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ABSTRACT

PATH PLANNING AND LOCALIZATION FOR MOBILE ANCHOR BASED
WIRELESS SENSOR NETWORKS

Erdemir, Ecenaz
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

September 2017, [74] pages

In wireless sensor networks, sensors with limited resources are distributed in a wide
area. Localizing the sensors is an important problem. Anchor nodes with known
positions are used for sensor localization. A simple and efficient way of generating
anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a
single mobile anchor is used to traverse the region of interest to communicate with the
sensor nodes and identify their positions. Therefore planning the best trajectory for
the mobile anchor is an important problem in this context. The mobile anchor stops
on the trajectory to generate anchor nodes which are used in the position estimation
of the unknown sensors. Various path planning methods for mobile anchors are pro-
posed to localize as many sensors as possible by following the shortest path with
minimum number of anchors. In this thesis, path planning and localization for mo-
bile anchor based wireless sensor networks are investigated. Two novel path planning
algorithms are proposed for static and dynamic schemes. These approaches use mo-
bile anchors to cover the monitoring area with minimum path length and by stopping
at minimum number of nodes. Moreover, alternating minimization algorithm is pro-
posed for localizing the unknown sensor nodes non-cooperatively. The non-convex,
NP-hard node localization problem is converted into a biconvex form and solved it-
eratively. The performances of the proposed path planning algorithms are compared
with alternative approaches through simulations. The results show that more sensors
are localized with less anchors in a shorter path and time for both schemes. Further-



more, alternating minimization algorithm provides an effective solution for the sensor
localization problem. The simulation results show that the proposed localization ap-
proach is less prone to error accumulation than the alternative methods.

Keywords: Wireless Sensor Network Localization, Mobile Anchors based Sensor
Networks, Path Planning, Alternating Minimization, Nonconvex Optimization
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HAREKETLI CAPAYA DAYALI KABLOSUZ SENSOR AGLAR iCIN ROTA
PLANLAMA VE KONUMLANDIRMA

Erdemir, Ecenaz
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii

Tez Yoneticisi : Prof. Dr. T. Engin Tuncer

Eyliil 2017 ,[74] sayfa

Kablosuz sensor aglarda, gii¢ ve islem kabiliyeti sinirli sensorler genis bir alana dagi-
tilmig bulunmaktadirlar. Sensorleri konumlandirma problemi biiyiik 6nem arz etmek-
tedir. Genellikle, sensor konumlandirmada bilinen ¢apa pozisyonlart kullanilmakta-
dir. Capa diigiimii olusturmanin basit ve etkin bir yolu da GPS birimi bulunan hare-
ketli ¢apalarin kullanilmasidir. Bu tezde, gozetim alanini tarayarak sensorlerle ileti-
sime girmek ve bu sensorleri konumlandirmak i¢in tek bir hareketli ¢capa kullanilmak-
tadir. Bu sebeple hareketli ¢apa icin en iyi rotay1 planlamak biiyiik 6nem tagimakta-
dir. Rota uzerindeki hareketli capa duraklari, sensér konum kestiriminde kullanilan
capa diigiimlerini olusturmaya yaramaktadir. En az mesafe katedip en az sayida capa
diigiimii kullanarak, miimkiin olan en ¢ok sensorii konumlandirmak igin ¢esitli rota
planlama yontemleri 6nerilmektedir. Bu tezde, hareketli capaya dayali kablosuz sen-
sOr aglar i¢in rota planlama ve konumlandirma konusu islenmektedir. Sabit ve dina-
mik durumlar i¢in iki yeni rota planlama algoritmasi 6nerilmektedir. Bu yaklagimlar,
gozetim alanini en kisa yolu katedip en az sayida diigiimde duraklayarak kapsamak
icin hareketli ¢apa kullanmaktadirlar. Bununla birlikte, sensor agin1 imecesiz olarak
konumlandirmak i¢in almagik enkiiciiltme algoritmasi onerilmektedir. D1s biikey ol-
mayan, NP zor konumlandirma problemi yar1 digbiikey bir forma getirilerek 6zyineli
bir sekilde ¢oziilmektedir. Onerilen rota planlama algoritmalari, simulasyonlar yar-
dimiyla alternatif yaklasimlarla karsilastirllmaktadir. Sonuclar géstermektedir ki, iki
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yaklasim da daha ¢ok sensoOrii daha kisa yol katedererek ve daha az capa diigiimii
olusturarak konumlandirmaktadir. Ote yandan, almasik enkiiciiltme algoritmasi sen-
sOr konumlandirma problemi icin etkin bir ¢6ziim saglamaktadir. Simulasyon sonug-
larina gore Onerilen konumlandirma yontemi hata birikmesine alternatif yontemler-
den daha az egilimlidir.

Anahtar Kelimeler: Kablosuz Algilayict Ag Konumlandirma, Hareketli Capaya Da-
yali Algilayic1 Aglar, Giizergah Planlama, Almagik Enkiiciiltme, Digbiikey Olmayan
Eniyileme.
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CHAPTER 1

INTRODUCTION

Wireless sensor network localization has become essential for various application
areas, such as military surveillance, habitant monitoring, environmental monitoring,
target tracking and wireless security [[1]. Wireless sensor networks (WSNs) contain
large number of inexpensive, randomly distributed sensors having limited battery and
processing capability [2], [3]. In a WSN, sensors are able to collect physical data
from the environment for target tracking, signal routing, surveillance and emergency
responding purposes [[1]. The sensor positions are unknown and critical for mapping

the network area.

Estimating the coordinates of a sensor node or the special relationships among objects
is known as localization [4]. Coordinates of sensors can be determined by Global Po-
sitioning System (GPS) measurements. However, it is not efficient to use GPS devices
on hundreds of sensors due to high cost resulting from the battery consumption of
GPS. Therefore, various strategies are developed to localize sensors using only some
known positions in the network. These special nodes are called anchors (or “bea-
cons”) and their locations are determined by GPS measurements [5]. The unknown
sensor coordinates are estimated by using anchor positions and additional data com-
ing from the sensors for various WSN schemes, such as connectivity, node-to-node
distances which is used in this thesis. Having links to known anchor positions in-
creases the chance of a sensor being localized. Therefore, anchor position quality is
critically important for full coverage of the monitoring area and accurate sensor lo-
calization. In order to achieve good anchor configurations, a mobile vehicle (a robot)

can be used to generate anchor nodes on a predefined path. Instead of using large



number of stationary anchors with costly GPS devices, using a single mobile anchor
which generates anchor nodes at each stop is more cost efficient [6]. While this ap-
proach is more practical, mobile anchor requires a path planning and efficient routing.
Path planning is the determination of the optimal mobile anchor route based on the
information about the environment and the relative anchor location. Hence, effective
algorithms are required to generate anchor nodes on the optimum path length and

time.

In order to plan optimum trajectory for a mobile anchor, various algorithms are pro-
posed [7, 18, 9, 10} [11}, 12} 13, [14]. The main purpose in trajectory planning is to
achieve maximum coverage of the surveillance area and high localization accuracy
with minimum processing cost. Depending on the system requirements, path plan-
ning and mobility algorithms are proposed for the determination of mobile anchor
trajectory. In this context, a mobile anchor moves along the monitoring area and
broadcasts its coordinate signal at the time when it stops at certain positions. Neigh-
boring sensors receive the position information as an anchor node coordinate and send
back an acknowledgment signal to the mobile anchor. Path planning algorithms can
be considered as static and dynamic approaches. In static path planning, the trajec-
tory is planned before the mobile anchor starts its movement. Moreover, the path is
designed for specific localization methods and it cannot be changed during the pro-
cedure. While the static path is not adjustable for environmental changes, it does not
require a mobile robot with high processing capability to decide the trajectory. On the
other hand, in the dynamic approach, the mobile anchor can adjust its path during the
localization and it is flexible for the changes in localization methods. In the dynamic
case, the mobile anchor requires high processing capability to make decisions consid-
ering the environmental factors. For both cases, when the anchor nodes are obtained,
their positions are used together with distance measurements for sensor localization.
The node-to-node distances can be obtained by TOA (Time of Arrival), TDOA (Time
Difference of Arrival) and RSS (Received Signal Strength) measurements. Finding
the unknown sensor positions by localization is an NP-hard, non-convex problem.
Various optimization algorithms are proposed to reach the optimum solution for ex-
act locations. In this thesis, novel static and dynamic path planning algorithms are

proposed to determine the mobile anchor trajectory. Furthermore, a node localization



algorithm is proposed to localize sensors in the network.

In Chapter 2, background information about wireless sensor network localization is
given in detail. Moreover, the literature on various node localization methods and
mobile anchor trajectory planning algorithms are examined. In Chapter 3 and 4, novel
static and dynamic path planning algorithms are presented. Two-phased solutions for
both methods and the final trajectories are presented and the simulation results are
discussed for each method. In Chapter 5, the proposed node localization algorithm is
presented and its performance in terms of localization accuracy is discussed through
the simulations. In Chapter 6, the conclusion of this thesis is given together with the

summary of the proposed path planning and localization algorithms.

1.1 Contributions in This Thesis

In this thesis, two novel path planning algorithms are proposed for static and dynamic
schemes in mobile anchor based wireless sensor networks. Besides, a node localiza-
tion algorithm based on convex optimization is proposed for locating the unknown

sensor nodes using the anchor positions generated in the path planning process.

In the static approach, the trajectory is designed based on trilateration which is the
method of finding the position of a point by using distance information. The unknown
location is found as the intersection point of the circles centered at known positions.
The radii of these circles are the distances between the corresponding known posi-
tion and the unknown position. In the proposed static path planning algorithm, the
anchor positions are determined such that they form equilateral triangles and all the
sensors are in the communication range of at least three anchors. The proposed static
approach achieves the same localization performance as other trilateration based tra-
jectories using less anchors and a shorter path. This is because, anchor nodes are
not generated in sensor free areas. Two-phased proposed algorithm first divides the
localization area into grids and detects the sensors in those grids. Then the mobile
anchor revisits the occupied grids to generate anchor nodes in the form of triangles
for localization. Hence, the proposed approach generates more anchors in the grids

where there exist acknowledgment signals and less anchors in sensor free areas. This



shortens the path length and the total number of anchors generated. The proposed
static path planning algorithm is compared with CIRCLES [9], LMAT (Localization
algorithm with a Mobile Anchor node based on Trilateration) [[11] and SLMAT [12]
algorithms. It is presented in the simulation results that the proposed static approach
performs better than the alternative methods in terms of path length, number of an-
chors and localization success. Broadcasting the current position fewer times for
anchor generation and following a shorter distance requires less power. This provides
an energy efficient localization. In terms of this criteria, the proposed static approach

requires less power than the alternative approaches.

The dynamic path planning algorithm is proposed such that it can be adjustable to
different localization techniques. Similar to the static approach, first the sensors in
the grids are detected and the occupied grids are revisited for localization. In order
to generate the required number of anchors for localization, perpendicular bisector
strategy [6] is used. This strategy is based on generating non-collinear anchor nodes,
since collinearity increases the position estimation error. While all sensors in the
area are covered and detected, the redundant areas are not revisited for localization.
This decreases the path length and the required number of anchor nodes. The pro-
posed dynamic approach is compared with the known techniques in the literature [6]],
[[LS]], [16]]. It is presented in the simulation results that, the proposed dynamic algo-
rithm performs better than the alternative methods in terms of localization success,

the number of anchors and the path length.

The difference between the static and dynamic scenario is that the static path plan-
ning is done prior to the localization procedure and cannot be changed during the
localization [[17]]. In the proposed static approach, the path is determined after the
sensor detection in the surveillance area. Then, the mobile anchor starts its move-
ment along the predefined path. Moreover, the static path is designed for a specific
localization technique which is trilateration in this thesis. However, in the dynamic
path planning, the trajectory can be modified with the demands of user or the un-
known nodes [17]. For instance, the number of anchors required for localization, the
mobile anchor trajectory and path length can be changed in real time. In the proposed
dynamic approach, after the detection of sensors, the mobile anchor determines the

position and the number of anchor nodes to be generated according to the demand of



the user. Since the localization of the sensors is performed during the second phase
of the dynamic approach, modification of the path is possible for parameter changes

in this phase.

The sensor network is localized using the generated anchor positions at the end of
path planning process. Alternating minimization algorithm (AMA) is proposed for
non-convex sensor localization problem. The original form of the problem is con-
verted into a biconvex form and the relations between the distances and node posi-
tions are satisfied implicitly. The modified problem is solved iteratively by alternating
minimization. AMA is compared with linear localization [18]], second order cone pro-
gramming (SOCP)[19] and particle swarm optimization (PSO) [20] algorithms and

the effectiveness of AMA is analyzed in terms of sensor position accuracy.






CHAPTER 2

MOBILE ANCHOR BASED WIRELESS SENSOR NETWORK
LOCALIZATION

Wireless sensor networks consist of a vast number of randomly distributed sensors
(termed as “unknown nodes” or “sensor nodes’’) with unknown positions. The sen-
sors are used to gather physical information from the environment. The positions of
these sensors are important for mapping the network. Therefore, sensor network lo-
calization is defined as estimating the coordinates of a sensor node or relationships
among objects [4]]. In order to localize the sensors, special nodes with known coordi-

nates and their relationship with sensors are used in various WSN schemes.

Wireless sensor networks can be mainly classified as range-free and range-based, co-
operative and non-cooperative, mobile-anchor based and static-anchor based schemes
[21]]. Mobile anchor based sensor network localization contains the mobile anchor
trajectory planning and node localization. On the other hand, static anchor based
schemes contains only node localization. The details of these classifications are ex-

plained in the following sections.

2.1 Range-Free and Range-Based Localization

In range-based localization, the existence of anchor nodes is required. The remaining
nodes in the network use node-to-node distances or inter-node angles to estimate
their positions [22]]. The distance measurements for WSN localization are obtained
by the methods such as TOA (Time of Arrival) [23], TDOA (Time Difference of
Arrival) [24] and RSS (Received Signal Strength) [25]]. Besides, it is possible to use

7



angle measurements obtained by AOA (Angle of Arrival) [4] method for locating the
sensors. Although the range-based localization is costly due to expensive ranging
measurements, it provides high localization accuracy for the cases in which the exact

locations are critical.

In range-free localization, connectivity information among sensor nodes is used to lo-
calize sensors. While the existence of anchor nodes is still necessary for anchor-based
solutions, there are also anchor-free and hybrid techniques for the range-free schemes
[26]. For example, controlled events (such as light) can be generated in the surveil-
lance region for the anchor-free case. The unknown position of a sensor can be found
by using the event properties and the time that the event is sensed [26)]. In some WSN
applications, very high localization accuracy is not required. On the other hand, the
low power consumption may be more critical. The range-free techniques provide a
low accuracy-low cost localization for WSNs [22]. The most common methods in the
range-free localization are APIT (Approximate Point-In-Triangle) [22] and DV-Hop
(Distance-Vector Hop) [27]. In DV-Hop algorithm, only anchor positions and node-
to-node connectivities are known. For sensor localization, approximate distances are
estimated from the connectivities and the anchor coordinates. In APIT algorithm,
triangles are formed using any three neighboring anchors of the unknown node. De-
termining whether the unknown node is within these triangles, the node localizes it-
self up to a certain accuracy [22]]. The range-free localization is a low cost technique
for large scale and dense wireless sensor networks. On the other hand, it may not
be preferable for sparse networks due to its low accuracy resulted from insufficient

connectivity information.

2.2 Cooperative and Non-Cooperative Localization

In non-cooperative localization, sensors can only communicate with anchor nodes.
In Figure filled and empty circles represent anchor and sensor nodes, respec-
tively. Moreover, the straight lines between the circles represent their connection. As
in Figure [2.1a] the sensors only have connections with the anchor nodes in a non-
cooperative WSN. For instance, in non-cooperative range-based localization, node-

to-node distances between a sensor and a certain number of anchors are required to



be known for locating the sensor. Similarly, the connectivity information between a
sensor and a number of anchors are used for non-cooperative range-free sensor local-

ization.

In cooperative localization, sensors can communicate with each other and they may
still have links to anchor nodes as expressed in Figure The dashed lines in
Figure [2.1b| represent the lines connecting the sensors only. That is, in cooperative
WSNs, sensor nodes can communicate with both anchors and sensors. This leads
to an increased connectivity in the network. While sensor-to-sensor distances are
used for the range-based scenarios, range-free methods require sensor connectivity
information. Cooperation among unknown nodes provides an improved coverage
and higher localization accuracy than non-cooperative techniques [28]. However,
connectivity among the unknown nodes increases the computational complexity in

cooperative localization.

(a) (b)

Figure 2.1: (a) Non-cooperative and (b) Cooperative Wireless Sensor Networks

2.3 Node Localization

In wireless sensor networks, anchor positions play an important role for improving the
localization accuracy. In a network, increasing the number of anchor nodes provides

more reference points. This leads to less position errors.

Sensor networks may consist of stationary anchor nodes with fixed coordinates or
mobile anchors following a specific path as shown in Figure [2.2] In both mobile and
static anchor schemes, the sensors can be either stationary or mobile. In static-anchor

based static-sensor networks, only the localization procedure is taken into account.
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On the other hand, in mobile-anchor schemes, path planning is carried out before
localization. In this section, common range-based localization algorithms for sensor
networks are explained. They can be classified as lateration, maximum likelihood
and triangulation algorithms [3]]. There are also ad-hoc node localization algorithms
which are designed for specific purposes in ad-hoc wireless sensor networks.

Localization Classification

[ |
Mobile Anchor Static Anchor

[ I [ |
Mobile Nodes Static Nodes Mobile Nodes Static Nodes

Figure 2.2: Localization classification in terms of mobility taken from [13]].

2.3.1 Lateration Algorithms

Lateration algorithms are range-based methods that are used to estimate unknown
node positions from measurements of the difference in distance. Bi-lateration, tri-
lateration and multi-lateration methods are used for localizing the sensors in one-
dimension (1D), two-dimensions (2D) and three or higher dimensions (3D+), respec-
tively [29]. Sensor network problem is generally solved for 2D in general. Hence, in

this section, trilateration algorithm is described in detail.

Trilateration algorithm is defined as finding the position of an unknown node using
the intersections of three circles geometrically [29]. Each circle is centered at an
anchor as in Figure 2.3] The radius of each circle is determined by the distance
measurements between the unknown node and the corresponding anchor. Sensor
coordinates are found to be the intersection point of the three circles. When there
are distance measurement errors in the medium, the intersection may be a region

rather than a single point. This results in erroneous solution.

Localization of a sensor is geometrically described in Figure [2.3] The mathemati-
cal solution for this problem consists of the distances between the sensor and three

anchors. The distance from the k" anchor to the 7** sensor is expressed by

dki - \/(akx - xix)2 + (aky - CUiy)Q (21)
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Figure 2.3: Node localization using trilateration [29].

In the expression (2.1), a, and ag, are x and y components of the vector a; which
is the k' anchor coordinate. Similarly, z;, and x4, are the components of x; which

represents the i sensor.

Solution for the localization problem is nonlinear due to the quadratic form of dis-
tance formulations. To linearize the nonlinear system, at least three distance mea-
surements are required in 2D. Then, taking the square distances and subtracting the
first distance equation from the rest of the equations, the problem is linearized. The
relation for the distances between k& number of anchor nodes and the i’ sensor node

are given as,

(T — GSI)Z + ($iy - a3y)2 = dgi (2.2)

(@i — akm>2 + (JCiy - aky)2 = dii

where x;, and z;, are x and y coordinates of the unknown position of the it" sensor;
ar, and ay, are x and y coordinates of the k" anchor and dy; is the Euclidean distance
between the k™ anchor and the i** sensor [30]. When the last equation is subtracted
from the first one and the resulting n — 1 equations are arranged, a relation in the form

Ax = b is obtained, where

x; = [Tirx Tiy)" (2.3)
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A1y — Qg A1y — Ay

A=2 (2.4)

A(k—1)z — Okx  A(k—1)y — Aky

(a%x + a%y) - (aix + a’zy) - d%z + dzl

(a%’“‘l)x + a?’f—l)y) — (ak, + ajy) — d?k:—l)i +diy

b = (2.5)
The unknown node position is found by solving a linear problem in the form of
Ax = b, where A and b are defined as (2.4)) and (2.3) [3]. Trilateration method has
computational complexity of O(k?) where k is the number of neighboring anchors
[31]]. Although trilateration is a commonly used algorithm, its localization accuracy

is directly affected by the geometry of anchors.

In [32], the quality of trilateration is investigated in detail. Poor localization accuracy
can result from; non-intersecting circles in noisy environment, flip ambiguity, anchor
non-consistency due to high number of neighboring anchors and error propagation in
multi-hop networks. Yang and Liu quantifies the quality of anchor geometries and
assign a confidence value to each anchor in [32]]. The localization procedure starts
in the order from high to low confidence anchors iteratively. Hence, the localization

accuracy of sensor nodes is increased.

In [33]], Sweeps algorithm is proposed to iteratively solve the flip ambiguity in sparse
networks. Firstly, the sensors with at least three neighboring anchors are localized
and assigned as reference points. Then the remaining sensors are localized according
to their consistency with the reference points. Since the connectivity among sensors

are used iteratively in [33], the flip ambiguity is solved without additional anchors.

2.3.2 Triangulation Algorithms

Unlike trilateration which uses sensor-to-anchor distances for localization, triangula-
tion is the algorithm of locating an unknown node in 2D using the angular distances

between the node and three separate pairs of anchors [34].

In Figure « is the unknown coordinate of a sensor and A, B and D are anchor

coordinates. Moreover, ¢;’s are the center point of the circles. If the angles between
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lines connecting the sensor with each anchor are known, @ position is found by trian-
gulation algorithm [34]. Applying the law of sines to triangles (A, z, D), (D, x, B)

and (B, x, A), radii of the corresponding circles are found as in,

1|/[D-B
Tel = —H /\H (2.6)
2 sin(BxD)
The midpoint of the line segment (D, B) is given as,
1
c; can be determined by solving (2.8]).
(D —B) (¢t —mppg) 0 1
——=R(1/2) = -———— for R(n/2) = (2.8)
ID —Bj| ller —mpp|| ~10

where the matrix R(7/2) is a counterclockwise rotation of 7/2 rad. (2.8 can be

rewritten as,

&1 = Mpp + recos(T — sm(ﬁﬁ)))%mm) 2.9)

where r.; is the radius of the " circle. « is the intersection point of these circles and

is calculated by,

|z — c;||* = r? (2.10)

ci

Hence, it is stated in [34] that the unknown sensor position x can be calculated using

the relations (2.6)), (2.7) and (2.§).

Figure 2.4: Node localization using triangulation [5]].
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2.3.3 Maximum Likelihood Algorithms

Sensor coordinates can be found using maximum likelihood (ML) estimation method.
An unknown node can be localized with the help of sensor-to-anchor and sensor-
to-sensor distances obtained from TOA measurements. The maximum likelihood

formulation of a non-cooperative sensor localization problem can be expressed as,

1
Minimize § —(|Ix; — ajl2 — diy)? (2.11)
o.

X;
(i)EN,(j)eM Y

where x; is the position of i'" sensor, a; is the position of j anchor, afj is the
variance of additive white Gaussian noise, d;; is the distance between it" sensor and
4" anchor. In (2.11)), the squares of the errors between real and estimated distances
are summed and minimized. In this way, the equality relation between ||x; — a;]|-
and d;; is satisfied. Since it is a non-cooperative localization problem, only the links

between the sensors and the anchors are considered.

For a cooperative sensor localization problem, the ML formulation can be expressed

as,

L 1 < 1
Minimize Z ?(||Xi_x‘j||2_dij)2+ Z g(HXi—ang—dij)Q (2.12)

X1, XN - ij . X ij
(i,5)EN (A)EN,(j)eM

where d;; is the distance between i and j*" sensors, 5%. is the noise variance between
the i*" and j*" sensors. Since it is a cooperative localization problem, both sensor-to-

sensor and sensor-to-anchor distances are considered.

In [19], RSS based localization problem is solved for non-cooperative and coopera-
tive cases. Since the ML estimator is computationally complex, a non-convex least
squares (LS) estimator corresponding to the ML estimator for small noise is intro-
duced. Second order cone programming (SOCP) and mixed semidefinite program-
ming (SDP)/SOCP estimators are proposed for non-cooperative and cooperative lo-
calization schemes, respectively. Both cases where source transmit power and path

loss exponent are known and unknown are considered. The proposed approaches in
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[19] estimate the node positions and unknown parameters effectively.

As an ad-hoc node localization algorithm, a particle swarm optimization (PSO) ap-
proach is proposed in [20] for ad-hoc WSN’s. Here, particles are generated in the
search space randomly. Assuming each particle is the potential unknown position,
the errors are calculated. An iterative optimization procedure is performed to find
the searching directions of the particles which minimize these errors using the maxi-
mum likelihood approach. The unknown sensor position is estimated to be where the

particle positions converge. This procedure is applied to the network iteratively.

2.4 Mobile-Anchor Based Trajectory Planning

In static wireless sensor networks, anchor node positions play an important role for
improving the localization accuracy. However, increasing the number of costly an-
chors also increases the cost of the localization process. Moreover, in static anchor
scenarios, all anchors become useless after the localization process. Hence, using
a mobile anchor with the ability to broadcast its position decreases the cost of the

localization [6].

According to the localization procedure based on mobile anchor and stationary sen-
sor networks, a GPS carrying vehicle moves along the monitoring area. The mobile
anchor broadcasts a GPS signal carrying its position information at each stop. If the
mobile anchor and sensors can communicate, the mobile anchor receives acknowl-
edgments from the neighboring sensors. In order to consider a sensor as the neighbor
of a mobile anchor, the mobile anchor must be in the communication range of the

corresponding sensor. This range is represented by a circular region of radius R.

Impact of a mobile anchor path on the quality of anchor positions is critical in terms
of localization accuracy. Hence, there are various algorithms for the path decision
procedure, namely Mobile Anchor Node Assisted Localization (MANAL) algorithms
[5l]. They can be classified as in Figure[2.5] The MANAL algorithms are divided into
two categories as mobility models and path planning. Besides, mobility models are
also divided into random models, models with temporal dependency, models with

spatial dependency and models with geographic restrictions. In addition, localization
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based on path planning is also classified as static and dynamic path planning.

MANAL Algotihms

ILocalization Based on Localization Based on
Mobility Models Path Planning
Random Models Models with Mﬂsﬂi‘\\iilh Models wi‘th Static Dynamic
Temporal patia Gcogr‘ap.hlc Path Planning Path Planning
Dependency Decpendency Restriction -

Figure 2.5: Classification of MANAL algorithms [J5]].

As one of the categories of MANAL algorithms, mobility models describe the pattern
of mobile anchor trajectories and the change of the parameters, such as position, speed
and acceleration in time. Mobility models are used generally in mobile ad-hoc net-
works (MANETS) which comprise of wireless mobile nodes forming self-configuring
network without using any existing infrastructure [35]. Here, self-configuring means
that nodes in a mobile ad-hoc network do not need extensive knowledge of network.

Hence, mobility models offer flexibility and freedom for WSN localization.

2.4.1 Random Models

In random models, the mobile anchor velocity and direction is determined randomly.

That is, the next position of the mobile anchor at the next time interval is random.

In Random Way-point (RWP) [36]], the mobile anchor chooses a target position at
each move. The velocity is randomly chosen from the interval [v,in, Vimas], Where
Upmin and V4, are minimum and maximum allowed velocities for the mobile anchor.
After its move, the mobile anchor stops during ,ysc. If tpquse = 0, this is a contin-
uous mobility. Similar to RWP, Random Walk (RW) model chooses the velocity and

direction of the mobile anchor randomly.

In [36] which is a random walk model, the mobile anchor moves with a random mo-
bility in the localization area. Here, the velocity and angular direction of the mobile
anchor is chosen randomly from the intervals [VUsin, Umaz| and [0, 27]. Inside the lo-
calization region, the mobile anchor moves randomly and stops at each constant time

interval to create anchor nodes. If the mobile anchor exits the region, it returns to
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the area with a predefined angle. Since the trajectory is random, this model does
not guarantee full coverage of the localization area. However, due to the randomness
in velocity and direction, sharp turns and sudden stops occur in both RWP and RW

models.

2.4.2 Models with Temporal Dependency

In localization based on models with temporal dependency, there is a correlation be-
tween velocities at different time instants. Unlike random models, velocity and direc-

tion have memory and their mobility model is not random. [35]

In [37], Kuang et al. propose Gauss-Markov (GM) mobility for the mobile anchor
velocity and direction. GM is a memory model which determines the current ve-
locity and direction from the previous time velocities and directions. Then, the next
position of the mobile anchor is found by using the current mobile anchor position,
velocity and direction. However, it takes a long time for the mobile anchor to enter
the localization region, when it exits the area. Unlike the approach in [36], [37/]] is not
prone to sudden velocity and direction changes because the level of randomness can

be adjusted.

2.4.3 Models with Spatial Dependency

In the mobility models with spatial dependency, mobile nodes do not move indepen-
dently as in random models. The velocity and direction are affected by the neighbor-
ing nodes. Therefore, the velocities of different nodes are correlated in space. This

leads to a group mobility. [35]]

In [38], the effect of a correlated mobility on the data transfer speed and delay per-
formance in MANETSs is investigated. Here, the mobile nodes in the network are
divided into groups. The center of each group moves according to independent and
identically distributed (i.i.d.) mobility models. Hence, correlated mobility provides a

better performance than independent node mobility.
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2.44 Models with Geographic Restriction

Environments with obstacles requires the usage of the mobility models with geo-
graphic restrictions. The randomness of the velocity and direction is bounded by the
environment restrictions. Real life applications require mostly solutions for obstacle

problems. [35]]

In [39]], a visible obstacle mobility model based on activity area (VOMBAA) is pro-
posed for MANETSs. The mobile anchors can only perceive visible obstacles. The
anchor finds the first obstacle to bypass. Using the A* [40] function, it calculates the
assessed value of vertices that can be seen. Then, it selects a vertex as an intermediate
point. The mobile anchor moves to this point to go around the obstacle, and make the

distance to destination the current shortest.

As another category of MANAL algorithms, path planning aims at proposing a fea-
sible mobile anchor trajectory in the given surveillance area. The mobile anchors in
these schemes are autonomous vehicles which either follows a predefined path or a
dynamic trajectory according to the environment. The quality of anchor positions are
significant for high localization accuracy. Thus, the movement trajectories of mobile
anchors are necessary to satisfy these properties: (1) Created anchor nodes should
be close to as many sensors as possible for full localization; (ii) At least three non-
collinear anchors should be in the neighborhood of each sensor in 2D to avoid posi-
tion ambiguities; (iii) The path should be as short as possible for energy consumption
[S]. Path planning algorithms are classified as static and dynamic algorithms in the

following sections.

2.4.5 Static Path Planning

The trajectory of static path planning is determined prior to the localization and the
mobile anchor cannot change its trajectory during the procedure. Besides, static al-
gorithms are designed based on a specific node localization method and they are not
flexible for modifications. Commonly used path planning algorithms such as SCAN,
DOUBLE-SCAN, CIRCLES, SPIRAL and LMAT are discussed in the following sec-

tions.
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2.4.5.1 SCAN and DOUBLE-SCAN Algorithms

SCAN trajectory is based on one direction movement of the mobile anchor and aims
at full coverage of the surveillance region. The mobile anchor simply traverses the
area along the y-axis as in Figure [2.6a The resolution of the path is decided by

distances between the parallel lines [8]].

In [41], sensor positions are found by chord selection. The perpendicular bisector of a
circle chord passes through the center of this circle. Hence, two chords selected from
the same circle provide with the exact position of the circle center. According to this
localization scheme in [41], the mobile anchor path consists of parallel lines spaced
with (R — ¢) intervals where R is the communication radius of each sensor and ¢ is
the resolution parameter. ¢ is set to be in the range 0 < ¢ < % such that the highest

possible chord length is achieved for precise localization.

In [8], sensor positions are determined by sensor-to-anchor distances estimated from
the probability distribution functions of Received Signal Strength Indicator (RSSI)
values. The main disadvantage of SCAN algorithm is stated to be the collinearity of
anchor positions. Since the movement trajectory is linear, consecutive anchors which

are likely to be in the communication range of the same sensor are collinear.

DOUBLE-SCAN trajectories aim at solving the collinearity problem faced in SCAN
algorithms. The mobile anchor first moves along y-axis similar to SCAN and sensor
positions are found with ambiguity in x coordinates. Then the mobile anchor moves
along the x-axis to eliminate the ambiguities as in Figure [2.6b| However, to achieve
the same resolution as in the SCAN trajectory, the distance traveled is doubled com-

pared to the SCAN algorithm. [§]]

2.4.5.2 LMAT Algorithm

Localization algorithm with a Mobile Anchor node based on Trilateration (LMAT)
is a static path planning algorithm proposed by Han et al. in [[11]. Following a path
similar to SCAN in z direction, the mobile anchor zigzags in y axis as shown in Fig-

ure The anchors are generated such that equilateral triangles are formed for tri-
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lateration based localization. This method is proposed to eliminate anchor collinear-
ity which results from straight trajectories. Moreover, distances between horizontal
segments are chosen such that the coverage of entire localization area is guaranteed.
That is, the circular communication ranges of anchors intersect to localize all sensors
deployed in the region. On the other hand, LMAT trajectory contains high number of

corners which leads to high energy consumption for the mobile anchor.

In [12], Han et al. propose SLMAT trajectory. Here, the purpose is to minimize the
energy consumption resulting from the high number of corners in LMAT. SLMAT is a
combination of SCAN and LMAT algorithms. That is, the mobile anchor in SLMAT
follows the SCAN trajectory, but the anchors are generated in LMAT positions to
form equilateral triangles. Although SLMAT preserves energy, the localization per-

formances converge to the one in LMAT for various resolutions.

In [[13]], Z-curve trajectory is proposed for static path planning. Similar to LMAT, the
purpose is to generate as many non-collinear anchors as needed for accurate localiza-
tion. The mobile anchor traverses the surveillance region in Z shape by determining
the Z-curve sizes such that the maximum coverage is achieved. In [13l], Z-curve

shows a close localization performance to LMAT and CIRCLES.
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(a) (b) (c)
Figure 2.6: Movement trajectories of (a) SCAN, (b) DOUBLE-SCAN and (c) LMAT

algorithms taken from [3]]

2.4.5.3 CIRCLES and SPIRAL Algorithms

CIRCLES trajectories are composed of sequences of concentric circles which are
centered at the surveillance region as in Figure [2.7al This method is proposed by

Huang et al. in [9] to solve the collinearity issue. While the straight lines in SCAN
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and DOUBLE-SCAN schemes create collinear anchors, curved path in CIRCLES

trajectories provide non-collinear anchor nodes.

In [9], the mobile anchor starts following the innermost circle with radius 2R. When
it finishes its move here, the mobile anchor follows the outer circle trajectory by
increasing the radius by I? at each outer circle. The resolution for CIRCLES scheme
is defined to be half of the innermost circle radius, R. According to [9]], distance that
the mobile anchor moves is shorter in CIRCLES than SCAN. Besides, the proposed
trajectory is scalable when the size of surveillance area changes. However, as the

scale increases, curved path becomes more straight and non-collinearity is reduced

[9].

In the CIRCLES trajectory, transition between concentric circles can be energy con-
suming due to sharp direction changes at transition points. SPIRAL trajectory pro-
posed by Hu et al. in [[10] has the same non-collinearity advantage as CIRCLES while
it provides an energy efficient continuous movement. As in Figure the mobile
anchor follows a spiral trajectory by creating anchors at equidistant points. In [[10],
anchor coordinates are expressed as,

r=u1x9+ D Xt X cos(2nt) @.13)

Yy =1yo+ D xtx sin(2nt)
where x( and y, are the initial coordinates of the mobile anchor; D is the distance
between two consecutive anchors and ¢ is used to control the moving angle and the
number of turns inside the surveillance area. Similar to CIRCLES, increasing the
scale in SPIRAL reduces the non-collinearity. Furthermore, in both algorithms, the
mobile anchor follows a shorter distance than SCAN trajectory [S]. On the other
hand, CIRCLES and SPIRAL trajectories are unable to cover the whole surveillance
region, if the area is not circular [9]. For full coverage, number of turns is increased

which leads to higher path length.

2.4.6 Dynamic Path Planning

Static path planning provides a predetermined path and full coverage of the entire

localization area. When the sensors are distributed uniformly and a fixed node local-
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(a) (b)
Figure 2.7: Movement trajectories of (a) CIRCLES and (b) SPIRAL algorithms taken
from [5]]

ization algorithm is used, static path planning algorithms work well. However, for
non-uniform sensor distributions and non-ideal environments, static path planning re-
sults in longer path, higher number of anchors, longer localization time and higher
energy consumption. Thus, dynamic path planning becomes more important for such
environments. It provides a dynamic trajectory which is adjustable to the observable

environments and sensor distributions during localization. [5]

In [15]], a group of mobile anchors are used for dynamic path planning. An anchor is
at the center of four anchors forming a ’+’ shape. The group of mobile anchors are
connected to each other and moves together through the network. The center anchor
controls the direction of group movement and finds the unknown node positions. The
others in the group are called direction-anchors which collect acknowledgments from
the unknown nodes to determine the direction. Making use of the received acknowl-
edgment signals by each direction-anchor, the path is determined dynamically. As
in the simulation results shown for L-shaped and U-shaped sensor distributions, the
algorithm proposed in [15] decides the direction of the mobile anchor group and only
the necessary regions are visited. Hence, this approach provides an efficient path for

nonuniform unknown node distributions over the network.

In [6]], a dynamic path planning algorithm is proposed. It is mainly based on Gauss-
Markov (GM) mobility model and virtual forces. Velocity adjustment, perpendicular
bisector and virtual repulsive strategies are applied to GM mobility adaptively. The
approach proposed in [6] can be abbreviated as GM algorithm. Here, the mobile

anchor trajectory is dynamically modified according to the environment. That is, the

22



velocity and direction of the mobile anchor is adjusted depending on the received
acknowledgments from the unknown sensors. In order to decrease the randomness
in velocity and direction, the mobile anchor slows down in the communication range
of a sensor and becomes faster in sensor-free area. In addition, when the mobile
anchor enters the communication range of an already localized sensor, it is repelled
out of the range by a virtual force. Similarly, if the mobile anchor go away from
the localization area, a virtual force is applied from the mobile anchor towards the
region. Furthermore, the localization is done by creating the anchors inside the range
of a sensor according to perpendicular bisection. The adaptive strategies provide the
mobile anchor with control over the velocity and direction. This results in short path,

less anchors and energy consumption.

In [7]], the performance of the GM algorithm proposed in [6] is improved by intro-
ducing a virtual attractive force. The algorithm proposed in [7]] can be abbreviated
as GM-VAF. While GM provides control over the mobile anchor velocity in sparsely
populated areas where the sensor population is low, it does not control the direction
of the mobile anchor. GM-VAF algorithm provides a control over the direction in
both sparsely and densely populated areas. In [7], the surveillance region is divided
into grids and represented by a matrix H. When the mobile anchor generates an an-
chor node at a grid, the corresponding index of the matrix is increased by one. In
sparsely populated regions, if the mobile anchor visits a sensor free grid more than a
predefined time, it is attracted by the closest grid with minimum H; ;. This enables
the mobile anchor to visit unvisited areas and provides full coverage. In densely pop-
ulated regions where large number of sensors are distributed, if the mobile anchor
revisits the communication range of a localized sensor, it is attracted by the closest
grid with minimum H; ;. Hence, instead of spending time around localized sensors,
the mobile anchor visit unvisited grids. GM-VAF controls the direction of the mo-
bile anchor in the given cases and it decreases the randomness of the velocity and the

direction in GM algorithm.
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CHAPTER 3

A NOVEL STATIC PATH PLANNING ALGORITHM FOR
MOBILE-ANCHOR BASED WIRELESS SENSOR NETWORK
LOCALIZATION

Static path planning is used for mobile anchor based wireless sensor network lo-
calization. An autonomous vehicle is considered as a mobile anchor and travels a
predefined path. As mentioned in chapter [2.4.5] static path planning trajectories are
determined based on specific node positioning techniques. When the localization
method changes, the static path planning trajectory requires to be adjusted for the
specific method. The number and position of anchors required for high localization
accuracy can be determined using the approach proposed in [42]. Optimizing the
SNR of range measurements, best anchor configuration can be determined as stated
in [42]. In this chapter, a novel static path planning algorithm is proposed. The mobile
anchor positions are determined based on trilateration technique which is mentioned
in chapter [2.3.1] The trajectory is designed such that all the sensor nodes distributed
in the localization area have at least three neighboring anchors in their communication

ranges.

In trilateration, an unknown node position, x;, can be found as the intersection point
of the circles whose centers are the anchor positions, a;, and the radii are anchor-to-
sensor distances, d;;. When there is noise added to d;;’s, the solution for the unknown
position is not a single point but a region. As Theorem 1 in [[11] states, the error region
is minimum when the anchor positions are symmetric to the center point of the error
region. For precise localization in 2D, anchors are created in the form of equilateral

triangles as shown in Figure In Figure the blue dots represent the anchor
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nodes generated by the mobile anchor and the green rectangle is the surveillance re-
gion where the localization is carried out. The proposed configuration satisfies the
optimum anchor placement relations proposed in [42]. The circles in Figure [3.Tb|
represent the communication range of the anchor nodes. According to Theorem 3 in
[L1]], when the side length of the triangles is R, the best sensor coverage and localiza-
tion accuracy are obtained. In the proposed static path planning algorithm, the mobile
anchor trajectory and anchor node positions are determined based on these theorems.
The proposed anchor configuration results in high region coverage and localization

accuracy.
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(a) (b)

Figure 3.1: Configuration of (a) anchor nodes in the form of equilateral triangles and

(b) circular communication ranges over the surveillance region.

The static path planning approach proposed in this thesis is composed of two phases,
namely search and decision phases. Therefore the proposed method is called static
search-and-decide (SSD) algorithm throughout the remaining chapters. In the first
phase, an initial search is performed over the surveillance region to identify the best
spots for the mobile anchor in decision-phase. After this search, SSD algorithm is
finished and the best anchor positions are identified. Then, the mobile anchor starts
its movement along the surveillance region. Since SSD is a static path planning algo-
rithm, the mobile anchor starts the localization procedure after both phases are carried

out.

3.1 SSD Search Phase

The role of this part in the path planning procedure is the detection of sensors dis-

tributed over the surveillance region. In the search-phase of SSD approach, the mobile
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anchor traverses the localization area and collects information about the existence of
sensors. The search trajectory is made of straight paths in one direction similar to the
SCAN algorithm in [8]]. Broadcasting its coordinate at each stop, the mobile anchor
creates anchor nodes along the localization region. Then, it collects acknowledgment
signals from the neighboring sensors which receive the position information of the

mobile anchor.

Let the surveillance region be an L; x L, rectangle represented with green lines in
Figure[3.2al The dark blue line with arrows is the path followed by the mobile anchor
in the search-phase, blue dots are anchor nodes and blue circles represent the com-
munication range of these anchors. The anchor nodes generated in this phase, namely
the search-phase anchors, are separated by the radius 2 of the circular communica-
tion range in x direction and by v/3R in y direction. As in Figure the position
vectors of search-phase anchors are represented by a; j, where ¢ = 1,2,...m; and
J = 1,2,...my. The starting and ending points of the mobile anchor are a,,, 1
and aq ., respectively. However, the starting and the ending position of the mobile
anchor trajectory may change depending on the size of the surveillance region, the
communication range radius or the mobile anchor direction while starting its move-

ment.

(a) (b)

Figure 3.2: Search-phase (a) mobile anchor trajectory and (b) anchor positions for the

proposed static path planning algorithm SSD.

The total number of anchor nodes, M?55P

o> generated by the mobile anchor in the
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search-phase of the proposed SSD algorithm is given as,

Ly Lo
_ dmo, = | = 3.1
my [\@R—‘ and my {R—‘ (3.1
Miigzh =mi X My 3.2)

where L, and L, are the side lengths of surveillance region in x and y directions,
respectively; m, and mo are integers representing the minimum number of anchors
by Ceil operators which map an input to the smallest integer greater than or equal to

this input.

Consider the case which the mobile anchor starts the search-phase of SSD from the
coordinates (0, ‘/TgR) and follows the path shown in Figure for my 1s odd. The

search-phase anchor positions are found as,

ai; = ((j — DR, (m —i)V3R + @) (3.3)

where © = my,m; — 1...,2,1 which is in a decreasing manner due to the direction

of movement of the mobile anchor and j = 1,2, ... ma.

When the entire region is traversed, an m; X mq storage matrix, W, is introduced.
Indexes of W represent the search-phase anchor positions and the elements at these
indexes contain the number of acknowledgment signals received by the corresponding

anchor, i.e.,

nia ni2 N1 mg
UDRI ng 2 12 mg

W = 3.4
Mmoo Mmg2 oo Tomg,ma

In the expression (3.4), n;; is the number of acknowledgment signals received by
the corresponding anchor located at a; ; as in Figure [3.2b] The acknowledgment sig-

nals coming from unknown sensors contain the sensor identification numbers (INs).
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Hence, in addition to the number of sensors located in the circular grids, the identifi-

cations of the sensors occupying each index of W are known by the user.

The first search movement of the mobile anchor makes use of the intersecting com-
munication ranges of the search-phase anchors and provide detection of the sensors in
the surveillance region. However, the number of these anchor nodes are not enough
for localization since at least three neighboring anchor positions are required for lo-
calization. Hence, the decision-phase is introduced to determine the required anchor
positions and mobile anchor trajectory for localization of all sensors by forming equi-
lateral triangles. After determining the total trajectory, the mobile anchor is informed

about the path to be followed and the anchor positions to be visited.

3.2 SSD Decision Phase

This part of the static path planning contains the decision of returning trajectory
and anchor generation. Decision-phase begins after the mobile anchor searches the
surveillance region and W is formed according to (3.4). In this phase, intersections
of the circular communication ranges are checked to determine where the sensors are
located. The red lines and dots, b; ;, in Figure are the trajectory and potential
decision-phase anchors, respectively. The real decision-phase anchors are subsets of
the anchor positions shown in Figure The purpose of the decision-phase is to
determine the best b; ; positions to visit. The shaded areas in Figure are the
intersection zones. Adjacent n; ;’s are checked to determine which shaded zones are
potentially occupied by which sensors. Then, the equilateral triangles are formed
by creating anchors at red dotted intersection points to localize the unknown sen-
sors. If there is at least one sensor in all circles, the overall SSD trajectory is in
Figure Otherwise, redundant circles and the corresponding positions with red
dots are skipped.

Decision-phase of the proposed SSD algorithm starts with the sensor detection in the
intersecting circle zones. Let us call the decision-phase anchors b; ; whose starting
point may vary depending on where the search-phase anchors start and m;’s par-

ity(evenness) as in Figure To decide if an anchor should be created at b; j, the
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Figure 3.3: (a) The potential decision-phase trajectory and (b) the potential total mo-

bile anchor trajectory for the proposed static path planning algorithm.

corresponding indexes of the upper and lower intersecting circles are checked. If both
n;; and n;;; ; are zero, no anchor is planned to be created here and the position is
skipped. When a nonzero index is found, the circles surrounding the occupied cir-
cle are checked if they have common sensors with the same INs. In this way, which
sensors are located in which shaded zones in Figure |3.3b| are determined. The un-
shaded zones are assumed to be occupied if the number of detected sensor INs are
less than the corresponding n; ;. After checking all the circular grids and determining
the required decision-phase anchor positions, the total trajectory is planned and the
mobile anchor starts its move to follow the determined path. The number of generated

anchors is M55, in the decision-phase.

decision

The total static search-and-decide procedure for m; = odd is given in Algorithm 3.1.
For m; = even case, the mobile anchor starts its move at (0, @) and finishes at
(0, Ly) as in Figure The application of the proposed method for m; = even

case is straightforward.
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Algorithm 3.1: Static Search-and-Decide (SSD)

Let m; be odd, and W be the matrix with elements n; ;’s which are the number of
sensors in the corresponding grid. The direction of movement (DoM) is shown by the
arrows in Figure [3.4] The sensor IN’s are known together with n; ;’s to know which

intersection zones are occupied by which sensors.

Step 1: Traverse the surveillance area as in Figure and generate anchors at a; ;’s
according to (3.3). Create W from the received acknowledgments in the search-
phase.

Step 2: Start the decision-phase at b; ;1 where j = my. Check if n; ; and n;, ; are

both zero. If so, skip this position. Otherwise, plan to create and anchor at b; ;4.

Step 3: If j = 1, go to step 9. Otherwise, check n; ; and 141 ; in DoM for my — 1 >

J = 2, when ¢ is fixed. If both n; ; and n;, ; are zero, skip b; ;11 position.

Step 4: If n, ; = 0 and n;41 ; is nonzero, go to step 5. If n; ; is nonzero and n;;; ; =

0, go to step 6. If n; ; and n;4, ; are both nonzero, go to step 7.

Step 5: If (i + 1, j)! circle and the next circle in DoM, which is (i + 1,5 — 1) for
¢ 1s odd, are occupied by the same sensors, skip b; ji1 position and go to step 3.

Otherwise go to step 8.

Step 6: If (i, j)*" circle and its next circle in DoM, which is (4, j — 1) for i is odd, are

occupied by the same sensors, skip b; ;1 position and go to 3. Otherwise go to 8.
Step 7: If both 5 and 6 are valid skip b; ;1 position and go to 3. Otherwise go to 8.
Step 8: Plan to create an anchor at b; ;1 and go to step 3.

Step 9: If n; ; and n,, ; are both zero, skip b; ;41 and b; ; positions. Otherwise plan

to generate anchors at b; ;1 and b, ;.

Step 10: Increase ¢ by 1 and go to step 3.
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Figure 3.4: Examples of the mobile anchor trajectories for mo = 3, when m; 1s (a)

odd and (b) even.

The proposed SSD algorithm is a static path planning method, since the mobile an-
chor does not change its position dynamically. When the search-phase is finished,
the decision-phase trajectory is determined. Then the mobile anchor starts to move

accordingly, without changing its planned trajectory.

3.3 Simulation Results for SSD

In the simulation results for SSD, the residue unknowns stand for the number of re-
maining unknown sensor positions. N is the number of sensors which are randomly
deployed in the localization area with various distributions, namely uniform, Gaus-
sian, exponential and Gaussian mixture distributions as in Figure @ The Gaussian
mixture distribution is generated by combining two Gaussian random distributions
with different mean and variances. The given distributions can be considered for the
scenarios where the sensors are placed on the terrain by a vehicle uniformly, released
from a helicopter in the form of Gaussian or exponential distribution and they are

released by two different sources in the form of Gaussian mixture distributions.
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region in the form of (a) uniform, (b) Gaussian, (c) exponential and (d) Gaussian

mixture distributions.

In this scenario, SSD is compared with single-mobile anchor based static algorithms,
namely CIRCLES [9], LMAT (Localization Algorithm with a Mobile Anchor node
based on Trilateration) [11]] and SLMAT [12].

In [[13]], Rezazadeh et. al. propose Z-curve method and evaluate the performances of
SCAN, HILBERT, LMAT, CIRCLES and RWP which are considered to be bench-
mark for the static path planning scenarios. As stated in [13], LMAT and CIRCLES
algorithms have better percentage of localization success compared to the rest. More-
over, CIRCLES provides a shorter localization time than the others. On the other
hand, LMAT has the same coverage ratio and has a very close localization accuracy

as Z-curve trajectory.
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In [12], the localization performance of SLMAT is very close to LMAT, since both
generate anchors at the same positions. However, SLMAT creates less corners and
consumes less power than LMAT trajectory because it follows a different path. That
is, LMAT turns a corner at each move in its zigzag trajectory but SLMAT takes cor-
ners only at the end of its each horizontal move. Since SSD follows a trajectory
similar to SCAN, its corner number is the same as SLMAT in the worst case. Consid-
ering the results in [[13] and [[12], our proposed method SSD is compared with LMAT,
CIRCLES and SLMAT algorithms for validation.

The simulation parameters used in the path planning algorithms for the static case are

given in Table[3.1]

Table 3.1: Simulation Parameters of the Static Scenario.

Parameter Value

Localization Region Size 50m x 50m

Communication Range (R) S5m

Sensor Distribution Uniform, Gaussian, Exponential,
Gaussian Mixture

Number of Sensors (N) 10,20,30,40,50,60,70,80,90,100

Number of Mobile Anchor 1

Velocity of Mobile Anchor (m/s) 1
Anchor Threshold for Localization 3
Monte Carlo Runs 100

In Figure 3.6 uniform sensor distribution is used to identify residue unknowns, num-
ber of anchors and distance with increasing number of sensors (N) for SSD, LMAT,
CIRCLES and SLMAT. The proposed static algorithm has less residue unknowns than
CIRCLES and the same as LMAT and SLMAT for the uniform distribution in a noise
free environment as shown in Figure The reason behind the overlap for SSD,
LMAT and SLMAT is the similarity of their region coverage. However, there are cer-
tain differences in their techniques as well. SSD does a first pass to the sensor grids
for detection. Then only the neighborhoods of the detected sensor regions are revis-
ited in the second pass. On the contrary, LMAT does use a single zigzag pass strategy
where a densely populated grid is visited at once. Moreover, SLMAT also use a single
pass strategy following straight lines as in SCAN trajectory. Figure [3.6a] shows that
the CIRCLES algorithm localizes less sensors than SSD, LMAT and SLMAT for the
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uniform distribution. The performance difference between CIRCLES and the rest is
distinct. The reason is that CIRCLES trajectory cannot reach the corners of the local-
ization region when the sensors are uniformly distributed over a rectangular area. On
the other hand, this performance gap is insignificant in Figure and Figure [3.84
Since the sensors gather at the center for Gaussian and exponential distributions, al-
most all algorithms provide full coverage. In addition, CIRCLES performance for the
Gaussian mixture distribution in Figure [3.9a]is also distinctive. This is because two
Gaussian distributions with different mean values are combined and sensors becomes

closer to the corners in this distribution.

As indicated in Figure [3.6b] SSD uses far less anchor nodes to achieve this localiza-
tion success compared to CIRCLES, LMAT and SLMAT. The number of anchors in
SSD stabilizes at a lower level than the rest. If the anchor number is decreased for
LMAT, CIRCLES and SLMAT to reach the same performance as SSD, their residue
unknowns increase. As a result, SSD uses fewer anchors than LMAT, CIRCLES and
SLMAT to localize the same amount of sensors as LMAT and SLMAT and more
sensors than CIRCLES. On the other hand, SSD requires less anchors in Gaussian,

exponential and Gaussian mixture distributions as in Figures [3.7b] [3.8b| and [3.9b] re-

spectively. This is because the sensors are positioned closely in those distributions

and less number of anchors are enough for localizing these sensors.

In Figure the distances that should be covered by the mobile anchor is given for
the uniform distribution when there is no noise. In the worst case where a sensor is
detected at each grid point of the first pass, SSD should populate other grid points
to cover the same positions as LMAT which increases the distance traveled by the
mobile anchor for SSD. This usually happens for uniform sensor distributions. As
in Figure SSD is better for small /V but the distance increases as N increases.
However, for other sensor distributions in Figures[3.7¢| [3.8c|and [3.9¢| SSD is signifi-

cantly better than the alternative methods due to non-uniform gathering of sensors.
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In this chapter, a static path planning trajectory based on trilateration is proposed. The
algorithm is composed of two phases. First the surveillance region is searched and
the sensors are detected, then the anchor nodes are generated for localization based
on trilateration. When it is compared with alternative approaches, the simulation re-
sults show that SSD achieves the same performance with trilateration based methods
using less anchors and following a shorter path. SSD also performs better than the

alternative static approaches.
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CHAPTER 4

A NOVEL DYNAMIC PATH PLANNING ALGORITHM FOR
MOBILE-ANCHOR BASED WIRELESS SENSOR NETWORK
LOCALIZATION

In this section, a dynamic path planning algorithm is proposed for a mobile anchor
based WSN, namely dynamic search-and-decide (DSD) algorithm. The aim is to
reach the maximum area coverage and localization accuracy, while keeping the path
length minimum. Similar to SSD, DSD has search and decision phases. After the
mobile anchor traverses the localization area, it detects the sensors in circular grids
and passes to the second phase. In this phase, the mobile anchor determines its path
dynamically and uses perpendicular bisector strategy (PBS) for high localization ac-
curacy. Since the non-collinear anchor positions are required in localization, PBS is

used to create non-collinear anchors.

DSD is a dynamic path planning algorithm, since the mobile anchor trajectory is
determined according to the demand of the sensors in each circular communication
range of search-phase anchors. That is, unlike SSD, the path can be modified during
the second phase of DSD algorithm. While the mobile anchor starts to move after
the optimum anchor positions are determined in SSD approach, the mobile anchor of
DSD algorithm performs the localization during the second phase of the path planning
procedure. This makes DSD flexible for the user demands which can be changed
during the process. On the other hand, this flexibility in dynamic case requires higher

processing capability for the mobile anchor compared to the static case.
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4.1 DSD Search Phase

The mobile anchor trajectory and anchor positions of DSD search-phase are the same
as in SSD search-phase. That is, the anchors are generated at a; ;’s according to
by following the path in Figure Hence, the number of anchors in this phase of
DSD is found similar to SSD by,

MP5P — my x my 4.1)

search

where m, and m, are calculated as in @) The mobile anchor broadcasts its position
a;j, where i = 1,2,...m; and j = 1,2,...m; as in Figure 3.2b] at each stop
and receives acknowledgment signals from the sensors. The binary data indicating
whether a signal is received is recorded in an m; X msy matrix Z. Indexes of Z
stand for the search-phase anchors and contain 1s and Os for received signals by the
corresponding anchor. There is a difference between W of SSD and Z of DSD.
While the elements of W represent the number of acknowledgments received in the
corresponding grids, the elements of Z indicates if an acknowledgment is received or

not.

1 if the anchor at a; ; gets acknowledgements
Zi,j - (42)

0  otherwise

The purpose of the search-phase in DSD is to obtain the matrix Z. It is required to
detect the existence of the neighboring sensors to the search-phase anchors. Although,
this phase provides full coverage of the surveillance region, the number of anchors
are not enough to localize the sensors. Hence, DSD introduces the decision-phase for

full localization.

4.2 DSD Decision Phase

In decision-phase of DSD, considering the matrix Z, only the occupied anchor grids

are targeted. The mobile anchor traverses the region first time and stops at @y .
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It dynamically checks the anchor grids in the reverse direction and moves accord-
ingly. If the corresponding index Z; ; is zero, the mobile anchor skips this grid in
a straight path. Otherwise, the localization starts according to the perpendicular bi-
sector strategy. The anchor generation in the decision-phase lasts until all occupied
circles are visited and all sensors localized. The number of anchors generated in the

. . : DSD
deClSlOIl-phaSC 18 Mdecision'

While the perpendicular bisector strategy is known in the literature [6], a summary of

this strategy is given below since DSD algorithm uses its steps.

4.2.1 Perpendicular Bisector Strategy

This strategy provides non-collinear anchor generation within the circular communi-
cation range of the search-phase anchors. Here, an integer £ is the minimum number
of neighboring anchors required by a sensor for localization. After b,}, ; Which is the
first created decision-phase anchor in (4, j)* grid is generated in the range of a; ;, the

next position is determined by the perpendicular bisector strategy as follows;

Step 1: A perpendicular bisector line with red dots in Figure is drawn through

the dashed line connecting a; ; and b, ;.

Step 2: Two potential anchor positions shown by red circles in Figure are found

on the dotted line according to the distance formula in [6] by,

u =6 X gy, t=1,2,..¢ 4.3)

where uttt!

is the distance between two consecutive decision-phase anchors within
the range; u,; is the distance between the search-phase anchor a; ; and the first

decision-phase anchor bi,jl in the (i, 7)*" grid; J is a tuning parameter [9].

Step 3: Since the perpendicular bisector line is drawn between an anchor and the
center point, two potential next anchor positions are symmetric to the dashed line
in Figure d.Tal Therefore, one of the two potential anchor positions are randomly

chosen to be the next position b? ; Inside the (i, )" grid as indicated with the arrow

trajectory in Figure
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Step 4: A perpendicular bisector is drawn on the connecting line of two consecutive

decision-phase anchors, b; ;' and b; ;> as in Figure m

Step 5: Two potential anchor positions shown by red circles in Figure .1b|are found

on the dotted line according to the distance formula in [6] by,

u =6 x utt §s=2,..,§ (4.4)

s,5+1 s,s+1

where u and u are the distances between consecutive decision-phase anchors

within the range.

Step 6: Two potential anchor positions are checked and the one within the commu-
nication range of a; ; is chosen to be b;r.’” ; Which is the 3" decision-pahse anchor in
(4,7)™" grid as in Figure If both potential positions are in the range, one of them
is randomly chosen since they both can be used for localization. This continues until
the sensors within the range achieves the anchor threshold ¢ and the mobile anchor

moves to the next occupied grid.

(a) (b)

Figure 4.1: Perpendicular bisector strategy with (a) search-phase anchors and (b)

decision-phase anchors for the decision-phase of DSD.

In the dynamic case, the proposed DSD algorithm searches the surveillance area for
sensor detection and uses previously summarized perpendicular bisector strategy for

sensor localization. DSD is applied for a sensor network as in Algorithm 4.1.
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Algorithm 4.1: Dynamic Search-and-Decide (DSD)

Let Z be the matrix with binary indexes Z; ; which represents whether the corre-

sponding grid is occupied by a sensor.

Step 1: Traverse the surveillance region with R and v/3R intervals in z and y direc-

tions, respectively. Create Z from the received acknowledgments in the search-phase.

Step 2: Check if the last visited search-phase anchor’s circular grid is occupied. If

Z1,m, 18 nONZEroO go to step 4.

Step 3: Check the search-phase anchors’ grids in the backward manner until the first

nonzero Z, ; is found and go to step 5. Otherwise, finish the path planning.

Step 4: Applying the steps 1, 2 and 3 of the perpendicular bisector strategy, generate
anchors until the corresponding sensor has £ number of neighboring anchors. Go to

step 6.

Step 5: Applying the steps 4, 5 and 6 of the perpendicular bisector strategy, generate
anchors until the corresponding sensor has £ number of neighboring anchors. Go to

step 6.

Step 6: Localize the corresponding sensors with £ number of neighboring anchors

using alternating minimization algorithm in Chapter[5] Go to step 3.
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Example: A sensor network with a matrix Z given in ({.5]) and the settings of m; =

2, my = 3 and £ = 4 is considered as an example for the dynamic path planning.

011
Z = 4.5)

0 01
Applying the DSD algorithm, the dynamic trajectory in Figure {.2]is obtained. The
blue and red dots are the search-phase and the decision-phase anchors, respectively.

While blue and red straight lines show the search and decision phase trajectories, red

dotted lines indicate the perpendicular bisectors.

Figure 4.2: An example for the proposed dynamic path planning algorithm trajectory.

4.3 Simulation Results for DSD

In the simulation results for DSD, the residue unknowns stand for the number of re-
maining unknown sensor positions. N is the number of sensors which are randomly
deployed in the localization area with various distributions shown in Figure[3.5] The
Gaussian mixture distribution is generated by combining two Gaussian random dis-

tributions with different mean and variances.

In this scenario, DSD is compared with four dynamic algorithms. Basically, the
performances of an adaptive and virtual repulsive force algorithm based on Gauss-
Markov mobility model (GM) [6]], a virtual attractive force algorithm based on Gauss-

Markov mobility (GM-VAF) [7], maximum multi-hop of nodes (MMN) [15] and
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maximum coverage of nodes (MCN) algorithms [16] are evaluated together with

DSD.

The simulation parameters used in the path planning algorithms for the dynamic

scheme are given in Table 4.1]

Table 4.1: Simulation Parameters of the Dynamic Scenario.

Parameter Value

Localization Region Size 50m x 50m

Communication Range (R) S5m

Sensor Distribution Uniform, Gaussian, Exponential,
Gaussian Mixture, L-Shaped, U-Shaped

Number of Sensors (N) 10,20,30,40,50,60,70,80,90,100
150, 200, 250,300

Number of Mobile Anchor 1, 5(for MMN and MCN)

Velocity of Mobile Anchor (m/s) 1
Anchor Threshold for Localization 3,5
Monte Carlo Runs 100

Residue unknowns, number of anchors and distance versus N for DSD, GM and GM-
VAF are indicated in Figures[4.3] {.4] [.5]and [.6|for the uniform, Gaussian, expo-
nential and Gaussian mixture sensor distributions, respectively. The anchor threshold
is set to 5 for the noise free case. Similar to the first phase of SSD, the mobile an-
chor searches the localization region to detect the existence of sensors in DSD. Then
it revisits only the neighborhood of the detected sensors. Here, the mobile anchor
generates anchor nodes exploiting the perpendicular bisector strategy to obtain high
quality anchor coordinates. As in all the given sensor distributions in Figures [4.3a]

K.4al 4.5aland 4.6a DSD and GM-VAF both localize all the sensors deployed in the

area. This is because DSD is designed to revisit all the surveillance region grids oc-
cupied by sensors and GM-VAF is designed to visit all the surveillance region grids.
This provides full coverage of the sensors deployed in the localization area. Further-
more, less sensor positions remain unknown in DSD than GM for the uniform sensor
distribution as in Figure 4.3a DSD localizes more sensors than GM in general. The

difference becomes more significant especially when N increases as in Figures

4.5a and [4.6al
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Due to the randomness in velocity and direction of the mobile anchor in GM algo-
rithm, few of the created anchor nodes are useful. On the other hand, after detecting
the existence of sensors, DSD creates anchor nodes only when necessary. Hence, as
indicated in Figures 4.3b] [4.4b], [4.5b/and [4.6b, DSD generates fewer anchors than

GM to achieve the residue unknowns of the corresponding distributions. The effect

of randomness in GM is diminished by introducing virtual attractive force in GM-
VAF algorithm. Therefore, in most cases, GM-VAF generates less number of anchors
than GM. However, the performance of DSD is still better than GM-VAF since the

decisions made in DSD are not random.

The distances covered by DSD, GM and GM-VAF are shown in Figures
and as the number of sensors increases. Due to the randomness in GM,
it takes a longer path to achieve the residue unknowns of the corresponding distribu-
tions for GM. Although the decreased randomness in GM-VAF improves the distance
performance, it still uses a long path for localization. On the other hand, DSD creates

anchors only inside the necessary communication ranges and skips redundant areas.

Thus, DSD has a shorter path than GM and GM-VAF.
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sensors for the uniform sensor distribution in the noise free case.
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Figure 4.6: Dynamic path planning results for (a) the number of residue unknowns,
(b) the number of anchors and (c) distance traversed by the MA versus the number of

sensors for the Gaussian mixture sensor distribution in the noise free case.

The change in number of anchors and localized sensors rate are indicated with in-
creasing number of sensors in Figures[d.7/and [4.8] respectively. The anchor threshold
is set to be 3 and the sensor distribution is L-Shaped. Unlike in DSD, a group of 5
mobile anchors are used in MMN and MCN. That is, the mobile anchor group moves
along the localization area and broadcasts its position periodically. Since 5 anchors
are created at each hop, 5 times the hop count gives the total number of anchors for
MMN and MCN. As a result of the same simulation, Figures [4.7)and [4.8]show that
DSD localizes %100 of the sensors generating fewer anchors than MMN and MCN
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as the number of sensors increase. Although DSD needs more anchors when there are

fewer sensors, localization rate of DSD is greater than MMN and MCN in this case.
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Figure 4.7: Number of anchors versus number of sensors for L-Shaped distribution.
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Figure 4.8: Localized sensor ratio versus number of sensors for L-Shaped distribu-

tion.

The same analysis with the same settings of L-Shaped distribution is done for U-
Shaped sensor deployment. The results are indicated in Figure 4.9] and Figure .10
DSD creates fewer anchors to localize %100 of the sensor nodes than MMN and MCN
as the number of sensors deployed in the localization region increase. Otherwise,

MMN and MCN shows better performance in terms of anchor number. However, in
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such cases, MMN and MCN cannot localize all sensors. That is; although DSD uses
more anchors than MMN and MCN for low number of sensors as in Figure 4.9] its

sensor localization rate is higher for all conditions as shown in Figure 4.10]
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Figure 4.9: Number of anchors versus number of sensors for U-Shaped distribution.
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Figure 4.10: Localized sensor ratio versus number of sensors for U-Shaped distribu-

tion.

As mentioned before, MMN and MCN algorithms contain a group of mobile anchors
and the distance is calculated to be the path length of the group. Since it is not fair
to compare the path length of a single mobile anchor with of a group, the distance

parameter is not analyzed for MMN and MCN.
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In this chapter, a dynamic path planning trajectory is proposed. Similar to SSD, the
dynamic algorithm comprises of two phases. First the sensors are detected in the
surveillance region, then the anchor nodes are generated for sensor localization by
using perpendicular bisector strategy. Since DSD is a dynamic approach, the local-
ization is performed during the trajectory planning process. The simulation results
show that DSD outperforms alternative dynamic methods in terms of localization

success, number of anchors and path length.
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CHAPTER 5

LOCALIZATION USING ALTERNATING MINIMIZATION
ALGORITHM

In this thesis, two novel path planning algorithms are proposed for static and dynamic
scenarios. The main purpose of these approaches is to obtain high quality anchor
positions and high localization accuracy with low energy consumption. Making use of
these anchor positions, the proposed node localization algorithm provides an effective

solution for the nonlinear and non-convex sensor network localization problem.

The proposed node localization algorithm exploits node-to-node distances. In 2D, an
unknown coordinate with at least three neighboring anchors can be found by solving a
linear set of equations [3]. Using the generated anchor positions and sensor-to-anchor
distances, the non-convex and non-linear sensor localization problem can be solved
by using optimization. In this thesis, the original problem is modified to a bi-convex
form. The modified problem is solved by using alternating minimization algorithm
iteratively. While AMA does not guarantee the optimum solution, it provides an
effective sensor localization. Since sensor-to-anchor distances are used together with

anchor positions, AMA performs localization non-cooperatively.

Considering the proposed path planning algorithms SSD and DSD, let the total num-

ber of anchors deployed in the surveillance region be M where M = M50

MS5P  for SSD and M = MPSP 4 VPSP for DSD. The Euclidean distance dj;

decision search decision

can be obtained by TOA measurements. For the formulation of localization problem,
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lth

the distance between [t anchor and i*" sensor is denoted by,

di =\ (e — 22 + (a0 — )2 + (5.1)

where a, , and a,; , are the components of [" anchor position a; for [ = 1,2, ...M; x;
and y; are the components of " sensor position z; fori = 1,2, ... N; v; is the additive

white Gaussian noise.

Another way of obtaining d;; is using RSS measurements when the transmitted power
(Pr,) and the path loss exponent () are known. The localization problem can be
solved by directly using RSS measurements in an optimization algorithm as in [19]].
In the proposed approach, on the other hand, the distance information is obtained
from the RSS measurements and used in alternating minimization. The path loss

model in [20] is given as,

d
RSS(d) = Pr, — PL(dy) — 107 logy, T + X, (5.2)

0
where RSS(d) is the total path loss for distance d, PL is the path loss for a reference
distance dy and X, is additive, zero-mean white Gaussian noise with the standard

deviation o.

The optimization procedure is based on finding the coordinates of a sensor which
satisfy the distance constraints. Making use of the known anchor positions and the
sensor-to-anchor distances, localization problem is solved by minimizing the differ-
ence between d;; and ||a; — x;|| [3]. That is, non-cooperative localization problem is

given as,

Minimize Z(l)eM<Hal — xill2 — dyi)? (5.3)

X

However, the quadratic cost function in @) is non-convex. In this chapter, the
nonlinear and non-convex localization problem is modified such that it becomes bi-
convex and satisfies (5.3) implicitly. The modified problem is solved by alternating

minimization using a convex optimization tool. The proposed alternating minimiza-
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tion algorithm (AMA) does not guarantee the global optimum but it provides an ef-

fective solution for this problem.

5.1 Alternating Minimization

The least squares expression in ([5.3)) is changed to a constrained optimization problem

in the proposed algorithm. The distance constraint that must be satisfied is given as,

”al - X2||2 =dj (5.4)

However, equality constraints cause the optimization problem to be non-convex. There-

fore, the equality constraint in (5.4)) is modified as an inequality, i.e.,

lar — x|z < dy; (5.5)

On the other hand, without a lower bound, the inequality @ leads to the trivial
solution. To avoid this, the summation of the left term in for all (I) € M can
be maximized in the cost function. Using the inequality (5.5) in the constraint and
maximizing the summation ., [la; — x;||% in the cost function implicitly satisfy
the relation (5.3). However, ||a; — ;||2 = (a; — ;)" (a; — ;) is non-convex. In order

to make it convex, it is changed to an affine form as in,

||al — mZHg =~ (al — mi)T(al — il) (56)

where Z; is the sensor position found in the previous iteration. In addition, slack vari-
ables w;’s are introduced to obtain a feasible inequality constraint. w;’s which are the
elements of vector w are minimized. Hence, the formulation of non-convex local-
ization problem in is converted to a biconvex form and the modified problem is

solved iteratively, i.e.,
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Minimize ¢ — Z(l)eM(al — )" (a, — ;) (5.7a)

Ti,w,t

Subjectto ||a; — x;||2 < di; + wy (5.7b)
[2w;t —1]| <t +1 (5.7¢)
x>0, i=1,.N, I=1,.M (5.7d)

Here, the maximizing the summation of the terms in (5.6)) is implied in the minimiza-
tion with minus sign in (5.7a). In alternating minimization, ||a, — @;||» is minimized
and the summation of distance squares from the previous iteration are maximized.
The slack variables introduced for a feasible inequality at are minimized due
to the constraint (5.7¢). Hence, the estimated distances converge to d;;’s. Having
a convex cost function and affine constraints, the biconvex formulation in be-
comes a modified version of the original non-convex localization problem. Therefore,
it can be solved by convex optimization tools. The initial value of Z is chosen to be

the center of the neighboring anchors.

The implementation of the alternating minimization algorithm in wireless sensor net-
works for the non-cooperative scheme is presented in Algorithm 5.1. Application of
the alternating minimization algorithm for the cooperative scenario where the sensor-

to-sensor and sensor-to-anchor distances are known is proposed in [43] and [44]].
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Algorithm 5.1: Alternating Minimization Algorithm

Let « be the unknown sensor position and & be the sensor position obtained in the
previous iteration. ¢ is an integer representing the minimum number of neighboring

anchors required for localization.

Step 1: Detect the sensors having at least £ number of neighboring anchors in their

circular communication ranges.

Step 2: Choose an unknown sensor for localization. Find the initial sensor position

by calculating & as the center point of the neighboring anchor positions.

Step 3: Using the initial position &, solve the alternating minimization problem in

(5.7) at most 2 iterations and find «.

Step 4: If all the sensors with at least £ number of neighboring anchors are localized,

finalize the localization process. Otherwise go to step 2.

The Algorithm 5.1 can be applied in a sensor network at once or as in [45]. That is;
when the sensors with & number of neighboring anchors are detected, Algorithm 5.1
is applied to those sensors and all of them are localized at once. In addition, as in
[45], firstly the sensors with & number of neighboring anchors are localized and they
are assigned as anchors. Then, the remaining sensors are localized by Algorithm 5.1
using the updated anchor positions. This is the iterative application of the Algorithm
5.1
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5.2 Simulation Results for Alternating Minimization

In this section, the performance of the proposed alternating minimization algorithm
is considered. The linear localization approach, particle swarm optimization (PSO)
and second order cone programming (SOCP) algorithms are compared with AMA in
terms of their localization performances. The root mean square error (RMSE) of the

localization is,

N
1 .
RMSE = | = > (xq — )7 (5.8)

i=1

where z; and z; are the true and estimated sensors positions, respectively.

AMA is implemented in SSD, LMAT, CIRCLES and SLMAT for N = 10. Fig-
ure shows the change in RMSE calculated by with increasing standard
deviation of the additive Gaussian noise in sensor distances given in (5.1I). Since
SSD, LMAT and SLMAT create anchor nodes at the same coordinates for the same
unknown sensor positions, they have close RM SE results as in Figure In ad-
dition, the RM SE of CIRCLES algorithm is slightly lower than SSD, LMAT and
SLMAT for the same number of residue unknowns. This is because CIRCLES uses
more anchor nodes to localize the same amount of sensors as SSD and LMAT for the

corresponding distributions.

When both AMA and linear localization [[18]] are implemented in SSD using the same
settings of Figure [5.I, AMA has lower RAMSE as in Figure [5.2] Thus, it is more
effective in terms of localization accuracy compared to the linear method [18]]. This
is because the localization requires the solution of a nonlinear second order equation.
AMA solves this nonlinear equation while the linear approach linearizes the equations

and solves them indirectly.

The change in RM S E with increasing noise standard deviation is indicated in Fig-
ure [5.3] where the anchor threshold is 5 and 10 sensors are deployed in the region
with given distributions. Although GM, GM-VAF and DSD algorithms use perpen-
dicular bisector strategy to create anchors, DSD mostly chooses the positions on the
communication circle. This creates higher quality anchor coordinates and increases

the localization accuracy of DSD compared to GM and GM-VAF algorithms.
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Figure 5.1: RMSE versus noise standard deviation (o) for different algorithms.
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When both AMA and linear localization [[18]] are implemented in DSD using the same
settings of Figure [5.3] AMA has lower RM SE as in Figure [5.4] Thus, localization

by AMA is more accurate compared to the linear approach.
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AMA is compared with PSO [20] and SOCP [19]. In [20], PSO is compared with
a neural network algorithm [46], DV-distance [47/], ecolocation [48] and iterative
multi-lateration algorithms [45]. Since PSO outperforms these techniques, AMA is
compared with PSO for validation. AMA, PSO and SOCP are applied iteratively.
Once they localize a sensor, it becomes an anchor node for the next iteration. Here,

d;; = ||]a; — x;]|2 is obtained from RSS measurements in (5.2).

The same settings as in [20] are used for fair comparison. That is, L; and L, are
50m, R = 25m, Pr, = 0dBm, dy = 1m, PL(dy) = 55dBm, v = 4 and o = 2. The
number of anchors is %10 of the number of nodes in the region. Here, the localization

error is calculated as in (5.9) for all sensors.

a; — ;||

7 (5.9)

1 o [dy; — ||
Localization E :—§ b
ocalization £rror N -

The localization error (%) versus the number of nodes is shown in Figure @] for
uniform distribution. AMA outperforms SOCP. For fewer nodes, AMA has lower
error than PSO. Although the error in AMA is higher than PSO for high number of
nodes, AMA and PSO converge closely as the number of nodes increases. Since
AMA localizes a sensor in at most 2 iterations, its error accumulation is lower than

the rest.
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Figure 5.5: Performances of SOCP, PSO and AMA.
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In this chapter, alternating minimization algorithm is proposed for wireless sensor
network localization problem. In this approach, the non-convex problem is converted
to a biconvex form and solved iteratively. Without making rank assumptions, alternat-
ing minimization algorithm provides an effective solution for the original localization
problem. The simulation results show that, the proposed algorithm performs better

than the alternative node localization methods.
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CHAPTER 6

CONCLUSIONS

In this thesis, mobile anchor based wireless sensor network localization problem is
investigated. Two novel path planning algorithms and a node localization algorithm

are proposed for this problem. The proposed algorithms can be outlined as follows;

1. The static search-and-decide (SSD) algorithm for static path planning scenar-

10S.

2. The dynamic search-and-decide (DSD) algorithm for dynamic path planning

scenarios.

3. Alternating minimization algorithm (AMA) for node localization in mobile an-

chor based wireless sensor networks.

In this thesis, SSD and DSD algorithms use a two-phase procedure to search the
surveillance region and decide the mobile anchor trajectory. Furthermore, the non-
convex, NP-hard node localization problem is solved iteratively using alternating

minimization algorithm.

In the first phase of the proposed static path planning algorithm, the mobile anchor
traverses the surveillance region by generating anchor nodes. The area is divided
into circular grids and the acknowledgment signals coming from the sensors at each
grid are recorded. In this way, the mobile anchor detects the sensors deployed in the
region. In the second phase, the mobile anchor visits the grids occupied by the sen-
sors and generate anchors in the form of equilateral triangles for localization based

on trilateration. In SSD, the mobile anchor does not revisit redundant areas which
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results in generating less anchors with shorter path. Since LMAT and CIRCLES out-
perform SCAN, HILBERT and RWP algorithms, the proposed static path planning
algorithm is compared with LMAT, SLMAT and CIRCLES for validation. The sim-
ulation results show that SSD performs better than the alternative static approaches
in terms of localization success, the number of anchor and the path length. More-
over, the proposed static algorithm achieves the same localization success as other
trilateration based methods such as LMAT and SLMAT by generating less number
of anchor nodes in a shorter path. SLMAT algorithm provides the same anchor po-
sitions with LMAT by using less corners for the mobile anchor movement. Since
LMAT follows a zigzag path and SLMAT follows a straight path to generate anchor
nodes, SLMAT turns the corners only at the leftmost and the rightmost of the surveil-
lance region. This decreases the energy consumption for the mobile robot. Similar to
SLMAT, SSD follows a straight path and turns fewer corners. Therefore, even in the
worst case when the sensor population is high, SSD has the same number of corners
as SLMAT has. In the sparsely populated cases, SSD has less corners than SLMAT.

That is, SSD provides more feasible and energy efficient trajectory.

In the proposed dynamic path planning algorithm, a similar two phased method is
used. When the mobile anchor detects the sensors in the surveillance region, it revis-
its the grids populated by the sensors for localization. However, DSD performs the
sensor localization process dynamically. That is, the localization is performed dur-
ing the path planning process. In the decision-phase of DSD algorithm, the mobile
anchor starts to revisit the populated grids and generates anchor nodes using perpen-
dicular bisector strategy. The mobile anchor leaves a grid only if all the sensors in the
corresponding grid are localized in this phase. The proposed dynamic path planning
algorithm is compared with GM, GM-VAF, MMN and MCN algorithms. The simu-
lation results show that DSD localizes more sensors than the alternative approaches
using less number of anchors and a shorter path. The reason is that the redundant
areas are not revisited in DSD. Therefore, DSD is an energy efficient approach using
less number of anchors and shorter path. Moreover, DSD algorithm provides high
localization accuracy since it generates non-collinear anchors using the perpendicular

bisector strategy.
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In the proposed localization algorithm, an effective solution is brought to the non-
convex, NP-hard node localization problem. For the non-cooperative scenario, the
original nonlinear and non-convex problem is converted into a biconvex form. The
modified version of the problem is solved by using alternating minimization algorithm
and second order programming, iteratively. AMA is compared with linear localiza-
tion, PSO and SOCP approaches in terms of node position accuracy. The simulation
results show that the proposed alternating minimization algorithm outperforms the
alternative methods, because it is less prone to error accumulation and provides more

accurate sensor positioning.
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