
REVISITING SHAMIR’S NO-KEY PROTOCOL: A LIGHTWEIGHT KEY
TRANSPORT PROTOCOL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ADNAN KILIÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2017

Approval of the thesis:

REVISITING SHAMIR’S NO-KEY PROTOCOL: A LIGHTWEIGHT KEY
TRANSPORT PROTOCOL

submitted by ADNAN KILIÇ in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ertan Onur
Supervisor, Computer Engineering Department, METU

Assist. Prof. Dr. Cansu Betin Onur
Co-supervisor, Mathematics Dept., Atılım University

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Prof. Dr. İbrahim Körpeoğlu
Computer Engineering Department, Bilkent University

Assoc. Prof. Dr. Murat Cenk
Cryptography Department, METU

Assist. Prof. Dr. Pelin Angın
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ADNAN KILIÇ

Signature :

iv

ABSTRACT

REVISITING SHAMIR’S NO-KEY PROTOCOL: A LIGHTWEIGHT KEY
TRANSPORT PROTOCOL

Kılıç, Adnan

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ertan Onur

Co-Supervisor : Assist. Prof. Dr. Cansu Betin Onur

September 2017, 42 pages

Key-transport protocols, subclasses of key-establishment protocols, are employed to
convey secret keys from a principal to another to let them establish a security associa-
tion. In this thesis, we propose a lightweight, practicable, energy-efficient, and secure
key-transport protocol, convenient for wireless sensor networks (WSN), the Internet
of things (IoT) and mobile networks. The proposed protocol is based on the Shamir’s
three-pass (no-key) protocol. Although Shamir’s three-pass protocol does not require
any pre-shared secret between principals, we show that it is impossible to employ
the three-pass protocol over public commutative groups. We modify Diffie-Hellman
key-agreement protocol to morph it into a key-transport protocol by applying a set of
changes on the original protocol, and it becomes possible to compare both protocols
in terms of memory usage and total time to complete a single key transportation. The
experimental results point out that the proposed key transport protocol performs faster
than the modified Diffie-Hellman protocol, and the total time to transport a single key
by using the modified Diffie-Hellman protocol grows drastically with the increase in
key size.

Keywords: Key transport protocols, Wireless Sensor Networks, Internet of Things

v

ÖZ

SHAMİR’İN ANAHTARSIZ PROTOKOLÜNÜN YENİDEN İNCELENMESİ:
HAFİF-SIKLET ANAHTAR AKTARIM PROTOKOLÜ

Kılıç, Adnan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ertan Onur

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Cansu Betin Onur

Eylül 2017 , 42 sayfa

Anahtar kurulması protokollerinin alt sınıfı olan anahtar aktarma protokolleri, gizli
anahtarları bir varlıktan diğerine iletip bir güvenlik ortaklığı kurmalarına izin ver-
mek için kullanılır. Bu tezde, kablosuz duyarga ağları (WSN), nesnelerin interneti
(IoT) ve mobil ağlar için uygun, hafif, pratik, enerji açısından verimli ve güvenli bir
anahtar aktarım protokolü öneriyoruz. Önerilen protokol Shamir’in üç-geçişli (anah-
tarsız) protokolüne dayanıyor. Shamir’in üç-geçişli protokolü varlıklar arasında önce-
den paylaşılmış bir sır gerektirmese de, umumi değişmeli gruplar üzerinde üç geçişli
protokolün kullanılmasının imkansız olduğunu gösteriyoruz. Diffie-Hellman anahtar
değişimi protokolünü orijinal protokol üzerinde bir dizi değişiklik uygulayarak bir
anahtar aktarım protokolüne dönüştürmek üzere değiştiriyoruz ve her iki protokolü
de tek bir anahtar aktarımını tamamlamak için gereken bellek kullanımı ve toplam
süre açısından karşılaştırmak mümkün hale geliyor. Deney sonuçları, önerilen anah-
tar aktarma protokolünün değiştirilmiş Diffie-Hellman protokolünden daha hızlı per-
formans gösterdiğini ve değiştirilen Diffie-Hellman protokolünü kullanarak tek bir
anahtarın taşınması için gereken toplam sürenin anahtar boyutundaki artışla birlikte
önemli ölçüde arttığına işaret etmektedir.

Anahtar Kelimeler: Anahtar Aktarma Protokolleri, Kablosuz Duyarga Ağları, Nes-
nelerin İnterneti

vi

To my mom

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Ertan Onur for his guidance,
encourage and support. With his friendly attitude, I always feel motivated to continue
working. Special thanks go to my co-advisor Cansu Betin Onur. Whenever we feel
stuck in theory and did not foresee, she has helped us like an oracle with her expertise
in group theory.

I am grateful for my colleagues and friends Hüsnü Yıldız, Özgür Kaya, Merve Aydın-
lılar, Ömer Ekmekçi, Abdullah Al-Shihabi, Ezgi Ekiz, Çağlar Seylan, Alperen Eroğlu
and Selma Süloğlu. Without their friendship, support and encouragement, it would
be impossible to complete this thesis.

I would like to express my thankfulness to my close friends Merve Asiler, Koray
Uzun, Ali Alp Karabay, Çağrı Tepe, Ulaş Doğru, Eda Küçükkeskin, Eda Ceren Güngör,
Merve Gürbüz, Sibel Soylu, Hüseyin Harun Uyan, Halim Gökhan Mert, Gülay Özdemir
and Cem Alp Yapalak. If you know these great people, you would not have any rea-
son to worry about anything. I also would like to thank Monika Imeri for her help
and vision in creating the visual part of the work.

I would like to thank Fit/IoT-LAB. They provide an amazing opportunity for re-
searchers to test their works.

I would like to express my sincere appreciations to my mom Hatice Kılıç, my sister
Fatma Kılıç, my brother Cengiz Kılıç. They are always with me whenever I need
their love and support.

Finally, I would like to thank my dad. It has been very difficult to go on being creative
after his departure from my life, and now I can only hope that he would feel proud of
me.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Scope . 1

1.2 Problem Definition . 1

1.3 Contributions . 3

1.4 Outline . 4

2 RELATED WORK . 5

2.1 Group Theory . 5

2.1.1 Kernel of Group Homomorphism 6

2.1.2 Stabilizer of a Point 6

ix

2.1.3 Transitive Action 6

2.1.4 Theorem 1.4A-ii in [14] 6

2.2 Cryptography . 6

2.2.1 Cryptosystems 6

2.2.2 Non-commutative Cryptography 8

2.2.2.1 Conjugate [28] [9] 8

2.2.2.2 Commutator [28] [9] 8

2.2.2.3 Word [28] 9

2.3 Computationally-Difficult Problems 9

2.3.1 Cryptographic Hash Functions [16] 9

2.3.2 Integer Factorization Problem (IFP) [26] 10

2.3.3 Discrete Logarithm Problem (DLP) [20] 10

2.3.4 Elliptic Curve Discrete Logarithm Problem (ECDLP)
[17] . 10

2.3.5 Conjugacy Search Problem (CSP) [28] [9] 11

2.3.6 Decomposition Search Problem (DSP) [28] [9] . . 11

2.3.7 Word Search Problem (WSP) [28] 11

2.4 Key Distribution Techniques in WSN 11

2.5 Related Works . 12

2.5.1 Modified Diffie-Hellman Key Exchange Protocol . 12

2.5.2 Ko-Lee-Cheon-Han-Kang-Park Key Agreement Pro-
tocol . 14

x

2.5.3 Anshel-Anshel-Goldfeld Key Agreement Protocol . 15

2.5.4 The Stickel Key Agreement Protocol 17

2.5.5 Overall Assessment 17

3 IMPOSSIBILITY OF THREE-PASS PROTOCOL OVER PUBLIC
COMMUTATIVE GROUPS . 21

3.1 Generalized One-time Pad 22

3.2 Three Pass Protocol Using Commutative Groups 22

3.3 Requirements of the Public Group G 23

3.4 An Easy Example Implementation 24

3.5 Impossibility of Three-pass Protocol over Public Commuta-
tive Groups . 25

4 LIGHTWEIGHT KEY TRANSPORT PROTOCOL 29

4.1 LKTP . 29

4.1.1 Initialization Phase 30

4.1.2 Key-transportation Phase 30

4.2 A Feasible Implementation of Key Transport Protocol 31

4.3 Security Analysis . 33

4.4 Implementation, Results and Discussion 34

4.4.1 Methodology . 34

4.4.2 Results and Discussion 35

5 CONCLUSION . 37

5.1 Conclusion . 37

xi

5.2 Future Work . 37

REFERENCES . 39

xii

LIST OF TABLES

TABLES

Table 2.1 Comparison of key establishment protocols, [42], [26], [6]. 20

Table 4.1 List of symbols in LKTP. 29

Table 4.2 Size of memory sections. (in bytes) 35

Table 4.3 Number of computations to calculate ka in DH and k × a in LKTP. . 36

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 Scenarios (a) IoT device connected to mobile network, (b) Device-
to-device (D2D) communication between IoT device and smartphone, (c)
Smart phone connected to mobile network. 2

Figure 1.2 The expected number of connected devices installed worldwide
from 2015 to 2025. (in billions) . 3

Figure 2.1 A simple model of symmetric encryption scheme. 7

Figure 2.2 A simple model of public-key encryption scheme. 8

Figure 2.3 Modified Diffie-Hellman Key Transport Protocol. 14

Figure 2.4 Ko-Lee-Cheon-Han-Kang-Park Key Agreement Protocol. 15

Figure 2.5 Anshel-Anshel-Goldfeld Key Agreement Protocol. 16

Figure 2.6 The Stickel Key Agreement Protocol. 18

Figure 3.1 Three-pass protocol using public Abelian group actions. 23

Figure 4.1 Flow Diagram of LKTP. 31

Figure 4.2 A simple example working over a multiplicative group Z∗13. 33

Figure 4.3 Key size versus total time to transport a single key in desktop. . . . 36

xiv

Nomenclature

GF (p), Fp A finite field of order (prime) p

GLn(A) The set of n× n matrices whose elements ∈ A

G = 〈g〉 A cyclic group generated by g ∈ G

ϕ : G→ H A group homomorphism from G to H

{0, 1}n The set of n-bit binary strings

{0, 1}∗ The set of all finite binary strings

|A| The number of elements in set A

[a, b] The commutator of two elements a and b

Alice First entity of a communication

Bob Second entity of a communication

Eve Eavesdropper

Mallory Malicious active attacker

Text Memory space for text segment

Data Memory space for all initialized data

Bss Memory space for all uninitialized data

xv

xvi

CHAPTER 1

INTRODUCTION

1.1 Scope

Given the recent developments in 5G technology, the Internet of Things (IoT) applica-

tions are expected to be integrated with mobile networks to form heterogenous future

networks. Therefore, resource-constrained devices are expected to emerge in different

platforms and to play an important role in daily life. Due to their restricted hardware

capabilities, employing existent security protocols is not feasible. The trade-off be-

tween security and efficiency has led to the appearance of lightweight cryptographic

protocols to replace symmetric cryptosystems, cryptographic hash functions and key

establishment protocols. In this thesis, we concentrate on key transport protocols.

1.2 Problem Definition

According to Paar [31], key establishment can be classified into key transport and key

agreement protocols. Key transport protocols are designed to transfer a secret key

from an initiating principal that determines the key to another entity in a network,

while all of the principals taking part in the protocol influence the key establishment

process in key agreement protocols.

Consider the following scenarios in which lightweight security solutions will be crit-

ical with the integration of IoT devices given in Fig. 1.1 (1) an IoT device connected

to mobile network over narrow-band Long-Term Evolution (LTE) or Long-Range

(LoRa), to monitor the status of a critical system positioned outdoor, (2) an IoT de-

vice in a healthcare system, checking the vital signs of an elderly person, then report-

1

ing them to a smartphone using device-to-device (D2D) communication, (3) smart

phones and mobile networks employing LTE or 5G technologies.

(a) (b) (c)

Figure 1.1: Scenarios (a) IoT device connected to mobile network, (b) Device-to-
device (D2D) communication between IoT device and smartphone, (c) Smart phone
connected to mobile network.

Possible problems with those scenarios are (1) The channel between IoT device and

mobile network becomes vulnerable to attacks if the communication is in plaintext.

(2) Public-key protocols, so is Diffie-Hellman key agreement protocol, are not suit-

able [25] for resource-constrained devices due to the computational burden compared

to symmetric protocols and communication overhead as a result of frequent and large

messages. (3) The vital signs of a person can be exploited with lack of key estab-

lishment between IoT device and smartphone. (4) The protocols that employ non-

commutative cryptography does not specify the implementation details, including the

choice of platform group. (5) Increasing number of IoT devices [2], given in Fig. 1.2,

requires flexible, lightweight key-establishment protocols since the existing ones are

not lightweight and IoT devices are hardware-constrained.

2

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

15
.4

1

17
.6

8

20
.3

5

23
.1

4

26
.6

6

30
.7

3

35
.8

2 42
.6

2 51
.1

1

62
.1

2

75
.4

4

Year

C
on

ne
ct

ed
de

vi
ce

s
in

bi
lli

on
s

Figure 1.2: The expected number of connected devices installed worldwide from
2015 to 2025. (in billions)

1.3 Contributions

In this thesis, we introduce a lightweight, practical, energy-efficient, secure key-

transport protocol suitable for Wireless Sensor Networks (WSN), IoT and mobile

networks. The main contributions of the thesis can be listed as follows:

• We introduce the generalized one-time pad model as a symmetric cipher and

use this generalized model to implement Shamir’s no-key (three-pass) protocol

for key transportation. If it were possible to employ public commutative groups

to implement the three-pass protocol as we present in Section 3.2, we could use

it in post-quantum cryptography for transporting keys providing information-

theoretic security without relying on any computationally-difficult problem. As

one of the contributions of this work, we prove in Section 3.5 that it is impos-

sible to communicate without sharing secrets using three-pass protocol over

public commutative groups. All in all, one has to rely on computational se-

curity instead of information-theoretic security approaches to implement the

three-pass protocol.

3

• We propose the lightweight key-transport protocol (LKTP) that is applicable in

above-mentioned scenarios relying on computational security for bootstrapping

a prime number which will specify the group of the protocol, then information-

theoretic security can be provided.

1.4 Outline

In Chapter 2, we will give information about group theory, cryptosystems, non-

commutative cryptography and computationally-difficult problems. The related key

establishment protocols using group theory related concepts and their overall assess-

ment in comparison to LKTP will conclude the chapter. In Chapter 3, generalized

one-time pad and Shamir’s no-key protocol using commutative groups by mention-

ing requirements of public group will be explained. An easy implementation of the

three-pass protocol over Klein four-group V will reveal the importance of the re-

quirements. At the end of the chapter, we will show that it is impossible to employ

three-pass protocol over public commutative groups. In Chapter 4, the general struc-

ture of the proposed lightweight key-transport protocol will be explained. An easy

implementation of the protocol and security proof showing the conformance of the

protocol will help us understand the idea behind the proposed protocol. We will con-

clude the chapter with the implementation methodolody, results and discussion of two

key-transport protocols.

4

CHAPTER 2

RELATED WORK

In this chapter, the background information and related works will be explained to

understand the structure of the proposed key-transport protocol. In Section 2.1, the

definition of group and necessary concepts related to abstract algebra will be given. In

Section 2.2, the definition of a simple cryptosystem and two types of cryptosystems

will be explained to understand the differences between key-establishment protocols.

This section also includes the concepts from non-commutative cryptography. In Sec-

tion 2.3, the underlying computationally-difficult problems will be considered. In

Section 2.4, key distribution techniques in WSN will be given. In Section 2.5, re-

lated works from non-commutative cryptography and the modified Diffie-Hellman

key-transport protocol will be explained in details.

2.1 Group Theory

A group [5] [15] is a nonempty set G with binary operation · on G that satisfies the

following properties :

G1. The set is closed under the operation : x · y ∈ G for every x, y ∈ G.

G2. The operation · is associative : (x · y) · z = x · (y · z) for every x, y, z ∈ G.

G3. G contains a unique identity element e such that e · x = x · e = x for every

x ∈ G.

G4. Every element x ∈ G has a unique inverse element y ∈ G such that x · y =

y · x = e.

5

Notes :

1. G is commutative (Abelian) if x · y = y · x for every x, y ∈ G.

2. |G| denotes the number of elements in G.

2.1.1 Kernel of Group Homomorphism

Let ϕ : G → H be a group homomorphism. The set Ker(ϕ) = {x ∈ G : ϕ(x) =

1H} is called the kernel of ϕ.

2.1.2 Stabilizer of a Point

Let G be a group acting on a set S and let x be an element of S. The set of elements

in G, which fix the value of x is called the stabilizer of x in G and is denoted by Gx.

2.1.3 Transitive Action

A group G acting on a set S is said to be transitive if for any pair of elements

a, b ∈ S, there exists x ∈ G such that a ◦ x = b.

2.1.4 Theorem 1.4A-ii in [14]

Suppose that (G, ∗) is a group acting on a set S and that r ∈ G and a, x ∈ S. Then,

the stabilizer Ga is a subgroup of G and Gx = r−1 ∗Ga ∗ r whenever x = a ◦ r.

2.2 Cryptography

2.2.1 Cryptosystems

A cryptosystem defined over (K,M,C) is a set of algorithms Π = (Gen,Enc,Dec)

acting on a plaintext message m where

6

A
lic

e
Enc

k
R←− Gen()

c← Enck(m)

Channel

Adversary

Dec

k

m := Deck(c)

B
obm c c m

Figure 2.1: A simple model of symmetric encryption scheme.

• K denotes the set of keys k,

• M denotes the set of plaintexts (messages) m,

• C denotes the set of ciphertexts c,

• Gen is a key-generation algorithm which outputs k,

• Enc : K×M→ C is an encryption algorithm c← Enck(m),

• Dec : K× C →M is a decryption algorithm m := Deck(c),

Correctness Property : For all messagesm ∈M and key k ∈ K which is generated

by Gen,

Deck(Enck(m)) = m.

Symmetric-key and public-key (asymmetric-key) cryptography are types of cryp-

tosystems. In symmetric-key cryptography, all principals share a private key and

communicate with each other by encrypting messages. Whenever Alice wants to

send a secret message to Bob or Bob tries to decrypt an encrypted message, the same

private key will be the input for encryption or decryption, respectively as shown in

Fig.2.1.

In public-key cryptography however, each principal has 2 different keys, called pub-

lic and private keys. When Alice wants to send a secret message to Bob, she should

encrypt the plaintext by using the public key of Bob. To decrypt the ciphertext, Bob

should use his private key this time as shown in Fig.2.2. The essence of public-key

7

A
lic

e

Enc

pA

(pA, eA)
R←− Gen()

c← EncpA(m)

Channel

Adversary

Dec

m := DeceA(c)

B
ob

(pB, eB)
R←− Gen()

eA

m c c m

Figure 2.2: A simple model of public-key encryption scheme.

cryptography is that the difficulty of a specific mathematical problem makes the en-

cryption be a one-way function, that is, to decrypt a ciphertext you need another key,

namely private key, which is very difficult to derive with the existence of the public

key, and vice versa. Since all entities should have a public key used in encryption,

there is no need to distribute a secret key between entities. However, the public key

cryptography is slower compared to symmetric key cryptography and requires more

processing power to both encrypt and decrypt a message. [47] [43]

2.2.2 Non-commutative Cryptography

2.2.2.1 Conjugate [28] [9]

LetG be a non-commutative group. The conjugate of g by x for the elements x, g ∈ G
is denoted by gx = x−1gx. The conjugate operation is assumed to replace exponenti-

ation in cryptographic contexts.

2.2.2.2 Commutator [28] [9]

Let G be a group, and a, b ∈ G. The commutator of two elements, a and b, is the

element of G, represented by [a, b] = a−1b−1ab.

8

2.2.2.3 Word [28]

Let S = {a1, a2, a3, ...} be a set. A finite string of elements which are selected

from the set S, in which repetition of elements and inverse elements are allowed is

called a word. For example, a1a2, a1a−13 a2, a1a−12 a3a1a
−1
1 a2a

−1
3 are words in the set

S. In other words, a word in S is a string of the form aε11 a
ε2
2 ...a

εn
n where ai ∈ S and

εi ∈ {−1,+1}. The number n is called the length of the word.

2.3 Computationally-Difficult Problems

2.3.1 Cryptographic Hash Functions [16]

A cryptographic hash function f : {0, 1}∗ → {0, 1}n is a mapping, from a set of

infinite input sequences to the set of n−bit hash values, which satisfies the following

properties:

• The computation of a hash value for a given input should be deterministic and

quick.

• A small change in input value should cause an important change in the hash

value to satisfy the avalanche effect.

• f should be pre-image resistant : for a known hash value h, it should be infea-

sible to find a message m such that f(m) = h.

• f should be second pre-image resistant : for an input message m1, it should be

infeasible to find m2, such that f(m1) = f(m2) where m1 6= m2.

• f should be collision resistant : it should be infeasible to find two different input

messages m1 and m2 such that f(m1) = f(m2).

Since the mapping f is from a set containing infinitely many input sequences, to a

finite set of n-bit hash values, the collision is inevitable according to the Pigeonhole

Principle [45]. To strengthen the security of a key-establishment protocol, a secure

hash function should be considered. After Google announced the first successful

SHA-1 collision, SHA-1 becomes insecure and is expected to be deprecated [38].

9

2.3.2 Integer Factorization Problem (IFP) [26]

The integer factorization problem is the decomposition of an integer n into prime

numbers pi such that n =
∏
paii .

In RSA [35], n is chosen as a semiprime, namely multiplication of two distinct, large

prime numbers p and q. The security strength of RSA, hence the integer factorization

problem, is based on the belief that there is no efficient, polynomial-time algorithm

on a classical (non-quantum) computer [27] when the numbers are large. There are

some studies showing that using elliptic curves [41] and estimating φ(n) [21] give

advantage for finding the factorization of a semi-prime [21]; a polynomial algorithm

for finding the factorization of n was proposed by Peter Shor [36], but it requires a

quantum computer.

2.3.3 Discrete Logarithm Problem (DLP) [20]

Let G be a group, and g ∈ G. Assume that 〈g〉 = {gk : k ∈ Z} be a finite cyclic

subgroup of G generated by g. Given an element y ∈ 〈g〉, find an element x such that

gx = y. The difficulty of the problem depends on the selection of a group, where the

logarithm of b to the base g will be calculated.

There are several algorithms to solve the discrete logarithm problem. Baby-step,

giant-step algorithm [12] has time complexity and space requirement O(
√
|G|). To

reduce the space requirement, Pollard-ρ [33] provides a method with time complexity

O(
√
|G|) with very small space requirement. The worst case of Pohlig Helman [32]

is O(
√
|G|), however if the order of the group n = |G| =

∏
peii , the complexity will

become
∑
ei(log n+

√
pi) [37].

2.3.4 Elliptic Curve Discrete Logarithm Problem (ECDLP) [17]

Let E be an elliptic curve over a finite field Fq, and Q ∈ E be a point of order n.

Given P ∈ 〈Q〉, find an integer a, 0 ≤ a ≤ n− 1 such that P = aQ.

10

2.3.5 Conjugacy Search Problem (CSP) [28] [9]

Let G be a non-commutative group. For given two conjugate elements g, h ∈ G, find

an element x ∈ G such that the conjugate of g by x is equal to h. In other words, find

an element x ∈ G such that x−1gx = h.

2.3.6 Decomposition Search Problem (DSP) [28] [9]

Let G be a non-commutative group. For given two elements g, h ∈ G, find two

elements a1, a2 ∈ A ⊆ G such that h = a1ga2, in case the existence of at least one

such pair is provided.

2.3.7 Word Search Problem (WSP) [28]

Let G be a non-commutative group and g ∈ G. Find a representation of g such that

g = ai1ai2 ...air where aij ∈ {a∓11 , a∓12 , ..., a∓1n } ⊆ G.

2.4 Key Distribution Techniques in WSN

Before explaining specific key establishment protocols, it is essential to classify key

distribution techniques used in wireless sensor networks: [11]

• Key Distribution over a Single Network-Wide Key There is a single network-

wide key and it is used to encrypt communication between legitimate nodes.

• Key Distribution over a Pairwise-Shared Key Instead of a single network-

wide key, each pair has its unique key in a network.

• Key Distribution by using Public-Key Cryptography The strength (with

computation burden) of public-key cryptography ensures a secure key distri-

bution in a network.

11

• Key Distribution by Bootstrapping a Trusted Base Node The communica-

tion between sensor nodes are encrypted by the keys provided by a trusted base

node.

2.5 Related Works

There are many key agreement protocols proposed in the literature that rely on compu-

tationally-difficult problems (or in general public-key systems). The hallmark is the

Diffie-Hellman key exchange protocol that makes use of the difficulty of discrete

logarithm problem over a finite group [13]. It is widely employed for exchanging

secret keys on the Internet [46]. Additionally, Ko-Lee-Cheon-Han-Kang-Park [22],

Anshel-Anshel-Goldfeld [4] and the Stickel key agreement [39] protocols rely on the

computationally-difficult problems [28]. For details of the computationally-difficult

problems, see Section 2.3).

2.5.1 Modified Diffie-Hellman Key Exchange Protocol

In their papers [13], W. Diffie and M. E. Hellman provided a clear introduction to

public key cryptography and introduced their famous key agreement algorithm. To

agree on a secret key, Alice and Bob first agree on a prime number p and a base

element g that is a primitive root modulo p. Alice selects a private key a to com-

pute ga (mod p) and sends it to Bob, where Bob selects a private key b to compute

gb (mod p) and sends it to Alice. To complete the key exchange protocol, Alice calcu-

lates (gb)a (mod p) easily by using her private key, and Bob calculates (ga)b (mod p)

with his private key. Now, Alice and Bob agrees on and establishes a secret key which

is k = (gb)a (mod p) = (ga)b (mod p) = gab (mod p). The essence of the se-

curity in Diffie-Hellman Key Exchange is without knowing the secret keys a or b, it

is computationally difficult to calculate gab (mod p) from gb or ga which is known as

the discrete logarithm problem over a finite set G = Z∗p. (see Section 2.3.3)

12

Since we propose a key transport protocol in this thesis, we morphed Diffie-Hellman

key exchange protocol to a key transport protocol by applying the following changes

on the original protocol to make a fair comparison:

1. A prime number q is assumed to be bootstrapped in both devices.

2. Alice generates a prime number p randomly, and sends n = p× q to Bob.

3. Bob sets p and the finite cyclic group G = Z∗p, multiplicative group modulo p,

after dividing n by q.

4. Alice selects an integer a, where Bob chooses an integer b such that a, b are in

{1, ..., p− 1} and relatively prime to Euler’s totient function [23] φ(p) = p− 1

since p is prime. Then ā, b̄, modulo classes of a and b, are elements of Z∗φ(p).

Therefore there are integers c, d in {1, ..., p−1} such that c̄ and d̄ are inverses of

ā and b̄ in Z∗φ(p), respectively. Hence ac = t1(p−1)+1 and bd = t2(p−1)+1 for

some integers t1, t2. To show the correctness of the protocol, let g ∈ G = Z∗p.

Then the order of g divides the order of G which is p − 1. If we calculate,

gac = gt1(p−1)+1 = g(gp−1)t1 = g. (This result can also be shown using number

theoretic methods. Note that for any integer g, gp−1 ≡ 1 (mod p) by Fermat’s

Little Theorem [24].)

5. When the key transportation starts, Alice selects a random key k ∈ G and sends

m1 = ka to Bob.

6. Bob receives the encrypted message, encrypts it once more by calculatingm2 =

(m1)
b and sends m2 to Alice.

7. Alice calculates m3 = m2
a−1 and sends it to Bob to start the last phase of the

protocol.

8. Bob calculates m3
b−1

= kaba
−1b−1 ≡ k (mod p) and recovers the original key

k.

13

Alice Bob

Chooses a secret
number, a

Chooses a secret
number, b

m1 = ka

m2 = m1
b

m3 = m2
a−1

Calculates
m3

b−1

= k

Figure 2.3: Modified Diffie-Hellman Key Transport Protocol.

2.5.2 Ko-Lee-Cheon-Han-Kang-Park Key Agreement Protocol

In this protocol, let G be a non-commutative group, and also let g ∈ G be a public

element. Let A and B be two commuting subgroups of G. In order words, ab = ba

for all a ∈ A and b ∈ B. To agree on a shared secret key,

1. Alice chooses an element a randomly from A and sends ga to Bob1.

2. Bob chooses an element b randomly from B and sends gb to Alice.

3. Alice calculates shared secret key ka = (gb)a.

4. Bob calculates shared secret key kb = (ga)b.

The secret key k becomes:

k = ka = gab = (ab)−1g(ab)

= (ba)−1g(ba) = gba = kb.

This protocol [22] [28] [9] is based on the fact that the conjugacy search problem (see

Section 2.3.5) is computationally-difficult, namely the problem of finding y ∈ G such

that h = gy = y−1gy where g and h are known.
1 ga: The conjugate of g by a.

14

Alice Bob

Pick a private
element, a

Pick a private
element, b

Compute shared key,
(gb)a = gab

Compute shared key,
(ga)b = gab

ga = a−1ga

gb = b−1gb

Figure 2.4: Ko-Lee-Cheon-Han-Kang-Park Key Agreement Protocol.

2.5.3 Anshel-Anshel-Goldfeld Key Agreement Protocol

Let G be a non-commutative group, and let a1, a2, ..., ak, b1, b2, ..., bl ∈ G be public

elements. To agree on a shared secret key:

1. Alice chooses a word (see Section 2.2.2.3) x from the set {a1, a2, ..., ak} and

sends the set of conjugates {bx1 , bx2 , ..., bxl } to Bob.

2. Bob chooses a word y from the set {b1, b2, ..., bl} and sends the set of conjugates

{ay1, a
y
2, ..., a

y
k} to Alice.

3. Alice calculates xy whereas Bob calculates yx. x is the private key of Alice,

where y is the private key of Bob.

4. Therefore, the secret key k becomes [x, y] = x−1y−1xy.

Calculations will yield to

xy = (ai1ai2 ...air)
y

= (ayi1a
y
i2
...ayir)

for given x = ai1ai2 ...air where aij ∈ {a∓11 , a∓12 , ..., a∓1k } and

15

Alice Bob

Selects a private
word, x

Selects a private
word, y

Computes shared key,
x−1xy

Computes shared key,
(yx)−1y

{bx1 , bx2 , ..., bxm}

{ay1, a
y
2, ..., a

y
k}

Figure 2.5: Anshel-Anshel-Goldfeld Key Agreement Protocol.

yx = (bj1bj2 ...bjr)
x

= (bxj1b
x
j2
...bxjr)

for given y = bj1bj2 ...bjr where bjk ∈ {b∓11 , b∓12 , ..., b∓1l }.

To understand how the commutator (see Section 2.2.2.2) works as a shared secret key,

we can write the commutator as;

[x, y] = x−1y−1xy

= x−1(y−1xy)

= x−1xy

which can be calculated by Alice’s private value x. Similarly,

[x, y] = x−1y−1xy

= (x−1yx)−1y

= (yx)−1y

which can be calculated by Bob’s private value y. Note that, since G is a non-

commutative group, [x, y] need not be the identity element for any x, y ∈ G.

16

This protocol [4] [28] [9] is based on the fact that the Word Search Problem (WSP

(see Section 2.3.7) is computationally-difficult, namely the problem of finding a rep-

resentation of an element y ∈ G including elements from the subset of G.

2.5.4 The Stickel Key Agreement Protocol

Let G = GLn(Fq) and g ∈ G. Take any two elements a, b ∈ G of order na and nb,

respectively. In other words, ana = bnb = I and suppose that ab 6= ba. Assume that

G, a and b are all publicly known. To agree on a shared secret key,

1. Alice chooses k, l such that 0 < k < na and 0 < l < nb, sends u = akgbl to

Bob.

2. Bob chooses s, t such that 0 < s < na and 0 < t < nb, sends v = asgbt to

Alice.

3. Alice calculates ka = akvbl.

4. Bob calculates kb = asubt.

The secret key k becomes:

k = ka = kb = ak+sgbl+t.

This protocol [28] [9] [39] is based on the fact that the decomposition search prob-

lem (see Section 2.3.6) is computationally-difficult, namely the problem of finding

a1, a2 ∈ A such that h = a1ga2 where g and h are known.

2.5.5 Overall Assessment

In addition to passive and active attacks, a protocol should be resistent against some

other requirements: [42] [10]

17

Alice Bob

Pick secret
numbers, k, l

Pick secret
numbers, s, t

Compute shared key
k = akvbl

Compute shared key
k = asubt

u = akgbl

v = asgbt

Figure 2.6: The Stickel Key Agreement Protocol.

• Known-key security (Ks) The compromise of the past session keys should not

reveal the future session keys.

• Forward secrecy (Fs) The compromise of the future session keys should not

reveal the previously established session keys.

• Key-compromise impersonation resilience (KiR) After revealing the long-term

private key of A, the attacker is able to impersonate the entity of A.

• Unknown key-share resilience (UkR) It should not be possible that A is tricked

to establish a key with party C, when A wants to establish a key with B.

• Key control (Kc) The secret key should be established with the participation of

A and B together.

In Table 2.1, we list several key establishment protocols and compare them with re-

spect to underlying computationally-difficult problem that security of a protocol de-

pends on, number of messages, specific security requirements (Kks, Fs, KciR, UksR,

KC) presented and existence of a pre-shared key.

In the second column of the table, we analyse the underlying computationally-difficult

problems on which the security of the protocols depend. Most of the protocols depend

on computationally-difficult problems while Wen-Lin-Hwang’s protocol employ the

properties of hash functions, Otway-Rees and Needham-Schroeder rely on symmetric

18

encryption. The original Shamir’s no-key protocol relies on symmetric encryption but

LKTP also benefits from integer factorization problem in the initialization phase.

Since resource-constrained devices consume energy while sending and receiving mes-

sages, a protocol should not need to exchange too many messages between entities.

Although Diffie-Hellman based protocols accomplish key establishment with two

messages only, LKTP requires three messages as a three-pass protocol. Needham-

Schroeder consumes the highest energy while sending and receiving messages by

exchanging five messages.

Specific security requirements (Kks, Fs, KciR, UksR, KC) of protocols are given

starting from the fourth column of the table. It is important to note that protocols

without authentication could not satisfy KciR and UksR. Moreover, key transport

protocols are usually preferred for transporting an already-selected private key from

Alice to Bob, they could not satisfy the key control requirement, either.

Non-commutative cryptographic key agreement protocols are not practically usable

and choice of platform groups for each of the protocols are not well-defined. If the

chosen groups are not appropriate, the underlying computationally-difficult problems

can be easily solvable. [9] [28]

19

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

ke
y

es
ta

bl
is

hm
en

tp
ro

to
co

ls
,[

42
],

[2
6]

,[
6]

.

Pr
ot

oc
ol

Se
cu

ri
ty

D
ep

en
de

nc
e

N
um

be
ro

f

M
es

sa
ge

s
K

kS
Fs

K
ci

R
U

ks
R

K
C

PS
K

R
ef

er
en

ce

L
K

T
P

Sy
m

m
et

ri
c

3
Y

E
S

Y
E

S
N

O
N

O
-

Y
E

S

D
iffi

e-
H

el
lm

an
D

L
P

2
Y

E
S

Y
E

S
N

O
N

O
Y

E
S

N
O

[1
3]

K
o-

L
ee

-C
he

on
-H

an
-K

an
g-

Pa
rk

C
SP

2
Y

E
S

Y
E

S
N

O
N

O
Y

E
S

N
O

[2
2]

,[
28

]

A
ns

he
l-

A
ns

he
l-

G
ol

df
el

d
W

SP
2

Y
E

S
Y

E
S

N
O

N
O

Y
E

S
N

O
[4

],
[2

8]

T
he

St
ic

ke
l

D
SP

2
Y

E
S

Y
E

S
N

O
N

O
Y

E
S

N
O

[2
8]

,[
39

]

T
se

ng
’s

Pr
ot

oc
ol

D
L

P
4

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
N

O
[4

0]

Po
pe

sc
u’

s
Pr

ot
oc

ol
E

C
D

L
P

2
Y

E
S

Y
E

S
N

O
Y

E
S

Y
E

S
N

O
[3

4]

W
en

-L
in

-H
w

an
g’

s
Pr

ot
oc

ol
H

as
h

Fu
nc

tio
n

3
Y

E
S

N
O

Y
E

S
Y

E
S

Y
E

S
Y

E
S

[4
4]

H
ar

n-
H

si
n-

M
eh

ta
’s

Pr
ot

oc
ol

IF
P

3
Y

E
S

N
O

Y
E

S
Y

E
S

Y
E

S
N

O
[1

8]

O
tw

ay
-R

ee
s

Sy
m

m
et

ri
c

4
Y

E
S

Y
E

S
N

O
N

O
-

Y
E

S
[3

0]

B
el

le
r-

Y
ac

ob
iP

ro
to

co
l

IF
P

/D
L

P
4

Y
E

S
Y

E
S

Y
E

S
Y

E
S

-
Y

E
S

[7
],

[8
]

N
ee

dh
am

-S
ch

ro
ed

er
Sy

m
m

et
ri

c
5

Y
E

S
Y

E
S

N
O

N
O

-
Y

E
S

[2
9]

20

CHAPTER 3

IMPOSSIBILITY OF THREE-PASS PROTOCOL OVER PUBLIC

COMMUTATIVE GROUPS

In this chapter, we will show why we decided to hide the group G. In Section 3.1, we

will generalize the one-time pad by using a group automorphism. In Section 3.2, we

will explain the three-pass protocol over public commutative groups. To transport a

key successfully, the requirements of the group G will be mentioned in Section 3.3.

A simple example in Section 3.4 using Klein four-group V will help the reader under-

stand how three-pass works. Finally, in Section 3.5, we will show that it is impossible

to use three-pass protocol over public commutative groups since an attacker does not

need to find the private element to calculate the private key.

Confidentiality in secure communications is defined as ensuring that an adversary

gains no intelligence from a sent message. Alice and Bob would like to communicate

with each other. However, they do not share any secrets. They only share the end-

points of a communication channel that is fast, albeit insecure. Anything put on the

channel may be tapped by a passive eavesdropper, Eve. We assume there is no active

attacker (e.g., Mallory) in the system when Alice and Bob talk to each other; i.e.,

active attacks such as the man in the middle attack is out of the scope of the thesis. Is

it possible for Alice and Bob to exchange messages in a confidential manner without

having pre-shared secrets (keys)? The answer to this question falls in the scope of

key establishment protocols over insecure channels.

The three-pass protocol, also known as Shamir’s no-key protocol (protocol 12.22 in

[26]), is a key transport protocol developed by Adi Shamir in 1980 where Alice wants

to transport a secret message m to Bob over an insecure channel, and they do not

share any secret information. They have mutually agreed on a symmetric encryption

21

scheme that is a pair of encryption and decryption algorithms (E,D) acting on a

message space M (where |M| > 1) and a key space K such that for all messages

m ∈ M and keys k ∈ K, Pr[Dk(Ek(m) = m] = 1 where Ek(m) is the notation

for encryption of message m with key k. Both Alice and Bob determine their secret

keys ka and kb respectively without sharing with each other. Alice encrypts m with

her secret key ka and sends c1 = Eka(m) to Bob. Bob does not have any idea about

ka, therefore, cannot possibly decrypt c1. Bob sends back c2 = Ekb(c1) to Alice. If

E and D commutes, Alice can produce c3 = Dka(c2) = Ekb(m) and send it to Bob.

Finally, Bob can decrypt it and retrieve the secret message m.

Based on this brief overview, we will generalize the idea of one-time pad to commu-

tative groups, and then we will mention employing the original three pass protocol by

using commutative groups.

3.1 Generalized One-time Pad

Let (G, ∗) be a commutative group acting on a set S. The encryption is defined as the

action of G on S. If there exists a group homomorphism

ϕ : G→ Sym(S)

g → ϕg

where Sym(S) is the group of all permutations on the set S under composition, then

we say that G acts on S. Here, the map ϕ is called the permutation representation of

G on S. To simplify the notation, we prefer to use the right action notation a ◦ g to

represent ϕg(a).Note that a group action satisfies a◦(g∗h) = (a◦g)◦h and a◦e = a,

where e is the identity element of G. This is the generalization of the one-time pad

cipher to commutative groups with arbitrary orders.

3.2 Three Pass Protocol Using Commutative Groups

During the thesis, we assume that Alice is a sink node, who chooses a random key k

and transport to Bob who is a client. Suppose that Alice and Bob agree on a public

22

Alice Bob

Picks g ∈ G and
k ∈ S.

Picks h ∈ G

c1 = k ◦ g

c2 = c1 ◦ h

c3 = c2 ◦ g−1

Computes
k = c3 ◦ h−1

Figure 3.1: Three-pass protocol using public Abelian group actions.

commutative group G and a public homomorphism ϕ. Notice that, G and ϕ have

to be public since the three-pass protocol assumes no pre-shared information. As

shown in Fig.3.1, Alice selects the to-be-transported secret key k ∈ S and a private

group element g ∈ G uniform randomly, then sends Bob c1 = k ◦ g. Notice here that

this operation is the encryption of the secret message k using the group action g (i.e.,

c1 = Eg(k)). Bob selects his private group element h ∈ G uniform randomly and

sends back to Alice c2 = c1 ◦ h. After that, Alice computes c3 = c2 ◦ g−1. Following

the properties of group actions c3 = ((k ◦ g) ◦ h) ◦ g−1 = k ◦ (g ∗ h ∗ g−1). Since we

chose a commutative group, c3 = k◦(g∗g−1∗h) = k◦(e∗h) = k◦h. In this protocol,

all the messages conveyed over the channel, c1, c2, c3 ∈ C = S are encrypted. At the

end of these three exchange of messages, Bob is able to secretly compute the key k

by (k ◦ h) ◦ h−1 = k ◦ e = k.

3.3 Requirements of the Public Group G

G has to satisfy the following properties.

Property 1 Commutativity: The group G must be commutative. If G is not commu-

tative, then c3 need not be equal to k ◦ h.

Property 2 Uniform Randomness: Let C, S and G be the random variables denoting

23

the values of ciphertexts (e.g., c1, c2 or c3 ∈ C), secret keys to-be-transported (e.g.,

k ∈ S) and group elements (e.g., g, h ∈ G), respectively. To be able to provide

information-theoretic security, uniform randomness must be satisfied, i.e.,

Pr[C = c | S = k,G = g] = Pr[C = c | S = k,G = h]

and

Pr[C = c | S = k0,G = g] = Pr[C = c | S = k1,G = g]

providing computational indistinguishability for any probability distribution over the

set S, the groupG and ciphertext space C = S where Pr[C = c] > 0. Here, we claim

that the probability of conveying any ciphertext over the channel in this protocol is

equally likely. Therefore, eavesdropping does not give any statistical advantage to an

attacker, i.e.,

Pr[S = k | C = c] = Pr[S = k].

We select the to-be-transported secret key k ∈ S and a private group element g ∈ G
shown in Fig. 3.1 uniform randomly to satisfy Property 2. Furthermore, for any pair

(a, b) ∈ S × S, there must be exactly M > 1 group elements sending1 a to b. In

particular, this action must be transitive as defined in Section 2.1.3.

3.4 An Easy Example Implementation

An easy example is to use the natural action of Klein four-group V . Klein four-group

is a well-known commutative permutation group on S = {1, 2, 3, 4} whose non-

identity elements has order two. That is, every element is its own inverse. It is a sub-

group of Sym(S). For the sake of simplicity and clarity, we present V using the two-

row notation where images are given in the second row of τ =

 1 2 3 4

τ(1) τ(2) τ(3) τ(4)

 .

The Klein four-group is V = {τ0, τ1,τ2, τ3} where τ0 =

1 2 3 4

1 2 3 4

 , τ1 =1 2 3 4

2 1 4 3

 , τ2 =

1 2 3 4

3 4 1 2

 , and τ3 =

1 2 3 4

4 3 2 1

 .

1 When we say g sends a to b, we mean b = a ◦ g.

24

The implementation of the three-pass protocol using V is as follows. Alice and Bob

will employ V. Suppose Alice selects k = 3 as the secret key and her private group

element g = τ1 uniform randomly. She sends Bob c1 = 3 ◦ τ1 = 4. Suppose Bob

selects his private group element h = τ2 uniform randomly as well. Then, he sends

back c2 = 4 ◦ τ2 = 2. Alice computes c3 = 2 ◦ τ−11 = 2 ◦ τ1 = 1 and sends it to Bob.

Finally, Bob recovers the secret key by k = 1 ◦ τ−12 = 1 ◦ τ2 = 3, which is the secret

key determined by Alice following some probability distribution.

V satisfies both Property 1 and Property 2. Any message c1, c2 or c3 put on the inse-

cure channel is encrypted. Therefore, the reader may initially think it is not possible

for Eve to recover the key k. However, this implementation is prone to brute-force

attacks. Therefore, an additional requirement is imposed on the order of G:

Property 3 Large Order: Trivially, the order of the group G and the cardinality of

S must be very large to make the brute force attack almost infeasible. A brute-force

attack can be (theoretically) used against any cryptosystem to find out the secrets.

In this protocol, the private key is an element of the selected group G. Hence, the

probability that an attacker successfully finds the correct element of the group G by a

random trial is equal to 1/|G|.

We present in the sequel that a much deeper security flaw resides in such implemen-

tations of the three-pass protocol even if we can find a G that satisfies all these three

properties.

3.5 Impossibility of Three-pass Protocol over Public Commutative Groups

When Eve observes c1 = 4 and c2 = 2 in the above example, she immediately finds

out Bob’s private group element h = τ2, since there is only one element τ in V

sending a to b for any pair of elements (a, b) ∈ S × S. It is computationally easy to

determine τ in V when a and b are given as in the three-pass protocol. In fact, this

security flaw is valid for any publicly known transitive commutative group G even

when the order of G is very large and even when there exist many distinct group

elements sending a to b. Determining one group element sending a to b is enough to

25

break the system and to determine the secret group elements g, h ∈ G and the secret

key k to-be-transported shown in Fig. 3.1.

One may get this result as follows. Let G be a commutative group acting transitively

on S via a homomorphism ϕ : G→ Sym(S). Take any a, b ∈ S. Suppose that there

exist two distinct group elements g1, g2 sending a to b. Then g1 ∗ g−12 is in the point

stabilizer of a (see Section 2.1.2). To put it plainly, let a ◦ g1 = b = a ◦ g2. Then

a ◦ (g1 ∗ g−12) = (a ◦ g1) ◦ g−12 = b ◦ g−12 = a. Therefore, g1 ∗ g−12 is an element of

Ga. Say g1 = α ∗ g2 for some α ∈ Ga. Now consider the kernel (see Section 2.1.1)

of the permutation representation ϕ, which is Kerϕ =
⋂
x∈S Gx. Take any element

x ∈ S. Since, G is transitive on S, there exists an element r ∈ G such that x = a ◦ r.
Then by Theorem 1.4A-ii in [14] presented in Section 2.1.4, Gx = r−1 ∗ Ga ∗ r. As

G is commutative, we get Gx = r−1 ∗ Ga ∗ r = r−1 ∗ r ∗ Ga = Ga for all x and so

Kerϕ = Ga. Hence ϕ(g1) = ϕ(α ∗ g2) = ϕ(g2). For the convenience of the reader,

let us verify the last equality element-wise; x◦g1 = (a◦r)◦(α∗g2) = a◦(r∗α∗g2) =

a ◦ (α ∗ r ∗ g2) = (a ◦ r) ◦ g2 = x ◦ g2 since a ◦ α = a. That is, for any pair a, b in S,

there may be two distinct group elements sending a to b but in fact the corresponding

permutation is unique.

Let’s relax the assumptions and consider that the above action of the group G on the

set S is not transitive. In this case, we cannot satisfy Property 2 since Pr[C = c] = 0

for some ciphertext c. Even if we do not get the equality ϕ(g1) = ϕ(g2) for the

elements satisfying a ◦ g1 = b = a ◦ g2 the security flaw still exists.

Note that the equality g1 = α∗g2 for some α ∈ Ga holds whenever a◦g1 = b = a◦g2.

As a consequence of this equality, it will be sufficient for the attacker to find any g

that satisfies a ◦ g = b instead of trying to find the selected private group element. In

the three pass-protocol, Alice selects a secret key k ∈ S and a private group element

g ∈ G, sends Bob c1 = k ◦ g. Then Bob selects his private group element h and

sends back to Alice c2 = c1 ◦ h. Suppose Eve finds a group element h′ satisfying

c1 ◦h′ = c2. Then h′ = α∗h for some α ∈ Gc1 .When Alice sends c3 = (c1 ◦h)◦g−1,

Eve is able to recover the secret key by computing c3 ◦ (h′)−1. Indeed, c3 ◦ (h′)−1 =

((c1 ◦h)◦g−1)◦ (h′)−1 = c1 ◦ (h∗g−1 ∗ (h′)−1) = c1 ◦ (h∗g−1 ∗ (α∗h)−1) = c1 ◦ (h∗
g−1 ∗ h−1 ∗ α−1). Note that α−1 ∈ Gc1 as α ∈ Gc1 . Since the group is commutative,

26

one has c3 ◦ (h′)−1 = c1 ◦ (α−1 ∗ g−1 ∗ h ∗ h−1) = (c1 ◦ α−1) ◦ g−1 = c1 ◦ g−1 = k.

Therefore, the three-pass protocol is insecure when public commutative groups are

employed.

Since it is impossible to use three-pass protocol over public commutative groups, we

decide to hide the group and propose a technique where the preshared secret is the

group G and have the information-theoretic security throughout the sequel of the key

transportation process.

27

28

CHAPTER 4

LIGHTWEIGHT KEY TRANSPORT PROTOCOL

In this chapter, we will explain the structure and details of the proposed key-transport

protocol. In Section 4.1, phases of the protocol are described in details. A feasible

implementation of the underlying idea over multiplicative groups will be mentioned

in Section 4.2. In Section 4.3, we will analyse the protocol to see whether it provides

several security requirements and conforms to the requirements. We will conclude

the chapter by explaining the hardware capabilities of the platforms on which we

implemented the protocol, results related to memory size, total time and total number

of calculations required to transport a single key in Section 4.4.

4.1 LKTP

In this section, we will explain the details of LKTP, and then give a feasible imple-

mentation over finite multiplicative groups. To understand the implementation details

of the protocol, the notation is presented in Table 4.1.

Table 4.1: List of symbols in LKTP.

p Installed prime number on each node
q Master key for the Key-Transportation Phase to hide a group.
n Initial key message from Alice to Bob, n = p× q
a Alice’s element.
c Inverse of Alice’s element.
b Bob’s element.
d Inverse of Bob’s element.

29

Suppose Alice and Bob want to share a secret key to establish a security association.

Before the key-transportation, both entities should agree on the secret commutative

group in the initialization phase.

4.1.1 Initialization Phase

We assume both Alice and Bob are pre-initialized with a prime number pwhich needs

to be stored in a tamper-resistant hardware since an operation will be defined over

a finite commutative group, (G, ∗), which will be hidden by using the value of p.

Afterwards;

• When Bob learns Alice’s address, it sends a unicast request ESTABLISH_GROUP

to Alice to agree on (G, ∗).

• When Alice receives the ESTABLISH_GROUP request, it sets q and sends it

to Bob after employing one of the computationally-difficult problems given in

Section. 2.3, by using p.

• Bob receives the encrypted message from Alice, and easily sets the value of q by

being a legitimate node that can solve the computationally-difficult problem by

using the necessary information it has. For example, if Bob receives a number

n = pq where p and q are prime numbers and the related computationally-

difficult problem is Integer Factorization, Bob can easily calculate the hidden

prime q after dividing n by p since p is known by Bob.

After Alice and Bob agree on the hidden groupG, they select integers a and b fromG,

and calculate their inverses c and d inG, respectively. This completes the initialization

phase.

4.1.2 Key-transportation Phase

This phase is the three-pass protocol shown in Fig. 3.1.

Necessary steps to transport a single key k from Alice to Bob can be found in Fig. 4.1.

30

Alice Bob

p is bootstrapped. p is bootstrapped.ESTABLISH_GROUP

Generates a random q. n = pq

Selects a ∈ Z∗
q ,

computes a−1.
Selects b ∈ Z∗

q ,
computes b−1.KEY_REQ

Selects key k ∈ Z∗
q . m1 = k ◦ a

m2 = m1 ◦ b

m3 = m2 ◦ a−1

Calculates m3 ◦ b−1 = k

Figure 4.1: Flow Diagram of LKTP.

4.2 A Feasible Implementation of Key Transport Protocol

An easy example is to use multiplication as the operation over finite cyclic group

G = Z∗q , multiplicative group modulo q. To transport a key k,

1. A prime number p is assumed to be bootstrapped in both devices.

2. Alice generates a random prime number q, and send n = p× q to Bob.

3. Bob sets q and G after dividing n by p.

4. Bob sends KEY_REQ packet to Alice.

5. Alice selects an integer a, where Bob selects an integer b such that a, b are in

{1, ..., q}. Then ā, b̄, modulo classes of a and b, are elements of Z∗q . Therefore

there are integers c, d in {1, ..., p} such that c̄ and d̄ are inverses of ā and b̄ in

Z∗q , respectively. Hence ac = t1p+ 1 and bd = t2p+ 1 for some integers t1, t2.

6. When the key transportation starts, Alice chooses a random key k ∈ G and

sends m1 = k × a to Bob.

7. Bob receives the encrypted message, encrypts it once more by calculatingm2 =

m1 × b and sends m2 to Alice.

31

8. Alice calculates m3 = m2 × c and sends it to Bob to start the last phase of the

protocol.

9. Bob calculates

m3 × d = k × (a× b× c× d)

= k × (a× c)× (b× d)

= k × (t1p+ 1)× (t2p+ 1)

= k × (t1t2p
2 + t1p+ t2p+ 1)

≡ k (mod p)

and recovers the original key k.

Now, consider the following simple, working example given shown in Fig.4.2:

1. A prime number p = 11 is bootstrapped in both nodes.

2. Alice selects q = 13 and calculates n = pq = 11× 13 = 143. The finite cyclic

group is G = Z∗13, multiplicative group modulo 13.

3. Alice selects a = 5 and determines c ∈ G such that ac ≡ 1 (mod 13). The

correct value is c = 8.

4. Bob selects b = 7 and determines d ∈ G such that bd ≡ 1 (mod 13). The

correct value is d = 2.

5. Alice selects k = 4, calculates 4× 5 ≡ 7 (mod 13) and sends 7 to Bob.

6. Bob calculates 7× 7 ≡ 10 (mod 13) and sends 10 to Alice.

7. Alice calculates 10× 8 ≡ 2 (mod 13) and sends 2 to Bob.

8. Finally, Bob calculates 2× 2 ≡ 4 (mod 13) which is equal to the value of k.

32

Alice Bob

p = 11. p = 11.ESTABLISH_GROUP

Generates q = 13. 143

Selects a = 5 ∈ Z∗
13, a−1 = 8. Selects b = 7 ∈ Z∗

13, b−1 = 2.
KEY_REQ

Selects key k = 4. m1 = 4× 5 ≡ 7 (mod 13)

m2 = 7× 7 ≡ 10 (mod 13)

m3 = 10× 8 ≡ 2 (mod 13)

Calculates 2× 2 ≡ 4 (mod 13)

Figure 4.2: A simple example working over a multiplicative group Z∗13.

4.3 Security Analysis

The proposed key transport protocol satisfies known-key security and forward se-

crecy because the session keys are generated randomly from a uniform distribution.

The protocol fails to meet key-compromise impersonation resilience and unknown

key-share resilience security features since the authentication mechanism is not con-

sidered in this thesis. Due to the nature of key transport protocols in which trans-

portation of a key from Alice to Bob is achieved, key control feature does not fit into

content of key transport protocols.

The multiplication of two prime numbers can be computed efficiently when Alice

calculates ki = p × q, however, factoring the product of two prime numbers is a

computationally-difficult problem which is known as Integer Factorization Problem

(see Section. 2.3.2). However, the factorization of ki can be done efficiently by only

a legitimate node.

The proposed protocol satisfy the three properties over a multiplicative group G =

(Z∗q,×),

• The multiplication is commutative over G.

33

• If we consider Cayley table forG, each row includes every element ofG exactly

once. To show that, let a, x and y be elements of G such that x 6= y. If

a × x = a × y, multiplying both sides with a−1 from left-hand side, then we

will have x = y which contradicts the assumption.

• LKTP can work on any commutative group with arbitrary order. To satisfy the

large order property, prime number p can be chosen as 2048, 3072-bit long.

4.4 Implementation, Results and Discussion

In this section, we will give implementation details of LKTP and modified Diffie

Hellman key transport protocol, and then mention about the hardware properties of

the test environments, choice of the programming language and the library.

4.4.1 Methodology

The proposed key transportation protocol LKTP and the modified Diffie-Hellman Key

Transport protocol are implemented in IoT-Lab [1] test-bed and in a more powerful

desktop environment.

IoT-Lab provides an infrastructure of varying number of wireless sensor nodes to sub-

mit new experiments and collect results. Their test-beds are located at six different

places and they give access to 2728 wireless sensor nodes of three different types.

The selected node type for experiment is M3, and the experiment mostly runs on

Lyon and Grenoble location since the first provides a small and quite infrastructure

of 18 M3 nodes whereas the latter provides a large scale infrastructure consisting of

384 M3 nodes.

M3 nodes provide:

• ARM Cortex M3, 32-bits, 72 Mhz MCU, 64kB RAM

• Atmospheric pressure and temperature sensor

34

• 802.15.4 PHY standard, 2.4 Ghz radio communication

• 128 Mbits external memory

• 3,7V LiPo (650 mAh) battery

Desktop environment provides:

• Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz, 8GB RAM

For the programming language choice, C is the available option for programming

a protocol on M3 nodes. On the other hand, since the arithmetic library MPIR [3]

provides an easy interface for big integers, C++ becomes the better choice to lessen

the code length of the implementations.

4.4.2 Results and Discussion

After the implementations of the protocols run correctly on both platforms, they have

been investigated in terms of memory requirements and total time to complete a single

key transport from Alice to Bob.

Since neither protocol has any extra storage requirement, a small difference between

the memory usage is expected. In Table 4.2, the memory usage of both protocols are

compared for IoT-Lab and desktop implementations.

Table 4.2: Size of memory sections. (in bytes)

IoT-Lab Desktop

DH LKTP DH LKTP

Text 112796 108064 54367 54067
Data 4472 4464 2448 2416
Bss 54872 54872 608 608
Total 172140 167400 57423 57091

Modified Diffie-Hellman protocol to transport a key makes use of mpz_powm func-

tion (in MPIR library) to calculate the exponentiation ge of big integers g and e, em-

35

Figure 4.3: Key size versus total time to transport a single key in desktop.

ploys right-to-left binary exponentiation proposed by Knuth, Bach and Shallit [19].

For a random e, chosen from a finite set G = Z∗n, the total number of squarings and

multiplication will be blgnc, 1
2
(blgnc+ 1), respectively as shown in Table 4.3, where

n is the number of elements in G. However, in the key transportation phase of LKTP,

a single multiplication is computed by each entity in every step. The other important

parameter that we considered while comparing two protocols is the total time to trans-

port a single key from Alice to Bob. To see the difference between two platforms, we

considered different key sizes as inputs and corresponding run time of both protocols

as shown in Fig.4.3. Since the number of multiplication and squarings increase, the

total run time of the modified Diffie-Hellman key transport protocol increases drasti-

cally while LKTP grows almost linearly.

Table 4.3: Number of computations to calculate ka in DH and k × a in LKTP.

Multiplication Squaring
DH 1

2
(blgnc+ 1) blgnc

LKTP 1 -

36

CHAPTER 5

CONCLUSION

5.1 Conclusion

In this thesis, we proposed the lightweight key transport protocol LKTP, which is

based on Shamir’s no-key protocol, after evaluating the computational burden of cur-

rent public-key protocols and the necessity for a lightweight key establishment proto-

col in Internet of Things and wireless sensor networks. By showing the impossibility

of the three-pass protocol over public commutative groups, we decided to hide the

group by employing a computationally-difficult problem in the initialization phase.

To validate the protocol and do comparison, first we morphed the original Diffie-

Hellman key exchange protocol into a key-transport protocol and then implemented

both key transport protocols on IoT-lab and a powerful desktop environment. The ma-

jor findings of the experiments are that LKTP performs a single key transport faster

than the modified Diffie-Hellman protocol, and the memory requirements of both pro-

tocols are almost the same. The required time to transport a single key grows almost

linearly for LKTP while Diffie-Hellman takes too long to complete the transport.

5.2 Future Work

The proposed key-transport protocol does not provide any authentication mechanism

and therefore is vulnerable against key-compromise impersonation and unknown key-

share resilience. An authentication mechanism by using the private elements of both

entities can be added. Moreover, possible attack models can be defined to understand

the threats. Although the computational burden of the proposed protocol is low, power

37

consumption while encryption and sending messages can be considered to validate the

findings.

38

REFERENCES

[1] FIT/IoT-LAB: Very large scale open testbed. http://www.iot-lab.
info. Accessed: 2017-07-11.

[2] Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025 (in billions). http://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/. Ac-
cessed: 2017-09-05.

[3] MPIR: Multiple Precision Integers and Rationals. http://mpir.org. Ac-
cessed: 2017-07-11.

[4] I. Anshel, M. Anshel, and D. Goldfeld. An algebraic method for public-key
cryptography. Mathematical Research Letters, 6:287–292, 1999.

[5] M. Artin. Algebra. Pearson, 2nd edition, 2011.

[6] A. O. Baalghusun, O. F. Abusalem, Z. A. Al Abbas, and J. Kar. Authenticated
key agreement protocols: A comparative study. Journal of Information Security,
6(1):51, 2015.

[7] M. J. Beller, L.-F. Chang, and Y. Yacobi. Privacy and authentication on a
portable communications system. IEEE Journal on selected areas in communi-
cations, 11(6):821–829, 1993.

[8] M. J. Beller and Y. Yacobi. Fully-fledged two-way public-key authentication
and key agreement for low-cost terminals. Electronics Letters, 29(11):999–
1001, 1993.

[9] S. R. Blackburn, C. Cid, and C. Mullan. Group theory in cryptography. Pro-
ceedings of Group St Andrews 2009 in Bath, pages 133–149, 2011.

[10] C. Boyd and A. Mathuria. Key agreement protocols. In Protocols for Authenti-
cation and Key Establishment, pages 137–199. Springer, 2003.

[11] H. Chan, A. Perrig, and D. Song. Key distribution techniques for sensor net-
works. In Wireless sensor networks, pages 277–303. Springer, 2004.

[12] J. S. Coron, D. Lefranc, and G. Poupard. A new baby-step giant-step algorithm
and some applications to cryptanalysis. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 47–60. Springer, 2005.

39

http://www.iot-lab.info
http://www.iot-lab.info
http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://mpir.org

[13] W. Diffie and M. Hellman. New directions in ccryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, Nov 1976.

[14] J. D. Dixon and B. Mortimer. Permutation Groups, Graduate Texts in Mathe-
matics, volume 163. Springer-Verlag, New York, 1996.

[15] D. S. Dummit and R. M. Foote. Abstract Algebra. Wiley Hoboken, 2004.

[16] P. Gauravaram and L. R. Knudsen. Cryptographic hash functions. In Handbook
of Information and Communication Security, pages 59–79. Springer, 2010.

[17] D. Hankerson and A. Menezes. Elliptic curve discrete logarithm problem. In
Encyclopedia of Cryptography and Security, pages 186–189. Springer, 2005.

[18] L. Harn, M. Mehta, and W.-J. Hsin. Integrating Diffie-Hellman Key Exchange
into the Digital Signature Algorithm (DSA). IEEE communications letters,
8(3):198–200, 2004.

[19] A. Jakubski and R. Perliński. Review of general exponentiation algorithms.
Scientific Research of the Institute of Mathematics and Computer Science,
10(2):87–98, 2011.

[20] S. M. Kevin. The discrete logarithm problem. Cryptology and computational
number theory, 42:49, 1990.

[21] K. Kloster. Factoring a semiprime n by estimating ϕ(n). Honor’s thesis, Ford-
ham University, 2010.

[22] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-s. Kang, and C. Park. New
Public-Key Cryptosystem Using Braid Groups, pages 166–183. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[23] D. Lehmer. On euler’s totient function. Bulletin of the American Mathematical
Society, 38(10):745–751, 1932.

[24] M. Liskov. Fermat’s little theorem. In Encyclopedia of Cryptography and Se-
curity, pages 456–456. Springer, 2011.

[25] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos. Lightweight cryp-
tography for embedded systems - a comparative analysis. In Data Privacy
Management and Autonomous Spontaneous Security, pages 333–349. Springer,
2014.

[26] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC press, 1996.

[27] J. Müller. Computer Algebra: Primality Testing and Integer Factorisation
Friedrich-Schiller-Universität Jena, WS. 2014.

40

[28] A. G. Myasnikov, V. Shpilrain, A. Ushakov, and N. Mosina. Non-commutative
Cryptography and Complexity of Group-theoretic Problems, volume 177.
American Mathematical Society Providence, RI, USA, 2011.

[29] R. M. Needham and M. D. Schroeder. Using encryption for authentication in
large networks of computers. Communications of the ACM, 21(12):993–999,
1978.

[30] D. Otway and O. Rees. Efficient and timely mutual authentication. ACM
SIGOPS Operating Systems Review, 21(1):8–10, 1987.

[31] C. Paar and J. Pelzl. Understanding Cryptography: A Textbook for Students and
Practitioners. Springer Science & Business Media, 2009.

[32] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance (corresp.). IEEE Transactions on
information Theory, 24(1):106–110, 1978.

[33] J. M. Pollard. Monte carlo methods for index computation (mod p). Mathemat-
ics of computation, 32(143):918–924, 1978.

[34] C. Popescu. A secure authenticated key agreement protocol. In Electrotechni-
cal Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediter-
ranean, volume 2, pages 783–786. IEEE, 2004.

[35] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[36] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[37] M. L. Sommerseth and H. Hoeiland. Pohlig-hellman applied in ellip-
tic curve cryptography. https://koclab.cs.ucsb.edu/teaching/
ecc/project/2015Projects/Sommerseth+Hoeiland.pdf, 2015.

[38] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The First
Collision for Full SHA-1. IACR Cryptology ePrint Archive, 2017:190, 2017.

[39] E. Stickel. A new method for exchanging secret keys. In Information Tech-
nology and Applications, 2005. ICITA 2005. Third International Conference on,
volume 2, pages 426–430. IEEE, 2005.

[40] Y.-M. Tseng. Efficient authenticated key agreement protocols resistant to
a denial-of-service attack. International Journal of Network Management,
15(3):193–202, 2005.

41

https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Sommerseth+Hoeiland.pdf
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Sommerseth+Hoeiland.pdf

[41] B. S. Verkhovsky. Integer factorization of semi-primes based on analysis of a
sequence of modular elliptic equations. International Journal of Communica-
tions, Network and System Sciences, 4(10):609, 2011.

[42] B. Vesterås. Analysis of key agreement protocols. Master’s thesis, Department
of Computer Science and Media Technology Gjøvik University College, 2006.

[43] H. Wang, B. Sheng, C. C. Tan, and Q. Li. Comparing symmetric-key and
public-key based security schemes in sensor networks: A case study of user
access control. In Distributed Computing Systems, 2008. ICDCS’08. The 28th
International Conference on, pages 11–18. IEEE, 2008.

[44] H.-A. Wen, C.-L. Lin, and T. Hwang. Provably secure authenticated key ex-
change protocols for low power computing clients. Computers & Security,
25(2):106–113, 2006.

[45] D. B. West et al. Introduction to Graph Theory, volume 2. Prentice Hall Upper
Saddle River, 2001.

[46] L. Xie, Y. Zhang, Z. Zheng, and X. Zhang. Trip: A tussle-resistant internet
pricing mechanism. IEEE Communications Letters, PP(99):1–1, 2016.

[47] X. Zhang, H. M. Heys, and C. Li. Energy efficiency of symmetric key crypto-
graphic algorithms in wireless sensor networks. In Communications (QBSC),
2010 25th Biennial Symposium on, pages 168–172. IEEE, 2010.

42

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Scope
	Problem Definition
	Contributions
	Outline

	RELATED WORK
	Group Theory
	Kernel of Group Homomorphism
	Stabilizer of a Point
	Transitive Action
	Theorem 1.4A-ii in DixonMortimer

	Cryptography
	Cryptosystems
	Non-commutative Cryptography
	Conjugate myasnikov2011non blackburn2011group
	Commutator myasnikov2011non blackburn2011group
	Word myasnikov2011non

	Computationally-Difficult Problems
	Cryptographic Hash Functions gauravaram2010cryptographic
	Integer Factorization Problem (IFP) menezes1996handbook
	Discrete Logarithm Problem (DLP) kevin1990discrete
	Elliptic Curve Discrete Logarithm Problem (ECDLP) hankerson2005elliptic
	Conjugacy Search Problem (CSP) myasnikov2011non blackburn2011group
	Decomposition Search Problem (DSP) myasnikov2011non blackburn2011group
	Word Search Problem (WSP) myasnikov2011non

	Key Distribution Techniques in WSN
	Related Works
	Modified Diffie-Hellman Key Exchange Protocol
	Ko-Lee-Cheon-Han-Kang-Park Key Agreement Protocol
	Anshel-Anshel-Goldfeld Key Agreement Protocol
	The Stickel Key Agreement Protocol
	Overall Assessment

	Impossibility of Three-pass Protocol over Public Commutative Groups
	Generalized One-time Pad
	Three Pass Protocol Using Commutative Groups
	Requirements of the Public Group G
	An Easy Example Implementation
	Impossibility of Three-pass Protocol over Public Commutative Groups

	Lightweight Key Transport Protocol
	LKTP
	Initialization Phase
	Key-transportation Phase

	A Feasible Implementation of Key Transport Protocol
	Security Analysis
	Implementation, Results and Discussion
	Methodology
	Results and Discussion

	Conclusion
	Conclusion
	Future Work

	REFERENCES

