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ABSTRACT

ONE-WAY ANOVA FOR TIME SERIES DATA WITH NON-NORMAL
INNOVATIONS: AN APPLICATION TO UNEMPLOYMENT RATE DATA

Yıldırım, Özgecan

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan Yozgatlıgil

Co-Supervisor : Prof. Dr. Birdal Şenoğlu

August 2017, 89 pages

ANOVA is a well-known approach when examining the equality of three or more
than three groups’ means. However, like every parametric test, some assumptions
are to be satisfied so that the appropriate and reliable conclusions are obtained. The
major emphasis of this thesis is the non-validated model assumptions of the one-
way ANOVA, where the independency and normality assumptions are considered
as non-validated. Indeed, in real life applications, it is not realistic to validate all
of those assumptions. That’s why, in the literature there exists a number of studies
related to the non-validated assumptions. For this thesis, a test statistic for one-way
ANOVA is introduced when the underlying distribution of the error terms is Student’s
t and the each group, which are compared for the equality of their means, follows
AR(1) process. In addition to one-way ANOVA test statistic, a test statistic for the
linear contrasts is introduced as well. A comprahansive simulation study is done
to investigate the performances of the corresponding test statistics. Finally, a real life
data related to the unemployment rate are analysed in order to illustrate the application
of the subjects stated under the scope of this thesis.

Keywords: One-Way ANOVA, Linear Contrasts, AR(1) Model, Student’s t Distribu-
tion
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ÖZ

NORMAL DAĞILIMA SAHİP OLMAYAN HATA TERİMLİ ZAMAN
SERİLERİ İÇİN BİR YÖNLÜ VARYANS ANALİZİ: İŞSİZLİK ORANI

VERİSİNE UYGULAMA

Yıldırım, Özgecan

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan Yozgatlıgil

Ortak Tez Yöneticisi : Prof. Dr. Birdal Şenoğlu

Ağustos 2017 , 89 sayfa

Varyans analizi, sayısı üç veya üçten fazla olan grupların ortalamalarının eşitliğinin
araştırılmasında yaygın olarak kullanılan bir yaklaşımdır. Fakat, bütün parametrik
testlerde olduğu gibi, burada da uygun ve güvenilir sonuçlara ulaşabilmek için bazı
varsayımların sağlanması gerekmektedir. Bu tezin temel vurgusu model varsayım-
ları sağlanmayan bir yönlü varyans analizidir, burada normallik ve bağımsızlık var-
sayımlarının sağlanmadığı durumlar üzerine yoğunlaşılmıştır. Aslında, gerçek hayat
uygulamalarında bu varsayımların hepsinin birden sağlanması gerçekçi değildir. Bu
nedenledir ki, literaturde sağlanmayan varsayımlar üzerinde yapılan bir çok çalışma
bulunmaktadır. Bu çalışmada, hata terimlerinin dağılımının Student’s t ve deneme or-
talamaları karşılaştırılan grupların AR(1) yapıda olduğu durumlar için test istatistiği
tanıtılmıştır. Bir yönlü varyans analizi test istatistiğine ek olarak, lineer bağıntılar için
de bir test istatistiği tanıtılmıştır. Söz konusu test istatistiklerinin performanslarını in-
celeyen geniş kapsamlı bir simulasyon çalışması yapılmıştır. Son olarak da, bu tez
kapsamında belirtilen konuların uygulamasına örnek teşkil etmesi için işsizlik oranı
veri seti analiz edilmiştir.

Anahtar Kelimeler: Bir Yönlü Varyans Analizi, Lineer Bağıntılar, AR(1) Model, Stu-
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CHAPTER 1

INTRODUCTION

There has been a number of studies done on the analysis of variance (ANOVA) frame-

work, which is used for comparing the equality of the means of the groups more than

two. Even the mean of the group itself does not play a big role, but within the compar-

ision cases it can carry significant information related to the data belongs to. Indeed,

comparison along with the means can sometimes act very important role for the data

analysis process. For these reasons, tests on the means have wide range of usage area

on the medicine, engineering, educational analysis etc. Another reason of this kind of

widespread usage area is sourced by the simple implementation of it. However, like

every parametric test, analysis of variance test also requires some assumptions to be

validated in order to get valid results. The starting point of this study actually those

assumptions. Once you aim to use this test you should be sure that the error terms of

the ANOVA model should be distributed independently and identically normal. The

compared groups are to be also independent from each other and the variances should

also be homogeneous. Actually the literature encapsulates lots of study on unfulfilled

assumptions of the variance analysis. Sometimes studies concentrated on one non

validated assumption, and sometimes more than one non validated assumptions, i.e.,

for example, it is tried to come up with a solution of the question that what to do when

faced with dependency and heterogeneity simultaneously. There are many studies in

the literature focusing on the problems stated above. Some of the important of ones

are presented below in order to have an idea on the gaps in the literature and have an

idea on the ways of handling of possible problems.

When the case is comparing means, literature suggests to start with the simple tests
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on the means, which are actually the one sample or two sample tests on the means,

because the problem investigated in this study is also a part of these tests. For this

reason, those studies found a place in our revison of the literature step. One of those

studies was done by Zwiers and Storch (1995). In their study, it was tried to propose

a new test statistic for serially correlated samples in order to test the mean. They

made a revision of the existing tests on this issues, used AR(1) model with gaussian

error terms, and finally recommended new test statistics to overcome the correlation

problem. Some of the one sample tests are examined in order to specify effect of the

dependency structure by Gastwirth and Rubin (1971). The results demonstrate that

the corresponding tests are seriously affected even there exists a slight dependence.

Likewise, Albers (1978) also studied on the dependency problem while testing the

mean.

The earlier studies related to the variance analysis are as follows:

"We most certainly want to dispel notions that correlation in data does not affect

inferences drawn from F test of ANOVA" (Scariano and Davenport, 1987). This

expression actually stress the importance of the independency assumption on the one

way ANOVA. Adke (1986) stated that one-way ANOVA procedure is invalid when

the dependency occurs between observations. This study focuses on the gaussian

stationary first order sequences. Baldessari (1987) adressed the properties of ANOVA

under dependency. This paper presents the sufficient condition on the covariance

matrix when the data is normaly distributed. Another study which pays attention to

the depencence across the distributions in one way ANOVA was done by Iorio et

al. (2004). In this paper, a new probability model which represents this dependency

was proposed. Correlated error terms issue was studied by considering the two way

analysis of variance framework as well (Anderson et al., 1981).

One of the studies dealing with dependency is done by Pavur (1988). In his article,

according to certain correlations within and between groups, it was shown that one-

way ANOVA design model can be rewritten with a difference sourced by a design

matrix multiplied by a constant. This study also provides ways to determine the even

small correlations for multiple comparison procedures.

Considering the observations as a form of time series is another way to handle de-
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pendency problem. One of the studies take this in care was done by MacNeill and

Umphrey (1987). Their discussion was mainly on one way classification when the

error terms are formed AR(1) process.

Keselman et al. (2003) illustrated the effect of using trimmed means on one way anal-

ysis, factorial completely randomized and correlated designs to distort the effect of

non-normality and non-constant variance. Clinch and Keselman (1982) compared the

type I errors and powers of three test statistics, one of which is ANOVA F test statis-

tisc, under some violated assumption cases. Nonnormality, heterogeneous variances

and unequal sample sizes were the concerns of this study. The rank transformation

approach was studied by Olejnick and James (1985). By examining the numerous

simulation studies, which were created by changing ratio of population variances,

sample sizes, distributional forms and difference in population means, type I error

and the power of the test statistic were evaluated. Another way of handling depen-

dency problem was practiced by Shumway (1970). Unlike the time domain studies,

this study worked on frequency domain.

One of the recent studies on the problem of dependency for ANOVA belongs to Lund

et al. (2016). They proposed a new test statistic for autocorrelated data to use one

way ANOVA. In other words, their focus was to apply one way variance analysis

when the data is autocorrelated. Their approach slightly different than the previous

studies. Their proposed test statistic is not based on the raw data, actually based on

the one step ahead prediction errors. Moreover, they showed that their test statistic

is distributed as classical F with customary degrees of freedoms. This study contains

comprehensive simulation study including type I errors and power comparisons of

the test statistics provided by previous studies. In another similar study, the aim is to

test the equality of the seasonal means for time series data (Liu et al., 2016). With the

wide range of simulation studies, the new test statistic was provided by their work.

This time the null hypothesis assess the equality of the seasonal means. The main

objective is actually similar with these two studies. This similarity is sourced by the

fact that the test statistic is based on the one step ahead prediction errors.

A number of study takes a part in literature which are based on functional data anal-

ysis (FDA). By using FDA, experimental design analysis can be easily done. The

3



reason why a new method is required is that independence within compared group

assumption is not validated when dealing with time dependent or correlated data.

That’s why if the observations are obtained in time, which simply implies that the

independence assumption is not met, with the help of FDA method this problem tried

to be overcomed. Horváth and Rice (2015) worked on this issue in their study. In

their work, the one way analysis of variance was studied by using one way functional

ANOVA (FANOVA). In their article, the new method was derived to test whether the

mean curves of the multiple functional population are same or not. Their method

was supported with simulation studies. Another study done by Górecki and Smaga

(2015) in which some new test statistics were proposed for functional data in one

way ANOVA and comparison were made between new and existing test in one way

ANOVA for functional data.

Literature covers many studies on the effect of non-normality over the test statistic

for the analysis of variance as well. Şenoğlu and Tiku (2001) showed the effect of

non-normality on the test statistic while working with two way classification model.

Their study is based on the method of modified likelihood (MML) and generalized

logistic distribution and weibull distribution are used for the distribution of the errors

of specified model. Moreover, type I error and power properties of their defined test

statistics were presented. Yılmaz (2004) also studied on experimental design frame-

work for her master’s thesis. In their work, generalized secant hyperbolic distribution

was used for the distribution of the error terms for the one way and two way classi-

fication models. Their study was also based on MML methodology and type I error

and power of the proposed test statistic were studied. The skew normal distribution

situation case was studied by Çelik et al. (2015). Their concentration was one way

anova model with the error terms distributed skew normal. The earlier studies were

done by Pearson (1931) and Geary (1947). In their work, it was tried to be found

out the effect of nonnormality of the error terms of the ANOVA model on the distri-

bution of the test statistics, i.e. their study focused on the effect of nonnormality on

the significance levels. The effect of nonnormality was also considered by David and

Johnson (1951), Srivastava (1959) and Tiku (1971). Their studies paid particular at-

tention to the type 2 errors. Indeed, it was desired to find out how the power function

is affected by the non-normality stiuations.
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Up to now, either the studies adress the non normality or the dependency are tried to

be presented. However, the number of studies combines these two cases are limited.

That is, there exists a few studies done on behalf of one way analysis when nonnor-

mality and correlation structures are experienced at the same time as far as we know.

The first one is studied by Pavur and Lewis (1982). Lognormal, uniform, double ex-

ponential and cauchy distributions were the concerns of this study. By using these

non-normal distributions with the correlation structure, performance of the corrected

F statistic was examined, where the corrected F statistic is nothing but the usual F

statistic multiplied by a constant. The second study was done by Şenoğlu and Bayrak

(2016). Their aim was to make one way classifion by using linear contrasts when the

distribution of error terms is gamma and the observations in each group follow AR(1)

model. In their paper, dependency was stressed by the observations from time series

and the non-normality was assured by gamma error terms. That is, it addresses the

dependency and non-normality problems simultaneously. The proposed test statistic

of this work was evaluated with type I error and power studies of the proposed test

statistic.

As far as our revision of literature, we could not encounter with the case of treatment

observation as time series and the distribution of the error term is student’s t. For this

reason, the aim of this study is to introduce the test statistic when the model itself

is AR(1) and the distribution of the error terms is student’s t simultaneusly. That

is, the focus is to present a test statistic for finding out the equality of the treatment

means of the groups, which are modelled by time series AR(1), with error terms from

student’s t distribution. The reason of choosing first order autoregressive model is that

it provides easiness in calculation because of its simple form. Student’s t distribution

is chosen for this study because of its wide range use in a number of areas especially,

when it is important to modelling the extreme cases such as finance, weather, network

etc.

The importance of the heavy-tailed distributions especially arises with financial field.

Because of the fact that the extreme cases are more likely to occur when using heavy

tailed model compared to normal model, heavy-tailed distributions have become act
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very important role in financial areas in order to capture extreme situations easily.

In their paper, Platen and Sidorowicz (2007) documented that log-return distribu-

tion of indices performs well under student’s t distribution. Similar conclusion was

reached by Champet et. al (2013). They stated that stock log returns provides heavy

tails.

Another study was presented by Lin and Shen (2006). The main concern was to

evaluate the performance of student’s t distribution. The purpose is to determine

whether it provides accurate value at risk (VaR) for risk management. The findings

supports that student’s t distribution can provide accurate VaR estimates. Moreover,

with the motivation of the conclusions of the previous studies, it can be stated that

financial asset returns are heavy-tailed.

Another area of usage of heavy-tailed distribution is the weather. Heavy-tailed aspects

of the daily weather conditions were studied by Sardeshmuckh et al. (2015). A

revision related to the heavy tails of climate or weather variable was presented by

Katz (2002).

Anderson and Meerschaert (1998) disscussed the implementation of heavy-tailed

models to hydrology. Another area of use of heavy-tailed distributions was stud-

ied by Hernández-Campos et al. (2004). Practical techniques for use of heavy-tailed

distributions were presented in network field.

Taking the range of use of the student’s t distribution into account, which is one of the

heavy-tailed distribution, the distributional focus of this study is based on student’s t

distribution.

The outline of this study is listed below:

In chapter 2, historical background of the methodologies used in this study are pre-

sented in a detailed way. That is, one-way ANOVA under experimental desing frame-

work, linear contrasts method and autoregressive models are discussed. The assump-

tions of the related fields are clearly stated. In addition to the assumptions, hypothesis

of the ANOVA and linear contrasts are pointed out. Classical normal theory test statis-

tics are appointed seperately for ANOVA and linear contrasts. Moreover, estimation
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methods used in this study while estimating the model and distribution parameters

are also provided.

In chapter 3, the objective model of this study is included. The related model assump-

tions are yielded exoterically. Furthermore, hypotheses about what we are exploring

are also given for ANOVA and linear contrasts one by one. The test statistics for

one-way ANOVA and linear contrasts are introduced as well.

In chapter 4, related simulation studies are presented and the results of these studies

are evaluated. The performances of the estimation methods are disscused. Type I

errors of the introduced test statistics are interpretted. In addition to this, the power of

the test statistics introduced by this study for one-way ANOVA and linear contrasts

are compared with the corresponding normal theory test statistics. The results are

evaluated in detail.

In chapter 5, the illustrative real life example is supplied in order to make a practice

with the introduced study. This chapter actually serves as a guide of the usage of

the introduced procedures stated throughout the entire study. The description of the

concerned data is given. Moreover, the results are handled by using the introduced

procedures and they are comprehensively interpreted.

In chapter 6, the aim and the importance of this study is stressed. This chapter oper-

ates as a summary of the whole study.
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CHAPTER 2

BASIC CONCEPTS

In this chapter, experimental design and the time series frameworks are studied in

detail. Actually, the related concepts of the experimental design and time series used

for the futher parts of this study are presented. The one way analysis of variance and

linear contrasts concepts under the experimental design framework is investigated.

Likewise, the first order autoregressive processes are examined under the time series

concept.

2.1 Experimental Design

One-way analysis of variance (one-way ANOVA) model is presented with the re-

quired assumptions of the test statistic used under the experimental design method-

ology and the related hypothesis test is also supplied. The linear contrasts concept is

introduced with the hypothesis, assumptions and test statistic as well.

2.1.1 One-Way Analysis of Variance

Analysis of variance concept is used for finding out the potential difference on the

means of treatments more than two. This is done by separating the total variance

into the components. One-way ANOVA is the specific and the simplest form of the

ANOVA in which only one factor effect is investaged. Under this concept, treatment

units are assumed to be approximately homogeneous within a treatment. The ho-

mogeniety actually means that treatment units are to be as similar as possible. That’s
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why one-way ANOVA often called as completely randomized design (Şenoğlu and

Acıtaş, 2004).

The model considered under one-way ANOVA is as follows:

yij = µ+ τi + εij, i = 1, 2, 3, ..., k; j = 1, 2, ..., ni (2.1)

where yij is the jth unit belongs to ith treatment and each treatment with ni unit ,

µ is the grand mean, τi is the ith treatment effect and εij is the random error of jth

observation of the ith treatment. Here µ is a fixed parameter and it can find a place in

the formula of µi, where µi = µ+ τi. In this formulation, µi represents the true mean

of the ith treatment.

The equation (2.1) is a fixed effect model because
∑k

i=1 τi = 0 which implies that

µ = (1/k)
∑k

i=1 µi.

Therefore, the model (2.1) can be written as:

yij = µi + εij, i = 1, 2, 3, ..., k; j = 1, 2, ..., ni. (2.2)

If the model (2.1) is the concern, the related hypothesis can be stated as follows:

H0 : τ1 = τ2 = ... = τk = 0 (2.3)

H1 : τi 6= 0 for at least one i.

The hypothesis actually aims to test the equality of treatment effect to 0. Treatment

means can also be used for the same target. That is, the hypothesis can be written

based on treatment means as in stated below:

H0 : µ1 = µ2 = ... = µk (2.4)

H1 : µi 6= µj for at least one pair of i and j.

The model assumptions are crucial to get valid conclusion for one-way ANOVA.

That’s why, these assumptions are listed below:
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1. εij’s are to be distributed normal with 0 mean and σ2 variance.

2. Variances of the error terms are to be homogenues.

3. Error terms are to be independent from each other (εij∼NID(0,σ2), indepen-

dently and identically).

For the sake of example, the data structure is given as follows.

Treatments

Observations 1 2 · · · k

1 y11 y21 · · · yk1

2 y12 y22 · · · yk2

...
...

...
...

...

n y1n y2n · · · ykn

The least square estimators of one-way ANOVA model (2.1) can be found in a way

that stated below.

Let S represents the sum of squared error (Assume that the size of each treatment

equals to n). That is; S be

S =
k∑
i=1

n∑
j=1

ε2
ij =

k∑
i=1

n∑
j=1

(yij − µ− τi)2. (2.5)

Then, in order to obtain the unknown parameters, the partial derivatives with respect

unknown parameters can be found in a way that stated below, by minimizing the S,

∂S

∂µ
= (−2)

k∑
i=1

n∑
j=1

(yij − µ− τi) = 0

∂S

∂τi
= (−2)

n∑
j=1

(yij − µ− τi) = 0. (2.6)

From the equation (2.6), least square (LS) estimators of µ and τi can be found as

respectively,

µ̃ = ȳ.. (2.7)

τ̃i = ȳi. − ȳ.., i = 1, 2, ..., k. (2.8)
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Similar to that LS estimator of µi in equation (2.2) can be easily obtained as:

µ̃i = ȳi., i = 1, 2, 3, ..., k. (2.9)

Therefore, the LS estimator of σ2 can be gathered after corrected for bias in a way

that supplied below:

σ̃2 =

∑k
i=1

∑n
j=1(yij − ȳi.)2

N − k
(2.10)

where ȳi. =
∑n
j=1 yij

n
, ȳ.. =

∑k
i=1

∑n
j=1 yij

N
and N=nk.

Parameters of ANOVA model can also be estimated by using maximum likelihood

(ML) method. The related estimators are actually same with the LS estimators which

are stated in equations (2.7) and (2.8). Likewise, the ML estimator of σ2 is the same

with LS estimator after corrected for bias as well (See equation (2.10)).

The related test statistic for testing the null hypothsesis given in (2.3) and/or (2.4) can

be reached by partitioning the total sum of square into sum of square treatment and

sum of square error. That is,

k∑
i=1

n∑
j=1

(yij − ȳ..)2 =
k∑
i=1

n∑
j=1

(ȳi. − ȳ..)2 +
k∑
i=1

n∑
j=1

(yij − ȳi.)2. (2.11)

This equation (2.11) represents the following,

SSTotal = SSTreatment + SSError. (2.12)

If the SSTreatment and SSError is divided by the relative degrees of freedom, the

following equation (2.13) is handled. These are mean square treatment and mean

square error. Therefore,

FTreatment =
SSTreatment/(k − 1)

SSError/(N − k)
(2.13)

=
MSTreatment
MSError

.
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Therefore the test statistic can be rewritten and it follows F distribution with (k-1) and

(N-k) degrees of freedoms:

FTreatment =
n
∑k

i=1(ȳi. − ȳ..)2/(k − 1)∑k
i=1

∑n
j=1(yij − ȳi.)2/(N − k)

∼ Fk−1,N−k. (2.14)

The equation (2.14) can be proved as follows.

Consider the following model,

yij = µ+ τi + εij, i = 1, 2, 3, ..., k; j = 1, 2, ..., n.

The distribution of the yij can be written as yij ∼ N(µi, σ
2) because of the distribu-

tion of the error terms εij ∼ N(0, σ2). Moreover, under the null hypothesis in (2.4),

yij ∼ N(µ, σ2). Therefore it can be stated that:

yij − µ
σ

∼ N(0, 1),

⇒
(
yij − µ
σ

)2

∼ χ2
(1),

⇒
k∑
i=1

n∑
j=1

(
yij − µ
σ

)2

∼ χ2
(N).

Write the LS estimator of µ instead of µ, therefore the degrees of freedom of the χ2

distribution decreases by the amount of one.

k∑
i=1

n∑
j=1

(
yij − ȳ..

σ

)2

∼ χ2
(N−1),

SSTotal
σ2

∼ χ2
(N−1), (2.15)

where SSTotal =
∑k

i=1

∑n
j=1 (yij − ȳ..)2.

Likewise, the SSTreatment and the SSError can also be written as respectively,

k∑
i=1

n∑
j=1

(
ȳi − ȳ..
σ

)2

∼ χ2
(k−1),

SSTreatment
σ2

∼ χ2
(k−1), (2.16)
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where SSTreatment =
∑k

i=1

∑n
j=1 (ȳi − ȳ..)2,

k∑
i=1

n∑
j=1

(
yij − ȳi.

σ

)2

∼ χ2
(N−k),

SSError
σ2

∼ χ2
(N−k), (2.17)

where SSError =
∑k

i=1

∑n
j=1 (yij − ȳi.)2.

Moreover, recall the equation (2.12),

SSTotal = SSTreatment + SSError.

In addition to this, the summation of degrees of freedom of SSTreatment and SSError

equals to the degrees of freedom of SSTotal, and represented by,

N − 1 = (k − 1) + (N − k).

Furthermore, according to the Cohchran Theorem, the statements in the equations

(2.16) and (2.17) are independent from each other and the ratio of two independent

χ2 distrubuted random variables divided by their own degrees of freedom creates F

distribution. Therefore,

FTreatment =
(SSTreatment

σ2 )/(k − 1)

(SSError
σ2 )/(N − k)

,

=
SSTreatment/(k − 1)

SSError/(N − k)
,

=
MSTreatment
MSError

∼ F(k−1),(N−k).

With the help of the related information presented above, one-way ANOVA table can

be obtained in a way that stated below:
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Table 2.1: One-Way ANOVA Table

Source of Variation df SS MS F
Treament k-1 SSTreatment MSTreatment FTreatment

Error N-k SSError MSError
Total N-1 SSTotal

2.1.2 Linear Contrasts

Linear contrasts method is one of the frequently used comparison method in the lit-

erature especially when the specific relations on the treatment means is tried to be

investigated. That is, when the null hypothesis (2.4) which claims the equality of the

treatment means is rejected, some pairwise or multiple comparisons are done in or-

der to specify the source of inequality of the means. One of the well known method

among these is the linear contrasts method. Actually, the comparison of pairwise

treatment means are done by using the linear combinations of the treatment means.

These contrasts are to be constructed before designing experiment. Moreover, if there

exists k treatment means, then only k-1 orthogonal linear contrasts can be builted.

The limitations on the linear contrasts framework are supplied below:

Let’s consider the two contrasts are defined asC1 =
∑k

i=1 c1iµi andC2 =
∑k

i=1 c2iµi.

Therefore, the conditions

k∑
i=1

c1i = 0 and
k∑
i=1

c2i = 0 (2.18)

are to be satisfied. Moreover, in order to hold the orthogonality of the linear contrasts,

k∑
i=1

c1ic2i = 0. (2.19)

Let’s consider the following null hypothesis as an example,

C1 : µ3 − µ1 = 0

C2 : µ1 − 2µ2 + µ3 = 0

∑k
i=1 c1i = (−1 + 0 + 1) = 0 ,

∑k
i=1 c2i = (1− 2 + 1) = 0 and

∑k
i=1 c1ic2i = (−1 + 0 + 1) = 0.
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Two conditions stated in equations (2.18) and (2.19) are satisfied for linear contrasts.

Therefore, it can be stated that C1 and C2 are named as orthogonal linear contrasts.

Here the main goal is to test the null hypothesis:

H0 :
k∑
i=1

ciµi = m. (2.20)

Constant "m" is often taken as 0, and this hypothesis is tested with the test statistic

stated below:

tc =

∑k
i=1 ciµ̂i −m√
V (
∑k

i=1 ciµ̂i)
∼ N(0, 1). (2.21)

When V(µi) is not known, which is the function of σ2, mean squared error (MSE) is

used instead of σ2. Then,

tc =

∑k
i=1 ciµ̂i −m√
V̂ (
∑k

i=1 ciµ̂i)
∼ tN−k. (2.22)

The null hypothesis given in (2.20) can be tested by using F statistic rather than the t

statistic as,

Fc =
SSc/1

MSE
=

MSc
MSE

, where SSc =
n(
∑k

i=1 ciȳi.)
2∑k

i=1 c
2
i

. (2.23)

Therefore, the test statistic (2.23) for the null hypothesis (2.20) is compared with the

tabulated F with degrees of freedom k-1, dferror, which is Fk−1,dferror .

2.2 Time Series Analysis

Time series anaysis pays particular attention to the data whose units are collected in

time order. In other words, the measurements for a variable is obtained in a sequence

of time, for example time sequence can be day, month, year or etc. In this section,

related time series process studied in this study is presented. Moreover, the model and

the related assumptions are introduced and some estimation methods are supplied.
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2.2.1 The First Order Autoregressive Process

This study focuses on the first order autoregressive process, that is also known as

AR(1) model. The related model is presented below:

yt = a+ φyt−1 + εt, εt ∼ WN(0, σ2); t = 1, 2, ..., n. (2.24)

The model (2.24) concentrated on the relation between time point t and previous time

point t-1. This relation is represented by the coefficient φ. In the model (2.24), yt

symbolizes the data point for time t, likewise yt−1 symbolizes the data point for t-1.

Moreover, εt represents the error terms of the conducted model. For this model, if φ

equals 1 and a equals 0 model (2.24) becomes a random walk model. Furthermore

the model (2.24) can be stated in a way that supplied below (under the stationarity):

yt = (1− φ)µ+ φyt−1 + εt, εt ∼ WN(0, σ2); t = 1, 2, ..., n. (2.25)

The difference between model (2.24) and (2.25) is sourced by parameters a and µ

because a does not represent the process mean however µ does. That is, a and µ can

be expressed as follows:

a = (1− φ)µ and µ =
a

1− φ
. (2.26)

Because it is one of the important assumptions for the error terms the properties of

the white noise process are to be known. That’s why, the conditions on a process, say

εt, to be white noise are listed below:

i. E(εt) = 0

ii. V (εt) = σ2

iii. Cov(εt, εt+h) = 0 for all h 6= 0.

Properties of Stationarity

Stationarity is a crucial concept for time series analysis because of the fact that almost

all statistical inferences are done under the stationarity condition. Actually, it often

appears as an assumption (Wei, 2006). The logic behind the stationarity is that the

characteristic of the process does not diversify in time. If the related process does
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not meet the stationarity assumption, then suitable technique should be applied to

validate stationarity before the statistical inference step. There exists two types of

stationarity definition, which are weak and strong stationarity. Applicational problem

of the strong stationarity makes it useless. That’s why, the term stationarity implies

the weak stationarity.

The conditions of weak stationarity are listed as below:

i. E(yt) = µ for all t,

ii. V (yt) = σ2 <∞ for all t,

iii. Cov(yt, yt−h) = γh for all t,

iv. Corr(yt, yt−h) = ρh for all t. (2.27)

Parameter Estimation in Time Series Model

Parameter estimation procedure for time series models is done by conditional maxi-

mum likelihood or unconditional maximum likelihood procedures which are actually

the approximations. Moreover, least square estimation methodology is also used as

well as Yule’s Walker estimation procedure (Wei, 2006). These estimation techniques

are not provided under the context of this study. The related estimation techniques

used for this study is supplied under the Section 3.1.

Process Mean, Autocovariance Function (ACF) and Partial Autocovariance Func-

tion (PACF)

Consider the model (2.25).

The process mean of the yt series can be found as follows:

E(yt) = E((1− φ)µ) + E(φyt−1) + E(εt),

= (1− φ)µ+ φE(yt−1),

= E(yt−1) because of stationarity,

= (1− φ)µ+ φE(yt),

= µ. (2.28)
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The autocovariance function (γh) can be obtained as,

γ(h) = Cov(yt, yt−h),

= E ((yt − µ)(yt−h − µ)) ,

= E ((φ(yt−1 − µ) + εt)(yt−h − µ)) ,

= E(φ(yt−1 − µ)(yt−h − µ) + E((yt−h − µ)εt),

= φγ(h−1); for h ≥ 1. (2.29)

Therefore, the variance of yt can be written in terms of γh when h=0. That is,

V (yt − µ) = V (φ(yt−1 − µ) + εt),

V (yt − µ) = φ2V (yt−1 − µ) + V (εt),

γ(0) = φ2γ(0) + σ2,

=
σ2

1− φ2
· (2.30)

Here the γ(0) represents the variance of the stationary yt series.

The autocorrelation function can be obtained as follows:

ρh = φρh−1; for h ≥ 1.
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CHAPTER 3

PARAMETER ESTIMATION AND HYPOTHESIS TESTING IN

ONE-WAY ANOVA FOR TIME SERIES DATA WITH

NON-NORMAL INNOVATIONS

In this chapter, the objective model is given with the related assumptions. More-

over, parameter estimation part is included. Therefore, the test statistics for one-way

ANOVA and linear contrasts are introduced.

Consider the model,

yi,t = φyi,t−1 + (1− φ)µi + εi,t, i = 1, 2, ..., c; and t = 1, 2, ..., n, (3.1)

where c is the number of treatment and each treatment has n observations. yit is the

tth observation for ith treatment. Moreover, yi,t−1 is the t-1th unit of the treatment i. εit

represents the error term of the tth unit of the treatment i as well. As it can be seen

from the model (3.1), each treatment follows the first order autoregressive process

and the autoregressive coefficient is common for all treatment and symbolized by φ.

However, the treatment means are different from each other, and indicated with µi,

which insinuates that each treatment mean is distinguished from each others’. By

using the model (3.1), our main target is to identify the differences in the mean of

treatment with one-way variance analysis.
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Assumptions of our model are listed below:

i. εi,t are independently and identically distributed as Student’s t(ν, 0, σ2),

ii. yi,t
′s follow AR(1) process,

iii Variances of the error terms are homogeneous.

There exits differences between our assumptions and the classical one-way ANOVA

assumptions. The first one is the distribution of the error terms of the model. For the

classical assumption, error terms are to be distributed as normal, however, in our as-

sumption error terms are distributed as Student’s t. The second difference within the

assumptions is associated with the independency assumption. In classical assump-

tion, error terms are to be distributed independently and identically, which alludes

the independency of the treatment units (yi,j). However, although in our case error

terms are distributed independently and identically, the treatment units (yi,t) are not

independent, on the contrary, they follow AR(1) process.

3.1 Parameter Estimation of the Model Parameters

In this part, the model and the distribution parameters are estimated by using two

well known parameter estimation methodologies. The first one is maximum likeli-

hood estimation (MLE) method and the least squares estimation (LSE) is the second

estimation method used for this study. For both, the shape parameter of the student’s

t distribution is assumed to be known.

3.1.1 Maximum Likelihood Estimation

In our model (3.1), error terms are independently and identically distributed as Stu-

dent’s t. Consider the model (3.1),

yi,t = φyi,t−1 + (1− φ)µi + εi,t, i = 1, 2, ..., c; t = 1, 2, ..., n.
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Hence, the error terms can be rewritten as stated below:

εi,t = yi,t − φyi,t−1 − (1− φ)µi. (3.2)

By the guideness of the information related with the distribution of the error terms,

the probability density function can be obtained in a way that is stated below:

εi,t ∼ t (ν,0,σ2)

with probability density function stated as,

f(εi,t) =
1

σ

Γν+1
2

Γν
2

√
πν

(
1 +

(εi,t/σ)2

ν

)− ν+1
2

, ν > 0; σ > 0; −∞ < ε <∞.

Therefore, the log-likelihood function symbolized by lnL, which is lnL(ν, µ, φ, σ; yi,t, yi,t−1),

can be obtained in a way that is stated below:

lnL = = ncln(Γ(ν + 1)/2)− ncln(σ)− ncln(νπ)/2−

ncln(Γν/2)− ν + 1

2

c∑
i=1

n∑
t=1

ln

(
1 +

εi,t/σ)2

ν

)
(3.3)

by substituting (3.2) into the equation (3.3),

lnL = lnL(ν, µ, φ, σ; yi,t, yi,t−1) = ncln(Γ(ν + 1)/2)− ncln(σ)− ncln(νπ)/2

−ncln(Γν/2)− ν + 1

2

c∑
i=1

n∑
t=1

δi,t(ν, µ, φ, σ) (3.4)

where δi,t(ν, µ, φ, σ) = ln
(

1 +
((yi,t−φyi,t−1−(1−φ)µi)/σ)2

ν

)
.

Therefore, in order to obtain the estimators which maximize the lnL, the partial

derivatives with respect to each unknown parameters are equated to 0. Then,

∂lnL

∂µi
= −ν + 1

2

n∑
t=1

−2ν−1σ−2(yt − φyt−1 − (1− φ)µi)(1− φ)

1 + (yt − φyt−1 − (1− φ)µi)2ν−1σ−2
= 0,

∂lnL

∂φ
= −ν + 1

2

c∑
i=1

n∑
t=1

2ν−1σ−2(yi,t − φyi,t−1 − (1− φ)µi)(µi − yi,t−1)

1 + (yi,t − φyi,t−1 − (1− φ)µi)2ν−1σ−2
= 0,

∂lnL

∂σ2
= −ncσ

−2

2
− ν + 1

2

c∑
i=1

n∑
t=1

−(yi,t − φyi,t−1 − (1− φ)µi)
2ν−1σ−4

1 + (yi,t − φyi,t−1 − (1− φ)µi)ν−1σ−2
= 0.
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Since there are no closed form solutions for the parameters stated above, the maxi-

mum likelihood estimators of the unknown parameters are tried to be obtained by us-

ing numerical methods. To do so, with the help of iterative methods the loglikelihood

function (3.3) is maximized with the optimal values for the unknown parameters.

3.1.2 Least Squares Estimation

In this part, the same model and distribution parameters are tried to be estimated this

time by using the least squares (LS) methodology, which does not require distribu-

tional assumption. Consider the model (3.1),

yi,t = φyi,t−1 + (1− φ)µi + εi,t ⇒ εi,t = yi,t − φyi,t−1 − (1− φ)µi.

Then, let define S in a form that is stated below:

S =
c∑
i=1

n∑
t=1

(yi,t − φyi,t−1 − (1− φ)µi)
2 . (3.5)

Therefore, partial derivatives with respect to the unknown parameters are equated to

0 so that the LS estimators can be obtained by,

∂S

∂µi
= −2

n∑
t=1

(yi,t − φyi,t−1 − (1− φ)µi) (1− φ) = 0,

∂S

∂φ
= 2

c∑
i=1

n∑
t=1

(yi,t − φyi,t−1 − (1− φ)µi) (µi − yi,t−1) = 0.

Hence, by solving the equations stated above, the LS estimators are obtained as,

µ̃i =
n∑
t=1

yi,t − φ̃yi,t−1

(1− φ̃)n
and φ̃ = −

∑c
i=1

∑n
t=1(yi,t − µ̃i)(µ̃i − yi,t−1)∑c

i=1

∑n
t=1(yi,t−1 − µ̃i)2

· (3.6)

The LS estimator of σ2 is to be adjusted for bias, because V (εi,t) = σ2 ν
ν−2

after

corrected for bias, we derive it as,

σ̃2 =

∑c
i=1

∑n
t=1

(
yi,t − φ̃yi,t−1 − (1− φ̃)µ̃i

)2

N − c− 1

ν − 2

ν
· (3.7)

24



As it can be clearly seen from the equations (3.6) and (3.7), obtaning the LS estimators

are to be done with solving equations simultaneously. To do so, numerical methods

are used, that’s why the estimators are the approximations.

3.2 Hypothesis Testing in One-Way ANOVA

In this subsection, considering the model (3.1), the equality of the means of the treat-

ments are tested with the hypothesis test written below:

H0 : µ1 = µ2 = ... = µc (3.8)

H1 : µi 6= µj for at least one pair of i and j.

The corresponding test statistic is reported as,

F =

∑c
i=1

(
µ̂i−µ̂√
V̂ (µ̂i)

)2

/(c− 1)

∑c
i=1

∑n
t=1

(
yi,t−µ̂i√
V̂ (yi,t)

)2

/(nc− c)
∼ Fc−1,nc−c. (3.9)

where µ̂i is the estimator of the ith treatment mean, µ̂ is the estimator of the grand

mean, which is actually the average of the treatment means and yi,t corresponds to

the tth unit of the ith treatment. The variance term on the numerator of the test statistic

is the estimated variance of the estimated ith treatment mean and it can be estimated by

several ways. In this study, variance of the treatment means are tried to be estimated

by using 3 different ways. For each way, corresponing test statistics are supplied in

following sections. However, the variance term on the denumerator part of the test

statistic is found in a way that is stated below:

Consider the model (3.1), and the variance of the yi,t can be found as:

V (yi,t) = V (φyi,t−1 + (1− φ)µi + εi,t),

= V (yi,t−1) because of the stationarity of the y′is,

Here, (1 − φ)µi is constant and the response at time t-1 (yi,t−1) and the error term in
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time t (εi,t) are independent. Therefore, the variance of yi,t can be found as:

V (yi,t) = V (φyi,t−1) + V ((1− φ)µi) + V (εi,t),

= φ2V (yi,t) + V (εi,t),

= V (εi,t)/(1− φ2) where V (εi,t) = σ2 ν

ν − 2

=
σ2

1− φ2

ν

ν − 2
·

Since the parameters are unknown, in order to estimate the variance of the yi,t, the

estimators are to be placed in the formula as:

V̂ (yi,t) =
σ̂2

1− φ̂2

ν

ν − 2
· (3.10)

It should be noted that, the parameter ν is assumed to be known.

3.2.1 The Variance of Treatment Means Obtained by Simulation

The variance of the treatment means symbolized by V(µ̂i) can be found by simula-

tion. That is, a number of simulations are done and that specified size of treatment

means are obtained. Moreover, by using the tretment means handled by simulation

the estimated variance can be gathered by using simple sample variance formula.

Consider that the number of simulation runs is J, that is J treatment means are at

hand. Then, one can easily estimate the related variance by using the formula pro-

vided below:

V̂ (µ̂i) =

∑J
j=1

(
µ̂i,j − ¯̂µi

)2

J − 1
· (3.11)

3.2.2 The Variance of Treatment Means Obtained by Fisher Information Ma-

trix

Another way to estimate the variance of the treatment means,V(µi), is to use related

diagonal of the inverse of the Fisher Information Matrix (a.k.a. information matrix).

Recall that the loglikelihood function, lnL, given in 3.3,

lnL = ncln(Γ(ν + 1)/2)− ncln(σ)− ncln(νπ)/2− ncln(Γν/2)−
ν + 1

2

c∑
i=1

n∑
t=1

ln

(
1 +

(εi,t/σ)2

ν

)
.
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General form of Fisher information matrix:

I =


−E

(
∂2lnL
∂µ2

)
−E

(
∂2lnL
∂µ∂φ

)
−E

(
∂2lnL
∂µ∂σ

)
−E

(
∂2lnL
∂φ∂µ

)
−E

(
∂2lnL
∂φ2

)
−E

(
∂2lnL
∂φ∂σ

)
−E

(
∂2lnL
∂σ∂µ

)
−E

(
∂2lnL
∂σ∂φ

)
−E

(
∂2lnL
∂σ2

)
 .

The first diagonal element of the Fisher Information Matrix is

I11 = −E
(
∂2lnL
∂µ2

)
= −E

∑n
t=1

(ν+1)(1−φ)2

νσ2

 1

1+
(εi,t/σ)

2

ν

− 2
νσ2

ε2t(
1+

(εi,t/σ)
2

ν

)2

 .

This term can be written as follows:

I11 =
ν + 1

ν

n

σ2
(1− φ)2

(
T ∗ − 2

νσ2
T ∗∗
)
, (3.12)

since there is no closed form of those expectation terms, with the help of the numerical

approaches those can be easily obtained in calculations.

The second diagonal element of the Fisher Information Matrix is

I22 = −E
(
∂2lnL

∂φ2

)
=
ν + 1

2

c∑
i=1

n∑
t=1

2

νσ2
E(µi − yi,t−1)2

(
T ∗ − 2

νσ2
T ∗∗
)
,

I22 = −E
(
∂2lnL

∂φ2

)
=
ν + 1

ν − 2

nc

1− φ2

(
T ∗ − 2

νσ2
T ∗∗
)
.

The third diagonal element of the Fisher Information Matrix is

I33 = = −E
(
∂2lnL

∂σ2

)
=
nc

σ2

(
ν + 1

νσ2
− 1

)(
3T ∗∗∗ − 2

νσ2
T ∗∗∗∗

)
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where

T ∗ = E

(
1

1 +
(εi,t/σ)2

ν

)
,

T ∗∗ = E

 ε2
i,t(

1 +
(εi,t/σ)2

ν

)2

 ,

T ∗∗∗ = E

(
ε2
i,t

1 +
(εi,t/σ)2

ν

)
,

T ∗∗∗∗ = E

 ε4
i,t(

1 +
(εi,t/σ)2

ν

)2

 .

The off-diagonals can be obtained as,

I12 = I21 = −E
(
∂2lnL

∂µ∂φ

)
=
ν + 1

2

n∑
t=1

E(A+B) =
ν + 1

2

n∑
t=1

E(A) + E(B),

where

A =
2ν−1σ−2 (yi,t + (1− 2φ)yi,t−1 − 2(1− 2φ)µi)

(1 + ε2
i,tν
−1σ−2)

,

B =
4ν−2σ−4(1− φ)(µi − yi,t−1)ε2

i,t

(1 + ε2
i,tν
−1σ−2)2

·

Rearrange the equation A,

A =
yi,t−1 − yi,t + 2εi,t
(1 + ε2

i,tν
−1σ−2)

2ν−1σ−2. (3.13)

Under the random shock representation the part A can be rewritten as,

A =

∑∞
j=1 φ

j−1(1− φ)εi,t−j + εi,t

(1 + ε2
i,tν
−1σ−2)

2ν−1σ−2

with expectation

E(A) = 2ν−1σ−2

∞∑
j=1

φj−1(1− φ)E

(
εi,t−j

(1 + ε2
i,tν
−1σ−2)

)
+

E

(
εi,t

(1 + ε2
i,tν
−1σ−2)

)
.

The expectation stated above can be written as follows because the first part includes

two independent variables which are εi,t and εi,t−j . Thus, the expected A is,

E(A) =
∞∑
j=1

φj−1(1− φ)
E(εi,t−j)

E(1 + ε2
i,tν
−1σ−2)

+ E

(
εi,t

(1 + ε2
i,tν
−1σ−2)

)
. (3.14)
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Since E(εt−j) = 0, the first part of the E(A) equals to 0. The second part of the E(A)

is also 0 by numerical solution.

The part B can be decomposed as follows:

B =
4ν−2σ−4(1− φ)µiε

2
i,t

(1 + ε2
i,tν
−1σ−2)2

−
4ν−2σ−4(1− φ)yi,t−1ε

2
i,t

(1 + ε2
i,tν
−1σ−2)2

,

with expectation

E(B) = 4ν−2σ−4(1− φ)

(
µiE

(
ε2
i,t

(1 + ε2
i,tν
−1σ−2)2

)
− E

(
yi,t−1ε

2
i,t

(1 + ε2
i,tν
−1σ−2)2

))
.

Since yi,t−1 and εi,t are independent from each other, which points out the indepen-

dency of the yi,t−1 and ε2
i,t, so E(B) can be written as,

E(B) = 4ν−2σ−4(1− φ)µiE

(
ε2
i,t

(1 + ε2
i,tν
−1σ−2)2

)
−

4ν−2σ−4(1− φ)E(yi,t−1)E

(
ε2
i,t

(1 + ε2
i,tν
−1σ−2)2

)
.

Moreover, since E(yi,t−1) = µi,

E(B) = 4ν−2σ−4(1− φ)µiE

(
ε2
i,t

(1 + ε2
i,tν
−1σ−2)2

)
−

4ν−2σ−4(1− φ)µiE

(
ε2
i,t

(1 + ε2
i,tν
−1σ−2)2

)
= 0.

Therefore, since both E(A) and E(B) are equal to 0 then I12 = 0, which means that µi

and φ are independent from each other.

The other off-diagonal element of the Fisher Information Matrix is,

I13 = I31 = −E
(
∂2lnL

∂µ∂σ

)
=

ν + 1

2

n∑
t=1

E(C −D) =
ν + 1

2

n∑
t=1

E(C)− E(D)

where

C =
4ν−1σ−3(1− φ)εi,t
(1 + ε2

i,tν
−1σ−2)

D =
4σ−5ν−2(1− φ)ε3

i,t

(1 + ε2
i,tν
−1σ−2)2
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with expectations of C and D,

E(C) = 4ν−1σ−3(1− φ)E

(
εi,t

(1 + ε2
i,tν
−1σ−2)

)
E(D) = 4ν−2σ−5(1− φ)E

(
ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

)
.

Both E(C) and E(D) are 0 by numerical solutions, therefore I13 equals to 0, which

indicates the independency of µi and σ.

The last off-diagonals can also be shown similarly as,

I23 = I32 = −E
(
∂2lnL

∂σ∂φ

)
=

ν + 1

2

c∑
i=1

n∑
t=1

E(F +G) =
ν + 1

2

c∑
i=1

n∑
t=1

E(F ) + E(G)

where

F = −4σ−3ν−1(µi − yi,t−1)
εi,t

(1 + ε2
i,tν
−1σ−2)

G = 4σ−5ν−2(µi − yi,t−1)
ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

·

Recall that because of the stationarity, E(yi,t−1) = µi and yi,t−1 and εi,t are indepen-

dent,by using these facts rearrange F, G, E(F) and E(G) respectively;

F = −4σ−3ν−1

(
µi

εi,t
(1 + ε2

i,tν
−1σ−2)

− yi,t−1
εi,t

(1 + ε2
i,tν
−1σ−2)

)
,

G = 4σ−5ν−2

(
µi

ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

− yi,t−1

ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

)
,

with expectations

E(F ) = −4σ−3ν−1

(
µiE

(
εi,t

(1 + ε2
i,tν
−1σ−2)

)
− E (yi,t−1)E

(
εi,t

(1 + ε2
i,tν
−1σ−2)

))
,

E(G) = 4σ−5ν−2

(
µiE

(
ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

)
− E (yi,t−1)E

(
ε3
i,t

(1 + ε2
i,tν
−1σ−2)2

))
.

From the equations above, it can be obviously seen that E(F) and E(G) are both equal

to 0. Therefore, I23 is 0, which points out the independency of the φ and σ.

Since all the off diagonals are equal to 0, the inverse of the Fisher Information Matrix

30



is simply found as below:

I−1 =


1
I11

0 0

0 1
I22

0

0 0 1
I33

 .
Therefore, the variance of the treatment mean in the numerator of the equation (3.9)

can be estimated by 1 over the first diagonal element of the Fisher Information Matrix

named as (3.12). Then, the variance obtained by Fisher Information Matrix is given

as,

V̂ (µ̂i) =
1

ν+1
ν

n
σ̂2

(
1− φ̂

)2 (
T ∗ − 2

νσ̂2T ∗∗
) · (3.15)

3.2.3 The Variance of Treatment Means Obtained by Observed Information

Matrix

The asymtotic covariance matrix of the estimators can be obtained by hessian matrix

as well. That is, the asymptotic variance of the µ̂i can be obtained from the related

diagonal element of the inverse of the negative hessian matrix evaluated at µ̂i.

The hessian matrix can be shown as follows:

H =


∂2lnL
∂2µ

∂2lnL
∂µ∂φ

∂2lnL
∂µ∂σ

∂2lnL
∂φ∂µ

∂2lnL
∂φ2

∂2lnL
∂φ∂σ

∂2lnL
∂σ∂µ

∂2lnL
∂σ∂φ

∂2lnL
∂σ2

 .

Therefore, in order to test the null hypothesis stated with (3.8), the test statistic (3.9)

is used, in which the V̂ (µ̂i) is obtained from the related diagonal of the inverse of the

negative hessian matrix.

3.3 Hypothesis Testing in Linear Contrasts

In this section, the model given by (3.1) is considered and the linear combinations of

the treatment means are tested by using the contrast vectors. The related hypothesis
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is given by,

H0 :
c∑
i=1

liµi = 0 (3.16)

H1 :
c∑
i=1

liµi 6= 0

This null hypothesis (3.16) is tested with the test statistic given below:

t =

∑c
i=1 liµ̂i√∑c
i=1 V̂ (liµ̂i)

· (3.17)

Test statistic (3.17) asymptotically follows standard normal distribution (Şenoğlu and

Bayrak, 2016).

Indeed, the estimated variance of the treatment means can also be obtained by three

different ways for the test statistic of linear contrasts (3.17). The first one is using

simulated variances (3.11), using the related diagonal element of the inverse Fisher

Information Matrix (3.15) is the second way of estimating the variance of the treat-

ment mean. The last way is using the observed information matrix, that is, using the

related diagonal of the inverse of the negative hessian matrix (3.2.3).
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CHAPTER 4

SIMULATION STUDY

In this chapter, various simulation scenarios are created for different models and pa-

rameters of distribution values so that the efficiency of functions and the conducted

tests can be easily captured. In the first part of the simulation studies, model and

distributional parameters are tried to be estimated by using the maximum likelihood

estimation (MLE) method and least squares estimation (LSE) method. This part stud-

ies the simulated means, simulated mean square errors (MSE) and simulated relative

efficiencies (RE). The comprehansive simulation results related with the simulated

means, simulated MSE and RE are observed for different sample sizes, degrees of

freedom and AR(1) coefficients. The second part of this chapter encapsulates the re-

sults of the empirical type 1 errors of the conducted test statistic by using simulated

variances, variance found from Fisher information matrix and variance found from

observed information matrix for one-way ANOVA. Moreover, the related power ta-

bles are also provided under this chapter. The third part of this chapter supplies the

results of the empirical type 1 errors of the conducted test statistic by using simu-

lated variances, variance found from Fisher information matrix and variance found

from observed information matrix for the linear contrasts. The related power tables

are given as well. The calculations of this chapter are done in R Statistical Software

environment (R Core Team, 2016).
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4.1 Comparison of the Estimators of the Model Parameters

In this subsection, simulated means of the maximum likelihood (ML) estimators and

least squares (LS) estimators are obtained. L-BFGS-B method , which is one of the

quasi Newton method, is used for obtaining ML estimators (Nash, J. C. and Varadhan,

R., 2011). LS estimators are found by applying Newton algorithm (Hasselman, B.,

2016). That is, since there is no closed form expression of the estimators for each

estimation method, the approximate estimation results are presented on the tables

stated under this part of the chapter. Moreover, here for example, µ̃ and µ̂ represent

the estimator of treatment mean by using the method of LS and ML respectively.

In here, for the sake of easiness only three treatments are used and the treatment

means are set to be 0. For each run, specified size of independent errors are generated

with the specified degrees of freedom with 0 mean. The scale parameter of the errors

is used as 1 for all simulation scenarios (σ=1). By using these random errors, three

time series each belongs to a treatment are generated.

In order to represent the wide range of correlation structure, AR(1) coefficient is cho-

sen to be φ=-0.8, -0.4, -0.2, 0.0, 0.2, 0.4, 0.8 from negative to positive. The sample

sizes are chosen to be n=50, 100, 200 and 500 so that the effect of sample size on the

estimation can be easily judged. For simplicity, length of each treatment is set equally,

this is ni=n. Moreover, degrees of freedom effect on the estimations are tried to be

kept under control by using diversified value for ν,where ν is chosen as 3, 6, 12, 24.

For each scenario, 1,000 Monte Carlo runs are simulated. Moreover for each case,

mean square error is obtained in order to judge the performances of the estimation

methods accurately. Furthermore, the comparability of the MLE and LSE methods

is evaluated by the relative efficiency which is found by the ratio of the variance of

ML estimators and variance of LS estimators multiplied by 100, which is for example

RE = 100∗ V (µ̂MLE)
V (µ̃LSE)

. The results are disscused in detailed at the end of this part. The

related tables are presented below:
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Table 4.1: Simulated Means, MSE’s and RE’s of the Estimators; ν=3 , φ=-0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.000 -0.795 0.958 0.001 -0.796 0.968
100 -0.002 -0.797 0.968 -0.001 -0.798 0.985
200 -0.001 -0.798 0.992 -0.002 -0.799 0.991
500 0.001 -0.800 0.988 -0.001 -0.800 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.020 0.003 0.061 0.010 0.002 0.007 48 64 11
100 0.009 0.001 0.036 0.005 0.001 0.003 55 60 9
200 0.005 0.001 0.097 0.002 0.000 0.002 43 59 2
500 0.002 0.000 0.014 0.001 0.000 0.001 53 56 5

Table 4.2: Simulated Means, MSEs and REs of the Estimators; ν=3 , φ=-0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.004 -0.409 0.965 0.007 -0.405 0.967
100 -0.005 -0.400 0.969 -0.004 -0.400 0.979
200 -0.004 -0.403 0.979 -0.001 -0.402 0.989
500 0.000 -0.400 0.986 0.000 -0.400 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.031 0.006 0.060 0.016 0.004 0.008 51 68 12
100 0.014 0.003 0.036 0.008 0.002 0.004 54 65 9
200 0.008 0.001 0.029 0.004 0.001 0.002 54 59 6
500 0.003 0.001 0.011 0.002 0.000 0.001 48 53 6
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Table 4.3: Simulated Means, MSEs and REs of the Estimators; ν=3 , φ=-0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.005 -0.218 0.954 0.003 -0.213 0.962
100 0.000 -0.209 0.965 -0.002 -0.204 0.982
200 -0.005 -0.202 0.974 -0.002 -0.201 0.989
500 -0.002 -0.202 0.988 0.000 -0.201 0.996

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.041 0.006 0.051 0.022 0.005 0.008 53 89 14
100 0.019 0.003 0.029 0.010 0.002 0.004 51 61 12
200 0.011 0.001 0.023 0.005 0.001 0.002 51 61 8
500 0.004 0.001 0.016 0.002 0.000 0.001 54 56 4

Table 4.4: Simulated Means, MSEs and REs of the Estimators; ν=3 , φ=0.0

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.007 -0.023 0.969 0.005 -0.013 0.967
100 0.002 -0.011 0.972 0.001 -0.005 0.984
200 -0.005 -0.006 0.986 -0.003 -0.003 0.990
500 0.001 -0.001 0.986 0.001 0.000 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.062 0.007 0.060 0.031 0.004 0.007 50 62 10
100 0.031 0.004 0.039 0.016 0.002 0.003 52 61 8
200 0.016 0.002 0.033 0.008 0.001 0.002 48 61 5
500 0.006 0.001 0.013 0.003 0.000 0.001 48 54 5
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Table 4.5: Simulated Means, MSEs and REs of the Estimators; ν=3 , φ=0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.013 0.175 0.965 -0.007 0.185 0.965
100 -0.002 0.190 0.974 -0.003 0.196 0.982
200 0.001 0.192 0.978 -0.001 0.195 0.993
500 0.005 0.197 0.995 0.001 0.199 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.102 0.007 0.064 0.050 0.005 0.008 49 68 11
100 0.047 0.003 0.051 0.025 0.002 0.004 53 60 7
200 0.024 0.002 0.019 0.012 0.001 0.002 50 61 9
500 0.010 0.001 0.021 0.005 0.000 0.001 49 55 3

Table 4.6: Simulated Means, MSEs and REs of the Estimators; ν=3 , φ=0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.001 0.364 0.964 -0.002 0.380 0.963
100 -0.007 0.385 0.975 -0.003 0.392 0.979
200 -0.007 0.391 0.981 -0.002 0.395 0.991
500 0.000 0.397 0.984 0.001 0.398 0.996

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.191 0.007 0.054 0.091 0.004 0.008 48 65 12
100 0.081 0.003 0.043 0.042 0.002 0.004 52 58 7
200 0.041 0.001 0.025 0.022 0.001 0.002 53 58 7
500 0.016 0.001 0.010 0.009 0.000 0.001 56 52 7
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Table 4.7: Simulated Means, MSEs and RE of the Estimators; ν=3 , φ=0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.101 0.804 0.975 -0.058 0.769 0.968
100 -0.079 0.782 0.973 -0.012 0.787 0.983
200 0.002 0.789 0.979 -0.020 0.794 0.990
500 -0.005 0.796 0.986 -0.003 0.798 0.996

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 83.034 0.012 0.078 0.793 0.003 0.008 1 18 9
100 6.819 0.002 0.033 0.374 0.001 0.003 5 37 9
200 0.358 0.001 0.025 0.179 0.000 0.002 50 59 6
500 0.150 0.000 0.014 0.081 0.000 0.001 54 50 5

Table 4.8: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=-0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.003 -0.794 0.996 0.002 -0.795 0.974
100 -0.001 -0.796 1.000 -0.001 -0.796 0.987
200 -0.001 -0.798 0.999 -0.001 -0.798 0.993
500 -0.001 -0.800 0.998 -0.001 -0.800 0.996

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.010 0.003 0.008 0.008 0.002 0.006 85 86 63
100 0.005 0.001 0.004 0.004 0.001 0.003 85 89 58
200 0.002 0.001 0.002 0.002 0.001 0.001 85 87 65
500 0.001 0.000 0.001 0.001 0.000 0.001 89 82 64
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Table 4.9: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=-0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.001 -0.404 0.994 0.001 -0.402 0.971
100 0.002 -0.401 0.999 0.002 -0.399 0.988
200 0.001 -0.401 0.997 0.000 -0.400 0.992
500 -0.001 -0.402 1.000 -0.001 -0.402 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.015 0.006 0.008 0.013 0.005 0.006 87 89 66
100 0.008 0.003 0.005 0.007 0.003 0.003 85 92 54
200 0.004 0.001 0.002 0.003 0.001 0.001 85 86 70
500 0.002 0.001 0.001 0.001 0.000 0.000 83 91 62

Table 4.10: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=-0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.007 -0.208 0.996 -0.007 -0.206 0.971
100 -0.005 -0.205 0.998 -0.005 -0.204 0.989
200 0.002 -0.202 0.999 0.002 -0.202 0.992
500 0.001 -0.200 1.000 0.000 -0.200 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.023 0.007 0.008 0.019 0.006 0.006 85 90 62
100 0.011 0.003 0.004 0.009 0.003 0.002 86 86 62
200 0.005 0.002 0.002 0.004 0.001 0.001 84 85 62
500 0.002 0.001 0.001 0.002 0.001 0.001 87 85 55
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Table 4.11: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=0.0

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.010 -0.020 0.991 0.010 -0.018 0.971
100 -0.004 -0.010 0.998 -0.003 -0.009 0.985
200 0.002 -0.003 0.998 0.001 -0.003 0.992
500 -0.001 -0.002 1.000 0.000 -0.002 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.031 0.007 0.008 0.027 0.006 0.006 86 91 66
100 0.015 0.003 0.004 0.013 0.003 0.003 85 88 55
200 0.007 0.002 0.002 0.006 0.001 0.001 86 87 51
500 0.003 0.001 0.001 0.003 0.001 0.001 85 86 56

Table 4.12: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.001 0.177 0.991 -0.002 0.180 0.968
100 0.003 0.185 1.000 0.006 0.187 0.987
200 -0.001 0.191 0.998 -0.001 0.193 0.993
500 -0.002 0.199 0.999 -0.002 0.199 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.049 0.007 0.008 0.042 0.006 0.006 87 88 62
100 0.023 0.004 0.005 0.019 0.003 0.003 86 87 53
200 0.011 0.002 0.002 0.010 0.001 0.001 87 91 60
500 0.004 0.001 0.001 0.004 0.001 0.000 86 85 63
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Table 4.13: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.005 0.364 0.992 -0.006 0.368 0.968
100 0.003 0.382 1.000 0.003 0.383 0.987
200 0.006 0.391 0.998 0.006 0.392 0.993
500 -0.001 0.396 1.001 -0.002 0.396 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.086 0.008 0.008 0.075 0.007 0.006 87 88 67
100 0.043 0.003 0.004 0.037 0.003 0.003 86 87 60
200 0.020 0.002 0.002 0.017 0.001 0.001 86 87 65
500 0.008 0.001 0.001 0.007 0.000 0.000 87 85 59

Table 4.14: Simulated Means, MSEs and REs of the Estimators; ν=6 , φ=0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.463 0.806 1.006 0.010 0.754 0.968
100 -0.047 0.778 0.993 0.017 0.777 0.981
200 0.006 0.788 0.998 0.003 0.789 0.991
500 -0.007 0.796 1.001 -0.004 0.797 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 69.772 0.013 0.008 0.647 0.005 0.006 1 24 63
100 5.916 0.003 0.004 0.326 0.002 0.003 6 56 69
200 0.206 0.001 0.002 0.173 0.001 0.001 84 84 58
500 0.076 0.000 0.001 0.066 0.000 0.001 88 83 60
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Table 4.15: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=-0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.002 -0.795 0.998 0.002 -0.795 0.977
100 0.000 -0.796 0.997 0.000 -0.796 0.987
200 0.001 -0.798 0.998 0.000 -0.798 0.993
500 0.001 -0.798 0.999 0.001 -0.798 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.008 0.003 0.004 0.007 0.002 0.004 96 96 87
100 0.004 0.001 0.002 0.004 0.001 0.002 98 95 91
200 0.002 0.001 0.001 0.002 0.001 0.001 97 97 90
500 0.001 0.000 0.000 0.001 0.000 0.000 98 95 92

Table 4.16: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=-0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.006 -0.409 0.993 -0.007 -0.408 0.972
100 -0.004 -0.405 0.995 -0.003 -0.405 0.984
200 0.000 -0.400 0.997 0.000 -0.400 0.992
500 0.000 -0.402 1.000 0.000 -0.401 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.012 0.005 0.004 0.012 0.005 0.005 99 99 85
100 0.006 0.003 0.002 0.005 0.003 0.002 99 95 91
200 0.003 0.002 0.001 0.003 0.001 0.001 95 96 88
500 0.001 0.001 0.000 0.001 0.001 0.000 96 96 90
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Table 4.17: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=-0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.001 -0.214 0.996 0.001 -0.213 0.975
100 -0.002 -0.204 0.998 -0.002 -0.204 0.988
200 0.000 -0.203 0.998 0.000 -0.203 0.993
500 0.000 -0.202 0.999 0.000 -0.202 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.016 0.006 0.005 0.016 0.006 0.005 96 98 86
100 0.008 0.003 0.002 0.008 0.003 0.002 94 97 88
200 0.004 0.002 0.001 0.004 0.002 0.001 96 98 90
500 0.002 0.001 0.000 0.002 0.001 0.000 96 96 91

Table 4.18: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=0.0

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.002 -0.017 0.995 0.001 -0.017 0.972
100 0.002 -0.009 0.996 0.001 -0.008 0.985
200 -0.001 -0.008 0.999 -0.002 -0.007 0.994
500 -0.001 -0.003 0.999 -0.002 -0.003 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.024 0.007 0.004 0.024 0.006 0.004 97 97 84
100 0.012 0.004 0.002 0.012 0.004 0.002 97 98 93
200 0.006 0.002 0.001 0.006 0.002 0.001 95 96 92
500 0.002 0.001 0.000 0.002 0.001 0.000 98 95 90
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Table 4.19: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.010 0.171 0.994 -0.009 0.172 0.972
100 0.000 0.187 0.997 -0.001 0.188 0.986
200 0.001 0.194 0.999 0.001 0.195 0.994
500 -0.005 0.197 1.000 -0.004 0.197 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.040 0.007 0.005 0.039 0.007 0.005 97 98 88
100 0.018 0.004 0.002 0.018 0.003 0.002 99 96 88
200 0.009 0.002 0.001 0.009 0.002 0.001 99 95 93
500 0.004 0.001 0.000 0.003 0.001 0.000 97 97 93

Table 4.20: Simulated Means, MSEs and REs of estimators; ν=12 , φ=0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.002 0.363 0.991 -0.003 0.364 0.969
100 0.005 0.381 0.996 0.005 0.382 0.986
200 0.006 0.391 0.998 0.007 0.391 0.993
500 0.002 0.396 0.999 0.002 0.396 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.068 0.008 0.005 0.066 0.008 0.005 98 99 83
100 0.033 0.003 0.002 0.031 0.003 0.002 95 97 90
200 0.017 0.001 0.001 0.016 0.001 0.001 95 97 88
500 0.007 0.001 0.000 0.007 0.001 0.000 95 96 91
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Table 4.21: Simulated Means, MSEs and REs of the Estimators; ν=12 , φ=0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.022 0.806 1.008 -0.001 0.751 0.973
100 0.068 0.782 0.997 0.035 0.777 0.984
200 -0.001 0.789 0.999 0.008 0.789 0.993
500 0.000 0.795 0.999 0.002 0.795 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 52.634 0.012 0.005 0.549 0.006 0.005 1 26 78
100 6.202 0.003 0.002 0.296 0.002 0.002 5 53 86
200 0.147 0.001 0.001 0.139 0.001 0.001 94 96 91
500 0.059 0.000 0.000 0.056 0.000 0.000 96 96 90

Table 4.22: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=-0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.002 -0.792 0.994 0.002 -0.792 0.974
100 0.003 -0.797 0.998 0.003 -0.797 0.988
200 -0.001 -0.796 0.999 -0.001 -0.796 0.994
500 0.000 -0.799 0.999 0.000 -0.799 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.006 0.003 0.004 0.006 0.003 0.004 98 99 94
100 0.003 0.001 0.002 0.003 0.001 0.002 99 98 96
200 0.002 0.001 0.001 0.002 0.001 0.001 99 99 98
500 0.001 0.000 0.000 0.001 0.000 0.000 99 99 97
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Table 4.23: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=-0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.005 -0.411 0.997 -0.005 -0.411 0.977
100 -0.003 -0.403 0.997 -0.003 -0.403 0.987
200 0.000 -0.402 0.999 0.000 -0.402 0.994
500 0.000 -0.401 1.000 0.000 -0.401 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.011 0.006 0.004 0.011 0.006 0.004 99 100 94
100 0.006 0.003 0.002 0.006 0.003 0.002 99 99 97
200 0.003 0.001 0.001 0.003 0.001 0.001 99 99 97
500 0.001 0.001 0.000 0.001 0.001 0.000 98 99 97

Table 4.24: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=-0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.003 -0.211 0.995 0.003 -0.211 0.974
100 0.000 -0.208 0.998 0.000 -0.208 0.988
200 0.001 -0.204 0.997 0.001 -0.204 0.992
500 0.001 -0.203 1.000 0.001 -0.203 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.016 0.006 0.004 0.016 0.006 0.005 99 99 92
100 0.008 0.003 0.002 0.008 0.003 0.002 99 100 97
200 0.004 0.002 0.001 0.004 0.002 0.001 100 98 97
500 0.001 0.001 0.000 0.001 0.001 0.000 100 99 98
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Table 4.25: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=0.0

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.004 -0.021 0.995 0.003 -0.020 0.974
100 0.000 -0.009 0.997 0.000 -0.009 0.986
200 0.002 -0.006 0.997 0.001 -0.006 0.992
500 0.000 -0.003 0.999 0.000 -0.003 0.997

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.023 0.007 0.004 0.022 0.007 0.005 99 99 95
100 0.011 0.003 0.002 0.011 0.003 0.002 99 99 95
200 0.006 0.002 0.001 0.005 0.002 0.001 99 100 97
500 0.002 0.001 0.000 0.002 0.001 0.000 99 99 97

Table 4.26: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=0.2

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.007 0.170 0.993 0.008 0.170 0.972
100 -0.003 0.186 0.996 -0.003 0.186 0.986
200 -0.002 0.192 0.999 -0.002 0.192 0.994
500 -0.001 0.197 0.999 -0.001 0.197 0.996

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.033 0.007 0.004 0.032 0.007 0.005 98 98 94
100 0.017 0.003 0.002 0.017 0.003 0.002 99 100 95
200 0.009 0.002 0.001 0.009 0.002 0.001 100 99 98
500 0.003 0.001 0.000 0.003 0.001 0.000 99 100 97

47



Table 4.27: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=0.4

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 0.010 0.366 0.996 0.011 0.366 0.974
100 -0.004 0.382 0.997 -0.003 0.382 0.987
200 0.002 0.391 0.998 0.001 0.391 0.993
500 -0.002 0.397 1.000 -0.001 0.397 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 0.058 0.007 0.004 0.058 0.007 0.005 100 99 95
100 0.030 0.003 0.002 0.030 0.003 0.002 99 99 95
200 0.014 0.001 0.001 0.014 0.001 0.001 99 98 96
500 0.006 0.001 0.000 0.006 0.001 0.000 99 100 97

Table 4.28: Simulated Means, MSEs and REs of the Estimators; ν=24 , φ=0.8

Mean

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE

50 -0.234 0.809 1.010 0.008 0.749 0.974
100 0.014 0.781 0.999 0.005 0.775 0.986
200 -0.002 0.789 0.998 -0.001 0.789 0.992
500 0.004 0.795 1.000 0.005 0.795 0.998

MSE RE

n µ̃LSE φ̃LSE σ̃LSE µ̂MLE φ̂MLE σ̂MLE µ φ σ

50 49.491 0.013 0.005 0.550 0.006 0.005 1 29 86
100 3.979 0.003 0.002 0.258 0.002 0.002 6 54 91
200 0.144 0.001 0.001 0.143 0.001 0.001 99 99 95
500 0.056 0.000 0.000 0.056 0.000 0.000 100 99 99
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When the tables stated in this chapter are examined, both methods give acceptable

results on estimation of the parameters. For each method, even for small sample

sizes, the estimates of the treatment means are near to 0, as it should be. Moreover, as

it is expected, increase in sample size results in better estimation values. Estimation

of the scale parameter also converges to its real value 1. These two method performs

also well on the estimation of AR(1) coefficient. For each value of the coefficient,

no matter negative or positive, estimated value converges to the real ones. Here also

increase in sample size provides better approximations in estimating autoregressive

coefficients. However, when the AR(1) coefficient is near to 1, LS estimators of the

treatment means are seen to be biased. In other words, when the correlation between

treatment unit with the previous unit is positively large, then the estimation done by

least squares method will be biased, that is estimations diverge from their real values.

Actually this problem only occurs for the small sample size cases since when the

length of the treatments is getting larger, LS estimators perform well. Therefore,

because of the small sample performances of the LS estimators with high positive

autoregressive coefficient, ML estimators are preferable in this study.

Mean square error values are presented because being unbiased is not enough to char-

acterize the estimators. Mean square error should be one of the criteria to evaluate

the performance of an estimator just because it not only measure the biasness but also

measure the variance. Those two quantities and the MSE itself need to be as small as

possible. In this point of view, MSE values are compared and it can be said that MSE

of the ML estimators, for each case no matter the degrees of freedom of the error

term and autoregressive coefficient, are smaller than the MSE of the LS estimators.

Moreover, like the small sample performances of the LS estimators on estimating the

unknown parameters, MSE values of the LS estimators are also unacceptable when

the AR (1) coefficient is near to 1. This is one of the other reason why the maximum

likelihood estimation method is used for the further analysis of this study. Besides

these, one can clearly see that when the error terms are produced from student’s t

distribution with large degrees of freedom, that is, when the error terms behaves the

characteristics of normal distribution, MSE values of the LS estimators approach to

the MSE values of ML estimators.

Finally, the relative efficiencies of the estimators one coming from LS and the other
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coming from ML is the concern, it can be obviously seen that relative efficiency

of ML estimators are better than LSs’. It is expected that the relative efficiency of

ML estimators is getting smaller or in other words the relative efficiency of the LS

estimators is getting larger when the size of samples are boosted. For some scenarios,

the relative efficiency of LS estimators declines when the sample size is increased.

This is actually another result of interest. In the further studies, it can be analysed in

a detailed way.

4.2 Simulated Type I Error and Power of the One-Way ANOVA Test Statistic

This part of the study is related to the one-way ANOVA conclusions. Type I errors of

the introduced test statistic for ANOVA are presented by three ways. That are one for

using simulated variances, another one for information matrix and the last one is for

observed information matrix. The next part is related to the power of the introduced

test statistic. The last part contains power comparison among the other test statis-

tics. The first one is actually normal classical test statistic (2.14), named as F0. The

other one is based on LS estimators of the model (3.1) in the test statistic of normal

classical F statistic, named as FLSE . The reason of this kind of comparison is that it

is aimed to observe that how the power is affected if the non-validated assumptions

are ignored. That is, once you disregard the independency and normality assumption

while working on one-way ANOVA, how the power of the test statistic is affected is

tried to be observed.

4.2.1 Simulated Type I Error of One-Way ANOVA Test Statistic

In this section, it is aimed to determine the underlying distribution of the introduced

test statistic for the one-way ANOVA. It is actually desired to be F distribution with

the corresponding degrees of freedoms. Here, the desired distribution that the test

statistic to follow is F with c-1 and nc-c degrees of freedoms, where n is the size

of each treatment (size of treatments are taken to be equal for the sake of easiness)

and c is the number of treatment that is chosen to be 3. Besides this, type I error

can help to test the performance of the test statistic by looking at its probability of
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rejection of null hypothesis when in fact it is true. That is, wrong decision making

process of the test statistic is evaluated with type I error. Reaching the type I error of

this section is done by comparing the calculated test statistic with the tabulated test

statistic. If the test statistic is greater than the tabulated value then the null hypothesis

can be rejected. Therefore, the proportion of those rejection out of total trials (runs)

is nothing but the type I error. It is expected to be close to 0.05, because significance

level is chosen to be 0.05 (α = 0.05). As it is declared in Section 4.2, type I error of

the related test statictic is found by using three different ways. Furhermore, in order

to observe the size of treatment and student’s t degrees of freedom effect, n is chosen

to be 50, 100, 200, 500 and 1,000 and ν is chosen to be 6, 9, 12 and 24.

4.2.1.1 Simulated Type I Error of the Test Statistic Based on Simulated Vari-

ances

The variance of the treatment means can be obtained by simulation with 10,000

Monte Carlo runs. The variance of these means can be easily calculated, the cor-

responding variance values are presented in Table 4.29. This part comprises the test

statistic that uses the simulated variances for the variance of the treatment means

in the test statistic (3.9). The null hypothesis emphasises the equality of treatment

means. The algorithm is as follows:

Step 1: Generating Random Numbers

1.1 Generate specified size of independent errors terms from student’s t distri-

bution.

1.2. Generate treatment observations (yi,t) by using equation (3.1).

Step 2: Parameter Estimation and Hypothesis Testing

2.1 Estimate related parameters of the model and distribution.

2.2 Calculate test statistic from the equation (3.9) with the variance coming

from simulation and compare it with critical tabulated values.

Step 3: Type I Error

3.1 Calculate type I error by proportinating the number of rejected test statis-

tic to 10,000.

51



Table 4.29: Simulated Variance of The Treatment Mean: V̂ (µ̂)

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.00835 0.013260 0.01840 0.02665 0.040850 0.07487 0.65074
100 0.00397 0.00665 0.00909 0.01278 0.02140 0.03635 0.32173
200 0.00199 0.00331 0.00447 0.00654 0.01013 0.01807 0.16183
500 0.00080 0.00131 0.00179 0.00261 0.00398 0.00719 0.06611
1000 0.00040 0.00066 0.00089 0.00128 0.00197 0.00360 0.03207

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.00755 0.01254 0.01697 0.02410 0.03762 0.06839 0.59717
100 0.00372 0.00619 0.00853 0.01193 0.01888 0.03408 0.29950
200 0.00189 0.00311 0.00423 0.00612 0.00925 0.01662 0.14652
500 0.00074 0.00123 0.00165 0.00237 0.00372 0.00670 0.05865
1000 0.00037 0.00060 0.00084 0.00121 0.00188 0.00330 0.03090

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.00728 0.01207 0.01606 0.02361 0.03610 0.06484 0.57339
100 0.00364 0.00595 0.00814 0.01166 0.01829 0.03198 0.29424
200 0.00180 0.00298 0.00397 0.00576 0.00913 0.01634 0.14195
500 0.00072 0.00121 0.00157 0.00230 0.00364 0.00640 0.05806
1000 0.00037 0.00060 0.00082 0.00115 0.00181 0.00320 0.02913

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.00693 0.01084 0.01542 0.02174 0.03418 0.06037 0.53533
100 0.00341 0.00553 0.00748 0.01083 0.01691 0.03055 0.27260
200 0.00168 0.00282 0.00375 0.00532 0.00858 0.01473 0.13759
500 0.00067 0.00111 0.00152 0.00218 0.00332 0.00597 0.05430
1000 0.00034 0.00055 0.00076 0.00107 0.00167 0.00305 0.02703
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Table 4.30: Simulated Type I Error of the One-Way ANOVA Test Statistic Based on
Simulated Variances

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.049 0.045 0.046 0.046 0.045 0.049 0.049
100 0.052 0.050 0.045 0.047 0.046 0.046 0.048
200 0.049 0.048 0.050 0.047 0.049 0.048 0.048
500 0.052 0.049 0.050 0.052 0.048 0.047 0.047
1000 0.050 0.054 0.049 0.050 0.052 0.049 0.047

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.052 0.045 0.048 0.049 0.046 0.046 0.047
100 0.051 0.050 0.048 0.050 0.046 0.046 0.050
200 0.048 0.046 0.046 0.046 0.050 0.051 0.053
500 0.052 0.047 0.052 0.054 0.048 0.048 0.051
1000 0.052 0.052 0.053 0.048 0.050 0.050 0.047

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.049 0.045 0.046 0.045 0.047 0.045 0.049
100 0.053 0.047 0.050 0.049 0.048 0.047 0.047
200 0.048 0.046 0.052 0.048 0.046 0.048 0.051
500 0.050 0.046 0.054 0.050 0.046 0.048 0.048
1000 0.048 0.048 0.047 0.047 0.050 0.049 0.048

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.051 0.045 0.045 0.045 0.048 0.046 0.047
100 0.048 0.050 0.049 0.046 0.046 0.045 0.047
200 0.050 0.048 0.048 0.051 0.047 0.047 0.050
500 0.048 0.053 0.050 0.052 0.054 0.052 0.050
1000 0.049 0.048 0.046 0.049 0.052 0.046 0.050
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The results from Table 4.30 point out that for each degrees of freedom and/or AR(1)

coefficient situation test statistic based on simulated variances performs well under

F distribution. That is, by looking at Table 4.30, it can be stated that the underlying

distribution of the test statistic is F because in all situations type I error is acceptably

close to 0.05.

4.2.1.2 Simulated Type I Error of the Test Statistic Based on Fisher Informa-

tion Matrix

For this case, the variance of the treatment means are found by using the related di-

agonal of the inverse of the information matrix. Procedure of calculating type I error

with variances achieved from information matrix leads to fluctation, that’s why aver-

age of the 10 type I errors are used. The algorithm is as follows:

Step 1: Generating Random Numbers

1.1 Generate specified size of independent errors terms from student’s t distri-

bution.

1.2. Generate treatment observations (yi,t) by using equation (3.1).

Step 2: Parameter Estimation and Hypothesis Testing

2.1 Estimate related parameters of the model and distribution

2.2 Calculate test statistic from the equation (3.9) with variance coming from

Fisher Information Matrix

2.3 Compare the test statistic with critical tabulated values. Conclude whether

null hypothesis is rejected or not.

Step 3: Type I Error

3.1 Do the steps from 1 to 2 1,000 times, calculate type I error by proportinat-

ing the number of rejected test statistic to 1,000.

3.2 Do step 3.1 10 times, and take a simple average of these 10 type 1 errors

as a final type I error to tabulate.
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Table 4.31: Simulated Type I Error of the One-Way ANOVA Test Statistic Based on
Fisher Information Matrix

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.058 0.053 0.062 0.056 0.091 0.061 0.161
100 0.050 0.050 0.061 0.050 0.064 0.058 0.126
200 0.055 0.052 0.053 0.050 0.064 0.053 0.073
500 0.047 0.054 0.050 0.053 0.048 0.0.55 0.064
1000 0.050 0.050 0.050 0.056 0.054 0.056 0.063

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.047 0.054 0.048 0.054 0.066 0.059 0.163
100 0.052 0.052 0.061 0.062 0.070 0.071 0.099
200 0.051 0.048 0.057 0.052 0.055 0.050 0.084
500 0.057 0.049 0.048 0.051 0.051 0.056 0.054
1000 0.050 0.047 0.047 0.053 0.055 0.054 0.050

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.049 0.057 0.039 0.067 0.072 0.059 0.211
100 0.052 0.057 0.048 0.062 0.051 0.056 0.129
200 0.055 0.057 0.048 0.062 0.051 0.056 0.129
500 0.051 0.049 0.053 0.052 0.050 0.050 0.050
1000 0.053 0.055 0.046 0.049 0.059 0.049 0.053

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.059 0.055 0.049 0.061 0.065 0.079 0.178
100 0.052 0.050 0.054 0.059 0.049 0.070 0.091
200 0.049 0.051 0.048 0.053 0.048 0.056 0.104
500 0.050 0.048 0.055 0.047 0.049 0.049 0.069
1000 0.054 0.049 0.051 0.050 0.050 0.050 0.051
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The findings mark that except for positively high autoregressive coefficient cases,

type I error approaches to its theoretical value. However, this problem, which arises

with high AR(1) coefficient, can be eliminated by enhancing the size of treatments.

Moreover, in general Table 4.31 points out that the introduced test statistic follows F

distribution with the desired degrees of freedoms.

4.2.1.3 Simulated Type I Error of the Test Statistic Based on Observed Infor-

mation Matrix

In this part, the test statictic based on observed information matrix is evaluted by

interpreting its type I error. The algorithm is same with the 4.2.1.2 with a small dif-

ference sourced by the fact that the variance of treatment means are achieved here

by using the related diagonal element of negative inverse of hessian matrix instead of

information matrix. The type I error of test statistic with variance coming from ob-

served information matrix for one-way ANOVA is supplied below. This table is also

constructed by averaging the 10 type I errors in order to remove fluctuations occured

in simulations. The algorithm is as follows:

Step 1: Generating Random Numbers

1.1 Generate specified size of independent errors terms from student’s t distri-

bution.

1.2. Generate treatment observations (yi,t) by using equation (3.1).

Step 2: Parameter Estimation and Hypothesis Testing

2.1 Estimate related parameters of the model and distribution

2.2 Calculate test statistic from the equation (3.9) with variance coming from

Observed Information Matrix

2.3 Compare the test statistic with critical tabulated values. Conclude whether

null hypothesis is rejected or not.

Step 3: Type I Error

3.1 Do the steps from 1 to 2 1,000 times, calculate type I error by proportinat-

ing the number of rejected test statistic to 1,000.

3.2 Do step 3.1 10 times , and take a simple average of these 10 type 1 errors

as a final type I error to tabulate.
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Table 4.32: Simulated Type I Error of the One-Way ANOVA Test Statistic Based on
Observed Information Matrix

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.058 0.051 0.062 0.058 0.092 0.057 0.160
100 0.050 0.054 0.059 0.053 0.065 0.057 0.130
200 0.057 0.050 0.052 0.050 0.065 0.054 0.073
500 0.046 0.054 0.052 0.053 0.050 0.054 0.063
1000 0.052 0.052 0.050 0.057 0.053 0.055 0.064

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.049 0.055 0.046 0.050 0.065 0.057 0.159
100 0.053 0.049 0.063 0.062 0.073 0.071 0.101
200 0.052 0.049 0.060 0.051 0.055 0.048 0.081
500 0.058 0.049 0.047 0.051 0.050 0.057 0.055
1000 0.051 0.047 0.048 0.054 0.055 0.054 0.049

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.048 0.060 0.040 0.076 0.078 0.061 0.222
100 0.054 0.059 0.050 0.063 0.054 0.058 0.125
200 0.056 0.052 0.045 0.053 0.055 0.052 0.108
500 0.053 0.048 0.054 0.050 0.050 0.049 0.049
1000 0.053 0.055 0.046 0.050 0.060 0.049 0.054

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.059 0.058 0.052 0.068 0.068 0.078 0.191
100 0.055 0.052 0.057 0.059 0.050 0.073 0.097
200 0.049 0.049 0.049 0.057 0.049 0.057 0.105
500 0.052 0.049 0.056 0.047 0.048 0.048 0.071
1000 0.054 0.050 0.051 0.049 0.049 0.049 0.050
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The same final conclusion can be done here with the 4.2.1.2. There exists only a

problem with the small size of treatment when AR(1) coefficient is close to 1. How-

ever, this can be eliminated by increasing the size of treatment. Therefore, Table 4.32

indicates an acceptable type I errors.

4.2.2 Simulated Power of the One-Way ANOVA Test Statistic

This part of the study encapsulates the power of the introduced test statsistic with the

variance from Fisher Information Matrix for one-way ANOVA. Actually, there is no

computational difference in using observed or Fisher information matrices, we prefer

to use the test statistic based on Fisher information matrix. The test statistic based

on simulated variances is not preferred because in each time additional simulation is

needed to observe simulated variances of the treatment means. That’s why, power

tables are constructed by using the test statistic based on Fisher information matrix.

In order to obtain the power of the test statistic, the simulation scenerio is formed

in an opposite way of the null hypothesis so that the probability of rejection of the

null hypothesis is obtained under the wrong null hypothesis. This is done by using

constant "d", by increasing d, which causes the increase in the difference between

treatment means, the power of the test statistic is achieved. The first treatment mean

is hold constant as 0, second treatment mean is increased by 2d and the third treatment

mean is increased by 3d in each scenario. The simulation number is taken to be 1,000

and the treatment size is chosen to be 100 in each scenario.
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Table 4.33: Simulated Power of the FMLE ; n=100

ν = 6 ν = 9 ν = 12 ν = 24

d
φ = −0.8

0.00 0.058 0.069 0.065 0.050
0.04 0.210 0.281 0.298 0.272
0.08 0.686 0.782 0.786 0.769
0.12 0.976 0.979 0.984 0.987

φ = −0.4

0.00 0.053 0.049 0.070 0.068
0.05 0.178 0.239 0.295 0.290
0.10 0.644 0.729 0.780 0.773
0.15 0.958 0.967 0.978 0.988

φ = −0.2

0.00 0.051 0.042 0.071 0.069
0.06 0.181 0.232 0.317 0.314
0.12 0.660 0.737 0.810 0.805
0.18 0.966 0.970 0.989 0.988

φ = 0.0

0.00 0.047 0.033 0.071 0.074
0.07 0.167 0.200 0.310 0.309
0.14 0.619 0.681 0.792 0.789
0.21 0.952 0.964 0.982 0.988

φ = 0.2

0.00 0.041 0.046 0.077 0.055
0.08 0.134 0.153 0.280 0.283
0.16 0.524 0.571 0.711 0.731
0.24 0.897 0.917 0.956 0.970

φ = 0.4

0.00 0.063 0.059 0.060 0.055
0.11 0.171 0.260 0.376 0.173
0.22 0.644 0.617 0.744 0.600
0.33 0.928 0.942 0.974 0.949

φ = 0.8

0.00 0.120 0.192 0.178 0.114
0.40 0.328 0.333 0.242 0.574
0.80 0.604 0.792 0.877 0.965
1.20 0.969 0.988 1.000 0.999
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Actually, when d equals to 0, the power table turns into the type I error table. Ac-

cording to Table 4.33, as the difference between the treatment means are increased,

independent from the AR(1) coefficient, the power of the introduced test statistic for

here called as FMLE is increasing.

4.2.3 Simulated Powers of the Other Test Statistics for One-Way ANOVA

The main aim of this part of the study is to observe that how the power of the test

statistics are affected if the non-validated assumptions are ignored. The first test

statistic, called as F0, ignores both correlation and non-normality. The second test

statistic, FLSE is the same test statistic with F0 but it is based on LS estimators of the

model (3.1). These two test statistics are,

F0 =
n
∑c

i=1(ȳi. − ȳ..)2/(c− 1)∑c
i=1

∑n
j=1(yij − ȳi.)2/(nc− c)

and (4.1)

FLSE =
n
∑c

i=1(µ̃i − µ̃)2/(c− 1)∑c
i=1

∑n
j=1(yij − µ̃i)2/(nc− c)

. (4.2)

Firstly, we assume both of these test statistics follow F distribution with the degrees

of freedom, c-1 and nc-c respectively. By examining the type I errors of these test

statistics, we try to ensure that these test statistics follow F distribution. To do so, ν

is randomly chosen as 9, simulation number is 1,000 and the size of the treatment is

chosen as 100.

Table 4.34: Simulated Type I Errors of F0 and FLSE

F φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

F0 0.000 0.002 0.009 0.048 0.140 0.272 0.722
FLSE 0.000 0.002 0.010 0.046 0.143 0.270 0.740

According to results of Table 4.34, test statictics F0 and FLSE do not follow F dis-

tribution with the c-1 and nc-c degrees of freedoms, except for φ equals to 0. The

case of when φ is 0 is nothing but the case of that there exists no correlation. In other

words, when the autoregressive coefficient is 0, only non-normality problem is the

concern, and therefore, non-normality does not have a vital effect on the type I error

when the size of sample is large enough, actually because of central limit theorem
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(Pavur and Lewis, 1982). That’s why the power comparision is done for only φ:-0.10,

0.00 and 0.10.

Table 4.35: Simulated Power of the F0, FLSE and FMLE; n=100

ν = 6 ν = 9 ν = 12 ν = 24

d F0 FLSE FMLE F0 FLSE FMLE F0 FLSE FMLE F0 FLSE FMLE

φ = −0.10

0.00 0.028 0.026 0.050 0.026 0.025 0.040 0.022 0.022 0.071 0.020 0.022 0.070
0.06 0.098 0.098 0.153 0.127 0.125 0.194 0.142 0.141 0.285 0.144 0.140 0.277
0.12 0.428 0.433 0.585 0.516 0.515 0.631 0.566 0.563 0.731 0.596 0.596 0.735
0.18 0.836 0.834 0.926 0.893 0.890 0.942 0.914 0.916 0.967 0.947 0.947 0.975

φ = 0.0

0.00 0.047 0.047 0.047 0.048 0.046 0.033 0.047 0.047 0.071 0.051 0.051 0.074
0.07 0.163 0.162 0.167 0.220 0.221 0.200 0.235 0.238 0.310 0.246 0.247 0.309
0.14 0.591 0.592 0.619 0.682 0.682 0.681 0.704 0.704 0.792 0.728 0.728 0.789
0.21 0.938 0.938 0.952 0.959 0.959 0.964 0.963 0.963 0.982 0.979 0.979 0.988

φ = 0.10

0.00 0.087 0.089 0.043 0.087 0.088 0.030 0.097 0.097 0.073 0.087 0.088 0.080
0.08 0.251 0.249 0.169 0.304 0.304 0.198 0.339 0.341 0.326 0.344 0.348 0.331
0.16 0.713 0.712 0.640 0.790 0.789 0.704 0.807 0.807 0.815 0.824 0.824 0.822
0.24 0.973 0.972 0.961 0.977 0.978 0.967 0.988 0.988 0.989 0.992 0.992 0.990

According to Table 4.35, when there exists no autocorrelation, the introduced test

statistic(FMLE) performs well in terms of its power. Even the AR(1) coefficient is

positive but too small as 0.10, the F0 and FLSE does not follow F, that’s why the

powers for φ=0.10 can be misleading.

4.3 Simulated Type I Error and Power of the Linear Contrasts Test Statistic

In this part of the study, type I errors of the introduced test statistic for linear contrasts

are presented, which are found by three ways. At the end of this part, the power calcu-

lation results are tabulated so that the comparison between the test statistic introduced

by this study for linear contrasts with the corresponding classical theory test statistic

can be done.

4.3.1 Simulated Type I Error of the Linear Contrasts Test Statistic

The significance level is used as 0.05 and acceptance rejection criteria is decided by

the 0.025th and 0.975th quantile of the standard normal distribution. For each run
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the test statistic is compared with the theoretical quantiles, if it is bigger than the

0.975th quantile or smaller than the 0.025th quantile, then it is in the rejection region.

Actually, the empirical type I error is the sample proportion of these rejections out of

total number of simulation (out of total number of runs). If the conducted test statistic

is acceptable, then the empirical type 1 error is expected to be close to the theoretical

one, which is 0.05 in our case.

To calculate the empirical type I errors, treatment means should be adjusted in a way

that the null hypothesis is hold because of the fact that type I error is the probability

that rejecting the null hypothesis, when in fact it is true. In our case, the null hypothe-

sis claims that the average of the first and third treatment mean is equal to the second

treatment mean. Simulation scenarios are constructed in the view of this fact. In or-

der to hold the null hypothesis, and also for the sake of easiness, three treatments are

generated with each mean of 0. In this part degrees of freedom of student’s t distribu-

tion are set to be ν=6, 9, 12 and 24 in order to see the performance of the test statistic

under the different degrees of freedom range. This part of the simulation studies are

divided into three parts as it is mentioned above.

4.3.1.1 Simulated Type I Error of the Test Statistic Based on Simulated Vari-

ances

By using the simulated variances, the empirical type I errors can be found, which are

stated in Table 4.36. In each simulation run, the introduced test statistic is calculated

with the simulated variances, and it is compared to the tabulated values in order to

decide whether it is in the rejection region or not. Actually, the values stated in the

Table 4.36 is the proportion of the number of rejected test statistics out of total test

statistics (out of 10,000). The corresponding tables are as follow:
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Table 4.36: Simulated Type I Error of the Linear Contrasts Test Statistic Based on
Simulated Variances

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.051 0.050 0.051 0.055 0.049 0.049 0.052
100 0.051 0.050 0.056 0.050 0.049 0.051 0.052
200 0.053 0.048 0.052 0.050 0.049 0.048 0.051
500 0.048 0.054 0.053 0.050 0.048 0.051 0.050
1000 0.051 0.049 0.050 0.049 0.048 0.053 0.049

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.050 0.051 0.053 0.050 0.047 0.050 0.050
100 0.052 0.055 0.050 0.050 0.052 0.052 0.049
200 0.051 0.049 0.051 0.049 0.049 0.049 0.053
500 0.052 0.052 0.050 0.052 0.049 0.051 0.049
1000 0.050 0.051 0.050 0.045 0.052 0.046 0.051

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.050 0.051 0.052 0.048 0.051 0.049 0.045
100 0.048 0.052 0.050 0.050 0.049 0.051 0.047
200 0.049 0.048 0.051 0.049 0.050 0.053 0.052
500 0.049 0.049 0.052 0.050 0.048 0.046 0.049
1000 0.051 0.053 0.048 0.050 0.052 0.048 0.050

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.049 0.052 0.050 0.050 0.051 0.048 0.052
100 0.051 0.048 0.050 0.050 0.051 0.050 0.051
200 0.051 0.049 0.050 0.050 0.049 0.046 0.050
500 0.048 0.049 0.052 0.049 0.051 0.051 0.050
1000 0.051 0.049 0.050 0.049 0.052 0.050 0.050
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As it can be clearly seen in Table 4.36, approximation of the distribution of the intro-

duced test statistic to the normal distribution can be accepted because the type I error

in each simulation scenario is close to theoretical value of the type I error, which is

0.05.

4.3.1.2 Simulated Type I Error of the Test Statistic Based on Fisher Informa-

tion Matrix

The variance of treatment means can be found from the Fisher Information Matrix.

In each simulation run, treatment mean, autoregressive coefficient and the scale pa-

rameter of the error terms are found. Besides this, for each run of the simulations, the

variances of the treatment means are obtained by using the related diagonal element

of the inverse Fisher Information Matrix. Actually these variances are the estimated

variances of the treatment means since in order to calculate the variance of the treat-

ment means, the necessary parameters are to be estimated. The null hypothesis is

same with the hypothesis stated in section 4.3.1. While contructing the table related

to this part, we faced with some fluctuation on the type I error values, that is, for

the same criterias the resulting type I error is differentiated. The reason of this kind

of situation may sometimes sourced by the nature of the simulation. Therefore, we

recommend averaging the 10 type I error values to get rid of this fluctuations.
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Table 4.37: Simulated Type I Error of the Linear Contrasts Test Statistic Based on
Fisher Information Matrix

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.054 0.058 0.060 0.065 0.068 0.076 0.120
100 0.049 0.053 0.057 0.052 0.055 0.060 0.085
200 0.050 0.054 0.051 0.051 0.056 0.052 0.065
500 0.050 0.050 0.053 0.049 0.048 0.051 0.053
1000 0.049 0.051 0.051 0.052 0.053 0.053 0.053

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.058 0.061 0.061 0.064 0.065 0.072 0.128
100 0.054 0.055 0.058 0.059 0.058 0.063 0.086
200 0.047 0.047 0.055 0.053 0.059 0.057 0.069
500 0.052 0.050 0.050 0.053 0.052 0.054 0.054
1000 0.051 0.051 0.049 0.051 0.052 0.056 0.055

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.058 0.057 0.065 0.060 0.065 0.070 0.127
100 0.054 0.053 0.056 0.054 0.060 0.059 0.083
200 0.052 0.048 0.051 0.050 0.055 0.055 0.065
500 0.049 0.049 0.053 0.051 0.051 0.051 0.052
1000 0.052 0.052 0.044 0.050 0.053 0.052 0.052

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.060 0.057 0.056 0.064 0.065 0.075 0.126
100 0.051 0.052 0.057 0.054 0.058 0.060 0.084
200 0.051 0.050 0.050 0.053 0.053 0.057 0.070
500 0.051 0.047 0.049 0.048 0.051 0.052 0.061
1000 0.051 0.048 0.053 0.051 0.052 0.056 0.055
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When the table of empirical type I error with variances based on information matrix

is investigated, the normal approximation of the test statistic is acceptable. For each

autoregressive coefficient; increase in treatment size results in better approximation.

In some cases, a problem arises with large AR(1) coefficient, actually when it is near

to 1, which can be solved by increasing size of sample. What the type I error should

be is near to its theoretical value (0.05), and moreover the values on the table are

acceptable on this point of view. Therefore, it can be concluded that the test statis-

tic with variance obtained from Fisher Information Matrix follows standard normal

distribution.

4.3.1.3 Simulated Type I Error of the Test Statistic Based on Observed Infor-

mation Matrix

The variances of the treatment means can be found by using the observed information

matrix in test statistic for linear contrasts. The related diagonal element of the inverse

of the negative hessian matrix is used in place of variance of treatment means. The

logic behind the algorithm of this part is actually same with in section 4.3.1.2 but there

exists small difference which is sourced by the test statistic. In here the test statistic

based on the variances found by hessian matrix rather than information matrix. The

fluctuations are also the concern of this part. The same remedial measure is applied

for this type I errors as well. That is, the values stated in Table 4.38 is in fact the

average of 10 type I errors. The corresponding table of type I error is supplied below.
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Table 4.38: Simulated Type I Error of the Linear Contrasts Test Statistic Based on
Observed Information Matrix

ν=6

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.057 0.059 0.062 0.065 0.068 0.076 0.120
100 0.050 0.053 0.057 0.054 0.055 0.061 0.087
200 0.051 0.055 0.052 0.051 0.057 0.053 0.064
500 0.050 0.051 0.053 0.049 0.048 0.051 0.053
1000 0.049 0.052 0.052 0.051 0.054 0.054 0.053

ν=9

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.061 0.061 0.063 0.065 0.066 0.073 0.129
100 0.055 0.055 0.059 0.059 0.058 0.064 0.086
200 0.048 0.047 0.055 0.053 0.060 0.056 0.068
500 0.052 0.050 0.049 0.054 0.052 0.054 0.054
1000 0.052 0.051 0.050 0.050 0.052 0.056 0.055

ν=12

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.059 0.058 0.066 0.060 0.066 0.072 0.129
100 0.055 0.054 0.056 0.056 0.059 0.059 0.084
200 0.052 0.049 0.051 0.049 0.056 0.055 0.066
500 0.049 0.050 0.052 0.052 0.051 0.051 0.053
1000 0.052 0.052 0.044 0.05 0.053 0.052 0.052

ν=24

n φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

50 0.062 0.059 0.057 0.066 0.067 0.077 0.127
100 0.052 0.054 0.058 0.055 0.059 0.060 0.085
200 0.051 0.050 0.051 0.053 0.053 0.057 0.070
500 0.051 0.0.47 0.053 0.051 0.052 0.052 0.062
1000 0.051 0.047 0.053 0.051 0.052 0.056 0.055
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When Table 4.38 is studied, it can be clearly stated that the test statistic based on ob-

served information matrix follows the desired distribution which is standard normal.

The reason of this kind of inference is that the related type I errors can be considered

as near to the theoretical value of it, which is set to be 0.05, for this work. Size of

sample effect can also be noticed, as increase in sample size makes the type I errors

to approach 0.05. On the other hand, when the autoregressive coefficient is close to 1,

some deviations are observed in type I errors for each degrees of freedom cases. But,

this can be eliminated by augmented length of treatment.

4.3.2 Simulated Power of the Linear Contrasts Test Statistic

In this subsection, the empirical power of the introduced test statistic with variance

based on Fisher information matrix, here called as tMLE is studied. 1,000 Monte

Carlo simulations are run in order to form the empirical power table. In each run,

test statistics are compared with the tabulated values in order to reach a conclusion.

Here, the treatment means are created in an opposite way of the null hypothesis. In

this study, the null hypothesis claims that the treatment mean of the second treatment

is the average of the first’s and third’s. The aim of examining the power of a test

statistic is to see the performance of the test statistic under the condition that the null

hypothesis is false. Power of a test statistic is actually the probability of rejecting

the null hypothesis when it is false in fact. These simulations are aimed to make the

null hypothesis is wrong. This is done with the constant "d". By adding d to first

and third treatments and subtracting 2d from the second treatment to make the null

hypothesis wrong. Actually, constant d reduces the power to type I error when it

equals to 0. According to different d values, the rejecting probabilities are tabulated.

Moreover, Table 4.39 is created under different values of the student’s t degrees of

freedom and AR(1) coefficient in order to judge the performance of the powers under

different situations. In this part, the sample size effect on the power is not considered

that’s why the simulations are carried out with only sample of size n = 100. In each

calculation, rejecting probabilities are calculated with the standard normal tabulated

values corresponding the 0.025th and 0.975th quantiles.
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Table 4.39: Simulated Power of the tMLE ; n=100

ν = 6 ν = 9 ν = 12 ν = 24

d
φ = −0.8

0.00 0.069 0.051 0.055 0.050
0.04 0.369 0.380 0.371 0.427
0.08 0.875 0.898 0.909 0.928
0.12 0.995 0.996 0.996 1.000

φ = −0.4

0.00 0.071 0.052 0.056 0.050
0.05 0.352 0.363 0.364 0.409
0.10 0.856 0.885 0.891 0.912
0.15 0.993 0.995 0.996 1.000

φ = −0.2

0.00 0.070 0.053 0.053 0.050
0.06 0.368 0.383 0.382 0.436
0.12 0.874 0.900 0.909 0.928
0.18 0.994 0.996 0.996 1.000

φ = 0.0

0.00 0.072 0.054 0.055 0.053
0.07 0.352 0.366 0.370 0.413
0.14 0.856 0.886 0.892 0.913
0.21 0.992 0.995 0.996 1.000

φ = 0.2

0.00 0.076 0.057 0.055 0.053
0.08 0.316 0.321 0.337 0.356
0.16 0.793 0.837 0.831 0.861
0.24 0.987 0.991 0.993 0.999

φ = 0.4

0.00 0.074 0.061 0.056 0.054
0.09 0.249 0.251 0.264 0.279
0.18 0.645 0.696 0.681 0.743
0.27 0.941 0.961 0.962 0.974

φ = 0.8

0.00 0.096 0.080 0.078 0.078
0.24 0.256 0.257 0.263 0.275
0.48 0.595 0.632 0.629 0.688
0.72 0.898 0.923 0.924 0.941
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Table 4.39 points out that as the difference in the means increase the power of the test

statistic is increasing.

4.3.3 Simulated Power of the Other Test Statistics for Linear Contrasts

This part of the simulation studies chapter is created for observing the effect of ig-

noring non-validated assumptions on the power of the test statistic for linear contrasts

concept. To do so, t0 and tLSE statistics, whose formula is given below, are compared

with the introduced test statistic, named as tMLE , which uses the variance coming

from Fisher Information Matrix. The test statistic t0 actually estimates the treatment

mean from the normal classical formula and estimates σ2 from the model (3.1) by LS

methodology. The test statistic tLSE uses the LS estimators of (3.1) for both treatment

mean and also σ2. Moreover, in order to get reasonable result from the power com-

parisions, we should ensure that the t0 and tLSE statistics follow the F distribution

with c-1 and nc-c degrees of freedoms for this reason the type I error of these two test

statistics are observed with n is 100 and ν is 9 scenario. The power comparisions are

done for the test statistics stated below,

t0 =
∑c
i=1 liȳi.√∑c
i=1 l

2
i
σ̃2

n

and tLSE =
∑c
i=1 liµ̃i√∑c
i=1 l

2
i
σ̃2

n

.

Table 4.40: Simulated Type I Errors of t0 and tLSE

t φ=-0.8 φ=-0.4 φ=-0.2 φ=0.0 φ=0.2 φ=0.4 φ=0.8

t0 0.003 0.012 0.037 0.081 0.162 0.298 0.742
tLSE 0.004 0.012 0.039 0.081 0.161 0.300 0.744

While constructing the power comparision table, φ is chosen to be -0.05, 0.00 and

0.05.
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Table 4.41: Simulated Power of the t0, tLSE and tMLE; n=100

ν = 6 ν = 9 ν = 12 ν = 24

d t0 tLSE tMLE t0 tLSE tMLE t0 tLSE tMLE t0 tLSE tMLE

φ = −0.05

0.00 0.072 0.072 0.060 0.061 0.057 0.050 0.049 0.048 0.059 0.044 0.044 0.055
0.07 0.428 0.424 0.428 0.384 0.384 0.401 0.398 0.396 0.429 0.371 0.373 0.435
0.14 0.916 0.916 0.933 0.910 0.910 0.916 0.940 0.940 0.954 0.933 0.933 0.954
0.21 0.998 0.998 0.998 0.998 0.998 1.000 0.999 0.999 0.999 0.999 0.999 0.999

φ = 0.00

0.00 0.115 0.114 0.048 0.090 0.088 0.059 0.064 0.065 0.054 0.067 0.067 0.066
0.07 0.442 0.442 0.371 0.417 0.418 0.367 0.400 0.402 0.360 0.426 0.428 0.414
0.14 0.877 0.877 0.841 0.892 0.892 0.873 0.908 0.908 0.902 0.907 0.907 0.903
0.21 0.998 0.998 1.000 0.996 0.996 0.998 0.994 0.994 0.995 0.998 0.998 0.998

φ = 0.05

0.00 0.155 0.158 0.062 0.121 0.122 0.056 0.108 0.107 0.061 0.088 0.090 0.059
0.07 0.428 0.429 0.293 0.431 0.429 0.314 0.417 0.418 0.313 0.389 0.385 0.319
0.14 0.864 0.865 0.781 0.863 0.864 0.808 0.881 0.880 0.831 0.882 0.883 0.831
0.21 0.992 0.992 0.987 0.997 0.997 0.996 0.994 0.994 0.992 0.998 0.998 0.994

The output of Table 4.41 can be interpretted as when the t0 and tLSE follow F dis-

tribution actually when making comparison is logical, the test statistic introduced by

this study performs well in terms of its power. That is, when type I error of the statis-

tics t0 and tLSE is not around the 0.05, comparing those test statistics is not logical

that’s why in power of these two test statistics are observed higher than tMLE . An-

other point here is that while interpretting the outputs, it is to be recalled that the σ2

is estimated by using the model (3.1).

71



72



CHAPTER 5

APPLICATION

In this chapter of the thesis, we apply the introduced process of the one-way ANOVA

methodology to the real life data set so that the procedure discussed for this study is

illustrated. In the first part of the chapter the data set is described, and the analysis

and the final conclusions are done in the next part of this chapter.

5.1 Data Description

The data set is obtained from International Monetary Fund Data Bank (IMF, Inter-

national Financial Statistics, 2017). We use three different countries, which are Bul-

garia, El Salvador and Pakistan. The yearly unemployment rates of these countries

are the main interest. The data are taken for the time interval between 1990 and 2016,

which means each country has 27 observations. Even the size of the treatments are

small to conduct a time series analysis, this is not considered as a problem because the

main emphasize of the this part is to illustrate the application of the methodologies

introduced throughout the study.

5.2 Statistical Analysis

In this section, there countries are examined under time series framework. The acf

and pacf plots, normality test, stationarity test, homogenity of variances, indepen-

dency test and the quantile-quantile plot of the residuals of the conducted models

are provided. Here, the data of each country are performed by the natural logarithm
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transformation twice and all the analysis are done with these transformed data.

5.2.1 Order Selection of the Unemployment Rate Series

By investigating the autocorrelation and partial autocorrelation plots, the order of the

time series each belongs to an unemployment series of countries can be determined.

Figure 5.1: ACF and PACF Plots of Countries

The ACF and PACF plots suggest that each series follow AR(1) process because of

the fact that there is only one spike at lag 1 when the PACF of each series examined.
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5.2.2 Stationarity Test

In order to get valid and reliable results, the series analysed are to be stationary. For

this reason, stationarity tests are to be conducted for each series that we are interested.

To do so, Phillips-Perron test whose null hypothesis claims that there exists a unit root

aganist the alternative hypothesis of stationarity is used. The results of this test are

given as follows:

• Phillips-Perron Unit Root Test for the series belongs to El Salvador

Dickey-Fuller = -4.3302, Truncation lag parameter = 2, p-value =0.01143

• Phillips-Perron Unit Root Test for the series belongs to Bulgaria

Dickey-Fuller = -5.2556, Truncation lag parameter = 2, p-value = 0.01

• Phillips-Perron Unit Root Test for the series belongs to Pakistan

Dickey-Fuller = -4.3706, Truncation lag parameter = 2, p-value =0.01001

The results of Philips-Perron tests point out the stationarity of the each series since

the p-values of each test is less than the significance level of α = 0.05.

5.2.3 Determining the Proper Distribution Fit

Normality Test

In this section normality of the error terms are examined. By using the Shapiro-

Wilk test for normality, whose null hypothesis claims the normality, it is tried to

reach a conclusion about whether the distribution of the error terms is normal or

not. The series for El Salvador, Bulgaria and Pakistan are fitted to AR(1) model

and the corresponding p-values belongs to Shapiro-Wilk tests are presented below

respectively;

• Shapiro-Wilk normality test for the error terms of the series belongs to El Sal-

vador

W = 0.91987, p-value = 0.03919
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• Shapiro-Wilk normality test for the error terms of the series belongs to Bulgaria

W = 0.89915, p-value = 0.01279

• Shapiro-Wilk normality test for the error terms of the series belongs to Pakistan

W = 0.81663, p-value = 0.0002694

According to the results of Shapiro-Wilk tests, the error terms of models, each belongs

to a country, are not distributed normally because of the fact that their p-values are

smaller than the significance level of 0.05, that’s why the null hypothesis of each test

is rejected.

Examining the Q-Q Plots

In this section, it is tried to determine the degrees of freedom of the student’s distri-

bution for each error terms of the models. To do so, the quantile-quantile plots are

used.
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Figure 5.2: Q-Q Plots of Error Terms for respcetively El Salvador, Bulgaria and Pak-

istan

77



Figure 5.2.3 points out that the error terms of the models perfom well under the Stu-

dent’s t distribution with 6 degrees of freedom.

5.2.4 Parameter Estimation and Hypothesis Testing in One-Way ANOVA

According to the results from the Sections 5.2.1, 5.2.2 and 5.2.3, it can be said that

each of the series follow stationary AR(1) process and the error terms of each con-

ducted AR(1) models do not follow normal distribution instead the error terms of the

models behave well under student’s t distribution with 6 degrees of freedom. That’s

why, in this section we apply the parameter estimation process stated in Section 3.

Moreover by using the estimated paramters the representative model can be gathered

in a way that is stated below

ŷi,t = 0.469ŷi,t−1 + (1− 0.469)µ̂i (5.1)

where µ̂i’s are the treatment means and ŷi,t is the ln(ln(unemployment rate)).

In the following parts, the one-way ANOVA assumptions are checked.

Normality Assumption

The error terms follow student’s t with ν = 6 and this is provided by Section 5.2.3.

Variance Homogenity Assumption

One of the most important assumption of the ANOVA model is that the variance of

the error terms of each group are to be homogeneous. In order to test the homogenity

of the variaces of the error terms of the model (5.1), Levene’s test is used because the

normality assumption is not validated. The result of this test is as follows:

H0 : σ2
1 = σ2

2 = σ2
3

H1 : σ2
i 6= σ2

j for at least one pair of i and j.
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Levene’s Test for Homogeneity of Variance (center = median)

df F value Pr(>F)

Series 2 2.2616 0.111

The p-value of the Levene’s test suggests that the null hypothesis claiming the equality

of the variances is failed to be rejected at 0.05 significance level. Therefore, it can be

concluded that the variances of the error terms for the series are equal.

Independency

The independency of the error terms of the conducted models are tested by Box-Pierce

test. The null hypothesis of the Box-Pierce test claims the independency of the error

terms. The related test results are supplied respectively for El Salvador, Bulgaria and

Pakistan.

• Box-Pierce test for the model for El Salvador: p-value = 0.2618

• Box-Pierce test for the model for Bulgaria: p-value = 0.3178

• Box-Pierce test for the model for Pakistan: p-value = 0.02381

The results of the Box-Pierce tests support the independencies of the error terms for

each model at 0.01 significance level.

Since all the model assumptions of the ANOVA are satisfied, the introduced test

statistic can be applied. Therefore, the null hypothesis stated below is tested with

the introduced test statistics provided in this thesis as,

H0 : µ1 = µ2 = µ3

H1 : µi 6= µj for at least one pair of i and j.

By using the test statistic (3.9), with the V̂ (µ̂i) is obtained by Fisher Information
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Matrix,

F =

∑c
i=1

(
µ̂i−µ̂√
V̂ (µ̂i)

)2

/(c− 1)

∑c
i=1

∑n
t=1

(
yi,t−µ̂i√
V̂ (yi,t)

)2

/(nc− c)
∼ Fc−1,nc−c.

By using the estimated values of the unknown parameters with degrees of freedom

as 6, the calculated F statistic is found as, F=32.69422. Since calculated F statistic

is greater than the F tabulated value, which is F3−1,27∗3−3 = F2,78 = 3.113792, the

null hypothesis can be rejected which suggests that the mean of these three log-log

uneployment rates are not equal to each other.

Since the null hypothesis which claims the equality of the log-log unemployment rates

of the countries is rejected, now the source of this inequality is tried to be discussed

by using linear contrasts methodology. In order to have an idea of the means of the

related unemployment rates, the following plot is obtained. Here, the red lie belongs

to ln(ln(unemployment rate)) of El Salvador, the blue one is for Bulgaria and the other

one is for Pakistan. By looking at Figure 5.3, the linear contrasts are determined.
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Figure 5.3: Time Series Plot of ln(ln(Unemployment Rate)) of Countries
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The related null hypothesis are as follows,

H0 : µ1 = µ3, (5.2)

H0 : µ1 − 2µ2 + µ3 = 0. (5.3)

where the µ1, µ2 and µ3 represent the mean of log-log unemployment rate of EL

Salvador, Bulgaria and Pakistan respectively.

The first test statistic is,

t1 =

∑c
i=1 l1iµ̂i√∑c
i=1 V̂ (l1iµ̂i)

= −1.894165 (5.4)

where l1=(1, 0, -1), for testing null hypothesis stated under (5.2). This resut points out

that mean of log-log unemployment rate of El Salvador and Pakistan are equal for the

specifed time interval since the absolute related value of the calculated test statistic is

not greater than 1.96, then it is failed to be rejected at 0.05 significance level.

Therefore, we try to investigate the relation between those two countries with Bul-

garia, and specify the null hypothesis as the average mean of log-log unemployment

rates of El Salvador and Pakistan equals the mean of the log-log unemployment rate

of Bulgaria. Actually, since mean of log-log unemployment rates of El Salvador and

Pakistan are equal to each other, the average of them also gives the value of mean

of log-log unemployment rate of El Salvador or Pakistan. That is, the null hypotesis

actually test the equality of the mean of log-log unemployment rate of the Bulgaria

with El Salvador or Pakistan. The related test statistic is,

t2 =

∑c
i=1 l2iµ̂i√∑c
i=1 V̂ (l2iµ̂i)

= −9.810371 (5.5)

where l2=(1,-2,1), for 5.3.

The corresponding result marks the rejecting the null hypothesis because the absolute

of the calculated test statistic is greater than the tabulated one, which is 1.96. This

is also implying that the mean of the log-log unemployment rate of the Bulgaria is

not equal to the mean of the log-log unemployment rate of El Salvador or Pakistan.
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Moreover, it can be clearly stated that the difference in the means of the unemploy-

ment rates is sourced by the inequality of the mean of the log-log unemployment rate

of Bulgaria with the other two countries’ means of log-log unemployment rate.

Here we do not aim to interpret the result under the scope of economy, our main target

is to illustrate the process of one-way ANOVA with non-validated assumptions case

by using the introduced procedures stated througout the study.
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CHAPTER 6

CONCLUSION

In this thesis study, the main motivation is one-way ANOVA test under the first order

autoregressive model. The objective is actually to introduce a test statistic for one-

way ANOVA when the normality and the independency assumptions are failed to

validate. The reason why the normality assumption is not met is sourced by the fact

that error terms are assumed to be distributed as Student’s t in this thesis. Moreover,

because of each treatment is assumed to be followed AR(1) process, which causes

the autocorrelated observations of the treatments, the independency assumption is not

met as well. Under the same assumptions, a test statistic for linear contrasts concept

is also introduced.

The first chapter of this thesis includes an introduction and revision of literature re-

lated to the studied topics of this thesis. The previous studies found a place in the

literature is discussed and our point of view is presented. This part also includes a

content of the study.

The second part of the study encapsulates the methodologies related to thesis topic.

The one-way analysis of variance and the linear contrasts concepts are given in de-

tailed with their assumptions, parameter estimation techniques, hypothesis tests and

the test statistics. Moreover, the related time series model which is AR(1) process and

its model and assumptions are given. In addition to this, parameter estimation proce-

dure of the AR(1) model is given by name because the related technique of estimation

is given in the next chapter.

The third part is actually the main part of this study because of the fact that it contains
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the objective model of the study. Related model assumptions, hypothesis tests and

the affilated test statistics are welcomed in this part. Furthermore, derivations of the

model and distribution parameter estimation procedure are also included. Here, the

test statistics for one-way ANOVA and linear contrasts are introduced, each proce-

dure has three type of test statistics with respect to way of obtaining the variance of

the treatment means. Actually three way are used for estimating the variance of the

treatment means. The first way is the simplest one because it uses the basic simulated

variances in place of variance of treatment means. Using the related diagonal of the

inverse of the Fisher Information Matrix is the second way of finding the variance of

treatment means. The last way of obtaining variance of the treatment means is using

the related diagonal of the negative of inverse hessian matrix, actually this is called

as observed information matrix.

The next chapter contains the simulation studies. This part is divided into three sec-

tions. The estimation of the parameters creates the first section of this chapter. In

this part, in order to judge the performances of LS and ML estimators, MSEs and

REs of the parameters are obtained. The results from the related tables show that for

small sample sizes, performances of the LS estimations under the AR(1) coefficient

near to 1 are not satisfying. The related conditions affect the MSE values of the LS

estimators, that is when the correlation is positively large and size of treatments are

small, LS estimations are not acceptable. Therefore, because of the small sample

performances of LS estimators under large AR(1) coefficient, the ML estimators are

preferred for the upcoming studies for this thesis. The values of REs are expected to

approximate 100 as size of treatment is increased just because the performances of the

LS estimators become closer to the ML ones’. By investigating the tables in this point

of view, except for some scenarios the REs of LS estimators become competitive to

the ML estimators as the size of treatment is increasing.

The second part of the simulation studies is formed by the related context of one-

way ANOVA. The type I error tables, which are one for simulated variances, second

one for variance coming from Fisher Information Matrix and the last one is for vari-

ance coming from observed information matrix, are stated. The results of Table 4.30

shows that the test statistic based on simulated variances perfoms well with the de-

sired degrees of freedom of F distribution. However, while contrusting the type I
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error tables by using Fisher and observed information matrices, we faced with a fluc-

tuation. Therefore, this problem is tried to be solved by using the remedial measure

of averaging the 10 type I errors. Furthermore, Tables 4.31 and 4.32 point out that

except for the small sample size under large AR(1) coefficient cases, performances of

the test statistics using these two variances are satisfying. In this part of the chapter,

power of the introduced test statistic, which uses the variance coming from Fisher In-

formation Matrix, is studied. The results mark that as the difference in the treatment

means is increased, the power of the test statistic approaches to 1 as it is expected.

Moreover, the test statistic based on LS estimators and normal classical test statistics

are compared with respect to their power. The outputs of this comparison can be

interpretted as, when these three test statistics are comparable, the power of the test

statistic introduced for this study is promising.

The third part of the simulation studies chapter encapsulates the related contents of

linear contrasts. In the first section of this part, the type I error tables are studied.

Table 4.36, which uses the simulated variances of treatment means, shows that the

test statistic behaves well under the standard normal distribution. The fluctuation

problem also occurs when dealing with Fisher and observed information matrices,

and the same remedial measure is applied here as well. Therefore, according Tables

4.37 and 4.38, except for the cases in which the treatment sizes are small and the

AR(1) coefficent is near to 1, these test statistics are seen to follow standard normal

distribution. The power of the test statistic, which uses the variance coming from the

Fisher Information Matrix, is given. When Table 4.39 is examined, it can be obviously

seen that as the constant "d" raising, the power of the test statistic converges to 1.

That is, the intoduced test statistic can detect almost all the wrong null hypothesis to

reject. In addition to this, power comparisions are done with normal test statistic and

LS based test statistic for linear contrasts. According to the related power table, the

introduced test statistic performs well.

The application chapter includes the real life application of the introduced hypoth-

esis testing procedure. To do so, the unemployment rate data for the countries El

Salvador, Bulgaria and Pakistan for the time interval 1990 and 2016. Related model

assumptions and the analysis are given in detail.
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To conclude, this thesis study is motivated by the non-validated model assumptions of

the one-way ANOVA. The non-normality and the dependency are the main objectives.

The case of that error terms are distributed independently and identically Student’s t

and the treatments follow AR(1) process is studied. Three test statistics are introduced

depending on the way of finding the variances of the treatment means, which are

using simulated variances, using Fisher Information Matrix and using the observed

information matrix. By using the same ways, three test statistics are introduced for

linear contrasts concepts as well. Related type I errors and powers of the test statistics

are investigated as well as the power comparisons of the corresponding classical test

statistics. At the end, it can be observed that the performances of the introduced test

statistics are promising. In the future works, this study can be generalized to AR(p)

process and also other distribution families can be studied. Also, other type desings

like two way anova will be considered as well as assuming different models for each

treatment cases can be studied. The related R codes of the study can be supplied if

they are requested.
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