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ABSTRACT

COMPUTATIONALLY EFFICIENT APPROACHES TO
INTEGRATED CARDIAC ELECTROPHYSIOLOGY

Paşaoğlu, Özgür

M.S., Department of Civil Engineering

Supervisor : Assoc. Prof. Dr. Serdar Göktepe

August 2017, 103 pages

This work is concerned with the development of numerically efficient approaches

for cardiac electrophysiology within the bidomain setting. In this approach, non-

linear cardiac tissue is embedded into a linear conductor, called the torso. While

the excitation of cardiac tissue involves two field variables, the transmembrane

potential and the extracellular potential, the electrical activity of the torso in-

volve the extracellular potential field only. The electrophysiological behavior of

cardiac tissue is governed by a set of two partial differential equations. One of

these equations contains a highly non-linear ionic current term that is modeled

by the celebrated ten Tusscher model. The linear and time-independent nature

of the differential equations describing the electrical behavior of torso enables

us to propose computationally efficient approaches. These include the conden-

sation of the stiffness matrix for an entirely Finite Element-based approach and

the hybrid Finite Element Method - Boundary Element Method (FEM-BEM)

approach. In the former, owing to the linear behavior of the torso, the conduc-

tivity matrix of the surrounding tissue is constant and can be assembled once
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and for all. Consequently, we can rearrange the overall coefficient matrix to

decrease the total number of degrees of freedom. In the latter approach, we

exploit the linear differential equation of the torso and solve it by using the

BEM. The coupling between the nonlinear equations of cardiac tissue and the

equations of the torso is achieved on the surface of the heart by the FEM-BEM

approach. The efficiency of the proposed approaches is demonstrated through

the representative numerical examples.

Keywords: FEM-BEM Coupling, Torso Modeling, Bidomain Models, ECG
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ÖZ

BÜTÜNLEŞİK KALP ELEKTROFİZYOLOJİSİ PROBLEMİNE
SAYISAL OLARAK ETKİN YAKLAŞIMLAR

Paşaoğlu, Özgür

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Serdar Göktepe

Ağustos 2017 , 103 sayfa

Bu tez çalışmasında, kalp elektrofizyolojisinde çift alan probleminin çözümü için

sayısal olarak etkin yaklaşımlar önerilmektedir. Bu problemde, doğrusal olma-

yan kalp dokusu doğrusal bir iletken olarak kabul edilen gövde tarafında sar-

malanmaktadır. Kalp dokusunun elektriksel uyarılması hücre zarı ve hücre dışı

potansiyeline bağlı iken, gövdenin elektriksel uyarılması sadece hücre dışı potan-

siyeline bağlıdır. Kalp dokususun elektriksel davranışı iki ayrı kısmi diferansiyel

denklem ile ifade edilmektedir. Bu denklemlerin ilki yüksek derecede doğrusal

olmayan iyonik akım terimini içermektedir. Bu akımları matematiksel olarak mo-

dellemek için, yaygın olarak kullanılmakta olan ten Tusscher modeli seçilmiştir.

Gövdeyi ifade eden diferansiyel denklemin doğrusal ve zamandan bağımsız ya-

pısı bu problemin çözümü için sayısal olarak etkin yaklaşımların geliştirilmesine

olanak sağlamaktadır. Bu yaklaşımların ilki, problemin tümüyle Sonlu Eleman

Yöntemi ile çözümünde, çözüm matrisinin kümelenmiş hale getirilmesi, ikinci

yaklaşım ise Sonlu Elemenlar Yöntemi ve Sınır Elemanlar Yönteminin (FEM-
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BEM) hibrit bir şekilde kullanılmasıdır. İlk yöntemde, çevre dokunun iletkenlik

matrisi gövdenin doğrusal iletken yapısı nedeni ile sabittir. Bu nedenle, bu yapıya

ait matrislerin çözüm matrisinde bir defa derlenmesi yeterlidir. Ayrıca, oluşan

çözüm matrisinin yeniden düzenlenmesiyle serbestlik derecelerinin azaltılması ve

çözüm matrisinin küçültülmesi mümkün olmaktadır. Diğer yöntemde, doğrusal

diferansiyel denklemden istifade edilerek BEM kullanılmıştır. Kalp dokusunun

doğrusal olmayan denklemleri ile doğrusal gövde denklemlerinin bağlaşımı kalp

yüzeyinde hibrit FEM-BEM yaklaşımı ile sağlanmıştır. Önerilen yöntemlerin et-

kinliği sayısal örnekler ile gösterilmiştir.

Anahtar Kelimeler: FEM-BEM Bağlaşımı, Gövde Modelleme, Çift Alan Model-

leri, EKG
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CHAPTER 1

INTRODUCTION

In this study, numerically efficient approaches for the solution of the bimaterial

model, consisting of the heart and the torso, are proposed. In order to test the

performance of these approaches, the mathematical model of cardiac electro-

physiology is solved together with the mathematical model of the torso. Then,

the representative results comparing the proposed approaches are demonstrated.

The purpose of Chapter 1 is to introduce the anatomical and mathematical con-

cepts of the corresponding problem in a systematic way. Therefore, first the

motivation for this study is given. After brief motivation, the background in-

formation about the anatomy and electrical conduction system of the heart is

provided. Then, the mathematical models explaining the electrical structure of

the heart and the torso are outlined along with the well-known diagnostic tool,

the electrocardiagram. Finally, to highlight the novelty of this work, related

studies will be summarized briefly.

1.1 Motivation

The understanding of the underlying mechanisms of physical, chemical, or bio-

logical systems and their modeling using mathematical tools have been the major

concern of human-being for centuries. Lately, the advances in computer science

and technology allow us to develop realistic mathematical models of natural pro-

cesses and to deal with highly complex systems. Owing to physical, chemical,

and biological balance equations, applied mathematics and the powerful compu-

tational tools, researchers and scientists can now use simulations. Consequently,

different branches of science come together to develop more sophisticated and
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realistic simulation tools of these complex systems.

One of the interdisciplinary fields using simulations is the mathematical mod-

eling of cardiac electrophysiology and cardiac electromechanics. Due to the

difficulty of experimental studies in practical medicine, there is a great need for

the mathematical models that explain the nature of the heart. These models

help researchers understand the nature of healthy cardiovascular system of the

living bodies. Modeling various dysfunctional cases, on the other hand, pro-

vides a mean to classify and understand the problems occuring in the heart.

With the use of these mathematical simulations, new diagnostic and therapeu-

tic approaches can be developed by cardiologists and researchers from different

disciplines.

Due to several reasons, the cardiovascular system is more popular than other

physiological systems in terms of mathematical modeling. For example, cardiac

diseases are the major cause of death in the world. Cardiavascular diseases

cause 3.9 million deaths in Europe annually, constituting 45% of all deaths per

year [7]. Similarly, in the US, heart diseases caused 787,000 deaths in 2011

only, constituting 25% of all mortality [8]. Furthermore, heart diseases lead to

high financial cost. In EU, overall cost of the cardiovascular diseases is around

$250 billion per year. 53% of this cost is health care costs, while 26% of it is

productivity losses, and 21% of it is informal care [9].

The key risk factors for heart disease are high blood pressure, high cholesterol,

and smoking. Other than these factors, diabetes, physical inactivity, excessive

alcohol consumption are also reasons of heart disease [10]. There are several

treatments for various cardiovascular diseases. For example, for problems re-

lated to the heart valves, medications, and heart valve surgery are proposed.

For arrhythmia, pacemakers may be implemented. Moreover, for the heart at-

tack, coronary angioplasty or coronary artery bypass graft surgery are suggested

[11]. Despite the fact that there are several treatments, driving reasons of the

cardiovascular diseases cannot be avoided in the modern life. That is why, the

number of people with high blood pressure is doubled since 1975 and reached to

1.13 billion. Moreover, the expected annual mortality caused by heart disease is
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expected to be 23.3 million in 2030 [12]. Because of these facts and estimations,

advanced treatment and diagnosis techniques will be highly significant to save

lives and increase the life quality of people in the upcoming years.

In the last decade, with the power of computational tools and the advances in

mathematical modeling of the cardivascular system, new therapeutic methods

are proposed. Also, diagnostic tools are improved according to the results ob-

tained from the simulations. Furthermore, with the recent techniques of image

processing and data management, patient specific heart models are spreading

around the world [13]. Individualization of the mathematical models helps the

medical doctors treat the disease of each specific patient accurately. Also, with

the individualization, cardiac diseases can be detected more quickly and these

diseases can be treated timely. However, detection of all sorts of diseases for

a wide range of heart geometries is still a challenging task [14]. Therefore, the

effects of diseases on diagnostic tools like the pressure-volume curves and the

electrocardiograms (ECG) should be investigated in detail for all kinds of cases

with the simulation tools. For this reason, accurate physical definitions, gen-

eralization of the heart geometries, and efficient mathematical and numerical

tools are required to improve the individualization techniques. The motivation

of this study is to propose numerically efficient methods to decrease the solution

time of the forward problem of electrophysiology for the integrated heart models

including the torso.

1.2 Anatomy of the Human Heart

The heart is a muscular organ that forces the blood to move in the arteries

and capillaries of the human body. This system that involves the heart and the

network of veins, and arteries is the circulatory system. There are two parts

of the circulatory system. First one is the systemic circulation where the main

duty of the heart is to continuously provide oxygen and nutrients to the rest

of the body. Second part is the pulmonary circulation where the oxygen-poor

blood is pushed to the lungs in which it is refreshed with the oxygen. The heart

is the center of these circulation systems and it works as an electromechanical
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pump. The well-coordinated contraction of the chambers of the heart provides

the circulation of the blood. By the systemic circulation, the cells, tissue, and

organs are supplied with life-sustaining sources. On the other hand, the cel-

lular wastes including the carbondioxide are removed from the body with the

pulmonary circulation.

The heart is located on the slightly left side of the middle of the chest between

the two lungs and behind the strenum. The size of the heart is about that of

an average clenched adult fist. The longitudinal cross section and anatomy of a

healthy heart is depicted in Figure 1.1.

Figure 1.1: The cross section of a healthy heart [1].

The upper part of the heart is called the base and the lower tip is called the

apex. There are four chambers working in harmony. The upper chambers are

called the atria and the lower chambers are called the ventricles. The atria and

ventricles are separated from each other by a strong wall named atrioventricular

septum. Right and left parts of the heart, on the other hand, are separated

by the septum. The chambers have a vital role in the cardiac cycle. The de-

oxygenated blood is collected in the right two chambers of the heart, whereas the

oxygenated blood is collected in the left two chambers. The upper two chambers
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of the heart, the right atrium and the left atrium, receive the incoming blood

and push it to the ventricles. The left ventricle, being the strongest muscle of all

four, pumps the oxygenated and nutrient-rich blood to the rest of the body via

the aorta. The right ventricle pushes the de-oxygenated and nutrient-poor blood

to the lungs via the pulmonary artery. Other than chambers, there are valves

that provides harmony between these chambers. The four valves, the aortic

valve, the tricuspid valve, the pulmonary valve, and the mitral valve provide

a perfect timing for the blood flow between the chambers, veins, and arteries.

These valves are uni-directional and ensure the blood flow to be in one direction

only. During the contraction of a chamber, if the blood pressure exceeds the

threshold pressure of a valve, this valve opens and the blood starts to flow out

of that chamber. The tricuspid valve separates the right atrium and the right

ventricle. The mitral valve separates the left atrium and the left ventricle. The

pulmonary and aortic valves, on the other hand, hold the blood in the ventricles

until it develops a sufficient pressure to reach to the lungs and all other parts of

the body, respectively, see [15, 16, 17].

1.3 Electrical Conduction System of the Heart

The heart functions as a mechanical pump in the circulatory system. This me-

chanical power is actually a result of an excitation-contraction coupling. The

heart is a biologically electro-active material that can convert an electrical stim-

ulus into a mechanical power and can undergo large deformations. Therefore,

the electrical conduction system has an important role in the cardiac cycle [18].

Contraction of a muscle is the result of ionic changes in the cellular level. In-

side a muscle cell, calcium ions ([Ca]2+) are the regulators that determine the

mechanical behavior of the corresponding cell. The excitation, also referred as

depolarization, alters the ionic balance inside the cell and triggers chemical reac-

tions. In the content of the heart physiology, this electrical activity is defined as

the action potential, also known as the transmembrane potential. In the upper

graph of Figure 1.2, the schematic transient of the transmembrane potential of

a single cell is presented. As can be seen from the Figure 1.2, there are four
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Figure 1.2: The idealized action potential - time diagram of a cardiac cell and
corresponding phase numberings (above) and the corresponding ionic movements
between intracellular medium and the extracellular medium of each phase (be-
low).

phases that define the overall action potential waveform. Phase 4 is known as

the resting state. The resting potential of a cardiac cell is about -80 mV. In

the cardiac cycle, after excitation, the action potential eventually returns to its

resting state. This is one of the characteristic features of this electrical activity.

Phase 0 is the excitation part of the cardiac cell. If the cell is disturbed with

a threshold potential, around -40 mV, the action potential increases up to +20

mV, instantaneously [19]. The reason of this sudden increase is that after the

excitation, the sodium ([Na]+) channels which are placed on the cell membrane,

open. Opening of these channels causes a sudden inflow of [Na]+ current from

the extracellular medium [20]. This phase is called the depolarization phase.

The ionic changes during Phase 0 and other phases are illustrated in the lower

panel of Figure 1.2. Phase 1 is another characteristic feature of the waveform,

since, there is a sudden drop, namely the overshoot, of the action potential.

Once the [Na]+ current increases suddenly, the cell reacts to the sudden change

and the potassium ([K]+) channels open to regulate the intracellular potential.
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This opening causes an outflow of [K]+ ions to the extracellular medium. As a

result, the action potential decreases to 0 mV and the cell gets into a temporar-

ily balanced state. This state is denoted by Phase 2 and is called the plateau

phase. During this part, [Ca]2+ ions start to inflow but they are in equilibrium

with [K]+ ions outflowing. Therefore, the action potential remains stationary

for a certain amount of time. It is worth noting that, in this part, [Ca]2+ ions

flow into the intracellular medium of the cardiac cell and initiate the mechanical

contraction process. Finally, in Phase 3, all of the channels except the outflow-

ing [K]+ channels, are closed. This phase is called the repolarization phase, and

due to very slow outflow of the current, the action potential decreases gradu-

ally. During this phase, the ionic balance is satisfied more slowly. At the end

of the repolarization phase, the cell returns back to its resting state and gets

prepared for a new cycle of excitation. One excitation cycle takes around 300

ms, although it depends on the physiological state of a person and the location

of the excited cell in the heart [21].

Figure 1.3: The electrical conduction system of the heart [2].

The action potential evolution is a cell-based evolution. The diffusion of the

action potential throughout the heart cells is controlled by different specialized
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muscle cells. These cells are shown in Figure 1.3. The sinoatrial node (SA)

cells are the pacemaker cells; that is, they are self-excitatory cells. They can

generate action potentials at a rate about 60 per minute. These cells are located

at the upper wall of the right atrium. Once the action potential is generated

by the SA node, it propagates through the atrial cells with a velocity of 1

m/s. During this propagation, the atria start to contract and eventually push

the blood to the ventricles. The action potential, however, cannot propagate

through the ventricles, because, the atrioventricular septum between the the

atria and the ventricles acts as an isolator. The atrioventricular node (AV), on

the other hand, is the electrical connection between the atria and the ventricles.

The propagation speed of the action potential slows down to a velocity of 0.05

m/s in these cells. With this delay, the contraction of the atria is waited to be

completed. Then, following the atrioventricular bundle, the potential starts to

propagate through the ventricles. First, it follows two major branches placed

on both sides of the septum. These branches are called the bundle branches.

Via the bundle branches, the action potential propagates through the septum.

These branches split into fibers that diverges through the endocardial parts of

the ventricle walls. These fibers are called the Purkinje fibers and the conduction

velocity of these cells are almost 3.5 m/s. Once the action potential reaches to

these fibers, it instantaneously diffuses through the inner parts of the ventricular

walls, exciting all the ventricle cells quickly.

It is also important to state that different regions of the heart has different con-

duction velocities and also different action potential evolution characteristics.

In Figure 1.4, different peak values of the action potential, different plateau

durations and the overall timings are provided for several zones of the heart.

Moreover, the delay between the initiation times of the cells can be observed.

The action potential variations are the result of different initial ionic concentra-

tions of the corresponding zones. The initiation starts with the SA node and the

potential propagates downwards until the action potential reaches to the apex

of the heart. For further information on the electrical system of the heart, the

reader is referred to [22, 23, 24].
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Figure 1.4: Different action potential waveforms on the different zones of the
heart [3].

1.4 Ionic Models for Cardiac Electrophysiology

To conduct simulations of the electrophysiology of the heart, a mathematical

model describing the experimental action potential waveform is required. About

a half a century ego, Alan Hodgkin and Anrew Huxley proposed the first model

that successfully mimics the time-dependent behavior of eletro-active cells, i.e.

nerves [25]. They used a squid giant axon to explain the ionic relations between

the extracellular and intracellular media. Despite the fact that this mathemat-

ical model was constructed for the nerve cells, it is proven to be very effective

when used to model the myocardium cells as well. The evolution equation they

suggested is

Iapp = CmΦ̇ + Iion (1.1)

where Cm, Iion, and Iapp are the membrane capacity, summation of all ionic

currents through the membrane and the external current applied to the cell.

Moreover, Φ denotes the action potential of the medium. The ohmic model for

this ordinary differential equation is provided in Figure 1.5 (left). On right hand
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side of the same figure, the cellular representation of the governing currents is

illustrated. In this representation Di and De stand for the intracellular domain

and the extracellular domain, respectively. In this model, the major currents

INa, IK , Il are the currents depending on [Na]+ concentration, [K]+ concentra-

tion, and other minor ionic concentrations, respectively. Moreover, Il denotes

the leakage current.

Overall membrane current, Iion, is then defined as

Iion = INa + IK + Il. (1.2)

Di De

Φ

Figure 1.5: The circuit representation of the Hodgkin-Huxley model (left) and
the cellular representation of the local ionic currents between the intracellular
medium and the extracellular medium(right).

The model can be summarized that in the absence of an external potential, the

action potential evolution depends on the local currents through the membrane,

while the capacitor reflects the time dependent behavior of the potential. For

further information about the equations of the local currents of this system

and the derivation of these equations, the reader is referred to [25]. The ionic

currents in this model are governed by two major ionic concentrations, [Na]+

and [K]+. Also, the effects of minor currents are taken into account with the

leakage current.
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Figure 1.6: The action potential waveform obtained through the use of Hodgkin-
Huxley model.

The action potential evolution obtained through Hodgkin-Huxley model is pro-

vided in Figure 1.6. It can be observed that this model predicts the overall

behavior of the action potential cycle very well. The depolarization, the re-

polarization, and the resting state of the model is well constructed. After the

publication of this Nobel-winning model, similar studies have been conducted

to be able to mimic the action potential of the myocardium with a higher level

of detail and accuracy. The FitzHugh-Nagumo equations for pacemakers [26],

Yanagihara equations [27], Luo and Rudy model [28, 29] , Noble model for Purk-

inje fibers [30] and, the distinguished Aliev-Panfilov model [31] are the major

mathematical models constructed so far.

A relatively new model was introduced by ten Tusscher [4, 32, 33, 34]. This

model is here referred as the ionic model for the cardiac electrophysiology. The

model incorporates the effects of the ionic concentrations with high accuracy.

Figure 1.7 depicts the action potential waveform obtained through the ten Tuss-

cher ionic model. It can be observed from Figure 1.7 that the model mimics all

4 phases, the depolarization, the overshoot, the plateau, and the repolarization,

of the action potential effectively. Also, the possibility to change the ionic pa-

rameters of the model makes it favorable, since it allows to alter the peak action

potentials, timings and resting potentials for different cases. Its applicability to

pharmacological studies is another superiority of the model. Moreover, the ac-
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Figure 1.7: The action potential waveform obtained through the use of ten
Tusscher ionic model [4].

curate prediction of the transient [Ca]+2 in the cell makes this model applicable

for electromechanical studies [18].

Different from the Hodgkin-Huxley model, the ionic model is governed by 4

ion concentrations, CNa, CK, CCa, CSr
Ca, that are the sodium concentration, the

potassium concentration, the calcium concentration, and the calcium concen-

tration in the sarcoplastic reticulum, respectively. There are also 13 gating

variables and 15 ionic currents that define the local evolutions of this model.

It should be noted that the Hodgkin-Huxley model includes the effects of three

concentrations and corresponding three ionic currents. The same procedure is

extended in the ionic model for 17 variables and 15 ionic currents in total. For

the analogy between the Hodgkin-Huxley model and the ionic model, Figure 1.8

may be examined. Figure 1.8 shows the schematic model on the left and the

cellular analogy of the model on the right. This model simply states that the

global problem is the same for the action potential calculation, while the local

problem is now extended to 15 ionic currents.

INa, IbNa, INaK , INaCa are the sodium-related currents, IK1, IKr, IKs, INaK , IpK ,

It0 are the potassium-related currents, ICaL, IbCa, IpCa, INaCa, Ileak, Iup, Irel are

the calcium-related currents, and finally, Ileak, Iup and, Irel are the calcium
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Di De

Figure 1.8: Circuit representation of the ionic model (left) and the cellular
representation of the local ionic currents between the intracellular medium and
the extracellular medium(right).

related currents of the sarcoplastic reticulum.

Eventually, Iion contribution of this local problem is defined as

Iion = INa + IbNa + INaCa + IK1 + IKr + IKs + INaK + IpK+

It0 + ICaL + IbCa + IpCa + Ileak + Iup + Irel.
(1.3)

In Chapter 3, a detailed explanation of the ionic model and its variables are

provided. Also, for further information about the bioelectricity problem, the

reader is referred to [35].

1.5 Monodomain and Bidomain Settings

The global degree of freedom of the cardiac electrophysiology is the action po-

tential, Φ. However, the behavior of a single cardiac cell and several tens of

cardiac cells differ [36, 37]. The monodomain and bidomain settings are two

different approaches for the solution of the global electrophysiology problem of

the heart. To be able to understand the difference between the monodomain and
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bidomain models, the term domain should be explained. A domain refers to ho-

mogeneous macroscopic description, for example, of several tens of cells. With

the bidomain model, macroscopic homogeneous medium is decomposed into two

domains, namely the extracellular domain and the intracellular domain. This

separation of domains is represented in Figure 1.9, with a circuit model.

Φi

Φ

Φe

Figure 1.9: Circuit representation of the bidomain model.

In this setting, the transmembrane potential of the cardiac tissue is defined as

the difference between the intracellular and extracellular potentials.

Φ := Φi − Φe. (1.4)

Here, Φi denotes the intracellular potential and Φe denotes the extracellular

potential. It can be stated from the circuit model that the local problem of

the model does not change [38]. The local problem of the bidomain setting is

provided with the ionic model, mentioned in the previous section.

Moreover, the potential and current density in each of these two domains should

satisfy the electrical current equilibrium. This equilibrium can be formulated

with the two equations provided below:

div qi = −iT and div qe = iT, (1.5)
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where iT is the transmembrane current, qi and qe are the intracellular and

extracellular spatial potential fluxes, respectively.

With the bidomain approach, the homogenization of the two media is achieved.

However, it is important to state that the conductivities and the propagation

characteristics of the electrical potential in these two domains are completely

different. In this setting, it is clear that even though the spaces are physically

separated, the macroscopic intracellular and extracellular domains overlap at

every point of the cardiac tissue [39]. As a result, at any point of the cardiac

tissue, both of the global degrees of freedom exist simultaneously.

The monodomain model is the simplified version of the bidomain model. In

the monodomain setting, the global degree of freedom is the transmembrane

potential only. This causes the extracellular potential and its effects on the

transmembrane potential to be neglected. Apart from the monodomain model,

with the bidomain approach, the electrical activity of the extracellular domain

can be taken into account. Furthermore, the effects of the external currents can

be modeled with this approach. Therefore, it can be stated that the bidomain

model is a superior setting in terms of reflecting the overall behavior of the

cardiac potential.

1.6 Electrocardiogram

Electrocardiogram, commonly known as ECG, is used to assess the electrical

activity of the heart. Since its invention by Willem Einthoven in the beginning

of 1900s, it has been the most commonly used dignostic tool in clinical practice

[40]. Compared to other clinical tools, ECG is relatively simple to measure and

is a cheap, noninvasive tool. This makes it a distinguished medical tool that is

required for almost all the patients who consult a doctor with a wide range of

health problems.

Basically, ECG is the measurement of the electrical waves spreading through

the atria and ventricles involving both the depolarization and the repolarization

phases. Depending on the direction of the wave propagation and the different
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Figure 1.10: The schematic ECG Waveform [5].

cardiac zone characteristics, the recording of the electrical activity reveals spe-

cific intervals and waves, which are the main components of an ECG. Referring

to Figure 1.10, ECG starts with the P wave, representing the depolarization of

the atria, and followed by the isoelectric PQ interval representing the delay of

the electrical waves at the atrioventricular (AV) node. This delay is significant

for the proper functioning of the heart, providing the atria with the enough time

to completely eject the blood into the ventricles. Propagation of the electrical

waves through the ventricles causes the depolarization which is represented by

a large triangular wave, named the QRS complex. Compared to P wave, QRS

is considerably wider because of the differences in the muscle mass of atria and

ventricles. The ST interval, which is the second isoelectric period on the ECG

corresponds to the depolarized state of the both ventricles, or the plateau phase

of the electrical activation on the cellular level. After the ventricles are fully

depolarized, the repolarization phase starts and it is represented by the T wave

on the ECG.

The ECG is obtained by measuring the electrical signals by using an array of

electrodes placed at specific locations on the body surface covering the arms,

legs, and the chest [41]. The potential differences between these leads are mea-

sured by a device and written in the standard 12-Lead ECG format. In this

representation, the leads are classified into 3 types depending on their orien-
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Figure 1.11: Limb leads, Lead-I, Lead-II, Lead-III, placed on the body surface
that form Einthoven’s triangle (above) and the augmented limb leads, aVF,
aVL, aVR (below)

tation. These are the standard limb leads, augmented limb leads, and chest

leads. For the standard limb leads, the placement of the positive and negative

electrodes are shown in Figure 1.11 (top). For the augmented ones, Figure 1.11

(bottom), the positive electrodes are placed on left leg, left arm, and right arm

for aVF, aVR, and aVR, respectively. Having the potential differences at hand,

ECG is the obtained by printing them on a special paper. For a practical ap-

proach, the paper is divided into small grids, and the vertical interval of one

square is 0.1 mV while the horizontal interval is 40ms. It is possible to explain

the generation of ECG in terms of the projection of the heart vector, defined as

the integration of the electrical impulses through the heart [42], onto the sagital

and frontal planes represented in Figure 1.12. Depending on the projected plane,
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Figure 1.12: ECG leads placed on the chest.

components of the 12 lead ECG representation is obtained. The ECG example

of a healthy heart is provided in Figure 1.13 where the characteristic P,Q,R,S

and T waves can be observed.

Certain changes in the duration, morphology, or amplitude of these phases and

intervals are accepted as strong indicators of cardiac dysfunctions. For example,

the dysfunctions related with the atria, namely left or right lateral enhance-

ments, bilateral enhancement etc., are generally revealed on P wave, while any

distortion on PR interval is related with the problems of wave propagation be-

tween atria and ventricles, such as AV conduction block. The proper functioning

of the ventricles, responsible for the pumping the blood through the pulmonary

and systemic circulation, is of vital importance for the life and any disturbances

in the electrical conduction system of the ventricles are directly observed as

distortion of QRS wave. These dysfuntions cover a wide range of pathological

cases; myocardial infarction, ventricular hypertrophy, and bundle brach blocks,

to name a few. While ST segment position is the most widely accepted indication

for the diagnosis of ventricular ischemia, indications on T waves are generally

related with repolarization properties and supports the diagnosis of the diseases
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Figure 1.13: The 12-lead ECG diagram of a healthy heart [6].

such as bundle branch blocks, hypertropy, and conduction abnormalities. For

a more detailed discussion on the diagnostic indications on ECG, the reader is

referred to [43, 44, 45].

1.7 The Torso and Its Numerical Manipulation

The torso consists of tissue and organs including the heart that in this structure,

is an electrically active material. It generates electric potential and transfers this

electricity into surrounding tissue. The torso by its nature is assumed to be a

linear conductor [46, 47]. The organs like liver, lungs, stomach possesses different

electrical properties and conductivites. However, in this study, for simplicity

we assumed the torso to be a linear, isotropic, and homogeneous conductor of

electricity. The mathematical definition of the torso allows us to manipulate the

numerical solution scheme of the problem. The two numerical approaches are

explained in the following sections.
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1.7.1 Condensation of the Stiffness Matrix

Owing to the linear and time-independent nature of the torso, its stiffness con-

tributions are to the solution matrix are constant in FEM. Therefore, these

contributions can be computed and stored at the beginning of the analysis. Con-

sequently, we propose to rearrange the global solution matrix of the problem to

decrease the total degrees of freedom. Eventually, we expect a faster solution

because of the fact that the computational cost of the inversion of the condensed

matrix is less. Moreover, there is no calculation of the stiffness terms of the lin-

ear part during the analysis. After the solution is obtained for the heart domain,

the unknowns of the torso domain are recovered by using back-substitution. The

details of the condensation are explained in Section 4.2.

1.7.2 Boundary Element Method Coupling

The boundary element method is a powerful mathematical tool that depends

on the idea to solve the governing linear differential equation on the surface of

the domain and using this information to compute the inner domain [48]. Using

this method, the computational cost can be decreased drastically, because of the

fact that when compared to the overall torso domain, the surface domain of the

torso is much smaller, and as a result, the solution time of the problem decreases

[49]. Using the BEM formulation, we exploited the BEM matrix to associate

the heart surface fluxes in with the surface potentials of the torso. Using the

staggered solution scheme, the coupling of the finite element method applied

to the nonlinear myocardium and the boundary element method applied to the

linear torso takes place on the interface nodes.

1.8 Related Studies

In this section, related studies to the present work are introduced. As mentioned

earlier, ECG is a cheap, non-invasive and very efficient tool for the diagnosis of

the heart problems. Therefore, there are several attempts to simulate the ECG
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more accurately.

First, the heart reaction-diffusion models excluding the torso is one approxima-

tion for the ECG simulations [50, 51, 42, 52]. With this approach, the torso is

ignored and only the nonlinear problem of the heart domain is solved with the

FEM. The ECG is obtained by projecting the computed heart vector onto the

sagital and frontal planes. In this approach, the effects of the torso on the heart

is neglected. Owing to the finite element method and the bidomain setting of

the cardiac domain, the anisotropy of the heart can be taken into account.

Second, the torso and the heart domains are discretized together and the overall

domain is solved with the FEM [53, 54, 55, 56]. With this approach, the effects

of the torso domain on the heart surface are taken into account. Furthermore,

the FEM allows us to solve anisotropic and heterogeneous structure of the torso

straightforwardly. This model associates the physical properties of the electro-

physiology problem with the mathematical model efficiently [57]. However, due

to the fact that the torso domain is much larger than the heart domain, the size

of the problem and thus, the computational cost increase.

Third, the boundary element method can be employed for the solution of the

linear differential equation of the torso. For the ECG simulations, the surface

method BEM is quite applicable [58, 59, 60, 61]. The linear part is solved only

on the outer surface of the torso domain. As a result, the size of the solution

matrix and the solution time decrease [62]. The disadvantages of the BEM is

that the memory requirement of the model during the analysis is high. Another

disadvantage is the difficulty to model the heterogeneous and anisotropic cases

of the torso domain. Recent studies focuses on the modeling of the anisotropic

cases [63, 49, 64].

The BEM is a tool to model a linear domain. However, for the solution of this

domain, a source model is required. This source model represents the electrical

activity of the heart surface. The coupling of the source term with the BEM is

another research area. Some models use static approaches [64, 65], whereas some

use dynamic approaches [66]. Static approaches refer to the simulating the heart

surface without coupling with the BEM. Then using the simulated results as
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source term, computing the surface body potentials. Dynamic approaches refer

to computing the heart surface potentials and the body surface potentials in a

coupled form. Other source models are oblique dipole layer [67], and equivalent

double layer approaches [68].

In this contribution, the torso is treated as a linear and isotropic conductor. The

source model for the solution of the BEM is computed using the FEM for the

nonlinear domain. Then, FEM and BEM are coupled dynamically on the heart

surface, the interface. The contribution of the torso is converted into external

flux terms on the heart surface. The boundary element matrix is implemented

into the solution array of the nonlinear problem as an equivalent finite element

contribution. Then, the staggered solution scheme is applied for the solution of

the problem.

1.9 Aim of the Thesis

The aim of this thesis is to develop efficient numerical approaches for the solu-

tion of the integrated electrophysiology problem of the heart in the bidomain

setting. In this contribution, the effect of the torso on the heart and the effect

of the heart on the torso are examined. The problems of nonlinear electricity

problem of cardiac tissue and linear electricity problem of the torso are solved

together. One of the most important diagnostic tools of the cardiac practice is

the electrocardiograms. The ECG leads are placed on the various parts of the

body and they measure the electrical activity. Moreover, the direction of the

currents provides us with a diagram defining the electrical activity of the heart.

The mathematical models, on the other hand, only involve the electrical activity

of the heart and ignore the effects of the torso. In this thesis, the effect of the

torso on the ECG in the 2-D setting is also provided.

Moreover, the torso is the large portion of the body. As a result, for the numer-

ical solution of the overall system, it increases the size of the solution matrix

enormously. Therefore, exploiting the linear and time-independent nature of

this conductor, we proposed efficient numerical methods to decrease the com-
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putation time of the integrated electrophysiology problem in bidomain setting.

The representative numerical examples are analyzed to illustrate the efficiency

of the proposed approaches.

1.10 Scope and Outline

The thesis is structured as follows:

In Chapter 2, the governing differential equations in the monodomain and bido-

main setting for the electrical problem are introduced. Furthermore, the linear

governing differential equation of the torso is provided. Also, the boundary

conditions of the integrated problem are defined.

In Chapter 3, the constitutive equations of the electrochemistry problem and

their discretizations on the integration points are given.

In Chapter 4, the finite element formulation for the integrated cardiac electr-

physiology problem is introduced. Moreover, two efficient numerical approaches

for the solution of the corresponding problem are explained. Firstly, the con-

densation of the solution matrix is provided. Secondly, the boundary element

method and finite element method coupling on the heart surface is represented.

In Chapter 5, the representative numerical examples are demonstrated. The

performance of the proposed methods are shown with a comparison study using

FEM, condensed FEM approach, C-FEM, and FEM-BEM. The ECG results of

the proposed approaches and that of FEM are compared. The efficiency of the

methods is demonstrated in terms of the solution time of the problem. Further-

more, the FEM-BEM coupling results for a diseased heart’s ECG simulation,

along with the fibrillation and defibrillation simulations are presented.

Lastly, in Chapter 6, the critical points of the present work are summarized.
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CHAPTER 2

GOVERNING DIFFERENTIAL EQUATIONS OF THE

ELECTROPHYSIOLOGY

The aim of this chapter is to introduce the fundamental equations of the elec-

trophysiology of the heart and the linear electrical conductor. In Section 2.1,

monodomain equations of the heart electrophysiology is provided. In Section

2.2, the extention of the monodomain formulation to the bidomain formulation

is given. The governing equations of the linear conductor problem are presented

in Section 2.3. Finally, in Section 2.4, boundary conditions and initial conditions

of the bimaterial problem are given along with the overall parameter set of the

global problem of the integrated cardiac electrophysisology.

2.1 Monodomain Formulation

In the monodomain model, the action potential is the unique field variable and

is the only global degree of freedom of the heart domain, BH . The local state

at material point X and at time t can then be defined as follows:

State(X, t) := {Φ(X, t)}. (2.1)

As mentioned earlier, the first quantitative model representing the electrophys-

iology of the excitable neural cell was proposed by Hodgkin and Huxley [25]. In

their pioneering model, the local evolution of the transmembrane potential Φ is
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represented by the equation

iT = X (CmΦ̇ + Iion), (2.2)

where iT represents the summation of ionic and capacitive currents, X repre-

sents the aspect ratio of the membrane surface to volume of the tissue and Cm

represents the membrane capacitance per unit area. Moreover, Iion denotes the

current density and is governed by the ionic movements through the membrane.

Due to the nonlinearity of the ionic currents, this first order ordinary differential

equation is nonlinear by its nature. The transmembrane current is balanced by

the flux term

iT = div q, (2.3)

where, q is the spatial potential flux. The phenomenological form of the spatial

potential flux q is specified as follows:

q = D · ∇Φ (2.4)

where D is the conductivity tensor and is defined, in general case of anisotropic

diffusion, as follows:

D = d‖f ⊗ f + d⊥(I − f ⊗ f). (2.5)

Here, d‖ and d⊥ denote conductances along the fibre direction and the orthogonal

plane to it, respectively and the unit vector f stands for the fibre orientation

vector in the 2-D space.

f =















cos θ

sin θ

0















(2.6)
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In this representation, θ stands for the orientation angle of the cardiac fibers.

Then, inserting (2.3) into (2.2), we obtain

X (CmΦ̇ + Iion) = div q. (2.7)

Using the definition (2.4) in (2.7) and rearranging the equation to recast into a

more compact form, we obtain:

Φ̇ = div(D̄ · ∇Φ) + fΦ. (2.8)

The normalized conductivity tensor D̄ in this equation is defined by

D̄ := (XCm)
−1 ·D. (2.9)

The term fΦ is the electrical source term and is a function of ionic currents. It

is defined by

fΦ := −C−1
m Iion. (2.10)

2.2 Bidomain Formulation

In the previous section, the fundamental equation (2.8) of the monodomain

model was explained. In the bidomain model, contrary to the monodomain

model, the intracellular and extracellular potentials are the two independent

global degrees of freedom. This separation allows us to solve extracellular po-

tential, and by this way, investigate the effect of cardiac potential on the body

and that of the body potential on the heart.

The state variables of the bidomain model at a material point X and at time t
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are

State(X, t) := {Φi(X, t),Φe(X, t)}. (2.11)

The bidomain equations are reaction-diffusion equations of extracellular and

intracellular media. The conservation law suggests that if there is no external

current applied to the system, the total flux should be conserved.

∫

∂BH

qt · n dA = 0 and qt = qi + qe, (2.12)

where qi is the intracellular spatial potential flux, qe is the extracellular spatial

potential flux, and n is the unit normal vector of the surface, respectively. Then,

the local form of (2.12) is

div qt = 0. (2.13)

If Di is defined to be the intracellular conductivity tensor and De to be the

extracellular conductivity tensor, the intracellular and extracellular potential

fluxes can be represented as

qi = −Di · ∇Φi and qe = −De · ∇Φe. (2.14)

The intracellular Di, extracellular De, and the total D conductance tensors are

defined as

Di = di‖f ⊗ f + di⊥(I − f ⊗ f),

De = de‖f ⊗ f + de⊥(I − f ⊗ f),

D = Di +De.

(2.15)

As mentioned in the monodomain model, f denotes the unit fibre direction vec-

tor represented in (2.6), di‖, d
i
⊥, de‖, and de⊥ denote the intracellular conductances
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along the fibre direction and the plane perpendicular to it, and the extracellu-

lar conductances along the fibre direction and the plane perpendicular to it,

respectively.

Furthermore, we define the transmembrane potential as the potential difference

between the intracellular domain and the extracellular domain, i.e.

Φ := Φi − Φe. (2.16)

Employing the pioneering equation of the Hodgkin and Huxley Model:

iT = X (CmΦ̇ + Iion), (2.17)

where, the transmembrane current iT is a function of the intracellular and ex-

tracellular currents, in the bidomain setting. These currents are in equilibrium.

Therefore, each subspace obeys the following equations:

div qi = −iT and div qe = iT . (2.18)

Equations (2.13) and (2.18) introduce the strong form of the bidomain model of

the cardiac electrophysiology. This equation system can be written in a more

coherent form as:

Φ̇ = div(D̄i · ∇Φ) + div(D̄i · ∇Φe) + fΦ,

0 = − div(D̄i · ∇Φ)− div(D̄ · ∇Φe),
(2.19)

where D̄ and D̄i are the normalized conductivity tensors, defined by

D̄ := (XCm)
−1 ·D,

D̄i := (XCm)
−1 ·Di.

(2.20)

The definition of the electrical source term fΦ is provided in (2.10).
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2.2.1 Reduction of the Bidomain Formulation

The coupled equations of the bidomain setting can be reduced to the mon-

odomain setting with some simplifications. By inserting (2.14) into (2.13), and

exploiting this equation, the following equation is obtained:

∇Φi = D−1(De∇Φ− qt). (2.21)

Implementing (2.21) into the first equation of (2.18), we end up with the ionic

currents in terms of the transmembrane potential.

iT = div(DiD
−1De∇Φ)− div(DiD

−1qt). (2.22)

Owing to the conservation of total current flux, div qt = 0, if the intracellular

conductivity tensor and extracellular conductivity tensor are taken to be pro-

portional, i.e. Di = cDe, where c is a constant, the right hand side of (2.22)

drops. The resulting reduced equation can be inserted into (2.17) and recast

into the following monodomain setting,

X (CmΦ̇ + Iion) = div(D̂ · ∇Φ), (2.23)

where effective monodomain conductivity tensor is defined as

D̂ := Di(Di +De)
−1De. (2.24)

This procedure provides a way to simplify the problem. However, the assump-

tion of proportional intracellular and extracellular conductivity tensors is not

accurate due to physical, and biological reasons.
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2.3 Linear Conductor Equation

The bidomain setting of the heart electrophysiology consists of the field vari-

ables, the intracellular potential and the extracellular potential. The heart cells

are specialized excitable cells that when they are perturbed with a threshold

potential, they react in such a way that the cell depolarizes and repolarizes in a

waveform illustrated in Figure 1.2. The same feature can be observed with the

neural cells. The regular body cells, on the other hand, can react to external

stimulus but cannot propagate a nonlinear transmembrane currents. There-

fore, the only field variable of the torso domain BT is the extracellular potential

and the transmembrane potential Φ = 0. The torso is assumed to be a lin-

ear, isotropic, and homogeneous conductor. Therefore, the governing equation

representing this model is the Laplace Equation. It can be formulated as

− div(DT · ∇Φe) = 0. (2.25)

Here, DT represents the isotropic conductivity tensor of the torso.

DT = dTisoI, (2.26)

where the dTiso denotes the isotropic coefficient of conductivity. Eventually, the

spatial potential flux of the torso can be obtained as

qT = −DT · ∇Φe. (2.27)

2.4 Two Dimensional Setting of the Problem

In this section, the boundary conditions, the initial conditions and the parameter

set of the problem are provided. For a better representation, the two subdomains

of the problem in two dimensional setting is illustrated in Figure 2.1 where BH

denotes the heart domain, BT denotes the torso domain, and Γ denotes the
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interface between the heart and the torso. The longitudinal cross-section of

the heart is surrounded with the torso section. The heart domain contains the

section of the ventricles only. Therefore, a line surface representing the atria

surface is introduced to separate the torso domain from the inner parts of the

heart. It is important to note that this separated region contains the blood, yet

the effects of the blood is neglected. As a result, there is no domain in that

enclosed zone. Therefore, on the surface surrounding that enclosed area, there

are boundaries of both the heart BH and the torso BT
1 . The equations of the

two problems are solved in the corresponding domains. On the interface, the

equations of the heart and the torso are coupled. There are three boundaries

and one interface in the provided setting.

BT

∂BH

BH

Γ

∂BT
1

∂BT
2

Figure 2.1: Illustration of the heart domain embedded in the torso domain.

There is no transmembrane potential in the torso domain. Therefore, the in-

terface should satisfy two conditions. First condition is the continuity of the

extracellular potential flux.

qe · nH + qT · nT = 0 on Γ, (2.28)
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where qe represents the extracellular flux of the heart and qT represents the

flux of the torso. Moreover, nH and nT denote the unit normal surface vector

of the heart and the unit normal surface vector of the torso, respectively. On

the interface Γ, at a same point, these two vectors are aligned in the opposite

directions. The second condition is the insulation of the intracellular flux. In

the torso domain, the spatial potential flux of the intracellular domain is zero.

Therefore, the interface should be impermeable to intracellular flux.

qi · nH = 0 on Γ, (2.29)

where qi represents the intracellular flux.

On the boundary of the heart, the coupled bidomain equations lead to the

following boundary conditions:

qi,e · nH = q̄i,e on ∂BH
q ,

Φi,e = Φ̄i,e on ∂BH
Φ .

(2.30)

On the boundaries of the torso, on the other hand, the Laplace equation leads

to the boundary conditions of

qT · nT = iapp on ∂BT
q ,

Φe = Φ̄e on ∂BT
Φ.

(2.31)

In this equation system, iapp denotes the external current applied the the bound-

ary of the torso. Moreover, the initial conditions of the electrophysiology prob-

lem can be defined as following:

Φ(0) = Φ̄0 at t = 0,

Φe(0) = Φ̄e,0 at t = 0.
(2.32)

Finally, to complete the definition of the global problem of the integrated cardiac

electrophysiology, the parameter set is provided in Table 2.1. There are four
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conductivity parameters of the heart domain, one conductivity parameter of the

torso domain, and one orientation angle of the heart fibers that define the global

equation of the bimaterial problem.

Table 2.1: Parameters of the integrated electrophysiology equations

Parameter Unit Description Equations

d̄
i
‖ := d

i
‖/XCm [mm2/s] Normalized intracellular conductance of the heart (2.15, 2.20)

in the longitudinal direction

d̄
i
⊥ := d

i
⊥/XCm [mm2/s] Normalized intracellular conductance of the heart (2.15, 2.20)

in the orthogonal direction

d̄
e
‖ := d

e
‖/XCm [mm2/s] Normalized extracellular conduction of the heart (2.15, 2.20)

in the longitudinal direction

d̄
e
⊥ := d

e
⊥/XCm [mm2/s] Normalized extracellular conductance of the heart (2.15, 2.20)

in the orthogonal direction

d
T
iso [mm2/s] Isotropic conductance of the torso (2.26)

θ [Rad] Fiber orientation angle of the heart tissue (2.6)

The global problem of the bimaterial problem of the cardiac electrophysiology

is provided in Chapter 2. However, the local source term fΦ still needs to be

specified for the full description of the problem. In Chapter 3, the constitutive

equations of the ionic model for the human cardiomyocytes are provided along

with the discretization of these equations at the integration points.
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CHAPTER 3

ELECTROCHEMISTRY OF CARDIOMYOCYTES

The aim of this chapter is to introduce the governing equations of the chemical

problem for ventricular cardiomyocytes [4]. Moreover, the temporal discretiza-

tion of these equations on the integration points are presented, according to the

work by Wong, Göktepe, and Kuhl [34].

The global equations of the bidomain model are introduced in Chapter 2. The

calculation of the source term fΦ in (2.19) is presented in this section. The

chemical part of the electrochemical coupling in cardiac tissue is characterized

through a system of ordinary differential equations. The local solution field

of this system involves ngate gating variables and nion ion concentrations. In

Section 3.1, the cellular gating variables, the ion concentrations, and the ionic

currents are defined and the continuous formulation of the model is represented.

In Section 3.2, the time discretization and the associated iterative update scheme

of the local solution field at the integration points are provided.

3.1 Continuous Model Problem

The continuous formulation of the chemical problem is defined in terms of two

sets of first order ordinary differential equations. These sets correspond to

ngate=13 gating variables and cion=4 ion concentrations. This system of equa-

tions is solved iteratively and the updated variables are stored at the integration

points at each time step.

The first set of equations is for the gating variables. Gating variables are the

quantitative indicators of the ionic state of a cell. Depending on the instanta-
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neous state of a cell, the ion channels have different permeability characteristics,

that is, they have a time-dependent nature. For example, if sodium concentra-

tion in the cell increases suddenly, channels that are permeable to sodium start

to close gradually, while the channels, which regulate the sodium-dependent ions,

such as potassium, start to open. Channels may be open for a specific state of

the cell or they start to close for a certain ion concentration in the cell and so

on. Gating variables, as a whole, quantitatively represent the overall states of all

channels. In the ten Tusscher model [4], there are 13 gating variables and 10 of

these variables depend only on the transmembrane potential, whereas the other

3 variables depend on both the transmembrane potential and the corresponding

ion concentration. Therefore, it makes sense to separate these two groups of

variables into two subsets, gI
gate = [gm, gh, gj, gxr1, gxr2, gxs, gr, gs, gd, gf ] and

gII
gate = [gxK1∞, gfCa, gg]. These two subsets define the gating variables, which

is the first set of the problem.

The second set of equations is for the ion concentrations. In human ventricles,

generally, sodium, potassium, and calcium are the major ion concentrations. In

addition to these concentrations, the calcium concentration of the sarcoplastic

reticulum is included in this model. These 4 ion concentrations, cion = [cNa, cK ,

cCa, csrCa], define the second set, whose elements cNa, cK , cCa and csrCa denote the

sodium concentration, the potassium concentration, the calcium concentration

and the calcium concentration of the sarcoplastic reticulum, respectively. The

details of these 17 variables defining the local problem are explained in the

following sections.

The two subsets of the evolution of the gating variables are defined through the

following equations.

ġIgate = f gI
gate(Φ, g

I
gate) =

1

τ Igate(Φ)
[g∞I

gate(Φ)− gIgate],

ġIIgate = f gII
gate(Φ, g

II
gate, cion) =

1

τ IIgate(Φ)
[g∞II

gate (Φ, cion)− gIIgate],
(3.1)

where I=1,..,10 gating variables of the first set, and II=11,12,13 gating vari-

ables of the second set. These equations are derived through the Hogkin-Huxley
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model. Therefore, there are two constants that characterize them. The first one

is g∞gate which quantifies the steady state conductance of the gate. The second

one, τgate, is a temporal parameter that represents the characteristic time for a

gate to reach its steady state. The second set of ordinary differential equations

is defined by the following equations

ċion = f c
ion(Φ, ggate, cion). (3.2)

It can be deduced from (3.2) that the evolution equations of the ion concentra-

tions depend on the transmembrane potential, the gating variables, and the ion

concentrations themselves. Because of the fact that some of the gating variables

depend on the ion concentrations and ion concentrations depend on some of the

gating variables, this equation system is a tightly coupled system. Therefore,

iterative solution procedure is chosen. The details of the solution procedure are

given in Section 3.2.

The chemical problem of the cardiac tissue involves ncrt=15 ionic currents de-

pending on the gating variables and the ion concentrations. These ionic currents

can be expressed in terms of the transmembrane potential, the gating variables,

and the ion concentrations.

Icrt = Icrt(Φ, ggate, cion). (3.3)

The set of ionic currents for cardiac tissue is Icrt = [INa, IbNa, INaK , INaCa,

IK1, IKr, IKs, IpK , It0, ICaL, IbCa, IpCa, Ileak, Iup, Irel] where INa denotes the

fast sodium current, IbNa is the background sodium current, INaK designates

the sodium potassium pump current, INaCa symbolizes the sodium calcium ex-

changer current, IK1 stands for the inward rectifier current, IKr shows the rapid

delayed rectifier current, IKs denotes the slow delayed rectifier current, IpK is

the plateau potassium current, It0 symbolizes the transient outward current,

ICaL designates the L-type calcium current, IbCa shows the background calcium

current, IpCa stands for the plateau calcium current, Ileak is the leakage cur-

rent, Iup denotes the uptake current of the sarcoplastic reticulum, and finally
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Irel stands for the release current of the sarcoplastic reticulum. The amount of

these currents through the cell membrane depends on the corresponding gat-

ing variables, the ion concentrations, and the transmembrane potential. The

solution of the complex system of the ionic currents, the gating variables, and

the ion concentrations enables us to specify the instantaneous state of the cell.

The sodium related currents, INa, IbNa, INaK and INaCa, for example, alters

the sodium concentration of the cell. The dependencies of the sodium-related

currents is given in the following form

INa = ÎNa(Φ, gm, gh, gj, cNa),

IbNa = ÎbNa(Φ, cNa),

INaK = ÎNaK(Φ, cNa),

INaCa = ÎNaCa(Φ, cNa, cCa).

(3.4)

The current INa is gated by the sodium activation gate gm, the fast sodium

inactivation gate gh, and the slow sodium inactivation gate gj. The potassium-

related currents can be listed as follows.

IK1 = ÎK1(Φ, g
∞
K1, cK),

IKr = ÎKr(Φ, gxr1, gxr2, cK),

IKs = ÎKs(Φ, gxs, cNa, cK),

IpK = ÎpK(Φ, cK),

It0 = Ît0(Φ, gr, gs, cK).

(3.5)

The current IK1 is gated by inward recrification factor g∞K1, IKr is gated by the

inward rectifiers channels gxr2 and gxr1, IKs is gated by the delayed rectifier

channel gxs. Moreover, the slowly delayed rectifier channels gr and gs are gating

It0. These currents alter the potassium concentration of the cell. Lastly, the
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calcium-dependent currents can be given in the form,

ICaL = ÎCaL(Φ, gd, gf , gfCa, cCa),

IbCa = ÎbCa(Φ, cCa),

IpCa = ÎpCa(cCa),

Ileak = Îleak(c
sr
Ca, cCa),

Iup = Îup(cCa),

Irel = Îrel(gd, gg, c
sr
Ca).

(3.6)

Here, the transient outward channels gd, gf , gfCa are gating ICaL. Furthermore,

gd and gg are gating the sarcoplastic reticulum current Irel. These calcium related

currents alter the calcium concentration in the cell and the calcium concentration

in the sarcoplastic reticulum.

The concentration-dependent potentials of sodium, potassium, and calcium are

computed using the Nernst equation,

Φion =
RT

zionF
ln

(

cion0
cion

)

with Φion = [ΦNa,ΦK ,ΦCa]. (3.7)
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Table 3.1: Chemo-electrical material parameters of human ventricular cardiomyocyte.

sodium related potassium related calcium related calciumsr related

concentrations cNa0 = 140mM cK0 = 5.4mM cCa0 = 2mM -

maximum currents Imax
NaCa = 1000 pA/pF Imax

NaCa = 1000 pA/pF

Imax
NaK = 1.362 pA/pF Imax

NaK = 1.362 pA/pF Imax
leak = 0.08 s−1 Imax

leak = 0.08 s−1

Imax
up = 0.425mM/s Imax

up = 0.425mM/s

Imax
rel = 8.232mM/s Imax

rel = 8.232mM/s

maximum conductances Cmax
Na = 14.838 nS/pF Cmax

K1 = 5.405 nS/pF Cmax
CaL = 0.175mm3/[µFs]

Cmax
bNa = 0.00029 nS/pF Cmax

Kr = 0.0096 nS/pF Cmax
bCa = 0.000592 nS/pF

Cmax
Ks, epi = 0.245 nS/pF Cmax

pCa = 0.825 nS/pF

Cmax
Ks, endo = 0.245 nS/pF

Cmax
Ks,M = 0.062 nS/pF

Cmax
pK = 0.0146 nS/pF

Cmax
t0, epi = 0.294 nS/pF

Cmax
t0, endo = 0.073 nS/pF

Cmax
t0,M = 0.294 nS/pF

half saturation constants cCaNa = 1.38mM cCaNa = 1.38mM

cNaCa = 87.50mM cNaCa = 87.50mM

cKNa = 1.00mM cKNa = 1.00mM cpCa = 0.0005mM

cNaK = 40.00mM cNaK = 40.00mM cup = 0.00025mM cup = 0.00025mM

crel = 0.25mM crel = 0.25mM

cbuf = 0.001mM csrbuf = 0.3mM

other parameters ksatNaCa = 0.10 pKNa = 0.03 γrel = 2 γrel = 2

γNaCa = 2.50 ctot = 0.15mM csrtot = 10mM

γ = 0.35

gas constant R = 8.3143 JK−1 mol−1 temperature T = 310K cytoplasmic volume V = 16404µm3

Faraday constant F = 96.4867C/mmol membrane capacitance C = 185 pF sarcoplastic reticulum volume V sr = 1094µm3
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With this equation, the balance potential that would be generated by a par-

ticular ion is computed. In this case, the cell is assumed to be permeable to

the corresponding ion only. The constants used in the Nernst Equation are R

= 8.3143 JK−1mol−1 for gas constant, T = 310K for absolute temperature, F

= 96.4867 C/mmol for Faraday constant. zion is 1 for single-charged ions, like

sodium and potassium and is 2 for double charged calcium ions. All other con-

stants of the problem provided in Table 3.1. The units used in this model are

milliseconds for time and millivolts for the action potential. Furthermore, the

conductances are given in nanosiemens per picofarad, the ion concentrations in

millimoles per liter, the ionic currents through the membrane in picoamperes

per picofarad and the ionic currents of the sarcoplastic reticulum in millimolar

per millisecond.

Eventually, the source term fΦ in (2.19) is then defined as follows:

fΦ = −[INa + IbNa + INaK + INaCa + IK1 + IKr+

IKs + IpK + It0 + ICaL + IbCa + IpCa].
(3.8)

In the next sections, the relations between the ion concentrations, the gating

variables and the ionic currents are quantified for sodium-, potassium-, calcium-

dependent quantities.

3.1.1 Sodium Concentration and Related Variables

Sodium ions are responsible for the depolarization of the action potential. If

the threshold value is exceeded with a threshold potential, then the sodium

channels open and the potential of the intracellular domain starts to increase

rapidly. Then, once the cell reaches to peak value of around +20 mV, the

sodium channels close and the flow of the sodium is balanced by the flow of the

potassium.

Four currents alter the concentration of the sodium inside the cell. Two of these

currents are responsible for the sudden increase of the action potential. These

currents are INa, the fast sodium and IbNa, the background sodium currents.
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Other two currents, on the other hand, are the INaK , sodium potassium and

INaCa, sodium calcium pumps. These currents regulate the intracellular poten-

tial of the cell, if the cell is positively charged. The evolution of the sodium

concentration is then,

ċNa = −
C

V F
[INa + IbNa + 3INaK + 3INaCa], (3.9)

where C is the membrane capacitance per unit surface area and V denotes the

cytoplasmic volume. The constants are provided in Table 3.1. Sodium related

currents are defined as follows

INa = Cmax
Na g3mghgj[Φ− ΦNa] ,

IbNa = Cmax
bNa [Φ− ΦNa] ,

INaK =
Imax
NaK [cK0cNa][[cNa + cNaK ][cK0 + cKNa]

[1 + 0.1245e−0.1ΦF/RT + 0.0353e−ΦF/RT ]]
,

INaCa =
Imax
NaCa[e

γΦF/RT c3NacCa0 − e(γ−1)ΦF/RT c3Na0cCaγNaCa]

[[c3NaCa + c3Na0][cCaNa + cCa0][1 + ksat
NaCae

(γ−1)ΦF/RT ]]
.

(3.10)

The gating variables in these equations are computed using the Hodgkin-Huxley

Equations ġgate = [g∞gate - ggate]/τgate.

The sodium activation gate evolves according to,

ġm = [g∞m − gm]/τm with

g∞m =
1

[1 + e(−56.86−Φ)/9.03]2
,

τm =
0.1

[1 + e(−60−Φ)/5][[1 + e(Φ+35)/5]
+

1

[1 + e(Φ−50)/200]]
.

(3.11)
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The evolution of the fast sodium inactivation gate is given by,

ġh = [g∞h − gh]/τh with

g∞h =
1

[1 + e(Φ+71.55)/7.43]2
,

τh =











0.1688[1 + e−(Φ+10.66)/11.1], if Φ ≥ −40
1

[0.057e−(Φ+80)/6.8 + 2.7e0.079Φ + 3.1 · 105e0.3485Φ]
, if Φ < −40

(3.12)

The slow sodium inactivation gate varies according to

ġj = [g∞j − gj]/τj with g∞j =
1

[1 + e(Φ+71.55)/7.43]2
and τj =

1

[αj + βj]
,

(3.13)

where

αj =















0 if Φ ≥ −40,

[−2.5428 · 104e0.2444Φ − 6.948 · 10−6e−0.04391Φ]

[Φ + 37.78][1 + e0.311(Φ+79.23)]
if Φ < −40

βj =



















0.6e0.057Φ

[1 + e−0.1(Φ+32)]
if Φ ≥ −40,

0.02424e−0.01052Φ

[1 + e−0.1378(Φ+40.14)]
if Φ < −40.

3.1.2 Potassium Concentration and Related Variables

The sodium, after the stimulation of the cell, tends to inflow through the cell. On

the contrary, the potassium ions try to leave the cell due to diffusive chemical

force. The potassium plays a role in 4 phases of the action potential curve.

The outflow of the potassium ions after the depolarization causes the overshoot

which is governed by the current It0, the transient outward current. The slow
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and rapid rectifier currents balances the inflowing calcium ions and creates the

plateau phase. The transient potassium concentration is provided below:

ċK = −
C

V F
[IK1 + IKr + IKs − 2INaK + IpK + It0 + Istim]. (3.14)

The evolution of the potassium is governed by 4 ionic currents the inward recti-

fier current, the rapid rectifier current, transient outward current and the slow

rectifier current. Other than these currents, the plateau current of potassium,

the sodium potassium pump and the stimulus current play a role in the behavior

of the potassium ions. These currents are defined specifically in the following

form:

IK1 = Cmax
K1 g∞K1[cK0/5.4]

1/2[Φ− ΦK ],

IKr = Cmax
Kr gxr1gxr2[cK0/5.4]

1/2[Φ− ΦK ],

IKs = Cmax
Ks g2xs[Φ− ΦKs],

INaK =
Imax
NaK [cK0cNa][[cNa + cNaK ][cK0 + cKNa]

[1 + 0.1245e−0.1ΦF/RT + 0.0353e−ΦF/RT ]]
,

IpK = Cmax
pK [1 + e[25−Φ]/5.98]−1[Φ− ΦK ],

It0 = Cmax
t0 grgs[Φ− ΦK ].

(3.15)

IKs is a function of the potential which represents the reversal potential ΦKs =
RT
F
· log([ck0+pKNacNa0][cK+pKNacNa]−1).

IK1 is characterized through explicit form of the time-independent inward rec-
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tification factor g∞K1,

g∞K1 = αK1[αK1 + βK1]
−1 with

αK1 =
0.1

[1 + e0.06(Φ−ΦK−200)]
,

βK1 =
[3e0.0002(Φ−ΦK+100) + e0.1(Φ−ΦK−10)]

[1 + e−0.5(Φ−ΦK)]1
.

(3.16)

The rapid delayed rectifier current is gated by the activation gate gxr1,

ġxr1 = [g∞xr1 − gxr1]/τxr1 with

g∞xr1 = [1 + e(−26−Φ)/7]−1,

τxr1 = 2700[1 + e(−45−Φ)/10]−1[1 + e(Φ+30)/11.5]−1

(3.17)

and by the inactivation gate gxr2,

ġxr2 = [g∞xr2 − gxr2]/τxr2 with

g∞xr2 =
1

[1 + e(Φ+88)/24]
,

τxr2 =
3.36

[1 + e(−60−Φ)/20][1 + e(Φ−60)/20]
.

(3.18)
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The slow delayed rectifier current IKs is gated by gxs which is defined through

ġxs = [g∞xs − gxs]/τxs with

g∞xs =
1

[1 + e(−5−Φ)/14]
,

τxs =
1100

[1 + e(−10−Φ)/6]1/2[1 + e(Φ−60)/20]
.

(3.19)

It0 is responsible for the transition between the plateau and depolarization

phases. It causes an early limited repolarization. The evolution, time constant

and steady state value of the gate, gr, of this current are given as

ġr = [g∞r − gr]/τr with

g∞r =
1

[1 + e(20−Φ)/6]
,

τr = 9.5e−(Φ+40)2/1800 + 0.8

(3.20)

and the inactivation gate of this current, gs is defined as

ġs = [g∞s − gs]/τs (3.21)

where the gating parameters g∞s and τs are defined for the epicardium as

g∞s = [1 + e(Φ+20)/5] and τs = 85e−(Φ+45)2/320 + 5[1 + e(Φ−20)/5] + 3,

and for the endocardium as

g∞s = [1 + e(Φ+28)/5] and τs = 1000e−(Φ+67)2/1000 + 8.

3.1.3 Calcium Concentration and Related Variables

The calcium enters into the cell during the plateau phase. The ecolution of

the calcium is critical, because it initiates the mechanical behavior of the cell.

The influx of the calcium ions are slow compared to the influx of sodium ions.

46



Therefore, the calcium ions causing the current ICaL are balanced out by the

potassium related currents. Therefore, the potential of the cell remains constant

during the entrance of the calcium ions. The time-dependent behavior of the

calcium ions are explained with the following differential equation:

ċCa = γCa

[

−
C

2V F
[ICaL + IbCa + IpCa − 2INaCa] + Ileak − Iup + Irel

]

. (3.22)

There are two sets of currents changing the calcium concentration. The first set

depends on the concentration of the cytoplasm, while the second set depends on

the sarcoplastic reticulum. The currents ICaL, IbCa, IpCa and INaCa are related

to the calcium concentration of the cytoplasm. Other currents Ileak, Iup and

Irel depend on the calcium changes of the sarcoplastic reticulum. The calcium

dependent currents are provided as follows:

ICaL =
Cmax

CaLgdgfgfCa[4ΦF
2][cCae

2ΦF/[RT ] − 0.341cCa0]

[e2ΦF/[RT ] − 1][RT ]
,

IbCa = Cmax
bCa [Φ− ΦCa],

IpCa =
Cmax

pCa cCa

[cpCa + cCa]
,

INaCa =
Imax
NaCa[e

γΦF/RT c3NacCa0 − e(γ−1)ΦF/RT c3Na0cCaγNaCa]

[[c3NaCa + c3Na0][cCaNa + cCa0][1 + ksat
NaCae

(γ−1)ΦF/RT ]]
,

Ileak = lmax
leak [c

sr
Ca − cCa],

Iup =
1

lmax
up [1 + c2up/c

2
Ca]

,

Irel = lmax
rel gdgf [1 +

γrelc
sr2
Ca

[c2rel + csr2Ca ]
],

(3.23)

The parameter set for the constants of these equations are provided in Table

3.1. The free calcium concentration and the buffered calcium concentration

should be summed in order to obtain the calcium concentration of the intra-

cellular domain. The addition is defined with ctotca = cCa + cbufCa where buffered

calcium concentration is cbufCa = [cCac
tot
Ca buf ][cCa − cCa buf ]−1. And, the calcium

concentration is weighed with γCa = [1+[ctotcbuf ][cCa+cbuf ]−2]−1.
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The dominant calcium channel, long-lasting L-type calcium channel is controlled

by the gate gd. The transient, steady-state value and the time constant of this

gate are defined as

ġd = [g∞d − gd]/τd with

g∞d =
1

[1 + e(−5−Φ)/7.5]
,

τd = [
1.4

[1 + e(−35−Φ)/13]
+ 0.25][1.4[1 + e(Φ+5)/5]] + [1 + e(50−Φ)/20].

(3.24)

First inactivation gate is gf . Its evolution, steady state value and time constant

are defined through,

ġf = [g∞f − gf ]/τf with

g∞f =
1

[1 + e(Φ+20)/7]
,

τf = 1125e−(Φ+27)2/240 +
165

[1 + e(25−Φ)/10]
+ 80.

(3.25)

Second inactivation gate is gfCa. It depends on the calcium concentration. The
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evolution, steady state value and the time constant are defined through

ġfCa = [g∞fCa − gfCa]/τfCa with

g∞fCa =
0.685

[[1 + (cca/0.000325)8]
+

0.1

[1 + e(cca−0.0005)/0.0001]

+
0.2

[1 + e(cca−0.00075)/0.0008]
+ 0.23,

τfCa =



















∞, if g∞fCa > gfCa,Φ ≥ −60,

2 ms, otherwise.

(3.26)

Last, the calcium-induced calcium release current Irel is characterized through

the activation gate gd defined above. Also, it depends on the calcium-dependent

inactivation gate gg. The evolution, steady state value and time constant of this

gate is defined by

ġg = [g∞g − gg]/τg with

g∞g =



















1

[1 + c6ca/0.00035
6]
, if cca ≤ 0.00035,

1

[1 + c16ca/0.00035
16]

, otherwise.

τg =















∞, if g∞g > gg,Φ ≥ −60 ,

2 ms, otherwise.

(3.27)
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3.1.4 Calcium Concentration of the Sarcoplastic Reticulum and Re-

lated Variables

The calcium concentration of the sarcoplastic reticulum is only the calcium

concentration of the intracellular medium but scaled with the volume ratios

of the intracellular space and the sarcoplastic reticulum space. The volume of

the intracellular domain is denoted by V, while the volume of the sarcoplastic

reticulum is denoted by V sr. With this information, the concentration of the

calcium in the sarcoplastic reticulum is expressed with the following ODE:

ċsrCa = γsr
Ca

V

V sr
[−Ileak + Iup − Irel]. (3.28)

The leakage curren, uptake current and release current are defined as follows,

Ileak = lmax
leak [c

sr
Ca − cCa],

Iup =
lmax
up

[1 + c2up/c
2
Ca]

,

Irel = lmax
rel gdgg[1 +

γrelc
sr2
Ca

[c2rel + csr2Ca ]
].

(3.29)

The free calcium concentration and the buffered calcium concentration should

be summed in order to obtain the calcium concentration of the intracellular do-

main. The addition is defined with csr totca = csrCa + csr bufCa where buffered calcium

concentration is csr bufCa = [csrCac
sr
tot][c

sr
Ca − csrbuf ]

−1. And, the calcium concentration

is weighed with γsr
Ca = [1+[csrtotc

sr
buf ][c

sr
Ca+csrbuf ]

−2]−1.

3.2 Local Discretization of the Model Problem

The chemical problem involves 13 gating variables, 10 of which depend only on

the current transmembrane potential, whereas 3 of them depend on both the

current transmembrane potential and the ion concentrations, as stated earlier.

Furthermore, there are 4 ion concentrations to be solved. These total of 17

internal variables are stored at the integration points. The initial values of these
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variables at t=0 are the resting state values. For the temporal discretization, the

finite difference scheme is used. The update equations are given in the following

form,

ġIgate = [gIgate − gIngate]/∆t,

ġIIgate = [gIIgate − gIIngate]/∆t,

ċion = [cion − cnion]/∆t

(3.30)

where the implicit Euler scheme is used to update the values of the gating

variables gIgate and gIIgate, at current time step t.

gIgate = gIngate +
1

τ Igate(Φ)
[g∞I

gate(Φ)− gIgate]∆t,

gIIgate = gIIngate +
1

τ IIgate(Φ)
[g∞II

gate (Φ, cion)− gIIgate]∆t.
(3.31)

The equations of the first subset depend only on the current transmembrane

potential. Hence, the solutions of these variables remain constant during the

local iteration. The second subset, on the other hand, is updated iteratively.

The set of the residuals on the local point is defined through,

Rc
K = cK − cnK +

C

V F
[IK1 + IKr + IKs − 2INaK

+ IpK + It0 + Istim]∆t =̇ 0,

Rc
Na = cNa − cnNa +

C

V F
[INa + IbNa + 3INaK + 3INaCa]∆t =̇ 0,

Rc
Ca = cCa − cnCa +

[ C

2V F
[ICaL + IbCa + IpCa − 2INaCa]

− Ileak + Iup − Irel

]

γCa∆t =̇ 0,

Rsrc
Ca = csrCa − csrnCa +

V

V sr
[Ileak − Iup + Irel]γ

sr
Ca∆t =̇ 0.

(3.32)

Also, the linearization of the residual vectors with respect to the ion concentra-

51



tions are defined through

Kc
ion ion = ∂cionR

c
ion =















∂cKR
c
K ∂cNa

Rc
K 0 0

0 ∂cNa
Rc

Na ∂cCa
Rc

Na 0

0 ∂cNa
Rc

Ca ∂cCa
Rc

Ca ∂csr
Ca
Rc

Ca

0 0 ∂cCa
Rsrc

Ca ∂csr
Ca
Rsrc

Ca















(3.33)

Then, the set of ion concentrations is updated through cion← cion -
[

Kc
ion ion

]

−1Rc
ion

and the second subset of gating variables through gIIgate← gIIgate+ggIIgate(Φ,ggate,cion)∆t.

Once converged for a specified tolerance and the residual norm, the updated set

of the ionic currents are summed to obtain the electrical source term, fΦ in

(3.8).

fΦ = −[INa + IbNa + INaK + INaCa + IK1+

IKr + IKs + IpK + It0 + ICaL + IbCa + IpCa].
(3.34)

Furthermore, the linearized terms of the source term are summed for the lin-

earization of the global residual vectors. The linearized terms are given in the

form,

∂Φf
Φ = −[∂ΦINa + ∂ΦIbNa + ∂ΦINaK + ∂ΦINaCa + ∂ΦIK1 + ∂ΦIKr+

∂ΦIKs + ∂ΦIpK + ∂ΦIt0 + ∂ΦICaL + ∂ΦIbCa + ∂ΦIpCa].
(3.35)

For the derivation of the linearized terms, please see [34] In the current chapter,

the electrical source term fΦ and its linearization ∂Φf
Φ are provided to complete

the mathematical description of the problem. In Chapter 4, the spatio-temporal

discretization of the global problem is introduced.
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CHAPTER 4

DISCRETIZATIONS AND NUMERICAL IMPLEMENTATIONS

In Chapter 4, two numerical modifications that decrease the solution time of

the bimaterial problem at hand are introduced. These modifications are imple-

mented into the initial boundary value problem that is described in Chapter 2

and Chapter 3. The first improvement is the condensation of the solution matrix

and the solution of the reduced matrix. The second improvement is the coupling

of the boundary element and finite element methods on the heart surface. In

Section 4.1, the finite element discretization of the integrated cardiac electro-

physiology problem is presented. In Section 4.2, the details of the condensation

procedure are provided. Lastly, the boundary element method and its coupling

with the finite element method are explained in Section 4.3.

4.1 Finite Element Discretization of the Bidomain Model

In this part, the spatio-temporal discretization of the coupled bidomain problem

of the heart domain BH and the linear torso problem of the torso domain BT are

introduced. For the spatial discretization of the two field variables, namely the

transmembrane potential Φ and the extracellular potential Φe, the finite element

scheme is applied. The residuals are linearized consistently and solved with the

incrementally iterative Newton scheme for the nodal unknowns. The electrical

source term fΦ and its derivative dΦf
Φ are treated as the local problem. The

variables of this problem are stored and updated at the integration point level.

The update scheme of these variables is explained in Chapter 3.

For the finite element discretization of the global problem, C0 - continuous
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isoparametric shape functions are selected. The weak form of the governing

equations of the bidomain model and the linear conductor are obtained through

the following residual expressions:

RΦ = Φ̇− div(D̄i · ∇Φ)− div(D̄i · ∇Φe)− fΦ =̇ 0 in BH ,

RΦe = − div(D̄i · ∇Φ)− div(D̄ · ∇Φe) =̇ 0 in BH ,

RΦe = − div(DT · ∇Φe) =̇ 0 in BT .

(4.1)

The first two expressions are integrated over the heart domain BH , and the third

statement is integrated over the torso domain BT . These domains are illustrated

in Figure 2.1. Further, they are tested by square-integrable scalar-valued test

functions δΦ and δΦe, respectively. Employing the integration by parts and

the Gauss’s theorem, we obtain the following weak forms where the Galerkin

functionals are separated into the internal and external parts

GΦ(δΦ,Φ,Φe) = GΦ
int(δΦ,Φ,Φe)−GΦ

ext(δΦ,Φ) = 0 in BH

GΦe(δΦe,Φ,Φe) = GΦe

int(δΦe,Φ,Φe)−GΦe

ext(δΦe) = 0 in BH ,

GΦe(δΦe,Φe) = GΦe

int(δΦe,Φe)−GΦe

ext(δΦe) = 0 in BT .

(4.2)

The specific forms of the internal and external parts of the Galerkin functionals

for the transmembrane potential of the heart domain are defined as

GΦ
int(δΦ,Φ,Φe) =

∫

BH

(δΦΦ̇ +∇(δΦ) · D̄i · (∇Φ +∇Φe)) dV ,

GΦ
ext(δΦ) =

∫

BH

δΦfΦ dV +
∫

∂BH
q

δΦq̄i dA,
(4.3)

For this equation set, the Neumann boundary condition is described with the

term q̄i = D̄i · (∇Φ+∇Φe) ·nH on ∂BH
q . Similar separation procedure is applied
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to the second Galerkin functional of the heart domain leading to the equations,

GΦe

int(δΦe,Φ,Φe) =
∫

BH

∇(δΦe) · (D̄ · ∇Φe + D̄i · ∇Φ) dV ,

GΦe

ext(δΦe) =
∫

∂BH
q

δΦeq̄t dA,
(4.4)

for the extracellular potential. The term q̄t = (D̄e · ∇Φe + D̄i · ∇Φi) ·nH is

the total current flux applied on the boundary ∂BH
q . The specific forms of the

Galerkin functionals for the torso domain are given as

GΦe

int(δΦe,Φe) =
∫

BT

∇(δΦe) · (DT · ∇Φe) dV ,

GΦe

ext(δΦe) =
∫

∂BT
q

δΦeiapp dA +
∫

Γ

δΦeq̄T dA
(4.5)

for the extracellular potential. The external flux applied to the torso surface ∂BT
q

is denoted by iapp. Furthermore, for temporal discretization, the time increment

t is defined as ∆t = t-tn>0. Here, t denotes the current time and tn denotes the

previous time. The time field is discretized into nstp subintervals. For each of

these subintervals, the classical implicit Euler time integration scheme is applied.

The evolution term of the transmembrane potential can be approximated using

the following finite difference scheme:

Φ̇ ≈
Φ− Φn

∆t
where Φn := Φ(X, tn). (4.6)

The physical domain of the heart BH is discretized into nelH elements, BH
el .

These finite elements satisfy the condition BH ≈
⋃nelH

el=1 B
H
el . Furthermore, the

torso domain is discretized into nelT elements that satisfy the condition BT

≈
⋃nelT

el=1 B
T
el. Referring to the isoparametric approach, the test functions and

the shape functions are the same interpolation functions on the element level.
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Eventually, the field variables within an element domain are approximated by

δΦ =
nen
∑

a=1

NaδΦh
a; δΦe =

nen
∑

a=1

NaδΦh
ea
,

Φ =
nen
∑

a=1

NaΦh
a; Φe =

nen
∑

a=1

NaΦh
ea
,

(4.7)

where nen and Na(X) refer to the number of nodes of each element and shape

functions, respectively. Further, Φh
a and Φh

ea
denote the nodal values of the

variables. Moreover, the spatial potential gradients are derived to be

∇(δΦ) =
nen
∑

a=1

δΦh
a ⊗∇Na,

∇(δΦe) =
nen
∑

a=1

δΦh
ea
⊗∇Na.

(4.8)

Global nodes of the bimaterial problem are separated into three groups for a

better representation of the discrete residuals. The heart domain contains nH

nodes and the torso domain contains nT nodes excluding the interface. Fur-

thermore, there are nΓ nodes on the interface between the two domains. The

discrete form of the residuals of the heart nodes are obtained using (4.3), (4.7),

and (4.8).

RΦ
IH

=
nelH

A
el=1

{

∫

BH
el

[

NaΦ−Φn

∆t
+∇Na(D̄i · ∇Φ + D̄i · ∇Φe)

]

dV

−
∫

BH
el

NafΦ dV−
∫

∂BH
el

Naq̄i dA
}

,

RΦe

IH
=

nelH

A
el=1

{

∫

BH
el

[∇Na(D̄ · ∇Φe + D̄i · ∇Φ)] dV−
∫

∂BH
el

Naq̄t dA
}

.

(4.9)

Here, IH are the global numbers of the H=1,..,nH heart nodes, nelH is the number

of the heart elements and a=1,..,nen are the local element nodes. In this repre-

sentation, the residual contribution of each heart element to the corresponding

global nodes is provided. The discrete form of the residuals of the torso nodes
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are provided using the equations (4.5), (4.7) and (4.8).

RΦe

IT
=

nelT

A
el=1

{

∫

BT
el

∇Na(DT · ∇Φe) dV−
∫

∂BT
el

Naq̄T dA
}

. (4.10)

Here, IT are the global numbers of the T=1,..,nT torso nodes and nelT is the

number of the torso elements. The residual contribution of each torso element

to the corresponding global nodes is provided. Furthermore, the transmembrane

potential residuals of the interface nodes are given in the following form:

RΦ
IΓ

=
nelH

A
el=1

{

∫

BH
el

[

NaΦ−Φn

∆t
+∇Na(D̄i · ∇Φ + D̄i · ∇Φe)

]

dV

−
∫

BH
el

NafΦ dV−
∫

∂BH
el

Naq̄i dA
}

,
(4.11)

In this representation, IΓ are the global numbers of the Γ=1,..,nΓ interface nodes.

The residual contributions of each heart element to the corresponding global

nodes are provided. It is important to state that there is no contribution from the

torso elements to the transmembrane potential residual on the interface Γ, since

there is no transmembrane potential developing in the torso. The extracellular

potential residual of the interface nodes gets contribution from both the heart

elements and the torso elements. Therefore, the residual term involves two parts.

These two parts are obtained to be

RΦe

IΓ
=

nelT

A
el=1

{

∫

BT
el

∇Na(DT · ∇Φe) dV−
∫

∂BT
el

Naq̄T dA
}

+
nelH

A
el=1

{

∫

BH
el

[∇Na(D̄ · ∇Φe + D̄i · ∇Φ)] dV−
∫

∂BH
el

Naq̄t dA
}

.
(4.12)

In order to apply the incrementally iterative Newton Raphson method, the con-

sistent linearization of the residuals is required. The residual vectors and incre-
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ments are given as

R̂ =







































RΦ
H

RΦe

H

RΦ
Γ

RΦe

Γ

RΦe

T







































; ∆Φ̂ =







































∆Φ
H

∆Φ
H
e

∆Φ
Γ

∆Φ
Γ
e

∆Φ
T
e







































. (4.13)

LinR̂ = R̂+
∂R̂

∂Φ̂
∆Φ̂ (4.14)

K̂ =
∂R̂

∂Φ̂
=

nelT+nelH

A
el=1

Kel (4.15)

Then, the linearized terms are obtained to be

KΦΦ
HH = KΦΦ

HΓ = KΦΦ
ΓH = KΦΦ

ΓΓ = A
∫

BH
el

∇NaD̄i∇NbdV +A
∫

BH
el

Na
(

1
∆t
− dΦf

Φ
)

NbdV,

KΦΦe

HH = KΦΦe

ΓH = KΦeΦ
HΓ = KΦΦe

ΓΓ = A
∫

BH
el

∇NaD̄i∇NbdV,

KΦeΦ
HH = KΦeΦ

ΓH = KΦΦe

HΓ = KΦΦe

ΓΓ = A
∫

BH

∇NaD̄i∇NbdV,

KΦeΦe

HH = KΦeΦe

ΓH = KΦeΦe

HΓ = A
∫

BH
el

∇NaD̄∇NbdV,

KΦeΦe

TT = KΦeΦe

TΓ = KΦeΦe

ΓT = A
∫

BT
el

∇NaD̄T∇NbdV,

KΦeΦe

ΓΓ = A
∫

BT
el

∇NaDT∇NbdV +A
∫

BH
el

∇NaD̄∇NbdV.

(4.16)

Then, the elemental stiffness terms are assembled into the following compact
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form of the global solution matrix:

−





















KΦΦ
HH KΦΦe

HH KΦΦ
HΓ KΦΦe

HΓ 0

KΦeΦ
HH KΦeΦe

HH KΦeΦ
HΓ KΦeΦe

HΓ 0

KΦΦ
ΓH KΦΦe

ΓH KΦΦ
ΓΓ KΦΦe

ΓΓ 0

KΦeΦ
ΓH KΦeΦe

ΓH KΦeΦ
ΓΓ KΦeΦe

ΓΓ KΦeΦe

ΓT

0 0 0 KΦeΦe

TΓ KΦeΦe

TT









































∆Φ
H

∆Φ
H
e

∆Φ
Γ

∆Φ
Γ
e

∆Φ
T
e





















=





















RΦ
H

RΦe

H

RΦ
Γ

RΦe

Γ

RΦe

T





















(4.17)

It is worth noting that the electrical source term fΦ and its consistent lineariza-

tion dΦf
Φ are treated locally. The solution and update procedure of the local

problem are already explained in Chapter 3.

The iterative update of the global unknown vector is conducted through the

following equations:

Φ̂← Φ̄+∆Φ,

∆Φ = −K̄
−1
· R̄

(4.18)

which is applied until the solution converges for a specified residual norm and

the tolerance. For a better representation of the solution of the cardiac electro-

physiology problem, the algorithmic box is provided in Figure 4.1.

4.2 Condensation of the Solution Matrix

Owing to the linear and time-independent nature of the torso, the corresponding

stiffness terms computed with the finite element method are constant. Therefore,

the total nodal degrees of freedom of the model can be reduced by manipulating

the system of linear equations. The fourth and fifth set of equations of the

solution system in (4.17) can be written as

RΦe

Γ = KΦeΦ
ΓH ∆Φ

H +KΦeΦe

ΓH ∆Φ
H
e +KΦeΦ

ΓΓ ∆Φ
Γ +KΦeΦe

ΓΓ ∆Φ
Γ
e+

KΦeΦe

ΓT ∆Φ
T
e ,

RΦe

T = KΦeΦe

TΓ ∆Φ
Γ
e +KΦeΦe

TT ∆Φ
T
e .

(4.19)
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replacemen
initialize nodal degrees of freedom of the torso and the heart
initialize internal variables of the ionic model

global Newton iteration
loop over all elements

loop over all integration points
update first set of gating variables

initialize second set of gating variables
initialize ionic currents
local Newton iteration

calculate source term and its derivative
calculate element residuals and element matrices

assemble the residuals and matrices
update the global unknowns

update ion concentrations

update ionic currents

Figure 4.1: Algorithmic box of the FEM solution.

Using (4.19)2, the incremental unknowns of the torso nodes can be carried out

as follows:

∆Φ
T
e = KΦeΦe

TT

−1[
RΦe

T −KΦeΦe

TΓ ∆Φ
Γ
e

]

. (4.20)

Then, inserting (4.20) into (4.19)1,

RΦe

Γ = KΦeΦ
ΓH ∆Φ

H +KΦeΦe

ΓH ∆Φ
H
e +KΦeΦ

ΓΓ ∆Φ
Γ +KΦeΦe

ΓΓ ∆Φ
Γ
e+

KΦeΦe

ΓT KΦeΦe

TT

−1[
RΦe

T −KΦeΦe

TΓ ∆Φ
Γ
e

]

,
(4.21)

and decoupling the residual and the unknowns as

RΦe

Γ −KΦeΦe

ΓT KΦeΦe

TT

−1
RΦe

T = KΦeΦ
ΓH ∆Φ

H +KΦeΦe

ΓH ∆Φ
H
e +KΦeΦ

ΓΓ ∆Φ
Γ+

[

KΦeΦe

ΓΓ −KΦeΦe

ΓT KΦeΦe

TT

−1
KΦeΦe

TΓ

]

∆Φ
Γ
e ,

(4.22)
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and if we define a new matrix and an array as

K̄
ΦeΦe

ΓΓ = KΦeΦe

ΓΓ −KΦeΦe

ΓT KΦeΦe

TT

−1
KΦeΦe

TΓ ,

R̄
Φe

Γ = RΦe

Γ −KΦeΦe

ΓT KΦeΦe

TT

−1
RΦe

T ,
(4.23)

we end up with the following condensed solution matrix of the problem.















KΦΦ
HH KΦΦe

HH KΦΦ
HΓ KΦΦe

HΓ

KΦeΦ
HH KΦeΦe

HH KΦeΦ
HΓ KΦeΦe

HΓ

KΦΦ
ΓH KΦΦe

ΓH KΦΦ
ΓΓ KΦΦe

ΓΓ

KΦeΦ
ΓH KΦeΦe

ΓH KΦeΦ
ΓΓ K̄

ΦeΦe

ΓΓ





























∆Φ
H

∆Φ
H
e

∆Φ
Γ

∆Φ
Γ
e















=















RΦ
H

RΦe

H

RΦ
Γ

R̄
Φe

Γ















(4.24)

After the unknowns of the heart computed using the condensed matrix, the

unknowns of the torso can be recovered by

∆Φ
T
e = KΦeΦe

TT

−1[
RΦe

T −KΦeΦe

TΓ ∆Φ
Γ
e

]

(4.25)

This reduced form is iteratively updated as in the regular FEM, using (4.18).

Because of the fact that the size of the heart is very small compared to the size

of the human body, the bimaterial problem at hand includes relatively many

torso unknowns. Hence, rearranging the global solution matrix and storing

the inverse of the linear and time-independent part of it, which is denoted as

KΦeΦe

TT

−1
, the size of the global solution matrix reduced, drastically. Owing to the

condensation, the solution matrix can be much more easily inverted due to the

highly reduced form. Once the solution is obtained through the modified solution

matrix and vector, the computed values of the heart and interface unknowns are

used to recover the unknowns of the torso nodes by using (4.25) at each iteration.

4.3 The Boundary Element Method and the FEM-BEM Coupling

The boundary element method is based on the idea of approximating the so-

lution of a partial differential equation on the boundary, and then, using the

solution obtained on the boundary to solve the inner domain. The advantage
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of this approach is that in order to solve a linear problem numerically, only the

boundaries are discretized. It is an efficient method, especially if the FEM ap-

proximation requires too many elements and nodes for an accurate solution. The

disadvantages of the method is that it may be difficult to implement the solu-

tion procedure for a nonlinear or inhomogeneous problem. Further, the method

requires a fundamental solution, which can be unavailable in some cases.

The torso is a linear and isotropic conductor of electricity. The solution of

the Laplace equation using the boundary element method is straightforward.

Therefore, the differential equation defining the torso can be solved using the

boundary element method. First, the fundamental solution of the governing

differential equation should be determined. In the torso model, the only field

variable is the extracellular potential Φe. Therefore, the Laplace equation is

− div(DT · ∇Φe) = 0. (4.26)

The analytical solution of a PDE in an infinite domain with a point source is the

fundamental solution of the corresponding PDE. In the two dimensional setting,

the fundamental solution of the Laplace equation is given as

w =
−1

2π
ln r (4.27)

where r is the distance between two points. For the derivation of the fundamental

solution of the Laplace equation and for further information about the BEM,

the reader is referred to [69].

In order to solve a PDE with the BEM, a weight function should be selected. The

weight function of the BEM, apart from FEM, is the fundamental solution of the

differential equation. Multiplying the Laplace equation with the weight func-

tion and employing the integration by parts twice and then employing Gauss’s
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theorem, the boundary integral equation is found to be

c(p)Φe(p) +
∫

∂Be

Φe

∂w
∂n

ds =
∫

∂Be

w
∂Φe

∂n
ds. (4.28)

In (4.28), s refers to the overall surface of the domain B, p refers to any point in

the space and c(p) refers to a constant depending on the spatial position of the

point p. If p is a point inside the domain, c(p) is 1 and if it is on a continuous

surface of the domain, c(p) is 0.5. If the point is out of the domain, c(p) is 0.

c(p) =























1 if p ∈ B,

0.5 if p ∈ ∂B, B smooth,

0 if p /∈ ∂B .

(4.29)

In order to apply the BEM to the problem at hand, the surface domain is

discretized into nline elements. The domains and boundaries of the problem

are given in Figure 4.2. The equations are solved at the midpoint of each line

element. Therefore, the constant c(p) is selected to be 0.5, due to the continuity

of the point. Furthermore, the variables and their gradients are assumed to be

constant on each element, whereas they are not continuous at the nodes. Owing

to these assumptions, (4.28) is recast into the following discrete form:

1

2
Φi

e +

nline
∑

j=1

[

∫

∂s

Φeq̃ds
]

=

nline
∑

j=1

[

∫

∂s

wqds
]

, (4.30)

where q̃ =∇w·n . Because of the fact that the global variable Φe and its gradient

q are constant on each element, (4.30) can be written as follows:

1

2
Φi

e +

nline
∑

j=1

Φj
e

[

∫

∂sj

q̃ds
]

=

nline
∑

j=1

qj
[

∫

∂sj

wds
]

(4.31)
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Figure 4.2: Boundaries of the FEM-BEM coupling.

In (4.31), the two integral terms can be rewritten in the form,

Ĥ
ij
=

∫

∂sj

q̃ds ; Gij =

∫

∂sj

wds. (4.32)

In the calculation of the matrix H̃, if linear elements are used and i=j, the

point i is singular. The reason for that is if i=j, then the distance is zero. In

order to solve this problem, analytic solution can be employed [69] or Gaussian

quadrature with several points can be applied. In addition to these solutions,

at every node i, the following correction should be implemented:

Hij =











Ĥ
ij

if i 6= j,

Ĥ
ij
+ 0.5 if i = j.

(4.33)
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Then, the overall equation system can be written in the following form:

nline
∑

j=1

Φj
eH

ij =

nline
∑

j=1

qjGij (4.34)

This equation is a matrix equation HΦe=Gq where H and G are the nline ×

nline BEM matrices, Φe and q are the vectors of length nline representing the

extracellular potentials and normal flux terms of the boundary elements. For the

solution of this system, the knowns and the unknowns are separated according

to boundary conditions. For a Neumann boundary condition, the potentials

are unknowns, whereas for a Dirichlet boundary condition, surface fluxes are

the unknowns. It is worth noting that for the bimaterial problem at hand, the

purpose is to discretize the surface of the torso only, and neglect the interior

part of the torso domain. Therefore, there are two surfaces for this case. The

first surface is the outer torso surface and the second surface is the heart surface.

The nonlinear equations of the heart model are solved with the FEM and the

results obtained this solution is the boundary condition for the BEM, for that

specific time step. Therefore, on the surface of the heart, the BEM and FEM

equations are coupled. The coupling equations are derived through the following

matrix representation of the BEM:





HΓΓ HΓT

HTΓ HTT









Φ
Γ
e

Φ
T
e



=





GΓΓ GΓT

GTΓ GTT









q
Γ

0



 (4.35)

It is important to note that the BEM solution will be for the extracellular poten-

tial of the torso domain. The matrices are partitioned according to the knowns

and unknowns of the solution procedure. In this equation system, ΦT
e refers to

the unknown potentials of the BEM, which are the outer surface potentials of

the torso. The potentials of the heart surface, on the other hand, is denoted by

Φ
Γ

e , and these potentials are computed with the FEM. Consequently, qT is the

known flux values, which are 0 on the torso surface, due to the homogeneous

Neumann boundary conditions and qΓ are the unknown surface fluxes of the
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heart surface. The two equation systems can be written in the following form:

HΓΓΦ
Γ

e +HΓTΦ
T
e = GΓΓqΓ +GΓT · 0,

HTΓΦ
Γ

e +HTTΦ
T
e = GTΓqΓ +GTT · 0.

(4.36)

As mentioned earlier, the flux values on the outer torso surface, qT , are zero.

Using (4.36)2, the extracellular potential can be rewritten in terms of fluxes and

potentials on the surface of the heart.

Φ
T
e = H−1

TT[GTΓqΓ −HTΓΦ
Γ
e ] (4.37)

Implementing (4.37) into (4.36)1, the equation takes the form

HΓΓΦ
Γ

e +HΓTH
−1
TT[GTΓqΓ −HTΓΦ

Γ

e ] = GΓΓqΓ. (4.38)

And, by decoupling the variables we obtain

[HΓΓ −HΓTH
−1
TTHTΓ]Φ

Γ
e = [GΓΓ −HΓTH

−1
TTGTΓ]qΓ. (4.39)

Introducing new matrices H̃ and G̃, and defining them as

H̃ = [HΓΓ −HΓTH
−1
TTHTΓ] ; G̃ = [GΓΓ −HΓTH

−1
TTGTΓ], (4.40)

the flux terms of the heart surface can be expresses in terms of the potentials of

the heart surface explicitly,

q
Γ
= G̃

−1
H̃Φ

Γ
e . (4.41)

It is important to note that the BEM matrices H̃ and G̃ are time-indepenedent.

Therefore, they are computed and stored once and for all at the beginning of

the analysis.
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These computed fluxes are treated as external fluxes on the heart surface, and

implemented to the residual contribution of the surface nodes, then, the BEM

and FEM are coupled on the heart surface, leading to a much shorter solution

time. The residual contribution of these external fluxes is provided with,

RΦe

IΓ
= RΦe

IΓ
+

nline

A
j=1

{

∫

Γ

NaqΓj
dA

}

. (4.42)

where, IΓ denotes the interface nodes between the torso and the heart, Na is the

shape function for the surface elements, with a=1,..nen.

The finite element discretization, condensation of the stiffness matrix and the

boundary element finite element coupling are introduced in Chapter 4. In Chap-

ter 5, the results of the representative numeric examples are provided. The per-

formance of the three methods are compared in terms of computational speed.

Furthermore, the simulation results of selected two disease cases that are mod-

eled using a realistic heart and torso geometry are illustrated.
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CHAPTER 5

NUMERICAL EXAMPLES

This chapter is devoted to the numerical examples representing the integrated

cardiac electrophysiology problem. The efficiency of the proposed C-FEM and

FEM-BEM approaches are demonstrated through the ECG simulations. In or-

der to simulate an ECG, first the mesh size of the finite element solution is

determined. The mesh sizes of the torso and the heart are settled upon after a

series of analyses. After these convergence analyses, the calibration of the time

step is provided. Then, using the calibrated time step and mesh size, the ECG

simulations are conducted. The solution times of the methods are provided with

the CPU time comparison of the ECG simulations. The validity of the simulated

ECG in terms of practical medicine is discussed. Moreover, the performance of

our model is illustrated with a disease scenario. The ECG results of the inferior

infarction simulation are demonstrated with the illustrative figures.

5.1 Determination of the Mesh Size

In order to obtain accurate results with the FEM and C-FEM, the mesh size of

the heart and the torso are determined with sensitivity analyses. If the mesh is

coarse, the solution of the highly stiff ionic model may lead to significant errors

and fluctuations.

The nonlinear problem of the heart domain is solved together with the linear

problem of the torso. The parameter set of the governing differential equations

are provided in Table 5.1.

These parameters are selected because of the fact that the ECG leads obtained
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Table 5.1: Parameters of the integrated electrophysiology equations

Parameter Unit Description Values

d̄
i
‖ := d

i
‖/XCm [mm2/s] Normalized intracellular conductance of the heart 10.0

in the longitudinal direction

d̄
i
⊥ := d

i
⊥/XCm [mm2/s] Normalized intracellular conductance of the heart 1.0

in the orthogonal direction

d̄
e
‖ := d

e
‖/XCm [mm2/s] Normalized extracellular conduction of the heart 10.0

in the longitudinal direction

d̄
e
⊥ := d

e
⊥/XCm [mm2/s] Normalized extracellular conductance of the heart 3.0

in the orthogonal direction

d
T
iso [mm2/s] Isotropic conductance of the torso 1.0

θ [Rad] Fiber orientation angle of the heart tissue 0.0

with these parameters are accurate [42, 70]. The conductivity constants of the

heart tissue and the torso are not exact. Therefore, there are several approaches

for the determination of the cardiac conductivity. In the recent years, one of

the most effective approaches is to construct a proportionality relation between

the orthogonal and longitudinal conductivites. Roth proposed a mathemati-

cal model and related the auxillary parameters to bidomain conductivities [70].

Therefore, if the conductivity of the intracellular domain is determined accu-

rately, other three conductivity parameters can be computed easily.

The heart domain is at the resting state initially. Therefore, the initial value of

the heart domain is -86.2 mV, and the initial value of the torso domain is 0 mV,

since there is no electrical activity in the torso. Then, the midpoint of the plate

is stimulated with a potential of +20 mV, and the action potential starts to

propagate. The boundary condition of the outer torso surface is homogeneous

Neumann boundary condition, while on the interface there is an equilibrium

between the extracellular spatial potential fluxes of the torso and the heart.

The initial set of gating variables for the resting state of the heart domain are

given to be gm = 0, gh = 0, gj = 0.75, gd = 0, gf = 1.0, gfCa = 1.0, gr = 0, gs =

1, gxs = 0, gxr1 = 0, gxr2 = 0, gxK1∞ = 0.05, and gg = 1. Other than the gating

variables, there are also four ion concentrations of the resting state, cNa=11.6

mM, cK=138.3 mM, cCa = 0.08·10−6 M and csrCa = 0.56 mM. The time step for
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the ECG simulations is calibrated after the mesh size is determined. Therefore,

for the mesh size selection an average time step of the ionic model is used. The

time step of the ionic model can be increased up to 0.16 ms. Therefore, we

used an average time step of 0.08 ms for the mesh size determination. With this

setting, the mesh sizes of the heart domain and the body domain are selected

after two sets of analyses, one for the determination of the size of the heart

mesh, and the other is for the size of the torso mesh. The mathematical model

is solved using the FEM software FEAP [71]. Moreover, all the meshes included

in this study are generated with ABAQUS [72].

5.1.1 Appropriate Mesh Size for the Heart Domain

The size of the heart elements is specified with the solutions of the finite element

analyses. For the finite element problem, a square domain containing both the

torso and the heart is meshed with quadrilateral elements. In Figure 5.1, the

boundaries and the geometry of the mesh with 64×64 element are illustrated.

The interface is highlighted so that the reader can observe the boundary layer.

The heart is embedded inside the torso domain. The edge of the square heart

domain is 72 mm and the edge of the square torso domain is 96 mm. The mesh

sizes of the overall domain, containing the torso and the heart are altered in

order to compare the results of the different mesh settings. This geometry is

meshed with four different element sizes. The mesh sizes and the number of

elements of the four cases are provided in the Table 5.2, where hH denotes the

mesh size of the heart domain.

Table 5.2: Selected mesh sizes for the sensitivity analysis of the heart domain.

Mesh No. hH [mm] Number of Elements

Mesh 1 6 256

Mesh 2 2 2304

Mesh 3 0.67 20736

Mesh 4 0.5 36864
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Γ
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Figure 5.1: The structured 64 × 64 mesh including the torso and the heart
elements.

The extracellular and the transmembrane potentials of the simulations are recorded

at the point P shown if Figure 5.1. Point P is on the interface of the torso and

the heart domains. Therefore, the effects of the both domain can be included

for the sensitivity analysis. In Figure 5.2 (left), the transmembrane potential

obtained with the ionic model is illustrated. The action potential waveform con-

verges to a solution as the mesh size decreases (right). The closed box provides

means to see the effect of the mesh size on the transmembrane potential. In

order to illustrate the convergence rate, the required amount of time for point P

to reach a potential of -40 mV is used to compute the conduction velocities of the

corresponding meshes. If the distance between the point P and the stimulation

point of the mesh is divided with travel times, the corresponding velocities are

found. Taking the conduction velocity of the finest mesh with hH = 0.5 mm as

the reference conduction velocity, the relative errors are computed as ǫrel = (v-

vref)/vref where v is the conduction velocity and vref is the reference conduction

velocity. The log-log plot of the results are provided in Figure 5.3. Since the
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average slope of the lines in Figure 5.3 is about 2, it can be concluded that the

convergence is quadratic.
Φ
[m

V
]

t [ms]

Φ
[m

V
]

t [ms]

finer

Figure 5.2: Transmembrane potentials at point P for four different mesh sizes
(left) and the potentials in the close-up (right).

In Figure 5.4, on the other hand, the extracellular potential of the point P is

shown. After the depolarization of the cell, the extracellular potential increases

suddenly. The extracellular potential converges to a solution as the mesh size

decreases.

Using the results provided in Figures 5.2 and 5.4, the mesh size of the heart

domain is chosen to be hH = 0.5. Then, the mesh size of the torso domain

should be determined with the analyses using the unstructured grids where the

mesh size of the heart is fixed, but the mesh size of the torso is varied.

5.1.2 Appropriate Mesh Size for the Torso Domain

In order to be able to vary the mesh size of the torso domain, unstructured grids

are used. For a better representation of the human body, the dimensions of the

torso and the heart are selected to have realistic dimensions. Also, the heart

domain is placed at a realistic location, shown in Figure 5.5. The illustrated mesh

is composed of 25600 quadrilateral elements representing the heart domain, and
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Figure 5.3: Errors in conduction velocity as the normalized difference for mesh
sizes hh= 6 mm, hh= 2 mm and hh= 0.67 mm . The result of the finest mesh
where hh= 0.5 mm is taken as to be the reference result.

10437 quadrilaterals representing the torso domain. The edge of the square heart

domain is taken to be 72 mm, while the shorter edge and the longer edge of the

torso domain are 44 cm and 50 cm, respectively. The number of heart elements

in these cases is fixed and it is 25600.

Table 5.3: Selected mesh sizes for the sensitivity analysis of the torso domain.

Mesh No. hT
max[mm] Number of Torso Elements

Mesh 1 48 10437

Mesh 2 24 19710

Mesh 3 12 30836

Mesh 4 6 49218

Using the same material parameters, initial conditions and time step, the model

is simulated for these unstructured meshes. The extracellular potentials of the

two points, P1 and P2, are plotted in Figure 5.6. The solution of the torso

domain depends on the extracellular potential of the heart surface. As can be

seen from the two waveforms, the extracellular potentials of the points are not

significantly affected from the mesh size. The linear problem of the torso allows

us to use coarser meshes. Therefore, the maximum mesh size of the torso domain
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Figure 5.4: The extracellular potential at the point P (left) and the potentials
in the close-up (right) for different mesh sizes.

hT
max is selected to be 48 mm. The mesh size of the heart domain and the mesh

size of the torso domain are determined according to the results obtained with

the FEM. Finally, in order to complete the FEM calibration, the optimal time

step of the analyses should be specified for the selected mesh sizes.

5.2 Appropriate Time Step for the Analysis

The optimal mesh sizes of the heart domain and the torso domain are determined

so far. The last step is to calibrate the time step using the geometry shown in

Figure 5.5 and using the mesh sizes of hH = 0.5 mm for the heart domain and

hT
max = 48 mm for the torso domain. With this setting, the FEM is used to

solve the integrated problem with time steps of ∆t = 0.04, 0.08, 0.12 and 0.16

ms. The results of these analyses are provided in Figures 5.7, 5.8 and 5.9.

In Figure 5.7, the action potential of the corner node of the heart domain corre-

sponding to point P in Figure 5.1 is shown. Similar to the spatial domain, if the

time domain is discretized into finer intervals, the results converge to a solution.

The convergence of the solution is provided in Figure 5.7.

The results of the extracellular potential at the same point is illustrated in Figure

5.8. It can be observed that even though the point is on the same location of the
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P1

P2

Figure 5.5: A mesh geometry for the integrated electrophysiology problem. The
mesh is composed of 36037 quadrilateral elements.

heart domain, the extracellular potentials observed in Figures 5.4 and 5.8 are

different. The reason for that is the effect of the torso domain. In the first case,

very few torso elements are modeled, whereas in the second geometry, a very

large torso domain covers the heart surface. Therefore, it can be stated that

the torso influence on the extracellular potential of the interface is significant.

Moreover, in Figure 5.9, the extracellular potential of the point P1 shown in

Figure 5.5 is illustrated.

By investigating the effects of the time steps on the problem, and considering

the computational efficiency, the time step is taken to be ∆t = 0.08 ms for the

ECG simulations.
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Figure 5.6: The extracellular potentials at the point P1 (left) and at point P2
(right) for different mesh sizes of the torso.

5.3 ECG Simulations

The integrated cardiac electrophysiology simulations allow us to compute the

potentials out of the heart. The interaction between the heart and the torso ends

up with the realistic potentials on the torso surface. By using these potentials

of the torso, we can compute the discrete potential differences at each time

step. These discrete potential differences eventualy provide a way to draw the

standard 6-lead ECG. The leads of this diagram are computed using the following

equations:

IΦ = LAΦ − RAΦ

IIΦ = LFΦ − RAΦ

IIIΦ = LFΦ − LAΦ

AVFΦ = LFΦ − Φ̄

AVLΦ = LAΦ − Φ̄

AVRΦ = RAΦ − Φ̄

(5.1)

where LF, LA and RA stand for the left foot, left arm and right arm, respectively.
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Figure 5.7: The action potential at point P (left) and the potentials in the
close-up (right) for different time steps.

Moreover, Φ̄ is the average of the LF, LA, and RA potentials. In order to obtain

a realistic ECG, the position and the geometry of the heart should be selected

wisely. Moreover, the Purkinje line elements and regional characteristics of

the action potential should be taken into account. The details of the mesh is

provided in Figure 5.10.

The height and the width of the body section and the heart section are taken

to be average. The height of the body without the foot and the head is 150 cm

and the width is 45 cm. The heart, on the other hand, is assumed to be 7.5

cm in height without the atria. The cross section of the heart is obtained from

the Ashley heart [73]. Furthermore, for the ECG simulation, the three points

representing LA, RA, and LF points are labeled as points P1, P2, and P3. The

mesh involves 7716 quad elements in the heart domain, 21403 quad elements in

the torso domain with overall 30247 nodes. For the FEM-BEM approach, the

torso domain is eliminated and outer surface elements are generated. There are

723 surface line elements on the outer surface and 1108 surface line elements on

the interface.

In order to obtain an ECG accurately, the Purkinje line elements are employed.
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Figure 5.8: The extracellular potential changes at Point P (left) and the extra-
cellular potentials in the close-up (right) for different time steps.

These line elements elongate through the two sides of the septum, the bundle

branches and the diverge into the endocardial zones of the heart section. The

Purkinje fibers are very effective electrical conductors and their material models

are the same model with the cardiac domain, see Figure 5.11. Therefore, these

elements are modeled with the ionic ten Tusscher model. The parameter set for

the conductivities of the Purkinje fibers is listed in the Table 5.4. The Purkinje

fibers have approximately twenty times higher conductance velocity than that of

the regular heart tissue [42]. The conductivities in the orthogonal direction are

taken to be proportional to the myocardium conductivities. The extracellular

conductivity constants are the same with the myocardium.

Lastly, in order to obtain appropriate T waves with the simulation, separating

the heart into zones for different action potential evolution characteristics are

of great importance. Therefore, the heart domain of the mesh is divided into

nine parts that have different initial ionic settings. The partition is visualized

in Figure 5.12. The action potential differences are taken into account by hori-

zontal and vertical segments. The critical point is that despite the fact that the

depolarization wave reaches to the apex of the heart lastly, it repolarizes first.

The reason for this is that the action potential duration is shorter at the apex of
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Figure 5.9: The extracellular potential at the point P1 (left) and close-up for
different time steps.

Table 5.4: Parameters for the Purkinje elements

Parameter Unit Description Values

d̄
i
‖ := d

i
‖/XCm [mm2/s] Normalized intracellular conductance of the heart 200.0

in the longitudinal direction

d̄
i
⊥ := d

i
⊥/XCm [mm2/s] Normalized intracellular conductance of the heart 30.0

in the orthogonal direction

d̄
e
‖ := d

e
‖/XCm [mm2/s] Normalized extracellular conduction of the heart 10.0

in the longitudinal direction

d̄
e
⊥ := d

e
⊥/XCm [mm2/s] Normalized extracellular conductance of the heart 1.0

in the orthogonal direction

the heart. Furthermore, the septum repolarizes a little earlier than the left side

and right side of the heart. As a result, the action potential of the right and left

parts are arranged to be longer. So as to change the action potential duration

of the ionic model, the constants of the ionic model are changed. The major ion

concentration that is responsible for the duration of the action potential wave

duration is the potassium. Therefore, potassium related constants Cmax
Ks,endo and

Cmax
t0,endo are decreased for a longer action potential duration. These parameters

are provided in Table 3.1. These constants are 2.5% smaller than the constants
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Figure 5.10: Geometric settings of the mesh.

of the lateral myocardium. Likewise, from the apex to the base, the constants

are decreased by 5%. The resulting action potential durations of the nine zones

are provided in Figure 5.12.

Then, using these geometrical properties, implementing Purkinje fibers and ar-

ranging the action potential durations of the myocardium, the ECG simulations

are conducted. The results of the healthy and infarcted cases obtained with the

FEM, C-FEM and FEM-BEM are provided in the next section.

5.3.1 Healthy ECG

The constructed model is tested for an ECG simulation of the healthy heart.

The computed and normalized ECG is plotted in Figure 5.13. In Figure 5.14,

the Lead-I, is plotted with a close-up. Furthermore, there are letters starting

from (a) and ends up with (f) in Figure 5.14. These are the critical points of the

ECG waveform. The obtained numerical results will be demonstrated at those

specific instants.

The ECG in Figure 5.13 is solved by using the three approaches namely, the
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Purkinje fibers

Figure 5.11: The Purkinje fibers placed on the mesh.

FEM, C-FEM and FEM-BEM on the heart surface. The CPU times of these

methods are provided with Table 5.5. The solution time of the BEM is very low.

The C-FEM, on the other hand, is not very effective in terms of computational

speed.

The close-up in Figure 5.14 shows the solution difference between the three

methods. It can be observed that the boundary element method gives very

accurate results. C-FEM solution, on the other hand, gives exactly the same

results with the FEM approach as expected. However, the speed of the C-FEM

does not seem to be very efficient. The nonlinear domain contributes to the

interface. Therefore, the residual of the linear domain should be computed at

each iteration just like the FEM.

The standard 6-lead ECG structure is well characterized with the QRS complex

and the T wave. The clinical results of a healthy heart shows that the model pre-

dicts the directions of the leads at the depolarization and repolarization phases,

qualitatively. The timings of the QRS is acceptable, however, the ST interval
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Figure 5.12: Zones of the human heart and the corresponding action potential
waveforms.

is too long. The start of the T wave should be at around 300 ms. The reason

for this difference is caused by the 2-D model, since the overall behavior of the

ECG depends on the 3-D space. One critical issue about the modeling the ECG

is the direction of the aVR lead. This lead has negative peak value and negative

T wave. The ECG leads of a healthy heart are given in Figure 1.13.

In order to initiate the action potential, the top portion of the septum is stimu-

lated by applying external flux terms on the selected nodes. The action poten-

tial propogation is provided in Figure 5.15. The action potential firstly propa-

gates through the septum. Then, it reaches to apex and is separated into two

parts, leading to left and right ventricles respectively. After a long phase named

plateau, the heart starts to depolarize from the apex.

In addition to these results, the element number of the outer surface is varied for

FEM-BEM approach. In Figure 5.17, the ECG simulation results are provided

for 568, 723 and 948 outer line elements. It can be deduced from the figure that
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Figure 5.13: The normalized ECG of a healthy heart computed with FEM,
C-FEM and FEM-BEM. Units are mV in y direction and ms in x direction.

Table 5.5: Solution times of FEM, C-FEM and FEM-BEM methods.

Method - CPU Time

FEM - 107.5 min

C-FEM - 98.2 min

FEM-BEM - 48.8 min

as the number of BEM elements decreases, the accuracy of the solution reduces

as well. The CPU Time results are also provided in Table 5.6. With the BEM,

the solution time is reduced drastically, since the torso is eliminated. However,

reducing the number of outer line elements does not provide further efficiency

to the model.

84



Figure 5.14: LEAD-I ECG (left) and close-up. Units are in mV in y direction
and ms in x direction.

Table 5.6: FEM-BEM solution times with different numbers of outer line ele-
ments.

# of outer line el. - CPU Time

568 - 43.6 min

723 - 48.8 min

948 - 50.9 min

5.3.2 Modeling the Inferial Infarction

In order to test the performance of the model besides the heathy heart case, an

infarction case is modeled. The model is solved with the FEM-BEM coupling,

and the torso mesh is not generated. First, infarction zone is created by selecting

the elements at the right hand side of the apex. These elements are shown in

Figure 5.18. The infarcted region should be inexcitable for the model to properly

simulate the disease. The activation phase of the cardiac cell, the depolarization,

strongly depends on the sodium channels. Therefore, the sodium constant CNa0

is taken to be 30.0 mM and Imax
NaCa is taken to be 500.0 pA/pF. By this way, these

elements become inexcitable, while the convergence of the model is maintained.

All other model parameters are the same for the simulation. The results of the

model is provided in Figures 5.19-5.21.
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Figure 5.15: The transmembrane potential propagation through the healthy
heart.

In Figure 5.19, the propogation of the transmembrane potential through the

heart section can be observed. In the sequence, the action potential moves

through the septum. When it reaches to the septum, the infarcted zone is

not excited. The transmembrane potential continues to advance through the

ventricles, but the infarcted zone remains inexcitable. Therefore, the corrupted

transmembrane potential and intracellular potential changes behavior of the

extracellular potential in that specific area.

In Figure 5.20, the propagation of the extracellular potential through the septum

is provided. Please note that in order to represent the effects of the infarcted

zone efficiently, the scale bar is not fixed, but it changes with respect to each

step. As a reaction to the transmembrane potential, the extracellular potential

starts to advance through the septum, and when it reaches to the apex, the

infarcted zone does not react to extracellular stimulation as well. Therefore,
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the boundary conditions of the coupled FEM-BEM problem changes. The scar

tissue prevents the potential to reach to the left foot. Therefore, second, third

leads and the aVF lead of the ECG should have different peaks.

The ECGs obtained through the solutions of the healthy heart and the infarcted

heart are provided in Figure 5.21. The effect of the infarcted zone can be seen

in leads II, III and aVF easily. The S wave of the lead-II can not go below zero,

resulting in elevated T wave. It is the common indicator of diseases related to the

septum. Lead-III, on the other hand, cannot even increase in the depolarization

phase, simply because the infarcted zone blocks the potential in the downward

direction. Another critical point verifying the validity of the obtained ECG is

that the lead-I and aVR does not change significantly due to the infarction. This

is acceptable because of the infarcted zone is at the bottom of the heart. The

effects of the potential of the lower part has less effects on the upper leads.

In this section, the applications of the integrated cardiac electrophysiology prob-

lem is shown. The efficiency of the proposed algorithms are tested in ECG

simulations in terms of solution time. Moreover, the accuracy of the coupled

FEM-BEM approach is tested with the healthy and infarcted case scenarios.
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Figure 5.16: The extracellular potential contours on the body for the healthy
case.
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Figure 5.17: Normalized LEAD-I ECG obtained using FEM-BEM coupling with
different numbers of outer line elements. Units are mV in y direction and ms in
x direction.
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Figure 5.18: The heart section with inferial infarction.
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Figure 5.19: The propagation of the transmembrane potential through the in-
farcted heart.
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Figure 5.20: The propagation of the extracellular potential through the infarcted
heart.
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Figure 5.21: The normalized ECG of the healthy heart (blue) and the ECG of
the infarcted heart (red). Units are mV in y direction and ms in x direction.
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CHAPTER 6

CONCLUSION

In this thesis, we have developed numerical approaches to solve the integrated

cardiac electrophysiology problem in the bidomain setting. The material model

used for the electrical source term is the ionic model of electrophysiology of ten

Tusscher [4]. Three numerical approaches have been proposed in this thesis, and

the efficiency of the models are tested for the two dimensional ECG simulations.

In cardiac modeling, the mechanical and the electrical problems cause high com-

putational costs. Therefore, it is important to propose new models that may

accelerate the solutions. The first numeric approach we tested is the condensa-

tion of the solution matrix to eliminate the large portion of the unknowns and

recover them once the reduced heart domain is solved. The second approach is

solving the torso domain on the surface only. By this way, we may decrease the

number of unknowns of the problem drastically.

In the first approach, the condensation of the solution matrix, has lead us to a

smaller matrix to be inverted during the analysis. However, the problem involves

coupling of the torso domain and the heart domain at the interface. Therefore,

during the assembly of the solution matrix, the interface nodes get contribution

from the torso nodes. Therefore, in order to get the exact same solution with the

FEM approach, the residuals of the torso domain should be taken into account

at each step. As a result, in addition to the massive storage of the stiffness

terms of the torso, the computation of the residuals is required. Eventually,

the solution time of the method was a little shorter than the standard finite

element method. To improve the computational efficiency of this approach,

one can employ the staggered solution scheme for the solution of the domains
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separately. In this approach, the effect of the torso on the heart surface will be

underestimated, yet, the solution time would reduce drastically because, there is

no tangent contribution from the torso. Therefore, there is no need to store the

shape functions or the calculated degrees of freedom. Also, using computers with

a high RAM capacity will decrease the solution time of the problem, because,

the storage problem will be eliminated.

The second approach, the FEM-BEM coupling, is proven to be effective. The

reason is that the FEM-BEM solution matrix is assembled once and for all at the

beginnig of the analysis. After that the inversion of the large torso problem is

avoided. The method is very effective for the linear problems but its extention to

anisotropic cases or the monolithic solution scheme are two challenging problems.

The monolithic solution may let us use higher time steps and eventually reduce

the solution time further.

With all three approaches, the ECG leads are captured qualitatively. The dy-

namic coupling of the BEM and FEM on the heart surface is shown to work

effectively in terms of capturing the ECG results qualitatively and decreasing

the computational cost.

In terms of cardiac modeling, this thesis does not provide any suggestions about

the models defining the heart domain. However, it is clear that extension of

the FEM-BEM approach to the electrophysiology and electromechanic prob-

lems would lead to new approaches. Furthermore, the ionic model and the

bidomain model are flexible models and their efficiency can be exploited to de-

velop robust and novel approaches. Futhermore, the model can be extended to

three-dimensional setting. This leads to construct more realistic simulations and

understand the function of the heart deeply.
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