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ABSTRACT

MONOMIAL GROUPS

Almaş, Özge

M.S., Department of Mathematics

Supervisor : Prof. Dr. Mahmut Kuzucuoğlu

Co-Supervisor : Assoc. Prof. Dr. Ebru Solak

August 2017, 65 pages

A group G is called a permutation group if it is a subgroup of a symmetric group on
a set Ω. G is called a linear group if it is a subgroup of the general linear group GL(n,
F) for a field F.

Monomial groups are generalization of permutation groups and restriction of linear
groups. In matrix terminology, monomial groups of degree n over a group H are
the n× n invertible matrices in which each row and each column contains only one
element of H all the other entries are zero.

Basic properties of finite degree monomial groups are studied by Ore in [2]. Infinite
degree monomial groups over an arbitrary group H is studied by Crouch in [1]. This
thesis is a survey of the Crouch paper, in particular we will give a complete
classification of the structure of centralizers of arbitrary elements in complete
monomial groups Σ(H;B,B+, B+) and conjugacy of the elements in
Σ(H;B,B+, B+).

Keywords: Monomial groups, Infinite permutation groups, Centralizer of monomial
elements, Splitting of monomial groups
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ÖZ

MONOMİAL GRUPLAR

Almaş, Özge

Yüksek Lisans, Matematik Bölümü
Tez Yöneticisi : Prof. Dr. Mahmut Kuzucuoğlu

Ortak Tez Yöneticisi : Doç. Dr. Ebru Solak

Ağustos 2017 , 65 sayfa

Bir Ω kümesi üzerindeki simetrik grupların altgruplarına permütasyon grupları denir.
F bir cisim olmak üzere genel lineer grup GL(n, F)’nin altgruplarına lineer grup
denir. Monomial gruplar ise permütasyon grupların genelleştirmesi lineer grupların
da kısıtlamasıdır. Bir H grubu üzerinde tanımlı n dereceli monomial gruplar her
satırında ve her sütununda H’den sadece bir eleman içeren, diğer tüm girdileri 0 olan
tersinir matrislerdir. Sonlu dereceli monomial grupların temel özellikleri Ore [2]
tarafından araştırılmıştır . Herhangi bir H grubu üzerinde tanımlı, sonsuz dereceli
monomial gruplarla ilgili çalışmalar da Crouch [1] tarafından yapılmıştır . Bu tez,
Crouch’un [1] makalesinin bir incelemesidir. Bu tezde özellikle tam monomial
grupların elemanlarının merkezleyenlerinin yapısının tam olarak sınıflandırılması ve
Σ(H;B,B+, B+) grubunun içindeki herhangi iki elemanın eşleniğinin bulunması
gösterilmiştir .

Anahtar Kelimeler: Monomial gruplar, Sonsuz permütasyon grupları, Monomial
elemanların merkezleyenleri, Monomial gruplarda ayrışma
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CHAPTER 1

INTRODUCTION

Mainly there are three kinds of representations of groups; permutation representation,

linear representation, and monomial representation.

Permutation representation is a homomorphism from the group into symmetric

group, linear representation is a homomorphism from group into the group of

invertible linear transformations of a vector space over a field F.

Monomial representation is a generalization of permutation representation and

restriction of linear representation. If V is a finite dimensional vector space, say

dimV=n over a field F, then GL(V) is isomorphic to the general linear group

GL(n,F), n× n invertible matrices over a field F.

A monomial matrix is an invertible n × n matrix where each row and each column

contains only one nonzero entry and this entry comes from a fixed group H.

If G is a group with a subgroup H of index n, then G has a monomial representation

of degree n over the subgroup H.

Therefore, the study of monomial groups is the study of the structure of groups which

has a subgroup of finite index.

In fact, the famous Kaluźnin - Krasner Theorem which states that, if a group G has a

non-trivial subgroup H, then G can be embedded into a monomial group over H, but

the degree could be infinite. In this respect study of monomial groups is the study of

group extensions.
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The basic properties of monomial groups of finite degree are studied by Kerber [3],

and Ore [2]. In particular, Ore determined conjugacy of the two elements in complete

monomial group. Moreover, he finds the structure of a centralizer of an element in

complete monomial groups.

The work of Ore is extended to infinite degree monomial groups by R. B. Crouch [1].

Crouch defines monomial groups (symmetries) of arbitrary degree, over an arbitrary

group H in the following way.

Let B be an infinite cardinality, and U be a set with cardinality B. We think of U as an

ordered set. By B+ we denote the successor cardinal of B.

Let d be the cardinality of natural numbers, i.e., d = ℵ0. A monomial substitution

over H is a transformation of the form

c =

· · · xε · · ·
· · · hεxiε · · ·

 (1.1)

where the map xε 7−→ xiε is a permutation of the set U, and hε ∈ H . The product

hεxiε is a formal product satisfying hε(hβxi) = (hεhβ)xi, where xi ∈ U .

The set of all monomial substitutions Σ(H;B,B+, B+) forms a group with

composition of substitutions.

In the first part of this thesis, we find the structure of the centralizer of an arbitrary

element in Σ(H;B,B+, B+). Namely we prove the following theorem:

Let y be conjugate to y1 written in the normal form y1 =
∏
i

δi, δi =
∏
ε

δiε, where

for a fixed i the δiε are the normalized cycles of the same length n, and the same

determinant class a if n < d. Let ε run over a set of cardinal µ where 0 5 µ 5 B.

Then the centralizer CΣ(H;B,B+,B+)(y) is isomorphic to the strong direct product of

symmetries

CΣ(H;B,B+,B+)(y) ∼=
∏
i

(Σ(C(H(a) < δ >, µi, µ
+
i , µ

+
i ))× Σκ(H × Z;κ, κ+, κ+).

The group CH(a) < δ > consists of all elements y1 of the form y1 = {ki}(ci1)j where

2



k belongs to the centralizer of a in H. The second direct product arises if δ is a product

of κ infinite cycles where κ ≤ B.

Let G be a group and N be a normal subgroup of G. If there exists a subgroup

H ≤ G such that G=NH and N ∩H = 1, then we say that G splits over N and H is

called complement of N in G. Clearly if H is a complement of N, then all conjugates

Hg, g ∈ G are also complement of N in G. It is a natural question whether all

complements of N are conjugate in G, i.e., if G=NT and N ∩ T = 1 does there exist

x ∈ G, such that T = Hg. If all complements of N are conjugate, then we say that G

splits regularly. Observe that if G has two complements H1 and H2 then G = NH1

and G = NH2, where H1 ∩ N = 1 and H2 ∩ N = 1. It follows that

G/N = H1N/N = H1/H1 ∩ N ∼= H1, on the other hand

G/N = H2N/N = H2/H2 ∩ N ∼= H2. Hence any two complements of N are

isomorphic. So we are interested in when they are conjugate. Indeed in the

following example we have a group G with a normal subgroup N such that it has two

non-conjugate complements. So the above problem makes sense.

Example:

Let G = S6. We know that A6 is a normal subgroup of S6. Let T1 =< (1, 2) >. T1

is a subgroup of G where G = A6T1 and A6 ∩ T1 = 1. So T1 is a complement of A6.

Assume T2 =< (1, 2), (3, 4), (5, 6) > . T2 is also a subgroup of G. Moreover,

G = A6T2 and A6 ∩ T2 = 1. But T1 and T2 are not conjugate. So, S6 does not split

regularly.

As the following simple observation shows, if a group G has normal subgroup N,

then it may not split. Indeed G = Q8 quaternion group of order 8.

Q8 = {1, i, j, k,−1,−i,−j,−k}. All subgroups of Q8 are normal subgroup. Indeed

the subgroups < i >, < j >, < k > are cyclic subgroups of order 4 and {1,−1} is

the center of Q8. But the subgroup < i >C Q8 does not split, because there exists no

non-trivial subgroup H such that < i > ∩H = 1. Because all non-trivial subgroups

of Q8 contain the center Z(Q8) = {1,−1}.

If we come back to monomial groups over H, Σ(H;B,B+, C) splits over the base
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group V (B,B+) and S(B,C) is a complement of V (B,B+) in Σ(H;B,B+, C).

In chapter 4, we will discuss the splitting of Σ(H;B,B+, C) and regularity of this

splitting. We prove the following:

A necessary and sufficient condition for Σ(H;B,B+, C) where d+ ≤ C ≤ B+ to

split regularly over the basis group is that H contains no subgroup isomorphic to

S(B,C).

An immediate corollary of this result is that Σ(H;B,B+, C) to split regularly over

the basis group if and only if H contains no element of order 2.

In the last section we discuss the splitting of alternating groups over the basis group.

This discussion is separated into two cases, namely splitting of monomial alternating

groups of finite degree n, i.e., Σn,A(H) and splitting of monomial alternating groups

of infinite degree B where B is an infinite cardinal number. The main difference

between the splitting if complete monomial group and monomial alternating group is

the following:

In the former one symmetric group Sn is generated by permutations of the form (1 i)

where i=2,..,n and we study the images of these elements and in the latter one.

Alternating groups are generated by permutations of type (i j k) where i, j, k are

pairwise distinct elements of {1, 2, ..., n}. Therefore we study the images of

elements of this type.

The examples are given by Σ3,A(H) as a special case and in this case the splitting of

Σ3,A(H) over the basis group is always regular. The second example of the splitting

is Σ4,A(H) over the basis group is also given. When n=4, A4 has a proper normal

subgroup is isomorphic to elementary abelian 2-group of order 4. The image of this

subgroup into H is studied and for Σ4,A(H), we show that there are two types of

complement; one comes from the conjugates of Sn and the other complements arises

from the homomorphic images of A4 into a cyclic subgroup of order 3 of H. In

particular, if H has no subgroup of order 3, then all complements of Σ4,A(H) over

the basis group are conjugate i.e., Σ4,A(H) splits regularly over the basis group

V4(H). For the general case we show that, Σn,A(H) splits over the basis group and

Σn,A(H) splits regularly over the basis group if and only if H does not contain any
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subgroup isomorphic to An−1, for n ≥ 6.

The splitting of infinite alternating groups is studied with a similar technique and we

prove that ΣA(H;B,B+, d) split regularly over the basis group if and only if H does

not have any subgroup isomorphic to A(B,d).
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CHAPTER 2

THE SYMMETRIES

In this section we define symmetries not only on the finite sets as in the case of Ore

[2], but also on the sets arbitrarily large. The group H will be arbitrary.

Let d be the cardinal of the set of integers, i.e., d=ℵ0, B be any infinite cardinal; B+,

the successor of B, U is a set with the cardinal B, and let C be a cardinal such that

d 5 C 5 B+.

Definition 2.0.1. The set of all permutations s of the set U onto itself is a group. It is

denoted by S(B,B+), and is called the infinite symmetric group on the set U.

Let s ∈ S(B,B+). For s, we define support of s. Namely

supp(s) = {xi ∈ U |s(xi) 6= xi}

By |supp(s)| we define the cardinality of the set supp(s).

Now, we define the subgroup S(B, C) of the group S(B,B+):

S(B,C) = {σ ∈ S(B,B+) :|supp(σ)| < C}.

LEMMA 2.0.2. The set S(B, C) is a subgroup of S(B,B+).

Proof. Let σ1, σ2 ∈ S(B,C). Then, |supp(σ1)| < C and |supp(σ2)| < C. If

|supp(σ1)| < C, since supp(σ1) = supp(σ−1
1 ), |supp(σ−1

1 )| =|supp(σ1)| < C.
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So, σ−1
1 ∈ S(B,C).

Claim: supp(σ1σ2) ⊆ supp(σ1) ∪ supp(σ2).

Assume a∈supp(σ1σ2). Then a·σ1σ2 6= a. Let a/∈supp(σ2). If a/∈ supp(σ2), then we

show that a∈ supp(σ1).

Since a/∈supp(σ2), a·σ2=a, and a·σ1σ2 6= a. It follows that a·σ1 6= a. So, a∈supp(σ1).

Therefore, supp(σ1σ2)⊆ supp(σ1)∪ supp(σ2). Since C is infinite,

|supp(σ1) ∪ supp(σ2)| ≤ {|supp(σ1)|+ |supp(σ2)|} =

max{|supp(σ1)|, |supp(σ2)|} ≤ C

This implies |supp(σ1σ2)| ≤ C. So, σ1σ2 ∈ S(B,C).

Thus, S(B, C) is a subgroup of S(B,B+).

Definition 2.0.3. If the number of x moved by s is finite, then the group S(B,d) is

called finitary symmetric group where supp(s) = {xi ∈ U |s(xi) 6= xi}. We denote

this set as

FSym(U) = {s ∈ S(B,B+)) : |supp(σ)| <∞}

Definition 2.0.4. Here we put the constraint that the number of moving elements of

U by s ∈ A(B, d), is less than the cardinality of natural numbers. Since we mention

alternating groups we should have evenly many transpositions. So, to define evenly

many transpositions, the largest cardinality of supp(s) should be finite, and so this s

comes from S(B,d). The group A(B, d) has elements s’s where those s’s comes from

S(B,d) and each of which have evenly many transpositions. The group A(B,d) is called

the infinite alternating group on the set U.

In S(B,B+) every element s determines a set of cycles of the form

8



c =

x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

 =
(
x1 x2 · · · xn

)

or

c =

· · · x−1 x0 x1 · · ·
· · · x0 x1 x2 · · ·

 =
(
· · · x−1 x0 x1 · · ·

)
.

By well-ordering principle, every set can be well- ordered. Therefore, every

permutation or cycle as in the above notation is meaningful.

LEMMA 2.0.5. Every permutation s ∈ S(B,B+) can be written as a disjoint product

of commutative cycles of finite length or infinite cycles.

Proof. Let U be the set as above and σ ∈ S(B,B+). So, U be a set of cardinality B.

Define a relation on U. Two elements xi, xj ∈ U are related xi ∼ xj if and only if

there exists n ∈ Z such that σn(xi) = xj .

Claim: ” ∼ ” is an equivalence relation on U .

(i) xi ∼ xi as σ0 = id and id(xi) = σ0(xi) = xi.

(ii) xi ∼ xj implies that there exists n ∈ Z such that σn(xi) = xj . Then (σ−1)n(xj) =

σ−n(xj) = xi. So, xj ∼ xi as −n ∈ Z.

(iii) Assume that xi ∼ xj and xj ∼ xk, {xi, xj, xk} ⊆ U . Then there exists n and m

in Z such that σn(xi) = xj , and σm(xj) = xk. It follows that

σm+n(xi) = σm(σn(xi)) = σm(xj) = xk, n+m ∈ Z. Hence, xi ∼ xk.

Consequently, ∼ is an equivalence relation.

The equivalence class containing an element xi ∈ U is of the form

{..., σ−2(xi), σ
−1(xi), xi, σ(xi), σ

2(xi), ...}. If this set is finite, then there exists

n ∈ N such that σn(xi) = xi. Then, we have a finite cycle of the form

(xi, σ(xi), ..., σ
n−1(xi))

9



If the equivalence class containing xi is an infinite set, then we have an infinite cycle

of the form

(..., σ−2(xi), σ
−1(xi), xi, σ(xi), σ

2(xi), ..., σ
n−1(xi), ...)

This type of cycles are called infinite cycles.

Since ” ∼ ” is an equivalence relation, the equivalence classes are disjoint, and union

of equivalence classes is the set U. Hence, every element of U is contained in a cycle,

and one may observe that disjoint cycles commute. Hence, every permutation σ can

be written in a unique way as a product of disjoint cycles of length finite or infinite

up to order.

Definition 2.0.6. A cycle with n distinct x’s is called an n- cycle; n =1, 2, . . . .,k .

Definition 2.0.7. A monomial substitution over H is a transformation of the form

y =

· · · xl · · ·
· · · hlxil · · ·

 (2.1)

where the mapping xl −→ xil is a one to one mapping of U onto itself and hl belongs

to H . The hl will be called factors of y.

If y is given by equation (2.1) and y1 is given by

y1 =

· · · xl · · ·
· · · klxjl · · ·

 , (2.2)

then the product yy1 is defined by

yy1 =

· · · xl · · ·
· · · hlkilxjil · · ·

 . (2.3)

The inverse of y is

y−1 =

· · · xil · · ·
· · · h−1

l xl · · ·

 . (2.4)
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The identity element will be

E =

· · · xl · · ·
· · · exl · · ·

 . (2.5)

Definition 2.0.8. By above multiplication, the set of monomial substitution is a group,

that will be denoted by Σ(H;B,B+, B+) , and called the monomial group of H of

degree B or, more simply, the symmetry of H .

If H consists only of the identity element, then Σ(H;B,B+, B+) is the symmetric

group S(B,B+).

Definition 2.0.9. A permutation in Σ(H;B,B+, B+) is a substitution of the form

s =

· · · xε · · ·
· · · exiε · · ·

 =

· · · ε · · ·
· · · iε · · ·

 . (2.6)

LEMMA 2.0.10. The set of permutations forms a subgroup of Σ(H;B,B+, B+) and

it is denoted by S(B,B+). We call this subgroup as permutation subgroup of

Σ(H;B,B+, B+).

Proof. : Let α , β ∈ S(B,B+), where

α =

· · · xε · · ·
· · · exiε · · ·

 (2.7)

β =

· · · xε · · ·
· · · exjε · · ·

 and β−1 =

· · · xjε · · ·
· · · exε · · ·

 , (2.8)

αβ =

· · · xε · · ·
· · · exjiε · · ·

 (2.9)

11



This product is in S(B,B+). Therefore, S(B,B+) is a subgroup of

Σ(H;B,B+, B+).

Definition 2.0.11. A multiplication in Σ(H;B,B+, B+) is a substitution of the form

v =

· · · xε · · ·
· · · hεxε · · ·

 = {..., hε, ...}. (2.10)

LEMMA 2.0.12. The set of multiplications forms a normal subgroup of

Σ(H;B,B+, B+), denoted by V (B,B+), and it is called the basis group of

Σ(H;B,B+, B+).

Proof. Let κ, α ∈ V (B,B+), and θ ∈ Σ(H;B,B+, B+) where

κ =

· · · xε · · ·
· · · hεxε · · ·

 (2.11)

α =

· · · xε · · ·
· · · lεxε · · ·

 (2.12)

θ =

· · · xε · · ·
· · · kεxiε · · ·

 . (2.13)

(i) Since

κ−1 =

· · · xε · · ·
· · · h−1

ε xε · · ·

 , (2.14)

clearly κ−1∈ V (B,B+).

(ii) The composition of κ and α will be

κα =

· · · xε · · ·
· · · hεlεxε · · ·

 (2.15)

So, the composition belongs to the basis group V (B,B+).

Thus, V (B,B+) is a subgroup of Σ(H;B,B+, B+).
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Moreover,

θ−1κθ =

· · · xiε · · ·
· · · k−1

ε hεkεxiε · · ·

 (2.16)

So, this product is also in the basis group. Therefore, V (B,B+) is a normal subgroup

in Σ(H;B,B+, B+).

LEMMA 2.0.13. The basis group is isomorphic to the Cartesian product of B groups,

each of which is isomorphic to H.

Proof. Let v ∈ V (B,B+), v = {h1, h2, ...}.

Assume

θ : V (B,B+) −→
∏

H

v 7−→ (h1, h2, ...)

.

• θ is a homomorphism:

Let v1, v2 ∈ V (B,B+), where

v1 = {h1, h2, ...} and

v2 = {k1, k2, ...}, hi, ki ∈ H .

θ(v1v2) = (h1k1, h2k2, ...) = θ(v1)θ(v2).

So, θ is a homomorphism.

• θ is one to one:

Kerθ = {v ∈ V (B,B+)|θ(v) = id∏(H)}

= {v ∈ V (B,B+)|(h1, h2, ...) = (eH , eH , ...)}

Then hi = eH for i=1, 2, . . .

So, θ is one to one.
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• θ is onto:

For any element (h1, h2, ...) ∈
∏
H , there exists a v ∈ V (B,B+) such that

v = {h1, h2, ...}.

So θ is onto.

Consequently, θ is an isomorphism, and the basis group is isomorphic to H × H ×
...×H × ... where the number of H is B many.

Definition 2.0.14. A scalar in Σ(H;B,B+, B+) is a multiplication with each factor

is the same. Scalars are of the form {. . . , h, h, . . . } and are denoted by v={h}.

LEMMA 2.0.15. Scalars are the only elements that commute with permutations.

Proof. Let s be an arbitrary element of S(B,B+). It is of the form

s =

x1 x2 · · · xk · · ·
xj1 xj2 · · · xjk · · ·

 . (2.17)

Let y ∈ Σ(H;B,B+, B+) be arbitrary.

y =

 x1 x2 · · · xt · · ·
h1xi1 h2xi2 · · · htxit · · ·

 . (2.18)

If ys=sy, then

ys =

 x1 x2 · · · xt · · ·
h1xi1 h2xi2 · · · htxit · · ·

x1 x2 · · · xk · · ·
xj1 xj2 · · · xjk · · ·

 (2.19)

=

 x1 x2 · · · xt · · ·
h1xji1 h2xji2 · · · htxjit · · ·

 , (2.20)

and
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sy =

x1 x2 · · · xk · · ·
xj1 xj2 · · · xjk · · ·

 x1 x2 · · · xt · · ·
h1xi1 h2xi2 · · · htxit · · ·

 (2.21)

=

 x1 x2 · · · xk · · ·
hj1xij1 hj2xij2 · · · hjkxijk · · ·

 (2.22)

ys=sy implies that

hj1 = h1

hj2 = h2

.

.

.

hjt = ht

and

xij1 = xji1

xij2 = xji2

.

.

.

xijk = xjik

means that

ijk = jik =⇒ ij = ji =⇒ j = i.

This shows that scalars commute with all permutations.

Now, assume ys=sy for all s ∈ S(B,B+). We should show y is a scalar. Let ha, hb

be arbitrary factors of y which occur position a, and position b, respectively.
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Consider y(xa, xb) and (xa, xb)y. Since y commutes with all permutations,

y(xa, xb) = (xa, xb)y. If we calculate y(xa, xb) and (xa, xb)y, we get

y(xa, xb) =

· · · xa · · · xb · · ·
· · · haxb · · · hbxa · · ·

 (2.23)

(xa, xb)y =

· · · xa · · · xb · · ·
· · · hbxb · · · haxa · · ·

 . (2.24)

As a result, we see that ha = hb for arbitrary a and b. Thus, in y all factors are the

same.

Now, consider y(xiε , xa) where iε 6= a. By equation (2.18) we see that with y, xε goes

to xiε . Assume also iε 6= ε. If we calculate y(xiε , xa) and (xiε , xa)y we should get the

same result, since y commutes with all permutation.

y(xiε , xa) =

· · · xε · · ·
· · · hεxa · · ·

 (2.25)

(xiε , xa)y =

· · · xε · · ·
· · · hεxa · · ·

 (2.26)

Here since xa = xiε we get a contradiction.

Therefore, y is a scalar.

Consequently, we get that scalars are the only elements commute with permutations.

LEMMA 2.0.16. The center Z(Σ(H;B,B+, B+)) of Σ(H;B,B+, B+) is the set of

all scalars v={k} where k belongs to the center of H, and Z(Σ(H;B,B+, B+)) is

isomorphic to the center of H.

Proof. By Lemma 2.0.15, scalars are the only elements that commute with

permutations, and permutations are contained in Σ(H;B,B+, B+). The elements of
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Z(Σ(H;B,B+, B+)) are contained in scalars.

Moreover, m{h1, h2, ...} = {h1, h2, ...}mwhere m = {m,m, ...} implies that mhi =

him for all hi ∈ H .

Hence, m ∈ Z(H).

ϕ : Z(Σ(H;B,B+, B+)) −→ Z(H)

v = {k} 7−→ k

Let v1 = {k1, ...}, and v2 = {k2, ...}.

• ϕ is a homomorphism:

ϕ(v1v2) = k1k2 = ϕ(v1)ϕ(v2).

So ϕ is a homomorphism.

• ϕ is a one to one:

Kerϕ = {v ∈ Z(Σ(H;B,B+, B+))|ϕ(v) = 1H} = {1, 1, ....}.

So ϕ is one to one.

• ϕ is a onto:

For any k ∈ Z(H), there exists v ∈ Z(Σ(H;B,B+, B+)) such that

v = {k, k, ...}.

Thus, ϕ is onto.

Hence ϕ is an isomorphism.

Definition 2.0.17. A group G splits over a normal subgroup N if there exists a

subgroup M of G such that G=〈M,N〉=MN , N ∩ M=E.

The group M may be replaced by any of its conjugates and the relations will still hold.

Indeed, for any element g ∈ G, we have Gg = (NT )g = N gT g since N is normal we

obtain N g = N . Hence, T g which is conjugate of T is also a complement of N in G.
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Therefore, all conjugates of T will be a complement of N in G. But for every subgroup

T such that G=〈N, T 〉, N∩ T=E it follows that T is conjugate to M, then we say that

G splits regularly over N.

LEMMA 2.0.18. Any substitution y of Σ(H;B,B+, B+) can be written as a

multiplication multiplied by a permutation uniquely.

Proof. Let

y =

· · · xα−1 xα xα+1 · · ·
· · · hα−1xiα−1 hαxiα hα+1xiα+1 · · ·

 , (2.27)

and y ∈ Σ(H;B,B+, B+). Then y=vs where v={. . . , hα−1, hα, hα+1, . . . } and

s =

· · · xα−1 xα xα+1 · · ·
· · · xiα−1 xiα xiα+1 · · ·

 , (2.28)

y = {..., hα−1, hα, hα+1, ...}

· · · xα−1 xα xα+1 · · ·
· · · xiα−1 xiα xiα+1 · · ·

 (2.29)

So y can be written as a product of a permutation and a multiplication.

Assume that there exist

s′ =

· · · xα−1 xα xα+1 · · ·
· · · xjα−1 xjα xjα+1 · · ·

 (2.30)

a permutation and v′ = {..., kα−1, kα, kα+1, ...} a multiplication such that y = v′s′.

Then

v′s′ =

· · · xα−1 xα xα+1 · · ·
· · · kα−1xjα−1 kαxjα kα+1xjα+1 · · ·

 (2.31)

=

· · · xα−1 xα xα+1 · · ·
· · · hα−1xiα−1 hαxiα hα+1xiα+1 · · ·

 (2.32)

If we look at V (B,B+) ∩ S(B,B+);

18



v=s implies

· · · xα−1 xα xα+1 · · ·
· · · kα−1xα−1 kαxα kα+1xα+1 · · ·

 =

· · · xα−1 xα xα+1 · · ·
· · · xjα−1 xjα xjα+1 · · ·


(2.33)

Then, xi1 = x1

.

.

.

xit = xt.

So, it = t for any t=1, 2, . . . and ht = e.

This implies

V (B,B+) ∩ S(B,B+) = E.

Then vs = v′s′ implies (v′)−1v = s′s−1 ∈ V (B,B+)∩ S(B,B+) = E. Hence, v=v’

and s=s’.

So, this multiplication is unique.

Thus,

Σ(H;B,B+, B+) =< S(B,B+), V (B,B+) > .

Let B, C, D be infinite cardinal such that

d 5 C 5 B+,

d 5 D 5 B+.

Let Σ(H;B,C,D) be the set of all y=vs where v∈V (B,B+), s∈S(B,B+) and v

has less than C non identity factors, s moves less than D of the x’s. Then we get the
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following Lemma.

LEMMA 2.0.19. Σ(H;B,C,D) is a subgroup of Σ(H;B,B+, B+).

Proof. Let y1, y2 ∈ Σ(H;B,C,D) where y1= v1s1 and y2=v2s2. We know that v1, v2

have less than C non identity factors; and

|supp(s1)|, |supp(s2)|<D

i) y−1
1 ∈Σ(H;B,C,D):

y−1
1 =s−1

1 v−1
1 = s−1

1 v−1
1 s1s

−1
1 = (v−1

1 )s1s−1
1

Since s1 moves only the components of v1 according to the action of s1 on the set

U, we have in the elements (v−1
1 )s1 the elements of v−1

1 permuted with respect to the

action of s1. Hence the cardinality of moved elements will not increase. On the other

hand, supp(s1) = supp(s−1
1 ).

Thus, y−1
1 ∈Σ(H;B,C,D)

ii) y1y2∈Σ(H;B,C,D) :

y1y2=v1s1v2s2= v1s1v2s
−1
1 s1s2= v1v

s−1
1

2 s1s2= v1v
1
1s1s2 since basis group is normal

subgroup.

v1 is of the form v1=[..., h−1, h0, h1, ...] and v1
1 is of the form v2=[..., k−1, k0, k1, ...]

then v1v
1
1=[..., h−1k−1, h0k0, h1k1, ...]. Since v1 and v1

1 has less than C non identity

factors v1v
1
1 also has less than C non identity factors.

By Lemma 2.0.2, |supp(s1s2)|<D.

Hence, y1y2 ∈ Σ(H;B,C,D), and Σ(H;B,C,D) is a subgroup of

Σ(H;B,B+, B+).

The set ΣA(H;B,C, d) of all y=vs where v less than C non identity factors and s

belongs to A(B, d) forms a subgroup of Σ(H;B,B+, B+).

Let o(U)=n where n is a finite cardinal. Then the symmetry over H of U will be

denoted by Σ(H;n, n + 1, n + 1)= Σn(H). Then Σn,A(H) where elements of this
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group can be written as y=vs, and this s belongs to An, is a subgroup. Here basis

group is denoted by V(n, n+1)=Vn.
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CHAPTER 3

CYCLES, TRANSFORMATIONS AND CENTRALIZERS

Let y be an arbitrary element of Σ(H;B,B+, B+). It has been shown that y has a

unique decomposition y=vs where v belongs to V (B,B+) and s belongs to

S(B,B+). Throughout this section we will mention more about cycles,

transformations, and we will give the centralizers of finite and infinite monomial

groups, which are written by Ore [2] and Crouch [1].

By Lemma 2.0.5, we know that any permutation s in S(B,B+) can be written as a

disjoint product of commutative cycles. This decomposition induces a decomposition

of v such that to each cycle cε of s there corresponds a multiplication vε with all factors

e in those positions corresponding to x that s does not move and factors the same as

in v for the x that s moves. Thus vεcε has one of the two forms

vεcε =

 x1 x2 · · · xn

h1x2 h2x3 · · · hnx1

when n<d (3.1)

or

vεcε =

· · · x−1 x0 x1 · · ·
· · · h−1x0 h0x1 h1x2 · · ·

when n=d. (3.2)

If c is a cycle of length n and of the form

c =

 x1 x2 · · · xn

h1x2 h2x3 · · · hnx1

 , (3.3)
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observe that

c2 =

 x1 x2 · · · xn

h1h2x3 h2h3x4 · · · hnh1x2

 . (3.4)

Then,

cn =

 x1 x2 · · · xn

h1h2...hnx1 h2h3...hnh1x2 · · · hnh1...hn−1xn

 (3.5)

=

 x1 x2 · · · xn

δ1x1 δ2x2 · · · δnxn

 (3.6)

The factor of nth power of c is {δ1, δ2, . . . , δn } where δ1 = h1. . . hn,

δ2 = h2. . . hn h1, δn =hn h1. . . hn−1.

Definition 3.0.20. These δi’s are called the determinants of c.

Note that, δi’s are conjugate. Indeed,

h−1
n δn hn= δ1.

h2 δ3 h
−1
2 = δ2.

h3 δ4 h
−1
3 = δ3.

.

.

.

hn δn−1 h
−1
n = δ1

Since δi’s are conjugate, there exists a unique determinant class for each cycle.

Above, we have defined determinant class of a finite cycle.
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Theorem 3.0.21. Two finite cycles are conjugate if and only if they have the same

length and determinant class.

Proof. Let,

κ =

 x1 x2 · · · xm

k1xj1 k2xj2 · · · kmxjm

 (3.7)

κ−1 =

 xj1 xj2 · · · xjm

k−1
1 x1 k−1

2 x2 · · · k−1
m xm

 (3.8)

γ =

 x1 x2 · · · xn

c1x2 c2x3 · · · cnx1

 (3.9)

When we consider conjugation of κ with γ there are three cases:

Case 1: If m=n,

κ−1γκ =

 xj1 xj2 · · · xjn

k−1
1 c1k2xj2 k−1

2 c2k3xj3 · · · k−1
n cnknxj1

 (3.10)

Case 2: If m<n,

κ−1γκ =

 xj1 xj2 · · · xjm · · · xjn

k−1
1 c1k2xj2 k−1

2 c2k3xj3 · · · k−1
m cmxjm+1 · · · cnk1xj1

 (3.11)

Case 3: If m>n,

κ−1γκ =

 xj1 xj2 · · · xjn xjn+1 · · · xjm

k−1
1 c1k2xj2 k−1

2 c2k3xj3 · · · k−1
n cnk1xj1 xjn+1 · · · xjm

 (3.12)

Above, it can be seen that κ−1γκ has the same form in three cases; they have the

same length and the same determinant class. Namely, for case (1) in equation (3.10)
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determinant class of κγ−1κ is the product of

(k−1
1 c1k2)(k−1

2 c2k3)...(k−1
n cnkn) = (k−1

1 c1c2...cnk1) = k−1
1 δ1k1. It is a conjugate of

determinant class of γ by the element k1 in H. For case (2), in equation (3.11)

determinant class of κγ−1κ is the product of

(k−1
1 c1k2)(k−1

2 c2k3)...(k−1
m cmcm+1...cnk1) = (k−1

1 c1c2...cnk1) = k−1
1 δ1k1. It is again

conjugate of determinant class of γ by the element k1 in H. For case (3), in equation

(3.12) determinant class of κγ−1κ is the product of

(k−1
1 c1k2)(k−1

2 c2k3)...(k−1
n cnk1) = (k−1

1 c1c2...cnk1) = k−1
1 δ1k1. It is a conjugate of

determinant class of γ by the element k1 in H also.

Ore [2] has investigated the result of transforming a finite cycle of an element of

monomial group to its normal form. We will state that in the following theorem.

Theorem 3.0.22. Any cycle of length n may be transformed to the normal form

γ =

xi1 xi2 · · · xin

xi2 xi3 · · · xi1

 = {xi2 , · · · , xin , axi1} (3.13)

where a is any element in the determinant class of γ. Any monomial substitution ρ is

similar to a product of cycles without common variables ρ = γ1...γr where each cycle

is in normal form.

Proof. Let

κ =

 xi1 xi2 · · · xin

c1xi2 c2xi3 · · · cnxi1

 (3.14)

have the same determinant class of the cycle γ.

If we can find a β such that β−1κβ = γ then we will get the result.

∆κ = c1c2...cn, and ∆γ = a are determinants of κ and γ. By our assumption, ∆κ and

∆γ are in the same determinant class, so there exists p1 in H such that ∆p1
κ = ∆γ. By

Theorem 1 in the paper of Ore [2] there exist p1 such that

p−1
1 c1p2 = 1, p−1

2 c2p3 = 1,..., p−1
n−1cn−1pn = 1, p−1

n cnp1 = a.
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Choose

β =

 xi1 xi2 · · · xin

p1xi1 p2xi2 · · · pnxin

 . (3.15)

Then, β−1κβ = γ. Hence, each cycle may be transformed into normal form.

Since the transformation of γ into normal form may be performed by means of a

substitution involving only the same variables, all cycles in ρ may be transformed

into normal form simultaneously.

Example: Let n=4, i.e., the set U has 4 elements, and H = S3. Let

σ ∈ Σ(H;4, 5, 5)=Σ4 , where

σ =

 x1 x2 x3 x4

(12)x2 (123)x3 (1)x4 (23)x1

 (3.16)

Then,

σ2 =

 x1 x2 x3 x4

(12)(123)x3 (123)(1)x4 (1)(23)x1 (23)(12)x2

 (3.17)

=

 x1 x3

(13)x3 (23)x1

 x2 x4

(123)x4 (123)x2

 (3.18)

σ3 =

 x1 x2 x3 x4

(13)x4 (13)x1 (123)x2 (132)x3

 (3.19)

σ4 =

 x1 x2 x3 x4

(123)x1 (132)x2 (132)x3 (132)x4

 (3.20)

In this case δ′is will be:

δ1 = (123)
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δ2 = (132)

δ3 = (132)

δ4 = (132)

We know that conjugacy classes of S3 are [(1)], [(1 2)], [(1 2 3)] where

[(1)]={(1)}

[(1 2)]={(1 2), (1 3), (2 3)}

[(1 2 3)]={(1 2 3), (1 3 2)}.

Since δ′is are in the same conjugacy class, they are conjugate.

Now, we should consider infinite cycles. If a cycle is infinite, then below we will show

that any infinite cycle in Σ(H;B,B+, B+) is conjugate to an infinite permutation in

S(B,B+). Indeed, let κ be an arbitrary substitution and γ be an infinite cycle in

Σ(H;B,B+, B+).

κ =

· · · x−1 x0 x1 · · ·
· · · k−1xj−1 k0xj0 k1xj1 · · ·

 (3.21)

γ =

· · · x−1 x0 x1 · · ·
· · · h−1x0 h0x1 h1x2 · · ·

 . (3.22)

Then,

κ−1γκ =

· · · xj−1 xj0 xj1 · · ·
· · · k−1

1 h1k0xj0 k−1
0 h0k1xj1 k−1

1 h1k2xj2 · · ·

 . (3.23)

It shows that κ−1γκ has an infinite cycle form.

THEOREM 3.0.23. Two cycles of length d are conjugate if and only if they leave the

same number of x fixed.
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Proof. Let γ and θ be conjugate infinite cycles such that γ has n fixed points. Then

γ =

· · · xi−1 xi0 xi1 · · ·
· · · hi−1xi0 hi0xi1 hi1xi2 · · ·

 (a1)(a2)...(an) (3.24)

then, for some monomial substitution κ,

κ =

· · · x−1 x0 x1 · · ·
· · · k−1xj−1 k0xj0 k1xj1 · · ·

 (3.25)

θ = κ−1γκ (3.26)

=

· · · xj−1 xj0 ji1 · · ·
· · · k−1

i−1
h−1xi0 hi0xi1 hi1xi2 · · ·

 (a1)κ(a2)κ...(an)κ. (3.27)

So, θ has n fixed points.

Conversely, let

c =

· · · x−1 x0 x1 · · ·
· · · h−1x0 h0x1 h1x2 · · ·

 , (3.28)

and

c
′
=

· · · xi−1 xi0 xi1 · · ·
· · · r−1xi0 r0xi1 r1xi2 · · ·

 (3.29)

c and c′ leave the same number of x fixed. We should consider if there exists a

y ∈ Σ(H;B,B+, B+) such that y−1cy= c′ where

y =

· · · x−1 x0 x1 · · ·
· · · k−1xj−1 k0xj0 k1xj1 · · ·

 (3.30)

y−1cy =

· · · xj−1 xj xj1 · · ·
· · · k−1

−1h−1k0xj k−1
0 h0k1xj1 k−1

1 h1k2xj2 · · ·

 (3.31)
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then,

. . . .

k−1
−i h−ik−i+1= r−i

. . . .

k−1
−1h−1k0= r−1

k−1
0 h0k1= r0

k−1
1 h1k2= r1

. . . .

k−1
i hiki+1= ri

. . . .

Let k0= t, where t is arbitrary.

k−1
−1 = r−1t

−1h−1
−1

k1 = h−1
0 tr0

k2 = h−1
1 h−1

0 tr0r2

Since we can solve this equations, any two cycles of infinite length are conjugate. In

particular, if c
′ is a permutation still we can solve y−1cy = c

′ , and c
′ is a

permutation. Hence, every infinite cycle in Σ(H;B,B+, B+) can be made conjugate

to an infinite permutation.

Now, in the light of the Theorem 3.0.23 and Theorem 3.0.21, we can state the

following Theorem.

Theorem 3.0.24. Two monomial substitutions y and y1 are conjugate if and only if

in their cyclic decomposition the finite cycles can be made to correspond in a one to
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one manner such that corresponding cycles have the same lengths and determinant

class and cardinality of the set of infinite cycles is the same for both y and y1.

Proof. This Theorem is consequence of Theorem 3.0.21 and Theorem 3.0.23.

3.1 Centralizers of Elements in Monomial Group

Monomial groups appear naturally as centralizer of an element in symmetric groups.

The structure of centralizers of elements in finite symmetric groups is well known.

If α is an n-cycle in finite symmetric group Sn on n-letters, then

CSn(α) =< α >. Indeed, < α > ≤ CSn(α). Moreover, if β ∈ CSn(α) , then

αβ = α. Since under conjugation cycle type of a permutation is preserved αβ must

be an n-cycle and conjugation sends

(a1, a2, ..., an)β = (aβ1 , a
β
2 , ..., a

β
n) = (a1, a2, ..., an)

implies that if aβ1 = aj for some j, then aβ2 = aj+1, aβ3 = aj+2, · · · , aβn−(j−1) = an,

aβn−j = a1, · · · , aβn = aj+n−1 = aj−1. It shows that

y =

a1 a2 a3 · · · an−(j−1) an−j · · · an

aj aj+1 aj+2 · · · an a1 · · · aj−1.

 (3.32)

So, β = αj−1. Hence, β ∈< α >, i.e., CSn(α) =< α > .

Now, if α is in Sn and α is a product of cycles of the same length k, then

α is of the form

α = (a1, a2, ..., ak)(ak+1, ak+2, ..., a2k)...(a(m−1)k+1, a(m−k)+2, ..., amk).

So, mk=n. In this case CSn(α) ∼= (Ck × Ck × ... × Ck) o Sm where Ck is a cyclic

group of order k, and Sm is the finite symmetric group on m-letters. The elements of

Sm permute the cycles in this case.

31



Let g ∈ CSn(α). Then, αg = α. Since conjugation of a permutation by another

permutation preserves the cycle type. αg will be again a permutation of the same

type as α. Hence αg is a product of m cycles of length k. Moreover, αg = α implies

that the cycles are the same except the order of cycles in α, because distinct disjoint

cycles commute. Hence we can multiply g with permutation g1 where g1 ∈ Sm and

g−1
1 g fixes each cycle of g. Since g−1

1 g is again an element of the centralizer and

g−1
1 g fixes each cycle. By above paragraph we know the centralizer of a k-cycle in

Sk, namely CSk(a1, ..., ak) =< (a1, ..., ak) >. We multiply by elements ci,k of cyclic

group Ck for each cycle of α. Hence c−1
i,k c
−1
2,k...c

−1
m,kg

−1
1 g = id. Hence g ∈ CSn(α) ∼=

(Ck × Ck × ...× Ck)o Sm ∼= Σm(Ck) which is a monomial group of degree m over

the cyclic group Ck of order k.

If α is a product of cycles of different length then α is of the form

α = (a1,1, ..., a1,k1)...(am,1, ..., am,km). We need to find CSn(α). Assume that we

have l different lengths of cycles in the cycle decomposition of α, and let Ym be the

union of the orbits of the same length m, where m=1,2,...,l. The Y ′ms are a partition

of the set with n elements into disjoint sets. Let x ∈ CSn(α). It is clear that Y ′ms are

α invariant and also x invariant by previous paragraph. Conversely, if we have a

permutation xm of Ym such that xm commutes with restriction αm of an element α to

Ym, then xm is in CSn (α). Therefore CSn (α) = CS|Ym|
(α1) × ... × CS|Yl| (αl) where

S|Ym| is the symmetric group of degree |Ym|. Therefore it is enough to calculate

CS|Yk|
(α) where α has a fixed cycle length k.

Let α = (a1,1, ..., a1,k)...(am,1, ..., am,mk). We want to show that CSn(α) ∼= (Ck oSm).

Define r′ by aljr′ = alj,r. Then,

f : Sm → C
Smk

(α)

r 7→ r′

is a homomorphism.

Let θl : al,1 → al,2 → ... → al,k → al,1. Certainly θl is in CSmk(α) and Wi =<

f(r), θl : l = 1, 2, ...,m; r ∈ Sm >∼= (Ck o Sm).

Conversely, if g ∈ CSmk(α), then g permutes the cycles of α, so there exists r ∈ Sm
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such that gr′ fixes every cycle of α. Since the centralizer in Sk of a cycle of length k

is a cyclic group of order k.

(gr′)
m∏
l=1

θkll = 1 where 1 ≤ kl ≤ k − 1.

Hence g ∈ Wm, so CSmk(α) = Wm
∼= Ck o Sm ∼= Σm(Ck).

In the case α is a product of cycles of different length since each cycle type will be

preserved under conjugation, CSn(α) = Σm1(Ck1)× ...×Σml(Ckl) where we have l

different length each length ki have mi cycles of length ki.

Theorem 3.1.1. Let y be conjugate to y1 written in the normal form y1 =
∏
i

δi,

δi =
∏
ε

δiε, where for a fixed i the δiε are the normalized cycles of the same length n,

and the same determinant class a if n < d. Let ε run over a set of cardinal µ where

0 5 µ 5 B. Then the centralizer CΣ(H;B,B+,B+)(y) is isomorphic to the strong direct

product of symmetries

CΣ(H;B,B+,B+)(y) ∼=
∏
i

(Σ(C(H(a) < δ >, µi, µ
+
i , µ

+
i ))× Σκ(H × Z;κ, κ+, κ+).

The group CH(a) < δ > consists of all elements y1 of the form y1 = {ki}(ci1)j where

k belongs to the centralizer of a in H. The second direct product arises if δ is a

product of κ infinite cycles where κ ≤ B

Proof. Let y be an arbitrary element of Σ(H;B,B+, B+). Then by taking conjugate

of y by elements of Σ(H;B,B+, B+), we may assume that y is a product of cycles

in its normal form, say y1.

Since CΣ(H;B,B+,B+)(y) ∼= CΣ(H;B,B+,B+)(y1), it is enough to find the structure of

centralizer of the elements y1, which is a product of symmetries in its normal form.

The element y1 may contain finite cycles and infinite cycles. We prove the theorem

case by case. In the case of finite cycles we follow the proof of Ore [2] and in the

case of infinite cycles we follow Crouch [1].
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Since conjugation of an element y1 ∈ Σ(H;B,B+, B+) by an element

g ∈ Σ(H;B,B+, B+) preserves cycle length and the determinant class, the

centralizer of an element y1 will be direct product of centralizers of elements for

each cycle length and determinant class. For this reason we will find the structure of

centralizers of elements for each cycle length and determinant class.

Step 1: (a) Assume that y1 is just a cycle of length n in Σn(H), for an arbitrary group

H, and y1 has determinant class a. In this case y1 is of the normal form

y1 =

x1 x2 x3 · · · xn

x2 x3 x4 · · · ax1.

 . (3.33)

Then for

κ =

 x1 x2 · · · xm

k1xj1 k2xj2 · · · kmxjm

 (3.34)

and by the calculation

κ−1y1κ =

 xj1 xj2 · · · xjn xjn+1 · · · xjm

k−1
1 k2xj2 k−1

2 k3xj3 · · · k−1
n ak1xj1 xjn+1 · · · xjm

 (3.35)

= {k−1
n ak1xj1 , k

−1
1 k2xj2 , k

−1
2 k3xj3 , · · · , k−1

n−1knxjn} (3.36)

Since κ is in the centralizer of y1 implies that κ−1y1κ = y1 we may solve the

unknowns k1, k2, ..., kn in H and so by Theorem (8) in [2]

κ =

 x1 x2 · · · xn−j+1 xn−j+2 · · · xn

rxj rxj+1 · · · rxn rax1 · · · raxj−1

 = {r}yj1 (3.37)

where r ∈ CH(a). Clearly, the powers of y1, y
m
1 ∈ CΣ(H;B,B+,B+)(y1). Hence, we

obtain κ = {r}yj1 = yj1{r}.

Hence, CΣn(H)(y1) ∼= CH(a) < y1 >=< y1 > CH(a). CΣn(H)(y1) is an extension of

CH(a) by the group < y1 > of degree n.

(b) If y1 is a product of k cycles of length n and each cycle in the normal form has the

same determinant class a.
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In this case y1 is of the form

y1 =

x1 x2 · · · xn

x2 x3 · · · ax1

xn+1 xn+2 · · · x2n

xn+2 xn+3 · · · axn+1

 ... (3.38)

x(k−1)n+1 x(k−1)n+2 · · · xkn

x(k−1)n+2 x(k−1)n+3 · · · x(k−1)n+1

 (3.39)

any permutation of cycles of type (x1, xn+1)(x2, xn+2)...(xn, x2) and

(x1, xn+1, x2n+1, ..., xjn+1)(x2, xn+2, x2n+2, ..., xjn+2)...(xn, x2n, x3n, ..., xjn+n)

commute with the given symmetry y1 and these type of permutations generate a

subgroup isomorphic to Sk, permutations permuting the cycles.

Moreover, for each fixed cycle centralizer be as in then case (a) and these centralizers

commute with each other. Hence the centralizer of y1 will be isomorphic to

CH(a) < δ1 > ×CH(a) < δ2 > ×...× CH(a) < δk > oSk

∼= CH(a) < δ1 > oSk ∼= Σk(CH(a) < δ1 >).

Since in our symmetry B might be infinite in the case y1 is a product of infinitely

many cycles of length n and determinant class a and the cardinality of the cycles is

say µ then CΣ(H;B,B+,B+)(y1) ∼= Σ(CH(a) < δ >;µ, µ+, µ+).

Step 2: Now, we find the centralizer of a cycle of infinite length.

First observe by Lemma 3.0.23 that any infinite cycle of the form· · · x−2 x−1 x0 x1 x2 · · ·
· · · h−1x−2 h−1x−1 h0x0 h1x1 h2x2 · · ·

 (3.40)

by taking its conjugate to a permutation cycle

· · · x−2 x−1 x0 x1 x2 · · ·
· · · x−1 x0 x1 x2 x3 · · ·

 . (3.41)

Therefore, in the infinite cycle case we may assume that in the normal form y1 is a

product of say µ2 infinite permutations as above.
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First we find the centralizer of an infinite permutationΣ(H;ℵ0,ℵ+
0 ,ℵ+

0 ) without fixed

point and all elements are moved.

We follow Crouch [1] for find the structure of centralizer of a cycle product of µ2

infinite cycles as above will be the trivial consequence of the same argument.

Now,

κ−1cκ =

· · · xi−1 xi0 xi1 · · ·
· · · k−1

−1k0xi−0 k−1
0 k1xi1 k−1

1 k2xi2 · · ·

 , (3.42)

where c =

· · · x−1 x0 x1 · · ·
· · · x−0 x1 x2 · · ·

 . (3.43)

So, we can solve ..., k−2, k−1, k0, k1, ...

Then we observe that κ−1cκ = c implies that

κ =

· · · x−1 x0 x1 · · ·
· · · kxj−1 xj kxj+1 · · ·

 . (3.44)

Hence κ = {k}cj = cjκ where κ is not a true scalar on the set U, but k is a scalar

only on the variables which appear in the cycle. {k} will be identity on the elements

of U which c does not move. It follows that CΣ(H;d,d+,d+)(c) ∼= H ×Z, where Z is an

infinite cyclic group which comes from the isomorphism< c >∼= Z. It is independent

of c as all isomorphic to Z .

Now, if y is a product of µ2d− cycles then

CΣ(H;B,B+,B+)(y) ∼= Σ(H × Z;µ2, µ
+
2 , µ

+
2 ). Now, from case 1 and case 2 theorem

follows.
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CHAPTER 4

THE SPLITTING OF THE SYMMETRY

Definition 4.0.2. Let G be a group, and N be a normal subgroup of G. If there exists

a subgroup H≤G such that G=NH and N∩H=1, then we say that G splits over N and

H is called as complement of N in G.

If G splits over N, then for any g∈G, g=nh for some n∈N, h∈H. Moreover, this writing

is unique.

Indeed assume that if g=nh=n1h1 where n1, n∈N, h1, h∈H, then nh=n1h1 implies

n−1
1 n=h1h

−1∈ N∩H=1. So, n=n1 and h=h1. Hence, the writing g=nh is unique, i. e.

, n∈N, h∈H is unique in the writing g=nh.

Observe that for any g∈G,

Gg=(NH)g=N gHg=NHg as N E G, N g = N.

Therefore, all conjugates of H are also complement of N in G i.e., G=NHg and N ∩
Hg = 1.

Definition 4.0.3. A group G splits regularly over N, if every complement of N in G is

conjugate of H.

If G splits regularly, G=NT, and N∩T=1, then there exists g∈ G such that T=Hg.

Let H and T be two complements of N in G such that H is not conjugate to T. Then

by above, all conjugates of T in G are also complement of N in G.
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Therefore, we may decompose the set of all complements of N in G.

Let {={T≤G| TN=G, T∩N=1} be the set of all complements of N in G. We may

define an equivalence relation on {.

T1∼T2 iff T1=T g2 for some g∈ G.

∼ is an equivalence relation:

i) T1∼T1, since id∈G and T id1 =T1.

ii) T1∼T2 implies that there exists g∈G such that T1=T g2 if and only if T g
−1

1 =T2 implies

T2∼T1

iii) T1∼T2 and T2∼T3 implies that there exists g1, g2 ∈ G such that T1=T g12 , and

T2=T g23 , and so T g2g13 = (T g23 )g1=T g12 =T1. g2g1 ∈ G, so ∼ is an equivalence relation.

The equivalence class containing T1,

[T1]= {T| T g=T1 for some g∈G}

If { has only one equivalence class, then G splits regularly, otherwise G does not split

regularly.

If we go back to Σ(H;B,B+, B+) we should notice that Σ(H;B,B+, B+) splits

over V (B,B+) with complement S(B,B+).

Now, we will investigate the splitting of Σ(H;B,B+, C), i.e., the splitting of the

subgroup of Σ(H;B,B+, B+) such that order of support of permutations is less than

C where d≤C≤B+.

Clearly, Σ(H;B,B+, C)=V (B,B+)S(B,C), and V (B,B+)∩S(B,C) = 1. Hence,

Σ(H;B,B+, C) is a splitting of V (B,B+) with the complement S(B, C).

We are interested in the following question:

Find the necessary and sufficient conditions that { has only one equivalence class,

i.e., whether all complements of V (B,B+) in Σ(H;B,B+, C) are conjugate or not.

If H and T are two complements of N in G, then H is isomorphic to T.
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Let G=HN=NH and G=NT. Then, G�N= HN�N= TN�N.

HN�N∼=H�H∩N∼=H since H∩N=1.

HN�N=TN�N∼=T�T∩N∼=T since T∩N=1.

Hence, we have shown that any two complements of N in G are isomorphic.

We want to find out when H is conjugate to T.

Back to Σ(H;B,B+, C). Assume that T is a complement of V (B,B+), Then by the

above paragraph T∼=S(B, C). Moreover,

Σ(H;B,B+, C)=TV (B,B+)=S(B, C)V (B,B+).

Denote θ by the natural isomorphism θ: S(B, C) → T such that θ(s)=vs=t where

v∈V (B,B+), s∈ S(B, C) and v, s are unique satisfying θ(s)=vs=t.

By using the above natural isomorphism, the elements s=(1, α) is a transposition in

Σ(H;B,B+, C), and

tα = θ(s) = {h1,α, h2,α, ..., hn,α, ...}(1, α)

Since we can find the elements up to conjugacy of T, say T
′=vTv−1 where v∈

V (B,B+).

If κ={k1, k2, . . . , kn, . . . } where κ ∈ V (B,B+), then T ′ has elements whose first

factors are identity. Indeed

t′α = {k−1
1 , k−1

2 , ..., k−1
n , ...}{h1,α, h2,α, ..., hn,α, ...}(1, α){k1, k2, ..., kn, ...}

= {k−1
1 h1,αkα, k

−1
2 h2,αk2, k

−1
3 h3,αk3, ..., k

−1
α hα,αk1, ...}(1, α)

We can choose the first factor k−1
1 h1,αkα = 1 since k−1

1 h1,αkα = 1 implies k1 =

h1,αkα. For each α ∈ B, α 6= 1, we can do this conjugation and choose kα = h−1
1,αk1.

Then simultaneously we can solve this equation and obtain the first component of

each t′α is identity for all α 6= 1. k−1
2 h2,αk2 is a conjugate of h2,α and other hj,α are

conjugate except the αth component.
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Then we have t′α = {e, h2,α, ..., hα,α, ..., hε,α, ...}(1, α).

As (t′α)2 = E, we have

(t′α)2 = {hα,α, h2
2,α, ..., h

2
α−1,α, k

−1
α h1,αkα, ...} = E

where E is the identity of Σ(H;B,B+, B+).

So, hα,α = e and, h2
j,α = e. Then,

tα = θ(s) = {1H , h2,α, ..., 1H , ...}(1, α).

So, we can write

(i) t′α = {e, h2,α, ..., , hε,α, ...}(1, α)

(ii) hα,α = e

(iii) h2
ε,α = e for ε 6= 1, ε 6= α.

Let S1(B, C) be the set of all elements of S(B, C) where

S1(B, C)={g ∈S(B, C)| x1·g=x1 }, i.e., the stabilizer of the point x1 in U.

Since stabilizer of a point is a subgroup, S1(B, C) is a subgroup of S(B, C).

Observe that, if U={1, 2, . . . , n}, then

S1(B,C) ∼= Sn−1
∼= S(n− 1, n) ≤ S(n, n+ 1).

Moreover if U is an infinite set, then S1(B,C) ∼= S(B,C) where d≤C≤B+.

LEMMA 4.0.4. If s∈ S(B, C) and s moves x1, then s can be written uniquely as s =

(1, α)s1 where s1 leaves x1 fixed.

Proof. Let s∈ S(B, C). Then we may write s as a product of disjoint cycles. In the

writing of s as a disjoint product of cycles we are interested in only the cycle

containing 1 as the other cycles already fixes 1 and the product of elements which

fixes 1 is again an element fixing 1. For this reason we consider the cycle which

contains (moves) 1. If this cycle is finite then we have the following:
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Observe first that, if s=(1, 2, . . . , n),

s=(1, n)(2, 3, . . . , n), (2, 3, . . . , n)∈S1(B, C).

We can not write S=(1, k)(α1, α2, . . . , αl ) where

(α1, α2, . . . , αl )∈S1(B, C).

Think of the permutation (1, 2, 3, 4)=(1, 3)β where β∈ S4. There exists no such β∈
S4.

This observation can be generalized for all S(B, C).

If s=(1, n)α1=(1, n)α2, then α1=α2. So, the writing is unique, i.e.,

α1∈S1(B, C) is unique.

If s is an infinite cycle, and s moves x1, then

s =

x1 x2 ... xβ · · ·
xα xε ... x1 · · ·

 = (1, β)

x2 x3 ... xβ · · ·
xε xλ ... xα · · ·

 .

On the other hand,

s =

x2 x3 ... xα · · · xβ · · ·
xε xλ ... xδ · · · xα · · ·

 (1, α)

where

x2 x3 ... xα · · · xβ · · ·
xε xλ ... xδ · · · xα · · ·

∈ S1(B,C).

Assume that there exists xα∈ U such that α 6=1 , and xαs1=xα, i.e., s1 fixes xα for

some α 6=1. So, x1s1=x1, and xαs1=xα. Then, consider s=(1, α)s1=s1(1, α)⇒ s1=(1,

α)s = s(1, α)

θ(1, α) = {e, h2,α, ..., hε,α, ...e, ...}(1, α),

where e occurs as a factor in the first and αth positions.

θ(s1) = θ((1, α)s) = θ(1, α)θ(s) = θ(s(1, α)) = θ(s)θ(1, α)
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If s belongs to S(B,C) and moves x1, then by Lemma 4.0.4, s can be written uniquely

as s = (1, α)s1 where s1 ∈ S1(B,C).

The image of (1, α) under θ has been described above as

θ(1, α) = {e, h2,α, ..., hε,α, ...e, ...}(1, α).

To find the image of any element of S(B,C) it is sufficient to discuss those elements

in S1(B,C).

Let s1 ∈ S1(B,C) such that xαs1 = xα for some xα, α 6= 1 i.e., s1 fixes xα where

α 6= 1 i.e., s1 ∈ S1(B,C) ∩ Sα(B,C).

Let s = (1, α)s1. Then s1 = (1, α)s = s(1, α) where s sends x1 into xα, and xα into

x1 .

Let, θ(s)={k1, k2, . . . , kε, . . . }s.

So,

θ(s1) = {e, h2,α, ..., hε,α, ...e, ...}(1, α){k1, k2, ..., kε, ...}s (4.1)

=

 x1 x2 ... xα · · ·
kαx1 h2,αk2xδ ... k1xα · · ·

 . (4.2)

θ(s1) = θ(s)θ(1, α) =

 x1 ... xα · · ·
k1x1 ... kαxα · · ·

⇒ k1 = kα. (4.3)

This shows that if s1 belongs to S1(B, C), then the factors of v where θ(s1)=vs1 in the

positions corresponding to those x which s1 leaves fixed are equal to the first factor

of v.

LEMMA 4.0.5. Let s belongs to S(B, C) , and have the following properties; s moves

x1, i. e, x1s6=x1, and xαs=xα where α 6=1, and xβs=x1. Then s has the following form

s =

x1 ... xβ ... xα · · ·
xδ ... x1 ... xα · · ·

 (4.4)

42



where δ 6=1. Let θ(s)=vs where v∈V (B,B+). Then the factors which occur in the first

and βth positions of v are equal.

Proof. Let θ(s)=vs={c1, c2, c3, . . . , cβ , . . . , cε, . . . }s, we need to show c1=cβ.

We may write s in the following form

s = (1, β)

x1 ... xβ ... xα · · ·
x1 ... xδ ... xα · · ·

 = (1, β)s1

where s1∈S1(B, C). Also, we may write from right, as

s =

x1 ... xβ ... xα · · ·
x1 ... xδ ... xα · · ·

 (1, δ) = s1(1, δ).

Observe that when we write s as (1, β )s1 and s1(1, δ), the s1’s are the same. We want

to find θ(s)=vs. So we need to understand factors of v.

s=(1, β)s1=s1(1, δ), so θ(s)=θ(1, β)θ(s1). As we discussed on page 40,

θ(s1)={hα, ..., hβ, ..., hα, ..., hδ, ...}s1

θ(1, β)={e, ..., e, ..., hα,β, ..., hδ,β, ...}(1, β)

θ(1, δ)={e, ..., hβ,δ, ..., hα,δ, ..., e, ...}(1, δ)

θ(s)=θ(1, β)θ(s1)=

 x1 ... xβ ...

hβxδ ... hαx1 ...



θ(s)=θ(s1)θ(1, δ)=

 x1 ... xβ ...

hαxδ ... hβx1 ...


So, we have hβ = hα.

We can do the above computation for any α which is fixed by s. So, we may conclude

that all the corresponding factors which are fixed by s, the factors of v are equal to hβ

where xβs=x1.

Claim: Let s1 ∈ S1(B,C) xαs1 = xα, α 6= 1 and θ(s1) = vs1. Then v is a scalar.
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It is sufficient to show that the factors occupying positions corresponding to x which

s1 moves are the same as the first factor of v.

We have shown that if s does not move xα, then hα = h1,∀α. If we can show that

h1 = hβ , where s1 moves xβ , v will be a constant, so that, the factors coming from

the x’s such that s1 fixes x the factors are equal to h1 and the factors of x which s1

moves x also equal to h1 implies v is a constant.

Let

s1 =

x1 ... xβ ... xα · · ·
x1 ... xδ ... xα · · ·

 =

x1 ... xβ ... xα · · ·
xδ ... x1 ... xα · · ·

 (1, δ)

where δ 6= β and δ 6= 1.

By the Lemma 4.0.4,

θ(s1) = {h1, ..., hβ, ..., hα, ..., hδ, ...}s1

where hα = h1.

Furthermore, θ(1, δ)={e, ..., hβ,δ, ..., hα,δ, ..., e, ...}(1, δ).

Using the decomposition of s1 and the fact that θ is an isomorphism.

θ(s1) = θ(s)θ(1, δ) =

 x1 ... xβ ...

hαx1 ... hαxδ ...



Recall that, above if s1 ∈ S1(B,C) , and xαs1 = xα, then the first factor and αth

factor are the same.

So far

θ(s1) = {h1, ..., hβ, ..., h1, ..., hδ, ...}s1

By the above calculation, we show h1 = hα = hβ . Hence, under the above condition,

v is a constant.

It remains to discuss the case where there exists no xα such that xαs1 = xα, i.e., s1

moves all xβ for all β 6= 1. We need to show under the condition
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θ(s1) = vs1 and v is a constant. Assume

s1 =

x1 x2 ... xβ ...

x1 xβ ... xα ...

 = (2, β)

x1 x2 ... xβ · · ·
x1 xα ... xβ · · ·

 = s̄1s
′

1

where s̄1, s
′
1 ∈ S1(B,C).

By the above calculation, θ(s̄1) = vs̄1 s̄1 and θ(s′1) = vs′1
s
′
1 where vs′1 , vs̄1 are constant.

θ(s1) = θ(s̄1s
′
1) = θ(s̄1)θ(s

′
1) = vs̄1 s̄1vs′1

s
′
1

Since vs′1 , vs̄1 are constant and constants commute with all permutations we can write

θ(s) = vs̄1vs′1
s̄1s

′
1 = vs̄1vs′1

s1 , as s̄1s
′
1 = s1.

And vs̄1vs′1s1 = vs1s1

vs1 = vs̄1vs′1
is a constant since product of two constant is constant. So we have shown

that if s1 does not fix any xα, α 6= 1 , then θ(s1) = vs1 where v is a scalar. Hence,

under all conditions for any s1 ∈ S1(B,C) θ(s1) = vs1 where v is a constant.

Define a map φ : S1(B,C) −→ H such that φ(s1) = hs1 , and

θ(s1) = vs1 where v = {hs1}

θ : S(B,C) −→ T such that θ(s) = vs where vs∈T.

A computation shows that if

θ(1, α)={e, ..., hβ,α, ..., hα,α, ...}(1, α)

θ(1, β)={e, ..., hβ,β, ..., hα,β, ...}(1, β)

where hβ,β = e and hα,α = e, then

θ((1, α)(1, β)(1, α) = θ(α, β)

= {e, ..., hβ,α,...,e,...,}(1, α){e, ..., e, ..., hα,β, ...}(1, β){e, ..., hβ,α, ..., e, ...}(1, α)

=

 x1 ... xα ... xβ ...

hα,βx1 ... hβ,αxβ ... hβ,αxα ...


where α 6= 1, β 6= 1, α 6= β. But as α 6= 1, β 6= 1 we have
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θ(α, β) = {gα,β}(α, β).

So, hα,β = hβ,α = gα,β ∈ H.

Theorem 4.0.6. The symmetry Σ(H;B,B+, C) splits over the basis group,

Σ(H;B,B+, C) = V (B,B+) ∪ T,Σ(H;B,B+, B+) ∩ T = E. Any such group T is

the conjugate of some group T
′

obtained by the following construction. Let G be a

subgroup of H that is the homomorphic image of S1(B,C) where d ≤ C ≤ B+. Let

φ(s) = gs indicate the homomorphism. In particular, φ(α, β) = gα,β . Then the

elements of T
′

are obtained from the elements of S(B, C) by the isomorphism defined

as follows: Let *: S(B, C)−→ T
′

be a map , and ∗(s) = {gs} for s belonging to

S1(B,C), *(1, α)={e, g2,α, ..., gε,α, ..., e, ...}(1, α) where e occurs in the first and αth

positions.

In previous pages we have shown that if T is a complement of V (B,B+), then the

correspondence gives a homomorphism from S(B,C) into H where the above

conditions are satisfied. Therefore, we need to prove the converse of the theorem.

Namely if there is a correspondence as in the theorem, then it must be an

isomorphism.

Proof. We have defined a map α : S(B,C) −→ T
′ . Now, we want to show that

* is an isomorphism . We know that if an element s∈S(B, C), then we may write

s = (1, α)s1 where s1 ∈ S1(B,C). Indeed if s is already fixing x1 then s=s1, and

α=1. So, we are done. We may assume that s moves x1. Then as s is a permutation

there exists α such that xαs = x1. Then s=(1, α)s1, and where j 6= 1

s =

x1 ... xα ...

xj ... x1 ...

 = (1, α)

x1 ... xα ...

x1 ... xj ...


∗(s) = ∗((1, α)s1) = ∗(1, α) ∗ (s1) = {e, g2,α, ..., gε,α, ..., e, ...}(1, α) ∗ (s1)

= {e, g2,α, ..., gε,α, ..., e, ...}(1, α){hs1}s1

Since {hs1} is constant, it commutes with (1, α).

So, ∗(s) = {hs1 , g2,αhs1 , ..., gε,αhs1 , ..., hs1 , ...}s

46



Let s̄ = (1, β)s̄1 be another element of S(B, C) where xβ s̄ = x1 and s̄1 ∈ S1(B,C).

We want to show that * is a homomorphism, i. e,

∗(ss̄) = ∗(s) ∗ (s̄) = ∗(1, α) ∗ (s1) ∗ (1, β)(s̄1).

By Ore [2], it is enough to show that ∗(s(1, β)) = ∗(s) ∗ (1, β). This is equivalent to

show that

(i) ∗(1, α) ∗ (1, β) = ∗((1, α)(1, β), and

(ii) ∗(s1(1, β)) = ∗(s1) ∗ (1, β) for any s1 ∈ S1(B,C).

∗(s(1, β)) = ∗((1, α)s1(1, β) = ∗(s) ∗ (1, β)

(ii) ∗(s1(1, β)) = ∗(s1) ∗ (1, β)

∗((1, α)(1, β) = {gα,β, ..., e, ..., gβ,α, ...}(1, α, β)

Indeed

∗(1, α)∗ (1, β) = {e, ..., gε,α, ..., e, ...gβ,α, ...}(1, α){e, ..., gε,β, ..., gα,β, ..., e, ...}(1, β)

=

 x1 ... xα ... xβ ...

gα,βxα ... xβ ... gβ,αx1 ...


For α = β the case is trivially true. So we assume that α 6= β. Then we have

(1, α)(1, β) = (1, α, β) = (1, β)(1, α) So,

∗((1, α)(1, β) = ∗(1, α, β) = (1, β) ∗ (α, β) = ∗(1, β){gα,β}(α, β)

= {e, ..., gα,β, ..., e, ...}{gα,β}(1, β)(α, β) = {gα,β, ..., gε,β, ..., g2
α,β, ..., gα,β, ...}(1, β)(α, β)

= {gα,β, ..., gε,β, ..., gα,β, ..., e, ..., gα,β}(1, α)(1, β).

Now we compute the corresponding factors and obtain gα,β=e and gε,αgε,β = gε,βgα,β

since (ε, α)(ε, β) = (ε, β)(α, β), and where φ : S1(B,C) −→ H such that φ(α, β) =

gα,β , φ is a homomorphism.

Now, we should show that
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∗(s1(1, β)) = ∗s1 ∗ (1, β) for all s1 ∈ S1(B,C).

There are two cases in this verification i.e., we will analyze it when s1 moves xβ and

when s1 does not move xβ .

Case 1: If s1 does not move xβ ,

we know s = (1, β)s1 = s1(1, β).

∗s = ∗(1, β) ∗ (s1) since * is a homomorphism.

Also, ∗(s(1, β)) = ∗s ∗ (1, β) = ∗(1, β) ∗ s1 ∗ (1, β) = ∗s1 ∗ (1, β) ∗ (1, β) =

∗(s1(1, β)) ∗ (1, β) = ∗s ∗ (1, β).

Case 2: If s1 moves xβ , then we can not say anything about ∗(s(1, β)) with direct

computation. But,

s = s1(1, β) =

x1 · · · xβ · · · xδ · · ·
x1 · · · xα · · · xβ · · ·

 (1, β) = (1, δ)s1. (4.5)

Here s1 does not move xβ so we can do computation.

∗s1 = {gs1}s1,

∗(1, β) = {e, ..., e, ..., gδ,β, ..., gε,β, ...}(1, β),

∗(1, δ) = {e, ..., gβ,δ, ..., e, ..., gε,δ, ...}(1, δ) implies that

∗s1 ∗ (1, β) = {gs1}s1{e, ..., e, ..., gδ,β, ..., gε,β, ...}(1, β)

=

 x1 · · · xβ · · · xδ · · · xε · · ·
gs1xβ · · · gs1gα,βxα · · · gs1x1 · · · gs1gε,βxiε · · ·

 (1, β) = (1, δ)s1

(4.6)

= ∗(s1(1, β))

since * is a homomorphism.
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Also, ∗(s1(1, β)) = ∗((1, δ)s1) = ∗(1, δ) ∗ (s1)

=

 x1 · · · xβ · · · xδ · · · xε · · ·
gs1xβ · · · gs1gβ,δxα · · · gs1x1 · · · gs1gε,δxiε · · ·

 (4.7)

Since φ is a homomorphism factors of above two computations are the same.

As a consequence, we get that the given correspondence in the theorem preserves the

multiplication.

Images of the elements of S(B,C) form a group T. This T is isomorphic S(B,C). We

can say clearly V (B,B+) ∩ T = E. Moreover, V (B,B+) ∪ T = Σ(H;B,B+, C)

since if y ∈ Σ(H;B,B+, C), it can be written y = vv−1
1 v1s = v2t where ∗s = v1s =

t.

Theorem 4.0.7. A necessary and sufficient condition for Σ(H;B,B+, C) where

d+ ≤ C ≤ B+ to split regularly over the basis group is that H contains no subgroup

isomorphic to S(B, C).

Remark 1: S(B, C)∼= S1(B,C) when B is infinite, and this is the case as

d+ ≤ C ≤ B+.

Remark 2: Let y∈ Σ(H;B,B+, C), y=vs, and v1 ∈ V (B,B+), if we take the

conjugate of y by v1, we have v−1
1 yv1 = v−1

1 vsv1 = v−1
1 vsv1s

−1s = v−1
1 vv2s = v3s,

where v2 = sv1s
−1 and v3 = v−1

1 vv2 ∈ V (B,B+).

So, s is fixed.

Remark 3: s−1ys ∈ Σ(H;B,B+, C), where s∈ S(B,C)

Proof. Assume that Σ(H;B,B+, C) splits regularly over the basis group. Let T ′

be another complement oft he basis group . Then by assumption there exists y ∈
Σ(H;B,B+, C) such that

(T
′
)y = y−1(T

′
)y = S(B,C)
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Every element t ∈ T
′ can be written in the form t=vs for some v ∈ V (B,B+),

and s ∈ S(B,C) . By remark 2 and 3, ty = (vs)y ∈ S(B,C), we may take the

element y∈ V (B,B+) because taking conjugate of an element by a permutation only

permutes the factors. Therefore, if we want to obtain by taking conjugate we must

take conjugation by an element of V (B,B+). Therefore we may assume that y∈
V (B,B+). Say y={k1, k2, ..., kα, ...}.

In order to understand the elements of T ′ we may consider the elements t = {gs1}s1

where s1 ∈ S1(B,C).

Consider the element t = {gs1}s1 of T ′ where gs1 is a constant element of V (B,B+)

and s1 ∈ S1(B,C) i. e. s1 fixes the symbol x1. S1 is the stabilizer of a point x1 in

S(B, C).

yty−1 = {k1, k2, ...}{gs1}s1{k−1
1 , k−1

2 , ...} =

 x1 x2 ...

k1gs1k
−1
1 x1 ... ...

 ∈ S1(B,C)

k1gs1k
−1
1 = e implies gs1 = e ∀s1 ∈ S1(B,C), and consider

θ : T
′ −→ H such that θ({gs1}s1) = gs1 = e

So, t={e}s1 then every element of T ′ which is of the form {gs1s1} = {e}s1. Hence

elements of T coming from S1(B,C) i. e. constant term is actually coming from H is

identity.

Since θ sends all gs1 into identity the above homomorphism sends all elements of the

form {gs1} to identity. Hence H does not contain a subgroup isomorphic to S1(B,C).

Since by remark 1 , S(B, C)∼= S1(B,C), H contains no subgroup isomorphic to S(B,

C).

Conversely, assume H contains no subgroup isomorphic to S(B, C) and that

Σ(H;B,B+, C) does not split regularly. Then H contains no subgroup G which is

the homomorphic image of S1(B,C). Scott has shown that this implies that G

contains a subgroup isomorphic to S(B, C), contradicting the hypothesis. Therefore,

Σ(H;B,B+, C) splits regularly.

Theorem 4.0.8. A necessary and sufficient condition for Σ(H;B,B+, d) to split
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regularly over its basis group is that H contain no element of order 2.

Proof. If Σ(H;B,B+, d) splits regularly, then by Theorem 4.0.6, it contains an

isomorphic copy of S1(B, d) ' S(B, d). Since by assumption H contains no

element of order 2, then the map γ : T ′ −→ H is the trivial projection i. e.

tα = {h1,α, h2,α, ..., hε,α, ...}(1, α),

and γ : πaπ 7−→ aπ where aπ = 1. Then T ′=S(B, d).

By Baer’s Theorem the only normal subgroup of S(B,B+) are the subgroup S(B, C)

where d ≤ C ≤ B+, S(B, d) and Alt(B, d). S(B, d)/A(B, d) ' Z2 and |Z2| = 2.

H contains no element of order 2. So the map γ is the identity map.

4.1 The Splitting of Σn,A(H)

We first consider the special cases.

Case 1: Splitting of Σ3,A(H)

Now we will discuss the splitting for n=3 i.e., H will be an arbitrary group and

alternating monomial group of degree 3.

We already know that Σ3,A(H) = V3A3 and V3 ∩A3 = 1. So, A3 is a complement of

V3 in Σ3,A(H).

Recall that V3 = H × H × H . Let T be an arbitrary complement of V3 in Σ3,A(H).

Then V3T = Σ3,A(H) and V3 ∩ T = 1. Since arbitrary element of Σ3,A(H) can be

written as vs where v ∈ V3 and s ∈ A3. The elements of T will be {1, g, g2}. Let

θ : A3 −→ T be an isomorphism. Let A3 = {1, a, a2}. Since θ(1) = 1, the image of

a will determine the isomorphism. Let

θ(a) = {h1, h2, h3}(1 2 3). Since we will find the complement up to conjugacy we

may take the conjugate of T by multiplication

κ = {k1, k2, k3} ∈ V3. Then κTκ−1 contains the element of the form

{k1, k2, k3}{h1, h2, h3}(1 2 3){k−1
1 , k−1

2 , k−1
3 }
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= {k1h1k
−1
2 , k2h2k

−1
3 , k3h3k

−1
1 }(1 2 3).

Since k1, k2, k3 are arbitrary elements of H we can choose k1 = k as arbitrary. Then

we may choose k2 = kh1, k3 = k2h2 = kh1h2.

It follows that the third component k3h3k
−1
1 = kh1h2h3k

−1. Then we have θ(a) =

{e, e, kh1h2h3k
−1}(1 2 3) = {e, e, b}(1 2 3). Since a has order 3, we have θ(a) has

order 3. Then 1 = θ(a)3 = ({e, e, b}(1 2 3))3 = {e, e, e}. It follows that b=1. Hence

the isomorphism θ will be the identity automorphism and so T = A3. Hence all

complements of V3 will be conjugate to A3 and so Σ3,A(H) splits regularly.

Case 2: Splitting of Σ4,A(H)

Recall that the alternating group A4 has order 12 and consists of even permutations

of symmetric group on 4 letters. The subgroup

κ = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} will be a normal subgroup of A4 which

is isomorphic to elementary Abelian group of order 4 in fact κ ∼= Z2 × Z2. Then

A4 = κ < (1 2 3) >. So A4 is a split extension of κ with a cyclic subgroup of order

3. Since < (1 2 3) > will be a Sylow 3-subgroup ofA4 and by Sylow theorem, all

Sylow 3-subgroups are conjugate. We have all complements of V in A4 are

conjugate. In our terminology, A4 splits regularly over the normal group κ.

Since the only nontrivial normal subgroup of A4 is κ, and any homomorphism θ

from A4 to any other group will be either θ(A4) = 1 trivial homomorphism or

θ(A4) = A4 isomorphism or θ(A4) =< d > where < d > is a cyclic group of order

3. Therefore, in the above cases Ker(θ) = {1} and Ker(θ) = κ.

We will prove the following theorem for this special case.

Theorem 4.1.1. The group Σ4,A(H) splits over the basis group V4
∼= H×H×H×H

with complement A4. Let T ′ be another complement of V4 ∈ Σ4,A(H). Then there

exists a homomorphism φ : A4 −→ H satisfying φ(s) = gs for all s ∈ A4. Then the

isomorphism θ will be θ(s) = {gs}s for all s ∈ A4.

Proof. Let T be a complement of V4 in Σ4,A(H). Then there exists a homomorphism

θ : A4 −→ T . Since by previous pages A4 has an elementary Abelian normal

subgroup κ isomorphic to Z2 × Z2. We will consider the images of κ into T. Since κ
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is generated by σ1 = (1 2)(3 4), σ2 = (1 3)(2 4) and σ3 = (1 4)(2 3) the group T

will have either homomorphic image of κ i.e., θ(κ) ∼= κ or θ(κ) = {e}.

Let θ(σ1) = {h11, h12, h13, h14}(1 2)(3 4)

θ(σ2) = {h21, h22, h23, h24}(1 3)(2 4)

θ(σ3) = {h31, h32, h33, h34}(1 4)(2 3)

As before, since we want to find the complements up to conjugacy we may take the

conjugate of T with a product κ = {k1, k2, k3, k4}. Then

(i) κθ(σ1)κ−1 = {k1, k2, k3, k4}{h11, h12, h13, h14}(1 2)(3 4){k−1
1 , k−1

2 , k−1
3 , k−1

4 } =

{k1h11k
−1
2 , k2h12k

−1
1 , k3h13k

−1
4 , k4h14k

−1
3 }(1 2)(3 4)

(ii) κθ(σ2)κ−1 = {k1, k2, k3, k4}{h21, h22, h23, h24}(1 3)(2 4){k−1
1 , k−1

2 , k−1
3 , k−1

4 } =

{k1h21k
−1
3 , k2h22k

−1
4 , k3h23k

−1
1 , k4h24k

−1
2 }(1 3)(2 4)

(iii)

κθ(σ3)κ−1 = {k1, k2, k3, k4}{h31, h32, h33, h34}(1 4)(2 3){k−1
1 , k−1

2 , k−1
3 , k−1

4 } =

{k1h31k
−1
4 , k2h32k

−1
3 , k3h33k

−1
2 , k4h34k

−1
1 }(1 4)(2 3).

Then again as k1, k2, k3, k4 are arbitrary elements of H, choose k1 = k fixed, then

by (i) and (ii), choose k2 = kh11, then k = k2h12. k4 = k3h13 implies k3 = k4h14.

σ(i) has order 2. So θ(σ1)2 = {h11h12, h12h11, h13h14, h14, h13} = {e, e, e, e}. Then

h12 = h−1
11 and h14 = h−1

13 . Hence θ(σ1) = {h11, h
−1
11 , h13, h

−1
13 }(1 2)(3 4).

θ(σ2)2 = {h21h33, h22h24, h23h21, h24, h22} = {e, e, e, e}. Then h33 = h−1
21 and h24 =

h−1
22 . Then θ(σ2) = {h21, h22, h

−1
21 , h

−1
22 }(1 3)(2 4).

θ(σ3)2 = {h31h34, h32h33, h33h32, h34, h31} = {e, e, e, e}. Then h31 = h−1
34 and h32 =

h−1
33 . Hence θ(σ3) = {h31, h32, h

−1
32 , h

−1
31 }(1 4)(2 3).

Now we use the property that κ is an Abelian group. Therefore θ(κ) is an Abelian

group.

θ(σ1)θ(σ2) = θ(σ1σ2) = θ(σ2σ1) = θ(σ2)θ(σ1) implies that
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{h11, h
−1
11 , h13, h

−1
13 }(1 2)(3 4){h21, h22, h

−1
21 , h

−1
22 }(1 3)(2 4) =

{h11h22, h
−1
11 h21, h13h

−1
22 , h

−1
13 h

−1
21 }(1 4)(2 3) =

{h21, h22, h
−1
21 , h

−1
22 }(1 3)(2 4){h11, h

−1
11 , h13, h

−1
13 }(1 2)(3 4){h11, h

−1
11 , h13, h

−1
13 }(1 2)(3 4)

= {h21h13, h22h
−1
13 , h

−1
21 h11, h

−1
22 h

−1
11 }(1 4)(2 3).

We obtain

(A) h11h22 = h21h13

(B) h−1
11 h21 = h22h

−1
13

(C) h13h
−1
22 = h−1

21 h11

(D) h−1
13 h

−1
21 = h−1

22 h
−1
11 implies that A = D−1 and B = C−1.

Only the following equation remains.

h11h22 = h21h13.

θ(σ2)θ(σ3) = θ(σ3)θ(σ2)

implies that {h21, h22, h
−1
21 , h

−1
22 }(1 3)(2 4){h31, h32, h

−1
32 , h

−1
31 }(1 4)(2 3) =

{h21h
−1
32 , h22h

−1
31 , h

−1
21 h31, h

−1
22 h32}(1 2)(3 4) =

{h31, h32, h
−1
32 , h

−1
31 }(1 4)(2 3){h21, h22, h

−1
21 , h

−1
22 }(1 3)(2 4) =

{h31h
−1
22 , h32h

−1
21 , h

−1
32 h22, h

−1
31 h21}(1 2)(3 4).

We obtain

(A) h21h
−1
32 = h31h

−1
22

(B) h22h
−1
31 = h32h

−1
21

(C) h−1
21 h31 = h−1

32 h22

(D) h−1
22 h32 = h−1

31 h21

implies that A = B−1 and C = D−1.

Only the following equation remain.

h21h
−1
32 = h31h

−1
22
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θ(σ1)θ(σ3) = θ(σ3)θ(σ1)

implies that {h11, h
−1
11 , h13, h

−1
13 }(1 2)(3 4){h31, h32, h

−1
32 , h

−1
31 }(1 4)(2 3) =

{h11h32, h
−1
11 h31, h13h

−1
31 , h

−1
13 h

−1
32 }(1 3)(2 4) =

{h31, h32, h
−1
32 , h

−1
31 }(1 4)(2 3){h11, h

−1
11 , h13, h

−1
13 }(1 2)(3 4) =

{h31h
−1
13 , h32h13, h

−1
32 h

−1
11 , h

−1
31 h11}(1 3)(2 4).

So, we have the following equations

(A) h11h32 = h31h
−1
13

(B) h−1
11 h31 = h32h13

(C) h13h
−1
31 = h−1

32 h
−1
11

(D) h−1
13 h

−1
32 = h−1

31 h11

implies that A = C−1 and B = C−1.

We get only h11h32 = h31h
−1
13 .

Then we use the property

θ(σ1σ2) = θ(σ3), θ(σ2σ3) = θ(σ1), θ(σ1σ3) = θ(σ2). Then

θ(σ1σ2) = {h11h22, h
−1
11 h21, h13h

−1
22 , h

−1
13 h

−1
21 }(1 4)(2 3) =

{h31, h32, h
−1
32 , h

−1
31 }(1 4)(2 3) = θ(σ3)

implies that

h−1
31 = h−1

22 h
−1
11 = h−1

13 h
−1
21 ,

h32 = h−1
11 h21,

h−1
32 = h13h

−1
22 = h−1

21 h11.

θ(σ2σ3) = {h21h
−1
32 , h22h

−1
31 , h

−1
21 h31, h

−1
22 h32}(1 2)(3 4) =

{h11, h
−1
11 , h13, h

−1
13 }(1 2)(3 4) = θ(σ1)
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implies that

h−1
11 = h32h

−1
21 = h22h

−1
31 ,

h13 = h−1
21 h31 = h−1

32 h22.

θ(σ1σ3) = {h11h32, h
−1
11 h31, h13h31−1, h−1

13 h
−1
32 }(1 3)(2 4) =

{h21, h22, h
−1
21 , h

−1
22 }(1 3)(2 4) = θ(σ2)

implies that

h21 = h11h32 = h31h
−1
13 ,

h22 = h−1
11 h31 = h32h13.

Now, we can take conjugate with κ = {k1, k2, k3, k4}. Then we obtain

(i)κθ(σ1)κ−1 = {k1, k2, k3, k4}{h11, h
−1
11 , h13, h

−1
13 }(1 2)(3 4){k−1

1 , k−1
2 , k−1

3 , k−1
4 } =

{k2h
−1
11 k

−1
1 , k1h11k

−1
2 , k4h

−1
13 k

−1
3 , k3h13k

−1
4 }(1 2)(3 4)

(ii)

κθ(σ2)κ−1 = {k1, k2, k3, k4}{h21, h22, h
−1
21 , h

−1
22 }(1 3)(2 4){k−1

1 , k−1
2 , k−1

3 , k−1
4 } =

{k3h
−1
21 k

−1
1 , k4h

−1
22 k

−1
2 , k1h21k

−1
3 , k2h22k

−1
4 }(1 3)(2 4)

(iii)

κθ(σ3)κ−1 = {k1, k2, k3, k4}{h31, h32, h
−1
32 , h

−1
31 }(1 4)(2 3){k−1

1 , k−1
2 , k−1

3 , k−1
4 } =

{k4h
−1
31 k

−1
1 , k3h

−1
32 k

−1
2 , k2h32k

−1
3 , k1h31k

−1
4 }(1 4)(2 3).

Since κ is arbitrary, to do first component of κθ(σi)κ−1, i=1,2,3, is identity we can

choose the proper k1, k2, k3, k4.

Say k1 = k is fixed and

k1h11k
−1
2 = e, k3h

−1
21 k

−1
1 = e, and k4h

−1
31 k

−1
1 = e gives us the following equations.

k2 = kh11,

k3 = kh21,
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k4 = kh31.

Using the equations we found up to now, we get

(i)

κθ(σ1)κ−1 = {kh−1
11 k

−1, kh11h
−1
11 k

−1, kh31h
−1
13 h

−1
21 k

−1, k−1h21k13h
−1
31 }(1 2)(3 4) =

{e, e, e, e}(1 2)(3 4)

(ii) κθ(σ2)κ−1 =

{k−1h21h
−1
21 k

−1, kh31h
−1
22 h

−1
11 k

−1, kh21h
−1
21 k

−1, kh11h22h
−1
31 k

−1}(1 3)(2 4) =

{e, e, e, e}(1 3)(2 4)

(iii) κθ(σ3)κ−1 =

{kh31h
−1
31 k

−1, k−1h21h
−1
32 h

−1
11 k, kh11h32h

−1
21 k

−1, kh31h
−1
31 k

−1}(1 4)(2 3) =

{e, e, e, e}(1 4)(2 3).

As a result, we get that t′ = θ(s) = {e, e, e, e}s = s . It follows that where θ(A4) =

T ′, T ′ is A4.

Case 3: Σn,A(H), n 6= 5

THEOREM 4.1.2. The group Σn,A(H) splits over the basis group, Σn,A(H) = Vn∪T ,

Vn ∩ T = E. The group T is conjugate to some group T ′ obtained as follows. Let

G be a subgroup of H which is the homomorphic image of An−1. Let g4, ..., gn be

generators of G, satisfying the following relations: (i) g3
i = e, i = 4, ..., n,

(ii) (gigj)
2 = e where i 6= j.

Let si = (1 i 2) for i=3,...,n generate the group An. Then the elements of An with the

aid of the isomorphism θ defined by θ(s3) = t′3 = {e, e, e, g4, ..., gn}(1 i 2).

θ(si) = t′i = {e, gi, g2
i , g

2
i g4, ..., g

2
i gi−1, ...g

2
, , g

2
i gi+1, ..., g

2
i gn}(1 i 2) for i=4,...,n.

Proof. The group Σn,A(H) consists of all symmetries where the permutation part is

an element of alternating group An. Again the group H is an arbitrary group as in the

case of Σn(H) complete monomial group. Σn,A(H)= (H × H × ... × H) o An '
H o An. The action of An on the direct product as before permutes the factors. Let

Vn = H ×H × ...×H and An is the alternating group on n letters. So,
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Σn,A(H) = Vn o An i.e. Vn ∩ An = 1

Vn.An = Σn,A(H) so Σn,A(H) splits over Vn.

In this section we will consider the splitting problem of Σn,A(H). Since Σn,A(H) =

Vn.An for any element g∈ Σn,A(H), we have (Vn.An)g = V g
n .A

g
n = Vn.A

g
n, and

so when An is a complement of Vn, then any conjugate of An namely Agn is also a

complement of Vn. But there are cases that there might be other complements T of

Vn i. e. Vn.T = Σn,A(H) and Vn∩T=1 but T may not be a conjugate of An. (It

is clear that Vn.T = Vn.An and Vn.T/Vn = Vn.An/Vn ' An/An ∩ Vn ' An, and

Vn.T/Vn ' T/Vn ∩ T ' T . ) Hence every complement is isomorphic to alternating

group An. But we are interested in when T and An are conjugate If all complements

of Vn are conjugate, then we say that Σn,A(H) splits regularly.

Assume that T is a complement of Vn. Then by above, T is isomorphic to

An . Moreover, as Σn,A(H) = Vn.T the isomorphism

θ : An −→ T

can be written in the form that θ(a) = vaa where va ∈ Vn, a ∈ An. The natural

isomorphism. (Every such isomorphism should be natural isomorphism. )

Claim: For i 6= j, 1 6= i, 1 6= j the elements (1 i 2) generate the alternating group An

where i=3, . . . , n.

By taking conjugate of (1 i 2) with (1 j 2) we have

(1 i 2)(1 j 2) = (j i 1) = (1 j i).

So we may obtain all 3-cycles of the form (1 i j) where i 6= j.

(1 k j)(1 2 i)= (k i j) so we may obtain all 3-cycles of the form (i j k). Hence the group

An =< (1 i 2) | i = 3, ..., n >.

Let si=(1 i 2). Since An is generated by si, then T is generated by θ(si). Then

θ(si) = ti ∈ T and ti = sivi where ti = {h1i, h2i, ..., hni}(1 i 2) where i=3, . . , n. So

we have t3, t4, t5, ..., tn i. e. we have n-2 ti’s.
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Since we want to find the complement T up to conjugacy we may take conjugate of

all ti with a fixed product v = {k1, k2, ..., kn}.

t′i = vtiv
−1 = {k1, k2, ..., kn}{h1i, h2i, ..., hni}(1 i 2){k−1

1 , k−1
2 , ..., k−1

n }

= {k1h1ik
−1
i , k2h2ik

−1
1 , ..., kihiik

−1
2 , ..., kjhjik

−1
j , ...}(1 i 2)

Since we want to find complement T of Vn up to conjugacy and k′is are arbitrary, we

may substitute k′is. So, let k1 be arbitrary fixed element in H. Choose ki = k1h1i for

i=3, . . , n.

Choose k2 = k1h23. Then T ′=vTv−1 contains t′3 = {e, e, g33, ..., gn3}(132) t′i =

{e, g2i, ..., gni}(1 i 2) for i=4, . . . , n. So, for i=3 and k1 = k be an arbitrary

k2h23k
−1
1 = e. We can solve k2 as k2 = k1h

−1
23 . Hence from the 1st component

k1h13k
−1
3 =e then k3 = k1h13 .

t′3 = {e, e, g33, ..., gn3}(1 3 2)

Now, for i≥ 4 we have,

t′i = {e, g2i, ..., gni}(1 i 2) where i=4, . . . , n , and gni = knhnik
−1
n

Since si=(1 i 2) is a 3-cycle, s3
i=1 . Then ti = θ(si)

3 = 1.

Consider sisj=(1 i 2)(1 j 2)=(1 i)(2 j) where i 6= j. Then (sisj)
2 = 1.

(t′i)
3 = {giig2i, g2igii, ..., giig2igii, ..., g

3
ji, ...}

(t′it
′
j)

2 = {gijgiig2j, g2igjigjj, ..., giig2jgij, ..., gjigjjg2i, ..., (gkigkj)
2}

Recall, we have the isomorphism *: Sn −→ T ′ such that ∗(si) = t′i Here, we have a

3-cycle for all t′i where i =3, . . . , n for obtaining alternating group An. So where

∗(si) = t′i, |si| = |t′i| since * is an isomorphism. Therefore, (t′i)
3 = E . If we look at

the order of (t′it
′
j) we should think order of (sisj).

(sisj)=(1 i 2)(1 j 2)=(1 i)(2 j). We see |sisj|=2. So, |(t′it′j)|=2. We get (t′it
′
j)

2 = E

where E is the identity of T ′.

We have from above calculation (t′i)
3 = {giig2i, g2igii, ..., giig2igii, ..., g

3
ji, ...} implies

that giig2i = e and gijgiig2j = e where i 6= jand i, j∈ {3, 4, ..., n}
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Noting that g1i = e = g1j = e = g23 = e , and writing gi for g2i we have gi = g2i =

g−1
ii and g33 = g3 = e since g−1

33 = g23 = e.

Also, gij = (giig2j)
−1 = g−1

2j g
−1
ii = g−1

j gi = g−1
ji

gi3giig23=e implies that gi3 = g−1
ii = gi = g−1

3i as gij = g−1
ji .

If we use these equations then t′i will have the form

t′i = {e, gi, g−1
i , g−1

i , g4, ..., g
−1
i gn}.

If k > 2 where k 6= j, k 6= i in (t′i)
3 and (t′it

′
j)

2 the kth factor will satisfy g3
ki

=

(g−1
i gk)

3 = e, (gkigkj)
2 = e.

For k=3, we found g3
i = (gigj)

2 = e.

So, the elements gi where i=3,...,n generate a homomorphic group to An−1.

The first, second and the ith factors of (t′i)
3areg3

i , g3
i , g3

i , respectively, and the first,

second, ith and the jth factors of (t′it
′
j)

2 are g2
j gig

2
i gj , gig

2
i gjg

2
j , g2

i gjg
2
j gi, g

2
i gjg

2
i gi,

respectively.

Those above factors are e. If k > 2, thekth factors of (t′i)
3 and (t′it

′
j)

2 are (g2
i gk)

3,

(g2
i gkg

2
j gk)

2 where k 6= i and k 6= j, respectively. These factors also e.

Therefore there is n-2 elements in the generating set of the group which is

homomorphic image of An. Permutation part of T ′ is in An. So T ′ is isomorphic to

An.

We found that T ∼= An, V ∩ T ′ = E. Moreover, if y is in Σn,A(H), then

y = vv−1
1 v1s = v2t where θ(s) = v1s. Hence, Σn,A(H) = Vn ∪ T.

THEOREM 4.1.3. The group Σn,A(H) splits regularly over the basis group if and only

if H contains no non-trivial subgroup which is homomorphic image of An−1.

Proof. Assume that H contains no non-trivial subgroup which is isomorphic image

of An−1. Then the complement T ′ obtained as in Theorem 4.1.2 is simply An.

Hence splitting is regular over the basis group.
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Conversely, if the group Σn,A(H) splits regularly, then by taking the conjugate of T ′

with an elementv ∈ Vn. Where v = {k1, k2, ...}, we obtain

vt′3v
−1 = {k1k

−1
3 , k2k

−1
1 , k3k

−1
2 , ..., kngnk

−1
n }(1 3 2). This element is a permutation

means that kigik−1
i = e for all i=4,...,n. By multiplying from left by k−1

i and from

right by ki we obtain gi = e for all i=4,...,n. It follows that the image G = {e}.

COROLLARY 4.1.4. The group Σn,A(H) for n=4,5 splits regularly over the basis

group if and only if H contains no element of order 3.

Proof. For n=4, the group H contains an isomorphic copy of An−1 = A3. But there

exists no element of order 3 in H implies that G = {e}. Then the epimorphism

between An−1 and the group G in H will be trivial projection and T ′ will be A3.

Conversely, if the splitting is regular, then T ′ will be conjugate of A4. Then the

multiplication part of the complement is trivial. Hence G contains no element of

order 3.

For Σ5,A(H), An−1 = A4 and the epimorphism φ : A4 −→ G, G is a subgroup of H

we can say that all 3-cycles will go to identity. But in the elementary Abelian group K

in A4 all elements will be product of two 3 cycles and the homomorphism φ will send

all elements of A4 into identity. Hence G = {e} and the splitting will be regular.

Theorem 4.1.3 implies for n ≥ 6, the following corollary.

COROLLARY 4.1.5. Let n ≥ 6. The group Σn,A(H) splits regularly over the basis

group if and only if H contains no subgroup isomorphic to An−1.

4.2 Splitting of ΣA(H;B,B+, d)

Now we go back to infinite case and discuss the splitting of ΣA(H;B,B+, d) over

the base group V (B,B+).
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In order to be able to talk about infinite alternating groups, each element must have a

finite support and so we can talk the permutation is odd or even. For this reason for

the splitting ΣA(H;B,B+, d) we lie inside finitary symmetric group and hence even

permutations are in finitary symmetric group.

In the proof of the Theorem 4.1.2, we discuss the isomorphism between S(B,C) and

S1(B,C) when C is an infinite cardinal.

The same proof will work for infinite alternating groups namely if B is infinite

cardinal then A(B, d) ∼= A1(B, d) where A1(B, d) is the alternating group on the set

B \ {1}.

By using the similar technique for the infinite case one can prove the following

theorem.

Theorem 4.2.1. The complete alternating group ΣA(H;B,B+, d) splits over the

basis group V (B,B+).

Proof. Two conjugate complements T and T ′ may be obtained by the following

method.

Let G be a subgroup of H obtained as a homomorphic image of A(B,d). Let g4, ..., gε

be generators of the group G with the following relations

(a) g2
ε = e, and

(b) (gεgδ)
2 = e for ε 6=.

We choose as generators of A(B,d) the three cycles sα = (1 α 2) where α=3,4,...

Then the elements of the complement T ′ are obtained by the isomorphism θ where

θ(s3) = t′3 = {e, e, e, g4, ..., gε, ...}(1 3 2)

θ(sα) = t′3 = {e, gα, g2
α, gαg4, ..., gε

2, gαgε}(1 α 2)

Theorem 4.2.2. The group ΣA(H;B,B+, d) splits regularly over the basis group

V (B,B+) if and only if the group H does not contain a subgroup isomorphic to the

alternating group A(B,d).
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Proof. It is well known that infinite alternating groups are simple. See also [4].

By theorem, there exists a homomorphism φ : A(B, d) −→ T . Since A(B,d) is simple

we have two cases; φ(B, d) ∼= A(B, d) i.e., Kerφ = {1} or Kerφ = A(B, d).

Case 1: If Kerφ = {1}, then φ(A(B, d)) is a subgroup of H isomorphic to A(B,d).

But by assumption H does not contain any subgroup isomorphic to A(B,d). Hence

this case is impossible.So, the second case happens.

Case 2: In this case Kerφ = A(B, d), and it follows that φ(A(B, d)) = {1} i.e.,

Kerφ = A(B, d). Hence, φ is the identity map in this case and so ΣA(H;B,B+, d)

splits regularly.

Conversely, assume that the complete alternating monomial group splits regularly

over the basis group V (B,B+). Then by a conjugate of an element of

ΣA(H;B,B+, d), the complement T may be transformed to A(B,d). But as in the

case of finite case, this implies that the subgroup G in H which is the homomorphic

image of A(B,d) will be the identity group i.e., G = {e}. So, H contains no

subgroup isomorphic to A(B,d).

COROLLARY 4.2.3. For a given group H, there exists a complete monomial

alternating group ΣA(H;B,B+, d) such that the splitting of the monomial group

over the basis group is regular.

Proof. If we choose the cardinal B such that the order of A(B,d)=B is strictly greater

than the order of H, then by the above Theorem 4.2.2), the isomorphism

φ : A(B, d) −→ H must be an epimorphism i.e., φ(A(B, d)) = {1}. Because in the

other case as A(B,d) is simple, φ must be one to one and hence H must contain an

isomorphic copy of A(B,d) which is impossible by the order of H, namely

|H| � B = |A(B, d)|.
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