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ABSTRACT

TRANSCRIPTOMIC NETWORK ANALYSIS OF BRAIN AGING AND
ALZHEIMERS DISEASE

Parvizi, Poorya

M.S., Department of Biology

Supervisor : Assoc. Prof. Dr. Mehmet Somel

Co-Supervisor : Assist. Prof. Dr. Nurcan Tunçbağ

August 2017, 74 pages

Multiple studies have investigated aging brain transcriptomes to identify for age-

dependent expression changes and determine genes that may participate in age-related

dysfunction. However, aging is a highly complex and heterogeneous process where

multiple genes contribute at different levels depending on individuals’ environments

and genotypes. Both this biological heterogeneity of aging, as well as technical bi-

ases and weaknesses inherent to transcriptome measurements, limit the information

gained from a single data set. Here we propose using network analysis to repro-

ducibly identify aging-related gene interactions shared across different datasets. We

employ the prize-collecting Steiner forest algorithm to create aging networks on hu-

man brain transcriptome datasets. The algorithm calculates the optimal interaction

set among aging-related genes within a protein-protein interaction (PPI) network,

taking into consideration expression-age correlation coefficients of the most differ-

entially expressed genes with age, and the PPI confidence scores. This allows aging-

related genes to interact either directly or through intermediate nodes. The interme-
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diate nodes, in turn, can represent genes undetected in transcriptome data due to low

light intensity, technical inefficiency of platforms, or aging-related molecular changes

that do not involve mRNA abundance change, such as aging-related post-translational

modifications. Using the predicted networks, we have performed network alignment

of the reconstructed networks to test whether common interactions might be found in

different tissues’ aging networks. In addition, we also extend the approach to com-

pare molecular changes during aging and in Alzheimer’s Disease. We hypothesize

that using network alignment will help highlight the most relevant gene clusters and

pathways shared between the two processes.

Keywords: Aging, Alzheimer’s diseases, Transcriptome, Aging Network, Network

alignment, Prize-collecting Steiner forest
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ÖZ

BEYİN YAŞLANMASI VE ALZHEİMER HASTALIĞI’NIN
TRANSKRİPTOMİK AĞ ANALİZİ

Parvizi, Poorya

Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi : Doç. Dr. Mehmet Somel

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Nurcan Tunçbağ

Ağustos 2017, 74 sayfa

Birçok çalışma, yaşa bağlı ekspresyon değişimlerini belirlemek ve yaşa bağlı fonksiy-

onel bozukluklara katılan olası genleri tespit etmek için beyin yaşlanma ifadesi çalış-

mıştır. Ancak, yaşlanma bireylerin çevresine ve genotipine bağlı olarak, birden fazla

genin farklı seviyelerde katkıda bulunduğu oldukça karmaşık ve heterojen bir süreçtir.

Transkriptom ölçümlerine özgü teknik eğilim ve zayıflıkların yanı sıra yaşlanmanın

biyolojik heterojenliği, tek bir veri setinden elde edilen bilgiyi sınırlar. Burada, farklı

veri setlerinde paylaşılan, yaşa bağlı gen etkileşimlerinin tekrarlanabilir olarak be-

lirlenmesi için ağ analizi kullanılması gerektiğini ileri sürüyoruz. İnsan beyni tran-

skriptom veri setlerinde yaşlanma ağları oluşturmak için prize-collecting Steiner for-

est algoritması kullanıyoruz. Algoritma, yaşla birlikte farklı olarak anlatılan gen-

lerin, gen anlatımı-yaş korelasyon katsayılarını ve PPI güven skorlarını göz önüne

alarak, bir protein-protein etkileşimi ağı içinde, yaşla ilişkili genler arasındaki op-

timum etkileşimi hesaplar. Yaşlanma ile ilişkili genlerin doğrudan veya ara nodlar
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aracılığıyla etkileşime girmesine izin verir. Ara nodlar, düşük ışık yoğunluğu, plat-

formların teknik olarak efektif olmaması veya yaşla ilişkili translasyon sonrası modi-

fikasyonlar gibi mRNA yoğunluğunu değişimini içermeyen yaşlanmayla ilişkili mole-

küler değişiklikler nedeniyle transkriptom verilerinde de değişim göstermeyen gen-

leri temsil edebilir. Tahmini ağları kullanarak, farklı dokuların yaşlanma ağlarında

ortak etkileşimlerin bulunup bulunmadığını test etmek için yeniden yapılandırılmış

ağların ağ uyumluluğunu gerçekleştirdik. Buna ek olarak, yaşlanmada ve Alzheimer

Hastalığı’nda moleküler değişiklikleri karşılaştırıyoruz. Ağ hizalaması kullanımının,

iki süreç arasında paylaşılan en alakalı gen kümelerine ve yolaklara dikkat çekmeye

yardımcı olacağını ileri sürmekteyiz.

Anahtar Kelimeler: Yaşlanma, Alzheimer Hastalığı, Transkriptom, yaşlanma ağı, Ağ

hizalaması, ödül-toplama steiner algoritması
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CHAPTER 1

INTRODUCTION

1.1 What is Aging

Human-beings have a strong desire for living longer since ancient times. To illustrate,

the ancient Romans believed that following healthy diet and living according to it

could prolong healthy life and increase life expectancy (Cokayne, 2003). Aging is the

dysfunction or changes in biological pathways with respect to time. It is statistically

stated that, in the last decade the number of aging population have risen sharply due

to the developments in medicine and industry. For this reason, it is believed that

the proportion of people over 65 will increase from 15% in 2009 to 26% in 2039

(Hsieh, 2015). Accumulation of cellular damage during aging and increase in the

proportion of elderly individuals would raise the prevalence of age-related diseases

including cancer, neurodegenerative and cardiovascular diseases (Brunet and Berger,

2014). Therefore, understanding the molecular mechanisms of aging is a valuable

approach in the exploration of disease processes.

Caenorhabditis elegans is the premier model organism for aging studies which first

introduced by Sydney Brenner in 1963 (Tissenbaum, 2015). He believed that the

model organism should be cheap, easily reproducible in the lab, with a short genera-

tion time and a simple body plan. Utilizing this biological model, Klass searched for

mutant strains of C. elegans which could extend its lifespan (Klass, 1983). He found

a significant correlation between increase in a life span and food intake. His pioneer

research opened a new era in the biology of aging studies. Since then lots of aging

studies have applied which most of them categorized in one of hallmarks of aging.
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1.2 Hallmarks of Aging

Various changes in molecular pathways and mechanisms can contribute to aging pro-

cesses. These alterations, together, explain the phenotype of aging. These charac-

teristics, in molecular and cellular level are categorized into nine hallmarks of aging

(López-Otín et al., 2013). All of the hallmarks carry three criteria: (1) it should par-

ticipate in normal aging, (2) its trigger should accelerate aging, (3) its amelioration

should increase lifespan.

1.2.1 Genomic Instability

Somatic cells are constantly under exogenous and endogenous threats. These detri-

mental agents induce DNA lesion in genomic and mitochondrial DNA and defects in

nuclear architecture. Amelioration of these DNA damages is surveillanced by DNA

repair mechanisms. However, the failure to repair or incorrect repair could lead to

instability and increase in mutation rate in a cell (Vijg and Suh, 2013). Mutation ac-

cumulation is one of the main factors in aging (Moskalev et al., 2013). Although,

DNA damage accumulation is the cause of premature aging disease, like progeria

syndrome, the association of this disease and aging is unclear.

1.2.2 Telomere Attrition

Telomere is a repetitive DNA sequence found at the end of chromosomes to protect

it against attrition and fusion with other chromosomes. Telomerase, the enzyme that

adds repetitive nucleotides to the 3’ end of telomere is not express in human somatic

cells and some other mammalian cells. Time dependent telomere exhaustion cease

the cell proliferation and leads to the cellular senescence (Hayflick and Moorhead,

1961; Olovnikov, 1996). In addition, experiments of mice exhibit the decrease in

lifespan in telomere shortened samples. On the other hand, induction of telomerase

activity extend longevity in mice (Armanios et al., 2009; Blasco et al., 1997; Herrera

et al., 1999; Rudolph et al., 1999; Tomás-Loba et al., 2008).

2



1.2.3 Epigenetic Alterations

Epigenetic changes in aging, projected in transcriptomic alterations and disruption of

genome architecture (Brunet and Berger, 2014). Changing in DNA methylation, hi-

stone modifications and chromatin remodeling result in genome instability, malfunc-

tion in DNA repair mechanism and increase in transcriptional noise (Pal and Tyler,

2016). Various experiments promise the effect of epigenetic alterations in aging pro-

cesses and onset of premature aging disease. To illustrate, deficient of SIRT6 protein

deacetylase, accelerate aging in mice (Mostoslavsky et al., 2006). On the other hand,

increased activity of this protein increase the life span (Kanfi et al., 2012).

1.2.4 Loss of Proteostasis

Protein function and their structure are kept under tight surveillance of protein quality

control mechanisms to eliminate or ameliorate nonfunctional and incorrectly folded

proteins. Unfolded or misfolded proteins, mostly refolded with the help of heat-shock

proteins, i.e. chaperones. However, some of them undergo degradation through ubiq-

uitin pathway or engulfed and broken down by lysosomes. Failure to ameliorate

problematic proteins results in their accumulation in a cell. Loss of proteostasis dur-

ing aging is demonstrated by various studies (Koga et al., 2011).

1.2.5 Deregulated Nutrient-sensing

Nutrient-sensing pathways detect nutrient intake and regulate anabolic signaling in a

cell according to it. Insulin/IGF-1 signaling (IIS) pathway is contributed to aging pro-

cess and evolutionarily conserved. Mutation in this pathway and downstream com-

ponents increase lifespan. It is experimentally proven that caloric restriction which

deregulated nutrient-sensing and drugs which mimics nutrient availability increase

the healthy aging (Fontana et al., 2010).
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1.2.6 Mitochondrial Dysfunction

Decrease in ATP production and disturbance in mitochondrial respiratory chain is

one of the features of cellular aging. Reactive oxygen species are byproducts of

mitochondrial respirations. It is believed that, accumulation of these free radicals

lead to the functional disruption in mitochondria. In addition, these changes could be

due to mutation accumulation in mtDNA (Park and Larsson, 2011).

1.2.7 Cellular Senescence

Cellular senescence is an exhaustion of cell proliferation. In addition to the telomere

shortening stated by Hayflick, other age-related mechanisms might contribute in this

process. Accumulation of these cells, diminish the efficient function of tissue (Camp-

isi and d’Adda di Fagagna, 2007). However, cellular senescence is also helpful in the

elimination of cells with abnormal growths and hence protect from tumor formations.

Studies claim that, over-activation of tumor suppressor pathways which are induced

due to senescence, extend life span (Matheu et al., 2007, 2009). On the other hand,

elimination of senescent cells in premature aging model organism delays age-related

pathologies (Baker et al., 2011).

1.2.8 Stem cell Exhaustion

Decrease in the potential of stem cells in regeneration through aging is one of char-

acteristics that participate in aging phenotype. Extreme proliferation of the stem cells

leads to the stem cell exhaustion resulting in deficiency in regeneration of new cells.

In addition, excessive proliferation of intestinal stem cells in Drosophila resulted in

premature aging (Rera et al., 2011). Moreover, it is believed that, rapamycin, the drug

which increase the lifespan by regulating the protein hemostasis and deregulating nu-

trient sensing, may also participate in increasing the efficiency of stem cell activity

and rejuvenation (Castilho et al., 2009; Chen et al., 2009; Yilmaz et al., 2012).
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1.2.9 Altered Intercellular Communication

Intracellular communication alteration in multicellular organisms is a prominent char-

acteristic of aging. “Inflammaging”, the pro-inflammatory traits in aging, is one of

the consequence of this miscommunication. Inflammaging may rise due to the ac-

cumulation of pro-inflammatory damages. In addition, inability of immune cells to

eliminate pathogens and senescent cells which have tendency to release proinflam-

matory cytokines, are some of the factors leading to inflammaging (Salminen et al.,

2012).

1.3 Aging and Alzheimer’s Disease

Alzheimer’s disease is a most common chronic neurodegenerative dementia. the

symptoms and severity of which increase over time. However, the rate of changes

are various among patients. The prevalence of AD in 2006 was 26.6 million, and this

number is expected to quadrupled in 2050 (Brookmeyer et al., 2007). The incidence

onset to the AD is increased with age. It is stated that, 12% of the people over 65 carry

this disease. Furthermore, this percentage increase to more than 50% in individuals

over 85 (Alzheimer’s Association, 2011). A study which investigate the microarray-

based gene expression changes in aging and AD, found that there are highly statistical

overlap between differential expression genes in aging and genes dysregulated in AD

(Avramopoulos et al., 2011; Yuan et al., 2012). In addition, genome-wide association

studies of 5 different age-related diseases show that they share common age-related

pathways (Johnson et al., 2015). Although, aging and AD demonstrate different phe-

notypes and symptoms, the correlation between them indicates common pathways

and mechanisms they may share.

1.4 Network Modeling

Network models consist of biological components and links between them which rep-

resent their association. Some of these models are protein–protein interaction, gene
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interaction, protein-DNA and metabolic networks. Interaction network tools employ

different algorithms to optimally reconstruct biological networks. KeyPathwayMiner

is an algorithm which obtain highly connected sub-networks of deregulated genes

by employ multiple omics studies. This algorithm apply colony optimization and

fixed-parameter algorithms which combine, biological network and multiple omics

(Alcaraz et al., 2014). TimeXNet is another algorithm which determine the reliable

edges that establish a connection between differentially expressed genes at three ini-

tial, intermediate and late time interval by taking weighted interaction network in to

account (Patil and Nakai, 2014). SDREM is a network modeling tool which com-

bines two signaling cascade and transcriptional regulation components to examine

cellular response to disease. To do this, this algorithm take a upstream proteins which

shown related to pathogens and search for signaling cascades which provide interac-

tion of these proteins with downstream transcription factors (Gitter and Bar-Joseph,

2013). SAMNet is an optimization tool that combines two high-throughput data using

protein-protein interaction to identify functional groups shared among them(Gosline

et al., 2012). Another algorithm, ResponseNet, assert the artificial node (Source)

which differentially expressed genes connected to them. Here, this algorithm select

optimal connections and reliable nodes taking in to consideration the cost of interac-

tions (Yeger-Lotem et al., 2009). Tied Diffusion Through Interacting Events (TieDIE)

uses diffusion model to detect the effect the association of genomic perturbations to

transcriptomic changes especially in cancer studies (Paull et al., 2013). The HotNet

algorithm also utilize diffusion model to discover modules changed in cancer (Vandin

et al., 2011).

1.5 Network Analysis in Aging studies

It is rarely possible that a biological function relies on a single molecule. Instead,

biological systems are complex networks that exist through interaction of DNA, RNA

and protein components (Barabási and Oltvai, 2004). Studies on biological networks

emerge from Albert-László Barabási’s finding on scale-free network. He believes that

some nodes have higher connections and act as a hub in a system.
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With the increase in molecular interaction databases, studies on biological questions

with the help of network biology increased. Among these, only few concentrate on

aging networks. In 2004, a study examined the connectivity of age-associated pro-

teins and other traits in yeast interaction network. It deduced that senescence related

proteins show higher connectivity in a network. In addition, these proteins exhibit

high correlation with their degree of pleiotropy which is consistent with antagonis-

tic theory of aging (Promislow, 2004). Following the mentioned study, Ferrarini et

al. utilized interaction datasets of S. cerevisae, C. elegans and D. melanogaster which

contained physical interactions and published genetic interactions, to create networks.

They examined the number of links and local connectivity of age-related proteins.

They conclude that, age-related genes act as hubs in a network (Ferrarini et al., 2005).

A “longevity network” was the first time introduced by a study in 2007. In this study,

genes which showed association with aging in different species collected and their hu-

man orthologs specified. This study searched for the direct interaction of these genes

or through first shared neighbors in a human protein-protein interaction. Highly con-

nected proteins (hubs) in this network, including non age-related proteins, reported to

be involved in age-related disease (Budovsky et al., 2007).

Another study constructed a “disease-aging network”, which shows the interaction

between age-related genes and disease-related genes. This network demonstrated that

the average closeness centrality of aging genes is much higher than disease-associated

genes. In addition, genes which associated with aging establish a connection between

disease, especially age-related ones (Wang et al., 2009). A similar study examined

the common modules which were conserved in a co-expression network of aging and

AD. Energy metabolism of mitochondria and synaptic plasticity were two common

functional groups enriched in this study (Miller et al., 2008).

1.6 Research Objective

As discussed earlier, aging is an accumulation of time-dependent deleterious changes

in biological processes, which leads to the physiological disruption; hence raise the
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prevalence of age-related diseases such as Alzheimer’s disease. Therefore, under-

standing the mechanisms of aging is important in discovering the molecular mecha-

nisms of these disease. I believe high correlation of differential expressions between

aging and AD indicates the common pathways these two processes may share. Its

known that aging and AD are highly complex and gene expression levels are het-

erogenous. Therefore, this emphasize the importance of analysing these genes and

their interactions in a transcriptomic network.

However, some weaknesses on microarray data measurments such as difficulties in

detection of low light signals, inability of perfect match bindings or inefficiency of

platforms limit the informations collect from data-set. In addition, post-translational

modification may affect expression changes and does not shown in micoarray.

Here, I have tested Omics Integrator Software (Tuncbag et al., 2016) to reconstruct

the optimal aging ad AD networks. This software employ prize-collecting Steiner

forest problem to achieve a network which contains high reliable genes and confi-

dence interactions. This algorithm allows genes to interact directly or throughout

intermediate or steiner nodes. I believe, this could eliminate some biases in microar-

ray measurments which mentioned earlier. In addition, I believe functional analysis

of clusters of aging and AD networks would helps to obtain Gene Ontology results

and pathways shared between them.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Datasets

In order to construct the brain aging and Alzheimer’s disease networks I used microar-

ray based gene expression datasets. All of these data were retrieved from NCBI’s

Gene Expression Omnibus (GEO) data repository and had been generated on the

Affymetrix platform (Edgar et al., 2002). The priority of extraction for Affymetrix

datasets is to download “CEL” files (raw data), which harbor light intensity measure-

ments (Gautier et al., 2004). Pre-processed files, called a “series matrix files” are also

available at NCBI GEO. This form of file is background corrected and normalized by

the authors. However, I chose to start my analysis from raw data whenever possible.

In dataset selection I took a number of features into consideration. One was high sam-

ple size, which is critical for achieving statistically significant results. In addition to

the sample size, the age range was taken into consideration, such that I tried to max-

imize the interval between developmental process termination (20 years in human)

and old age, which is important in studies of aging. Three different datasets, two hu-

man and one mice, which in total comprise 4 different brain regions were downloaded

in order to be used in this study, shown in Table 2.1. In this table data belonging to

each brain region in a dataset is shown separately, and I refer to each of these as a

“dataset” in further chapters. Note that the sampled brain region in the mice study is

not specified in related article (Jonker et al., 2013).

All of the datasets I chose had unprocessed “CEL” files available. I processed these
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raw datasets with the help of the R “affy” package, to analyze expression levels (Gau-

tier et al., 2004). I would like to note that newly designed Affymetrix oligonucleotide

array platforms are not supported by this package and the R “oligo” package should

be used (Carvalho and Irizarry, 2010).

For Alzheimer’s disease, I used 2 datasets, comprising 3 brain regions in total, pre-

sented in Table 2.2. Here, similar to Table 2.1, each region is shown separately and I

call each of these a “dataset”. All the datasets contain high number of non-dementia

and AD samples. Despite the availability of raw data for these datasets, I downloaded

“series matrix files” from NCBI GEO. The reason is that the platform used in these

two studies, “Rosetta/Merck Human 44k”, is not supported by “affy”, “oligo”, or any

other freely available R package, to my knowledge. I note that this platform’s pre-

processed series matrix files contained negative values. Negative values may arise

due to the higher expression of background probes relative to perfect match ones.

The data from glioblastoma multiforme (GBM, the most aggressive type of brain can-

cer) patients deposited in TCGA (the Cancer Genome Atlas) were also used in this

project. GBM data was retrieved from the Genomic Data Commons (GDC) data por-

tal (https://cancergenome.nih.gov/). Different categories of data such as DNA methy-

lation, DNA sequencing, transcriptome profiling and copy number variation are avail-

able in this portal. RNA-Seq expression files with FPKM (Fragments Per Kilobase

Million) units were downloaded (Table 2.3). Expression of each gene in this dataset

represents the amount of reads mapped to a gene’s annotated location. The problem

with this dataset was the low number of control samples (5 controls in 161 samples).

Therefore, statistically appropriate estimation of differential expression is not possi-

ble.

2.2 Preprocessing of Datasets

As I explained in section 2.1, my priority is to extract data from the raw data. The

advantage of using unprocessed data is that, the same normalization can be apply

10



Ta
bl

e
2.

1:
A

gi
ng

da
ta

se
ts

.T
he

co
lu

m
n

“D
at

as
et

ID
”

re
pr

es
en

ts
th

e
na

m
e

of
fir

st
au

th
or

of
th

e
st

ud
y

an
d

th
e

ab
br

ev
ia

tio
n

of
th

e
br

ai
n

re
gi

on
in

vo
lv

ed
.“

Y
rs

”
in

“A
ge

R
an

ge
”

co
lu

m
n

re
pr

es
en

ty
ea

rs
of

ag
e.

D
at

as
et

ID
O

rg
an

is
m

B
ra

in
R

eg
io

n
Sa

m
pl

e

Si
ze

A
ge

R
an

ge
Pl

at
fo

rm
G

E
O

ac
-

ce
ss

io
n

nu
m

be
r

B
er

ch
to

ld
_H

IP
H

om
o

sS
ap

ie
ns

H
ip

po
ca

m
pu

s
43

20
-9

9
Y

rs
H

G
-

U
13

3_
Pl

us
_2

G
SE

11
88

2

B
er

ch
to

ld
_S

FG
H

om
o

sS
ap

ie
ns

Su
pe

ri
er

fr
on

ta
lG

yr
us

48
20

-9
9

Y
rs

H
G

-

U
13

3_
Pl

us
_2

G
SE

11
88

2

B
er

ch
to

ld
_P

C
G

H
om

o

sS
ap

ie
ns

Po
st

C
en

tr
al

G
yr

us

43
20

-9
9

Y
rs

H
G

-

U
13

3_
Pl

us
_2

G
SE

11
88

2

L
u_

FC
H

om
o

sS
ap

ie
ns

Fr
on

ta
lC

or
te

x
30

26
-1

06
yr

s
H

G
_U

95
A

v2
G

SE
15

72

Jo
nk

er
_B

ra
in

M
us

m
us

-

cu
lu

s

B
ra

in
18

13
-1

30

w
ee

ks

M
ou

se
43

0_
2

G
SE

34
37

8

11



Table
2.2:

A
lzheim

er’s
D

isease
datasets.T

he
colum

n
“D

atasetID
”

represents
the

nam
e

offirstauthorofa

study
and

the
abbreviation

ofthe
brain

region.In
the

“C
onditions”

colum
n,N

D
is

non-dem
entia

and
A

D
is

A
lzheim

er’s
disease.

D
atasetID

O
rganism

B
rain

R
egion

Sam
ple

Size

C
ondition

Platform
G

E
O

ac-

cession

num
ber

N
arayanan_PFC

H
om

o

sSapiens

PFC
467

157
N

D
and

310
A

D

R
osetta/M

erck
G

SE
33000

Z
hang_C

R
H

om
o

sSapiens

C
erebellum

230
101

N
D

and

129
A

D

R
osetta/M

erck
G

SE
44772

Z
hang_V

C
H

om
o

sSapiens

V
isualC

ortex
230

101
N

D
and

129
A

D

R
osetta/M

erck
G

SE
44772

Z
hang_PFC

H
om

o

sSapiens

PFC
230

101
N

D
and

129
A

D

R
osetta/M

erck
G

SE
44772

12



Ta
bl

e
2.

3:
G

lio
bl

as
to

m
a

M
ul

tif
or

m
e

da
ta

se
t.

T
he

co
lu

m
n

“D
at

as
et

ID
”

re
pr

es
en

ts
th

e
na

m
e

of
th

e
pr

oj
ec

t

an
d

ca
nc

er
ty

pe
.I

n
th

e
“C

on
di

tio
ns

”
co

lu
m

n,
“G

B
M

”
is

G
lio

bl
as

to
m

a
M

ul
tif

or
m

e.

D
at

as
et

ID
O

rg
an

is
m

B
ra

in

R
eg

io
n

Sa
m

pl
e

Si
ze

C
on

di
tio

n
Pl

at
fo

rm
G

E
O

ac
ce

ss
io

n

nu
m

be
r

T
C

G
A

_G
lio

bl
as

to
m

a
H

om
o

sS
ap

ie
ns

-
15

6
15

6
G

B
M

Il
lu

m
in

a
T

C
G

A
pr

oj
ec

t

13



generically to all datasets, and therefore reduce possible bias in meta-analysis. In

data generated with Affymetrix, CEL files contain the light intensity of probes of a

microarray. Converting these signal intensities to the relative gene expression levels

for each probe can be performed using the free R packages “affy” or “oligo”. For

newly designed affymetrix arrays the “affy” library is dysfunctional, and the “oligo”

library should be used. These libraries can be accessed through Bioconductor open

source software project (https://www.bioconductor.org/) (Gentleman et al., 2004).

All of the raw data I investigated in the aging study, Berchtold_HIP, Berchtold_SFG,

Berchtold_PCG, Lu_FC and Jonker_Brain were supported by the “affy” package.

This package’s function “ReadAffy”, takes the directory of files, the name of the

CEL files which will be read, the Chip Definition File (CDF) name and other possible

parameters. The CDF file contains the layout information of probes on a chip. The

“ReadAffy” function can detect automatically the platform’s related CDF. The “Cdf-

name” argument in the “ReadAffy” package can also be used to specify the name of

an alternative CDF library. I used a costum CDF from the Brainarray database which

I will explain in section 2.2.3 in detail (http://brainarray.mbni.med.umich.edu/Brain-

array/default.asp). During data processing, the affy library’s ”expresso” function is

used to apply normalizations such as RMA background correction method, summa-

rization across probes, and quantile normalization across samples, which I will ex-

plain in details in next sections.

The raw data of AD datasets exist, however they are not in CEL file format; an R

package supporting this platform does not exist, and no freely available software is

available to my knowledge. Therefore, I used pre-processed NCBI GEO “series ma-

trix files” for the datasets Narayanan_PFC, Zhang_CR, Zhang_PFC and Zhang_VC.

Quantile normalization was the only processing step I applied to these datasets.

The Glioblastoma Multiforme dataset contains FPKM values of each gene. This file

has a high number of zero values and genes which are not expressed in any of the

samples. Following the removal of these genes, I applied quantile normalization.
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2.2.1 RMA Background Correction

Microarray is a technology to detect relative expression levels of multiple genes on a

single chip. Each microscopic spot on a chip contains a DNA oligomer, known as a

probe (oligo) (Gerhold et al., 1999). On a standard commercial chip type, each spot

at a specific position has the identical sequence across chips. The expression level of

a gene is estimated using data from the collection of different oligonucleotide probes

designed to measure that gene’s cDNA, derived from mRNA. Each probe is either

complementary to a gene’s cDNA, known as a perfect match (PM) probe, or there

exists a substitution of one nucleotide in the probe sequence which prevents perfect

binding. These latter probes are used to detect background (non-specific) hybridiza-

tion and noise in expression, and are known as mismatch (MM) probes (Hubbell

et al., 2002). In the experimental procedure, the intensity of each hybridization signal

between mRNA/cDNA and the fluorescent probe at a specific spot is measured and

provided in a CEL file (Schena et al., 1995; Gautier et al., 2004).

The noise and non-specific bindings detected on the microarray chip are subtracted in

the RMA background correction method. In addition, this method, prevent the inter-

fusion of neighbors signals (Parmigiani et al., 2003). Later, intensity value of probes

that arise from probes designed for the same gene across the array are combined, and

this average represents the expression level of the gene. The RMA algorithm’s ad-

vantage over other background correction algorithms is its detection ability of slight

expression signals (Irizarry et al., 2003).

The affy package’s “expresso” function performs RMA background correction. Dis-

tribution of the expression values obtained in this method is right-skewed due to the

high amount of low expressed genes and low amount of highly expressed ones. There-

fore, “expresso” transforms the data to log2 base, which provides lower variance for

large values, helps the data to fit a normal distribution, and reduces the dependency

between mean and variance. After log-transformation the data is less influenced by

a few highly expressed genes, easier to visualise, and also appropriate for analysis

with parametric statistical methods, many of which assume a normal distribution and

equal variance (Whitlock and Schluter, 2009).
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2.2.2 Quantile Normalization

A large sample size is important in transcriptome data analysis. Quantile normal-

ization is used to eliminate noise among samples that arises due to technical issues

and to unify the distributions in multi-sample data. This method assumes that sample

variation is due to technical noise. However, we should be aware that it may eliminate

interesting biological variations (Hicks and Irizarry, 2014).

As I previously mentioned, the affy package’s “expresso” function employs quantile

normalization in the raw data normalization process. However, in series matrix files I

used the “preprocessCore” package (which is also part of the affy project).

2.2.3 ID Conversion

In order to compare different datasets and continue further analysis, probe-set IDs

should be converted into a common gene identifier. The package “biomaRt”, the

interface to the Ensembl Biomart database, is the most preferred ID conversion tool

(Durinck et al., 2005). However, the data retrieved from this library does not consider

the situation that each probe-set of a microarray platform may correspond to more

than one Ensemble ID, and each Ensembl gene ID may correspond to more than one

probe-set.

To deal with the mentioned problem, in analyzing raw data files I used custom CDFs

prepared by the Brainarray project. The filtration procedure designed by this group

are; (a) Blast alignments of probe sequences against cDNA and EST sequences must

be perfect matches. (b) Each probe should represent one uniGene cluster and map

to the same genomic location. (c) Probes which belong to the same cDNA should

align to the same genomic location and direction. (d) Each probe-set must have at

least three different probes (Dai et al., 2005). The above steps lead to one-to-one

conversion of probe-sets to Ensembl gene IDs. Additionally, I filtered and converted

mice Ensembl genes to their one-to-one orthologous human gene IDs with the help

of the “biomaRt” package.
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The above mentioned solution is applicable when raw data exist and the Affymetrix

platform-related Brainarray custom CDF file is available. The other solution for

probe-set to gene ID conversion for files that do not match the above conditions is

(1) to get rid of probe-sets representing more than one Ensembl gene, and (2) take

the average of expression level per sample across probe-sets corresponding same En-

sembl gene ID. In some studies, instead of taking the average, the maximum expres-

sion level is also preferred. The common aim of microarray platforms is to choose

sequences that perfectly match with the targeted transcript and show lowest similarity

to the rest of whole genome. However, at least in Affymetrix microarrays, different

probe-sets are usually designed to measure expression from different transcripts of

the same gene (Liu et al., 2010). It is known that alternative splicing changes during

aging and age-related neurodegenerative disease (Mazin et al., 2013). Therefore, us-

ing the probe-set with the maximum expression level per gene to represent that gene’s

expression level could lead to elimination of heterogeneous transcript effect in gene

expression level measurements. Therefore, using the average expression level is a

more reliable approach. In addition, I find out that the Brainarray custom CDF file

shows higher correlation with the datasets created using the average method rather

than the maximum method (data not shown). I believe, taking average of probes,

following probe filtration in brainarray, is the reason of this consistency.

The annotation file of the “Rosetta/Merck Human 44k” platform used for the AD

datasets was provided in the NCBI’s GEO data repository. This file contains probe-set

IDs, mapped Entrez gene IDs, and other annotations. Therefore, firstly I converted

probe-set IDs to Entrez gene IDs and then to Ensembl gene IDs with the help of

“biomaRt” package, and apply average method at each step.

2.3 PCA

Principle component analysis is an algorithm that is used to summarise and visualise

variation in a dataset. This algorithm is used when there are wide range of vari-

ables and visualization of samples’ similarity and differences is difficult. It reduces
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the multi-dimensionality of the dataset by assigning linear combination of variables,

known as principal components (Ringnér, 2008). The first principal component (PC1)

is a line in a multi-dimensional space that explains the largest variation.

The two main principal components (PC1 and PC2) explain the largest among of

variance in a dataset and are usually used to check the clustering of samples and out-

liers. In addition, PC3 and PC4 also frequently checked, considering the proportion

variance they explain. Outlier samples could raise noise in transcriptome analysis.

Following removal of outliers I check whether the number of genes showing signif-

icant differential expression decrease or increase upon removal of the outlier, with

the expectation that removing an outlier (which introduces technical noise) should

improve the differential expression signal. Preprocessing of dataset and quality con-

trol are repeated following the removal of each outlier. Here, principal component

analysis was conducted with the help of the R function “prcomp”.

In addition to principal component analysis, two alternative newly developed outlier

finder methods exist: robustPCA and bagplot. Robust principal component analysis

separates the data into two matrices, sparse and low-rank, by principal component

pursuit approach. The sparse matrix which deposit noise in a data is employed to find

the variations among samples (Candès et al., 2011). Meanwhile, the bagplot method

is used for detecting the data variation in a bivariate boxplot (Rousseeuw et al., 1999).

I have examined these two methods. However, due to inconsistency of these methods’

outcomes with PCA (data not shown) and more efficient interpretation of classic PCA

results I decided not to include them in this project.

2.4 Differential Expression

To evaluate possible monotonic relationships between gene expression and age and

identify potential age-related genes, I used the non-parametric Spearman correlation

rank test. In contrast to Pearson correlation, this method calculates the relationship

by ranking the data, and is robust to variations in the data such as outliers (Hauke

and Kossowski, 2011). In molecular aging studies it is generally assumed that gene

18



expression change with age is gradual and linear. Therefore I did not search for non-

linear associations (which would not be detected by pearson correlation).

For each gene I applied Spearman correlation between age and gene expression. Two

results, the p-value and the correlation coefficient inform about the significance, and

the degree and direction of association, respectively. The correlation coefficient (ρ)

can range from -1 to 1. Minus 1 represent strong negative relationship and plus 1

represent positive relationship. Omics Integrator Software, which will be explained

in further sections, does not accept negative values. Therefore, I used differential

expression information by taking the absolute value of these correlation coefficients.

This forced us to analyse increase and decrease gene expressions at the same time.

Here, I am assuming that decrease and increase changes can affect same pathways.

However, in the Alzheimer datasets, there are two conditions, control and AD. There-

fore, in order to find differential expression, I could also use the non-parametric

Mann-Whitney U Test for testing difference in medians. However, to be consistent

with the aging results, I preferred to use correlation coefficients in all the network

analyses, and therefore I applied Spearman correlation test by defining two different

stable numbers to condition variables. I note that the p-values of the two methods,

Spearman and Mann-Whitney-U tests are close to each other. The “wilcox.test” func-

tion in R conducts Mann-Whitney-U test.

2.5 Multiple testing correction

Evaluating p-value results, obtained from simultaneous statistical tests separately ap-

plied to a large number of genes, is not enough for identifying significant genes. The

reason is, there is a possibility that some of these values randomly have nominally

significant p-values, but are not reproducible. Therefore, I am expecting to have

high number of type I errors (false positives) when performing large-scale statisti-

cal comparisons (Benjamini and Hochberg, 1995). The “false discovery rate” (FDR)

approach can account for this type I error inflation.
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There are multiple FDR methods and they are provided by the R function “p.adjust”.

I used one of the most powerful FDR methods, “Benjamini Hochberg”, on p-values

(Benjamini and Hochberg, 1995). The results of multiple testing correction are called

q-values. I applied a cutoff 0.1 to q-values to eliminate these false rates (Verhoeven

et al., 2005).

I should mention that, although FDR methods reduce type I error, they also rise type

II error and this may lead to the failing to detect biologically important effects.

2.6 Correlation between datasets

I have selected 5 aging and 4 Alzheimer’s disease gene expression datasets in this

project. I am expecting that datasets which derive from common tissues or involve the

same biological patterns should show high correlation. In order to find correlations

between datasets, I applied pairwise Spearman correlation to correlation coefficient

of shared genes between two datasets without applying multiple testing correction.

2.7 Omics Integrator Software

I used the Forest module of the Omics Integrator software (Tuncbag et al., 2016) to re-

construct optimal network for each dataset. Forest module solves the prize-collecting

Steiner forest problem to integrate multiple data in a network context. The aim of this

algorithm is to optimally connect selected genes, called terminals, by using a template

interactome. Each interaction in the interactome is weighted with its confidence score.

Each terminal has a given prize of their correlation coefficient. This value represent

the direction and strength of association between expression and condition. Forest

module searches for the optimal network either by linking the terminals directly or

through intermediate nodes, called Steiner nodes. MI-score is the method used to

calculate the confidence score of interactions in a network. This method emphasize

the significance of interaction by a measure based on the number of publications re-

porting their association (Villaveces et al., 2015). On the other hand, subtracting
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confidence scores from 1 represents the cost of interaction.

Cost = 1− ConfidenceScore (2.1)

Forest algorithm harbors other parameters to reconstruct biologically meaningful net-

works. PPI is a combination of interactions frequently used in the literature. Some

proteins are critically important in biological studies and there are the focus of many

studies. Therefore, some proteins’ interactions are discovered more than others. To

illustrate, ubiquitin C (UBC) shows approximately 7407 connections (degree) in a

irefindex network. This amount of degree could lead to bias in the forest algorithm.

Because each terminal would try to connect to the other terminal using UBC as a

shortcut. The parameter µ, is a multiplier which gives a node a penalty for each edge

addition. The formula of prize calculation and negative weighting of each terminal is

as below:

p′(v) = β.p(v)− µ.degree(v) (2.2)

p’(v) is a new prize of the terminals and p(v) is the initial prize. The value of β

controls the size of the final network. The larger β values force the network to include

more terminals which may lead to inclusion of low confidence edges.

Forest module minimizes the objective function in Eq. 2.3 where it minimizes the

total prizes not included and the total cost of edges in the final network.

f ′(F ) =
∑
v/∈VF

p′(v) +
∑
e∈EF

c(e) + ω.κ (2.3)

VF and EF represent the set of vertices and edges in a network F respectively. c(e) is

the cost of edges and the κ is the number of sub-trees in the forest, F. In a nutshell, this

formula calculates the sum of prizes of the terminals which are not included in the

final network, cost of interactions and the number of sub-trees. ω is the parameter to

determine the number of sub-trees in a reconstructed network. To do this, an artificial

node is connected to subset of all nodes, with the edge cost of ω and after optimization

is complete that artificial node is removed from the network to collapse it into multiple

subtrees (Tuncbag et al., 2013). The prize-collecting Steiner tree problem is solved

with the message-passing algorithm implemented in msgsteiner tool (Tuncbag et al.,
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2016). Schematic example of forest algorithm application is given in Figure 2.1. In

this figure, the algorithm does not permit the small prize and costly edges to get into

network.

Figure 2.1: A toy example of the prize collecting Steiner tree algorithm. The network

on the left shows terminal nodes in orange in a protein-protein interaction. Forest

algorithm tries to link terminals optimally by using a template network as shown in

the left panel and reconstructs the final network shown in the right panel. Nodes

and node labels colored orange represent terminals and their correlation coefficient,

respectively. Edge labels colored black represent edge costs.

Finding optimal parameter values needs a tuning step. The factors determine the

outcome of forest algorithm are the number of terminals (selected genes) covered

in the final network, distribution of the correlation coefficients, degree distribution

of the nodes in the final network and edges costs. Therefore, I planned to apply

forest algorithm from the OmicsIntegrator package to top 800 significant genes in

each transcriptome dataset with different combinations of µ, ω and β, and check the

network features. The aim of selecting this number of genes is to provide amount of

genes which forest algorithm can handle, and achieve biologically meaningful results.

In this parameter tuning, I searched for a network which contains highest number of

terminals. Among those that contain the same terminal count, I selected the network

with highest number of nodes.
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2.8 Protein-Protein Interaction Network

OmicsIntegrator package also included irefindex protein-protein interaction dataset

(Turner et al., 2010). I converted the gene annotations from gene symbol to the En-

sembl gene ID. Here, I removed Entrez gene IDs represent more than one Ensembl

gene ID and vice versa.

In the previous section I mentioned that, genes have high degree counts create bias in a

network and I include the µ parameter to exclude this problem. However, ubiquitin C

contains extraordinary number of degrees and the mentioned parameter could not deal

with it. Therefore, I removed UBC node from the PPI. This ejection could increase

type II error, but eliminate possible bias in a network.

2.9 Network Clustering

Hairball-like structure of the networks does not provide too much information about

biological characteristics of it. I am assuming that biologically-related genes which

share common gene ontologies or pathways are highly connected in a network but

this has to be shown explicitly.

In this project I used the “louvain modularity” algorithm. This algorithm takes a node

and searches for neighbors which maximize modularity. Newly formed community

is represented as node in a network and the algorithm searches for neighbors again.

This procedure is continued recursively until it fails to increase modularity (Blondel

et al., 2008). I removed clusters with lower than 20 nodes to have better statistical

results in enrichment analysis.

2.10 Enrichment analysis of the network clusters

I applied Gene Ontology (GO) and KEGG pathway enrichment analysis to clusters

obtained from each network. Cellular component (CC), molecular function (MF) and
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biological process (BP) are three domains of this ontology. Other ontology terms are

hierarchically branched under these domains. BP terms contain molecular activities

which have defined start and end (Ashburner et al., 2000). On the other hand, KEGG

pathway provides the information about the connections of gene products (Kanehisa

and Goto, 2000).

Enrichment analysis calculates the chance of selected genes in a functional group to

background. It is clear that, to analyse each network individually we should take all

genes in a gene interaction network as a background. However, in this meta-analysis

study I am searching for common patterns among networks. Therefore, to determine

background, from gene interaction network, I discarded union of genes in aging and

AD forests separately. Figure 2.2 exhibit schematic explanation of background se-

lection.

Figure 2.2: Schematic example of background selection. Irefindex is a gene interac-

tion network (big circle) and colorful circles are sample AD reconstructed networks.

Background is a collection of genes that fall into the white region.

I applied Biological Process Gene Ontology analysis with the help of R package
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“topGO”. This package provides various algorithms. To illustrate, topGO’s default

algorithm “weight01” applies enrichment analysis from bottom to top and each time

removes the child term genes from parent term. In addition, it takes the position of

terms in a hierarchy into account. In this project I applied Fisher’s exact test with

classic algorithm which examine GO terms independently. Also, I eliminate terms

contain lower than 10 genes.

For KEGG pathway enrichment analysis I did not use any package. The reason is,

interface packages of the DAVID database accept limited number of genes. This made

a problem as I used custom background. Therefore, after downloading pathway and

gene annotation data from the KEGG database resource, I applied EASE Score, a

modified Fisher’s exact p-value (Aoki and Kanehisa, 2005). This method decreases

type I error in outcomes.

2.11 Common Edges

I searched for common interactions among networks and applied Gene Ontology and

pathway enrichment analysis on genes that provide these interactions. I also checked

whether these genes are included in the AnAge (http: //genomics.senescence.info/spe-

cies/) database or not. The mentioned database contains genes show relatedness to

longevity researches.

2.12 Permutation

Possible bias in each step of the analysis could leads to different consequences. To ex-

amine significance of my results, three kinds of permutation test was applied. "Noisy

Edges" is a function in Forest algorithm command (Tuncbag et al., 2016). The value

given to this function determines how many times this algorithm adds noise to the

edges. Another function, "Shuffle Prizes", specifies the number of times the prizes

shuffle in a network. In addition to these two, I randomly shuffled ages in the gene ex-

pression data. This changes differential expression information and the consequences
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of forest algorithm. These permutations were applied 100 times to all datasets with

using forest algorithm parameters obtained from parameter tuning for each dataset.

However, some of the permutations caused optimization problems and which led to

empty networks. Therefore, for each permutation type, I calculated the lowest num-

ber of non-empty networks among datasets as a permutation count (n). Subsequent to

clustering the data, in order to apply enrichment analysis I took nth non-empty result

from each datasets and selected the background as I explained in section 2.10.
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CHAPTER 3

RESULTS

3.1 Differential expression in each dataset

In this study, I used 9 different gene expression datasets from various brain regions,

conditions and datasets, including aging and Alzheimer’s Disease (Tables 2.1 and

Table 2.2). As I explained in Chapter 2, my priority was to use raw microarray

data (light intensity measurements) without any preprocessing procedure applied to

them. However, four AD datasets, Narayanan_PFC, Zhang_CR, Zhang_VC and

Zhang_PFC do not contain raw data files which supported by freely available R pack-

age. Following pre-processing, background correction, normalization and ID con-

version of data, I checked the variation in a datasets with the help of PCA. PCAs of

Berchtold_PCG and Narayanan_PFC are given in Figure 3.1 and Figure 3.2 respec-

tively.

Biologically close samples such as similar ages or AD patients are expected to cluster

together along principal component analysis trajectories. Also the cluster of samples

in a plot might be the sign of a batch effect (technical similarity, such as sample pro-

cessing day). Apart from this, some samples demonstrate different gene expression

patterns due to other biological problems. These outlier samples could raise noise

in transcriptome analysis and could reflect themselves in a PCA plot. The red dot in

Figure 3.1, which I accepted as an outlier, illustrates this idea.

Following outlier removals, I applied differential expression test on the transcriptome

datasets to identify the effect of aging or AD. Here, I used Spearman correlation rank
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Figure 3.1: PCA analysis of Berchtold_PCG dataset. The plot shows principal com-

ponent 1 (PC1) and PC2 results. Each dot on a plot represent the samples and their

ages. The percentages in each axes indicate proportion of variance of components.

Figure 3.2: PCA analysis of Narayanan_PFC dataset. The plot shows principal com-

ponent 1 (PC1) and PC2 result. Each dot on a plot represent the samples and their

conditions. “AD” stands for Alzheimer’s disease and “ND” stands for non-demented.

The percentages in each axes indicate proportion of variance of components.
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test to find correlation between gene expression and age for aging datasets. For AD

datasets, I also applied Spearman correlation between gene expression of control and

AD individuals, using binary coding for disease status. In addition to p-value, this

method provides correlation coefficient which express the strength and direction of

the relationship. In order to eliminate false positive, I also performed multiple testing

correction. Then, I chose the most significant 800 genes as the terminal set to use

in network analysis. As shown in Figure 3.3 the total number of measured genes

varies among datasets. In addition, the number of differentially expressed genes are

much lower in aging datasets compared to AD datasets. However, AD datasets show

high numbers of significantly differential expressed genes relative to the number of

total genes. This could demonstrate the heterogeneity of genes in AD. In addition,

this could rise due to the high number of samples which control spearman correla-

tion results. Jonker_Brain, which is a mouse dataset, contained the low number of

differentially expressed genes. The reason could be the poor quality of this dataset.

3.2 Consistency among datasets

I am expecting that the same type of biological samples, such as same tissue or condi-

tions, should share close expression patterns. To identify consistency among datasets,

I tested pairwise Spearman correlation between two datasets across all their common

genes’ Spearman correlation coefficients (between expression and age or AD). This

determines the power and direction of associations. The results sketched in Figure

3.4 with the help of “corrplot” function in R.

All of the datasets are correlated significantly (p-value<0.05). Correlation coefficients

are distributed between 0.07 to 0.98, with a standard deviation of 0.23. It is clear that

all of AD samples are tightly clustered together. Jonker_Brain is a mouse dataset

and appears as an outgroup in hierarchical clustering (data not shown). This could be

due to the species difference of this dataset. There are also a cluster between aging

and Alzheimer’s disease samples. In addition, I applied PCA to detect biological and
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Figure 3.3: Number of genes affected by aging or AD in each dataset. Red bars

represent all genes measured, and green bars represent genes showing significant dif-

ferential expression with respect to aging or AD. Black dash line represent 800 genes

chosen for network analysis.

technical variations among datasets. Here, I chose genes which are common among

all datasets (n=6448). Figure 3.5 demonstrates the PCA result. Here, it is clear that

except for Jonker_Brain, aging datasets are clustered together. AD datasets are also

close to each other.
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Figure 3.4: Consistency among datasets in gene expression changes during aging

and/or AD. Dark red represents highest positive correlation (in age/AD vs. expression

correlation coefficients between two datasets across all common genes) and dark blue

represents highest negative correlation.
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Figure 3.5: Principal component analysis of shared genes’ ρ values. Red triangles

represent aging and green circles represent AD datasets.

3.3 Forest Algorithm

As I explained in Chapter 2 section 2.7, the forest algorithm optimally connects se-

lected genes (Terminal) in a gene interaction network directly or through intermediate

nodes. In addition, parameters in forest control the optimization to yield biologically

reasonable networks. Before this, it is crucial to explore characteristics of an initial

protein-protein interaction network obtained from iRefWeb. Here, I generated the

degree distribution of iRefWeb where UBC is removed from this analysis, because it

binds almost all nodes in the network.
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Degree distribution of biological networks exhibit exponential distribution. This idea

was firstly claimed by Albert-László Barabási that biological networks are in scale-

free rather than a complex one (Barabasi and Albert, 1999). This means that there are

few protein numbers with high degree and high number of proteins with low degrees.

I checked the degree distribution and other features of the iRefWeb network. Figure

3.6 shows that the degree distribution of this network follows a power law.

Figure 3.6: Degree distribution of iRefWeb. Protein IDs were converted to gene ID

and UBC removed from the network.

Forest parameters µ, β and ω control the degree number-related penalty, the amount

of terminals to preserve, and the number of sub-trees in a network, respectively. I

tested different combinations of β and ω values in a forest using a fixed µ value 0.01.

A sample for parameter tuning is given in Figure 3.7. Then, I selected the network

which contains the highest number of terminals and nodes. Characteristics of these

networks are given in Table 3.1.
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Figure 3.7: Parameter tuning of forest in Berchtold_PCG dataset. Each dot in a

graph represent a reconstructed network. X-axis contains β values and y-axis contains

terminal nodes count. Each line with different color represent ω values. Parameter µ

is constant.

Networks are mostly larger than 800 nodes. Among all of 800 genes that I selected as

highly differentially expressed genes, some could not be imported into the algorithm.

In addition, the number of imported genes and terminal counts in a constructed net-

works are not equal as shown in Table 3.1 and this represent the elimination of some

terminals during optimization. Moreover, I performed a two way Mann-Whitney U

test between terminals and intermediate nodes’ degrees (Figure 3.8).
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Figure 3.8: Degree distribution of intermediate and terminals nodes in each dataset.

Orange boxplots represent terminals and green boxplots represent intermediate nodes.

The Y axis is limited to 200. All comparisons are significant at MWU test p<0.001.

Degree distribution of terminal nodes are significantly lower than those of intermedi-

ate nodes. It is also important to state that there are many one degree nodes among

terminals.

3.4 Clustering

I am assuming that, biological related genes are clustered together in the PPI net-

work. In order to find communities in each network, I performed louvain modularity

detection. This method initially calculates the modularity from two nodes and ex-

tends the connection to neighbor in order to find maximum modularity (Figure 3.9).

I summarize the clustering outputs in Table 3.2.
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3.5 Functional enrichment analysis

I performed enrichment analysis of KEGG pathway and Gene Ontology of clusters

as I explained in section 2.10. To illustrate, the pathway which enriched in KEGG

pathway enrichment analysis of circle 1 in Figure 3.9 is "Serotonergic synapse". In

addition, "Natural killer cell mediated cytotoxicity", "Regulation of actin cytoskele-

ton", "Fc gamma R-mediated phagocytosis", "Proteoglycans in cancer", "Chemokine

signaling pathway", "Focal adhesion", "Pathogenic Escherichia coli infection", "En-

docytosis", "Adherens junction", "T cell receptor signaling pathway", "Bacterial inva-

sion of epithelial cells", "PI3K-Akt signaling pathway", "Leishmaniasis", "Tubercu-

losis", "Legionellosis", "Shigellosis" and "Salmonella infection" are pathways which

enriched in circle 2 in Figure 3.9. KEGG pathway and Gene Ontology Biological

Process enrichment results are given in Figure 3.10 and Figure 3.11 respectively.

However, due to high number of enriched functional groups, I only demonstrate ones

that were shared more than 4 times among 9 datasets and have a q-value lower than

0.1 for kegg and below 0.001 for Gene Ontology enrichment analysis. Functional

groups which share separately among all AD or age networks are given in Appendix

A.

Regulation of actin cytoskeleton is the only KEGG pathway which enriched in all

datasets. Actin cytoskeleton preserve and maintain cell structure and has effect on

polarity of cell. In addition, some studies indicated the relation of this microfila-

ment with endocytosis and intracellular trafficking (Samaj et al., 2004). Another

role of these filaments are in cell division and cytokinesis. Furthermore, actin cy-

toskeleton contribute in cell movement with the help of myosin. The organization

of actin filaments are regulated by highly conserved actin-binding proteins. Some

studies show that, distribution in regulation of actin cytoskeleton, such as mutations

on actin or actin binding proteins leads to various disease such as cancer, cardiomy-

opathies and neurodegenerative diseases (Condeelis et al., 2005). In addition, in-

creased actin turnover shown increase cell life span (Gourlay and Ayscough, 2005;

Lee and Dominguez, 2010).
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Revigo summarization of gene ontologies seen more than 4 times among datasets

are given in Figure 3.12. Although "exocytosis" and "cell surface receptor signaling

pathway" not enriched in all datasets, these two shared in most of datasets. Neu-

rotransmission process is the secretion of neurotransmitters to the neural cleft and

binding of these chemicals to the receptor of postsynaptic neuron to stimulate or in-

hibit neuronal activity. Exocytosis process plays important role in the secretion of

neurotransmitters to the cleft. In addition, cell surface receptors of postsynaptic neu-

ron are important in the initiate of signal transduction. Therefore, I believe disruption

of these two functional groups cause problems in neuronal communication. I note

that the activity of exocytosis is regulated by actin cytoskeleton (Porat-Shliom et al.,

2013). Therefore changes in actin regulation may cause disruption in exocytosis pro-

cess.
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Figure 3.10: KEGG pathways enrichment analysis. The above heatmap only repre-

sents pathways seen more than 4 times among 9 datasets. Colors are log values of

fischer test results. Dark red boxes represent highly significant p-values.
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Figure 3.11: Gene Ontology Biological Process enrichment analysis. The above

heatmap only represents pathways seen more than 4 times among 9 datasets. Dark

red boxes represent highly significant p-values.
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Figure 3.12: Revigo summarization of gene ontologies seen more than 4 times among

datasets.
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3.5.1 Permutation tests results

I can only evaluate the statistical and biological significance of functional groups by

comparing with random permutation results. “Noisy Edges” is a permutation method

which randomly adds noise to the edges. I believe that edge cost, terminal prizes

and parameters shape the forest algorithm outcomes. Therefore, this “Noisy Edges”

approach will change the results by altering edge costs. This helps us to clarify the

probability of functional groups being enriched by chance. The “Aminoacyl-tRNA

biosynthesis” in “Lu_FrontalCortex” is the only pathway that survived among all

datasets compared to 100 permutation results. In addition, almost none of the Gene

Ontologies survived among all datasets compare to 100 permutation results. Enrich-

ment of same functional groups demonstrate the stability of network and hence indi-

cate the robustness of edges to the noise.

“Shuffle Nodes” as its name implies, shuffles the prize of the nodes. Here, low prizes

can represent high degree nodes. Therefore, due to the penalty for each connec-

tion, these genes can be eliminated. Thus, this could create a problem with the

optimization of the forest and gives empty results. Therefore, in order to take also

background genes into account I selected the lowest number of non-empty networks

among datasets as the permutation count (n=29). Figure 3.13 and Figure 3.14 show

KEGG pathway and Gene Ontology results which enriched significantly in compare

of 29 “Shuffle Nodes” permutation.

Finally I performed a permutation of biological identifiers, such as age of individuals.

In this permutation scheme, I shuffle ages (or AD status) in an expression matrix.

This permutation helps us to reconstruct networks with genes which are classified as

terminals simply by chance. Here again, I obtain some empty results for the param-

eters I inserted. Therefore, to apply enrichment analysis I took smallest number of

non-empty networks among datasets as the a permutation count (n=12). Figure 3.15

and Figure 3.16 show KEGG pathway and Gene Ontology results for the age/AD

permutation.
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Figure 3.13: KEGG pathways significantly enriched in “Shuffle Prizes” permutation.

The pathway which enriched more than 4 times among datasets is not exist. Therefore

i exhibit pathways shown more than 2 times among datasets. Dark red color boxes

represent highly significant p-values.
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Figure 3.14: Gene Ontologies which significantly enriched compare to “Shuffle

Prizes” Permutation. Gene Ontologies which enriched more than 4 times among

datasets are not exist. Therefore i exhibit Gene Ontologies shown more than 2 times

among datasets. Dark red color boxes represent highly significant p-values.
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Figure 3.15: KEGG pathway which significantly enriched to 12 age/AD permutation

results. The pathway which enriched more than 4 times among datasets is not exist.

Therefore i exhibit pathways shown more than 2 times among datasets. Dark red

color boxes represent highly significant p-values.
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Figure 3.16: Gene Ontologies which significantly enriched compare to 12 age/AD

permutation results. Gene Ontologies which enriched more than 4 times among

datasets are not exist. Therefore i exhibit Gene Ontologies shown more than 2 times

among datasets. Dark red color boxes represent highly significant p-values.
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3.6 Common Edges

I tested whether there exist any interactions shared among all 9 datasets. I found no

such case, and shared interactions were seen at most 7 times among all 9 datasets.

Gene Ontology and KEGG pathway enrichment results of nodes supporting the idea

that these interactions do not provide significant results (data not shown). This can be

due to the low number of these nodes. The network in Figure 3.17 represent interac-

tions which represented more than 5 times among the 9 datasets. In addition genes

which seen in all AD or age networks separately are given in Appendix B. Analyzing

this network and investigate the characteristics of hubs are among the further studies

of this project.
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Figure 3.17: Common interactions among datasets. Above network is a connection

between edges shared more than 5 times among datasets. Thickness of edges repre-

sent the amount of times this interactions seen in reconstructed networks and the size

of nodes represent the number of reconstructed networks contains that gene. Labels

are HGNC symbols and the fraction of intermediate nodes to the number of times that

gene exist in reconstructed networks.
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CHAPTER 4

DISCUSSION

Aging and age-related Alzheimer’s disease are complex and heterogeneous processes.

Therefore, in order to find genes which may participate in these two, just looking for

gene expression changes in not sufficient. Network analysis will help us understand

these genes’ interactions in a biological network.

In this study, In order to construct the brain aging and Alzheimer’s disease networks

and search for common interactions they share in a network, I have used 5 aging

and 4 AD microarray datasets as shown in Tables 2.1 and Table 2.2. Subsequent to

application of background corrections, normalization and multiple testing correction,

I applied differential expression test using the Spearman correlation rank test. As

it shown in Figure 3.3, AD datasets show high number of differentially expressed

genes. Beside sample size, biological factors also may participate in the number of

differential expression genes. Jonker_Brain contains the lowest amount of genes. In

order to construct aging and AD networks I used the prize-collecting Steiner forest

algorithm. The aim of this algorithm is to optimally connect selected genes within a

protein-protein interaction network. It would be better to import all significant genes

as input to the forest algorithm. However, the large input size could be a problem for

this algorithm. Moreover, different amount of terminals in different datasets would

rise bias in further analysis. To eliminate these problems, I anchored input size to

800.

To check consistency among datasets I applied pairwise Spearman correlation be-

tween them. As shown in Figure 3.4, AD and aging datasets cluster among them-
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selves. It is also clear that, two PFC samples are highly correlated to each other.

Except for the mouse brain dataset, Jonker_Brain, a slight correlation between aging

and AD datasets can be seen. The PCA result in Figure 3.5 clarifies the sharp sep-

arate clustering of AD and aging datasets. This result may be due to the common

platforms they share. Therefore, it makes it difficult to distinguish biological and

technical signal participate in this results. The Jonker_Brain dataset was identified as

an outlier. Smear consistency of mice data with other datasets, stand off from other

ones in a PCA and low amount of genes clarify the low quality of this dataset.

Before application of the forest algorithm, I checked for characteristics of the protein-

protein interaction dataset. The degree distribution can clarify the biological proper-

ties of the database. The degree distribution was observed to follow a power law, and

is thus classified as a scale-free network (Barabasi and Albert, 1999). This means

that the number of nodes which are only connect to few neighbors is much higher

than a genes connected to a high number of nodes. It is believed that there are

few genes demonstrating hub characteristics in a biological networks. The struc-

ture shown clearly in Figure 3.6 indicates that iRefIndex is a scale-free network. In a

non−biological random network, degree distribution is normal (Costa et al., 2008).

After the application of prize-collecting Steiner forest algorithm using multiple com-

binations of parameters for each dataset I selected the largest network with the highest

number of terminals. Table 3.1 harbors these networks characteristics. This table ex-

plains that some of reconstructed networks are larger than 800 genes. This indicates

the integration of intermediate nodes in a network. In addition, among all 800 termi-

nal gene hits, some could not be imported to the algorithm. The reason is that some

genes are not represented in the PPI database. Moreover, some genes may also be

eliminated during optimization.

I also checked the degree distribution of terminal and Steiner nodes in a selected net-

works. In all datasets, the terminal nodes show significantly lower degree distribution

than other nodes. I believe that the reason of this observation is the high amount of

single degree terminal nodes. On the other hand, intermediate nodes have a role in

connecting terminals, therefore edge nodes are always terminal ones. I should state

52



that one degree Steiner nodes would be eliminated from the network as it cause the

increase of cost in objective function.

I cluster the selected network with the help of louvain modularity. The number of

cluster and the maximum, minimum and standard deviation of cluster sizes are given

in Table 3.2.

I performed GO and KEGG pathway enrichment analysis on the clusters for each

datasets. Figure 3.10 and Figure 3.11 are heatmaps representing KEGG pathway

and Gene Ontology Biological Process enrichment analysis results. Among multi-

ple of KEGG pathways the only one shared in all datasets is “Regulation of actin

cytoskeleton”. It is known that disruption in this regulation leads to various dis-

ease, such as neurodegenerative disease. Previous research determined that actin cy-

toskeleton has relation with intracellular signaling which regulates cellular activity

and programmed cell death (Amberg et al., 2011). It is known that reactive oxygen

species’ (ROS) accumulation leads to problems in mitochondria signaling and cell

fate. Hence, actin cytoskeleton changes have been detected due to this accumulation

(Gourlay and Ayscough, 2005). Revigo summarization of gene ontologies are given

in Figure 3.12. I believe changes in "exocytosis" and "cell surface receptor signaling

pathway" disrupt neuronal communication.

To check the significance of these enrichments, I applied three kinds of permutation,

“Noisy Edges”, “Shuffle Prizes” and age permutation. Interestingly, all of the per-

mutations reject the significant enrichments we observe in our results. The failure

of “Noisy Edges” demonstrate the robustness of edges in a network. Increase of the

noise could determine the level of robustness of these edges in a network. I am select-

ing most 800 significant differentially expressed genes. The variance of correlation

coefficient values are low. Therefore, shuffle the prizes in “shuffle prizes” permuta-

tion does not change the network too much. In the age permutation, terminals change

and the degree of these terminals also change in a network. This result, may claim

that we could not interpret biological implication from this network. I was planning

to look for common functional groups’ genes in a GBM dataset. However, as I am

not able to detect common functional groups, I couldn’t use GBM data.
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I construct the network in Figure 3.17, representing edges observed more than 5

times among datasets. In further studies, analysing this network’s hubs could give us

information about genes which play important role in aging and AD networks.

4.1 Limitations of the Study

In this study, unlike PFC, I used only one dataset for each brain region. Therefore,

more than one dataset for each region and condition will help us to obtain more con-

fidential results and allow to separate condition from tissue effect. Another limita-

tion in this study is, I observed only one common functional group among all aging

and AD datasets. Therefore, it is also important to analysing aging and AD datasets

seperately to find conditional related functional groups. Randomization results obtain

from “Shuffle prizes” demonstrate that some of trials were failed to reconstruct opti-

mal network. Hence, the number of non-empty networks did not reach 100. There-

fore, I should continuously permute the network until I achieve 100 non-empty ones.

Another limitation is, inserting abs values to the algorithm, prevent us to analysis in-

creased and decreased genes seperately. Therefore, it is better to examine them in an

algorithm seperately.
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CHAPTER 5

CONCLUSION

The aging phenotype is thought to involve expression changes in multiple genes, in-

dicating the importance of studying interaction among genes rather than focusing on

a single gene. I believe that, investigating common mechanisms in aging and AD

in our network analysis method may help us eliminate possible inefficiency in mi-

croarray data, such as difficulties in detecting low light intensity signals, imperfect

RNA hybridization or loss of gene expression information in meta-analysis compris-

ing different platforms. Missing nodes due to technical effects can be readed in this

approach. Another biological problem can be post-translational modifications of a

protein which may affect expression of other genes and is not detected on a microar-

ray. Although genes showing age-related expression changes and their interactions

have been reported by several studies, these could also be studied using the Forest

module. Using this method, we created an optimal interaction network of age-related

or AD-associated genes in protein-protein interaction networks, by taking into consid-

eration the terminal prizes and interaction strength of genes. These connections can

be direct or be represented by intermediate nodes. In addition, we performed network

alignment to test whether common interactions might be found in different species’

and tissues’ aging networks. The pathways common among all datasets was identi-

fied to be “regulation of actin cytoskeleton”. However, Gene Ontology enrichment

analysis did not provide shared functional groups. Further, to test the significance

of the predicted interactions we used permutation, “Noisy Edges”, “Shuffle Prizes”

and age/AD permutation. Compared to these permutations most of the enrichments

did not appear significant. This could be due to the insufficiency of permutations. I
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believe that, the noise added to the edges demonstrated the robustness of edges in a

network. On the other hand, terminal prizes are top 800 genes’ correlation coefficients

and these values are close to each other. Therefore, in “Shuffle Prizes” permutation,

low amount of changes in terminal prizes does not alter network.
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APPENDIX A

LIST OF SHARED FUNCTIONAL GROUPS AMONG AD AND AGING

NETWORKS SEPARATELY

Table A.1: List of KEGG pathways shared among aging datasets.

KEGG ID Name
hsa04062 Chemokine signaling pathway

hsa04810 Regulation of actin cytoskeleton

hsa05200 Pathways in cancer

Table A.2: List of KEGG pathways shared among AD datasets.

KEGG ID Name
hsa04210 Apoptosis

hsa04217 Necroptosis

hsa04510 Focal adhesion

hsa04810 Regulation of actin cytoskeleton

hsa05205 Proteoglycans in cancer

hsa04360 Axon guidance

hsa04010 MAPK signaling pathway

Table A.3: List of GO Biological Process categories shared among aging datasets.

GO ID GO Term
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GO:0007154 cell communication

GO:0007165 signal transduction

GO:0023052 signaling

GO:0044700 single organism signaling

GO:0044765 single-organism transport

GO:0050896 response to stimulus

GO:0051716 cellular response to stimulus

GO:1902578 single-organism localization

Table A.4: List of GO Biological Process categories shared among AD datasets.

GO ID GO Term
GO:0006915 apoptotic process

GO:0008219 cell death

GO:0008625 extrinsic apoptotic signaling pathway via death domain receptors

GO:0010558 negative regulation of macromolecule biosynthetic process

GO:0012501 programmed cell death

GO:0034097 response to cytokine

GO:0051253 negative regulation of RNA metabolic process

GO:1902679 negative regulation of RNA biosynthetic process

GO:1903507 negative regulation of nucleic acid-templated transcription
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APPENDIX B

LIST OF SHARED GENES AMONG AD AND AGING NETWORKS

SEPARATELY

Table B.1: List of genes shared among all aging datasets.

ENSG ID Gene Name
ENSG00000172531 PPP1CA

ENSG00000155368 DBI

Table B.2: List of genes shared among human aging datasets.

ENSG ID Gene Name
ENSG00000088826 SMOX

ENSG00000096060 FKBP5

ENSG00000112425 EPM2A

ENSG00000112559 MDFI

ENSG00000124942 AHNAK

ENSG00000125144 MT1G

ENSG00000129214 SHBG

ENSG00000143772 ITPKB

ENSG00000155368 DBI

ENSG00000162728 KCNJ9

ENSG00000164924 YWHAZ

ENSG00000172531 PPP1CA

ENSG00000175895 PLEKHF2

ENSG00000178567 EPM2AIP1
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ENSG00000183763 TRAIP

ENSG00000196616 ADH1B

ENSG00000198417 MT1F

ENSG00000213853 EMP2

Table B.3: List of genes shared among all AD datasets.

ENSG ID Gene Name
ENSG00000001626 CFTR

ENSG00000005022 SLC25A5

ENSG00000011304 PTBP1

ENSG00000054803 CBLN4

ENSG00000056736 IL17RB

ENSG00000056972 TRAF3IP2

ENSG00000065882 TBC1D1

ENSG00000067182 TNFRSF1A

ENSG00000070159 PTPN3

ENSG00000070831 CDC42

ENSG00000073536 NLE1

ENSG00000075415 SLC25A3

ENSG00000076716 GPC4

ENSG00000078043 PIAS2

ENSG00000085063 CD59

ENSG00000088812 ATRN

ENSG00000089123 TASP1

ENSG00000096060 FKBP5

ENSG00000100906 NFKBIA

ENSG00000101187 SLCO4A1

ENSG00000101276 SLC52A3

ENSG00000102362 SYTL4

ENSG00000103316 CRYM

ENSG00000103591 AAGAB

ENSG00000105329 TGFB1

70



ENSG00000106089 STX1A

ENSG00000106484 MEST

ENSG00000107872 FBXL15

ENSG00000108349 CASC3

ENSG00000109906 ZBTB16

ENSG00000110148 CCKBR

ENSG00000110852 CLEC2B

ENSG00000111652 COPS7A

ENSG00000111907 TPD52L1

ENSG00000112146 FBXO9

ENSG00000112739 PRPF4B

ENSG00000112818 MEP1A

ENSG00000113558 SKP1

ENSG00000113916 BCL6

ENSG00000115825 PRKD3

ENSG00000116044 NFE2L2

ENSG00000116353 MECR

ENSG00000117118 SDHB

ENSG00000118260 CREB1

ENSG00000118473 SGIP1

ENSG00000119655 NPC2

ENSG00000119950 MXI1

ENSG00000120063 GNA13

ENSG00000120875 DUSP4

ENSG00000120889 TNFRSF10B

ENSG00000121774 KHDRBS1

ENSG00000121858 TNFSF10

ENSG00000122584 NXPH1

ENSG00000124440 HIF3A

ENSG00000125148 MT2A

ENSG00000125772 GPCPD1

ENSG00000129116 PALLD

ENSG00000129473 BCL2L2

ENSG00000129675 ARHGEF6

ENSG00000130024 PHF10
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ENSG00000130254 SAFB2

ENSG00000130770 ATPIF1

ENSG00000132329 RAMP1

ENSG00000132357 CARD6

ENSG00000132434 LANCL2

ENSG00000134569 LRP4

ENSG00000134575 ACP2

ENSG00000135250 SRPK2

ENSG00000136827 TOR1A

ENSG00000137210 TMEM14B

ENSG00000137507 LRRC32

ENSG00000137693 YAP1

ENSG00000137767 SQRDL

ENSG00000138411 HECW2

ENSG00000138685 FGF2

ENSG00000139910 NOVA1

ENSG00000139921 TMX1

ENSG00000141646 SMAD4

ENSG00000142192 APP

ENSG00000142227 EMP3

ENSG00000143727 ACP1

ENSG00000143772 ITPKB

ENSG00000145358 DDIT4L

ENSG00000146416 AIG1

ENSG00000146701 MDH2

ENSG00000147437 GNRH1

ENSG00000148411 NACC2

ENSG00000149269 PAK1

ENSG00000149573 MPZL2

ENSG00000150787 PTS

ENSG00000151491 EPS8

ENSG00000151929 BAG3

ENSG00000153914 SREK1

ENSG00000154582 TCEB1

ENSG00000155368 DBI
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ENSG00000155659 VSIG4

ENSG00000156097 GPR61

ENSG00000158301 GPRASP2

ENSG00000159403 C1R

ENSG00000160097 FNDC5

ENSG00000162188 GNG3

ENSG00000162413 KLHL21

ENSG00000163032 VSNL1

ENSG00000163743 RCHY1

ENSG00000163884 KLF15

ENSG00000164332 UBLCP1

ENSG00000164761 TNFRSF11B

ENSG00000164924 YWHAZ

ENSG00000164949 GEM

ENSG00000165029 ABCA1

ENSG00000165704 HPRT1

ENSG00000165806 CASP7

ENSG00000166111 SVOP

ENSG00000166483 WEE1

ENSG00000167785 ZNF558

ENSG00000167900 TK1

ENSG00000168003 SLC3A2

ENSG00000168040 FADD

ENSG00000168874 ATOH8

ENSG00000169217 CD2BP2

ENSG00000169271 HSPB3

ENSG00000170035 UBE2E3

ENSG00000170370 EMX2

ENSG00000170899 GSTA4

ENSG00000171450 CDK5R2

ENSG00000172216 CEBPB

ENSG00000173039 RELA

ENSG00000173530 TNFRSF10D

ENSG00000175287 PHYHD1

ENSG00000175352 NRIP3
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ENSG00000175895 PLEKHF2

ENSG00000176046 NUPR1

ENSG00000177426 TGIF1

ENSG00000177432 NAP1L5

ENSG00000177575 CD163

ENSG00000178252 WDR6

ENSG00000179915 NRXN1

ENSG00000181826 RELL1

ENSG00000182326 C1S

ENSG00000183943 PRKX

ENSG00000184117 NIPSNAP1

ENSG00000185022 MAFF

ENSG00000185519 FAM131C

ENSG00000185650 ZFP36L1

ENSG00000186951 PPARA

ENSG00000187193 MT1X

ENSG00000196954 CASP4

ENSG00000198604 BAZ1A

ENSG00000198890 PRMT6

ENSG00000198932 GPRASP1

ENSG00000206535 LNP1

ENSG00000213337 ANKRD39

ENSG00000213920 MDP1

ENSG00000214050 FBXO16

ENSG00000221869 CEBPD

ENSG00000239672 NME1

ENSG00000243364 EFNA4

ENSG00000254087 LYN
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