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ABSTRACT

ADVANCES IN OPTIMAL CONTROL OF MARKOV REGIME-SWITCHING
MODELS WITH APPLICATIONS IN FINANCE AND ECONOMICS

Savku, Emel
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

AUGUST 2017, 87 pages

We study stochastic optimal control problems of finance and economics in a Markov
regime-switching jump-diffusion market with and without delay component in the dy-
namics of our model. We formulate portfolio optimization problems as a two player
zero-sum and a two player nonzero-sum stochastic differential games. We provide an
extension of Dynkin formula to present the Hamilton-Jacobi-Bellman-Isaacs equations
in such a more general setting. We illustrate our results for a nonzero-sum stochas-
tic differential game and investigate the impact of regime-switches by comparative
statics of a two state Markov regime-switching jump-diffusion model. We prove the
existence-uniqueness theorems for a stochastic differential delay equation with jumps
and regimes (SDDEJR) and for an anticipated backward stochastic differential equa-
tion with jumps and regimes (ABSDEJR). Furthermore, we give the duality between
an SDDEJR and an ABSDEJR. We establish necessary and sufficient maximum prin-
ciples under full and partial information for an SDDEJR. We show that the adjoint
equations are represented by an ABSDEJR. We apply our results to a problem of opti-
mal consumption problem from a cash flow with delay and regimes.

Keywords : delayed stochastic differential equations, anticipated backward stochas-
tic differential equations, Markov regime switches, HJBI equations, applications to
finance and economics
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ÖZ

MARKOV REJİM DEĞİŞİMLİ MODELLERİN FİNANSA VE EKONOMİYE
UYGULAMALARIYLA BİRLİKTE OPTİMUM KONTROLÜNDE GELİŞMELER

Savku, Emel
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

AĞUSTOS 2017, 87 sayfa

Dinamiklerinde zaman ertelemesi öğesi olan ve olmayan Markov rejim değişimli bir
sıçrama-difüzyon marketinde finansın ve ekonominin stokastik optimum kontrol prob-
lemleri üzerinde çalışılmıştır. Portfolyo optimizasyon problemlerimiz iki oyunculu
sıfır toplam ve sıfır olmayan toplam stokastik diferansiyel oyunları olarak formülleşti-
rilmiştir. Böyle daha genel bir düzenlemede, Hamilton-Jacobi-Bellman-Isaacs den-
klemlerini sunabilmek için Dynkin formülü genelleştirilmiştir. Sonuçlarımız sıfır ol-
mayan toplam stokastik difarensiyel oyunu için örneklendirilmiş ve rejim değişimleri-
nin etkileri iki durumlu bir Markov rejim değişimli sıçrama-difüzyon modeli için kıyas-
lamalı statikler yardımıyla araştırılmıştır. Sıçramalı ve rejim değişimli, zaman erteleme-
sine sahip bir stokastik difarensiyel denklem (SDDEJR) ve sıçramalı ve rejim değişimli
bir beklenen geriye doğru stokastik difarensiyel denklem (ABSDEJR) için varlık-teklik
teoremleri ispatlanmıştır. Dahası, bir SDDEJR ve bir ABSDEJR arasındaki dualite
ispatlanmıştır. Bir SDDEJR için tam ve kısmi bilgi altında gerek ve yeter maksimum
prensipleri kurulmulştur. Eşlenik denklemlerinin bir ABSDEJR aracılığıyla temsil
edildiği gösterilmiştir. Sonuçlarımız, zaman ertelemeli ve rejimli bir nakit akışı için
optimum tüketim problemine uygulanmıştır.

Anahtar Kelimeler : zaman ertelemeli stokastik diferansiyel denklemler, beklenen geriye
doğru stokastik diferansiyel denklemler, Markov rejim değişimleri, HJBI denklemleri,
finansa ve ekonomiye uygulamaları
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CHAPTER 1

INTRODUCTION AND MOTIVATION

A Stochastic Hybrid System with Jumps (SHSJ) is a continuous-time process with dis-
crete components. While the discrete variables belong to a countable set, the other
dynamics evolve according to a stochastic differential equation with jumps. Hence,
an SHSJ can be considered as an interleaving between a finite or countable family of
jump-diffusion processes, for closer details, see Chapter 2 and the works [7, 26, 32]. In
this thesis, the discrete components are regime-switches represented by a continuous-
time Markov chain α with a finite state space S.

A main reason, that regime-switching models received a lot of attention in financial
mathematics, is their powerful and efficient nature to capture different modes of the
financial market easily, e.g., a shift from a bull to a bear market and vice versa (see
[21, 38, 64, 65]). Furthermore, regime-switches can be seen as proxies of the different
states of the economy within the framework of macroeconomic instruments such as
gross domestic product, purchase management index and sovereign credit rating. On
the other hand, a discrete shift from one regime to another may be observed as a result
of a change of a macroeconomic indicator, for example a change in economic policy,
e.g., a shift in a monetary or an exchange rate policy. Moreover, in some instants,
it may be activated by a major event, such as the bankruptcy of Lehman Brothers in
September 2008, or the 1973 oil crisis.

In the light of these facts, escaping from large costs encountered because of ignoring
the regime-switches leads investors to two main questions. An intuitive and expected
one is centered on the existence of an optimal portfolio to hedge against the risk of
regime changes. The second question is how to determine the portfolios which should
be optimally held in each regime. At this point, the crucial role of stochastic optimal
control theory in finance and economics becomes highlighted.

Stochastic optimal control problems for regime-switching models have been studied by
many authors for the several fundamental concepts of finance such as option pricing
and risk minimization [20, 21], determining optimal selling rules [62] and optimal as-
set allocation [63]. In this thesis, we present advances for a Markov regime-switching
model by the tools of both Dynamic Programming Principle (DPP) and Maximum
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Principle (MP). For these methodologies, we refer to the monographs by Øksendal
and Sulem [45], Yong and Zhou [61].

A game theoretical approach for a zero-sum and a nonzero-sum stochastic differen-
tial games were developed by Mataramvura and Øksendal [41], based on the methods
of DPP whose infinitesimal counterpart gives a nonlinear Partial Differential Equa-
tion (PDE), called as Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. Inspired from
[41], Elliott and Siu [21] extended a min-max problem to a Markov regime-switching
diffusion model and studied on a risk minimization portfolio selection problem. Simi-
larly, Shen and Siu [57] used a DPP approach to select an equivalent martingale mea-
sure for the valuation of contingent claims under a Markov regime-switching jump-
diffusion model, in which one of the three methods is solving an HJBI equation.
Moreover, various versions of a zero-sum stochastic differential game can be found
in Browne [10] for optimal investment problems between two investors. Ma, Wu and
Lin [39] provided explicit solutions of a nonzero-sum stochastic differential game of
optimal portfolio for a regime-switching diffusion model.

First, we follow the methods of DPP under a Markov regime-switching jump-diffusion
model. We investigate the solutions of a zero-sum game, i.e., a min-max problem be-
tween an investor and the market. This zero-sum game application is an extension
of the Theorem 6.3 in Peskir and Shorish [50] and Example 4.1 in Mataramvura and
Øksendal [41] by including the states of the Markov chain as the proxies of the dif-
ferent observable macroeconomic indicators. We solve corresponding HJBI equations,
whose solutions are compatible with the fundamentals of the arbitrage-free pricing
theory. We get best responses of each side, i.e., the solutions of the optimal control
problem. Furthermore, we construct a nonzero-sum game between two investors and
give explicit solutions for each investor’s optimal investment proportions. We establish
HJBI equations and utilize Feyman-Kac formula to provide a stochastic representation
of the value function in terms of conditional expectation.

On the other hand, it is well-known that the Markov property is a corner stone of the
DPP setting. But in the real world, investors tend to look at the historical performance
of risky assets. This leads us to consider the time delay in the model, which may rep-
resent the memory in the dynamics of the system or the inertia in the financial market.
As a consequence of involving memory, we lose Markov property of the state process.
However, DPP does not allow to work without Markov property, we do not need to
create any Markovian setting for MP. Therefore, in the second step we work on an
optimal consumption problem, whose state process is given by a stochastic differential
delay equation with jumps and regimes in MP setting.

A comprehensive treatment of the theory of the stochastic differential delay equations
(SDDEs) can be found in the monograph by Mohammed [43]. The results of the mod-
ern theory of regime-switching models with delay are presented in the monograph by
Mao and Yuan [40]. Moreover, optimal control of the SDDEs have already been stud-
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ied by various authors; see, e.g., Øksendal and Sulem [46], Larssen [37] and Elsanosi,
Øksendal and Sulem [22] and references therein.

It is well-known that MP brings together the adjoint equations represented by Back-
ward Stochastic Differential Equations (BSDEs) for the solution of optimal control
problems (cf., e.g., [14, 18]). Here, in this new setting, one needs a novel form
of BSDEs which is called as Anticipated (Time-advanced) BSDEs and it was first
developed by Peng and Yang [49]. A stochastic maximum principle of a forward-
backward delayed regime-switching diffusion model has been given by Lv, Tao and Wu
[38]. Øksendal, Sulem and Zhang [47] and Tu and Hao [58] extended the existence-
uniqueness results of ABSDEs for jump-diffusion models. Our work provides the first
extension of the stochastic maximum principle for a Markov regime-switching jump-
diffusion model with delay (SDDEJR) and the existence-uniqueness theorem of an
ABSDE with jumps and regimes.

This thesis is organized as follows: In Chapter 2, we present a literature overview
related to our research and introduce the stochastic dynamics of our model. In Chapter
3, we construct two stochastic differential games with regime-switches, but without
delay based on the tools of the DPP and give explicit solutions of the corresponding
optimal control problems. In Chapter 4, we develop the main mathematical results,
which support and generate the underlying theory of our proposed model with delay.
In Chapter 5, we work on an optimal consumption problem whose state process is a
Markovian regime switching jump-diffusion model with delay. Chapter 6 is devoted
to a conclusion and outlook on future research, as in our financial and economic world
of crises and disruptions, further exciting research and applications wait to be done. In
Appendix, main remarks are introduced.
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CHAPTER 2

A MARKOV REGIME-SWITCHING JUMP-DIFFUSION
MODEL

2.1 Literature Review

Regime-switching models first arises in Quandt [51], who derives a method to estimate
the parameters of a linear regression system with two different regimes. The original
purpose of this work is to determine the position of a single switch in time. Hamil-
ton [30] followed Goldfeld and Quandt’s [27] Markov regime switching regression
and investigated whether the growth rate of postwar U.S. real GNP depends on these
discrete shifts. After this investigation discovered that the business cycle between a
recessionary state and a growth state is better denoted by such discrete components,
regime-switching models become more popular in financial applications.

Far from econometric approaches, recently, many authors worked on regime-switching
models in a diversified field of research, see Chapter 1. In this thesis, we develop new
results for stochastic optimal control problems represented by a Markovian regime-
switching jump-diffusion model with and without delayed dynamics. We follow both
of the theories of DPP without a delayed structure and MP with a time-advanced model.
In our model, we illustrate two main risks that an investor faces by the dynamics of our
model. The Brownian motion describes the random shock of stock prices and the Pois-
son random measure interprets larger price fluctuations of the stock as a consequence
of sudden changes in the market. On the other hand, the Markov chain represents the
uncertainty of the economic modes.

First, the technique of dynamic programing was developed by Bellman [4, 5, 6] in the
1950’s by providing several examples of calculus of variations and stochastic optimal
control. Moreover, in his work, he presented the intuition behind the theory of DPP,
which is now known as Bellman’s optimality principle.

Definition 2.1. (Bellman [4]) An optimal policy has the property that whatever the
initial state and initial decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decisions.
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From the perspective of stochastic optimal control, the main problem is to maximize
or minimize an objective functional under some technical conditions and find a value
function which is the solution of a partial differential equation, called as Hamilton-
Jacobi-Bellman (HJB) equation. The Bellman’s principle of optimality, i.e., the un-
derlying intuition of DPP, makes the Markov property of the state dynamics and the
control processes a key point of this method. Later, this technique was enhanced and its
applications were illustrated by several authors. For the comprehensive monographs
of this theory, see Øksendal and Sulem [45], Fleming and Soner [23] and Yong and
Zhou [61].

Furthermore, the technique of dynamic programming took its place in game theory
by providing a dynamic equilibrium as a solution of Hamilton-Jacobi-Bellman-Isaacs
(HJBI) equation; see [21, 39, 41, 57]. It is clear that in the financial market, no investor
can determine his/her outcome without taking into account other investors’ actions, in-
formation and expectations. Hence, the analysis of all these strategic interactions lead
researchers to the tools of game theory.

John von Neumann and Oscar Morgenstern [59] presented the foundations of game
theory in their seminal work, The Theory of Games and Economic Behavior. In the
last thirty years, game theory has been accepted universally to explain strategic interac-
tions in economics, behavioral and social sciences. The existence of an optimal strat-
egy against others’, called as Nash equilibrium, was centered in modern economics as
the main solution concept for non-cooperative game theory and has brought the Nobel
Prize of Economics to John Nash, John Harsanyi and Reinhard Selten in 1994. Later
on, the idea developed and proved by Nash in his PhD thesis refined by Harsanyi [31]
and Selten [53]. Furthermore, Isaacs [33] gave the mathematical and theoretical foun-
dations to the differential game theory, due to which counterpart of DPP is also called
with Isaacs’s name.

Later on, several authors focused on Stochastic Game Theory; see Hamadène and Has-
sani [29], El-Karoui and Hamadène [16], Karatzas and Li [35] and Shapley [54] and
the references therein.

In this thesis, we apply the extensions of the verification theorems of zero-sum and
nonzero-sum stochastic differential games for a Markov regime-switching jump diffu-
sion model by the method of dynamic programming. Some of the works with similar
approach are Elliott and Siu [21], Bensoussan, Siu, Chi, Yamd and Yang [8], Shen and
Siu [57], Ma, Wu and Lin [39].

On the other hand, by paying the price of violating Markov property, more realistic
models can be obtained. In fact, this corresponds to the systems of Stochastic Differ-
ential Delay Equations (SDDEs). The first existence-uniqueness result of time delayed
diffusion processes was driven by Itô and Nisio [34] and Kushner [36] followed them.
In his book, Mohammed [43] introduced and provided a very detailed theory of SD-
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DEs. At first sight, the difference for the models with and without delay component
begins with the method of obtaining a solution of the system. Let us explain it for a
diffusion process as in Mohammed [43].

Let (Ω,F, (Ft)t≥0 ,P) be a probability space satisfying that (Ft)t≥0 is a right-continuous
filtration and for each t ≥ 0, Ft contains all P-null sets in F. Let us define:

dX(t) = σX(t− δ)dW (t), t ≥ 0. (2.1)

In Equation (2.1), if δ = 0, then the closed-form solution is:

X(t) = X(0)eσW (t)−σ2/2, t ≥ 0.

If we assume δ > 0, we need an initial path θ(·) to solve Equation (2.1) such that

X(t) = θ(t), −δ ≤ t ≤ 0.

Then, by recursive Itô integrations over steps of length δ, we observe that there is no
closed form solution:

X(t) = θ(0) + σ

∫ t

0

θ(u− δ)dW (u), 0 ≤ t ≤ δ,

X(t) = X(r) + σ

∫ t

r

[
θ(0) + σ

∫ v−δ

0

θ(u− δ)dW (u)

]
dW (v), δ < t ≤ 2δ,

. . . = . . . , 2δ < t ≤ 3δ,

...

Here, the solution process {X(t) : t ≥ −δ} is still anFt-martingale but it is not Marko-
vian any more.

Let us define the segment Xt : [−δ, 0]→ Rn by

Xt(s) = X(t+ s) a.s. t ≥ 0, s ∈ [−δ, 0].

Then, a general representation for SDDE is as follows:

dX(t) = h(t,Xt)dt+ g(t,Xt)dW (t), t ≥ 0,

X0 = θ(t), t ∈ [−δ, 0],

where the initial path θ(·) ∈ C([−δ, 0],Rn) is an F0-measurable process.

However, including memory into the dynamics of the system makes us closer to the
real-life events, especially from the perspective of finance and economics, the tools
of DPP become much more complicated in a delay setting (see [22, 37]). Therefore
losing the Markov property leads us to the stochastic MP for which there is not any
Markovian assumption. Another main difference between the DPP, introduced by the
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American school, and the MP, introduced by the Russian school, is that the DPP de-
pends on the time origin and the state variable at that time origin.

The stochastic MP is a stochastic extension of Pontryagin’s maximum principle, which
has been a method for the optimal control of a deterministic dynamical system. As in
the deterministic case, the stochastic MP introduces adjoint processes called as Back-
ward Stochastic Differential Equations (BSDEs). The first appearance of BSDEs is in
Bismut [9], where the author developed the adjoint processes for the stochastic version
of the conjugate variable in Pontryagin’s maximum principle. Pardoux and Peng [48]
provided a systematic work of BSDEs and their connection to financial mathematics
was realized very quickly (see El-Karoui et al. [18]).

Let us present the first main result given related to BSDEs, namely the existence-
uniqueness result of El-Karoui, Peng and Quenez [18], which may give us a first sight
into our works of the following chapter.

Actually, we define a BSDE as follows:

−dY (t) = f(t, Y (t), Z(t))dt− Z(t)dW (t), Y (T ) = ξ,

or, equivalently,

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

ZsdW (s),

where ξ is an FT -measurable random variable.

A solution is a pair (Y, Z) such that {Y (t) : t ∈ [0, T ]} is a continuous Rd-valued
adapted process and {Z(t) : t ∈ [0, T ]} is an Rn×d-valued process satisfying the con-

dition
∫ T

0

|Z(s)|2ds <∞, P-a.s.

The theory of BSDEs has attracted several authors by its fruitful nature from both of
the perspectives of theory and applications. Here, we refer to Hamadène [28], Crépey
and Matoussi [14], Cohen and Elliott [12].

The method of stochastic MP states that an optimal control maximizes a functional,
called the Hamiltonian, and satisfies the optimality system, described by a system of
forward-backward stochastic differential equations, i.e., a Necessary Maximum Prin-
ciple can be established. Moreover, the reverse can also be defined as the Sufficient
Maximum Principle. If the non-Markovian nature of this method is taken into account,
the counterpart of the PDEs in DPP can be viewed as BSDEs in MP. Cadenillas and
Karatzas [11] provided the first use of stochastic MP. Later on, several authors worked
on it and gave valuable applications [38, 46, 47, 56, 64].
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By the advantage of its non-Markovian structure, we consider a delayed component for
our stochastic optimal control problem (see Chapter 5). In this set-up, the correspond-
ing adjoint equations appear in their new forms, called as Anticipated (time-advanced)
BSDEs (ABSDEs). This type of equations was developed originally by Peng and Yang
[49] in a diffusion setting. In their pioneering study, they also constructed the duality
between SDDEs and ABSDEs. Besides, they provided the new existence-uniqueness
result and several main theorems related to ABSDE theory, such as the comparison
theorem.

Peng and Yang [49] introduced this new form of BSDEs in 2009 as follows:

−dY (t) = f(t, Y (t), Z(t), Y (t+ δ1(t)), Z(t+ δ2(t)))ds− Z(t)dW (t), t ∈ [0, T ],

Y (t) = ξ(t) and Z(t) = ψ(t), t ∈ [T, T +K],

where δi(·), i = 1, 2, be R+-valued continuous functions on [0, T ].

Under some technical conditions, Peng and Yang [49] adopted the existence-uniqueness
theorem of a BSDE to this new model.

In the sequel, the existence-uniqueness theorem was extended to a jump-diffusion set-
ting; for closer information see [47, 58]. The duality result of Peng and Yang [49],
which was presented by a diffusion model was reorganized by Tu and Hao [58] for a
jump-diffusion setting. In our thesis, we extend the duality and the existence-uniqueness
theorem of Peng and Yang [49] for an ABSDE with jumps and regimes. These the-
orems also prepare and support the underlying theory of our optimal control problem
which is solved by the tools of MP for a time-delayed state process.

Some recent approaches and applications related to the MP can be found in Meyer-
Brandis, Øksendal and Zhou [42], Lv, Tao and Wu [38], Shen and Siu [56], Shen,
Meng, Shi [55], Zhang, Elliott and Siu [64].

2.2 Preliminaries for a Markov Regime-Switching Jump-Diffusion Model

Throughout the thesis, we work with a finite time horizon T > 0, which represents the
maturity time. Let

(N(dt, dz) : t ∈ [0, T ], z ∈ R0)

be a Poisson random measure on ([0, T ] × R0,B([0, T ]) ⊗ B0), where R0 := R \ {0}
and B0 is the Borel σ-field generated by open subset O of R0, whose closure does not
contain the point 0.
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Let Ñ(dt, dz) := N(dt, dz) − ν(dz)dt be the compensated Poisson random measure,
where ν is the Lévy measure of the jump measure N(·, ·) such that

ν({0}) = 0 and
∫
R
(1 ∧ |z|2)ν(dz) <∞.

Lévy measure describes the number of the jumps of a certain height in a time interval
of length 1.

Furthermore, let (W (t) : t ∈ [0, T ]) be a Brownian motion and (α(t) : t ∈ [0, T ]) be a
continuous-time, finite-state and observable Markov chain. Let (Ω,F, (Ft)t≥0 ,P) be
a complete probability space, where F = (Ft : t ∈ [0, T ]). Furthermore, (Ft)t≥0 is a
right-continuous, P-completed filtration generated by the Brownian motion W (·), the
Poisson random measure N(·, ·) and the Markov chain α(·). We assume that these
processes are independent of each other and adapted to F.

The finite-state space of the Markov chain α(t), S = {e1, e2, ..., eD}, is called a canon-
ical state space, where D ∈ N, ei ∈ RD and the jth component of ei is the Kronecker
delta δij for each pair of i, j = 1, 2, ..., D (for more details, see Example 2.6.17 by
Aggoun and Elliott [1]). We suppose that the chain is homogenous and irreducible.
The generator of the chain under P is defined by Λ := [λij]i,j=1,2,...,D. For each
i, j = 1, 2, ..., D, λij is the constant transition intensity of the chain from each state ei

to state ej at time t. For i 6= j, λij ≥ 0 and
D∑
j=1

λij = 0; hence, λii ≤ 0. We suppose

that for each i, j = 1, 2, ..., D, with i 6= j, λij > 0 and λii < 0.

Elliott, Aggoun and Moore [19] obtained the following semimartingale representation
for the chain α:

α(t) = α(0) +

∫ t

0

ΛTα(u)du+M(t),

where (M(t) : t ∈ [0, T ]) is an RD-valued (F,P)-martingale (see Lemma 2.6.18 by
Aggoun and Elliott [1]) and ΛT represents the transpose of the matrix.

Let us introduce a set of Markov jump martingales associated with the chain α.

For each i, j = 1, 2, ..., D, with i 6= j and t ∈ [0, T ], let J ij(t) be the number of the
jumps from state ei to state ej up to time t. Then,

J ij(t) :=
∑

0<s≤t

〈α(s−), ei〉 〈α(s), ej〉
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=
∑

0<s≤t

〈α(s−), ei〉 〈α(s)− α(s−), ej〉

=

∫ t

0

〈α(s−), ei〉 〈dα(s), ej〉

=

∫ t

0

〈α(s−), ei〉
〈
ΛTα(s), ei

〉
ds+

∫ t

0

〈α(s−), ei〉 〈dM(s), ej〉

= λij

∫ t

0

〈α(s−), ei〉 ds+mij(t),

where the processes mij are (F,P)-martingales and called as the basic martingales
associated with the chain α. For each fixed j = 1, 2, ..., D, let Φj be the number of the
jumps into state ej up to time t. Then,

Φj(t) :=
D∑

i=1,i 6=j

J ij(t)

=
D∑

i=1,i 6=j

λij

∫ t

0

〈α(s−), ei〉 ds+ Φ̃j(t).

Let us define Φ̃j(t) :=
D∑

i=1,i 6=j

mij(t) and λj(t) :=
D∑

i=1,i 6=j

λij

∫ t

0

〈α(s−), ei〉 ds; then

for each j = 1, 2, ..., D,

Φ̃j(t) = Φj(t)− λj(t)

is an (F,P)-martingale. Let Φ̃(t) = (Φ̃1(t), Φ̃2(t), ..., Φ̃D(t))T represent an integer-
valued random measure on ([0, T ]×S,B([0, T ])⊗BS), where BS is a σ-field of S. Let
P be a predictable sigma field on Ω× [0, T ].

For the rest of this thesis, we utilize this integer-valued random measure Φ which is
generated by the Markov chain.

In Chapter 3, we construct a stochastic game and present our results for the following
Markov regime-switching jump-diffusion model without delay component:


X(t) = b(t,X(t), α(t))dt+ σ(t,X(t), α(t))dW (t)

+

∫
R0

η(t,X(t−), α(t−), z)Ñ(dt, dz) + γ(t,X(t−), α(t−))dΦ̃(t), t ∈ [0, T ],

X(0) = x0 ∈ RN ,

On the other hand, in Chapters 4 and 5, we provide the main mathematical results and

11



the extension of the MP by the following delayed state process:

X(t) = b(t,X(t), Y (t), A(t), α(t))dt

+σ(t,X(t), Y (t), A(t), α(t))dW (t)

+

∫
R0

η(t,X(t−), Y (t−), A(t−), α(t−), z)Ñ(dt, dz)

+γ(t,X(t−), Y (t−), A(t−), α(t−))dΦ̃(t), t ∈ [0, T ],

X(t) = x0(t), t ∈ [−δ, 0],

where

Y (t) = X(t− δ) and A(t) =

∫ t

t−δ
e−ρ(t−r)X(r)dr, t ∈ [0, T ].

Here, x0 is a continuous, deterministic function, ρ ≥ 0 is a constant averaging param-
eter and δ > 0 is a constant delay.

Let us introduce the following Banach spaces of measurable and integrable random
variables and processes:

L2(FT ;R) = {R-valued, FT -measurable random variable φ such that E[|φ|2] <∞},

L2(B0;R) = {R-valued, B0-measurable random variable φ such that

‖φ‖2
J =

∫
R0

|φ(z)|2 ν(dz) <∞},

L2(BS;RD) = {RD-valued, BS-measurable random variable φ such that

‖φ‖2
S =

D∑
j=1

∣∣φj∣∣2 λj(t) <∞, j = 1, 2, ..., D},

L2(FT × B0;R) = {R-valued, FT × B0-measurable random variable φ such that

E[

∫
R0

|φ(z)|2 ν(dz)] <∞},

L2(FT × BS;RD) = {RD-valued, FT × BS-measurable random variable φ such that

E[
D∑
j=1

∣∣φj∣∣2 λj(t)] <∞, j = 1, 2, ..., D},

L2
F(0, T ;R) = {R-valued, Ft-adapted stochastic process φ such that

E[

∫ T

0

|φ(t)|2 dt] <∞},

S2
F(0, T ;R)={càdlàg process φ in L2

F(0, T ;R) such that E[ sup
t∈[0,T ]

|φ(t)|2] <∞},
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H2
F(0, T ;R) = {R-valued, P ⊗ B0-measurable stochastic process φ such that

‖φ(t)‖2
H2 = E[

∫ T

0

‖φ(t)‖2
J dt] <∞},

M2
F(0, T ;RD) = {RD-valued, P ⊗ BS−measurable stochastic process φ such that

‖φ(t)‖2
M2 = E[

∫ T

0

‖φ(t)‖2
S dt] <∞}.
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CHAPTER 3

DYNAMIC PROGRAMMING PRINCIPLE APPROACH IN
GAME THEORY

In this chapter, we work on zero-sum and nonzero-sum stochastic differential games
under Markov regime-switching jump-diffusion model and address their applications
to finance. Dynamic programming principle approach is employed for two portfo-
lio games between the market and a trader (zero-sum game) and between two traders
(nonzero-sum game) in Sections 3.2 and 3.3, respectively. However, we prefer to fol-
low the methods in Mataramvura and Øksendal [41], in fact, our model is different and
more realistic by the additional Markov chain structure not only from mathematical
but also from financial perspectives.

3.1 Preliminaries

Let (Ω,F, (Ft)t≥0 ,P) be a complete probability space, where F = (Ft : t ∈ [0, T ]).
Furthermore, (Ft)t≥0 is a right-continuous, P-completed filtration generated by an
N -dimensional Brownian motion W (·), an M -dimensional Poisson random measure
N(·, ·) and a D-dimensional Markov chain α(·). We assume that these processes are
independent of each other and adapted to F.

Let us represent our model:

Y (t) = b(t, Y (t), α(t), u1(t), u2(t))dt

+σ(t, Y (t), α(t), u1(t), u2(t))dW (t)

+

∫
R0

η(t, Y (t−), α(t−), u1(t−), u2(t−), z)Ñ(dt, dz)

+γ(t, Y (t−), α(t−), u1(t−), u2(t−))dΦ̃(t), t ∈ [0, T ],

Y (0) = y0 ∈ RN ,

(3.1)

where U1 and U2 are non-empty subsets of RN . Here,

b : [0, T ]× RN × S × U1 × U2 → RN ,

15



σ : [0, T ]× RN × S × U1 × U2 → RN×M ,

η : [0, T ]× RN × S × U1 × U2 × R0 → RN×L,

γ : [0, T ]× RN × S × U1 × U2 → RN×D

are given functions such that∫ T

0

{
|b(t)|+ |σ(t)|2 +

∫
R0

|η(t, z)|2 ν(dz) +
D∑
j=1

∣∣γj(t)∣∣2 λj(t)}dt <∞.
Let

τG = inf {t > 0, Y (t) /∈ G}
be the bankruptcy time, where G ⊂ RN is an open set and represents the solvency
region.

Furthermore, let f : [0, T ]× RN × S × U1 × U2 → R and g : RN × S → R be given
functions, called as profit rate and terminal gain, respectively.

Herewith, the performance (objective) functional is defined as follows:

Ju1,u2(t, y, ei) = E

[∫ τG

t

f(s, Y (s), α(s), u1(s), u2(s))ds+ g(Y (τG), α(τG))

]
.

We know that under some mild conditions (see Theorem 11.2.3, Øksendal [44]), Markov
controls provide as good performance as the more general adapted controls. Hence,
we assume that Θ1 and Θ2 are given families of admissible Markov control processes
u1 ∈ U1 and u2 ∈ U2, respectively.

We say that U1×U2-valued, Ft-measurable cádlág control process (u1, u2) are admis-
sible, if the following conditions are satisfied:

1. There exists a unique strong solution of the state process Y (t) introduced in
Equation (3.1) (see Proposition 7.1 by Crépey [13] or Appendix for an existence-
uniqueness theorem of such a system).

2. E
[∫ τG

0

|f(t, Y (t), α(t), u1(t), u2(t))|dt+ |g(Y (τG), α(τG))|
]
<∞.

For any φ(·, ·, ei) ∈ C1,2(G) ∩ C(Ḡ), let us define the infinitesimal generator Lu1,u2
for the system (3.1) as in Zhang, Elliott and Siu [64]:

Lu1,u2 [φ(t, y, ei)] =
∂φ

∂t
(t, y, ei) +

N∑
k=1

∂φ

∂yk
(t, y, ei)bk(t, y, ei, u1, u2)

+
1

2

N∑
k=1

N∑
n=1

∂2φ

∂yk∂yn
(t, y, ei)

M∑
l=1

σklσnl(t, y, ei, u1, u2)
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+
L∑

m=1

∫
R0

[
φ(t, y + η(m)(t, y, ei, u1, u2, z), ei)− φ(t, y, ei)

−
N∑
n=1

∂φ

∂yn
(t, y, ei)ηnm(t, y, ei, u1, u2, z)

]
νm(dz)

+
D∑
j=1

λij

[
φ(t, y + γ(j)(t, y, ei, u1, u2), ej)− φ(t, y, ei)

−
N∑
n=1

∂φ

∂yn
(t, y, ei)γnj(t, y, ei, u1, u2)

]
. (3.2)

Furthermore, we give the extension of Dynkin formula (see Theorem 1.24, Øksendal
and Sulem [45]), by which we establish verification theorems for stochastic differential
games in Sections 3.2 and 3.3.

Lemma 3.1. Let Y (·) ∈ RN be a Markov regime-switching jump-diffusion process, G
be an open subset of RN and for all ei ∈ S, φ(·, ·, ei) ∈ C1,2(G) ∩ C(Ḡ). Let τ < ∞
be a stopping time and τ ≤ τG := inf {t > 0, Y (t) /∈ G} and Y (τ) ∈ G a.s. for all
ei ∈ S. Moreover,

Et,y,ei

[
|φ(τ, Y (τ), α(τ))|

+

∫ τ

t

{
L[φ(s, Y (s−), α(s−))] +

∣∣σT (s, Y (s−), α(s−))∇φ(s, Y (s−), α(s−))
∣∣2

+
L∑
k=1

∫
R0

(
φ(s, Y (s−) + η(k)(s, Y (s−), α(s−), z), α(s−))

− φ(s, Y (s−), α(s−))

)2

νk(dzk)

+
D∑
j=1

(
φ(s, Y (s−) + γ(j)(s, Y (s−), α(s−)), ej)

− φ(s, Y (s−), α(s−))

)2

λj(s)

}
ds

]
<∞. (3.3)

Then, we have

Et,y,ei [φ(τ, Y (τ), α(τ))] = φ(t, y, ei) + Et,y,ei

[∫ τ

t

L [φ(s, Y (s−), α(s−))] ds

]
for each ei ∈ S.

Proof. Let us apply generalized Itô’s differentiation rule on φ(s, Y (s), α(s)) (see Ap-
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pendix or Theorem 4.1 by Zhang, Elliott and Siu [64]):

φ(τ, Y (τ), α(τ)) = φ(t, y, ei) +

∫ τ

t

L [φ(s, Y (s−), α(s−))] ds

+

∫ τ

t

N∑
k=1

∂φ

∂yk
(s, Y (s−), α(s−))

M∑
n=1

σkn(s, Y (s−), α(s−))dW (t)

+

∫ τ

t

L∑
m=1

∫
R0

(
φ(s, Y (s−) + η(m)(s, Y (s−), α(s−), z), α(s−))

− φ(s, Y (s−), α(s−))

)
Ñ(ds, dz)

+

∫ τ

t

D∑
j=1

(
φ(s, Y (s−) + γ(j)(s, Y (s−), α(s−)), ej)

− φ(s, Y (s−), α(s−))

)
dΦ̃j(s), (3.4)

where η(m) and γ(j) represents the mth and jth columns of the matrices η and γ, re-
spectively.

Then, by conditioning on Equation (3.1), Y (t) = y and α(t) = ei for each ei ∈ S
under P, we obtain

Et,y,ei [φ(τ, Y (τ), α(τ))] = φ(t, y, ei) + Et,y,ei

[∫ τ

t

L(φ(s, Y (s−), α(s−)))ds

]
.

Note that by condition (3.3), other stochastic integrals in (3.4) are martingales with
null expectation.

In the following sections, we work under the assumptions of this section.

3.2 A Zero-Sum Stochastic Differential Game and an Application to Finance

In this subsection, first we introduce a zero-sum game within the framework of the
dynamic programming principle and give the verification theorem in a general setting.
Then, we present an application to finance, herewith demonstrating our results by their
way of working.

In a zero-sum stochastic differential game problem, we search the value function
V (t, y, ei) and the optimal control process (the saddle point of the game)
(u∗1, u

∗
2) ∈ Θ1 ×Θ2, if they exists such that

V (t, y, ei) = sup
u1∈Θ1

(
inf

u2∈Θ2

Ju1,u2(t, y, ei)

)
= Ju

∗
1,u
∗
2(t, y, ei)
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for all ei ∈ S.

Let T be the set of all Ft-stopping times τ ≤ τG.

Now we can present an HJBI equation for a Markov regime-switching jump-diffusion
model, i.e., the following verification theorem for a zero-sum stochastic differential
game.

Theorem 3.2. Suppose that there exists a function φ ∈ C1,2(G)∩C(Ḡ) and a Markov
control (u∗1, u

∗
2) ∈ Θ1 ×Θ2 such that

i. Lu1,u∗2 [φ(t, y, ei)] + f(t, y, ei, u1, u
∗
2) ≤ 0 for all u1 ∈ U1, y ∈ G and ei ∈ S.

ii. Lu∗1,u2 [φ(t, y, ei)] + f(t, y, ei, u
∗
1, u2) ≥ 0 for all u2 ∈ U2, y ∈ G and ei ∈ S.

iii. Lu∗1,u∗2 [φ(t, y, ei)] + f(t, y, ei, u
∗
1, u
∗
2) = 0 for all y ∈ G and ei ∈ S.

iv. Y u1,u2(τG) ∈ ∂G a.s. on {τG <∞} and
lim
t→τ−G

φ(t, Y u1,u2(t), α(t)) = g(Y u1,u2(τG), α(τG))1{τG<∞} a.s.

for all (u1, u2) ∈ Θ1 ×Θ2, y ∈ G.

v. The family {φ(τ, Y u1,u2(τ), α(τ))}{τ∈T } is uniformly integrable for all y ∈ G
and (u1, u2) ∈ Θ1 ×Θ2.

Then,

φ(t, y, ei) =V (t, y, ei) = sup
u1∈Θ1

(
inf

u2∈Θ2

Ju1,u2(t, y, ei)

)
= inf

u2∈Θ2

(
sup
u1∈Θ1

Ju1,u2(t, y, ei)

)
= sup

u1∈Θ1

Ju1,u
∗
2(t, y, ei) = inf

u2∈Θ2

Ju
∗
1,u2(t, y, ei),

=Ju
∗
1,u
∗
2(t, y, ei), y ∈ G, ei ∈ S

and (u∗1, u
∗
2) is a saddle point (a Markovian optimal control) of the zero-sum stochastic

differential game.

Proof. The demonstration of Theorem 3.2 can be obtained similarly as the proof of
Theorem 3.2 in Mataramvura and Øksendal [41] by applying Lemma 3.1 above. There-
fore, we do not repeat it here.

Now we can construct our zero-sum game between the market and the representative
agent. We assume that there is no transaction cost, but infinite divisible assets are
allowed and information is symmetric; in other words, standard assumptions of a fi-
nancial market hold. In this context, the mean rate of the risky asset θ(·) is not given
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a priori, but it is considered that it is a consequence of the portfolio choice π(·) of the
investor. While the trader tries to maximize his/her expected utility by choosing the
optimal portfolio, the market tries to minimize this expected utility by choosing the
optimal θ(·) accordingly.

Let us formulate our problem under the model of Section 3.1 for a 1-dimensional
Brownian motion W (·), a 1-dimensional Poisson random measure N(·, ·) and a D-
dimensional Markov chain, α(·).

The risk-free bond for instantaneous borrowing or lending at the risk-free rate is rep-
resented as follows:

dS0(t) = S0(t)r(t, α(t−))dt, t ∈ [0, T ],

S0(0) = s0 > 0,

where the continuously compounded risk-free rate doesn’t depend on the states of the
Markov chain, i.e., at time t ∈ [0, T ], r(t, ei) := r(t) for any ei ∈ S, i = 1, 2, ..., D.

Let us give the dynamics of risky asset:

dS(t) =S(t−)

(
θ(t)dt+ σ(t, α(t−))dW (t) +

∫
R0

η(t, α(t−), z)Ñ(dt, dz)

+ γ(t, α(t−))dΦ̃(t)

)
, t ∈ [0, T ],

S(0) =s > 0,

where σ(t, α(t−)), η(t, α(t−), z) and γ(t, α(t−)), t ∈ [0, T ] are deterministic func-
tions. π(t) and 1− π(t) represent the proportion of the trader’s wealth invested in the
risky asset S and the bond S0, respectively. Hence the wealth process of the investor is
described by:

dXπ,θ(t) = X(t−)

[
{(1− π(t))r(t) + π(t)θ(t)} dt+ π(t)σ(t, α(t))dW (t)

+ π(t−)

∫
R0

η(t, α(t−), z)Ñ(dt, dz) + π(t−)γ(t, α(t−))dΦ̃(t)

]
, t ∈ [0, T ],

Xπ,θ(0) = x > 0,

where for (θ, π) ∈ Θ1 ×Θ2,

E

[∫ T

0

{
|(1− π(t))r(t)|+ |π(t)θ(t)|+ π(t)2

(
|σ2(t, ei)|2

+

∫
R0

|η(t, ei, z)|2ν(dz) +
D∑
j=1

|γj(t, ei)|2λij
)}

dt

]
<∞
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for all ei ∈ S, i = 1, 2, ..., D.

Note that π(t) and θ(t) are Ft-measurable, cádlág processes.

Our problem is to find the saddle point of this game (π∗, θ∗) ∈ Θ1 ×Θ2 and the value
function V (t, x, ei) for all t ∈ [0, T ] and ei ∈ S such that

V (t, x, ei) = inf
θ∈Θ1

(
sup
π∈Θ2

Et,x,ei

[
U(Xπ,θ(T ))

])
= Et,x,ei

[
U(Xπ∗,θ∗(T ))

]
.

We provide the HJBI equation for the value function V in the form of:

V (t, x, ei) = U(x exp(

∫ T

t

r(s)ds)).

Then, by applying Equation (3.2), we obtain:

− U ′(x exp(

∫ T

t

r(s)ds))x exp(

∫ T

t

r(s)ds)r(t) + x((1− π)r(t) + πθ)

× U ′(x exp(

∫ T

t

r(s)ds)) exp(

∫ T

t

r(s)ds)

+
1

2
U ′′(x exp(

∫ T

t

r(s)ds))(exp(

∫ T

t

r(s)ds))2π2σ2(t, ei)x
2

+

∫
R0

{
U((x+ xπη(t, ei, z)) exp(

∫ T

t

r(s)ds))− U(x exp(

∫ T

t

r(s)ds))

− U ′(x exp(

∫ T

t

r(s)ds)) exp(

∫ T

t

r(s)ds)(πxη(t, ei, z))

}
ν(dz)

+
D∑
j=1

λij

{
U((x+ xπγj(t, ei)) exp(

∫ T

t

r(s)ds))− U(x exp(

∫ T

t

r(s)ds))

− U ′(x exp(

∫ T

t

r(s)ds)) exp(

∫ T

t

r(s)ds)(πxγj(t, ei))

}
= 0. (3.5)

Let us apply first order condition to Equation (3.5) with respect to π to receive
π∗ = π∗(θ). This gives:

(θ − r(t))xU ′(x exp(

∫ T

t

r(s)ds)) exp(

∫ T

t

r(s)ds) +
1

2
2π∗σ2(t, ei)x

2

× U ′′(x exp(

∫ T

t

r(s)ds))(exp(

∫ T

t

r(s)ds))2
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+

∫
R0

{
U ′((x+ xπ∗η(t, ei, z)) exp(

∫ T

t

r(s)ds))xη(t, ei, z) exp(

∫ T

t

r(s)ds)

− U ′(x exp(

∫ T

t

r(s)ds))xη(t, ei, z) exp(

∫ T

t

r(s)ds)

}
ν(dz)

+
D∑
j=1

λij

{
U ′((x+ xπ∗γj(t, ei)) exp(

∫ T

t

r(s)ds))xγj(t, ei, z)

× exp(

∫ T

t

r(s)ds)− U ′(x exp(

∫ T

t

r(s)ds))xγj(t, ei) exp(

∫ T

t

r(s)ds)

}
= 0.

If we reorganize the terms above, we get:

(θ − r(t))U ′(x exp(

∫ T

t

r(s)ds)) + π∗σ2(t, ei)xU
′′(x exp(

∫ T

t

r(s)ds))

× (exp(

∫ T

t

r(s)ds)) +

∫
R0

{
U ′((x+ xπ∗η(t, ei, z)) exp(

∫ T

t

r(s)ds))

− U ′(x exp(

∫ T

t

r(s)ds))

}
η(t, ei, z)ν(dz)

+
D∑
j=1

λijγ
j(t, ei)

{
U ′((x+ xπ∗γj(t, ei)) exp(

∫ T

t

r(s)ds))

− U ′(x exp(

∫ T

t

r(s)ds))

}
= 0. (3.6)

Now, let us differentiate the terms in Equation (3.5) with respect to θ, where
π∗ = π∗(θ):

(π∗)′(θ)

(
(θ − r(t))U ′(x exp(

∫ T

t

r(s)ds)) + π∗(θ)xσ2(t, ei)

× exp(

∫ T

t

r(s)ds)U ′′(x exp(

∫ T

t

r(s)ds)) +

∫
R0

{
U ′((x+ xπ∗(θ)η(t, ei, z))

× exp(

∫ T

t

r(s)ds))− U ′(x exp(

∫ T

t

r(s)ds))

}
η(t, ei, z)ν(dz)

+
D∑
j=1

λijγ
j(t, ei)

{
U ′((x+ xπ∗(θ)γj(t, ei)) exp(

∫ T

t

r(s)ds))

− U ′(x exp(

∫ T

t

r(s)ds))

})
+ π∗(θ)U ′(x exp(

∫ T

t

r(s)ds)) = 0. (3.7)

Hence by Equations (3.6) and (3.7), the optimal fraction of the trader’s wealth is held
in the risky asset π∗(θ) = 0 and consequently, by Equation (3.6), θ∗(t) = r(t). Hence,
there is no trade.
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Note that for θ∗ and π∗(θ), HJBI equation is satisfied. Then,

V (t, x, ei) = U(x exp(

∫ T

t

r(s)ds))

can be obtained in this form.

Moreover, if we assume γ(t, α(t)) = 0 for all t ∈ [0, T ], then the continuously com-
pounded risk-free rate can be considered dependent on the Markov chain α(t), for
t ∈ [0, T ]. In other words, it may be considered that the risk-free rate changes under
the effect of macroeconomic conditions. Therefore, the wealth process of the investor
becomes as follows:

dXπ,θ(t) = X(t−)

[
{(1− π(t))r(t, α(t)) + π(t)θ(t)} dt+ π(t)σ(t, α(t))dW (t)

+ π(t−)

∫
R0

η(t, α(t−), z)Ñ(dt, dz)

]
, t ∈ [0, T ],

Xπ,θ(0) = x > 0.

By this setting, one may take the value function in the form of

V (t, x, ei) = U(x exp(

∫ T

t

r(s, ei)ds)),

for ei ∈ S, i = 1, 2, ..., D, and follow the same steps. Then, π∗(θ) = 0 and
θ∗(t) = r(t, α(t)) for all t ∈ [0, T ] are obtained.

This zero-sum game application is an extension of the Theorem 6.3 in Peskir and Sho-
rish [50], which is constructed by a geometric Brownian motion and Example 4.1 in
Mataramvura and Øksendal [41], which is presented by a jump-diffusion process. We
solve the similar game by including the states of the Markov chain, α with its jump
size γ and the compensated random measure Φ as the proxies of the different observ-
able macroeconomic indicators. This solution establishes a “dynamic equilibrium”
between the market and the investor, i.e., the best action of the investor to the corre-
sponding market force and vice versa. Moreover, this result is compatible with the
fundamental equilibrium of risk-neutral asset pricing (see Peskir and Shorish [50] for
closer details).

3.3 A Nonzero-Sum Stochastic Differential Game and an Application to Finance

In this section, we give a verification theorem for a nonzero-sum stochastic differential
game by the dynamic programming principle approach and an application of a portfo-
lio game between two investors.
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Let u1 ∈ Θ1 and u2 ∈ Θ2 be two admissible control processes for Player 1 and Player
2, respectively. Regarding this game, we define two performance functionals (payoff)
to Player number k, k = 1, 2, respectively:

Ju1,u2k (t, y, ei) =Et,y,ei

[∫ τG

t

fk(s, Y (s), α(s), u1(s), u2(s))ds

+ gk(Y (τG), α(τG))

]
(3.8)

for each ei ∈ S.

If a Nash equilibrium exists for such a game, this means that each player’s strategy is
optimal or a best response against the other one’s move. Furthermore, there can be no
unilateral profitable deviation for each player’s action. In other words, if one of the
players does not move, none of the players change their position. Since a Nash equi-
librium is a self-enforcing concept, at the equilibrium, any player knows that moving
brings a worse payoff.

Subsequently, we give a mathematical representation for the Nash equilibrium of such
a stochastic differential game.

Definition 3.1. Let us assume that for the optimal strategy of Player 2, u∗2 ∈ Θ2, the
best response of Player 1 satisfies

J
u1,u∗2
1 (t, y, ei) ≤ J

u∗1,u
∗
2

1 (t, y, ei) for all u1 ∈ Θ1, ei ∈ S, y ∈ G

and for the optimal strategy of Player 1, u∗1 ∈ Θ1, the best response of Player 2 satisfies

J
u∗1,u2
2 (t, y, ei) ≤ J

u∗1,u
∗
2

2 (t, y, ei) for all u2 ∈ Θ2, ei ∈ S, y ∈ G.

Then, the pair of optimal control processes (u∗1, u
∗
2) ∈ Θ1 × Θ2 is called a Nash equi-

librium for the stochastic differential game of Equations (3.1) and (3.8).

Now we can give the HJBI equations for Nash equilibria, in other words: a verification
theorem for a Markov regime-switching jump-diffusion model.

Theorem 3.3. Suppose that there exists functions φk ∈ C1,2(G)∩C(Ḡ), k = 1, 2, and
a Markov control (u∗1, u

∗
2) ∈ Θ1 ×Θ2 such that the following conditions are fulfilled:

i. Lu1,u∗2 [φ(t, y, ei)] + f(t, y, ei, u1, u
∗
2) ≤ 0 for all u1 ∈ U1, y ∈ G and ei ∈ S.

ii. Lu∗1,u2 [φ(t, y, ei)] + f(t, y, ei, u
∗
1, u2) ≤ 0 for all u2 ∈ U2, y ∈ G and ei ∈ S.

iii. Y u1,u2(τG) ∈ ∂G a.s. on {τG <∞} and
lim
t→τ−G

φk(t, Y
u1,u2(t), α(t)) = gk(Y

u1,u2(τG), α(τG))1{τG<∞} a.s.

for all (u1, u2) ∈ Θ1 ×Θ2, y ∈ G, k = 1, 2.
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iv. The family {φk(τ, Y u1,u2(τ), α(τ))}{τ∈T } is uniformly integrable for all y ∈ G
and (u1, u2) ∈ Θ1 ×Θ2, k = 1, 2.

Then, for all y ∈ G, ei ∈ S, (u∗1, u
∗
2) is a Nash equilibrium for the game (3.8) subject

to the goals of the system (3.1) such that

φ1(t, y, ei) =V1(t, y, ei) = sup
u1∈Θ1

Ju1,u
∗
2(t, y, ei) = Ju

∗
1,u
∗
2(t, y, ei),

φ2(t, y, ei) =V2(t, y, ei) = sup
u2∈Θ2

Ju
∗
1,u2(t, y, ei) = Ju

∗
1,u
∗
2(t, y, ei).

Proof. The demonstration of Theorem 3.3 can be obtained similarly as the proof of
Theorem 5.2. in Mataramvura and Øksendal [41] by applying Lemma 3.1. Therefore,
we do not repeat it here.

Now let us construct a portfolio game between two investors in a Black-Scholes econ-
omy, where the market allows infinitely divisible assets, where no transaction costs
exist and information is symmetric. We assume that there are two risky assets with
prices S1(·) for Investor 1 and S2(·) for Investor 2. Furthermore, there is a risk-free
bond (e.g., a bank account) S0(·). Each investor can invest only one of the risky assets
and they are free to invest in the risk-free bond.

Suppose that r(t) represents the continuously compounded risk-free rate.
Let be r(t) := r(t, α(t)) = 〈r, α(t)〉, where 〈·, ·〉 is the inner product in RD and
r := (r1, r2, ..., rD)T ∈ RD. Then,

dS0(t) = S0(t)r(t, α(t−))dt, t ∈ [0, T ],

S0(0) = s0 > 0,

where
∫ T

0

|r(t, α(t−))|dt <∞.

Let µm(t) := µm(t, α(t)) = 〈µm, α(t)〉, σm(t) := σm(t, α(t)) = 〈σm, α(t)〉, and
ηm(t, z) := ηm(t, α(t), z) = 〈ηm, α(t)〉 denote the appreciation rate, the volatility rate
and the jump size of the mth risky asset for m = 1, 2, t ∈ [0, T ], where

µm := (µ1
m, µ

2
m, ..., µ

D
m)T ∈ RD, σm := (σ1

m, σ
2
m, ..., σ

D
m)T ∈ RD

and
ηm := (zη1

m, zη
2
m, ..., zη

D
m)T ∈ RD

represent the economy in the ith state. For each i = 1, 2, ..., D and m = 1, 2, σim > 0.
Please remember that the state space of the Markov chain S is a set of unit basis vec-
tors; hence it is allowed to display the different states of the economy by the inner
product of a vector and α(·).
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We consider a 1-dimensional standard Brownian motion and a 1-dimensional Poisson
random measure. Thus, for each m = 1, 2, we represent the risky assets by Markovian
regime-switching geometric Lévy processes as follows:

dSm(t) =Sm(t−)

(
µm(t, α(t−))dt+ σm(t, α(t−))dW (t)

+

∫
R0

ηm(t, α(t−), z)Ñ(dt, dz)

)
, t ∈ [0, T ],

Sm(0) =sm > 0, m = 1, 2.

Let Um-valued, Ft-measurable cádlág, Markov control processes πm, m = 1, 2, be the
proportion of the mth trader’s wealth invested in the mth risky asset. Then, we can
state the dynamics of the wealth processes of each investor as follows:

dXm(t) = Xm(t−)

(
πm(t)µm(t, α(t−)) + (1− πm(t))r(t, α(t−))

)
dt+Xm(t−)

× πm(t)

(
σm(t, α(t−))dW (t) +

∫
R0

ηm(t, α(t−), z)Ñ(dt, dz)

)
, t ∈ [0, T ],

Xm(0) = xm > 0, m = 1, 2, (3.9)

where π1 ∈ U1 and π2 ∈ U2 are admissible such that Equation (3.9) has a unique strong
solution and ∫ T

0

|πm(t)|2dt <∞, m = 1, 2.

The investors act antagonistically to each other by aiming to maximize their own ex-
pected terminal gains. Furthermore, we assume that they choose their portfolio strate-
gies π1 ∈ Θ1 and π2 ∈ Θ2 simultaneously.

We define their performance criterion in such a way that each terminal payoff is pro-
portional to the one of the other investor’s:

J1(t, x1, x2, ei, π1, π2) =Et,x1,x2,ei

[
γ1X1(T )X2(T )

]
,

J2(t, x1, x2, ei, π1, π2) =Et,x1,x2,ei

[
γ2X1(T )X2(T )

]
,

where γ1, γ2 ∈ R+.

In this way, we can regard one investor’s final saving as a factor of sensitivity and
marginal gain for the other investor and vice versa. Thus, maximizing investors’ goals
means to optimality and jointly direct two investors interests, hence, to collaborate.
Then, our problem is to find (π∗1, π

∗
2) ∈ Θ1 ×Θ2 and

V1(t, x1, x2, ei) = sup
π1∈Θ1

J1(t, x1, x2, ei, π1, π
∗
2) = J

π∗1 ,π
∗
2

1 (t, x1, x2, ei),

V2(t, x1, x2, ei) = sup
π2∈Θ2

J2(t, x1, x2, ei, π
∗
1, π2) = J

π∗1 ,π
∗
2

2 (t, x1, x2, ei).
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In this concept, Y (t) in Equation (3.1) can be considered as Y (t) := (X1(t), X2(t)).
Now we can define a Markovian regime-switching infinitesimal generator Lπ1,π2 on φ
for each investor as follows:

Lπ1,π∗2 [φ1(t, x1, x2, ei)] =
∂φ1

∂t
(t, x1, x2, ei)

+ x1

(
π1µ1(t, e1) + (1− π1)r(t, ei)

)
∂φ1

∂x1

(t, x1, x2, ei)

+ x2

(
π∗2µ2(t, e1) + (1− π∗2)r(t, ei)

)
∂φ1

∂x2

(t, x1, x2, ei)

+
1

2
π2

1x
2
1σ

2
1(t, ei)

∂2φ1

∂x2
1

(t, x1, x2, ei)

+
1

2
π∗22 x

2
2σ

2
2(t, ei)

∂2φ1

∂x2
2

(t, x1, x2, ei)

+ π1π
∗
2x1x2σ1(t, ei)σ2(t, ei)

∂2φ1

∂x1x2

(t, x1, x2, ei)

+

∫
R0

[
φ1(t, x1 + π1x1η1(t, ei, z), x1 + π∗2x2η2(t, ei, z), ei)

− φ1(t, x1, x2, ei)− π1x1η1(t, ei, z)
∂φ1

∂x1

(t, x1, x2, ei)

− π∗2x2η2(t, ei, z)
∂φ1

∂x2

(t, x1, x2, ei)

]
ν(dz)

+
D∑
j=1

λij

[
φ1(t, x1, x2, ej)− φ1(t, x1, x2, ei)

]

and

Lπ∗1 ,π2 [φ2(t, x1, x2, ei)] =
∂φ2

∂t
(t, x1, x2, ei) + x1

(
π∗1µ1(t, e1)

+ (1− π∗1)r(t, ei)

)
∂φ2

∂x1

(t, x1, x2, ei)

+ x2

(
π2µ2(t, e1) + (1− π2)r(t, ei)

)
∂φ2

∂x2

(t, x1, x2, ei)

+
1

2
π∗21 x

2
1σ

2
1(t, ei)

∂2φ2

∂x2
1

(t, x1, x2, ei)

+
1

2
π2

2x
2
2σ

2
2(t, ei)

∂2φ2

∂x2
2

(t, x1, x2, ei)

+ π∗1π2x1x2σ1(t, ei)σ2(t, ei)
∂2φ2

∂x1x2

(t, x1, x2, ei)
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+

∫
R0

[
φ2(t, x1 + π∗1x1η1(t, ei, z), x1 + π2x2η2(t, ei, z), ei)

− φ2(t, x1, x2, ei)− π∗1x1η1(t, ei, z)
∂φ2

∂x1

(t, x1, x2, ei)

− π2x2η2(t, ei, z)
∂φ2

∂x2

(t, x1, x2, ei)

]
ν(dz)

+
D∑
j=1

λij

[
φ2(t, x1, x2, ej)− φ2(t, x1, x2, ei)

]
.

Then we can re-state our problem for each investor:

sup
π1∈Θ1

{
Lπ1,π∗2 [φ1(t, x1, x2, ei)]

}
= 0,

φ1(T, x1, x2, ei) = γ1x1x2, for all ei ∈ S (3.10)

and

sup
π2∈Θ2

{
Lπ∗1 ,π2 [φ2(t, x1, x2, ei)]

}
= 0,

φ2(T, x1, x2, ei) = γ2x1x2, for all ei ∈ S. (3.11)

Let us consider a value function of the form Vm(t, x1, x1, ei) = km(t, ei)x1x2 for
m = 1, 2, ei ∈ S.

Since the first-order conditions give the optimal portfolio strategies, first let us begin
by differentiating the quantity in the HJBI Equation (3.10) with respect to π1 for fixed
π∗2:

(µ1(t, ei)− r(t, ei))x1x2k1(t, ei) + π∗2σ1(t, ei)σ2(t, ei)x1x2k1(t, ei)∫
R0

(
(x2 + π∗2x2η2(t, ei, z))x1η1(t, ei, z)k1(t, ei)− η1(t, ei, z)x1x2k1(t, ei)

)
ν(dz)

= 0.

Hence, we obtain

π∗2 =
r(t, ei)− µ1(t, ei)

σ1(t, ei)σ2(t, ei) +
∫
R0
η1(t, ei, z)η2(t, ei, z)ν(dz)

, for all ei ∈ S. (3.12)

Similarly, for fixed π∗1 , the first-order condition for maximizing the quantity in Equa-
tion (3.11) with respect to π2 gives:

π∗1 =
r(t, ei)− µ2(t, ei)

σ1(t, ei)σ2(t, ei) +
∫
R0
η1(t, ei, z)η2(t, ei, z)ν(dz)

, for all ei ∈ S. (3.13)
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If we consider π∗1 and π∗2 in Equations (3.10) and (3.11), then for all ei ∈ S we obtain
D-coupled, linear ordinary differential equations (linear ODEs):

k
′

m(t, ei) + h(t, ei)km(t, ei) +
D∑
j=1

λij(km(t, ej)− km(t, ei)) = 0

km(T, ei) = γm > 0, for m = 1, 2, (3.14)

where

h(t, ei) := π∗1µ1(t, ei) + (1− π∗1)r(t, ei) + π∗2µ2(t, ei) + (1− π∗2)r(t, ei)

+ π∗1π
∗
2

(
σ1(t, ei)σ2(t, ei) +

∫
R0

η1(t, ei, z)η2(t, ei, z)ν(dz)

)
.

By applying the classical procedure of Feynman-Kac representation for the solution of
the system of differential equations (3.14), one can obtain the subsequent solution for
the value functions of each investor:

km(t, α(t)) = γmE

[
exp

(∫ T

t

h(s, α(s))ds

)
|α(t) = ei

]
, for m = 1, 2.

It is clearly seen that km, m = 1, 2, are nonnegative; consequently Vm, m = 1, 2, are
also nonnegative.

Herewith, we obtain explicit solutions of optimal portfolio processes π∗1, π
∗
2 and the

value functions V1, V2 of each investor, i.e., the Nash equilibria and the corresponding
equilibrium performances of the nonzero-sum game described.

3.3.1 A Special Case

In this subsection, we consider a special case of the game introduced in Section 3.3.
We assume that there are just two states, that is S = {e1, e2}, which describe the
economy with providing an information rich enough. In this set-up, the states of the
economy or the market can be considered as “good” and “bad”, or as “bear” and
“bull”, respectively.

In this special case, the rate matrix of the Markov chain α can be represented as fol-
lows:

(
−λ λ
λ −λ

)
.
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By considering the results of the previous section, for the sake of simplicity, we define:

h(t, e1) =d1 = a1µ1
1 + (1− a1)r1 + b1µ1

2 + (1− a1)r1 + a1b1(σ1
1σ

1
2

+

∫
R0

z2η1
1η

1
2ν(dz)), t ∈ [0, T ],

h(t, e2) =d2 = a2µ2
1 + (1− a2)r2 + b2µ2

2 + (1− a2)r2 + a2b2(σ2
1σ

2
2

+

∫
R0

z2η2
1η

2
2ν(dz)), t ∈ [0, T ],

where

π∗1 =

(
a1

a2

)
=


r1 − µ1

1

σ1
1σ

1
2 +

∫
R0
z2η1

1η
1
2ν(dz)

r2 − µ2
1

σ2
1σ

2
2 +

∫
R0
z2η2

1η
2
2ν(dz)


and

π∗2 =

(
b1

b2

)
=


r1 − µ1

2

σ1
1σ

1
2 +

∫
R0
z2η1

1η
1
2ν(dz)

r2 − µ2
2

σ2
1σ

2
2 +

∫
R0
z2η2

1η
2
2ν(dz)

 .

Thus, by Equation (3.14), we obtain 2-coupled linear ODEs with terminal values:

k
′

1(t, e1) + d1k1(t, e1) + λ(k1(t, e2)− k1(t, e1)) = 0, k1(T, e1) = γ1,

k
′

1(t, e2) + d2k1(t, e2) + λ(k1(t, e1)− k1(t, e2)) = 0, k1(T, e2) = γ1 (3.15)

and, similarly,

k
′

2(t, e1) + d1k2(t, e1) + λ(k2(t, e2)− k2(t, e1)) = 0, k2(T, e1) = γ2,

k
′

2(t, e2) + d2k2(t, e2) + λ(k2(t, e1)− k2(t, e2)) = 0, k2(T, e2) = γ2.

Then, by writing k1(t, e1) in terms of k1(t, e2) in Equation (3.15), we get:

k
′′

1 (t, e2) + (d2 + d1 − 2λ)k
′

1(t, e2) + (d2d1 − λd2 − λd1)k1(t, e2) = 0,

k1(T, e2) = γ1.

By the classical methods of solving linear ODEs of second order, solutions of these
equations can be received in the following way.

First, let us find ∆:

∆ =(d2 + d1 − 2λ)2 − 4(d2d1 − λd2 − λd1)

= (d2 − d1)2 + 4λ2 > 0.

30



Since ∆ is always nonnegative, we consider just real roots. Then,

p1,2 =
−(d2 + d1 − 2λ)±

√
(d2 − d1)2 + 4λ2

2
.

Therefore,

k1(T, e2) = C1e
−p1(T−t) + C2e

−p2(T−t), k1(T, e2) = γ1.

Similarly,

k1(T, e1) = C3e
−p1(T−t) + C4e

−p2(T−t), k1(T, e1) = γ1.

Let us denote:

C1 = −γ1
(d2 + p2)

p1 − p2

, C2 = γ1
(d2 + p1)

p1 − p2

,

C3 = −γ1
(d1 + p2)

p1 − p2

, C4 = γ1
(d1 + p1)

p1 − p2

.

By following similar steps, one can obtain:

k2(T, e2) = C5e
−p1(T−t) + C6e

−p2(T−t), k2(T, e2) = γ2,

k2(T, e1) = C7e
−p1(T−t) + C8e

−p2(T−t), k2(T, e1) = γ2,

where

C5 = −γ2
(d2 + p2)

p1 − p2

, C6 = γ2
(d2 + p1)

p1 − p2

,

C7 = −γ2
(d1 + p2)

p1 − p2

, C8 = γ2
(d1 + p1)

p1 − p2

.

Hence, at each state of the economy, we get the optimal investment proportions and
value functions for each investor.

In the next subsection, we present simple, heuristic examples to illustrate our results
for a two-state case as described in this section. Since it is out of scope of this thesis,
we do not follow a statistical approach for the following subsection.

3.3.2 Comparative Statics

We purpose to provide an intuition on how each investor’s optimal portfolio strategy
varies based on the model parameters. Therefore, we consider some specific annual-
ized hypothetical values for these imaginary parameters. Since it is out of the scope of
this thesis, we do not follow a statistical approach using data to determine them for the
following simple examples. Actually, such a project will be left to future studies.
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We work in a two-state Markov regime-switching financial market with one risk-free
bond and two risky assets. We assume that the state space of the Markov chain S
represents the states of the economy as Good Economy (GE) and Bad Economy (BE)
based on the relation between expected rates of return of the risky assets, µk, k = 1, 2,
and risk-free rate rk, k = 1, 2. The appreciation rates of risky assets are greater than
risk-free rate during expansions (GE) and smaller during recessions (BE).

Let N(dt, dz), t ∈ [0, T ], be a Poisson random measure and the waiting time between
jumps be exponentially distributed with λ∗ = 1. Moreover, the Lévy measure is equal
to ν(dz) = λ∗ × F (dz), where F (dz) represents the standard normal distribution,
N (0, 1).

Note that the following graphs can be obtained by Equations (3.12) and (3.13). Fur-
thermore, it is obvious that there is a linear relation between the optimal investment
proportions and the appreciation rates of the risky assets. The selected values and Mat-
lab codes can be found in Appendix. Similar graphs can be drawn for π∗1 and π∗2 in
view of both of the settings. In these simple examples, we realize how each investor’s
strategy leads the other one’s response.

In Figure 3.1, under BE condition, we present the change of the optimal portfolio strat-
egy of second trader, π∗2 , against the appreciation rate of the first risky asset, µ1

1; here
just the first trader has the right to invest in S1, for different jump sizes of first risky
asset, η1

1 . We observe that when µ1
1 increases, the optimal proportion invested in S2 in-

creases for a downward jump value of S1 and decreases for an upward one. Moreover,
it is seen that the second investor should be in short position for η1

1 < 0 and in long
position for η1

1 > 0. Furthermore, there is no trade when µ1
1 = r1.

On the other hand, if we focus on the GE state by a similar comparison, in Figure 3.2,
we see that when µ1

1 increases, the optimal proportion invested in S2 increases for a
downward jump value of S1 and decreases for an upward one, as in BE state. But, the
second investor should reverse his/her position, a short position for η1

1 > 0 and a long
position for η1

1 < 0.

Furthermore, in Figure 3.3, we analyze the change of optimal π2 in BE state against µ1
1

for two different specific volatility levels. When µ1
1 increases, the optimal investment

strategy for the second trader is affected in a similar direction; however the uncertainty
level increases.

We can also focus on the behavior of the optimal portfolio strategies by considering
both of the states of the economy, GE-BE, simultaneously. In Figure 3.4, we can view
optimal π1 in GE-BE states against µk2, k = 1, 2, for different jump sizes of S2. The
first investor should be in short position for opposite values of ηk2 , k = 1, 2.
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Figure 3.1: Optimal π2 in BE against µ1
1 for different η1

1 .

Figure 3.2: Optimal π2 in GE against µ2
1 for different η2

1 .

In Figure 3.5, we investigate the increased levels of the risk-free rate. If µk2, k = 1, 2,
increase, the optimal π1 decreases. Moreover, the first investor should change his/her
position at different levels of the risk-free rate generated at different states of the econ-
omy.
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Figure 3.3: Optimal π2 in BE against µ1
1 for different σ1

1 .

Figure 3.4: Optimal π1 in GE-BE against µk2, k = 1, 2, for different ηk2 , k = 1, 2.

In the last Figure 3.6, we can analyze the optimal π1 in GE-BE against µk2, k = 1, 2,
for different uncertainty levels. Furthermore, we can clearly see the jumps generated
by the regime switches from BE to GE in Figure 3.4, Figure 3.5 and Figure 3.6.
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Figure 3.5: Optimal π1 in GE-BE against µk2, k = 1, 2, for different rk, k = 1, 2.

Figure 3.6: Optimal π1 in GE-BE against µk2, k = 1, 2, for different σk2 , k = 1, 2.
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CHAPTER 4

MAIN RESULTS FOR A DELAYED JUMP-DIFFUSION
MODEL WITH REGIMES

In this chapter, we present three main theorems for Stochastic Differential Delay Equa-
tions (SDDEs) and Anticipated Backward Stochastic Differential Equations (ABS-
DEs). These results support the results of Chapter 5 and provide an intuition for the
relation between SDDEs and ABSDEs. Moreover, this chapter clarifies the existence
of admissible control processes in Chapter 5. The techniques applied for the proofs of
these underlying theorems are based on the methods of Peng and Yang [49], El-Karoui,
Hamadène and Matoussi [17] and Yang, Mao and Yuan [60].

Let (Ω,F, (Ft)t≥0 ,P) be a complete probability space, where F = (Ft : t ∈ [0, T ]).
Furthermore, (Ft)t≥0 is a right-continuous, P-completed filtration generated by a 1-
dimensional Brownian motion W (·), a 1-dimensional Poisson random measure N(·, ·)
and a D-dimensional Markov chain α(·). We assume that these processes are indepen-
dent of each other and adapted to F.

4.1 Existence-Uniqueness Theorem for an SDDE with Jumps and Regimes

Yang, Mao and Yuan [60] proved an existence-uniqueness theorem for a stochastic
differential diffusion process. Then, in the same work, they provided some technical
conditions similar to (A1), (A2), (H1) and (H2) (introduced below) and stated that un-
der these assumptions, an existence-uniqueness result can be obtained for a stochastic
differential diffusion process with delay; but they skipped the proof. Then, Bao and
Yuan [3] presented an extended form of this result for a jump-diffusion process without
proving it. In this section, we prove the existence-uniqueness theorem for a system of
Markov regime-switching jump-diffusion process with delay. Here, in our setting, the
Markov chain α, its jump size γ and the compensated random measure Φ̃ generated by
the Markov chain can be observed as our contribution.
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Let us represent our model:

dX(t) =b(t,X(t), X(t− δ1(t)), α(t))dt

+ σ(t,X(t), X(t− δ2(t)), α(t))dW (t)

+

∫
R0

η(t,X(t−), X((t− δ3(t))−), α(t−), z)Ñ(dt, dz)

+ γ(t,X(t−), X((t− δ4(t))−), α(t−))dΦ̃(t), t ∈ [0, T ], (4.1)
X(t) =x0(t), t ∈ [−δ, 0],

where x0 is a càdlàg function defined from [−δ, 0] into R with the norm

‖x0(t)‖ = sup
−δ≤t≤0

|x0(t)|.

We may call x0 as pre-history or initial path. Delay components, δi, i = 1, 2, 3, 4, are
nonnegative continuous real-valued functions defined on [0, T ] such that:

(A1) There exists a constant δ > 0 such that for each t ∈ [0, T ],

−δ ≤ t− δi(t) ≤ t, i = 1, 2, 3, 4.

(A2) There exists a constant L > 0 such that for each t ∈ [0, T ] and for each non-
negative, integrable g(·),∫ t

0

g(s− δi(s))ds ≤ L

∫ t

−δ
g(s)ds, i = 1, 2, 3, 4.

Let us consider the uniform case with δi(t) = δ(t) for i = 1, 2, 3, 4, and assume
X(t − δ(t)) = Y (t), t ∈ [0, T ]. Now we give further assumptions for Equation (4.1)
without losing generality.

Let b : [0, T ]× R× R× S → R, σ : [0, T ]× R× R× S → R,
η : [0, T ]×R×R×S×R0 → R and γ : [0, T ]×R×R×S → R satisfy the following
conditions:

(H1) There exists a constant C > 0 such that for all t ∈ [0, T ], ei ∈ S, x1, x2, y1,
y2 ∈ R,

|b(t, x1, y1, ei)− b(t, x2, y2, ei)| ∨ |σ(t, x1, y1, ei)− σ(t, x2, y2, ei)|
∨ ‖η(t, x1, y1, ei, z)− η(t, x2, y2, ei, z)‖J ∨ ‖γ(t, x1, y1, ei)− γ(t, x2, y2, ei)‖S
≤ C(|x1 − x2|+ |y1 − y2|).

(H2) b(·, 0, 0, ei) ∈ L2
F(0, T ;R), σ(·, 0, 0, ei) ∈ L2

F(0, T ;R), η(·, 0, 0, ei, ·)
∈ H2

F(0, T ;R) and γ(·, 0, 0, ei) ∈M2
F(0, T ;RD) for all ei ∈ S and t ∈ [0, T ].
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Theorem 4.1. Under the assumptions (A1), (A2), (H1) and (H2), there exists a unique
càdlàg adapted solution X(·) ∈ L2

F(0, T ;R) for Equation (4.1).

Proof. Let us fix β = 16C2(1 + L) + 1, where C is the Lipschitz constant given
in condition (H1) and L is as in assumption (A2). Related to this β, for the sake of
convenience, we use a norm in Banach space L2

F(0, T ;R) as follows:

‖h(·)‖2
β = E

[∫ T

0

e−βs ‖h(s)‖2 ds

]
,

which is equivalent to the original norm of L2
F(0, T ;R).

For any given x(·) ∈ L2
F(0, T ;R) with x(t) = x0(t), t ∈ [−δ, 0], we set:

X(t) =b(t, x(t), y(t), α(t))dt+ σ(t, x(t), y(t), α(t))dW (t)

+

∫
R0

η(t, x(t−), y(t−), α(t−), z)Ñ(dt, dz)

+ γ(t, x(t−), y(t−), α(t−))dΦ̃(t)

]
, t ∈ [0, T ], (4.2)

X(t) =x0(t), t ∈ [−δ, 0].

According to the existence-uniqueness results for SDEs with jumps and regimes (see
Proposition 7.1 by Crépey [13]), the aforementioned Equation (4.2) has a unique solu-
tion. Let us define a mapping,

h : L2
F(0, T ;R)→ L2

F(0, T ;R)

such that h(x)(·) = X(·). Note that y(t) = x(t − δ(t)), t ∈ [0, T ] and h is well-
defined.

Let us use the following abbreviations:

b1(s) := b(s, x1(s), y1(s), α(s)),

b2(s) := b(s, x2(s), y2(s), α(s)), etc.

For arbitrary x1, x2 ∈ L2
F(0, T ;R), we now apply generalized Itô’s formula (see Ap-

pendix) to e−βt|h(x1)(t)− h(x2)(t)|2 and take expectation:

E

[
e−βt(h(x1)(t)− h(x2)(t))2

]
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= −βE
[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))2ds

]
+ 2E

[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))

{
(b1(s)− b2(s))ds

+ (σ1(s)− σ2(s))dW (s) +

∫
R0

(η1(s, z)− η2(s, z))Ñ(ds, dz)

+ (γ1(s)− γ2(s))dΦ̃(s)

}]
+ E

[∫ t

0

e−βs(σ1(s)− σ2(s))2ds

]
+ E

[∫ t

0

∫
R0

e−βs(η1(s, z)− η2(s, z))2ν(dz)ds

]
+ E

[∫ t

0

e−βs
D∑
j=1

(γj1(s)− γj2(s))2λj(s)ds

]
.

Since a2 + b2 ≥ 2ab and by assumption (A2), we get:

E

[
e−βt(h(x1)(t)− h(x2)(t))2

]
= −βE

[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))2ds

]
+ E

[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))2ds

]
+ E

[∫ t

0

e−βs|b1(s)− b2(s)|2ds
]

+ E

[∫ t

0

e−βs|σ1(s)− σ2(s)|2ds
]

+ E

[∫ t

0

e−βs ‖η1(s)− η2(s)‖2
J ds

]
+ E

[∫ t

0

e−βs ‖γ1(s)− γ2(s)‖2
S ds

]
≤ (−β + 1)E

[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))2ds

]
+ 4C2E

[∫ t

0

e−βs(|x1(s)− x2(s)|+ |y1(s)− y2(s)|)2ds

]
≤ (−β + 1)E

[∫ t

0

e−βs(h(x1)(s)− h(x2)(s))2ds

]
+ 8C2E

[∫ t

0

e−βs(|x1(s)− x2(s)|2 + |y1(s)− y2(s)|2ds
]

≤ (−β + 1)E

[∫ t

0

e−βs(X1(s)−X2(s))2ds

]
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+ 8C2E

[∫ t

0

e−βs(|x1(s)− x2(s)|2ds
]

+ 8LC2E

[∫ t

−δ
e−βs(|x1(s)− x2(s)|2ds

]
.

Note that for s ∈ [−δ, 0], x1(s) = x2(s) = x0(s); then we receive:

E

[
e−βt(h(x1)(t)− h(x2)(t))2

]
+ (β − 1)E

[∫ t

0

e−βs(X1(s)−X2(s))2ds

]
≤ 8C2(1 + L)E

[∫ t

0

e−βs|x1(s)− x2(s)|2ds
]
.

Let us also note that E
[
e−βt(h(x1)(t)− h(x2)(t))2

]
> 0.

Since β = 16C2(1 + L) + 1, we obtain:

E

[∫ t

0

e−βs|h(x1)(s)− h(x2)(s)|2ds
]
≤ 1

2
E

[∫ t

0

e−βs|x1(s)− x2(s)|2ds
]
.

It is shown that h is a contraction mapping in Banach space L2
F(0, T ;R). Hence, by

Banach Fixed Point Theorem (see Appendix), there exists a unique solution
X(·) ∈ L2

F(0, T ;R) for Equation (4.1).

4.2 Duality Between SDDEs and ABSDEs with Jumps and Regimes

Peng and Yang [49] constructed the duality between an SDDE and an ABSDE for a
diffusion setting. They showed that the solution of an ABSDE can be obtained by the
solution of an SDDE. Later, Tu and Hao [58] extended it to a jump-diffusion process.
In this section, we establish the relation between the systems of Markovian regime-
switching SDDEs and ABSDEs with jumps and regimes similar to Peng and Yang
[49] and Tu and Hao [58] for these more general models. Here, in our setting, for both
of the processes the Markov chain α and the compensated random measure Φ̃ gener-
ated by the Markov chain can be observed as our contribution.

Let us present the related theorem.

Theorem 4.2. Suppose δ > 0 is a given constant and b, b̄ ∈ L2
F(t − δ, T + δ;R),

l ∈ L2
F(t, T ;R), σ, σ̄ ∈ L2

F(t− δ, T + δ;R), η, η̄ ∈ H2
F(t− δ, T + δ;R),

γ, γ̄ ∈M2
F(t− δ, T + δ;RD) and b, b̄, σ, σ̄, η, η̄, γ, γ̄ are uniformly bounded. Then, for

all ξ ∈ S2
F(T, T + δ;R), ψ(t) ∈ L2

F(T, T + δ;R), ζ ∈ H2
F(T, T + δ;R) and
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ϑ ∈M2
F(T, T + δ;RD), the solution Y of the following ABSDE,

−dY (s) =

(
b(s, α(s))Y (s) + b̄(s, α(s))E[Y (s+ δ)|Fs]

+ σ(s, α(s))Z(s) + σ̄(s, α(s))E[Z(s+ δ)|Fs]

+

∫
R0

Q(s, z)η(s, α(s−), z)ν(dz)

+

∫
R0

E[Q(s+ δ, z)|Fs]η̄(s, α(s−), z)ν(dz)

+
D∑
j=1

V j(s)γj(s, α(s−))λj(s)

+
D∑
j=1

E[V j(s+ δ)|Fs]γ̄j(s, α(s−))λj(s) + l(s, α(s))

)
dt

− Z(s)dW (s)−
∫
R0

Q(s, z)Ñ(ds, dz)− V (s)dΦ̃(s), s ∈ [t, T ],

with terminal values, Y (s) = ξ(s), Z(s) = ψ(s), Q(s) = ζ(s) and V (s) = ϑ(s),
s ∈ [T, T + δ], can be given by the subsequent closed formula:

Y (t) = E

[
X(T )ξ(T ) +

∫ T

t

X(s)l(s, α(s))ds

+

∫ T+δ

T

{
ξ(s)b̄(s− δ, α(s− δ))X(s− δ)

+ ψ(s)σ̄(s− δ, α(s− δ))X(s− δ)

+

∫
R0

ζ(s, z)η̄(s− δ, α((s− δ)−), z)X((s− δ)−)ν(dz)

+
D∑
j=1

ϑj(s)γ̄j(s− δ, α((s− δ)−))X((s− δ)−)λj(s)

}
ds|Ft

]

a.e., a.s., where X(s) is the solution of the following SDDEJR with initial history:

dX(s) =

(
b(s, α(s))X(s) + b̄(s− δ, α(s− δ))X(s− δ)

)
ds

+

(
X(s)σ(s, α(s)) +X(s− δ)σ̄(s− δ, α(s− δ))

)
dW (s)

+

∫
R0

(
X(s−)η(s, α(s−), z)
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+X((s− δ)−)η̄(s− δ, α((s− δ)−), z)

)
Ñ(ds, dz)

+

(
X(s−)γ(s, α(s−)) +X((s− δ)−)γ̄(s− δ, α(s− δ)−)

)
dΦ̃(s),

for s ∈[t, T + δ], (4.3)
X(t) = 1,

X(s) = 0, s ∈ [t− δ, t).

Proof. First, let us show that Equation (4.3) has a unique solution.

When s ∈ [t, t+ δ], Equation (4.3) becomes:

dX(s) = X(s−)

{
b(s, α(s))ds+ σ(s, α(s))dW (s) +

∫
R0

η(s, α(s−), z)Ñ(ds, dz)

+ γ(s, α(s−))

}
dΦ̃(s), s ∈ [t, t+ δ], (4.4)

X(t) = 1.

This is an SDE with jumps and regimes without delay and it is known that Equation
(4.4) has a unique solution in L2

F(0, T ;R) (cf. [13]). Let κ(·) be the solution of Equa-
tion (4.4).

For s ∈ [t+ δ, T + δ], Equation (4.3) becomes:

dX(s) =

(
b(s, α(s))X(s) + b̄(s− δ, α(s− δ))X(s− δ)

)
ds

+

(
X(s)σ(s, α(s)) +X(s− δ)σ̄(s− δ, α(s− δ))

)
dW (s)

+

∫
R0

(
X(s−)η(s, α(s−), z)

+X((s− δ)−)η̄(s− δ, α((s− δ)−), z)

)
Ñ(dt, dz)

+

(
X(s−)γ(s, α(s−)) +X((s− δ)−)γ̄(s− δ, α((s− δ)−))

)
dΦ̃(t),

s ∈[t+ δ, T + δ], (4.5)
X(s) = κ(s), s ∈ [t, t+ δ].

This is a classical SDDE with jumps and regimes; hence, by Theorem (4.1), it is known
that Equation (4.5) has a unique solution.

If we apply product rule to X(s)Y (s) for s ∈ [t, T ] (cf. Lemma 3.2, by Zhang, Elliott
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and Siu [64] or Appendix), we obtain:

X(T )Y (T )−X(t)Y (t)

= −
∫ T

t

X(s−)

{(
b(s, α(s))Y (s) + b̄(s, α(s))E[Y (s+ δ)|Fs]

+ σ(s, α(s))Z(s) + σ̄(s, α(s))E[Z(s+ δ)|Fs]

+

∫
R0

(η(s, α(s−), z)Q(s, z) + η̄(s, α(s−), z)E[Q(s+ δ, z)|Fs])ν(dz)

+
D∑
j=1

(γj(s, α(s−))V j(s) + γ̄j(s, α(s−))E[V j(s+ δ)|Fs]))λj(t)

+ l(s, α(s))

)
ds− Z(s)dW (s)−

∫
R0

Q(s, z)Ñ(ds, dz)− V (s)dΦ̃(s)

}
+

∫ T

t

Y (s)

{(
b(s, α(s))X(s) + b̄(s− δ, α(s− δ))X(s− δ)

)
ds

+

(
σ(s, α(s))X(s) + σ̄(s− δ, α(s− δ))X(s− δ)

)
dW (s)

+

∫
R0

(
η(s, α(s−), z)X(s−) + η̄(s− δ, α((s− δ)−), z)X((s− δ)−)

)
Ñ(ds, dz)

+

(
γ(s, α(s−))X(s−) + γ̄(s− δ, α((s− δ)−)X((s− δ)−)

)
dΦ(s)

}
+

∫ T

t

{(
σ(s, α(s))X(s) + σ̄(s− δ)X(s− δ)

)
Z(s) +

∫
R0

(
η(s, α(s−), z)

×X(s−) + η̄(s− δ, α((s− δ)−), z)X((s− δ)−)

)
Q(s, z)ν(dz)

+
D∑
j=1

(
γj(s, α(s−))X(s−) + γ̄j(s− δ, α((s− δ)−))

×X((s− δ)−)

)
V j(s)λj(s)

}
ds.

Let us arrange the terms and take conditional expectation with respect to Ft. Then, we
get:

E [X(T )Y (T )−X(t)Y (t)|Ft]

= E

[∫ T

t

{
b̄(s− δ, α(s− δ))Y (s)X(s)− b̄(s, α(s))E[Y (s+ δ)|Fs]X(s)

+ σ̄(s− δ, α(s− δ))Z(s)X(s− δ)− σ̄(s, α(s))E[Z(s+ δ)|Fs]X(s)

− l(s, α(s))X(s)−
∫
R0

η̄(s, α(s−), z)E[Q(s+ δ, z)|Fs]X(s−)ν(dz)
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−
D∑
j=1

γ̄j(s, α(s−))E[V j(s+ δ)|Fs]X(s−)λj(s)

+

∫
R0

η̄(s− δ, α((s− δ)−), z))Q(s, z)X((s− δ)−)ν(dz)

+
D∑
j=1

γ̄j(s− δ, α((s− δ)−))V j(s)X((s− δ)−)

}
ds|Ft

]
.

We recall that X(t) = 1 and X(s) = 0 for s ∈ [t− δ, t). By tower property, we obtain:

Y (t) = E

[
X(T )Y (T ) +

∫ T

t

X(s)l(s, α(s))ds|Ft
]

− E
[∫ T

t

X(s− δ)Y (s)b̄(s− δ, α(s− δ))ds

−
∫ T+δ

t+δ

X(s− δ)Y (s)b̄(s− δ, α(s− δ))ds|Ft
]

− E
[∫ T

t

X(s− δ)Z(s)σ̄(s− δ, α(s− δ))ds

−
∫ T+δ

t+δ

X(s− δ)Z(s)σ̄(s− δ, α(s− δ))ds|Ft
]

− E
[∫ T

t

∫
R0

X((s− δ)−)Q(s, z)η̄(s− δ, α((s− δ)−), z)ν(dz)ds

−
∫ T+δ

t+δ

∫
R0

X((s− δ)−)Q(s, z)η̄(s− δ, α((s− δ)−), z)ν(dz)ds|Ft
]

− E
[∫ T

t

D∑
j=1

X((s− δ)−)V j(s)γ̄j(s− δ, α((s− δ)−))λj(s)ds

−
∫ T+δ

t+δ

D∑
j=1

X((s− δ)−)V j(s)γ̄(s− δ, α((s− δ)−))λj(s)ds|Ft
]
.

Hence, we get a closed-form representation for Y (t) as follows:

Y (t) = E

[
X(T )ξ(T ) +

∫ T

t

X(s)l(s, α(s))ds

+

∫ T+δ

T

{
ξ(s)b̄(s− δ, α(s− δ))X(s− δ)

+ ψ(s)σ̄(s− δ, α(s− δ))X(s− δ)
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+

∫
R0

ζ(s, z)η̄(s− δ, α((s− δ)−), z)X((s− δ)−)ν(dz)

+
D∑
j=1

ϑj(s)γ̄j(s− δ, α((s− δ)−))X((s− δ)−)λj(s)

}
ds|Ft

]
.

4.3 Existence-Uniqueness Theorem for ABSDEs with Jumps and Regimes

In this final section, we prove our last existence-uniqueness theorem for the follow-
ing ABSDE with jumps and regimes. Peng and Yang [49] introduced this new form
and proved an existence-uniqueness theorem under some technical conditions similar
to (a1), (a2), A1.1 and A2.2 (see below). They use the main theorems of BSDEs for
their proof. We follow a method as in El-Karoui, Hamadène and Matoussi [17] (see
Theorem 1.1) which presents several results related to BSDEs in a diffusion setting.
Our contribution (see Theorem 3.1 by Savku and Weber [52]), as previous theorems,
is within the framework of Markov regime switches.

Let us introduce a generalized form of BSDEs as follows:

−dY (t) = f(t, Y (t), Z(t), Q(t), V (t), Y (t+ δ1(t)), Z(t+ δ2(t)),

Q(t+ δ3(t)), V (t+ δ4(t)), α(t))ds− Z(t)dW (t)

−
∫
R0

Q(t, z)Ñ(dt, dz)− V (t)dΦ̃(t), t ∈ [0, T ],

Y (t) = ξ(t), Z(t) = ψ(t), Q(t) = ζ(t), V (t) = ϑ(t), t ∈ [T, T +K].

(4.6)

Let δi(·), i = 1, 2, 3, 4, be R+-valued continuous functions on [0, T ] such that:

(a1) There exists a constant K ≥ 0 such that for all t ∈ [0, T ] and i = 1, 2, 3, 4,
t+ δi(t) ≤ T +K.

(a2) There exists a constant L ≥ 0 such that for each t ∈ [0, T ] and for any non-
negative integrable function g(·),∫ T

t

g(s+ δi(s))ds ≤ L

∫ T+K

t

g(s)ds, for i = 1, 2, 3, 4.

Assume that for all t ∈ [0, T ] and ej ∈ S, f(t, y, z, q, v, ξ, ψ, ζ, ϑ, ej) : [0, T ]× R
×R× L2(B0;R)× L2(BS;RD)× L2(Fr;R)× L2(Fr∗ ;R)× L2(Fr̂ × B0;R)
×L2(Fr̃ × BS;RD)× S → L2(Ft;R), where r, r∗, r̂, r̃ ∈ [t, T +K].
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Furthermore, f satisfies the following conditions:

A1.1 There exists a constant C > 0 such that for all t ∈ [0, T ], ej ∈ S, y, y, z, z′ ∈ R,
q, q′ ∈ L2(B0;R), v, v′ ∈ L2(BS;RD), ξ, ξ′, ψ, ψ′ ∈ L2

F(t, T + K;R), ζ, ζ ′ ∈
H2

F(t, T +K;R), ϑ, ϑ′ ∈M2
F(t, T +K;RD) and r, r∗, r̂, r̃ ∈ [t, T +K], we have

|f(t, y, z, q, v, ξ(r), ψ(r∗), ζ(r̂), ϑ(r̃), ej)−
f(t, y′, z′, q′, v′, ξ′(r), ψ′(r∗), ζ ′(r̂), ϑ′(r̃), ej)|

≤ C

(
|y − y′|+ |z − z′|+ ‖q − q′‖J + ‖v − v′‖S + E

[
|ξ(r)− ξ′(r)|

+ |ψ(r∗)− ψ′(r∗)|+ ‖ζ(r̂)− ζ ′(r̂)‖J + ‖ϑ(r̃)− ϑ′(r̃)‖S |Ft
])
.

A2.2 E
[∫ T

0

|f(t, 0, 0, 0, 0, 0, 0, 0, 0, ej)|2 dt
]
<∞, for all ej ∈ S.

Let us give the main result of this section.

Theorem 4.3. Suppose f fulfills conditions A1.1 and A2.2 and for i = 1, 2, 3, 4, δi
satisfies assumptions (a1) and (a2). Then, for any given terminal variables ξ(·)
∈ S2

F(T, T +K;R), ψ(·) ∈ L2
F(T, T +K;R), ζ(·) ∈ H2

F(T, T +K;R) and ϑ(·)
∈ M2

F(T, T + K;RD), the ABSDE (4.6) has a unique solution, i.e., there exists a
unique 4-tuple of Ft-adapted processes (Y, Z,Q, V ) ∈ S2

F(0, T + K;R)× L2
F(0, T +

K;R)×H2
F(0, T +K;R) ×M2

F(0, T +K;RD) satisfying Equation (4.6).

Proof. We fix β = 16C2(L+ 1)(T + 1), where C is the Lipschitz constant of f given
in condition A1.1 and introduce a norm in the Banach space S2

F(0, T+K;R)×L2
F(0, T

+K;R)×H2
F(0, T +K;R)×M2

F(0, T +K;RD) as follows:

‖(Y (t), Z(t), Q(t), V (t))‖2
β = E

[∫ T+K

0

eβt
(
|Y (t)|2 + |Z(t)|2

+

∫
R0

|Q(t, z)|2 ν(dz) +
D∑
j=1

∣∣V j(t)
∣∣2 λj(t))dt].

It is more convenient to use the equivalent β-norm for applying Banach Fixed Point
Theorem. Now we pose the problem,

− dY (t) = f(t, y(t), z(t), q(t), v(t), y(t+ δ1(t)), z(t+ δ2(t)), q(t+ δ3(t)),

v(t+ δ4(t)), α(t))dt− Z(t)dW (t)−
∫
R0

Q(t, z)Ñ(dt, dz)− V (t)dΦ̃(t), t ∈ [0, T ],

Y (t) = ξ(t), Z(t) = ψ(t), Q(t) = ζ(t) and V (t) = ϑ(t), t ∈ [T, T +K]. (4.7)

Let us define:

h : S2
F(0, T +K;R)× L2

F(0, T +K;R)×H2
F(0, T +K;R)×M2

F(0, T +K;RD)

→ S2
F(0, T +K;R)× L2

F(0, T +K;R)×H2
F(0, T +K;R)×M2

F(0, T +K;RD).
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For two arbitrary elements (y(t), z(t), q(t), v(t)) and (y′(t), z′(t), q′(t), v′(t)) in
S2
F(0, T +K;R)× L2

F(0, T +K;R)×H2
F(0, T +K;R)×M2

F(0, T +K;RD),
let us set:

h(y(t), z(t), q(t), v(t)) = (Y (t), Z(t), Q(t), V (t)) and
h(y′(t), z′(t), q′(t), v′(t)) = (Y ′(t), Z ′(t), Q′(t), V ′(t)).

Furthermore, let us define their differences by

(ŷ(t), ẑ(t), q̂(t), v̂(t)) = (y(t)− y′(t), z(t)− z′(t), q(t)− q′(t), v(t)− v′(t)) and

(Ŷ (t), Ẑ(t), Q̂(t), V̂ (t)) = (Y (t)− Y (t), Z(t)− Z ′(t), Q(t)−Q′(t), V (t)− V ′(t)).

According to the existence-uniqueness results of the BSDEs with jumps and regimes
(see Propositions 5.1 and 5.2 by Crépey and Matoussi [14]), the aforementioned equa-
tion (4.7) has a unique solution; hence, h is well-defined.

Now we will prove that h is a contraction mapping under the norm ‖·‖β .

In fact, we apply product rule for regime-switching jump-diffusions (cf. Lemma 3.2
by Zhang, Elliott and Siu [64] or Appendix) and take the expectation:

E[eβt(Ŷ (t))2] + E

[ ∫ T

t

eβs
(∣∣∣Ẑ(s)

∣∣∣2 +

∫
R

∣∣∣Q̂(s, z)
∣∣∣2 ν(dz) +

D∑
j=1

∣∣∣V̂ j(s)
∣∣∣2 λj(s))ds]

= E

[∫ T

t

eβs
(

2Ŷ (s)

(
f(s, y(s), z(s), q(s), v(s), y(s+ δ1(s)), z(s+ δ2(s)),

q(s+ δ3(s)), v(s+ δ4(s)), α(s))− f(s, y′(s), z′(s), q′(s), v′(s), y′(s+ δ1(s)),

z′(s+ δ2(s)), q′(s+ δ3(s)), v′(s+ δ4(s)), α(s))

)]
− β(Ŷ (s))2

)
ds

]
. (4.8)

We note that the terms 2

∫ t

0

eβsŶ (s)Ẑ(s)dW (s), 2

∫ t

0

eβsŶ (s)Q̂(s, z)Ñ(ds, dz) and

2

∫ t

0

eβsŶ (s)V̂ (s, z)dΦ̃(s) are uniformly integrable martingales. Let us show this:

E

[(∫ T

0

D∑
j=1

e2βt
∣∣∣Ŷ (t)

∣∣∣2 ∣∣∣V̂ j(t)
∣∣∣2 λj(t)dt) 1

2
]

≤ aE

[
sup

0≤t≤T

∣∣∣Ŷ (t)
∣∣∣ (∫ T

0

D∑
j=1

∣∣∣V̂ j(t)
∣∣∣2 λj(t)dt) 1

2
]

≤ a

2
E

[
sup

0≤t≤T

∣∣∣Ŷ (t)
∣∣∣2]+

a

2
E

[∫ T

0

D∑
j=1

∣∣∣V̂ j(t)
∣∣∣2 λj(t)dt];

since Ŷ (t) ∈ S2
F(0, T ;R) and V̂ (t) ∈M2

F(0, T ;RD), the associated stochastic integral
is a uniformly integrable martingale with null expectation. The others can be obtained
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similarly.

By Equation (4.8), condition A1.1, assumption (a2) and the inequality 2ab ≤ (a2 +b2):

≤ E

[∫ T

t

eβs
(
−β
∣∣∣Ŷ (s)

∣∣∣2 + 2C
∣∣∣Ŷ (s)

∣∣∣ (|ŷ(s)|+ |ẑ(s)|+ ‖q̂(s)‖J

+ ‖v̂(s)‖S + E

[
|ŷ(s+ δ1(s))|+ |ẑ(s+ δ2(s))|+ ‖q̂(s+ δ3(s))‖J

+ ‖v̂(s+ δ4(s))‖S |Fs
]))

ds

]
≤ E

[∫ T

t

eβs(−β
∣∣∣Ŷ (s)

∣∣∣2)ds

]
+ E

[∫ T

t

eβs2C
∣∣∣Ŷ (s)

∣∣∣ (|ŷ(s)|+ |ẑ(s)|

+ ‖q̂(s)‖J + ‖v̂(s)‖S
)
ds

]
+ E

[∫ T

t

eβs2C
∣∣∣Ŷ (s)

∣∣∣ (|ŷ(s+ δ1(s))|

+ |ẑ(s+ δ2(s))|+ ‖q̂(s+ δ3(s))‖J + ‖v̂(s+ δ4(s))‖S
)
ds

]
≤ E

[∫ T

t

eβs(−β
∣∣∣Ŷ (s)

∣∣∣2)ds

]
+ E

[∫ T

t

eβs
(
β

4

∣∣∣Ŷ (s)
∣∣∣2 +

4C2

β
(|ŷ(s)|+ |ẑ(s)|)2

)
ds

]
+ E

[∫ T

t

eβs
(
β

4

∣∣∣Ŷ (s)
∣∣∣2 +

4C2

β
(‖q̂(s)‖J + ‖v̂(s)‖S)2

)
ds

]
+ E

[∫ T

t

eβs
(
β

4

∣∣∣Ŷ (s)
∣∣∣2 +

4C2

β
(|ŷ(s+ δ1(s))|+ |ẑ(s+ δ2(s))|)2

)
ds

]
+ E

[∫ T

t

eβs
(
β

4

∣∣∣Ŷ (s)
∣∣∣2 +

4C2

β
(‖q̂(s+ δ3(s))‖J

+ ‖v̂(s+ δ4(s))‖S)2

)
ds

]
≤ E

[∫ T

t

eβs
8C2

β
(|ŷ(s)|2 + |ẑ(s)|2 + ‖q̂(s)‖2

J + ‖v̂(s)‖2
S)ds

]
+ E

[∫ T

t

eβs
8C2

β
(|ŷ(s+ δ1(s))|2 + |ẑ(s+ δ2(s))|2 + ‖q̂(s+ δ3(s))‖2

J

+ ‖v̂(s+ δ4(s))‖2
S)ds

]
≤ 8C2

β
E

[∫ T+K

t

eβs(|ŷ(s)|2 + |ẑ(s)|2 + ‖q̂(s)‖2
J + ‖v̂(s)‖2

S)ds

]
+

8C2L

β
E

[∫ T+K

t

eβs(|ŷ(s)|2 + |ẑ(s)|2 + ‖q̂(s)‖2
J + ‖v̂(s)‖2

S)ds

]
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=
8C2

β
(L+ 1)E

[∫ T+K

0

eβs(|ŷ(s)|2 + |ẑ(s)|2 + ‖q̂(s)‖2
J + ‖v̂(s)‖2

S)ds

]
.

In particular,

E

[
eβt
∣∣∣Ŷ (t)

∣∣∣2 dt] ≤ 8C2

β
(L+ 1) ‖(ŷ(t), ẑ(t), q̂(t), v̂(t))‖2

β ,

E

[∫ T

0

eβt
∣∣∣Ŷ (t)

∣∣∣2 dt] ≤ 8C2T

β
(L+ 1) ‖(ŷ(t), ẑ(t), q̂(t), v̂(t))‖2

β .

Hence,

E

[∫ T+K

0

eβt
(∣∣∣Ŷ (t)

∣∣∣2 +
∣∣∣Ẑ(t)

∣∣∣2 +

∫
R0

∣∣∣Q̂(t, z)
∣∣∣2 ν(dz) +

D∑
j=1

∣∣∣V̂ j(t)
∣∣∣2 λj(t))dt]

≤ 8C2(L+ 1)(T + 1)

β
‖(ŷ(t), ẑ(t), q̂(t), v̂(t))‖2

β .

Since β = 16C2(L+ 1)(T + 1), we obtain:∥∥∥(Ŷ , Ẑ, Q̂, V̂ )
∥∥∥
β
≤ 1√

2
‖(ŷ, ẑ, q̂, v̂)‖β .

Hence, h is a contraction mapping on S2
F(0, T +K;R)× L2

F(0, T +K;R)×H2
F(0, T

+K;R)×M2
F(0, T +K;RD). Then, by Banach Fixed Point Theorem (see Appendix),

Equation (4.6) has a unique solution (Y, Z,Q, V ) ∈ S2
F(0, T+K;R)×L2

F(0, T+K;R)
×H2

F(0, T +K;R)×M2
F(0, T +K;RD).

We note that if δi(·) = δ ∈ R+ for all i = 1, 2, 3, 4, then one can omit assumption (a2)
in the proof and hence, in Theorem 4.3 itself.

In this section, we proved Theorem 4.1 and Theorem 4.3 with a time-dependent delay
function, which leads to possible future works in such a setting. In this thesis, we
present our applications with a positive constant δ as a delay component.
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CHAPTER 5

STOCHASTIC MAXIMUM PRINCIPLE APPROACH

In this chapter, we follow the techniques of Stochastic Maximum Principle and prove
the Necessary and Sufficient Maximum Principles under full and partial information
for a Markov regime-switching jump-diffusion model with delay. Furthermore, we
give an application to finance which shows the optimal consumption rate derived from
a cash flow with delay effect. This chapter can be seen as an extension of Øksendal,
Sulem and Zhang [47] from a jump-diffusion model with delay to a Markov regime-
switching jump-diffusion system with delay. Here, in our setting, the Markov chain
α, its jump size γ and the compensated random measure Φ̃ generated by the Markov
chain can be observed as our contribution (cf. Savku and Weber [52]).

5.1 Model Set-up and Control Problem

Let (Ω,F, (Ft)t≥0 ,P) be a complete probability space, where F = (Ft : t ∈ [0, T ]).
Furthermore, (Ft)t≥0 is a right-continuous, P-completed filtration generated by a 1-
dimensional Brownian motion W (·), a 1-dimensional Poisson random measure N(·, ·)
and a D-dimensional Markov chain α(·). We assume that these processes are indepen-
dent of each other and adapted to F.

Now we represent the controlled Markov regime-switching jump-diffusion with delay:

X(t) =b(t,X(t), Y (t), A(t), α(t), u(t))dt

+ σ(t,X(t), Y (t), A(t), α(t), u(t))dW (t)

+

∫
R0

η(t,X(t−), Y (t−), A(t−), α(t−), u(t−), z)Ñ(dt, dz)

+ γ(t,X(t−), Y (t−), A(t−), α(t−), u(t−))dΦ̃(t), t ∈ [0, T ], (5.1)
X(t) =x0(t), t ∈ [−δ, 0],

with delayed and averaged (over the pre-history) states as follows, respectively:

Y (t) = X(t− δ) and A(t) =

∫ t

t−δ
e−ρ(t−r)X(r)dr, t ∈ [0, T ].
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Indeed, let x0 be a continuous, deterministic function, ρ ≥ 0 be a constant averaging
parameter, δ > 0 be a constant delay. Let U be a non-empty, closed, convex subset of
R. We introduce:

b : [0, T ]× R× R× R× S × U → R,
σ : [0, T ]× R× R× R× S × U → R,
η : [0, T ]× R× R× R× S × U × R0 → R,
γ : [0, T ]× R× R× R× S × U → RD,

where for all x, y, a ∈ R, ei ∈ S, u ∈ U , z ∈ R0 and t ∈ [0, T ], b(t, x, y, a, ei, u),
σ(t, x, y, a, ei, u), η(t, x, y, a, ei, u, z) and γ(t, x, y, a, ei, u) are given Ft-measurable,
C1-functions with respect to x, y, a, u such that for all xi = x, y, a, u, the following
condition holds

E

[∫ T

0

{∣∣∣∣ ∂b∂xi (t,X(t), Y (t), A(t), α(t), u(t))

∣∣∣∣2 +

∣∣∣∣ ∂σ∂xi (t,X(t), Y (t), A(t), α(t), u(t))

∣∣∣∣2
+

∫
R0

∣∣∣∣ ∂η∂xi (t,X(t−), Y (t−), A(t−), α(t−), u(t−), z)

∣∣∣∣2 ν(dz)

+
D∑
j=1

∣∣∣∣ ∂γ∂xi (t,X(t−), Y (t−), A(t−), α(t−), u(t−))

∣∣∣∣2 λj(t)}dt] <∞.
An admissible control is a U-valued, Ft-measurable, càdlàg process u(t), t ∈ [0, T ],
such that Equation (5.1) has a unique solution and

E

[∫ T

0

|u(t)|2 dt
]
<∞.

We denote the set of all admissible controls by A.

Let us define the performance criterion (objective functional) as follows:

J(u) = E

[∫ T

0

f(t,X(t), Y (t), A(t), α(t), u(t))dt+ g(X(T ), α(T ))

]
for all u ∈ A, where f : [0, T ] × R × R × R × S × U → R and g : R × S → R are
C1-functions with respect to x, y, a, u, such that for all xi = x, y, a, u,

E

[∫ T

0

(
|f(t,X(t), Y (t), A(t), α(t), u(t))|+

∣∣∣∣ ∂f∂xi (t,X(t), Y (t), A(t), α(t), u(t))

∣∣∣∣2
)
dt

+ |g(X(T ), α(T ))|+ |gx(X(T ), α(T ))|2
]
<∞.

Our problem is to find the optimal control û ∈ A such that

J(û) = sup
u∈A

J(u). (5.2)

52



Now, let us define the Hamiltonian as follows:

H : [0, T ]× R× R× R× S × U × R× R×R× RD → R,

H(t, x, y, a, ei, u, p, q, r, w) = f(t, x, y, a, ei, u) + b(t, x, y, a, ei, u)p

+ σ(t, x, y, a, ei, u)q

+

∫
R0

η(t, x, y, a, ei, u, z)r(t, z)ν(dz)

+
D∑
j=1

γj(t, x, y, a, ei, u)wj(t)λij, (5.3)

whereR denotes the set of all functions r : [0, T ]×R0 → R, for which the integral in
Equation (5.3) converges.

Associated to H , the adjoint, unknown, adapted processes (p(t) ∈ R : t ∈ [0, T ]),
(q(t) ∈ R : t ∈ [0, T ]) , (r(t, z) ∈ R : t ∈ [0, T ], z ∈ R0) and(
w(t) ∈ RD : t ∈ [0, T ]

)
are given by the following ABSDE with jumps and regimes:

dp(t) = E[µ(t−)|Ft]dt+ q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz) + w(t)dΦ̃(t), (5.4)

p(T ) = gx(X(T ), α(T )),

where

µ(t) :=− ∂H

∂x
(t,X(t), Y (t), A(t), α(t), u(t), p(t), q(t), r(t, ·), w(t))

− ∂H

∂y
(t+ δ,X(t+ δ), Y (t+ δ), A(t+ δ), α(t+ δ), u(t+ δ), p(t+ δ),

q(t+ δ), r(t+ δ, ·), w(t+ δ))1[0,T−δ](t)− eρt
(∫ t+δ

t

∂H

∂a
(s,X(s), Y (s),

A(s), α(s), u(s), p(s), q(s), r(s, ·), w(s))e−ρs1[0,T ](s)ds

)
. (5.5)

We note that µ(t) in Equation (5.5) contains future values of the processes X(s), α(s),
u(s), p(s), q(s), r(s, ·) and w(s) for s ≤ t+ δ, hence; the BSDE in Equation (5.4) is
anticipative (or time advanced). In the following section, we will prove the existence-
uniqueness theorem for an ABSDE with jumps and regimes in a general setting and
then, we will apply it to a constant delay case, δ > 0, for the rest of the work.

Moreover, the derivatives of b, σ, η, γ with respect to x, y and a are bounded. By this
assumption, it is easy to check that µ in Equations (5.4)-(5.5) satisfies the Lipschitz
condition A1.1 for p, q, r, w and future values of these processes.
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Note that by the aforementioned integrability conditions on the derivatives of b, σ, η, γ
and f , assumption A2.2 in Theorem 4.3 is satisfied by µ in Equations (5.4)-(5.5).

Furthermore, note that p(T ) = gx(X(T ), α(T )) (see Equation (5.4)) corresponds to
ξ(·) in Theorem 4.3; hence, it has to satisfy E[|gx(X(T ), α(T ))|2] <∞.

5.2 Sufficient Maximum Principle

In this section, we present the sufficient maximum principle and show that under con-
cavity assumptions, maximizing the Hamiltonian provides us the optimal control. For
the rest of the work, we will use the following abbreviations and we omit left limit
representation for the sake of notational simplicity:

∂Ĥ

∂x
(t) :=

∂

∂x
H(t, X̂(t), Ŷ (t), Â(t), α(t), p̂(t), q̂(t), r̂(t, z), ŵ(t)),

b̂(t) := b(t, X̂(t), Ŷ (t), Â(t), α(t), p̂(t), q̂(t), r̂(t, z), ŵ(t)),

b(t) := b(t,X(t), Y (t), A(t), α(t), p(t), q(t), r(t, z), w(t)), etc.

Theorem 5.1. Let û ∈ A with corresponding state processes X̂(t), Ŷ (t) and Â(t) and
the adjoint processes p̂(t), q̂(t), r̂(t, z) and ŵ(t) assumed to satisfy the SDDEJR in
Equation (5.1) and the ABSDE with jumps and regimes in Equation (5.4), respectively.
Suppose that the following assertions hold:

1.

E

[∫ T

0

p̂(t)2

(
(σ(t)− σ̂(t))2 +

∫
R0

(η(t, z)− η̂(t, z))2ν(dz)

+
D∑
j=1

(γj(t)− γ̂j(t))2λj(t)

)
dt

]
<∞

and

E

[∫ T

0

(X(t)− X̂(t))2

{
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

+
D∑
j=1

(ŵj)2(t)λj(t)

}
dt <∞.

2. For almost all t ∈ [0, T ],

H(t, X̂(t−), Ŷ (t−), Â(t−), α(t−), û(t−), p̂(t−), q̂(t), r̂(t, ·), ŵ(t))

= max
u∈U

H(t, X̂(t−), Ŷ (t−), Â(t−), α(t−), u, p̂(t−), q̂(t), r̂(t, ·), ŵ(t)).
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3. (x, y, a, u) 7→ H(t, x, y, a, ei, u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)) is a concave function for
each t ∈ [0, T ] almost surely and for each ei ∈ S.

4. g(x, ei) is a concave function of x for each ei ∈ S.

Then, û(t) is an optimal control process and X̂(t), Ŷ (t) and Â(t) are the correspond-
ing controlled state processes.

Proof. Let J(u)− J(û) = I1 − I2, where

I1 := E

[∫ T

0

{
f(t,X(t), Y (t), A(t), α(t), u(t))

− f(t, X̂(t), Ŷ (t), Â(t), α(t), û(t))

}
dt

]
and

I2 := E

[
g(X(T ), α(T ))− g(X̂(T ), α(T ))

]
.

Concave functions are bounded from above by their first order Taylor approximation;
hence by the concavity of H , we have

I1 = E

[∫ T

0

{
H(t,X(t), Y (t), A(t), α(t), u(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

−H(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))

− (b(t)− b̂(t))p̂(t)− (σ(t)− σ̂(t))q̂(t)

−
∫
R0

(η(t, z)− η̂(t, z))r̂(t, z)ν(dz)

−
D∑
j=1

(γj(t)− γ̂j(t))ŵj(t)λj(t)
}
dt

]

≤ E

[∫ T

0

{
∂Ĥ

∂x
(t)(X(t)− X̂(t)) +

∂Ĥ

∂y
(t)(Y (t)− Ŷ (t))

+
∂Ĥ

∂a
(t)(A(t)− Â(t)) +

∂Ĥ

∂u
(t)(u(t)− û(t))− (b(t)− b̂(t))p̂(t)

− (σ(t)− σ̂(t))q̂(t)−
∫
R0

(η(t, z)− η̂(t, z))r̂(t, z)ν(dz)

−
D∑
j=1

(γj(t)− γ̂j(t))ŵj(t)λj(t)
}
dt

]
. (5.6)

Via integrating by parts formula and by the concavity of g, we obtain:

I2 ≤ E

[
∂ĝ

∂x
(T )(X(T )− X̂(T ))

]
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= E

[
p̂(T )(X(T )− X̂(T ))

]
= E

[∫ T

0

p̂(t)d(X(t)− X̂(t)) +

∫ T

0

(X(t)− X̂(t))dp̂(t)

+

∫ T

0

{
(σ(t)− σ̂(t))q̂(t) +

∫
R0

(η(t, z)− η̂(t, z))r̂(t, z)ν(dz)

+
D∑
j=1

(γj(t)− γ̂j(t))ŵj(t)λj(t)
}
dt

]

= E

[∫ T

0

p̂(t)

{
(b(t)− b̂(t))dt+ (σ(t)− σ̂(t))dW (t)

+

∫
R0

(η(t, z)− η̂(t, z))Ñ(dt, dz) + (γ(t)− γ̂(t))dΦ̃(t)

}
+

∫ T

0

(X(t)− X̂(t))

{
E[µ̂(t)|Ft]dt+ q̂(t)dW (t) +

∫
R0

r̂(t, z)Ñ(dt, dz)

+ ŵ(t)dΦ̃(t)

}
+

∫ T

0

{
(σ(t)− σ̂(t))q̂(t) +

∫
R0

(η(t, z)− η̂(t, z))r̂(t, z)ν(dz)

+
D∑
j=1

(γj(t)− γ̂j(t))ŵj(t)λj(t)
}
dt

]
. (5.7)

Note that X(t) = X̂(t) = x0(t) for all t ∈ [−δ, 0]. Then, by Equations (5.6)-(5.7), we
have

J(u)− J(û) ≤ E

[∫ T

0

{
∂Ĥ

∂x
(t)(X(t)− X̂(t)) +

∂Ĥ

∂y
(t)(Y (t)− Ŷ (t))

+
∂Ĥ

∂a
(t)(A(t)− Â(t)) +

∂Ĥ

∂u
(t)(u(t)− û(t))

+ (X(t)− X̂(t))µ̂(t)

}
dt

]
= E

[∫ T+δ

δ

{
∂Ĥ

∂x
(t− δ) +

∂Ĥ

∂y
(t)1[0,T ](t) + µ̂(t− δ)

}
× (Y (t)− Ŷ (t))dt+

∫ T

0

∂Ĥ

∂a
(t)(A(t)− Â(t))dt

+

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
. (5.8)

Substituting r := t− δ, we get∫ T

0

∂Ĥ

∂a
(s)(A(t)− Â(s))ds
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=

∫ T

0

∂Ĥ

∂a
(s)

∫ s

s−δ
e−ρ(s−r)(X(r)− X̂(r))drds

=

∫ T

0

(∫ r+δ

r

∂Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)
eρr(X(r)− X̂(r))dr

=

∫ T+δ

δ

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)
eρ(t−δ)(X(t− δ)− X̂(t− δ))dt. (5.9)

By combining the Equations (5.8)-(5.9), we obtain

J(u)− J(û) ≤ E

[∫ T+δ

δ

{
∂Ĥ

∂x
(t− δ) +

∂Ĥ

∂y
(t)1[0,T ](t) + µ̂(t− δ)

+

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρs1[0,T ](s)ds

)
eρ(t−δ)+

}
(Y (t)− Ŷ (t))dt

+

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
= E

[∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
≤ 0.

Since û(t) maximizes H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)), the last
inequality holds (see Proposition 2.1 by Ekeland and Temam [15]). Then, we can
conclude that û(t) is an optimal control for problem (5.2).

One of the key facts in this proof is that concave and differentiable functions are
bounded from above by their first-order Taylor approximation. Concavity assump-
tions on H with respect to x, y, a, u and g with respect to x for all ei ∈ S have been
used in this sense. Furthermore, Proposition 2.1 by Ekeland and Temam [15] works
under concavity condition of H with respect to u.

In the next section, we present Necessary Maximum Principle by which one can deter-
mine the candidate optimal control processes, but for verification the concavity condi-
tion is necessary.

5.3 Necessary Maximum Principle

Let û be an optimal control process and β be any other control process, satisfying
û + β =: v′ ∈ A. Since U is a convex set, for any v′ ∈ A, the perturbed control
process us = û+ s(v′ − û), 0 < s < 1, is also in A. The directional derivative of the
performance criterion J(·) at û in the direction of β is given by:

d

ds
J(û+ sβ)|s=0 := lim

s→0+

J(û+ sβ)− J(û)

s
.
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Since û is an optimal control, a necessary condition for optimality is

d

ds
J(û+ sβ)|s=0 ≤ 0.

Let us assume that the derivative process ξ(t) =
d

ds
Xu+sβ(t) |s=0 for t ∈ [0, T ] exists

and it is defined as follows:

dξ(t) =

{
∂b

∂x
(t)ξ(t) +

∂b

∂y
(t)ξ(t− δ) +

∂b

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂b

∂u
(t)β(t)

}
dt

+

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t− δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂σ

∂u
(t)β(t)

}
dW (t) +

∫
R0

{
∂η

∂x
(t, z)ξ(t) +

∂η

∂y
(t, z)ξ(t− δ)

+
∂η

∂a
(t, z)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂η

∂u
(t, z)β(t)

}
Ñ(dt, dz) +

{
∂γ

∂x
(t)ξ(t)

+
∂γ

∂y
(t)ξ(t− δ) +

∂γ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂γ

∂u
(t)β(t)

}
dΦ̃(t), (5.10)

where we know that

d

ds
Y u+sβ(t)|s=0 =

d

ds
Xu+sβ(t− δ)|s=0 = ξ(t− δ),

d

ds
Au+sβ(t)|s=0 =

d

ds

(∫ t

t−δ
e−ρ(t−r)Xu+sβ(r)dr

)
|s=0

=

∫ t

t−δ
e−ρ(t−r) d

ds
Xu+sβ(r)|s=0dr =

∫ t

t−δ
e−ρ(t−r)ξ(r)dr,

and we have used the following abbreviations:

∂b

∂x
(t) :=

∂b

∂x
(t,X(t), Y (t), A(t), α(t), u(t)), etc.

Note that ξ(t) = 0 for all t ∈ [−δ, 0].

Theorem 5.2. Let û ∈ A be an optimal control of problem in Equation (5.2) subject
to the controlled system (5.1) and let (p̂(t), q̂(t), r̂(t, z), ŵ(t)) be the unique solution
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of Equation (5.4). Moreover, let us assume that

E

[∫ T

0

p̂2(t)

{ (
∂σ̂

∂x

)2

(t)ξ̂2(t) +

(
∂σ̂

∂y

)2

(t)ξ̂2(t− δ) +

(
∂σ̂

∂a

)2

(t)(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂σ̂

∂u

)2

(t)β2(t) +

∫
R0

{ (
∂η̂

∂x

)2

(t, z)ξ̂2(t)

+

(
∂η̂

∂y

)2

(t, z)ξ̂2(t− δ) +

(
∂η̂

∂a

)2

(t, z)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂η̂

∂u

)2

(t, z)β2(t)

}
ν(dz) +

D∑
j=1

{ (
∂γ̂j

∂x

)2

(t)ξ̂2(t)

+

(
∂γ̂j

∂y

)2

(t)ξ̂2(t− δ) +

(
∂γ̂j

∂a

)2

(t)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂γ̂j

∂u

)2

(t)β2(t)

}
λj(t)

}
dt

]
<∞

and

E

[∫ T

0

ξ̂2(t)

{
q̂2(t) +

∫
R0

(r̂)2(t, z)ν(dz) +
D∑
j=1

ŵj2(t)λj(t)

}
dt

]
<∞.

Then, for any v ∈ U , we have

∂H

∂u
(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))(v − û(t)) ≤ 0,

dt-a.e, P-a.s.

Proof. For simplicity of notation, let be û = u, X̂ = X , Ŷ = Y , p̂ = p, q̂ = q,
r̂ = r and ŵ = w. Then,

0 ≥ d

ds
J(u+ sβ)|s=0

=
d

ds
E

[∫ T

0

f(t,Xu+sβ(t), Y u+sβ(t), Au+sβ(t), α(t), u(t) + sβ)dt

+ g(Xu+sβ(T ), α(T ))

]∣∣∣∣
s=0

= E

[∫ T

0

{
∂f

∂x
(t)ξ(t) +

∂f

∂y
(t)ξ(t− δ) +

∂f

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂f

∂u
(t)β(t)

}
dt+

∂g

∂x
(X(T ), α(T ))ξ(T )

]
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= E

[∫ T

0

{
∂H

∂x
(t)− ∂b

∂x
(t)p(t)− ∂σ

∂x
(t)q(t)−

∫
R0

∂η

∂x
(t, z)r(t, z)ν(dz)

−
D∑
j=1

∂γj

∂x
(t)wj(t)λj(t)

}
ξ(t)dt+

∫ T

0

{
∂H

∂y
(t)− ∂b

∂y
(t)p(t)− ∂σ

∂y
(t)q(t)

−
∫
R0

∂η

∂y
(t, z)r(t, z)ν(dz)−

D∑
j=1

∂γj

∂y
(t)wj(t)λj(t)

}
ξ(t− δ)dt

+

∫ T

0

{
∂H

∂a
(t)− ∂b

∂a
(t)p(t)− ∂σ

∂a
(t)q(t)−

∫
R0

∂η

∂a
(t, z)r(t, z)ν(dz)

−
D∑
j=1

∂γj

∂a
(t)wj(t)λj(t)

}(∫ t

t−δ
e−ρ(t−r)ξ(r)dr

)
dt+

∫ T

0

{
∂H

∂u
(t)

− ∂b

∂u
(t)p(t)− ∂σ

∂u
(t)q(t)−

∫
R0

∂η

∂u
(t, z)r(t, z)ν(dz)

−
D∑
j=1

∂γj

∂u
(t)wj(t)λj(t)

}
β(t)dt+

∂g

∂x
(X(T ), α(T ))ξ(T )

]
. (5.11)

Via Equation (5.10) and integration by parts, we get:

E

[
∂g

∂x
(X(T ), α(T ))ξ(T )

]
= E

[
p(T )ξ(T )

]
= E

[∫ T

0

p(t)dξ(t) +

∫ T

0

ξ(t)dp(t) +

∫ T

0

q(t)

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t− δ)

+
∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dt+

∫ T

0

∫
R0

r(t, z)

{
∂η

∂x
(t, z)ξ(t)

+
∂η

∂y
(t, z)ξ(t− δ) +

∂η

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂η

∂u
(t)β(t)

}
ν(dz)dt

+

∫ T

0

D∑
j=1

wj(t)

{
∂γj

∂x
(t)ξ(t) +

∂γj

∂y
(t)ξ(t− δ) +

∂γj

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂γj

∂u
(t)β(t)

}
λj(t)dt

]
. (5.12)

By Equations (5.11)-(5.12), we obtain:

0 ≥ d

ds
J(u+ sβ)|s=0

= E

[∫ T

0

{
∂H

∂x
(t)ξ(t) +

∂H

∂y
(t)ξ(t− δ) +

∂H

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr
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+
∂H

∂u
(t)β(t) + ξ(t)E[µ(t)|Ft]

}
dt

]
= E

[∫ T

0

ξ(t)

{
∂H

∂x
(t)− ∂H

∂x
(t)− ∂H

∂y
(t+ δ)1[0,T−δ](t)

− eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)}
dt+

∫ T

0

∂H

∂y
(t)ξ(t− δ)dt

+

∫ T

0

(∫ s

s−δ
e−ρ(s−t)ξ(t)dt

)
∂H

∂a
(s)ds+

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0

ξ(t)

{
−∂H
∂y

(t+ δ)1[0,T−δ](t)

− eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)}
dt+

∫ T

0

∂H

∂y
(t)ξ(t− δ)dt

+ eρt
∫ T

0

(∫ t+δ

t

∂H

∂a
(s)e−ρs1[0,T−δ](s)ds

)
ξ(t)dt+

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0

∂H

∂u
(t)β(t)dt

]
.

Let β(t) = v′(t)− u(t). Since u(t) is optimal, we have

d

ds
J(u+ s(v′ − u))|s=0 =

[∫ T

0

∂H

∂u
(t)(v′(t)− u(t))dt

]
≤ 0.

Let us define

v′(t) :=

{
v, on B × (t0, t0 + h),

u(t), otherwise,

for any deterministic element v ∈ U and for any element B of Ft. Then,

E

[∫ T

0

∂H

∂u
(t)(v′(t)− u(t))dt

]
= E

[∫ t0+h

t0

∂H

∂u
(t)(v − u(t))1Bdt

]
.

Dividing by h and taking the limit, we get

lim
h→0

1

h
E

[∫ t0+h

t0

∂H

∂u
(t)(v − u(t))1Bdt

]
= E

[
∂H

∂u
(t0)(v − u(t0))1B

]
≤ 0 a.e.

for all B ∈ Ft0; this implies that

E

[
∂H

∂u
(t0)(v − u(t0))|Ft0

]
≤ 0.

Since the quantity inside the conditional expectation is Ft0-measurable, then the in-
equality in Theorem 5.2 holds dt− a.e., P− a.s., for all v ∈ U .
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5.4 Sufficient Maximum Principle under Partial Information

In this section, we establish a maximum principle of sufficient type under partial in-
formation. Under the assumptions of Section 5.1, this theorem is the extension of
Øksendal, Sulem and Zhang [47] to a Markov regime-switching model.

Let us introduce Et ⊆ Ft, t ∈ [0, T ], the subfiltration of {Ft}t∈[0,T ] which represents
the information available to the controller who decides on the value of u(t) at time t.
For example, we may consider Et = F(t−d)+ for some given d > 0; this then signifies
a retarded flow of information or a retarded learning.

Let AE be a given family of admissible control processes u(t), t ∈ [0, T ], included in
the set of càdlàg, E-adapted, U-valued processes such that Equation (5.1) has a unique
solution.

Theorem 5.3. Let û ∈ AE with corresponding state processes X̂(t), Ŷ (t) and Â(t)
and the adjoint processes p̂(t), q̂(t), r̂(t, z) and ŵ(t) assumed to satisfy the SDDEJR
(5.1) and the ABSDE with jumps and regimes as given in Equation (5.4), respectively.
Suppose that the following conditions hold:

1.

E

[∫ T

0

p̂(t)2

(
(σ(t)− σ̂(t))2 +

∫
R0

(η(t, z)− η̂(t, z))2ν(dz)

+
D∑
j=1

(γj(t)− γ̂j(t)
)2

λj(t))dt

]
<∞

and

E

[∫ T

0

(X(t)− X̂(t))2

{
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

+
D∑
j=1

(ŵj)2(t)λj(t)dt <∞.

2. For almost all t ∈ [0, T ],

E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), û(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
= max

u∈U
E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
.

3. (x, y, a, u) 7→ H(t, x, y, a, ei, u, p̂(t), q̂(t), r̂(t, ·), ŵ(t)) is a concave function for
each t ∈ [0, T ] almost surely and for each ei ∈ S.

4. g(x, ei) is a concave function of x for each ei ∈ S.
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Then, û(t) is an optimal control process and X̂(t), Ŷ (t), Â(t) are the corresponding
controlled state processes for problem (5.2).

Proof. By the methods of Theorem 5.1, we obtained Equations (5.8)-(5.9). For the
sake of completeness, we give the rest of the proof. Then,

J(u)− J(û) ≤ E

[∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
= E

[∫ T

0

E

[
∂Ĥ

∂u
(t)(u(t)− û(t))|Et

]
dt

]
= E

[∫ T

0

E

[
∂Ĥ

∂u
(t)|Et

]
(u(t)− û(t))dt

]
≤ 0.

Since û(t) maximizes E
[
H(t, X̂(t), Ŷ (t), Â(t), α(t), u, p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
,

the last inequality holds. Hence, û(t) is an optimal control.

5.5 Necessary Maximum Principle under Partial Information

In this section, we will provide a necessary maximum principle under partial infor-
mation which is the extension of the result by Øksendal, Sulem and Zhang [47] to a
Markov regime-switching model. Let us represent the technical assumptions as fol-
lows:

B1. For all u ∈ AE and all bounded β ∈ AE , there exists ε > 0 such that u+ sβ ∈ AE
for all s ∈ (−ε, ε).

B2. For all t0 ∈ [0, T ] and all bounded Et0-measurable random variables v, the control
process β(t), defined by

β(t) = v1[t0,T ](t), t ∈ [0, T ], (5.13)

belongs to AE .

B3. For all bounded β ∈ AE , the derivative process

ξ(t) :=
d

ds
Xu+sβ(t)|s=0

exists as described by Equation (5.10).
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Theorem 5.4. Let û ∈ AE with corresponding solutions X̂(t), Ŷ (t) and Â(t) of Equa-
tion (5.1) and p̂(t), q̂(t), r̂(t, z) and ŵ(t) of Equation (5.4) and corresponding deriva-
tive process ξ̂(t) given by Equation (5.10). Moreover, we assume that

E

[∫ T

0

p̂2(t)

{ (
∂σ̂

∂x

)2

(t)ξ̂2(t) +

(
∂σ̂

∂y

)2

(t)ξ̂2(t− δ) +

(
∂σ̂

∂a

)2

(t)(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂σ̂

∂u

)2

(t)β2(t) +

∫
R0

{ (
∂η̂

∂x

)2

(t, z)ξ̂2(t)

+

(
∂η̂

∂y

)2

(t, z)ξ̂2(t− δ) +

(
∂η̂

∂a

)2

(t, z)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂η̂

∂u

)2

(t, z)β2(t)

}
ν(dz) +

D∑
j=1

{ (
∂γ̂j

∂x

)2

(t)ξ̂2(t) +

(
∂γ̂j

∂y

)2

(t)ξ̂2(t− δ)

+

(
∂γ̂j

∂a

)2

(t)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂γ̂j

∂u

)2

(t)β2(t)

}
λj(t)

}
dt

]
<∞

and

E

[∫ T

0

(ξ̂)2(t)

{
(q̂)2(t) +

∫
R0

(r̂)2(t, z)ν(dz) +
D∑
j=1

(ŵj)2(t)λj(t)

}
dt

]
<∞.

Then the following equations are equivalent:

(iii) For all bounded β ∈ AE ,

d

ds
J(û+ sβ) |s=0 = 0 .

(iv) For all t ∈ [0, T ],

E

[
∂H

∂u
(t, X̂(t), Ŷ (t), Â(t), u, α(t), p̂(t), q̂(t), r̂(t, ·), ŵ(t))|Et

]
u=û(t)

= 0 a.s.

Proof. By the methods of Theorem 5.2, we obtained Equations (5.11)-(5.12). For the
sake of completeness, we give the reminder of the proof. In fact,

0 =
d

ds
J(u+ sβ)|s=0 = E

[∫ T

0

∂H

∂u
(t)β(t)dt

]
.

Let us consider β(t) = v(ω)1[s,T ](t) in Equation (5.13), where v(ω) is bounded and
Et0-measurable, s ≥ t0. Hence, we get

E

[∫ T

s

∂

∂u
H(t)vdt

]
= 0.
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Differentiating with respect to s, we get

E

[
∂

∂u
H(s)v

]
= 0

for all s ≥ t0 and for all v. Hence, we obtain

E

[
∂

∂u
H(t0)|Et0

]
= 0.

This shows that (iii) implies (iv).
Since every bounded β ∈ AE can be approximated by linear combinations of con-
trols β of the form (5.13), i.e, by so-called simple processes having the form of step
functions, if we reverse the above steps, we show that (iv) implies (iii).

5.6 An Application to Finance

Let b(t, α(t)), σ(t, α(t)), η(t, α(t), z) and γ(t, α(t)) be given bounded, adapted pro-
cesses. Let us consider a cash flow X0(t) with the dynamics:

dX0(t) = X(t− δ)
[
b(t, α(t))dt+ σ(t, α(t))dW (t)

+

∫
R0

η(t, α(t), z)Ñ(dt, dz) + γ(t, α(t))dΦ̃(t)

]
, t ∈ [0, T ],

X0(t) = x0(t), t ∈ [−δ, 0],

where x0(t) is a given Ft-measurable, continuous, non-negative and deterministic
function.

A consumption rate c(t) ≥ 0 is a càdlàg, Ft-adapted process process satisfying

E

[∫ t

0

|c(t)|2 dt
]
<∞.

Hence the dynamics of the net cash flow X(t) = Xc(t) is given by

dX(t) = (X(t− δ)b(t, α(t))− c(t))dt+X(t− δ)σ(t, α(t))dW (t)

+X(t− δ)
∫
R0

η(t, α(t), z)Ñ(dt, dz)

+X(t− δ)γ(t, α(t))dΦ̃(t), t ∈ [0, T ],

X(t) = x0(t), t ∈ [−δ, 0].

(5.14)

Let U(t, c, ei, ω) : [0, T ] × R+ × S × Ω → R be a given stochastic utility function at
each i = 1, 2, ..., D, so that it is a slightly more general way of modeling here; in fact
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U also depends on ω whose notation will be suppressed. Furthermore, U satisfies the
following conditions:

t 7→ U(t, c, ei) is Ft-adapted for each c ≥ 0 and ei ∈ S,

c 7→ U(t, c, ei) is C1 and
∂U

∂c
(t, c, ei) > 0 for each ei ∈ S,

c 7→ ∂U

∂c
(t, c, ei) is strictly decreasing for each ei ∈ S,

lim
c→∞

∂U

∂c
(t, c, ei) = 0 for all (t, ei) ∈ [0, T ]× S.

Let v0(t, ei) :=
∂U

∂c
(t, 0, ei) and for preventing from negative consumption values, we

define:

I(t, v, ei) :=

0, if v ≥ v0(t, ei),

(
∂U

∂c
(t, ·, ei))−1(v), if 0 ≤ v < v0(t, ei).

We want to find the optimal consumption rate ĉ such that

J(ĉ) = sup
c∈A

J(c)

= sup
c∈A

E

[∫ T

0

U(t, c(t), α(t))dt+ g(X(T ), α(T ))

]
.

In this case, the Hamiltonian takes the form

H(t, x, y, a, ei, c, p, q, r(·), w) = U(t, c, ei) + (b(t, ei)y − c)p+ yσ(t, ei)q

+y

∫
R0

η(t, ei, z)r(t, z)ν(dz) + y
D∑
j=1

γj(t, ei)w
j(t)λij. (5.15)

Here we observe that maximizing H with respect to c gives

∂U

∂c
(t, ĉ(t), α(t)) = p(t).

The ABSDE for p(t), q(t), r(t, z) and w(t) is, by Equations (5.4) and (5.5),

dp(t) =− E[(b(t+ δ, α(t+ δ))p(t+ δ) + σ(t+ δ, α(t+ δ))q(t+ δ)

+

∫
R0

η(t+ δ, α(t+ δ), z)r(t+ δ, z)ν(dz)

+
D∑
j=1

γj(t, α(t+ δ))wj(t+ δ)λj(t))1[0,T−δ](t)|Ft]dt

+ q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz) + w(t)dΦ̃(t), t ∈ [0, T ], (5.16)

p(T ) =gx(X(T ), α(T )).
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We solve Equation (5.16) inductively in the following way:

Step 1. If t ∈ [T − δ, T ], the corresponding adjoint equation takes the form:

dp(t) = q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz) + w(t)dΦ̃(t), t ∈ [T − δ, T ],

p(T ) = gx(X(T ), α(T )),

which has the solution

p(t) = E[gx(X(T ), α(T ))|Ft], t ∈ [T − δ, T ],

with corresponding q(t), r(t, z) and w(t) obtained through the martingale representa-
tion theorem for regime-switching jump-diffusions, by Crépéy and Matoussi [14].

Step 2. If t ∈ [T − 2δ, T − δ] and T − 2δ > 0, we get:

dp(t) =− E[(b(t+ δ, α(t+ δ))p(t+ δ) + σ(t+ δ, α(t+ δ))q(t+ δ)

+

∫
R0

η(t+ δ, α(t+ δ), z)r(t+ δ, z)ν(dz)

+
D∑
j=1

γj(t+ δ, α(t+ δ))wj(t+ δ)λj(t))1[0,T−δ](t)|Ft]dt

+ q(t)dW (t) +

∫
R0

r(t, z)Ñ(dt, dz) + w(t)dΦ̃(t), t ∈ [T − 2δ, T − δ],

with the terminal value p(T−δ) known from Step 1. When we follow the intervals, it is
seen that p(t+δ), q(t+δ), r(t+δ, z) andw(t+δ) are known by Step 1. Therefore, this
BSDE can be solved for p(t), q(t), r(t, z) and w(t) in the interval [T − 2δ, T − δ]. We
continue in the same way and, by induction, we obtain a solution p(t) = pX(T ),α(T )(t)
of Equation (5.16).

If 0 ≤ p(t) ≤ v0(t, α(t)) for all t ∈ [0, T ], then the optimal consumption rate ĉ(t) is
given by

ĉ(t) = ĉX̂(T ),α(T )(t) := I(t, p(t), α(t)), t ∈ [0, T ]. (5.17)

Hence, we can summarize above findings by the following Proposition.

Proposition 5.5. Let p(t), q(t), r(t, z), w(t) be the solution of Equation (5.16) and
suppose that 0 ≤ p(t) ≤ v0(t, α(t)) holds for all t ∈ [0, T ]. Then the corresponding
optimal terminal wealth X(t) and the optimal consumption rate ĉ(t) are given implic-
itly by Equations (5.14) and (5.17), respectively.

To obtain a more explicit solution, let us assume that b(t, ei) = b(t) is deterministic and
g(x, ei) = kx, k > 0, i = 1, 2, ..., D. We continue our study with the utility function
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U(t, c, ei) = φ(t, ei) ln(1 + c) for all i = 1, 2, ..., D, where φ(t, ei) is an R+-valued,
càdlàg and Ft-measurable function such that

E

[∫ t

0

|φ(t, ei)|2 dt
]
<∞.

Considering Equation (5.16), since k is deterministic, we can choose q = r = w = 0.
Hence, the BSDE becomes a deterministic equation:

dp(t) = −b(t+ δ)p(t+ δ)1[0,T−δ](t)dt, t ≤ T,

p(t) = k, t ∈ [T − δ, T ].

To solve this, we introduce

h(t) = p(T − t), t ∈ [0, T ].

Then, we we arrive at an ordinary delay differential equation:

dh(t) = −dp(T − t) = b(T − t+ δ)p(T − t+ δ)dt = b(T − t+ δ)h(t− δ)dt,
t ∈ [δ, T ],

h(t) = p(T − t) = k, t ∈ [0, δ].

Hence, we can determine h(t) inductively on each interval as follows:

If h(t) is known on [(j − 1)δ, jδ], then

h(t) = h(jδ) +

∫ t

jδ

h′(s)ds = h(jδ) +

∫ t

jδ

b(T − t+ δ)h(s− δ)ds (5.18)

for t ∈ [jδ, (j + 1)δ], j = 1, 2, ....

If we substitute the utility function U(t, c, ei) = φ(t, ei) ln(1 + c), i = 1, 2, ..., D, in
Equation (5.15), then we have proved the following theorem. Furthermore, since h
depends on the constant delay δ and by the coefficient φ(t, α(t)), Theorem 5.6 clarifies
the effects of the memory and different states of the economy on the optimal consump-
tion rate.

Theorem 5.6. The optimal consumption rate ĉ(t) under the above construction is ex-
plicitly given by

ĉ(t) = I(t, hδ(T − t), α(t)|α(t)=ei)

=

0, if hδ(T − t) ≥ φ(t, ei),
φ(t, ei)

hδ(T − t)
− 1, if 0 ≤ hδ(T − t) < φ(t, ei),

where h(·) = hδ(·) is determined by Equation (5.18).

68



CHAPTER 6

CONCLUSION AND OUTLOOK

Stochastic hybrid systems have been applied in a diversified field of research up to now.
In this thesis, we provide several new results related to a Markov regime-switching
jump-diffusion model by the two fundamental techniques of stochastic optimal control
theory. We utilized the tools of Dynamic Programming Principle without a delay set-
ting by which we try to show computational challenges for a D-dimensional Markov
chain. Furthermore, we provide a clear intuition by reducing the number of the states of
the Markov chain in Subsections 3.3.1 and 3.3.2. On the other hand, there are very few
works related to stochastic optimal control theory for regime-switching models with a
delay setting. At this step, we prefer to follow the methods of Stochastic Maximum
Principle. Hence, in this thesis, the models with and without memory are highlighted.
We not only contribute to the theory of Financial Mathematics, but also illustrate our
results by investment and consumption problems of finance.

In Chapter 3, we give examples of zero-sum and nonzero-sum stochastic differential
games by the tools of Dynamic Programming Principle. In other words, we reformu-
late the general equilibrium problem as a stochastic optimal control problem.

In the first example, we obtain compatible results related to asset pricing with no free-
lunch principle. Furthermore, in the last subsection, by establishing the two-state
case of the optimal portfolio selection problem between two traders, we show that
more complicated differential equations are obtained. This is the effect of the regime
switches on the mathematical structure of the game, which is a clear difference between
the usual setting and our Markov regime-switching model. For both of the examples,
we give explicit solutions of the optimal control processes and closed-form represen-
tations for the value functions.

In Chapter 4, we provide three fundamental theorems to present the relation between
SDDDEs with jumps and regimes and ABSDEs with jumps and regimes. This relation
becomes the main base for the construction of the corresponding adjoint equations of
the stochastic optimal control problem studied in Chapter 5. Furthermore, these results
open the doors of ABSDE theory in a Markovian regime switching set-up. It is well-
known that one of the corner stones of the BSDE theory is the Comparison Theorem
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which has applications in both of stochastic optimal control and stochastic games. By
the help of our results, Comparison Theorem for ABSDEs can be studied and, conse-
quently, the path of several other advances can be lightened from the theoretical and
applied perspectives as well. The first work related to ABSDEs was given by Peng and
Yang [49] in 2009, and it reached researchers’ focus of attention rapidly. The results
of BSDEs can be extended to our new and fruitful theory. ABSDEs may be considered
in stochastic game theory with carrying future values of the dynamics.

Moreover, we study on a delayed state process of a Markov regime switching jump-
diffusion model in Chapter 5. We are concerned with a stochastic optimal control
problem by the tools of stochastic maximum principle and prove the necessary and
sufficient maximum principles for a delayed SDE with jumps and regimes under full
and partial information. We develop the general analytic model setting and methods
for the solution of such a model and we apply our results to an optimal consumption
problem from a cash flow with delay and regimes. In our setting, under the given
conditions, one may prefer any stochastic utility function based on the information
about the investor. In this work, we present the optimal consumption rate for a specific
stochastic utility function explicitly.

Time-delay can be considered in DPP with a memory challenge (see [22, 37]). To
the best of our knowledge, a Markov regime-switching model with delay has not been
considered by the tools of DPP.

Stochastic Hybrid Systems are demanding models with their heterogeneous structure
for a diversified field of science and technology (see [2, 24, 25]). In this thesis, one
of the perspectives that we follow, is to see them as macroeconomic indicators. For
example, we may consider currency risk which affects market psychology easily. The
country risk is highly sensitive to any abrupt changes in the financial market. Hence, it
is expected and effective to consider the Markov regime-switches as macroeconomic
factors.

Furthermore, the shifts between the states of a Markov chain may characterize some of
the psychological phenomena, e.g., switches between episodes of mania and depres-
sion or the periods of recovery and relapses involved in addiction. Human behaviors
can be modeled by SHSs at the case of mathematical convenience. When we focus
on the necessity of taking into account the investors’ preferences, the obvious relation
between the psychology and economics is seen.

From the perspective of technology, electric cars can be considered at the top of the
list nowadays. For instance, the American company Tesla Motors delivered 70000
electric cars between 2008 and 2015. It is known that electric cars produce about 40
percent less carbon dioxide and ozone than conventional cars, even when we consider
the carbon emissions and pollution from the power plants. Hence, increasing demand
in electric cars can activate regime switches in a very wide range of life. Especially,
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this fact may reduce the usage of gasoline as a consequence of decreasing appreciation
in gas-powered cars. This is forcing the traditional industry rapidly to switch their
techniques, or to leave the market. In this context, we speak of disruption. Hence,
this development pressure on powerful and rooted companies and whole branches may
push the governments to radical economic changes, which means another switch in the
financial sector. Moreover, green technology may pep up the dynamics of the nature in
a positive direction, which may become generate vital switches for our world. On the
other hand, decreasing demand in oil could change the power balances over all over
the Middle East and their neighbor regions. This new situation may create the last ring
of the chain as a political switch, i.e., a possible revolution for democracy in Middle
East might be seen as another regime switch.
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APPENDIX A

Complementary Remarks

Let us present a Markov regime-switching jump-diffusion model as follows:

Y (t) = b(t, Y (t), α(t))dt+ σ(t, Y (t), α(t))dW (t)

+

∫
R0

η(t, Y (t−), α(t−), z)Ñ(dt, dz)

+ γ(t, Y (t−), α(t−))dΦ̃(t), t ∈ [0, T ], (A.1)

Y (0) = y0 ∈ RN ,

where

b : [0, T ]× RN × S → RN ,

σ : [0, T ]× RN × S → RN×M ,

η : [0, T ]× RN × S × R0 → RN×L,

γ : [0, T ]× RN × S× → RN×D

are given functions. By Proposition 7.1 of Crépey [13], the system (A.1) has a unique
solution Y (t) ∈ L2

F(0, T ;RN) under the following conditions:

(K1) There exists a constantK > 0 such that for all t ∈ [0, T ], ei ∈ S, x1, x2 ∈ RN ,

‖b(t, x1, ei)− b(t, x2, ei)‖+ ‖σ(t, x1, ei)− σ(t, x2, ei)‖
+ ‖η(t, x1, ei, z)− η(t, x2, ei, z)‖J + ‖γ(t, x1, ei)− γ(t, x2, ei)‖S
≤ K ‖x1 − x2‖ .

(K2) b(·, 0, ei) ∈ L2
F(0, T ;RN), σ(·, 0, ei) ∈ L2

F(0, T ;RN×M), η(·, 0, ei, ·) ∈ H2
F(0,

T ;RN×L) and γ(·, 0, ei) ∈M2
F(0, T ;RN×D) for all ei ∈ S and t ∈ [0, T ].

Let us give the extension of Itô’s formula as in Zhang, Elliott and Siu [64].

Theorem A.1. Suppose an N -dimensional process Y (t), t ∈ [0, T ], is given as in
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System (A.1) and the function φ(·, ·, ei) ∈ C1,2([0, T ]× RN) for each ej ∈ S. Then,

φ(T, Y (T ), α(T ))− φ(0, Y (0), α(0))

=

∫ T

0

{(
∂φ

∂t
(t, Y (t−), α(t−)) +

N∑
k=1

∂φ

∂yk
(t, Y (t−), α(t−))bk(t, Y (t−), α(t−))

)

+
1

2

N∑
k=1

N∑
n=1

∫ T

0

∂2φ

∂yk∂yn
(t, Y (t−), α(t−))

M∑
l=1

σklσnl(t, Y (t−), α(t−))

+
L∑

m=1

∫ T

0

∫
R0

(
φ(t, Y (t−) + ηm(t, Y (t−), α(t−), z), α(t−))

− φ(t, Y (t−), α(t−))

−
N∑
n=1

∂φ

∂yn
(t, Y (t−), α(t−))ηnm(t, Y (t−), α(t−), z)

)
νm(dz)

+
D∑
j=1

∫
R0

(
φ(t, Y (t−) + γ(j)(t, Y (t−), α(t−)), ej)− φ(t, Y (t−), α(t−))

−
N∑
n=1

∂φ

∂yn
(t, Y (t−), α(t−))γnj(t, Y (t−), α(t−))

)
λj(t)

}
dt

+

∫ T

0

N∑
k=1

∂φ

∂yk
(s, Y (s−), α(s−))

M∑
n=1

σkn(s, Y (s−), α(s−))dW (t)

+

∫ T

0

L∑
m=1

∫
R0

(
φ(s, Y (s−) + η(m)(s, Y (s−), α(s−), z), α(s−))

− φ(s, Y (s−), α(s−))

)
Ñ(ds, dz)

+

∫ T

0

D∑
j=1

(
φ(s, Y (s−) + γ(j)(s, Y (s−), α(s−)), ej)

− φ(s, Y (s−), α(s−))

)
dΦ̃j(s),

where η(m) and γ(j) represents the mth and jth columns of the matrices η and γ, re-
spectively.

Furthermore, we present product rule for Markov regime-switching jump-diffusion
models as in Zhang, Elliott and Siu [64], which has been used several times in this
thesis.
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Lemma A.2. Suppose that Y j(t), j = 1, 2, are processes defined by the forward SDEs,

Y j(t) = bj(t, Y (t), α(t))dt+ σj(t, Y (t), α(t))dW (t)

+

∫
R0

ηj(t, Y (t−), α(t−), z)Ñ(dt, dz)

+ γj(t, Y (t−), α(t−))dΦ̃(t), t ∈ [0, T ], (A.2)

Y j(0) = yj ∈ RN , j = 1, 2,

where bj(t) ∈ RN , σj(t) ∈ RN×M , ηj(t) := [ηjnl(t)] ∈ RN×L and γj(t) := [γjnl(t)]
∈ RN×D, t ∈ [0, T ], are predictable processes such that the integrals in A.2 exist.
Then, 〈

Y 1(T ), Y 2(T )
〉

=
〈
y1, y2

〉
+

∫ T

0

〈
Y 1(t−), dY 2(t)

〉
+

∫ T

0

〈
Y 2(t−), dY 1(t)

〉
+

∫ T

0

[
(σ1(t, α(t)))Tσ2(t, α(t))

]
dt

+

∫ T

0

L∑
l=1

N∑
n=1

η1
nl(t, α(t−), z)η2

nl(t, α(t−), z)νl(dz)dt

+

∫ T

0

D∑
l=1

N∑
n=1

γ1
nl(t, α(t−))γ2

nl(t, α(t−))λl(t)dt.

Let us state Banach Fixed Point Theorem which we used in Chapter 4 for the Existence-
Uniqueness Theorems of SDDEs and ABSDEs.

Theorem A.3. Let (X, d) be a complete metric space and T : X → X be a map such
that

d(Tx, Tx′) ≤ cd(x, x′)

for some 0 ≤ c < 1 and all x, x′ ∈ X . Then T has a unique fixed point x∗ in X , i.e.,
T (x∗) = x∗.
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APPENDIX B

Remarks for Graphs

The following simple codes correspond to each graph in Subsection 3.3.2.

We note that
1√
2π

∫ ∞
−∞

ηk1η
m
2 z

2e−z
2/2dz = ηk1η

m
2 ,

for k,m = 1, 2.

For Figure 3.1, −0.08 ≤ µ1
1 ≤ 0.06, r1 = 0.06, σ1

1 = 0.72, σ1
2 = 0.35, η1

1 = 1.4,
η1

1 = −0.8 η1
2 = 1.3.

N = 1000;h = 1/N ;x = −0.08 : h : 0.06;
y = (0.06− x)/(0.72 ∗ 0.35 + 1.4 ∗ 1.3);
z = (0.06− x)/(0.72 ∗ 0.35 +−0.8 ∗ 1.3);
plot(x,y,’k.’,x,z,’k-’)
legend(′η1

1 > 0′,′ η1
1 < 0′)

xlabel(′µ1
1
′), ylabel(′π∗2

′).

For Figure 3.2, 0.06 ≤ µ2
1 ≤ 1.4, r2 = 0.06, σ2

1 = 0.4, σ2
2 = 0.2, η2

1 = 0.8,
η2

1 = −0.5 η1
2 = 1.2.

N = 1000;h = 1/N ;x = 0.06 : h : 1.4;
y = (0.06− x)/(0.4 ∗ 0.2 + 1.2 ∗ 0.8);
z = (0.06− x)/(0.4 ∗ 0.2 + 1.2 ∗ −0.5);
plot(x,y,’k.’,x,z,’k-’)
legend(′η2

1 > 0′,′ η2
1 < 0′)

xlabel(′µ2
1
′), ylabel(′π∗2

′).

For Figure 3.3, −0.08 ≤ µ1
1 ≤ 0.06, r1 = 0.06, σ1

1 = 0.72, σ1
2 = 0.25, η1

1 = 1.4,
η1

2 = 1.3.
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N = 1000;h = 1/N ;x = −0.08 : h : 0.06;
y = (0.06− x)/(0.72 ∗ 0.25 + 1.4 ∗ 1.3);
z = (0.06− x)/(0.72 ∗ 0.80 + 1.4 ∗ 1.3);
plot(x, y,′ k.′, x, z,′ k−′)
legend(′σ1

1 = 0.25′,′ σ1
1 = 0.8′)

xlabel(′µ1
1
′), ylabel(′π∗2

′).

For Figure 3.4, −1.3 ≤ µ1
2 ≤ 0, 0.08 ≤ µ2

2 ≤ 1.4, rk = 0.05, k = 1, 2,
σk1 = 0.7, k = 1, 2, σk2 = 0.4, k = 1, 2, ηk1 = 1.2, k = 1, 2, η1

2 = −0.8,
η2

2 = 0.8.

N = 1000;h = 1/N ;x = −1.3 : h : 0; t = 0.08 : h : 1.4;
y = (0.05− x)/(0.7 ∗ 0.4 + 1.2 ∗ −0.8);
z = (0.05− t)/(0.7 ∗ 0.4 + 1.2 ∗ 0.8);
plot(x,y,’k.’,t,z,’k-’)
legend(′η1

2 = −0.8′,′ η2
2 = 0.8′)

xlabel(′µk2, k = 1, 2.′), ylabel(′π∗1
′).

For Figure 3.5, −1.3 ≤ µ1
2 ≤ 0, 0.08 ≤ µ2

2 ≤ 1.4, r1 = 0.05, r1 = 0.07,
σk1 = 0.7, k = 1, 2, σk2 = 0.4, k = 1, 2, ηk1 = 1.2, k = 1, 2, ηk2 = 0.8, k = 1, 2.

N = 1000;h = 1/N ;x = −1.3 : h : 0; t = 0.08 : h : 1.4;
y = (0.05− x)/(0.7 ∗ 0.4 + 1.2 ∗ 0.8);
z = (0.07− t)/(0.7 ∗ 0.4 + 1.2 ∗ 0.8);
plot(x,y,’k.’,t,z,’k-’)
legend(′r1 = 0.05′,′ r2 = 0.07′)
xlabel(′µk2, k = 1, 2.′), ylabel(′π∗1

′).

For Figure 3.6, −1.3 ≤ µ1
2 ≤ 0, 0.08 ≤ µ2

2 ≤ 1.4, rk = 0.05, k = 1, 2,
σk1 = 0.7, k = 1, 2, σ1

2 = 0.8, σ2
2 = 0.4, ηk1 = 1.2, k = 1, 2, ηk2 = −0.8, k = 1, 2.

N = 1000;h = 1/N ;x = −1.3 : h : 0; t = 0.08 : h : 1.4;
y = (0.05− x)/(0.7 ∗ 0.8 + 1.2 ∗ −0.8);
z = (0.05− t)/(0.7 ∗ 0.4 + 1.2 ∗ −0.8);
plot(x,y,’k.’,t,z,’k-’)
legend(′σ1

2 = 0.8′,′ σ2
2 = 0.4′)

xlabel(′µk2, k = 1, 2.′), ylabel(′π∗1
′).
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