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ABSTRACT

CEREBRA: A 3-D VISUALIZATION AND PROCESSING TOOL FOR
BRAIN NETWORK EXTRACTED FROM FMRI DATA

Nasır, Barış

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

August 2017, 123 pages

In this thesis, we introduce a new tool, CEREBRA, for visualizing 3D network of

human brain, extracted from the functional magnetic resonance imaging (fMRI) data.

The tool aims to visualize the selected voxels as the nodes of the network and the edge

weights are estimated by modeling the relationships among the voxel time series as

a set of linear regression equations. This way, researchers can analyze the active

brain regions/voxels and observe the interactions among them by analyzing the edge

weights and node degree distributions of the brain network, for the underlying brain

state(s). CEREBRA provides an easy to use interactive interface with basic display

options for users to examine the details of the brain network. CEREBRA simplifies

the network by built-in processors of graph reduction algorithms to display various

properties of the network. The reduction algorithms vary from basic filtering methods

to more complex graph sparsifier metrics. The toolbox is, also, capable of space-time

representation of the dynamically changing voxel intensity and edge strength values,

by animating the 3D voxel time series.
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ÖZ

CEREBRA: FMRG VERİSİNDEN ELDE EDİLEN BEYİN AĞLARINI 3-B
GÖRSELLEME VE İŞLEME ARACI

Nasır, Barış

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Ağustos 2017, 123 sayfa

Bu çalışmada, fonksiyonel manyetik rezonans görüntüleme (fMRG) verisinden elde

edilen 3 boyutlu insan beyni çizgesini görselleyebilen yeni bir yazılımı, CEREBRA’yı

sunuyoruz. CEREBRA, küçük hacim birimlerini (voksel), ağın düğümleri olarak gör-

sellerken; bu düğümler arasındaki kenarlar da düğümlerin zaman içindeki ilişkileri-

nin bir dizi doğrusal regresyon yöntemleri ile yakınsanması olarak modellenmiştir.

Bu sayede araştırmacılar beyin üzerinde daha aktif çalışan bölgeleri ve bölgeler ara-

sındaki ilişkiyi, kenar ağırlıklarına ve düğüm derece dağılımına bakarak inceleyebile-

ceklerdir. Geliştirilen araç, basit bir arayüze sahip olmakla birlikte beyindeki detayları

daha kolay inceleyebilmek amacıyla basit görüntüleme seçenekleri sunmaktadır. Sa-

hip olduğu çizge sadeleştirme algoritmaları ile beyin ağının farklı özelliklerini sade

bir şekilde gösterebilmektedir. Çizge sadeleştirme algoritmaları basit filtreleme met-

hodlarından, daha karmaşık çizge sadeleştirme ölçütlerine kadar geniş bir yelpazeye

yayılmaktadır. Ayrıca, geliştirilen araç, beyin ağını voksellerin ve kenarların zaman
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içindeki değişimlerini renk kodu olarak değiştirebilmektedir. Bu da fMRG deneyi sı-

rasında beyinde gerçekleşen bilişsel süreçleri gözlemleme imkanı sunmaktadır.

Anahtar Kelimeler: Görselleme, Çizge Sadeleştirme, Beyin Ağı, fMRG, 3-B
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Visualization is the field of transforming any data recorded under physical phenomenon

to visual representations for effectively analyzing the underlying process that make

it possible to gain insight from data [59]. The most common visual representations

such as line graphs, from millennium years ago, bar charts, pie charts, circle graphs

and histograms are used in our everyday life by a wide range of professionals ranging

from scientists to bank officers. These techniques help us to support data analysis for

decades.

However, today, visualization is much more than a collection of plots and charts.

There are specific visualization techniques for many data forms, including, but not

limited to, texts [76, 38, 26], networks [27, 10, 44, 64], image collections and videos

[47, 16], mathematical models (geometrical, statistical, etc.) [28], historical or pro-

gressive records [36], dynamic data-driven models [18], algorithms and data struc-

tures [29, 45], time-series [30, 74], multivariate data [24, 72] and a wide range of

domain-specific data in disciplines such as economics [35], biology and medicine

[68], which is the target area of this work.

In this thesis, we aim to develop a visualization tool for the human brain, which is

inherently a very large scale dynamic network with billions of massively interacting

neurons. Recent advances in functional magnetic resonance imaging (fMRI) tech-

niques enable us to observe some of the network properties of the human brain, in-
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directly, by measuring the blood oxygenation level dependent (BOLD) time series at

each volume element on a three-dimensional discrete grid [23, 48]. Loosely saying,

the BOLD signal increases as the neurons in a volume element needs more oxygen.

This volume element, called voxel, may include a couple of thousands of neurons,

depending on the characteristics of the fMRI machine. In other words, a brain graph

formed by voxels is a representation of the actual brain in very low resolution. A

typical fMRI recording generates a brain volume of size 100,000 to 200,000 voxels,

at approximately each 2 seconds [40]. Therefore, for a period of 10 minutes, fMRI

machine generates 300 to 600 brain volumes. In other words, at each voxel, a time se-

ries of length 300 to 600 samples are recorded. Since the recorded data is a very curse

and indirect representation of the brain network, considering the number of voxels

and the corresponding adjacency matrix, the researchers face with a serious visual

representation problem.

A typical fMRI data with 100,000 voxels may have an adjacency matrix up to 1010

elements. Visualizing this number of edges in a rigid volume like brain creates an

inevitable "hairball" problem. In a word, the displayed 3D graph will have many

intersecting edges that block the voxels and even most of the other edges. One so-

lution to avoid this problem is to display only a part of the graph, depending on the

specific goal of the neuroscientific study. For example, one may be interested only

one representative voxel from each anatomical region. However, this solution makes

the analysis of relations within a region impossible. In addition, it removes the clus-

ter information embedded in the unprocessed data. By clusters, we mean that the

functional groups formed by voxels, which are generally detected by the functional

relations between voxels. As these relations are indicated by edges, collapsing all of

them according to anatomical information may lead information loss.

Another solution to avoid hairball problem is to provide a simple thresholding meth-

ods to remove edges whose weights lie between certain values. This allows users to

observe the strongest positively or negatively correlated voxels or both at the same

time (by blocking only the intermediate values). Although this solution may work

on some situations such as, observing the most correlated voxel or region groups,
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it may remove all the connections in small clusters which result in non-negligible

information loss.

The visualization technique may display only a selected number of regions (two or

three clusters or anatomical region) according to the cognitive task(s) to be studied

at a time to get rid of hairball problem. While this solution makes the display much

more clear, the users may not be able to observe inter-relations between all regions

at once. As a result, it may be difficult for the user to observe hub regions and their

connections.

In this thesis, we have proposed a tool that combines multiple visualization techniques

into one package to provide a better display to the user with respect to his/her goals.

The user may combine several functionalities to get the desirable graph view.

1.2 Proposed Work and Contributions

In this thesis, the proposed visualization tool for brain network, called CEREBRA,

provides additional features on the existing solutions, which transform the complex

graph structure into a more comprehensible and simple one. CEREBRA represents

the brain data in a 3D space as a function of time. It enables researchers to ana-

lyze anatomical, functional and structural information which can be extracted from

the fMRI data. The set of voxels represent the nodes of the brain network in three-

dimensional Euclidean space and the estimated relations between the voxel pairs are

represented by weighted edges. Each node, corresponds a voxel in three-dimensional

brain volume, has coordinates (x, y, z) together with a time series recorded under a

predefined cognitive state. CEREBRA is capable to represent the brain network in

different scale orientation and translation, allowing zooming in and out in a specific

brain region. CEREBRA provides some additional features onto two commonly used

brain visualization tools available in the literature [77, 25], which are listed below:

• We have developed a tool that visualizes the brain network with the time series

information to observe the voxel intensity changes as a function of time. The
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fMRI data recorded under a cognitive experiment is illustrated by CEREBRA

as an animation, in which the voxel and edge colors change according to their

intensity/weight fluctuations in time. This feature enables researchers to track

the brain activity recorded during the time course of the fMRI experiment.

• CEREBRA provides a set of filters to clean up "undesirable" voxels and edges

in an estimated brain graph. The filters are implemented to bypass brain con-

nectivity hairball problem. They remove the edges according to connection

weight and local thresholding methods.

• The proposed tool is capable of displaying multivariate brain data by changing

voxel colors according to the selected modality. For example, voxel colors can

be arranged according to activity records. Also, the proposed tool is capable

of editing the brain graph by evaluating in-degree, weighted in-degree, out-

degree, weighted out-degree, total degree and weighted total degree values of

the graph. The tool is capable of coloring the voxels according to anatomic

regions or brain clusters.

• We have enabled users to load their machine learning algorithm results to an-

alyze formed groups on the brain graph and/or connectivities among them for

the underlying cognitive state(s). If any functional region information is avail-

able and loaded, voxel color codes are arranged according to the region labels.

Each label is represented by a unique color code. In addition, the user may limit

the number of displayed regions using the loaded region information and view

other modalities on the selected regions.

• In CEREBRA, anatomical region information is pre-loaded into the system for

MNI (Montreal Neurological Institute) coordinate space. Similar to the func-

tional regions, voxels could be colored according to their anatomical region in-

formation where each region is represented by a unique color or only selected

regions could stay on the display with another modality color map.

• The available brain visualization tools, such as BrainNet Viewer [77] and Mars-

bar [13] are implemented in MATLAB and only employ .mat files. On the other

hand, CEREBRA is implemented in C++ to beat performance issues related
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with MATLAB. Furthermore, CEREBRA is capable of reading and processing

.mat files. In other words, the tool combines the traditional approaches with

the power of C++ and OpenGL (and OpenGLSL in order to benefit from GPU)

simultaneously.

• Although the toolbox serves sophisticated sparsification and simplification al-

gorithms, it offers a user-friendly graphical interface. A special effort is spent

to design simple panels with well-defined buttons on the screen so that the users

are not lost in multiple options and parameter spaces.

1.3 Organization of the Thesis

In Chapter 2, a literature survey on general purpose graph visualization tools and brain

specific visualization tools are overviewed. Moreover, the nature of the fMRI data and

methods to pre-process it, including estimating the connections between neuronal

units, are summarized. Then, the graph structure that holds the data is introduced.

The section ends with explaining one of the most crucial parts of this study, reducing

the number of edges on the 3D graphs.

Chapter 3 provides detailed information about the input structure and processing of

CEREBRA. In this chapter, supported file formats and their structures are introduced.

The section continues with explaining the class structure in CERREBRA that holds

the data itself. We conclude the chapter by explaining the post-processing steps on

the loaded data.

Chapter 4 contains the design and implementation structure of CEREBRA. The sec-

tion starts with giving an insight about how we design CEREBRA as a collection

of sub-systems and what functionalities are embedded into each sub-system is ex-

plained. Then, the section provides the coloring scheme for voxels and edges with

possible options and examples. In addition, the details about animating time-series

information are also given in this chapter. The chapter continues with explaining the

display options such as, changing voxel/edge sizes and normalizing values between

the user defined minimum and maximum values to get a standard color scheme. Then,
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a simple algorithm for computing Pearson correlation coefficient among voxel time

series is detailed with its implementation and example figures. After explaining the

coloring steps and construction of the connections, the chapter continues with focus-

ing different intensity/weight intervals on the brain graph using basic thresholding.

Moreover, a more advanced method, local graph sparsification is also explained in

Chapter 4. We have explained how we extend the existing method proposed by Satu-

luri et al. [63] and its usage on different scenarios. The chapter ends with explaining

the affine transformations that could be operated on the graph interactively.

In Chapter 5, the final chapter, we share the development environment details, discuss

the study and future plans for the project.
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CHAPTER 2

BACKGROUND FOR GRAPH VISUALIZATION AND FUNCTIONAL

MAGNETIC RESONANCE IMAGING DATA

In this chapter, a literature survey about the general purpose graph visualization tools

and the methodologies used in this thesis are presented with the intention of pro-

viding the reader a background. Firstly, the popular graph visualization tools such

as Pajek and JUNG will be overviewed. Then, brain specific visualization tools,

namely, BrainNet Viewer and Connectome Viewer Toolkit, are discussed considering

their pros and cons. The section continues with giving some insights into functional

magnetic resonance imaging (fMRI) data and preprocessing operations applied on

row fMRI data to give details about the structure of the input and anatomical map-

pings of fMRI. Then, we have introduced the methods to estimate the connections

between voxel pairs in the human connectome. After describing the input itself, we

introduce graph structure representation of fMRI data. The section ends by detailing

the methods to reduce the number of connections in an input graph.

2.1 General Purpose Graph Visualization Tools

Representation of a large dynamic network in an efficient way is a very challeng-

ing problem in scientific visualization domain. A good example is the problem of

visualization of the transactions in social networks such as Facebook or Twitter. Al-

though human brain and social networks are quite different in many aspects, such as

functional, operational and physical structures, there are some resemblances between

them from the network point of view. Both of them are massively parallel and dy-
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namic networks. In the human brain, represented by fMRI data, each voxel can be

considered as a node whereas, in social networks, each user or page is represented

by a node. In human brain functional, structural or anatomical relations can be rep-

resented by edges of the network whereas in social networks friendship, following or

any interaction between users is represented as an edge in the graph. In both of them,

the main difficulty is to visualize thousands of nodes with up to millions of edges.

The tools developed for visualizing the big networks may provide a good starting

point for visualization of brain networks. Pajek [11] is one of the good examples of a

closed-source stand-alone tool. It was released in 1997 for Microsoft Windows oper-

ating systems and still gets updates. Pajek is designed to visualize and analyze large

networks, such as; social networks (Facebook, Twitter), citation and co-authorship

networks, protein networks etc. The main goals of the tool are decomposition of

larger networks into smaller networks to support abstraction, analysis of large net-

works with a selection of efficient algorithms and providing the user with useful op-

erations to handle the network. Some of these operations are extracting subnetworks,

shrinking selected parts of networks, searching for connected components, searching

for shortest paths and k-neighbors, computing centralities of nodes and topological

properties of networks (degree, closeness, betweenness, hubs and authorities, cluster-

ing coefficients, Laplacean centrality).

The main advantage of Pajek is to visualize networks up to 10 billion nodes. In

addition, the tool could export the results in several 2D and 3D formats for other

special viewers and image editors. Of course, to visualize networks like those, the

user should fulfill the hardware requirements (e.g., for a network with around a billion

nodes with no edges requires 128 GB or more available RAM).

Although it is one of the best general purpose graph visualization tool available in

the literature, Pajek has some flaws when it comes to brain visualization. Firstly,

3D graph drawings of Pajek is not suitable for 3D connectome visualization. As

can be seen in Figure 2.1, the nodes are connected with very thick edges. If we try to

visualize the brain network with edges and voxels with this size, we most probably see

a bunch of intersected pipes. The developers of Pajek solved the hairball problem by
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Figure 2.1: 3D graph visualization by Pajek. The layout is obtained by VOS mapping.

The image is taken from [11]

employing some layout algorithms such as VOS mapping, drawing in layers, FishEye

transformation, Pivot MDS, Fruchterman Reingold optimization and Kamada-Kawai

optimization. These algorithms, mainly, place the similar, more connected nodes

closer and separate the less connected ones. Therefore, discrimination of different

groups becomes easier and edge intersections become less likely. However, replacing

the voxels according to their connections, functional regions or any other properties is

not possible and allowed in the human connectome. Another problem is that there is

no option for loading and visualizing the voxel intensity and edge weight estimations.

Instead, the user may employ a limited number of clusters to analyze the graph, which

is not useful in observing the intensity change or connectivity alterations in time.

Finally, the complex interface and usage steps of the tool. The user should follow a

number of operations to get a "meaningful graph", which enables scientists to observe

some properties of the graph, such as, hub nodes and regions or denser parts of the

graph in terms of connection. Although this gives an enormous graph processing

power to the tool, it may not be useful for a neuroscientist.

Another available tool, named JUNG [49], is a Java-based library for modeling, anal-
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ysis and visualizing the data. JUNG supports both static and dynamic networks that

can evolve by time. Since it is written in Java, JUNG allows users to make use of

built-in capabilities of Java Application Programming Interface (API) and other third

party Java libraries. One of the main features of the JUNG is the capability of visu-

alizing multi-modal graphs, graphs with parallel edges and hypergraphs. The other

important point is having implementations of a number of algorithms from graph the-

ory, exploratory data analysis, social network analysis and machine learning. These

algorithms can be used for generating random graphs, clustering, decomposition, op-

timization, statistical analysis, calculation of network distances and ranking measures

(centrality, PageRank, HITS, etc.). Similar to Pajek, JUNG offers some layout algo-

rithms to arrange the position of nodes in the graphs and filtering mechanisms to

extract smaller subsets from a larger one.

Since it is written in Java, multiple operating system support is granted. In contrast

to Pajek, JUNG is open source and not a stand-alone tool. Therefore, it requires

Java API installation before running it. It can be thought as an external Java library.

However, to generate the graph, the user should write Java code and that is a difficult

task for most of the neuroscientists (and even computer scientists, when the data gets

more complex). Moreover, the latest version of JUNG is released in 2010. Since the

library and related web page are not updated since then, it lacks developer support

and some of the supporting documents are not available anymore.

visANT [32] is another network/pathway analysis and visualization tool. The tool

is specifically designed for the integrative visual data-mining of multi-scale Bio-

Network/Pathways. The tool runs on the web and handles the social network sized

graphs. The tool is capable of network construction with integrated disease and ther-

apy hierarchies, disease-gene and therapy-drug associations and drug-target interac-

tions. Furthermore, visANT uses Network Module Enrichment Analysis (NMEA) to

detect phenotypic differences between two networks. In other words, gene expres-

sion of a disease can be compared with a healthy one. It can detect some patterns in

the larger networks and uses some other graph theory algorithms to process the data.

The main difference between visANT and other mentioned tools is weighted network
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support. In other words, the tool uses edge thickness, edge color or both to illustrate

the weight of edges.

Although visANT seems to be one of the best options for brain visualization, it does

not support 3D visualization. It employs layout algorithms to place nodes of the

graphs, which are prohibited in connectome visualization. Although it supports many

network types, most of its features are very specific to genome analysis, which are

useless in other areas.

Unfortunately, most of the available graph visualization tools lack user interaction

which is a very crucial task for analyzing the human brain. Additionally, they only

display a 2D representation of the graphs. However, the voxels in fMRI data have a

specific location in a three-dimensional space and time-varying activity records. A

brain network visualization tool should enable the researchers to interactively study

and analyze the dynamic changes in the brain network. Thus, although there are some

applicable features of social network visualization tools, representing a brain state by

a network requires additional capabilities, such as user interaction to facilitate the

neuroscientific knowledge in four-dimensional space (x, y, z coordinates and time)

and specific graph processors to display a "meaningful graph" and support multi-

modal data. In our case, multi-modality refers to different information types can be

represented by voxels, such as intensity, node degree, anatomic or functional region.

2.2 Brain Visualization Tools

When a large number of voxels and their interactions are considered, visualization

task requires a "meaningful" simplification not only to reduce the computational com-

plexity but also to display the data in a comprehensive way. In recent years, some

restricted tools for visualizing the activities in the human brain have been developed.

Among them, the most widely used ones are BrainNet Viewer [77] and Connectome

Viewer Toolkit [25].

BrainNet Viewer has the ability to show brain network by using nodes and edges in
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Figure 2.2: A view from Connectome Viewer Toolkit. Size and color of the nodes

represent their k-core values computed by NetworkX. The image is taken from [25].

a brain template. The nodes represent the small regions from the brain and the edges

are relations between those nodes. The toolbox also displays the region of interests

and anatomical regions by mapping the labels to color codes. The user can observe

the surface activity by surface mapping view which looks like a heat map on brain

template. In addition, this tool enables users to analyze multi-subject experiments on

a single screen easily. The user can observe up to eight different brain images at the

same time on the screen.

The Connectome Viewer Toolkit, on the other hand, has the capability of displaying

more nodes and connections in a brain template than BrainNet Viewer. This tool

also views the brain fibers obtained from Diffusion Tensor Imaging (DTI) as well

as the tissue group activities. In addition, Connectome Viewer Toolkit combines the

power of graph analyzing and visualization libraries such as Mayavi [58], IPython

[57] and NetworkX [65]. However, these tools have some limitations and absence

of important features, such as, user defined degree and type of simplification which

restricts the need and interaction of the researchers.

In Connectome Viewer Toolkit there is no information about the voxel intensities or

edge weights between voxels on the graph view. Also, the generated image is not on
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voxel level, the nodes in the image represent the brain regions. This approach costs

to information loss when the relations between cell groups in the same functional or

anatomical region are examined. Connectome Viewer Toolkit provides a static brain

grid and colored segments according to the node degree or k-core values (Figure 2.2)

in that segment. The tool also enables users to track brain fibers. However, these fibers

do not present the weights of the connections between neuronal elements. In addition,

requisite input files should be in toolkit specific format which is not commonly used

by neither computer scientists nor neuroscientists.

Figure 2.3: A view from BrainNet Viewer where the nodes are colored by their

anatomical places. The edge color represent the trend in their connection weight

in this particular example. Red lines indicates increased functional connections and

blue ones indicates decreased functional connections. The image is taken from [15].

BrainNet Viewer fulfills some of the shortfalls of Connectome Viewer Toolkit. It

shows the nodes and edges in a 3D brain template. Similar to Connectome Viewer

Toolkit, the nodes are designed to show brain regions or region of interests. Thus,

loss of information is still an unsolved problem. The colors of nodes do not represent

any specific information such as average intensity value, functional or anatomical re-

gion information. The color code of each node is given as an input by the user to

represent only one feature of the multi-modal data, as seen in Figure 2.3. In addition,

the toolkit does not allow users to simplify the data. Consequently, when the user

loads data which contain a high degree of nodes, for example, 20,000 nodes with an

13



average degree of 40 or 50, displaying the network does not allow for any sensible

interpretation. Moreover, one of the main drawbacks of this toolkit is that it is de-

signed and implemented in MATLAB. This results in performance issues when high

dimensional matrix operations are considered.

2.3 Nature of fMRI Data

fMRI measurements consist of two types of experiments. Measuring the brain activ-

ities during the resting state is one of them and is used to measure the background

activities of the brain when the subject is resting in the fMRI machine. On the other

hand, in the task-based experiments, the subject is exposed to a stimulus to measure

the BOLD response of brain during a cognitive state [48]. In both experiments, the

fMRI machine generates sliced shots of the brain in every 2-3 seconds and forms

the 3D brain volume for each shot at that time instance t, where t = 0, . . . , T by

registering and stacking the 2D slices.

We represent the intensity of a voxel as v(t, sj), where sj is a three-dimensional

vector indicating the position of a voxel in the volume in a time instant t. In a typical

task-related fMRI experiment, the subjects are exposed to some task specific stimulus

in several runs where each run corresponds to a cognitive state. In machine learning

terminology the cognitive states correspond to distinct classes as shown in Fig. 2.4.

Within large amount of samples across time, only a few of them are assigned class

labels (orange vertical lines in Fig. 2.4).

2.3.1 Preprocessing the fMRI Data

When working on fMRI data, it is typically assumed that all of the voxels in a sub-

ject’s brain volume were acquired simultaneously. In addition, it is assumed that none

of the voxel’s position has changed during the experiment, in other words, the subject

did not move during the measurements. Furthermore, when performing multi-subject

analysis, each brain volume is assumed to have the same template so that each subject
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Figure 2.4: The output of a typical fMRI experiment for brain state decoding. 4D

fMRI data consist of several volumes across time (left), some of which have assigned

to a class label, which corresponds to a specific cognitive stimulus. The vertical

orange lines in the time axis (middle) indicate the time instances where the subject

is exposed to a new stimulus. For each class, a functional connectivity matrix is

formed by considering a suitable time window that encapsulates indicated class labels

(right). Colors of functional connectivity matrix show the quantized intensity values,

red corresponding to high and blue corresponding to low-intensity values. The image

is taken from [46].

has the same number of voxels in their brain volumes and each corresponding voxel

between the brain volumes are in the same anatomical locations.

However, in reality, in order to make assumptions valid, some pre-processing on the

data should be done. The major operations are slice timing correction, realignment,

coregistration of structural and functional images, normalization and smoothing.

During fMRI experiments, the machine takes the whole brain image as sequential 2D

slices and obtains all slices to form a complete brain volume which is taken approx-

imately in every 2 or 3 seconds. This results in temporal dislocation between slices.

Slice timing correction shifts each voxel’s time course to make each slice measured

simultaneously.
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Another important, pre-processing operation is motion correction. A typical fMRI

experiment lasts 20 minutes, and during the experiment even a small movement of the

subject results in change of voxel positions. Therefore, when it is not treated carefully,

the signal from a specific voxel will be mixed and corrupted with neighboring voxels.

In motion correction step, the best possible alignment between the input and reference

image is found by rigid body transformation. The aim is to minimize the cost function

by tuning the 6 parameters (x, y, z directions and roll, pitch and yaw).

Although they are recorded using the same machines, fMRI provides relatively low

spatial resolution compared to MRI, due to the trade-off between time versus spatial

resolution, extracting anatomical details becomes harder on fMR images. In order

to solve this issue, the raw output from fMRI is mapped onto a high resolution MR

image. The process of alignment between these two images is called coregistration.

This process can be done by using rigid body or affine tranformation.

As our physical characteristics differ from person to person, our brain shape and size

differ, also, a great deal. However, for group analysis it is important to work on a fixed

brain structure where each voxel placed in the exact same place across the subjects.

In order to do so, regularities shared by a wide range of healthy brains are employed.

Each subjects’ anatomy is registered to a standardized space defined by a template

brain. This process is called normalization and two common templates are used to

perform this operation, namely, Talairach and Montreal Neurological Institute (MNI)

templates. In this thesis, we have mainly focused on the latter one to place anatomical

mappings on a standard template.

In the final stage of pre-processing, a spatial smoothing should be applied to fMRI

data prior to further analysis. Smoothing is done via convolving the fMRI images with

a Gaussian kernel. This process improves inter-subject registration and decreases the

effects of normalization.

More details about functional magnetic resonance imaging and processing can be

found in Lindquist’s work [39].
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2.3.2 Brain Connectivity

The human brain is inherently a very large scale dynamical network that we can call it

as the universe in our heads. However, human brain differs from the universe by a very

crucial structure: Unlike the galaxies, neurons are physically connected to each other

and they are in communication to enable different sensorimotor and cognitive tasks

to be performed [31]. Recent studies in neuroscience and cognitive science show that

the connectivities among the voxels or anatomic regions carry important information

about the underlying cognitive process more than the voxel-wise or regional activities

in the human brain [61, 56, 60, 19, 7, 20, 50]. These connections can be categorized

into three types, namely, anatomic, functional and effective connectivity.

Anatomic connectivity, or sometimes called structural connectivity, refers to a net-

work of physical (synaptic) connections between sets of neurons. Functional con-

nectivity is based on the experimental evidence that neurons with similar activity

contributes to the same cognitive task. It is expected that voxels with similar time

series form the underlying task. Functional connectivity is measured by statistical

correlations. In other words, functional connectivity captures deviations from sta-

tistical independence between distributed and often spatially distant neuron groups.

Effective connectivity can be thought as the intersection of anatomic and functional

connectivity. The effective connectivity describes the causal effect of one neuron or

node in the connectome to another [23].

Both functional and effective connectivity estimates the functional similarity of nodes

or regions by using different metrics. In order to measure the similarity between two

neuronal elements, their intensity fluctuations across the time are compared. There-

fore, whichever metric is used, the input data is always the same, which is voxel time

series. Although there are many statistical methods proposed and used in the liter-

ature [22, 61, 7, 56, 19], we have only used following two methods to measure the

connectivity among the voxels in our proposed tool, CEREBRA.

The first one is the zero-lag Pearson correlation, which constructs the functional con-

nectivity between the voxels. The Pearson Correlation between two voxel pairs i and
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j is defined as follows:

ρ(i, j) =
cov(v(t, si), v(t, sj))

σv(t, si) × σv(t, sj)
, (2.1)

where cov(v(t, si), v(t, sj)) is the covariance between the voxel intensity records

of the voxels i and j in time (v(t, si) and v(t, sj)). The σv(t, si) and σv(t, sj) are the

standard deviations of the intensity records for the voxels i and j respectively. The

functional connectivity matrix with the entries of ρ(i, j) is assumed to be the network

adjacency matrix, A(t, si, sj), for each time interval starting at the time instance t.

The other method used in this thesis is Local Mesh Model with Temporal Measure-

ments (LMM-TM) [51], which calculates the effective connectivity between neuronal

pairs. The proposed method models the relationship among voxels residing in a spa-

tial neighborhood using the time series of intensity records, BOLD responses, mea-

sured during a cognitive process. In order to estimate the relationship, the algorithm

forms a local mesh around each voxel, called seed voxel. Then, a mesh is constructed

over a neighbor system defined for the seed voxel where the mesh arc (edge) weights

are estimated using a linear model of measurements of BOLD response recorded dur-

ing the presentation of a stimulus. In each local mesh, the intensity of the seed voxel

is represented by a weighted linear combination of the nearest adjacency voxels’ in-

tensity records. This method is based on Bazargani et al.’s work [12], which states

that voxels belonging to a homogeneous region of interests have the same Hemody-

namic Response Function (HRF) shape with varying amplitude. Onal et al.’s work,

in which they define a formal and detailed representation of a voxel intensity by its

neighbors, could be simply defined as follows:

r̄(t, sj) =
∑
sb∈ηp

at,sj ,sb × r̄(t, sb) + ε̄t,j, (2.2)

where, r̄(t, sj) is the BOLD response of the voxel placed at sj = (xj, yj, zj) for the

sample taken at t and ηp is the p nearest neighbor list of that voxel. The relation

between the voxel pairs are indicated by at,sj ,sb in the equation. The error in this
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estimation is represented by ε̄t,j and defined as,

ε̄t,j = (ε1,j, ε2,j, ..., εT,j)
>. (2.3)

In the Eq. 2.3, the error is measured for each time instant t = 1, 2, ..., T . The ad-

jacency matrix A(t, si, sj), is filled by the estimated values of at,sj ,sb for each seed

voxel and for each time instance t.

2.3.3 fMRI Network Representation

The most fundamental contribution of this study is to represent the human brain as

a three-dimensional time varying dynamic network, extracted from the fMRI data.

Therefore, the information embedded in the fMRI data should be represented in terms

of a dynamic network as;

D(t) = {v(t, sj), A(t, sj, sk) : j, k = 1, . . . , N}, (2.4)

for each discrete time instant t where t = 1, . . . , T . Each node corresponds to the

voxel at location sj = (xj, yj, zj) at a time instant t with intensity value, v(t, sj),

as mentioned before. The entries of the network adjacency matrix A(t, sj, sk), rep-

resent the directed edge weights from voxel j to voxel k at a time instance t. They

are estimated by using spatial or functional neighboring methods described above.

Fig. 2.4 shows an example of the graph adjacency matrix A(t, sj, sk) extracted by

using functional connectivity matrix obtained by computing zero-lag Pearson corre-

lation.

Please note that, a user can employ any edge-weight estimation algorithm as long as

it generates the network data structure D(t), for t = 1, . . . , T .
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2.4 Connectivity Reduction Methods

A typical fMRI experiment brings 100,000 to 200,000 voxels to be displayed [40].

Therefore, a simple Pearson Correlation calculation brings 106 edges to display, if

each voxel is limited to have ten outgoing connections. Displaying this number of

edges causes the hairball problem. In order to avoid this problem, basic thresholding

and edge reduction algorithms can be applied to the human connectome. In this

section, two of these methods are explained in separate sections.

2.4.1 Basic Thresholding Methods on Edge Weights

As mentioned above the initial graph may have 106 or more edges on the display.

However, only the small percentage of them contains crucial information, related to

the underlying cognitive process. Therefore, only a specific group of connections

should be monitored to observe the patterns of connectivity. The pruning operation

can be done by basic thresholding methods by assigning upper and lower weight value

bounds. They are simple, easy to implement and gives good results on many applica-

tion areas, such as observing the edges between highly correlated voxels when using

Pearson correlation or observing the edges between voxels that have the similar HRF

functions in the LMM-TM method. We have embedded three different thresholding

methods into CEREBRA which are explained below.

• High-pass Thresholding: A high-pass threshold passes edges with higher

weights than a certain cutoff weight and attenuates the signals with lower weight

values than the cutoff value. Thus, this thresholding attenuates the connec-

tions between less correlated voxels and leaves the strongest connections on

the graph.

• Low-pass Thresholding: A low-pass threshold passes edges with a lower

weight value than a certain cutoff weight value and attenuates the edges with

higher weight value than the cutoff value. When it is used on the human con-

nectome, it eliminates the edges with mid and high weight values as leaves the
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weakest connections.

• Band-stop Thresholding: A band-stop threshold blocks the weight values

within a certain range and passes the edges with weight values above or be-

low that range. In other words, in a typical usage, it eliminates the mid weights

while allowing the high and low ones. When applied to the brain graph, it

leaves the strongest and weakest connections, in terms of weights, while atten-

uating the connections with mid valued weights. Therefore, this allows users to

observe the edges between most negative and positive correlated voxels while

hiding edges between uncorrelated or less correlated voxels.

2.4.2 Local Graph Sparsifier

This method is suggested by Satuluri et al. [63] for undirected graphs. The main

purpose of this work is to reduce the number of edges while preserving the underlying

structure of the graph. By preserving the underlying structure of the graph, we mean

preserving the overall shape and structure of the connections in the graph. In addition,

preserving the structure of the graph while reducing the number of edges will enable

scientists to run graph segmentation algorithms (classifiers, clustering algorithms)

faster without any sacrifices on accuracy.

In the proposed work, their attempt is to reduce the graph size in order to scale up

community discovery/graph clustering algorithms. The key point is, this reduction

algorithm only filters out the edges in the graph while preserving all the nodes. This

way, the groups formed by edges in the graph is retained and may even be enhanced

in visual aspect as observing the groups will become easier when the number of edges

is reduced. An example is visualized in Figure 2.5a, where the original graph has the

hairball problem on a small scale. The graph has 30 nodes and 128 edges belonging

to three different node clusters. The sparsified graph, shown in Figure 2.5b, has only

64 edges and the hub nodes of the graph are much clearer in this new graph. Please

note that, in Figure 2.5b, the nodes are re-aligned according to their connections.

The main difference between this algorithm and the basic thresholding defined in
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(a) Original Graph (b) Sparsified Graph

Figure 2.5: An artificial demonstration of the local sparsification method with 30

nodes and 128 edges. The sparsified graph only has 64 edges.

the Section 2.4.1, is that this algorithm assigns a local threshold value for each node

whereas the basic thresholding applies the same global threshold value for every node.

Setting a global threshold value is problematic since each cluster has different densi-

ties (number of within connections) and this type of threshold may leave more edges

in the denser clusters as disconnecting the sparser ones. The difference between local

and global thresholding methods is illustrated in Figure 2.6. Figure 2.6a shows the

original graph and Figure 2.6b and Figure 2.6c are the sparsified graphs. The graph

in Figure 2.6b is a likely output of applying a global thresholding method, where the

inner connections in the small cluster are suppressed. On the other hand, applying a

local threshold value, as in Figure 2.6c, ensures that the inner connections in clusters

are preserved.

As can be seen from the figures mentioned above, the algorithm mainly suppresses

the inter-cluster edges, edges between clusters. Meanwhile, it holds the intra-cluster

edges, edges within a cluster. In this way, we can be sure that the cluster structure

of the original graph is retained. The proposed algorithm looks for the similarity

between the nodes to decide whether the edge between those nodes should be sup-

pressed or not. An edge between the nodes i and j is likely to lie within a cluster if

the nodes i and j have similar adjacency lists (common neighbors). As a contrary, the
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edge between the nodes i and j is likely to be an inter-cluster edge if the adjacency

lists of the nodes i and j have less common neighbors in their adjacency lists.

(a) Original Graph (b) Global Thresholding (c) Local Thresholding

Figure 2.6: Comparison between global thresholding and local sparsification. Since

global thresholding aims only to remove a certain number of edges from the graph,

it may result in removing all edges from the same area which changes the structure

of the original graph. On the other hand, local thresholding ensures that each node

will have at least one connection. Consequently, local thresholding method preserves

the original structure which has two clusters whereas the global thresholding method

increases the number of clusters to five by destroying the small cluster in the original

graph.

The main assumption of Satuluri et al. is that the more common neighbors have the

nodes i and j, the more likely they lie in the same cluster. Therefore, they have used

the Jaccard measure to quantify the overlap between adjacency lists. LetAdj(i) be the

adjacency list of the node i and Adj(j) be the adjacency list of the node j. Then, the

similarity between the adjacency lists of these nodes, and implicitly between nodes

themselves, is defined as follows:

Sim(i, j) =
|Adj(i) ∩ Adj(j)|
|Adj(i) ∪ Adj(j)|

. (2.5)

Using the equation above, the algorithm ranks each edge according to their similarity

for each node i. Then, the algorithm chooses the top f(di) = dei edges incident

to node i with degree di where e is the global sparsification ratio that helps control

the overall sparsification ratio of the result. The higher values of the e result in a

denser graph and lower values of the e result in a sparser graph. The value of e

should be in between [0, 1] interval. Sorting and thresholding the edges of each node
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separately allows the sparsification to adapt to the densities in that specific part of the

graph. Additionally, this procedure ensures that the algorithm picks at least one edge

incident to each node.

Although the Jaccard similarity metric performs well on undirected and unweighted

graphs (e.g. Wikipedia, Human-PPI, Flicker) as Satuluri et al. show in their work,

in brain networks, mixing the direction of the edges under the same metric spoils

the consistency of the edges in a specific direction, resulting in the removal of some

crucial edges in both direction. On the other hand, the connections between voxels

have both direction and weights to be considered while applying the sparsification

process.

2.5 Chapter Summary

In this chapter, popular general purpose and brain specific visualization tools are dis-

cussed. Then, a brief information about fMRI data and information about how do we

map fMRI data into a graph structure are given. This is followed by preprocessing

steps of the fMRI data to give more insights about the construction of the input data.

The chapter continues with explaining how the connections between voxel pairs are

established and which methods are used in this thesis. As the final point, we have dis-

cussed the methods to reduce the number of edges in a dense graph. The key points

of this chapter are:

• Human connectome can be represented as a 3D dynamic graph structure. How-

ever, it needs a special treatment when it comes to visualization of this graph.

Although the connectome itself is not a big structure when compared with so-

cial networks or any other web data, general purpose graph visualization tools

are not sufficient to a detailed analysis of it.

• Currently available brain visualization tools cause information loss by not dis-

playing all the voxels and reflecting multi-modality of the data. Also, they

either need program specific input files or have performance issues.
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• The fMRI data should undergo some pre-processing operations before the input

data takes its final form. These operations correct the defects occurred over the

course of the experiment to a certain extent.

• The fMRI data can be represented as graph structure in which the actual data

comes from the machine considered as nodes, voxels, of the graph. Edges could

be estimated by an independent algorithm such as Pearson correlation or Local

Mesh Model.

• When the number of edges is too high, visualizing such a graph creates hairball

problem. In order to avoid this problem, the graph should be sparsified, in terms

of edges.
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CHAPTER 3

INPUT FILE STRUCTURE AND PRE-PROCESSING OF FUNCTIONAL

MAGNETIC RESONANCE IMAGING DATA

Recall that functional magnetic resonance imaging (fMRI) data consists of hundreds

of thousands of voxels, each of which has a time series of length T , which is the

duration of the cognitive experiment. Furthermore, the voxels are massively inter-

connected. Therefore, the input file structure of such a data requires a crucial design

to improve the efficiency of the processes of data.

This chapter provides information about input, the file structure of fMRI data and

reading process. The chapter begins with explaining the supported input file formats

and how the data is contained in the files. In this section, each part of the input files is

explained and detailed. Then, the chapter continues with data storage in CEREBRA.

In other words, defining the class structure that holds the data. We conclude this

chapter by explaining the pre-processing steps applied on input data processed at the

beginning of CEREBRA routines.

3.1 Input File Types of CEREBRA

The developed tool supports two commonly used file types in this research area. One

of them is .mat file type, which is a typical output of any MATLAB code. Many

pre-processing operations are done using MATLAB, therefore, reading input from a

.mat file will definitely ease scientists’ work as they can visualize their data without

any need to convert it into another file type and, most of the times, format. The other
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supported file type is the plain text file format, which is one of the simplest formats.

Initially, this feature is added for test purposes and then left as an additional feature

to encourage researchers who want to visualize their data without any knowledge

of coding, file types, and structures. This section gives the details of these two file

formats, how we read them and how they are structured.

3.1.1 Mat File

As mentioned before, CEREBRA has been implemented using C++ as the main pro-

gramming language. In order to read and process .mat files in C++, we have employed

MATLAB MAT File I/O Library (Matio) [3]. Matio is an open-source C library for

reading and writing binary MATLAB MAT files. With the help of this library, we do

not have to access and use MATLAB’s shared libraries. Therefore, it annihilates the

MATLAB dependency of the tool.

There are many functions available in the library to read and write specific variable

types. We have used double type operations since they are most common and can

handle some of the other types (e.g. int and float). In order to read a .mat file, we need

to parse it correctly before reading the values in the files. For this purpose, we have

used mat_t and matvar_t classes defined in Matio. The first class contains information

about a MATLAB .mat file. We use this definition in order to read specific information

about the data such as variable names, rank, size etc. When reading operation returns

successfully, we can read the specified field of the loaded .mat file into the matvar_t

variable. In our case, the information contained in the matvar_t is generally a 2D

matrix with double typed variables. We can fetch the dimensions of that matrix using

dims field of the matvar_t class and read the actual information (position, intensity,

neighbors etc.) using data field by iterating it according to dimension sizes.

In .mat format, voxel positions, voxel intensities, edge lists, edge weights and MNI

coordinates transformation matrix should be bundled in a single .mat file. Therefore,

each of those parameters is a variable in that file. The label information for label view,

however, should be given in a secondary .mat file. Also, in order to enable users to
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load several label information at once, each label information should be a variable in

that file.

3.1.2 Plain Text File

The tool requires a different structure for the plain text files. Each parameter should

be contained in a separate .txt file under a shared folder. For instance, voxel positions

are stored in "xyz.txt", voxel intensities are stored in "intensities.txt", edge lists are

stored in "edges.txt" and their weights are stored in "weights.txt" which are placed in

a folder called "ExampleData". Please note that, the current version of CEREBRA

does not support label information in plain text format. Therefore, even if the user

loaded the data in plain text format, the label information should be provided in .mat

format.

3.2 Input Structure

In order to display a brain network properly by CEREBRA, some information, such

as voxel positions, intensity records, edge lists (neighborhood information), edge

weights, MNI coordinates transformation matrix and label information should be pro-

vided to the system. Most of this information could be provided in either MATLAB

file format or plain text file format. In this section, we will describe how this infor-

mation should be provided in both file types.

3.2.1 Voxel Positions

Voxel positions should be given in 3D Cartesian space. Thus, each voxel’s position is

given in x, y, and z coordinates. For this purpose, voxel position information should

be in N × 3 matrix format where each row corresponds to a voxel’s position and N

is the number of voxels.
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Figure 3.1: An example of a voxel position variable in MATLAB. This example

encapsulates 40,398 voxels. Although this example sorted according to their z, y and

x positions, there is no need to sort voxels in any order.

Figure 3.2: An example of a voxel position plain text file. As opposed to the MAT-

LAB version of it, there is no dimension indicator on this format. Each variable

should be separated by a single space and each line corresponds to one voxel posi-

tion.
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For the MATLAB file format, this information is given as a variable in the input

file. The variable is basically a matrix that fits the structure defined above. The tool

does not require any specific name on this variable in this format. An example voxel

position variable is shown in Figure 3.1.

For the plain text file format, this information should be placed in a single .txt file

under the input folder. There should be N lines in the text for N voxels and in each

line there should be three values, separated by a space, reflecting the x, y, and z

coordinates respectively. The tool does not require any specific file name as in the

.mat format. An example voxel position file can be seen in Figure 3.2.

Please, note that the line number of a voxel’s position information in both types is

related with its i.d.. In other words, the first voxel is indexed as 0, the second one

is indexed as 1 and so on. This identification helps us to match position information

with other ones.

3.2.2 Voxel Intensities

During a cognitive experiment, the fMRI machine takes sliced shots of the brain in

every 2 to 3 second and forms the 3D brain volume for each shot at a time instance

t, where t = 0, . . . , T . In each time instance t, the machine measures the BOLD

response of the brain that we call the intensity record. Intensity records are formed

as an N × T matrix where N is the number of voxels and T is the number of time

instances. If T is greater than one, CEREBRA animates voxel colors to simulate the

whole experiment.

A row of this matrix indicates the intensity of the voxel positioned at the same row in

voxel position variable/file. Therefore, there should be a one-to-one match between

this and voxel position variable/file.

For the MATLAB file format, this variable is a matrix that meets the structure defined

above. There is no need to put a specific name to that variable. Figure 3.3 illustrates

the variable in both static and time-series perspectives.
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(a)

(b)

Figure 3.3: Two possible forms of voxel intensity variable in MATLAB file format.

Figure 3.3a illustrates a case, where there is no time information embedded in the

data. In this case, each voxel has a static color on display according to their intensity

values. Figure 3.3b is the time series form, prepared for the same data. Each line

belongs to one voxel and the elapsed time between each cell is assumed to be two

seconds for all experiments. This is because fMRI machines shoot images between 2

or 3 seconds in general.
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(a)

(b)

Figure 3.4: Two possible forms of voxel intensity files in plain text format. As in

the MAT-File version, each line consists of one value as the corresponding voxel’s

intensity value in static case (Figure 3.4a). Figure 3.4b is the time series form in plain

text format. Each line belongs to one voxel and each time instance is separated by a

comma.
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In the plain text file format, this information should be stored in a single plain text file

under the input folder. There should be N lines each of which is dedicated to a voxel,

as in the voxel position text, and in each line, there should be T values separated by

commas. The examples for static and time-series versions of this file are given in

Figure 3.4.

3.2.3 Voxel Relations (Edge Existence Information)

As mentioned in the Background chapter, recent studies in neuroscience and cognitive

science show that the connectivities among the neuronal units carry important infor-

mation about the underlying cognitive process more than the voxel-wise or regional

activities in the human brain. CEREBRA is capable of displaying and animating the

connection information to enable scientists to study on these connections and their

change during a cognitive experiment.

Please note that, the provided connection information is considered to be directed by

CEREBRA. Thus, when the voxel j is in the neighborhood list of voxel i, that means

there is an edge goes from voxel i to j. However, this does not imply any information

about the existence of a connection from voxel j to i.

In MATLAB file format, this information is embedded into an N × 1 cell-array vari-

able, where N is the number of voxels. Each cell contains the neighbor list of a voxel

which is in Mi × 1 array format and where M is the number of neighbors of voxel

i, positioned at the (i − 1)th line in voxel position variable. The subtraction is done

because in MATLAB and plain text files indexing starts with 1 whereas in C++ in-

dexing starts with 0. Therefore, similar to the voxel intensity records, there should

be a one-to-one match between this and voxel position variable. An example variable

content is given in Figure 3.5.

In plain text format, this information is contained in a single .txt file under the input

folder. There should be N lines, where N is the number of voxels, and each line

should contain the i.d.’s of that voxel’s neighbors separated by spaces as shown in

Figure 3.6. As in the figure, each voxel may have a different number of neighbors.
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Figure 3.5: An example edge list variable in MATLAB file format. The type of this

variable should be a cell list (marked with a red box). Each line corresponds to a

voxel’s neighbor list. The numbers in the list indicate their line numbers on position

variable.

Figure 3.6: An example edge list file in plain text format. Each line belongs to the

voxel that is placed at the same line in position file and each number, separated by a

space, indicates the voxel that is placed at that line in the position file.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
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Figure 3.7: The matching between edge existence information and edge weight in-

formation. The left side of the figure reflects the neighbor information in which each

line contains the neighbors of a voxel in a cell. The right side of the figure is the cor-

responding edge weight information, where each line carries information about one

edge pair. The matching between those two is illustrated by colored boxes.

3.2.4 Edge Weights

The arc weights between the voxels form a dynamic network, which is subject to

change at each time instant as the voxel intensity values change. For this reason,

CEREBRA displays and animates the edge weights by coloring the edges according

to an assigned color to each volume interval. Edge weights should be in a K × T

matrix format where T is the number of time instances and K is the number of all

edges in the graph, which can be calculated as ΣN
i=1Mi. N is the number of voxels

and Mi is the number of neighbors of the voxel i.

Each row of the edge weight matrix corresponds to a specific pair’s weight value.

The first row indicates the weight of the first voxel’s first neighbor, the second row

indicates the weight of the first voxel’s second neighbor and so on. An example

matching is shown in Figure 3.7.

In the MATLAB file format, edge weights are given as a K × T matrix variable, as

mentioned above. When T is greater than one, CEREBRA animates the edge colors
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(a)

(b)

Figure 3.8: Two possible forms of edge weight variable in .mat format. In Figure 3.8a

each line has one value as the corresponding pair’s weight value. Figure 3.8b is the

time series form of this variable. Each line belongs to one pair.
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(a)

(b)

Figure 3.9: Two possible plain text versions of the edge weight information. Fig-

ure 3.9a illustrates a static version in which each line holds one value for a specific

pair. In Figure 3.9b, each line still belongs to one pair and this pair’s weight value

changes in time as the values in the same row fluctuating. Each value should be

separated by a comma.
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according to the values in rows. An example of this variable is shown in Figure 3.8.

In plain text file format, this information is given in a .txt file under the input folder,

where each line corresponds to one row of the matrix. The entries in the rows should

be separated by commas. Content of an example edge weight .txt file is shown in

Figure 3.9. Please note that, it is not possible to find which line indicates which pair’s

weight value just by looking this information. This information should definitely be

used with pair information. In addition, as with the other information types, there is

no need to put a specific name to this information in both file format types.

3.2.5 Montreal Neurological Institute (MNI) Transformation Matrix

MNI space is used to normalize the wide range of brains which changes, in terms of

shape, with respect to each subject from their personal space to a standard one. Al-

though CEREBRA could not compute the necessary transformation matrix, it allows

users to provide transformation matrix and switch between personal space and MNI

space.

MNI transformation matrix is a 4×4 matrix and is given as a variable in MATLAB file

format. In plain text file format, it is given as a separate .txt file under the input folder,

which has four lines and each line consists of four variables separated by spaces to

form the matrix. Examples can be seen on Figure 3.10.

(a) (b)

Figure 3.10: Two forms of MNI transformation matrix input. Figure 3.10a shows the

MAT-File format version as a variable in a .mat file. Figure 3.10b is the same data in

plain text file format.
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3.2.6 Brain Parcellation Labels (External Indexing)

Rapid improvements in hardware technologies (GPUs, clusters etc.) allow many sci-

entists to run many machine learning algorithms from k-means to deep neural net-

works on brain networks. These algorithms allow them to investigate the relation be-

tween the functional regions and matching between functional regions with anatom-

ical regions in order to diagnosing disorders [34, 52], hypothesis validation [54] and

classifying cognitive states [43, 21, 73, 53]. Therefore, visualization of the outcomes

of any clustering algorithm or classifier with the relations between the regions is a

crucial task.

Figure 3.11: An example functional label variable in MATLAB. This file holds the

output of the algorithm proposed by Mogultay et al. [43] in which 10,000 voxels are

divided into 1000 groups (clusters). The matching between voxels and labels are done

by using their line numbers as we did on other variables.

In order to visualize the output of these algorithms, the user should provide a separate

.mat file to the system. This information can only be loaded in MATLAB file format.

Therefore, even if the user has uploaded the brain data in plain text file format, the

label information should be prepared in MATLAB file format.

The related .mat file should include one or more variables that may contain different
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types of labels of each voxel in a column. Therefore, the format of the variable should

be an N × 1 matrix, where N is the number of voxels in the voxel position variable.

An example file and its structure is shown in Figure 3.11.

3.3 Pre-Processing Steps of CEREBRA

As mentioned in the Background chapter (Section 2.3.1), the data goes through some

pre-processing stages (normalization, correction etc.) before it’s fed to CEREBRA. In

some cases, this preprocessing is enough for generating a visualizable data. In most

cases, further processing operations on fMRI data are necessary in order to make the

analysis on a visual platform. In this section, we will have a look at how we organize

the data in CEREBRA and the pre-processing operations from re-centering the data

to assigning anatomical regions.

3.3.1 Packet Structure

Like all other tools and programs, CEREBRA also needs to hold the information in a

systematic data structure after reading the input. In order to accomplish this task, we

have designed a class called Packet, that approaches to the brain in both structural and

functional perspectives. The structure of the Packet class can be seen in the diagram

given in Figure 3.12. As can be seen in the diagram, Packet encapsulates two other

classes namely, VoxelPositions and Voxel.

VoxelPositions is a simple class definition that holds three variables indicating the

Euclidean coordinates of a point, in our case a voxel. This class is used in Voxel class

in order to specify each voxel’s position in 3D Euclidean space.

Voxel is a class that imitates a neuron in the real brain structure. Due to the low-

resolution images obtained from fMRI, Voxel class is actually a low-resolution ap-

proximation to a neuron (it consists of more than thousand neurons). However, since

a voxel is the smallest element that we can get from the whole brain data, we can

approach it as a neuron in this work. Therefore, a voxel contains the following fields
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Packet

+totalEdgeCount
+voxelMinMaxIntensity
+anatomicalMinMaxIntensity
+funct ionalMinMaxIntensity
+outGoingEdgeMinMaxIntensity
+anatomicalAvgIntensity
+funct ionalAvgIntensity
+anatomicalWithinDegree
+anatomicalInterDegree
+anatomicalTotalDegree
+anatomicalWithinDegreeMinMaxValue
+anatomicalInterDegreeMinMaxValue
+anatomicalTotalDegreeMinMaxValue
+funct ionalWithinDegree
+funct ionalInterDegree
+funct ionalTotalDegree
+anatomicalWithinConnect ionMinMax
+anatomicalInterConnect ionMinMax
+brain
+t ime

+Packet ( )

VoxelPosit ion

+x
+y
+z

+VoxelPosit ion( )

Voxel

+posit ion
+ntensity
+outGoingConnect ions
+inComingConnect ions
+pearsonConnect ions
+anatomicalLabel
+funct ionalLabel
+simThresholdValue
+inDegree
+weightedInDegree
+outDegree
+weightedOutDegree
+totalDegree
+weightedTotalDegree

+Voxel( )

Figure 3.12: The Packet class diagram. VoxelPositions and Voxel classes are defined

within the main Packet class.

to reflect some properties of the brain:

• position: This field reflects the position of the voxel in 3D Euclidean space by

using the VoxelPosition class.

• intensity: This field represents BOLD signal fluctuations of the voxel during

the experiment. This variable is a float vector in order to hold the time infor-

mation.

• outGoingConnections: This field holds the connections emerging from the

voxel through the others. In this field both the i.d. of the neighbor and connec-

tion’s weight information are stored. The weights are subject to change in time,

therefore, they are stored in a float vector. The matching between weights and

the neighbor i.d. is done via pairing.

• inComingConnections: This field holds the edge existence information com-

ing through the voxel. Since the weight information of those edges are stored in

the outGoingConnections fields of the neighboring voxels, this field only holds
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the i.d.’s of the neighboring voxels. As long as we know the existence of an

incoming connection to voxel i from voxel j we can check it’s value from the

outGoingConnections map of the voxel j. This enables us to save memory and

avoid from storing the same data twice.

• pearsonConnections: This field holds the Pearson correlation coefficients com-

puted by CEREBRA (Pearson correlation coefficient calculator). The structure

is the same with outGoingConnections. This field is added in order not to lost

loaded connection information, when the user calculates the Pearson correla-

tion coefficients through the tool.

• anatomicalLabel: All anatomical labels of the voxel are kept in this field.

This field has six slots for each anatomical atlases (Hemisphere, Lobe, Type,

Label Extended, Broadmann and Automated Anatomical Labeling) assigned

by CEREBRA.

• functionalLabel: This field is used when the user loads external indexing (la-

bel) information to CEREBRA. This field is filled according to the voxel’s ex-

ternal labels fetched from the loaded label file.

• simThresholdValue: This field holds the unique threshold value computed for

the voxel by the local edge sparsifier method (details on Section 4.6).

• inDegree: Number of incoming connections for the voxel is held in this field.

• weightedInDegree: This field keeps the sum of weights of the incoming con-

nections.

• outDegree: This field holds the number of outgoing connections of the voxel.

• weightedOutDegree: Sum of weights of outgoing connections is kept in this

field.

• totalDegree: Number of all connections belonging to the voxel.

• weightedTotalDegree: Sum of weights of all connections belonging to the

voxel.
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Besides from these two classes, the Packet class has some other fields to hold infor-

mation well-ordered. These fields are listed with their descriptions as follows:

• brain: This field is a vector of Voxels. As neurons form the brain in the actual

world, in our case the brain is formed by a low-resolution representation of the

neurons, voxels, in order to simulate the real one.

• time: This field holds the number of time instances in order to animate the

cognitive experiment on display.

• totalEdgeCount: This field holds the total number of edges in the loaded data.

• voxelMinMaxIntensity: Global minimum and maximum intensity values are

kept in this field. Even if the time information is available, it only holds only

one pair of minimum and maximum values observed during the whole experi-

ment. In other words, we do not compute the minimum and maximum values

of each time instance separately.

• anatomicalAvgIntensity: This field holds the average intensity values for each

anatomical region inside each anatomical atlases.

• functionalAvgIntensity: This fields holds the average intensity values for each

region, provided externally by the user.

• anatomicalMinMaxIntensity: Global minimum and maximum values for the

anatomical average intensities are kept in this field.

• functionalMinMaxIntensity: Global minimum and maximum values for the

external labels, functional regions, are kept in this field.

• outGoingEdgeMinMaxIntensity: This field holds the minimum and maxi-

mum weight values for the edges observed during the whole experiment.

• anatomicalWithinDegree: This field holds the number of self-connections for

each anatomical region inside each anatomical atlases.

• anatomicalInterDegree: This field holds the number of outgoing-connections

for each anatomical region inside each anatomical atlases.
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• anatomicalTotalDegree: This field holds the number of all connections for

each anatomical region inside each anatomical atlases.

• anatomicalWithinDegreeMinMaxValue: Global minimum and maximum val-

ues for anatomical within degrees among all regions are kept in this field. For

each anatomical atlases, there exists a unique pair of minimum and maximum

values in this field.

• anatomicalInterDegreeMinMaxValue: Global minimum and maximum val-

ues for anatomical inter degrees among all regions are kept in this field. For

each anatomical atlases, there exists a unique pair of minimum and maximum

values in this field.

• anatomicalTotalDegreeMinMaxValue: Global minimum and maximum val-

ues for anatomical total degrees among all regions are kept in this field. For

each anatomical atlases, there exists a unique pair of minimum and maximum

values in this field.

• functionalWithinDegree: This field holds the number of self-connections of

each label, loaded externally by the user.

• functionalInterDegree: This field holds the number of outgoing-connections

of each label, loaded externally by the user.

• functionalTotalDegree: This field holds the number of all connections for each

label, loaded externally by the user.

• anatomicalWithinConnectionMinMax: This field holds the global minimum

and maximum edge weights values for anatomical regions’ self-connections.

For each atlases, there is a unique minimum and maximum value in this field.

• anatomicalInterConnectionMinMax: his field holds the global minimum and

maximum edge weights values for anatomical regions’ outgoing connections.

For each atlases, there is a unique minimum and maximum value in this field.

Each of these fields is used to form and visualize the brain on the screen in the correct

shape and with correct coloring. This class can be extended only by editing the header
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and source files belonging to the Packet class without needing to change anything on

the main project. The Packet class is used as an external library on the main Qt project

in order to ease the developers’ work.

3.3.2 Normalization and Correction of fMRI data

In order to offer a better visualization on the display and enable user interactions on

the 3D graph, the data has to go under some pre-processing operations. These opera-

tions take two main steps, namely, MNI transformation and brain position correction

(re-centering).

As stated in Section 2.3.1, human brain atlases are used to map the location of brain

structures independent from individual differences in size and overall shape of the

brain. Therefore, the brain normalized to a certain standard for multi-subject analy-

sis to match and compare brain regions and their intensities/relations. As anatomical

labels are, also, defined for these standard templates, we need to perform this nor-

malization before assigning the labels. There are two main standard maps available

for human brain, namely, Talairach and MNI coordinates. In this thesis, we use MNI

space to normalize varying sizes and shapes of the human brain. In order to transform

a brain matrix from subject’s space to MNI coordinate space, the subject coordinates

should be multiplied with MNI transformation matrix as shown in Eq. 3.1. The first

matrix in the equation holds si = (xi, yi, zi)’s of each voxel i = 1, . . . , N , where N

is the number of voxels. The values, v1,4, v2,4 and v3,4, in the second matrix (MNI

transformation matrix) stand for translate the positions, whereas the diagonal values

scale the graph according to MNI coordinate space. The transformation matrix is

calculated by computing the linear transformation between the individual’s space and

the MNI template. The calculation can be operated by third party tools, e.g. SPM

Toolbox [5]. The user may upload the MNI transformation matrix as an input to

CEREBRA, if available, in order to transform the graph into MNI coordinate space.

If this matrix is not available, the uploaded brain matrix could be multiplied with the
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default transformation matrix in Eq. 3.2 or left as it is.


x1 y1 z1 1

x2 y2 z2 1
...

...
...

...

xN yN zN 1

×

v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4

0 0 0 1



>

=


x′1 y′1 z′1 1

x′2 y′2 z′2 1
...

...
...

...

x′N y′N z′N 1

 (3.1)

MNITdefault =


−4 0 0 82

0 4 0 −116

0 0 4 −54

0 0 0 1



>

(3.2)

The transformation is performed by using Eigen library functions in order to calculate

matrix multiplications faster [2]. The performance graph of Eigen library can be seen

on Figure 3.13. Note that the higher values in MFLOPS are better. MFLOPS means

millions of (effective) arithmetic operations per second. The reason why the values

are typically low for small sizes is that in this benchmark, we deal with dynamic-

size matrices which are relatively inefficient for small sizes. The reason why some

libraries/benchmarks show a decline for large sizes is that for such large matrices

issues of CPU cache friendliness becomes predominant. However, in our case, the

minimum matrix size is 40,000 which exceed that separation limit.

There are many preprocessing algorithms for data correction available and used by

the researchers. Although each of these algorithms preserves the brain structure and

integrity, they may have different assumptions and applications on voxel positions.

For example, an algorithm may re-position the brain such that each position value

should be greater than zero. In such cases, we have to re-center the brain by subtract-

ing voxel position mean value from all dimensions. Therefore, each voxel is shifted

by

s′i = si − µs, (3.3)
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Figure 3.13: Matrix - Matrix multiplication performance comparison graph. Test

was carried out using Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz ( x86_64

) and C++ (SUSE Linux) 4.5.0 20100604 [gcc-4_5-branch revision 160292] as the

compiler. The figure is taken from [2].

where si = (xi, yi, zi) represents the position of the voxel i in 3D Euclidean space (as

mentioned in Eq. 2.4) and µs is calculated as follows:

µs = (

∑N
i=1 xi
N

,

∑N
i=1 yi
N

,

∑N
i=1 zi
N

), (3.4)

where N is the number of voxels.

An illustration of the difference between visualized graphs with and without this cor-

rection is given in Figure 3.14. Since user interaction functionalities, such as zoom-

ing and rotation, assumes that the data is centered at the point (0, 0, 0) on the display,

these functionalities would not work properly on a graph placed as shown in Fig-

ure 3.14a.
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(a)

(b)

Figure 3.14: Effect of the voxel position correction on the brain graph. These images

are taken just after the data is displayed without any translation, rotation, or zoom

operations are performed on the graph. Figure 3.14a illustrates an example, where

the re-centering feature is blocked. Figure 3.14b is the same graph re-centered by

CEREBRA where the center of the graph is matched with the center of the display

grid.
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3.3.3 Assigning Anatomical Regions

Sometimes scientists change the scale of their analysis level from voxel analysis to

regional analysis. In this scenario, they examine the relationship between anatom-

ical or functional regions to explore the location of certain cognitive processes or

diseases. Although the functional regions are subject to change with an employed

algorithm (that outputs the external indexes) and its parameters, anatomical atlases

do not change by any parameter or brain size. Therefore, we are able to assign all

anatomical regions for specific atlases just after the user loads the data.

Anatomical region assignment enables users to switch voxel color codes from activity

record to anatomical mapping or observe only the selected regions. The information is

preloaded to the system for six anatomical atlases in MNI coordinate space. However,

the user should provide the MNI transformation matrix mentioned in the previous

subsection or load the voxel positions directly in MNI coordinate space, in order to

enable CEREBRA to assign anatomical regions. Otherwise, the program will assume

the graph is in MNI coordinate space and assigns wrong labels to voxels.

The pre-loaded anatomical label file (.txt) is prepared by matching all possible MNI

voxel positions, taken from Marsbar [13] and the map used in xjView toolbox [6],

with six brain atlases. Each line consists of nine numbers divided by a sharp (#) sign

in which the first three numbers represent the MNI space coordinates and the fol-

lowing numbers stand for region labels for Hemisphere, Lobe, Type, Label Extended,

Broadmann and Automated Anatomical Labeling (AAL) V4 atlases respectively (Fig-

ure 3.15). Since the anatomical label file is in a simple plain text format, it could be

extended and updated by anyone without any programming languages background

and without needing of altering the structure of the tool or building it from scratch.

As the user loads the input, the tool employs this plain text file in the background

and prepares a map using the position and label information. Then, the algorithm

searches every voxel with their positions in this map and if that position exists in the

map, the following label information is assigned to that voxel. If the search returns

null, then the voxel takes 0 for all label information which means it gets the label
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Figure 3.15: Anatomical label format. The first three variables are the Euclidean

space coordinates and the rest are the anatomical labels. Label values are integer

whereas the coordinates could be double. The sharp characters between the values

are separators.

unknown. Please note that, even if the voxel is found on the position-label map, it

may get the unknown label for some anatomical mappings as these maps have also

some undefined regions.

The mapping between colors and regions are defined in the "anatomicalinforma-

tion.h" file in the main project. This header also contains the names of anatomical

mappings and the regions lie within them. If the user needs to change the color,

opaqueness or name of a region, then the user should modify this header file.

3.4 Chapter Summary

In this chapter, we have explained how we structured the input fMRI data and how

we hold it in CEREBRA to process it further. In order to ease the workload on neu-

roscientists and many other possible users, we have employed two common file types

as the acceptable input file format, namely, MATLAB file format (.mat) and plain

51



text format (.txt). Although two file formats are supported, they have key differences

when it comes to the input structure. The entire information should be loaded in a

single .mat file in MATLAB file format, where each input parameter is a MATLAB

variable whereas each input parameter is encapsulated by an individual .txt which are

stored under the same folder in plain text file format. For both file types, there could

be more than one parameters for the same input field since the user is able to choose

the parameters for displaying from the tool itself. That way the user may observe

many experiments on the same data without needing to reload "mostly" the same data

over and over again. The tool, also, allows the users to display label information on

the loaded data. However, the label information should be given in a separate .mat

file and loaded after voxel position information. Label information is only supported

in MATLAB file format and as in the other .mat file specifications, this .mat file may

encapsulate more than one label variable in it. The label information can be changed

through the tool without loading a new file for each change. The information is stored

in the Packet class, in which the brain is defined as a list of Voxels. The Voxel class

contains the primary information about one neuronal unit (in our case we call this

unit voxel) such as position, intensity, list of connected neuronal units and weight

of these connections. The other variables lies in the Packet class hold some global

information about the brain, such as functional and anatomical region intensities and

their connections.

Although the data has passed many pre-processing steps before it takes the final form,

we need to further process it to enhance the displayed graph. There are three basic

pre-processing operations done by CEREBRA, which take stage between the time

interval just after the user presses the "Display" button and the graph is drawn on the

display. The first one is transforming data into MNI coordinate space. The positions

of voxels are multiplied by the MNI transformation matrix, if available. If no transfor-

mation matrix is loaded to the system by the user, then the tool multiplies the position

matrix with a default transformation matrix or left it as it is. After transformation

operation is done, anatomical labels are assigned to voxels by using the anatomical-

position map prepared for MNI coordinate space with various resolutions. Each voxel

takes six labels from each of the following atlases: Hemisphere, Lobe, Type, Ex-
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tended, Broadmann and AAL MNI V4. In the final stage of pre-processing, the data

is spatially corrected to shift its center to the origin in all dimensions. This operation

enables users to perform rotation and zoom in and out operations on the displayed

data.

53



54



CHAPTER 4

GRAPH SPARSIFICATION AND SIMPLIFICATION METHODS OF

CEREBRA FOR INFORMATION EXTRACTION

CEREBRA is designed for a wide range of researchers who are interested in the visual

analysis of human brain. For this purpose, we keep the tool simple, easy-to-use and

ordered. We have used QT UI Development Framework [4] for building the user

interface of CEREBRA. QT does not only ease design process of user interface (with

drag and drop UI development) but also enables us to achieve a simple design. The

resulting user interface is also stored in XML format, which could also be edited from

a text editor for future updates.

The user interface of CEREBRA is divided into two main segments, namely, display

and option panels. The first one is where the brain graph is displayed and some

affine transformations are performed on the graph. The option panel is divided into

six tabs which are grouped into two categories; non-processing and processing tabs.

Non-processing tabs are where the user loads input, switches between regional view

and intensity view etc. The processing group is where the actual graph structure is

altered and processed. All essential parts and functions of CEREBRA are illustrated

in Figure 4.1.

In the following subsections, the functions shown in the diagram are explained and

exemplified.
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Display Panel

3D Image
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Tabs
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Functional Region 
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Region Selection

Parametric Tabs

Color Options

Size Options

Filters

Local 
Sparsification

Figure 4.1: Basic parts and functions of CEREBRA. Although we have many func-

tions and parameters to run the tool, the figure shows the key points we have explained

in this thesis. Gray and yellow boxes indicate the divisions of the tool whereas the

green ones stand for functionalities.

4.1 Coloring

Voxel and edge color codes can be managed to reflect specific aspects of the data.

However, they share some common things, such as, color scheme, algorithms to man-

age color codes and variables in the shading language. In this section, we give the

details of common things shared by each color mapping in details and continue with

the specific details of each color mapping in the following subsections.

In order to indicate voxel intensity, voxel degree or edge weight information, we need

to pick a color scheme first. In this work, we have employed the Hot-to-Cold color

scheme in order to map intensity/degree/weight values to colors. The color spectrum

is given in Figure 4.2. We have picked this color scheme because it is quite similar to

the Jet color scheme, which is the default option in MATLAB and used in BrainNet

Viewer, one of the popular tools in this research area. As can be seen in the Figure 4.3,
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Figure 4.2: Hot-to-Cold color spectrum. The spectrum starts with color blue which

indicates the minimum value in the given range and continues until the red which

indicates the highest value in the given range. The spectrum has three additional

breakpoints which are cyan, green and yellow. Green is used to indicate mid range

values.

(a) Jet Color Scheme (b) Hot-to-Cold Color Scheme

Figure 4.3: Jet and Hot-to-Cold color schemes and their plots. Notice the difference

between the mid values on both plots. In the Hot-to-Cold color scheme, green spans

more mid ranged values than it does in the Jet color scheme. This allows researchers

to discriminate lowest and highest values from mid ranged values more easily. The

image is taken from [1].

both color schemes start from blue, which indicates the lowest value and ends with

red, which reflects the highest value in the given data. They also share the same

colors on their ramps. However, in Jet Color scheme, the discrimination between

low and mid values is quite low compared with the Hot-to-Cold color scheme. This
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is mainly because the Jet color mapping does not have an emphasis on mid values

which should be colored as green. Blue and red colors cover too much space on the

spectrum, which makes discrimination of mid values to highest or the lowest ones. On

the other hand, Hot-to-Cold mapping gives more space to green, which enables us to

limit the boundaries of red and blue colors. Consequently, highest and lowest values

in the data become more distinct. In addition, in CEREBRA, if the voxel intensity,

voxel degree or edge weight value is 0, they are considered to have no contribution.

These voxels and edges are drawn as ghosts, colorless, in order not to confuse the

user. Hot-to-Cold color scheme calculation for an input value x and known global

minimum and maximum values, xmin and xmax, is given in Eq. 4.1.

[r, g, b] =



[0.0 ,
4× (x− xmin)

d
, 1.0] x < (xmin + 0.25× d)

[0.0 , 1.0 , 1 +
4× (xmin + 0.25× d− x)

d
] x < (xmin + 0.50× d)

[
4× (x− xmin + 0.50× d)

d
, 1.0 , 0.0] x < (xmin + 0.75× d)

[1.0 , 1 +
4× (xmin + 0.75× d− x)

d
, 0.0] otherwise,

(4.1)

where the array contains red (r), green (g) and blue (b) color codes of a voxel with

intensity/degree value(or an edge with weight value) x respectively and the distance

between global minimum and maximum values d is calculated as:

d = xmax − xmin. (4.2)

In Figure 4.4, the four breakpoints in the Eq. 4.1 is shown on the color spectrum. In

addition, a 3D illustration of the color spectrum in RGB space is given in Figure 4.5,

where we start from blue and walk through red, passing by cyan, green and yellow. In

addition, please note that this color mapping calculation normalizes the given value

into [0, 1] interval. However, this normalization does not change the actual voxel

intensity/degree or edge weight value. It is performed only to obtain a color code

from the spectrum.
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Figure 4.4: The breakpoints on Eq. 4.1 is marked on the Hot-to-Cold color spectrum.

Figure 4.5: The path of the color spectrum in three-dimensional RGB space. As it is

seen, the spectrum starts from blue and walk through red (passing by cyan, green and

yellow) interpolating the values on this path. The image is taken from [1].

The calculation is done by an OpenGLSL (OpenGL Shading Language) [62] function,

which employs the graphics processing unit (GPU) power to accelerate the compu-
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tation by parallelization. In other words, each voxels’ color codes are calculated and

assigned by the shading language in parallel to make calculations faster. In order to

transfer the input values (intensity, degree or weight) to shading language, we used a

texture-map. The trick is, we fill the texture-map with the intensity, degree or weight

values as if they are the actual texture, but, in the shading language itself, we use

these values to compute the actual color of the voxels and edges. For each color code

generation, shading function fetches a value from the texture-map, indexed accord-

ing to the processed voxel or edge, and do the calculation. For each color mapping,

mentioned under this section, we fill the texture-map accordingly to display selected

modality of the data.

In the rest of this section, we have detailed the color options and their implementation

details. Since we have different approaches for voxels, edges, and regions on coloring

and animation of them we have divided this section into four subsections.

4.1.1 Voxel Coloring

Voxel color codes may reflect much information about the brain and its operation.

This information ranges from intensity to anatomical mappings or from voxel based

connection density to region based connection density. In this subsection, we have

detailed each possible voxel color mapping types and our approach to reflect them on

the display correctly.

4.1.1.1 Voxel Intensity Mapping

Recall that the attribute of each voxel is a time series intensity v(t, si) for t = 1, ..., T ,

where T represents the total number of time samples and si represents a three dimen-

sional coordinate of the voxel i. This intensity is related with Blood Oxygenation

Level Dependent (BOLD) signal on fMRI experiments. BOLD signal refers to the

change in oxygen saturation of the hemoglobin molecules causes small alterations in

the local MR signal. When a neuronal unit activates, it needs more oxygen which

causes fluctuations on BOLD signal [48]. The resolution of fMRI machines allows
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Figure 4.6: An example voxel intensity visualization on CEREBRA. Voxel sizes are

magnified in order to observe intensities easily. Voxel intensity values decrease from

red color to blue color. Green color represents the mid-valued intensities.

us to track neuronal units that consist of thousands of neurons, called voxels. Each

voxel reflects the average intensity, which resides the intensity of neurons in that

voxel. Therefore, we call this mapping between colors and low-resolution BOLD

signals as voxel intensity mapping.

We have employed the Hot-to-Cold color scheme as mentioned earlier in this section.

The only alteration on the color scheme is that the algorithm displays the 0 intensity

value, regardless of the intensity interval, as colorless, since zero valued intensity

indicates no activation.

Voxel coloring is handled and implemented in OpenGLSL. Therefore, the texture-

map, which handles the communication between GPU and host (CPU), is filled with

the values of v(t, si). The steps carried out by the shading language are detailed in

Algorithm 4.1.

An example to voxel intensity colorization is given in Figure 4.6. The graph in the

figure is obtained from Onal et al.’s work [51]. The voxel intensities are recorded

during a visual object recognition experiment. In addition, Figure 4.7 and Figure 4.8
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illustrate the same graph with thresholded intensity values and rotated in order to

observe the most active voxels.

Figure 4.7: Thresholded version of the Figure 4.6. We allowed the voxels with inten-

sity value above 911.262.

Figure 4.8: Rotated version of the Figure 4.7.
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Algorithm 4.1 Voxel Coloring Steps in OpenGLSL

1: intensity := textMap[currentV oxel + textureOffSet]

2: minV alue := The lowest voxel intensity value in the loaded data

3: maxV alue := The highest voxel intensity value in the loaded data

4: r := 0.0

5: rMin := 0.0

6: rMax := 1.0

7: minMaxDistance := 0.0

8: red, green, blue := 0

9: r = Normalize(intensity,minV alue,maxV alue)

10: if minV alue < 0 then

11: rMax := maxV alue/(maxV alue−minV alue)
12: rMin := minV alue/(maxV alue−minV alue)
13: minMaxDistance := rMax− rMin

14: else

15: minMaxDistane := 1.0

16: end if

17: if r < (rMin+ 0.25×minMaxDistance) then

18: red := 0

19: green := 4× (r − rMin)/minMaxDistance

20: else if r < (rMin+ 0.50×minMaxDistance) then

21: red := 0

22: blue := 1 + 4× (rMin+ 0.25× valueDistance− r)/valueDistance
23: else if r < (rMin+ 0.75×minMaxDistance) then

24: blue := 0

25: red := 4× (r − rMin− 0.5× valueDistance)/valueDistance
26: else

27: blue := 0

28: green := 1 + 4× (rMin+ 0.75× valueDistance− r)/valueDistance
29: end if

30: Return vec4(red, green, blue, 1.0)
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4.1.1.2 Voxel In-Degree and Weighted In-Degree Mapping

This mapping colors the voxels according to their incoming edge numbers (in-degree

option) or the sum of incoming edge weights (weighted in-degree option). We have

used the same color spectrum with same modifications as we did on voxel intensities.

Therefore, when the in-degree option is selected, if a voxel is connected by a large

number of voxels, its color converges to pure red. Consequently, if a voxel is con-

nected by less number of voxels, even if it connects to the others, its color turns to

pure blue. If the voxel has no incoming connections, then this voxel becomes a ghost

(colorless).

The in-degree value, idi, of voxel i is calculated as follows:

idi(t) = ΣN
k=11A(t, sk, si)6=0, (4.3)

where, k indicates the other voxels in the graph and A(t, sk, si) is the edge weight

time-series of the edge emerges from voxel k and goes through to voxel i. In this

equation, we add 1 to idi if the weight between voxel k and voxel k does not equal

to zero. In weighted in-degree option we directly sum all weight values of the edges

coming through voxel i as follows:

widi(t) = ΣN
k=1A(t, sk, si), (4.4)

where widi holds the weighted in-degree value for voxel i.

If the weighted in-degree option is selected, the color turns red when a voxel’s total

weights of incoming neighbors are higher than the others. In other words, even if the

voxel is connected by just one voxel and this edge weight is greater than most of the

weighted sum of other voxels’ incoming connections, then this voxel colored by a

reddish color. If the result of this sum equals to zero, then the voxel becomes a ghost.

The coloring method is the same with illustrated in Algorithm 4.1, however, this time

we have filled the texture-map with voxel in-degree values. In other words, instead of
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Figure 4.9: An example voxel in-degree visualization on CEREBRA. The connec-

tions are hidden to observe voxels clearly. Voxel in-degree values decrease from red

to blue color.

Figure 4.10: Thresholded version of the Figure 4.9. We allowed the voxels with

in-degree values above 133.

filling the texture-map with v(t, si) values for i = 1, . . . , N , the algorithm puts id(t)i

or wid(t)i values for i = 1, . . . , N into texture-map. Other fields, such as min-max
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values, are also changed accordingly.

In-degree values for the voxels are calculated and assigned just after the user loads a

data with edge information or enabling the Pearson correlation coefficient calculator

of CEREBRA. An example for this colorization can be seen on Figure 4.9 for in-

degree option. The input source is the same that is used on Figure 4.6. The connection

is obtained using Pearson correlation coefficient where each voxel is limited to have

10 outgoing edges. Figure 4.10 is the thresholded version of the same image.

4.1.1.3 Voxel Out-Degree and Weighted Out-Degree Mapping

This mapping is similar to the voxel in-degree mapping but this time only the out-

going edges from a voxel is considered. Therefore, if a voxel makes relatively more

connections compared to the others (out-degree option) or the sum of the outgoing

connection weight values is higher than the overall (weighted out-degree option),

then the voxel becomes more "active" than the others in this mapping. As we did in

the in-degree mapping, we have employed the same coloring method with same mod-

ifications and instead of stacking voxel intensity values, v(t, si) for i = 1, . . . , N ,

to texture-map we have filled it with out-degree or weighted out-degree values ac-

cording to selection. The min-max values are also updated with min-max (weighted)

outgoing connection values. The calculation of out-degree, od(t)i, and weighted out-

degree, wod(t)i, values for voxel i are given in the following equations.

odi(t) = ΣN
k=11A(t, si, sk)6=0, (4.5)

where, k indicates the other voxels in the graph and A(t, si, sk) is the edge weight

time-series of the edge emerges from voxel i and goes through to voxel k. In this

equation, we add 1 to odi if the weight between voxel i and voxel k does not equal to

zero. In weighted out-degree option, we directly sum all weight values of the edges
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Figure 4.11: Voxel out-degree visualization on the graph illustrated in Figure 4.6.

Since each edge is limited to have 10 out-going connections when Pearson correlation

is calculated, all voxels have the same out-degree value. Therefore, each of them

colored with red.

emerges from voxel i as follows:

wodi(t) = ΣN
k=1A(t, si, sk). (4.6)

Out-degree values are calculated with in-degree values and assigned just after the

user loads a data with edge information or enabling the Pearson correlation coeffi-

cient calculator of CEREBRA. Out-degree visualization of the graph illustrated in

Figure 4.6 is given in Figure 4.11. As a reminder, the connections are calculated

using Pearson correlation coefficients and each voxel is limited to have 10 outgoing

connections. Therefore, each voxel has the same out-degree value, which is 10. How-

ever, weighted out-degree value may vary from voxel to voxel as they have different

relations with each other. Weighted out-degree option of the same graph is visualized

in Figure 4.12.
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Figure 4.12: An example view from weighted out-degree mapping. Although each

voxel has the same number of outgoing connections, their weights may vary accord-

ing to the relations between voxels. Consequently, in this view, we can observe some

green and orange voxels along with the red ones.

4.1.1.4 Voxel Total Degree and Weighted Total Degree Mapping

This mapping is the sum of in-degree and out-degree values for non-weighted op-

tion and sum of weighted in-degree and weighted out-degree values for the weighted

option. When this option is enabled, the texture map is filled with the total degree

values (or weighted total degree values, according to selection) and other fields in

OpenGLSL function is arranged accordingly. If a voxel does not have any connection

with other voxels, then it becomes colorless in non-weighted case. If the connection

weights are canceled out when summed, then it becomes colorless in weighted case.

Total degree value, td(t)i, and weighted total degree value, wtd(t)i, of voxel i are

defined as follows:

tdi(t) = ΣN
k=11A(t, sk, si)6=0 + 1A(t, si, sk) 6=0, (4.7)
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where, the equation is the simply addition of Eq. 4.3 and Eq. 4.5. In a similar way,

we can define the weighted total degree of voxel i as follows:

wtdi(t) = ΣN
k=1A(t, sk, si) + A(t, si, sk), (4.8)

where this definition is the addition of Eq. 4.4 and Eq. 4.6.

Current method that calculates the in-degree, out-degree, total degree and their weighted

versions is embedded into input reader file system and works sequentially. The algo-

rithm is given Algorithm 4.2. Please note that, initially all voxels’ od, id, wid and

wod values are zero.

Algorithm 4.2 Voxel Degree Calculation
1: for each voxel in brain do

2: for each neighbor in outGoingConnectionsvoxel do

3: if weightvoxel_to_neighbor 6= 0 then

4: odvoxel := odvoxel + 1

5: idneighbor := idneighbor + 1

6: end if

7: wodvoxel = wodvoxel + weightvoxel_to_neighbor

8: widneighbor = widneighbor + weightvoxel_to_neighbor

9: end for

10: end for

4.1.2 Edge Coloring

Edge information is sent to the OpenGLSL function just after the voxel information is

printed on the screen. Therefore, voxels and edges are printed on the display sequen-

tially. Each edge is treated like a voxel when filling the key fields of the OpenGLSL

function. Consequently, the voxel intensity texture map is stacked by the edge weight

records in this case.

As in the voxel intensities, we have employed the Hot-to-Cold color scheme in or-
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der to color the edges. Therefore, if the connection between two voxels is stronger

compared to the remaining connections, that edge gets a reddish color. If the correla-

tion between a voxel pair is much below the average, then that edge gets more blueish

color. The mid valued connections are colored green and zero weighted edges become

colorless.

Although the sequential printing method decreases the performance of the system in

overall, there are no latency issues that can be understandable by the human eye.

4.1.3 Regional Coloring

In this subsection, we explain how do we handle coloring when either anatomical or

functional region display options are enabled and what we offer to the users in these

display options.

4.1.3.1 Anatomical Region Mapping

This option colors the voxels according to their anatomical region information. In

order to mathematically relate voxels with the anatomical regions, we can define a

map as follows:

M : si → Ai, (4.9)

where si = (xi, yi, zi) is the position of voxel i and A is the six dimensional anatom-

ical label space. Therefore, anatomical labels are assigned according to voxels’ coor-

dinates. This mapping is one-to-one, therefore, each voxel gets an anatomical label,

even if it is 0 ("Unknown").

All color codes are statically defined for six anatomical atlases and their regions as

described in Section 3.3.3. These color codes are defined in "anatomicalinforma-

tion.h" header under the main project and carries all the region names mapped with

their color codes. The colors are generated by taking equidistantRa samples from the
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color spectrum in Figure 4.14, for each anatomical atlases a with Ra regions. Then,

the colors are randomly distributed to all regions in the atlas. In order not to assign

similar colors to neighboring regions, the colors are fine tuned by hand.

Figure 4.13: The pseudo-intensity that is sent to OpenGLSL. From left to right the

concatenated number includes the alpha channel [0, 1], red channel [0, 255], green

channel [0, 255] and blue channel [0, 255].

Figure 4.14: The color spectrum used in regional color assignment. Equidistant sam-

ples are taken from the spectrum, according to the number of regions in the atlas, and

distributed to regions randomly.
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However, as described previously in this section, the shader is designed to convert

intensities to color codes, not take color codes directly and process them. Therefore,

we have created a pseudo-intensity from anatomical color codes of the voxels in order

not to change the structure of the shader function. The intensity value is created

by concatenating the alpha and RGB values defined for each region. This number

is illustrated in Figure 4.13 and the algorithm that decodes this number in shader

function is showed in Algorithm 4.3. Since the pseudo-intensity number always starts

with either zero or one, it could not exceed the numerical limits of C++.

Algorithm 4.3 Pseudo-Intensity Decoding and Anatomical Coloring Steps in

OpenGLSL

1: intensity = textMap[currentV oxel]

2: red, green, blue = 0

3: alpha := intensity/1000000000

4: if alpha ≥ 0 then

5: intensity = intensity − 1000000000

6: red := intensity/1000000

7: green := (intensity − (redChannel × 1000000))/1000

8: blue := intensity − (intensity/1000)× 1000

9: Return vec4(red/255, green/255, blue/255, alpha)

10: else

11: Return vec4(−3, 0, 0, 0)

12: end if

In order to enable users to track which color belongs to which region, we have dis-

played the region’s name on the right panel with the same color that the related area

is painted on the display panel. In the right panel, only the selected regions’ names

are displayed as other regions are displayed as ghosts on the graph at that time. An

example is illustrated in Figure 4.15.
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Figure 4.15: An example view from the CEREBRA where the anatomical display is

enabled. In "Regional Map" option each region is displayed with a unique color and

their names are indicated on the right panel with the same color.

4.1.3.2 Functional Region Mapping

Functional region mapping definition is very similar to the anatomical region color-

ing. We can relate voxel coordinates with functional mappings as follows:

M : si → F, (4.10)

where si = (xi, yi, zi) is the coordinates of voxel i and F is the multi-dimensional

external label space. Since the input format of external indexing forces users to load

a label for each voxel, this mapping is one-to-one.

However, since the tool could not guess the number of clusters or classes defined

for an experiment, it could not assign predefined colors for regions. Therefore, it

generates and assigns the color randomly whenever a region is selected by the user.

The random color assignment is done via using a map between cluster/class i.d.’s and

color codes. When a label is picked up by the user, the algorithm assigns a random
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color to that label and puts that matching to the map. Therefore, when a region is

deactivated and activated it is matched with a new random color. The activation of

a label is controlled by using another map between labels and Boolean variables. If

a label is activated, the value indexed at that label becomes true and vice versa. The

algorithm for color assignment to a label is given in Algorithm 4.4.

Algorithm 4.4 Assigning a Color to a Label
1: procedure LABELENABLED(label)

2: labelActivations[label] = true

3: colorsOfLabels[label].red := random() %256

4: colorsOfLabels[label].green := random() %256

5: colorsOfLabels[label].blue := random() %256

6: updateTextureMap()

7: end procedure

8: procedure LABELDISABLED(label)

9: labelActivations[label] := false

10: updateTextureMap()

11: end procedure

These color codes are sent to the shader as we did on displaying anatomical regions.

Pseudo-intensities are prepared by the same method and they are decoded in shader

function. In addition, each label is written on the right panel with the same color

as they are displayed on a 3D graph. The only difference between anatomical color

mapping and functional color mapping is the static and dynamic color assignment.

An example is given in Figure 4.16, which shows the result of a clustering algorithm

for cognitive state classification proposed by Mogultay et al. [43].

4.1.3.3 Voxel Level Intensity on Regional Display

We have given the details of the voxel intensity coloring in Section 4.1.1.1. However,

what will happen when the user displays voxel intensities when either anatomical or

functional display options are enabled? Under this heading, we answer this question.
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(a) 100 Clusters (b) 500 Clusters (c) 1000 Clusters

Figure 4.16: Displayed result of a K-Means Clustering algorithm using functional

color mapping feature. Since the colors are assigned randomly, each time the user

redisplays the results, he/she will get different colors on the same labels. Images are

also used in Mogultay et al.’s work [43].

Figure 4.17: Voxel intensity visualization when region display is enabled. Four re-

gions, namely, Occipital_Inf_R, Occipital_Inf_L, Amygdala_L, and Amygdala_R are

selected. Voxel intensities of these regions are displayed, whereas rest of the regions

are displayed as ghosts.

In some experiments, only a bunch of voxels belonging to a specific region(s) are

important and should be tracked [17, 33, 51]. These groups may contain voxels whose

intensities could be ranging from lowest values to highest ones. In this scenario, it

is not possible to eliminate unwanted groups by using simple thresholders described

in Section 4.5. Therefore, we have enabled users to combine anatomical displaying
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with voxel intensities in CEREBRA. In other words, when regional display option

is active at the same the voxel intensities are being observed, the displayed graph is

updated such that only the selected regions’ voxel intensity records are left on the

display. Other regions immediately become colorless in order to make observation

easier.

This operation is done by a simple intensity trick on texture-map. When a user enables

one of the regional display options, we turn each voxels’ intensity value to zero on

texture-map, since initially none of the regions are selected. As the user adds regions

to the display, the algorithm finds and colors the voxels belonging to the selected

regions. The algorithm uses a label intensity map to accomplish this task in which

each region is matched with a Boolean value. Selected regions’ Boolean value turns

"true" and belonging voxels’ intensity records are sent to texture map without garbling

their values. Unselected regions’ voxels’ intensity values are sent to texture map as

zero to make them colorless. Each time the user activates or deactivates a region, the

label intensity map and, consequently, the texture-map is updated. The logic behind

this trick is given in Eq. 4.11, where r(t)i is the value pushed to texture-map for voxel

i and Ai is the anatomical label of the voxel.

r(t)i =

v(t, si) Ai ∈ SelectedLabels

0 otherwise.
(4.11)

An example view from this option is illustrated in Figure 4.17, in which, only four

regions’ voxel intensity records are displayed as rest of the regions are displayed as

ghosts.

4.1.3.4 Average Intensity of Brain Regions

As voxel intensities within a region can be tracked, users may need to observe rela-

tions between the regions in terms of intensities. For this purpose, we have embedded

an option that enables users to visualize the average intensity of regions.
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Figure 4.18: The average intensity of brain regions visualization on the same graph

illustrated in Figure 4.17. The same four regions are selected and colored according

to the average voxel intensities within these regions. In this view, it can be seen that

occipital region is more active than amygdala.

For anatomical regions, after the labels are assigned, the average intensity value for

each region is automatically calculated. This operation can only be done if the voxel

intensity information is provided by the user. Otherwise, each region gets 0.5 as the

average intensity value, since all voxels will have that value as default. The anatomi-

cal regions’ average intensity values are held as a fixed size 3D vector in Packet class.

The first dimension divides anatomical information into 6 atlases which are men-

tioned in Section 3.3.3. The second dimension stands for the regions, which lie under

these anatomical atlases (e.g. Inter Hemispheric, Left Brainstem, Left Cerebellum,

Left Cerebrum, Right Brainstem, Right Cerebellum, Right Cerebrum are the regions

of the Hemisphere atlas.). The last dimension holds the time information, as the tool

is able to animate the whole experiment. Anatomical average intensity calculation

steps are introduced in Algorithm 4.5.

Since functional regions could not be preloaded to the system, we have followed a

different way to calculate functional average intensity. We have another 3D vector

variable in Packet class in order to hold the average intensity information. However,
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Algorithm 4.5 Calculation of Average Intensity of Anatomical Regions
1: for each map in packet.anatomicalAvgIntensity do

2: for each region in map do

3: resize(region, T ime)

4: end for

5: end for

6: for each map in packet.anatomicalAvgIntensity do

7: for each v in packet.brain do

8: ar := v.anatomicalRegion

9: while t ≤ Time do

10: map[ar][t] := map[ar][t] + v.intensity

11: map[ar][t] := map[ar][t]/map[ar].size

12: end while

13: end for

14: end for

15: for each map in packet.anatomicalAvgIntensity do

16: anatomicalMinMaxIntensity[map] := find(min,map)

17: anatomicalMinMaxIntensity[map] := find(max,map)

18: end for

this time we did not pre-allocate the memory. As assigning labels to the voxels, we

store the number of labels and number of voxels under each label. Then, we resize the

variable comes from Packet class according to the number of labels. After memory

allocation is done, we added each intensity value for each time instance for each

region and divide the resulting number by the number of voxels within that region.

The result is the average intensity record of that label. Methods for assigning labels

to the calculation of functional average intensities are given in Algorithm 4.6.

An example to this view is given in Figure 4.18, which is the same graph illustrated in

Figure 4.17. The only difference is the color mapping. Selected regions are written on

the right panel of CEREBRA, which are colored according to regional color mapping.

It can be observed that, in this graph, occipital lobe is more active than the amygdala,

78



Algorithm 4.6 Functional Average Intensity Calculation
1: procedure ASSIGNLABELS(voxelLabelList)

2: labelSize := Empty integer-to-integer map vector

3: resize(labelSize, voxelLabelList.size)

4: for each map in voxelLabelList do

5: for each voxel in map do

6: labelActivations[map[voxel]] := false

7: push_back(voxel.functionalLabel,map[voxel])

8: labelSize[map][map[voxel]] := labelSize[map][map[voxel]] + 1

9: end for

10: end for

11: fingLabelAvgIntensity(labelSize)

12: end procedure

13: procedure FINDLABELAVGINTENSITY(labelSize)

14: resize packet.functionalAvgIntensity, using number of maps and region

information.

15: for each map in packet.functionalAvgIntensity do

16: for each voxel in packet.brain do

17: fr := voxel.funtionalRegion

18: while t < T ime do

19: map[fr][t] := map[fr][t] + voxel.intensity

20: map[fr][t] := map[fr][t]/map[fr].size

21: end while

22: end for

23: end for

24: for each map in packet.functionalAvgIntensity do

25: functionalMinMaxIntensity[map] := find(min,map)

26: functionalMinMaxIntensity[map] := find(max,map)

27: end for

28: end procedure
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(a) Regional Within Degree (b) Regional Inter Degree (c) Regional Total Degree

Figure 4.19: An example of regional degree display on voxels. The displayed region

is the Amygdala_L from AAL atlas.

since it is closer to red than amygdala.

4.1.3.5 Within Degree of Brain Regions

Brain parcellation algorithms based on clustering (such as N-Cut [67], K-Means [41]

etc.) could be evaluated by looking at cluster mixture density functions. The density

could be checked by the number of connections within a brain region. If all vox-

els within that region make many mutual interactions, then the algorithm could stop

further segmenting that cluster. In some cases, this decision could be rechecked and

changed by the researcher. However, viewing all connections in a small and dense

region may hide some important information behind the connection mess. There-

fore, we have put an option to color each region according to their total number of

self-connections, in other words, within degrees.

Similar to the calculation of functional average intensities, functional within degree

is also calculated after label information is loaded and if connection information is

available. Then, for each voxel, the algorithm looks for its neighbors. If the voxel is

connected by another voxel which has the same label, then we count that connection

as a within connection. Therefore, that label’s within degree value is incremented by

one. These degree values are collected in a 3D vector called, functionalWithinDegree

in the Packet class. Whenever a label is selected to be displayed, we fetch the degree

value from that vector and update texture map accordingly to color that region.
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Although this algorithm is designed for functional regions, it could be used with

the anatomical mapping feature. The anatomical within degrees are calculated just

after the data is loaded to the CEREBRA, if connection information is available.

Anatomical within degree values are stored in a variable in the Packet class, defined

as a fixed-sized 3D vector, named anatomicalWithinDegree. If two connected voxels

belong to the same anatomical region, then the algorithm increments that anatomical

region’s within degree by one.

4.1.3.6 Inter Degree of Brain Regions

Brain parcellation algorithms, based on clustering, can also be evaluated by checking

the balance between connections within regions and between regions. Therefore,

users may also want to track regions’ outer connection degrees. In this view, all

regions are colored by their outer connection degrees.

This functionality can also be used to determine hub regions. These regions are the

ones that ensure the communication between other regions (e.g. important people in

social media). In this view, the red regions indicate the hub regions which may play

a key role in the monitored experiment.

Regional inter degree is calculated with regional within degree. If two connected

voxels do not belong to the same region, then the algorithm increments the related

field of the regional inter degree variable by one. This variable lies in the Packet class

as a fixed sized 3D vector form for anatomical regions and un-allocated 3D vector

form for functional regions.

4.1.3.7 Total Degree of Brain Regions

We have embedded it in the tool if users want to observe regions/clusters that are both

denser and out-connected than the others.

Total degree calculation is done by adding regional inter degree and within degree

values. The algorithm that calculates these values are given in Algorithm 4.7. Since
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the only difference between anatomical and functional versions of these calculations

is determining the number of voxels in a functional region and allocate the memory

accordingly, which is shown in Algorithm 4.6, we combined functional and anatomi-

cal degree calculation in one algorithm in this subsection. In addition, an example for

these three regional degree coloring option is illustrated in Figure 4.19.

4.1.3.8 Within Edge Colorization and Display of Brain Regions

Although observing degree values from the voxel colors is sufficient for many cases,

sometimes scientists need to directly observe the relations among the voxels in a

specific region as a graph in order to make some conclusions. For example, change of

the patterns in connections within a region may help to determine whether the subject

is healthy or not [14, 55, 69]. Another case may be discrimination of two similar tasks

that take places in the same brain regions [37, 71]. In such cases, it would be difficult

to observe edges that belong to only a specific area among all. Therefore, we have

enabled users to select regions to display only those regions’ self-connections.

In order to accomplish this task, we have employed the methods that are mentioned

in Section 4.1.2 and Section 4.1.3.3. In those methods, the algorithm first assigns

their region labels to voxels. Then, using a label-Boolean map, it determines which

labels’ edges are displayed. Initially, each label is assigned to false, which indicates

initially no edges will appear on display. As the user selects regions, the correspond-

ing Boolean variable in the map turns to true which enables self-connections of the

selected regions on display. This activation/deactivation operation is done via chang-

ing the weights of the related edges. The algorithm checks each edge whether their

two sides belong to the same region and, if so, passes it’s weight as it is. If they do not

belong to the same region, the algorithm automatically eliminates that edge from the

display by pushing the weight value to texture map as zero. The difference between

standard edge display and regional within display is showed in Figure 4.20.
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Algorithm 4.7 Regional Degree Calculation
1: #rwd: regionalWithinDegree, rtd: regionalTotalDegree, rid: regionalInterDegree

2: procedure FINDREGIONALDEGREE(regionSize)

3: for each map in packet.rwd do

4: for each v in packet.brain do

5: for each c in v.outGoingConnection do

6: n := c.neighbor

7: l1 := v.functionalLabel[map]

8: l2 := n.functionalLabel[map]

9: if l1 = l2 then

10: for each t in Time do

11: if c.weight 6= 0 then

12: packet.rwd[map][l1] + +

13: packet.rwd[map][l1] : / = regionSize[map][l1]

14: packet.rtd[map][l1] + +

15: packet.rtd[map][l1] : / = regionSize[map][label1]

16: end if

17: end for

18: else

19: for each t in Time do

20: if c.weight 6= 0 then

21: packet.rid[map][l1] + +

22: packet.rid[map][l1] : / = regionSize[map][l1]

23: packet.rtd[map][l1] + +

24: packet.rtd[map][l1] : / = regionSize[map][l1]

25: end if

26: end for

27: end if

28: end for

29: end for

30: end for
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31: for each map in packet.rwd do

32: packet.regionalWithinDegreeMinV alue[map] :=

find(min, packet.rwd)

33: packet.regionalWithinDegreeMinMaxV alue[map + 1] :=

find(max, packet.rwd)

34: packet.regionalInterDegreeMinMaxV alue[map] :=

find(min, packet.rid)

35: packet.regionalInterDegreeMinMaxV alue[map + 1] :=

find(max, packet.rid)

36: packet.regionalTotalDegreeMinMaxV alue[map] :=

find(min, packet.rtd)

37: packet.regionalTotalDegreeMinMaxV alue[map + 1] :=

find(max, packet.rtd)

38: end for

39: end procedure

(a) All Edges (b) Regional Within (c) Regional Within Zoomed

Figure 4.20: The effect of within region edge display. Figure 4.20a shows all the con-

nections placed within and between the regions. In 4.20b is the same graph with only

one region and its within connections. The user may zoom-in to observe connections

better as shown in 4.20c.

4.1.3.9 Inter Edge Colorization and Display of Brain Regions

As in the examples given in the section above, the scientists may also need to observe

connections and their weights to make some conclusions about the cognitive experi-

ment performed during an fMRI recording. For example, strongly connected regions
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may indicate that those regions work together to accomplish the given cognitive task

in that experiment [70, 8]. In addition, it is known that by tracking the resting state

fMRI experiments and relation between some specific regions, scientists could diag-

nose diseases such as schizophrenia it alters the connection structures between some

specific regions [66, 75]. Therefore, with regional within edge degree colorization,

we also add this feature to enhance CEREBRA’s capabilities.

This algorithm works as a complement to the within edge colorization of brain re-

gions as it colorizes the edges which are eliminated by that algorithm and eliminates

the selected ones by it. In other words, after labels are assigned, it looks for the con-

nections of voxels in selected regions. If the other side of the connection lies in the

same region, then the algorithm sets that connection’s weight value to zero in the tex-

ture map. If two sides of the edge belong to different regions but the edge emerges

from a non-selected region, then it is again eliminated from the display. However, if

two sides belong to different regions and the edge emerges from the selected region,

then the weight of that edge will pass from the algorithm.

The formal version of the algorithms for both within and inter edge colorization of

brain regions are given in Algorithm 4.8.

4.1.4 Animating Voxel and Edge Colors

As mentioned in Chapter 2, an fMRI machine shoots a full brain volume in every 2

to 3 second. In other words, the voxel intensity values are updated in every 2 to 3

second. Therefore, displaying only a part (shoot) of the experiment may constrain

the users from observing consecutive intensity changes occurring in the course of the

experiment. In order to solve this problem, we have implemented animation function-

ality that is able to animate all of the coloring options mentioned in this section. The

animation is done via linear interpolation of two sequential intensity/weight values

and using OpenGL functions.

First, the input should include the voxel intensity or edge weight change in time,

as described in Section 3.2.2 and Section 3.2.4. If both voxel intensities and edge
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Algorithm 4.8 Within and Inter Edge Degree Colorization of Brain Regions
1: map := Displayed region map

2: if Regional Display Active then

3: for each v in packet.brain do

4: for each connection in v.outGoingConnection do

5: neighbor := connection.neighbor

6: if Regional Within Edge Colorization Available then

7: if v.regionLabel[map] = neighbor.regionalLabel[map] then

8: while t ≤ Time do

9: push_back(textureMap, connection.weight)

10: end while

11: else

12: while t ≤ Time do

13: push_back(textureMap, 0)

14: end while

15: end if

16: else if Regional Inter Edge Colorization Available then

17: if v.regionLabel[map] 6= neighbor.regionalLabel[map] then

18: while t ≤ Time do

19: push_back(textureMap, connection.weight)

20: end while

21: else

22: while t ≤ Time do

23: push_back(textureMap, 0)

24: end while

25: end if

26: else

27: while t ≤ Time do

28: push_back(textureMap, connection.weight)

29: end while

30: end if

31: end for

32: end for

33: end if
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Table 4.1: Interpolation level and update frequency definitions in CEREBRA and

their values.

Define Value

INTERPOLATION_LEVEL 40

UPDATE_FREQ_IN_MS 50

weights have time-series information, they should last for the same amount of time

(e.g. both should have the duration of 5 minutes). Otherwise, CEREBRA will give an

error and do not process the input file. If the input format is correct, then time-series

information is loaded to Packet class. After the data pass through the preprocessing

steps, the information is transferred to OpenGLSL function. The texture map, carries

the intensity and weight information in OpenGLSL, is loaded with time-series infor-

mation of these records. Since the texture map is one dimensional, we have stacked

each time vector of the following voxels, one after another. Since we know the length

of the experiment, at each call of UpdateGL() function, which updates the display, we

basically skip the next intensity value and update display accordingly.

However, this sharp transition between intensity values may confuse the users and

make it difficult to follow changes. Instead of displaying each intensity value on the

display during 2 seconds and then switching the next value immediately, we have

divided the time between these two values into small pieces. In other words, we

increase the number of updates by calling UpdateGL() function more frequently. At

each call, we approximate the next intensity value by a step, whose size is determined

and defined by us. In CEREBRA, we define the number of small times slices between

two consecutive intensity values to 40 and update time to 50ms. In other words, the

display is updated in every 50ms and we update the display 40 times to reach the

next intensity value. Therefore, it takes 2 seconds to reach the next intensity value

which is consistent with a typical fMRI machine’s update time. These values are

defined in renderer as shown in Table 4.1 with their names. In order to approximate

the next intensity value step by step (make interpolation work), we need to update

Algorithm 4.1 as Algorithm 4.9. Updated parts are indicated with red color.
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Algorithm 4.9 Updated Coloring Algorithm in OpenGLSL for Animation

1: CurrentIntensity := textMap[currentV oxel + textureOffSet]

2: NextIntensity := textMap[currentV oxel + (textureOffSet+ 1)%Time]

3: intensity := CurrentIntensity+ interpolationOffset× ((nextIntensity−
curIntensity)/(interpolationLevel))

4: minV alue := The lowest voxel intensity value in the loaded data

5: maxV alue := The highest voxel intensity value in the loaded data

6: r := 0.0

7: rMin := 0.0

8: rMax := 1.0

9: minMaxDistance := 0.0

10: red, green, blue := 0

11: r = Normalize(intensity,minV alue,maxV alue)

12: if minV alue ≤ 0 then

13: rMax := maxV alue/(maxV alue−minV alue)
14: rMin := minV alue/(maxV alue−minV alue)
15: minMaxDistance := rMax− rMin

16: else

17: minMaxDistane := 1.0

18: end if

19: if r < (rMin+ 0.25×minMaxDistance) then

20: red := 0

21: green := 4× (r − rMin)/minMaxDistance

22: else if r < (rMin+ 0.50×minMaxDistance) then

23: red := 0

24: blue := 1 + 4× (rMin+ 0.25× valueDistance− r)/valueDistance
25: else if r < (rMin+ 0.75×minMaxDistance) then

26: blue := 0

27: red := 4× (r − rMin− 0.5× valueDistance)/valueDistance
28: else

29: blue := 0

30: green := 1 + 4× (rMin+ 0.75× valueDistance− r)/valueDistance
31: end if

32: Return vec4(red, green, blue, 1.0)
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(a) Small (b) Medium (c) Large

Figure 4.21: Comparison of different voxel size levels on the same graph.

4.2 Managing Voxel Size and Edge Thickness Levels

As we mentioned before, fMRI machine divides the brain into small cubes, which

we call voxels. In the raw fMRI data, there are no spaces between voxels. However,

this situation makes it difficult to observe intensity diversity and connections between

voxels. Therefore, the tool initially reduces the dimensions of the voxels to put some

space between them.

Although the initial size of the voxels is useful for many cases, it can be changed

by the user into one of the three different levels, namely, small, medium and large.

Small sized voxels are useful when the user works on connections rather than voxel

activities. In this view, the tool shrinks each side of the voxels to 0.250 units. Medium

is the default size of the system and is useful when both voxels and their connections

are studied by researchers. Medium voxels have sides that are 0.500 units. Large size

is the original size of the fMRI data in which there are no spaces between voxels. This

size is appropriate when the user wants to observe the outer shell activities or there is

no connection between voxel groups. As it is the original size of the voxels, they all

have sides of 1.00 unit. The differences between the three voxel sizes are shown in

Figure 4.21.

Like voxel sizes, edge thicknesses can also be modified in CEREBRA. To modify

the edge thicknesses, the user should select the appropriate thickness level from the

tool. There are three levels are available, namely, thin, normal and thick. When there
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(a) Thin (b) Normal (c) Thick

Figure 4.22: Comparison of different levels of edge thicknesses on the same graph.

are many edges on the display, setting the edge thickness level to thin may help to

discriminate edges. In this view, each edge has the thickness of 1.0 unit. Normal is

the default level of the thickness and useful when both voxels and edges are studied.

Normal sized edges have the thickness value of 2.0. The thick level is recommended

when there are not many edges on the display and the user mainly works on the

connection information. Thick edges have 3.0 thickness unit. The level differences

are illustrated in Figure 4.22.

4.3 Normalizing Voxel Intensity and Edge Weights In a Range

CEREBRA automatically adjusts the mapping between intensity/weight records with

the color scheme. The calculation is done in OpenGLSL function as given on Algo-

rithm 4.1 (line 9) and its updated version Algorithm 4.9 (line 11). Since the normal-

ization is done by using directly the lower and upper boundaries of the subject, we

have different scales for each individual and for each experiment even if the subject is

the same. For this reason, CEREBRA allows users to set global boundaries on these

intensity/weight records. The color codes rearranged by using the new boundaries

and color mapping will be updated on the display. In this way, all subjects are col-

ored using the same color scale and researchers can observe the inter-subject relations

easily.

As data is loaded into the system, the algorithm finds global minimum and maximum

for all possible coloring options (intensity, weight, degree etc.) and stores them in
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(a) Original (b) Re-Normalized

Figure 4.23: Difference between the original and re-normalized graph. In (a), some

outlier voxels cause all others to be placed in mid-frequencies. Ignoring outliers on

normalization step, that is updating global min and max values according to the inten-

sity histogram and disregarding the outliers, makes discrimination of voxel intensities

easier and the graph becomes more understandable as can be seen in (b).

related fields of the Packet class. When the user changes the coloring option, the re-

lated min-max values are sent to OpenGLSL function in order to do normalization,

and eventually coloring, correctly. Using the input boxes under "Voxel" and "Edge"

tabs, the user could change these min-max values and set new range for normaliza-

tion operation. New values are sent to OpenGLSL function dynamically as the user

changes the values.

Besides from multi-subject studies, changing the normalization range could be useful

when there are outliers in intensity, weight or degree values. These values cause other

high intensity/weight/degree values to be colored as if they are in the mid range. In

order to cope with this problem, the min-max values could be rearranged according to

the histogram of the intensities/weights/degrees. An example situation could be seen

in Figure 4.23, in which all voxels are seemed to have near intensity values initially,

because of the outliers. However, when the min-max values for the voxel intensity

values are rearranged, we can see that there are significant distinctions between in-

tensities.
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(a) p=10, unprocessed (b) p=10, processed

Figure 4.24: The result of the Pearson correlation coefficient calculation. The first

graph is the direct result of the algorithm, in which each voxel has 10 outgoing edges.

The second graph is thresholded to observe the edges with higher weights.

4.4 Pearson Correlation Coefficient Calculator

As mentioned before, the connectivities among the voxels or anatomic regions may

carry more information than the voxel-wise or regional activities about the underlying

cognitive process. Therefore, to enable users to benefit from this information, we

have embedded a simple network estimation algorithm, based on Pearson correlation.

The algorithm calculates the pairwise correlations between voxel pairs and forms the

functional connectivity matrix.

However, considering the fact that the number of voxels in a typical fMRI experiment

is 105 to 106. Pearson correlation brings approximately 1010 to 1012 edges to the

display, which results in a very cluttered appearance (hairball problem) of the brain

network. In order to solve this problem, we suggest a user interactive method, where

the user limits the number of edges depending on his/her specific study. This task

is achieved by setting a global threshold on the number of edges. This way, he/she

selects the specific number of connections among the strongest ones. Consequently,

the output graph becomes a sparse representation of the brain network where only the

strongly correlated voxels’ edges are displayed.

To use this feature of CEREBRA, the user should specify a node degree limit by
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using the input box on "Edge" tab, next to "Display Pearson Correlation" tag. After

the limit is set, the user should click the checkbox placed in the same line (left side

of the tag). Then, CEREBRA calculates the correlation between all voxel pairs and

display the edges whenever the calculation is done. Edges, calculated by this feature,

can be removed by unchecking the same checkbox. The calculation steps are shown

in Algorithm 4.10 and Figure 4.24 shows an example output of this method, where

the total of ten outgoing connections for each voxel are displayed.

Algorithm 4.10 Pearson Correlation Coefficient Calculation
1: procedure FINDCORRELATION(x, y)

2: c := covariance(x, y)

3: cor := c/(σx × σy)
4: Return cor

5: end procedure

6: procedure CALCULATEPEARSON(p)

7: for each v in packet.brain do

8: resize(v.outGoingConnections, size(packet.brain.size()− 1))

9: for each n in packet.brain except v do

10: c := findCorrelation(v.intensity, n.intensity)

11: push_back(v.outGoingConnections, n)

12: end for

13: sort(v.outGoingConnections.weight)

14: if size(v.outGoingConnections) > p then

15: resize(v.outGoingConnections, p)

16: end if

17: end for

18: end procedure

4.5 Basic Thresholding on Voxel Intensity and Edge Weight Records

As mentioned in the Section 2.4.1, when there are many edges on the display it be-

comes harder to observe the specific intensity groups on the display. In such situa-
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Figure 4.25: 3D view of occipital lobe. In order to observe edges easily, voxels are

removed from the view. Edges are unprocessed and weight values vary between−0.6

and 0.7.

tions, the user should use basic thresholding functionality of CEREBRA. Since the

background of thresholding is explained in Section 2.4.1, we will only mention how

the thresholding is used on CEREBRA, and give some examples of their results on

brain graphs under this heading.

In order to use this feature, the user should set a threshold value (or two values for

ranged ones). This threshold value does not change across the time. Therefore, if

the voxel or/and edge time-series are provided in the data and one of the thresholding

methods mentioned below is applied, the voxels or edges may appear and disappear

during the experiment simulation. This happens because the fluctuations in voxel

intensity values may exceed the threshold level(s) on some part of the experiment

and stay under the threshold during the rest. Since, voxel intensity values fluctuate

during the experiment, the value of the bond between them too. Edges may "flick"

as their weights change across time. The threshold values are applied by adding a
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Figure 4.26: High-pass thresholding on the occipital lobe graph. The band blocks the

edges with weight 0.38 and below.

simple "if" control statement to the OpenGLSL function. The section continues with

the examples of each threshold type and their effects on the same graph shown in

Figure 4.25.

• High-pass Thresholding: This method attenuates the less activated voxels and

leaves the most active ones on display. To use this feature on voxel intensi-

ties, the user should use the "Threshold" slider placed within the "Voxel" tab.

The number on the right side indicates the lowest displayed intensity during

the experiment. Initially, this number equals to the minimum intensity value.

As the user moves the slider to the right, the number converges to the highest

intensity value of the voxel intensity. Voxels with lower intensity values than

the threshold (the number next to slider) become ghost voxels.

The usage of this threshold on edge weights is similar to the voxels. This time

the user should use the "Threshold" slider under the "Edge" tab. As the user

moves the slider to the right, the threshold value increases and the values below
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Figure 4.27: Band-stop thresholding on the occipital lobe graph. Weights within

−0.15 and 0.38 are blocked. Since this is a time-series data, we may have more or

less edges on display on different time instances.

that threshold are eliminated from the display, as seen on Figure 4.26.

• Band-stop Thresholding: This thresholding type filters a specific intensity

range while allowing the outsiders to pass. To apply a band-stop thresholding

on the displayed brain graph, the user should enable the range functionality of

thresholding. This can be done by checking the "Set Range" checkbox placed

under the "Voxel" and "Edge" tabs. Once this feature is enabled, two sliders

(Labeled as "Threshold" and "Range") start to work coordinated.

To eliminate the mid values, the user should drag both sliders to the middle

position. Then, according to intensity distribution, the user may calibrate the

sliders for the best result. If this method is applied to the edges as shown in

Figure 4.27, only the red, and blue connections remain in the display (of course

it is subject to filter size).

• Low-pass Thresholding: Similar to the Band-stop thresholding, to apply a
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Figure 4.28: Low-pass thresholding on the occipital lobe graph. Edges with weight

values above −0.13 are blocked.

low-pass threshold on the displayed brain graph, the user should enable the

range functionality. This can be done by checking the "Set Range" checkbox

placed under the "Voxel" and "Edge" tabs. Once this feature is enabled two

sliders (Labeled as Threshold and Range) start to work together.

To eliminate the mid and high intensity values, the user should drag both sliders

to the max position. Then, the "Range" slider begins to work as the low-pass

threshold. However, the user should use it from right to left. As the user drags

the slider to the left, higher values are getting allowed on the display. A simple

usage of this thresholding on edges is illustrated in Figure 4.28.

4.6 Local Graph Sparsification

The edge sparsification method suggested in this study is an extended version of Sat-

uluri et al.’s work [63]. The proposed algorithm suppresses the edges according to
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a local threshold calculated for each voxel separately, rather than applying a global

thresholding criterion to the whole graph. For this purpose, the similarity between

voxel pairs is calculated using Jaccard coefficients.

Mathematically, Jaccard coefficients are defined between voxels i and j as follows:

SimJ(i, j) =
|Adj(i) ∩ Adj(j)|
|Adj(i) ∪ Adj(j)|

, (4.12)

where SimJ(i, j) is the Jaccard similarity measure between the voxels v(t, si) and

v(t, sj); Adj(i) and Adj(j) are the adjacency lists of v(t, si) and v(t, sj), respec-

tively.

The similarity metric defined by Eq.(4.12) is only applicable to undirected graphs. It

is possible to extend it to the directed graphs by defining two sets of edges, namely,

outgoing and incoming edge sets. In other words, we define outSeti and inSeti for

outgoing and incoming edge sets of voxel i, respectively as follows;

outSeti = {∀k : 1 < k < N and A(t, si, sk) 6= 0},

inSeti = {∀k : 1 < k < N and A(t, sk, si) 6= 0},
(4.13)

where A(t, si, sk) indicates the edges emerge from voxel i to k and A(t, sk, si) indi-

cates the edges arriving voxel i from k at a time instance t, t = 0, . . . , T . The same

definition holds for A(t, sj, sk) and A(t, sk, sj). Therefore, the Jaccard similarity

metric for the directed graphs can be defined as follows;

SimJE(i, j) =
|(outSeti ∪ inSeti) ∩ (outSetj ∪ inSetj)|
|(outSeti ∪ inSeti) ∪ (outSetj ∪ inSetj)|

. (4.14)

Although the Jaccard similarity metric performs well on undirected and unweighted

graphs as Satuluri et al. show in their work, in brain networks, mixing the direction

of the edges under the same metric spoils the consistency of the edges in a specific

direction, resulting in the removal of some crucial edges in both direction. On the
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other hand, the connections between voxels have both direction and weights to be

considered while applying the sparsification process. In order to take into account

of the weights and directions in brain network, we suggest considering the incoming

and outgoing edges in different metrics then applying thresholding separately in each

metric, as defined below.

• Local Sparsification Exponent: This value stands for the global sparsification

ratio, e, of the algorithm. The higher values of the e result in a more dense

graph and lower values of the e result in a more sparse graph. The value of e

should be in between [0, 1] interval.

• Directed Jaccard Similarity: Directed Jaccard similarity only takes into ac-

count either incoming or outgoing edges between voxel i and voxel j and elimi-

nates the edges in opposite direction. Therefore, the directed Jaccard similarity

for outgoing edges simplifies the Eq.(4.14) as follows:

SimJDO(i, j) =
|outSeti ∩ outSetj|
|outSeti ∪ outSetj|

. (4.15)

A similar metric can be defined for incoming edges, as follows;

SimJDI(i, j) =
|inSeti ∩ inSetj|
|inSeti ∪ inSetj|

. (4.16)

CEREBRA employs only the outgoing edge similarity metric in its current

form.

• Edge Weight Similarity: This criterion finds the mean value of the outgoing

edge weight distribution for each voxel and for each discrete time instance t.

Then, it measures the similarity of the mean value fluctuation in time between

voxel pairs. For this purpose, the mean values of edge weights at each discrete

time instance t is stored in a vector for each voxel. Then, the algorithm calcu-

lates the Pearson Correlation Coefficient between the two mean value vectors

to find the similarity between voxel pairs.
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Mathematically, we define a T dimensional vector µi for the voxel i as follows:

µi(t) =
1

Mi

× ΣN
k=1A(t, si, sk), (4.17)

where, Mi is the number of connections emerged from voxel i. Then, the simi-

larity can be expressed using µ as follows:

SimEW (i, j) = ρ(µi, µj), (4.18)

where ρ stands for Pearson Correlation function and µi, µj represent the mean

of directed edge weight vectors of voxel i and voxel j, at all time instances,

respectively.

• Edge Degree Similarity: This criterion compares the change in a number of

outgoing edges across time between voxel pairs. The number of outgoing edges

at each discrete time instance t is stored in a vector for each voxel. Then, the

algorithm calculates the Pearson Correlation Coefficient between the vectors of

each voxel pair. Consequently, if the Pearson Correlation between the voxels is

high with respect to a predefined threshold, then they are considered as similar

by this criterion.

Mathematically, we define T dimensional vector di for voxel i as in Eq. 4.5,

which is:

di(t) = ΣN
k=11A(t, si, sk) 6=0, (4.19)

where the value of d 6= i[t] is increased by one whenever the edge weight is

non-zero.

Edge degree similarity is then, defined as the correlation between di and dj as

follows:

SimED(i, j) = ρ(di, dj), (4.20)
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where ρ denotes the Pearson Correlation function and di, dj indicates the di-

rected node degree vectors of voxel i and voxel j, for each time instances re-

spectively.

Figure 4.29: Result of constructing Pearson Correlation Coefficient on whole brain

data. Each voxel holds only the ten strongest out-going connections.

• Weighted Edge Degree Similarity: This criterion is the weighted version of

edge degree similarity. The similarity does not only measured by the number of

edges for a voxel but, the sum of their weights for each discrete time instance

t. Therefore, Eq.(4.21) is updated by defining a T dimensional vector wdi for

voxel i as in Eq. 4.6, which is:

wdi(t) = ΣN
k=1A(t, si, sk). (4.21)

101



The similarity criterion is then defined between wdi and wdjvectors as follows:

SimWED(i, j) = ρ(wdi, wdj), (4.22)

where ρ is the Pearson correlation function andwdi, wdj represent the weighted

out-degree vectors of voxels i and j for each time instances, respectively.

Figure 4.30: Global connection weight is applied to the brain graph displayed in

Fig. 4.29. It removes the mid-weighted informative connections as well as the unin-

formative ones.

CEREBRA allows the user to select one of the above criteria or use their weighted

combinations. For example, the user may select only directed Jaccard similarity crite-

rion or combine it with edge weight distribution similarity and edge degree similarity

with some pre-defined weights.

The next step of the edge sparsifier is to sort the similarity values obtained for each

edge and apply local thresholding which is calculated for each voxel separately. The
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algorithm chooses the strongest d(t)e edges for a voxel of degree d at a time instance

t, where e is a global sparsification ratio. The higher values of e results in a more

dense graph and lower values of e results in a more sparse graph. The value of e

should be in between [0, 1] interval.

Fig. 4.29 shows a visualization example of highly connected whole brain data taken

from [42]. The edges are obtained using the Pearson correlation coefficient calcu-

lator embedded into CEREBRA. In this example, there are ten undirected edges for

each node. If we keep all the edges, the brain map becomes cluttered, indicating

the hairball effect. Since it is a three-dimensional volume, the highly correlated vox-

els are occluded by the weakly correlated ones. When we simplify the edges by a

global edge weight thresholding method, shown in Fig. 4.30, we remove the most of

the weak connections between the voxel pairs. However, we may also remove the

informative mid-ranged edges from the display while allowing some noisy edges.

On the other hand, if we apply a local edge sparsification method with directed Jac-

card similarity criterion and local sparsification coefficient for e = 0.2, the resulting

graph reveals the information which lies behind the initial hairball appearance, as

illustrated in Fig. 4.31. In order to observe the regions related to the cognitive stim-

uli, the corresponding sub-graph can be further processed by the global edge weight

thresholding method. The data of Fig. 4.32 is recorded during an object recognition

experiment. This cognitive stimulus mainly triggers the neurons in the occipital lobe,

as it is observed from the figure.

Another scenario would be the Onal et al.’s work [50] on Human Connectome Project

dataset [9], where LMM-TM is built on center of anatomical regions. In Figure 4.33,

we can observe the unprocessed graph with all connections on display. Figure 4.34

and Figure 4.35 shows different levels of sparsification processes where e = 0.5

and e = 0 respectively. In Figure 4.35 we can observe that some regions are more

connected than the others. In Figure 4.36, voxels are magnified and the selected

regions are colored. The figures are taken from [46].

103



Figure 4.31: Local edge sparsification method applied to the brain graph shown in

Fig. 4.29. Voxels are hidden to observe the strong connectivity density around the

occipital lobe.

4.7 Affine Transformations on Brain Graph

Although the input is pre-processed and corrected by user and CEREBRA, in some

cases the graph may still be misplaced or the orientation may make difficult to observe

a specific area or side of the brain, or the user may need to zoom-in to observe local

connections in the network. To accomplish these tasks, CEREBRA has three handy

functions can be operated on this panel listed below.

1. Zoom-In & Zoom-Out: The zoom-in and zoom-out functions help to observe

the local or global status of the brain network. The user can use zoom function-

ality by scrolling the middle button of the mouse.

2. Rotation: The rotation function enables the user to observe all sides of the
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Figure 4.32: Local edge sparsification method is further processed by thresholding

edges according to a global edge weight threshold. Since the uninformative edges are

removed from the display, we are able to see the top informative voxel pairs easily.
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Figure 4.33: Local Mesh Model on HCP data. The voxels are not colored to observe

edges easily. The data is not processed.

brain network. Rotation can be done by clicking the brain graph with the left

mouse button and dragging it.

3. Translation: Translation can be used to correct the position of the brain net-

work. Translation is done by clicking on the brain graph with the middle button

of the mouse and dragging it.

4.8 Chapter Summary

In this chapter, we have illustrated the basic structure of CEREBRA and what are

the key functions lies under each part. Then we continued with explaining how do

we colored the voxels and what are the options. There are ten different coloring op-

tions for voxels and three for edges. Voxel coloring options are voxel intensity, voxel

in-degree, voxel weighted in-degree, voxel out-degree, voxel weighted out-degree,

voxel total degree, voxel weighted total degree, regional mapping, regional within
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Figure 4.34: Local sparsification method result on HCP dataset when e = 0.5. Al-

though the graph is more clear, it still needs to be sparsified further.

degree and regional inter degree. The edge coloring options are total (default op-

tion), regional within and regional inter. Even though in voxel coloring we change

the modality of the data, in edge coloring options we only decide which edges are

shown in the display. As the user changes the coloring, the algorithm updates the

related fields, such as min-max values and texture-map that carries the actual values

in shader function. In addition, the tool is capable of animating the colors if they

change in time. The direct transition between consecutive intensity (or weight, de-

gree etc.) values results in flicker voxels and edges which make it difficult to track

changes. Therefore, we increase the number of updates to create artificial time divi-

sions between following two values. In each update, we approximate the next value

by interpolation step size. With the help of this method, we can offer a smoother dis-

play and the linear transition between two values takes 2 seconds in its current form,

which helps us to simulate the experiment more consistently. The step size and up-

date rate could be changed in renderer in order to make tool consistent with different

fMRI machine configurations.
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Figure 4.35: Local sparsification method result on HCP dataset when e = 0.0. The

core regions could be observed in this graph.

In addition, the tool allows users to make changes on voxel size and edge thickness

for more clearance on display on certain views. For example, small sized voxels

are useful when the relations between voxels are studied. The tool is also capable

of normalizing voxel and edge values into given minimum and maximum values.

This functionality could be used in multi-subject experiments where each person’s

minimum and maximum values are different. With this feature, all subjects could be

normalized into global minimum and maximum values to get comparable graphs.

If the visualized graph does not have connection information or if the user wants to

employ a second neighbor information alongside with the existing one, the tool offers

Pearson correlation coefficient calculator. This algorithm calculates p neighbors of

each voxel and updates the display accordingly. The half of the neighbors are se-

lected from the positive strongest one and the other half is selected from the strongest

negative ones.

The graphs could be processed with basic thresholding filters (high-pass, band-pass,
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Figure 4.36: The same graph with Figure 4.35 where the voxels are magnified and

colored to observe hub regions.

band-block and low-pass) in order to focus on specific frequencies. If the user wants a

special thresholding method that preserves the underlying structure of the brain, then

we offer local sparsification method. Local sparsification method calculates and sets a

threshold value for each voxel separately. In the original work, this threshold value is

determined according to a similarity criterion according to Jaccard similarity. Jaccard

similarity looks the similarity between a voxel and its neighbors by comparing their

neighbor lists. If the voxel’s and its neighbor’s neighbor list have voxels in common,

that means these two voxels are similar. In our work, we have extended this criterion

by adding edge directionality, degree and weight options which are used in graph

theory. We have tested our methods on real datasets and we observed that starting

from a hairball graph, we can obtain one that could be analyzed by eye. All resulting

graphs could be rotated, zoomed and replaced on the screen by the user, using mouse

movements.
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CHAPTER 5

CONCLUSION

5.1 Development Environment

CEREBRA is developed with Qt UI Development Framework (https://www.qt.io/)

using C++ as the programming language under a 64 bit Windows (Microsoft Corp.,

Redmond, WA, US) environment. The toolbox includes functions of MAT File I/O

Library (http://sourceforge.net/projects/matio/) to load .mat files and OpenGL Library

(https://www.opengl.org/) to perform computer graphics tasks. The toolbox is suc-

cessfully tested under 64-bit Windows 7, Windows 8, Windows 8.1 and Windows 10

environments. It is recommended and necessary to use the toolbox under one of the

tested environments. The tool is available at http://www.ceng.metu.edu.

tr/~bnasir.

5.2 A Brief Summary and Discussion

The starting point of our brain visualization tool, CEREBRA, was to animate the

three-dimensional brain network as the voxel intensity values and edge weights change

with time. We have accomplished this task, and, extended it to enable users to observe

more than intensity values by coloring voxels by their degree and regional informa-

tion. However, we observed that the information in the network is very much cluttered

due to the high number of voxels and edges, bundled like a hairball. In order to visu-

alize a 3D dynamic brain network, extracted from fMRI data, there is a need for graph

simplification methods so that the noisy edges and nodes are avoided. Unfortunately,
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it is not easy to identify the "undesired" nodes and edges, since the connectivity of the

voxels depends very much on the underlying cognitive task. For this reason, CERE-

BRA allows users to define their own criteria using the similarity metrics defined in

CEREBRA to apply a unique threshold value for each voxel. In addition, resulting

graph could be processed by global thresholding methods to simplify the network fur-

ther. Depending on the goal of the user, the network can be edited or tuned to display

the specific cognitive process and brain regions.

CEREBRA is a successful tool when it is compared to its competitors in terms of

reflecting huge fMRI data to display and displaying multi-modality of it, respon-

sive user interface and interactions, connection estimation using Pearson correlation,

built-in graph simplification tools. Firstly, BrainNet Viewer and Connectome Viewer

Toolkit are mainly used to observe the region of interests (ROI) which are formed

by a number of voxels. Therefore, when the research is on voxel scale, these tools

may cause information loss, since they further quantize the low-resolution fMRI data.

CEREBRA is able to display all voxels derived from fMRI machine or normalized

versions of the fMRI using the third-party tools, such as Marsbar. Therefore, CERE-

BRA enables researchers to work on directly the fMRI machine’s resolution level,

which gives all details about the cognitive experiment. Secondly, CEREBRA allows

users to load more than one modality at once and switch between them instantly. In

other words, the user may switch between voxel intensity view to voxel degree or

anatomical mapping view instantly. In BrainNet Viewer, the user should provide the

ROI labels with their positions to get colored nodes on the graph. If the user needs to

observe another type of information about a region, the data should be loaded from

scratch, which results in time and concentration loss. Connectome Viewer Toolkit, on

the other hand, colors the regions according to their degrees, or k-core values, which

provides very limited information about the cognitive state of the brain. Lastly, the

tool provides simple global thresholding methods and advanced local thresholding

method with a bunch of similarity metrics. These methods help users to process the

loaded graph further, to fetch the information behind the cluttered, noisy graph repre-

sentation on the graph. On the other hand, BrainNet Viewer and Connectome Viewer

Toolkit do not offer any graph simplification tools to cope with hairball problem.
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On the other hand, there are few shortfalls of CEREBRA when compared to BrainNet

Viewer and Connectome Viewer Toolkit. Firstly, both of these tools display the graph

in a 3D brain template, which enables users to understand the observed region’s lo-

cation on the actual brain. We tried to solve this issue by employing ghosts voxels

to form a brain silhouette. However, this approach only works, when the user loads

the whole brain information to CEREBRA. When only a part of the brain graph is

loaded into the system, it becomes harder to identify the graph’s location in the brain

(unless it in MNI coordinate space, in that scenario CEREBRA is capable of tag the

voxels in the graph according to their anatomical regions). In addition, CEREBRA

could not create super-voxel by concatenating several voxels to indicate a region as

a one, bigger node. Super-voxels are useful when the research scale is much bigger

than voxel level, e.g. anatomical region or functional region level.

Since we are not neuroscientists, we could not evaluate CEREBRA or any other brain

visualization tools in terms of informativeness of the displayed graphs, how well they

visualize the cognitive experiment and how well the simplification algorithms per-

form. The example graphs given in the figures in this thesis are mostly taken from the

published works in this research area. Therefore, they are controlled and validated

with the results of the proposed methods on these works. Since the input structures of

CEREBRA, BrainNet Viewer, and Connectome Viewer Toolkit are completely dif-

ferent from each other, we could not provide a side-to-side comparison.

5.3 Future Work

Although many effort and work were done on CEREBRA, there is a long way to

go for developing an efficient and effective visualization tool for analysis of brain

connectome. First of all, the tool only works on Windows in its current form. We

need to port this tool to Linux and Mac systems to enable much more users to benefit

from it. In order to port CEREBRA to other operating systems, we need to check

each libraries’ compatibility with these operating systems. Additionally, we need

to change CEREBRA’s build options from Qt UI Development Framework which is
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MSVC2013 OpenGL 32-bit currently (MSVC: Microsoft Visual C++).

The tool has some components that could be parallelized such as Pearson correlation

coefficient calculator and local edge sparsifier. These components are sequentially

implemented, however, we know that latest versions of Qt framework have CUDA

support which makes parallel programming much easier. As we work voxel based

in these algorithms, we could distribute each voxel to one unit of the GPU and make

calculations in parallel.

As mentioned in the related sections, CEREBRA has support to visualize the output

of any machine learning algorithm which learns a 3D dynamic network and labels the

voxels according to some spatial or functional similarities. However, there is no built-

in clustering/classifier algorithm available in the tool in its current form. We know that

parallel implementations of many algorithms are available and little modifications on

these algorithms make them perfect for brain decoding.

Lastly, according to our research and interviews with potential users, we have real-

ized that a visualization tool for human connectome should be capable to read the

raw fMRI data and to provide written information, such as, the connectivity among

the voxels and regions, activity levels, variations in time, representing the dynam-

ics to analyze the human brain. Therefore, our aim in the future is to transform the

CEREBRA into a standalone brain analysis tool.
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