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ABSTRACT

MONOMIAL GROUPS

Almas, Ozge
M.S., Department of Mathematics
Supervisor : Prof. Dr. Mahmut Kuzucuoglu

Co-Supervisor : Assoc. Prof. Dr. Ebru Solak

August 2017, [65] pages

A group G is called a permutation group if it is a subgroup of a symmetric group on
a set €). G is called a linear group if it is a subgroup of the general linear group GL(n,
F) for a field F.

Monomial groups are generalization of permutation groups and restriction of linear
groups. In matrix terminology, monomial groups of degree n over a group H are
the nx n invertible matrices in which each row and each column contains only one
element of H all the other entries are zero.

Basic properties of finite degree monomial groups are studied by Ore in [2]. Infinite
degree monomial groups over an arbitrary group H is studied by Crouch in [[1]]. This
thesis is a survey of the Crouch paper, in particular we will give a complete
classification of the structure of centralizers of arbitrary elements in complete
monomial groups X (H;B,B",B") and conjugacy of the elements in
Y(H;B,B*",B™").

Keywords: Monomial groups, Infinite permutation groups, Centralizer of monomial
elements, Splitting of monomial groups
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MONOMIAL GRUPLAR

Almas, Ozge
Yiiksek Lisans, Matematik Bolimi

Tez Yoneticisi : Prof. Dr. Mahmut Kuzucuoglu

Ortak Tez Yoneticisi : Dog. Dr. Ebru Solak

Agustos 2017 ,[65]sayfa

Bir (2 kiimesi tizerindeki simetrik gruplarin altgruplarina permiitasyon gruplari denir.
F bir cisim olmak iizere genel lineer grup GL(n, F)’nin altgruplarina lineer grup
denir. Monomial gruplar ise permiitasyon gruplarin genellestirmesi lineer gruplarin
da kisitlamasidir. Bir H grubu iizerinde tanimli n dereceli monomial gruplar her
satirinda ve her siitununda H’den sadece bir eleman iceren, diger tiim girdileri O olan
tersinir matrislerdir. Sonlu dereceli monomial gruplarin temel ozellikleri Ore [2]
tarafindan arastirilmistir . Herhangi bir H grubu {izerinde tanimli, sonsuz dereceli
monomial gruplarla ilgili calismalar da Crouch [1] tarafindan yapilmistir . Bu tez,
Crouch’un [[1] makalesinin bir incelemesidir. Bu tezde 06zellikle tam monomial
gruplarin elemanlarinin merkezleyenlerinin yapisinin tam olarak siniflandirilmasi ve
Y.(H; B, B, B") grubunun i¢indeki herhangi iki elemanin egleniginin bulunmasi
gosterilmistir .

Anahtar Kelimeler: Monomial gruplar, Sonsuz permiitasyon gruplari, Monomial
elemanlarin merkezleyenleri, Monomial gruplarda ayrisma
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CHAPTER 1

INTRODUCTION

Mainly there are three kinds of representations of groups; permutation representation,

linear representation, and monomial representation.

Permutation representation is a homomorphism from the group into symmetric
group, linear representation is a homomorphism from group into the group of

invertible linear transformations of a vector space over a field F.

Monomial representation is a generalization of permutation representation and
restriction of linear representation. If V is a finite dimensional vector space, say
dimV=n over a field F, then GL(V) is isomorphic to the general linear group

GL(n,F), nx n invertible matrices over a field F.

A monomial matrix is an invertible n X n matrix where each row and each column

contains only one nonzero entry and this entry comes from a fixed group H.

If G is a group with a subgroup H of index n, then G has a monomial representation

of degree n over the subgroup H.

Therefore, the study of monomial groups is the study of the structure of groups which

has a subgroup of finite index.

In fact, the famous Kaluznin - Krasner Theorem which states that, if a group G has a
non-trivial subgroup H, then G can be embedded into a monomial group over H, but
the degree could be infinite. In this respect study of monomial groups is the study of

group extensions.



The basic properties of monomial groups of finite degree are studied by Kerber [3],
and Ore [2]]. In particular, Ore determined conjugacy of the two elements in complete
monomial group. Moreover, he finds the structure of a centralizer of an element in

complete monomial groups.
The work of Ore is extended to infinite degree monomial groups by R. B. Crouch [1].

Crouch defines monomial groups (symmetries) of arbitrary degree, over an arbitrary

group H in the following way.

Let B be an infinite cardinality, and U be a set with cardinality B. We think of U as an

ordered set. By B™ we denote the successor cardinal of B.
Let d be the cardinality of natural numbers, i.e., d = Ny3. A monomial substitution
over H is a transformation of the form

. e '-,'Ue IR
c= (1.1)
hexié

where the map z. — x;_is a permutation of the set U, and h, € H. The product

h.x;, is a formal product satistying h.(hgz;) = (hehg)x;, where x; € U.

The set of all monomial substitutions Y (H; B, BT, B") forms a group with

composition of substitutions.

In the first part of this thesis, we find the structure of the centralizer of an arbitrary
element in X(H; B, BT, B"). Namely we prove the following theorem:
Let y be conjugate to y; written in the normal form y; = H 0;, 0; = H 6, where

for a fixed i the & are the normalized cycles of the same length n, and the same
determinant class a if n < d. Let € run over a set of cardinal g where 0 < p < B.
Then the centralizer Cy, (g, B+, B+)(y) is isomorphic to the strong direct product of

symmetries

CE(H;B,B+,B+)(y) = H(E(C(H(a) < d >7:u17:uj_7,uj_)) X ZH(H X Za R, /i+7 l{+)'

The group C'y(a) < & > consists of all elements y; of the form y; = {k;}(c})? where
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k belongs to the centralizer of a in H. The second direct product arises if ¢ is a product

of x infinite cycles where x < B.

Let G be a group and N be a normal subgroup of G. If there exists a subgroup
H < G such that G=NH and N N H = 1, then we say that G splits over N and H is
called complement of N in G. Clearly if H is a complement of N, then all conjugates
HY9, g € G are also complement of N in G. It is a natural question whether all
complements of N are conjugate in G, i.e., if G=NT and N NT" = 1 does there exist
x € G, such that 7" = HY. If all complements of N are conjugate, then we say that G
splits regularly. Observe that if G has two complements H; and H, then G = N H,
and G = NH,, where HH " N = 1 and Hb, " N = 1. It follows that
G/N = HNN = H/H N N = H;, on the other hand
G/N = HyN/N = Hy/Hy N N = H,. Hence any two complements of N are
isomorphic. So we are interested in when they are conjugate. Indeed in the
following example we have a group G with a normal subgroup N such that it has two

non-conjugate complements. So the above problem makes sense.

Example:
Let G = Sg. We know that Ag is a normal subgroup of Sg. Let 77 =< (1,2) >. T}
is a subgroup of G where G = AgT} and Ag N1} = 1. So 77 is a complement of Ag.
Assume T =< (1,2),(3,4),(5,6) > . T3 is also a subgroup of G. Moreover,
G = AgTs and Ag N1, = 1. But T} and 7T are not conjugate. So, Sg does not split
regularly.

As the following simple observation shows, if a group G has normal subgroup N,
then it may not split. Indeed G = (s quaternion group of order 8.
Qs = {1,4,4,k,—1,—i,—7, —k}. All subgroups of Qg are normal subgroup. Indeed
the subgroups < i >, < j >, < k > are cyclic subgroups of order 4 and {1, —1} is
the center of (Js. But the subgroup < ¢ ><1 (g does not split, because there exists no
non-trivial subgroup H such that < ¢ > NH = 1. Because all non-trivial subgroups

of Qs contain the center Z(Qs) = {1, —1}.

If we come back to monomial groups over H, X(H; B, Bt C) splits over the base



group V (B, B") and S(B,C) is a complement of V(B, B") in ©¥(H; B, B™,C).

In chapter 4, we will discuss the splitting of ¥(H; B, B, ') and regularity of this
splitting. We prove the following:

A necessary and sufficient condition for X(H; B, BT, (') where d* < C' < BT to
split regularly over the basis group is that H contains no subgroup isomorphic to

S(B,C).

An immediate corollary of this result is that ¥(H; B, B™, C') to split regularly over

the basis group if and only if H contains no element of order 2.

In the last section we discuss the splitting of alternating groups over the basis group.
This discussion is separated into two cases, namely splitting of monomial alternating
groups of finite degree n, i.e., ¥, 4(H) and splitting of monomial alternating groups
of infinite degree B where B is an infinite cardinal number. The main difference
between the splitting if complete monomial group and monomial alternating group is

the following:

In the former one symmetric group S, is generated by permutations of the form (1 )
where i=2,..,n and we study the images of these elements and in the latter one.
Alternating groups are generated by permutations of type (i j k) where i, j, k are
pairwise distinct elements of {1,2 ..., n}. Therefore we study the images of

elements of this type.

The examples are given by X3 4(H) as a special case and in this case the splitting of
Y5 4(H) over the basis group is always regular. The second example of the splitting
is X4 4(H) over the basis group is also given. When n=4, A, has a proper normal
subgroup is isomorphic to elementary abelian 2-group of order 4. The image of this
subgroup into H is studied and for 3, 4(H), we show that there are two types of
complement; one comes from the conjugates of S,, and the other complements arises
from the homomorphic images of A, into a cyclic subgroup of order 3 of H. In
particular, if H has no subgroup of order 3, then all complements of 3, 4(H) over
the basis group are conjugate i.e., ¥4 4(H) splits regularly over the basis group
Vi(H). For the general case we show that, ,, 4(H) splits over the basis group and

¥, 4(H) splits regularly over the basis group if and only if H does not contain any



subgroup isomorphic to A,,_, forn > 6.

The splitting of infinite alternating groups is studied with a similar technique and we
prove that X 4(H; B, BT, d) split regularly over the basis group if and only if H does

not have any subgroup isomorphic to A(B,d).






CHAPTER 2

THE SYMMETRIES

In this section we define symmetries not only on the finite sets as in the case of Ore

[2], but also on the sets arbitrarily large. The group H will be arbitrary.

Let d be the cardinal of the set of integers, i.e., d=N,, B be any infinite cardinal; BY,

the successor of B, U is a set with the cardinal B, and let C be a cardinal such that

dsC < B'.

Definition 2.0.1. The set of all permutations s of the set U onto itself is a group. It is

denoted by S(B, BT), and is called the infinite symmetric group on the set U.

Let s € S(B, BT). For s, we define support of s. Namely

supp(s) = {x; € Uls(z;) # ;}

By |supp(s)| we define the cardinality of the set supp(s).

Now, we define the subgroup S(B, C) of the group S(B, BT):

S(B,C) ={c € S(B,B") :|supp(c)| < C}.
LEMMA 2.0.2. The set S(B, C) is a subgroup of S(B, B™).

Proof. Let 01,09 € S(B,C). Then, |supp(o1)| < C and |supp(oz)| < C. If

supp(o; )| =|supp(o1)| < C.

|supp(a1)| < C, since supp(cy) = supp(o; ),

7



So, 0y € S(B,0).
Claim: supp(ci09) C supp(oy) U supp(os).

Assume a€supp(oy07). Then a-0102# a. Let a¢supp(oz). If a¢ supp(os), then we
show that ac supp(oy).

Since a¢supp(oy), a-09=a, and a-0,05 # a. It follows that a-01# a. So, acsupp(o).

Therefore, supp(c102)C supp(c1)U supp(o2). Since C is infinite,

|supp(o1) U supp(oz)| < {[supp(o1)| + |supp(o2)|} =
mazx{[supp(o1)|, [supp(c2)|} < C

This implies |supp(oy102)| < C. So, 0109 € S(B,C).

Thus, S(B, C) is a subgroup of S(B, B™). O

Definition 2.0.3. If the number of x moved by s is finite, then the group S(B,d) is
called finitary symmetric group where supp(s) = {x; € Uls(x;) # x;}. We denote

this set as

FSym(U) = {s € S(B,B")) : |supp(c)| < oo}

Definition 2.0.4. Here we put the constraint that the number of moving elements of
U by s € A(B, d), is less than the cardinality of natural numbers. Since we mention
alternating groups we should have evenly many transpositions. So, to define evenly
many transpositions, the largest cardinality of supp(s) should be finite, and so this s
comes from S(B,d). The group A(B, d) has elements s’s where those s’s comes from
S(B,d) and each of which have evenly many transpositions. The group A(B,d) is called

the infinite alternating group on the set U.

In S(B, B™) every element s determines a set of cycles of the form

8



Ty T - Tp—1 Tnp

o T3 - Tp T

or

xil xo xl ...
<. . $_1 IO xl .. .> .
o T1 T2

By well-ordering principle, every set can be well- ordered. Therefore, every

permutation or cycle as in the above notation is meaningful.

LEMMA 2.0.5. Every permutation s € S(B, B") can be written as a disjoint product

of commutative cycles of finite length or infinite cycles.

Proof. Let U be the set as above and o € S(B, BT). So, U be a set of cardinality B.
Define a relation on U. Two elements z;, ; € U are related z; ~ x; if and only if

there exists n € Z such that 0" (x;) = ;.
Claim: ” ~ 7 is an equivalence relation on U.
(l) T; ~ I; as UO = id and Zd(l’l) = UO(.Z‘Z') = Z;.

(ii) z; ~ x; implies that there exists n € Z such that ™(z;) = ;. Then (o~ 1)"(x;) =

o ™(z;) = ;. So,x; ~ x; a8 —n € Z.

(iii) Assume that x; ~ x; and z; ~ xy, {2, z;, 2} C U. Then there exists n and m

in Z such that 0™(x;) = x;, and 0™ (x;) = wy. It follows that
o™t (x;) = o™ (0"(x;)) = 0™ (x;) = xk, n + m € Z. Hence, z; ~ xy.
Consequently, ~ is an equivalence relation.

The equivalence class containing an element x; &€ U is of the form
{.,07%(x;), 07 (x;), @i, 0(;), 0%(x;), ...}. If this set is finite, then there exists

n € N such that 0" (x;) = x;. Then, we have a finite cycle of the form

(z5,0(2;), ..., 0" ()



If the equivalence class containing x; is an infinite set, then we have an infinite cycle

of the form

(s 2(23), 0 (20), 24, 0(23), 02(2), .., 0

This type of cycles are called infinite cycles.

Since ” ~ 7 is an equivalence relation, the equivalence classes are disjoint, and union
of equivalence classes is the set U. Hence, every element of U is contained in a cycle,
and one may observe that disjoint cycles commute. Hence, every permutation o can
be written in a unique way as a product of disjoint cycles of length finite or infinite

up to order. [
Definition 2.0.6. A cycle with n distinct x’s is called an n- cycle; n =1, 2, . . . k.
Definition 2.0.7. A monomial substitution over H is a transformation of the form

I

y= (2.1)
R

where the mapping x; — x;, is a one to one mapping of U onto itself and h; belongs

to H. The h; will be called factors of y.

If y is given by equation ([2.1) and v, is given by

DY 'T PR
" = l : (2.2)
TR T TREE
then the product yy, is defined by
... ‘rl .o ..
Yy = : (2.3)
o kg,
The inverse of y is
PR l’z ...
y = ) : (2.4)
e bt e

10



The identity element will be

“ . "Ijl ..
E= : (2.5)
« .. exl ..

Definition 2.0.8. By above multiplication, the set of monomial substitution is a group,
that will be denoted by >(H; B, BT, BY) , and called the monomial group of H of
degree B or, more simply, the symmetry of H.

If H consists only of the identity element, then ¥.(H; B, B, B™) is the symmetric
group S(B, BT).

Definition 2.0.9. A permutation in X(H; B, B, B") is a substitution of the form

[ S . ) 26

LEMMA 2.0.10. The set of permutations forms a subgroup of ¥>(H; B, BT, B*) and

it is denoted by S(B,B%). We call this subgroup as permutation subgroup of
S(H; B, B, B*).

Proof. : Leta, B € S(B, B"), where

« e ‘/‘U€ « e
o= (2.7)
exlg Y
Te _1 .Z'je
p= and ' = , (2.8)
ex;, €T,
.« o . l‘e P
aff = (2.9)
.« e . 6'1/‘]16 e



This product is in S(B,B™"). Therefore, S(B,B') is a subgroup of
S(H; B, B+, B"). 0

Definition 2.0.11. A multiplication in ¥(H; B, BT, B") is a substitution of the form

o= T T = k) 2.10)

hex.

LEMMA 2.0.12. The set of multiplications forms a normal subgroup of
Y(H;B,B*",B"), denoted by V(B,B"), and it is called the basis group of
Y(H;B,B*",B").

Proof. Letk,a € V(B,B%),and 0 € X.(H; B, BT, BT) where

[ - o
oo heme -
.. ‘/1;6 IR
o= (2.12)
R B R
. e :EE . e
0= . (2.13)
oo kexy, -
(1) Since
_1 .. xE . e
K= , (2.14)
o o he_la;e o o
clearly k'€ V(B, B™).
(i1) The composition of x and o will be
.. xe ...
Ko = (2.15)
R O J

So, the composition belongs to the basis group V' (B, B).
Thus, V(B, B*) is a subgroup of X(H; B, B*, BY).

12



Moreover,

0~ 'kb = ‘ (2.16)

k- thekex;,
So, this product is also in the basis group. Therefore, V' (B, B™) is a normal subgroup
inX(H;B,B",B"). O

LEMMA 2.0.13. The basis group is isomorphic to the Cartesian product of B groups,

each of which is isomorphic to H.

Proof. Letv € V(B,B"),v = {hy, hy, ...}

Assume

0:V(B,BY) — [[H

UV (hl, h,g, )

e # is a homomorphism:

Let vy, vy € V(B, BT), where

vy = {hy, hs, ...} and

vo = {ki1, ko, ...}, hi, ki € H.

0(v1v9) = (hiky, hoks, ...) = 0(v1)0(vy).
So, 6 is a homomorphism.

e () is one to one:

Kerf = {U S V(B, B+)|9(U) = idH(H)}
={v e V(B,B")|(h,hs,..) = (ex,em,...)}
Then h; = ey fori=1, 2, . ..
So, 60 is one to one.

13



e f is onto:

For any element (hy, ho, ...) € [[ H, there exists a v € V(B, B") such that
v ={hy, hs,...}.

So @ is onto.

Consequently, # is an isomorphism, and the basis group is isomorphic to H x H X

... X H x ... where the number of H is B many.

]

Definition 2.0.14. A scalar in X(H; B, B, B") is a multiplication with each factor

is the same. Scalars are of the form {. . ., h, h, . . . } and are denoted by v={h).

LEMMA 2.0.15. Scalars are the only elements that commute with permutations.

Proof. Let s be an arbitrary element of S(B, BT). It is of the form

x x PR :L‘ “ ..
s= " 77 g . 2.17)

Lj

Lety € X.(H; B, B*, BT) be arbitrary.

xl x2 o e :L’t .o ..
Yy = . (2.18)

hix;,  hoxiy, -+ hywy, ---

If ys=sy, then
:L‘ ZL‘ PR :L’ “ e :L’ l‘ ) a’/‘
ys — 1 2 t 1 2 k (2.19)
hlxil h2$i2 s ]’Ltl’,‘t s (L’jl mjz e .Ijk

a’;’ l’ .« .. ZL" “ ..
— ! 2 ! , (2.20)

by, howj, - Mg, -

and

14



T X9 e Tp
SY =

J1 J2 Ljy,

1

hjla:ijl

ys=sy implies that

h’j1 — hl
th — hg
h'jt = hy
and

xln xjil
erJ2 [L‘in
xijk - xjik
means that

X2

hj2 Iij2

x

h1$¢1

X2

h2$i2

Ty

hjkﬁijk

This shows that scalars commute with all permutations.

Ty

htxit

(2.21)

(2.22)

Now, assume ys=sy for all s € S(B, B*). We should show y is a scalar. Let h,, h,

be arbitrary factors of y which occur position a, and position b, respectively.

15



Consider y(z,,xp) and (x,,2p)y. Since y commutes with all permutations,

Y(Ta, ) = (T4, xp)y. If we calculate y(z,, xp) and (4, p)y, we get

e :Ea P Z'Eb .« e .
Y(xq, p) = (2.23)
. hozy - hyts
o« e l’a P :L’b .« e .
(Ta, 1)y = . (2.24)
hbxb o haxa

As a result, we see that h, = hy for arbitrary a and b. Thus, in y all factors are the

same.

Now, consider y(z;,_, z,) where i, # a. By equation (2.18]) we see that with y, z. goes
to z;_. Assume also i # €. If we calculate y(x;_, z,) and (x;_, z,)y we should get the

same result, since y commutes with all permutation.

y(wi,z) = | hxf o (2.25)
: ela

(xié’xa)y _ e hﬁCG e (226)
) ela

Here since x, = z;, we get a contradiction.

Therefore, y is a scalar.

Consequently, we get that scalars are the only elements commute with permutations.
[

LEMMA 2.0.16. The center Z(X(H; B, BY, B")) of X(H; B, B", BY) is the set of
all scalars v={k} where k belongs to the center of H, and Z(X%(H; B, B™,B™)) is

isomorphic to the center of H.

Proof. By Lemma [2.0.15] scalars are the only elements that commute with

permutations, and permutations are contained in X(H; B, BT, BT). The elements of

16



Z(3(H; B, BT, B1)) are contained in scalars.

Moreover, m{hy, ha, ...} = {hq, ho,...}mwhere m = {m,m, ...} implies that mh; =

h;m forall h; € H.

Hence, m € Z(H).
v:Z(%(H;B,B",B")) — Z(H)
v=Ak}—k

Let vy = {ky, ...}, and vy = {ko, ...}.

e  is a homomorphism:

P(vi1v2) = kiks = p(v1)p(v2).
So ¢ is a homomorphism.

e (» is a one to one:

Kerp ={ve Z(X(H;B,B",B"))|¢(v) =1} ={1,1,....}.
So ¢ is one to one.
® ( is a onto:
For any k € Z(H), there exists v € Z(X(H; B, BT, B")) such that
v=A{kk,..}.
Thus, ¢ is onto.
Hence ¢ is an isomorphism.
]

Definition 2.0.17. A group G splits over a normal subgroup N if there exists a
subgroup M of G such that G=(M, N)=MN , N N M=E.

The group M may be replaced by any of its conjugates and the relations will still hold.
Indeed, for any element g € G, we have G9 = (NT')9 = N9T9 since N is normal we

obtain N9 = N. Hence, T which is conjugate of T is also a complement of N in G.

17



Therefore, all conjugates of T will be a complement of N in G. But for every subgroup
T such that G=(N,T), NN T=E it follows that T is conjugate to M, then we say that
G splits regularly over N.

LEMMA 2.0.18. Any substitution y of X(H;B,B",B") can be written as a

multiplication multiplied by a permutation uniquely.

Proof. Let

Ta-1 Lo Tot1:

y = , (2.27)
: ha-1Ti,_y  hawi, ha+1xia+1

andy € X(H; B, Bt, B"). Then y=vs where v={. . . , hq_1, ha» has1, . . . } and

Ta—1 Ta Ta+1-":

s=1| , (2.28)

Tig_1 ZLig Ligg1

Ta-1 Lo Ta41:':

Yy = {...,ha_l,ha,ha+1,...} (229)
Lio1 Tie  Tigyr
So y can be written as a product of a permutation and a multiplication.
Assume that there exist
. .. 1’ _1 a’;’ a’/’ 1 DY
s = oo T e (2.30)
Tja—1 Tja  Tjara '

a permutation and v' = {..., kq_1, ko, kat1, ...} @ multiplication such that y = v's’.

Then

To—1 Lo Loyl

s = (2.31)

koa—12j,  ka%j, Kat1Zj,,,

_ o .. xafl xa anrl DR (2 32)

ho1Ti,_,  hawi, ha+1xia+1

If we look at V(B, BY) N S(B, B*);
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v=s implies

Tao-1 Lo Loyl vt Ta-1 Ta Tat1c

kaflxafl kaxa ka+1xa+1 T T Ty Ljot1

Then, z;, = 71

I'Z‘t = T¢.
So, i, =t forany t=1,2,...and h; = e.
This implies
V(B,BYYnS(B,B") = E.
Then vs = v's’ implies (v')"'v = s's™! € V(B, BT)NS(B, BT) = E. Hence, v=v’

and s=s’.

So, this multiplication is unique. [

Thus,

S(H:B,B*,B*) =< S(B,B"),V(B,B") > .

Let B, C, D be infinite cardinal such that
d<C < BT,

d<DZ< B*.

Let X.(H; B,C, D) be the set of all y=vs where veV (B, B"), s€S(B,B*t) and v

has less than C non identity factors, s moves less than D of the x’s. Then we get the
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following Lemma.

LEMMA 2.0.19. X(H; B,C, D) is a subgroup of ¥.(H; B, B*, BT).

Proof. Letyy, ys € X(H; B,C, D) where y;=v;s; and ya=v252. We know that vy, v,

have less than C non identity factors; and

)

|supp(s1)|, [supp(s2)|<D

i)y 'eX(H; B,C, D):

1 -1 —1_ =1 —1. —1_ ( —1\sg.—1
Yy =s; vy =sp v s18] = (v )%s)

Since s; moves only the components of v; according to the action of s; on the set
U, we have in the elements (v;*)*! the elements of v; ' permuted with respect to the

action of s;. Hence the cardinality of moved elements will not increase. On the other

hand, supp(s1) = supp(s;?).
Thus, 3, '€X(H; B,C, D)
ii) y1y2€X(H; B, C, D)

-1
— S . . .
Y1Y2=0151V289= V151025, Lo 9= V105" §189= ’0111%8182 since basis group is normal

subgroup.
vy is of the form vi=[..., h_y, hg, hy,...] and v} is of the form vo=[..., k_1, ko, k1, ...]
then vyvi=[...,h_1k_1, hoko, hiki, ...]. Since v; and v] has less than C non identity

factors vy v also has less than C non identity factors.

By Lemma 2.0.2] [supp(s;s2)|<D.

Hence, 1,50 € X(H;B,C,D), and X(H;B,C,D) is a subgroup of
Y(H;B,B*,B"). O
The set ¥ 4(H; B, C,d) of all y=vs where v less than C non identity factors and s

belongs to A(B, d) forms a subgroup of X(H; B, BT, BT).

Let o(U)=n where n is a finite cardinal. Then the symmetry over H of U will be

denoted by X(H;n,n + 1,n + 1)= ¥,(H). Then X, 4(H) where elements of this
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group can be written as y=vs, and this s belongs to A,,, is a subgroup. Here basis

group is denoted by V(n, n+1)=V,,.
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CHAPTER 3

CYCLES, TRANSFORMATIONS AND CENTRALIZERS

Let y be an arbitrary element of X(H; B, B™, BT). It has been shown that y has a
unique decomposition y=vs where v belongs to V(B,B*") and s belongs to
S(B,BT).  Throughout this section we will mention more about cycles,
transformations, and we will give the centralizers of finite and infinite monomial

groups, which are written by Ore [2]] and Crouch [1]].

By Lemma we know that any permutation s in S(B, B™) can be written as a
disjoint product of commutative cycles. This decomposition induces a decomposition
of v such that to each cycle ¢, of s there corresponds a multiplication v, with all factors
e in those positions corresponding to x that s does not move and factors the same as

in v for the x that s moves. Thus v.c, has one of the two forms

1 9 . e Tn
VeCe = when n<d 3.1
hlxz hg[L‘g cee ]’Lnl’l
or
PR xi ‘r x ..
VeCe = o when n=d. (3.2)

h,1$0 h0$1 hlxg

If c is a cycle of length n and of the form

P - 3.3)

hixe hoxs -+ hpz
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observe that

:L'l ZL‘Q DY xn

hlhgl’g h2h3$4 cee hnhlxz
Then,
o — 1 To e Ty, 35)
hth...hnfE1 hghg...hnhll’g e hnhl...hnflfﬂn
= (3.6)
51171 (521‘2 tee 5nIn
The factor of n'" power of ¢ is {61, 0, . . ., 8, } where 6; = hy. . . hy,

52 = hg. .. hn ]’Ll, 571 =hn hl. .. hn—l-

Definition 3.0.20. These ;s are called the determinants of c.

Note that, §;’s are conjugate. Indeed,
h;l 5n hy,= 01.
ho 03 hy 1= 6,.

h3 54 h??l: (53.

ha Gt hi'= 6,

Since §;’s are conjugate, there exists a unique determinant class for each cycle.

Above, we have defined determinant class of a finite cycle.
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Theorem 3.0.21. Two finite cycles are conjugate if and only if they have the same

length and determinant class.

Proof. Let,
T T . e €
klle k2xj2 cee k’m.fll'jm
T T; T;
K/—l — J1 J2 Jm (3,8)
Eitey kylmy oo klag,
:L'l $2 ) :L‘n
v = 3.9

C1Ty CoX3 -+ Crly

When we consider conjugation of x with  there are three cases:

Case 1: If m=n,

x . :E . DY x .
Hilf}///w} —_ 3 J1 ) J2 X In (3.10)
ki cikoxj, kg coksxy, -k tepnknzy,
Case 2: If m<n,
':C . x . DY 'I . ) a’: .
“_1’7’1 _ 1 J 1 J2 1 Jm Jn (3.11)
]{?1_ 01]{521‘]'2 ]{32_ CQ]Cng3 cee ]{?;1 CmZEjm+1 e anlle
Case 3: If m>n,
:;C . CE‘ . DY x . ‘r . . .. x .
/ﬂ;ilfylﬁl — J1 J2 In In+1 Jm (3.12)
k;101k2$]’2 k;lCngl’jS

-1
kn anlfﬂjl $jn+1 e l'j

Above, it can be seen that x~!yx has the same form in three cases; they have the

same length and the same determinant class. Namely, for case (1) in equation (3.10)

25



determinant class of Ky 1k is the product of

(ki terko)(ky teoks)...(ktenky) = (ki 'cica...cpky) = ki '61k1. It is a conjugate of
determinant class of v by the element k; in H. For case (2), in equation (3.11)
determinant class of Ky 1k is the product of
(ki terks) (k3 teaks)...(ktemCmer . cok1) = (ki 'cica...coky) = ky'1ky. Ttis again
conjugate of determinant class of -y by the element &; in H. For case (3), in equation
(3.12) determinant class of Ky 1k is the product of

(k;lcle)(k51C2k3)...(k;16nk1) = (kflclcg...cnkl) = k;151]€1. Itisa Conjugate of

determinant class of by the element k; in H also.

Ore [2]] has investigated the result of transforming a finite cycle of an element of

monomial group to its normal form. We will state that in the following theorem.

Theorem 3.0.22. Any cycle of length n may be transformed to the normal form

Y= :{xim"' 7xinaa'x’i1} (313)

Tiy Tig =+ Ty
where a is any element in the determinant class of y. Any monomial substitution p is
similar to a product of cycles without common variables p = 7, ...7y, where each cycle

is in normal form.

Proof. Let

. A . G

C1Ti, CoZyy -+ Cpdy

have the same determinant class of the cycle .

If we can find a 3 such that 373 = ~ then we will get the result.

A, = cic...c,, and A, = a are determinants of  and . By our assumption, A,; and
A, are in the same determinant class, so there exists p; in H such that At = A, By

Theorem 1 in the paper of Ore [2] there exist p; such that

prleipe = 1, py  eaps = Loy Pt i Cu1pn = 1, o tenpr = a.
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Choose
Liy Lig e Lip,
8= . (3.15)
Di%iy PaZip - Pnig
Then, 3~ 'x3 = 7. Hence, each cycle may be transformed into normal form.
Since the transformation of v into normal form may be performed by means of a
substitution involving only the same variables, all cycles in p may be transformed

into normal form simultaneously. [

Example: Let n=4, i.e., the set U has 4 elements, and H = S3. Let

o€ Y(H;4,5,5=2,, where

X1 X2 €3 Xyq
o= (3.16)
Then,
T T T T
o? = ! ? ’ ! (3.17)

(12)(123)xs (123)(1)xzs (1)(23)z1 (23)(12)x,

X1 T3 X9 T4
- (3.18)
el o (3.19)
G| 2 s = (3.20)

(123)z,  (132)z2  (132)zs (132)24

In this case 9;s will be:

5 = (123)
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8, = (132)
83 = (132)

05 = (132)

We know that conjugacy classes of Sz are [(1)], [(1 2)], [(1 2 3)] where
[(DI={(D)}

[(12)]={(12),(13),(23)}

[(123)]={(123),(132)}.

Since d;s are in the same conjugacy class, they are conjugate.

Now, we should consider infinite cycles. If a cycle is infinite, then below we will show
that any infinite cycle in X(H; B, BT, B1) is conjugate to an infinite permutation in
S(B,B*). Indeed, let x be an arbitrary substitution and + be an infinite cycle in

S(H; B, B*, B").

I{/ _ .« .. l’_l l‘o l‘l DY (3.21)

koawj o kotj, ki,

e x Zo AR
L _ (3.22)
h_ll'() hoxl h1x2
Then,
“ e x . I‘ . x . DEEEEY
K lyn = i . : 6
kf1h1k0$j0 kalhoklmﬁ k;lhlk%CjQ T

It shows that x~ 1k has an infinite cycle form.

THEOREM 3.0.23. Two cycles of length d are conjugate if and only if they leave the

same number of x fixed.
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Proof. Let v and 6 be conjugate infinite cycles such that v has n fixed points. Then

- ; (a1)(az)...(ay) (3.24)

h/z',l (L’io hioxh hil l’iz

then, for some monomial substitution x,

[ (325)

k—le_l k‘ol’jo l{flfI)jl
0=r1vk (3.26)

e Ti X ]z ... - . 3
- 1 . " 1 (a1)"(az)"...(an)". (3.27)
Ce ki,lhflxiO h’iox’h h’ilx’ig ..

So, # has n fixed points.

Conversely, let

Tr_q o T
c = , (3.28)
h,11’0 hol'l hlfﬂg
and
/ ... ‘T27 ‘TZ IZ .o ..
g ! 0 : (3.29)

1T, ToZi; T1T4,

c and ¢ leave the same number of x fixed. We should consider if there exists a
y € X(H; B, B*, B*) such that y'cy= ¢ where
Tr_q Zo I

o[ (3:30)

koaxj o koxj, iz,

o T ; T
y ey — (3.31)
kZthoikor; ko 'hokizy, Ky 'hikswj, -
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then,

kZthoik_ia=r_

k:%h,1k0: r_1
]{Zalhgl{?1= To

k?l_lhl k2= 1

ki thikii= 1

Let ko= t, where t is arbitrary.
k~t=r_it7'h7]

ki = hy'tro

ko = hi hgtrors

Since we can solve this equations, any two cycles of infinite length are conjugate. In
particular, if ¢ is a permutation still we can solve y 'cy = ¢, and ¢ is a
permutation. Hence, every infinite cycle in ¥X(H; B, B*, B™) can be made conjugate

to an infinite permutation.

Now, in the light of the Theorem [3.0.23] and Theorem [3.0.21] we can state the

following Theorem.

Theorem 3.0.24. Two monomial substitutions y and vy, are conjugate if and only if

in their cyclic decomposition the finite cycles can be made to correspond in a one to
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one manner such that corresponding cycles have the same lengths and determinant

class and cardinality of the set of infinite cycles is the same for both y and ;.

Proof. This Theorem is consequence of Theorem [3.0.21) and Theorem [3.0.23]

3.1 Centralizers of Elements in Monomial Group

Monomial groups appear naturally as centralizer of an element in symmetric groups.
The structure of centralizers of elements in finite symmetric groups is well known.
If v is an n-cycle in finite symmetric group S,, on n-letters, then

Cs,(a) =< a >. Indeed, < o > < (g, (). Moreover, if 3 € Cg,(«) , then
a” = a. Since under conjugation cycle type of a permutation is preserved o’ must

be an n-cycle and conjugation sends

(a1, as,....a,)° = (a?,dl, ....a?) = (a1, az, ..., ay)
implies that if ¢ = a; for some j, then a’ = a; A —
P 1 J J, thén a, Aj+1, A3 aj+2, 4 an_(j_l) Qn,
ai_j =ay, -, a’ = @jyn—1 = aj—1. It shows that
aj a9 as . Ay (i—1 Qi oo e a
y= oy e " (3.32)
aj Qjy1 Ajp2 - Ay, aq ERR ¢ 7

So, 3= a’~!. Hence, f €< a >,ie., Cs, (a) =< a > .

Now, if « is in S, and « is a product of cycles of the same length k, then

« 1s of the form

o = (al, ag, ..., ak)(akﬂ, k125 -y agk)...(a(m,l)kﬂ, a(m,k)+2, ceey amk).

So, mk=n. In this case Cg, (o) = (C X Cf X ... x Cy) xS, where C}, is a cyclic
group of order k, and S, is the finite symmetric group on m-letters. The elements of

S permute the cycles in this case.
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Let g € Cg,(«). Then, ¥ = «. Since conjugation of a permutation by another
permutation preserves the cycle type. af will be again a permutation of the same
type as a. Hence of is a product of m cycles of length k. Moreover, o/ = « implies
that the cycles are the same except the order of cycles in «, because distinct disjoint
cycles commute. Hence we can multiply g with permutation g; where g; € S,,, and
gy 'g fixes each cycle of g. Since g;'g is again an element of the centralizer and
g 'g fixes each cycle. By above paragraph we know the centralizer of a k-cycle in
Sk, namely Cg, (ay, ..., a;) =< (a1, ..., a;) >. We multiply by elements ¢; ;. of cyclic
group Cj, for each cycle of a. Hence c;,ic;,lg...c;:kgflg = 1d. Hence g € Cs, (o) =
(Ck x Ck X ... x Ck) ¥ Sy =2 X, (Cy) which is a monomial group of degree m over

the cyclic group C}, of order k.

If a is a product of cycles of different length then « is of the form
a = (a1, A1k ) (@m1y ooy Ay, ). We need to find Cg, (). Assume that we
have [ different lengths of cycles in the cycle decomposition of «, and let Y,,, be the
union of the orbits of the same length m, where m=1,2,...,[. The Y,/ s are a partition
of the set with n elements into disjoint sets. Let © € Cg (). It is clear that Y s are
« invariant and also x invariant by previous paragraph. Conversely, if we have a
permutation x,,, of Y,, such that x,, commutes with restriction «,,, of an element « to

Y., then z,, is in Cs (). Therefore Cg (a) = Cs_ (aq) X ... X Csm (o) where
l

[Ym |

Sy, is the symmetric group of degree |Y,.|. Therefore it is enough to calculate

Cs _ (a) where « has a fixed cycle length k.

|Yk\(
Leta = (@11, .., @1 k)---(Qm 1, -, Gmi ). We want to show that Cg, (o) = (Cy2Sy,).
Define ' by a;;7’" = a;;,.. Then,

fiSn—Cy (a)

r—r

is a homomorphism.

Let 6, : aj7 — aj2 — ... = ai, — a;1. Certainly 6; is in Cg,_, (o) and W; =<
f(r),0,:1=1,2,....m;r €S, >= (C. 1. Spn).

Conversely, if g € Cs_, («), then g permutes the cycles of «, so there exists 7 € .S,
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such that gr’ fixes every cycle of . Since the centralizer in S, of a cycle of length k

is a cyclic group of order k.
(gr’)H 911“’ =1wherel <k <k-—1.
=1

Hence g € W,,,, 50 Cy, (a) = W, = Cp 1 Sy, = X, (Ch).

In the case « is a product of cycles of different length since each cycle type will be
preserved under conjugation, Cs, () = X, (C,) X ... x X, (Cy,) where we have 1

different length each length k; have m; cycles of length k;.

Theorem 3.1.1. Let y be conjugate to 1y, written in the normal form y, = Héi,

)

0; = H S, where for a fixed i the 6" are the normalized cycles of the same length n,

€
and the same determinant class a if n < d. Let € run over a set of cardinal |1 where
0 =< p < B. Then the centralizer Cs,y.5, g+ 5+)(y) is isomorphic to the strong direct

product of symmetries

Csu;B,5+,8+)(Y) = H(Z(C(H(a) <O > i, ul)) x Se(H X Zs ky k7, k7).

i

The group Cy(a) < & > consists of all elements y; of the form y, = {k;}(c})? where
k belongs to the centralizer of a in H. The second direct product arises if § is a

product of k infinite cycles where kK < B

Proof. Let y be an arbitrary element of X(H; B, BT, BT). Then by taking conjugate
of y by elements of X(H; B, BT, B"), we may assume that y is a product of cycles

in its normal form, say ¥;.

Since Csyg,,8+,8+)(y) = Csu,,p+,5+)(¥1), it is enough to find the structure of

centralizer of the elements y;, which is a product of symmetries in its normal form.

The element y; may contain finite cycles and infinite cycles. We prove the theorem
case by case. In the case of finite cycles we follow the proof of Ore [2] and in the

case of infinite cycles we follow Crouch [1]].
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Since conjugation of an element y; € X(H;B,B",B") by an element
g € X(H;B,BT,B%") preserves cycle length and the determinant class, the
centralizer of an element y; will be direct product of centralizers of elements for
each cycle length and determinant class. For this reason we will find the structure of

centralizers of elements for each cycle length and determinant class.

Step 1: (a) Assume that y; is just a cycle of length n in X, (H ), for an arbitrary group

H, and v, has determinant class a. In this case y; is of the normal form

r1y To9 T3 - e
= (3.33)
To I3 T4 --- alq.
Then for
:,U :E . e xm
k= ? (3.34)
k‘lle kajz s kmﬂijm
and by the calculation
Ky = 155]‘1 1% l%‘n Ljnyr =" Tjm (3.35)
k; kaj2 k’; ]{?31’]’3 ce k; aklle IjnJrl cee SL’jm
= {kz;laklxﬁ, ]{?l_lkng27 k?Q_Ik?3J]j3, Tty k:;_llk:nxjn} (336)
Since k is in the centralizer of y; implies that x 'y;x = y; we may solve the
unknowns k1, ko, ..., k, in H and so by Theorem (8) in [2]
x x . gjn_. a’;n_4 ':En .
o — 1 2 J+1 J+2 _ {r}y{ (3.37)
rry rTijy1r - Ty rary e Trariq

where r € Cp(a). Clearly, the powers of yi,yi* € Cxu,p,5+5+)(y1). Hence, we

obtain x = {r}y} = ¢/ {r}.

Hence, C's, (i) (y1) = Crl(a) <y >=<y1 > Cr(a). Cx,m)(y1) is an extension of

C(a) by the group < y; > of degree n.

(b) If y; 1s a product of k cycles of length n and each cycle in the normal form has the

same determinant class a.
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In this case y; is of the form

Ty Ty - Tp Tpt1 Tpig2 - Ton
Y = (3.38)
Ty X3 - axy Tpy2 Tpy3 0 ATp4a
T(k—1)n+1 T(k-1)n+2 =~ Ln
( (3.39)
T(k—1)n+2 L(k—1)n+3 *°° T(k—1)n+1l

any permutation of cycles of type (z1, Z,41) (%2, Tpi2)...(Tn, T2) and

(4171, Tn+1; L2041y ey Q3jn+1)($2, Tn+2, Lon+2) -y xjn+2)-~-(xna Ton, T3ny -y xjnJrn)
commute with the given symmetry y; and these type of permutations generate a

subgroup isomorphic to Sy, permutations permuting the cycles.

Moreover, for each fixed cycle centralizer be as in then case (a) and these centralizers

commute with each other. Hence the centralizer of y; will be isomorphic to
Cr(a) < 6 > xCpg(a) < §y > x... x Oy(a) < & > xSk

=~ Cy(a) <61 > 05 = Xp(Chla) < 6 >).

Since in our symmetry B might be infinite in the case y; is a product of infinitely
many cycles of length n and determinant class a and the cardinality of the cycles is

say f1 then Cs oy, g+ p+)(y1) = X(Crla) < 0 >;p, pt, 1.

Step 2: Now, we find the centralizer of a cycle of infinite length.

First observe by Lemma [3.0.23]that any infinite cycle of the form

x_ x_ x x x
2 1 0 1 2 (3.40)
hfll',z h,1$,1 h0$0 hll’l hgill'g
by taking its conjugate to a permutation cycle
T_og X1 Ty T1 T
2 1 To T1 X2 (3.41)

Tr_1 g X1 To9 T3

Therefore, in the infinite cycle case we may assume that in the normal form y; is a

product of say p- infinite permutations as above.
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First we find the centralizer of an infinite permutation X'( H; Ry, X&', ) without fixed

point and all elements are moved.

We follow Crouch [I] for find the structure of centralizer of a cycle product of

infinite cycles as above will be the trivial consequence of the same argument.

Now,

klew = | S (3.42)
k:%k0$i70 kalkl.fil k’;lkgl’iz

... xfl ‘%0 :Cl PR
where ¢ = : (3.43)
.. l‘_o a’;l ajz “ e

So, we can solve ..., k_o, k_1, ko, k1, ...
Then we observe that <~ 'ck = c implies that

D x_ x :E ...
K= Lo _ (3.44)
kl’jfl T kiCj+1 cee

Hence xk = {k}c = ¢k where k is not a true scalar on the set U, but k is a scalar
only on the variables which appear in the cycle. {k} will be identity on the elements
of U which ¢ does not move. It follows that C's;(f7.4,a+ q+) (¢c) =2 H X 7, where Z is an
infinite cyclic group which comes from the isomorphism < ¢ >= Z. Itis independent

of ¢ as all isomorphic to Z .
Now, if y is a product of pod — cycles then

Csp,p+5+)(y) = Y(H X Z; po, p3 , 13 ). Now, from case 1 and case 2 theorem

follows.
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CHAPTER 4

THE SPLITTING OF THE SYMMETRY

Definition 4.0.2. Let G be a group, and N be a normal subgroup of G. If there exists
a subgroup H<G such that G=NH and NNH=1, then we say that G splits over N and

H is called as complement of N in G.

If G splits over N, then for any geG, g=nh for some n€N, h€H. Moreover, this writing

1S unique.

Indeed assume that if g=nh=n,h; where n;, neEN, h;, heH, then nh=n;h; implies
nf1n=h1h_16 NNH=1. So, n=n; and h=h;. Hence, the writing g=nh is unique, i. e.

,nEN, heH is unique in the writing g=nh.
Observe that for any geG,
G9=(NH)I=NIHI=NHY9as N I G, N9 = N.

Therefore, all conjugates of H are also complement of N in G i.e., G=NHY and N N
HY9 =1.

Definition 4.0.3. A group G splits regularly over N, if every complement of N in G is
conjugate of H.

If G splits regularly, G=NT, and NNT=1, then there exists g€ G such that T=H".

Let H and T be two complements of N in G such that H is not conjugate to T. Then

by above, all conjugates of T in G are also complement of N in G.
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Therefore, we may decompose the set of all complements of N in G.

Let (={T<G| TN=G, TNN=1} be the set of all complements of N in G. We may

define an equivalence relation on C.
Ty ~T, iff Ty=T3 for some g€ G.

~ 1s an equivalence relation:

i) Ty~T7, since ideG and T7=T7.

ii) T1~T5 implies that there exists ge€G such that 71=T% if and only if 77 =Ty implies
To~Th

iii) Ty~T5 and To~T3 implies that there exists g;, go € G such that T;=T3", and

To=T5?, and so T5*%'= (T5?)9*=T3'=T}. gog1 € G, so ~ is an equivalence relation.
The equivalence class containing 77,
[T1]= {T| T9=1T; for some geG}

If C has only one equivalence class, then G splits regularly, otherwise G does not split

regularly.

If we go back to X(H; B, B™, Bt) we should notice that X(H; B, BT, B*) splits
over V (B, B") with complement S(B, BT).

Now, we will investigate the splitting of X(H; B, B, (), i.e., the splitting of the
subgroup of X.(H; B, B*, B™) such that order of support of permutations is less than
C where d<C<BT.

Clearly, ¥(H; B,B",C)=V (B, B")S(B,C), and V(B, B")NS(B,C) = 1. Hence,
Y(H; B, Bt,C) is a splitting of V (B, B*) with the complement S(B, C).

We are interested in the following question:

Find the necessary and sufficient conditions that C has only one equivalence class,

i.e., whether all complements of V(B, BT) in X(H; B, BT, C) are conjugate or not.

If Hand T are two complements of N in G, then H is isomorphic to T.
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Let G=EHN=NH and G=NT. Then, G/N= HN_“N= TN _~N.

HN “N=H _“HNN=H since HNN=1.

HN_“N=TN_N=T TNN=T since TNN=I.

Hence, we have shown that any two complements of N in G are isomorphic.

We want to find out when H is conjugate to T.

Back to X(H; B, B™,C). Assume that T is a complement of V (B, B™), Then by the
above paragraph T=S(B, C). Moreover,

S(H: B, B*,C)=TV(B, B*)=S(B, CO)V (B, B*).

Denote # by the natural isomorphism #: S(B, C) — T such that 6(s)=vs=t where
veV(B, BT), s€ S(B, C) and v, s are unique satisfying 6(s)=vs=t.

By using the above natural isomorphism, the elements s=(1, «) is a transposition in

Y(H;B,B*,(), and

ta = 6‘(8) = {hl,aa h?,a, ceey hn,a; }(1,0&)

Since we can find the elements up to conjugacy of T, say 7 =vTv~! where ve
V(B,B").

If k={k1, k2, ..., kn, ...} where kK € V(B, B"), then T’ has elements whose first

factors are identity. Indeed
o=k kS Lk H P Paas s P - F (L @) (R, Koy e Ky )

= {k?l_lhlﬂk’a, k’;lhgﬂkg, k’3_1h37ak’3, ceey k;lhoﬁakl, }(1, Oé)
We can choose the first factor ki lhmka = 1 since ki 1h17aka = 1 implies k; =
h1okq. For each o € B, a # 1, we can do this conjugation and choose k, = hiikl-
Then simultaneously we can solve this equation and obtain the first component of
each #/, is identity for all v # 1. k; 'hy k> is a conjugate of hy ,, and other hj,, are

conjugate except the a® component.
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Then we have t, = {e, hoa, s Paay s Peas - (1, @).
As (t.)? = E, we have
(t)? = {ho.a h%’a, o hi_lva, kthioke, ..} = F

where E is the identity of ¥(H; B, BT, BT).

S0, hyo = € and, hia — e. Then,

ta =0(s) ={1m, hon, ..., L, ...} (1, ).
So, we can write

@) 1, ={e,haas sy heas - H(1, @)
(ii) hao =€
(iii) h?,, = e fore # 1,e # .

Let S7(B, C) be the set of all elements of S(B, C) where

S1(B, C)={g €S(B, C)| x1-g=1; }, i.e., the stabilizer of the point z; in U.
Since stabilizer of a point is a subgroup, S1(B, C) is a subgroup of S(B, C).
Observe that, if U={1, 2, ..., n}, then

S1(B,C) = S,.1=2Sn—1,n) <S(n,n+1).

Moreover if U is an infinite set, then Sy (B, C') = S(B, C') where d<C<B™.

LEMMA 4.0.4. If s€ S(B, C) and s moves x1, then s can be written uniquely as s =

(1, ) sy where sy leaves x; fixed.

Proof. Let s€ S(B, C). Then we may write s as a product of disjoint cycles. In the
writing of s as a disjoint product of cycles we are interested in only the cycle
containing 1 as the other cycles already fixes 1 and the product of elements which
fixes 1 is again an element fixing 1. For this reason we consider the cycle which

contains (moves) 1. If this cycle is finite then we have the following:
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Observe first that, if s=(1, 2, . . ., n),
s=(1,n)(2,3,...,n),(2,3,...,neS5 (B, C).
We can not write S=(1, k)(aq, oo, . . ., a; ) where
(a1, g, . .., 0 )ESI(B, C).

Think of the permutation (1, 2, 3, 4)=(1, 3)5 where S€ S;. There exists no such S
Sy.

This observation can be generalized for all S(B, C).
If s=(1, n)a;;=(1, n)a, then ay=a5. So, the writing is unique, i.e.,
a1€51(B, C) is unique.

If s is an infinite cycle, and s moves 1, then

ry T2 ... Xg v To X3 ... Tg
S = :(1’ﬁ)
Lo Le .. 1 -*°¢ Te Ty ... Ty
On the other hand,
o X3 ... T T
s = “ ’ (1, )
Te Ty ... Ty -+ Xg
To X3 ... T xr
where “ g € S1(B,0).
Te Th .. Ts o+ Ty

Assume that there exists z,€ U such that a#1 , and x,s1=x,, i.e., s; fixes z, for
some a#1. So, r1s1=11, and z,51=7,. Then, consider s=(1, a)s;=s1(1, @) = s1=(1,

a)s =s(1, o)

0(1, ) ={e, haqn, ..., heq,...€,.. }(1, @),
where e occurs as a factor in the first and o positions.
0(s1) = 0((1,a)s) = 0(1, )0(s) = O(s(1, ) = 0(s)0(1, )
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If s belongs to S(B,C) and moves 1, then by Lemma[4.0.4] s can be written uniquely
as s = (1,a)s; where s; € S1(B,C).

The image of (1, &) under 6 has been described above as

0(1, ) ={e, haa, s hea, -, ... }(1, ).

To find the image of any element of S(B,C) it is sufficient to discuss those elements

in Sl(B, C)

Let s; € S1(B,C) such that x,s; = x, for some x,,« # 1 i.e., s; fixes x, where
« 7£ 1 i.e., S1 € Sl(B, C) N Sa(B, C)
Let s = (1,a)s;. Then s; = (1,a)s = s(1, a) where s sends z; into x,, and z,, into

I .

Let, 0(s)={k1, ko, . . . , ke, . .. }s.

So,
0(s1) ={e, haay s heas €y (1, a){k1, ko, ooy ke, . } s 4.1)
_ 1 ) Lo ' (42)
kox1 h2,a/€21’5 kizq
0(s1) = 0(s)0(1,0) = | Fo = by = ke 4.3)
k’lﬂfl kaIa

This shows that if s; belongs to S7(B, C), then the factors of v where 6(s;)=vs; in the
positions corresponding to those x which s; leaves fixed are equal to the first factor

of v.

]

LEMMA 4.0.5. Let s belongs to S(B, C), and have the following properties; s moves

x1, i. e, x157#x1, and T,S=, where a1, and xgs=x1. Then s has the following form

. T1 oo TR o To e @.4)

Ts ... X1 ... Tq
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where 0#1. Let O(s)=vs where veV (B, BT). Then the factors which occur in the first

and B™ positions of v are equal.

Proof. Let 0(s)=vs={ci, c2,C3,...,C3,...,Cc ... }s, weneed to show c;=cg.

We may write s in the following form

S:(lvﬁ) _(176)81
Ty T Lo,
where s;€51(B, C). Also, we may write from right, as
s=|"" ’ (1,9) = s1(1,9).
Ty . XT§ .. T v

Observe that when we write s as (1, 3 )s; and s1(1, d), the s;’s are the same. We want

to find A(s)=vs. So we need to understand factors of v.

s=(1, B)s1=s1(1, 9), so 8(s)=0(1, $)0(s1). As we discussed on page |40,
O(s)={has s hgs ooy oy ooy Bgy o} S

o(1, B)={e,...,e,...hap, ..., hsg, ...} (1, )

9(1, (5)={6, ceey hﬁjg, ceey hmg, oy € ...}(1, 5)

T X
0(s)=0(1, B)0(s1)=
hﬁl‘g haxl
b=0sot o= 1
hal’(; hﬁiL’l

So, we have hg = h,.

We can do the above computation for any o which is fixed by s. So, we may conclude
that all the corresponding factors which are fixed by s, the factors of v are equal to /3

where zgs=x;.
Claim: Let s € S1(B,C) 481 = o, @ # 1 and 0(s1) = vsy. Then v is a scalar.

43



It is sufficient to show that the factors occupying positions corresponding to x which

s1 moves are the same as the first factor of v.

We have shown that if s does not move x,, then h, = hy,Va. If we can show that
hi = hg, where s; moves xg, v will be a constant, so that, the factors coming from
the x’s such that s; fixes x the factors are equal to h; and the factors of x which s;

moves x also equal to 4, implies v is a constant.
Let

S1 = ' g “ = ! A “ (1,(5)

Ty .. T§ .. Ty - Ts .. T1 ... Tq

where 0 # [ and 0 # 1.
By the Lemma[4.0.4]
0(s1) = {h1, ..., hg, ..., ha, .oy hsy . }S1
where h, = h;.
Furthermore, 6(1, 0)={e, ..., hgs, ..., has, ...y €, ... }(1,9).

Using the decomposition of s; and the fact that ¢ is an isomorphism.

0(s)) = 0(s)0(1,8)= | "
hoxti ... hoxs

Recall that, above if s; € S;(B,C) , and 2,5, = Z,, then the first factor and o'
factor are the same.

So far

9(81) = {hl, ceey hﬁ, ceey hl, ...,h5, ...}81

By the above calculation, we show h; = h, = hg. Hence, under the above condition,

v 1S a constant.

It remains to discuss the case where there exists no z,, such that z,s; = x,, 1.€., $1

moves all 2 for all 3 # 1. We need to show under the condition
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0(s1) = vsy and v is a constant. Assume

5 = 1 2 154 _ (2’5) 1 2 B

T T .. To o .. T To ... g

o
_ ’
where 51,5, € S1(B,C).
. — _ ! ’
By the above calculation, 0(s;) = vs, 5, and 6(s,) = vy sy where v, vg; are constant.
_ _ ’ _ /
0(s1) = 0(s515,) = 0(51)0(s1) = v 5105,
Since vy, vs; are constant and constants commute with all permutations we can write
1
_ ! _ !
0(s) = Usi Uy 151 = Usy U S1, 88 515 = 51.
And VsV 81 = Vs, 51

Vs, = Vg Uy 1S a constant since product of two constant is constant. So we have shown
1
that if s; does not fix any z,,« # 1, then 6(s;) = vs; where v is a scalar. Hence,

under all conditions for any s; € S1(B,C) 0(s1) = vs; where v is a constant. O

Define a map ¢ : S1(B,C) — H such that ¢(s;) = hs,, and
0(s1) = vs; where v = {hg, }
6 :S(B,C) — T such that (s) = vs where vs€T.

A computation shows that if
0(1, a)={e, ..., hg.as s haa, - }(1, @)
9(1, B)={67 ceey hﬁﬂ, cees haﬁ, }(1, 6)

where hg g = e and h, o = ¢, then
O((1,a) (L, B)(1L, @) = (e, B)

={e,..;hpa. .. L a)e ....e ...hap, ..} (1, B){e, ... hpas-re, ..} (1, )

T e Xy ... Xp
haﬁl’l h@awﬁ h@al'a
where o # 1,8 # 1, # . Butas a # 1, 5 # 1 we have
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9(04’ B) = {gaﬂ}(aa B)

So, ha’g = h@a = Ga,p € H.

Theorem 4.0.6. The symmetry Y(H;B,B",C) splits over the basis group,
Y(H;B,B",C)=V(B,B")UT,%(H;B,B", BY)NT = E. Any such group T is
the conjugate of some group T' obtained by the following construction. Let G be a
subgroup of H that is the homomorphic image of S1(B,C) where d < C' < BY. Let
¢(s) = gs indicate the homomorphism. In particular, ¢(cv,3) = gap. Then the
elements of T' are obtained from the elements of S(B, C) by the isomorphism defined
as follows: Let *: S(B, C)— T be a map , and x(s) = {g.} for s belonging to
S1(B,C), *(1, a)={e, ga.a, --+» Je.vs -+-» €, - } (1, @) where e occurs in the first and o'

positions.

In previous pages we have shown that if T is a complement of V (B, B*), then the
correspondence gives a homomorphism from S(B,C) into H where the above
conditions are satisfied. Therefore, we need to prove the converse of the theorem.
Namely if there is a correspondence as in the theorem, then it must be an

isomorphism.

Proof. We have defined a map a : S(B,C) — T'. Now, we want to show that
* is an isomorphism . We know that if an element s€S(B, C), then we may write
s = (1,a)s; where s; € S1(B, (). Indeed if s is already fixing x; then s=s;, and
a=1. So, we are done. We may assume that s moves ;. Then as s is a permutation

there exists «v such that z,s = x1. Then s=(1, «)s;, and where j # 1

s = =(1,«) ! “
iy ... X1 .. Ty ... Iy

#(s) = *((1,a)s1) = *(1, ) * (51) = {€, Ga,ay s Gerus -+, €, - J(1, ) % (57)
= {€, 92,01 s Geras s € .} (1, ) { hgy } 51
Since {hg, } is constant, it commutes with (1, «).
S0, %(8) = {hsy, Ga.alsys s Gealsyy ooos Psyy o }S O
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Let 5§ = (1, 3)s; be another element of S(B, C) where 235 = x; and 5, € Sy(B,C).

We want to show that * is a homomorphism, i. e,

*(s5) = #(5) * (5) = *(1, @) x (s1) * (1, B)(1)-
By Ore [2], it is enough to show that x(s(1, 5)) = *(s) * (1, 5). This is equivalent to
show that

(i) *(1,0) % (1, 8) = #((1,a)(1, B), and

(i) #(s1(1, B)) = #(s1) * (1, B) for any s, € Sy(B,C).
%(s(1, ) = #((1,)51(1, 8) = #(s) = (1, B)

(ii) *(s1(1,8)) = #(s1) = (1, 8)

((1,0)(1, 8) = {gag, s €1 gg.ar -} (1, v, B)

Indeed

*(1,a)*(1,08) ={e, .., gear € - Gas - (L)€ oo Ge gy ooy Gy -os €5 -} (1, B)

1 vee Ty e z3

ga”gxa 335 9/3704.%1

For @ = [ the case is trivially true. So we assume that & # (. Then we have

(1,04)(1,5) = (17a75) = (1,5)(1,&) So,
*((1760(175) = *(Laaﬁ) = (Lﬁ) * (aaﬁ) = *(175){ga,5}(avﬁ)

= {67 s 9a,8y -5 € }{ga,ﬁ}(17ﬁ)<avﬂ) = {goz,,é’a <y Ge 3, "'79(2)57ﬁ7 90,8, }(17ﬁ)(aa6)
= {ga,ﬁ7 ey 9,8y 390,85 -+ €y "'aga,ﬁ}(17a)(]—a/6>'

Now we compute the corresponding factors and obtain ¢, g=€ and gc o Je 8 = Ge 39a.3
since (¢, ) (e, B) = (¢, 5) (e, B), and where ¢ : S;(B,C) — H such that ¢(a, 5) =

Ja.3> ¢ 1S @ homomorphism.
Now, we should show that
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x(s1(1,8)) = *s1 % (1, 8) for all s; € S1(B,C).

There are two cases in this verification i.e., we will analyze it when s; moves x5 and

when s; does not move x.

Case 1: If s; does not move zg,

we know s = (1, 8)s; = s1(1, ).

xs = *(1, B) * (s1) since * is a homomorphism.

Also, x(s(1,8)) = *s * (1,58) = *(1,0) * s1 * (1,58) = *s1 % (1,0) = (1,5) =
*(31(17B)) * (175) = ks (175)

Case 2: If s; moves 3, then we can not say anything about *(s(1, 5)) with direct

computation. But,

s=sL =" T T T g =10s @5

:L‘l DY :L'a DY a’:ﬁ

Here s; does not move x3 so we can do computation.
51 = {gs, }s1,

x(1,0) ={e, ..,y G585 vy Gegy -+ (1, ),

*(1,0) ={e, ..., 986, -, €, -, §es, --. (1, 0) implies that

*81 * (176) = {951}81{6a cy €y "'795,5a "'796,67 }(L ﬁ)

:L'l .« .. :L'/B PR x(s DY xe PR
= (1,8) = (1,0)s1
91T - Gs190,6La Gy L1 sy el :
(4.6)
=*(s1(1, 5))

since * is a homomorphism.
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Also, x(s1(1,3)) = *((1,0)s1) = *(1,0) * (s1)

o ml o e xﬁ DY xé- DR xﬁ DRI (47)

91T " Gs19B,6%Ta "t GsiT1 tt Gs19e,6Ti.

Since ¢ is a homomorphism factors of above two computations are the same.

As a consequence, we get that the given correspondence in the theorem preserves the

multiplication.

Images of the elements of S(B,C) form a group T. This T is isomorphic S(B,C). We
can say clearly V(B,B")NT = E. Moreover, V(B,B")UT = X(H; B,B",C)
since if y € ¥(H; B, B*, 0), it can be written y = vv] 'v1s = vqt where *s = v;5 =

t.

Theorem 4.0.7. A necessary and sufficient condition for X(H; B, B™,C) where
dt < C < B™ 1o split regularly over the basis group is that H contains no subgroup
isomorphic to S(B, C).

Remark 1: S(B, O)= S(B,C) when B is infinite, and this is the case as
dt < C < B*.

Remark 2: Let ye X(H;B,B",C), y=vs, and v; € V(B,B"), if we take the

1

conjugate of y by v, we have vflyvl = vflvsvl = vflvsvls* s = 1)1_1’01)28 = V38,

where vy = sv1s~! and v3 = v 'vvy € V(B, BT).
So, s is fixed.

Remark 3: s~'ys € X(H; B, B, (), where s€ S(B,C)

Proof. Assume that (H; B, B*, C) splits regularly over the basis group. Let 7"
be another complement oft he basis group . Then by assumption there exists y &€
Y(H; B, B*, () such that



Every element ¢ € T' can be written in the form t=vs for some v € V(B, B*),
and s € S(B,C) . By remark 2 and 3, t¥ = (vs)? € S(B,(C), we may take the
element ye V (B, B1) because taking conjugate of an element by a permutation only
permutes the factors. Therefore, if we want to obtain by taking conjugate we must
take conjugation by an element of V' (B, B'). Therefore we may assume that y&
V(B, BY). Say y={k1, ka2, ..., ka, ... }.

In order to understand the elements of 7" we may consider the elements ¢ = {g,, }s1

where s; € S1(B,C).

Consider the element ¢t = {gs, }s1 of 7" where g, is a constant element of V' (B, B*)
and s; € S1(B,C) i. e. s fixes the symbol z;. S; is the stabilizer of a point x; in

S(B, O).

yty_l = {khk%"'}{981}81{k;17k2_17"'} = ]{j ];_1 ’ = SI(B’C)
195171 21 :

ki1gs, k' = e implies g, =e Vs; € S1(B,C), and consider
0 :T — H suchthat 0({g,,}s1) = g,, = e

So, t={e}s, then every element of 7" which is of the form {g,,s;} = {e}s;. Hence
elements of T coming from S (B, C) i. e. constant term is actually coming from H is

identity.

Since 6 sends all g, into identity the above homomorphism sends all elements of the
form {gs, } to identity. Hence H does not contain a subgroup isomorphic to S; (B, C').
Since by remark 1, S(B, C)= S;(B, C'), H contains no subgroup isomorphic to S(B,
O).

Conversely, assume H contains no subgroup isomorphic to S(B, C) and that
Y.(H; B, BT, () does not split regularly. Then H contains no subgroup G which is
the homomorphic image of S;(B,C). Scott has shown that this implies that G
contains a subgroup isomorphic to S(B, C), contradicting the hypothesis. Therefore,

Y.(H; B, BT, C) splits regularly.
0
Theorem 4.0.8. A necessary and sufficient condition for X(H; B, BT,d) to split
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regularly over its basis group is that H contain no element of order 2.

Proof. If X(H; B, B*,d) splits regularly, then by Theorem [4.0.6] it contains an
isomorphic copy of Si(B,d) ~ S(B,d). Since by assumption H contains no

element of order 2, then the map v : 7" — H is the trivial projection i. e.

ta = {hl,o” hg}a, cery h€7a, }(1, Oé),

and 7 : ma, — a, where a, = 1. Then T'=S(B, d).

By Baer’s Theorem the only normal subgroup of S(B, B™) are the subgroup S(B, C)
where d < C' < BT, S(B, d) and Alt(B, d). S(B,d)/A(B,d) ~ Zy and |Zy| = 2.

H contains no element of order 2. So the map + is the identity map. [

4.1 The Splitting of X, 4(H)

We first consider the special cases.
Case 1: Splitting of >; 4 (H)

Now we will discuss the splitting for n=3 i.e., H will be an arbitrary group and

alternating monomial group of degree 3.

We already know that X3 4(H) = V3A3 and V3 N A3 = 1. So, A3 is a complement of
Vsin X3 4(H).

Recall that V5 = H x H x H. Let T be an arbitrary complement of V3 in X3 4(H).
Then V3T = X3 4(H) and V3 NT = 1. Since arbitrary element of X5 4(H) can be
written as vs where v € V3 and s € Aj. The elements of T will be {1, g, g*}. Let
0 : A3 — T be an isomorphism. Let A3 = {1, a,a?}. Since §(1) = 1, the image of

a will determine the isomorphism. Let

6(a) = {h1, he, h3}(123). Since we will find the complement up to conjugacy we

may take the conjugate of T by multiplication
k = {ki, ko, k3} € V3. Then KTk~ contains the element of the form
{k, ko, ks}{hi, ho, ha}(1 2 3){ky " kgt kg '}
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= {kihiky ", kohoks ™, kshak 112 3).

Since k1, ko, k3 are arbitrary elements of H we can choose k1 = k as arbitrary. Then

we may choose ko = khy, ks = koho = khihs.

It follows that the third component kshsk; ' = khihyhsk™'. Then we have 6(a) =
{e, e, khihohsk™}(123) = {e,e,b}(123). Since a has order 3, we have 6(a) has
order 3. Then 1 = 0(a)® = ({e,e,b}(123))3 = {e, e, e}. It follows that b=1. Hence
the isomorphism ¢ will be the identity automorphism and so 7" = Aj. Hence all

complements of V5 will be conjugate to A3 and so X3 4(H ) splits regularly.
Case 2: Splitting of >, 4(H)

Recall that the alternating group A, has order 12 and consists of even permutations
of symmetric group on 4 letters. The subgroup
k= {(1),(12)(34),(13)(24),(14)(23)} will be a normal subgroup of A4 which
is isomorphic to elementary Abelian group of order 4 in fact Kk = Z; X Z5. Then
Ay =Kk < (123) >. So Ay is a split extension of x with a cyclic subgroup of order
3. Since < (12 3) > will be a Sylow 3-subgroup of A, and by Sylow theorem, all
Sylow 3-subgroups are conjugate. We have all complements of V in A, are
conjugate. In our terminology, A4 splits regularly over the normal group x.

Since the only nontrivial normal subgroup of A, is s, and any homomorphism 6
from A, to any other group will be either #(A;) = 1 trivial homomorphism or
0(A,) = Ay isomorphism or #(A,) =< d > where < d > is a cyclic group of order
3. Therefore, in the above cases Ker(f) = {1} and Ker(0) = k.

We will prove the following theorem for this special case.

Theorem 4.1.1. The group ¥4 4(H) splits over the basis group V, = H x H x H x H
with complement Ay. Let T" be another complement of Vy € ¥4 o(H). Then there
exists a homomorphism ¢ : Ay — H satisfying ¢(s) = gs for all s € A,. Then the
isomorphism 0 will be 0(s) = {gs}s forall s € A,.

Proof. Let T be a complement of V in 34 4(H ). Then there exists a homomorphism
6 : Ay — T. Since by previous pages A4 has an elementary Abelian normal

subgroup x isomorphic to Zy x Z.. We will consider the images of « into T. Since x
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is generated by 0; = (12)(34), 02 = (13)(24) and 03 = (14)(23) the group T

will have either homomorphic image of « i.e., (k) = r or §(k) = {e}.
Let §(o1) = {h11, hi2, has, hia}(1 2)(3 4)

0(02) = {ha1, hoa, has, haa } (1 3)(2 4)

0(03) = {ha1, Rz, has, haa }(14)(2 3)

As before, since we want to find the complements up to conjugacy we may take the

conjugate of T with a product k = {k, ko, k3, k4}. Then

(1) I{H(O'l)liil = {kl, ]{32, l{?37 k?4}{h11, h12, h13, h14}(1 2)(3 4){]{?1_1, l{?2_1, ]{33_1, ]{74_1} =
{l{;lhnk;l, k2h12kf1, kghlgkf, k:4h14kg1}(1 2)(34)

(11) HQ(O'Q)Iiil = {]{31, ]{?27 k?g, k4}{h21, hgg, hgg, h24}(1 3)(2 4){]61_17 k?2_1, ]{?3_1, ]{?4_1} =
{klhglkgl, kghmk;l, kghggkfl, k4h24k;1}(1 3)(24)

(ii1)

H@(O’g)/‘i_l = {/{1, k’g, kg, k4}{h31, hgg, h33, h34}(1 4)(2 3){%;1, k;l, k’gl, k’;l} =
{kyhaiky ', k2h32k‘3_17 kshssky ', kahaghky ' 3(14)(2 3).

Then again as ky, ks, ks, k4 are arbitrary elements of H, choose k; = k fixed, then
by (i) and (ii), choose ky = khqy, then k = kyhqo. ky = kshys implies ks = kyhqy.
o(7) has order 2. So 0(01)? = {hi1h12, hiohi1, hishig, hia, his} = {e, e, e, e}. Then
hiy = hi} and hyy = hi3. Hence 0(0y) = {hi1, hii', has, hiz }(12)(3 4).

9(02)2 = {h21h337 haahay, hashay, hoa, h22} = {67 €, ¢, e}. Then hs3 = h511 and hgy =
h2_21. Then 9(02) = {hgl, hgg, h2—117 h2_21}(1 3)(2 4)

9(03)2 = {h31h347 haahss, hsshsa, haa, h31} = {67 €, ¢, 6}- Then hs3; = h§41 and hzy =
hg?)l. Hence Q(O’g) = {hgl, h32, hg;, h3_11 (]_ 4)(2 3)

Now we use the property that « is an Abelian group. Therefore 0(x) is an Abelian

group.
(9(01)0(02) = 9(0’10’2) = 9(0’20’1) = 6(0'2)8(0’1) 1mphes that
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{ha, hit's hug, hig F(12)(3 4){har, has, ha', hyy }(1.3)(2/4) =
{hihas, by hay, hashay', hig hoyt }(14)(2 3) =
{hat, hag, ho' s hoy }(13)(2 4){har, by hag, hig F(12)(3 4){ P, ', has, By 3 (1 2)(3 4)
= {ho1h1s, hoshis, hot hiy, hoy byt H(1 4)(2 3).

We obtain

(A) hi1haa = ha1hs

(B) hi' har = haohiy

(C) haghay = hyi'hn

(D) hiyhy' = hyy hyy implies that A= D~'and B = C~'.
Only the following equation remains.

hi1heg = hoihis.

0(02)0(03) = 6(03)6(02)

implies  that  {hay, hao, hay', by }(1.3)(2 4){ha1, haa, has , hay F(14)(2 3) =
{harhzy s hashgy's by hay, hoy hisa } (1 2)(3 4) =
{hs1, haa, hay hap F(14)(2 3){har, has, ha', hoy }(1.3)(24) =
{ha1hay s hashay's hay hao, hyihor }(1 2)(3 4).

We obtain

(A) harhgy = haihsy

(B) hihg' = sy

(C) hyt'ha1 = hgy has

(D) hyy by = hai hoy

implies that A = B~ and C = DL
Only the following equation remain.

ho1hsy = haiha,
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9(0’1)0(0’3) = 0(03)9(01)

implies  that  {hy1, hi7, his, hig }(12)(3 4){ha1, hsa, by, by F(14)(2 3)
{hathsg, by hay, hashay's hig hay (1.3)(24)

{ha1, haz, hag s hat' (1 4)(2 3){har, hiy's b, hiy }(12)(3 4)

{ha1his, haohis, hay hilts hathi H(1 3)(2 4).

So, we have the following equations

(A) hirhgy = hgihis

(B) hiy'ha1 = hashiy

() hushit! = 'y

(D) h1_31h?:21 - hz’:llhll

implies that A = C~'and B = C~L.

We get only hiyhsy = haihis .

Then we use the property

0(o102) = 0(03),0(0903) = 0(01),0(0103) = O(02). Then

0(c109) = {hi1haa, hij hat, hishas , hig hat F(14)(2 3)
{ha1, hsa, by, ha' }(14)(2 3) = 0(03)

implies that
h:il = h2_21h1_11 = h1_31h2_1la
hsa = hﬁlhzh

hyy = hishay = hyi' .

9(0203) = {h21h§217 h22h§117 h2_11h31: h2_21h32}(1 2)(3 4)
{ha1, hii', has, hig }(12)(34) = 0(0y)
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implies that
hit = hashy = hash),
h13 = h2_11h31 = h3_21h22.

9(010’3) = {h11h32, hl_llhgl, h13h3171, h1_31h§21}(1 3)(2 4) =
{ha, has, hay' s hyy }(13)(24) = 0(02)

implies that

hor = hirhsy = haihyg,

haa = hii'hs1 = hsshas.

Now, we can take conjugate with k = {k, ko, k3, k4}. Then we obtain

(2’)/@6’(01)/(1 = {]{31, kQ, ]{33, k4}{h11, hl_ll, ]’L13, h1_31 (1 2)(3 4){]€1_17 k?2_1, k?3_1, k?4_1} =
{koh k! kihinky b kahig kgt kshysky P (1 2)(3 4)

(ii)
KO(02)k™Y = {ki, ko, k3, ks Y hot, hoo, oyt oy F(13)(2 ) {ky ™ kyt kst k' =
{kshot kit kahgs byt kihotks * kohooky P 1(1 3)(2 4)

(111)
H@(O’g)/ﬁl_l = {kl, kg, kg, k4}{h31, h32, h?:zl, hgll}(l 4)(2 3){]?1_1, k‘;l, k‘gl, k;l} =
{kyhg kTt kshas by ' kohaoks t kyhsi kP11 4)(2 3).

Since « is arbitrary, to do first component of /{0(01-)/4‘1, i=1,2,3, is identity we can

choose the proper k1, ko, k3, k.

Say ki = k is fixed and

kihiky' = e, kshy'kyt = e, and kyhg k! = e gives us the following equations.
ko = khyi,

ks = khaa,
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]{?4 - /{?hgl.
Using the equations we found up to now, we get

)
K@(Ul)ﬁl_l = {]Chilk_l, ]{?hllhﬁlk_l, khglhfglhgllk_l, k_lhglklgh:;ll}(]. 2)(3 4) =
{e,e,e,e}(12)(34)

(ii) K@(Ug)ﬁ_l =
{k ™ horho k™Y khsihoy b k™Y, khoyho k™Y khyihooha k1 H(1 3)(2 4) =
{e,e e e}(13)(24)

(iii) k0(o3)k! =
(khathytk™" k= horhgt ik, khahashy k=, kharhy k=Y (1 4)(2 3) —
{e,e,e,e}(14)(23).

As a result, we get that ¢/ = 0(s) = {e, e, e,e}s = s. It follows that where (A,) =
T, T"is Ay.

Case3: ¥, 4(H),n #5

THEOREM 4.1.2. The group ¥, (H) splits over the basis group, ¥, s(H) = V,,UT,
V., N T = E. The group T is conjugate to some group T" obtained as follows. Let
G be a subgroup of H which is the homomorphic image of A, _1. Let gy, ..., g, be

generators of G, satisfying the following relations: (i) g3 = e,i = 4, ...,n,
(ii) (9i9;)* = e where i # j.
Let s; = (14 2) for i=3,...,n generate the group A,,. Then the elements of A,, with the

aid of the isomorphism 0 defined by 0(s3) =ty = {e,e, e, g4, ..., gn } (17 2).

0(s;) =t ={e, gi, 92, G2 a, .-, 92 Gi_1, ...g?, G2 Gis1s s G2 gn (11 2) for i=4,...,n.

Proof. The group X, 4(H ) consists of all symmetries where the permutation part is
an element of alternating group A,,. Again the group H is an arbitrary group as in the
case of X,,(H) complete monomial group. X, a(H)= (H x H X ... x H) x A,, ~
H A,,. The action of A,, on the direct product as before permutes the factors. Let

V,=H x H x ... x H and A, is the alternating group on n letters. So,
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YoaH)=V,xA, ie. V,NA,=1

Vi Ay =3, 4(H) so X, 4(H) splits over V,.

In this section we will consider the splitting problem of ¥, 4(H). Since ¥, 4(H) =
V. A, for any element g€ X, 4(H), we have (V,,.A,)¢ = VI9.A9 = V, A9, and
so when A,, is a complement of V,, then any conjugate of A,, namely AY is also a
complement of V,,. But there are cases that there might be other complements T of
Voioe. V,.T = ¥, 4(H) and V,,NT=1 but T may not be a conjugate of A,. (It
is clear that V,,.T = V,,.A,, and V,,.T/V,, = V,,.A,,/V,, ~ A, /A, NV, ~ A,, and
VT )V, ~T/V, NT ~T.) Hence every complement is isomorphic to alternating
group A,.. But we are interested in when T and A,, are conjugate If all complements

of V,, are conjugate, then we say that 3,, 4(H ) splits regularly.
Assume that T is a complement of V,,. Then by above, T is isomorphic to

A, . Moreover, as X, 4(H) = V,,.T the isomorphism
0:A,—T

can be written in the form that 6(a) = v,a where v, € V,,a € A,. The natural

isomorphism. (Every such isomorphism should be natural isomorphism. )

Claim: For ¢ # j,1 # 7,1 # j the elements (1 i 2) generate the alternating group A,

where i=3,...,n.

By taking conjugate of (11 2) with (1 j 2) we have
(1i2)199 = (ji1) = (1),
So we may obtain all 3-cycles of the form (1 i j) where i # j.

(1% 7)1 29=(k1ij)so we may obtain all 3-cycles of the form (i j k). Hence the group
Ay =< (1i2)]i=3, ..n>.

Let s;=(1 i 2). Since A, is generated by s;, then T is generated by 6(s;). Then
0(s;) =t; € T'and t; = s;v; where t; = {hy;, haj, ..., hp; } (14 2) where i=3, . . , n. So

we have t3, 4, ts5, ..., T, 1. €. we have n-2 ¢,’s.
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Since we want to find the complement T up to conjugacy we may take conjugate of

all ¢; with a fixed product v = {ky, ko, ..., k, }.

t; = Utﬂ)_l = {k’l, ]{]2, ey kn}{hh, hgi, ceey hm}(l 7 2){k;1, k;l, ey k';l}

= {kihaiki Y Rahoiki, ooy Kihisks Yy oy hihyiks Y L (102)

Since we want to find complement T of V,, up to conjugacy and k.s are arbitrary, we
may substitute k;s. So, let k; be arbitrary fixed element in H. Choose k; = k;hy; for

1=3,..,n.

Choose ky = kyhss. Then T'=vTv~! contains t; = {e, e, gs3, ..., gn3 } (132) t, =
{e, g2, .., gni } (13 2) for i=4, . . . , n. So, for i=3 and k; = k be an arbitrary
kahosky L' — ¢. We can solve ks as ky = k1h2_31. Hence from the 15 component

k1hisks '=e then ks = k1hs .

th = {e,e, 933, .., gn3 } (1 3 2)

Now, for 1> 4 we have,

th={e, g2, gni }(11 2) where i=4, . . . ,n, and g,; = kphpik, "
Since s;=(112) is a 3-cycle, s3=1. Then t; = 0(s;)® = 1.

Consider s;5,=(112)(1j 2)=(1 i)(2 j) where i # j. Then (s;5;)? = 1.
(t)* = {91921, 92iGiir > GiiG2iGiir -+ G -+ }

(tit5)? = {9i9i925 92i95i955+ -+ Gii92iGij» -+ 951955 92i> -+ (GkiGhj)* }

Recall, we have the isomorphism *: S,, — 7" such that *(s;) = t, Here, we have a
3-cycle for all ¢, where i =3, . . . , n for obtaining alternating group A,. So where
*(s;) = t, |s;| = |t}| since * is an isomorphism. Therefore, (#;)® = F . If we look at

the order of (¢;t};) we should think order of (s;s;).

(sis;)=(112)(1 j 2)=(1 1)(2 j). We see |s;5;|=2. So, |(tit})|=2. We get (tjt})* = E
where E is the identity of 7”.

We have from above calculation (/)% = {gii92i, 92iGii, -+ §iiG2iGii» -+ gj?i, ...} implies

that giig2; — € and 9ij9ii92; = € where ¢ 7é jand i, jE {3, 4, ceey TL}
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Noting that g;; = e = g1; = ¢ = g23 = €, and writing g; for go; we have g; = go; =

g;' and gz3 = g3 = e since g3 = ga3 = €.

Also, gij = (9ig2i) ™" = 92, 9" = 9591 = 95"
Ji3giigesz=e€ implies that g;3 = gigl =g, = g;il as gi; = gj’l-l.
If we use these equations then ¢, will have the form

ti={e, 90,97 9as - 97 ' 9n}-

If £ > 2 where k # j, k # iin (t;)* and (t]t})* the k™ factor will satisfy g; =
(97" g) =€, (gr,gx,)* = €.

For k=3, we found ¢} = (g:9;)* = e.
So, the elements g; where i=3,...,n generate a homomorphic group to A4,,_;.

The first, second and the i*" factors of (t})3areg?, g3, g3, respectively, and the first,
second, " and the j* factors of (]t})* are g2g;979;, 9:979;9: 979593 9> 97997 Yis

respectively.

Those above factors are e. If k > 2, thek'™ factors of (t])* and (t]t})* are (g7gi)?,

(979k939x)* where k # i and k # j, respectively. These factors also e.

Therefore there is n-2 elements in the generating set of the group which is

homomorphic image of A,. Permutation part of 7" is in A,,. So T” is isomorphic to

A,.

We found that 77 = A,,V NT" = E. Moreover, if y is in X, 4(H), then
y = vv; 'v18 = vat where 0(s) = v;s. Hence, 32, 4(H) = V,, UT.

]

THEOREM 4.1.3. The group 3, o(H) splits regularly over the basis group if and only

if H contains no non-trivial subgroup which is homomorphic image of A,_1.

Proof. Assume that H contains no non-trivial subgroup which is isomorphic image
of A, 1. Then the complement 7" obtained as in Theorem is simply A,,.

Hence splitting is regular over the basis group.
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Conversely, if the group ¥, 4(H) splits regularly, then by taking the conjugate of 7"
with an elementv & V. Where v = {ki,ks,...}, we obtain
vthv™" = {kiks ', kokyt ksky !, ... kngnk ' }(1 3 2). This element is a permutation

means that k;g;k; ' = e for all i=4,...,n. By multiplying from left by k; ' and from
right by k; we obtain g; = e for all i=4,...,n. It follows that the image G = {e}. [

COROLLARY 4.1.4. The group ¥, 4(H) for n=4,5 splits regularly over the basis

group if and only if H contains no element of order 3.

Proof. For n=4, the group H contains an isomorphic copy of A,,_; = Aj. But there
exists no element of order 3 in H implies that G = {e}. Then the epimorphism

between A,,_; and the group G in H will be trivial projection and 7" will be As.

Conversely, if the splitting is regular, then 7" will be conjugate of A;. Then the
multiplication part of the complement is trivial. Hence G contains no element of

order 3.

For ¥5 4(H), A,—1 = A4 and the epimorphism ¢ : Ay — G, G is a subgroup of H
we can say that all 3-cycles will go to identity. But in the elementary Abelian group K
in Ay all elements will be product of two 3 cycles and the homomorphism ¢ will send

all elements of A, into identity. Hence G = {e} and the splitting will be regular. [

Theorem {.1.3]implies for n > 6, the following corollary.

COROLLARY 4.1.5. Let n > 6. The group ¥, s(H) splits regularly over the basis

group if and only if H contains no subgroup isomorphic to A,,_1.

4.2 Splitting of X 4(H; B, B, d)

Now we go back to infinite case and discuss the splitting of X 4(H; B, BT, d) over
the base group V' (B, BT).
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In order to be able to talk about infinite alternating groups, each element must have a
finite support and so we can talk the permutation is odd or even. For this reason for
the splitting ¥ 4 (H; B, B™, d) we lie inside finitary symmetric group and hence even

permutations are in finitary symmetric group.

In the proof of the Theorem we discuss the isomorphism between S(B,C) and
S1(B, C') when C is an infinite cardinal.

The same proof will work for infinite alternating groups namely if B is infinite

cardinal then A(B,d) = A,(B,d) where A;(B, d) is the alternating group on the set
B\ {1}.

By using the similar technique for the infinite case one can prove the following

theorem.

Theorem 4.2.1. The complete alternating group ¥ 4(H; B, Bt ,d) splits over the
basis group V (B, BT).

Proof. Two conjugate complements T and 7" may be obtained by the following
method.
Let G be a subgroup of H obtained as a homomorphic image of A(B,d). Let gy, ..., g,

be generators of the group G with the following relations
(@) g = e, and
(b) (gegs)?* = e for € #.

We choose as generators of A(B,d) the three cycles s, = (1 «2) where a=34,...

Then the elements of the complement 7" are obtained by the isomorphism ¢ where

0(s3) =ty ={e,e,e,gay vy Ge, ... }(1 3 2)
0(sa) = t3 = {€, . 92, 9aga, s 9%, gage } (L @ 2)

O

Theorem 4.2.2. The group Y 4(H; B, BT, d) splits regularly over the basis group
V (B, B") if and only if the group H does not contain a subgroup isomorphic to the
alternating group A(B,d).
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Proof. 1t is well known that infinite alternating groups are simple. See also [4].

By theorem, there exists a homomorphism ¢ : A(B,d) — T'. Since A(B,d) is simple
we have two cases; ¢(B,d) = A(B,d) i.e., Ker¢ = {1} or Ker¢ = A(B,d).

Case 1: If Ker¢ = {1}, then ¢(A(B,d)) is a subgroup of H isomorphic to A(B,d).
But by assumption H does not contain any subgroup isomorphic to A(B,d). Hence

this case is impossible.So, the second case happens.

Case 2: In this case Ker¢ = A(B,d), and it follows that ¢(A(B,d)) = {1} i.e.,
Ker¢ = A(B,d). Hence, ¢ is the identity map in this case and so ¥ 4(H; B, BT, d)
splits regularly.

Conversely, assume that the complete alternating monomial group splits regularly
over the basis group V(B,B%). Then by a conjugate of an element of
Y 4(H; B, B",d), the complement T may be transformed to A(B,d). But as in the
case of finite case, this implies that the subgroup G in H which is the homomorphic
image of A(B,d) will be the identity group i.e., G = {e}. So, H contains no
subgroup isomorphic to A(B,d).

]

COROLLARY 4.2.3. For a given group H, there exists a complete monomial
alternating group Y (H; B, Bt d) such that the splitting of the monomial group

over the basis group is regular.

Proof. If we choose the cardinal B such that the order of A(B,d)=B is strictly greater
than the order of H, then by the above Theorem [{4.2.2), the isomorphism
¢ : A(B,d) — H must be an epimorphism i.e., ¢(A(B,d)) = {1}. Because in the
other case as A(B,d) is simple, ¢ must be one to one and hence H must contain an
isomorphic copy of A(B,d) which is impossible by the order of H, namely
|H| < B =|A(B,d)|. ]
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