
MULTIOBJECTIVE MISSILE RESCHEDULING PROBLEM 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO  
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 
 

BY 
 
 
 

AHMET SİLAV 
 
 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR 

THE DEGREE OF DOCTOR OF PHILOSOPHY 
 IN  

INDUSTRIAL ENGINEERING 
 
 
 
 
 
 

AUGUST 2017



 
 

 
 



 
 

 

Approval of the thesis: 
 

MULTIOBJECTIVE MISSILE RESCHEDULING PROBLEM 
 
 

submitted by AHMET SİLAV in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in Industrial Engineering Department, Middle 
East Technical University by, 

 
 

Prof. Dr. Gülbin Dural Ünver                                                           _______________ 
Dean, Graduate School of Natural and Applied Sciences                                             

 
Prof. Dr. Yasemin Serin                                                                   _______________ 
Head of Department, Industrial Engineering 

 
Prof. Dr. Esra Karasakal                                                                   _______________ 
Supervisor, Industrial Engineering Dept., METU               
 
Assoc. Prof. Dr. Orhan Karasakal                                                     _______________ 
Co-Supervisor, Industrial Engineering Dept.,  
Çankaya University                 
 
 
 
Examining Committee Members: 

 
Prof. Dr. Meral Azizoğlu                                             _______________ 
Industrial Engineering Dept., METU 

 
Prof. Dr. Esra Karasakal                                       _______________ 
Industrial Engineering Dept., METU 

 
Prof. Dr. Hande Yaman                                        _______________ 
Industrial Engineering Dept., İhsan Doğramacı  
Bilkent University 

 
Assoc. Prof. Dr. Serhan Duran                                                 _______________                                 
Industrial Engineering Dept., METU 

 
Assist. Prof. Dr. Özlem Çavuş İyigün                                               _______________ 
Industrial Engineering Dept., İhsan Doğramacı 
Bilkent University                    

                                  
           Date:            _______________ 



iv 
  

 

 

 

 

 

 

 

 

 

  

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 

 

 

 

 

                 Name, Last Name :  Ahmet Silav 

 

         Signature        : 

 
 



v 
  

ABSTRACT 

 

 

 

MULTIOBJECTIVE MISSILE RESCHEDULING PROBLEM 

  

 

 

Silav, Ahmet 

Ph.D., Department of Industrial Engineering 

         Supervisor           : Prof. Dr. Esra Karasakal 

         Co-Supervisor     : Assoc. Prof. Dr. Orhan Karasakal 

 

 

August 2017, 186 pages 

 

 

 

In this thesis, we address dynamic missile allocation problem for a naval task group 

(TG). We consider rescheduling of surface to air missiles (SAMs) in response to 

disturbances during the engagement process where a set of SAMs have already been 

scheduled to a set of attacking anti-ship missiles (ASMs). To produce an updated 

schedule, we propose mathematical models that consider efficiency of air defense 

and stability of the schedule.  

 

In the first part of thesis, we present a new biobjective mathematical model that 

maximizes the probability of no-leaker and minimizes total deviation from the 

existing schedule. We analyze the computational complexity of the problem and 

develop exact and heuristic solution procedures. In the second part of thesis, we 

develop a semi-autonomous decision making framework to update the engagement 
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allocation plan due to rapid decision making requirement of a dynamic air defense 

scenario. The approach is a based on an artificial neural network (ANN) method that 

includes an adaptive learning algorithm to structure prior articulated preferences of 

decision maker (DM). Assuming that the DM's preferences are consistent with a 

quasi-concave utility function, ANN chooses one of the non-dominated solutions in 

each rescheduling time point and updates the existing schedule. In the third part of 

thesis, we consider a different stability criterion that minimizes total number of 

tracking changeover for SAM systems. We formulate the biobjective model and 

generate solutions by new exact and heuristic methods. 

 

 

 

Keywords: air defense, missile allocation problem, naval task group, rescheduling. 
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ÖZ 

 

 

 

ÇOK AMAÇLI GÜDÜMLÜ MERMİ YENİDEN ÇİZELGELEME 

PROBLEMİ 

 

 

 

Silav, Ahmet 

Doktora, Endüstri Mühendisliği Bölümü 

                        Tez Yöneticisi             : Prof. Dr. Esra Karasakal 

                        Ortak Tez Yöneticisi   : Doç. Dr. Orhan Karasakal 

 

 

Ağustos 2017, 186 sayfa 

 

 

 

Bu tezde, bir deniz görev grubu (TG) için satıhtan havaya güdümlü mermilerin 

(SAM) dinamik tahsis problemi çalışılmıştır. Deniz görev grubuna saldıran 

gemisavar füzelerine (ASM) karşı başlangıçta oluşturulan güdümlü mermi tahsis 

planının angajmanlar başladıktan sonra ortaya çıkan etmenlerle bozulması sonucu 

yeniden çizelgeleme durumu ele alınmıştır. Güncellenmiş bir tahsis planı oluşturmak 

için hava savunmasının etkinliğini ve tahsis planına tutarlılığını dikkate alan iki 

amaçlı modeller önerilmiştir. 

 

Tezin ilk kısmında, hava tehditlerinin tamamını imha etme olasılığını ençoklayan ve 

ilk tahsis planı ile yeni tahsis planı arasındaki değişim miktarını enazlayan iki amaçlı 

model sunulmuştur. Problemin hesaplama karmaşıklıkları analiz edilmiş, kesin ve 
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sezgisel çözüm metotları geliştirilmiştir. Tezin ikinci kısmında, dinamik hava 

savunma senaryosuna ait hızlı karar verme ihtiyacı nedeniyle angajman tahsis planını 

güncelleyen yarı otonom bir karar verme sistemi geliştirilmiştir. Geliştirilen yöntem, 

daha önceden karar vericiden alınmış tercih bilgisini kullanan adaptif öğrenme 

algoritmasını da içeren yapay sinir ağı temeline dayanmaktadır. Karar vericinin 

tercihlerinin bir kuvazi konkav değer fonksiyonu ile uyumlu olduğunu varsayarak, 

yapay sinir ağı her bir yeniden çizelgeleme zamanında etkin çözümü seçerek mevcut 

planı güncellemektedir. Tezin üçüncü kısmında, satıhtan havaya güdümlü mermi 

sistemlerinin hedefleme değişiklik sayısını enazlayan farklı bir kararlılık kriteri 

düşünülmüştür. İki amaçlı model geliştirilmiş, çözümler yeni kesin ve sezgisel 

metotlarla bulunmuştur. 

 

 

 

Anahtar Kelimeler: hava savunma, güdümlü mermi tahsis problemi, deniz görev  

grubu, yeniden çizelgeleme.
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       CHAPTER 1  

 

 

1 INTRODUCTION 

 

 

 

Air defense flourished in the field of military operations has received great attention 

along with the advancements in aviation and weapon technology. The appearance of 

air defense concepts dates to time that man took to the air. As early air defenses are 

relied on the massive and uncoordinated fire systems, today’s current air defense 

weapon systems possess destructive power, great ranges and high speeds.  

 

There has been considerable interest in naval air defense for many years since 

controlling seas with effective air defense systems is a critical power for nations. The 

famous Turkish Admiral Barbaros Hayreddin indicates the importance of naval 

forces as "Whoever rules the waves rules the world". The prominence of air defense 

in navies is introduced with the incident destroyed German battleship, Ostfriesland, 

by United States air forces. The sinking a target battleship by air attacks 

demonstrated the vulnerability of ships to air attacks (Bolkcom and Pike (1996)). The 

advances in air bombing technologies during World War II revealed the necessity of 

enhancement in the defensive capabilities of navies. A major change in air defense 

history is the development of surface to air missiles (SAMs) with the integration of 

radar units that detect and track targets. Nations strive to increase the effectiveness of 

air defense systems with new improvements. Researches on missiles have grown 

rapidly such as in the development of naval air defense systems that are capable of 

reaching a target over 200 miles away with high speeds. 
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The fundamental air threat for Navies are anti-ship missiles (ASMs) that can be 

subsonic, supersonic or low altitude missiles. The vulnerability of navies by ASMs 

first appeared with the sinking of Israeli destroyer Eilat by the Sytx ASMs of 

Egyptian Navy in 1967. Despite ships having powerful defense systems, several 

successful ASMs attacks have been recorded in history. For instance, in 1987, the 

USS Stark was attacked by two Exocet ASMs during the Iran–Iraq War and was 

nearly sunk.  

 

For decades, there has been significant progress in design and technology of ASMs. 

Modern ASMs are extremely fast, accurate and can be launched at great ranges, from 

the air, surface or sub-surface. Also, the proliferation of ballistic missiles has become 

a big problem for naval air defense. Competing technological improvements and 

formidable offensive capabilities of ASMs led navies to increase the capability of 

countering every potential threat and develop new tactics continuously.  

 

In a typical naval mission, ships are dispatched to a region and defend all units while 

remaining in operational area over long period of time. While conducting mission, 

combatant and auxiliary ships are grouped together to achieve the mission called as 

task group (TG). Modern and well equipped ships in terms of air defense are 

essential for success in a naval warfare. Equipping all platforms with expensive air 

defense systems is not the most cost efficient solution. Moreover, there may be 

saturating attacks to a ship that onboard defense systems cannot withstand. 

Coordination of air defense units in a TG in terms of surveillance, identification and 

allocation of SAMs are crucial in addition to capability and number of air defense 

systems. Full coordination between ships composing TG enables all defense systems 

operate as one. 

 

The engagement process, in an air defense operation, begins after an allocation plan 

is generated. Optimum allocation of SAMs with full coordination in TG is important 

to utilize full potential in air defense operations since TG may counter a number of 

and different types of ASMs in a dynamic operational environment. Cooperative air 
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defense ensures collecting data from multiple sensors and combining them to achieve 

best decision for allocation. The gathering information taken from several units 

supports decision making process of allocating SAMs against ASMs. A set of SAM 

rounds are scheduled against ASMs after an air attack is detected. The missile 

allocation plan is developed according to the initial state of the defensive and 

attacking units. Future states of the units cannot be known at the time schedule is 

generated. During the engagement process, states may change quickly. This creates a 

dynamic environment to be handled and make the initial schedule infeasible or 

inefficient.  

 

An effective TG in terms of air defense has the capability coordinating the defense 

quickly to develop a new efficient engagement schedule due to new states with 

available air defense systems. In real life, initial schedules are rarely carried out as 

planned and the changes on the engagement schedules are realized by commander’s 

intuitive decisions. TG as a coherent unit should react rapidly and accurately to the 

dynamic nature of warfare. As reported by Lagrone (2015), a launch failure in 

Raytheon SM-2 air defense system is occurred onboard USS Sullivans during a 

training exercise on July 18, 2015. If similar incident becomes during a real life 

operation, it requires change on the initial schedule since optimal initial schedule is 

generated as if broken SAM system is available during the engagement process.  

 

Real time change of tactical information within engagement process requires 

adaption capability for a TG to a new environment. The aim of this study is to 

develop efficient air defense plans for a TG by dynamic allocation of SAM rounds 

against ASMs in response to unforeseen events during the engagement process. Our 

approach provides rescheduling of SAM rounds where a set of them have already 

been scheduled to a set of attacking ASMs. Hence, defensive units are coordinated 

with the status of every missile engagement and a new allocation plan is generated 

according to the continuous change on units within the engagement process. 
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1.1 Contribution of the Dissertation 

 

The problem that we consider is a specific Weapon Target Allocation (WTA) 

problem where SAMs and ASMs correspond to weapons and targets respectively. 

WTA can be considered as a class of resource allocation problem where main 

objective is the maximization of the total expected damage given to the targets with 

available number of weapons.  

 

Research to date on WTA problems consider that allocation plan can be implemented 

as initially planned. The main focus in those problems is on how to establish an 

initial plan. A number of studies consider building allocation strategy with respect to 

time stages. But also in those studies the subset of weapons to be fired in the time 

stages are determined at the beginning of the engagement process. There is no study 

in the literature that considers generating solutions in the event of change during the 

engagement process. No tools that update initial engagement schedule have been 

developed despite military operations are unavoidably subject to unexpected 

changes. By keeping the initial schedule, the possible changes during the engagement 

process are ignored.  

 

Naval air defense is a cooperative endeavor of humans and weapon systems. Control 

and protection of air space from air attacks are realized through a sequential process. 

The improvement on air defense efficiency depends on the success conducting the 

activities begin with detection of the air threats and end with their neutralization. 

Although the capability of each unit improves control and protection of air space, the 

better implementation of these activities with dynamic allocation provides higher 

efficiency of air defense. 

 

In this study, we address a missile rescheduling problem for air defense of a TG. To 

the best of our knowledge, our study is the first attempt that deals with disturbances 

for the disruption management of air defense operations. With new states of air 

defense environment, the rescheduling of SAM rounds in response to changes 
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provides a better schedule in terms of efficiency of air defense. But it provides a new 

schedule that deviates from the initial schedule and changes shoot order of SAM 

systems. Two measures namely efficiency of the system and the stability of the 

schedule are the main concerns of rescheduling decision. We consider these 

measures as the objectives of the problem. While increasing the efficiency of air 

defense, we take into account the difference between the new schedule and the initial 

schedule as a second objective. Therefore, formulation of the rescheduling problem 

is based on two objectives such as efficiency of air defense and stability of the 

schedule. For stability objective, we consider two main issues. First one is to have a 

new schedule that increases efficiency of air defense without much deviation from 

the existing schedule. Second one is to consider the shoot order of SAM systems and 

change on target tracking in SAM systems while rescheduling SAM rounds and 

increasing the efficiency of air defense. 

 

The motivation behind this study is to develop an autonomous decision aid that 

contributes air defense operation of TG that consists of a number of operations that 

must be performed under time and resource constraints. To cope with complex air 

threats for a task group, it is required that air defense systems to be efficiently 

managed. The proposed approach assists the command and control and the decision 

making process since current operational systems generally provide little support for 

decision making. The proposed solution procedures are fast enough to provide a 

timely engagement solution before the next engagement and overcome the inherent 

complexity of naval command control process and underlying resource allocation 

problem.  

 

The foremost use of the proposed approach is to embed it as an element of 

autonomous decision making unit inside the Threat Evaluation and Weapon 

Assignment (TEWASA) systems working for all the ships in TG. Such an 

autonomous system could be used in the training, the analysis, and the test areas of 

the navies. The approach can contribute navies to evaluate their air defense 

capabilities in performing tasks with changed conditions in every potential theater air 
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defense operations. The efficiency of the air defense systems can be analyzed with 

real-time status of engagements and real-time changes on units. 

 

1.2 Organization of the Dissertation 

 

The organization of the thesis is as follows. 

 

In Chapter 2, we review the studies relevant to our research. Literature review 

consists of two parts. Firstly, we give literature on WTA problems. We classify the 

problems and describe the main features. Secondly, we concentrate on rescheduling 

problems. Literature review on rescheduling problems includes analyzing the 

approaches for efficiency and stability objectives. 

 

We present biobjective missile rescheduling problem (BMRP) in Chapter 3. The 

problem environment and the elements of naval air defense operations are explained. 

The basic assumptions are defined and formulation of BMRP is given. We show 

theoretical results about the computational complexity of BMRP. We explain the 

solution approaches and present the procedures. Lastly, we give the computational 

results on varying size problems. 

 

In Chapter 4, we propose a dynamic update scheme for engagement allocations in the 

presence of disturbances. The approach is based on choosing one of the non-

dominated solutions in each rescheduling time point from the results of BMRP 

model. We suggest an artificial neural network approach that includes an adaptive 

learning algorithm to structure prior articulated preferences of the DM. In addition, 

we assume that DM utility is consistent with non-decreasing quasi-concave function 

to eliminate some of the efficient solutions uninteresting to the DM. The solution 

procedure generates a non-dominated solution most preferred by DM in each 

rescheduling time point and update the existing schedule. 
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In Chapter 5, we formulate a different stability criterion that considers shoot 

sequence of SAM systems. We call this problem as biobjective missile rescheduling 

problem with sequence-dependent stability measure (BMRP-S). First, an exact 

solution procedure that solves BMRP-S is developed. In the solution approach, 

feasible schedules are generated by solving a mathematical model with probability of 

no-leaker objective. Non-dominated solutions are obtained by revising shoot order of 

SAM systems in each feasible schedule. To meet the solution time requirement, we 

next propose a heuristic approach that reallocates SAM rounds in the existing 

schedule.  

 

Chapter 6 compares BMRP and BMRP-S models. We find all objective function 

values in each model to show the effect of different stability measures on the 

performance metrics and outcome of the engagement process. 

 

In Chapter 7, we present our concluding remarks and further research directions. 
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    CHAPTER 2 

 

 

2 LITERATURE REVIEW 

 

 

 

This chapter consists of literature review related to our research. First, we review the 

literature on MAP in detail. We classify the models, determine the main approaches 

and analyze the important features of models. The survey on rescheduling literature 

includes different research areas such as machine rescheduling, vehicle rescheduling 

and airline rescheduling. We identify the main concerns on those problems in order 

to use them in our models.  

 

2.1 Weapon Target Allocation (WTA) 

 

WTA is an optimization problem that attracts researchers over fifty years. WTA 

problem maximizes total expected damage given to targets or minimizes the 

expected survival value of targets while satisfying the number of weapons limit. The 

first known analytical approach is developed by Flood (1957) as a target assignment 

problem in a nonlinear integer programming formulation. The minimization of the 

expected value of survival is formulated similar to personnel assignment problem. 

Manne (1958) suggest a simplification to this nonlinear model to solve it with 

Lagrange multiplier methods. 

 

Lloyd and Witsenhausen (1986) prove that WTA problem is NP-Hard in the simplest 

form. The mathematical formulation of WTA problem that is proved as NP-Hard is 

as follows: 
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where number of targets and weapons denoted by N  and M respectively. iV  is the 

value of target i , ijp  is the probability that weapon i  destroys target j  and ijX  

equals 1 if weapon i  is assigned to target j . Objective function (2.1) minimizes total 

expected value of surviving targets. The product part of objective function calculates 

the survival probability of target j . Constraint set (2.2) ensures that each weapon can 

be allocated only one target. 

 

Missile Allocation Problem (MAP) is a specific version of WTA problem and can be 

stated as given an existing missiles and a set of targets, what is the optimal allocation 

of missiles to targets? MAP has many characteristics and inclusion of these 

characteristics with different assumptions reveals various models in the literature. 

One of the comprehensive literature survey on WTA is Matlin (1970)’s study. He 

reviews WTA problems and presents a classification on WTA from the attacker’s 

perspective. He classifies the literature into three major categories such as allocation 

models, game models and special feature models. Another survey on MAP is Ecker 

and Burr (1972) study that extensively review the target coverage and missile 

allocation models. They focus on much more on defensive asset based problems.  

 

We consider the main approaches and important features of models in order to 

classify the literature. As a first level of classification, we categorize the literature 

into two groups. The first group is the static version of WTA. In the static version of 

WTA models, all weapons are allocated simultaneously and the damage assessment 

is made after the last engagement is accomplished. On the other hand, in the dynamic 
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version of the WTA, the planning decision is based on the outcomes of time stages 

throughout the engagement time horizon. Thus, in the dynamic version, time stages 

are defined to perform assessments on the previous stage and to make allocation for 

the present stage.  

 

2.1.1 Static WTA Models 

 

The research and literature on static WTA mainly covers the optimization of missile 

allocation using analytical approaches. Numerous articles are proposed in literature 

due to different features of parameters and scenarios. We classify the static version of 

WTA models into three categories such as allocation models, game theoretical 

models and simulation models.  

 

2.1.1.1  Allocation Models 

 

Allocation models build on allocation strategy without knowing the opposite side’s 

course of action. There are two main concerns that are treated as objective functions 

in allocation models. Those are survivability of the units and the cost of utilized 

missiles. The survivability objective functions may be the minimization of expected 

leakage value, maximization of probability for surviving targets, maximization of 

probability of no-leaker, expected damage value given to enemy forces or 

maximization of the expected number of unsuccessful threats. The examples of 

objectives that consider cost are the minimization of the total number of interceptors, 

minimization of cost or number of missiles utilized or minimization of the total 

assignment cost. In those models, different aspects with different assumptions inspire 

the subject of many researches in literature. For instance, some researchers analyze 

layered defense systems. Different coordination levels such as full and partial 

coordination capabilities or autonomous systems are covered in the literature. The 

order of different shooting policies are investigated in order to maximize the value of 

target killed and to determine the order of shooting. Due to complexity of the 



 12   
 

problems and nonlinearity in their formulations, various different solution procedures 

are suggested. 

 

Shumate and Howard (1974) introduce proportional defense model as a defense 

strategy. They address the problem that defense balances its interceptors to defend 

targets with different values. The approach ensures that offense have to pay a price to 

damage the assets and determines which units will be defended. To optimize 

allocation of interceptors for defense, they suggest a dynamic programming 

approach. Another study on WTA problem is introduced by Burr et al. (1985). They 

propose the prim-read defense models for both single target and multi-target case. 

The problem is formulated in order to minimize the total number of interceptors used 

in defensive units against the unknown number of sequentially incoming attacking 

units. They define an upper bound on the maximum expected damage per attacking 

weapon and assume that defense does not explicitly know the attack size. They 

formulate multi target version of the problem and solve the model with greedy 

algorithm.  

 

Soland (1987) considers sequential engagements and arriving simultaneously 

attacking reentry vehicles. He analyzes the number of remaining interceptors after 

each wave. He implements stochastic dynamic programming to calculate the 

expected fraction of target destroyed. For the defense of target i , when the attack 

size is ia , the distribution of id  defenders as possible as is the optimal defense 

strategy. The theorem is called as quasi-uniform defense. The theorem basically 

states that if 0ia   then defense allocates 
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Layered defense systems have been frequently considered in the WTA literature. 

Mizrahi (1981) propose an approach to calculate the attrition of targets. He considers 

a number of sequential attacks to penetrate layers. He examines different cases with 

respect to number of missiles to be fired and missile allocation situations. The targets 

are assumed to be identical and the survivability is calculated due to large number of 

attacking missiles. Nunn et al. (1982) analyze layered defense system with Markov 

chain formulation. They assume that each layer has its own success probability 

against attacks and show that the distribution of survivors at each stage is binomial. 

The transition matrix of penetration in each layer is defined and number of surviving 

units are approximated according to layer, attacker parameters and given 

probabilities. Orlin (1987) suggests a missile allocation model for attacking side 

against a layered regional defense that has perfect defensive weapons. He transforms 

the formulation into min-cost network flow problem. The objective is the difference 

between maximization of defensive target destroyed and the cost of utilized offensive 

weapons. The problem is solved with a specific attrition algorithm and hybrid 

algorithm. Menq et al. (2007) propose a multi layered defense for ballistic defense 

system. They use Markov decision model to formulate the problem. They build the 

model to decide how many interceptors will be allocated to each layer. They define 

number of incoming objects as states. The transition probabilities are constructed due 

to kill probabilities. 

 

Some researchers focus on firing policies and order of shooting strategies for WTA 

problems. For instance, Friedman (1977) suggests a model to determine the order of 

shooting to enemy units in order to maximize the survival probability of the single 

unit. He assumes that many attacking targets shoots at a particular single defense unit 

and time between shoots are exponentially distributed. The engagement process 

continues until one of the sides is destroyed. He calculates the winning probabilities 

with algebraic procedure. Manor and Kress (1997) model greedy shooting strategy 

problem with incomplete damage information in Markovian process. They inspire 

from the multi-armed bandit problem. The fire allocation problem is developed as a 

special case of the finite horizon multi-armed bandit without discount factor. They 
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define each target by an arm and the shot against target corresponds to the pull of 

arm. Glazebrook and Washburn (2004) review shoot-look-shoot (SLS) policies in 

WTA problems. They investigate shooting strategies to maximize the expected 

number of targets killed. They formulate the problem as a stochastic dynamic 

programming and implement Markov decision process for finite and infinite time 

horizon. The state of the firing process is defined as  ,S T where S and T are the sets 

of remaining shots and live targets, respectively. The largest amount of target value 

that can be killed with all remaining shots  ,V S T , the shortest horizon to make a 

specific number of shots  ,H S T and the maximum expected number that can be 

killed with s shots, t targets, and remaining n salvos  ,nF s t  is calculated with 

perfect and imperfect information. Glazebrook et al. (2007) examine the policies for 

shooting problems in order to maximize the value of target killed. They inspire from 

the multi-bandit problem to shoot which target, how many times and in which order. 

They also consider the disengagement case due to return value of shootings. They 

use stochastic dynamic programming to evaluate the different shooting policies. Kim 

and Cha (2010) suggest a model for fire scheduling of available weapons to targets 

with time-dependent kill probabilities. They investigate the problem from the 

attacker perspective. In their formulation, the fire sequence of targets is determined 

with the consideration of the destruction of targets decreases as time passes. The 

decreasing rate of the destruction probability of the attack against each target is 

defined. They call set of firing operations against a target as jobs. They optimize the 

beginning time of jobs due to this model construction.  

 

A few researches propose artificial neural network (ANN) method to model WTA 

formulations. Wacholder (1989) presents ANN approach for many weapons to many 

targets scenario with known attack size. The total expected leakage value of 

surviving targets in defense is minimized subject to maximum available number of 

interceptors. The solution approach is based on a combination of Hopfield and Tank's 

neural network method and Lagrange multipliers differential method. Bertsekas et al. 

(2000) suggest using ANN to approximate cost-to-go function with a Markovian 
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decision model in order to find the optimum allocation of defensive units if the 

attacking units come in discrete attack waves. The objective is to maximize expected 

surviving assets at the end of the engagement process. They formulate the problem as 

a stochastic shortest path problem and use neuro-dynamic programming with policy 

iteration methods to solve the problem. The defined state has two components. The 

first component is  1,.........., , ,ni A A I M  where tA  is the number of surviving 

assets of type t , n  is the number of asset types, I  is the number of interceptors and 

M  is the number of missiles. The second component of the state is defined as 

current attack vector  1,.........., Aa a a . 

 

The formulation of WTA is converted to network flow formulations in some studies 

in the literature. Ahuja et al. (2007) formulate WTA problem by using network flow 

formulations and suggest lower bounding solution methods. They propose exact and 

heuristic algorithms for WTA problems. The objective function is transformed to 

separable convex objective functions. A construction heuristic that solves a sequence 

of minimum cost flow problems is developed to determine the lower bound on 

optimal solutions. They use a specific branch and bound method and solve the 

moderate size test problems exactly in a few seconds. Kwon et al. (2007) formulate 

the weapon target assignment problem in order to minimize the total assignment cost 

with the limited number of available rounds. They reformulate the nonlinear integer 

programming model. By changing parameters and the decision variable, the problem 

is transformed into an integer programming model. They use LP relaxation and 

generate convex hull to solve the problem.  

 

The study on naval air defense problems in literature is scant. Kohlberg and Greer 

(1996) propose tactical missile defense to minimize cost of number of missiles 

utilized. The problem is formulated for different cases according to constraints, cost 

and coverage of targets. The approach minimizes cost or maximizes effectiveness of 

a tactical ballistic missile defense (TBMD) system. Lagrange multipliers method is 

incorporated to solve the problem. Nguyen et al. (1997) develop an analytical model 



 16   
 

to optimize allocation of defensive resources against ASMs. The perfect coordination 

between groups of ships is considered. The objective is formulated as the 

maximization of the expected number of unsuccessful ASMs. They propose a quasi-

uniform model of cohesion to allocate missiles when the attack size is known. 

Washburn (2005) introduces a method to allocate anti-ballistic missiles (ABMs) to 

inter-continental ballistic missiles (ICBMs). In the problem, attacking units have 

decoys to deceive the defense units. He assumes that if an ABM engages to an 

ICBM, it definitely destroys the ICBM. With different value function of defense 

units, optimization is performed with the maximization of probability for surviving 

targets.  

 

Karasakal (2008) models missile allocation problem of a TG in full coordination to 

maximize effectiveness of air defense. The SLS engagement policy is assumed in the 

formulation of the air defense problem. He presents a linearization process and 

suggests two integer programming models to solve the nonlinear integer 

programming problem. Karasakal et al. (2011) propose a missile allocation model for 

air defense of TG. The model is based on SLS engagement policy in a coordinated 

way of defensive units. The formulation provides an allocation and scheduling plan 

of SAMs to ASMs over the non-overlapping time slots. The maximization of 

probability of no-leaker for the whole task group is considered. They develop 

construction and improvement heuristics to solve the problem. 

 

The only study with multiobjective optimization in WTA literature is Brown et al.’s 

(2011) study. They develop an operational planning model to optimize assignment of 

tomahawk cruise missiles. They describe different objectives to cover the 

maximization of the utilization ability of tasks and effective installation of task parts. 

They use value function, hierarchical approach, Pareto optimization and heuristic 

approaches to optimize the multiobjective model. 
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2.1.1.2  Game Theoretical Models 

 

Game theoretical approaches have been frequently used for WTA formulations, since 

WTA is the concern of two sides having opposite desires. Game models of WTA 

consider allocation problem in both defense and attack side and draw conclusions 

about each side with given strategy. Several extensions are proposed in the literature 

by considering the case in which the offense or defense knows the size of units, 

positions and types of weapons.  

 

Danskin (1967) introduce the theory of max-min in WTA problems. The max-min 

problem is to find x  and y  vectors with nx E and ny E in the following 

formulation: 

 

 

subject to 

1......,i n , ix X and 

 

where  ,i i if x y represent the remaining value of target i  if the target is defended by 

ix  defensive units and attacked by iy  offensive units. The offense wishes to 

minimize the total remaining value of targets and allocate its units with respect to 

this minimization. The defense with the knowledge of allocation of offensive units 

maximizes the total remaining value of targets. 

 

Randolph and Swinson (1969) address discrete max-min problem in an attack and 

defense situation rather than continuous version of max-min problems. Soland (1973) 

formulates the min-max discrete missile allocation problem by minimization of 

damage for defense by assuming offense has optimal attack strategy. He considers 

that attacking side knows the predetermined defense levels and defense side knows 

the number of missiles in which attack units hold. The problem of choosing 
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antiballistic missile (ABM) is examined with a certain limit on budget. Haaland and 

Wigner (1977) propose an allocation approach for defense of ABM. They construct a 

min-max model and solve it with Lagrange multipliers method. They minimize the 

maximum damage that the attack can cause. The approach provides optimum 

allocation in distribution of defending missiles with the size of attack. 

  

Bracken and Brooks (1985) formulate optimal attack and defense of intercontinental 

ballistic missiles (ICBMs). Both sides are allowed to allocate their missiles wherever 

they desire. The proportion of surviving defensive missiles with respect to the 

number of attacking units is analyzed in a game theoretical approach together with 

preferential strategies. Soland (1987a) formulates missile allocation problem of 

defensive units with respect to the cost objective. A game model with three phases is 

considered. Firstly, defense allocates their missiles with the objective of minimum 

cost, then attacking units maximize the total expected damage with observation of 

defense planning, finally defense minimizes the total value of target destroyed with 

respect to known attacking strategy.  

 

Bracken et al. (1987) introduce the preferential defense game model. In the model, 

attack allocates missiles with the knowledge of the optimum choice of defense 

preferential strategy. The robustness of preallocated missiles for defense is examined 

with the assumptions of known attack size. O’meara and Soland (1990) present 

algorithms for optimal attack and defense strategies. They assume the defense 

allocates interceptors to maximize expected total value of surviving targets with the 

knowledge of attack size. Offense attempts to minimize expected total survival value 

of defensive units. The optimal value of min-max problem with the given scenario is 

evaluated for defensing of many targets.  

 

Brown et al. (2005) formulate the missile allocation and defense platform location 

problem with the objective of minimization of maximum total expected damage for 

defensive platforms. The mathematical model of the problem is solved optimally by 

proving the total unimodularity of the model. They form different scenarios with the 
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knowledge of position and plans for opposite units. They consider that defense 

attempts to optimize defensive prepositioning while assuming attack observes the 

preparations and optimize allocations of its units. 

 

2.1.1.3 Simulation Models 

 

Simulation has been applied on WTA problems for analyzing the behavior of 

elements in the systems. Simulation represents real life processes more realistically 

with assumptions and scenarios. Studies on air defense problems in literature are 

presented below. 

 

Hoyt (1985) presents a Monte-Carlo simulation model to determine whether a 

defense system can neutralize a number of enemy missiles within a specified time. 

The approach is developed to assist decision makers to evaluate the probability of 

success of ballistic missile defense (BMD) system. The variation on the number of 

interceptors is analyzed and the effectiveness of air defense is evaluated during a 

given time period.  

 

Beare (1987) proposes optimization model together with a simulation to defend a 

number of assets against air raids. The model includes choosing the most effective 

allocation to defend a given set of assets against a range of air threats. A Monte Carlo 

simulation is integrated to optimize allocation of air defense weapons. 

 

Martin et al. (1995) propose the “Simulation, Evaluation, Analysis, and Research on 

Air Defense Systems” (SEAROADS) model to analyze air defense capability of a 

frigate using a Monte Carlo simulation. The model evaluates an engagement between 

a given ship configuration and an air threat with different settings and analyzes the 

performance of air defense by comparison of different strategies. 
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2.1.2 Dynamic WTA Models 

 

Dynamic WTA is a multi-stage problem in which the result of each stage is assessed 

and used for the future stages. Most of the studies on WTA focus on static version of 

the problem. WTA through multi-stage process is barely studied in the literature. 

There are a few researches that build the allocation strategy with respect to time 

periods. Cai et al. (2006) survey the literature of dynamic WTA problems. They 

present the shortages of current research and define the characteristic of problems.  

 

Wacholder (1989) presents the mathematical formulation of dynamic WTA problem. 

The formulation minimizes the expected leakage value of targets killed over time. He 

states that the closed mathematical solution of the dynamic WTA appears very 

difficult, thus he concentrates on static version of the model to solve the problem. 

 

The first known generic dynamic WTA problem is introduced by Hosein and Athans 

(1990). They investigate the WTA problem with time stages. They present the 

dynamic version of the problem with two stages together with analytical results and 

asymptotic results as the numbers of weapons and targets go to infinity. In the 

formulation, for each stage a number of weapons are chosen and allocated to targets 

in order to minimize the value of surviving enemy targets.  
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defined as 1ijx   if weapon j  is assigned to target i  in stage 1. They analyze the 

optimal strategy for different cases as changing the number of stages, number of 

weapons and number of targets. They conclude that the dynamic version of the 

problem is computationally complex and difficult to solve even if the kill 

probabilities are fixed for each stage and number of weapons used in each stage is 

same. 

 

Khosla (2001) considers target based dynamic WTA for defensive platforms. The 

model minimizes the surviving targets subject to resource availability over a given 

period of time. He assumes that only one weapon is assigned to a target over all time 

stages. He incorporates the genetic algorithm and simulated annealing algorithm to 

solve the problem. Jinjun et al. (2006) propose dynamic WTA optimization model to 

minimize the expected loss of warships. The proposed model is based on Hosein and 

Athans (1990) study. The status of targets and number of available weapons are 

updated in each stage. The objective is the minimization of the total threat of the 

targets. They use simulation to evaluate the performance of the model since the 

dynamic nature of the problem complicates the solution. Jie et al. (2009) introduce 

asset based dynamic WTA. The objective function value of surviving assets with the 

remaining weapons, assets and targets is calculated for each stage. They specify the 

assignment pairs by permutation of all available engagements and use heuristic 

approaches to solve the problem. 

 

2.2 Rescheduling Problems 

 

Rescheduling is the process of updating the original schedule because of changes in 

the problem environment. The real-time events that disrupt the initial schedule are 

called as disturbances in rescheduling problems. Rescheduling updates an existing 

schedule in response to disturbances or other changes. The disturbances may make 

performing the initial schedule impossible or rescheduling may become essential to 

increase the system performance. Rescheduling studies have been considered in 
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many research areas. We focus on manufacturing and transportation rescheduling 

problems to analyze the main concerns of those problems related to our research. 

 

2.2.1 Rescheduling in Manufacturing Problems 

 

Rescheduling has been frequently studied in manufacturing systems in literature. 

Quelhadj and Petrovic (2009) present a classification for real time events that disrupt 

the initial schedule such as resource related (e.g. unavailability of materials, machine 

breakdown) and job related (e.g. rush jobs, cancellation). Vieria et al. (2003) review 

the rescheduling literature and present a framework about rescheduling strategies, 

policies and methods. They describe two common strategies in rescheduling 

environment. These are dynamic scheduling and predictive-reactive scheduling. In 

dynamic scheduling, initially no production schedule is generated. Instead, jobs are 

assigned with respect to dispatching rules when necessary. Predictive-reactive 

scheduling method is the most common rescheduling strategy in literature (Mehta 

and Uzsoy (1998); Ouelhadj and Petrovic (2009)). In this approach, rescheduling is 

utilized in response to real time events. Wu and Li (1995) describe the iterative 

process of predictive-reactive scheduling method. In general, response to a new event 

is determined according to the impact of it. Three types of policies are typically 

examined in the literature for rescheduling strategy: periodic, event driven and 

hybrid (Sabuncuoglu and Bayiz (2000); Vieira et al. (2003)). Most of the work in 

rescheduling problems use event-driven policy that reschedules the system after new 

event happens such as machine failure (Vieria et al. (2003)). Two common 

rescheduling methods are used for responding to real time events such as complete 

rescheduling, creating a new schedule and schedule repair, updating the initial 

schedule with local adjustments (Sabuncuoglu and Bayiz (2000); Cowling and 

Johannson (2002)). 

 

In machine rescheduling problem there are mainly two concerns when adapting the 

schedule to new environment. The first one is keeping the system performance high 

which is called as efficiency measure. Efficiency of the system is specified with 
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regard to the problem characteristics and the preferences of the decision makers. In 

production problems, mostly flow time measures are considered as efficiency 

criteria. Total flow time, tardiness or lateness values are the examples of objectives 

for rescheduling problems (Azizoglu and Alagoz (2005); Sabuncuoglu and Karabuk 

(1999)). While retaining the schedule efficiency high, difference between the new 

and the initial schedule is the second concern which is named as stability measure. 

The impact of schedule change is measured with stability criteria. Number of jobs 

processed on different machines with respect to initial schedule, positional disruption 

of jobs, sequence changes, time deviations are considered as schedule disruption 

measures (Wu et al. (1993); Azizoglu and Alagoz (2005)). For instance, Hoogeveen 

et al.  (2012)  consider three disruption measures. They define  jP  and  jP   as 

the position of job j  in the original schedule   and in the new schedule

respectively. The stability measures are as follows: 

 

     ,j j jD P P      

 

where  ,jD    is the absolute positional disruption that represents the absolute 

difference between its position in   and  . 

 

     ,j j jP P P      

 

where  ,jP    is the difference between its position in   and its position in  . 

 

     ,j j jC C       

 

where  jC   and  jC  is the completion time of  job j  in the original schedule   

and in the new schedule   respectively.  ,j    is the absolute completion time 

disruption that represents the absolute difference between its completion time in   

and its completion time  .  
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In general, these two measures; efficiency and stability criteria are conflicting with 

each other in machine rescheduling problems. Early studies in the literature 

concentrate on revising the existing schedule without considering the difference 

between initial and new schedule (Hall and Potts (2004)). Wu et al. (1993) present 

one machine rescheduling formulation with efficiency and stability criteria. They 

measure the difference between new and initial schedule by the starting time 

deviations and sequence differences. The efficiency measure is specified as the 

makespan of the system. They suggest local search procedures to solve the 

biobjective rescheduling problem. 

 

Abumaizar and Svestka (1997) develop rescheduling algorithm for affected 

operations in a job shop to find a new schedule. They define starting time deviation 

and sequence deviation as stability criteria to measure the difference between new 

and initial schedule. The total completion time is considered as efficiency criteria.  

Azizoglu and Alagoz (2003) formulate rescheduling problem that considers total 

flow time as efficiency objective and number of jobs processed between initial and 

new schedule as stability objective. Their model provides rescheduling of jobs on 

identical parallel machines with the machine eligibility constraints.  

 

Hall and Potts (2004) consider inserting new jobs to initial schedule when a 

disruption occurs in manufacturing facilities. They evaluate the disruption value with 

different measures such as the maximum sequence disruption, the total sequence 

disruption, the maximum time disruption and total time disruption of the jobs. Yuan 

and Zhao (2013) propose a biobjective rescheduling model for a single machine that 

process jobs due to release dates. The set of original jobs and new jobs have been 

scheduled to minimize makespan and minimize total sequence disruption of jobs.  

Liu and Ro (2014) propose a rescheduling model on a single machine when an 

unexpected disruption happens. They measure the disruption of the initial schedule 

as the maximum time deviation instead of total time deviation. They consider 

makespan and maximum lateness values for the efficiency of the system. 
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2.2.2 Rescheduling in Transportation Problems  

 

Transportation systems are inevitably subject to unexpected disturbances such as 

technical failures, extraordinary passengers, accidents, track delays and unplanned 

stops. Thus, many rescheduling approaches have been developed in the literature in 

recent years for transportation systems such as railway, airline and road based 

services (see Visentini et al. (2013); Alwadood et al. (2012); Kroon et al. (2014) for 

reviews). In general, rescheduling is considered as a schedule recovery method in 

transportation problems. 

 

Visentini et al. (2013) address that total delay cost associated with flights, aircrafts 

and passengers are commonly examined as an objective function in airline 

rescheduling problems literature. For instance, Bratu and Barnhart (2006) develop 

models to find the optimal trade-off between airline operating costs and passenger 

delay costs. Akturk et al. (2014) propose aircraft rescheduling model that minimizes 

summation of tardiness, swap, additional fuel and carbon emission cost by 

incorporating cruise speed control and swapping aircrafts.  

 

In road and railway rescheduling problems, the main concern is based on the 

minimization of the total delay of the network or total operating cost with delay. Li et 

al. (2004) introduce vehicle rescheduling problem that considers disruptions with 

regard to vehicle breakdowns. The model minimizes the operating and delay costs. 

Törnquist and Persson (2007) suggest a railway traffic rescheduling model that 

considers total network delay and total cost of delay as objectives. Pacciarelli et al. 

(2014) develop a decision support system based on partitioning of networks, local 

scheduler, dispatching rules and coordination strategy by minimization of delay in 

traffic management of railway networks. Spliet et al. (2014) suggest a vehicle 

rescheduling formulation that considers incorporation of the deviation cost when a 

route deviates from a location onwards. They consider the objective as the 

minimization of total traveling cost and cost of deviating from the master schedule. 
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Stability is often used in production management as a rescheduling performance 

measure. However stability, in transportation problems, has not been a major 

consideration because of complex nature of the disruption management (Visentini et 

al. (2013)). Studies in transportation problems have not integrated the impact of 

schedule changes or deviation from the initial schedule as a separate objective 

functions. In the transportation context, stability is considered within the efficiency 

objective that is based on the ability to return to normal operation after a disturbance 

occurs (D’Ariano (2008)). Stability is implicitly taken into account in the objectives 

while minimizing the cost of disturbances. 
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CHAPTER 3 

 

 

3 BIOBJECTIVE MISSILE RESCHEDULING PROBLEM 

 

 

 

3.1 Problem Definition 

 

Consider a TG consists of several ships that are dispatched to a region in order to 

control sea. The ships equipped with a number of SAM systems that can be either a 

self-defense or an area-defense system. Assume that the sensors of air defense 

systems detect an air attack by a number of ASMs. To provide a response to ASM 

attacks, a sequence of operations called as detect-to-engage sequence is followed.  

TG uses a variety of search radars to detect ASMs. The detection process starts with 

producing information from every sensor of the ships. The information is constituted 

for each target ASM. The processing includes identification of type, speed and range 

of the ASMs. Also, sensors of air defense systems determine the target ship of each 

ASM. The detection process is performed by a central unit called Naval Tactical 

Data System (NTDS). NTDS collects data from each of the sensors of the ships in 

TG and produces the air picture by collecting, analyzing, and correlating the data and 

share information via real-time and in full coordination. By the communication data 

link, the picture is supplied to the ships and each ship in the link is capable of using 

the processed target data. Command and control, C2 system coordinates TG to ensure 

maximum efficiency and probability of success. 

 

Engagement process of a SAM to an ASM starts with tracking of the target. To 

predict the ASM’s future position and missile intercept point, ASMs are illuminated 

and tracked. By using ASM course and speed information, the prediction on 

interception point is solved by fire control systems. A fire control computer
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 processes all data and provides a solution to the fire control problem. Once the firing  

solution is solved, SAM round is ready to launch. Each engagement takes a constant 

setup time. The setup time includes target illumination radar track time, fire control 

solution time and launch delay time. 

 

The maximum distance of interception depends on the maximum effective range of 

SAM systems. Each SAM system has specific maximum and minimum effective 

ranges. A self-defense SAM system can only defend the ship it is stationed and an 

area defense SAM system can defend other ships within their effective ranges. 

Therefore, a ship can be defended by both onboard SAM systems and area defense 

SAM systems.  

 

Figure 3.1 shows a picture of a TG with four ships while an air attack with five 

attacking ASMs takes place. Ship 1 is a helicopter carrier with no defense system. 

Ship 3 has SAM 2 area defense system and SAM 3 self-defense system. The 

effective range of SAM 2 area defense system is depicted in dashed line. SAM 2 can 

engage all of the ASMs. SAM 1, SAM 2 and SAM 4 are self-defense systems. The 

circles around the ships indicate the effective range of the self defense systems. Since 

ship 1 has no defense systems, it can only be protected by SAM 2 area defense 

system. The lines between ASMs and ships show the target ships of ASMs. ASM 1 

and ASM 2 attack to ship 2, ASM 3 attacks to ship 3, ASM 4 attacks to ship 1 and 

ASM 5 attacks to ship 4. Note that we do not take into account the air defense close-

in weapon systems such as Phalanx, Korkut as they are the last line of defense 

against any leaker ASM that has not been neutralized by the previous SAM 

engagements scheduled centrally. 
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Figure 3.1 Depiction of a TG and attacking ASMs. 

 

Air defense operation process starts right after an air attack is observed. TEWASA 

system embedded inside the central command and control system of TG plans the 

allocation of all SAMs onboard ships in TG. An optimized missile allocation 

schedule is created and orders are given to ship via NTDS or engagement link in 

order to carry out the engagement schedule. Thus, a set of SAMs are scheduled 

against ASMs after the air attack is evaluated. The initial schedule includes a firing 

schedule against ASMs for each SAM system. Thus, SAM systems have shoot order 

plan to carry out the engagements scheduled. 

 

An example of the shoot order of SAM systems for the initial schedule is depicted in 

Figure 3.2. The target ASMs and time of shoots are given for each SAM system’s 

schedule. For instance, SAM system 1 first launches one round against ASM 1 and 
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two rounds against ASM 2. Since SAM system 2 is an area defense system, its shoot 

schedule includes to be engaged against ASM 4, ASM 1 and ASM 5. 

 

 

Figure 3.2 Sample engagement schedule of SAM systems.  

 

According to the initial schedule, the engagement process starts. Each SAM system 

fires the rounds against the target ASMs according to the starting time in the initial 

schedule. We consider three disturbances during the engagement process.  

 

1. Destroying the target ASM in early stages: If a SAM destroys the target 

ASM, the subsequent allocated SAMs in the original schedule will not be 

used against the already destroyed ASM. The remaining SAM rounds that are 

initially allocated for destroyed ASMs can be scheduled for other ASMs that 

are still threats for TG. If the original schedule is kept, other ships of TG may 

not utilize the potential benefit because of not using those remaining available 

SAM rounds.  

 

2. System breakdown: SAM systems including ship sensors have lots of 

electronic and mechanical parts that guide the missile from its launcher to its 
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target. The malfunction of one or more of those components may cause a 

SAM system to be unavailable. For instance, if the illumination radar of a 

SAM system is out of order or launchers are unable to perform firing the 

missile, SAMs of that system become incapable of neutralizing the targets. 

The effectiveness of air defense strategy will decrease with these unavailable 

SAMs since the prior scheduling is performed by not taking into account 

malfunctions of SAMs. 

 

3. A new incoming ASM after the engagement process started: Another 

disturbance during the engagement process is the occurrence of a new target 

ASM that is not considered in the original engagement schedule. In such a 

case, change on the allocation plan is required. If the original schedule is 

kept, the new threat will destroy its intended target. 

 

We name these three disturbances as “destroyed ASM”, “breakdown of a SAM 

system”, and “new target ASM” throughout the thesis. Before formulation of the 

problem, we present the main assumptions as follows: 

 

 We possess the optimized initial engagement allocation plan at the beginning 

of the engagement process.   

 A disturbance is occurred after the initial schedule is started and before the 

completion time of the engagement process. 

 At a time point, at most one disturbance occurs.  

 If an ASM is destroyed, initially allocated and not fired SAM rounds in the 

initial schedule become available for other ASMs that are still not destroyed. 

 If an ASM is not destroyed by all of the allocated SAM rounds, it destroys its 

target ship. 

 If a ship is destroyed, on board SAM systems become certainly unavailable. 

 If a SAM system breaks down within the engagement process, it is 

unavailable until the completion time of the engagement process.  
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 If a new incoming ASM is detected, then type, distance, speed and target of 

new incoming ASMs are identified. 

 After ASMs are detected, they are assumed to be classified according to their 

flight profiles and single shot kill probability matrix between SAM systems 

against ASMs are generated. Full coordination between ships in terms of 

allocation of SAM rounds is considered. 

 Missile allocation policy is based on SLS tactic.  

 An engagement between a SAM round and an ASM may be ongoing at the 

rescheduling time point. This means that before the rescheduling time point, a 

SAM round is fired and there is still time for interception to occur. There will 

be no allocation to these ASMs up to the completion time of the engagement 

according to SLS policy. 

 

3.2 Problem Formulation 

 

Suppose that there are n  incoming ASMs indexed by  1,.............i N n   and there 

are m  SAM systems indexed by  1,.............j M m  . Let V  denote the set of 

valid combinations of the ASM and the SAM systems, i.e.  ,i j V  if SAM system 

j  can engage ASM i . The time that ASM i  reach its target is it  and the maximum 

of these time values determines the engagement time horizon. Hence, max
i N

iH t


     

where i
i

i

pf
t

Va
 . ipf  and iVa  are the present distance of ASM and velocity of ASM 

respectively. We assume that each engagement takes a constant setup time, c . 

 

The maximum and minimum ranges of a SAM system are denoted by max
jra  and 

min
jra  respectively. jVs  is the velocity of SAM system j . The present distance, ipf  

and the constant velocity of ASMs, iVa  are known by TG. Earliest beginning time of 

the first engagement is ijq  and ijr  is the latest ending time of the last engagement. 
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SAM systems can intercept with ASMs within a specific engageability interval

,ij ijq r   . If max
i jpf ra , SAM system can engage ASM at the beginning of 

engagement process and 0ijq  . Otherwise, ijq  is calculated according to occurrence 

of interception at the maximum effective range of SAM system: 

 

 
max

max- .( )j
i j i c

j
ij

i

ra
pf ra Va

Vs
q

Va

  
  

 

The latest ending time of the last engagement between SAM and ASM pairs, ijr  is 

calculated according to the occurrence of interception at the minimum range of SAM 

system:  

 

min-i j
ij

i

pf ra
r

Va
  

 

The time horizon is divided into equal non-overlapping time slots and unit duration 

of each time slot is δ. Each engagement can start at the beginning of these time slots, 

indexed by  1,............k K H  . Figure 3.3 shows the time slots, time horizon and 

starting time of slots. The k  represents the beginning of time slot k.  

 

 

 

 

Figure 3.3 Engagements time horizon. 

 
 

We assume that at most one disturbance can occur in each time slots. This is a 

reasonable assumption in the problem definition since we take the unit duration of 

1

δ 
k │K│ 

Time slot 
2 H 

2  3  k  1  
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time slots in computational experiments as small as possible such as one second. 

Moreover, even in the case of more than one disturbance in a time slot, the 

formulation of the problem enables to find solutions.  

 

The sum of constant setup time and variable flight time gives engagement duration 

and is denoted by ijk . The engagement duration, is calculated as follows: 

 

 k .i c i
ijk c

i j

pf Va

Va Vs

  
   


 

 

Flight time depends on the velocities of ASM-SAM pairs and starting time slot of the 

engagement. SAMs scheduled against each ASM has to be performed in non-

overlapping time slots due to SLS firing policy. SLS policy ensures saving SAM 

rounds for possible future attacks. SLS policy can be defined as shooting at a target, 

look to see if it is killed and then shooting again if necessary. Thus, SAM systems do 

not shoot until the completion time of the previous shoot. We refer to Glazebrook 

and Washburn (2004) for a comprehensive review and extension on SLS policy. An 

example given by Glazebrook and Washburn (2004) for SLS policy is as follows. If a 

single shot kill probability of destroying a target is 0.9, shooting twice at the target 

provides 0.99 destroying probability with the expense of two shots. With SLS policy, 

destroy probability is still 0.99 if the time window is enough for looking the result of 

the engagement, but the average expenditure of shots is only 1.1. Thus, cost objective 

is ensured by using SLS policy.  

 

The maximum number of engagement between valid ASM and SAM pairs, ij  is 

calculated by dividing the engageability interval by the minimum duration of a single 

engagement in accordance with SLS firing policy. Since the engagement between 

ASM and SAM pairs can only be achieved within ,ij ijq r    engageability interval, set 

ijS  is defined as the time slots for which SAM j can be scheduled to engage ASM i.  
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  : ,  and , ,ij k k ijk ij ijS k K i j V q r              

 

Instead of multiple allocations of SAMs at the same time, SLS tactic provides no 

overlap of the engagements against each ASM. To ensure that engagements are 

scheduled due to SLS tactic, the specific set, ikJ   is defined for each ASM i and time 

slot k as follows:  

 

      , : , ,  and , ,ik ij k k ijJ j i j V S                  

 

It states that, if an engagement between ASM i  and SAM j  starts at time slot   that 

is prior to time slot k  and finishes after the end time of slot k , then  ,j   pairs are 

in the set ikJ . In short, the set includes all  ,j    pairs that blocks time slot k  of 

ASM i  

 

The single shot kill probability (sskp) of SAM j  against ASM i  when the 

engagement begins at the beginning of slot k  is denoted by ijkp . The maximum 

number of engagement between ASM and SAM pairs at rescheduling time point, RT
iju

are determined according to SLS firing policy. Each SAM system has a number of 

available rounds, jd  at the beginning of engagement process and jf  numbers of 

rounds are fired until the rescheduling time point. The parameter 1ijkx   if SAM j   

is scheduled to start the engagement process against ASM i   at the beginning of time 

slot k   in the initial schedule and 0ijkx  otherwise. The decision variable 1ijkY   if 

SAM j  is scheduled to start the engagement process against ASM i  at the beginning 

of time slot k  and 0ijkY   otherwise.  

 

When a disturbance happens, the time slot is set as rescheduling time point. The set 

of current ASMs, available SAM systems and engagement time horizon is updated at 
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rescheduling time point. Assume that there are dn  destroyed ASMs indexed by 

 1,........d di D n   and nn  new incoming ASMs indexed by  1,........n ni I n  . 

The broken SAM systems are indexed by .  1,........b bj B m  . Finished time slots 

at rescheduling time point are indexed by  1,........f fk K t  . Set  /A N I D   

includes current ASMs and set  /S M B  includes available SAM systems at 

rescheduling time point. The remaining time slots at rescheduling time point is in set 

 /T K F . The mathematical formulation of the biobjective missile rescheduling 

problem (BMRP) is as follows: 

 

(BMRP) 

   ZND ijk ijk
i A j S k T

min Y x
  

                                                    3.1  

 
 

  Z 1 1
ijkY

PNL ijk
i A k T j S

max p
  

 
   

 
                                       3.2  

subject to 

         ijk j j
k T
i A

Y d f j S



                                                            3.3  

( , )

1             ,
ik

ijp
j p J

Y i A k T


                                                  3.4  

           ,
ij

RT
ijk ij

k S

Y i j V


                                                     3.5  

   0,1              , ,ijkY i j V k T                                            3.6  

 

Objective function (3.1) is the minimization of schedule disruption value that is the 

total number of changed allocations for all SAM systems. It minimizes the total 

difference of scheduled engagements between initial and new schedule. Objective 

function (3.2) maximizes the probability of no-leaker for whole task group. 

Constraint set (3.3) enforces limit on the number of SAM rounds to schedule. 

Constraint set (3.4) prevents allocation of SAMs to ASMs until the previous 
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engagement finishes. Within the engagement interval, constraint set (3.5) restricts the 

number of rounds of each SAM that can be scheduled to each valid ASM. Constraint 

set (3.6) ensures that ijkY can only have binary values. 

 

BMRP considers survival probability of ships as the efficiency measure. The inner 

part of objective function (3.1)  
 

1
ijkY

ijk
k T j S

p
 

 is the probability that an ASM 

cannot be destroyed over all allocated SAM rounds against that ASM. The no-leaker 

probability of each ASM is calculated by  
 

1 1
ijkY

ijk
k T j S

p
 

  . The multiplication of 

no-leaker probability of ASMs gives the no-leaker probability of TG. 

 

BMRP considers the total number of changed SAM round allocations with respect to 

initial schedule as a stability objective. The disruption on the schedule occurs 

according to difference between new and initial schedule in the allocation of SAM 

round j  against an ASM i  at time slot k . Thus, an allocation that exits in the new 

schedule and does not exist in the initial schedule brings one disruption since 1ijkY   

and 0ijkx  . If an allocation exits in the initial schedule and discarded in the new 

schedule, it also brings one disruption since 0ijkY   and 1ijkx  . 

 

In solution procedure, the initial schedule is generated with respect to the 

maximization of probability of no-leaker value of TG while satisfying number of 

rounds available for each SAM system and ensuring SLS firing policy. The ijkx

parameters are obtained from the results of the initial schedule. 

 

3.3  Multiobjective Optimization 

 

In this section, we present the basic definitions about multiobjective optimization 

problems.  
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A multiobjective optimization problem involves more than one objective to be 

optimized and these objectives generally conflict with each other.  

 

A multiobjective problem with p  objectives can be defined as follows: 

 

 1 2 ( ), ( )........., ( )nmin Z x Z x Z x  

subject to   

x X  

 

where nx R  is a feasible solution, ( )iZ x  is the thi  objective function value of 

solution x  and X  is the set of all feasible solutions.  

 

For each solution x  in the decision variable space X , there is a point in the 

objective space Z . A solution x  is said to dominate 'x  if and only if '( ) ( )i iZ x Z x  

for all i  and '( ) ( )i iZ x Z x  for at least one objective i . If there exists no solution that 

dominates x X  then x  is said to be non-dominated.  

 

The set of non-dominated solutions in decision space X  is called as Pareto optimal 

set and the set of non-dominated solutions in objective space Z  is called as Pareto 

Front. 

 

We refer to Steuer (1986) study for a comprehensive review of the multiple criteria 

optimization theory. 

 

3.4 Computational Complexity 

 

Lloyd and Witsenhausen (1986) prove that WTA problem is NP-Hard. Our problem 

differs from WTA problem in terms of both objectives and constraints. In this 

section, we show theoretical results about the computational complexity of BMRP.  
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Theorem 3.1. BMRP is NP-Hard. 

 

Proof: In mathematical formulation of the BMRP, first we consider as if only 

efficiency objective (3.2) exists. Assume that there is only one ASM threat, and 

multiple SAM systems  1,...,j M m  . The objective function is the maximization 

of  
 

1 1
jkY

jk
k T j S

p
 

  and it can be converted to the minimization of  
 

1
jkY

jk
k T j S

p
 



The non-linearity of objective function can be linearized by taking the logarithm 

since  ln( ) ln( )a b  if and only if    ,a b a b R   . 

 

By taking the logarithm of the equation, objective function becomes

  ln 1 jk jk
j k

min p Y . Let we denote  ln 1jk jka p   . To keep the objective as 

maximization, we transform the objective function as  jk jk
j k

Max a Y . The decision 

variable 1jkY  , if SAM j  is scheduled to start the engagement process against the 

ASM at the beginning of time slot k  and otherwise 0jkY  .  

 

Assume that the single shot kill probability does not depend on time slots. Hence,  

 ln 1j ja p    and decision variable 1jkY   if SAM round is chosen to allocate 

against the ASM until the completion of the engagement time horizon. The problem 

becomes choosing SAM rounds to allocate against the ASM until the completion of 

the engagement time horizon. The time horizon, H  can be considered as capacity 

and according to velocities and shoot sequence of SAM systems, each SAM systems 

have an engagement duration size, jt . To ensure the available round limit and 

maximum number of engagement limit, we can simplify the problem by considering 

each SAM systems have only one available round 1jd  . 

 

The problem is to choose a set of SAMs to allocate against ASM until it reaches the 

target ship. The resulting restricted MAP is exactly 0/1 knapsack problem where 
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1kY   if SAM round is chosen to allocate against the ASM. SAM rounds correspond 

to items and input is a collection of SAM systems that each SAM  1,...,j M m 

has reward 0ja  , size 0jt  , and a knapsack capacity 0H  . If a SAM round j  is 

scheduled against ASM, it brings profit ja  and takes jt  time slots from the time 

horizon H . However, size of SAM, jt , depends on the sequence of its allocation. As 

time passes, the value of jt  decreases since ASM is close to its target ship. Dean et 

al. (2008) investigate the 0/1 stochastic knapsack problem when the size of an item is 

determined while trying to place it in the knapsack. They place items in the knapsack 

sequentially and the size of an item is identified with respect to sequence of placing. 

They consider deterministic item profits and prove that the problem is NP-Hard since 

the problem reduces to the classical knapsack problem in the deterministic item size 

case.  

 

The producing one of the extreme point of BMRP is equivalent to the selecting items 

to place to a knapsack with item size depending on the sequence of placing it. The 

known strongly NP-hard problem, 0/1 stochastic knapsack problem, is actually just a 

special case of the BMRP formulation with one objective. Since resulting restricted 

BMRP model includes solution of stochastic 0/1 knapsack problem, BMRP is at least 

as hard as stochastic 0/1 knapsack problem and generating other non-dominated 

solutions bring additional computational complexity. Thus, by restriction, BMRP is 

strongly NP-Hard.   

 

Theorem 3.2. BMRP can be solved optimally in polynomial time in case of one 

ASM threat, multiple SAM systems, and when all the engagement durations are less 

than the unit duration of time slots.  

 

Proof: In Theorem 1, we transform the formulation of BMRP in case of one ASM 

threat, multiple SAM systems. The objective function is converted to

 jk jk
j k

Max a X   
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Consider that when a SAM system j  scheduled at time slot k , it only blocks itself. 

In other words     ,jk j k   . Thus, for each time slot, the scheduled SAM in time 

slot k  does not affect other time slots and constraint set (3.4) can be formulated as

1   jk
j S

Y k T


   . 

 

Since there is only one ASM, constraint sets (3.3) and (3.5) are     jk j j
k T

Y d f j


    

and    RT
jk j

k T

Y u j


   respectively. One of them is redundant and smallest of j jd f  

and RT
j  is taken. Instead of constraint sets (3.3) and (3.5), the constraint k j

k T

Y s


  

is formulated where ( , )RT
j j j js min d f u  . The resulting formulation of the problem 

is as follows: 

 

 jk jk
j S k T

max a Y
 
                                                       (3.7)  

subject to 

 

        jk j
k T

Y s j S


                                                 (3.8)  

1         jk
j S

Y k T


                                                 (3.9)  

 0,1         ,jkY j S k T                                      (3.10)  

 

The coefficient matrix of the above resulting model is totally unimodular. Hence, it 

can be solved in polynomial time. From a different point of view, the transformed 

BMRP formulation with one objective is exactly the generalized assignment problem 

with all jobs having unit size. 1jkY   indicates that job k  is assigned to machine j . 

The maximum number of jobs in the machine j  has to be less than js  and job k  can 

be assigned to at most one machine. Since the generalized assignment problem with 

unit size jobs is solvable in polynomial time (Krumke and Thielen (2013)), we can 
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solve BMRP with one objective in polynomial time in case of one ASM threat, 

multiple SAM systems, and when unit duration of time slots is greater than all 

engagement durations. We show that generating the extreme point with maximum 

efficiency is solvable in polynomial time in case of one ASM threat, multiple SAM 

systems and when unit duration of time slots is greater than all engagement 

durations. BMRP includes several non-dominated solutions. All non-dominated 

solutions of BMRP can be found by generating solutions from maximum NDZ  to 

minimum NDZ . By choosing set of jkY  with specific NDZ , assignment of job k  to 

machine j  leaves problem polynomially solvable. As a result, BMRP is solvable in 

polynomial time in case of one ASM threat, multiple SAM systems, and when unit 

duration of time slots is greater than all engagement durations.  

 

Theorem 3.3. BMRP can be solved in polynomial time in case of one SAM system, 

one ASM threat and constant available rounds. Computational complexity of the 

BMRP is  sO k e  where e  is the maximum number of NDZ , k  is the number of time 

slots, s  is the minimum of available rounds and maximum number of engagements 

within the engageability interval. 

 

Proof: Consider the problem in case of one incoming ASM and one SAM system. 

Also we take into account only the efficiency objective. The problem becomes the 

decision of in which time slots engagements are scheduled. The decision variable 

1kY   if the SAM system is scheduled to start the engagement process against the 

ASM at the beginning of time slot k  and 0kY  otherwise. Also kp  is the single shot 

kill probability of SAM system if engagement starts at the beginning of time slot k .  

 

By linearization, the objective function of the MAP formulation becomes.

 k k
k T

max a Y

  where  ln 1k ka p    and the round constraint is 

 ,k
k

Y min d f u s   . The transformed formulation is as follows: 
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  k k
k T

max a Y

                                                         3.11  

subject to 

k
k T

Y s


                                                                 3.12  

1        
k

p
p J

Y k


                                                     3.13  

 

There are k  blocking constraints in constraint set (3.13) and they enforce the SLS 

policy. The schedule of the engagements should not overlap and kJ  set includes the 

time slots that block the thk  time slot according to the duration of the engagements. 

Since set kJ  is the subset of set K  for each time slot k , each constraint set (3.13) 

with at least two variables can be reformulated by writing all binary combinations of 

variables (we do not need to write constraint with one variable 1 kY  since it is 

trivial). Thus, if a blocking constraint includes   variables, for 2  , in the new 

formulation there will be 
2

 
 
 

 number of constraints for this blocking constraint. 

Thus, each blocking constraint including more than one variable constitutes edge 

constraints for a graph G , (u) (v) 1  ( , )Y Y u v E    . The number of vertices, 

 V G , is equal to the number of decision variables, so  V G k .  

 

We convert BMRP formulation with one objective to the maximum weighted 

independent set problem in polynomial time. However, there is an additional round 

constraint (3.12),  k
k T

Y s


 . If s  is a constant then we can solve the problem in 

 (G)
s

O V  by checking all subsets with no more than s vertices, so it becomes 

polynomial-time solvable because the number of s-subsets of (G)V  is bounded 

above by (G)
s

V  (Courcelle et al. (2000)). 
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In conclusion, if a BMRP problem has only one ASM and SAM system and available 

round of SAM system is a predefined constant value, the complexity of BMRP 

formulation with one objective is  sO k and solvable in polynomial time. Besides, 

for all possible number of disruption values, we can find results of BMRP in 

polynomial time and the computational complexity is  sO k e .  

 

Corollary 3.1.  In case of one SAM system, one ASM threat, if the number of 

available rounds of SAM system to be scheduled against ASM depends on the unit 

duration of time slot then BMRP is NP-hard. 

 

Proof: If s depends on, (G)V , the problem of deciding whether a graph G  has an s-

clique, where s  depends on (G)V  is NP-Hard (Dabrowski et al. (2011)). Thus, if 

number of available round, d , or the maximum number of engagement between 

ASM and SAM,  , depend on unit duration of time slots,  , in other words, k , 

(since 
H

k


  where H is time horizon), BMRP is NP-Hard.  

 

3.5 Solution Procedures 

 

In this section, we develop solution methods to solve the problem. To generate exact 

Pareto front, we first use augmented ε-constraint method. Since objective functions 

are nonlinear, we describe linearization process of objective functions. We give 

implementation of augmented ε-constraint method to linearized formulation of 

BMRP. Secondly, we present the procedures and steps of the two newly proposed 

heuristic algorithms. 

 

3.5.1 Augmented ε-Constraint Method 

 

BMRP model includes two non-linear objective functions. To solve the problem, we 

linearize both objectives and use augmented ε-constraint method to generate all non-
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dominated solutions. For the linearization of stability objective, NDZ  we define two 

new binary deviation variables, ,ijk ijk   . The linearized objective function and the 

new constraint are as follows:  

 

  ZLND ijk ijk
i I j S k T

min   

  

   

subject to 

      , ,ijk ijk ijk ijkY x i I j S k T          

 

The nonlinearity term of the efficiency objective function, PNLZ , is linearized by 

defining piecewise linear functions. By taking the logarithm of the equation and 

defining a new constraint set, the problem is converted to mixed integer 

programming problem (Karasakal (2004)).  

 

The probability of no-leaker for each ASM can be denoted by hi.

 
,( , )

 1 1
ijkY

i ijk
k T

j S i j V

h p


 

 
     
 

 . Thus PNL i
i I

Z h


 . The objective function becomes 

 PNL i
i I

Z ln h


  by taking the logarithm of the equation. 

 

The new set of constraints can be defined as  
 

1 1
ijkY

ijk i
k T j S

p h
 

   . The logarithm 

of both sides in the constraint is taken and the equation is simplified by defining new 

parameter and variable. 

 

 
ijk ijk i

k T j S

a Y b
 

     where   1ijk ijka ln p    and  1i ib ln h   . With new objective 

function and new introduced constraint, the model is as follows: 
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   Z  PNL i
i I

Max ln h


  

subject to 

 
 

1ijk ijk i
k T j S

a Y ln h
 

    

 

Since objective function and right hand side of constraint include ih , the ratio of 

those enable to define linear piecewise functions, 
 
 1

i
i

i

ln h
c

ln h

 

 

 

ic  is a concave function and by using piecewise linear functions, linear 

approximation can be performed. To generate piecewise linear functions, ib  is 

partitioned into l  parts with lZ  values and bounding constraints are added for each 

part of ib  values. 

 

We refer to Kwon et al. (1999), Karasakal (2004) and Winston (2004) for further 

information about the linearization process of efficiency objective.  

 

The linearized formulation of BMRP is as follows: 

 

(L-BMRP) 

  ZLND ijk ijk
i I j S k T

min   

  

                                                   3.14  

              
1

  Z .
p l

LPNL p ip
p i I

max c b


 

                                                          3.15  

subject to 

 1

                     
p l

ijk ijk ip
k T j S p

a Y b i A


  

                                      3.16  

10                                   ,  1ipb Z i A p                             3.17  

10 -                           , 2,....,ip p pb Z Z i A p l                     3.18  
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                     , ,ijk ijk ijk ijkY x i A j S k T                      3.19  

, {0,1}                              , ,ijk ijk i A j S k T                     3.20  

and 

 3.3 ,  3.4 ,  3.5 ,  3.6  

 

To solve L-BMRP, efficiency objective function is chosen to be optimized while 

stability objective is formulated as a constraint. Augmented ε-L-BMRP formulation 

is as follows: 

 

 Z .ZLPNL LNDMax   

subject to  

LNDZ    

       3.3 - 3.6  and 3.16 - 3.20  

 

The multiplication of LNDZ  with small number   avoids generation of inefficient 

solutions.  is a small value that avoids generating weakly non-dominated solutions. 

The parameter   is updated due to LNDZ  value of non-dominated point in each 

iteration and non-dominated points are produced. The solution procedure of 

augmented  -constraint method is as follows: 

 

Solution Procedure: 

 

Step 1: Initiate engagement process with initial schedule.  

Step 2: Observe the disturbance within the engagement process. 

Step 3: Set     

Step 4: Solve augmented  -L-BMRP.  

Step 5: If a feasible solution is found, add this solution to the non-dominated solution 

set. Otherwise, STOP. 



 48   
 

Step 6: Set    to LNDZ  value of last generated efficient solution, LNDZ   and go to 

Step 4. 

 

3.5.2 Heuristic Approach 

 

Missile allocation problems must be solved within a few seconds in order to use the 

models in real-life. We already prove that computational complexity of the BMRP is 

NP-hard. Also, our experiments show that in several seconds we cannot solve small 

size problems such as problem with 4 ASMs and 4 SAM systems. Hence, augmented 

 -constraint method do not enable us to use the model results during the engagement 

process. To generate non-dominated solutions and meet the solution time 

requirement, we develop two heuristic procedures. First one is New and Replace 

Heuristic (NRH). NRH allocates the available SAM rounds that are available and not 

included in the initial schedule. Second one is Change and Exchange Heuristic 

(CEH). CEH revises the initial schedule with switching the target of SAM systems. 

 

3.5.2.1 New and Replace Heuristic (NRH) 

 

In this section, we present a heuristic algorithm that concentrates new allocation and 

replacement of SAM rounds in the existing schedule. The first objective of BMRP 

Z   ND ijk ijk
i A j S k T

Y x
  

  is the schedule disruption value that calculates the total 

number of disruption in the initial schedule. At the beginning of the engagement 

process, each SAM system has available rounds, jd  and the optimum initial schedule 

determines the number of SAM rounds to be fired. If a SAM destroys the target 

ASM, the subsequent allocated SAMs in the initial schedule are not fired to the 

destroyed ASM. The remaining SAM rounds that are included in the initial plan can 

be scheduled for other ASMs that are still threats for TG. On the other hand, at 

rescheduling time point some of the SAM rounds are already fired and missed their 
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targets. Thus, for each SAM system, we have a new available number of SAM 

rounds at rescheduling time point.  

 

NRH algorithm consists of two parts. The first part is allocation of a new on hand 

SAM round j , to an ASM i  at time slot k . This new allocation brings one disruption 

since  1ijkY   and 0ijkx  . The second part includes discarding an initially allocated 

SAM round j from a target ASM i  and replacing a different SAM round ' j  to the 

ASM i engagement plan. Thus both SAM system  j and ' j  is disrupted in this case. 

Since 0 1ijk ijkY x   and ' ' 1 0ij k ij kY x   , two disruptions occur. 

 

We inspired from the Cauchy’s mean theorem (Cauchy (1821)) in developing the 

heuristic procedure. In this theorem, the product of positive numbers of constant sum 

attains its maximum value when they are equal. Since the probability of no-leaker of 

TG is the product of no-leaker probability of each ASM, ih , we concentrate on the 

ASM that has minimum probability of no-leaker. Thus, the probability of no-leaker 

of ASMs and single shot kill probability of SAM systems are two main concerns 

while allocating a SAM round. We first try to allocate SAM rounds against ASM that 

has minimum probability of no-leaker value and we increase no-leaker probability 

value of ASM which has minimum. 

 

At rescheduling time point, we have a non-dominated solution with no disruption,

Z 0ND   which is the extreme point of the efficient frontier. We start generating 

solutions from minimum ZND  to maximum ZND  in the objective space. For each 

possible number of disruptions on the schedule, we try to achieve the maximum 

value of ZPNL . We start from zero disruption, ZND , increase ZND  by one in each 

iteration  1,2,....,  ND NDZ max Z . Thus, for each integer ZND  value, we generate 

solutions up to the maximum number of possible disruptions. We also consider the 

combination of new allocation and replacement values for each specific ZND  in 
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scheduling of SAM rounds. For instance, for Z 5ND  , the possible combinations of 

number of new allocation and replacement values are {5,0},{3,1},{1,2} respectively 

since new allocation brings one and replacement brings two disruptions. For each 

combination, we generate a solution with Z 5ND  . We choose the solution with 

maximum probability of no-leaker among those. After all solutions are generated for 

different ZND , we determine the non-dominated solutions. The steps of the NRH 

algorithm are as follows:  

 

Steps of the NRH Algorithm 

 

Step 0. Calculate available on hand SAM rounds, jon , that can be allocated in 

addition to original schedule for each SAM system at rescheduling time point, RT.  

 Calculate number of allocated SAM rounds, ja  at the beginning of engagement 

process, j ijk
i A k T

a x
 

 .  

 If an ASM is destroyed, calculate the subsequent allocated SAMs, jsa , that 

are allocated to the destroyed ASM initially and will not be launched against 

the destroyed ASM. 

If ASM i  is destroyed then j ijk
i D k RT

sa x
 

  . Otherwise  0jsa  . 

 j j j jon d a sa     where jd  is the available round of SAM systems at the 

beginning of the engagement process. 

 

Set Z 0ND   and calculate ZPNL  according to the initial schedule. The resulting 

solution is the first non-dominated point with minimum disruption value.  

 

New Allocation Part 

Step 1. Set Z Z 1ND ND  . Use the initial schedule. Determine number of the 

maximum replacement value, rmax , number of maximum new allocation value, 
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nmax  with respect to specified number of disruption ZND  and initialize number of 

total new replacement value, rtn . 

 Z
2

r NDmax
    

, Zn
NDmax  , 0rtn  .  

 

Step 2. Calculate the total number of new allocation value, 2n r
NDtn Z tn  . If 

0ntn  , go to step 15. Otherwise, set the number of current new allocation value, 

0ncn  .  

 

Step 3. Create set A  that includes available ASMs for allocation. Calculate the 

probability of no-leaker, ih  , for each ASM in set A. 

 

Step 4. If  A   then ntn  number of SAM rounds cannot be allocated against 

ASMs, stop. Otherwise select the ASM i  from set A with lowest ih ,  i
i A

i = argmin h


. 

 

Step 5. Create set S  that consists of SAM systems. Set S  includes SAM systems 

that have valid combination against selected ASM i . Also, the SAM systems in set 

S must have available SAM rounds,  ( , )  and 0i jS j i j V on   . Sort the SAM 

systems in the set due to single shot kill probability against ASM i . 

 

Step 6. If  S  , there is no available SAM to allocate against ASM i , discard 

ASM i  from set A ,  \A A i  and go to step 4. Otherwise, choose the available 

SAM system j  from set S  with maximum single shot kill probability to allocate 

against the selected target ASM i. 
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Step 7.  Determine the available time slot for selected ASM i  to allocate SAM round

j . Start from the rescheduling time point, RT, and search for available time slot to 

allocate SAM round j , set p RT .  

 

Step 8. If p H , no available time slots exist to schedule SAM round j , discard 

SAM round j  from set S ,  \S S j  and go to step 6. 

 

Step 9.  Check availability of SAM round j  to schedule at time slot p , if ijp S  

then 1p p   and go to step 8.  

 

Step 10. If p  is between starting time slot of an already allocated SAM round and 

finishing time slot of an already allocated SAM round, p  is not available to allocate 

new SAM round, 1p p  , go to step 8. 

 

Step 11. If p  is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is after the starting time slot of an already allocated SAM round, p  is not 

available to allocate new SAM round, 1p p  , go to step 8. 

 

Step 12. If p  is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is before the starting time slot of an already allocated SAM round  

or p  is after the finishing time slot of an already allocated SAM, then p is to be 

determined as the starting time slot of new SAM round to be scheduled. Allocate 

SAM round to ASM at the beginning of time slot p . Update no-leaker probability of 

ASM i  and update on hand available rounds of SAM system j , 1j jon on  . 
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Step 13. Set 1n ncn cn  , if n ncn tn  then ntn  number of new allocation is 

performed. Otherwise go to step 3. 

 

Replacement Part 

Step 14. If 0rtn  , keep the result as a possible non-dominated solution and stop. 

Otherwise, set the number of current replacement value, 0rcn  .  

 

Step 15. Create set E  that includes current threat ASMs. 

 

Step 16. If  E  , then rtn  number of SAM cannot be replaced against ASMs, 

stop. Otherwise select the ASM with lowest ih ,  i
i E

i = argmin h


. 

 

Step 17. Create set M  that includes the already allocated SAM rounds to the 

selected ASM. Determine the SAM 'j  from set M  with minimum sskp that is to be 

removed from the allocation plan of selected ASM. If  M  , then it could not be 

achieved for ASM i  that a SAM round replaced with another one with higher sskp. 

Discard ASM i  from set E ,  \E E i  and go to step 16. 

 

Step 18. Create set R  where it consists of SAM systems. Set R  only includes SAM 

systems that have valid combination against selected ASM i . Also, the SAM 

systems in set R  must have available SAM rounds, and single shot kill probability of 

SAM rounds j  in set R  against ASM i  are greater than  the single shot kill 

probability of SAM round 'j   '( , ) , 0 and ( , ) ( , )i jR j i j V on sspk i j sspk i j    . 

Thus, replacement of a SAM round j  from set R  instead of SAM round 'j provides 

a better probability of no-leaker value for ASM i .  

 

Step 19. Choose the available SAM system j  with maximum single shot kill 

probability to allocate against the selected target ASM, if  R   then there is not 
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available SAM round that has higher sskp, so discard SAM 'j  from the set, 

 '\M M j  and go to step 17. 

 

Step 20. Determine the available time slots for selected ASM to allocate SAM round 

j . Start from the rescheduling time point and search for available time slot to 

allocate SAM j , set r RT . 

 

Step 21. If r H , no available time slots exist to schedule SAM round j , discard 

SAM round j  from the set R ,   \R R j  and go to step 19. 

 

Step 22. Check availability of SAM round j  to schedule at time slot r , if ijr S  

then 1r r   and go to step 21, otherwise go to step 23.  

 

Step 23. If r  is between starting time slot of an already allocated SAM round and 

finishing time slot of an already allocated SAM round, r  is not available to allocate 

new SAM round, 1r r  , go to step 21. 

 

Step 24. If r  is before the starting time slot of an already allocated SAM round and 

ijpr

 

  
 

is after than the starting time slot of an already allocated SAM round, r  is 

not available to allocate new SAM round, 1r r  , go to step 21. 

 

Step 25. If r  is before the starting time slot of an already allocated SAM round and 

ijpr

 

  
 

 is before than the starting time slot of an already allocated SAM round  

or r  is after the finishing time slot of an already allocated SAM, then r  is to be 

determined starting time slot of new SAM round to be scheduled. Remove SAM 

round 'j  and allocate SAM round j  to the allocation plan of ASM i  at the 

beginning of time slot r . Update 1j jon on   and ' ' 1
j j

on on  . 
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Step 26. Set 1r rcn cn  , if r rcn tn then rtn  number of new allocation is 

performed, otherwise go to step 15. 

 

Step 27. If r rtn max  then 1r rtn tn   and go to step 2, otherwise keep the result as 

a possible non-dominated solution. 

 

Step 28. If Z Zmax
ND ND  where Zmax

ND  is the maximum number of disruption, go to step 

1, otherwise stop. 

 

3.5.2.2  Change and Exchange Heuristic (CEH) 

 

New and Replace Heuristic considers allocating available and not used SAM rounds 

against the target ASMs that has the minimum probability of no-leaker value. 

However, at rescheduling time point there may not be any available SAM rounds to 

allocate against ASMs. For instance, if at the beginning of an engagement process, 

number of allocated SAM rounds, ja  is equal to the available number of SAM 

rounds, jd  and if there is not any subsequent allocated SAM round reserved for the 

destroyed ASM initially, then new allocation or replacement of SAM rounds against 

ASMs is not possible. Thus, NRH cannot produce any non-dominated solution since 

the number of available SAM round, jon , is zero. But, the probability of no-leaker 

value of ASMs may differ from each other at rescheduling time point and we may 

change the target ASM of some SAM systems. This can balance the probability of 

no-leaker value of ASMs and increase the efficiency of the system. In other words, 

discarding a SAM round from the schedule of an ASM having greater probability of 

no-leaker value and assigning this SAM against an ASM that has a smaller 

probability of no-leaker can provide a better solution for the problem. In addition, 

exchanging two different SAM rounds between two ASMs may also increase the 

efficiency of the system. Hence, the heuristic algorithm is based on two parts; 

changing the target ASM of a SAM round, exchanging two different SAM rounds 

between allocation plans of two ASMs. As in Cauchy’s mean theorem (Cauchy 
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(1821)), we examine whether it is possible to change or exchange allocated SAM 

rounds between the ASM that has the minimum probability of no-leaker and the 

ASM that has the maximum probability of no-leaker value. We change the target 

ASM of SAM systems and it enables us increasing the probability of no-leaker of 

ASM and also increasing the probability of no-leaker of TG. The steps of the CEH 

algorithm are as follows: 

 

Steps of the CEH Algorithm 

 

Change Part 

Step 1. Use the initial schedule. Create set A  that consists of current ASMs. 

Calculate probability of no-leaker value of TG, PNLZ . 

 

Step 2. If  A  , stop. Otherwise, calculate the probability of no-leaker value of 

ASMs in set A , and select ASM i  with the minimum probability of no-leaker value, 

ih  where  i
i A

i = argmin h


. 

 

Step 3. Create set 'A  that includes ASMs that have a greater probability of no-leaker 

value than ih . Set 'A  is created in order to select the ASM with the maximum 

probability of no-leaker value.  So, the SAM rounds of ASMs in set 'A  can be 

allocated to the schedule of ASM i  that has minimum probability of no-leaker value. 

 

Step 4. If  'A  , go to step 2. Otherwise, calculate probability of no-leaker value 

of ASMs in set 'A , and select the ASM 'i  with maximum probability of no-leaker 

value, '
ih  where  

'

'
i

i A

i = argmin h


 

 

Step 5. Create set 'R  that includes allocated SAM rounds for ASM 'i  after the 

rescheduling time point. 
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 Discard the SAM rounds from set 'R  that cannot engage ASM i . Thus, we 

ensure that 'R  contains only SAM rounds that can engage ASM i  and a new 

SAM round can be allocated to the schedule of ASM i  from the engagement 

list of ASM 'i . 

 

Step 6. If  'R  , discard ASM 'i  from set 'A ,  ' ' '\A A i  and go to step 4. 

Otherwise select the SAM round, 'j , from the engagement list of ASM 'i  with 

minimum single shot kill probability. We choose the SAM round to be discarded 

with the minimum sskp from the engagement list of ASM 'i  not to ruin the 

efficiency of the ASM 'i . Thus, we ensure slow but controllable improvements on 

efficiency of the system,   
'

' ' ',
j R

j = argmin sskp i j


. 

 

Step 7. Determine the SAM round 'j  that can engage ASM i  according to available 

time slots. Start from the rescheduling time point and search for available time slot to 

allocate SAM 'j , set p RT . 

 

Step 8. If p=T, no available time slots exist to schedule SAM round 'j , discard SAM 

round 'j from set 'R ,   ' ' '\R R j  and go to step 6. 

 

Step 9. Check the availability of SAM round 'j  to schedule at time slot p . If  

ijp S  then 1p p   and go to step 8, otherwise go to step 10.  

 

Step 10. If p  is between starting time slot of an already allocated SAM round and 

finishing time slot of an already allocated SAM round, p  is not available to allocate 

a new SAM round, 1p p  , go to step 8. 
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Step 11. If p  is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is later than the starting time slot of an already allocated SAM round, p  is 

not available to allocate a new SAM round, 1p p   go to step 8. 

 

Step 12. If p  is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is before than the starting time slot of an already allocated SAM round  

or p  is after the finishing time slot of an already allocated SAM, then p  is to be 

determined as the starting time slot of a new SAM round 'j  to be scheduled. Remove 

SAM round 'j  from the schedule of ASM 'i . Allocate SAM round 'j to ASM i  at 

the beginning of time slot p . Update probability of no-leaker of ASM i  and 'i . 

 

Step 13. Calculate the new probability of no-leaker value of TG, n PNLZ  . If 

n PNL PNLZ Z  , calculate the number of disruptions, NDZ , with respect to the initial 

schedule. Keep the solution as a possible non-dominated solution and update the 

engagement allocation plan, and go to step 14. Otherwise, keep the current 

engagement allocation plan since changes on the engagement allocation plan 

generates a worse solution. Discard SAM round 'j  from set 'R ,   ' ' '\R R j go to 

step 6. 

 
Exchange Part 

 
Step 14. Create set E  that includes current ASMs to select the ASM with minimum 

probability of no-leaker value. Calculate probability of no-leaker value of TG, PNLZ . 

 

Step 15. If  E  , go to step 1. Otherwise, calculate the probability of no-leaker 

value of ASMs in set E, and select the ASM  with minimum probability of no-leaker 

value,  i
i E

i = argmin h

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Step 16. Create set M  that includes the allocated SAM rounds for ASM i  after the 

rescheduling time point in the initial schedule.  

 

Step 17. If  M  , there is no available SAM round to be removed from the 

engagement schedule of ASM i . Thus, exchange of SAM rounds is not possible. 

Then, discard ASM i  from set E ,  \E E i  and go to step 15. Otherwise select the 

SAM round j  from the engagement list of ASM i  with minimum single shot kill 

probability. In this step, we determine the SAM round to be removed from the 

engagement schedule of ASM i  in order to replace a better SAM round in terms of 

sskp,   ,
j M

j = argmin sskp i j


. 

 

Step 18. Create set 'E  that includes ASMs that have greater probability of no-leaker 

value than ih . That is the SAM rounds of ASMs in set 'E can be allocated to the 

engagement plan of ASM i . 

 

Step 19. If  'E  , go to step 17. Otherwise, calculate the probability of no-leaker 

value of ASMs in set 'E  and select the ASM with maximum probability of no-leaker 

value,  '
'

'

i
i E

i = argmin h


. 

 

Step 20. Create set 'M  that includes allocated SAM rounds for ASM 'i  after the 

rescheduling time point. 

 Discard the SAM rounds from set 'M  that cannot engage ASM i . Thus, we 

ensure that 'M contains only SAM rounds that can engage ASM i  and a new 

SAM round can be replaced to the schedule of ASM i  from the engagement 

list of ASM 'i  
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 Discard the SAM rounds from set 'M  that the single shot kill probability 

between SAM round in set 'M and ASM i  is less than the single shot kill 

probability between SAM round j and ASM i . So, we ensure that removing 

SAM round j and replacing a SAM round 'j  to the schedule of ASM i  

always make an improvement to the probability of no-leaker of ASM i  

which has the minimum ih . 

 

Step 21. If  'M  , go to step 19. Otherwise select the SAM round 'j  from the 

engagement list of ASM 'i  with the minimum sskp. We choose the SAM round to be 

removed with the minimum sskp from the engagement list of ASM 'i  not to ruin the 

efficiency of ASM 'i . Thus, we ensure slow but controllable improvements on the 

efficiency of the system,   
' '

' ' ',
j M

j = argmin sskp i j


. 

 

Step 22. Determine the SAM round that can engage to ASM i  according to available 

time slots. Start from the rescheduling time point and search for an available time 

slot to allocate SAM 'j , set p RT . 

 

Step 23. If p H , no available time slot exists to schedule SAM round 'j , discard 

SAM round 'j  from set 'M ,   ' ' '\M M j  and go to step 21. 

 

Step 24. Check availability of SAM round 'j  to schedule at time slot p , if 'ij
p S  

then 1p p   and go to step 23, otherwise go to step 25.  

 

Step 25. If  p  is between starting time slot of an already allocated SAM round and 

finishing time slot of an already allocated SAM round, p  is not available to allocate 

a new SAM round, 1p p  , go to step 23. 
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Step 26. If p is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is after the starting time slot of an already allocated SAM round, p is not 

available to allocate new SAM round, 1p p  , go to step 23. 

 

Step 27. If p  is before the starting time slot of an already allocated SAM round and 

ijpp

 

  
 

is before the starting time slot of an already allocated SAM round or p  is 

after the finishing time slot of an already allocated SAM, then p is to be determined 

as the starting time slot of new SAM round 'j  to be scheduled.  

 

Step 28. Determine the SAM round j  can engage to ASM 'i  according to available 

time slots. Start from the rescheduling time point and search for available time slot to 

allocate SAM j to engagement plan of ASM 'i , set r RT . 

 

Step 29. If r H , no available time slots exist to schedule SAM round j . Thus, 

SAM round j cannot be added to the schedule of ASM 'i . Discard ASM 'i  from set 

'E ,   ' ' '\E E i  and go to step 19. 

 

Step 30. Check availability of SAM round 'j  to schedule at time slot r , if 'ij
r S  

then 1r r   and go to step 29, otherwise go to step 31.  

 

Step 31. If  r  is between starting time slot of an already allocated SAM round and 

finishing time slot of an already allocated SAM round, r  is not available to allocate 

new SAM round, 1r r  , go to step 29. 
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Step 32. If r  is before the starting time slot of an already allocated SAM round and 

ijpr

 

  
 

is after than the starting time slot of an already allocated SAM round, r  is 

not available to allocate a new SAM round, 1r r  , go to step 29. 

 

Step 33. If r  is before the starting time slot of an already allocated SAM round and 

ijpr

 

  
 

is before the starting time slot of an already allocated SAM round or r  is 

after the finishing time slot of an already allocated SAM, then r  is to be determined 

as the starting time slot of a new SAM round j  to be scheduled.  

 

Step 34.  Remove SAM round j  from the schedule of ASM i  and remove SAM 

round 'j  from the schedule of ASM 'i . Allocate SAM round 'j  to ASM i  at the 

beginning of time slot p . Allocate SAM round j  to ASM 'i  at the beginning of time 

slot r . Update probability of no-leaker of ASM i  and 'i . Calculate new probability 

of no-leaker value of TG, n PNLZ  . If n PNL PNLZ Z  , keep the solution as a possible 

non-dominated solution and go to step 14. Otherwise, keep the former engagement 

allocation plan because changes on the engagement allocation plan generate a worse 

solution. Discard SAM round 'j  from set 'M ,   ' ' '\M M j and go to step 21. 

 

NRH and CEH algorithms produce feasible solutions that are possible non-

dominated solutions. CEH algorithm works on feasible solutions generated by NRH 

algorithm. Hence, CEH algorithm starts after then NRH algorithm. A solution for 

specified number of new allocation and replacement is produced by NRH algorithm. 

CEH algorithm uses this solution and generates other feasible solutions by changing 

and exchanging the place of  allocated SAM rounds within the existing solution. If 

any schedule generated by CEH algorithm is a dominated solution, it keeps the 

former solution and tries to generate a new one. 
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3.6  Computational Results 

 

In this section, we present computational results in order to show the effectiveness of 

the rescheduling model for destroyed ASM, breakdown of a SAM system and new 

ASM target cases. We generate sample problems using the properties of real weapon 

systems in open literature. We define seven different SAM systems and seven 

different ASM systems. The feature of the SAM systems and ASMs are given in 

Appendix A. The single shot kill probability matrix for SAM systems and ASMs are 

created by using open sources. We define each problem set by the number of ASM 

and SAM systems. We randomly generate the sample problems by using different 

random number streams for the type of ASM, the type of SAM, the initial detection 

range of ASM, the target ship of ASM and the available rounds of SAMs. We run 

each problem instance using five different seeds set. First of all, we find the optimal 

initial schedule with respect to the probability of no-leaker of TG. We perform 

rescheduling for initial plan in the event of disturbances. 

 

We solve problems for all three cases by augmented ε-constraint method using IBM 

ILOG CPLEX version 12.6 in Java platform. The objective function values are 

calculated for each case. We analyze the results according to the increment on the 

objective function values. In order to evaluate the improvement on efficiency and the 

disruption on stability of the schedule, we define different metrics and analyze the 

results. We define the metrics below: 

 

Maximum improvement on efficiency (MIE) metric is the difference between 

maximum probability of no-leaker and the minimum probability of no-leaker value 

among the non-dominated solutions. We also calculate the percentage improvement 

on efficiency with maximum percentage improvement on efficiency (MPIE) metric. 

It shows percentage improvement on ZPNL  objective function.  

 

Assume there are n  non-dominated solutions indexed by s and included in set NS .  
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 
 

1,..,

s
PNL

s NS n
argmax Z
 

 , max
PNL PNLZ Z  and 

 
 

1,..,

s
PNL

s NS n
argmin Z
 

 , min
PNL PNLZ Z   

 

Z -Zmax min
PNL PNLMIE    and 

-max min
PNL PNL

min
PNL

Z Z
MPIE

Z
  

 

Maximum number of disruption on schedule (MNDS) metric indicates difference 

between the maximum NDZ  and minimum NDZ  values among the non-dominated 

solutions.  

 

-ND NDMNDS Z Z   

 

The relationship between ZPNL  and NDZ  is measured by average percentage 

improvement on efficiency with one disruption (APIE). It shows percentage 

improvement of efficiency on average with only one disruption of engagement 

schedule. The measure is calculated by 

 

MPIE
APIE

MNDS
  

 

For a sample problem, the values of these metrics are presented in Figure 3.4. There 

are five non-dominated solutions in the Pareto front. If we keep the initial schedule 

the probability of no-leaker is 0.45. The efficiency of the system can be at most 0.84 

with eight disruptions on the schedule. With one change on schedule, 10.82% 

efficiency increase is ensured on the average. If the initial schedule is kept on, to be 

able to maintain the stability, the total probability of no-leaker decreases. If we 

change initial schedule, we acquire a higher total probability of no-leaker value.  
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Figure 3.4 Improvement on metrics for analyzing the rescheduling approach. 

 

Secondly, we test our heuristic algorithm in all problem sets. The solution of the 

mathematical model and the heuristic algorithm is compared for all cases. For large 

size problems, we cannot solve the BMRP model with augmented ε-constraint 

method since the problem is NP-hard. To compare the performance of the heuristic 

algorithm, three performance metrics are used. These metrics are the Hyper Volume 

Ratio (HVR), Inverted Generational Distance (IGD) and Percentage of Found 

Solutions (FS). HVR measures the ratio of the region enclosed by the non-dominated 

set of heuristic results and the region enclosed by the solution of augmented ε-

constraint method Pareto front.  

 

 
 

i
i heuristic

i
i cons

vol v
HVR

vol v




 





 

 

where iv  is the objective space dominated by solution i  with respect to a reference 

point.   
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The Inverted Generational Distance (Bosman and Thiernes (2003)) is the average 

Euclidean distance between non-dominated solutions of heuristics and their closest 

non-dominated front member of augmented ε-constraint method.  

 

 2

1
IGD min i j

j PF
i A

Z Z
A 



   

 

where A  denotes the nondominated set generated by heuristics and PF  denotes the 

Pareto front set and 
2

i jZ Z  represents the Euclidean distance between 

nondominated solutions of heuristics, iZ  and their closest nondominated front 

member of mathematical model, jZ .  

 

The third metric is the percentage of found solutions  FS  represents the solution 

generated by heuristics. We also present total number of non-dominated solutions 

generated by the heuristic and the augmented ε-constraint method. 

 

3.6.1 Computational Results for Destroyed ASM Case  

 

In this case, we observe outcome of an engagement between a SAM round and ASM 

with respect to initial schedule. We start from the first engagement and generate a 

random number from the uniform distribution. We assume that the engagement 

between SAM and ASM pair ends up with destroyed ASM if the random number 

value is less than the single shot kill probability of SAM against ASM. We set the 

ASM as destroyed and set the rescheduling time point, RT, as the starting time of the 

following time slot. Available rounds, remaining time slots and upper bound on the 

number of engagements are updated with respect to the rescheduling time point. For 

a sample problem, Figure 3.5 shows the picture of engagement process between 

SAM and ASM pairs until the end of time slot 4. The shapes with dashed border, thin 

border and bold border indicate the place of units at time slot k=1, k=3 and k=4 

respectively. At the beginning of the engagement process, SAM 3 is fired against 
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ASM 3 and SAM 5 is fired against ASM5. At the beginning of time slot 3, SAM 3 

and ASM 3 pairs complete the engagement process. At time slot 4, the engagement 

process between SAM 5 and ASM 5 accomplishes. Also, SAM 1 is fired against 

ASM 1 at time slot 4. ASM 3 is destroyed by SAM 3 at time slot 3 and ASM 5 is 

destroyed by SAM 5 at time slot 4.  

 

 

Figure 3.5 An illustration of air defense operation for the sample problem. 

 

We present the computational results in Table 3.1. Average MIE values change 

between 0.091 and 0.312. The highest average MIE is attained when number of ASM 

is 6 and number of SAM system is 3. The lowest average MIE value, 0.091 and the 

lowest minimum MIE value, 0.019, are in the problem set with number of ASM is 3 

and SAM system is 6. We get higher average MIE results as the number of ASM 

increases and the number of SAM system decreases. We have the highest maximum 

MIE value, 0.501 in a problem consists of 6 ASM and 3 SAM systems. 

 

The similar results of MIE values are attained on the values of average MPIE metric. 

The efficiency of the TG improves 118.13% in the problems set with 6 ASM and 3 

SAM systems. The lowest average MPIE value, 15.53%, is in problem set includes 3 



 68   
 

ASM and 6 SAM systems. The highest maximum MPIE value, 244.39% is attained 

in problem set with 5 ASM and 4 SAM systems. Thus, we can increase the efficiency 

of the TG more than three times in this problem. We get the lowest minimum MPIE 

value, 2.17%, in problem set 3 ASM and 6 SAM systems. The improvement 

decreases when the number of SAM system increase or number of ASM decreases.  

Therefore, the effect of rescheduling approach is more notable with limited number 

of SAMs and with many threats.  

 

MNDS value partially depends on number of non-dominated solutions. If number of 

non-dominated solutions increases, MNDS values also increase since the first 

extreme solution in the Pareto front has 0NDZ  . The rescheduling time point, 

allocated SAM rounds for destroyed ASM and the available time slots according to 

the initial schedule affect the number of non-dominated solutions and also MNDS 

values. According to the results, we can say that there is not one to one relation 

between MNDS values and the number of SAM systems or the number of ASMs. 

However, we may say that MNDS values increases when problem size gets larger. 

The highest average MNDS value, 10 is in the problem set with 6 ASMs and 6 SAM 

systems. The lowest average MNDS value, 3.4 is in the problem set with 3 ASMs 

and 4 SAM systems.  

 

APIE values depend on both MIE and MNDS values. We have the highest average 

APIE value, 28.15%, in problem set with 6 ASM and 3 SAM systems. The lowest 

average APIE value is attained as 3.42% in problem set with 3 ASM and 5 SAM 

systems. The highest maximum APIE value, 71.2%, is acquired in a problem consists 

of 5 ASM and 3 SAM systems. Thus, only one change on the initial schedule can 

increase 71.2% of the initial efficiency of the system. The lowest minimum APIE 

value, 0.54%, is in the problem having 3 ASM and 6 SAM systems. This result 

shows that in some problems we may need to change schedule more times in order to 

increase the survival probability. On the other hand, for some problems only one 

change in the initial engagement plan can be sufficient for efficiency of TG. 
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Table 3.1 Minimum, average, maximum values of metrics for destroyed ASM. 

ASM 
SAM 

    3 4 5 6 

3 

MIE 
min 0.045 0.070 0.046 0.019 
ave 0.140 0.123 0.108 0.091 
max 0.194 0.212 0.174 0.225 

MPIE (%) 
min 15.76 7.76 7.53 2.17 
ave 24.62 23.17 18.25 15.53 
max 33.39 66.89 24.78 51.20 

MNDS 
min 1 2 5 3 
ave 3.8 3.4 5.6 4.2 
max 6 5 8 6 

APIE (%) 
min 4.71 2.59 1.51 0.54 
ave 8.75 6.46 3.42 4.59 
max 19.52 13.38 4.96 17.07 

4 

MIE 
min 0.092 0.129 0.062 0.047 
ave 0.202 0.197 0.120 0.130 
max 0.473 0.320 0.181 0.204 

MPIE (%) 
min 10.42 16.67 13.42 6.56 
ave 92.30 64.65 28.73 20.64 
max 215.90 222.27 61.41 39.83 

MNDS 
min 4 5 3 2 
ave 6 5.8 4.2 4 
max 10 7 5 6 

APIE (%) 
min 1.04 3.33 2.76 2.19 
ave 20.31 10.98 7.87 4.97 
max 51.33 37.04 20.47 9.96 

5 

MIE 
min 0.141 0.040 0.049 0.068 
ave 0.225 0.206 0.204 0.164 
max 0.316 0.380 0.372 0.347 

MPIE (%) 
min 59.58 2.76 22.41 8.22 
ave 99.26 67.92 53.28 32.40 
max 213.60 244.39 82.99 76.06 

MNDS 
min 3 2 3 4 
ave 5.6 4.6 6.8 5.4 
max 9 7 10 7 

APIE (%) 
min 10.37 1.38 6.25 1.64 
ave 17.73 12.12 7.83 5.98 
max 71.20 40.73 10.37 10.87 

6 

MIE 
min 0.230 0.179 0.152 0.074 
ave 0.312 0.202 0.206 0.182 
max 0.501 0.222 0.268 0.254 

MPIE (%) 
min 70.94 58.11 33.31 34.39 
ave 118.13 78.73 76.88 46.27 
max 168.20 98.09 109.20 66.01 

MNDS 
min 2 4 5 4 
ave 5.4 6.6 8 10 
max 8 9 13 14 

APIE (%) 
min 8.87 6.83 6.66 3.44 
ave 28.15 12.89 10.03 5.64 
max 59.50 19.62 15.60 12.79 



  70  
  

We present performance of heuristic approaches in Table 3.2. The last row of the 

each ASM and SAM combinations in Table 3.2 includes the number of non-

dominated solutions generated by heuristics and augmented ε-constraint method 

respectively. 

 

Table 3.2 Performance of heuristic approach for destroyed ASM.   

 
SAM 

ASM Performance Metrics 3 4 5 6 

3 

HVR 0.9987 1 0.9995 0.9999 

IGD 0.0009 0 0.0007 0.0003 

FS (%) 95.83 100.00 96.77 95.65 

No. of Solutions* 23/24 22/22 30/31 22/23 

4 

HVR 1 0.9908 0.9998 0.9995 

IGD 0 0.0021 0.0009 0.0005 

FS (%) 100.00 97.06 92.00 95.83 

No. of Solutions 30/30 33/34 23/25 23/24 

5 

HVR 0.9947 0.9998 0.9963 0.9997 

IGD 0.0025 0.0001 0.0007 0.0002 

FS (%) 95.83 96.15 96.88 93.55 

No. of Solutions 23/24 25/26 31/32 29/31 

6 

HVR 0.9959 0.9921 0.9974 0.9937 

IGD 0.0005 0.0187 0.0025 0.0037 

FS (%) 93.10 88.89 95.00 91.49 

No. of Solutions 27/29 32/36 38/40 43/47 
*No.of solutions metric includes the number of non-dominated solutions generated by heuristics 
and augmented ε-constraint method 

 

The heuristic approaches generate all of the non-dominated solutions in problem sets 

with number of ASM and SAM systems are 3 and 4, 4 and 3 respectively. So, HVR 

values are 1 and IGD values are 0 in these problems. In problem sets with ASM and 

SAM combinations 3-3, 3-5, 3-6, 4-4, 4-6, 5-3, 5-4 and 5-5 only one non-dominated 

solution cannot be attained. Average HVR values are almost 1 and IGD values are 

nearly zero in these problems. Thus, the dominated solution approximates the non-

dominated solution in these problems. In problem sets with 6 ASM, 4 SAM and 6 

ASM and 6 SAM, four solutions cannot be generated by heuristics. We analyze the 
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results of each problem in these problem sets and in only one problem two solutions 

cannot be attained by heuristics. In conclusion, almost all of the non-dominated 

solutions can be generated in all problem sets and even if a non-dominated solution 

cannot be found, a solution near to the non-dominated solution is attained by 

heuristics. 

 

We compare the elapsed times of ε-constraint method and heuristic approaches. The 

results of elapsed times are depicted in Table 3.3. The elapsed times of problems 

depend on number of non-dominated solutions. Also, the problem characteristics 

such as valid engagement between SAM systems and ASMs, number of SAM rounds 

in each SAM systems, rescheduling time point affect the complexity of problem. So, 

the problem becomes computationally complex in some problems even though it is a 

small size problem in terms of the number of ASMs and the number of SAM 

systems. The results shows that in all problem sets, augmented ε-constraint method 

run times are significantly larger than those of heuristic approaches. Heuristic 

approaches find non-dominated solutions at most 0.4 seconds.  

 

Table 3.3 Elapsed times (sec) for destroyed ASM. 

SAM 

ASM  
3 4 5 6 

ε-cons heuristic ε-cons heuristic ε-cons heuristic ε-cons heuristic 

3 2.70 0.16 3.00 0.11 4.43 0.28 4.30 0.28 

4 4.31 0.18 4.63 0.22 5.24 0.34 5.61 0.20 

5 5.46 0.11 6.49 0.12 13.10 0.40 10.23* 0.31 

6 6.96 0.14 10.00 0.16 13.96** 0.14 13.61** 0.17 
       *One problem cannot be solved within 3600 seconds. 
       **Two problems cannot be solved within 3600 seconds. 
 

The results show that the run times of augmented ε-constraint method increase when 

problems size increase. Besides, in problem set with 5 ASMs and 6 SAM systems, 

one problem cannot be solved by augmented ε-constraint method in two hours. Also, 
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two problems cannot be solved within two hours in problem sets with 6 ASMs, 5 

SAM systems and 6 ASMs and 5 SAM systems. 

 

3.6.2 Computational Results for Breakdown of a SAM System Case 

 

In the case of breakdown of a SAM system, we assume one of the SAM systems 

becomes unavailable to shoot after the engagement process starts. We randomly 

determine the time of breakdown during the engagement process and randomly 

choose the broken SAM system. We set the SAM as broken and set the rescheduling 

time point, RT, as the starting time of the following time slot. The unavailable SAM 

system is discarded from the engagement allocation plan of ASMs and probability of 

no-leaker values of each ASM is calculated. Available rounds, remaining time slots 

and upper bound on the number of engagements are updated with respect to the 

rescheduling time point. 

 

We solve small size problems with augmented ε-constraint method and the results 

are given in Table 3.4. Average MIE value is 0.194 in problem set with 3 ASM and 3 

SAM systems. Average MIE values decrease to 0.122 when the number of SAM 

system is 6 and the number of ASM is 3. The highest average MIE is achieved in 

problem set with 6 ASM and 3 SAM systems. Also, the highest maximum MIE 

value, 0.657, is attained in the problem including 6 ASM and 3 SAM systems. So, 

the probability of no-leaker value of TG increases 0.657 in this problem. The lowest 

minimum MIE value, 0.03, is in the problem with 3 ASM and 4 SAM systems. 

 

Average MPIE values are highest in problem set with 6 ASM and 3 SAM systems. 

On the average, the probability of no-leaker value increases 122.27% by updating the 

whole schedule. The lowest average MIE value, 24.77%, is in problem set with 3 

ASM and 6 SAM systems. The lowest minimum MPIE value, 6.26%, is in problem 

set with 3 ASM and 5 SAM systems. We get the highest maximum MPIE value, 

199.35%, in the problem consists of 5 ASM and 3 SAM systems. Thus, we acquire 

about three times increment on percentage improvement in this problem. Therefore, 
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if the number of SAM systems in TG gets larger, the effect of breakdown of a SAM 

system gets smaller. The necessity of rescheduling approach is more apparent while 

TG has small number of SAM systems. 

 

The maximum MNDS values are between 4 and 12 and the minimum average 

MNDS values are between 1 and 6 among the problem sets. The lowest average 

MNDS value, 2.67, is in problem set having 3 ASM and 4 SAM systems. The 

highest average MNDS value, 8, is acquired in problem set with 5 ASM and 6 SAM 

systems. MNDS values vary with regard to the problem characteristics. The 

rescheduling time point, the feature of broken SAM system and the available time 

slots according to the initial schedule affect the number of non-dominated solutions 

and also MNDS values. 

 

The values of APIE depend on both MIE and MNDS values. The highest average 

APIE value, 32.62% is in problem set with 5 ASM and 4 SAM systems. Thus, 

instead of changing the whole schedule only one change in the initial schedule can 

increase the survival probability 32.62% in this problem set.  

 

The lowest average APIE value is attained as 4.01% in problem set with 3 ASM and 

6 SAM systems. The highest maximum APIE value, 60% is in a problem consists of 

5 ASM and 4 SAM systems. The lowest maximum, 0.65% is in a problem having 4 

ASM and 5 SAM systems. 

 

The results indicate that in some problems, the efficiency of TG can be increased 

significantly by slight changes on the initial schedule. So, only one change in the 

initial engagement plan can be sufficient for efficiency of TG. In some problems, 

change on initial engagement plan may not provide satisfactory probability of no-

leaker value up to a certain degree. So, the initial plan may be changed entirely. On 

the other hand, disruption of schedule, in other words, number of difference on 

allocated SAM rounds between new and initial schedule may be crucial for air 

defense of TG. 
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Table 3.4 Minimum, average, maximum values for breakdown of a SAM system. 

ASM 
SAM 

    3 4 5 6 

3 

MIE 
min 0.081 0.030 0.046 0.045 
ave 0.194 0.181 0.176 0.122 
max 0.409 0.336 0.335 0.196 

MPIE (%) 
min 51.82 17.60 6.26 15.48 
ave 65.64 44.50 30.90 24.77 
max 96.00 96.00 67.07 31.85 

MNDS 
min 2 1 3 6 
ave 5.25 2.67 6.67 6.33 
max 9 4 10 7 

APIE (%) 
min 6.64 4.97 1.94 2.21 
ave 19.19 18.19 4.54 4.01 
max 48.00 32.00 9.58 5.31 

4 

MIE 
min 0.123 0.085 0.043 0.110 
ave 0.196 0.187 0.175 0.137 
max 0.236 0.313 0.328 0.172 

MPIE (%) 
min 51.12 13.35 7.83 18.06 
ave 82.13 45.38 44.57 36.33 
max 120.07 108.43 109.31 50.92 

MNDS 
min 5 4 1 4 
ave 6.00 6 7 4.67 
max 7 7 12 6 

APIE (%) 
min 7.30 1.91 0.65 4.52 
ave 14.62 10.35 8.53 7.67 
max 24.01 27.11 15.62 10.01 

5 

MIE 
min 0.113 0.140 0.118 0.117 
ave 0.206 0.190 0.184 0.163 
max 0.299 0.243 0.298 0.250 

MPIE (%) 
min 32.33 28.40 28.82 43.57 
ave 115.84 73.63 64.54 58.12 
max 199.35 132.50 94.64 77.73 

MNDS 
min 4 1 1 4 
ave 5.5 3.67 6.76 8 
max 7 6 13 12 

APIE (%) 
min 4.62 4.73 5.72 4.42 
ave 27.23 32.62 16.02 8.34 
max 49.84 60.00 28.82 10.89 

6 

MIE 
min 0.017 0.136 0.158 0.067 
ave 0.243 0.192 0.197 0.163 
max 0.657 0.255 0.232 0.286 

MPIE (%) 
min 72.80 31.52 16.55 50.05 
ave 122.27 92.54 65.50 61.86 
max 174.91 127.08 118.62 68.44 

MNDS 
min 3 6 2 4 
ave 4.67 7 5.67 7.33 
max 7 8 10 10 

APIE (%) 
min 17.01 3.94 6.13 5.00 
ave 28.34 13.98 12.71 10.11 
max 43.73 19.83 23.72 16.77 
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The performance of heuristic approach is presented in Table 3.5. The algorithms 

generate all of the non-dominated solutions in problem sets with ASM-SAM 

combinations of 3-3, 3-4, 4-3, 4-4, 4-6, 5-3, 6-3 and 6-5. So, HVR values are 1 and 

IGD values are 0 in these problems. 

 

In problem sets 3-5, 3-6, 4-5, 5-4, 5-5 and 6-4 only one non-dominated solution 

cannot be attained. The HVR values are almost 1 and IGD values are nearly zero in 

these problems. Thus, the dominated solution approximates the non-dominated 

solution in these problems. In problem sets with 5 ASM and 6 SAM systems, 6 ASM 

and 6 SAM systems, two non-dominated solutions cannot be generated by heuristics. 

The heuristic approaches generate nearly all the non-dominated solutions in all 

problem sets. Hence, the performance of the heuristics are also quite well in 

breakdown of a SAM system case. 

 

Table 3.5 Performance of heuristic approach for breakdown of a SAM system. 

SAM 

ASM Performance Metric 3 4 5 6 

3 

HVR 1 1 0.9999 0.9998 
IGD 0 0 0.0001 0.0002 

FS (%) 100.00 100.00 95.00 95.24 
No. of Solutions 20/20 19/19 19/20 20/21 

4 

HVR 1 1 0.998 1 
IGD 0 0 0.0008 0 

FS (%) 100.00 100.00 96.67 100.00 
No. of Solutions 19/19 16/16 29/30 17/17 

5 

HVR 1 0.9976 0.9988 0.9862 

IGD 0 0.0002 0.0003 0.0014 

 FS (% 100.00 91.67 93.75 92.00 

No. of Solutions 21/21 21/22 15/16 23/25 

6 

HVR 1 0.9968 1 0.9968 
IGD 0 0.0001 0 0.0008 

FS (%) 100.00 95.45 100.00 90.91 
No. of Solutions 13/13 21/22 19/19 20/22 
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The result of a problem with 5 ASM and 5 SAM systems is depicted in Figure 3.6. 

Only one non-dominated solution cannot be generated by heuristics which is the 

extreme point of the Pareto front. 

 

 

 

Figure 3.6 Non-dominated solutions of a problem with 5 ASM and 5 SAM systems. 

 

We present the elapsed times of augmented ε-constraint method and heuristic 

algorithm in Table 3.6. In all problem sets, augmented ε-constraint method run times 

are greater than those of heuristic approaches. We cannot solve a problem within two 

hours in problem sets with 5 ASM and 5 SAM systems. Also two problems in 

problem set with 6 ASM and 6 SAM systems cannot be solved by augmented ε-

constraint method in two hours. Since several problems cannot be solved within the 

time limit with augmented ε-constraint method, the non-dominated solutions of large 

size problems may not be found by augmented ε-constraint method. Heuristic 

approaches find non-dominated solutions at most 0.21 seconds.  
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Table 3.6 Elapsed times (sec) for breakdown of a SAM system. 

SAM 

ASM 
3 4 5 6 

ε-cons heuristic ε-cons heuristic ε-cons heuristic ε-cons heuristic 

3 2.05 0.08 4.64 0.07 6.12 0.21 7.57 0.25 

4 5.25 0.09 4.69 0.08 7.27 0.19 11.25 0.21 

5 8.62 0.10 6.29 0.10 9.24 0.13 11.45* 0.20 

6 7.16 0.12 12.16 0.10 10.21 0.21 16.44** 0.14 
        *One problem cannot be solved within 3600 seconds. 
        **Two problems cannot be solved within 3600 seconds. 
 
 

3.6.3 Computational Results for New ASM Target Case 

 

We assume that sensors of TG detect an unexpected incoming ASM after the 

engagement process is started and the initial allocation plan is in operation. If the 

initial schedule is kept, new ASM destroys its target ship since it is not considered at 

the beginning of the engagement process. To solve the model, we first update the 

current threats. We randomly determine the target ship of new incoming ASM, 

distance of the ASM, and velocity of ASM.  We find the valid combinations, the 

available time slots of engagements and the maximum number of engagements 

between the new ASM and SAM systems. We randomly determine the time of 

arrival from Poisson distribution. We set the rescheduling time point, RT. Available 

rounds, remaining time slots and upper bound on the number of engagements are 

updated with respect to the rescheduling time point.  

 

We use the same problems of first and second case and solve with augmented ε-

constraint method. In this case, without rescheduling the efficiency of TG is zero 

since new threat has zero probability of no-leaker value. Thus, MPIE and APIE 

cannot be calculated. To find the MPIE and APIE performance metrics, we assume 

that one of the available SAM round is allocated against the new ASM. The existing 

schedule is set with this new allocated SAM round and the metrics relevant to 
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efficiency objective is attained according to this assumption. The results are given in 

Table 3.7.  

 

The highest average MIE value, 0.236, is in problem set with 6 ASM and 3 SAM 

systems. It decreases to 0.179 when number of ASM and SAM system is 6. The 

lowest average MIE value, 0.142, is attained in problem set with 3 ASM and 6 SAM 

systems. The problem with 6 ASM and 5 SAM systems has the highest maximum 

MIE value, 0.600 and the lowest minimum MIE value, 0.012.  

 

The highest average MPIE value, 150.48%, in the problem set with 6 ASM and 3 

SAM systems. Thus, if the whole schedule is updated, the efficiency of the system 

can be improved nearly two and half on the average. The lowest average MPIE 

value, 48%, is occurred in the problem set with 3 ASM and 6 SAM systems. 

 

The minimum and maximum average MNDS values are 3.33 and 9.33 in problem 

sets with 4 ASM-5 SAM systems and 6 ASM-6 SAM systems respectively. In 

problem set with 3 ASM and 3 SAM systems, the lowest MNDS value, 1, is 

acquired. So, only one non-dominated solution is generated in this problem. The 

problem with 5 ASM and 6 SAM systems has the highest MNDS value, 13.  

 

The average APIE values are between the range of 8.62% and 35.65%. The 

minimum and maximum APIE values are between the range of 1.73%-16.20% and 

13.29-63.0% respectively. In some problems, one unit change on schedule improves 

the efficiency of the system in the event of a new incoming threat and it may be 

sufficient for survival of TG. 

 

As a result, we conclude that our rescheduling approach can increase the survival 

probability of TG by making accurate change on the engagement allocation plan. 

Preference of the DM about efficiency and stability of schedule determines the 

updating decision. 
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Table 3.7 Minimum, average, maximum values of metrics for new ASM target. 

ASM 
SAM 

    3 4 5 6 

3 

MIE 
min 0.172 0.046 0.107 0.052 
ave 0.220 0.193 0.146 0.142 
max 0.271 0.330 0.203 0.280 

MPIE (%) 
min 52.85 43.08 43.04 17.27 
ave 83.80 63.75 51.34 48.00 
max 98.12 99.17 64.00 80.00 

MNDS 
min 1 4 4 2 
ave 5.2 5.67 5 8.5 
max 10 7 7 12 

APIE (%) 
min 9.81 7.18 6.15 1.73 
ave 24.94 11.20 11.30 12.58 
max 52.85 14.17 16.00 40.00 

4 

MIE 
min 0.090 0.047 0.136 0.069 
ave 0.221 0.204 0.169 0.157 
max 0.391 0.286 0.237 0.260 

MPIE (%) 
min 56.80 58.28 41.56 42.50 
ave 127.51 89.96 63.85 51.19 
max 200.14 144.12 75.00 75.00 

MNDS 
min 6 6 3 3 
ave 6.67 8.67 3.33 7.8 
max 8 10 4 11 

APIE (%) 
min 9.47 6.75 10.39 4.22 
ave 19.51 10.29 20.13 8.62 
max 33.36 14.41 25.00 15.00 

5 

MIE 
min 0.139 0.057 0.027 0.089 
ave 0.226 0.203 0.163 0.156 
max 0.296 0.282 0.413 0.248 

MPIE (%) 
min 80.99 43.82 34.57 54.47 
ave 146.58 111.69 110.45 77.48 
max 189.03 200.62 209.76 98.39 

MNDS 
min 5 4 5 5 
ave 6.5 6.5 7.6 8.67 
max 7 10 11 13 

APIE (%) 
min 16.20 4.38 4.32 6.81 
ave 22.10 20.60 16.33 10.10 
max 27.00 33.44 33.88 15.92 

6 

MIE 
min 0.166 0.145 0.012 0.044 
ave 0.236 0.203 0.185 0.179 
max 0.286 0.261 0.600 0.302 

MPIE (%) 
min 122.75 74.78 55.74 53.98 
ave 150.48 131.89 108.47 96.28 
max 177.39 189.00 145.82 159.52 

MNDS 
min 5 3 7 8 
ave 6.33 6 8.8 9.33 
max 8 9 11 12 

APIE (%) 
min 15.34 8.31 6.97 6.75 
ave 25.35 35.65 12.42 9.82 
max 35.48 63.00 17.64 13.29 
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We also test the performance of the heuristic approach in new ASM target case and 

generate non-dominated solutions. Comparison of the heuristic approach and the 

augmented ε-constraint method and results of performance metrics are depicted in 

Table 3.8. The heuristics find all of the non-dominated solutions in problem sets with 

ASM-SAM system combinations of 3-4, 3-5, 4-5, 6-4 and 6-6. Although only one 

non-dominated solution cannot be generated in the problem set with 3 ASM and 3 

SAM systems, the worst average value, 0.0024, is occurred in this problem. Also, the 

minimum HVR value is also in this problem set. 

 

Table 3.8 Performance of heuristic approach for new ASM target. 

SAM 

ASM Performance Metric 3 4 5 6 

3 

HVR 0.9919 1 1 0.9998 

IGD 0.0024 0 0 0.0002 

FS (%) 96.97 100.00 100.00 97.22 

No. of Solutions 32/33 20/20 18/18 35/36 

4 

HVR 0.9933 1 1 0.9995 

IGD 0.0018 0 0 0.0005 

FS (%) 90.00 100.00 100.00 97.62 

No. of Solutions 18/20 26/27 20/20 41/42 

5 

HVR 0.997 0.9997 0.9997 0.9979 

IGD 0.0003 0.0001 0.0001 0.0004 

FS (%) 95.00 97.44 97.44 96.43 

No. of Solutions 19/20 27/29 38/39 27/28 

6 

HVR 0.9981 1 0.9929 1 

IGD 0.0001 0 0.0017 0 

FS (%) 93.75 100.00 91.43 100.00 

No. of Solutions 15/16 13/13 32/35 28/28 

 

 

In problem set with 6 ASM and 5 SAM systems, 32 of 35 non-dominated solutions 

are found by heuristics. The heuristic algorithms yield the minimum performance in 

this problem set. The average HVR values of all problem sets are greater than 0.99. 

Also, The HVR values average IGD values are nearly zero in all problem sets. Thus, 
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found solutions are diverse enough despite a few non-dominated solutions cannot be 

generated in some problem sets. As a result, the performances of the heuristics are 

also quite well in new threat case.  

 

The elapsed times of augmented ε-constraint method and heuristic algorithm are 

given in Table 3.9. Heuristic approach finds non-dominated solutions at most 0.52 

second. When the problem size gets larger, the run times of the augmented ε-

constraint method increase. Moreover, we cannot solve a problem within two hours 

in problem sets with 5 ASM, 5 SAM systems and 5 ASM and 6 SAM systems. Also 

two problems in problem set with 6 ASM-5 SAM systems and 6 ASM-6 SAM 

systems cannot be solved by augmented ε-constraint method in two hours. 

 
Table 3.9 Elapsed times (sec) for new ASM target. 

SAM 

ASM 
3 4 5 6 

ε-cons heuristic ε-cons heuristic ε-cons heuristic ε-cons heuristic 
3 6.51 0.13 6.36 0.25 7.40 0.16 9.53 0.13 

4 4.92 0.07 9.82 0.13 8.64 0.11 11.34 0.23 

5 9.15 0.09 13.93 0.15 14.01* 0.15 11.46* 0.17 

6 10.19 0.09 5.41 0.12 11.52** 0.15 50.16** 0.52 
          *One problem cannot be solved within 3600 seconds. 
          **Two problems cannot be solved within 3600 seconds. 
 

In all disturbance cases, we define each problem set by the number of ASM and 

SAM systems varied in the range of between three and six. In a different air defense 

scenario, attacking side may want to suppress air defense of TG using saturating 

tactics. The number of ASMs attacking to TG may be greater than number of SAM 

systems in a naval air defense operation. The computational results show that with 

limited number of SAM systems and many threats, the effect of responding to the 

disturbances and rescheduling of SAM rounds increase the effectiveness of the air 

defense. Hence, when there is a large number of attacking ASMs, it is obvious that 

the dynamic tactical planning and rescheduling of SAM rounds during the 

engagement process is more crucial to destroy ASMs and survive ships. 
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The solution procedure of BMRP includes generating whole Pareto front with respect 

to efficiency and stability objectives. After the disturbance, our aim is to maximize 

efficiency of air defense while minimizing deviation from the initial schedule. In an 

air defense operation, keeping the initial schedule of SAM systems as much as 

possible is essential since the initial preparations such as slewing sensors and 

weapons, tracking targets, solution of fire control problem and starting time of these 

sequential operations are determined due to initial schedule. The updated schedule 

with a particular degree of deviation from the initial schedule is more realistic than 

updating the whole schedule by ignoring the deviation. The result of complete 

rescheduling may usually be inapplicable in real life. For instance, with complete 

rescheduling, new beginning time of shoots in a SAM system schedule against ASMs 

can be earlier than the one at the initial schedule. It may cause the SAM system to 

not be able to track on target ASMs due to the restrictions imposed by operations 

such as receiving information from sensors, guidance and implementing the track 

management. Hence, while desiring to increase the effectiveness of air defense by 

rescheduling, an inexecutable new schedule can be attained with complete 

rescheduling. 
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CHAPTER 4 

 

 

4 A DYNAMIC APPROACH TO BMRP IN A SEMI-AUTONOMOUS 

DECISION MAKING FRAMEWORK 

 

 

 

Decision making in multiobjective optimization problems requires preference 

information from the DM. The preference based methods for multiobjective 

optimization problems can be classified as a priori, interactive and a posteriori with 

respect to time of DM preferences are included in the model (Mavrotas (2009)). In a 

priori methods, DM expresses his/her preferences before the solution process. In 

interactive approaches, preferences are articulated progressively during the solution 

process and after several iterations the most preferred one is found. In a posteriori 

methods all non-dominated solutions of the problem are generated then the 

preferences are considered in order to find the most preferred one.  

 

BMRP involves two objectives to be optimized and these objectives conflict with 

each other. A number of non-dominated solutions are generated in a rescheduling 

time point and numerous disturbances may occur during the engagement process. To 

update the engagement allocation plan in each rescheduling time point, we must 

develop a semi-autonomous decision making framework by choosing one of the non-

dominated solutions from the results of BMRP. In real life, initial schedule is 

changed within the engagement process and there is not enough time to interact with 

DM as the schedule has to be updated in a few seconds. We should extract 

preference information before the engagement process. Hence, we construct a 

decision model with an artificial neural network method by asking DM to assign 

utility values to priory generated non-dominated solutions. In each rescheduling time
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 point, the structured ANN acts like a DM for choosing the most preferred solution. 

To update the schedule in response to a disturbance, non-dominated solutions are 

presented to ANN. However, finding all non-dominated solutions of BMRP is hard, 

time consuming and not practical. To discard not preferable non-dominated solutions 

while generating, we assume that DM utility is consistent with non-decreasing quasi-

concave function. The cone domination principle of the non-decreasing quasi-

concave function is incorporated into the solution procedure. The dominated cones in 

objective space are generated according to the preference of ANN and we reduce the 

feasible objective region iteratively. It ensures discarding Pareto optimal solutions 

that are no interest to the DM and reducing the computational times. 

 

4.1 Artificial Neural Network 

 

Initial schedule of SAM systems is changed within the engagement process and there 

is no enough time to interact with DM during the engagement process just because 

the problem has to be solved in a few seconds. Also a posterior approach is not 

applicable since interaction with DM is still required during the engagement process. 

However, it is essential to decide an efficient solution most preferred by DM. Thus, 

we have to extract preference information before the engagement process. The prior 

articulated preferences of DM can be used to construct a decision model that 

represents the utility of DM properly. In order to find a decision model from prior 

decision examples of DM, one of the most popular approach is preference 

disaggregation. Preference disaggregation is based on inferring a decision model 

from a set of evaluated examples by the DM (Jacquet-Lagrezea and Siskos (2001)). 

The preference disaggregation approaches aim at learning the cognitive behavior of 

the DM. Doumpos and Zopounidis (2013) review the literature on the 

implementation of statistical learning methods for disaggregation of preference 

information. They also discuss the connection of machine learning methods with 

preference disaggregation. 
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ANNs are one of the most popular approaches in machine learning and they can 

model highly complex problems with unknown underlying structure. An ANN 

consists of a set of nodes that are connected with links. The weight of the links 

indicates the strength of the connection. If the nodes are hierarchically structured into 

layers and directed arcs connect lower layers to higher layers, the neural network is 

called as feedforward artificial neural network (FFANN). FFANN are very 

successful in representing complex patterns (Sun et al. (2000)). Multilayer 

perceptron stands for a neural network with one or more hidden layers. 

 

A neural network propagates in forward and backward phase. In the forward phase, 

the input value is propagated through the network in proportion to the weights until it 

reaches the output node. In the backward phase, the actual output of the network and 

the desired output are compared and an error value is produced. The error value is 

propagated through the network in the backward direction. The direction of search in 

weight space is calculated and with this information weight values are updated in 

each iteration. The back propagation algorithm proposed by Rumelhart et al. (1986) 

is one of the important method for weight update in ANN. 

 

The objective and weight relationship of ANN provides a representation of the DM's 

preferences. A number of studies in literature show structuring DM preferences with 

ANN in multiobjective problems. Wang and Malakooti (1992) propose a 

feedforward neural network model to capture the DM’s preferences by an adaptive 

learning algorithm. Sun et al. (1996) propose an interactive approach with 

incorporating adaptive neural network to solve continuous solution space problems. 

They either assign a utility value to the solutions or make pairwise comparisons to 

calculate the principal eigenvector of the reciprocal comparison matrix. Sun et al. 

(2000) combine the augmented Tchebycheff approach and ANN strategy. They train 

the network with response of DM and use all the response of DM as an output. The 

proposed approach is based on the reduction of weights in Tchebycheff method with 

respect to result of the ANN. Chen and Lin (2003) propose a feedforward ANN 
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approach to solve continuous solution space problem. They ask to indicate pairwise 

comparison in terms of approximate ratios or intervals. 

 

To incorporate the DM’s preferences into the model, we model an adaptive learning 

algorithm instead of back propagation algorithm in an ANN structure. Because, the 

back propagation algorithm uses steepest descent method and constant learning 

parameter to update the weights. It may require too many epochs to learn the desired 

behavior of the data (Wang and Malakooti (1992)).  Also, it may converge into local 

minima. We define a multilayer neural network structure with four hidden nodes. 

Two input nodes are used since objective function values ZPNL  and ZND   are taken as 

input of ANN. The utility value of each solution is taken as output of the ANN. The 

utility values are calculated from a non-decreasing quasi-concave utility function, 

   
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f max  
p
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  where iz  is the thi objective function value and IP
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ideal point of thi  objective function. Firstly, the weight of objective functions are set 

as 1 0.5w   and 2 0.5w  . The network is trained in forward phase by normalizing 

objective functions and utility values. We compute the rescaled utility values and 

normalize each of the objective function with respect to ideal and nadir points as 

follows.  
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We use sigmoid function in activation of nodes. To find the direction in updating 

weights of network, Polak-Ribiere conjugate gradient direction method is 

implemented since it has a superlinear convergence rate and it provides faster 

convergence then steepest descent (Sun et al. (2000)). To specify the line, the golden 

section search algorithm is used. It evaluates the points starting at a distance 

of delta and doubling in distance each step along the search direction. When the 

minimum interval is found, it reduces the size of the interval and determines the best 
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point within the interval. Additional information for the adaptive learning algorithm 

can be found in Wang and Malakooti (1992) and Sun et al. (2000). 

 

The ANN with multilayer structure includes input nodes, hidden nodes and output 

nodes which are indexed by i , j  and k  respectively. Let the input value of hidden 

node j  is  jv n  and input value of output node is  kv n .  jy n denotes the signal 

produced as an output of hidden node j  and  ky n  is the output value of output 

node k . Assume there are n  number of input nodes and N  number of hidden nodes. 

The steps of the adaptive learning algorithm are as follows:  

 

Steps of the adaptive learning algorithm 

 

Step 0 (Initialization):  

Set 0w randomly and 0t  . 

  

Step 1 Train the network in forward phase:  

In forward phase, the produced input signal for hidden node j  is
0

.y
n

t t t
j ji i

i

v w


 . The 

output signal value of hidden node j  is (v )t t
j j jy   where (.)   is the sigmoid 

function utilized for the activation of all nodes. Thus, the output value is
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. The input signal value of output node k  is: 
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   and actual output value is (v )t t
k k ky  .  

 

Step 2 Error calculations: 

Performance of the error function is as follows: 
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where P  is the number of pattern and pz  is the desired output. By taking the 

derivative of the total error and according to the chain rule, 

 

j j j
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Step 3 Calculation of weight correction 

Step 3.1 Calculation of gt from Chain rule: 
 

 For kjw ;    
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. 1 . .
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Step 3.2 Finding the Polak-Ribiere conjugate direction. If 0t  , 

   d t g t  , otherwise; 
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 Step 3.3 Calculation of interval L for line search 

 If t t tE w E w d         , then L  and go to step 3.4,  

 If 2t t t tE w d E w d           , then 2L  and go to step 3.4, 

otherwise 

 2t t tw w d   and repeat step 3.3. 

 

Step 3.4 Golden section line search 

 ' 0.382t t tw w Ld  and '' 0.618t t tw w Ld   
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 If ' ''t tE w E w        then '' 't tw w and ' 0.236t t tw w Ld  otherwise 

't tw w , ' ''t tw w and '' 0.382t t tw w Ld   

 

Step 3.5 Find the weights within the interval 

 If ' ''t tE w E w         then  ' '' / 2t t tw w w  , go to step 4 

otherwise 0.618L L and go to step 3.4 

 

Step 4 Check for termination 

 If 1tE w     , then 1tw w  ,  

otherwise go to step 5 

 

Step 5 Restarting 

 If ( 2) 1t N n n    , then set 0t  ; 0 1tw w   and go to step 1, 

otherwise 1t t  and go to step 1. 

 

We construct the topology of the ANN by training the non-dominated solutions. A 

set of non-dominated solutions that are assumed to be generated in a past air attack 

and in a rescheduling time point are used to train the network. The scaled objective 

function values and the corresponding scaled utility values of fourteen non-

dominated solutions are presented in Table 4.1. The last column of the Table 4.1 

indicates the result of ANN. The results show that ANN completely represents the 

utility function. It ranks all the solutions correctly and generate values almost same 

as the desired output values. The approach ensures that ANN learns the DM 

preferences. 
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Table 4.1 Input and output values of ANN. 

No 
efficiency 
(input 1) 

stability 
(input 2) 

       utility  
(desired output) 

 ANN 
results 

1 0.2 0 0.6792 0.67997 
2 0.28 0.08 0.7393 0.73997 
3 0.29 0.15 0.7361 0.73418 
4 0.3 0.23 0.7263 0.72407 
5 0.31 0.31 0.7146 0.71419 
6 0.32 0.38 0.6948 0.69627 
7 0.33 0.46 0.6684 0.67103 
8 0.33 0.54 0.6326 0.63422 
9 0.34 0.62 0.5895 0.58784 
10 0.37 0.69 0.5644 0.56773 
11 0.38 0.77 0.5101 0.50852 
12 0.39 0.85 0.4547 0.45144 
13 0.39 0.92 0.3897 0.38637 
14 0.41 1 0.3248 0.32966 

 
 

4.2 Quasi-Concave Utility Function 

 

In multiobjective problems, it is very hard to know explicitly the functional form and 

parameters of the DM utility. But, the existence of an underlying utility function of 

some form can be assumed. A non-decreasing quasi-concave value function has 

considerably used in order to represent human behavior (Silberberg (1978); Crouch 

(1979)). The property of a diminishing marginal rate of substitution is peculiar to 

quasi-concave functions. It is obvious that efficiency and stability objectives have the 

property of diminishing marginal rate of substitution. Because, at the minimum 

efficiency value, DM may sacrifice more units of stability and at the higher 

efficiency values DM do not allow same increment on the disruption of the schedule 

while maintaining the same level of utility. Korhonen et al. (1984) introduce a 

solution approach for discrete multiobjective problems while DM has an implicit 

non-decreasing quasi-concave utility function. We briefly review their theorem and 

present definitions about quasi-concave functions as follows: 
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Definition 1. A function  f x  is said to be non-decreasing if    f x f y  for all 

x y  where ,x y X . 

 

Definition 2. A real valued function  f x defined over a convex set X  in R  is 

called quasi-concave if        1 min ,f x y f x f y     for all ,x y X  and 

for all  0,1 . 

 

Theorem 4.1. (Korhonen et al. (1984)) 

Assume  f x  is a real-valued, quasi-concave and non-decreasing function defined 

in p  dimensional Euclidean space pR . Consider distinct points p
ix R , 1,.....i m  

and py R , and assume that    k if x f x , i k . Then if 0   in the following 

linear programming problem; 

 

 Max   

subject to 

 
1

.
m

i k i k
i

x x y x 


     

0   1....i i m     

it follows that    kf x f y . 

 

The theorem states that the pairwise preference decision such as ix  is preferred to kx  

generates a convex cone. The points inferior to this cone are called as cone 

dominated solutions. If any point, y  falls in the cone or is dominated by the cone, 

then it is at most as preferred as kx  and less preferred than ix . The characteristic of 

non-decreasing quasi-concave utility function provide determining the cone of 

inferior solutions. The feasible region of the solution space is reduced with respect to 

DM responses by excluding the cone dominated points. Lokman et al. (2014) 

propose an interactive method for quasi-concave and non-decreasing functions. They 
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obtain the region that is not cone dominated by adding some inequalities to the 

problem and exclude cone dominated solutions in each iteration by using these 

inequalities.  

 

To generate non-dominated solutions, one of the method that we use is augmented ε-

constraint method. In each iteration, we define a constraint to BMRP model 

according to results of pairwise comparison. The non-dominated solutions belongs to 

cone dominated regions are excluded from solution space and the non-dominated 

solutions that are not preferred are discarded while generating a new non-dominated 

solution. Figure 4.1 shows the inequality and cone dominated region for a pairwise 

comparison result. In the objective space x  axis represents ZND  objective function 

and y  axis represents ZPNL objective function. If sy  is preferred to my , the new 

constraint, (C1) ensures not generating cone dominated solutions, namely, less 

preferred solutions.  

 

 

 

 

 

 

 

 

 

 

    

Figure 4.1 Efficient solutions and cone dominated region. 
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C1 
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To discard cone dominated solutions, one constraint is added to the augmented ε-L-

BMRP model. The formulation of the constraint is as follows: 

 

.( ) .( ) . .     (C1) s m t s t m t m m t
PNL ND ND ND PNL PNL PNL ND PNL NDy y y y y y y y y y        

 

4.3 Solution Procedure 

 

We develop two solution procedures augmented ε-constraint method and heuristic 

approach to generate results of BMRP model in each rescheduling time point. The 

dynamic allocation of SAM rounds in each rescheduling time point is constituted by 

solution of BMRP formulation.  

 

Figure 4.2 depicts the representation of update scheme for engagement allocation 

plan. Three disturbances occur during the engagement process. In each rescheduling 

time point, several non-dominated solutions are generated and one of them is chosen 

among the non-dominated solutions. 

 

The schedule that is generated at the beginning of the engagement process according 

to the probability of no-leaker of TG is called as initial schedule in BMRP. After the 

first disturbance happens, the initial schedule is updated and the new schedule is 

called existing schedule. Thus the initial schedule is the schedule used before the first 

disturbance occurred and the new schedule is the schedule created by rescheduling.  

 

In first rescheduling time point, the number of disruption values for each non-

dominated solutions of BMRP are calculated with respect to initial schedule. In the 

event of the following disturbances, the existing schedules are updated and the 

number of disruption values for each non-dominated solutions of BMRP are 

generated with respect to the existing schedules. 
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Figure 4.2 The representation of updated schedule in time horizon. 

 

4.3.1 Solution Procedure with Augmented ε-Constraint Method 

 

The solution method with augmented ε-constraint method consists of three main 

parts. The first part is the solution of BMRP with augmented-ε-constraint method. In 

this part, non-dominated solutions are generated. The pairwise comparison of two 

solutions with ANN is the second part of approach. The last part is the use of 

pairwise comparison result of ANN for quasi-concave utility function in order to 

reduce the solution space and eliminate non-preferred solution in the next iteration.  

 

The steps of generating non-dominated solutions and choosing one of them in a 

rescheduling time point is presented as follows: 

 
Steps of the solution procedure with augmented ε-constraint method 

 

Step 0 (Initialization) 

Set the iteration counter, t=0 and set    .  
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Solve augmented ε-L-BMRP model, if 0NDZ  , Pareto Front has only one solution, 

Stop. Otherwise, set the point with maximum disrupted allocation as initial 

incumbent solution, 0cz y . 

 

Step 1 (Solve augmented ε-L-BMRP) 

Set t=t+1. 

Solve augmented ε-L-BMRP model. If infeasible Stop, otherwise set the generated 

point as challenger solution 1inc tz y  . Set NDZ   and go to step 2. 

 

Step 2 (Comparison) 

Ask neural network to compare cz and incz . 

If inc cz z , go to step 3. 

If inc cz z , inc cz z and go to step 1. 

 

Step 3 (Solve augmented ε-L-BMRP with new constraint) 

Set t=t+1. 

Solve augmented ε-L-BMRP model with constraint C1. If infeasible Stop, otherwise 

set c tz y  and NDZ  . Go to step 2. 

 
The solution procedure is based on generating solutions from maximum NDZ  to 

minimum NDZ  in the objective space. The algorithm starts with generating the first 

non-dominated solution and specifying the initial point, as current incumbent point, 

incz . Step 0 produces one of the extreme points of the efficient frontier that has 

maximum NDZ . In Step 1, in order to present ANN to compare two solutions, we 

solve augmented ε-L-BMRP model. If the problem is infeasible, then we have only 

one non-dominated solution. Otherwise the new non-dominated solution 1ty   is 

generated that has at least one NDZ  and 1ty   is set as current challenger point, cz . 

Since there are two non-dominated solutions, we ask ANN to compare 0y  and 1y . If 
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ANN decides to prefer the solution with lower NDZ , we do not need cone domination 

constraints since all of the solutions with higher NDZ  have already been generated. 

On the other hand, if ANN prefers the solution that has higher NDZ  value, then a new 

constraint is incorporated to the model to exclude cone dominated solutions. Step 2 is 

the decision part of the algorithm. If the challenger point 1y  is preferred, then new 

incumbent point is 1y . We again solve augmented ε-L-BMRP model and generate new 

challenger point 2y . If 0y  is preferred rather than challenger point 1y , then 0y  is still 

incumbent point and the ( 0 1y y ) characterize a cone dominated region and the 

points dominated by this cone is discarded by including new constraint. The solution 

procedure generates and determines the most preferred non-dominated solution. The 

command and control unit orders the updated engagement allocation plan to the 

SAM systems and new schedule is performed. In each rescheduling time point, the 

existing engagement schedule is updated according to the most preferred solution. 

 

4.3.2 Solution Procedure with Heuristic Approach 

 

In Chapter 3, we propose NRH and CEH heuristic algorithms. We suggest using 

those algorithms to generate non-dominated solutions of the problem. Since heuristic 

approaches performance is quite well and generate nearly all the non-dominated 

solutions due to preliminary runs, we implement those to solve large size problems. 

 

In heuristic approach, we start from zero number of disruption, NDZ  and increase 

NDZ  by one in each iteration. We generate solutions up to the maximum number of 

possible disruption for each integer NDZ  value. We choose the solution with 

maximum probability of no-leaker among these ones. After all solutions are 

generated for different NDZ , we determine the non-dominated solutions. We find 

numerous solutions and obtain non-dominated ones among them in heuristic 

approach.  Thus, in contrast with ε-constraint method, the non-dominated solutions 

are not generated step by step. This indicates that cone dominated solutions cannot 
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be excluded in each iteration. Instead, ANN as a DM provides us not to choose these 

cone dominated solution by utility function representation. The steps of the 

procedure are as follows: 

 
Steps of the solution procedure with heuristic approaches 

 

Step 0 (Generate solutions) 

 Generate non-dominated solutions with NRH and CEH algorithms. 

If Pareto Front has only one solution, then 0NDZ  , stop. Otherwise,  

Set n=number of non-dominated solutions and go to step 2. 

 

Step 1 (Comparison) 

Ask neural network to find most preferred solution.  * ( )n
n

z argmax U z . 

where ( )nU z  is the utility value of solution n. 

 

4.4 Computational Experiments 

 

In this section, the computational results are presented in order to show the 

effectiveness of the rescheduling approach. The procedure for generating sample 

problems, the performance measures and discussion on the results are presented. 

 

4.4.1 Generation of the Problems 

 

We generate sample problems by using the properties of real weapon systems in 

open literature. We define seven different SAM systems and seven different ASM 

systems. Each problem set is specified with the number of ASM and SAM systems. 

By using different random number streams, 16 different problem sets are created 

with the number of ASM and SAM systems ranging from 3 to 6. Each problem set 

includes five different problems that are randomly generated. The maximum 

numbers of engagements that can be done against ASMs are calculated according to 
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effective range of SAM systems, velocity and distance of ASMs. The numbers of 

available rounds on SAM systems are generated from a discrete uniform distribution 

in the interval [1-9]. The unit duration of time slots are set as 1 second. We create a 

sample single shot kill probability matrix for ASM and SAM systems from a uniform 

distribution in the interval [0.05, 0.80]. The setup time of each engagement is taken 

as 9 seconds. Time taken by each feasible engagement is calculated by the 

summation of constant setup time and variable flight time.  

 

The type of disturbance is determined by going on upon the time horizon. In 

destroyed ASM case, we start from the first engagement and generate a random 

number from the uniform distribution. We assume that the engagement between 

SAM and ASM pair ends up with destroyed ASM if the random number value is less 

than the single shot kill probability of SAM against ASM. In breakdown of a SAM 

system case, we suppose that SAM systems may become unavailable to shoot after 

the engagement process starts. The breakdown probability of each SAM systems is 

chosen randomly between 0.05 and 0.20 (Bolkcom and Pike (1996)). If a SAM 

system is unavailable to shoot, we specify the time of the breakdown from Erlang 

distribution (Li et al. (1998)). The SAM system is set as broken and the starting time 

of the following time slot is set as rescheduling time point, RT. Likewise, we assume 

that sensors may detect an unexpected incoming ASM after the engagement process 

is started and the initial allocation plan is in operation. The time of arrival is 

randomly determined from Poisson distribution. Also the target ship of new 

incoming ASM, distance of the ASM, and velocity of ASM is randomly chosen. We 

assume that in each time slot only one disruption can occur. In all cases, current 

threats, available rounds, remaining time slots and upper bound on the number of 

engagements between ASM and SAM systems are updated with respect to the 

rescheduling time point. If a disturbance happens, the solution procedure is applied 

to update the existing schedule.  

 

The problems are solved using version 12.6 of IBM ILOG CPLEX in Java platform 

on a personal computer with Intel i5-7200 CPU, 2.5 GHz and 8 GB of RAM. 
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4.4.2 Performance Measures 

 

In each rescheduling time point, the objective function values of all non-dominated 

solutions are calculated. The results are analyzed according to the increment on the 

survival probability and schedule disruption. In order to evaluate the improvement on 

efficiency of TG and disruption on the schedule, we define four different measures. 

The increase on PNLZ  and NDZ  objectives in each rescheduling time point are found 

according to the chosen most preferred non-dominated solution. The defined 

performance measures are as follows. 

 
Average improvement on efficiency (AIE) metric is the average value of difference 

between PNLZ  value of chosen non-dominated point and PNLZ  value of existing 

engagement allocation plan for all rescheduling time point. We also calculate the 

percentage improvement on efficiency with average percentage improvement on 

efficiency (APIE) metric. It shows average percentage improvement on PNLZ

objective function. Assume there are D  disturbances indexed by d . The probability 

of no-leaker value of chosen non-dominated solution in disturbance d  is ,ch d
PNLZ . The 

probability of no-leaker value of keeping the existing schedule in disturbance d  is 

,kp d
PNLZ . The improvement on efficiency in a rescheduling time point is calculated as 

, ,Z -Zch d kp d
PNL TC . Then, 

, ,

1

Z -Z
D

ch d kp d
PNL PNL

dAIE
D




 and 

,

, ,
1

Z

Z -Z

D kp d
PNL

ch d kp d
d PNL PNLAPIE

D



  

 

Average number of disruption on schedule (ANDS) metric indicates average 

difference between the NDZ  value of chosen non-dominated solution and minimum 

NDZ  value. The number of disruption value of chosen non-dominated solution in 

disturbance d  is ,ch d
NDZ  and keeping existing schedule has no disruption value. The 
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increase on number of disruptions in a rescheduling time point is calculated as ,Zch d
ND . 

Then, 

 

,

1

Z
D

ch d
ND

dANDS
D




 

 

To evaluate the relationship between efficiency and stability, we calculate average 

percentage improvement on efficiency with one number of disruption, (APIED) 

metric. The value of APIED is the ratio of percentage improvement on efficiency and 

number of disruption on schedule. It shows percentage improvement of efficiency on 

the average with only one change of engagement schedule.  

 

, ,

,
1

Z -Z

Z

D ch d kp d
PNL PNL

ch d
d NDAPIED

D



 

 

We also define outcome metrics that evaluates the results at the end of engagement 

time horizon. The defined metrics are average number of ships survived (NSS), 

average percentage of survived ships (PSS) and average percentage of destroyed 

ASM (PDA).  The values of those metrics by keeping the initial schedule and 

updating engagement allocation plan with BMRP model in each rescheduling time 

point are calculated.  

 

4.4.3 Computational Results with Augmented ε-constraint Method 

 

Table 4.2 shows the performance metrics of the problem sets. AIE values change 

between 0.037 and 0.150. The highest average AIE, 0.15, is attained when the 

number of ASM is 4 and the number of SAM system is 3. The lowest average AIE, 

0.037, is in the problem set with number of ASM is 6 and SAM system is 3. We get 

the highest average APIE, 30.22%, with 6 ASM and 5 SAM systems and lowest 
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average APIE, 10.76%, with 3 ASM and 6 SAM systems. The highest maximum 

APIE value, 64.45%, is attained in problem set with 4 ASM and 4 SAM systems. 

The AIE and APIE result show that we may greatly increase the survival probability 

of TG. On the other hand, if there are no alternative solutions in Pareto front and we 

cannot generate non-dominated solutions, we cannot update the existing schedule. 

For instance, in problems sets with 6 ASM, 3 SAM systems and 6 ASM, 4 SAM 

systems we get lowest minimum APIE value 0.0%. We can also conclude that the 

improvement on efficiency does not depend on the number of SAM systems or 

number of ASMs. Because, type and time of disturbance affect the increment on 

efficiency of the TG. If a problem set has a new threat case, efficiency of TG may 

increase since updating engagement plan increases with destroying new incoming 

ASM. 

 

ANDS metric indicates average number of disruption on the existing  schedule. The 

average ANDS values change between 0.84 and 1.75. ANDS values depend on the 

DM utility function and the chosen non-dominated point. Also, in a rescheduling 

point ANDS may be a higher value or may be zero if there is no option to update the 

schedule. The average of those values in all rescheduling time point determines the 

ANDS metric. The highest maximum ANDS value, 2.57, is attained in problems set 

with 6 ASM and 6 SAM systems. We get the lowest minimum ANDS value, 0.25, in 

problem set with 3 ASM and 6 SAM systems. 

 

The relation between efficiency and stability objectives can be evaluated with 

APIED metric. The problem with 4 ASM and 3 SAM systems has the highest 

maximum APIED, 19.51%. This shows that on the average only one allocation 

change in the schedule can highly improve the efficiency of TG. In problem set with 

6 ASM, 3 SAM systems and 6 ASM, 4 SAM systems, APIED value is 0 in one 

problem. Average APIED values are between 1.68% and 8.86%.  
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Table 4.2 The performance metric results of problem sets. 

ASM   
SAM 

    3 4 5 6 

3 

AIE 
min 0.030 0.009 0.010 0.006 
ave 0.095 0.108 0.101 0.092 
max 0.153 0.266 0.243 0.221 

APIE (%) 
min 3.47 0.94 1.09 0.69 
ave 17.54 13.11 12.74 10.76 
max 26.89 28.65 33.37 24.93 

ANDS 
min 1.00 0.50 0.40 0.25 
ave 1.13 0.96 1.02 0.84 
max 1.40 1.33 1.80 1.25 

APIED (%) 
min 1.72 0.45 1.02 0.60 
ave 3.94 4.88 3.79 3.79 
max 7.14 13.66 8.45 8.45 

4 

AIE 
min 0.077 0.051 0.009 0.034 
ave 0.150 0.100 0.114 0.085 
max 0.230 0.208 0.216 0.166 

APIE (%) 
min 12.74 6.88 1.03 4.50 
ave 27.92 25.88 19.65 12.12 
max 40.01 64.45 40.12 22.99 

ANDS 
min 1.00 0.80 0.33 0.80 
ave 1.28 1.39 1.04 0.95 
max 2.00 1.67 1.67 1.14 

APIED (%) 
min 3.22 2.47 0.45 1.86 
ave 8.86 3.92 5.78 4.87 
max 19.51 8.50 12.56 8.85 

5 

AIE 
min 0.047 0.006 0.005 0.049 
ave 0.100 0.085 0.099 0.110 
max 0.186 0.183 0.212 0.173 

APIE (%) 
min 17.93 9.08 0.60 6.91 
ave 30.21 25.10 19.55 17.23 
max 58.80 44.61 33.33 28.68 

ANDS 
min 0.80 0.60 0.29 1.00 
ave 1.16 1.31 1.22 1.50 
max 1.60 1.67 2.00 1.83 

APIED (%) 
min 1.89 0.32 0.54 3.07 
ave 4.98 3.66 3.83 5.30 
max 10.66 8.60 7.30 7.23 

6 

AIE 
min 0.000 0.000 0.073 0.029 
ave 0.037 0.051 0.109 0.098 
max 0.073 0.080 0.134 0.243 

APIE (%) 
min 0.00 0.00 20.94 7.85 
ave 16.31 17.44 30.22 25.36 
max 36.33 25.01 40.56 55.69 

ANDS 
min 0.26 0.33 1.17 0.86 
ave 0.95 1.10 1.75 1.61 
max 1.33 1.57 2.13 2.57 

APIED (%) 
min 0.00 0.00 2.81 1.67 
ave 1.68 2.41 5.83 3.98 
max 3.95 3.66 10.92 8.00 
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The results of outcome metrics are given in Table 4.3. For each number of ASM and 

number of SAM system combination, the outcomes of engagement time horizon in 

terms of destroyed ASMs and survived ships are calculated. In our computational 

experiments, we assume that a ship can contain at most two SAM systems. Thus, 

high number of SAM system indicates high number of total ship at the beginning of 

engagement process. Also it affects the number of ships survived. For instance, in 

problem set with 3 ASMs, average number of ships survived increases from 1.4 to 

3.4 when number of SAM systems increase 3 to 6. If we evaluate the rescheduling 

approach, the difference between updating the schedule and no rescheduling is more 

apparent in some problem sets. For instance, the rescheduling approach increases 

number of ships survived from 0.2 to 1.4 in problem set with 5 ASMs and 3 SAM 

systems. On the other hand, in problem set with 3 ASMs and 3 SAM systems, 

average number of ships survived value with updating the schedule is nearly same as 

without rescheduling. The average number of ships survived value is doubled from 

1.5 to 3 by using rescheduling model in problem set with 6 ASMs and 6 SAM 

systems. 

 

For PSS metrics, if rescheduling is not used only 30% of ships are survived in 

problem set with 4 ASM and 3 SAM systems. By BMRP model, 80% of ships are 

survived. We get the highest average PSS, 95.00%, in problem set with 3 ASMs and 

6 SAM systems by BMRP. The lowest average PSS, 50.00%, is attained in problem 

set with 6 ASMs and 3 SAM systems. Another metric to assess the performance of 

rescheduling model is percentage of destroyed ASM (PDA). In all problem sets, 

PDA increases by rescheduling approach. We get the highest PDA, 96%, in problem 

set with 4 ASM and 5 SAM systems. In problem set 4 ASM and 3 SAM systems, we 

get the highest difference for PDA between rescheduling model and keeping the 

existing schedule. The value increases from 63% to 92% in this problem set. In 

conclusion, computational runs show that our model ensures utilizing the capability 

of air defense systems better for destroying ASMs and surviving ships by increasing 

the probability of no-leaker of TG. 
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Table 4.3 The outcome metric results of problem sets. 

ASM 
SAM 

    3 4 5 6 

3 

NSS 
e-cons* 1.4 2.2 2.8 3.4 

no res** 1.3 1.8 2.2 2.8 

PSS (%)  
e-cons 70.00 80.00 93.33 95.00 

no res 70.00 66.67 73.33 76.67 

PDA (%)  
e-cons 85.00 90.00 95.00 95.00 

no res 80.00 80.00 78.33 80.00 

4 

NSS 
e-cons 1.6 2.2 2.8 3.75 

no res 0.6 1.6 2.2 3.25 

PSS (%)  
e-cons 80.00 83.33 93.33 93.75 

no res 30.00 56.67 73.33 81.25 

PDA (%)  
e-cons 92.00 92.00 96.00 95.00 

no res 63.00 76.00 79.00 85.00 

5 

NSS 
e-cons 1.4 2 2.6 3.25 

no res 0.2 1.8 2.2 2.5 

PSS (%)  
e-cons 70.00 73.33 86.67 85.42 

no res 30.00 66.67 73.33 66.67 

PDA (%)  
e-cons 86.67 86.67 93.33 91.67 

no res 62.67 72.67 79.33 74.17 

6 

NSS 
e-cons 1 2 2.6 3 

no res 0.8 1.2 2 1.5 

PSS (%)  
e-cons 50.00 76.67 86.67 79.17 

no res 40.00 43.33 66.67 39.58 

PDA (%)  
e-cons 62.86 88.10 94.29 88.69 

no res 56.19 68.10 82.86 65.48 
*outcome metric values with rescheduling by augmented ε-constraint method during the engagement    

process 

        **outcome metric values without rescheduling during the engagement process 

 

We present the elapsed times of solution methods in Table 4.4. The elapsed times of 

problems depend on number of non-dominated solutions and number of rescheduling 

time point. Also, the problem characteristics such as valid engagement between SAM 

systems and ASMs, number of SAM rounds in each SAM systems may affect the 

complexity of problem. So, the problem may become computationally complex in 

some problems even though it is a small size problem in terms of number of ASMs 

and number of SAM systems. The results show that the run times increase when 
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problem sizes increase. Besides in problem set with 4 ASMs and 6 SAM systems, 

with 5 ASMs and 6 SAM systems and with 6 ASMs and 6 SAM systems, one 

problem cannot be solved in two hours.  

 

Table 4.4 The average elapsed times (sec) of problem sets 

ASM  
SAM 

         3           4          5            6 

3 4.52 6.00 7.69 14.33 

4 7.93 11.76 14.56 28.01* 

5 10.40 15.79 21.12 26.60* 

6 12.74 17.62 35.26 38.36* 
               *One problem cannot be solved within 3600 seconds. 

 

To evaluate the effect of DM’s behavior on outcome of the solutions, we extend 

computational results by changing the weight of objectives in the utility function 

since the importance given to efficiency and stability may change among DMs when 

updating the existing  schedule. In previous results, we consider that both objectives 

have equal importance in the underlying quasi-concave utility function of DM, 

   
2

22

1

f max  .
p

IP
i i i

i

z w z z




  . To compare the results for different weight vectors, 

we use problem set with 6 ASMs and 6 SAM systems. We first randomly determine 

weight values with ND PNLw w . This implies a behavior of more willing to change the 

existing schedule. This consideration involves taking the risk of deviation from the 

existing schedule and targeting for the sake of its potential benefit. Hence, training 

ANN with giving greater importance to efficiency than stability in utility function 

creates a DM who is risk seeking. On the other hand, the DM who is more 

conservative to update the schedule is represented by randomly generating weight 

values with PNL NDw w . Thus the DM created with greater weight on stability while 

training the ANN is called as risk averse person. We structure the ANNs by 

calculating desired output values with these weight functions and construct different 

ANNs as DMs. 
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The average values of performance metrics are presented in Table 4.5. AIE value is 

0.092 if we use equal weights. It increases to 0.143 if DM is more willing to change 

the schedule and decreases to 0.043 if stability of the schedule is more desired. Same 

results are attained in the average percentage improvement on efficiency metric 

values. The result is 38.80% when efficiency is more considered, 27.81% with equal 

weights and 12.02% when stability is more desired. The average increase on the 

stability objective values are compared with the average number of disrupted 

schedule metric. With DM who is risk averse, on average only 0.17 number of 

disruption is occurred. The ANDS values are 1.98 with equal weights and 2.52 when 

DM is more willing to update the schedule. We get the maximum average percentage 

of improvement on efficiency with one number of disruptions as 3.59% with equal 

weights. 

 
Table 4.5 The results of average performance metric values. 

w1= w2 wND< wPNL wND> wPNL 

AIE 0.092 0.143 0.043 

APIE (%) 27.81 38.80 12.02 

ANDS 1.98 2.52 0.17 

APIED (%) 3.59 3.38 3.04 

 
 
We present the outcome metric results of engagement process in Table 4.6. If the 

schedule is not changed on the average only 2 ships and 48.33% of ships are 

survived and 70.48% of ASMs are destroyed. The number of ships survived 

increases to 2.5 when stability is more important to DM, 2.8 with equal weights and 

3.2 when efficiency is more important to DM. The percentage of survived ships 

increases to 88.33% if the weight vector is chosen as 1 2w w . The percentage of 

killed ASM equals to 70.48%, if we do not update the schedule. If we update the 

schedule with weight function 1 2w w , the percentage of destroyed ASM increases to 

84.52%, with equal weights increases to 88.10% and increases to 94.29% with 

weight function 1 2w w . 
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Table 4.6 The outcome metric values for different weight vector. 

 
no rescheduling w1> w2 w1= w2 w1< w2 

NSS 2 2.5 2.8 3.2 

PSS (%) 48.33 66.67 76.67 88.33 

PKA (%) 70.48 84.52 88.10 94.29 

 

The results show that total effectiveness of rescheduling approach of TG increases 

with respect to efficiency if prior articulated preferential information is based on 

giving more sacrifice from stability. If the number of change in SAMs allocation 

from the existing schedule is more desired, the stability of the engagement allocation 

plan is more controlled and less increment on efficiency is achieved. 

 

4.4.4 Computational Results with Heuristic Approach  

 

We use heuristic algorithms to generate non-dominated solutions for large size 

problems. The results are given in Table 4.7.  The highest average AIE value, 0.107 

is in problem set with 7 ASMs and 7 SAM systems. AIE values decrease when 

number of SAM system is 7 and number of ASMs increases from 7 to 10.  The 

lowest average AIE, 0.045, is in the problem set with number of ASM is 10 and 

SAM system is 7. On the contrary, we get the highest average APIE, 43.38%, with 

10 ASMs and 7 SAM systems. APIE values change between 5.41% and 70.44%. The 

results show that we may greatly increase the survival probability of TG in large size 

problems by using our model. The highest maximum APIE value, 70.44%, is 

attained in problem set with 10 ASMs and 7 SAM systems. We get the lowest 

minimum APIE value, 5.41%, in problem set with 8 ASM and 10 SAM systems. The 

results show that the improvement on efficiency does not depend on the number of 

SAM system or number of ASM as well as small size problems. 
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Table 4.7 The performance metrics with heuristic approach. 

ASM   
SAM 

    7 8 9 10 

7 

AIE 
min 0.017 0.031 0.051 0.051 
ave 0.107 0.081 0.090 0.090 
max 0.200 0.127 0.154 0.154 

APIE (%) 
min 11.05 5.48 8.31 8.31 
ave 26.95 26.34 16.01 16.01 
max 40.32 47.50 30.07 30.07 

ANDS 
min 1.25 1.10 1.36 1.36 
ave 1.55 1.46 1.60 1.60 
max 1.67 2.00 2.00 2.00 

APIED (%) 
min 0.84 1.63 2.23 2.23 
ave 6.49 3.83 3.74 3.74 
max 13.01 5.91 5.89 5.89 

8 

AIE 
min 0.024 0.029 0.052 0.025 
ave 0.081 0.073 0.089 0.059 
max 0.232 0.206 0.159 0.111 

APIE (%) 
min 8.97 5.76 9.51 5.41 
ave 31.11 17.13 18.93 13.84 
max 61.37 28.75 28.09 25.05 

ANDS 
min 1.33 1.18 1.33 0.90 
ave 1.62 1.51 1.49 1.24 
max 2.44 2.14 1.91 1.75 

APIED (%) 
min 1.46 1.47 2.80 1.17 
ave 3.98 3.03 4.96 2.81 
max 11.01 7.18 9.20 4.80 

9 

AIE 
min 0.007 0.034 0.028 0.046 
ave 0.064 0.093 0.066 0.073 
max 0.164 0.206 0.120 0.117 

APIE (%) 
min 13.90 10.16 10.43 7.05 
ave 33.78 32.13 21.73 17.43 
max 49.44 53.93 38.19 32.82 

ANDS 
min 0.91 1.55 1.30 1.27 
ave 1.42 1.83 1.51 1.47 
max 2.00 2.22 1.78 1.90 

APIED (%) 
min 0.44 1.59 1.60 2.54 
ave 3.67 5.13 3.68 4.09 
max 6.90 8.31 6.35 6.13 

10 

AIE 
min 0.009 0.005 0.012 0.028 
ave 0.045 0.066 0.061 0.073 
max 0.123 0.132 0.116 0.104 

APIE (%) 
min 26.01 21.39 17.24 13.28 
ave 43.38 27.43 23.36 21.59 
max 70.44 32.38 29.59 38.36 

ANDS 
min 1.25 1.30 1.30 1.08 
ave 1.56 1.53 1.58 1.52 
max 2.11 1.91 2.33 1.86 

APIED (%) 
min 0.57 0.33 0.77 1.67 
ave 2.30 3.36 3.04 3.64 
max 5.86 7.30 4.44 5.49 
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ANDS values change between 0.90 and 2.44. The average ANDS values are nearly 

around 1.5 in all problem sets.  The highest maximum ANDS value, 2.44, is attained 

in problems set with 8 ASM and 7 SAM systems. We get the lowest minimum 

ANDS value, 0.90, in problem set with 8 ASM and 10 SAM systems. The problem 

with 7 ASM and 7 SAM systems has the highest maximum APIED, 13.01%. 

Average APIED values are between 2.30% and 6.49%. 

 

The results of overall metrics for large size problems are given in Table 4.8. The 

highest difference between rescheduling and keeping the existing schedule is in 

problem set with 9 ASMs and 8 SAM systems. The number of ships survived value 

increases from 2.2 to 4.2 and percentage of survived ships value increases from 46% 

to 88% in this problem set. On the other hand, in problem set with 7 ASMs and 10 

SAM systems, average numbers of ships survived values are nearly same for 

updating the schedule and no rescheduling. If we don’t implement our model, only 

48% of ships are survived in problem set with 9 ASM and 7 SAM systems. But, we 

can survive 81% of ships in this problem set by using the rescheduling model. We 

get the highest average percentage of survived ships, 96.67%, in problem set with 7 

ASMs and 9 SAM systems for our model. The lowest average percentage of survived 

ships, 76.00%, is attained in problem set with 10 ASMs and 7 SAM systems.  

 

The metric of percentage of killed ASM helps to evaluate the effectiveness of 

rescheduling approach. In all problem sets, percentage of killed ASM increases with 

the rescheduling approach.  We get the highest percentage of killed ASM, 97.5%, in 

problem set with 7 ASM and 9 SAM systems. In problem set 9 ASM and 8 SAM 

systems, we get the highest difference for percentage of killed ASM between 

rescheduling model and keeping initial schedule. The value increases from 68.89% to 

91.78% in this problem set. 

 

We present the elapsed times of heuristic approach in Table 4.9. We cannot solve 

large size problems exactly with augmented ε-constraint method. However, we solve 

large size problems with heuristic approach less than one second. So, we can use our 
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rescheduling model for large size problem sets in terms of the number of ASMs and 

number of SAM systems. 

 

Table 4.8 The results of overall metrics for large size problems. 

ASM 
  SAM 

    7 8 9 10 

7 

NSS 
heur 3.4 4.4 5.2 5.2 
no res 2.8 3.8 4.2 5 

PSS (%) 
heur 81.00 92.00 96.67 96.65 
no res 66.00 79.00 76.67 83.62 

PDA (%) 
heur 88.93 89.64 97.50 97.50 
no res 67.86 86.79 79.29 87.14 

8 

NSS 
heur 3.6 4.2 5 5.4 
no res 2.2 3.6 4 4.6 

PSS (%) 
heur 87.00 88.00 92.67 90.48 
no res 53.00 74.00 73.33 76.95 

PDA (%) 
heur 93.33 92.78 95.56 93.06 
no res 73.06 84.17 84.17 83.61 

9 

NSS 
heur 3.4 4.2 4.8 5.6 
no res 2 2.2 3.4 5.2 

PSS (%) 
heur 81.00 88.00 88.67 93.81 
no res 48.00 46.00 61.33 86.48 

PDA (%) 
heur 89.56 91.78 93.78 96.00 
no res 69.11 68.89 77.56 91.78 

10 

NSS 
heur 3.2 3.8 4.6 5.6 
no res 1.4 3 3.4 4 

PSS (%) 
heur 76.00 79.00 85.33 93.81 
no res 34.00 62.00 63.33 65.81 

PDA (%) 
heur 80.73 88.73 90.55 96.18 
no res 63.82 75.64 70.18 77.09 

    *outcome metric values with rescheduling by heuristic method during the engagement process 
            **outcome metric values without rescheduling by heuristic method during the engagement process 

 

Table 4.9 Elapsed times (sec) of large size problems by heuristic method. 

 
SAM 

ASM 7 8 9 10 
7 0.302 0.475 0.500 0.527 
8 0.322 0.586 0.561 0.726 
9 0.272 0.537 0.592 0.657 
10 0.277 0.336 0.587 0.637 
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CHAPTER 5 

 

 

5 BIOBJECTIVE MISSILE RESCHEDULING PROBLEM WITH 

SEQUENCE DEPENDENT STABILITY MEASURE 

 

 

 

BMRP concentrates on generating new schedule that increases efficiency of air 

defense without much deviation from the existing schedule. However, after a 

disturbance happens, updating the original schedule as much as possible during the 

engagement process may be preferable. DM may need to reschedule SAM rounds 

with excessively disrupting the original schedule. To handle the disturbances, 

rescheduling with small deviation from the initial schedule may result a complicated 

schedule than large deviation from the initial schedule. This can be easily illustrated 

by the following example. Assume that a disturbance happens and the initial 

schedule is updated only with a few changes on SAM allocations. If new schedule 

includes that SAM systems consecutively change their targets during the engagement 

process, targeting of SAM systems become time consuming and ineffective. Instead 

of measuring the deviation from the initial schedule, a schedule that makes SAM 

systems operations more effective can be more preferable according to DMs. The 

disturbance may be an opportunity to get a stable schedule in terms of shoot order of 

SAM systems without considering the deviation from the initial schedule. Thus, 

defining accurate measure for stability is very important since schedule change may 

bring benefit to air defense. 

 

The launch process of a SAM round that has semi-active radar includes tracking of 

the target illumination radar, the solution of radar control problem and launch delay 

(Karasakal et al. (2011)). Each target must be illuminated in order to launch the SAM
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round. The fire control radar tracks the target after acquisition of target from search 

radar and target is illuminated. If a SAM round misses the target, next allocated 

SAM round is fired against the ASM according to firing policy. If consecutive 

ASMs are identical in the shoot schedule of SAM systems, the tracking does not 

change from one to another ASM. While tracking and illuminating a new target, 

there is a risk of not being able to acquire the new target. Targeting risk and 

resolution of fire control problem of a SAM system can be avoided by shooting same 

ASM consecutively. Thus, sequencing decision should not simply be disregarded 

since change on target tracking may cause multiple radar, illuminator and launcher 

positioning. By defining a new stability measure that considers change of target 

tracking for SAM systems, new engagement plan yields improvement on targeting of 

SAM systems. 

 

In the first part of our study, the decision on scheduling is made without considering 

shoot order of SAM systems against ASMs. BMRP minimizes total deviation from 

the initial schedule. The efficiency objective of BMRP is the minimization of 

probability of no-leaker value of TG. The model considers the total number of 

changed SAM allocations with respect to initial schedule as a stability objective. The 

formulation of stability in BMRP is   Z   ND ijk ijk
i A j S k T

Min Y x
  

  where the 

decision variable 1ijkY   if SAM j is allocated to start engagement process against 

ASM i at the beginning of time slot k and parameter 1ijkx   if in the initial schedule 

SAM j is allocated to start engagement process against ASM i at the beginning of 

time slot k. The number of disruptions is measured by four different types. The 

allocation of a new SAM round in addition to initial schedule brings one disruption 

since 1ijkY   and 0ijkx  . Discarding an initially allocated SAM round j  from a 

target ASM i  and replacing a different on hand SAM round 'j  to the ASM

 

i  

engagement plan yields two disruptions since 0 1ijk ijkY x    and 

' ' 1 0
ij k ij k

Y x   Also, discarding an initially allocated SAM round j  from a target 



  113  
  

ASM i  and replacing it to ASM

 

'i  engagement plan yields two disruptions since 

0 1ijk ijkY x    and ' ' 1 0
i jk i jk

Y x   . If a SAM round j  in the engagement plan 

of ASM i and a SAM round 'j  in the engagement plan of ASM 'i  are exchanged, 

four disruptions are occurred in total. 

 

In this part of our research, we develop a new stability measure that considers shoot 

order of SAM systems and change on target tracking for SAM systems. We define 

“tracking changeover” as the process of converting target of a SAM system from one 

ASM to another. The “total number of tracking changeover” for TG, ZTC , is 

calculated by summation of total number of tracking changes over all SAM systems. 

In the next section, we evaluate two stability measures, the total number of tracking 

changeover ( ZTC ) and the total number of disruption ( ZND ) on an illustrative 

example problem.  

 

5.1 An Example 

 

We generate a specific example problem in order to compare total number of 

tracking changeover ( ZTC ) and total number of disruption ( ZND ) measures. Consider 

a TG with four ships and six SAM systems and counters an air attack containing six 

ASMs. The types of ASMs are given in Table 5.1 and illustration of air defense 

operation is presented in Figure 5.1.  

 

Table 5.1 Feature of ASMs. 
 

 
ASM1 ASM2 ASM3 ASM4 ASM5 

      Velocity(m/sec) 289 350 306 289 306 

Target Ship 2 Ship 1 Ship 1 Ship 3 Ship 2 
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Within the engagement interval, upper bounds on the number of engagements of 

ASM and SAM system pairs are calculated according to velocities, minimum and 

maximum effective range of SAM systems and velocities and initial distance of 

ASMs. SAM systems 2, 4 and 5 are area-defense systems. The number of SAM 

rounds for each SAM system, d, is shown in Figure 5.1.  

 

 

Figure 5.1 A TG and attacking ASMs. 
 

We assume a disturbance occurs at time slot 9 as breakdown of SAM system 6. The 

initial engagement schedule after time slot 9 is presented in Figure 5.2. The x axis 

represents times slots and y axis includes target ASMs. For each ASMs, the 

scheduled SAM systems are indicated in the rectangle shapes.  

 

According to SLS policy, until a SAM round intercepts with an ASM, there is no 

scheduled SAM for this ASM. Thus, there is no overlap between rectangles. The 

starting and finishing points of rectangles show the starting and finishing time slots 

of engagements. The size of rectangles represent the duration of engagements. Since 

SAM 6 is broken down, it cannot shoot to ASM 2 and ASM 5 that was initially 

allocated.  
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Figure 5.2 The initial engagement schedule after breakdown of a SAM system. 
 

The corresponding shoot order of SAM systems for initial schedule is presented in 

Figure 5.3. Figure 5.3 shows the time of shoots and target ASMs for each SAM 

systems. For each SAM system schedule, the target ASMs and time of shoots are 

given. 

 

The solution keeping the initial schedule is a non-dominated solution with respect to 

BMRP model since it has minimum deviation from the initial schedule. The 

objective function values are Z 0.41PNL   and Z 0ND  . The total number of tracking 

changeover value is 4. All SAM systems except SAM system 5 have one tracking 

changeover. For instance, in SAM system 1, the first two are fired to ASM 2. Then, 

the SAM system changes its target and shoots to ASM 3. Thus, SAM system 1 has 

one tracking change. SAM system 5 has no tracking changeover since its only target 

is ASM 5.  
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    Figure 5.3 The initial schedule of SAM systems after breakdown of SAM system 6. 
 

 

We generate non-dominated solution of BMRP. In addition to keeping the initial 

schedule, we obtain a new solution. The objective function values for non-dominated 

solutions of BMRP are given in Table 5.2. We also calculate total number of tracking 

changeover for both non-dominated solution and present in Table 5.2.  

 

Table 5.2 The non-dominated solutions of BMRP. 
 

ZPNL  ZND  ZTC  

0.41 0 4 

0.68 4 6 

 
 

The total number of tracking changeover is 4 in the initial schedule and 6 in the 

updated schedule. Figure 5.4 shows engagement schedules of updated schedule with 

Z 4ND   and Z 6TC  . SAM 4 and SAM 5 shoot order is updated with exchange of 

SAM(j)

SAM 1

SAM 2

SAM 3

SAM 4

SAM 5

10 11 12 13 14 15 16 17 18 19 Time slot (k)

ASM 5 ASM 5

ASM 2

ASM 1

ASM 4 ASM 4

ASM 1

ASM 4

ASM 2

ASM 5

ASM 3

ASM 2 ASM 3
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SAM rounds in the engagement schedule of ASM 4 and ASM 5. SAM system 4’s 

tracking changeover increases from two to three and SAM system 5’s tracking 

changeover increases from zero to one. Thus, Z 4TC   changes to Z 6TC   from 

initial schedule to the updated schedule. Also four disruptions are occurred since two 

SAM rounds are exchanged Z 4ND  .  

 

 

Figure 5.4 Non-dominated solution with Z 0.68PNL  , Z 4ND  and Z 6TC  . 

 

To find a solution with minimum total number of tracking changeover, we generate a 

feasible updated schedule of the sample problem. We present the updated schedule in 

Figure 5.5. All SAM systems have only one target ASM. Hence, total number of 

tracking changeover is 0. The schedule has Z 0TC  , Z 0.65PNL  . On the other hand, 

there are eight disruptions in the initial schedule. Thus, according to BMRP, the 

solution is dominated by solution with Z 0.68PNL  , Z 4ND  . If we develop a new 

mathematical model consists of two objectives with probability of no-leaker value, 

ZPNL  and total number of tracking change, ZTC , the updated schedule will be a non-

SAM(j)

SAM 1

SAM 2

SAM 3

SAM 4

SAM 5

10 11 12 13 14 15 16 17 18 19 Time slot (k)

ASM 5 ASM 4

ASM 2

ASM 1

ASM 4 ASM 5

ASM 1

ASM 4

ASM 2

ASM 5

ASM 3

ASM 2 ASM 3
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dominated solution of the model to be proposed since it has minimum total tracking 

changeover. 

 

 

Figure 5.5 Feasible solution with Z 0.65PNL  , Z 8ND  and Z 0TC  . 

 

The overall results are presented in Table 5.3. The last two columns of the table show 

either the solution is a dominated (D) or a non-dominated (ND) one according to two 

models. 

Table 5.3 The solutions of the sample problem 

 

 

 

 
 

 

The results indicate that BMRP model cannot obtain solution that has 0.65 

probability of no-leaker value without tracking changeovers for SAM systems. 

SAM(j)

SAM 1

SAM 2

SAM 3

SAM 4

SAM 5

10 11 12 13 14 15 16 17 18 19 Time slot (k)

ASM 5 ASM 5

ASM 4

ASM 1

ASM 4 ASM 4

ASM 1

ASM 3

ASM 2

ASM 3

ASM 2 ASM 2

ASM 5

ZPNL  ZND  ZTC  BMRP New Model 

0.41 0 4 ND* D** 
0.65 8 0 D ND 
0.68 4 6 ND ND 

* Non-dominated solution 
** Dominated solution 
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BMRP and new model generate the non-dominated solution with 0.68 probability of 

no-leaker value that is barely greater than 0.65. Moreover, the solution with keeping 

the initial schedule is a dominated solution according to new model. It has 4 total 

number of tracking changeover and 0.41 probability of no-leaker value and 

dominated by the solution with Z 0TC  and Z 0.65PNL   in the new model. 

 

Since BMRP considers only deviation from the initial schedule and does not 

concentrate on tracking changeover, solutions that may be preferable under certain 

circumstances cannot be captured by BMRP. In the schedule with Z 0TC   and

Z 0.65PNL  , none of the SAM systems shoots to different ASMs and the efficiency 

objective is very close to highest value. But, it is identified as a dominated solution 

due to BMRP since the amount of deviation from the initial schedule is high. 

 

We consider total number of tracking changeover for all SAM systems as a stability 

measure. The point that is of concern for this study is the need to integrate 

sequencing decisions with rescheduling of SAMs for a TG. With the need to get an 

updated schedule having the ability to reduce the impacts of a disruption and increase 

the effectiveness of air defense, we suggest a new biobjective model. The resultant 

schedule of new model is a stable one among schedules due to minimum total 

tracking changeovers. Besides, we propose a solution approach to generate efficient 

and stable schedules with regard to shoot order of SAMs. 

 

5.2 Biobjective Missile Rescheduling Problem with Sequence-Dependent 

Stability Measure (BMRP-S) 

 

In the first part of our study, our aim is to generate stable schedules that consider the 

shoot sequence of SAM systems. We develop a mathematical model that maximizes 

the probability of no-leaker value of TG and maximizes number of shoots to same 

ASMs consecutively for each SAM systems, or equally minimizes total number of 

tracking changeover for SAM systems. The model considers the order of ASMs in 
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SAM systems schedule. It finds the sequence of shoots and maximizes shooting to 

same ASMs consecutively for all SAM systems. 

 

We present the indices, parameters and decision variables along with the 

mathematical formulation of BMRP-S as follows: 

 

Indices, sets and parameters 

i  index for inital incoming ASMs ( 1,....., )i n  
N  set of initial incoming ASMs  

D  set of destroyed ASMs  

I  set of new incoming ASMs  
j  index for SAM systmes on warships ( 1,....., )j m  

M  set of SAM systems  

B  set of broken SAM systems  
k  index for time slots ( 1,....., )k t  

K  set of time slots  
F  set of finished time slots  
RT  rescheduling time point  

A   set of current ASMs at ,  ( ) /RT A N I D   

S  set of current SAM systems at ,  ( / )RT S M D  

T  set of time slots after at ,  ( / )RT T K F  

 ,i j V  valid combinations of ASMs and SAMs  

ijq  earliest begining time of first engagement between ASM  and 

SAM system 

i

j
  

ijr  latest ending time of last engagement between ASM  and 

SAM system 

i

j
 

ijk  engagement duration of ( , ) pair if engagement starts in time slot i j k  

ijS  set of time slots that SAM  can be scheduled to ASM ,j i  

  : ,  and , ,k k ijk ij ijk K i j V q r             

ikJ   set of combinations of ,  that time slot  for ASM  will be blocked,j k i

      , : , ,  and , ,ij k k ijj i j V S                  

ijkp  single shot kill probability of SAM  for ASM  if engagement starts 

in time slot 

j i

k
 

jd  avaliable rounds on SAM j  

jf  fired rounds of SAM up to the RT  
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RT
ij  upper bound on number of engagements of SAM  

against ASM  at  

j

i RT
 

' 'ii jkk
tc  ' 'a parameter equals to -1 if  i=i  or eqauls to 1 if  i i  

M  a large number  
 

Decision variables 

1,  if SAM  is scheduled to start engegament process against ASM  

    at the begining of time slot     

0,  otherwise
ijk

j i

Y k


 



 

' '

' '

'

1,   if ASM  is allocated at time slot , ASM  is allocated at time slot  

     in the SAM  shoot schedule and ASM  is followed by ASM .      

0,   otherwise
ii jkk

i k i k

j i i




 



 
the order value of  ASM  in the SAM  shoot schedule  if ASM  is allocated 

at time slot     

ijkQ i j i

k


 

 

(BMRP-S) 

 

' ' ' '

' '

   .  
ii jkk ii jkk

i j ki k

min tc                                                                         5.1  

 
,( , )

   1 1
ijkY

ijk
i A k T

j S i j V

max p
 

 

 
    
 

                                                                       5.2  

subject to 

 
 

                                       ijk j j
k T
i A

Y d f j S



                                                      5.3  

( , )

1                                              ,
ik

ijp
j p J

Y i A k T


                                           5.4  

                                              ,
ij

RT
ijk ij

k S

Y i j V


                                              5.5  

1                                                  ,  ijk
i A

Y j S k T


                                          5.6  
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                                               , ,ijk ijk ijQ MY i A j S k S                                 5.7  

 '

'

1                    , ,ijk ijk iji jp
p ki

Q Y M Y i A j S k S


                                   5.8  

 '

'

1                     , ,ijk ijk iji jp
p ki

Y Q M Y i A j S k S


                                  5.9                                     

   ' ' ' '

' '1 1                   , , , ,ijk iji jk ii jkk
Q Q M i i A j S k k S                         5.10  

    ' ' ' '

' '1 1                   , , , ,ijk iji jk ii jkk
Q Q M i i A j S k k S                         5.11      

   0,1                                                    , ,ijk ijY i j V k S                               5.12  

 ' '

' '0,1                                                 , , , , ijii jkk
i i A j S k k S                       5.13  

0                                                        , ,ijk ijQ N i A j S k S                             5.14  

 

The objective function (5.1) minimizes total number of tracking changeover in SAM 

systems. The efficiency objective (5.2) is the maximization of probability of no-

leaker for TG. The limit on total number of SAM rounds is enforced by constraint set 

(5.3). Constraint set (5.4) provides allocation of SAMs due to SLS tactic. Constraint 

set (5.5) limits the maximum number of SAM rounds that can be scheduled against 

each ASM. Constraint set (5.6) avoids allocation of SAM rounds to same time slots 

for each SAM system. Constraint Set (5.7) to (5.9) calculates the order value of 

allocated ASM i  in time slot k . If ASM i  is allocated in time slot k  of SAM system

j shoot schedule, then 1ijkY  . To satisfy Constraint set (5.8) and (5.9), total number 

of allocated ASMs until time slot k , '

'
i jp

p ki

Y


 ,  is equal to the order value of 

allocated ASM i  in SAM j  shoot schedule, '

'
ijk i jp

p ki

Q Y


 . Constraint set (5.10) 

and (5.11) ensure that if ASM i  is not followed by ASM 'i  in shoot schedule of 

SAM system j   ' ' 1ijk i jk
Q Q  , then ' ' 0

ii jkk
  . If ASM i  is followed by ASM 'i  in 

the shoot schedule of SAM system j ,  ' ' 1ijk i jk
Q Q  , then objective function (1) 

forces ' 'ii jkk
  to be 1 with constraint set (5.10) and (5.11). 
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5.3 Exact Solution Approach 

 

We formulate a new biobjective missile rescheduling problem to find the shoot 

sequence of SAM systems. The number of variables and constraints increase with the 

number of time slots, SAM systems and ASMs. Results obtained in our experimental 

study show that the computation time to solve the problem is extremely long even for 

small size instances. For example, problems with 3 ASM and 3 SAM systems cannot 

be solved within an hour. Thus, we propose a new exact solution procedure in order 

to solve BMRP-S. The solution procedure has three stages: 

 

The first stage is the generation of feasible solutions in the range of maximum ZPNL

and minimum ZPNL  by defining upper bound on probability of no-leaker objective in 

each step. First, the solution with maximum ZPNL  is generated by solving below 

mathematical model. We call the formulation of problem as MAP-z and it is given as 

follows: 

 

(MAP-z) 

 
,( , )

  Z 1 1
ijkY

PNL ijk
i A k T

j S i j V

max p
 

 

 
     
 

                                             5.15  

subject to 

                  ijk j j
k T
i A

Y d f j S



                                                                  5.16  

( , )

1                         ,
ik

ij
j J

Y i A k T
 

                                                      5.17  

                        ,
ij

RT
ijk ij

k S

Y i j V


                                                        5.18  

1                             ,  ijk
i A

Y j S k T


                                                    5.19  

   0,1                            , ,ijk ijY i j k S                                                  5.20  



  124  
  

To obtain solutions with different probability of no-leaker value, we restrict ZPNL  by 

adding the following constraint to the model. 

 

Z Zcur
PNL PNL                           5.21  

 

In constraint (5.21) Zcur
PNL  value is an upper bound on probability of no-leaker 

objective. It limits objective function value to have a solution with different ZPNL . In 

the first step, Zcur
PNL  is set as 1 which is the maximum value that probability of no-

leaker value can take. Thus, first solution has the maximum probability of no-leaker 

value. Then, in each step, Zcur
PNL  is updated by equating to the probability of no-leaker 

value that is previously found. By updating the right hand side of constraint (5.21) in 

each step, we obtain new solution that has less probability of no-leaker value than 

previously found solution. The iteration continues until the generation of solution 

with minimum probability of no-leaker value. The shoot order of SAM systems is 

not considered in this stage. 

 

In the second stage, we concentrate on total tracking change value of solutions. An 

algorithm, namely, SAM Round Swap (SRS) algorithm is developed to find the 

minimum ZTC  value for each solution having different probability of no-leaker 

value. SRS algorithm includes two exchange cases. 

 

The first one is exchanging allocated SAM rounds for each ASM.  We choose a pair 

of SAM rounds in an engagement schedule of ASM and try to exchange their order. 

We search for whether there exist available time slots to allocate both SAM rounds. 

If exchange is available, we keep the new ASM engagement schedule as a part of 

possible solution. All combinations of exchanged SAM rounds are produced for each 

ASM. 
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The second case is exchanging two SAM rounds between engagement schedules of 

two ASMs. We keep the same probability of no-leaker value to find the minimum 

ZTC  in each feasible solution. If two different SAM systems have same single shot 

kill probability value against two ASMs, then those different SAM rounds can be 

exchanged between engagement schedule of ASMs and the probability of no-leaker 

value of whole TG does not change. For each pair of ASMs, we check whether there 

exists same singe shot kill probability value for different SAM systems. If exchange 

of allocated SAM rounds between ASMs is possible, we update current schedule and 

find all possible engagement schedules of new updated solution. ASM engagement 

schedules with different shoot order of SAM rounds constitute a number of different 

allocation plans of TG. We find all combination of ASM schedules to evaluate ZTC 

values. SRS algorithm finds the solution with minimum ZTC  by updating shoot orders 

of SAM systems without changing the probability of no-leaker of TG. 

 

The last stage includes discarding infeasible solutions that are previously produced. 

In exchange part, ASM engagement schedules are created by checking available time 

slots within their own schedule. However, combination of different ASM schedules 

may create an engagement schedule with a SAM system shooting twice at a time 

slot. Thus, if there exists such an engagement schedule, it must be discarded from the 

feasible solution set. We check starting time slots of SAM rounds in each SAM 

system and determine the feasible ones among all solutions. Finally, ZTC  values are 

calculated for all solutions in the feasible set and the solution with minimum ZTC  

value is chosen as a possible candidate for non-dominated solution set. The 

computational complexity of SRS algorithm is O(r2n) where r is the number of 

allocated SAM rounds for an ASM and n is the number of ASMs. 

 

5.3.1 Exact Solution Algorithm 

 

We present the notation of the algorithm as follows: 
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Sets  

iR  set of allocated SAM rounds for ASM i  

iQ  set of all possible allocated SAM sequences for ASM i  

E  set of engagement allocation plan of naval task group  
NS  set of non-dominated solutions for BMRPs  

 

Parameters and variables 

PNLZ  probability of no-leaker value for naval task group  

TCZ  total number of tracking change value for all SAM systems  
cur
PNLZ  current probability of noleaker value  
cur
TCZ  current total number of tracking change  

cs  current solution  
 

Steps of the Algorithm 

Stage 1: 

Initialization  
Step 0. Set 1cur

PNLZ  and cur
TCZ    

 
Solution 
Step 1. Solve MAP-z model. If infeasible, stop. Otherwise, set solution ω as cs and 

set cur
PNLZ  as probability of no-leaker value of solution ω. cs=ω and cur

PNL PNLZ Z . 

Calculate TCZ . If 0TCZ  , stop.  

 
Stage 2: 

Exchange allocated SAM rounds for ASM i 

Step 2. For current schedule, cs, change the order of allocated SAM rounds in the 

set, Ri, for each ASM i . Find all possible SAM sequences and add to set iQ  for each 

ASM i. 

 

Step 3. Select one of the allocation plans from set iQ  for each ASM i and find all 

combinations of engagement allocation plan of TG and add to set E. 
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Step 4. Determine whether the solution in set E includes that a SAM system shoot 

more than once at same time slot. Discard these infeasible solutions from set E. 

 

Exchange allocated SAM rounds between two ASMs 

Step 5. For each pair of ASMs, check whether there exists same singe shot kill 

probability value for different SAM systems. If two different SAM systems have 

same single shot kill probability value against two ASMs, then those different SAM 

rounds can be exchanged between schedule of ASMs and the probability of no-leaker 

value of TG does not change. If exchange of allocated SAM rounds between ASMs 

is possible, update current schedule, cs. Go to step 2, with new engagement 

allocation plan of ASMs.  

 
Stage 3: 

Find non-dominated solutions 

Step 6. Calculate total number of tracking changes, TCZ  for each solution in set E.  

 

Step 7.  Select the solution, λ, with minimum TCZ  objective value from set E.  

 

Step 8. If cur
TC TCZ Z  , add the solution λ to NS and set cur

TC TCZ Z  . Add constraint 

Z Z       (5.21)cur
PNL PNL    to MAP-z. Go to step 1. 

 

Theorem 5.1 Proposed solution procedure generates all exact non-dominated 

solutions of a biobjective missile rescheduling problem with sequence-dependent 

stability measure.  

 
Proof: Note that solution of MAP-z find a feasible solution of BMRP-S. Updating 

the upper bound on probability of no-leaker value in each iteration of MAP-z find 

feasible solutions of BMRP-S with different PNLZ . Thus, all solutions with different 

probability of no-leaker value are generated by MAP-z. Assume that set P includes 

all solutions produced by MAP-z. The exchange of SAM rounds within the 
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engagement schedule of an ASM and the interchanges of SAM rounds that has same 

single shot kill probability against both ASMs does not change PNLZ  but minimizes

TCZ . SRS algorithm minimizes TCZ  by creating all possible engagement schedules 

for each solution that MAP-z produces. TCZ  values of all solutions in set P are 

minimized by SRS algorithm. Let   be a non-dominated solution. In one iteration 

MAP-z finds a solution, , that the probability of no-leaker value equals to the 

probability of no-leaker value of  , 
PNL PNL

Z Z  .  Let TC TCZ Z  . Since SRS 

algorithm minimizes TCZ  value from solution   without changing the PNLZ , the 

solution    with minimum total tracking changeover and with 
PNL

Z   probability of 

no-leaker value is generated by SRS algorithm. TC TCZ Z   , PNL PNLZ Z  . Hence   

and   are same non-dominated solutions. If TC TCZ Z   then   is not a non-

dominated solution which contradicts with definition of . This completes the proof 

that the solution procedure generates all non-dominated solutions of BMRP-S.   

 

5.3.2 An Example Problem 

 

We next describe the solution procedure for BMRP-S on an example problem. We 

generate non-dominated set of BMRP-S and evaluate the total number of disruptions.  

Figure 5.6 depicts TG with SAMs and attacking ASMs. TG consists of four ships 

and all ships are equipped with SAM systems. There are four incoming ASMs and 

five SAM systems. SAM 2 and SAM 4 are area-defense system and can defend other 

ships within their effective ranges. The target ship of each ASM is known by 

defensive units. The ranges, velocities and target ships of ASMs are given in Figure 

5.6. The maximum number of engagement between valid ASM and SAM pairs is 

calculated in accordance with SLS firing policy. We present the defense and the 

attack information in Tables 5.4 and 5.5 respectively. The engagement time horizon 

is 275 seconds. The optimal initial schedule is generated and each SAM system has 

an order of shoot plan to carry out the engagement schedule.  
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Figure 5.6 An illustration of defensive and attacking units for sample problem. 

 

Table 5.4 Attack information. 

ASM Target Ship Distance (m) Speed (m/sec) 

1 1 60000 220 

2 3 65000 290 

3 1 60000 240 

4 2 66000 390 

 

Table 5.5 Defense information. 

SAM System 
Hosting 

Ship 
Minimum 
Range (m) 

Maximum 
Range (m) 

Speed 
(m/sec) 

Round Type 

SAM 1 1 1500 12000 680 3 Self 

SAM 2 1 3000 100000 1394 5 Area 

SAM 3 2 1500 18000 1224 1 Self 

SAM 4 2 5000 38000 680 3 Area 

SAM 5 3 1500 18000 1224 5 Self 
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We assume that at the beginning of time slot 116, surveillance units detect an 

unexpected incoming ASM.  The feature of ASM 6 is given in Table 5.6. 

 

Table 5.6 New ASM features. 

 

 

 

 

 

 

Since it is not considered at the beginning of the engagement process, SAM rounds 

should be scheduled against ASM 6. The initial schedule after rescheduling time 

point, t=116, is presented in Figure 5.7. Total number of tracking changeover is five, 

5TCZ  .  

  

 

Figure 5.7 Initial schedule after rescheduling time point. 

 

  i ASM6 

Velocity (m/sec)  290 

Target Ship 3 

Distance (m) 60000 
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Firstly, we solve MAP-z model without bound on probability of no-leaker value. We 

find the solution with maximum probability of no-leaker value presented in Figure 

5.8.  

 

 

Figure 5.8 Solution with maximum probability of no-leaker. 

 

Secondly, we use SRS algorithm to find the solution having minimum ZTC  for 0.45 

probability of no-leaker value. All possible ASM engagement plans are created and 

we choose the feasible solution with minimum ZTC . The solution produced by SRS 

algorithm is shown in Figure 5.9. SRS algorithm decreases number of total tracking 

changeover form 6 to 5.  

 

 

Figure 5.9 The solution produced by SRS algorithm. 
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Next, we solve MAP-z by limiting probability of no-leaker value with constraint 

Z 0.45  PNL    where    is a small number. We attain the solution with 

0.36PNLZ   and 7TCZ   as depicted in Figure 5.10. SRS algorithm is used for the 

solution with 0.36 probability of no-leaker value and TCZ  is minimized and 

decreases from 7 to 5.  

 

  

Figure 5.10 Solution with 0.36PNLZ   and 7TCZ   . 

 

Figure 5.11 shows the solution that SRS algorithm is produced. Since the solution is 

dominated by solution having 5TCZ  and 0.45PNLZ  , it is not added to the non-

dominated set. The next iteration continues by solving MAP model with the 

constraint that ZPNL  is less than 0.36. 

 

Figure 5.11 Solution with 0.36PNLZ   and 5TCZ  . 
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We generate all non-dominated solutions of sample problem that are depicted by 

rectangles in Figure 5.12. The solution with 0.456PNLZ   and 6TCZ  is generated in 

the first iteration. SRS algorithm revises the shoot order of SAM systems and the 

solution having 5TCZ   with the probability of no-leaker value equals 0.456 is 

obtained. The MAP-z model is solved with a bound probability of no-leaker less than 

0.456. New feasible solution with 0.363PNLZ   is generated. The algorithm 

continues generating solutions until reaching minimum probability of no-leaker 

value. Non-dominated solutions are determined from the set of feasible solutions. We 

also calculate NDZ values of each feasible solution. The NDZ values are given in the 

brackets. The non-dominated solutions of BMRP are shown by triangle shapes in 

Figure 5.12. The dominated solutions with respect to both models are depicted by 

diamond shapes. 

 

 

Figure 5.12 Non-dominated and dominated solutions of example problem. 

 

0,456 (7)0,456 (8)
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0,317 (8)0,317 (10)
0,296 (9)0.296 (8)

0,266 (8)

0,22 (6)0,22 (5)

0,178 (6)

0,133 (3)0,133 (4)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6 7 8

ZPNL

ZTC

non-dominated solution of BMRP-S

non-dominated solution of BMRP



  134  
  

There are four non-dominated solutions of BMRP-S and four non-dominated 

solutions of BMRP. The non-dominated solutions of both models are given in Table 

5.7.  

 
Table 5.7 Non-dominated solutions of BMRP and BMRP-S. 

 

 

 

 

 

 

 

 

 

An interesting result is the first two solutions have same probability of no-leaker 

value, 0.456. The solution with 7NDZ  and 6TCZ  is a dominated solution with 

respect to BMRP-S and non-dominated solution with respect to BMRP. On the 

contrary, the solution with 8NDZ  and 5TCZ   is dominated and non-dominated 

according to BMRP and BMRP-S, respectively. The same result is observed in the 

solutions with 0.133 probability of no-leaker value. This shows that revising shoot 

order of SAM systems may increase the deviation from the initial schedule, but it 

may yield a preferable solution according to tracking changeover consideration.  

 

5.4 Heuristic Approach 

 

The solution procedure cannot solve BMRP-S in polynomial time. The 

computational times of SRS algorithm and MAP-z exponentially increase as number 

of ASMs and SAM system increase. For instance, a sample problem with 6 ASM and 

6 SAM systems cannot be solved in an hour. Also, the solution of a very small size 

problem with 3 ASM and 3 SAM systems takes more than a minute. The schedule 

cannot be updated with those solution times within the engagement process. 

PNLZ  ZTC  NDZ  BMRP-S BMRP 

0.456 5 8 ND* D** 
0.456 6 7 D ND 
0.317 3 10 ND D 
0.296 2 8 ND D 
0.220 4 5 D ND 
0.133 1 4 ND D 
0.133 3 3 D ND 

0 5 0 D ND 
* Non-dominated solution 
** Dominated solution 
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However, a solution procedure must enable us to update the existing schedule in 

response to disturbances. We have to generate solutions in a few seconds to use the 

model in real-life. Thus, we develop a heuristic procedure that generate non-

dominated solutions and meets the solution time requirement.   

 

5.4.1 Reallocation Heuristic Algorithm 

 

In this section, we present a heuristic algorithm, namely Reallocation Heuristic 

Algorithm (RHA) that attempts to generate non-dominated solutions. RHA is based 

on reallocating SAM rounds in the existing schedule. RHA takes into consideration 

that the maximization of the probability of no-leaker value of TG, PNLZ  and the 

minimization of the total number of tracking changeover for SAM systems, TCZ . We 

define five operations within the RHA that reallocate SAM rounds in the initial 

schedule. In each operation, the heuristic algorithm concentrates on increasing PNLZ

or decreasing TCZ . The parts of heuristic algorithm are as follows: 

 

New Allocation: The first operation is new allocation of a SAM round in addition to 

initial schedule. At the beginning of the engagement process each SAM system has 

available round, jd . Some of them are initially allocated against ASMs, some of 

them are used up to the rescheduling time point. Thus, at rescheduling time point 

there may be SAM rounds in each SAM system that are available for the initial 

schedule. 

 

In new allocation part, an on hand SAM round is allocated to the engagement plan of 

ASM. We choose the target ASM with minimum probability of no-leaker value. 

SAM system with maximum single shot kill probability against chosen ASM is 

determined to allocate. The summary of the new allocation part is as follows: 
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Algorithm of New Allocation 

 

Step 1. Calculate the available SAM rounds that can be allocated in addition to the 

initial schedule. 

 

Step 2. Find the ASM i  that has the minimum probability of no-leaker value. If there 

is no available ASM to allocate a SAM round, stop. 

 

Step 3. Find the SAM system j  to allocate against ASM i in addition to the initial 

schedule. If there is no available SAM system go to step 2 and find another ASM. 

Otherwise, choose SAM system j  that has maximum single shot kill probability 

against ASM i  is according to following criteria. 

 SAM system has to get at least one available on hand round. 

 There must be valid combination between SAM system j and ASM i . 

 

Step 4. Search for available time slot to allocate SAM j  to ASM i . If there is no 

available time slot to allocate, go to step 3 and find another SAM system to allocate 

against ASM i . Otherwise allocate SAM round j  against ASM i  and update the 

available number of SAM rounds. Keep the updated schedule and add to the solution 

set. Initiate change and exchange operations with updated schedule. If all possible 

new allocations are achieved, stop. Otherwise go to step 1. 

 
Total number of SAM rounds in the initial schedule increases with new allocation of 

an on hand SAM round. The allocation of on hand SAM round j , to an ASM i  at 

time slot k  exactly increases PNLZ  value. However, after allocation TCZ value either 

increases or remains constant. It depends on time slot of allocation, previous and next 

target ASMs of the SAM system. Figure 5.13 shows the new allocation operation of 

an on hand SAM round into the initial schedule. The rectangles demonstrate initially 

allocated SAM rounds to the target ASMs. The values above the rectangles shows 

the single shot kill probabilities of SAM systems against ASMs. PNL denotes the 
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probability of no-leaker value of each ASM. ASM 3 with smallest probability of no-

leaker and SAM system 1 that has maximum single shot kill probability are chosen 

for new allocation. 

 

 

Figure 5.13 New allocation operation. 
 

Replacement: The second operation is called as replacement. In replacement part, 

we also use on hand SAM rounds that are available to allocate engagement plan of an 

ASM. This operation includes discarding an initially allocated SAM round from a 

target ASM and replacing a different on hand SAM round to the engagement plan of 

that ASM. In replacement operation, total number of SAM rounds does not change.  

 

The summary of the replacement part is as follows: 

 

Algorithm of Replacement 

 

Step 1. Calculate the available SAM rounds that can be allocated in addition to initial 

schedule. 
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Step 2. Find the ASM i  that has the minimum probability of no-leaker value. If there 

is no available ASM to allocate a SAM round, stop. 

 

Step 3. Determine the SAM round 'j  to be removed from the schedule of ASM i . If 

there is no SAM round to be removed, go to step 2 and find another ASM. 

Otherwise, choose the SAM round 'j  whose single shot kill probability against ASM 

i  is minimum. 

 

Step 4. Find the SAM round j  to allocate against ASM i  instead of SAM round 'j . If 

there is no available SAM round go to step 2 and find another ASM. Otherwise, 

choose SAM system j  that has maximum single shot kill probability against ASM i  
according to following criteria. 

 

 SAM system j  has to get at least one available round. 

 There must be valid combination between chosen SAM system j and 

ASM i . 

 Sskp between SAM system j  and ASM i  has to be greater than sskp 

between SAM system 'j  and ASM i . 

 

Step 5. Search for available time slot to allocate SAM j  to ASM i . If there is no 

available time slot to allocate, go to step 4 and find another SAM system to allocate 

against ASM i . Otherwise remove SAM round 'j  from the allocation plan of ASM i  

and allocate SAM round j  against ASM i . Update the number of available SAM 

rounds. Keep the updated schedule and add to the solution set. Initiate change and 

exchange operations with the new updated schedule. If maximum number of 

replacement is achieved, go to the discard part. Otherwise go to the step 1. 

 

We choose the target ASM with minimum probability of no-leaker value. SAM 

round with larger sskp is replaced instead of initially allocated SAM round. Thus, 
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replacement of an initially allocated SAM round j  with a different SAM round ' j  in 

the schedule of ASM i  increases PNLZ . TCZ value either increases, decreases or 

remains constant. It depends on time slot of allocation, chosen SAM round to be 

removed, chosen SAM round to be allocated, the previous and the next target ASMs 

of SAM systems. Figure 5.14 shows the replacement operation in an engagement 

schedule. SAM 3 is removed and SAM 1 is replaced in the engagement schedule of 

ASM 3 which has the minimum probability of no-leaker value. 

 

 

Figure 5.14 Replacement operation. 
 

Removal: The removal part is based on discarding a SAM round from the initial 

schedule. In removal operation, total number of SAM rounds in the initial schedule 

decreases. Firstly, ASM with maximum probability of no-leaker value is chosen. To 

decrease TCZ value, SAM round with the maximum number of tracking changeover 

is determined from the chosen ASM engagement plan. The chosen SAM round is 

removed and the total number of tracking changeover is calculated. Removing of a 

SAM round j  from ASM i  at time slot k  exactly decreases PNLZ and TCZ value. 
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After removing a SAM round, the result is added to the solution set. The summary of 

the removal part is given as follows: 

 

Algorithm of Removal 

 

Step 1. Find ASM i  that has the maximum probability of no-leaker value. If there is 

no available ASM to discard a SAM round, stop. 

 

Step 2. Determine the SAM round 'j  to be removed from the schedule of ASM i . If 

there is no SAM round to be removed, go to step 1 and find another ASM. 

Otherwise, choose the SAM round 'j  whose tracking changeover is maximum. 

 

Step 3. Remove SAM round 'j  from the allocation plan of ASM i . Keep the updated 

schedule and add to the solution set. Initiate change and exchange operations with 

new updated schedule. If minimum TCZ is achieved, stop. Otherwise go to the step 1. 

 

Figure 5.15 shows the removal operation in an engagement schedule. ASM 2 has the 

maximum probability of no-leaker value. SAM 4 has the maximum tracking 

changeover among the allocated SAM rounds in the ASM 2 engagement schedule. It 

is discarded and the result is added to solution set according to decrease on total 

number of tracking changeover. 
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Figure 5.15 Removal operation. 
 

 

Change: The change part considers changing the target ASM of a SAM round. In 

this operation, a SAM round is chosen from one of the ASM engagement plan and it 

is allocated into another ASM engagement plan. We choose two ASMs with the 

maximum and the minimum probability of no-leaker values. SAM round with the 

maximum tracking changeover is chosen in order to change its target from ASM with 

the maximum probability of no-leaker to ASM with the minimum probability of no-

leaker. The change operation may increase or decrease PNLZ  and TCZ  values. If 

change of SAM target decreases PNLZ  and increases TCZ , it yields a dominated 

solution. Thus, after target ASM of SAM round is changed, we check whether the 

solution is dominated. If change on the engagement plan increases the probability of 

no-leaker value or decreases total number of tracking changeover, we do not update 

the schedule and keep the previous schedule.  

 

The summary of the change operation is as follows: 
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Algorithm of Change  

 

Step 1. Find ASM i  that has the minimum probability of no-leaker value. If there is 

no available ASM to allocate a SAM round from other ASMs, stop. 

 

Step 2. Find the ASM 'i  that has the maximum probability of no-leaker value. If 

there is no available ASM 'i go to step 1 and choose another ASM to allocate a new 

SAM round to its initial engagement plan. Otherwise ASM 'i is chosen according to 

the following criterion. 

 The probability of no-leaker value of chosen ASM 'i  has to be greater 

than the probability of no-leaker value of ASM i .  

 

Step 3. Determine SAM round 'j  from the initial engagement plan of ASM 'i to 

allocate against ASM i . If there is no available SAM round go to step 2 and find 

another ASM. Otherwise, choose SAM round 'j  according to the following criteria. 

 There must be valid combination between chosen SAM system 'j and 

ASM i . 

 Total tracking changeover value of SAM system 'j  is the maximum 

among the SAM rounds in the schedule of ASM 'i . 

 

Step 4. Search for available time slot to allocate SAM 'j  to ASM i. If there is no 

available time slot to allocate, go to step 3 and find another SAM system to allocate 

against ASM i. Otherwise allocate SAM round 'j  against ASM i. Calculate new TCZ  

and PNLZ . If new solution is a dominated solution, do not update the initial schedule. 

Otherwise, add solution to the solution set. If the maximum number of change 

operation is achieved, stop. Otherwise go to step 1.  

 

Figure 5.16 shows the change operation in an engagement schedule. ASM 2 and 

ASM 3 have the maximum and the minimum probability of no-leaker value 
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respectively. SAM 4 has the maximum tracking changeover among the allocated 

SAM rounds in the ASM 2 engagement schedule. It is removed from ASM 2 and 

allocated to ASM 3 engagement plan. If the result is not a dominated solution, it is 

added to the solution set. 

 

 

Figure 5.16 Change operation. 

 

Exchange: Exchange operation swaps two different SAM rounds between allocation 

plans of two ASMs. The target ASMs of two SAM systems are exchanged in this 

part. The tracking changeover values of SAM systems are considered while choosing 

SAM rounds from engagement schedule of ASMs. We aim to decrease TCZ  or 

increase PNLZ . Exchange operation may result in decrease and increase on TCZ and 

PNLZ values. Since the result of exchange operation may be a dominated solution, we 

check whether the solution is dominated as in the change part. 
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Algorithm of Exchange  

 

Step 1. Find ASM i  that has the minimum probability of no-leaker value. If there is 

no available ASM to allocate a SAM round from other ASMs, stop. 

 

Step 2. Determine SAM round j  from the initial engagement plan of ASM i  to 

remove and to allocate against another ASM.  

 Select SAM j  that has the maximum total tracking changeover among 

SAM rounds in the initial engagement plan of ASM i  . 

 

Step 3. Find ASM 'i  that has the maximum probability of no-leaker value. 

 The probability of no-leaker value of chosen ASM 'i  has to be greater 

than the probability of no-leaker value of ASM i . If there is no available 

ASM 'i , go to step 1 and choose another ASM to exchange SAM rounds 

from their initial engagement plans. 

 

Step 4. Determine SAM round 'j  that has the maximum total tracking changeover. If 

there is no available SAM round go to step 3 and find another ASM. Otherwise 

choose SAM round 'j  according to the following criteria from the initial engagement 

plan of ASM 'i to exchange with SAM round j .  

 There must be a valid combination between SAM system 'j and chosen 

ASM i. 

 SAM system 'j   has to be different than SAM system j . 

 

Step 5. Search for available time slot to allocate SAM 'j  to ASM i and SAM j  to 

ASM 'i  If exchange is not possible, go to step 4 and find another SAM system to 

allocate against ASM i . Otherwise allocate SAM 'j  to ASM i and SAM j  to ASM 

'i . Calculate new TCZ  and PNLZ . If the new solution is a dominated solution, do not 
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update the initial schedule. Otherwise, add solution to the solution set. If the 

maximum number of exchange operation is achieved, stop. Otherwise go to the step 

1. 

 

Figure 5.17 demonstrates the exchange operation in an engagement schedule. ASM 2 

and ASM 3 have the maximum and the minimum probability of no-leaker value 

respectively. SAM 4 has the maximum tracking changeover among the allocated 

SAM rounds in ASM 2 engagement schedule. SAM 3 has the maximum tracking 

changeover among the allocated SAM rounds in ASM 3 engagement schedule. The 

SAM rounds are exchanged between engagement plans of ASMs. The result is added 

to the solution set if it is not a dominated solution. 

 

 

Figure 5.17 Exchange operation. 
 

The flow chart of the heuristic algorithm is presented in Figure 5.18. Heuristic 

algorithm starts with a new allocation part. The solutions are generated by allocating 

on hand SAM rounds up to the maximum possible number of allocation. Secondly, 

replace part of the heuristic procedure is done. On hand SAM rounds up to the 

maximum possible number of replacement are used to generate solutions. In removal 

part, SAM round is discarded from the initial schedule.  
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Figure 5.18 Flow chart of the heuristic algorithm. 

 
 

The operation continues until minimum total number of tracking changeover is 

found. New allocation, replacement and removal operations generate solutions by 

adding new SAM rounds to the initial schedule or discarding allocated SAM rounds 
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from the initial schedule. The result of new allocation, replacement and removal 

operations generates a different allocation plan from the initial allocations in terms of 

SAM rounds. On the other hand, change and exchange operations generate solutions 

by changing the place of allocated SAM rounds within the initial schedule. Thus, we 

perform change and exchange operations for each solution produced by new 

allocation, replacement and removal operations. All solutions generated by each part 

of heuristic procedure are combined and finally non-dominated solutions are 

determined in the solution set. 

 
5.5 Computational Results 

 

In this section, the results of computational experiments are presented to show the 

effectiveness of the proposed rescheduling model. For each disturbance case, 

improvement on efficiency of TG and increase on total tracking changeover are 

calculated. Performance of the heuristic approach is evaluated by applying it to each 

disturbance case. Lastly, we consider that during the engagement process any 

disturbance may occur. The schedule is updated in each rescheduling time point 

according to preference of DM. Comparison of results with rescheduling and keeping 

the initial schedule during the engagement process are presented. 

 

We define seven different SAM systems and seven different ASMs by using real 

weapon systems in open literature. The SAMs and ASMs are randomly chosen 

among these systems in each problem set. The target ship of ASMs and available 

rounds of SAM systems are randomly selected.  

 

First of all, we consider each disturbance separately. The optimal initial schedule is 

created with respect to the probability of no-leaker of TG. For destroyed ASM case, 

the outcome of an engagement between a SAM round and an ASM with respect to 

the initial schedule is observed. Observation starts with termination of the first 

engagement. We generate a random number from uniform distribution and assume 

that the engagement between SAM and ASM pair ends up with destroyed ASM if the 
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random number value is less than the single shot kill probability of SAM against 

ASM. We set the ASM as destroyed and set the rescheduling time point as the 

finishing time of engagement. In the case of breakdown of a SAM system, it is 

assumed that one of the SAM system becomes unavailable to shoot after the 

engagement process starts. The broken SAM system and time of the breakdown are 

randomly determined. We set the SAM as broken and set the rescheduling time point 

as the starting time of the following time slot. The unavailable SAM system is 

discarded from the engagement allocation plan of ASMs. In the new ASM target 

case, we assume that sensors of TG detect an unexpected incoming ASM after the 

engagement process is started and the initial allocation plan is in effect. We 

randomly determine the time of arrival from Poisson distribution and set the 

rescheduling time point. We find the valid combination, the available time slots of 

engagements and the maximum number of engagements between the new ASM and 

SAM systems. The target ship, distance and the velocity of the new ASM are 

randomly determined. We solve BMRP-S for each disturbance case.  

 

The problem sets are created with the combination of three and six ASMs and SAM 

systems. We solve all problem sets for all three cases by exact method using IBM 

ILOG CPLEX version 12.6 in Java platform on a personal computer with Intel i5-

7200 CPU, 2.5 GHz and 8 GB of RAM. We run each problem instance by using five 

different seed set. The metrics defined in Chapter 1, maximum improvement on 

efficiency, MIE and maximum percentage improvement on efficiency, MPIE are 

used to evaluate change on ZPNL  objective. To evaluate stability objective ZTC , 

maximum tracking changeover, MTC metric is defined. MTC indicates difference 

between the maximum ZTC  and minimum ZTC  values among the non-dominated 

solutions. Assume there are n  non-dominated solutions indexed by s  and included 

in set NS . Then, Z -Zmax min
TC TCMTC   where 

 

Z Zmax
TC TC

 , 
 

 
1,..,

s
TC

s NS n
argmax Z
 

 and Z Zmin
TC TC

  
 

 
1,..,

s
TC

s NS n
argmin Z
 

  
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The relationship between ZPNL  and ZTC  is measured by average percentage 

improvement on efficiency with one tracking changeover, APIEC. The measure is 

calculated by
MPIE

APIEC
MTC

 . It shows percentage improvement of efficiency on 

average with only one tracking changeover. 

 

The computational results for destroyed ASM case are given in Table 5.8. Average 

MIE values are between 0.107 and 0.244. The highest average MIE and APIE is 

provided when the number of ASM is 6 and the number of SAM system is 3. The 

lowest average MIE and APIE is in the problem set when number of ASM is 3 and 

SAM system is 6.  

 

The average MIE and APIE results increase if the number of ASM increases or the 

number of SAM system decreases. The highest maximum MIE value, 0.704 and 

lowest minimum MIE value, 0.016 are attained in the problem set with 6 ASMs-6 

SAM systems and 3 ASMs-6 SAM systems respectively.  

 

The highest average MTC value, 9 is in problem set with 6 ASMs and 6 SAM 

systems. On the other hand, the lowest average MTC value, 2.4 is in problem set 

with 3 ASM and 3 SAM systems. It shows that average MTC increases when the 

number of ASMs and SAM systems increase.  

 

APIEC values depend on both MIE and MTC values. We have the highest average 

APIEC value, 18.61%, in problem set with 6 ASM and 3 SAM systems. The highest 

maximum APIEC value, 42.52% is attained in problem set with 6 ASM and 6 SAM 

systems. It can be stated that in this problem one tracking changeover provides 

42.52% improvement on efficiency. 
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Table 5.8 Minimum, average, maximum values of metrics for destroyed ASM. 

 
                 SAM 

ASM     3 6 

3 

MIE 
min 0.088 0.016 
ave 0.135 0.107 
max 0.193 0.193 

MPIE (%) 
min 10.27 2.07 
ave 21.66 15.13 
max 41.76 28.54 

MTC 
min 1 3 
ave 2.4 4 
max 4 6 

APIEC (%) 
min 2.57 0.52 
ave 10.19 4.19 
max 15.48 8.05 

6 

MIE 
min 0.068 0.371 
ave 0.244 0.148 
max 0.545 0.704 

MPIE (%) 
min 7.37 152.50 
ave 89.27 72.44 
max 153.19 340.16 

MTC 
min 4 8 
ave 6.4 9 
max 11 10 

APIEC (%) 
min 0.92 15.93 
ave 18.61 12.57 
max 38.30 42.52 

 

 

The computational results for breakdown of a SAM system case are given in Table 

5.9. Average MIE values increase from 0.197 to 0.326 when number of ASM 

increases from 3 to 6 in problem sets with 3 SAM systems. Also average MPIE 

increases from 36.78% to 141.78% in those problems sets.  

 

The highest average MIE, MPIE and APIEC values are attained in problem sets with 

6 ASMs and 3 SAM systems. The lowest average MIE, MPIE and APIEC values are 

attained in problem sets with 3 ASMs and 6 SAM systems.  
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Table 5.9 Minimum, average, maximum values of metrics for breakdown of a SAM 

system. 

                  SAM 
ASM     3 6 

3 

MIE 
min 0.061 0.061 
ave 0.197 0.167 
max 0.539 0.261 

MPIE (%) 
min 0.83 6.80 
ave 36.78 28.26 
max 76.79 45.92 

MTC 
min 1 1 
ave 2.6 3.2 
max 4 6 

APIEC (%) 
min 0.21 1.13 
ave 17.79 13.98 
max 34.50 32.40 

6 

MIE 
min 0.180 0.000 
ave 0.326 0.225 
max 0.589 0.399 

MPIE (%) 
min 47.66 31.40 
ave 141.82 85.64 
max 196.45 192.35 

MTC 
min 3 0 
ave 5.6 8.3 
max 10 10 

APIEC (%) 
min 15.89 3.32 

ave 26.96 9.97 
max 45.34 21.37 

 
 

The average MTC values increase when the number of SAM systems and ASMs 

increase. The highest average and maximum MTC values are 8.3 and 10 respectively 

in problem set with 6 ASMs and 6 SAM systems. The highest maximum MPIE 

value, 199.45%, is attained in the problem consists of 6 ASM and 3 SAM systems. 

Thus, about three times increment on percentage improvement is achieved in this 

problem. 

 

The computational results for new target ASM case are presented in Table 5.10. The 

highest average MIE value, 0.288, is in problem set with 6 ASM and 3 SAM 

systems. It decreases to 0.154 when number of ASM and SAM system is 6. The 
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highest average MPIE value, 108.11%, in the problem set with 6 ASM and 3 SAM 

systems. Thus, if the whole schedule is updated, the efficiency of the system is 

doubled in this problem set.  

 

Table 5.10 Minimum, average, maximum values of metrics for new ASM target. 

                  SAM 
ASM     3 6 

3 

MIE 
min 0.060 0.027 
ave 0.295 0.157 
max 0.685 0.348 

MPIE (%) 
min 10.43 3.95 
ave 55.15 46.47 
max 115.56 159.83 

MTC 
min 1 1 
ave 3.6 4.6 
max 6 12 

APIEC (%) 
min 1.74 1.68 
ave 21.68 15.26 
max 44.72 53.28 

6 

MIE 
min 0.133 0.062 
ave 0.288 0.154 
max 0.695 0.266 

MPIE (%) 
min 50.43 3.67 
ave 108.11 44.91 
max 153.57 87.46 

MTC 
min 3 6 
ave 5.75 8.6 
max 12 13 

APIEC (%) 
min 4.20 1.38 
ave 27.73 11.97 
max 44.90 22.02 

 
 

The lowest average MPIE value, 48%, is in the problem set with 3 ASM and 6 SAM 

systems. The lowest and highest average MTC values are 3.6 and 8.6 in problem sets 

with 3 ASM-3 SAM systems and 6 ASM-6 SAM systems respectively. The results 

indicate that in all disturbances the effect of rescheduling approach is more notable 

with limited number of SAMs and with many threats. The value of improvement on 

efficiency decreases when the number of SAM system increases or number of ASM 

decreases. MTC values increase when number of SAM systems or number of ASM 
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increase. In some problems, the efficiency of TG can be sufficiently improved by 

slight increase on tracking changeover on the initial schedule.  

 

In each disturbance case, we solve problems with the heuristic approach. The 

solution of the exact method and the heuristic algorithm is compared for all cases. To 

compare the performance of the algorithms, we use same metrics in Chapter 3. These 

metrics are the Hyper Volume Ratio (HVR), Inverted Generational Distance (IGD) 

and Number of Found Solutions (NFS). We present performance of the heuristic 

approaches in Tables 5.11, Table 5.12 and Table 5.13 for destroyed ASM, 

breakdown of a SAM system and new target case respectively. The last row of each 

ASM and SAM combinations in the tables includes the number of non-dominated 

solutions generated by heuristic and exact method respectively.  

 

The heuristic approach generates nearly all non-dominated solutions in all cases. In 

problem sets with ASM-SAM combinations of 3-3 and 3-6 for destroyed ASM and 

breakdown of a SAM system cases only two solutions cannot be generated. In 

problem set with 6 ASMs and 6 SAM systems in new ASM target case, 22 non-

dominated solutions are generated out of 29. 

 

The average HVR values are greater than 0.98 in all problem sets and all disturbance 

cases except problem set with 6 ASM and 6 SAM systems in new ASM target case. 

The lowest minimum HVR value, 0.9312 and lowest average HVR value, 0.9593 are 

attained in problem set with 6 ASM and 6 SAM systems in new ASM target case. 

Since HVR values are close to 1 in all problem sets, the dominated solution 

approximates the non-dominated solutions. Also, IGD values are nearly zero in all 

problem sets. Thus, found solutions are diverse enough despite a few non-dominated 

solutions cannot be generated in some problem sets. As a result, the performances of 

the heuristics are quite well in all cases and in all problem sets. 
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Table 5.11 Performance of heuristic for destroyed ASM case. 

             SAM 
 ASM Performance Metrics              3           6 

3 

HVR 
min 0.9896 0.9794 
ave 0.9968 0.9946 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0025 0.0039 
max 0.0075 0.0133 

No. of Solutions 13/15 14/18 

6 

HVR 
min 0.9352 0.8176 
ave 0.9862 0.9635 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0007 0.0066 
max 0.0024 0.0328 

No. of Solutions 20/22 23/28 
 

 
 

Table 5.12 Performance of heuristic for breakdown of a SAM system case. 
 

             SAM 

 ASM Performance Metrics              3           6 

3 

HVR 
min 0.9770 0.9690 
ave 0.9918 0.9921 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0023 0.0056 
max 0.0100 0.0205 

No. of Solutions 13/15 15/17 

6 

HVR 
min 0.9827 0.9605 
ave 0.9943 0.9861 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0005 0.0032 

max 0.0016 0.0100 
No. of Solutions 20/22 23/25 
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Table 5.13 Performance of heuristic for new ASM target case. 

             SAM 

 ASM Performance Metrics              3           6 

3 

HVR 
min 0.9716 0.9526 
ave 0.9884 0.9844 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0333 0.0118 
max 0.1500 0.0342 

No. of Solutions 16/19 22/27 

6 

HVR 
min 0.9843 0.9312 
ave 0.9969 0.9593 
max 1.0000 1.0000 

IGD 
min 0.0000 0.0000 
ave 0.0003 0.0061 
max 0.0015 0.0100 

No. of Solutions 22/27 22/29 
 

 

Elapsed times of the exact method and the heuristic algorithm are given in Table 

5.14. Elapsed times of problem sets depend on number of non-dominated solutions. 

Also, the problem characteristics such as the valid engagement between SAM 

systems and ASMs, the number of SAM rounds in each SAM systems, the 

rescheduling time point affect the complexity of the problems. When the problem 

size gets larger, the run times of the exact and the heuristic method increase. The 

results shows that in all problem sets, exact method run times are greater than those 

of heuristic approaches. We cannot solve a problem in two hours with 6 ASM and 6 

SAM systems for destroyed ASM and breakdown of a SAM system case. Two 

problems cannot be solved within two hours with 6 ASM and 6 SAM systems for 

new ASM target case. The heuristic approach finds non-dominated solutions less 

than one second in problem set with 3 ASMs and 3 SAM systems for all cases. The 

highest average elapsed time of heuristic, 1.89 is in new ASM target case with 6 

ASMs and 6 SAM systems. Elapsed times of the exact method are quite large even 

problem sizes are small in terms of the number of ASMs and SAM systems. Results 

show that exact method cannot be used in real life since problems cannot be solved 

within the time limit. 
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Table 5.14 Elapsed times (sec) of exact and heuristic solution procedures. 
 

SAM 

3 6 

ASM 
Destroyed 

ASM 
Broken 
SAM 

New 
ASM  

Destroyed 
ASM 

Broken 
SAM 

New 
ASM  

3 
Exact 10.65 19.08 56.32 23.15 44.45 89.85 

Heuristic 0.35 0.24 0.67 1.32 1.54 1.67 

6 
Exact 63.24 68.59 91.08 185.01* 170.23* 246.48** 

Heuristic 1.48 1.72 1.22 1.71 1.81 1.89 
 *One problem cannot be solved within 3600 sec. 
  **Two problems cannot be solved within 3600 sec 

 

Results given above are produced by considering only occurrence of one disturbance. 

In addition to this, we take into account that any disturbance may occur during the 

engagement process. We start from the beginning of the engagement time horizon 

and observe the disturbances. Thus, after a disturbance happens, the engagement 

allocation plan is rescheduled according to the DM’s preferences. The same ANN 

method as discussed in Chapter 4 is used to structure the DM’s preferences. The 

objective functions ZPNL  and ZTC  are taken as input of ANN. The utility value of 

each solution is taken as output of the ANN. We calculate the utility values from 

function    
2

2

1

f max  
p

IP
i i

i

z z z




  where iz is the ith objective function value and IP
iz

is the ideal point of ith objective function. We iterate the ANN structure in forward 

phase and construct the topology of the ANN. In each rescheduling time point, we 

generate non-dominated solutions by heuristic approach. The best solution is decided 

by ANN in each rescheduling time point. The existing schedule is updated and 

rescheduling continues until the end of time horizon when a disruption occurs. At the 

engagement time horizon, number of ships survived (NSS), percentage of survived 

ships (PSS) and percentage of destroyed ASM (PDA) values are calculated as in 

Chapter 4. To compare the rescheduling results with keeping the initial schedule 

results, we calculate the metrics without updating the schedule. Table 5.15 presents 

the average results for each number of ASM and number of SAM system 
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combination. The number of ASMs and SAM systems are chosen between 7 and 10. 

We run each problem set with five different seed. 

 

Table 5.15 The average results of rescheduling and not rescheduling. 
 

   SAM 

ASM     7 8 9 10 

7 

NSS 
reschedule 3.6 3.8 4.8 5.2 

not reschedule 2.2 2.4 4 4.2 

PSS (%) 
reschedule 80.00 80.00 88.00 84.76 

not reschedule 48.33 51.00 73.33 71.24 

PDA (%) 
reschedule 84.29 83.93 89.64 87.14 

not reschedule 65.71 65.00 79.64 71.43 

8 

NSS 
reschedule 3.8 3 4.2 5 

not reschedule 1.2 2.2 3.6 4 

PSS (%) 
reschedule 91.00 63.00 76.67 87.62 

not reschedule 28.00 44.00 66.00 66.29 

PDA (%) 
reschedule 91.11 75.28 85.83 88.61 

not reschedule 60.56 62.78 74.17 76.94 

9 

NSS 
reschedule 3 2.4 3.8 4.8 

not reschedule 1.2 2 2.8 3 

PSS (%) 
reschedule 70.00 50.00 70.67 79.05 

not reschedule 29.00 41.00 51.33 47.52 

PDA (%) 
reschedule 82.67 71.11 79.56 81.56 

not reschedule 55.78 60.44 64.67 57.33 

10 

NSS 
reschedule 3.2 2.4 2.8 4 

not reschedule 1.6 1.4 2.4 3 

PSS (%) 
reschedule 70.00 51.00 52.67 61.71 

not reschedule 36.00 30.00 44.00 51.24 

PDA (%) 
reschedule 75.27 63.27 66.36 66.91 

not reschedule 62.18 54.36 56.36 60.36 

 

 

In computational experiments, it is assumed that a ship can contain at most two SAM 

systems. Thus, high number of SAM system indicates higher number of total ship at 

the beginning of engagement process. In all problem sets, average number of 

survived ships increase with rescheduling model. The highest average NSS, 5.2 is 

attained is in problem set with 7 ASMs and 10 SAM systems. The average 



  158  
  

percentage of survived ships increase more than two times in problem sets with 8 

ASMs-7 SAM systems and 9 ASMs-7 SAM systems. If the schedule is not updated, 

only 28% of ships are survived in problem set with 8 ASMs and 7 SAM systems. 

Percentage of survived ships increases to 91% in this problem set by using the 

rescheduling model. 

 

The lowest average percentage of survived ships, 50.00%, is attained in problem set 

with 9 ASMs and 8 SAM systems. When the number of SAM systems decrease, the 

effect of rescheduling is more apparent. For instance, rescheduling increases PSS 

value from 48.33% to 80.00% and from 71.24% to 84.76% in problem set with 7 

ASMs-7 SAM systems and 7 ASMs-10 SAM systems respectively. Also percentage 

of destroyed ASM increases by rescheduling approach. The highest average PDA, 

89.64% is in problem set with 7 ASMs and 9 SAM systems. In problem set 8 ASMs 

and 7 SAM systems, we get the highest difference for PDA between rescheduling 

model and keeping the initial schedule. The value increases from 60.56% to 91.11% 

in this problem set.  
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CHAPTER 6 

 

 

6 COMPARISON OF MODELS 

 

 

 

In this chapter, we compare the results of BMRP and BMRP-S models by solving 

same problem sets with both models. Also, we maximize the probability of no-leaker 

value of TG without considering stability measure in each rescheduling time point. 

All SAM allocations are rescheduled only with respect to efficiency of TG. We call 

this problem as complete rescheduling problem (CRP). Solution of CRP is the 

extreme point of BMRP and BMRP-S with maximum PNLZ . While solving problems 

with BMRP or BMRP-S, we additionally calculate the stability objective of the other 

model. We find all objective function values in each model to see how concentrating 

on different stability measure affects the performance metrics and outcome of the 

engagement process. The different size problems are solved with exact methods of 

each model instead of heuristic approaches to have precise comparison. In each 

rescheduling time point, the increase on PNLZ , NDZ  and TCZ values are found and 

average of those values are calculated. 

 

We generate problem sets with the combination of three and six ASMs and SAM 

systems. Each problem sets include five problem instances that are randomly created 

by using different seed sets. We assume that during the engagement process any 

disturbance may occur. The engagement process is started with respect to initial 

schedule and disturbances are observed during the engagement process. After a 

disturbance happens, the engagement allocation plan is rescheduled according to DM 

preferences. The same ANN method as discussed in Chapter 4 is used to structure 

DM preferences. For BMRP model, ZPNL  and  ZND   objective functions are taken as
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 input of ANN. On the other hand, ZPNL  and ZTC  objective functions are taken as 

input of ANN in BMRP-S model. The existing schedule is updated and rescheduling 

continues until the end of time horizon when a disruption occurs. 

 

Table 6.1 shows the increment on objective functions of each problem set. The 

average value of difference between PNLZ  value of chosen non-dominated point and 

PNLZ  value of initial engagement allocation plan for all rescheduling time point is 

presented in the first column of each problem set. The second column of each 

problem set indicates average difference between the NDZ  value of chosen non-

dominated solution and initial schedule’s NDZ value. Similarly, last column is the 

difference between TCZ value of chosen non-dominated solution and TCZ value of the 

initial schedule. If in a rescheduling time point, keeping the initial schedule is the 

only solution we discard those solutions while taking average of the objective 

functions. 

 

The results show that average increase on PNLZ  value is the highest with complete 

rescheduling. In all problem sets BMRP-S model has higher average increase on 

PNLZ  than BMRP model. The average increase on NDZ  value is smallest with BMRP 

model in all problem sets since BMRP keeps disruption on the initial schedule at a 

certain level. Similarly, BMRP-S model has the smallest average increase on TCZ  

value in all problem sets. In addition to this, the average increase on TCZ values are 

between 2.3 and 2.8 among all problem sets in BMRP-S. On the other hand, the 

range of NDZ values is between 3.2 and 3.6 in BMRP model. Thus, the values of TCZ  

in BMRP-S are smaller than NDZ values of BMRP model. The main reason behind 

this result is that increasing PNLZ  value by rescheduling  exactly increases NDZ  but 

may decrease TCZ  since at rescheduling time point the initial schedule has 0NDZ   

and 0TCZ  . 
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The average increase on PNLZ  value with complete rescheduling is greater than 0.2 in 

all problem sets. For instance, in problem set with 5 ASM and 4 SAM systems, 

average increase on PNLZ equals to 0.273 by complete rescheduling. Those values are 

0.211 and 0.240 in BMRP and BMRP-S models respectively. But, complete 

rescheduling produces 0.273 increase on probability of no-leaker with 7.1 disruption 

on initial schedule and 6.1 tracking changeover on the average. So, complete 

rescheduling may not be realistic and possible during the engagement process. The 

average value of increment on PNLZ  is 0.240 in BMRP-S model with 2.5 number of 

tracking changeover and 5.5 number of disruption on the initial schedule. For BMRP 

model, the value of increment on PNLZ is 0.211 in with 3.9 number of disruption on 

the initial schedule and 5.1 number of tracking changeover. 

 
Table 6.1 Average increase on objective function values in three models. 

 

 

 

 

 

 

 

 

 

 

The lowest average increase on PNLZ  is attained in problems set with 4 ASM and 5 

SAM systems for all models. On the contrary, the highest average increase on PNLZ  

is attained in problems set with 5 ASM and 4 SAM systems for all models. The 

results indicate the value of improvement on efficiency decreases when the number 

of SAM system increases or number of ASM decreases.  

 

  SAM 

ASM 
 

4 5 

  
ZPNL ZND ZTC ZPNL ZND ZTC 

4 

CRP 0.224 6.7 5.2 0.201 6.5 5.6 
BMRP 0.152 3.3 4.9 0.141 3.2 5.2 

BMRP-S 0.178 5.2 2.3 0.149 5.0 2.8 

5 

CRP 0.273 7.1 6.1 0.216 7.1 6.4 

BMRP 0.211 3.9 5.1 0.143 3.6 5.8 

BMRP-S 0.240 5.5 2.5 0.171 5.9 2.8 
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We also calculate the outcome metrics of the engagement process for both three 

models. The same outcome metrics of Chapter 4 such as the number of ships 

survived (NSS), percentage of survived ships (PSS) and percentage of destroyed 

ASM (PDA) are used to compare the model results. To find the difference between 

rescheduling model results and keeping the initial schedule results, we calculate the 

metric values without updating the schedule. 

 

Table 6.2 shows the average results of outcome metrics. NSS, PSS and PDA values 

increase with rescheduling in all problem sets. The NSS value increases from 1.6 to 

2.7 by complete rescheduling in problem set with 4 ASMs and 5 SAM systems. 

BMRP-S and BMRP survives 2.3 and 2.0 ships on the average in this problem set. 

The highest increments on NSS with rescheduling models are achieved in problem 

set with 5 ASMs and 4 SAM systems. Adversely, the gap between complete 

rescheduling and no rescheduling for all metrics is the lowest in the problem set with 

4 ASMs and 5 SAM systems.  

 

The benefit of rescheduling is more notable with limited number of SAM systems 

and higher number of ASMs. In all problem sets, results of BMRP and BMRP-S are 

nearly same but BMRP-S model attain slight better results than BMRP model in all 

metrics. For instance, on the average BMRP-S survives 81.1% of ships and BMRP 

survives 78.3% of ships in problem set with 5 ASMs and 4 SAM systems. 

 

PDA results are higher than 90% in all problem sets with CRP and BMRP-S models.  

The lowest values of all metrics with no rescheduling are attained in problem set 

with 5 ASMs and 4 SAM systems. In this problem set, PDA increase from 64.6% to 

about 90.4% with BMRP-S model. In problem set with 4 ASMs and 5 SAM systems, 

the values of metrics for BMRP and BMRP-S are close to those of CRP. The PSS 

and PDA values are higher than 90.00% with CRP, BMRP and BMRP-S.  
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Table 6.2 The average results of outcome metrics for rescheduling models and no 

rescheduling. 

 
  SAM 

ASM 
 

4 5 

  
  NSS PSS (%) PDA (%) NSS PSS (%) PDA (%) 

4 

CRP 2.7 88.2 93.2 3.2 94.2 96.7 

BMRP 2.0 79.1 89.0 2.8 90.5 93.3 

BMRP-S 2.3 81.6 91.1 2.9 91.1 95.0 

 No Res 1.6 58.2 78.5 2.4 74.6 82.0 

5 

CRP 2.5 87.7 92.8 3.0 91.2 94.4 

BMRP 2.0 78.3 86.6 2.7 88.5 93.3 

BMRP-S 2.2 81.1 90.4 2.8 89.8 91.2 

No Res 1.3 56.6 64.6 2.2 73.33 79.33 

 
 

The computational experiments show that BMRP-S model produces relatively better 

results than BMRP model in terms of efficiency of TG. This means that at 

rescheduling time points, chosen non-dominated point of BMRP-S has frequently 

higher PNLZ value than chosen non-dominated point of BMRP. We examine the 

solutions of the problem sets and present some conclusions on the results as follows. 

 

BMRP and BMRP-S include efficiency objective function as PNLZ . BMRP considers 

the total number of changed SAM allocations with respect to initial schedule as a 

stability objective. On the other hand, the total number of tracking changeover is 

considered as a stability measure for BMRP-S. Figure 6.1 and 6.2 show two 

solutions denoted by   and   in the objective spaces of BMRP and BMRP-S 

respectively.  
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Figure 6.1 Case 1: Objective space of 

BMRP. 

 

 

 

 

 

 

 

 

 

 
    

Figure 6.2 Case 1: Objective space of 

BMRP-S.     

At rescheduling time point, the solution keeping the initial schedule,  is the extreme 

point of Pareto front for BMRP model. Since there is no deviation from the initial 

schedule, 0NDZ   . The solution   is the adjacent efficient solution of   for BMRP.  

 

The initial schedule has also no tracking changeover for all SAM systems, 0TCZ   . 

The solution   is generated by rescheduling of SAM rounds. The total number of 

tracking changeover increases by updating the schedule. So,  0TCZ   and 0NDZ   .  

 

The solution   is not dominated by solution   for BMRP and BMRP-S. If the 

selection is done between   and   in BMRP-S model or in BMRP model, one of 

them may be preferred by DM. Figure 6.3 and Figure 6.4 show a similar case except 

tracking changeover value of the initial schedule. 

 

ZPNL 

ZND 

  

0 

  

ZPNL 

ZTC 

  

0 

  
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Figure 6.3 Case 2: Objective space of 

BMRP. 

 

 

 

 

 

 

 

 

 

 
    

Figure 6.4 Case 2: Objective space of 
BMRP-S. 

 

The initial schedule has more than one number of tracking changeover, 0TCZ   at the 

rescheduling time point and the total number of tracking changeover increases by 

updating the initial schedule. The generated solution   has 0TCZ    and 0NDZ   . 

Similar to the first case, both solution   and solution   can be chosen by DM with 

BMRP and BMRP-S models. Above results show that deviation from the initial 

schedule increases the total number of tracking changeover. The updated schedule 

does not dominate the initial schedule in both BMRP and BMRP-S models. In 

generating non-dominated solutions, if the total number of tracking changeover 

increases with increasing number of disruption, BMRP and BMRP-S are in same  

 

Figure 6.5 and 6.6 show that generating a solution with rescheduling yields a 

different case. The generated solution   is the adjacent efficient solution of   for 

BMRP and PNL PNLZ Z   and ND NDZ Z  . By rescheduling, change on the initial 

schedule produces a better solution in terms of probability of no-leaker value 

although it causes deviation. Figures 6.5 and 6.6 show the solution   and solution   

in objective spaces of BMRP and BMRP-S, respectively. The initial schedule of 

SAM systems at rescheduling time point includes more than one target ASM, 

ZPNL 

ZND 

  

0 

  

ZPNL 

ZTC 

  

0 

  
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0TCZ   and increase on the probability of no-leaker value of TG decreases the total 

number of tracking changeovers. 

 
 

 

 

 

 

 

 

 

 
    

Figure 6.5 Case 3: Objective space of 

BMRP. 

 
 

 

 

 

 

 

 

 

 
    

Figure 6.6 Case 3: Objective space of 

BMRP-S. 

 

Rescheduling with BMRP-S yields a better solution in terms of both objectives. 

Thus, PNL PNLZ Z  and TC TCZ Z   and   is dominated by   for BMRP-S. The utility 

value of solution   is always greater than solution   and it is exactly preferred by 

DM if a choice decision is made between them in BMRP-S. On the other hand, in 

BMRP,   which has lower probability of no-leaker value may be chosen by DM if 

the utility value of   is greater than the utility value of  . 

 

In case of the increasing probability of no-leaker value of TG by changing the initial 

schedule always yields more disrupted initial schedule but may result more stable 

schedule in terms of tracking changeover. Also, with more disruption in the initial 

schedule, the solution   may be dominated by another solution according to BMRP-

S. We present uttermost of this case in Figures 6.7 and 6.8. Assume that   is the 

extreme point of the Pareto front of BMRP with maximum efficiency. Then 

 
1,....

i
PNL

i n NS

i argmax Z
 

 and i
PNL PNLZ Z  . Consider the maximum deviation from the initial 

ZPNL 

ZND 

  

0 

  

ZPNL 

ZTC 

  

0 

  
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schedule to have maximum PNLZ  decreases total number of tracking changeover. If 

the solution   has 0TCZ  , then it is the only non-dominated solution of BMRP-S. 

The best solution according to BMRP-S,   has the maximum probability of no-

leaker value as presented in Figure 6.8. 

 

 

 

 

 

 

 

 

 

 

 
    

Figure 6.7 Case 4: Objective space of 

BMRP. 

 

 

 

 

 

 

 

 

 

 
    

Figure 6.8 Case 4: Objective space of 

BMRP-S. 

 

On the other hand, the initial schedule in the rescheduling time point may be the 

solution with maximum total tracking changeovers. In this case, DM may want to 

reduce total number of tracking changeover and may sacrifice from the efficiency of 

TG even the result deviates from the initial schedule. Figures 6.9 and 6.10 show the 

solution   that is generated by rescheduling to decrease tracking changeover that 

also decreases efficiency of TG. The solution   is dominated by solution

according to BMRP since PNL PNLZ Z   and ND NDZ Z  . Thus,   cannot be chosen in 

BMRP model. However, for BMRP-S it may be preferable according to DM. To 

have more stable schedule in terms of tracking changeovers, probability of no-leaker 

value of TG decreases. This yields deviation from the initial schedule. In this case, 

BMRP have more chance than BMRP-S while choosing better solutions in terms of 

efficiency objective. 

ZPNL 
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  
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  

ZPNL 
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    
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Figure 6.9 Case 5: Objective space of 

BMRP. 

 
 

 

 

 

 

 

 

 

 
    

Figure 6.10 Case 5: Objective space of 

BMRP-S. 

 

We consider generating only one solution by changing the initial schedule up to this 

point. The comparison is done between these two solutions to understand the 

difference between BMRP and BMRP-S models. However, at the rescheduling point 

there exist several non-dominated solutions of both models. Since DM may want to 

increase efficiency of TG with rescheduling, DM always chooses solutions with 

higher PNLZ value. Dispersions of the non-dominated solutions in BMRP and BMRP-

S are the main indicative factor at PNLZ  value of chosen non-dominated points of two 

models. In some instances, with slight deviation from the initial schedule higher 

PNLZ value can be attained. This solution may be less preferred by BMRP-S since it 

causes too many tracking changeover. The solution chosen by BMRP-S may have 

lower PNLZ  value than those of BMRP. But, BMRP model has no option to increase 

PNLZ value with decreasing NDZ  since the initial schedule is always a non-dominated 

solution of BMRP model. BMRP-S model may yield a decrease in TCZ  with 

increasing efficiency of TG. This increases the chance of choosing better solutions in 

terms of efficiency objective by BMRP-S model with respect to BMRP model. 

ZPNL 
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  
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  

ZPNL 

ZTC 

  
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CHAPTER 7 

 

 

7 CONCLUSION AND FURTHER RESEARCH 

 

 

 

In this dissertation, we study dynamic missile allocation problem for air defense of a 

TG. We develop solution procedures that provide an efficient air defense plan by 

rescheduling SAM rounds against ASMs in response to disturbances during the 

engagement process. The considered disturbances that disrupt the existing schedule 

during the engagement process are destroyed ASM, breakdown of a SAM system 

and new target ASM. We build the allocation strategy according to the time stages to 

update the schedule. 

 

Rescheduling of SAMs in the presence of disturbances substantially increases air 

defense effectiveness but rescheduling causes deviation from the initial schedule and 

changes shoot order of SAM systems within the engagement process. Immediate 

change of targets for SAM systems may lead to not able to intercept and destroy 

ASMs. Hence, two main measures, efficiency of system and stability of schedule, are 

incorporated to the formulation of the problems.  

 

First of all, we propose a biobjective missile rescheduling model (BMRP) that 

minimizes the total number of difference in allocations between the new and the 

initial schedule and maximizes the probability of the no-leaker value of TG. We 

generate all non-dominated solutions since DM may be interested in selecting 

optimal solution by screening all non-dominated solutions. 

 

We show BMRP is an NP-Hard problem. We also investigate computational 

complexity of special cases. In order to solve BMRP, we use augmented ε-constraint 
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method and evaluate the non-dominated solutions of the problem. In all cases, the 

effect of rescheduling approach is more notable with limited number of SAMs and 

with many threats. The improvement on efficiency increases if number of SAM 

system decreases and number of ASM increases. 

 

We see that small size problems such as having five ASMs and five SAM systems 

cannot be solved in the time limit with augmented ε-constraint method. To utilize the 

model in real life cases, we develop two heuristic algorithms namely NRH and CEH 

algorithms. We test our heuristic approach in all disturbance cases. The heuristic 

approach yields highly successful results. Computation time of the heuristic approach 

is less than half a second in all problem sets and in all cases. Therefore one can 

conclude that for large size problems, heuristic algorithm is a very attractive 

alternative. 

 

In the second part of our research, we consider a real life engagement process and all 

three disturbance cases are integrated. We develop a decision aid framework that 

uses results of BMRP and update the existing schedule by choosing one of the non-

dominated solution in the occurrence of disturbances. We go on upon the time 

horizon to observe an occurrence of disturbance. We start from the beginning of the 

engagement time horizon and detect the type of disruption. The rescheduling 

decision is time-sensitive and the amount of information to be processed before is 

large. Thus, we suggest an artificial neural network approach that includes an 

adaptive learning algorithm to structure prior articulated preferences of DM and 

choose one of the non-dominated solutions in each rescheduling time point. It is 

assumed that DM has a non-decreasing quasi-concave utility function since 

efficiency and stability objectives have the property of diminishing marginal rate of 

substitution. While generating a non-dominated solution, the solutions belong to 

dominated cones are eliminated in each iteration. 

 

The solution procedure is based on the results of BMRP model in each rescheduling 

time point. We solve the BMRP model either with the augmented ε-constraint 
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method or the heuristic approach. We solve varying size problems and evaluate the 

performance of our model. Results of the computational tests have revealed that our 

dynamic update scheme for missile allocation problem can greatly increase total 

effectiveness of TG. Our model yields an increased number of ASMs and survived 

ships. 

 

We next introduce a new biobjective missile rescheduling problem with sequence 

dependent stability measure (BMRP-S).  The point that is of concern for this study is 

the need to integrate sequencing decisions with missile allocation. We consider 

decision of sequence of ASMs in SAM system shoot schedule. By defining a new 

stability measure that considers change of target tracking for SAM systems, the new 

engagement plan yields improvement on targeting of SAM systems. The formulation 

of BMRP-S maximizes the probability of no-leaker value of TG and maximizes 

number of shoots to same ASMs consecutively for each SAM systems, or equally 

minimizes the total number of tracking changeovers for SAM systems. A drawback 

of our formulation is the fact that the number of variables and constraints grow with 

the number of time slots, SAM systems and ASMs.  

 

Results obtained in our experimental study show that the computation time to solve 

the problem is extremely large even for small size instances. Hence, we propose a 

new exact solution procedure in order to solve BMRP-S. We generate non-

dominated solutions by combining a mathematical model with the probability of no-

leaker objective and an algorithm that obtains the minimum total number of tracking 

changeover by revising shoot order of SAM systems. To get a solution procedure 

that enables us to update the existing schedule in a few seconds, we develop a new 

heuristic procedure for BMRP-S. We solve varying size problems using both the 

exact and the heuristic procedures, evaluate the results of BMRP-S and analyze the 

performance of heuristic procedure.  

 

In the last part of our study, we compare the results of BMRP and BMRP-S models 

by solving same problem sets with both models. Additionally, we only take into 
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account the efficiency objective and we completely reschedule all SAM round 

allocations as any disturbance occurs. We find all objective function values in each 

model to see how concentrating on different stability measure affects the 

performance metrics and outcome of the engagement process.  

 

To the best of our knowledge, our rescheduling approach is the first attempt for 

weapon target allocation problems and multiobjective rescheduling strategy 

throughout the engagement process is the first reported study in the literature. Missile 

rescheduling models can be used as a threat evaluation and weapon assignment 

system (TEWASA) module in the decision making process during the engagements.  

 

This research can be extended in several directions. Allocation of SAM rounds 

against ASMs is a kind of resource allocation problem. The approach presented in 

this research can be used for the real-time constrained resource management 

problems in a variety of application areas. The models and heuristics may also be 

useful in the context of rescheduling problems that include time critical applications 

require fast response. 

 

We consider SLS firing policy in formulation of the problems. The incorporating 

different firing policies affects the changes on shoot sequence and deviation from the 

schedule. For instance, other firing policies such as shoot-look-shoot-shoot (SLSS) 

or modified shoot-look-shoot (m-SLS) can be analyzed with rescheduling approach.  

 

To structure prior articulated preferences of DM, we use ANN method. One can 

develop a different preference elicitation approach for ANN. DM may not give an 

exact utility value to the efficient solutions or taking precise information may be 

impracticable from DM. Asking DM to make pairwise comparisons and use this 

information in ANN should be more applicable. 

 

A noteworthy extension of our study might be developing initial robust engagement 

allocation plans. Robust scheduling can minimize the effects of disturbances on the 
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air defense effectiveness. A typical solution to generate a robust schedule for missile 

allocation problem might be to consider both efficiency and stability measures due to 

several disturbances. A robustness measure that represents the efficiency of the 

realized schedule and deviation from the initial schedule can be defined and the 

robustness of the schedule can be measured by different combinations of 

disturbances. Also, the worst case performance of the robust schedules with different 

firing policies can be evaluated in missile rescheduling problems.    

 

Another interesting further research might be integrating the probability of 

occurrence of disturbances to the definition of the problem with a stochastic 

formulation. With the probability of disturbances, a multi-stage stochastic 

formulations can be developed for dynamic allocation of SAM rounds. The states of 

SAM systems and ASMs may be defined and updated with the outcome of the 

engagements and occurrence of disturbances in each stage. 
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APPENDIX A 

 

 

9 PROPERTIES OF WEAPON SYSTEMS 

 

 

 

The features of SAM systems and ASMs used in computational studies are given in 

Table A.1 and A.2 respectively. 

 
Table A.1 Features of SAM systems 

SAM 
System 

Minimum 
Range (m) 

Maximum 
Range (m) 

Speed 
(m/sec) 

Type 

SeaSparrow 1500 16000 850 Self-Defense 

ESSM 1500 18000 1224 Self-Defense 

Aster-15 1500 30000 986 Self-Defense 

Barak 1500 12000 680 Self-Defense 

SM-1 5000 38000 680 Area Air Defense 

SM-2 5000 170000 850 Area Air Defense 

Aster-30 3000 100000 1394 Area Air Defense 

 

Table A.2 Features of ASMs 

ASM Speed (m/sec) 

Harpoon 289 
Exocet 306 
Polyphem 221 
Gabriel 238 
Penguin 238 
SS-N26 1190 
Maveric 850 
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The steps of the sample problem generation are as follows: 

 

1. Determine the number of ASMs, number of SAMs, the unit duration of time 

slot and the setup time of an engagement. 

 

2. Choose SAM systems randomly from seven SAM systems and ensure that at 

least one area defense system is selected. 

 

3. Choose ASMs randomly from seven ASMs. 

 

4. Determine present distance of ASMs randomly ranging from 5 to 40 km. 

 

5. Determine  the target ship of ASMs randomly. 

 

6. Generate number of SAM rounds (no more than 9 missiles for each SAM 

systems).
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