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ABSTRACT

NORMALIZERS IN HOMOGENEOUS SYMMETRIC GROUPS

GUVEN, ULVIYE BUSRA
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mahmut Kuzucuoglu

August 2017,02]pages

We study some properties of locally finite simple groups, which are the direct limit
of finite (finitary) symmetric groups of (strictly) diagonal type. The direct limit of
the finite (finitary) symmetric groups of strictly diagonal type is called homogeneous
(finitary) symmetric groups.

In [5], Kegel, Kuzucuoglu and myself studied the structure of centralizer of finite
groups in the homogeneous finitary symmetric groups. Instead of strictly diagonal
embeddings, if we have diagonal embeddings, we will have direct limit of finite sym-
metric groups of diagonal type. We prove the centralizer of a finite subgroup for the
symmetric groups of diagonal type is the direct product of homogeneous monomial
groups and a symmetric group of diagonal type.

We also study the level preserving automorphisms of the symmetric groups of di-
agonal type and finitary homogeneous symmetric groups. We prove that the level
preserving automorphisms of both groups is isomorphic to the Cartesian product of
centralizers of subgroups.

In the last part of the thesis, we study the normalizers of finite subgroups in both
homogeneous symmetric groups and homogeneous finitary symmetric groups. In the
first class, we find normalizers of finite semi-regular subgroups and in the latter class
we find normalizers of finite subgroups, F', satisfying F,, = F or 1. In each class of
groups, the quotient of the normalizer of finite subgroup, F', with the centralizer is



isomorphic to the automorphism group of F'.

Keywords: Locally finite groups, centralizer, normalizer,...
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0z

HOMOJEN SIMETRIK GRUPLARDA NORMALLEYENLER

GUVEN, ULVIYE BUSRA
Doktora, Matematik Bolimi

Tez Yoneticisi : Prof. Dr. Mahmut Kuzucuoglu

Agustos 2017 ,[92] sayfa

Sonlu (sonlumsu) simetrik gruplardan (kati) kosegen tipteki gommelerle elde edilen
lokal sonlu basit direkt limit gruplarin bazi 6zellikleri ¢alisilmistir. Sonlu (sonlumsu)
simetrik gruplardan kati kosegen tipteki gommelerle elde edilen direkt limit grupla-
rina homojen (sonlumsu) simetrik gruplar denir.

Homojen sonlumsu simetrik gruplardaki sonlu altgruplarin merkezleyenlerinin ya-
pis1, Kegel, Kuzucuoglu ve benim tarafimdan [S] makalesinde bulunmustur. Kati ko-
segen tipteki gdbmmeler yerine, kosegen tipteki gommeler kullanirsak sonlu simetrik
gruplarin kosegen tipteki direkt limitlerini bulmug oluruz. Bu direkt limit gruplari-
icinde sonlu altgruplarin merkezleyenlerinin homojen monomial gruplarin ve kose-
gen tipteki simetrik grubun direkt ¢arpimi oldugu kanitlanmigtir.

Ayrica, kosegen tipteki simetrik gruplarla, sonlumsu homojen simetrik gruplarin se-
viye koruyan otomorfizmalar1 ¢alisilmigtir. Seviye koruyan otomorfizmalarin, bazi-
altgruplarin merkezleyenlerinin Kartezyen carpimina izomorf oldugu gosterilmistir.

Tezin son kisminda, homojen simetrik gruplar ve homojen sonlumsu simetrik gruplar-
daki sonlu altgruplarin normalleyenleri ¢alisilmigtir. Birinci simiftaki gruplarda, yari-
diizenli altgruplardaki normalleyenler, diger sinifta ise F, = [ yada 1 kosulunu
saglayan her hangi bir sonlu F altgrubu i¢in normalleyenler bulunmustur. Iki siifta
da sonlu F' altgrubunun merkezleyeniyle normalleyeninin boliim grubunun, F’nin
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otomorfizma grubuna izomorf oldugu gosterilmistir.

Anahtar Kelimeler: lokal sonlu gruplar, merkezleyenler, normalleyenler,...
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CHAPTER 1

INTRODUCTION

In the theory of infinite groups, the class of locally finite groups are of special interest
to the group theorists. A group G is called locally finite, if every finite set of elements
of GG generates a finite group. After the classification of finite simple groups was
completed, the interest turned to the classification of infinite locally finite simple
groups. However, the work of Kegel-Wehrfritz [7, Corollary 6.12], showed that there
are uncountably many non-isomorphic, countable, locally finite simple groups. The
authorities accepted that the classification of locally finite simple groups is not easy.
However, we know by Meierfrankenfeld that if GG is a simple locally finite group,
then it must be either finitary group or the group of alternating type or it must accept

a Kegel Cover satisfying some certain properties, see [13]].

Although the classification may seem harder, the information we get from such groups
could help the mathematicians to understand the class of simple locally finite groups
better. With this idea, in this thesis, we investigate properties of some certain infinite
locally finite, simple groups and give information about the structure of the group

itself, subgroups and automorphism group.

There are lots of ways to obtain infinite locally finite simple groups. We are interested
in the locally finite (simple) groups, which are the direct limits of finite symmetric (al-

ternating) and finitary symmetric groups, obtained by (strictly) diagonal embeddings.

Definition 1.1. Let G be a transitive X set and H be a 'Y set. An embedding d of
G into H is called diagonal, if the permutation group (d(G), O) is permutationally
isomorphic to the group (G, X), for any orbit O of d(G) on'Y with length more than
1.



Definition 1.2. A diagonal embedding d of G into H is called strictly diagonal, if all
of the orbits of d(G) on'Y has length greater than 1.

In [9], Kroshko and Suschansky studied the direct limits of finite symmetric (alternat-
ing) groups with strictly diagonal embedding. Such groups are called homogeneous
symmetric (alternating) groups. They gave a classification of homogeneous sym-

metric groups up to isomorphism using the lattice of Steinitz numbers.

Definition 1.3. A formal product n = 2"3™5™ ..., where 0 < r; < ow forall1 € N

is called a Steinitz number or a supernatural number.

After Kroshko and Suschansky’s work, in [4] and [5] Kegel, Kuzucuoglu and myself
studied the centralizers of elements and finite groups. We found the structure of the

centralizers of elements and finite groups in the homogeneous symmetric groups.

After the classification of homogeneous symmetric groups were completed, the inter-
est turned into the automorphism group of homogeneous symmetric groups. In [12],
Lavreniuk and Sushchansky studied automorphism groups of this class and gave a
new perspective to understand the homogeneous symmetric groups better, namely,
they look at the homogeneous symmetric groups as a subgroup of homeomorphism

group of the boundary of a spherically homogeneous rooted tree.

In Chapter 2] first we give the construction of homogeneous symmetric groups and
then we give basic definitions and theorems about the trees and the topology that we

will use throughout this thesis.

In Chapter 4, we showed that the automorphism group of homogeneous symmetric
groups can not act highly transitively on the boundary of the tree whereas we prove

that the group of local isometries acts highly transitive on the boundary.

When we change the embeddings in the construction of homogeneous symmetric
groups into diagonal embeddings, we get a bigger class of infinite locally finite simple
groups. The classification of direct limits of finite symmetric groups of diagonal
type is due to Lavreniuk, Nekrashevych and Sushchansky, see [11]. They used the

topological approach together with some measure theory.



In this thesis, in Chapter [5] after giving the construction and some theorems given in

[L1]], we prove the following result:

Theorem 1.4. Let oo € S,, x = {(1, ko), (n1,k1),...) and let oy € S(0T),1) be
the principal beginning of o and t(og) = (r1,72,...,7k) be the short cycle type of
o, where ry is the number of fixed vertices other than $$ ...$ in level I. Then the
centralizer of a in S,;
Cs, (o) zég e, (Ci) x Sy
where € = (ko,ny,ns, . ..), char(&) = 228 forall i =2, ' = {(1,11), (i, kr), ..

koni..nj_1

and ¢, (C;) the homogeneous monomial group over the cyclic group C; of order i.

The structure of centralizers of finite subgroups are also given in the same Chapter [5

Definition 1.5. An automorphism of a group acting on the boundary of a tree is
called level preserving, if for some N = {n;| i > 1} of positive increasing numbers, it
preserves all the levels n; of the tree. The group of all level preserving automorphisms

for a given N will be called N -level preserving automorphisms.

In Chapter 5] we prove the following result:

Theorem 1.6. The level preserving automorphism group is isomorphic to the Carte-

sian product of the centralizers of finite subgroups in S,,.

The idea of homogeneous symmetric groups were extended to the finitary homo-
geneous symmetric groups, denoted by F'Sym(k)(€), see [5l], so that we will have
locally finite (simple) groups of any cardinality . Instead of taking finite symmetric
(alternating) group, we start with finitary symmetric (infinite alternating) groups with

a given cardinal k.

The classification of such groups and the structures of centralizers of elements, as

well as the structure of the centralizers of finite subgroups are also given in the same

paper.

In this dissertation, we extend the idea of spherically homogeneous rooted tree and in
Chapter [ show that similar to the case of homogeneous symmetric groups, the fini-
tary homogeneous symmetric group has an action on a non-locally finite spherically

homogeneous rooted tree.



We get some properties of the automorphism group of finitary homogeneous symmet-

ric groups. We prove the following theorems;

Theorem 1.7. Any automorphism of finitary homogeneous symmetric group is in-
duced by an element of the homeomorphism group of spherically homogeneous rooted

tree.

We also prove the following;

Theorem 1.8. For an increasing sequence of natural numbers, M = {m; | m; > 0},

the M-level preserving automorphisms are isomorphic to the Cartesian product

0
Sym(kmy) x H Csym(xm) (F'Sym(r)(mi-1))
i=2
A group, acting on a set {2 is said to be semi-regular, if all the point stabilizers are
identity. If, in addition, the action is transitive, then we call the group regular. If /'
is a regular subgroup of symmetric group on a set {2, then, by [2, Corollary 4.2B], the

normalizer is isomorphic to the holomorph of F'.

Let F' be a semi-regular finite subgroup of Sym(£). We are interested in normalizers
of such groups. Since Sym(¢) is the union of finite symmetric groups, in Chapter 7]
we first find the structure of normalizer of a finite semi-regular group. Notice that we
can find semi-regular representation of any finite abstract group, G, just consider reg-
ular representation and embed it via strictly diagonal embedding so that the resulting

group is semi-regular and isomorphic to G.

We prove the following,

Theorem 1.9. Let F be a finite semi-regular subgroup of S(§), where £ =< p1,po, ... >.
If Fisin S, for some n; = pipy . ..p;, then

Ns(e)(F)/Cse)(F) = Aut(F)

Moreover, in Chapter [/, we also showed that the structure of normalizers of finite
subgroups of finitary homogeneous symmetric group, satisfying some property, is

not so different than the normalizers of semi-regular groups in S(§).

4



Let F' be a finite subgroup of F'Sym(x)(§). Hence, F'is a subgroup of F'Sym(x)(n;)
for some n;. Note that /" acts on the set of elements of cardinality xkn;. Let F' satisfy
the property that the stabilizers of any element « is either F' or identity. Then we have

the following result.

Theorem 1.10. Let F be a finite subgroup of F'Sym(k)(§) which satisfies the above
property. If F' € F'Sym(kn;) for some n; = p1ps ... p;, then we have

Nrsym(r)©) (F)/Crsymw) ) (F) = Aut(F)






CHAPTER 2

PRELIMINARIES

In this chapter, we will give basic definitions and results that will be used in the other

chapters.

2.1 The homogeneous symmetric group

In this section, the basic definitions and facts about the groups S(¢) and the strictly

diagonal embeddings will be given.

Definition 2.1. Let G be a transitive permutation group on a set X and H be a per-

mutation group on'Y . If we have an embedding d from G into H such that (d(G), O)

is permutational isomorphic to (G, X), for any orbit of d(G) on Y of length greater

than 1, then d is called diagonal. On the other hand, if all the orbits have length

greater than 1, then the embedding is called strictly diagonal.

If o= (2 ), then define a map,

d" : S, — Sy

and d"(«) is defined by the rule

(kn+9)7 @ = kn+i® 0<k<r—1,

Hence,
&' (o) = (31 2-n

will become an element of .S,,,.

n+l -
Ny -

2n

netin |

(r—1)n+1 -
(r—1)n+ig -

1 <1< n.

(r—1)n+n
(r—D)n+in

)

2.1)



Lemma 2.2. The embedding d" is a strictly diagonal embedding.

Proof. Tt can be easily seen that the image d"(.S,,), acts on the set {1,2,...,rn}, by
partitioning the set into r pieces of length n. The action of any element d"(«) €
d"(S,,) is diagonally same as the action of « on the set {1,2,...n}, by Equation
Hence the orbits of d"(S,,) in the set {1, 2, ..., rn} will be of the form

Op={(k—1)n+1,(k—1)n+2,...kn}
where 1 < k < r.

Notice that each orbit has length n. For an arbitrary orbit &}, define the map,
A:{Ll,2,...,n} — Oy
i—(k—1n+1
Then the map will satisfy the following equation; for any i € {1,2,...,n}, a € S,
M) = (k= Dn+0)"@ = (k- 1)n + i = \i%)

where ¢* is used for the action of « on i. Hence, (d"(S,), OF) is permutational iso-

morphic to (S,,{1,2,...,n}). N

By using this specific embeddings d”, one can construct a direct limit group which is

locally finite and simple.

Let £ = (p1,po,--.) be an infinite sequence of prime numbers (not necessarily dis-

tinct). Consider the embeddings d” : S,, — S

Ni+1

where n, = pip2...p;. The
embeddings will generate a direct limit group and the group will be denoted by S(¢&).

If, in the direct limit group, we denote the image of a permutation « in .S,,,, for some
0

n; by d(a) and the image of S,,, by S(n;), then the group S(&) := | J S(n;). The
i=1

groups S(&) are called homogeneous symmetric groups [9]. Note that S(¢) is a

subgroup of the symmetric group on natural numbers S(N).

o0

Similarly, we can form A(§) = ] A(n;) where A(n;) is the image of the alternating
=1

group A,,. under the embedding d. Moreover A(§) < S(£), as for any a € A,

and for any r, the image d"(«) is always an even permutation so d(«) € A(§) and

d(a) € S(§).



Definition 2.3. [9 Page 175] If « € S(), then there exists a minimal number n;
such that we have g € S,,, and d(ay) = «. The element « is called the principal

beginning of o

In [9], Kroshko and Suschansky proved the following.

Theorem 2.4. [9 Page 175, Theorem 1] Let & = (py, D2, . . .) be an infinite sequence

consisting of not necessarily distinct primes.

(1) If the prime 2 appears infinitely many times in the sequence &, then S(§) = A(&).
(2) If in the sequence we have only finitely many 2, then [S(&) : A(§)] = 2.
(3) A(€) is simple.

Hence, depending on the sequence &, one can determine the simplicity of the group

S(€). In fact, the classification of the groups S(&) also depends on the sequence.
Now in order to give the classification of such groups, we introduce Steinitz numbers.

Definition 2.5. The formal product k = 2°13%25% ... where 0 < a; < o0 and a; is

the power of i'" prime in the set of all prime numbers is called a Steinitz number.

Lemma 2.6. The set of all Steinitz numbers is a partially ordered set with respect to

division and forms a lattice.

Proof. Let . be the set of all Steinitz numbers. Define the division of two Steinitz
numbers k = 2913%25%  and [ = 2013%25% | as follows;

k|l if and only if a; < b; for all ¢ € N. With the division above, (., |) becomes a
partially ordered set.

If we define meet and join of arbitrary two Steinitz numbers, £ = 2913?25 ... and

[ =2b13b25%  as
Evi= 2max{a1,b1}3mam{a2,b2}5mam{a3,b3} o
kAl = 2min{a1,b1}3min{a2,b2}5min{a3,b3} o

then obviously, £ v [ and k£ A [ are Steinitz numbers. Hence, with this meet and join

operations, the set . become a lattice. O



Definition 2.7. Let £ = (p1,p2,...) be an infinite sequence of not necessarily dis-
tinct primes. The characteristic of the sequence is a Steinitz number, char({) =
2m1372573 . where r; is the number of i'" prime appearing in the sequence £. If a

prime appears infinitely many times, then set corresponding r; to be infinity.

Theorem 2.8. [9, Lemma 3.3] Let &, and &, be two Steinitz numbers. Then S(&;) is
a subgroup of S(&;) if and only if char(&y) divides char(&s).

Therefore, this theorem classifies homogeneous symmetric groups. Moreover, as
there are uncountably many Steinitz numbers we will have uncountably many pair-

wise non-isomorphic homogeneous symmetric groups.

2.2 Trees and The Topology

After the classification of the groups S(&) up to isomorphism, natural question arises.

What is the structure of automorphism group of homogeneous symmetric groups?

In group theoretic point of view, understanding the structure of automorphism group
of a group is generally hard. Although the groups S(&) are the union of finite sym-
metric groups, and the automorphisms of symmetric groups are very well known, to

understand the automorphisms of S (), we need some other tools.

We will regard the groups S () as a subgroup of homeomorphism group of the bound-
ary of a spherically homogeneous tree. For this purpose, in the following subsections,
we explain some definitions and facts about trees and the topology they induce. In

Chapter 4] the properties about Aut(S(£)) will be given.

2.2.1 Rooted Trees

Definition 2.9. e A graph T is a pair, defined by the set of vertices V (T') and the

edges E(T) where any e € E(T) is a two element set {vy, v3}.

e Two vertices vy, vy are adjacent if there is an edge e = {vy,vo} € E(T). In this

case we say that edge e connects the vertices vy and vs.

10



e For a vertex v, the number of edges which v belongs to is called the degree of

.

A graph is called locally finite if the degree of every vertex is finite.

A path, ~, of length n — 1 is a sequence of pairwise distinct vertices (v1, ... vy)

such that for all 1 <1 < n — 1, {v;, v;11} forms an edge.

If in the path vy, also {vy, v, } forms an edge, then the path is called a cycle.

A graph is connected if we can connect two arbitrary vertices by a path.

A connected graph with no cycles is called tree.

Lemma 2.10. Let T be a graph. For all v,w € V(T) there exists a unique path

connecting them if and only if 'T' is a tree.

Proof. LetT be atree. Then by definition of a tree, any two vertices can be connected
by a path. If there exist two paths connecting v and w, say v, = (v, va, ... V1, W)
and v = (v,ws,...Wy_1,w), then the path (v,vq, ...V, 1, W, Wy_1, ... ws) Wil
become a cycle. But this is a contradiction to the definition of the tree.

Conversely, if for any pair of vertices v, w € V(T') we have a unique path connecting
them, then 7" is connected. On the other hand, if there exist a cycle v = (vy, vg, ... v,)
so that {vy,v,} forms an edge, then we have 7, = (v1,v,,) a path connecting v; and
v, but 7y also connects v; with v,, so it is a contradiction. Hence there is no cycle in

T'. Therefore, T is a tree. O

In connection with the above lemma, in a tree for any two vertices u, v, we can define

d(u,v) as the length of the path connecting them.

Definition 2.11. e Arooted tree (T, vy) is a tree with a fixed vertex vy called the

root.

In the Figure[2.1] one can see examples of rooted trees. Note that the notion of
a rooted tree is just a choice of a vertex that will specify the tree. In the Figure
[2.2] we give examples of two trees consisting of same vertex and edge sets but

one is rooted and the other one is not.

11



U1 Vg Vs V4 Vs U1 Vg Vs

TN

w; W2 W3 W4

w1 Wy W3 Wy Wy Weg W7 Wg Tg

Figure 2.1: Rooted trees where circled vy 1s the root

Notice that in Figure the tree in the right hand side is non-rooted because

we did not specify any vertex to be the root.

Us
P /\

V1 V2 U3 Uy Us Vo w; W2

AN

V1 V2 V3 U4

w; W2

Figure 2.2: Two trees one is rooted, the other is not

o A rooted tree is non-degenerate if the degree of the root is more than one and
the degree of every other vertex is more than two. A rooted tree is called de-
generate, if the degree of the root is 1 and starting with the root, we can find
a unique path that contains all the vertices of the tree. A degenerate tree looks

like a linear line.

U1

wq

W2

Figure 2.3: A degenerate rooted tree example

Note that, if a tree is non-degenerate, then it should be an infinite tree that is,

12



o A tree is called infinite if the cardinality of V(T') (or E(T)) is infinite.

e A rooted subtree (T',w) of a rooted tree (T, vy) is a tree where the vertex and

edge sets V(T"), E(T") are subsets of V(T'), E(T), respectively.

Throughout the thesis, we will discuss mainly non-degenerate infinite rooted trees.
We prefer non-degenerate trees because mostly we will discuss about level preserv-
ing homeomorphisms of the boundary of the tree and for a tree being degenerate is
meaningless in that concept. A homeomorphism between two topological spaces X
and Y is a bijective map, f, such that both f and f~! is continuous maps. For an

infinite rooted tree (7', vy), we have the following definitions.

Definition 2.12. e Anend is an infinite path, (vg, vy, Ve, .. .), which is an infinite
sequence of distinct vertices starting with the root vy such that {v;, v;,1} is in

E(T) forallie N u {0}.

o We call the set of all ends of the rooted tree (T',vy) as the boundary of the tree

and denote it by 0T.

e [or every non-negative integer n, we call the set

Vo ={veV(T)|dw,vy) = n}

as the n® level (the level number n). The level number 0 consists of the root,

vy only.

Let {vg,v1,...,v} be the path connecting the root with v. If w is a member of the

path sequence, then we say that v is below the vertex w.

The rooted subtree containing all the vertices below the vertex v on level n, with the

vertex v as a root will be denoted by T, and said to be a subtree of level n. See the
Figure[2.4]

13



— nth level

Figure 2.4: The subtree T, of the tree (7, vg)

Definition 2.13. An automorphism of the rooted tree (T, vy) is defined as the bijec-
tion of the vertex set V(T) that fixes the root and preserves the incidence relation

between vertices. The full automorphism group of the tree is denoted by Aut(T).

Lemma 2.14. Levels are invariant with respect to automorphisms of the rooted tree.

Proof. Leto € Aut(T). As o fixes the root, o(vg) = vo. We will use induction on the
level numbers. For an element v; in Vi, the root vy and v; is connected by an edge.
Now, o preserves the incidence relation that is o(v;) and o(vp) must be connected by

an edge. As o(vg) = vg, 0(vy) is an element of V. Hence, o preserves the first level.

Assume, o sends the vertices of level less than or equal to n — 1 to the same levels
they belong and let v,, € V,,. As T is a tree, there exist an element w € V,,_; such that
w and v,, is connected by an edge. Hence, o(w) and o(v,,) is also connected by an
edge. By induction hypothesis, o(w) is a vertex in level n — 1 that says o (v,,) must

be a vertex in level n. O]
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Let G be a subgroup of Aut(T'). If G acts transitively on the levels of the tree, then
G is called spherically transitive. A rooted tree 7" is called spherically homoge-
neous (spherically transitive) if the full automorphism group of the tree is spherically

transitive.

Lemma 2.15. A locally finite rooted tree T is spherically transitive if and only if the

degree of all vertices of the same level are equal.

Proof. Let vy € V,,(T') for an arbitrary level n. If the degree of v; is k, then we want

to show the degree of any vertex in V,,(7) is also k.

Consider a vertex v € V,(7T") different than v,. Since 7" is spherically transitive,
Aut(T) is transitive on levels and there exist an automorphism o sending v; to v.
Note that, o preserves the incidence relation between vertices. Hence, the k vertices
that are connected to v; must be sent to the k vertices so that they are connected to

o(vy) = v. Therefore, v has also degree k.

On the other hand, assume the degree of all vertices of the same level are equal.
For any two vertieces v and w on the same level n, let (&, vy, vs, ... v, 1,v) and

(&, wy,ws, ... w,_1,w) be the paths from the root to v and w, respectively.

Consider the subtrees of the first level 7;,, and 7,,, since the degrees of all vertices are
same there exists an isomorphism « between them sending v; to w;. On this isomor-
phism we can choose the image of v, € T, to be ws € T}, so that the restriction of
« to the subtree 7;,, is an isomorphism from 7,,, to 7,,. Continuing like that we will
have isomorphism « sending v to w. Extend « to an automorphism & of the tree 7" as

follows;

If z belongs to T}, or T, then a(z) = a(z). If z is a vertex not belonging to 7,,, and

T., then &(z) = z. Hence, we get the result.

The above lemma says that in a locally finite spherically transitive tree, the degree of
a vertex on level n depends only the level n. Therefore, for a locally finite spherically

transitive tree we have the following;
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Definition 2.16. Let Q = (ag,aq,...) be a sequence where ay is the degree of the
root and a,, + 1 is the degree of any vertex in level n. We define the characteristic of
the spherically transitive tree (T',vg) as the characteristic of ) which is the Steinitz
number char(Q2) = 27375 .. where the powers ; are determined by the prime
factors of each a;, that is we factorize each a; into prime numbers and r; is the
number of the j" prime appearing in a;’s. If a prime appears infinitely many, then

set the corresponding r; = 0. The sequence () is called characteristic sequence.

16



Example 2.17. In the Figure[2.5] we have a spherically homogeneous tree with the

characteristic sequence ) = (4,2, 6) and the characteristic is char(€)) = 213.

Figure 2.5: A spherically homogeneous rooted tree with characteristic 243

If T is a spherically homogeneous rooted tree with characteristic sequence {2 =
(ag,as, . ..), then we can label the tree T" in the following way. The set of vertices
consists of all sequences of the form (&, i, 41, .. .,4,) Where iy € {0,1,... ap — 1}
n = 0 is an integer. We denote the root with the empty set notation correspond-
ing to the empty sequence. Two vertices are adjacent if and only if they are of the
form (J, 0,91, .-, in-1)s (T, 90,91, .., in_1, ). If the characteristic sequence 2 is
known, then we denote the tree by 7. See the Figure For simplicity unless it is

needed, a vertex ((J, ig, i1, . - . , i, ) Will be written without ¥ as (ig, i1, . . ., in)-
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0) Y] (2)

(0,0) 0,1) (1,0 (1,1) (2,0)

(0,0,0) (0,0,1) (0,1,0) 0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) (2,0,0) (2,0,1) (2,1,0)

Figure 2.6: The tree Ty, where Q) = (3,2,2,...)

2.2.2 Topology on the boundary of the tree
For readers’ convenience we will give some basic definitions on topology and con-
struct the topology on the boundary of the rooted tree.

Definition 2.18. /l/4| Page 76] Let X be any set. A collection T of subsets of X is
called topology on a set X if it has the following properties:

1. Jand X arein .
2. The union of the elements of any subcollection of T is in T.
3. The intersection of the elements of any finite subcollection of T is in T.
A set X for which a topology T has been specified is called a topological space. In this

case, we say that a subset U of X is an open set of X if U belongs to the collection .

On the other hand, a subset U of X is called closed if the complement X\U is open.

Definition 2.19. [l/4] Page 119] A function
d: X xX—->R
is said to be a metric on a set X if it has the following properties:

18
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1. d(z,y) =0 forall z,y € X; equality holds if and only if = = y.
2. d(xz,y) = d(y,x) forall z,y € X.

3. (Triangle inequality) d(x, z) < d(x,y) + d(y, z), forall z,y,z € X.

A metric space X is a set together with a metric.

Let T, be a spherically homogeneous tree. On the boundary 07, of the tree which is

the set of all ends of the tree, we define a metric; for any two ends vy, 72

p(1,72) = n+r1

where n is the length of the common parts (edges) of 1, .

Lemma 2.20. The distance p defines a metric on 0T,

Proof. 1) p(71,72) = 0 equality holds if and only if v; = ~;

Common parts of any two different ends is bigger than or equal to 0. Hence, the ratio

1
n+1

is bigger than 0.

If two ends are the same, then as their all edges are common the ratio n+r1 will be

equal to 0.

2) p(71,72) = p(72,71); By the definition of p it is obvious.

3) p(71,72) < p(1,73) + p(73,72);
Let the common parts of 7;,7; be n;; fore,j = 1,2,3 and ¢ # 7.

Now, without loss of generality say n13 < no3. Since we start to count the common
parts of two ends from the root, any common part of ; with -3 will also be the
common parts of v, with 3. But again as the common parts are counted from the
root y; and 7, must share the common parts of v; and 3. Hence the common parts

n12 of ; with 5 is greater than or equal to the common parts n;3 of 7; with v3. We

have ni3 < n12, 0 ﬁ = n121+1' Thus p(71,72) < p(71,73) + p(73,72)- u

Definition 2.21. A metric d on a set X is called an ultra-metric if

d(z,y) < max{d(x,z),d(z,y)} forallz,y,ze X
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In fact, the metric p is an ultra-metric. By the proof of third property of being metric,

we find niz+1l = nia+l

whenever ni3 < nog, it yields us the more strong condition

that
p(71,72) < maz {p(1.73), p(73,72)} -

Definition 2.22. [/4, Page 78] A basis for a topology on X is a collection & of

subsets of X (called basis elements) such that
(1) For each x € X, there is at least one basis element B containing z.

(2) If x belongs to the intersection of two basis elements By and By, then there is a

basis element B3 containing x such that By < By N Bs.

Definition 2.23. [/4, Page 119] If X is a metric space with a given metric d, then the

collection of the sets
B(z,e) = {y | d(z,y) < ¢}

for any € > 0 and any v € X will form a basis for the metric space X. The sets

B(x, €) are called e-ball centered at x, or sometimes simply balls.

The topology induced by the metric p has a base of open sets;

P, ={y€ dTq|v; € V,(Tq)} wherev; € v

The set P, consists of all ends passing through the vertex v; on the level n. Observe
that P,,,, corresponds to the open ball B(7, n%l) where v is any end containing the

vertex v;.

Lemma 2.24. If v € V,, is connected by an edge to w € V,, ., then the ball P, ,, will
properly be contained in P,,. If v1 and vy are two different vertices in the same level

n, then P, N P,,, = .

Proof. Since there is only one path connecting root to w by the definition of P, 1,
any end that passes through the vertex w must also pass from the vertex v. Since the
tree is non-degenerate, i.e. there exists at least one other vertex in level n + 1 that the

vertex v connected to, P, 14, 1s properly contained in F,,,.
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On the other hand, if the balls in the same level have an intersection, then there must
be an end ~y passing through both v; and v, contradicting to the fact that T, is a

tree. ]

Lemma 2.25. Every ball of the topology on 0Ty, is clopen, that is both closed and

open.

Proof. For an arbitrary y € 0T, we will show 074\ B(, €) is an open set in 075,

Let v; € 010\B(7,€) that is to say p(y,71) = €. Then B(vy,€) n B(m,¢) = &. (f
not, o € B(v,€) N B(v,€) means p(vy,0) < € and p(o,71) < ¢, then p(vy,71) <
mazx {p(c,v1), p(c,7)}, contradiction) so B(7y,€) < dTo\B(7, €). O

The topology on the boundary of a spherically homogeneous tree coincides with the
product topology of discrete spaces. Hence, in the following section we will give the

definition and facts about product topology.

2.2.3 The Product Topology [14, Ch. 2 Section 19]

Let {X, | « € I} be a collection of topological spaces. Consider the Cartesian product
[ T X, and write any element of the Cartesian product as (z,) = (%4 )aer-

ael
Deeﬁne the projection map for all 5 € I as follows;

s : | [ Xa — Xp

ael

where I15((x,)) = 2, 8 component of (z,,).

Definition 2.26. Let X be a set. A collection . of subsets of X is called a subbasis
for a topology on X if the union of members of .7 is X.

Remark 2.27. In this case, finite intersection of members of . is a basis for a topol-

ogy on X, for the proof see [|14, Ch. 2 Page 82].

Hence, the elements Hgl(U 3) = || Us such that U, = X, for all a € I except for
ael

3 where Up is open in X3 forms a subbasis. By remark, the finite intersection of

the subsets Hgl(U 3) forms a basis for a topology on [ [ X, which is called product

ael

topology.
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Theorem 2.28 (Theorem 19.2, [[14]). Suppose the topology on each space X, is given
by a basis B.. Then the collection of all sets of the form

[12.

a€el

where B, € A, for finitely many indices o and B, = X, for all the remaining

indices, will serve as a basis for the product topology.

Definition 2.29. [/4, Page 77] Suppose that T and T’ are two topologies on a given

set X. If 7" © T we say that 7' is finer than 7.

Lemma 2.30. [[/4, Lemma 13.3] Let BB, %' are two basis of the topologies T and 7'

on the same set X, respectively. Then the following are equivalent:
1. 7 is finer than .

2. Foreachxz € X and B € BB, there is a basis element B' € A’ such thatx € B’ < B.

Two topologies 7/, 7 coincides if 7 is finer than 7" and 7’ is finer than 7.

Lemma 2.31. The topology defined above by the metric p on the boundary, 0T
of a locally finite spherically homogeneous tree with characteristic sequence () =

(ag, aq, . ..) coincides with the product topology of discrete spaces defined on the sets

XO = {@}, X]’ = {0,1,2,...,aj,1 - 1}

Proof. For the spherically homogeneous tree 7', we have the characteristic sequence
Q = (ag,a1,az,...). Set Xg = {J}and X, = {0,1,2,...a;_1—1} forall j € N. Re-
call that by the explanation after the Figure 2.5 on page[I7] we can label the vertices
by using the finite sequences of the form (J, 4,41 . ..i,). As the boundary consists
of ends we may write any end as an infinite sequence v = (J, ig, i1, i2, . . .) Where
i; € X;41 forall j € N U {0}. Then the boundary of the spherically homogeneous

tree will be the set;

aTQ = {")/| Y= (@,io,il,ig,...), Z] EXj-‘rl; V] eNuv {O}}

The basis elements for 071 are ;
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P ={v= (00,01, in-1,Jn,---) | j+ € Xyy1 forall t = n}

where v is the vertex of level n defined by the labeling (&, ig, i1, . - - ip_1)-

Consider the sets Xy = {&J} and X; = {0,1,...,a,-1 — 1} for all i € N and the

discrete topology on X; with the metric

1 ifz#y
d(z,y) =
0 ifz=y

and the singletons are the basis elements for X.

r ife<l1
B(z,€) =

X, ifex=1

e}

If we define the product topology || X;, then the elements of product topology are
i=0

infinite sequences (J, i, i1, . . .) where i; € X 1.

Q0
Moreover, the basis elements are Xy x [ [ B(ix, ¢;) where ¢, < 1 for only finitely
k=0
o0
many k. Observe that both 0T, and the product topology [ [ X; consists of the same
i=0
type of elements, namely infinite sequences.
To conclude the proof we need to prove that for any basis element from the first
topology there exists a basis element from the other one that contains it, and vice
versa. However, observe that any basis element F,, consist of elements of the form
v = (00,71, In-1,Jn, - - .) Where (&, ig,41,...9,_1) = v and j; € X4 for all
t = n. Note that 7y is an element of the product Xy x B(ig,€) X ... X B(iy_1,€) X

Xnt1 X Xppo x ... which is a basis element for the product topology where € < 1.

On the other hand, for any basis element X x f_o[ B(ig, €x) there exists a number
n such that ¢, > 1 for all & > n — 1 so, the l:fazs(is element have elements of the
form (&, 40,41, .. 4n_1,jn,--.) Where i;’s are fixed coming from X, for all k €
{0,1,...n —2} and j; € X;,4 for all t > n which are the elements of the ball P, on

the level n in this basis of the topology 07¢,. Therefore, the topologies coincide. [

Notice that by the above lemma the topology on 07, has the same properties with

the product topology of the finite discrete sets X;. It is easy to see that the discrete
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topology on the finite set is compact. Hence, by the well known Tychonoft’s theorem
[14, Theorem 37.3] saying that the product of compact spaces is compact, we can

conclude that 075, is a compact topological space.

However, for readers convenience in the next lemma we will give another proof of

compactness. To see compactness we will use a strong theorem from topology:

Theorem 2.32. [[4] Theorem 45.1] A metric space is compact if and only if it is

totally bounded and complete.

Definition 2.33. [[/4, Ch. 7, Section 43] Let (X, d) be a metric space. A sequence
(x,,) consisting of the elements of X is said to be Cauchy sequence if for every ¢ > 0

there is an integer N such that
d(xp, xm) < € forall nym = N

The metric space X is complete if every Cauchy sequence in the space converges to

an element of the metric space itself.

Definition 2.34. [[/4, Ch. 7, Section 45] A metric space is totally bounded if for all
e > 0, there exists a finite collection of open sets with radius € whose union contains

the whole space.

Definition 2.35. [|/4) Ch. 2, page 98] A topological space is Hausdorff if for every
distinct pair of points x,y in X there exist open balls U and V suchthatx e U,yeV
andU NV = .

From now on, unless it is stated otherwise, the spherically homogeneous trees will be

considered as locally finite.

Lemma 2.36. The topological space 0T, introduced by the metric p is compact and
Hausdorff.

Proof. First we will show 0Ty, is totally bounded. Let ¢ > 0 be given. Choose the
level k on the tree to be [L — 1| where [1 — 1] denotes the integer part of £ — 1. (If
E — 1] is negative or 0 then choose k£ = 1). If there exists m vertices on level &, set

the vertices of it as {vy, vs, . .., v, } and consider the union of the balls Py, for all v;.
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Notice that, an arbitrary ball B(~, €), with radius e centered at y equals to one of the

balls Py, of level k where v; € 7.

Now, any end v in 0T must pass through one of the vertices {vy,...,v,,}, say it
passes through v; then v € Py, so the union of the balls will give the space itself.

Hence 07, is totally bounded.
To see the compactness, it suffices to show 07, is complete.

Let {v;}icr be a cauchy sequence in 07Ty, i.e. for all € there exists an integer N, > 0
such that for all m,n > N, the distance p(Vy,,Vn) < € so the common parts of the

ends are getting bigger and common parts of ends are the finite rooted paths.

For all ¢ > 0 denote the common paths of the sequence depending on N, by o.. When
e gets smaller N, gets bigger so whenever N, < N, o. will be contained in the path
o« (we will show it by 0. < o). Hence, when N, tends to infinity we get an infinite
sequence of paths

O < O < O < ...

which converges to an infinite path o consisting of all the union of paths o, for all

e > 0.

If we denote the vertex of any end 7 on the level n by 7(n) then the limit of the
sequence is the end y where y(n) = lim;_,, 7;(n) which is an element of 075,. Hence

T is compact.

It is easy to observe that 07, is Hausdorff. For any two ends ;1,72 € 0Tq, 71 # 72
let n be the last level that ~yq, 72 has common parts, i.e. after the level n the paths do
not have common parts. Then choose v; € 7; and vy € v, where vy, v5 are in the level
n + 1. Consider the open balls P, 1,, and P, 1,, which has an empty intersection

and v; € P,11,,, for i = 1, 2. Therefore 075, is Hausdorff. O
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CHAPTER 3

HIERARCHOMORPHISMS

In this chapter, we will introduce the concept of hierarchomorphisms. Hierarchomor-
phisms are the break point of our tool which will help us seeing the homogeneous
symmetric groups, S(§), as a subgroup of homeomorphism group of the boundary of

a spherically homogeneous tree.

3.1 Large group of hierarchomorphisms

The following definitions and facts, about hierarchomorphisms are due to Neretin’s
works; [[15], [16]. Since for now, we are dealing with locally finite trees, let us assume
T is a locally finite tree. A tree 7" is called homogeneous if all vertices have the same

degree.

Definition 3.1. Let T be a locally finite homogeneous rooted tree. Consider a par-
tition of T into finitely many pairwise disjoint subtrees S;’s for 1 < 1 < k such
that V(T) = O V'(S;) Consider collection of elements, g;, of Aut(T) for all i =
1,2,...,k satigﬁing,'

k
DU V(gi(S:) = V(T).

i=1

2) The subtrees g;(S;) are pairwise disjoint for all i = 1,2, ... k.

Thus, the collection of automorphisms defines a bijection g : V(T) — V(T) via
g(a) = gi(a) if a € V(S;). Such an element g is called hierarchomorphism. Each
hierarchomorphism ¢ is defined by g = {g;,S;}, where g; is a map and S;’s are

subtrees of 'T' satisfying the above conditions.
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Lemma 3.2. [16, Lemma 3.1] All hierarchomorphisms of the tree 'I' tree forms a

group.

Proof. For any hierarchomorphism g = {g;, S;} the map g~! = {g; ', g;(S;)} is the
inverse of ¢ as by definition g;(S;)’s are mutually disjoint and L]j (9:(S:)) = V(1)
and gg~*(a) = g;g; '(a) = a whenever a € V(g; (S;)). -

On the other hand, let ¢ = {g;, S;} and h = {h;, R;} be two hierarchomorphism.
Then since g;(.5;) is a subtree, it lies in the finitely many union of R;’s. Considering
Ugi ' (Ry) n S; for all (i, ) we have hg = {h;g;,g; '(R;) n S;} is a hierarchomor-
phism. 0

The group of all hierarchomorphisms is called large hierarchomorphism group of

T, see [16, Page 513].

3.2 Spherical hierarchomorphisms

In an infinite rooted tree the concept is much more useful if we define a subgroup of

large hierarchomorphism group, namely, spherical hierarchomorphisms.

Definition 3.3. [[/2] Page 35] A map u of the vertex set V(T) is a spherical hierar-
chomorphism, if u is a bijection permuting the vertices of level n, for some n € N,
and preserves the incidence relation between vertices from the levels of numbers,

greater than or equal to n.

If w is a spherical hierarchomorphism, then for some n € N, the restriction Uy, will
be a permutation, o, of vertices of level n. Name the vertices as vy, Vg, ... Uy, . If

u(v;) = vy, then as u preserves the incidence relation between all vertices with level

number greater than or equal to n, the subtree 7;, must be sent to the subtree 7.

Hence, u can be written as (ay, o, ..., apy, )o,, Where «; is an automorphism of
the subtree 7, for all = = 1,2,...m,, and o, is the permutation of the subtrees
T1117TU27 s 7Tvmn'
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Note that u is not uniquely written but we can choose a minimal level n making such
decomposition possible. A spherical hierarchomorphism is an automorphism of the

tree if and only if n = 0.

Obviously, the set of all spherical hierarchomorphisms forms a group. For readers

convenience in the next lemma we will give the proof.

Lemma 3.4. All spherical hierarchomorphisms of a spherically homogeneous rooted

tree T forms a group and denoted by LHiery(T).

Proof. Take any two spherical hierarchomorphisms wuy, uy € LHiery(T) and let u; =
(a1, 0z, ..., 0, )0 and ug = (B1, Ba, - . ., Bm, )or Where k and ¢ is the minimal level

assigned for u; and us, respectively.

1

k)cr,;1 as oy, 0y, are bijections, they have inverses and

—1 -1 -1 -

Defineu; ™ = (ay , a9 ...,

uy" is a spherical hierarchomorphism as it permutes the vertices on level k and as all
, . -1 . . .

a;’s are automorphisms u; - preserves the incidence relation between vertices of level

greater than or equal to £.

As for the product of two spherical hierarchomorphisms, define the product u;us as

follows;

Without loss of generality say ¢ > k then ujus is a bijection that permutes the vertices
in the level ¢ and preserves incidence relations between the vertices for all levels
greater than or equal to ¢ and ujus = (71,72, .- -, Ym, )0, Where y; = ij|Tv2- B; and
J corresponds to the vertex which lies above the vertex v; for all ¢ = 1,2,...,my
and o; = o;.0;. Notice that, o), induces a new permutation o}, on level ¢ where the

restriction of o), to the level k equals to oy. O

Definition 3.5. [[12| Page 35] If for a spherical hierarchomorphismu = (o, aa, . . ., 04y, )0,
all o;’s are the identity automorphisms, then u is called finite. All finite spherical hi-

erarchomorphisms are denoted by LHiery;(T).

Obviously, LHierys(T) is a subgroup of LHiero(T). If u; = (e,e,...,e)oy and
us = (e,e,...,e)o, where each e refers to the identity automorphism of the corre-

sponding subtree, then uyu; ' = (e, e, ..., e)o,0; ' is an element of LHierqs(T).
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The definition of spherical hierarchomorphisms does not suggest that the structure of
the tree must protected. Moreover, an arbitrary spherical hierarchomorphism may not
preserve the structure of the boundary, 07, of the tree. However, we are interested

in the spherical hierarchomorphisms that has an action on the boundary.

Definition 3.6. [/2| Page 35] 1) The group of transformations of the boundary of T
induced by LHiery(T) is called small spherical hierarchomorphisms and denoted

by LHier(T).

2) The group of transformations of the boundary of T induced by LHierys(T') is
called small finite spherical hierarchomorphisms and denoted by LHier¢(T).

For any small spherical hierarchomorphism, u, we have a level ¢ such that « permutes
the vertices of level ¢. To see the action of u on the boundary, let v = (&, a1, as, . . .)
be an end, where q; is a vertex on level 7. Then, if a, is sent to b; by u, then the path
joining the root with a, is sent to the path joining the root with a,. Since u acts as an

automorphism on each subtree of level ¢ this action will preserve the end structure of

7.

3.3 Local isometries and the group H,

In this section, we will make the connection between the homogeneous symmetric
groups, S (&) and the group Hq, where Hy, is a natural subgroup of the group of local

isometries of a spherically homogeneous tree.
Let X be a metric space with the metric p.

Definition 3.7. A bijective map on X is called an isometry if it preserves the distance

between elements.

Definition 3.8. [/2| Section 3.1, Definition 6] Let 3 : X — X be a bijection
satisfying the following;

Vo € X there exists a neighborhood V, of x such that for every xi,r5 € V, the
equality

play, w3) = plar, z2)
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holds. Then [ is called a local isometry.

Definition 3.9. [l/2| Section 3.1, Definition 7] For a bijection 3 : X — X if there
exists 6 > 0 such that

p(ay, @3) = play, z2)

holds for all x1,xs € X satisfying p(x1,z2) < 0, then (3 is called uniformly local

isometry.

Obviously, the two definitions are not the same. However, for a compact metric space

it is easy to see that they are equivalent.

Lemma 3.10. /12, Section 3.1, Lemma 3] If X is compact, then every local isometry

is a uniform local isometry.

For readers convenience, we will give the proof.

Proof. Let o be a local isometry. For all z; € X, consider open neighborhoods U,,
such that U,,’s are the neighborhoods of z; in the definition of local isometry. Now,
X = |JU,, is an open covering for z. By [14, lemma 27.5], as X is compact there
existsi%l > 0 such that every subset of X of diameter less than ¢ is contained in
some member of the cover. Hence, for all zq, x5 satisfying p(x1,x2) < J we have
x1, %2 € Uy, for some j € I. Since « is a local isometry and U,, is the neighborhood

of x; satistying p(x§, 25) = p(x1, 2), we have that « is a uniform local isometry. [

Lemma 3.11. Any local isometry of a metric space X is a homeomorphism.

Proof. Let g be a local isometry, we need to show that g and ¢~ ! is continuous.

For z € X let € > 0 be given. We must find a § > 0 such that whenever p(z,y) < 0,
p(z9,y9) < € holds.

Now, as ¢ is local isometry for = € X there exists a §; such that p(z,y) = p(z9,y9)
for all y satisfying p(x,y) < ;. If € < 6y, choose § = € so that whenever p(z,y) <
d =€ <y, we have p(x,y) = p(a9,y9) < e.
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On the other hand, if € > §;, choose § = d;, then whenever p(z,y) < § = J;, we
have p(z9,y9) = p(x,y) < §; < e. Hence, g is continuous at x. As x is arbitrary g is

continuous everywhere.

Since ¢! is also a local isometry it is also continuous. Therefore, g is a homeomor-

phism. 0

Let us turn our attention to the boundary, 07, of a tree Tg,. The isometries of 07§
consists of bijective maps from 07, onto itself preserving the distance between ele-
ments of 07 which we will denote by /som(dTy,). We have the following lemma

about /som(0Tg).

Lemma 3.12. The automorphism group of T, coincides with the isometry group of
dTo.

Proof. Let 0 € Isom(0Tg). Then for any two ends 71,72 we know p(v1,7) =
p(o(7),0(72)) where p is the metric defined in the Subsection on page

Hence, if y; and 7, have n common parts so does o (1) and o (72).

Claim: o induce a map from V(T) to itself and it preserves incidence relation be-

tween vertices.

As o sends ends to ends and ends consists of sequences of vertices starting with the

root, if y; = (v, v1, . . .), then o (1) is an end consisting of the vertices (o (vg), o (v1), .. .).

Moreover, as o preserves the distance, it preserves the incidence relation between
vertices. On the other hand clearly, any automorphism of 7, induces an isometry of

oTg. ]

The following definition will lead us to the subgroups H¢ of the homeomorphism
group, Hom(0Ty) of a spherically homogeneous tree T, which will turn out to be

the subgroup of local isometries.

Definition 3.13. Let T, be a spherically homogeneous rooted tree where Q) = (ag, ay, . . .).

Define H,, to be the subset of Hom(0Ty) which only permutes the balls P,,, of level

n, that is if we think about the vertex labeling given in the Figure 2.6} an element
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in H,, can only change the first n coordinates of vertices (ig, i1, ..., iy) and do not

change the coordinates iy, for all k > n.

To understand the action of H,, on the 07, we can look at the balls P,,, as the rooted
subtree, T, of T of level n. Since we have a spherically homogeneous tree, the
subtrees T,,’s of level n are also spherically homogeneous trees with characteristic
sequence €2, = (an, any1,-..). Moreover, from the labeling of the trees explained
in the Section with an example [2.6] it is easy to see that two spherically ho-
mogeneous trees with the same characteristic sequence is isomorphic with a natural

correspondence of the vertices.

Hence, an element of H,, which sends 7, to T, is just a permutation of the balls of

level n that cuts the ball P,,, and glues it on the ball P, .

Lemma 3.14. H,, is a subgroup of Hom(0Tgy)

Proof. Let o be an element of /,,. Then o can change the coordinates of the ends for
only n many coordinates. If v, = (i, %1 ...),%2 = (jo, j1, - - -) are two ends such that
o(v1) = o(72), then the coordinates i, = j;, for all & > n as o does not change that

coordinates. Moreover, o restricted to level n is a permutation on the vertices of level

n hence i), = jj for all k < n. Clearly, for any v = (ig, 41, .. .,%n,...) as o sends the
vertex in the level n labeled as (ig, . . .,%,_1) to the vertex (jo, ..., jn,—1) there exists
v = (Jo, -+ Jn-1s%n,int1,--.) such that o(y") = 7. Therefore, o is a bijective map.

Since any element of ,, sends basis elements, F,,,, to basis elements and bijective,

they are homeomorphisms.

On the other hand, o~ ! is also a homeomorphism only permuting the balls of level n

and if o’ is another element in H,,, then the product o’c~! will also lie in H,,. ]

If we define fo(n) = apay ... a,_1, then clearly we have fo(n) many vertices on the

level n and H,, will be isomorphic to the symmetric group, Sy, (n)-

Lemma 3.15. H, is a subgroup of Hy, for all k > n.

Proof. By definition of H,,, an element in /,, permutes the balls of level n while an

element in H;, permutes the balls of level & by just cutting and gluing the balls. Note
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that an element in H,, sending P, to P, also sends the balls lying below the vertex
v; on level k to the balls lying below the vertex v; on level k. Hence, H,, lies inside

Hy. U

Since the groups, H,,, lies inside each other, define the union of these groups and

o0
denote itby Hg, := | J H,,. Now, in the following lemma we will give the link between

Hyg, and the local isometry group LI(0Tq) of 0Tx,.

Lemma 3.16. [I2] Section 3, Lemma 4] Let g be a local isometry of 0Tq,. Then there
exist o € Aut(Tq) and € Hq such that g = af.

Proof. We know by Lemma [2.36] that 075, is compact and by Lemma [3.11] a local
isometry in the metric space is a homeomorphism. Moreover, by Lemma |3.10} g is

also a uniform local isometry. Hence, choose ¢ > 0 such that for any =1, 7 satisfying

p(71,72) <6

p(1:12) = p(11,72)
Now, for this J there exists an integer n such that for arbitrary ends 71,72 € P,
where P, is the ball consisting of ends passing through the vertex v; on the level n,
we have p(y1,72) = n+r1 < 0. Hence, g preserves the distance in F,,, so g sends P,

to another ball P,,; of the level n.

Let § € Hq be a homeomorphism which acts on V, in the same way as g does. Then
a = gB~! acts trivially on V,,. So « act as an isometry on each ball of level n. As g
and 3 acts as a permutation on the vertices of level n and they send ends to ends the
action of « on the levels less then n is trivial. Hence, « is an isometry on 07, and as
we know Aut(Tq) = Isom(dTy), the isometry o will be an element of Aut(Tg) as

required.

On the other hand, obviously Aut(Tq) < LI(0Tg) and Hqg < LI(0Tg). O

An important property of LI(07y,) is that all finitely generated subgroups of LI(0Tg)
are residually finite. A group G is called residually finite if the intersection of all

normal subgroups of finite index is trivial.

Proposition 3.17. [I2, Section 3, Proposition 7] All finitely generated subgroups in
the group LI(0Tq) are residually finite.
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Proof. Let GG be any finitely generated subgroup of LI(0Tg), and Q = (ay,as,...).

Then there exists a number 0 > 0 such that for all g € G

p(x? y?) = p(z,y) for all x,y € T, satisfying p(z,y) <

Choose n = [1/6], write | = ajas...ay,, aj = anyx—1 for all k > 2 and consider
the group Aut(T) where Q' = (a},d),...,). After level n, as G preserves the
distance it must preserve the incidence relation between the vertices so it acts as an
automorphism after the level n. Since the tree T has the same subtrees with the
subtrees of Ty, after the level n we can embed G into the group Aut(7yy ). Hence G is

isomorphic to a subgroup of Aut(T¢), which is residually finite by [3, Prop 3.5]. [

The connection between Hg and small spherical (finite) hierarchomorphisms given

in the Definition [3.6| will be given in the following theorem.

Theorem 3.18. [[/2| Section 3, Theorem 6] 1. The group LHier(Tq) is isomorphic
to the group LI1(0Tq).

2. The group LHier¢(1q) is isomorphic to the group Hq,.

Proof. We know any element of L Hier(Tq) canbe writtenas u = (o, a, . . ., G, )0k

for some level k.

Obviously, £ = 0 will induce an automorphism of the tree so Aut(7§) is isomorphic
to a subgroup of L Hier(Tq) and by definition of Hg, Hg < LHier(Tg). Hence, by
Lemma[3.16] L1(0Ty,) is isomorphic to a subgroup of LHier(T). On the other hand,
any element v € LHier(Ty) can be written as the product (o, g, . . ., iy, )0 Where
o induces an element of H, < Hg and the sequence of automorphisms «; induces
an automorphism « in an obvious manner; it fixes every vertex in the levels less than

or equal to k and acts as «;’s for other vertices. Hence, L Hier(Tg) is isomorphic to

LI(3Ty).

The second statement of the theorem is trivial as any element v of LHier¢(T) can be

written u = (e, €, . .., e)o, which will induce an element of Hg, and vice versa. [
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CHAPTER 4

AUTOMORPHISM GROUP OF S(¢)

In this chapter, we will give properties of Aut(S(£)) by giving the connection be-
tween the homogeneous symmetric groups, S(&) and the group Hg, where Hg, is the
natural subgroup of the group of local isometries of a spherically homogeneous tree

defined in Section 3.3

4.1 S(¢) as a subgroup of homeomorphism group of 07,

Recall from Definition that H,, is the subgroup of Hom(0d1y) which is isomor-

phic to Sy, ) where fo(n) = apa; ... a,—; foralln € N where Q = (ag, a4, ..).

Considering the labeling in the spherically homogeneous tree T, see the Figure [2.6]

we can write the vertices of level n for any n € N in the following way;
Vn = {(io,il,...,in_l) |7,] EXj = {0,1,2,...% — 1} forallj € {0,1,...,71— 1}}
By definition, H,, acts as a permutation group on V/,.

Lemma 4.1. For n < k, (H,,V,,) is embedded into (Hy,V},) via strictly diagonal
embedding.

Proof. Note that by Definition H,’s are subgroups of the homeomorphism
group Hom(0T,) and H,, can change only the first n components of the vertices,
that is any element in H,, fixes the components of the vertices after 7,,_; and H}, fixes
the components of the vertices after 7;,_; so an element that can only change first n

components will be an element of Hj, for any k£ > n. Hence, H,, < Hy.
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Now, H,, as a subgroup of H}, has an action on V}. Let (b, b1, ... b;_1) be an element
in Vi. The orbit of the action of H,, containing the vertex (bg, by, . ..bx_1) is of the

form
A = {(io,il, R 77;n717bn7bn+17- .. ,bkfl) ’ Z] € XJ for aH_] € {0, 1, Loon = 1}}

where b;’s are fixed coming from the 4" component of (bo, by, ... br_1).

Define the map A : V,, — A sending any element (ig, i1, ..., 0,—1) € Vi to AM((do, 1, ..., in-1)) =

(40,71, -+, bn—1,bn, - - . , br—1). Obviously, A is a bijection and A will induce a permu-

tational isomorphism between the permutation groups (H,,V,) and (H,, A) by the

following;
Leto € H, and v = (ig,i1,...,in_1) € V. Then since o acts as a permutation on
the set of vertices of level n, v = § = (jo,J1,.--,Jn_1) for some vertex 0 € V.

Now, we have A(77) = A((Jo, J1, -+ Jn-1)) = (Jo,J1s -+ Jn-150ns b1y« bp—1)-
On the other hand, we know H,, is a subgroup of Hy so, A((ig,i1,...,0n-1)7 =
(i07 Z.lv s 7Z.n—17 bn7 bn+17 s bk—l)g = (j[))jla s 7.jn—1a bn7 bn+17 s 7b/€—1)- Hence,

the embedding is a strictly diagonal embedding. [

Now, by the results of [9, Theorem 3, (iii)], the group H which is the union of
the subgroups H, which are isomorphic to Sy, (), is isomorphic to S(€2) where
char(S(§2)) = char(2).

Similarly, we can define AHg, which is the union of subgroups AH,, of H,, which are

isomorphic to Alty, ).

4.2 Vertex labeling with respect to the action of S(2)

Since Hg, is isomorphic to S(2) by the above explanation and Hg, is the union of
the symmetric groups acting on the vertices, we can label the vertices so that the
corresponding permutations will make sense in the group S(€2). We label the vertices

of level n in the following way;

Let Q = (ag,aq,...). An arbitrary vertex in level n is of the form (ig, 1, ...,%p_1)
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where i, € X, for all £ > 0. Assign a number j to this vertex by setting
jg="(o+1)+itfo(l)+ ... +i,_1fa(n—1)

On the level n, we have fo(n) many vertices and with this labeling shown in the fol-
lowing Figure we label all the vertices from 1 up to the number fq(n), respecting
the action S(fq(n)).

(0) (€3]

(0,0) 0,1) (1,0) (1,1)
1 3 2 4

AN

(0,0,0) (0,0.1) (0,0.2) (0,1,0) (0,1,1) (0,1,2) (1,0,0) (1,0,1) (1,0,2) (1,1,0) (1.1,1) (1,1,2)
1 5 9 3 7 11 2 6 10 4 8 12

Figure 4.1: Tree with vertices labeled by natural numbers

The following example will give the clue for the readers to understand how S(£2) acts

on the tree.

Example 4.2. Given the above tree Figure the element of H, in the first level
that interchanges the ball P,y with Py will act in the second level diagonally and
it will be the element sending Ps(o,0) t0 Py(1,0) and Py 1) to Py(11). In the third level

the element will send

P30,0,0) < P3(1,0,0)
P3(0,0,1) > P3(1,o,1)
P3(070,2) <« P3(1,0,2)
P3(0,1,0) > P3(1,1,0)
P3(0,1,1) > P3(1,1,1)
P30,1,2) < P3(1,1,2)
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In the other labeling this is to say that in the first level, the element corresponds to the
cycle (1,2) and in the second level, it corresponds to (1,2)(3,4). In the third level,
the element will be (1,2)(3,4)(5,6)(7,8)(9,10)(11, 12). Continuing like this we will

see the element of Hq, in the form of an element of S((2).

4.3 Automorphism group of S(2)

Let X be a locally compact, Hausdorff space. Denote the group of all homeomor-
phisms of X by HomX. If G is a subgroup of HomX, then we will use the follow-
ing useful theorem from analysis. The theorem which is a work of Rubin [18] will be

used often and called as Rubin’s theorem.

Theorem 4.3. [I8, Corollary 3.5] Consider a locally compact Hausdorff space, X.
Let G, G5 be subgroups of HomX and assume for every open O < X, v € O and
i = 1,2 the set {g(z) | g € G; and g|x\o = identity} be somewhere dense. Then
any isomorphism from G to Gy is induced by an element h € HomX via conjuga-

tion.

Lemma 4.4. [[/2| Section 2.3, Remark 1] The groups Hq and AHg, satisfy the condi-
tions of Rubin’s theorem

Proof. The space 0T, is compact and Hausdorff by Lemma|2.36|so it is locally com-
pact. Let D be any open set in 07, and vy € D set

A={9(v) | g€ Haand gloryp = identity}

We will show that A is somewhere dense, that is the interior of the closure of A is
nonempty. First of all, g moves ~ to the elements of D only as g|or,\p = identity.
Therefore, A < D. Claim, D < A. Let D = | Px,1,- Then choose v' € D which is
not an image of v under any g. (Obviously any 7' € A lies inside A). We will show
for any neighborhood U of v/, A n U # . Any neighborhood of +' is of the form
Py, for some k;, [; and in any case Py, N A # (J as Py, contains an end which has
infinitely many common components with . Hence, D < A so the interior int(A)
of A is nonempty. Similarly, one can show that AHq, satisfies the conditions of the

theorem. O]
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Therefore, this theorem says that any automorphism from AutHq (AutAHgq) is in-

duced by an element of Hom(dTg,). Moreover, we have the following result.

Theorem 4.5. [[12, Section 3, Theorem 9] AutHg = N om(o1,)(Ha) where Nomoro) (Hao)

is the normalizer of Hq in Hom/(0Tg).

Proof. Let Nyom(ory)(Ha) = N, define amap ¢ : N — Aut(Hg). As any ele-
ment h € N satisfies H(hz = Hg, the element h induces an automorphism of Hg via

conjugation.

1 is a homomorphism : For any hy,hy € N, g € Hq

(9)(hihg) = g™ = (g")" = g"ap(hy) = (9)1p(h1)ib(he)

1 is onto : By Rubin’s theorem for any automorphism of Hg,, there exists an element

h € Hom(0Ty) inducing the map and so h € V.

Yis 1-1:
Ker(i)) = {he N | g" = gforall g € Hq}

If 1 # h € Ker(v), then there exists an end v which h does not fix, say h(7y) = v; #
~. Since Hg, acts on the boundary, we can find an element g sending v; to § # 74,

and fixing . Then since g" = g, we have

v =9(y) =h7gh(y) = k" g(m) = h™(9)

But h~!(y1) = v and h is a bijective map gives a contradiction. [

In the next proposition, by using the result of Rubin’s theorem, one can show that the
group of automorphisms of H,, hence Aut(S(f2)) is locally inner. An automorphism
a of a group G is locally inner if for every finitely generated subgroup H of GG, there

exist an element g € G satisfying h* = hY forall h € H.

Proposition 4.6. [12| Section 3, Prop. 10] Let o« € Aut(Hq) (Aut(AHg)). Then
if a(H,) < Hy (a(AH,) < AHy) for 1 < n < k, then « is induced by an inner

automorphism of Hy.
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Proof. Let a € Aut(Hg) be given such that «(H,,) < Hj. By Rubin’s theorem « is

induced by a homeomorphism o of 075,.

As o is a homeomorphism, it sends an open ball to the union of open balls. o(P,;) =

e}
U Pkij i;- On the other hand, P,; is compact being closed subset of a compact space.
j=1

s of U(Pni)

S J

.
Therefore, o(F,;) is compact and there exists a finite covering | J P,
j=1

choose m; = max{k;, |1 < j < r}. And we can choose m; forall 1 < i < fo(n).
r(7)

Now set k = maz{m; | 1 < i < fo(n)} so that 0(Py;) = (J P, forall 1 < i <
j=1

Claim: For i +# j, 0(P,;) and o(P,;) do not intersect.

Proof of Claim: If o(P,;) n o(P,;) # <, then there exist ends y; € P,; and ; € P,;
such that o(7;) = o(v;). But ¢ is an homeomorphism of 07, and it is one to one
implying that ; = ;. Since ~; and ~; lies in the different balls of the same level and

the balls in the same level do not intersect, we get the result.
Claim: (i) does not depend on i.

Proof of Claim: For an arbitrary g € H(, consider

Now we will have;

as H, is transitive we can choose g so that g(P,;) = P,; where i # j. Hence,
7 (i)
o(Py) = 09(Pu) = | ) 97 (Pa,)
j=1

Observe that g7 is an element of [} and it sends balls to the balls of the same level.

So right hand side is a union of (i) many balls of level &, and left hand side is o (P,,;)

which is the union of r(j) many balls of level k. Hence r(i) = r(j) = r where

_ fa(k)

"= Faln):

Now, on the level £, o takes r many balls lying under the vertex ¢ on level n and sends

them to 7 many balls Py, forall 1 <i < fq(n). Since o(F,;)’s are all disjoint union
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of the balls of level k and Hj, = Sy, k) is fo(k)—transitive, there exist a 0 € Hj, such
that o5~ acts trivially on the balls of level k.

Observe that for any g € H,, 06~ centralizes g;
90671<Pk8) = 05_1950_1<Pk8) = 9(Prs)

Therefore, g° = ¢° for any g € H,. [

In fact, we can embed any countable residually finite group into the group Aut(Hg).
For this purpose, we will construct level preserving automorphisms of Aut(Hg).
For an increasing sequence N = {n; > 3| i € N}, of positive integers define a set An
of all automorphisms « of Hy, that satisfies a(H,,,) = H,, for all i € N. We will refer

Ap as N-level preserving automorphisms of Hg,.

Lemma 4.7. Ay is a subgroup of Aut(Hg).

Proof. For oy, ay € Ay and for any n; € N, since o and oy are automorphisms, we
obviously have

ala?(Hm) = an
al_l(an‘) = Hm
OJ

Proposition 4.8. [[/2| Section 3 Prop. 12] For N = {n; > 3| i € N}, an increas-
ing sequence of integers Ay is isomorphic to the Cartesian product of the groups

Ch,, (Hn,_,) forall k € N.

Proof. First of all if we take any arbitrary element (¢, ¢y, . . ., ¢;, . . .) inside the Carte-

ne_, )» then the infinite product ¢ic . .. induces an automor-

sian product of Cp, (H

phism « defined as follows;

a cica...

g =g forall g € Hg

Note that if g € H,,,, then ¢ = g for all j > . So, g©** = ¢g“*“>“ hence, the
infinite product cic; . .. gives a well defined automorphism which belongs to Ay as

forany g € H,, g¢ = g“°*“ € H,,. Indeed, this « is a well defined map as if we
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take two elements g = h € H¢ then g, h € H,, for some ¢ hence, g% = g« =

hclcg‘..ci — ha.

Now, take any o € Ay then as the automorphism is locally inner, «| H,, 1s induced
by an element of H,,. If «f H,, = g; for some g; € Hy,, and g* = ¢%. Moreover,

the groups satisfy H,, < H, so g9+t = g% for all ¢ € H,,. Hence, g,-Hgi_1 €

Ti+1

C’Hni+1 (Hp,). So, giv1 = ¢i419; for some ¢;q € C’Hnm(Hm). Also observe that
g1 = c1 € Hy, = Cpg,, ({id}).

Therefore, we may define the sequences consisting of elements of C',, | (H,,) which
are of the form (cy, cs,...) where ¢;,1 € CH,,., (H,,). If we denote Cg, (H,,_,) =
D;, then note that J; commute pairwise. For any ¢; € D; and ¢; € D;, without loss
of generality if ¢ > j as ¢; centralizes H,, , and H,; & H,,_, the equality c;c; = c;¢;
holds for all 7, 7 € N. So all of D;’s are normal subgroups of Ay. Now, if we may
prove the intersection D; N DDy ... D; 1D;q ... 1s trivial, then we are done. Take
an element a; inside the intersection D; N D;;1D;,5.... So we may write a; as

follows;

a; = a1a9...0aA;_1Qj41 - . . where ap € Dk forall k e N

as a; # 1 there exists j such that a; # 1. Choose j to be the smallest such integer
thenifi < jas a; = aja;41... and forall g € H,, |, we have ga; = gajajq... =
a;aj41-..9 = a;g. Moreover, a; 1s also an element of Hn]._1 but the center of Hn]._1

is trivial so a; must be identity.

On the other hand, if j < 4, then write the equality as a; ' = a;.1...a;_10; 'Gi41 - ..
now by the above argument aj’l commutes with all elements of H,,, for some k bigger

than ;7 hence this is a contradiction. 0

Observe that the group H,,; is embedded into H. via strictly diagonal embedding

Nj+1
and H,,, is isomorphic to the symmetric group Sy, (n,) Where fo(n;) = apay . .. an,—1

whenever 2 = (ag, ay, . ..). In this case the centralizer, C'y, (H

nj.1)> 18 isomorphic

to the symmetric group, S o, , by [2, Page 109, Exercise 4.2.5].

falnj—1)

fa(n;)
fa(nj—1)

Aut(Hg) as subgroups we have Cartesian products of finite symmetric groups of any

Since n;’s can be chosen so that the ratio is arbitrarily large, in the group

large degree. Hence, we have the following corollary.
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Corollary 4.9. [|/2, Section 3.2, Cor. 3] Every residually finite group can be embed-
ded into Aut(Hgq)

Proof. The equivalent definition of being residually finite is that a group is residually

finite if it can be embedded into a direct product of finite groups.

Note that we can embed a direct product of finite groups into the Cartesian product
of finite symmetric group by simply embedding each factor of the direct product into

a finite symmetric group via right regular representation.

As we can choose the increasing sequence N so that the corresponding group Ay is
the Cartesian product of required finite symmetric groups, we can embed a residually

finite group into A for some increasing sequence N. [

For the groups, Cy,, (H,,_,), the action of an element in Ch,, (H

ne_,) to an end can

be seen in the following remark.

Remark 4.10. Let ¢y € Cy, (H,,_,) and u = (io, %1, ...) be an end. First of all since

c, € H,,, it only changes the first n;, components of uw and leaves the rest the same.
Moreover, we claim that c;, does not change the first ny,_, components. Assume not.

Let ¢, sends u to the end ci,(u) = (Jo, J1s- -+ Jng—1s9ny,, - - -) Where js # is for some
s€{0,1,...,ng_1—1}. Choose o € H,, | suchthat o fixes the first ny_, components
of any end passing through the vertex (ig, i1, .. .1, ,—1) and does not fix the first
ng—1 components of any end passing through the vertex (jo, ji,- .- jn,_,—-1)- AS Cx

centralizes H, we must have cj = cy, however;

k—1’

o lepo(u) = o tepo (i, v, da, . ) = 0t ep(io, i1, 09y - Tyt Gy - - -)

=0 (G0 J1s -+ s Tty mgs - - -) Z (G0 15 -+ o5 g1 Bngs - - ) = ()

Hence, we get a contradiction.

Now, since Ch, (Hp, ) = S jqmy , we can regard the element ¢y, as being the
falng_1)
permutation element of the components of the ends from ny_, to n, — 1 and we can

write

ck(u) = (io, il, C ink_1—17 Ck‘(ink_17 e ,ink_l), ink, .. )
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Lemma 4.11. For N = (ny,ns,...) and v = (ig,41,...) € 0T

Staba, (7) ;JCojq Si,-1

where t; = fo(ny) and t; = %for allj = 2
.

Proof. Since Ay = H,,,Cy,,(Hy,) ... any element g is of the form c¢;cyc3 . .. where
cj € CHnj (Hp,_,). By the Remark 4.10, we know the action on the ends of any

elementin Cp,  (Hy;), so we can consider
J

g("}/) = (Cl<i0, il, Ce ,inl_l), CQ(inl, Ce 7in2—1)7 Cg(inS, Ce >in3—l)7 . )
Hence, an element g lies in Staba, (7) if and only if c; fixes (in, ,,...,i,—1) and
considering the fact that Cy,  (Hy,) = Ssqemi, We get the result. O

fa(ng)

4.4 Orbits and Transitivity

Theorem 4.12. Nyjop o1, (Ha) = AutHg is transitive on 0T,

Proof. Let~ and p be arbitrary ends. Choose alevel k > 3 sothaty = (ig, ... 0 2,05 1,.-.)
and . = (ig,...%k_2, Jk_1,--.) are elements of different balls of level k and i), #

Jk—1. Consider N = (k, k+1,k+2,...) and the group Ay = H,Cy,,,(Hy)Ch,,,(Hps1) - - ..

Let & = ¢Cpyq - - .. Choose ¢, € Hy, to be the element sending (ig, 1 - - ., @52, 7%_1)
to (7o, %1 - .. 1x—2, Je—1) and ¢y, to be the element in the centralizer C'y,, (Hpis-1)
that sends the coordinate iy to jy4s—1 for all s > 1. Hence, by the Remark 4.10]

we have,
a(y) = alio, ... tk—2,9—1,---) = (ck(to, - - - Tp—2,tk—1), Chr1(k); Chs2(in+1), - - -)
= (90, 11y - -+, k2, Jh1s Jhs Jht 15 - - -) = [

]

Note that, Ho < N = Nyom(ory)(Ha) and if N would be highly transitive then since

2-transitive groups are primitive N must be primitive. On the other hand, the action
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of Hq on 0Ty, is faithful with uncountably many orbits and it is a well known fact that
for a transitive group the orbits of the normal subgroups are blocks of imprimitivity.

Hence, N can not be 2-transitive.

Corollary 4.13. Aut(Hgq) is uncountable.

Proof. As Aut(Hg) is transitive on the boundary and the boundary is uncountable,
by the well known orbit-stabilizer theorem, the cardinality of 07, equals to the cardi-
nality of the set of left cosets of a stabilizer of an end in Aut(Hg). Hence, Aut(Hg)

is uncountable. O]

We know that as groups Hg, and the homogeneous symmetric group, S(£2) are iso-

morphic. The following theorem yields a strong result about these groups.

Theorem 4.14. [[/2| 3.3 Theorem 15] The orbits of Hq are dense in 0T and Hq
acts faithfully on every of its orbit, O < JTg. Moreover, (Hq, O) and (S(Q2),N) are

permutational isomorphic for every orbit O of Hg,.

Proof. Let O be an orbit of the action of Hq on 0T,. We will show that the closure,
0, equals to the whole space 075,. Obviously, O < 0Tg. Take u € 0Tq, to show u € O
it suffices to show that for any neighborhood P, ....i,_,) of w0, Prig,...i,_1) N O # &.
Obviously, if v = (jo, j1,-..) € O then the elements of O are of the form h(y) =
(10,21, « - - Tk—1, Jk» Jk+1, - - -) Where h runs through Hg and 0 < iy < a;, — 1 fors < k
and j;’s are tth components of v. Of course, as shown in the figure below there

exist an element i € Hgq sending vy to an element of P,(;,

Pn )OO.

). Hence h(y) €

7777 in—1

(iO ----- In—1
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(J0s -+ Jk—1)

(05 -+ Tin—1, Jn)

(J‘U-,»»»sj71~,jn+1) (iU',"vin*hjn-,jTH»l)

Figure 4.2: An element i € Hg sending 7 to P,

1---7in71)

Notice that depending on the characteristic €2, Hg, is either simple or has a unique
normal subgroup of index 2. In the first case, as kernel is a normal subgroup and the
action is not trivial we have the result. In the second case, if the index of the kernel in
Hg, is 2 then as the kernel of the action is the intersection of all point stabilizers the

cardinality of orbits of H will be less than 2, which is impossible.

Let
OO = {(j07j17'"7jn—170707070"')’Ogjk <ak_17 k<n7 TLENU{O}}

be the orbit containing the end (0, 0,0, ..., ). For a vertex (jo, 71, - - - jn_1) On a level

n enumerate the vertex with ¢,, as follows;

in=_jo+ 1)+ jifal) +72fa(2) + ...+ ju_1faln —1).

Since 0 < jx < ap — 1, we number the vertices of level n by numbers 1 to fo(n).
For an end u = (jo, j1,---Jk-1,0,0,...) in Oq since ji4s = 0 for all s > 0, the end
u can be identified by 7. Consider the map ¢ : Oy — N sending each end u to its

corresponding number .

In fact, the map ¢ is bijective. Let u; = (o, J1,- .- Jx-1,0,0,...),us = (to,t1, ... t,—1,0,0,...)

be two ends such that i, = ¢(u;) = ¢(ug) = 1,,. Without loss of generality assume
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k < mn and assume u; # us so there exist a minimal number s < k such that j, # ..
1 = (jo + 1) + jlfQ(l) + ... —l—jS,lfQ(S — 1) + jsz(S) + ... —i—jk,lfg(l{? — 1)

ln = (ot 1)+ fa(l)+. . Ajsmifa(s—1)+t fa(s)+. . At fo(b—1)+. . .+t,_1 fa(n—1)

Look at the equalities in mod fqo(s + 1),
ir=(jo+ 1)+ jifa(l) + ...+ jsm1fa(s = 1) + jsfa(s) mod fao(s+ 1)

ln=(jo+1)+jifa(l) +... +js1fals — 1) +tsfa(s) mod fo(s+1)
Hence,

ik — ln = jsfa(s) — tsfa(s) mod fo(s + 1), as fo(s + 1) = asfao(s) and

0 =
0 <75, ts <as— 1 weget g, =t

The ontoness of map comes as follows, if n € N, let k& be the first level number
such that n < fo(k). Write n = ji_1fo(k — 1) + ix_1 where j,_1 < aj_; and
ir—1 < fo(k—1) and then write i1 = jx_2fo(k —2) + ix_o Where ji_o < ay_o and
ik—o < fa(k — 2), continuing the process we have the numbers j; < a, for all s > 0.

And under the map ¢ the end u = (jo, J1, - - - jr—1,0,0,...) will have n as the image.

Now for a vertex v = (jo, ..., jn_1) € V;, since there is a corresponding number 1 <
i < fa(n) denote the ball on the level n passing through the vertex v by P,; instead
of P,,. Anelement o € H, acts as a permutation on the balls P,; for 1 <1i < fqo(n)
and this action is extended diagonally to the balls of bigger levels. For an end u € Oy
which belongs to P,,; for some ¢, if w is identified by a number j which is bigger than
fa(n) on some level s > n, note that if PJ; = Py, then u” € Py, and u? is identified

with k.

Consider the isomorphism 6,, : H,, — S(fq(n)). As any o is a permutation of the
balls of level n, and the balls are numbered by the numbers 1 to fq(n), the image

0, (o) will be induced by this action naturally.
So, foru € P,;, 0 € H,, if P;,J’j = P, and if w is identified with j and j < fq(n),

k= o) = ¢p(u)?) = k.
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If w € P, is identified by t; > fq(n) on some level s > n, then we consider the

action of ¢ on the balls of level s, if ng = P,, then ngj = Py, . Hence,

te = ¢(u”) = o(u)?) = t;.

Hence, the groups (H,,, Op) and (S(fa(n)), N) are permutationally isomorphic. Since

0

0|1, = Ok for all k < n and we have (S(Q2),N) = | J (S(fa(n),N) and (Hq, Oy) =
n=1
0
| (H,, Op) we have the result. O
n=1

Q0
Remark 4.15. As S(Q2) = |J S(fa(n)) where S(fo(n)) is isomorphic to the finite
n=1
symmetric group on fo(n) letters and we know that S(fq(n)) is fo(n) transitive,
S(§2) acts highly transitively on N. Moreover, as the action (Hq, O) is permutation-

ally isomorphic to (S(Q2),N), Hq acts highly transitive on every of its orbits.

Proposition 4.16. The group of local isometries of 0T is highly transitive on the

boundary of the tree.

Proof. By Lemma [3.16, we know that LI = LI(0Tg) is the product of AutTy, and
Hq. Let A = {y1,7%,...,v} and B = {p, fi2, . . . , ft,} be two sets of ends. Choose
m = maz{k,l} where k and [ are the minimum levels for A and B, respectively, that

all the elements of corresponding sets belongs to different balls.

Now that all v;’s ¢ = 1,...,n in a different ball we can choose o € H,, so that
a(7;) and p; lies in same ball on level m. Note that on level m all p;’si = 1,...,n
lie on different balls. Using the fact that, automorphism group of a spherically ho-
mogeneous tree is transitive on its boundary [3, Section 6.2] and each ball of level
m is canonically isomorphic to a spherically homogeneous tree we can find auto-
morphisms, f;, of the corresponding balls and extend them trivially to an automor-
phism of the tree so that we will have (5,035 ... (3, is the required map. Note that

B1Ba ... Bn € Stabaur,)(m), the level stabilizer of the automorphism group. O
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CHAPTER 5

DIAGONAL EMBEDDINGS

In this chapter, we will introduce another technique to construct a different class of

subgroups S, where x = {(1, ko), (n1, k1), .. .), which are locally finite and simple.

Moreover, in the Sections [5.2] [5.3] we will give the structure of the centralizers of

elements and finite subgroups.

5.1 The group S,

Consider the embedding of finite symmetric groups as follows;
d(’f’, S) : Sn - Snr-i—s

For any o € S, d(r, s)(«) € Sy;+5 is determined as follows;

(k= 1)r + )4 = (k* —1)r + iwhere 1 <i<r 1<k<n

Hence, if « = () 2 ), then

11 12

7
!

B 1 2 - )r+1 (n=1)r+2 - nr |nr4l| - | nr+s
d(r,s)(a) = <(i171)r+1 (i1=1)r+2 - Q17 2] (in=1)r+1 (in=1)r+2 - dpr I nrtl - Inrts

Lemma 5.1. d(r, s) is a diagonal embedding.

Proof. By the Definition 2.1} to see d(r, s) is a diagonal embedding, first let us de-
termine the forms of arbitrary orbits of d(r,s)(S,) in the set {1,2,...,nr + s}.
Since the action is trivial on the points ¢ where nr + 1 < ¢ < nr + s, the orbit

A; = {i¥9@) | o e S} consists of only the point i. The other orbits are of the form
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A, ={i,r+1,2r +i,---,(n—1)r + 4} forall 1 <i < r. Notice that the length of

the orbits are n.
Define amap, A : {1,2,...,n} — A; where A\(j) = (j — 1)r + 1.

Now, the action (S, {1,2,...,n}) is permutationally isomorphic to (d(r, s)(S,), A;)

as follows;

Forany j € {1,2,...,n}anda € S,

MG = (5 = D+ I = (52 = D+ = AG)

Hence, the embedding d(r, s) is a diagonal embedding. O

In the next lemma, we will see that, the composition of two maps of the form d(r, s)

is again of the same form.

Lemma 5.2. [/1, Lemma 2.5] Let My, My, M3 be arbitrary sets with cardinalities
|M1| = my,
Sym(My) — Sym(Mz), d(na,r2) : Sym(Ms) —> Sym(Ms), then d(ning, nary +
r9) : Sym(My) — Sym(Ms) such that

MQ’ = My = Miny + 7y, M3| = M3 = MaNy + 7o l.fd(nl,T1> .

d(ng,re)d(ny,r1) = d(ning, nory + 7o)

Proof. Ttis enough to show that for an element o € S, the images d(nq, r9)d(n1, r1) ()
and d(nins, nary +12) () are the same permutations. Consider an arbitrary point, say
(k—1)ny +1i,onthe set {1,2,...,mans} where 1 < i < nyand1 < k < my. Notice

that we can write k = (s — 1)ny + j where 1 < s < mj and 1 < j < ny. Then
((k — 1)ng + i)dm2r2)ldmm)(@) — (gdmr(@) _1)p, 4 (5.1)

Now using k = (s — 1)n; + j we have;

Equation= ((s — D)ny 4 5)@drur) — Dpy 44 = (s* — D)ngng + (5 — D)ng + i
On the other hand,

((k—1)ngi)(@dmnznaritra) — ((s_1)pyny+(j—1)ng+i) @dmnznaritra) — (6@ 1) n,y4 (j—1)ng+i
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Moreover, for any point s from the set {maong + 1,..., many + 75} we have

S(Q)d(nl,rl)d(ng,m) _ S(Q)d(nlng,n27'1+r2) =g

Hence, we get the result. 0

Lemmal5.2]suggests the compatibility of the maps. Therefore, for an infinite sequence

of integer tuples x = {(1, ko), (n1, k1), - . .), the sequences of diagonal maps,

IS d(n1,k1) IS d(na,k2) S d(ns3,ks)
ke — nikotkr T (niko+ki)na+ke

will define a direct limit group S,,.
For construction and the motivation see [11]].

Similar to the case of homogeneous symmetric groups S(&), we can regard the group
S as a subgroup of homeomorphism group of a rooted tree. For this purpose, we will

construct a new rooted tree on which the diagonal direct limit group .S, acts.

Take empty set as the root. Let {1,2,...ko} U {3} be the vertices of first level.
On the second level, let there be n; edges coming down from each vertex except
$, and let there be k; + 1 edges coming down from $. Now, label the set of ver-
tices of level 2 as follows Vo, = {11,12,...,1ny,21,...,2nq,...kol,... koni} U
{$1,%2,...$k,$$}. For the third level, from each vertex other than $$, let there be
ny edges coming down and ky + 1 edges coming down from $$. Similarly, write
the vertices of level 3 as, V3 = {111,...11ny,...1n11,...,1n1na, ... koll,... konina,
$11,...,81no,... k11, ..., Skino} U {$31,$%2, ..., ko, $8$}.

Continuing like this, for the given infinite sequence of tuples

X = <(1, ]{?0)7 (nl,k‘l), (ng, ]{?2)7 .. >

and the set of vertices labeled as above, we have the corresponding tree 7T, in the

following figure;
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Figure 5.1: Rooted tree T,

Denote the number of vertices of level i + 1 except the vertex $$...% on level ¢ + 1
by
r(x, i) = [Vin(Ty)| = 1

Note that for any x = {(1, ko), (n1, k1), ..., ), we have

’I"(X, Z) = konlnzng Loon; + klnzng R 7 I I o ki,lni + kl

Observe that, if in the sequence x all £; = 0 except ko, then we have a spherically

homogeneous tree with characteristic sequence (kg, n1,na, . . .).

Consider the boundary, 07, \{¢}, of the tree. Let ¢ be the end where § = ($,$,$,9,...)
on 7). Similar to the case of spherically homogeneous tree we can define the metric
pon 0T\ \{6} such that p(y1,72) = n+r1 where n is the common parts of the ends v,
and 7,. The balls of this topology will be also denoted by F,,, which are the set of
all ends passing through the vertex v on level n. Note that by the construction of the
tree, it can be easily seen that all the balls in the same level m except the ball with

root $3 . .. $ can be identified with a spherically homogeneous tree with characteristic

sequence 2, = (Mn, N1y - - -)-
In the Section the topological properties will be given in further detail.

Now, consider the subgroup S(x,n) of Hom(0T,\{¢}) which only permutes the

r(x,n — 1) balls of level n and acts trivially inside the balls. That is, an element
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in S(x, n) sending the ball P,, to a ball P,,, is just takes the ball P,, and glues it on
the ball P,,,. The construction and the motivation is very similar to those homeomor-

phisms f,, of the spherically homogeneous rooted tree.

Lemma 5.3. Ifi < j, then S(x, 1) is embedded into S(x, j) via diagonal embedding.

Proof. By definition of the groups, S(x,%) and S(x, j) are the symmetric groups of
the vertices of level 7 and j, respectively. Since we construct the tree so that S, acts on
the boundary, it suffices to show S(x, ) is embedded into S(x, j) via an embedding
of the form d(n,r). But by Lemma it is enough to show S(y, ) is embedded
into S(x,7 + 1) via the diagonal embedding of the form d(n, ). Let the embedding
map be [ : S(x,i) — S(x,i + 1). Note that S(x, i) is isomorphic to S,(, ;1) where
r(x,i — 1) = kony...nj_o + king...nj_o + ... + k;_o. When we embed S(y, )
into S(x,7+ 1), onlevel i + 1 the images of the elements S(, 7) acts trivially on the

vertices with the label $$$...$¢ where 1 < ¢t < k;, that is to say we have k; many
—_———

i- many

fixed points in the embedding.

On the other hand, using the labeling of the vertices of the tree T, , see Figure we

can write a non-trivial orbit of the image S(x,¢) on the set V;,1\{ $$...$ } contain-

(i+1) - many
ing the vertex 11...1 as follows;

@i+ 1) - many

App =/ YeVin\{($5...8} | aeS(xi)}
(i + 1) - many (i+ 1) - many
= {wl|w€%\{$$...$}}
i - many

Hence with the obvious bijection, A sending any w to w1 between V;\{$$...$} and

i- many

Aq1 1 we can see that, for any o € S(x,¢) and w € V;\{$$...8} the image will

(i + 1) - many i- many

be A(w®) = w*1. On the other hand, by the definition of S(x, i), the element f ()
permute only the first ¢ coordinates of vertices of level ¢ 4+ 1 and on that coordinates

it acts as «. Therefore,
/\(w)f(a) = (wl)f(a) = w*l = Mw®)

Hence, (S(x, 1), V;\{$%...$}) is permutationally isomorphic to (f(S(x,?), A1 1))

i- many @i+ 1) - many
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Note that in the embedding of S, (, ;1) into S, ;) we have r(x, i) = r(x,i — 1)n; +
k; with k;many fixed points and n; many orbits of length r(x,7 — 1). Hence, the
embedding f is actually d(n;, k;). O

Since we construct the tree by using the infinite sequence of tuples x = {(1, ko), (n1, k1), - - .),

a0
and the embeddings are diagonal of the form d(n;, k;) we can write S, := | S(x, ).
i=1

The classification of the groups S, is done in [11]. For readers convenience we will
give some necessary theorems, lemmas and their proofs to make the group S, more

understandable.

Lemma 5.4. [1]| Lemma 2.9] Let d(r, s) be the diagonal embedding of S,, into Sy, s,
if f(r,s) is an other diagonal embedding of S,, into S, s, then SI0 and S2) are

conjugate by an element of Sy s-

Proof. Let A;, U; for 1 < 1 < r be the orbits of length n and forr + 1 < i <r+s

be the orbits of length 1, of S}, S4"**) respectively. Since the embeddings are

diagonal there exists bijections ¢; : A; — {1,2,...,n} inducing permutation iso-
morphism between (5, {1,2,...,n}) and (f(r, s)(Sy)|,,, A), and also there exists
bijections ¥; : {1,2,...,n} — 0O, inducing permutation isomorphism between

(Sn,{1,2,...,n}) and (d(r, s)(S,)

bijection 7w € S, s as follows;

,.» O;). By using these bijections construct a new

For je Ay, nn(j) = idi(j)

Now, if we consider the isomorphism A : S5 — S%"%) sending each f(r, s)(cv)

to d(r, s)(«) together with = we have,
Forany o € S,, and j € A,,

m(GF @Y = ahi i (GTTDY = (5 (7)) = ihi ()49 = () I (rs)e)

Since the groups are permutationally isomorphic subgroups of .S, s,, they are con-

jugate by [2, Exercise 1.6.1]. [

The above lemma will lead to the fact that if there is another direct limit group of sym-

metric groups embedded via diagonal embedding with respect to y, then the group
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must be isomorphic to S, where x = {((1, ko), (n1, k1), ...). To see this we need the

following lemma.

Lemma 5.5. [I| Lemma 2.3] Let H and G be a direct limit group of subgroups H;
and G; via the embeddings 0; and 1);, respectively. Let co; be an isomorphism between

H; and G; for all i > 1. If the following diagram

0

Hi —)Hi+1

(67 Qjt1

G — G

(1

is commutative for all i > 1, then the groups H and G are isomorphic.

Proof. Assume the diagram is commutative, that is a;,16; = ¥;a; forall ¢ > 1. Let

a : H — G such that for an element h; € H;, the image o(h;) = ... ¥ 1906(hy).
Claim: The restriction ;1| ", equals to «;

Notice that H; is embedded H; ., by the map 6;, hence the image of h; in the group
H;y is 0;(h;). Hence c1(hi) = a;+10;(h;) = 1;a;(h;) and this is the image of
a;(h;) in the group G 1.

Claim: « is a homomorphism.

It is enough to show that a(h;h;1) = a(h;)a(h;y) for arbitrary elements h; € H;,

hiv1 € Hiyy.

a(hihi1) = .. Pisi (@i (hihiia))
= i (g1 (7)) (g (hish)))

= i1 (10 (h)) (s (Rig)))
= i (i (i) (g1 (hiv1)))
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= .. .lewioéi(hi)(- . ~¢z‘+104z‘+1(hi+1>>
= a(hi)a(hiir)
O

Theorem 5.6. [/1, Proposition 2.10] If H is a diagonal direct limit group of finite

symmetric groups, then H is isomorphic to the group S, for some sequence x.

Proof. Since H is a diagonal direct limit of finite symmetric groups, there exists an
infinite sequence x = {(1, ko), (n1, k1), ...) corresponding to the embeddings and
H = [OJ H; where H; =~ Sym(r(x, 1)) and Sym(r(x,?)) = Skoning..nis+...+ki_q- L€t
fi = }:((;% k;) be the diagonal embeddings constructing H, and d; = d(n;, k;) be the
embeddings constructing .S,.. In the diagram below

f(”b kl) f(n2, kQ)

H—— H —— H, .
0 T o

Sko I nikotks ——— S(n1ko+k1)n2+k2—>

d(nl, k?l) d(ng, ]{?2)

where 7; are the elements conjugating the images as in the case of Lemma [5.4] we
have (f;(H;-1))™ = d;(Sym(r(x,i — 1))). Notice that m;’s are not unique and we

can choose 7;’s so that the diagram is commutative as follows;

Start with an order, {ag 1, ao2, @03, - -, a0k, }» ON ko points on which H acts and fix
it. Now by considering the image f(n1, k1)((ao.1, @02, o3, - - -, Gok,)) Of the element
(@01, @02, @03, - - -, Qo k) in Hy fix an order on nykg + k1 points on which H; acts as
follows {a1 1,a12,a13, ..., 01 n ky+k, } Where

f(nb k1)((ao,1, 0,2, 40,3, - - - 7a0,ko)) = (a1,17 a1,2,013,. .. 7a1,k0)(a1,ko+1a e 7a1,2k0)

‘e (al,(n1—1)k0+17 e 7a1,n1k0)(a1,n1k0+1) e (al,n1k0+k1)

and continue the enumeration in the same way.

Now fix the numeration in S, ;) in the same way, that is start with {1,2,... Ko},

and enumerate them with {cy1, o2, .., Cox, }» respectively then consider the image
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d(n1,k1)((1,2,..., ko)) of the element (1,2,...,ky) in S, 1) and chose the enu-
meration respectively. Now choose for 0 < ¢, m; so that m;(a;;) = ¢ ; where

1 <j<r(xi.
Claim: d(ni, k’z’)m—l = Wif(ni, k’z)

Proof: Let « € H;_; so that « is a permutation on the set {a;,_;,; | 1 < j <
r(x,% — 1)}. Remember that the action of 7;’s are conjugation, hence we must show

d(ng, ki) (™) = (f(n;, ki)a)™. If «v is as follows,

o= Ai—11 - Qi—17(x,i—1) then a™-1 — Ci—11 -+ Ci—1r(xi-1)
Ai—1by -+ Qi—Lbyyio1) Ci—1br -+ CimLb. (1)
and
d(ni, k)l)<0é7r) =
Ci1 - Cir(xi-1) Ci,(ni—D)r(x,i—1)+1 -+ Ci(n;—1)r(x,i—1)+r(x,i—1)
Cibr -+ Ciboyion Ci,(ni—Dr(x,i—1)+b1 -+ Ci,(ni—1)r(x,i—1)+bp(y,i—1)

the points which are not seen in the above decomposition are fixed. On the other

hand,
f(niy ki) (o) =
Ai1 - Qigr(x,i-1) Qi (n;—1)r(x,i—1)+1 -+ Qi(n;—1)r(x,i—1)+r(x,i—1)
aﬂivbl e aivbr(x,ifl) aiv(ni_l)T(Xai_l)J"bl e ai:(ni_1)T(X7i_1)+br(x,i—1)
similarly missing points in the decomposition are fixed ones. Hence, by applying 7;

to the above image we can see the desired result as

d(ng, k;)(a™=1) = (f(n;, k;)a)™. As the diagram is commutative, by Lemma [5.5] the
groups are isomorphic. [
In the paper [11]], the classification of S, is given by using measure theory. We will

not get into the details and only give the result about the classification.

For the infinite sequence of tuples x = {(1, ko), (n1, k1), . . .) define the characteristic
o0

of x as char(x) = | | n; and characteristic series of y as
i=1
0
k; k k
,u(x)=2—=k:0+—l+ 2+,
- ny...n; nq ning
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Also, denote by S, the set of all infinite sequences x = {(1, ko), (n1, k1), ..., ) where
ko > 0, k; = 0,n; > 1forall > 1 and by S4, the subset of the sequences that have

ko= 2,n; = 2.

Definition 5.7. [11, Definition 2] For x1, X2 € S we say that x, and 2 are (u, v)—commensurable
for positive integers u, v if

Duchar(x1) = vchar(xs).

2)u(x1) and p(x2) are both convergent or divergent together.

3) If they are convergent, then vii(x2) = up(x1).

4) The sequences X1, x2 can have finitely or infinitely many zero members k; simulta-

neously.

Theorem 5.8. [I1} Theorem 3.2] The direct limit groups S,, and S,, for some

X1, X2 € S are isomorphic if and only if x1 and x- are commensurable.

The next theorem yields similar results in the case of S(§). As done in constructing
S (&), one can also consider the alternating groups A(y, n) which are the subgroups
0

of S(x,n) and define the group A, := [ J A(x,1).
i=1

Theorem 5.9. [/], Theorem 3.1] Let x € S. Then we have the followings;

o S, = A, ifand only if the characteristic, char(x), of x is divisible by 2*.
o If char(x) is not divisible by 2%, then | S, : A, | = 2

e A, is a simple group.

In the next theorem, we will see the relation between the diagonal direct limit group

S, and the homogeneous symmetric group S(§).

Definition 5.10. Let GG acts on a set X. Then the stabilizer of a point x in X is defined
to be the set Stabg(x) = {ge G | 29 = x}

Theorem 5.11. Let H¢ be the subgroup of Hom(0T¢) which is isomorphic to the
homogeneous symmetric group, S(§), for a sequence { = (p1,p2, . ..) and let vy € 0T¢.
Then Staby, (v) = S, where S, is the group constructed as the diagonal direct limits

of finite symmetric groups with x =< (1,p1 — 1), (p2,p2 — 1), ... >.
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Proof. Let v € 0T;. Then Staby, (y) = 6 Staby, (7). Obviously, Staby, (v) <
Stabp, ,, (), and since Hj, is isomorphick?é finite symmetric group on f¢(k) =
pip2 - .. py, letters and Staby, () = Sym(fe(k) — 1), by Theorem 5.6 it is enough to
show that the embeddings Stabg, (v) — Staby, ., (7) are diagonal. Stabpy, (7) acts
on the vertices of level k and it fixes the vertex corresponding to -y on this level. Notice
that the group, Staby, () is subgroup of H, and acts on 07¢\0T, ). The lengths of
orbits of Staby, (y) in Staby, , () are either 1 or p1p, . . . pj, because Staby, (7y) acts
as full permutation group on f¢ (k) — 1 vertices. Since the embedding of Hj, into Hy4
is strictly diagonal, the embedding of Stabg, (v) into Stabp, ,, (7) is diagonal. On the
other hand Stabg, (v) = Sym(p; — 1), Staby,(v) = Sym((p1 — V)p2 +p2 — 1) =
Sym(p1p2—1) and Stabp, (v) = Sym(p: . .. pr—1). Hence the stabilizer, Staby, (),
is isomorphic to S, where x =< (1,p1 — 1), (p2,p2 — 1), ... > . ]

5.2 Centralizers of Elements in S

In this section, our aim is to obtain the structure of centralizers of arbitrary elements
in the locally finite group S,. It turns out that the centralizer contains homogeneous

monomial groups.

Finite monomial groups are studied by Ore in [17]. In the paper, he investigates some
properties of monomial groups and determine all normal subgroups of the class. Start-
ing with the finite monomial groups and using the strictly diagonal embeddings, one
can find the homogeneous monomial groups, which is constructed by Kuzucuoglu,
Oliynyk and Suschansky in [10]. In the article [[10], they classified all the homoge-
neous monomial groups by using the lattice of Steinitz numbers and find the structure

of centralizer of elements in homogeneous monomial groups.

The monomial group of degree n over a group H is denoted by 3, (H). By [17],
the monomial group is isomorphic to S,, x (H x ... x H) or in the wreath product
|

r-many
notation, ¥,,(H) =~ HS,. For any sequence £ consisting of primes, by taking strictly

diagonal embeddings of finite monomial groups X,,(H) we have the homogeneous

monomial groups which is denoted by ¥(H). For the notations and definitions see
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[10]. If we take H to be the identity group, then X¢(1) will be the homogeneous
symmetric group S(§). The centralizers of elements in the homogeneous monomial

groups are studied in [10, Theorem 2.6].

Now, we turn our attention to the centralizers of elements in the group S¢ of diagonal
Q0

type. Let x = {(1,ko), (n1,k1), (ne,k2),...) and S, = |J S(x,i — 1). For any
i=1

element « in S, we have a smallest number so that & € S(x,n). Therefore, we can

define the following;

o0
Definition 5.12. Fora € S, = |J S(x,1), let n be the smallest integer such that o €
n=1
S(x,n). Then the principal beginning « of « is the element in the finite symmetric

group Sy(yn—1) of which the image in the group S, is c.

Notice that the definition of principal beginning is similar to the case of homogeneous

symmetric groups, see Definition[2.3]

Definition 5.13. The short cycle type of an element g € S, is t(cog) = (r1,...,7¢)
where r;, 1 < 1 < 1, is the number of i—cycles appearing in the cycle decomposition

of ag and t is taken to be the biggest cycle length that appears in the decomposition.

Theorem 5.14. Let a € S,, x = {(1,ko), (n1,k1),...) and let ag € Sy(y,—1) be
the principal beginning of o and t(ag) = (r1,72,...,7k) be the short cycle type of
o where 1 is the number of fixed vertices other than $3...83 in level |. Then the
centralizer of a in S,;
Cs, (o) ;ég e, (Ci) x Sy
where § = (ko,n1,na,...), char(&) = _char(§) . forall i =2, X' = {(1,7r1),(n;, k), ...)

kony..mj_q

and C; is the cyclic group of order 1.

Proof. Let ag € S,(y,—1) be the principal beginning of a. Now we know the cycle
type of g and there are r; many ¢ cycles and r; many fixed points except the vertex
$$$...$in level [.

Note that, since ag = @1 ,0T2y - . . Tr,0 Where x; ¢ 18 the product of i-cycles in the cycle
decomposition of o , and o = 123 . . . x;, where the principal beginning of z; is z; o

for 1 < ¢ < k, by using the same method as in the paper [5], we have

k
Cs, (o) =12§‘ Cs, (z;)

62



Therefore, it is enough to find the centralizer of an element with a fixed cycle type.

Observe that for an element = with principal beginning zy € S(, ) which is a product
of i-cycles i > 2, the embedding of x, into S(x, [ + 1) is strictly diagonal. So by [5,
Theorem 3] and [10, Corollary 2.7], we have Cs (z;) = X¢,(C;) where char(&;) =
%m and X, (C;) is the homogeneous monomial group over the cyclic group

C; of order 1.

For the centralizer of x; which is identity but is formed with the fixed points of o in
level [, we have 1 many fixed points and any element in symmetric group, S, on ry
vertices will commute with «y. The embedding of S, into S(x, [+ 1) is diagonal and
the image is isomorphic to a subgroup of the symmetric group, Sy, +k,. Continuing
like that we will have the diagonal embeddings of finite symmetric groups which is

isomorphic to S, where x' =< (1,ry), (ny, k), ... > . Hence, we get the result.

k
Cs, (o) ;Qg e, (Cy) x Sy

where & = (ko, n1,na, .. .), char(&;) = M@lri forall ¢« > 2, X' = {(1,71), (ny, ki), .. ).

= koni..n_

O

Corollary 5.15. If k; = O for all i > 0, then as S,, = S(&) we get

where £ = (ko,n1,na,...), char(&) = :&a;ﬁ%mfor all i > 1.

5.3 Centralizers of Finite Subgroups in 5,

In this section following the steps that are done in [5], we will determine the structure

of centralizer of finite subgroups of S,.

Definition 5.16. For a finite subgroup F' < S,, let F' < S(x, k) where k is the small-
est such level. Then the type of F is defined by t(F') = ((my,71), (ma,72), ..., (Mk, %))
where my; is the smallest level in which F has an orbit Q; on r(x, m; — 1) vertices
and it has r; many equivalent orbits giving equivalent representations of F'. Note that
m;’s are not necessarily distinct. Without loss of generality, if F' has fixed points, then

(my, 1) will represent the equivalent orbits of length 1.
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Theorem 5.17. Let I’ be a finite group of S, with sets of orbits I'1, Ty, ..., T'y, where

['; is the set of all equivalent orbits.

Let the type of F be t(F') = ((mq,11), (ma,72), ..., (mg,7x)). Then

k
Cs, (F) 225 EE(CSym(Qi)(F\Qi)) X Sy,

e}

where char(§;) = i [ nm, and x1 =< (1,71), (ny kmy )y (Mg 415 Koy 1), 25>
j=1

and 2; is a representative in the equivalence class, I';, of orbits foralli = 2,3, ... k.

Proof. Let X be the set of all orbits of F' on N. We can define a relation on X as
follows; O; ~ O; if and only if the actions of F' on both orbits are equivalent. It
is easy to verify that this relation is an equivalence relation. Form the equivalence

classesas I'y, ..., I'k.

Observe that C'g (I) leaves each I'; invariant and moreover, there exists two orbits
Ay and A; such that A = A, for some g € Cg, (F') if and only if A; and A, are
equivalent orbits. In fact, by [2, Ex. 4.2.4] for two equivalent orbits O; and O; in I';

the bijection

)\ZOZ'—>O]'

satisfying for any f € F, z € O; A(z/) = \(x)/ can be extended to a bijection ¢ of N
so that c € Cg (F).

With this observation, we can write C'g, (F) as the direct product of the centralizers
where for each non-equivalent action of F we have a direct factor. So it is enough
to find the structure of the centralizer of F' where each orbit in the action of F' is

equivalent.

Let the type of F be ¢(F) = ((my,r1),(ma,rs),...,(mg,7x)). Consider the re-
striction of the action of F' on level m; where ¢ > 2 and consider the equivalence
class I'; corresponding to (m;, ;). Let ; be a representative of this class, we know
there are r; many copies of {2; with the same action. By above observation we have
Csxm)(F) = Csyma)(Flo,) 1S = 5, ((Csyme,) (Flg,))) when we consider the
centralizer of I on level m;+1 it will be isomorphic to Cs(y,m,) (F') = Csym(a,)(Flo,

Sritm;, = Dring, ((Csymay) (F‘Q ))) where the embedding is the strictly diagonal em-
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bedding. Continuing like this we get the centralizer to be isomorphic to

OSX (F\Qi ) = E&' (CSym(Qi) (Flnl ))

char(x)
where char(§;) = ——= 22— T
i

As for the orbits of length 1, on level m;, we have r; many fixed points. Then any
element from .S,; will commute with elements of F'. After the level m;, the embed-
ding of S, is inherited from the diagonal embedding of the group S,. Therefore, in

the end we will have a direct factor in the centralizer of /" in S, which is S, where

X1 =< (17 Tl)a (nm17 km1)7 (nm1+17 km1+1)7 L

Hence, we get the result. 0

5.4 Some topological properties of 07, \{0}

Recall that we define the metric p on the set 07, \{0} as p(71,72) = n+r1 where n is

the common parts of the ends 71, ¥».

The balls which we denote as P,, consist of ends passing through the vertex v on

level n.

Lemma 5.18. [[/]| Lemma 2.4] Let x = {(1, ko), (n1,k1),...) € Sy, that is ky > 2
and n; = 2 for all i. Then 0T,\{0} is locally compact and Hausdorff.

Proof. Recall the definition of locally compactness. A topological space X is locally

compact if every point z € X has a compact neighborhood.

Let v € 0T)\{0}. Then as v is different from J, there exists a vertex v on some
level m which is different then the vertex $$...$ on the level m. Consider the ball
P,.,. Obviously, P,,, contains the end . On the other hand, by construction of the
tree 1 ,the subtree P, can be identified with the spherically homogeneous tree with
characteristic sequence (7, 41, - - .) Which is shown to be compact by Lemma

2.36!

The proof of the property of being Hausdorff, is the same as in the case of 075, see
Lemma[2.36 L
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Lemma 5.19. [/, Lemma 2.4] The group S, satisfies the Rubin’s theoremd.3]|

Proof. First of all 07),\{d} is locally compact and Hausdorff. Let D be an arbitrary

open set and v € D. Then we need to show that the set

B ={g(7) | g € Sy and gor,\(53)\p = identity}
is somewhere dense (that is the interior of the closure is nonempty).

Consider an arbitrary ball P, in D containing v which is identified with the spher-
ically homogeneous tree Ty, where Q,,, = (%, i1, - - .). Then the homogeneous

finite symmetric group S(£2,,) lies inside the group S,,.

On the other hand, the set A = {g(7) | g € S(2) and gjor, \p = identity} which
is somewhere dense by Lemma@ obviously lies in B. Hence, B is also somewhere

dense. ]

The above lemma tells that any automorphism of the group S, is induced by a home-

omorphism of the space 07,\{d}. Furthermore we have the following result.
Theorem 5.20. The automorphism group Aut(S,) is isomorphic to the normalizer

N = NHom((?TX\{é})(Sx) in HOW(&TX\{(S})

Proof. The proof is the same as in the case of Aut(Hg), see the proof of Theorem

4.5 ]

For a metric space X with a metric p, recall the definition of uniform local isometry.

Definition 5.21. A bijection « of the metric space X is called uniform local isometry
if there exists a positive number ¢, satisfying p(z$, x5) = p(x1, x2) for all x1, xs with

the property p(x1,x2) < 0.

Lemma 5.22. All finitely generated subgroups of ULI(0T\\{d}) are residually finite.

Proof. Let G be a finitely generated subgroup in ULI (07, \{0}). By definition of
uniform local isometry there exist 0 > 0 such that for any g € G, if p(z,y) < 6, then

p(x9,y9) = p(z,y). Nowletm = |1/6] andlet ' =< (1,r(x,m—1)), (N, km), ... >
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. Consider Aut(T} ), since every element of G preserves the distance after the level m
we can regard (7 as a subgroup of isometry group Aut(T}) and Aut(T}) is residually

finite.(As the intersection of level stabilizers is trivial.) OJ

Lemma 5.23. For g € ULI(0T,\{0}), there exist oo € Aut(T,) and ( € S, such that
g = ap.

Proof. The proof is the same as in the case of the spherically homogeneous tree 75,

see Lemma [

5.5 Level Preserving Automorphism of S,

For an increasing sequence N = {a; > 3, ay, ...}, an automorphism « of S, which
has the property a(S(x,a;)) = S(x, a;) for all i is called N-level preserving auto-

morphism of S, . Before the main result we must prove two lemmas.

Lemma 5.24. Cy(,.jy(S(x,%)) N Csor)(S(x, 7)) = Lforj =3

Proof. As S(x, 7) is isomorphic to a symmetric group and the symmetric groups of

order bigger than or equal to 6 has identity center, we have the result. 0

Lemma 5.25. Cs(, ;)(S(X,)) = Sn;.m;_, ¥ Se(ij) where ¢(i, j) is the number of
fixed points of the action of S(x, 1) in the group S(x, j)

Proof. Note that when we embed S(, ) to S(x, j) by diagonal embedding there are
¢(i, j) many orbits of length 1 and the symmetric group consisting of ¢(7, j) many

elements will lie inside the centralizer C'g(, ;)(S(X, 1))

Since the embedding is diagonal we have n;n;1 ... n;_; many orbits with r(x,i —
1) many elements. And by definition of the diagonal embedding the actions on all
orbits are equivalent to the action of S(,7) on r(x,7 — 1) elements and the elements

permuting the orbits will also centralize the group S(, 7). Hence by [2, Chapter 4.2],
OS(XJ)(S(Xv 2)) = S?’Li---nj—l X S¢(i,j) [
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For an increasing sequence, N = {a; | a; > 2}, of positive numbers, denote the N-
level preserving automorphisms of the group .S, by By. Then we have the following

result.

Proposition 5.26. By forms a group and it is isomorphic to the Cartesian product of

the centralizers Cs(y.q,,,)(S(X, a;)).

Proof. Let a € Aut(Sy). Then ayy . is an automorphism of S(x,a;) since the
groups S(x, a;) are isomorphic to a symmetric group of order bigger than 6 (as a; >
2) the automorphism o, . is inner. Hence, there exist ; € S (X, a;) such that
a; oy sxa;) ACts as identity on S (X, a;). On the other hand, since the groups satisfy
S(x,a;) < S(x,air1), for any element g € S(x,a;) we must have g Qi = g,

Hence, a; 'ais1 € Cy(yary) (S, ai)).

The rest of the proof is the same as the proof of the Proposition for the N-level
preserving automorphisms of S(¢) in Chapter 4] O
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CHAPTER 6

HOMOGENEOUS FINITARY SYMMETRIC GROUPS

In this chapter, we will study the tree connection of the groups F'Sym(r)(&) first
introduced in [4] and studied in further detail in [5]).

6.1 Construction of the group F'Sym(x)(§)

For any infinite cardinal , we start with the finitary symmetric group, F'Sym(x) and

we regard x as an ordinal number. Consider the embeddings
d? : FSym(k) — FSym(kp)
where the image of any o € F'Sym(k) is given by
(ks + )7 = ks +i%, ierand0<s<p-— 1.

As in the finite case, see Section[2.1] we divide the ordinal xp into p equal parts and

in each part the action of d”(«) is diagonally the same as the action of a.

1...
If o = ( n> € F'Sym(k), then
11 .

Ly,
1 ... n
dP(a) = | _
1 ... 1Ip

with the assumption that the elements in k(s + 1)\(ks + supp(a)) is fixed for s =
0,....,p—1.

k+1 ... K+n

K+i1 ... K+ip klp—1)+41 ... k(p—1)+1,

kp—1)+1 ... klp—-1)+n )

Let £ = (p1,po2, . . .) be an infinite sequence of not necessarily distinct prime numbers

as before and n; = pip, ...p;. Consider the embedding sequences in the following
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way;
FSym(k) LN FSym(kp,) et ESym(kpip2) . ..

dP1

Alt(k) — Alt(kp1) 42, Alt(kpip2) - -

Then the direct limit group constructed with the above embedding sequences will be
FSym(k)(§) and Alt(k)(§), respectively. If in the direct limit group the image of
FSym(kn;) (Alt(kn;)) is denoted by F'Sym(r)(n;) (Alt(k)(n;)), then we can write

FSym(k)(€) = U FSym(r)(n:)

=1

Alt(k)(€) = U Alt(k)(n;)

The group F'Sym(k)(&) is called homogeneous finitary symmetric group. The
classification of such groups and the structure of the centralizers of elements as well

as the finite groups was done by Kuzucuoglu, Kegel and myself in [5].

6.2 A non-locally finite spherically homogenous tree

Similar to the finite and diagonal case, in this section we will construct a spherically
homogeneous rooted tree (which is not locally finite this time) and the homogeneous

finitary symmetric group will act on the boundary of this tree.

Let £ = (p1, po, - - -). Using this infinite sequence we will construct the vertex set and
the edge set. Denote the root by (J as usual. Since we start the embeddings with
FSym(k), let there be x many vertices in the first level. For the second level, let
there be p; many vertices coming down from each vertex on the first level. Hence, as
an ordinal number we have xkp; many vertices in the second level. For the third level,
do the same thing by using the prime p; and so we will have xkp;p, many vertices.

Continuing like this we will have the tree T} ). See the figure below.

70



SQONIoA Auew Cd 1d™ «—

SQOMIAA Auewl Tdy «—

SQONIAA AUBW ¥ «—

%Y
V

(3)¥1 201 paroor snosusgowoy Afeorroyds ;19 aanSig

<<<§§§

ediduy - - - Ty ediu - edidy 11

\/

ed1t

71



Lemma 6.1. T, ) is a spherically homogeneous tree.

Proof. Recall that if the full automorphism group of a tree acts transitively on each

level of the tree, then the tree is called spherically homogeneous.

Since the tree is rooted, any automorphism will fix the root. Also by definition of the
automorphism of a rooted tree, the levels of the vertex must be protected. Let v and
w be two vertices of level n. By the construction of the tree, the subtrees 7}, and T},
which are the rooted subtrees with root v and w respectively, are isomorphic. Now,

we can extend this isomorphism to an automorphism of the tree.

If on level n — 1 the vertices v and w are adjacent to the same vertex, then the map
sending T, to T}, and fixing all the other vertices will be an automorphism of 7).
If they are not adjacent on level n — 1, consider the first vertex that they are connected
by a path, name the vertex as u. By the construction 7}, is a locally finite spherically
homogenous tree. Hence, we can find an automorphism of 7}, that sends v to w.
Extend this automorphism to an automorphism of the tree 7 ¢) by fixing every vertex
not belonging to the tree 7},,,. Hence, in any case we find an automorphism of the tree

T (¢) that sends v to w. ]

Consider the boundary 07} of the tree T}, ). Since the tree is spherically homoge-
neous we can define the metric p which is mentioned in the Section Recall the

metric is as follows;

Let 71,72 be two ends in 0T ). Define p(v1,72) = — where n is the length of

n+1
common parts of the ends 71, 72. Recall that the map p defines an ultra-metric, for the

proof see the proof of Lemma [2.20]and the explanation below it.

With the ultra-metric p, J7), ) becomes a metric space. Since the trees T} and
T, are spherically homogeneous, they share some of the topological properties and

definitions.
For the space 07, ) the basic open sets are;
P, = {7 € 0Tye) | vi € V(The)), vi € 7}
In other words, basic open set F,,,, includes the ends that passes through the vertex v;
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on the level n.

One can easily see that P, is the boundary of the spherically homogenous rooted

tree with root v; and characteristic sequence §; =< Ppi1, Pnio, - - >.

We will give some properties of this metric space, and these properties will be used

in the next section.

Recall that, a space X is locally compact if every element has a compact neighbor-
hood and called Hausdorff if for any two elements z # y in the space X there exist

open sets U and V satisfyingz e U,ye VandU NV = .

Lemma 6.2. 07, is a locally compact and Hausdorff space.

Proof. Let v € 0T, ¢) where § =< p1,ps,... >. Consider the basic open set I,
which contains the end . By Lemma 2.36 P,,, is compact. Hence, 0T (¢ is locally

compact.

1
n+1’

For the Hausdorff property, let 1,72 be two ends. Let p(7y1,72) = that is they
have n many common parts and after n'* level the ends belong to different balls.
Choose two balls P, 1, P,.1, on the (n + 1) level such that v, € P,.,, and
Yo € Ppi14. By the Remark two balls on the same level is either the same or

disjoint we have P, 1, N P14 = . U]

6.3 Tree connection of the homogeneous finitary symmetric groups

In this section we will construct a subgroup of the homeomorphism group of 07, ¢)

which will be isomorphic to the homogeneous finitary symmetric group.

Definition 6.3. Define FH,, as the subgroup of the homeomorphism group of 0T, ¢)
that only permutes the finitely many balls of level n. It is the similar case of H,, of

locally finite homogeneous tree T, see Definition[3.13]

Since the group F'H,, acts transitively on the set of balls on the same level, there exists
an element from F'H,, that sends the ball P,,, to P,,,,. It takes the ball F,,, and glues

it on P,,,. Different from the case of the group H,,, on level n we have xkp, 1 many
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vertices, however the group F'H,, permutes only finitely many of them. Hence, the

group is isomorphic to F'Sym(kp,_1).

Lemma 6.4. F'H, is a subgroup of Hom(0Tg)).

Before the proof, we need to label the vertices and ends. Let £ =< py,ps, ... >. For
the labeling of the vertices see the Figure[6.1] Enumerate the ~ many vertices of first
level starting from 1. (With the use of ordinal numbers). For the second level, label
the vertices adjacent to the vertex n on the first level by nl,n2, ... np;. Continue like
this to have labeled vertices. After this labeling, since an end can be expressed by the
adjacent vertices, say v = (J, vy, v9,...) where v; is the vertex on level 4, just put
the labels of vertices as follows; Since v; and v;; are adjacent for all 7 € N, if v; =
aias...a; where a; € ||, a; € {1,2,...p;} forall j > 1, thenv; 11 = a1az. .. @;0;41.
Hence, we can write the vertex v = (&, a1, a1az, ...,a1a5 ... a;,...) or simply we

will write v = aqas ... a; . ... Now we can prove the above lemma.

Proof. Let abe an elementof F'H,,. Lety; = ajas... € P,,and vy = biby ... € Py,
be two ends in 07}, ¢). The element « is one-to-one. Indeed, let a(y1) = a(72). By
the labeling of the vertices, we can say v = ajas...a, and w = b1by...b,. Since «
is a permutation on the balls of level n, and it sends v; and 7, to the same element
we have v = w, that is a; = b; for all 1 < ¢ < n. Note that by definition o does not
change the coordinates of an end after the n'" coordinate, hence we have a; = b; for

all = > n. Hence, « is one-to-one.

Lety = aqas...a,...be an arbitrary element. Since « is a permutation on the balls
of level n there exist a ball P,,,, where w = b1b, .. .b, and o maps P, to P,, where
v = aiay...a,. Choose the element v = bby...b,0,110n 2. .. in the ball P,,,

then o(y') = . Hence, « is onto.

Moreover, o sends basis elements (the balls) to basis elements and is bijective, hence

« 1s a homeomorphism.
]

Lemma 6.5. For any n, F'H,, acts on V), the vertex set of level n and for any k > n

F H, is embedded into F'Hy, via strictly diagonal embedding.
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Proof. Recall that V, is the set of vertices on level n. With the labeling of the vertices,
we can write V,, = {a1as...a, | a1 € || a; € {1,...p;}}. Since an element from
F'H,, permutes the balls of level n and a ball in level n can be emphasized by its root
(a vertex in level n) we can regard the action as the action on V/,, that is if « sends P,
to P,,, then o has action on V,, by sending v to w. Since « is a permutation on the
balls of level n, it is also a permutation on V,,. Notice that an element o from F'H,
may change only the first n terms of an end and leaves the other parts same hence that

means for any £ > n the element « lies inside the group F Hj.

Let us consider the permutation groups (F'H,,,V,,) and (F Hy, V}). We will show the
embedding is strictly diagonal. Since F'H,, is a subgroup of F'Hj it acts on Vj. An

arbitrary orbit containing an element v = a;jas . . . aj of Vj is of the form
Av = {ble s bnan+1an+2 <o A | bl € |'%‘ bl € {17 . pz}}

where a;’s are fixed coming from the terms of the vertex v. Define amap ¢ : V;, —
A, such that for v = ¢;¢; . . . ¢, the image will be v® = ci¢s ... ¢uan1 . . . ai. Clearly
the map is a bijective map. Let « € FH, and v = ¢;...¢, € V,, and a(v) = w =

by ...b,. Then we have

a(v?®) = alciey. .. Cplper ... ap) = by .. bpapyy ... ax = (a(v))?

Hence, the embedding is a strictly diagonal embedding. 0

0

For the boundary of the tree 07} ), the union | FH; will determine a direct limit
i=1

group, which will be denoted by F H,¢). In the next theorem, we will give the con-

nection between F'H ¢ and finitary homogeneous symmetric groups.

Theorem 6.6. F'H, g is isomorphic to F'Sym(k)(§)

Proof. Since F'H,¢) is the direct limit of finitary symmetric groups with strictly diag-
onal type by theorem 4 of [6] it is isomorphic to the homogeneous finitary symmetric

group F'Sym(k)(&). O

The construction of the homogeneous finitary symmetric groups was done in [3]], and

the structure of centralizers of elements and finite groups was given in the same paper
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[S]. Moreover, the complete classification of the homogeneous finitary symmetric
groups was done in [6]. In the next section by using topological properties we will

give some properties about the automorphism groups of these groups.

6.4 Automorphism group of I'H, )

Proposition 6.7. Aut(F'H,c)) satisfies the Rubin’s theorem 4.3

Proof. The topological space 07} is locally compact and Hausdorff by Lemma
Let D be an open set and z € D. We will show that the set

A={g(z)[ge FHye and Glot, e\ = id}

is somewhere dense, that is int(A) # ¢J.

Let x € D choose the smallest n and choose a vertex v such that x € P,, and
P,, < D. (If D is given as the whole space, choose the ball on the first level
that contains z). Observe that F,, can be identified with the boundary of a lo-
cally finite spherically homogeneous tree 7,y where {’ =< p,,pp11,... >. On the
boundary of 7¢ consider the homogeneous symmetric group H¢ which is isomor-
phic to S(¢’). By the Lemma H¢: satisfies the Rubin’s theorem. Hence, the set

B = {g(x)| g He and Gior, = id} has its interior of closure nonempty. Notice

1\Pnuv

that the action of H¢ on the ball P,, is the same as the action of F'H ) on the ball

P,,. Hence, A = B and int(B) # (.

On the other hand, since P,, < D we have B — A and by topological properties

O # int(B) < int(A). O

With the help of Rubin’s theorem, we conclude that any automorphism of the finitary
homogenous symmetric group is induced by an element of the homeomorphism group

of aT,.i@ .

Theorem 6.8. The automorphism group of the group F H, ) is isomorphic to the

normalizer of itself in the group of homeomorphisms of 07T, ).
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Proof. We will show Aut(FH,g) = N Hom(oT, 5))(FH,{(@). Denote the normalizer
group by N. Define a map

Qﬁ N — Aut(FHH(S))
h — wh : FH,.@(@ e FHH(Q

g—> h7'gh

where g € F'H (). Since normalizer acts on the group via conjugation, the map 1 is a
homomorphism. By Proposition any automorphism is induced by a homeomor-
phism hence the map %) is onto. To conclude it is enough to show that the centralizer
of the group F'H,¢) in the homeomorphism group is trivial. Assume not. Let i # id
be a homeomorphism in the centralizer. Choose an end v so that h(y) = v # 7.
Choose two elements gy, g in F H,) fixing v and 6; = g1(71) # g2(71) = 02. As
g1, g2 fixes v, g, gb must fix it.

hlgih(v) = h'gi(m) = hH(6) = v

W rgah(y) = h ga(m) = h™1(82) = v

But h~! is a bijection so §; = &5, contradiction.

6.4.1 Level preserving automorphisms

For the group F'Sym(k)(), where £ =< p1,ps,... > and p;’s are not necessarily
distinct primes, we will define subgroups of automorphism group Aut(F Sym(x)(§))

which we call as level preserving automorphisms.

Definition 6.9. Consider the sequence N = (ni,ns,...) associated with £ where
n; = pip2...p;. Let M be a subsequence of N obtained by deleting some of the
terms of N.

An automorphism « is called M-level preserving if o F'Sym(x)(m;)) = FSym(k)(m;)
forallie N.

If o and ( are two M -level preserving automorphisms of F'Sym(k)(§), then obvi-

ously aB(FSym(k)(m;)) = a(FSym(k)(m;)) = FSym(k)(m;). Hence, M-level
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preserving automorphisms forms a subgroup. We will denote it by M — Aut(F Sym(k)(£)).
Before the characterization of M -level preserving automorphisms, we need two lem-

mas.

Lemma 6.10. The centralizer C gy (i)(m,) (F'Sym(x)(mi—1)) is isomorphic to the fi-

nite group Symy(

ml)

Proof. Note that F'Sym(r)(m;_1) has trivial center. By the strictly diagonal embed-
ding the group F'Sym(r)(m;-1) acts on |xm;| with ™ equivalent orbits hence by

[2, Ch. 4 Section 2], any element permuting the orbits will be in the centralizer. [

0

Lemma 6.11. Let { =< py,p2,... >. Then Sym(k)(&) = |J Sym(k)(n;) is a
i=1

subgroup of Aut(FSym(k)(§)) whereny = 1 and n; = pips...pi-1 .

Proof. Note that we can talk about the strictly diagonal embeddings
Sym(r) == Sym(kp:) = Sym(kpips) ...

and the direct limit group will be Sym(x)(§) = U Sym(k)(n;) where ny = 1,
n; = pip2...pi—1 and Sym(k)(n;) is the image of Sym(rmz) in the direct limit
group.

For an element o € Sym(k)(&), there exist a smallest n; such that o € Sym(k)(n;).
Claim: « is an automorphism of F'Sym(x)(§).

As FSym(k)(n;) < Sym(k)(n;), we have F'Sym(r)(n;)* = FSym(x)(n;). On
the other hand for j > i, since Sym(k)(n;) < Sym(k)(n;), we can regard « as
an element of Sym(k)(n;). Hence, FSym(k)(n;)* = FSym(k)(n;). Therefore,
FSym(k)(&)® = FSym(k)(&). In particular, « is an M-level preserving automor-
phism where M = (n;, njy1,...). O

Theorem 6.12. M — Aut(FSym(r)(§)) is isomorphic to the Cartesian product

Sym(k H Csym(rmy) (F'Sym(k)(m;-1))

=2

In particular, M — Aut(FSym(k)(€)) has cardinality 2" and every group of cardi-
nality < k can be embedded into M — Aut(FSym(k)(§)).
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Proof. Let o be an M-level preserving automorphism where M = (mq,mso,...).
As « preserves the levels m; for all i € N, a(FSym(k)(my)) = FSym(k)(my)
Therefore, the restriction of « to the group F'Sym(x)(mq) is an automorphism of

FSym(k)(my). By (Baer-Schrier-Ulam) theorem [2, Theorem 8.2.A]
Aut(FSym(k)) = Sym(k)

Hence, there exists an element g; € Sym(k) such that g; '« is an automorphism
of FSym(k)(§) as by Lemma |6.11} g1 € Aut(FSym(k)(§)) and by the construc-
tion it preserves the levels contained in M. Note that g; loq PymOn(my) 1S 1dentity
on F'Sym(x)(my). Consider the element g; '« restricted to F'Sym(x)(ms). Since
gy ' is an automorphism of F'Sym(x)(ms), by the same argument above there

exists go € Sym(kms) such that g, = g;* Note that g, centralizes

OZ'FSyrn(n)(n@) .

centralizes F'Sym(k)(ms) and again by construction it is an M -level preserving au-

tomorphsim. Hence, there exists g3 = g5 'g; ' FSymOemgy € OYM(kmz) which is

also an element of the centralizer Cgyu,(xm) (F'Sym(k)(ms2)).

Continuing like this we will have oo = g1 95 . . . satisfying

1 -1 1 -1 )
Log, g=1---92 1 X psymnymy) — ZdFSym(f’»)(mk)
2. g € Csym(umy) (F'Sym(k)(my_1))

3. 9k9n = gngi forall k,n e N.

Note that the orbits of F'Sym(k)(my_1) on |kmy| are the same as the orbits of

Sym(kmy_1) on |kmy| and Z(FSym(k)(my—_1)) = Z(Sym(kmi—1)) = 1. Hence,

Csym(rm) (FSym(£)(mi—1)) = Csym(xmy) (Sym(kmy_1))

Therefore, gig, = Gngk.

Let us denote Dy, = Clsym(em,) (F'Sym(k)(mr—1)) = Csym(rms) (Sym(smi_1)).
By the third property, [3] above D,’s are normal subgroups of A/-level preserving
automorphism group. If we can show that Dy n Dy... Dy 1Dgyq... = id for
any k£ € N, then we are done. Assume not. Let ay = ajas...ar_ 10541 ... be

an element in the intersection. Let j be the smallest integer such that a; # id.
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If j > kand a;, = a;aj+1.... Then for any element g € Sym(xmy) we have

gax = §ga;a;41 ... = ajaji; . ..q = arg. However, Sym(xmy) has trivial center, it is
a contradiction. If j < k and ay, = a;...ag_1ax41 - .., then considering the element
aj_l = jt1-- .ak_la,;lak ... we turn into the first case and get again a contradic-
tion. [
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CHAPTER 7

NORMALIZERS OF FINITE SUBGROUPS

A group acting on a set €2 is called semi-regular if the point stabilizers are identity
for all o € (). A transitive semi-regular group is called regular. In this chapter, we
will find the structure of a normalizer of a semi-regular finite subgroup of S(§), see
Chapter For a regular subgroup of Sym(£2), the structure of normalizers are well
known. However, for readers convenience in the next two lemmas we will give the

structure of centralizers and normalizers of regular subgroups.

Lemma 7.1. The centralizer of the right regular representation of a group G is the
left regular representation (and vice versa). Moreover, right regular representation is

conjugate to the left regular representation.

Proof. Letp : G —> Sym(G) and A : G —> Sym(G) be right and left regular
representations of G, respectively. We will show that Cgyn ) (p(G)) = A(G). Let
7 € Sym(G) be an element in the centralizer. Then for all g € G we have p,m = 7p,
where p, is the image of g under p. In particular, we have p,7(1) = mp,(1). Hence,
7w(1)g = 7(g). If m(1) = h~! for some h € G, then we have h =g = \,(g) = 7(g)
for all g € G where )\, is the image of & under the left regular representation. There-
fore, m = Aj. On the other hand, for any element )\, in the left regular representation,
pen(x) = grh™" = Nypy(2).

Moreover, if we consider the element ¢ in Sym(G) sending every element to its in-
verse, then we have ¢t 'p,t(z) = g~'z = )\ (z) for all z € G. Hence, p(G)" =
AG). ]

Lemma 7.2. [2| Corollary 4.2B] Let G be a regular subgroup of Sym(S2). Then
N = Ngym(g)<G) >~ G x Aut(G)
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Proof. Consider the map

Y N — Aut(G)
n—n):G—G

g—ntgn

It is obvious that ) is a homomorphism. First, we will show that v is onto. Let o be
an automorphism of GG. Then since G is regular, for any o € (2 the point stabilizer,
G, is identity. Therefore, the two transitive representations of GG sending x to = and
sending x to x7 are equivalent by [2, Lemma 1.6]. Hence, the actions are conjugate,
that is there exists an element ¢ € Sym/(2) such that ' = z?. Hence, ¢ (t) = o.

On the other hand, Kery = Cgymq)(G) and since G is regular by Lemma we
have Keriy =~ G. As ¢ is onto we have N/G =~ Aut(G).

Moreover, GG is a normal subgroup of N and N acts on 2. Since G is regular, it is
transitive. Then for any = € () and n € N there exists g € G such that z.g = x.n.
Hence, ng~' € Staby(z). Therefore, N = GStaby(z) (Frattini Argument) and
Staby(x) = Aut(F). Since G n Aut(G) = {1}, we have N = G »x Aut(G). O

In this chapter, we will find the structure of normalizers of finite semi-regular sub-
groups of S(£). Since S(&) is the union of finite symmetric groups, first for a finite
set €2, we find the normalizer of a semi-regular subgroup in Sym(£2). The structure
of normalizers of such groups is mentioned by Kohl in one of his talks, see [8]]. How-
ever, the proof is not stated so for the readers convenience we will give the proof in

the following theorem.

Theorem 7.3. For a finite semi-regular subgroup F of Sym(Q) where |Q)| < oo, let
Ay, ..., A, be the orbits of F on Q. Then Ngypm)(F') = F" x (Sym(r) x Aut(F))

Proof. By [2, Lemma 1.6B], since on each A; the action of F’ is transitive and F’ is
semi-regular the actions on the orbits are equivalent. Since the actions are equivalent
by [2 Exercises 4.2.5] the centralizer of F' is isomorphic to F" x Sym(r). We know

that the centralizer is a normal subgroup of the normalizer. Hence, (F" x Sym(r)) <

NSym(Q)<F)-
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Let |, be the restriction of F" on the orbit A;. Then Fj, is regular hence by Lemma
Nsym(Ai)<F\Ai) = F|A,L- a AUt(FlAi)'

Leto; : Ay —> A, be the map inducing equivalent actions for all 1 < ¢ < r. The map
o, is the identity map. Hence, for any o € A; we have a/% = o/ by considering
o; as the transposition in Sym({2) acting as identity outside of A; U A;. For any
1 # f € F, since the orbits are equivalent and the group is semi-regular we can write
f = fa,--. fa, where fa, is the restriction of f on the orbit A;. Now for a € Ay,
obviously we have a/217 = @/4: and since o; is a transposition for any b € A; we

also have b7i/219 = (p71)/2191 = (poi)i/ai = p/2i Hence, we have IR = fa,

Therefore, any f € F' can be written as f = fa, ... fa, where each fx, is determined
by fX.. Now, if oy € Aut(F|, ), then we can say that o; is a permutation on A,

because of the following;

Let F' be a semi-regular subgroup of Sym/(2), |2| < oo, with orbits Ay, ..., A,. If
« is an automorphism of F', for an arbitrary orbit A;, fix an element a; € A;. Now, «
actson A; viaa - b = a?(f ») where f» is the unique element such that a/® = b, since
F' is semi-regular, the existence and uniqueness of f;, follows directly. We will show

that the action is well-defined and one-to-one. Obviously, if a = b, then f, = f; by
a(fa) a(fe)

uniqueness of the element sending a; to a. Hence, o - a = q; =a-b

So, the action is well-defined. Let a - @ = a - b. Then there exists f,, f; such that
o alfa) _ o) oo goUa)@() ™

a;* = a and a;" = b. Hence, a;

= a;. But since F'
is semi-regular the point stabilizers are identity, so we have «(f,) = «(f;). Hence,
fa = fp implying a = b, by uniqueness of f,. Since A; is finite and we can define the
action of a within the orbits of /' and we see that « is a permutation on each orbit of
F. Hence, a € Sym(2). Also note that, « has an action on each orbit A;. So, we
can think & = ajas...a,, where each «; is the element of Sym(4;), inducing an

automorphism of F, .

Because of the above explanation, if iy € Aut(F, ), then af* € Aut(F], ) and for

any f = fa, ... fa, € F we have,

2

4 or al? ad” opad? orad”
arog“.aq” o pog 1 1 _ roq 20 r& . pa1 fo102 Q107
f = Jaidny o Sal =TaSa, b o SA = IAIAT ST EF.

Notice that fi} € Fj, so, ajaf®...a7" induces an automorphism of F which

83



normalizes F' and it is uniquely determined by «;. Indeed, for any automorphism
B e Aut(F Al) there exists an element in the normalizer which is uniquely deter-

mined by .

Conversely, let n € Ngymq)(F), since n may permute the orbits of /" and we know
the centralizer Cigym(q)(F) = F” x Sym(r) is contained in the normalizer we may
multiply n with an element 7 € Sym(r) in the centralizer so that n7—! acts trivial
on the set of orbits. Now, nm ™' € Ngymq)(F') can be thought as an element of
Sym(A1) x ... x Sym(A,). Let nt—! = m. Since m acts trivially on the set of
orbits we may consider m = ma, ...ma, where ma, = m), € Sym(4;). Notice
that ma, € Nsym(Ai)(F"Ai) that is, F\ZA = Fj,, forall 1 < i < r. Now, for each i
since FJ, is regular by Lemma , we can write ma, = a;n; where o; € Aut(F, )
and n; € F NE Now, m can be written as «ynjasns . . . a,n,. Moreover, since «;_1 €
Sym(A;_1) and n; € Sym(A;) we have o;_1n; = n;a;_q for all 1 < i < r hence
m = oqiQsg...0,nNNy...Nn,. Observe that each n; € FAZ_ and the element s :=

1 1

. 1
ny Ny

...n,."m = a1y . ..q, 1s an element of the normalizer.

For any f € F, since ajas ..., normalizes f, we have f*1*2~% = g for some
g € F. Weknow g and f can be written in the form fa, fa, - .. fa, and ga,ga, - - - ga, .

where fa,, ga, is the restriction of f and g to the orbit A;, respectively. Hence,

ForeT = (fa fag o )M = gaga, -+ O,

Since each «; is an element of Sym(4;), we can write (fa, fa, ... fa,)*1*> % =

JA AL - JAL = 9aign, - - - A,

Considering the fact that each fa, and ga, is determined by fX' and gX' , respectively,

0;0

(677 ag;
we see fA' = fY = gX,. S0, 0;0i0; € Noym(a,)(Fa,).

Observe that 0,00, and a; has the same action on Fj,, because for the arbitrary
element f, f3' = ga, = f?. Hence, aj'0;0;0; € Csymay(Fa,) = Fa,
and for each 1 < ¢ < 7 there exists ¢1; € Fa, such that ozl_laiaiai = t1;. Then
multiplying from left by o;c; and from right by o; we have o; = «7't];. Even-
tually, the element s = ajasy...q, = aaf’t];...aj"t{; can be written as s =
araf? .. a3 .. 197, because of the fact that t]; € Sym(4A;) and o]’ € Sym(A;)

commutes. So, we get s(t77)7 .. (t72)7 = aqaf?...a]" € Aut(F). Observe
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that this automorphism is uniquely determined by «;. Hence, there exist an au-
tomorphism o € Aut(F) such that s(t57)~' ... (t73)ta; ' ... a7 a™ = id. So
ne kb, F,, ... F Aut(F)Sym(r). Since each F|, = F and fori # j commutes
elementwisely, we have n € F" Aut(F)Sym(r).

Let « € Aut(F'). Then by Page « can be seen as an element of Sym(2) and
can be written as ajay . ..a, where oy € Sym(A;). For any f € F, write [ in
the form f = fa, fX° ... fX,. We have f* = f{1f2% ... fn%". Now, if f* =

o2 o -1 _o;
9a 9N, - - A, We have ag "o

is in the centralizer Csym(a,) (£, ), SO a;'afl is the
identity automorphism of Fj, . Hence, we get that o; = af foralll <i < r. On
the other hand, note that Sym(r) can be generated by ;s for all 1 < ¢ < r where
o;’s are the permutations inducing the equivalency of the actions of F' on each orbit.

0204 ordyg

Now, a%i = (aqaf?...a7")% = af'a*”...a]""" = o forany 1 < i < r. Hence,

the elements of Sym(r) and Aut(F’) commute elementwisely.

Also observe that the intersection Aut(F) n Sym(r) is trivial, since by Page
Aut(F') acts identity on the set of orbits but the elements in Sym(r) permutes the
set of orbits. By the structure of the centralizer, we know Sym(r) acts on F" and

the action of the group Aut(F') on F" can be seen above. Hence, Ngym ) (F) =
F7x (Aut(F) x Sym(r)).

In fact, let F' be a finite group acting on €2 where |{2| < oo such that either F,, = 1 or
F, = F forany o € Q2 and let Ay, ... A, be the orbits of length greater than 1. Then
it can easily be seen that the restriction of the action of F' on the set A; U ... U A, is

semi-regular. Moreover, we have the following result.

Corollary 7.4. For a finite subgroup F' of Sym(2) satisfying either F,, = 1 or F,, =
F we have Ngym) = (F" x (Sym(r) x Aut(F))) x Sym(k) where r is the number

of orbits of length greater than 1 and k is the number of orbits of length 1.

Proof. The symmetric group on the set of all points fixed by F' centralizes F'. Indeed,
F can be seen as the subgroup of Sym(|€2| — k) which has a semi-regular action then

by Theorem [7.3|the result will follow. O

Let F' be a semi-regular finite subgroup of homogeneous symmetric group S(&),

85



where £ =< p1,ps,... >. We are interested in the structure of the normalizer of

F'. Since F'is finite we can assume that [’ < S,,, for some ¢ where n; = p1ps ... p;.

Theorem 7.5. Let F' be a finite semi-regular subgroup of S(§) where & =< pq,pa, ... >.
If Flisin S, for some n; = p1ps ... p;, then

Ns(e)(F)/Cse)(F) = Aut(F)

Proof. Recall that we have strictly diagonal embeddings d?+' : S,, — S and

Ni+1°

0

the direct limit group via these embeddings are denoted by S(§) = | S(n;), where
i=1

S(n;) is the image of \S,,, in the group S(§).

Consider the map dP+'. For simplicity of the notation we will denote it by d; ;. By
Theorem we know the structure of normalizer of F' in S, is F" x (Aut(F) x
Sym(r)). When we embed F into S,,,

FrPist s (Aut(F) x Sym(rpiy1)). We need to show that the embedding of N, (F)

via d;,, we also know that the normalizer is

to Ng,, | (F) is inherited from the strictly diagonal embedding d;. ;. By [5, Theorem
3], we know the embeddings of the centralizers are inherited from d;; so it is enough

to show the quotient groups are embedded via strictly diagonal embeddings.

We know that N, (F)/Cs, (F) = Aut(F) and similarly N, (F)/Cs,,  (F) =
Aut(F). Let Ay, Ay, ..., A, be the orbits of F'in S, and for all 2 < ¢ < r let o, be
the bijective maps from A; to A; inducing the equivalency of the actions as before.
Since F'is embedded via strictly diagonal embedding, for all 1 < k£ < p;,; and for
all 1 <t < we know the structure of the orbits Ay._1),1. = {(k—1)n; +ala € A}.
So for each k, there is a one-to-one correspondence between A, and A ;_1),1. Now
if we define Ag_1y,41 U Ap_1ypg2 U .. Qg 1= X where 1 < b < pipq, and

Y ={(k—=Dn;+1,(k—1)n;+2,... kn;}, then X1 U3ou...u%, | will be equal to

Pi+1
the all set {1,2,...,m;,1}. Keeping in mind that, the orbits are constructed via strictly
diagonal embedding, for all 1 < k < p;;1, there exist bijections [ : X1 — X
where A; is mapped to A,_1),4; via strictly diagonal embedding. Hence, we have
O (k—1)r+¢ €quals to the composition of maps o, forall1 < k < p;1and 1 <t <,

which induces the strictly diagonal embedding.

Recall, in the proof of Theorem([7.3] we see that for F < S, ,,, Aut(F) < Sym(n1)

i+1°

. . . Op. .
any automorphism, «, of F' can be written in the form a;;af? . . . alp”” where o/ 1S an
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automorphism of F| A the restriction of /" on A;. Since each element af* commutes

with each other by rearranging the elements we can write

o2r Upb+17

Or+1 I(pjp1-Dr+1 / g9 0Orio U(Pi+1*1)r+2/ /Oé a
1 1

Putting o, 3} in the place of (1) 44,

o = ozlozl ) ﬁp’“/of’2 o2f2 a?ﬁpi“/. ) ./a‘fra(f’"ﬁ2 . oz?ﬂp“l

The slashes are just for the readers to easily follow the writings. In fact, since a7*
is an element of Sym(Ay) in S,,. Consider any part separated with a slash. Each
separated part of the element « is of the form a*a*™ . .. afkﬁpi“ for some k. If
we denote that element by a4, then one can see that o, is an element of Sym(Ay) x
Sym(Ayyr) x ... x Sym(Ap,,,—1)r+k). Indeed, by the structure of maps f3;, the
k)

element o,

Ay. Hence, di i (%) = at . ..aikﬁp"“ forall 1 < k < r. Since d(1y) is a

acts on A(j_1),4x in the same way as the action of element af* on

homomorphism we have, d;,1(a1a7%...af") = ajaf? ... a7,

Therefore, the automorphisms are inherited from the embeddings d;; but the struc-
ture of the quotient group does not change. Therefore, continuing the embeddings we

get the automorphism group of F in the group S(&) and we get the result. [

7.1 Normalizers of Finite Groups in Finitary Homogeneous Symmetric Groups

For an arbitrary cardinal x, and a sequence of prime numbers { =< py,ps,... >

recall that in Chapter [6| we constructed F'Sym(rx)(§).

Since F'Sym(k)(§) is the union of finitary symmetric group we can not have a finite
semi-regular subgroup, however we can extend the idea as follows Let I be a finite
subgroup of F'Sym(k)(§). Since we can write F'Sym(r)(§) as U FSym(kn;) and
F is finite, we may assume that F' < F'Sym/(kn;) for some i € N Then F acts on the
set n; with finite support. So we can write kn; = £n;\supp(F) U supp(F'). Assume

that the action of F' on the set supp(F') is semi-regular.
Then for these type of subgroups of F'Sym(x)(£), we have the following result.

87



Theorem 7.6. Let F be a finite subgroup of F'Sym(k)(§) which acts semi-regularly
on its support, supp(F'). Then if F' € F Sym(kn;) for some n; = pips . .. p; we have

Nresyme)e)(F)/Crsymw)e) (F) = Aut(F)

Proof. The proof follows from the fact that /' can be viewed as a finite semi-regular
subgroup of the symmetric group on the set of the union of the orbits of length greater
than 1. Since the permutations of the orbits of length 1 lies in the centralizer by

Theorem we have the result. N
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