] 3.3211E-5 8.0250E-5 2.0834E-4
50 Present 0.0125 0.0412 0.1209
Reference [30] 0.0125 0.0413 0.1212

Figure 3 shows dimensionless maximum deflection w for a functionally graded

simply-supported micro-plate subjected to uniform loading g = 1 N/m?2. Normalized

deflection is defined by

max
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Figure 3. Dimensionless maximum deflection of SSSS micro-plate, | =15 pm, I/h = 0.4, a/h = 10,
b/a=1.0,$=2.0,q=1N/m? predicted by (a) SGT and (b) MCST.
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w is plotted with respect to power function exponent n for three different plate
theories. When n = 1, all material variation profiles are linear. The plate is metal-rich
for n > 1, and ceramic-rich if n < 1. Mid-point deflection is found to be an increasing
function of the exponent n. This is the expected result since for larger n the plate is
metal-rich, and elastic modulus of the metallic component is much smaller than that
of ceramic component. Deflection profiles found in accordance with Kirchhoff plate
theory and third-order shear deformation theory are close to each other, whereas
MPT overestimates the micro-plate deflection. Further results generated for static
bending presented in Figures 4-7 are calculated by considering TSDT.

Figure 4 illustrates influence of the length scale parameter variation upon the
static bending behavior. Normalized maximum plate deflection is plotted as a
function of the exponent n for four different values of the length scale parameter

ratio . Note that when S =1, all length scale parameters are constant, while any

value other than unity implies through-the-thickness variations for these parameters.

Maximum micro-plate deflection W decreases as the ratio £ is varied from 1/2 to 4.
Impact of B upon static bending behavior underlines the importance of inclusion of

length scale parameter variations in the formulation of micro-scale structural

problems. Figure 5 depicts variations of the maximum deflection with respect to the
normalized length scale parameter 1/h, where | is length scale parameter of the
metallic component. The curves are plotted for four different values of the exponent
n. Maximum normalized deflection decreases as I/h is increased from 0 to 1.2.
Reduction in the deflection is due to size effect, which is more prominent when h is
close to I. As I/h approaches zero, size effect weakens and this causes considerably

larger deflections.
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Figure 4. Dimensionless maximum deflection of SSSS micro-plate, | =15 pm, I/h = 0.4, a/h = 10,
b/a=1.0,q=1N/m? predicted by (a) SGT and (b) MCST.
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Figure 5. Dimensionless maximum deflection of SSSS micro-plate, h =25 pm, a/h = 10, b/a = 1.0,
£=20,q=1N/m?predicted by (a) SGT and (b) MCST.

Provided in Figure 6 are the dimensionless maximum deflections of simply-
supported micro-plate predicted by three different elasticity theories, namely,
classical theory (CT), modified couple stress theory (MCST) and strain gradient
theory (SGT). Classical theory disregards size effects; and dimensionless maximum
deflections of plates with the same aspect ratios a/h and b/a are not affected by the
change in the thickness when computed by classical elasticity theory. Smaller

deflections are found in accordance with MCST and SGT specially as I/h gets larger

which is indication of significance of higher order continuum theories in small-
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scales. As 1/h — 0, all three approaches converge to the same result as that of CT.

The stiffest plate is predicted based on SGT.

3,0

25 4

15F \ _
10| \ N .
05} N - -

- - -

0,0 I 1 I 1 I 1 I | it Wi NI

Figure 6. Dimensionless maximum deflection of SSSS micro-plate, h =25 pm, a’/h = 10, b/a = 1.0,
£=20,n=20,q=1N/m?

Since all edges clamped micro-plates show similar behaviors to all edges simply-
supported micro-plates, all the forgoing results, for brevity, are generated for all
edges simply-supported micro-plates. As an example, based on MCST, the
dimensionless maximum deflections of CCCC micro-plates as functions of the

exponent n and I/h are plotted in Figure 7. It is observed that an increase in I/h

leads to reduction in maximum normalized deflection. The curves are descending
functions of the exponent n. Comparing Figure 7 with Figure 5 (b) it is revealed that,
under a similar loading condition, in a CCCC microplate the deflections are smaller
than a SSSS micro-plate of the same size; This can be justified by the more rigid

boundaries of an all edges clamped micro-plate.
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Figure 7. Dimensionless maximum deflection of CCCC micro-plate, h =25 pm, a/h = 10, b/a =
1.0, #=2.0, g = 1 N/m?, predicted by MCST.

4.3.2 Free vibrations

In order to verify free vibration analysis techniques, in Table 2 we compare first
natural frequencies of a simply-supported homogeneous micro-plate produced by
DQM to the frequencies given by Ansari et al. [30] which are computed by FEM.
Material properties are the same as those given by Eq. (38), and MPT along with
SGT are used in analyses. Natural frequencies computed are found to be in excellent

agreement.

Table 3. Comparisons of the first natural frequency «; (in MHz) for a homogeneous micro-
plate, v =0.38, a’/h = 10, b/a = 1.0.

h/l

1.0 1.5 2.0 5.0 10
Present 1.7107 0.8889 0.5564 0.1421 0.0618
Reference [30]  1.7094 0.8887 0.5564 0.1420 0.0617

In Table 4 the first dimensionless natural frequencies &, of functionally graded

micro-plates with all edges simply-supported are compared to those presented by
Thai and Choi [42]. Thai and Choi [42] used Navier approach to solve the bending,
buckling, and vibration problems regarding functionally graded rectangular micro-

plates. The results in Table 4 are generated based on modified couple stress theory
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and two different plate models, i.e. KPT and MPT. Material properties used in this

set of results are given by
E.=14.4 GPa, E,A =1.44 GPa, (40.2)

p, =12.2(10)° kgim®, p, =1.22(10)° kg/m?, (40.2)

Dimensionless natural frequency in this set of results is given by Eq. (37). It can
be observed that results of the current study are identical with those reported by Thai
and Choi [42].

Table 4. Comparisons of first dimensionless natural frequency ¢, of SSSS micro-plate, v =
0.38, h=17.6 um, a/h = 10, b/a = 1.0.

Plate I/h n=0 n=10

model Present Reference [42] Present Reference [42]

KPT 0 6.1103 6.1103 6.3958 6.3958
0.2 6.5491 6.5491 6.8156 6.8156
0.4 7.7174 1.7174 7.9431 7.9431
0.6 9.3453 9.3453 9.5303 9.5303
0.8 11.2349 11.2349 11.3866 11.3866
1 13.2749 13.2749 13.4006 13.4006

MPT 0 5.9301 5.9301 6.1903 6.1903
0.2 6.3559 6.3559 6.5967 6.5967
0.4 7.4807 7.4807 7.6797 7.6797
0.6 9.0261 9.0261 9.1829 9.1829
0.8 10.7848 10.7848 10.9066 10.9066
1 12.6360 12.6360 12.7303 12.7303

Figures 8-15 and Table 5 present our results regarding free vibrations of
functionally graded rectangular micro-plates. The dimensionless natural frequency is
defined the same as Eq. (37).

Figure 8 shows the first dimensionless transverse natural frequency as a function
of the exponent n for three different plate theories. Dimensionless frequency is found
to be a decreasing function of n. Therefore, ceramic-rich micro-plates possess higher
natural frequencies compared to metal-rich plates. Frequencies found in accordance
with KPT and TSDT are in close agreement. MPT slightly underestimates the natural
frequency. Remaining parametric analyses on free vibrations are thus carried out in

accordance with TSDT.
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Figure 8. First dimensionless transverse natural frequencies of SSSS micro-plate, | =15 pm, I/h
=0.4,a/h=10,b/a=1.0, #=2.0, predicted by (a) SGT and (b) MCST.

Table 5 tabulates first ten dimensionless natural frequencies computed for length
scale parameter ratios f = 1/2 and = 4. The table also lists dominant mode of
vibration at each frequency. The dominant mode is determined by comparing axial
(u and v), transverse (w) and rotational (¢ and ¢,) mode shapes. Axial and
transverse vibration mode shapes of a typical simply-supported FGM micro-plate are
illustrated in Figures 9 and 10. The frequencies at which the rotational vibration is
dominant are generally the higher frequencies. Note that the weighting coefficients
used in DQM are determined by choosing Lagrange interpolated polynomial as the
set of test functions. The mode shapes given in Figures 9 and 10, initially are

obtained by utilizing N, =N, =11 in numerical calculations, then by means of

multivariate Lagrange interpolation, high resolution plots are generated. Examining
Table 3, it is seen that dominant mode of vibration strongly depends upon the length
scale parameter ratio S.
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Table 5. Dominant modes and corresponding frequencies of SSSS micro-plate, | = 15 pm, I/h =
0.4, a/h =10, b/a=1.0, n = 2.0, predicted by SGT.

p=1/2 $=4.0
w Dominant Mode o Dominant Mode
14,0703 Transverse w, mode 1 33,7745 Axial, mode 1
32,6332 Axial, mode 1 33,7745 Axial, mode 1
32,6332 Axial, mode 1 41,4124 Transverse w, mode 1
33,7162 Transverse w, mode 2 48,8784 Axial, mode 2
33,7162 Transverse w, mode 2 74,6516 Axial, mode 3
45,6546 Axial, mode 2 74,6516 Axial, mode 3
52,0493 Transverse w, mode 3 82,6270 Axial, mode 4
63,6646 Transverse w, mode 4 85,4552 Axial, mode 5
63,6646 Transverse w, mode 4 85,4552 Axial, mode 5
65,8387 Axial, mode 3 99,8940 Transverse w, mode 2
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Figure 11 depicts variation of the first dimensionless transverse natural frequency
@, with respect to n, for four different values of the length scale parameter ratio £.
Increase in S causes a notable rise in the first dimensionless frequency. Thus, the

micro-plate behaves in a stiffer manner for larger values of the length scale

parameter ratio. Influence of B on vibration behavior is another finding illustrating

the need to account for length scale parameter variation in structural analysis of
micro-scale components. The first two dimensionless frequencies of transverse

vibrations are plotted in Figures 12 and 13 as functions of n and I/h. Both of the
natural frequencies increase notably as I/h is increased from 0 to 1.2. Note that for a
macro-scale plate 1/h — 0, and vibration frequency is considerably smaller due to

less stiff behavior.
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Figure 13. Second dimensionless transverse natural frequencies of SSSS micro-plate, h =25 pm,
a/h =10, b/a=1.0, p=2.0, predicted by (a) SGT and (b) MCST.

Figure 14 depicts first dimensionless natural frequencies of simply-supported
micro-plates as a function of the dimensionless length scale parameter 1/h. The
results are calculated for the classical and the two higher order continuum theories.

Frequency plots obtained by these theories are convergent to a same result as 1/h
decreases. Variation of 1/h has no effect on the results predicted by classical theory.

As | approaches to value of the thickness of micro-plate, frequencies computed by
MCST and SGT increase. The increase in natural frequencies seems to be larger for
SGT compared to those found by MCST.

The first and second dimensionless natural frequencies of all edges clamped
micro-plates are provided in Figure 15. The results are generated based on MCST.
Comprehensive examination of Figure 15 and the previous results regarding
frequencies of all edges simply-supported micro-plate reveals the fact that similar
trends can be observed in micro-plates with the both types of boundary conditions.
The first two natural frequencies of a CCCC micro-plate are higher than those of a

SSSS micro-plate.
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Figure 14. First dimensionless transverse natural frequencies of SSSS micro-plate, h =25 pm,
a’/h=10,b/a=1.0,=2.0.
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Figure 15. First two dimensionless transverse natural frequencies of CCCC micro-plate: (a)
First dimensionless transverse natural frequency; (b) second dimensionless transverse natural
frequency. h =25 pm, a/h = 10, b/a=1.0, g = 2.0, predicted by MCST.

4.3.3 Buckling

To be able to verify computational developments provided in the current study,
comparison results are given for dimensionless critical buckling loads of all edges
simply supported micro-plate, according to KPT and MPT. The results are generated
based on modified couple stress theory. Material properties are the same as those

given by Eq. (36). Dimensionless critical buckling load is expressed in the form:
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(41)

It can be seen that the DQM results of this study are in good agreement with those

provided by Thai and Choi [42] by utilizing Navier method.

Table 6. Comparisons of dimensionless critical buckling loads P of SSSS micro-plate, v = 0.38,
h=17.6 pm, a’/h =10, b/a=1.0.

Plate I/h n=0 n=10

model Present Reference [42] Present Reference [42]

KPT 0 19.2255 19.2255 3.8359 3.8359
0.2 22.0863 22.0863 4.3560 4.3560
0.4 30.6686 30.6685 5.9164 5.9164
0.6 44,9723 44,9723 8.5171 8.5171
0.8 64.9976 64.9976 12.1581 12.1581
1 90.7444 90.7444 16.8394 16.8393

MPT 0 18.0746 18.0746 3.5854 3.5854
0.2 20.7607 20.7607 4.0710 4.0710
0.4 28.7478 28.7478 5.5152 5.5151
0.6 41.8272 41.8271 7.8803 7.8802
0.8 59.6657 59.6657 11.1065 11.1065
1 81.8270 81.8269 15.1153 15.1152

Numerical results regarding critical buckling loads of functionally graded
rectangular micro-plates are provided in Figures 16-20.

In Figure 16, we present critical buckling load as a function of the exponent n for
three different plate theories. Drop in P as the exponent n is increased from 0 to 6
indicates that ceramic-rich FGM micro-plates possess larger critical buckling loads
compared to metal-rich ones. Buckling loads computed in accordance with KPT and
TSDT are close to each other. MPT seems to slightly underestimate the critical
buckling load. Further results provided in Figures 17-20 are generated by TSDT.
Figure 17 shows n-variation of the buckling load for four different values of the
length scale parameter ratio S. Buckling load is highly sensitive to the changes in
the length scale parameter ratio. It rises significantly as the length scale parameter
ratio is increased from 1/2 to 4. Figure 18 presents variation of critical buckling load

with respect to 1/h for four different values of n. This figure is illustrative of the size
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effect in that it shows that critical load computed for larger 1/h is considerably larger

than that evaluated for macro-scale plates for which 1/h tends to zero.
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Figure 16. Dimensionless critical buckling load of SSSS micro-plate, | =15 pm, I/h = 0.4, a/h =
10, b/a=1.0, p = 2.0, predicted by (a) SGT and (b) MCST.
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Figure 17. Dimensionless critical buckling load of SSSS micro-plate, | =15 pm, I/h = 0.4, a/h =
10, b/a = 1.0, predicted by (a) SGT and (b) MCST.
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Figure 18. Dimensionless critical buckling load of SSSS micro-plate, h =25 pm, a/h = 10, b/a =
1.0, p = 2.0, predicted by (a) SGT and (b) MCST.
In Figure 19 P is plotted with respect to I/h for three different elasticity theories.

The curve of classical elasticity theory is independent of length scale parameter |
and remains as a straight line, by taking aspect ratios a/h and b/a as constants. SGT
and MCST give dimensionless critical buckling loads close to classical theory when

| > 0. P-plots generated by SGT and MCST are increasing functions of I/h. The

more rapid increase in critical buckling loads occurs in results of SGT rather than
those of MCST.
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Figure 19. Dimensionless critical buckling load of SSSS micro-plate, h =25 pm, a’/h = 10, b/a =
1.0, = 2.0.
To examine the effects of type of boundary conditions, in Figure 20

dimensionless critical buckling load of CCCC micro-plate is illustrated. Similar to all
edges simply-supported micro-plate, critical buckling load is seen to be a decreasing
function of the exponent n. Also, P increases with a corresponding increase in 1/h.
All edges clamped micro-plate shows more stiff behavior with respect to all edges

simply-supported micro-plate.
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Figure 20. Dimensionless critical buckling load of CCCC micro-plate, h =25 pm, a/h = 10, b/a =
1.0, p = 2.0, predicted by MCST.

75



4.4 Numerical Results in Thermal Environment

Due to lack of studies on static thermal bending analysis and, also, free vibrations
of functionally graded small-scale rectangular plates in thermal environment, the
results verification is only made on thermal buckling results.

For a plate initially at temperature T, the temperature can be uniformly raised to
T, such that the plate buckles. This temperature change is denoted by AT, and is

called critical buckling temperature difference. In Table 7 we compare critical
buckling temperature difference of a functionally graded micro-plate to those given
by Mirsalehi et al. [74]. In their study, the spline finite strip method (SFSM) is
adopted for analyzing the stability of FGM micro plates. Modified couple stress
theory is used in conjunction with KPT to produce the results provided in Table 7.
FGM micro-plate in this particular comparison is assumed to be fabricated of
alumina and aluminum. Material properties of aluminum are the same as those given

by Eq. (33). Alumina possesses the following properties

E, =380 GPa, a,=7.4(10)" UK, (41)

The results are in excellent conformity with those of Mirsalehi et al. [74]. Note
that to generate these results the prebuckling static thermal displacements are not
worked out for simply-supported micro-plate, and thermally induced initial in-plane
forces are considered to be the same as those given by Eqg. (24) which is a
simplifying assumption for SSSS micro-plates. In order to justify significance of
need to account for the initial thermal stress analysis, in Table 8 we have provided

maximum static thermal deflections wmax and first dimensionless natural frequencies

@, of a simply-supported micro-plate under different temperature rises and g -

values. To generate these results TSDT is used. Material properties are the same as
those given in Eq. (33). It is observed that the results show differences, especially in

high temperature rises and small values of £.
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Table 7. Comparisons of critical buckling temperature difference AT, (K) of SSSS and CCCC
micro-plate under uniform temperature rise, v = 0.3, h = 17.6 um, a/h = 100, b/a = 1.0.

Boundary I/h n=0 n=>5
conditions Present Reference [74] Present Reference [74]
SSSS 0.0 17.0991 17.0992 7.2658 7.2657

1.0 88.9154 88.9157 36.9707 36.9707

2.0 304.3641 304.3652 126.0856 126.0858
CCcCC 0.0 45.3437 45.3471 19.2674 19.2688

1.0 235.7870 235.8052 98.0394 98.0467

2.0 807.1167 807.1792 334.3553 334.3806

Table 8. Maximum deflection wmax and dimensionless natural frequencies under uniform
temperature rise, | =15 pm, I/h = 0.4, a/h =10, b/a = 1.0, n = 2, predicted by MCST.

AT(K) B Wmax (pum) @y
SSSS* SSSS** SSSS* SSSS**
100 0.5 0.4911 0 10.2262 9.9084
1.0 0.3931 0 11.4968 11.2154
2.0 0.2354 0 14.8943 14.6786
4.0 0.0904 0 23.1977 23.0602
500 05 2.4556 0 9.6815 7.8603
1.0 1.9657 0 11.0147 9.4552
2.0 1.1771 0 14.5247 13.3826
4.0 0.4521 0 22.9617 22.2584

* Static thermal bending analysis are carried out based on procedure developed in this work
** In-plane forces are assumed to be the same as those given in Eq. (24)

4.4.1 Static thermal bending

In this section deflections resulted from static thermal bending analysis under
uniform temperature rises are provided. Since MCST and SGT exhibit similar trends
regarding the mechanical responses of micro-plate in thermal environment, unless
otherwise mentioned, the results are mostly computed by MCST and at the end of
each section sample results obtained by SGT are presented. Illustrated in Figure 21
are the deflections of SSSS and CCCC micro-plates under 100 K temperature rise.
As it is observed thermally induced initial displacements are zero for all edges
clamped micro-plate; because the geometric boundary conditions and governing
equations for static thermal bending problem of CCCC micro-plate form a
homogeneous system of differential equations with trivial solution. The nonzero

initial displacements due to temperature change in all edges simply-supported micro-
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plate necessitates consideration of these displacements in calculation of thermally
induced initial in-plane forces.

Maximum deflections of SSSS micro-plate, undergoing a temperature rise of 100
K, as a function of the exponent n and predicted by three different plate theories, i.e.
KPT, MPT and TSDT, are given in Figure 22. Maximum deflection occurs at the
mid-point of plate. All of the maximum deflections increase as the exponent n is
increased. Thus, ceramic rich functionally graded micro-plates show smaller
deflections. This is the expected result since the ceramic phase of the FGM micro-
plate has larger modulus of elasticity and coefficient of thermal expansion compared
to the metallic phase. Note that, thermal bending occurs in FGM plates due to the
differences in material properties of upper and lower surfaces. When n = 0, plate is
homogeneous, and is not deflected under temperature change. Further inspections on
Figure 22 show that the three plate theories are seen to lead to almost identical
maximum thermally induced deflection curves. In computation of the results given in
Figures 23-25 third-order shear deformation theory is employed because it produces

more accurate results due to its quadratic transverse shear strain distribution.
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Figure 21. Static deflection under uniform temperature rise of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a=1.0, # = 2.0, n = 2, AT = 100 K, predicted
by MCST.
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Figure 22. Maximum deflection of SSSS micro-plate, | =15 pm, I/h =0.4, a/h =10, b/a=1.0, f =
2.0, AT =100 K, predicted by MCST.

Figure 23 depicts influence of the length scale parameter ratio £ on maximum
thermal deflections of all edges simply-supported micro-plates. It can be seen that g

has a significant impact on the maximum thermal deflection. Thus, it can be infered
that variation of the length scale parameter needs to be taken into account to be able
to produce more accurate numerical results regarding the structural behavior of FGM

micro-plates. Thermal deflections get smaller as g is increased. As n is increased,
different S -curves tend to converge to a single value because the equivalent length

scale parameters of metal rich functionally graded micro-plates approach to that of
pure metal phase, i.e. | =15 pm.

The results provided in Figure 24 demonstrate the impact of temperature change
AT upon static thermal deformations. It is seen that maximum deflections increase as
temperature increases from 0 K to 500 K. It is also observed that as the exponent n
gets larger than a specfic value and the micro-plate approaches to a homogeneous
metal configuration, slopes of wmax-curves drop.

In order to be able to compare static thermal results of three elasticity theories
considered in this study, maximum deflections of SSSS micro-plates computed by
CT, MCST and SGT are given in Figure 25. Due to lack of length scale parameter,

classical theory predicts the less rigid micro-plate with the highest values of
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thermally induced maximum deflections. Employing SGT leads to the smallest

thermal displacements. The curves of AT = 0 K are coincident with horizontal axis.
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Figure 23. Maximum deflection of SSSS micro-plate, | =15 pm, I/h = 0.4, a’/h = 10, b/a = 1.0, AT
=100 K, predicted by MCST.
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Figure 24. Maximum deflection of SSSS micro-plate, | =15 pm, I/h =0.4, a/h =10, b/a=1.0, f =
2.0, predicted by MCST.
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Figure 25. Maximum deflection of SSSS micro-plate, | =15 pm, I/h =0.4, a/h =10, b/a=1.0, f =
2.0.

4.4.2 Free vibrations

The results regarding free vibrations of functionally graded small-scale plates are
provided in Figures 26-31. To produce these results pre-vibration thermal bending
analysis has been also carried out. In Figure 26 we present first diensionless natural
frequencies of micro-plate computed using Kirchhoff, Mindlin and third-order shear
deformation plate theories. Differences of the results of different plate models seem
to be larger for all edges clamped micro-plate compared to those of simply-supported
one. This fact can be justified by examining the shear effects in both of the boundary
configurations. All edges clamped micro-plate possesses higher degree of constraint
in boundaries which leads to larger shear effect with respect to all edges simply-
supported one. Almost identical natural frequencies are predicted by KPT, MPT and
TSDT for SSSS micro-plate. Natural frequencies of a plate with all edges clamped
configuration are seen to be higher than natural frequencies obtained for all edges

simply-supported plate.
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Figure 26. First dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a=1.0, # = 2.0, AT = 100 K, predicted by
MCST.

Dependences of the first two natural frequencies of a micro-plate in a thermal
environment with AT = 100 K on the length scale parameter ratio g are examined in
Figures 27 and 28. As is the case for analysis in absence of thermal loading, a micro-
plate with higher g displays higher natural frequencies. The first two dimensionless
natural frequencies approach to specific values as length scale parameter ratio S
increases. These constant values are the first two dimensionless natural frequencies

obtained for a micro-plate made of fully metal.
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Figure 27. First dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a= 1.0, AT =100 K, predicted by MCST.
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Figure 28. Second dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a = 1.0, AT = 100 K, predicted by MCST.

Figures 29 and 30 show, respectively, variations of @, and @, with respect to the

exponent n for four different values of AT. Results reveal that the first two natural
frequencies are not that sensitive to the change in temperature. Increasing
temperature of micro-plate leads to a slight drop in frequencies. The decrease in
natural frequencies are more sensible in all edges clamped micro-plates because of
higher values of initial thermal stresses due to temperature rise.

The first ten dimensionless natural frequencies at uniform temperature rises AT =
0 K and AT =500 K are tabulated in Tables 9 and 10 for SSSS and CCCC micro-
plates, respectively. As it is observed, thermal loading has no influence on the order
of dominant modes of vibration. Although increase in temperature leads to drop in
transverse natural frequencies, its effect on axial vibration frequencies is negligible.
To compute the first three natural frequencies in absence of thermal loading,

N, =N, =11 is used as the number of grid points; However, the number of nodes
is increased to N, =N, =17 for convergence of results in thermal environment and

also higher natural frequencies.

Depicted in Figure 31 is @, at AT = 0 K and AT = 500 K, obtained by utilizing

classical elasticity theory and the two non-classical models developed in the current

study, namely MCST and SGT. It is clearly shown that natural frequencies predicted
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by classical model are smaller than those generated by non-classical approaches.

Using SGT results in the highest values of frequencies. Increase in temperature leads

to drop in natural frequencies. However, thermal effects seem to be negligible in

results produced by SGT. The decrease in natural frequencies are more pronounced

when classical theory is employed.
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Figure 29. First dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
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Figure 30. Second dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a = 1.0, g = 2.0, predicted by MCST.
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Table 9. Dominant modes and corresponding frequencies of SSSS micro-plate, | = 15 pm, I/h =
0.4,a/h=10,b/a=1.0,#=2.0,n=2.0, predicted by MCST.

AT=0K AT =500 K

w Dominant Mode o Dominant Mode
14.9851 Transverse w, mode 1 14.5247 Transverse w, mode 1
32.6824 Axial, mode 1 32.6824 Axial, mode 1
32.6824 Axial, mode 1 32.6824 Axial, mode 1
36.5330 Transverse w, mode 2 36.0600 Transverse w, mode 2
36.5330 Transverse w, mode 2 36.0600 Transverse w, mode 2
45,7911 Axial, mode 2 45.7911 Axial, mode 2
57.1706 Transverse w, mode 3 56.6300 Transverse w, mode 3
66.2338 Axial, mode 3 66.2338 Axial, mode 3
66.2338 Axial, mode 3 66.2338 Axial, mode 3
70.4532 Transverse w, mode 4 69.9352 Transverse w, mode 4

Table 10. Dominant modes and corresponding frequencies of CCCC micro-plate, | = 15 pm, I/h
=0.4,a/h=10,b/a=1.0,#=2.0,n=2.0, predicted by MCST.

AT=0K AT =500 K
) Dominant Mode 7] Dominant Mode
26.7523 Transverse w, mode 1 25.7090 Transverse w, mode 1
52.8506 Transverse w, mode 2 51.6489 Transverse w, mode 2
52.8506 Transverse w, mode 2 51.6489 Transverse w, mode 2
61.3364 Axial, mode 1 61.3258 Axial, mode 1
61.3364 Axial, mode 1 61.3258 Axial, mode 1
76.0491 Transverse w, mode 3 14,7717 Transverse w, mode 3
79.5756 Axial, mode 2 79.5756 Axial, mode 2
90.7455 Transverse w, mode 4 89.4982 Transverse w, mode 4
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Figure 31. First dimensionless transverse natural frequencies of (a) SSSS micro-plate and (b)
CCCC micro-plate, | =15 pm, I/h = 0.4, a/h = 10, b/a= 1.0, # = 2.0.
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4.4.3 Buckling

Numerical results regarding dimensionless critical buckling load P, defined by
Eq. (41), are provide in Figures 32-35. Figure 32 displays the variation of P with the
power function exponent n predicted by Kirchhoff, Mindlin, and third order shear
deformation theories. Despite differences, the results produced by utilizing different
plate models are very close. Due to shear effects, the differences between predictions

of the three plate theories are more visible in the plot for CCCC micro-plate.
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Figure 32. Dimensionless critical buckling load of (a) SSSS micro-plate and (b) CCCC micro-
plate, | =15 pm, I/h = 0.4, a/h = 10, b/a = 1.0, # = 2.0, AT = 100 K, predicted by MCST.

Figure 33 illustrates the influence of # upon critical buckling load of micro-plate
whose temperature is uniformly raised as 100 K from room temperature T,. The
effects of length scale paramete ratio £ and the index n at AT = 100 K are similar to
those discussed on the results produced in absence of thermal effects in Section
4.3.3. Higher values of /5 result in larger values of P, especially in smaller values of
n in which ceramic phase is dominant constituent of FGM micro-plate.

Plotted in Figure 34 is the variation of critical buckling load with n for four
different values of temperature change AT. Increases in temperature from 0 K to 500

K slightly lead to decrease in values of P . Generally, micro-plates behave less stiff

as temperature is raised.
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Figure 33. Dimensionless critical buckling load of (a) SSSS micro-plate and (b) CCCC micro-
plate, , | =15 pm, I/h = 0.4, a/h = 10, b/a = 1.0, AT = 100 K, predicted by MCST.
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Figure 34. Dimensionless critical buckling load of (a) SSSS micro-plate and (b) CCCC micro-
plate, | =15 pm, I/h = 0.4, a/h = 10, b/a = 1.0, g = 2.0, predicted by MCST.
Figure 35 shows how the dimnsionless critical buckling load varies with the
volume fraction exponent n and temperature change, where results of three elasticity
theories are presented. Although P is a decreasing function of AT, the sensitivity of

buckling load to temperature rise is poor, especially in the results obtained by stain
gradient theory.
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Figure 35. Dimensionless critical buckling load of (a) SSSS micro-plate and (b) CCCC micro-
plate, | =15 pm, I/h = 0.4, a/h =10, b/a = 1.0, # = 2.0.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORKS

In this work, a new strain gradient elasticity based analysis procedures for static
bending, free vibrations, and buckling of functionally graded rectangular micro-
plates undergoing mechanical and thermal loadings are presented. Proposed methods
allow taking into account spatial variations of the length scale parameters. Governing
partial differential equations and associated boundary conditions are derived by
applying Hamilton’s principle. All material properties, including the length scale
parameters, are assumed to be functions of the thickness coordinate in these
derivations. A unified expression for displacement field is utilized which allows
producing results for both classical and shear deformation plate theories, namely,
Kirchhoff, Mindlin, and third order shear deformation theories. The equations are
solved numerically by means of the differential quadrature method. Comparisons to
the findings available in the literature for certain limiting cases do verify the
developed techniques. Presented numerical results include static deflections, natural
frequencies, mode shapes, and critical buckling loads of simply-supported and all
edges clamped functionally graded rectangular micro-plates.

Length scale parameter ratio S identifies the degree of spatial variations of the
length scale parameters. The ratio S is shown to have a significant impact on static

deflection, vibration frequency, and buckling load of a rectangular FGM micro-plate.
Arise in S leads to a drop in dimensionless maximum deflection, and increases in
dimensionless vibration frequency and buckling load. Hence, sufficiently accurate
results can be generated only if spatial variations of the length scale parameters are

taken into account in the formulation of the relevant problem.
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The influence of transverse shear deformation upon the stiffness of the micro-
plate is revealed through the numerical analyses according to three different plate
theories. Mindlin plate theory underestimates natural frequencies and critical
buckling loads. Since third order shear deformation theory allows a nonlinear
distribution of shear strains across the thickness, the results produced by employing
this theory seem to be more accurate.

In conducting numerical analyses for simply supported micro-plates undergoing
thermal loading, initially induced static thermal bending and thermal stresses must be
worked out. It is shown that natural frequencies and critical buckling loads of
simply-supported plates computed by taking into account the initial thermal
displacements show differences compared to those obtained by assuming thermal
deflections to be zero.

Further numerical results provided in this study exhibit the effects of different
material and geometrical properties and various loading conditions on mechanical
responses of micro-plates. The methods presented in this article could be useful in
analysis, design, and optimization studies involving functionally graded micro-scale
plates.

The models developed based on higher order continuum theories are highly
dependent on the values of length scale parameters. Except for epoxy, there are no
sufficient data in the literature regarding the values of small-scale parameters used in
modified couple stress and strain gradient theories. To obtain more accurate results
for development of functionally graded micro-structures, there is need for
experimental efforts to characterize micro-structural properties of materials.

The current model can also be developed for wider appalicability in dynamical
systems by considering damping effects and time dependency of the responses. In
some vibrational applications in which energy loss due to mechanical damping, such
as Coulomb and viscous dampings, is high, damping effects must be appropriately
modeled in derivations. Damping elements changes the response of the system and
its resonance frequencies. Transient responses of micro-structures under daynamic
loads is another problem encountered in design and development of micro-electro-

mechanical systems.
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