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ABSTRACT

NORMALIZERS IN HOMOGENEOUS SYMMETRIC GROUPS

GÜVEN, ÜLVİYE BÜŞRA

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mahmut Kuzucuoğlu

August 2017, 92 pages

We study some properties of locally finite simple groups, which are the direct limit
of finite (finitary) symmetric groups of (strictly) diagonal type. The direct limit of
the finite (finitary) symmetric groups of strictly diagonal type is called homogeneous
(finitary) symmetric groups.

In [5], Kegel, Kuzucuoğlu and myself studied the structure of centralizer of finite
groups in the homogeneous finitary symmetric groups. Instead of strictly diagonal
embeddings, if we have diagonal embeddings, we will have direct limit of finite sym-
metric groups of diagonal type. We prove the centralizer of a finite subgroup for the
symmetric groups of diagonal type is the direct product of homogeneous monomial
groups and a symmetric group of diagonal type.

We also study the level preserving automorphisms of the symmetric groups of di-
agonal type and finitary homogeneous symmetric groups. We prove that the level
preserving automorphisms of both groups is isomorphic to the Cartesian product of
centralizers of subgroups.

In the last part of the thesis, we study the normalizers of finite subgroups in both
homogeneous symmetric groups and homogeneous finitary symmetric groups. In the
first class, we find normalizers of finite semi-regular subgroups and in the latter class
we find normalizers of finite subgroups, F , satisfying Fα “ F or 1. In each class of
groups, the quotient of the normalizer of finite subgroup, F , with the centralizer is
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isomorphic to the automorphism group of F .

Keywords: Locally finite groups, centralizer, normalizer,...
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ÖZ

HOMOJEN SİMETRİK GRUPLARDA NORMALLEYENLER

GÜVEN, ÜLVİYE BÜŞRA

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mahmut Kuzucuoğlu

Ağustos 2017 , 92 sayfa

Sonlu (sonlumsu) simetrik gruplardan (kati) köşegen tipteki gömmelerle elde edilen
lokal sonlu basit direkt limit grupların bazı özellikleri çalışılmıştır. Sonlu (sonlumsu)
simetrik gruplardan kati köşegen tipteki gömmelerle elde edilen direkt limit grupla-
rına homojen (sonlumsu) simetrik gruplar denir.

Homojen sonlumsu simetrik gruplardaki sonlu altgrupların merkezleyenlerinin ya-
pısı, Kegel, Kuzucuoğlu ve benim tarafımdan [5] makalesinde bulunmuştur. Kati kö-
şegen tipteki gömmeler yerine, köşegen tipteki gömmeler kullanırsak sonlu simetrik
grupların köşegen tipteki direkt limitlerini bulmuş oluruz. Bu direkt limit grupları-
içinde sonlu altgrupların merkezleyenlerinin homojen monomial grupların ve köşe-
gen tipteki simetrik grubun direkt çarpımı olduğu kanıtlanmıştır.

Ayrıca, köşegen tipteki simetrik gruplarla, sonlumsu homojen simetrik grupların se-
viye koruyan otomorfizmaları çalışılmıştır. Seviye koruyan otomorfizmaların, bazı-
altgrupların merkezleyenlerinin Kartezyen çarpımına izomorf olduğu gösterilmiştir.

Tezin son kısmında, homojen simetrik gruplar ve homojen sonlumsu simetrik gruplar-
daki sonlu altgrupların normalleyenleri çalışılmıştır. Birinci sınıftaki gruplarda, yarı-
düzenli altgruplardaki normalleyenler, diğer sınıfta ise Fα “ F ya da 1 koşulunu
sağlayan her hangi bir sonlu F altgrubu için normalleyenler bulunmuştur. İki sınıfta
da sonlu F altgrubunun merkezleyeniyle normalleyeninin bölüm grubunun, F ’nin
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otomorfizma grubuna izomorf olduğu gösterilmiştir.

Anahtar Kelimeler: lokal sonlu gruplar, merkezleyenler, normalleyenler,...
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Turkey (TÜBİTAK) for its financial support.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The homogeneous symmetric group . . . . . . . . . . . . . . 7

2.2 Trees and The Topology . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Rooted Trees . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Topology on the boundary of the tree . . . . . . . 18

2.2.3 The Product Topology [14, Ch. 2 Section 19] . . . 21

3 HIERARCHOMORPHISMS . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Large group of hierarchomorphisms . . . . . . . . . . . . . 27

3.2 Spherical hierarchomorphisms . . . . . . . . . . . . . . . . 28

3.3 Local isometries and the group HΩ . . . . . . . . . . . . . . 30

xi



4 AUTOMORPHISM GROUP OF Spξq . . . . . . . . . . . . . . . . . 37

4.1 Spξq as a subgroup of homeomorphism group of BTΩ . . . . 37

4.2 Vertex labeling with respect to the action of SpΩq . . . . . . 38

4.3 Automorphism group of SpΩq . . . . . . . . . . . . . . . . . 40

4.4 Orbits and Transitivity . . . . . . . . . . . . . . . . . . . . . 46

5 DIAGONAL EMBEDDINGS . . . . . . . . . . . . . . . . . . . . . 51

5.1 The group Sχ . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Centralizers of Elements in Sχ . . . . . . . . . . . . . . . . 61

5.3 Centralizers of Finite Subgroups in Sχ . . . . . . . . . . . . 63

5.4 Some topological properties of BTχztδu . . . . . . . . . . . . 65

5.5 Level Preserving Automorphism of Sχ . . . . . . . . . . . . 67

6 HOMOGENEOUS FINITARY SYMMETRIC GROUPS . . . . . . . 69

6.1 Construction of the group FSympκqpξq . . . . . . . . . . . . 69

6.2 A non-locally finite spherically homogenous tree . . . . . . . 70

6.3 Tree connection of the homogeneous finitary symmetric groups 73

6.4 Automorphism group of FHκpξq . . . . . . . . . . . . . . . . 76

6.4.1 Level preserving automorphisms . . . . . . . . . . 77

7 NORMALIZERS OF FINITE SUBGROUPS . . . . . . . . . . . . . 81

7.1 Normalizers of Finite Groups in Finitary Homogeneous Sym-
metric Groups . . . . . . . . . . . . . . . . . . . . . . . . . 87

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xiii



LIST OF FIGURES

FIGURES

Figure 2.1 Rooted trees where circled v0 is the root . . . . . . . . . . . . . . . 12

Figure 2.2 Two trees one is rooted, the other is not . . . . . . . . . . . . . . . 12

Figure 2.3 A degenerate rooted tree example . . . . . . . . . . . . . . . . . . 12

Figure 2.4 The subtree Tv of the tree pT, v0q . . . . . . . . . . . . . . . . . . 14

Figure 2.5 A spherically homogeneous rooted tree with characteristic 243 . . . 17

Figure 2.6 The tree TΩ where Ω “ p3, 2, 2, . . .q . . . . . . . . . . . . . . . . . 18

Figure 4.1 Tree with vertices labeled by natural numbers . . . . . . . . . . . 39

Figure 4.2 An element h P HΩ sending γ to Pnpi0,...,in´1q . . . . . . . . . . . . 48

Figure 5.1 Rooted tree Tχ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 6.1 Spherically homogeneous rooted tree Tκpξq . . . . . . . . . . . . . 71

xiv



CHAPTER 1

INTRODUCTION

In the theory of infinite groups, the class of locally finite groups are of special interest

to the group theorists. A group G is called locally finite, if every finite set of elements

of G generates a finite group. After the classification of finite simple groups was

completed, the interest turned to the classification of infinite locally finite simple

groups. However, the work of Kegel-Wehrfritz [7, Corollary 6.12], showed that there

are uncountably many non-isomorphic, countable, locally finite simple groups. The

authorities accepted that the classification of locally finite simple groups is not easy.

However, we know by Meierfrankenfeld that if G is a simple locally finite group,

then it must be either finitary group or the group of alternating type or it must accept

a Kegel Cover satisfying some certain properties, see [13].

Although the classification may seem harder, the information we get from such groups

could help the mathematicians to understand the class of simple locally finite groups

better. With this idea, in this thesis, we investigate properties of some certain infinite

locally finite, simple groups and give information about the structure of the group

itself, subgroups and automorphism group.

There are lots of ways to obtain infinite locally finite simple groups. We are interested

in the locally finite (simple) groups, which are the direct limits of finite symmetric (al-

ternating) and finitary symmetric groups, obtained by (strictly) diagonal embeddings.

Definition 1.1. Let G be a transitive X set and H be a Y set. An embedding d of

G into H is called diagonal, if the permutation group pdpGq, Oq is permutationally

isomorphic to the group pG,Xq, for any orbit O of dpGq on Y with length more than

1.
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Definition 1.2. A diagonal embedding d of G into H is called strictly diagonal, if all

of the orbits of dpGq on Y has length greater than 1.

In [9], Kroshko and Suschansky studied the direct limits of finite symmetric (alternat-

ing) groups with strictly diagonal embedding. Such groups are called homogeneous

symmetric (alternating) groups. They gave a classification of homogeneous sym-

metric groups up to isomorphism using the lattice of Steinitz numbers.

Definition 1.3. A formal product n “ 2r13r25r3 . . ., where 0 ď ri ď 8 for all i P N

is called a Steinitz number or a supernatural number.

After Kroshko and Suschansky’s work, in [4] and [5] Kegel, Kuzucuoğlu and myself

studied the centralizers of elements and finite groups. We found the structure of the

centralizers of elements and finite groups in the homogeneous symmetric groups.

After the classification of homogeneous symmetric groups were completed, the inter-

est turned into the automorphism group of homogeneous symmetric groups. In [12],

Lavreniuk and Sushchansky studied automorphism groups of this class and gave a

new perspective to understand the homogeneous symmetric groups better, namely,

they look at the homogeneous symmetric groups as a subgroup of homeomorphism

group of the boundary of a spherically homogeneous rooted tree.

In Chapter 2, first we give the construction of homogeneous symmetric groups and

then we give basic definitions and theorems about the trees and the topology that we

will use throughout this thesis.

In Chapter 4, we showed that the automorphism group of homogeneous symmetric

groups can not act highly transitively on the boundary of the tree whereas we prove

that the group of local isometries acts highly transitive on the boundary.

When we change the embeddings in the construction of homogeneous symmetric

groups into diagonal embeddings, we get a bigger class of infinite locally finite simple

groups. The classification of direct limits of finite symmetric groups of diagonal

type is due to Lavreniuk, Nekrashevych and Sushchansky, see [11]. They used the

topological approach together with some measure theory.
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In this thesis, in Chapter 5, after giving the construction and some theorems given in

[11], we prove the following result:

Theorem 1.4. Let α P Sχ, χ “ xp1, k0q, pn1, k1q, . . .y and let α0 P SpBTχ, lq be

the principal beginning of α and tpα0q “ pr1, r2, . . . , rkq be the short cycle type of

α0, where r1 is the number of fixed vertices other than $$ . . . $ in level l. Then the

centralizer of α in Sχ;

CSχpαq –
k

Dr
i“2

ΣξipCiq ˆ Sχ1

where ξ “ pk0, n1, n2, . . .q, charpξiq “
charpξq

k0n1...nl´1
ri for all i ě 2, χ1 “ xp1, r1q, pnl, klq, . . .y

and ΣξipCiq the homogeneous monomial group over the cyclic group Ci of order i.

The structure of centralizers of finite subgroups are also given in the same Chapter 5.

Definition 1.5. An automorphism of a group acting on the boundary of a tree is

called level preserving, if for someN “ tni| i ě 1u of positive increasing numbers, it

preserves all the levels ni of the tree. The group of all level preserving automorphisms

for a given N will be called N -level preserving automorphisms.

In Chapter 5, we prove the following result:

Theorem 1.6. The level preserving automorphism group is isomorphic to the Carte-

sian product of the centralizers of finite subgroups in Sχ.

The idea of homogeneous symmetric groups were extended to the finitary homo-

geneous symmetric groups, denoted by FSympκqpξq, see [5], so that we will have

locally finite (simple) groups of any cardinality κ. Instead of taking finite symmetric

(alternating) group, we start with finitary symmetric (infinite alternating) groups with

a given cardinal κ.

The classification of such groups and the structures of centralizers of elements, as

well as the structure of the centralizers of finite subgroups are also given in the same

paper.

In this dissertation, we extend the idea of spherically homogeneous rooted tree and in

Chapter 6, show that similar to the case of homogeneous symmetric groups, the fini-

tary homogeneous symmetric group has an action on a non-locally finite spherically

homogeneous rooted tree.
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We get some properties of the automorphism group of finitary homogeneous symmet-

ric groups. We prove the following theorems;

Theorem 1.7. Any automorphism of finitary homogeneous symmetric group is in-

duced by an element of the homeomorphism group of spherically homogeneous rooted

tree.

We also prove the following;

Theorem 1.8. For an increasing sequence of natural numbers, M “ tmi | mi ą 0u,

the M-level preserving automorphisms are isomorphic to the Cartesian product

Sympκm1q ˆ

8
ź

i“2

CSympκmiqpFSympκqpmi´1qq

A group, acting on a set Ω is said to be semi-regular, if all the point stabilizers are

identity. If, in addition, the action is transitive, then we call the group regular. If F

is a regular subgroup of symmetric group on a set Ω, then, by [2, Corollary 4.2B], the

normalizer is isomorphic to the holomorph of F .

Let F be a semi-regular finite subgroup of Sympξq. We are interested in normalizers

of such groups. Since Sympξq is the union of finite symmetric groups, in Chapter 7,

we first find the structure of normalizer of a finite semi-regular group. Notice that we

can find semi-regular representation of any finite abstract group, G, just consider reg-

ular representation and embed it via strictly diagonal embedding so that the resulting

group is semi-regular and isomorphic to G.

We prove the following,

Theorem 1.9. LetF be a finite semi-regular subgroup of Spξq, where ξ “ă p1, p2, . . . ą.

If F is in Sni for some ni “ p1p2 . . . pi, then

NSpξqpF q{CSpξqpF q – AutpF q

Moreover, in Chapter 7, we also showed that the structure of normalizers of finite

subgroups of finitary homogeneous symmetric group, satisfying some property, is

not so different than the normalizers of semi-regular groups in Spξq.
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Let F be a finite subgroup of FSympκqpξq. Hence, F is a subgroup of FSympκqpniq

for some ni. Note that F acts on the set of elements of cardinality κni. Let F satisfy

the property that the stabilizers of any element α is either F or identity. Then we have

the following result.

Theorem 1.10. Let F be a finite subgroup of FSympκqpξq which satisfies the above

property. If F P FSympκniq for some ni “ p1p2 . . . pi, then we have

NFSympκqpξqpF q{CFSympκqpξqpF q – AutpF q

5
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CHAPTER 2

PRELIMINARIES

In this chapter, we will give basic definitions and results that will be used in the other

chapters.

2.1 The homogeneous symmetric group

In this section, the basic definitions and facts about the groups Spξq and the strictly

diagonal embeddings will be given.

Definition 2.1. Let G be a transitive permutation group on a set X and H be a per-

mutation group on Y . If we have an embedding d from G into H such that pdpGq, Oq

is permutational isomorphic to pG,Xq, for any orbit of dpGq on Y of length greater

than 1, then d is called diagonal. On the other hand, if all the orbits have length

greater than 1, then the embedding is called strictly diagonal.

If α “ p 1 2 ¨¨¨ n
i1 i2 ¨¨¨ in q, then define a map,

dr : Sn Ñ Snr

and drpαq is defined by the rule

pkn` iqd
rpαq

“ kn` iα 0 ď k ď r ´ 1, 1 ď i ď n.

Hence,

drpαq “
´

1 2 ¨¨¨ n
i1 i2 ¨¨¨ in |

n`1 ¨¨¨ 2n
n`i1 ¨¨¨ n`in

| ¨¨¨¨¨¨ |
pr´1qn`1 ¨¨¨ pr´1qn`n
pr´1qn`i1 ¨¨¨ pr´1qn`in

¯

(2.1)

will become an element of Snr.
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Lemma 2.2. The embedding dr is a strictly diagonal embedding.

Proof. It can be easily seen that the image drpSnq, acts on the set t1, 2, . . . , rnu, by

partitioning the set into r pieces of length n. The action of any element drpαq P

drpSnq is diagonally same as the action of α on the set t1, 2, . . . nu, by Equation 2.1.

Hence the orbits of drpSnq in the set t1, 2, . . . , rnu will be of the form

Ok “ tpk ´ 1qn` 1, pk ´ 1qn` 2, . . . knu

where 1 ď k ď r.

Notice that each orbit has length n. For an arbitrary orbit Ok, define the map,

λ : t1, 2, . . . , nu Ñ Ok

i ÞÑ pk ´ 1qn` i

Then the map will satisfy the following equation; for any i P t1, 2, . . . , nu, α P Sn,

λpiqd
rpαq

“ ppk ´ 1qn` iqd
rpαq

“ pk ´ 1qn` iα “ λpiαq

where iα is used for the action of α on i. Hence, pdrpSnq,Okq is permutational iso-

morphic to pSn, t1, 2, . . . , nuq.

By using this specific embeddings dr, one can construct a direct limit group which is

locally finite and simple.

Let ξ “ pp1, p2, . . .q be an infinite sequence of prime numbers (not necessarily dis-

tinct). Consider the embeddings dpi : Sni Ñ Sni`1
where ni “ p1p2 . . . pi. The

embeddings will generate a direct limit group and the group will be denoted by Spξq.

If, in the direct limit group, we denote the image of a permutation α in Sni , for some

ni by dpαq and the image of Sni by Spniq, then the group Spξq :“
8
Ť

i“1

Spniq. The

groups Spξq are called homogeneous symmetric groups [9]. Note that Spξq is a

subgroup of the symmetric group on natural numbers SpNq.

Similarly, we can form Apξq “
8
Ť

i“1

Apniq where Apniq is the image of the alternating

group Ani under the embedding d. Moreover Apξq ď Spξq, as for any α P Ani

and for any r, the image drpαq is always an even permutation so dpαq P Apξq and

dpαq P Spξq.

8



Definition 2.3. [9, Page 175] If α P Spξq, then there exists a minimal number ni

such that we have α0 P Sni and dpα0q “ α. The element α0 is called the principal

beginning of α.

In [9], Kroshko and Suschansky proved the following.

Theorem 2.4. [9, Page 175, Theorem 1] Let ξ “ pp1, p2, . . .q be an infinite sequence

consisting of not necessarily distinct primes.

p1q If the prime 2 appears infinitely many times in the sequence ξ, then Spξq “ Apξq.

p2q If in the sequence we have only finitely many 2, then rSpξq : Apξqs “ 2.

p3q Apξq is simple.

Hence, depending on the sequence ξ, one can determine the simplicity of the group

Spξq. In fact, the classification of the groups Spξq also depends on the sequence.

Now in order to give the classification of such groups, we introduce Steinitz numbers.

Definition 2.5. The formal product k “ 2a13a25a3 . . . where 0 ď ai ď 8 and ai is

the power of ith prime in the set of all prime numbers is called a Steinitz number.

Lemma 2.6. The set of all Steinitz numbers is a partially ordered set with respect to

division and forms a lattice.

Proof. Let S be the set of all Steinitz numbers. Define the division of two Steinitz

numbers k “ 2a13a25a3 . . . and l “ 2b13b25b3 . . . as follows;

k|l if and only if ai ď bi for all i P N. With the division above, pS , |q becomes a

partially ordered set.

If we define meet and join of arbitrary two Steinitz numbers, k “ 2a13a25a3 . . . and

l “ 2b13b25b3 . . . as

k _ l “ 2maxta1,b1u3maxta2,b2u5maxta3,b3u . . .

k ^ l “ 2minta1,b1u3minta2,b2u5minta3,b3u . . .

then obviously, k _ l and k ^ l are Steinitz numbers. Hence, with this meet and join

operations, the set S become a lattice.

9



Definition 2.7. Let ξ “ pp1, p2, . . .q be an infinite sequence of not necessarily dis-

tinct primes. The characteristic of the sequence is a Steinitz number, charpξq “

2r13r25r3 . . . where ri is the number of ith prime appearing in the sequence ξ. If a

prime appears infinitely many times, then set corresponding ri to be infinity.

Theorem 2.8. [9, Lemma 3.3] Let ξ1 and ξ2 be two Steinitz numbers. Then Spξ1q is

a subgroup of Spξ2q if and only if charpξ1q divides charpξ2q.

Therefore, this theorem classifies homogeneous symmetric groups. Moreover, as

there are uncountably many Steinitz numbers we will have uncountably many pair-

wise non-isomorphic homogeneous symmetric groups.

2.2 Trees and The Topology

After the classification of the groups Spξq up to isomorphism, natural question arises.

What is the structure of automorphism group of homogeneous symmetric groups?

In group theoretic point of view, understanding the structure of automorphism group

of a group is generally hard. Although the groups Spξq are the union of finite sym-

metric groups, and the automorphisms of symmetric groups are very well known, to

understand the automorphisms of Spξq, we need some other tools.

We will regard the groups Spξq as a subgroup of homeomorphism group of the bound-

ary of a spherically homogeneous tree. For this purpose, in the following subsections,

we explain some definitions and facts about trees and the topology they induce. In

Chapter 4, the properties about AutpSpξqq will be given.

2.2.1 Rooted Trees

Definition 2.9. ‚ A graph T is a pair, defined by the set of vertices V pT q and the

edges EpT q where any e P EpT q is a two element set tv1, v2u.

‚ Two vertices v1, v2 are adjacent if there is an edge e “ tv1, v2u P EpT q. In this

case we say that edge e connects the vertices v1 and v2.
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‚ For a vertex v, the number of edges which v belongs to is called the degree of

v.

‚ A graph is called locally finite if the degree of every vertex is finite.

‚ A path, γ, of length n´ 1 is a sequence of pairwise distinct vertices pv1, . . . vnq

such that for all 1 ď i ď n´ 1, tvi, vi`1u forms an edge.

‚ If in the path γ, also tv1, vnu forms an edge, then the path is called a cycle.

‚ A graph is connected if we can connect two arbitrary vertices by a path.

‚ A connected graph with no cycles is called tree.

Lemma 2.10. Let T be a graph. For all v, w P V pT q there exists a unique path

connecting them if and only if T is a tree.

Proof. Let T be a tree. Then by definition of a tree, any two vertices can be connected

by a path. If there exist two paths connecting v and w, say γ1 “ pv, v2, . . . vn´1, wq

and γ2 “ pv, w2, . . . wm´1, wq, then the path pv, v2, . . . vn´1, w, wm´1, . . . w2q will

become a cycle. But this is a contradiction to the definition of the tree.

Conversely, if for any pair of vertices v, w P V pT q we have a unique path connecting

them, then T is connected. On the other hand, if there exist a cycle γ “ pv1, v2, . . . vnq

so that tv1, vnu forms an edge, then we have γ1 “ pv1, vnq a path connecting v1 and

vn but γ also connects v1 with vn so it is a contradiction. Hence there is no cycle in

T . Therefore, T is a tree.

In connection with the above lemma, in a tree for any two vertices u, v, we can define

dpu, vq as the length of the path connecting them.

Definition 2.11. ‚ A rooted tree pT, v0q is a tree with a fixed vertex v0 called the

root.

In the Figure 2.1, one can see examples of rooted trees. Note that the notion of

a rooted tree is just a choice of a vertex that will specify the tree. In the Figure

2.2, we give examples of two trees consisting of same vertex and edge sets but

one is rooted and the other one is not.
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v0

v5

x9w8

v4

w7w6w5

v3

w4

v2v1

w3w2w1

v0

v3v2v1

w4w3w2w1

Figure 2.1: Rooted trees where circled v0 is the root

Notice that in Figure 2.2, the tree in the right hand side is non-rooted because

we did not specify any vertex to be the root.

v0

v5

w2w1

v4v3v2v1

v5

w2w1v0

v4v3v2v1

Figure 2.2: Two trees one is rooted, the other is not

‚ A rooted tree is non-degenerate if the degree of the root is more than one and

the degree of every other vertex is more than two. A rooted tree is called de-

generate, if the degree of the root is 1 and starting with the root, we can find

a unique path that contains all the vertices of the tree. A degenerate tree looks

like a linear line.

v0

v1

w1

w2

Figure 2.3: A degenerate rooted tree example

Note that, if a tree is non-degenerate, then it should be an infinite tree that is,
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‚ A tree is called infinite if the cardinality of V pT q (or EpT q) is infinite.

‚ A rooted subtree pT 1, wq of a rooted tree pT, v0q is a tree where the vertex and

edge sets V pT 1q, EpT 1q are subsets of V pT q, EpT q, respectively.

Throughout the thesis, we will discuss mainly non-degenerate infinite rooted trees.

We prefer non-degenerate trees because mostly we will discuss about level preserv-

ing homeomorphisms of the boundary of the tree and for a tree being degenerate is

meaningless in that concept. A homeomorphism between two topological spaces X

and Y is a bijective map, f , such that both f and f´1 is continuous maps. For an

infinite rooted tree pT, v0q, we have the following definitions.

Definition 2.12. ‚ An end is an infinite path, pv0, v1, v2, . . .q, which is an infinite

sequence of distinct vertices starting with the root v0 such that tvi, vi`1u is in

EpT q for all i P NY t0u.

‚ We call the set of all ends of the rooted tree pT, v0q as the boundary of the tree

and denote it by BT .

‚ For every non-negative integer n, we call the set

Vn “ tv P V pT q | dpv, v0q “ nu

as the nth level (the level number n). The level number 0 consists of the root,

v0 only.

Let tv0, v1, . . . , vu be the path connecting the root with v. If w is a member of the

path sequence, then we say that v is below the vertex w.

The rooted subtree containing all the vertices below the vertex v on level n, with the

vertex v as a root will be denoted by Tv and said to be a subtree of level n. See the

Figure 2.4.
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v0

v
Ñ nth level

Figure 2.4: The subtree Tv of the tree pT, v0q

Definition 2.13. An automorphism of the rooted tree pT, v0q is defined as the bijec-

tion of the vertex set V pT q that fixes the root and preserves the incidence relation

between vertices. The full automorphism group of the tree is denoted by AutpT q.

Lemma 2.14. Levels are invariant with respect to automorphisms of the rooted tree.

Proof. Let σ P AutpT q. As σ fixes the root, σpv0q “ v0. We will use induction on the

level numbers. For an element v1 in V1, the root v0 and v1 is connected by an edge.

Now, σ preserves the incidence relation that is σpv1q and σpv0q must be connected by

an edge. As σpv0q “ v0, σpv1q is an element of V1. Hence, σ preserves the first level.

Assume, σ sends the vertices of level less than or equal to n ´ 1 to the same levels

they belong and let vn P Vn. As T is a tree, there exist an element w P Vn´1 such that

w and vn is connected by an edge. Hence, σpwq and σpvnq is also connected by an

edge. By induction hypothesis, σpwq is a vertex in level n ´ 1 that says σpvnq must

be a vertex in level n.
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Let G be a subgroup of AutpT q. If G acts transitively on the levels of the tree, then

G is called spherically transitive. A rooted tree T is called spherically homoge-

neous (spherically transitive) if the full automorphism group of the tree is spherically

transitive.

Lemma 2.15. A locally finite rooted tree T is spherically transitive if and only if the

degree of all vertices of the same level are equal.

Proof. Let v1 P VnpT q for an arbitrary level n. If the degree of v1 is k, then we want

to show the degree of any vertex in VnpT q is also k.

Consider a vertex v P VnpT q different than v1. Since T is spherically transitive,

AutpT q is transitive on levels and there exist an automorphism σ sending v1 to v.

Note that, σ preserves the incidence relation between vertices. Hence, the k vertices

that are connected to v1 must be sent to the k vertices so that they are connected to

σpv1q “ v. Therefore, v has also degree k.

On the other hand, assume the degree of all vertices of the same level are equal.

For any two vertieces v and w on the same level n, let pH, v1, v2, . . . vn´1, vq and

pH, w1, w2, . . . wn´1, wq be the paths from the root to v and w, respectively.

Consider the subtrees of the first level Tv1 and Tw1 since the degrees of all vertices are

same there exists an isomorphism α between them sending v1 to w1. On this isomor-

phism we can choose the image of v2 P Tv1 to be w2 P Tw1 so that the restriction of

α to the subtree Tv2 is an isomorphism from Tv2 to Tw2 . Continuing like that we will

have isomorphism α sending v to w. Extend α to an automorphism ᾱ of the tree T as

follows;

If z belongs to Tv1 or Tw1 then ᾱpzq “ αpzq. If z is a vertex not belonging to Tv1 and

Tw1 then ᾱpzq “ z. Hence, we get the result.

The above lemma says that in a locally finite spherically transitive tree, the degree of

a vertex on level n depends only the level n. Therefore, for a locally finite spherically

transitive tree we have the following;
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Definition 2.16. Let Ω “ pa0, a1, . . .q be a sequence where a0 is the degree of the

root and an ` 1 is the degree of any vertex in level n. We define the characteristic of

the spherically transitive tree pT, v0q as the characteristic of Ω which is the Steinitz

number charpΩq “ 2r13r25r3 . . . where the powers rj are determined by the prime

factors of each ai, that is we factorize each ai into prime numbers and rj is the

number of the jth prime appearing in ai’s. If a prime appears infinitely many, then

set the corresponding rj “ 8. The sequence Ω is called characteristic sequence.
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Example 2.17. In the Figure 2.5, we have a spherically homogeneous tree with the

characteristic sequence Ω “ p4, 2, 6q and the characteristic is charpΩq “ 243.

v0

Figure 2.5: A spherically homogeneous rooted tree with characteristic 243

If T is a spherically homogeneous rooted tree with characteristic sequence Ω “

pa0, a1, . . .q, then we can label the tree T in the following way. The set of vertices

consists of all sequences of the form pH, i0, i1, . . . , inq where ik P t0, 1, . . . , ak ´ 1u

n ě 0 is an integer. We denote the root with the empty set notation correspond-

ing to the empty sequence. Two vertices are adjacent if and only if they are of the

form pH, i0, i1, . . . , in´1q, pH, i0, i1, . . . , in´1, inq. If the characteristic sequence Ω is

known, then we denote the tree by TΩ. See the Figure 2.6. For simplicity unless it is

needed, a vertex pH, i0, i1, . . . , inq will be written withoutH as pi0, i1, . . . , inq.
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H

(2)

(2,1)

(2,1,1)(2,1,0)

(2,0)

(2,0,1)(2,0,0)

(1)

(1,1)

(1,1,1)(1,1,0)

(1,0)

(1,0,1)(1,0,0)

(0)

(0,1)

(0,1,1)(0,1,0)

(0,0)

(0,0,1)(0,0,0)

...
...

...
...

...
...

...
...

Figure 2.6: The tree TΩ where Ω “ p3, 2, 2, . . .q

2.2.2 Topology on the boundary of the tree

For readers’ convenience we will give some basic definitions on topology and con-

struct the topology on the boundary of the rooted tree.

Definition 2.18. [14, Page 76] Let X be any set. A collection τ of subsets of X is

called topology on a set X if it has the following properties:

1. H and X are in τ .

2. The union of the elements of any subcollection of τ is in τ .

3. The intersection of the elements of any finite subcollection of τ is in τ .

A setX for which a topology τ has been specified is called a topological space. In this

case, we say that a subset U of X is an open set of X if U belongs to the collection τ .

On the other hand, a subset U of X is called closed if the complement XzU is open.

Definition 2.19. [14, Page 119] A function

d : X ˆX Ñ R

is said to be a metric on a set X if it has the following properties:
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1. dpx, yq ě 0 for all x, y P X; equality holds if and only if x “ y.

2. dpx, yq “ dpy, xq for all x, y P X .

3. (Triangle inequality) dpx, zq ď dpx, yq ` dpy, zq, for all x, y, z P X .

A metric space X is a set together with a metric.

Let TΩ be a spherically homogeneous tree. On the boundary BTΩ of the tree which is

the set of all ends of the tree, we define a metric; for any two ends γ1, γ2

ρpγ1, γ2q “
1

n`1

where n is the length of the common parts (edges) of γ1, γ2.

Lemma 2.20. The distance ρ defines a metric on BTΩ.

Proof. 1) ρpγ1, γ2q ě 0 equality holds if and only if γ1 “ γ2;

Common parts of any two different ends is bigger than or equal to 0. Hence, the ratio
1

n`1
is bigger than 0.

If two ends are the same, then as their all edges are common the ratio 1
n`1

will be

equal to 0.

2) ρpγ1, γ2q “ ρpγ2, γ1q; By the definition of ρ it is obvious.

3) ρpγ1, γ2q ď ρpγ1, γ3q ` ρpγ3, γ2q;

Let the common parts of γi, γj be nij for i, j “ 1, 2, 3 and i ‰ j.

Now, without loss of generality say n13 ď n23. Since we start to count the common

parts of two ends from the root, any common part of γ1 with γ3 will also be the

common parts of γ2 with γ3. But again as the common parts are counted from the

root γ1 and γ2 must share the common parts of γ1 and γ3. Hence the common parts

n12 of γ1 with γ2 is greater than or equal to the common parts n13 of γ1 with γ3. We

have n13 ď n12, so 1
n13`1

ě 1
n12`1

. Thus ρpγ1, γ2q ď ρpγ1, γ3q ` ρpγ3, γ2q.

Definition 2.21. A metric d on a set X is called an ultra-metric if

dpx, yq ď max tdpx, zq, dpz, yqu for all x, y, z P X
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In fact, the metric ρ is an ultra-metric. By the proof of third property of being metric,

we find 1
n13`1

ě 1
n12`1

whenever n13 ď n23, it yields us the more strong condition

that

ρpγ1, γ2q ď max tρpγ1, γ3q, ρpγ3, γ2qu .

Definition 2.22. [14, Page 78] A basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

p1q For each x P X , there is at least one basis element B containing x.

p2q If x belongs to the intersection of two basis elements B1 and B2, then there is a

basis element B3 containing x such that B3 Ă B1 XB2.

Definition 2.23. [14, Page 119] If X is a metric space with a given metric d, then the

collection of the sets

Bpx, εq “ ty | dpx, yq ă εu

for any ε ą 0 and any x P X will form a basis for the metric space X . The sets

Bpx, εq are called ε-ball centered at x, or sometimes simply balls.

The topology induced by the metric ρ has a base of open sets;

Pnvi “ tγ P BTΩ | vi P VnpTΩqu where vi P γ

The set Pnvi consists of all ends passing through the vertex vi on the level n. Observe

that Pnvi corresponds to the open ball Bpγ, 1
n`1
q where γ is any end containing the

vertex vi.

Lemma 2.24. If v P Vn is connected by an edge to w P Vn`1, then the ball Pn`1w will

properly be contained in Pnv. If v1 and v2 are two different vertices in the same level

n, then Pnv1 X Pnv2 “ H.

Proof. Since there is only one path connecting root to w by the definition of Pn`1w,

any end that passes through the vertex w must also pass from the vertex v. Since the

tree is non-degenerate, i.e. there exists at least one other vertex in level n` 1 that the

vertex v connected to, Pn`1w is properly contained in Pnv.
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On the other hand, if the balls in the same level have an intersection, then there must

be an end γ passing through both v1 and v2 contradicting to the fact that TΩ is a

tree.

Lemma 2.25. Every ball of the topology on BTΩ is clopen, that is both closed and

open.

Proof. For an arbitrary γ P BTΩ we will show BTΩzBpγ, εq is an open set in BTΩ.

Let γ1 P BTΩzBpγ, εq that is to say ρpγ, γ1q ě ε. Then Bpγ, εq X Bpγ1, εq “ H. (If

not, σ P Bpγ, εq X Bpγ1, εq means ρpγ, σq ă ε and ρpσ, γ1q ă ε, then ρpγ, γ1q ď

max tρpσ, γ1q, ρpσ, γqu, contradiction) so Bpγ1, εq Ď BTΩzBpγ, εq.

The topology on the boundary of a spherically homogeneous tree coincides with the

product topology of discrete spaces. Hence, in the following section we will give the

definition and facts about product topology.

2.2.3 The Product Topology [14, Ch. 2 Section 19]

Let tXα | α P Iu be a collection of topological spaces. Consider the Cartesian product
ś

αPI

Xα and write any element of the Cartesian product as pxαq “ pxαqαPI .

Define the projection map for all β P I as follows;

Πβ :
ź

αPI

Xα Ñ Xβ

where Πβppxαqq “ xβ , β component of pxαq.

Definition 2.26. Let X be a set. A collection S of subsets of X is called a subbasis

for a topology on X if the union of members of S is X .

Remark 2.27. In this case, finite intersection of members of S is a basis for a topol-

ogy on X, for the proof see [14, Ch. 2 Page 82].

Hence, the elements Π´1
β pUβq “

ś

αPI

Uα such that Uα “ Xα for all α P I except for

β where Uβ is open in Xβ forms a subbasis. By remark, the finite intersection of

the subsets Π´1
β pUβq forms a basis for a topology on

ś

αPI

Xα which is called product

topology.
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Theorem 2.28 (Theorem 19.2, [14]). Suppose the topology on each spaceXα is given

by a basis Bα. Then the collection of all sets of the form

ź

αPI

Bα

where Bα P Bα for finitely many indices α and Bα “ Xα for all the remaining

indices, will serve as a basis for the product topology.

Definition 2.29. [14, Page 77] Suppose that τ and τ 1 are two topologies on a given

set X . If τ 1 Ą τ we say that τ 1 is finer than τ .

Lemma 2.30. [14, Lemma 13.3] Let B,B1 are two basis of the topologies τ and τ 1

on the same set X , respectively. Then the following are equivalent:

1. τ 1 is finer than τ.

2. For each x P X andB P B, there is a basis elementB1 P B1 such that x P B1 Ă B.

Two topologies τ 1, τ coincides if τ is finer than τ 1 and τ 1 is finer than τ .

Lemma 2.31. The topology defined above by the metric ρ on the boundary, BTΩ

of a locally finite spherically homogeneous tree with characteristic sequence Ω “

pa0, a1, . . .q coincides with the product topology of discrete spaces defined on the sets

X0 “ tHu, Xj “ t0, 1, 2, . . . , aj´1 ´ 1u.

Proof. For the spherically homogeneous tree T , we have the characteristic sequence

Ω “ pa0, a1, a2, . . .q. SetX0 “ tHu andXj “ t0, 1, 2, . . . aj´1´1u for all j P N. Re-

call that by the explanation after the Figure 2.5, on page 17, we can label the vertices

by using the finite sequences of the form pH, i0, i1 . . . inq. As the boundary consists

of ends we may write any end as an infinite sequence γ “ pH, i0, i1, i2, . . .q where

ij P Xj`1 for all j P N Y t0u. Then the boundary of the spherically homogeneous

tree will be the set;

BTΩ “ tγ| γ “ pH, i0, i1, i2, . . .q, ij P Xj`1, @ j P NY t0u u

The basis elements for BTΩ are ;
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Pnv “ tγ “ pH, i0, i1, . . . , in´1, jn, . . .q | jt P Xt`1 for all t ě nu

where v is the vertex of level n defined by the labeling pH, i0, i1, . . . in´1q.

Consider the sets X0 “ tHu and Xi “ t0, 1, . . . , ai´1 ´ 1u for all i P N and the

discrete topology on Xi with the metric

dpx, yq “

$

’

&

’

%

1 if x ‰ y

0 if x “ y

and the singletons are the basis elements for Xi.

Bpx, εq “

$

’

&

’

%

x if ε ă 1

Xi if ε ě 1

If we define the product topology
8
ś

i“0

Xi, then the elements of product topology are

infinite sequences pH, i0, i1, . . .q where ij P Xj`1.

Moreover, the basis elements are X0 ˆ
8
ś

k“0

Bpik, εkq where εk ă 1 for only finitely

many k. Observe that both BTΩ and the product topology
8
ś

i“0

Xi consists of the same

type of elements, namely infinite sequences.

To conclude the proof we need to prove that for any basis element from the first

topology there exists a basis element from the other one that contains it, and vice

versa. However, observe that any basis element Pnv consist of elements of the form

γ “ pH, i0, i1, . . . , in´1, jn, . . .q where pH, i0, i1, . . . in´1q “ v and jt P Xt`1 for all

t ě n. Note that γ is an element of the product X0 ˆ Bpi0, εq ˆ . . . ˆ Bpin´1, εq ˆ

Xn`1 ˆXn`2 ˆ . . . which is a basis element for the product topology where ε ă 1.

On the other hand, for any basis element X0 ˆ
8
ś

k“0

Bpik, εkq there exists a number

n such that εk ą 1 for all k ą n ´ 1 so, the basis element have elements of the

form pH, i0, i1, . . . in´1, jn, . . .q where ik’s are fixed coming from Xk`1 for all k P

t0, 1, . . . n´ 2u and jt P Xt`1 for all t ě n which are the elements of the ball Pnv on

the level n in this basis of the topology BTΩ. Therefore, the topologies coincide.

Notice that by the above lemma the topology on BTΩ has the same properties with

the product topology of the finite discrete sets Xi. It is easy to see that the discrete
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topology on the finite set is compact. Hence, by the well known Tychonoff’s theorem

[14, Theorem 37.3] saying that the product of compact spaces is compact, we can

conclude that BTΩ is a compact topological space.

However, for readers convenience in the next lemma we will give another proof of

compactness. To see compactness we will use a strong theorem from topology:

Theorem 2.32. [14, Theorem 45.1] A metric space is compact if and only if it is

totally bounded and complete.

Definition 2.33. [14, Ch. 7, Section 43] Let pX, dq be a metric space. A sequence

pxnq consisting of the elements of X is said to be Cauchy sequence if for every ε ą 0

there is an integer N such that

dpxn, xmq ă ε for all n,m ě N

The metric space X is complete if every Cauchy sequence in the space converges to

an element of the metric space itself.

Definition 2.34. [14, Ch. 7, Section 45] A metric space is totally bounded if for all

ε ą 0, there exists a finite collection of open sets with radius ε whose union contains

the whole space.

Definition 2.35. [14, Ch. 2, page 98] A topological space is Hausdorff if for every

distinct pair of points x, y inX there exist open balls U and V such that x P U , y P V

and U X V “ H.

From now on, unless it is stated otherwise, the spherically homogeneous trees will be

considered as locally finite.

Lemma 2.36. The topological space BTΩ introduced by the metric ρ is compact and

Hausdorff.

Proof. First we will show BTΩ is totally bounded. Let ε ą 0 be given. Choose the

level k on the tree to be
P

1
ε
´ 1

T

where
P

1
ε
´ 1

T

denotes the integer part of 1
ε
´ 1. (If

P

1
ε
´ 1

T

is negative or 0 then choose k “ 1). If there exists m vertices on level k, set

the vertices of it as tv1, v2, . . . , vmu and consider the union of the balls Pkvi for all vi.
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Notice that, an arbitrary ball Bpγ, εq, with radius ε centered at γ equals to one of the

balls Pkvi of level k where vi P γ.

Now, any end γ in BTΩ must pass through one of the vertices tv1, . . . , vmu, say it

passes through vj then γ P Pkvj so the union of the balls will give the space itself.

Hence BTΩ is totally bounded.

To see the compactness, it suffices to show BTΩ is complete.

Let tγiuiPI be a cauchy sequence in BTΩ, i.e. for all ε there exists an integer Nε ą 0

such that for all m,n ą Nε the distance ρpγm, γnq ă ε so the common parts of the

ends are getting bigger and common parts of ends are the finite rooted paths.

For all ε ą 0 denote the common paths of the sequence depending onNε by σε. When

ε gets smaller Nε gets bigger so whenever Nε ă Nε1 , σε will be contained in the path

σε1 (we will show it by σε ă σε1). Hence, when Nε tends to infinity we get an infinite

sequence of paths

σε ă σε1 ă σε2 ă . . .

which converges to an infinite path σ consisting of all the union of paths σε for all

ε ą 0.

If we denote the vertex of any end γ on the level n by γpnq then the limit of the

sequence is the end γ where γpnq “ limiÑ8 γipnq which is an element of BTΩ. Hence

BTΩ is compact.

It is easy to observe that BTΩ is Hausdorff. For any two ends γ1, γ2 P BTΩ, γ1 ‰ γ2

let n be the last level that γ1, γ2 has common parts, i.e. after the level n the paths do

not have common parts. Then choose v1 P γ1 and v2 P γ2 where v1, v2 are in the level

n ` 1. Consider the open balls Pn`1v1 and Pn`1v2 which has an empty intersection

and γi P Pn`1vi , for i “ 1, 2. Therefore BTΩ is Hausdorff.
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CHAPTER 3

HIERARCHOMORPHISMS

In this chapter, we will introduce the concept of hierarchomorphisms. Hierarchomor-

phisms are the break point of our tool which will help us seeing the homogeneous

symmetric groups, Spξq, as a subgroup of homeomorphism group of the boundary of

a spherically homogeneous tree.

3.1 Large group of hierarchomorphisms

The following definitions and facts, about hierarchomorphisms are due to Neretin’s

works; [15], [16]. Since for now, we are dealing with locally finite trees, let us assume

T is a locally finite tree. A tree T is called homogeneous if all vertices have the same

degree.

Definition 3.1. Let T be a locally finite homogeneous rooted tree. Consider a par-

tition of T into finitely many pairwise disjoint subtrees Si’s for 1 ď i ď k such

that V pT q “
k
Ť

i“1

V pSiq Consider collection of elements, gi, of AutpT q for all i “

1, 2, . . . , k satisfying;

1)
k
Ť

i“1

V pgipSiqq “ V pT q.

2) The subtrees gipSiq are pairwise disjoint for all i “ 1, 2, . . . , k.

Thus, the collection of automorphisms defines a bijection g : V pT q ÝÑ V pT q via

gpaq “ gipaq if a P V pSiq. Such an element g is called hierarchomorphism. Each

hierarchomorphism g is defined by g “ tgi, Siu, where gi is a map and Si’s are

subtrees of T satisfying the above conditions.
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Lemma 3.2. [16, Lemma 3.1] All hierarchomorphisms of the tree T tree forms a

group.

Proof. For any hierarchomorphism g “ tgi, Siu the map g´1 “ tg´1
i , gipSiqu is the

inverse of g as by definition gipSiq’s are mutually disjoint and
k
Ť

i“1

V pgipSiqq “ V pT q

and gg´1paq “ gig
´1
i paq “ a whenever a P V pg´1

i pSiqq.

On the other hand, let g “ tgi, Siu and h “ thj, Rju be two hierarchomorphism.

Then since gipSiq is a subtree, it lies in the finitely many union of Rj’s. Considering
Ť

g´1
i pRkq X Si for all pi, jq we have hg “ thjgi, g´1

i pRjq X Siu is a hierarchomor-

phism.

The group of all hierarchomorphisms is called large hierarchomorphism group of

T , see [16, Page 513].

3.2 Spherical hierarchomorphisms

In an infinite rooted tree the concept is much more useful if we define a subgroup of

large hierarchomorphism group, namely, spherical hierarchomorphisms.

Definition 3.3. [12, Page 35] A map u of the vertex set V pT q is a spherical hierar-

chomorphism, if u is a bijection permuting the vertices of level n, for some n P N,

and preserves the incidence relation between vertices from the levels of numbers,

greater than or equal to n.

If u is a spherical hierarchomorphism, then for some n P N, the restriction u|Vn will

be a permutation, σn, of vertices of level n. Name the vertices as v1, v2, . . . vmn . If

upviq “ vj , then as u preserves the incidence relation between all vertices with level

number greater than or equal to n, the subtree Tvi must be sent to the subtree Tvj .

Hence, u can be written as pα1, α2, . . . , αmnqσn, where αi is an automorphism of

the subtree Tvi for all i “ 1, 2, . . .mn and σn is the permutation of the subtrees

Tv1 , Tv2 , . . . , Tvmn .
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Note that u is not uniquely written but we can choose a minimal level n making such

decomposition possible. A spherical hierarchomorphism is an automorphism of the

tree if and only if n “ 0.

Obviously, the set of all spherical hierarchomorphisms forms a group. For readers

convenience in the next lemma we will give the proof.

Lemma 3.4. All spherical hierarchomorphisms of a spherically homogeneous rooted

tree T forms a group and denoted by LHier0pT q.

Proof. Take any two spherical hierarchomorphisms u1, u2 P LHier0pT q and let u1 “

pα1, α2, . . . , αmkqσk and u2 “ pβ1, β2, . . . , βmtqσt where k and t is the minimal level

assigned for u1 and u2, respectively.

Define u´1
1 “ pα´1

1 , α´1
2 , . . . , α´1

mk
qσ´1

k as αi, σk are bijections, they have inverses and

u´1
1 is a spherical hierarchomorphism as it permutes the vertices on level k and as all

αi’s are automorphisms u´1
1 preserves the incidence relation between vertices of level

greater than or equal to k.

As for the product of two spherical hierarchomorphisms, define the product u1u2 as

follows;

Without loss of generality say t ą k then u1u2 is a bijection that permutes the vertices

in the level t and preserves incidence relations between the vertices for all levels

greater than or equal to t and u1u2 “ pγ1, γ2, . . . , γmtqσ
1
t where γi “ αj|Tviβi and

j corresponds to the vertex which lies above the vertex vi for all i “ 1, 2, . . . ,mt

and σ1t “ σ1kσt. Notice that, σk induces a new permutation σ1k on level t where the

restriction of σ1k to the level k equals to σk.

Definition 3.5. [12, Page 35] If for a spherical hierarchomorphism u “ pα1, α2, . . . , αmkqσk

all αi’s are the identity automorphisms, then u is called finite. All finite spherical hi-

erarchomorphisms are denoted by LHier0f pT q.

Obviously, LHier0f pT q is a subgroup of LHier0pT q. If u1 “ pe, e, . . . , eqσk and

u2 “ pe, e, . . . , eqσt where each e refers to the identity automorphism of the corre-

sponding subtree, then u1u
´1
2 “ pe, e, . . . , eqσ1kσ

´1
t is an element of LHier0f pT q.
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The definition of spherical hierarchomorphisms does not suggest that the structure of

the tree must protected. Moreover, an arbitrary spherical hierarchomorphism may not

preserve the structure of the boundary, BTΩ, of the tree. However, we are interested

in the spherical hierarchomorphisms that has an action on the boundary.

Definition 3.6. [12, Page 35] 1) The group of transformations of the boundary of T

induced by LHier0pT q is called small spherical hierarchomorphisms and denoted

by LHierpT q.

2) The group of transformations of the boundary of T induced by LHier0f pT q is

called small finite spherical hierarchomorphisms and denoted by LHierf pT q.

For any small spherical hierarchomorphism, u, we have a level t such that u permutes

the vertices of level t. To see the action of u on the boundary, let γ “ pH, a1, a2, . . .q

be an end, where ai is a vertex on level i. Then, if at is sent to bt by u, then the path

joining the root with at is sent to the path joining the root with at. Since u acts as an

automorphism on each subtree of level t this action will preserve the end structure of

γ.

3.3 Local isometries and the group HΩ

In this section, we will make the connection between the homogeneous symmetric

groups, Spξq and the group HΩ where HΩ is a natural subgroup of the group of local

isometries of a spherically homogeneous tree.

Let X be a metric space with the metric ρ.

Definition 3.7. A bijective map on X is called an isometry if it preserves the distance

between elements.

Definition 3.8. [12, Section 3.1, Definition 6] Let β : X ÝÑ X be a bijection

satisfying the following;

@x P X there exists a neighborhood Vx of x such that for every x1, x2 P Vx the

equality

ρpxβ1 , x
β
2 q “ ρpx1, x2q

30



holds. Then β is called a local isometry.

Definition 3.9. [12, Section 3.1, Definition 7] For a bijection β : X ÝÑ X if there

exists δ ą 0 such that

ρpxβ1 , x
β
2 q “ ρpx1, x2q

holds for all x1, x2 P X satisfying ρpx1, x2q ă δ, then β is called uniformly local

isometry.

Obviously, the two definitions are not the same. However, for a compact metric space

it is easy to see that they are equivalent.

Lemma 3.10. [12, Section 3.1, Lemma 3] If X is compact, then every local isometry

is a uniform local isometry.

For readers convenience, we will give the proof.

Proof. Let α be a local isometry. For all xi P X , consider open neighborhoods Uxi
such that Uxi’s are the neighborhoods of xi in the definition of local isometry. Now,

X “
Ť

iPI

Uxi is an open covering for x. By [14, lemma 27.5], as X is compact there

exists δ ą 0 such that every subset of X of diameter less than δ is contained in

some member of the cover. Hence, for all x1, x2 satisfying ρpx1, x2q ă δ we have

x1, x2 P Uxj for some j P I . Since α is a local isometry and Uxj is the neighborhood

of xj satisfying ρpxα1 , x
α
2 q “ ρpx1, x2q, we have that α is a uniform local isometry.

Lemma 3.11. Any local isometry of a metric space X is a homeomorphism.

Proof. Let g be a local isometry, we need to show that g and g´1 is continuous.

For x P X let ε ą 0 be given. We must find a δ ą 0 such that whenever ρpx, yq ă δ,

ρpxg, ygq ă ε holds.

Now, as g is local isometry for x P X there exists a δ1 such that ρpx, yq “ ρpxg, ygq

for all y satisfying ρpx, yq ă δ1. If ε ă δ1, choose δ “ ε so that whenever ρpx, yq ă

δ “ ε ă δ1, we have ρpx, yq “ ρpxg, ygq ă ε.
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On the other hand, if ε ą δ1, choose δ “ δ1, then whenever ρpx, yq ă δ “ δ1, we

have ρpxg, ygq “ ρpx, yq ă δ1 ă ε. Hence, g is continuous at x. As x is arbitrary g is

continuous everywhere.

Since g´1 is also a local isometry it is also continuous. Therefore, g is a homeomor-

phism.

Let us turn our attention to the boundary, BTΩ, of a tree TΩ. The isometries of BTΩ

consists of bijective maps from BTΩ onto itself preserving the distance between ele-

ments of BTΩ which we will denote by IsompBTΩq. We have the following lemma

about IsompBTΩq.

Lemma 3.12. The automorphism group of TΩ coincides with the isometry group of

BTΩ.

Proof. Let σ P IsompBTΩq. Then for any two ends γ1, γ2 we know ρpγ1, γ2q “

ρpσpγ1q, σpγ2qq where ρ is the metric defined in the Subsection 2.2.2 on page 18.

Hence, if γ1 and γ2 have n common parts so does σpγ1q and σpγ2q.

Claim: σ induce a map from V pT q to itself and it preserves incidence relation be-

tween vertices.

As σ sends ends to ends and ends consists of sequences of vertices starting with the

root, if γ1 “ pv0, v1, . . .q, then σpγ1q is an end consisting of the vertices pσpv0q, σpv1q, . . .q.

Moreover, as σ preserves the distance, it preserves the incidence relation between

vertices. On the other hand clearly, any automorphism of TΩ induces an isometry of

BTΩ.

The following definition will lead us to the subgroups HΩ of the homeomorphism

group, HompBTΩq of a spherically homogeneous tree TΩ which will turn out to be

the subgroup of local isometries.

Definition 3.13. Let TΩ be a spherically homogeneous rooted tree where Ω “ pa0, a1, . . .q.

Define Hn to be the subset of HompBTΩq which only permutes the balls Pnvi of level

n, that is if we think about the vertex labeling given in the Figure 2.6, an element

32



in Hn can only change the first n coordinates of vertices pi0, i1, . . . , imq and do not

change the coordinates ik for all k ě n.

To understand the action of Hn on the BTΩ we can look at the balls Pnvi as the rooted

subtree, Tvi , of TΩ of level n. Since we have a spherically homogeneous tree, the

subtrees Tvi’s of level n are also spherically homogeneous trees with characteristic

sequence Ωn “ pan, an`1, . . .q. Moreover, from the labeling of the trees explained

in the Section 2.2.1 with an example 2.6, it is easy to see that two spherically ho-

mogeneous trees with the same characteristic sequence is isomorphic with a natural

correspondence of the vertices.

Hence, an element of Hn which sends Tvi to Tvj is just a permutation of the balls of

level n that cuts the ball Pnvi and glues it on the ball Pnvj .

Lemma 3.14. Hn is a subgroup of HompBTΩq

Proof. Let σ be an element of Hn. Then σ can change the coordinates of the ends for

only n many coordinates. If γ1 “ pi0, i1 . . .q, γ2 “ pj0, j1, . . .q are two ends such that

σpγ1q “ σpγ2q, then the coordinates ik “ jk for all k ě n as σ does not change that

coordinates. Moreover, σ restricted to level n is a permutation on the vertices of level

n hence ik “ jk for all k ă n. Clearly, for any γ “ pi0, i1, . . . , in, . . .q as σ sends the

vertex in the level n labeled as pi0, . . . , in´1q to the vertex pj0, . . . , jn´1q there exists

γ1 “ pj0, . . . , jn´1, in, in`1, . . .q such that σpγ1q “ γ. Therefore, σ is a bijective map.

Since any element of Hn sends basis elements, Pnvi , to basis elements and bijective,

they are homeomorphisms.

On the other hand, σ´1 is also a homeomorphism only permuting the balls of level n

and if σ1 is another element in Hn, then the product σ1σ´1 will also lie in Hn.

If we define fΩpnq “ a0a1 . . . an´1, then clearly we have fΩpnq many vertices on the

level n and Hn will be isomorphic to the symmetric group, SfΩpnq.

Lemma 3.15. Hn is a subgroup of Hk for all k ě n.

Proof. By definition of Hn, an element in Hn permutes the balls of level n while an

element in Hk permutes the balls of level k by just cutting and gluing the balls. Note
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that an element in Hn sending Pnvi to Pnvj also sends the balls lying below the vertex

vi on level k to the balls lying below the vertex vj on level k. Hence, Hn lies inside

Hk.

Since the groups, Hn, lies inside each other, define the union of these groups and

denote it byHΩ :“
8
Ť

n1

Hn. Now, in the following lemma we will give the link between

HΩ and the local isometry group LIpBTΩq of BTΩ.

Lemma 3.16. [12, Section 3, Lemma 4] Let g be a local isometry of BTΩ. Then there

exist α P AutpTΩq and β P HΩ such that g “ αβ.

Proof. We know by Lemma 2.36, that BTΩ is compact and by Lemma 3.11, a local

isometry in the metric space is a homeomorphism. Moreover, by Lemma 3.10, g is

also a uniform local isometry. Hence, choose δ ą 0 such that for any γ1, γ2 satisfying

ρpγ1, γ2q ă δ

ρpγg1 , γ
g
2q “ ρpγ1, γ2q

Now, for this δ there exists an integer n such that for arbitrary ends γ1, γ2 P Pnvi

where Pnvi is the ball consisting of ends passing through the vertex vi on the level n,

we have ρpγ1, γ2q “
1

n`1
ă δ. Hence, g preserves the distance in Pnvi so g sends Pnvi

to another ball Pnvj of the level n.

Let β P HΩ be a homeomorphism which acts on Vn in the same way as g does. Then

α “ gβ´1 acts trivially on Vn. So α act as an isometry on each ball of level n. As g

and β acts as a permutation on the vertices of level n and they send ends to ends the

action of α on the levels less then n is trivial. Hence, α is an isometry on BTΩ and as

we know AutpTΩq “ IsompBTΩq, the isometry α will be an element of AutpTΩq as

required.

On the other hand, obviously AutpTΩq ă LIpBTΩq and HΩ ă LIpBTΩq.

An important property of LIpBTΩq is that all finitely generated subgroups of LIpBTΩq

are residually finite. A group G is called residually finite if the intersection of all

normal subgroups of finite index is trivial.

Proposition 3.17. [12, Section 3, Proposition 7] All finitely generated subgroups in

the group LIpBTΩq are residually finite.
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Proof. Let G be any finitely generated subgroup of LIpBTΩq, and Ω “ pa1, a2, . . .q.

Then there exists a number δ ą 0 such that for all g P G

ρpxg, ygq “ ρpx, yq for all x, y P TΩ satisfying ρpx, yq ă δ

Choose n “ t1{δu, write a11 “ a1a2 . . . an, a1k “ an`k´1 for all k ě 2 and consider

the group AutpTΩ1q where Ω1 “ pa11, a
1
2, . . . , q. After level n, as G preserves the

distance it must preserve the incidence relation between the vertices so it acts as an

automorphism after the level n. Since the tree TΩ1 has the same subtrees with the

subtrees of TΩ after the level n we can embed G into the group AutpTΩ1q. Hence G is

isomorphic to a subgroup of AutpTΩ1q, which is residually finite by [3, Prop 3.5].

The connection between HΩ and small spherical (finite) hierarchomorphisms given

in the Definition 3.6 will be given in the following theorem.

Theorem 3.18. [12, Section 3, Theorem 6] 1. The group LHierpTΩq is isomorphic

to the group LIpBTΩq.

2. The group LHierf pTΩq is isomorphic to the group HΩ.

Proof. We know any element ofLHierpTΩq can be written as u “ pα1, α2, . . . , αmkqσk

for some level k.

Obviously, k “ 0 will induce an automorphism of the tree so AutpTΩq is isomorphic

to a subgroup of LHierpTΩq and by definition of HΩ, HΩ ă LHierpTΩq. Hence, by

Lemma 3.16, LIpBTΩq is isomorphic to a subgroup ofLHierpTΩq. On the other hand,

any element u P LHierpTΩq can be written as the product pα1, α2, . . . , αmkqσk where

σk induces an element of Hk ď HΩ and the sequence of automorphisms αi induces

an automorphism α in an obvious manner; it fixes every vertex in the levels less than

or equal to k and acts as αi’s for other vertices. Hence, LHierpTΩq is isomorphic to

LIpBTΩq.

The second statement of the theorem is trivial as any element u of LHierf pTΩq can be

written u “ pe, e, . . . , eqσk which will induce an element of HΩ and vice versa.
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CHAPTER 4

AUTOMORPHISM GROUP OF Spξq

In this chapter, we will give properties of AutpSpξqq by giving the connection be-

tween the homogeneous symmetric groups, Spξq and the group HΩ where HΩ is the

natural subgroup of the group of local isometries of a spherically homogeneous tree

defined in Section 3.3.

4.1 Spξq as a subgroup of homeomorphism group of BTΩ

Recall from Definition 3.13 that Hn is the subgroup of HompBTΩq which is isomor-

phic to SfΩpnq where fΩpnq “ a0a1 . . . an´1 for all n P N where Ω “ pa0, a1, . . .q.

Considering the labeling in the spherically homogeneous tree TΩ, see the Figure 2.6,

we can write the vertices of level n for any n P N in the following way;

Vn “ tpi0, i1, . . . , in´1q |ij P Xj “ t0, 1, 2, . . . aj ´ 1u for all j P t0, 1, . . . , n´ 1uu

By definition, Hn acts as a permutation group on Vn.

Lemma 4.1. For n ď k, pHn, Vnq is embedded into pHk, Vkq via strictly diagonal

embedding.

Proof. Note that by Definition 3.13, Hn’s are subgroups of the homeomorphism

group HompBTΩq and Hn can change only the first n components of the vertices,

that is any element in Hn fixes the components of the vertices after in´1 and Hk fixes

the components of the vertices after ik´1 so an element that can only change first n

components will be an element of Hk for any k ě n. Hence, Hn ď Hk.
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Now, Hn as a subgroup of Hk has an action on Vk. Let pb0, b1, . . . bk´1q be an element

in Vk. The orbit of the action of Hn containing the vertex pb0, b1, . . . bk´1q is of the

form

∆ “ tpi0, i1, . . . , in´1, bn, bn`1, . . . , bk´1q | ij P Xj for all j P t0, 1, . . . n´ 1uu

where bj’s are fixed coming from the jth component of pb0, b1, . . . bk´1q.

Define the map λ : Vn Ñ ∆ sending any element pi0, i1, . . . , in´1q P Vn to λppi0, i1, . . . , in´1qq “

pi0, i1, . . . , in´1, bn, . . . , bk´1q. Obviously, λ is a bijection and λ will induce a permu-

tational isomorphism between the permutation groups pHn, Vnq and pHn,∆q by the

following;

Let σ P Hn and γ “ pi0, i1, . . . , in´1q P Vn. Then since σ acts as a permutation on

the set of vertices of level n, γσ “ δ “ pj0, j1, . . . , jn´1q for some vertex δ P Vn.

Now, we have λpγσq “ λppj0, j1, . . . , jn´1qq “ pj0, j1, . . . , jn´1, bn, bn`1, . . . , bk´1q.

On the other hand, we know Hn is a subgroup of Hk so, λppi0, i1, . . . , in´1q
σ “

pi0, i1, . . . , in´1, bn, bn`1, . . . bk´1q
σ “ pj0, j1, . . . , jn´1, bn, bn`1, . . . , bk´1q. Hence,

the embedding is a strictly diagonal embedding.

Now, by the results of [9, Theorem 3, (iii)], the group HΩ which is the union of

the subgroups Hn which are isomorphic to SfΩpnq, is isomorphic to SpΩq where

charpSpΩqq “ charpΩq.

Similarly, we can define AHΩ which is the union of subgroups AHn of Hn which are

isomorphic to AltfΩpnq.

4.2 Vertex labeling with respect to the action of SpΩq

Since HΩ is isomorphic to SpΩq by the above explanation and HΩ is the union of

the symmetric groups acting on the vertices, we can label the vertices so that the

corresponding permutations will make sense in the group SpΩq. We label the vertices

of level n in the following way;

Let Ω “ pa0, a1, . . .q. An arbitrary vertex in level n is of the form pi0, i1, . . . , in´1q
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where ik P Xk for all k ě 0. Assign a number j to this vertex by setting

j “ pi0 ` 1q ` i1fΩp1q ` . . .` in´1fΩpn´ 1q

On the level n, we have fΩpnq many vertices and with this labeling shown in the fol-

lowing Figure 4.1, we label all the vertices from 1 up to the number fΩpnq, respecting

the action SpfΩpnqq.

H

(1)
2

(1,1)
4

(1,1,2)
12

(1,1,1)
8

(1,1,0)
4

(1,0)
2

(1,0,2)
10

(1,0,1)
6

(1,0,0)
2

(0)
1

(0,1)
3

(0,1,2)
11

(0,1,1)
7

(0,1,0)
3

(0,0)
1

(0,0,2)
9

(0,0,1)
5

(0,0,0)
1

Figure 4.1: Tree with vertices labeled by natural numbers

The following example will give the clue for the readers to understand how SpΩq acts

on the tree.

Example 4.2. Given the above tree Figure 4.1, the element of HΩ in the first level

that interchanges the ball P1p0q with P1p1q will act in the second level diagonally and

it will be the element sending P2p0,0q to P2p1,0q and P2p0,1q to P2p1,1q. In the third level

the element will send

P3p0,0,0q Ø P3p1,0,0q

P3p0,0,1q Ø P3p1,0,1q

P3p0,0,2q Ø P3p1,0,2q

P3p0,1,0q Ø P3p1,1,0q

P3p0,1,1q Ø P3p1,1,1q

P3p0,1,2q Ø P3p1,1,2q
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In the other labeling this is to say that in the first level, the element corresponds to the

cycle p1, 2q and in the second level, it corresponds to p1, 2qp3, 4q. In the third level,

the element will be p1, 2qp3, 4qp5, 6qp7, 8qp9, 10qp11, 12q. Continuing like this we will

see the element of HΩ in the form of an element of SpΩq.

4.3 Automorphism group of SpΩq

Let X be a locally compact, Hausdorff space. Denote the group of all homeomor-

phisms of X by HomX . If G is a subgroup of HomX , then we will use the follow-

ing useful theorem from analysis. The theorem which is a work of Rubin [18] will be

used often and called as Rubin’s theorem.

Theorem 4.3. [18, Corollary 3.5] Consider a locally compact Hausdorff space,X .

Let G1, G2 be subgroups of HomX and assume for every open O Ď X , x P O and

i “ 1, 2 the set
 

gpxq | g P Gi and g|XzO “ identity
(

be somewhere dense. Then

any isomorphism from G1 to G2 is induced by an element h P HomX via conjuga-

tion.

Lemma 4.4. [12, Section 2.3, Remark 1] The groups HΩ and AHΩ satisfy the condi-

tions of Rubin’s theorem 4.3.

Proof. The space BTΩ is compact and Hausdorff by Lemma 2.36 so it is locally com-

pact. Let D be any open set in BTΩ and γ P D set

A “ tgpγq | g P HΩ and g|BTΩzD “ identityu

We will show that A is somewhere dense, that is the interior of the closure of A is

nonempty. First of all, g moves γ to the elements of D only as g|BTΩzD “ identity.

Therefore, A Ď D. Claim, D Ď Ā. Let D “
Ť

Pkili . Then choose γ1 P D which is

not an image of γ under any g. (Obviously any γ1 P A lies inside Ā). We will show

for any neighborhood U of γ1, A X U ‰ H. Any neighborhood of γ1 is of the form

Pkili for some ki, li and in any case Pkili XA ‰ H as Pkili contains an end which has

infinitely many common components with γ. Hence, D Ď Ā so the interior intpĀq

of Ā is nonempty. Similarly, one can show that AHΩ satisfies the conditions of the

theorem.

40



Therefore, this theorem says that any automorphism from AutHΩ pAutAHΩq is in-

duced by an element of HompBTΩq. Moreover, we have the following result.

Theorem 4.5. [12, Section 3, Theorem 9]AutHΩ – NHompBTΩqpHΩqwhereNHompBTΩqpHΩq

is the normalizer of HΩ in HompBTΩq.

Proof. Let NHompBTΩqpHΩq “ N , define a map ψ : N Ñ AutpHΩq. As any ele-

ment h P N satisfies Hh
Ω “ HΩ, the element h induces an automorphism of HΩ via

conjugation.

ψ is a homomorphism : For any h1, h2 P N, g P HΩ

pgqψph1h2q “ gh1h2 “ pgh1q
h2 “ gh1ψph2q “ pgqψph1qψph2q

ψ is onto : By Rubin’s theorem for any automorphism of HΩ, there exists an element

h P HompBTΩq inducing the map and so h P N.

ψ is 1-1 :

Kerpψq “ th P N | gh “ g for all g P HΩu

If 1 ‰ h P Kerpψq, then there exists an end γ which h does not fix, say hpγq “ γ1 ‰

γ. Since HΩ acts on the boundary, we can find an element g sending γ1 to δ ‰ γ1,

and fixing γ. Then since gh “ g, we have

γ “ gpγq “ h´1ghpγq “ h´1gpγ1q “ h´1
pδq

But h´1pγ1q “ γ and h is a bijective map gives a contradiction.

In the next proposition, by using the result of Rubin’s theorem, one can show that the

group of automorphisms of HΩ, hence AutpSpΩqq is locally inner. An automorphism

α of a group G is locally inner if for every finitely generated subgroup H of G, there

exist an element g P G satisfying hα “ hg for all h P H .

Proposition 4.6. [12, Section 3, Prop. 10] Let α P AutpHΩq pAutpAHΩqq. Then

if αpHnq ă Hk pαpAHnq ă AHkq for 1 ă n ď k, then α is induced by an inner

automorphism of Hk.
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Proof. Let α P AutpHΩq be given such that αpHnq ď Hk. By Rubin’s theorem α is

induced by a homeomorphism σ of BTΩ.

As σ is a homeomorphism, it sends an open ball to the union of open balls. σpPniq “
8
Ť

j“1

Pkij ij . On the other hand, Pni is compact being closed subset of a compact space.

Therefore, σpPniq is compact and there exists a finite covering
r
Ť

j“1

Pkisj isj of σpPniq

choose mi “ maxtkisj |1 ď j ď ru. And we can choose mi for all 1 ď i ď fΩpnq.

Now set k “ maxtmi | 1 ď i ď fΩpnqu so that σpPniq “
rpiq
Ť

j“1

Pklij for all 1 ď i ď

fΩpnq.

Claim: For i ‰ j, σpPniq and σpPnjq do not intersect.

Proof of Claim: If σpPniq X σpPnjq ‰ H, then there exist ends γi P Pni and γj P Pnj

such that σpγiq “ σpγjq. But σ is an homeomorphism of BTΩ and it is one to one

implying that γi “ γj . Since γi and γj lies in the different balls of the same level and

the balls in the same level do not intersect, we get the result.

Claim: rpiq does not depend on i.

Proof of Claim: For an arbitrary g P HΩ consider

gσσpPniq “

rpiq
ď

j“1

gσpPklijq

Now we will have;

gσσpPniq “ σgσ´1
pσpPniqq “ σgpPniq “

rpiq
ď

j“1

gσpPklijq

as Hn is transitive we can choose g so that gpPniq “ Pnj where i ‰ j. Hence,

σpPnjq “ σgpPniq “

rpiq
ď

j“1

gσpPklijq

Observe that gσ is an element of Hk and it sends balls to the balls of the same level.

So right hand side is a union of rpiqmany balls of level k, and left hand side is σpPnjq

which is the union of rpjq many balls of level k. Hence rpiq “ rpjq “ r where

r “ fΩpkq
fΩpnq

.

Now, on the level k, σ takes r many balls lying under the vertex i on level n and sends

them to r many balls Pklij for all 1 ď i ď fΩpnq. Since σpPniq’s are all disjoint union
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of the balls of level k and Hk – SfΩpkq is fΩpkq´transitive, there exist a δ P Hk such

that σδ´1 acts trivially on the balls of level k.

Observe that for any g P Hn σδ
´1 centralizes g;

gσδ
´1

pPksq “ σδ´1gδσ´1
pPksq “ gpPksq

Therefore, gσ “ gδ for any g P Hn.

In fact, we can embed any countable residually finite group into the group AutpHΩq.

For this purpose, we will construct level preserving automorphisms of AutpHΩq.

For an increasing sequence N “ tni ě 3| i P Nu, of positive integers define a set AN

of all automorphisms α of HΩ that satisfies αpHniq “ Hni for all i P N. We will refer

AN as N -level preserving automorphisms of HΩ.

Lemma 4.7. AN is a subgroup of AutpHΩq.

Proof. For α1, α2 P AN and for any ni P N , since α1 and α2 are automorphisms, we

obviously have

α1α2pHniq “ Hni

α´1
1 pHniq “ Hni

Proposition 4.8. [12, Section 3 Prop. 12] For N “ tni ě 3| i P Nu, an increas-

ing sequence of integers AN is isomorphic to the Cartesian product of the groups

CHnk pHnk´1
q for all k P N.

Proof. First of all if we take any arbitrary element pc1, c2, . . . , ci, . . .q inside the Carte-

sian product of CHnk pHnk´1
q, then the infinite product c1c2 . . . induces an automor-

phism α defined as follows;

gα “ gc1c2... for all g P HΩ

Note that if g P Hni , then gcj “ g for all j ą i. So, gc1c2... “ gc1c2...ci hence, the

infinite product c1c2 . . . gives a well defined automorphism which belongs to AN as

for any g P Hni g
α “ gc1c2...ci P Hni . Indeed, this α is a well defined map as if we
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take two elements g “ h P Hξ then g, h P Hni for some i hence, gα “ gc1c2...ci “

hc1c2...ci “ hα.

Now, take any α P AN then as the automorphism is locally inner, α|Hni is induced

by an element of Hni . If α|Hni “ gi for some gi P Hni and gα “ ggi . Moreover,

the groups satisfy Hni Ď Hni`1
so ggi`1 “ ggi for all g P Hni . Hence, gi`1g

´1
i P

CHni`1
pHniq. So, gi`1 “ ci`1gi for some ci`1 P CHni`1

pHniq. Also observe that

g1 “ c1 P Hn1 “ CHn1
ptiduq.

Therefore, we may define the sequences consisting of elements ofCHni`1
pHniqwhich

are of the form pc1, c2, . . .q where ci`1 P CHni`1
pHniq. If we denote CHni pHni´1

q “

Di, then note that Di commute pairwise. For any ci P Di and cj P Dj , without loss

of generality if i ą j as ci centralizes Hni´1
and Hnj Ď Hni´1

the equality cicj “ cjci

holds for all i, j P N. So all of Di’s are normal subgroups of AN . Now, if we may

prove the intersection Di XD1D2 . . . Di´1Di`1 . . . is trivial, then we are done. Take

an element ai inside the intersection Di X Di`1Di`2 . . .. So we may write ai as

follows;

ai “ a1a2 . . . ai´1ai`1 . . . where ak P Dk for all k P N

as ai ‰ 1 there exists j such that aj ‰ 1. Choose j to be the smallest such integer

then if i ă j as ai “ ajaj`1 . . . and for all g P Hnj´1
we have gai “ gajaj`1 . . . “

ajaj`1 . . . g “ aig. Moreover, ai is also an element of Hnj´1
but the center of Hnj´1

is trivial so ai must be identity.

On the other hand, if j ă i, then write the equality as a´1
j “ aj`1 . . . ai´1a

´1
i ai`1 . . .

now by the above argument a´1
j commutes with all elements ofHnk for some k bigger

than j hence this is a contradiction.

Observe that the group Hnj is embedded into Hnj`1
via strictly diagonal embedding

and Hnj is isomorphic to the symmetric group SfΩpnjq where fΩpnjq “ a0a1 . . . anj´1

whenever Ω “ pa0, a1, . . .q. In this case the centralizer, CHnj pHnj`1
q, is isomorphic

to the symmetric group, S fΩpnjq

fΩpnj´1q

, by [2, Page 109, Exercise 4.2.5].

Since nj’s can be chosen so that the ratio fΩpnjq

fΩpnj´1q
is arbitrarily large, in the group

AutpHΩq as subgroups we have Cartesian products of finite symmetric groups of any

large degree. Hence, we have the following corollary.
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Corollary 4.9. [12, Section 3.2, Cor. 3] Every residually finite group can be embed-

ded into AutpHΩq

Proof. The equivalent definition of being residually finite is that a group is residually

finite if it can be embedded into a direct product of finite groups.

Note that we can embed a direct product of finite groups into the Cartesian product

of finite symmetric group by simply embedding each factor of the direct product into

a finite symmetric group via right regular representation.

As we can choose the increasing sequence N so that the corresponding group AN is

the Cartesian product of required finite symmetric groups, we can embed a residually

finite group into AN for some increasing sequence N .

For the groups, CHnk pHnk´1
q, the action of an element in CHnk pHnk´1

q to an end can

be seen in the following remark.

Remark 4.10. Let ck P CHnk pHnk´1
q and u “ pi0, i1, . . .q be an end. First of all since

ck P Hnk , it only changes the first nk components of u and leaves the rest the same.

Moreover, we claim that ck does not change the first nk´1 components. Assume not.

Let ck sends u to the end ckpuq “ pj0, j1, . . . , jnk´1, ink , . . .q where js ‰ is for some

s P t0, 1, . . . , nk´1´1u. Choose σ P Hnk´1
such that σ fixes the first nk´1 components

of any end passing through the vertex pi0, i1, . . . ink´1´1q and does not fix the first

nk´1 components of any end passing through the vertex pj0, j1, . . . jnk´1´1q. As ck

centralizes Hnk´1
, we must have cσk “ ck, however;

σ´1ckσpuq “ σ´1ckσpi0, i1, i2, . . .q “ σ´1ckpi0, i1, i2, . . . , ink´1, ink . . .q

“ σ´1
pj0, j1, . . . , jnk´1, ink , . . .q ‰ pj0, j1, . . . , jnk´1, ink , . . .q “ ckpuq

Hence, we get a contradiction.

Now, since CHnk pHnk´1
q – S fΩpnkq

fΩpnk´1q

, we can regard the element ck as being the

permutation element of the components of the ends from nk´1 to nk ´ 1 and we can

write

ckpuq “ pi0, i1, . . . ink´1´1, ckpink´1
, . . . , ink´1q, ink , . . .q.
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Lemma 4.11. For N “ pn1, n2, . . .q and γ “ pi0, i1, . . .q P BT

StabAN pγq –
8

Cr
j“1

Stj´1

where t1 “ fΩpn1q and tj “
fΩpnjq

fΩpnj´1q
for all j ě 2

Proof. Since AN “ Hn1CHn2
pHn1q . . . any element g is of the form c1c2c3 . . . where

cj P CHnj pHnj´1
q. By the Remark 4.10, we know the action on the ends of any

element in CHnj`1
pHnjq, so we can consider

gpγq “ pc1pi0, i1, . . . , in1´1q, c2pin1 , . . . , in2´1q, c3pin3 , . . . , in3´1q, . . .q

Hence, an element g lies in StabAN pγq if and only if cj fixes pinj´1
, . . . , inj´1q and

considering the fact that CHni`1
pHniq – S fΩpni`1q

fΩpniq

we get the result.

4.4 Orbits and Transitivity

Theorem 4.12. NHompBTΩqpHΩq – AutHΩ is transitive on BTΩ.

Proof. Let γ and µ be arbitrary ends. Choose a level k ą 3 so that γ “ pi0, . . . ik´2, ik´1, . . .q

and µ “ pi0, . . . ik´2, jk´1, . . .q are elements of different balls of level k and ik´1 ‰

jk´1. ConsiderN “ pk, k`1, k`2, . . .q and the groupAN – HkCHk`1
pHkqCHk`2

pHk`1q . . ..

Let α “ ckck`1 . . .. Choose ck P Hk to be the element sending pi0, i1 . . . , ik´2, ik´1q

to pi0, i1 . . . ik´2, jk´1q and ck`s to be the element in the centralizer CHk`spHk`s´1q

that sends the coordinate ik`s´1 to jk`s´1 for all s ě 1. Hence, by the Remark 4.10

we have,

αpγq “ αpi0, . . . ik´2, ik´1, . . .q “ pckpi0, . . . ik´2, ik´1q, ck`1pikq, ck`2pik`1q, . . .q

“ pi0, i1, . . . , ik´2, jk´1, jk, jk`1, . . .q “ µ.

Note that, HΩ EN “ NHompBTΩqpHΩq and if N would be highly transitive then since

2-transitive groups are primitive N must be primitive. On the other hand, the action
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ofHΩ on BTΩ is faithful with uncountably many orbits and it is a well known fact that

for a transitive group the orbits of the normal subgroups are blocks of imprimitivity.

Hence, N can not be 2-transitive.

Corollary 4.13. AutpHΩq is uncountable.

Proof. As AutpHΩq is transitive on the boundary and the boundary is uncountable,

by the well known orbit-stabilizer theorem, the cardinality of BTΩ equals to the cardi-

nality of the set of left cosets of a stabilizer of an end in AutpHΩq. Hence, AutpHΩq

is uncountable.

We know that as groups HΩ and the homogeneous symmetric group, SpΩq are iso-

morphic. The following theorem yields a strong result about these groups.

Theorem 4.14. [12, 3.3 Theorem 15] The orbits of HΩ are dense in BTΩ and HΩ

acts faithfully on every of its orbit, O Ă BTΩ. Moreover, pHΩ, Oq and pSpΩq,Nq are

permutational isomorphic for every orbit O of HΩ.

Proof. Let O be an orbit of the action of HΩ on BTΩ. We will show that the closure,

O, equals to the whole space BTΩ.Obviously,O Ď BTΩ. Take u P BTΩ, to show u P O

it suffices to show that for any neighborhood Pnpi0,...,in´1q of u, Pnpi0,...,in´1qXO ‰ H.

Obviously, if γ “ pj0, j1, . . .q P O then the elements of O are of the form hpγq “

pi0, i1, . . . ik´1, jk, jk`1, . . .q where h runs through HΩ and 0 ď is ď as ´ 1 for s ď k

and jt’s are tth components of γ. Of course, as shown in the figure below there

exist an element h P HΩ sending γ to an element of Pnpi0,...,in´1q. Hence hpγq P

Pnpi0,...,in´1q XO.
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pj0, ..., jk´1q

pj0, ..., jk´1, ..., jn´1q

pj0, ..., jnq

pj0, ..., jn, jn`1q

γ

Pnpi0,...,in´1q

pi0, ..., in´1, jnq

pi0, ..., in´1, jn, jn`1q

u
hpγq

Figure 4.2: An element h P HΩ sending γ to Pnpi0,...,in´1q

Notice that depending on the characteristic Ω, HΩ is either simple or has a unique

normal subgroup of index 2. In the first case, as kernel is a normal subgroup and the

action is not trivial we have the result. In the second case, if the index of the kernel in

HΩ is 2 then as the kernel of the action is the intersection of all point stabilizers the

cardinality of orbits of HΩ will be less than 2, which is impossible.

Let

O0 “ tpj0, j1, . . . , jn´1, 0, 0, 0, 0 . . .q| 0 ď jk ď ak ´ 1, k ă n, n P NY t0uu

be the orbit containing the end p0, 0, 0, . . . , q. For a vertex pj0, j1, . . . jn´1q on a level

n enumerate the vertex with in as follows;

in “ pj0 ` 1q ` j1fΩp1q ` j2fΩp2q ` . . .` jn´1fΩpn´ 1q.

Since 0 ď jk ď ak ´ 1, we number the vertices of level n by numbers 1 to fΩpnq.

For an end u “ pj0, j1, . . . jk´1, 0, 0, . . .q in O0 since jk`s “ 0 for all s ě 0, the end

u can be identified by ik. Consider the map φ : O0 Ñ N sending each end u to its

corresponding number ik.

In fact, the map φ is bijective. Let u1 “ pj0, j1, . . . jk´1, 0, 0, . . .q, u2 “ pt0, t1, . . . tn´1, 0, 0, . . .q

be two ends such that ik “ φpu1q “ φpu2q “ ln. Without loss of generality assume
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k ă n and assume u1 ‰ u2 so there exist a minimal number s ď k such that js ‰ ts.

ik “ pj0 ` 1q ` j1fΩp1q ` . . .` js´1fΩps´ 1q ` jsfΩpsq ` . . .` jk´1fΩpk ´ 1q

ln “ pj0`1q`j1fΩp1q`. . .`js´1fΩps´1q`tsfΩpsq`. . .`tk´1fΩpk´1q`. . .`tn´1fΩpn´1q

Look at the equalities in mod fΩps` 1q,

ik ” pj0 ` 1q ` j1fΩp1q ` . . .` js´1fΩps´ 1q ` jsfΩpsq mod fΩps` 1q

ln ” pj0 ` 1q ` j1fΩp1q ` . . .` js´1fΩps´ 1q ` tsfΩpsq mod fΩps` 1q

Hence,

0 “ ik ´ ln ” jsfΩpsq ´ tsfΩpsq mod fΩps ` 1q, as fΩps ` 1q “ asfΩpsq and

0 ď js, ts ď as ´ 1 we get js “ ts.

The ontoness of map comes as follows, if n P N, let k be the first level number

such that n ď fΩpkq. Write n “ jk´1fΩpk ´ 1q ` ik´1 where jk´1 ă ak´1 and

ik´1 ď fΩpk´ 1q and then write ik´1 “ jk´2fΩpk´ 2q` ik´2 where jk´2 ă ak´2 and

ik´2 ď fΩpk ´ 2q, continuing the process we have the numbers js ă as for all s ě 0.

And under the map φ the end u “ pj0, j1, . . . jk´1, 0, 0, . . .q will have n as the image.

Now for a vertex v “ pj0, . . . , jn´1q P Vn since there is a corresponding number 1 ď

i ď fΩpnq denote the ball on the level n passing through the vertex v by Pni instead

of Pnv. An element σ P Hn acts as a permutation on the balls Pni for 1 ď i ď fΩpnq

and this action is extended diagonally to the balls of bigger levels. For an end u P O0

which belongs to Pni for some i, if u is identified by a number j which is bigger than

fΩpnq on some level s ě n, note that if P σ
sj “ Psk then uσ P Psk, and uσ is identified

with k.

Consider the isomorphism θn : Hn Ñ SpfΩpnqq. As any σ is a permutation of the

balls of level n, and the balls are numbered by the numbers 1 to fΩpnq, the image

θnpσq will be induced by this action naturally.

So, for u P Pnj , σ P Hn, if P σ
nj “ Pnk and if u is identified with j and j ď fΩpnq,

k “ φpuσq “ φpuqθnpσq “ k.
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If u P Pnj is identified by tj ě fΩpnq on some level s ě n, then we consider the

action of σ on the balls of level s, if P σ
nj “ Pnk, then P σ

stj
“ Pstk . Hence,

tk “ φpuσq “ φpuqθnpσq “ tk.

Hence, the groups pHn, O0q and pSpfΩpnqq,Nq are permutationally isomorphic. Since

θn|Hk “ θk for all k ă n and we have pSpΩq,Nq “
8
Ť

n“1

pSpfΩpnq,Nq and pHΩ, O0q “

8
Ť

n“1

pHn, O0q we have the result.

Remark 4.15. As SpΩq “
8
Ť

n“1

SpfΩpnqq where SpfΩpnqq is isomorphic to the finite

symmetric group on fΩpnq letters and we know that SpfΩpnqq is fΩpnq transitive,

SpΩq acts highly transitively on N. Moreover, as the action pHΩ, Oq is permutation-

ally isomorphic to pSpΩq,Nq, HΩ acts highly transitive on every of its orbits.

Proposition 4.16. The group of local isometries of BTΩ is highly transitive on the

boundary of the tree.

Proof. By Lemma 3.16, we know that LI “ LIpBTΩq is the product of AutTΩ and

HΩ. Let A “ tγ1, γ2, . . . , γnu and B “ tµ1, µ2, . . . , µnu be two sets of ends. Choose

m “ maxtk, lu where k and l are the minimum levels for A and B, respectively, that

all the elements of corresponding sets belongs to different balls.

Now that all γi’s i “ 1, . . . , n in a different ball we can choose α P Hm so that

αpγiq and µi lies in same ball on level m. Note that on level m all µi’s i “ 1, . . . , n

lie on different balls. Using the fact that, automorphism group of a spherically ho-

mogeneous tree is transitive on its boundary [3, Section 6.2] and each ball of level

m is canonically isomorphic to a spherically homogeneous tree we can find auto-

morphisms, βi, of the corresponding balls and extend them trivially to an automor-

phism of the tree so that we will have β1β2 . . . βnα is the required map. Note that

β1β2 . . . βn P StabAutpTΩqpmq, the level stabilizer of the automorphism group.
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CHAPTER 5

DIAGONAL EMBEDDINGS

In this chapter, we will introduce another technique to construct a different class of

subgroups Sχ where χ “ xp1, k0q, pn1, k1q, . . .y, which are locally finite and simple.

Moreover, in the Sections 5.2, 5.3 we will give the structure of the centralizers of

elements and finite subgroups.

5.1 The group Sχ

Consider the embedding of finite symmetric groups as follows;

dpr, sq : Sn ÝÑ Snr`s

For any α P Sn, dpr, sqpαq P Snr`s is determined as follows;

ppk ´ 1qr ` iqdpr,sqpαq “ pkα ´ 1qr ` i where 1 ď i ď r 1 ď k ď n

Hence, if α “ p 1 2 ¨¨¨ n
i1 i2 ¨¨¨ in q, then

dpr, sqpαq “
´

1 2 ¨¨¨ r
pi1´1qr`1 pi1´1qr`2 ¨¨¨ i1r |

¨¨¨
¨¨¨ |

pn´1qr`1 pn´1qr`2 ¨¨¨ nr
pin´1qr`1 pin´1qr`2 ¨¨¨ inr

| nr`1
nr`1 |

¨¨¨
¨¨¨ |

nr`s
nr`s

¯

Lemma 5.1. dpr, sq is a diagonal embedding.

Proof. By the Definition 2.1, to see dpr, sq is a diagonal embedding, first let us de-

termine the forms of arbitrary orbits of dpr, sqpSnq in the set t1, 2, . . . , nr ` su.

Since the action is trivial on the points i where nr ` 1 ď i ď nr ` s, the orbit

∆i “ ti
dpr,sqpαq | α P Snu consists of only the point i. The other orbits are of the form
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∆i “ ti, r ` i, 2r ` i, ¨ ¨ ¨ , pn ´ 1qr ` iu for all 1 ď i ď r. Notice that the length of

the orbits are n.

Define a map, λ : t1, 2, . . . , nu Ñ ∆i where λpjq “ pj ´ 1qr ` i.

Now, the action pSn, t1, 2, . . . , nuq is permutationally isomorphic to pdpr, sqpSnq,∆iq

as follows;

For any j P t1, 2, . . . , nu and α P Sn,

λpjqdpr,sqpαq “ ppj ´ 1qr ` iqdpr,sqpαq “ pjα ´ 1qr ` i “ λpjαq

Hence, the embedding dpr, sq is a diagonal embedding.

In the next lemma, we will see that, the composition of two maps of the form dpr, sq

is again of the same form.

Lemma 5.2. [11, Lemma 2.5] Let M1,M2,M3 be arbitrary sets with cardinalities

|M1| “ m1, |M2| “ m2 “ m1n1 ` r1, |M3| “ m3 “ m2n2 ` r2 if dpn1, r1q :

SympM1q ÝÑ SympM2q, dpn2, r2q : SympM2q ÝÑ SympM3q, then dpn1n2, n2r1`

r2q : SympM1q ÝÑ SympM3q such that

dpn2, r2qdpn1, r1q “ dpn1n2, n2r1 ` r2q

Proof. It is enough to show that for an element α P Sm1 the images dpn2, r2qdpn1, r1qpαq

and dpn1n2, n2r1`r2qpαq are the same permutations. Consider an arbitrary point, say

pk´ 1qn2` i, on the set t1, 2, . . . ,m2n2u where 1 ď i ď n2 and 1 ď k ď m2. Notice

that we can write k “ ps´ 1qn1 ` j where 1 ď s ď m1 and 1 ď j ď n1. Then

ppk ´ 1qn2 ` iq
dpn2,r2qpdpn1,r1qpαqq “ pkdpn1,r1qpαq ´ 1qn2 ` i (5.1)

Now using k “ ps´ 1qn1 ` j we have;

Equation 5.1 “ pps´ 1qn1 ` jq
pαqdpn1,r1q ´ 1qn2 ` i “ ps

α ´ 1qn1n2 ` pj ´ 1qn2 ` i

On the other hand,

ppk´1qn2`iq
pαqdpn1n2,n2r1`r2q “ pps´1qn1n2`pj´1qn2`iq

pαqdpn1n2,n2r1`r2q “ psα´1qn1n2`pj´1qn2`i
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Moreover, for any point s from the set tm2n1 ` 1, . . . ,m2n2 ` r2u we have

spαqdpn1,r1qdpn2,r2q “ spαqdpn1n2,n2r1`r2q “ s

Hence, we get the result.

Lemma 5.2 suggests the compatibility of the maps. Therefore, for an infinite sequence

of integer tuples χ “ xp1, k0q, pn1, k1q, . . .y, the sequences of diagonal maps,

Sk0

dpn1,k1q
ÝÑ Sn1k0`k1

dpn2,k2q
ÝÑ Spn1k0`k1qn2`k2

dpn3,k3q
ÝÑ . . .

will define a direct limit group Sχ.

For construction and the motivation see [11].

Similar to the case of homogeneous symmetric groups Spξq, we can regard the group

Sχ as a subgroup of homeomorphism group of a rooted tree. For this purpose, we will

construct a new rooted tree on which the diagonal direct limit group Sχ acts.

Take empty set as the root. Let t1, 2, . . . k0u Y t$u be the vertices of first level.
On the second level, let there be n1 edges coming down from each vertex except
$, and let there be k1 ` 1 edges coming down from $. Now, label the set of ver-
tices of level 2 as follows V2 “ t11, 12, . . . , 1n1, 21, . . . , 2n1, . . . k01, . . . k0n1u Y

t$1, $2, . . . $k1, $$u. For the third level, from each vertex other than $$, let there be
n2 edges coming down and k2 ` 1 edges coming down from $$. Similarly, write
the vertices of level 3 as, V3 “ t111, . . . 11n2, . . . 1n11, . . . , 1n1n2, . . . k011, . . . , k0n1n2,

$11, . . . , $1n2, . . . $k11, . . . , $k1n2u Y t$$1, $$2, . . . , $$k2, $$$u.

Continuing like this, for the given infinite sequence of tuples

χ “ xp1, k0q, pn1, k1q, pn2, k2q, . . .y

and the set of vertices labeled as above, we have the corresponding tree Tχ in the

following figure;
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1

11
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1n1
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k0

k01

...
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k0n1

...
...

$

$1

...
...

$k1

...
...

$$

...
...

δ

. . .

. . .. . . . . .

Figure 5.1: Rooted tree Tχ

Denote the number of vertices of level i ` 1 except the vertex $$ . . . $ on level i ` 1

by

rpχ, iq :“ |Vi`1pTχq| ´ 1

Note that for any χ “ xp1, k0q, pn1, k1q, . . . , y, we have

rpχ, iq “ k0n1n2n3 . . . ni ` k1n2n3 . . . ni ` . . .` ki´1ni ` ki.

Observe that, if in the sequence χ all ki “ 0 except k0, then we have a spherically

homogeneous tree with characteristic sequence pk0, n1, n2, . . .q.

Consider the boundary, BTχztδu, of the tree. Let δ be the end where δ “ p$, $, $, $, . . .q

on Tχ. Similar to the case of spherically homogeneous tree we can define the metric

ρ on BTχztδu such that ρpγ1, γ2q “
1

n`1
where n is the common parts of the ends γ1

and γ2. The balls of this topology will be also denoted by Pnv which are the set of

all ends passing through the vertex v on level n. Note that by the construction of the

tree, it can be easily seen that all the balls in the same level m except the ball with

root $$ . . . $ can be identified with a spherically homogeneous tree with characteristic

sequence Ωm “ pnm, nm`1, . . .q.

In the Section 5.4, the topological properties will be given in further detail.

Now, consider the subgroup Spχ, nq of HompBTχztδuq which only permutes the

rpχ, n ´ 1q balls of level n and acts trivially inside the balls. That is, an element
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in Spχ, nq sending the ball Pnv to a ball Pnw is just takes the ball Pnv and glues it on

the ball Pnw. The construction and the motivation is very similar to those homeomor-

phisms Hn of the spherically homogeneous rooted tree.

Lemma 5.3. If i ď j, then Spχ, iq is embedded into Spχ, jq via diagonal embedding.

Proof. By definition of the groups, Spχ, iq and Spχ, jq are the symmetric groups of

the vertices of level i and j, respectively. Since we construct the tree so that Sχ acts on

the boundary, it suffices to show Spχ, iq is embedded into Spχ, jq via an embedding

of the form dpn, rq. But by Lemma 5.2, it is enough to show Spχ, iq is embedded

into Spχ, i ` 1q via the diagonal embedding of the form dpn, rq. Let the embedding

map be f : Spχ, iq Ñ Spχ, i ` 1q. Note that Spχ, iq is isomorphic to Srpχ,i´1q where

rpχ, i ´ 1q “ k0n1 . . . ni´2 ` k1n2 . . . ni´2 ` . . . ` ki´2. When we embed Spχ, iq

into Spχ, i` 1q, on level i` 1 the images of the elements Spχ, iq acts trivially on the

vertices with the label $$$ . . . $
looomooon

i - many

t where 1 ď t ď ki, that is to say we have ki many

fixed points in the embedding.

On the other hand, using the labeling of the vertices of the tree Tχ, see Figure 5.1, we

can write a non-trivial orbit of the image Spχ, iq on the set Vi`1zt $$ . . . $
loomoon

(i + 1) - many

u contain-

ing the vertex 11 . . . 1
loomoon

(i + 1) - many

as follows;

∆11 . . . 1
loomoon

(i + 1) - many

“ tvfpαq P Vi`1zt $$ . . . $
loomoon

(i + 1) - many

u | α P Spχ, iqu

“ tw1 | w P Vizt$$ . . . $
loomoon

i - many

uu

Hence with the obvious bijection, λ sending any w to w1 between Vizt$$ . . . $
loomoon

i - many

u and

∆11 . . . 1
loomoon

(i + 1) - many

we can see that, for any α P Spχ, iq and w P Vizt$$ . . . $
loomoon

i - many

u the image will

be λpwαq “ wα1. On the other hand, by the definition of Spχ, iq, the element fpαq

permute only the first i coordinates of vertices of level i ` 1 and on that coordinates

it acts as α. Therefore,

λpwqfpαq “ pw1qf pαq “ wα1 “ λpwαq

Hence, pSpχ, iq, Vizt$$ . . . $
loomoon

i - many

uq is permutationally isomorphic to pfpSpχ, iq,∆11 . . . 1
loomoon

(i + 1) - many

qq.
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Note that in the embedding of Srpχ,i´1q into Srpχ,iq we have rpχ, iq “ rpχ, i´ 1qni `

ki with kimany fixed points and ni many orbits of length rpχ, i ´ 1q. Hence, the

embedding f is actually dpni, kiq.

Since we construct the tree by using the infinite sequence of tuples χ “ xp1, k0q, pn1, k1q, . . .y,

and the embeddings are diagonal of the form dpni, kiq we can write Sχ :“
8
Ť

i“1

Spχ, iq.

The classification of the groups Sχ is done in [11]. For readers convenience we will

give some necessary theorems, lemmas and their proofs to make the group Sχ more

understandable.

Lemma 5.4. [11, Lemma 2.9] Let dpr, sq be the diagonal embedding of Sn into Snr`s,

if fpr, sq is an other diagonal embedding of Sn into Snr`s, then Sfpr,sqn and Sdpr,sqn are

conjugate by an element of Snr`s.

Proof. Let ∆i, Oi for 1 ď i ď r be the orbits of length n and for r ` 1 ď i ď r ` s

be the orbits of length 1, of Sfpr,sqn , Sdpr,sqn respectively. Since the embeddings are

diagonal there exists bijections φi : ∆i ÝÑ t1, 2, . . . , nu inducing permutation iso-

morphism between pSn, t1, 2, . . . , nuq and pfpr, sqpSnq|∆i ,∆iq, and also there exists

bijections ψi : t1, 2, . . . , nu ÝÑ Oi inducing permutation isomorphism between

pSn, t1, 2, . . . , nuq and pdpr, sqpSnq|Oi ,Oiq. By using these bijections construct a new

bijection π P Snr`s as follows;

For j P ∆i, πpjq “ ψiφipjq

Now, if we consider the isomorphism λ : S
fpr,sq
n ÝÑ S

dpr,sq
n sending each fpr, sqpαq

to dpr, sqpαq together with π we have,

For any α P Sn and j P ∆i,

πpjfpr,sqpαqq “ ψiφipj
fpr,sqpαq

q “ ψippφipjqq
α
q “ ψiφipjq

dpr,sqpαq
“ πpjqλpfpr,sqpαqq

Since the groups are permutationally isomorphic subgroups of Snr`s„ they are con-

jugate by [2, Exercise 1.6.1].

The above lemma will lead to the fact that if there is another direct limit group of sym-

metric groups embedded via diagonal embedding with respect to χ, then the group
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must be isomorphic to Sχ where χ “ xp1, k0q, pn1, k1q, . . .y. To see this we need the

following lemma.

Lemma 5.5. [1, Lemma 2.3] Let H and G be a direct limit group of subgroups Hi

and Gi via the embeddings θi and ψi, respectively. Let αi be an isomorphism between

Hi and Gi for all i ě 1. If the following diagram

Gi

ψi

Gi`1

αi

Hi Hi`1

θi

αi`1

is commutative for all i ě 1, then the groups H and G are isomorphic.

Proof. Assume the diagram is commutative, that is αi`1θi “ ψiαi for all i ě 1. Let

α : H Ñ G such that for an element hi P Hi, the image αphiq “ . . . ψi`1ψiαiphiq.

Claim: The restriction αi`1|Hi
equals to αi

Notice that Hi is embedded Hi`1 by the map θi, hence the image of hi in the group

Hi`1 is θiphiq. Hence αi`1phiq “ αi`1θiphiq “ ψiαiphiq and this is the image of

αiphiq in the group Gi`1.

Claim: α is a homomorphism.

It is enough to show that αphihi`1q “ αphiqαphi`1q for arbitrary elements hi P Hi,

hi`1 P Hi`1.

αphihi`1q “ . . . ψi`1pαi`1phihi`1qq

“ . . . ψi`1ppαi`1phiqqpαi`1phi`1qqq

“ . . . ψi`1ppαi`1θiphiqqpαi`1phi`1qqq

“ . . . ψi`1ppψiαiphiqqpαi`1phi`1qqq
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“ . . . ψi`1ψiαiphiqp. . . ψi`1αi`1phi`1qq

“ αphiqαphi`1q

Theorem 5.6. [11, Proposition 2.10] If H is a diagonal direct limit group of finite

symmetric groups, then H is isomorphic to the group Sχ for some sequence χ.

Proof. Since H is a diagonal direct limit of finite symmetric groups, there exists an

infinite sequence χ “ xp1, k0q, pn1, k1q, . . .y corresponding to the embeddings and

H “
8
Ť

i“0

Hi where Hi – Symprpχ, iqq and Symprpχ, iqq “ Sk0n1n2...ni´1`...`ki´1
. Let

fi “ fpni, kiq be the diagonal embeddings constructing H , and di “ dpni, kiq be the

embeddings constructing Sχ. In the diagram below

Sk0

dpn1, k1q

Sn1k0`k1

π0

H0 H1

fpn1, k1q

π1

Spn1k0`k1qn2`k2

H2

fpn2, k2q

dpn2, k2q

π2

. . .

. . .

where πi are the elements conjugating the images as in the case of Lemma 5.4, we

have pfipHi´1qq
πi “ dipSymprpχ, i ´ 1qqq. Notice that πi’s are not unique and we

can choose πi’s so that the diagram is commutative as follows;

Start with an order, ta0,1, a0,2, a0,3, . . . , a0,k0u, on k0 points on which H0 acts and fix

it. Now by considering the image fpn1, k1qppa0,1, a0,2, a0,3, . . . , a0,k0qq of the element

pa0,1, a0,2, a0,3, . . . , a0,k0q in H1 fix an order on n1k0 ` k1 points on which H1 acts as

follows ta1,1, a1,2, a1,3, . . . , a1,n1k0`k1u where

fpn1, k1qppa0,1, a0,2, a0,3, . . . , a0,k0qq “ pa1,1, a1,2, a1,3, . . . , a1,k0qpa1,k0`1, . . . , a1,2k0q

. . . pa1,pn1´1qk0`1, . . . , a1,n1k0qpa1,n1k0`1q . . . pa1,n1k0`k1q

and continue the enumeration in the same way.

Now fix the numeration in Srpχ,iq in the same way, that is start with t1, 2, . . . , k0u,

and enumerate them with tc0,1, c0,2, . . . , c0,k0u, respectively then consider the image
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dpn1, k1qpp1, 2, . . . , k0qq of the element p1, 2, . . . , k0q in Srpχ,1q and chose the enu-

meration respectively. Now choose for 0 ď i, πi so that πipai,jq “ ci,j where

1 ď j ď rpχ, iq.

Claim: dpni, kiqπi´1 “ πifpni, kiq

Proof: Let α P Hi´1 so that α is a permutation on the set tai´1,j | 1 ď j ď

rpχ, i ´ 1qu. Remember that the action of πi’s are conjugation, hence we must show

dpni, kiqpα
πi´1q “ pfpni, kiqαq

πi . If α is as follows,

α “

¨

˝

ai´1,1 . . . ai´1,rpχ,i´1q

ai´1,b1 . . . ai´1,brpχ,i´1q

˛

‚then απi´1 “

¨

˝

ci´1,1 . . . ci´1,rpχ,i´1q

ci´1,b1 . . . ci´1,brpχ,i´1q

˛

‚

and

dpni, kiqpα
π
q “

¨

˝

ci,1 . . . ci,rpχ,i´1q

ci,b1 . . . ci,brpχ,i´1q

˛

‚. . .

¨

˝

ci,pni´1qrpχ,i´1q`1 . . . ci,pni´1qrpχ,i´1q`rpχ,i´1q

ci,pni´1qrpχ,i´1q`b1 . . . ci,pni´1qrpχ,i´1q`brpχ,i´1q

˛

‚

the points which are not seen in the above decomposition are fixed. On the other

hand,

fpni, kiqpαq “
¨

˝

ai,1 . . . ai,rpχ,i´1q

ai,b1 . . . ai,brpχ,i´1q

˛

‚. . .

¨

˝

ai,pni´1qrpχ,i´1q`1 . . . ai,pni´1qrpχ,i´1q`rpχ,i´1q

ai,pni´1qrpχ,i´1q`b1 . . . ai,pni´1qrpχ,i´1q`brpχ,i´1q

˛

‚

similarly missing points in the decomposition are fixed ones. Hence, by applying πi

to the above image we can see the desired result as

dpni, kiqpα
πi´1q “ pfpni, kiqαq

πi . As the diagram is commutative, by Lemma 5.5 the

groups are isomorphic.

In the paper [11], the classification of Sχ is given by using measure theory. We will

not get into the details and only give the result about the classification.

For the infinite sequence of tuples χ “ xp1, k0q, pn1, k1q, . . .y define the characteristic

of χ as charpχq “
8
ś

i“1

ni and characteristic series of χ as

µpχq “
8
ÿ

i“0

ki
n1 . . . ni

“ k0 `
k1

n1

`
k2

n1n2

` . . .
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Also, denote by S, the set of all infinite sequences χ “ xp1, k0q, pn1, k1q, . . . , y where

k0 ą 0, ki ě 0, ni ě 1 for all i ě 1 and by S1, the subset of the sequences that have

k0 ě 2, ni ě 2.

Definition 5.7. [11, Definition 2] For χ1, χ2 P S we say that χ1 and χ2 are pu, vq´commensurable

for positive integers u, v if

1qucharpχ1q “ vcharpχ2q.

2qµpχ1q and µpχ2q are both convergent or divergent together.

3q If they are convergent, then vµpχ2q “ uµpχ1q.

4q The sequences χ1, χ2 can have finitely or infinitely many zero members ki simulta-

neously.

Theorem 5.8. [11, Theorem 3.2] The direct limit groups Sχ1 and Sχ2 for some

χ1, χ2 P S are isomorphic if and only if χ1 and χ2 are commensurable.

The next theorem yields similar results in the case of Spξq. As done in constructing

Spξq, one can also consider the alternating groups Apχ, nq which are the subgroups

of Spχ, nq and define the group Aχ :“
8
Ť

i“1

Apχ, iq.

Theorem 5.9. [11, Theorem 3.1] Let χ P S. Then we have the followings;

‚ Sχ “ Aχ if and only if the characteristic, charpχq, of χ is divisible by 28.

‚ If charpχq is not divisible by 28, then rSχ : Aχs “ 2

‚ Aχ is a simple group.

In the next theorem, we will see the relation between the diagonal direct limit group

Sχ and the homogeneous symmetric group Spξq.

Definition 5.10. LetG acts on a setX . Then the stabilizer of a point x inX is defined

to be the set StabGpxq “ tg P G | xg “ xu

Theorem 5.11. Let Hξ be the subgroup of HompBTξq which is isomorphic to the

homogeneous symmetric group, Spξq, for a sequence ξ “ pp1, p2, . . .q and let γ P BTξ.

Then StabHξpγq – Sχ where Sχ is the group constructed as the diagonal direct limits

of finite symmetric groups with χ “ă p1, p1 ´ 1q, pp2, p2 ´ 1q, . . . ą.
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Proof. Let γ P BTξ. Then StabHξpγq “
8
Ť

k“1

StabHkpγq. Obviously, StabHkpγq Ď

StabHk`1
pγq, and since Hk is isomorphic to finite symmetric group on fξpkq “

p1p2 . . . pk letters and StabHkpγq – Sympfξpkq ´ 1q, by Theorem 5.6, it is enough to

show that the embeddings StabHkpγq ÝÑ StabHk`1
pγq are diagonal. StabHkpγq acts

on the vertices of level k and it fixes the vertex corresponding to γ on this level. Notice

that the group, StabHkpγq is subgroup of Hξ and acts on BTξzBTγpkq. The lengths of

orbits of StabHkpγq in StabHk`1
pγq are either 1 or p1p2 . . . pk because StabHkpγq acts

as full permutation group on fξpkq´1 vertices. Since the embedding ofHk intoHk`1

is strictly diagonal, the embedding of StabHkpγq into StabHk`1
pγq is diagonal. On the

other hand StabH1pγq – Sympp1 ´ 1q, StabH2pγq – Symppp1 ´ 1qp2 ` p2 ´ 1q “

Sympp1p2´1q and StabHkpγq – Sympp1 . . . pk´1q. Hence the stabilizer, StabHξpγq,

is isomorphic to Sχ where χ “ă p1, p1 ´ 1q, pp2, p2 ´ 1q, . . . ą .

5.2 Centralizers of Elements in Sχ

In this section, our aim is to obtain the structure of centralizers of arbitrary elements

in the locally finite group Sχ. It turns out that the centralizer contains homogeneous

monomial groups.

Finite monomial groups are studied by Ore in [17]. In the paper, he investigates some

properties of monomial groups and determine all normal subgroups of the class. Start-

ing with the finite monomial groups and using the strictly diagonal embeddings, one

can find the homogeneous monomial groups, which is constructed by Kuzucuoğlu,

Oliynyk and Suschansky in [10]. In the article [10], they classified all the homoge-

neous monomial groups by using the lattice of Steinitz numbers and find the structure

of centralizer of elements in homogeneous monomial groups.

The monomial group of degree n over a group H is denoted by ΣnpHq. By [17],

the monomial group is isomorphic to Sn ¸ pH ˆ . . .ˆHq
looooooomooooooon

r-many

or in the wreath product

notation, ΣnpHq – H oSn. For any sequence ξ consisting of primes, by taking strictly

diagonal embeddings of finite monomial groups ΣnpHq we have the homogeneous

monomial groups which is denoted by ΣξpHq. For the notations and definitions see
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[10]. If we take H to be the identity group, then Σξp1q will be the homogeneous

symmetric group Spξq. The centralizers of elements in the homogeneous monomial

groups are studied in [10, Theorem 2.6].

Now, we turn our attention to the centralizers of elements in the group Sξ of diagonal

type. Let χ “ xp1, k0q, pn1, k1q, pn2, k2q, . . .y and Sχ “
8
Ť

i“1

Spχ, i ´ 1q. For any

element α in Sχ, we have a smallest number so that α P Spχ, nq. Therefore, we can

define the following;

Definition 5.12. For α P Sχ “
8
Ť

n“1

Spχ, iq, let n be the smallest integer such that α P

Spχ, nq. Then the principal beginning α0 of α is the element in the finite symmetric

group Srpχ,n´1q of which the image in the group Sχ is α.

Notice that the definition of principal beginning is similar to the case of homogeneous

symmetric groups, see Definition 2.3.

Definition 5.13. The short cycle type of an element α0 P Sn is tpα0q “ pr1, . . . , rtq

where ri, 1 ď i ď t, is the number of i´cycles appearing in the cycle decomposition

of α0 and t is taken to be the biggest cycle length that appears in the decomposition.

Theorem 5.14. Let α P Sχ, χ “ xp1, k0q, pn1, k1q, . . .y and let α0 P Srpχ,l´1q be

the principal beginning of α and tpα0q “ pr1, r2, . . . , rkq be the short cycle type of

α0 where r1 is the number of fixed vertices other than $$ . . . $ in level l. Then the

centralizer of α in Sχ;

CSχpαq –
k

Dr
i“2

ΣξipCiq ˆ Sχ1

where ξ “ pk0, n1, n2, . . .q, charpξiq “
charpξq

k0n1...nl´1
ri for all i ě 2, χ1 “ xp1, r1q, pnl, klq, . . .y

and Ci is the cyclic group of order i.

Proof. Let α0 P Srpχ,l´1q be the principal beginning of α. Now we know the cycle

type of α0 and there are ri many i cycles and r1 many fixed points except the vertex

$$$ . . . $ in level l.

Note that, since α0 “ x1,0x2,0 . . . xk,0 where xi,0 is the product of i-cycles in the cycle

decomposition of α0 , and α “ x1x2 . . . xk where the principal beginning of xi is xi,0

for 1 ď i ď k, by using the same method as in the paper [5], we have

CSχpαq “
k

Dr
i“1

CSχpxiq
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Therefore, it is enough to find the centralizer of an element with a fixed cycle type.

Observe that for an element xwith principal beginning x0 P Spχ, lqwhich is a product

of i-cycles i ě 2, the embedding of x0 into Spχ, l ` 1q is strictly diagonal. So by [5,

Theorem 3] and [10, Corollary 2.7], we have CSχpxiq “ ΣξipCiq where charpξiq “
charpξq

k0n1...nl´1
ri and ΣξipCiq is the homogeneous monomial group over the cyclic group

Ci of order i.

For the centralizer of x1 which is identity but is formed with the fixed points of α0 in

level l, we have r1 many fixed points and any element in symmetric group, Sr1 , on r1

vertices will commute with α0. The embedding of Sr1 into Spχ, l`1q is diagonal and

the image is isomorphic to a subgroup of the symmetric group, Sr1nl`kl . Continuing

like that we will have the diagonal embeddings of finite symmetric groups which is

isomorphic to Sχ1 where χ1 “ă p1, r1q, pnl, klq, . . . ą . Hence, we get the result.

CSχpαq –
k

Dr
i“2

ΣξipCiq ˆ Sχ1

where ξ “ pk0, n1, n2, . . .q, charpξiq “
charpξq

k0n1...nl´1
ri for all i ě 2, χ1 “ xp1, r1q, pnl, klq, . . .y.

Corollary 5.15. If ki “ 0 for all i ą 0, then as Sχ “ Spξq we get

CSpξqpαq –
k

Dr
i“1

ΣξipCiq

where ξ “ pk0, n1, n2, . . .q, charpξiq “
charpξq
rpχ,l´1q

ri for all i ě 1.

5.3 Centralizers of Finite Subgroups in Sχ

In this section following the steps that are done in [5], we will determine the structure

of centralizer of finite subgroups of Sχ.

Definition 5.16. For a finite subgroup F ď Sχ, let F ď Spχ, kq where k is the small-

est such level. Then the type ofF is defined by tpF q “ ppm1, r1q, pm2, r2q, . . . , pmk, rkqq

where mi is the smallest level in which F has an orbit Ωi on rpχ,mi ´ 1q vertices

and it has ri many equivalent orbits giving equivalent representations of F . Note that

mi’s are not necessarily distinct. Without loss of generality, if F has fixed points, then

pm1, r1q will represent the equivalent orbits of length 1.
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Theorem 5.17. Let F be a finite group of Sχ with sets of orbits Γ1,Γ2, . . . ,Γk where

Γi is the set of all equivalent orbits.

Let the type of F be tpF q “ ppm1, r1q, pm2, r2q, . . . , pmk, rkqq. Then

CSχpF q –
k

Dr
i“2

ΣξpCSympΩiqpF|Ωi qq ˆ Sχ1

where charpξiq “ ri
8
ś

j“1

nmj and χ1 “ă p1, r1q, pnm1 , km1q, pnm1`1, km1`1q, . . . ,ą

and Ωi is a representative in the equivalence class, Γi, of orbits for all i “ 2, 3, . . . , k.

Proof. Let Σ be the set of all orbits of F on N. We can define a relation on Σ as

follows; Oi „ Oj if and only if the actions of F on both orbits are equivalent. It

is easy to verify that this relation is an equivalence relation. Form the equivalence

classes as Γ1, . . . ,Γk.

Observe that CSχpF q leaves each Γi invariant and moreover, there exists two orbits

∆1 and ∆2 such that ∆g
1 “ ∆2 for some g P CSχpF q if and only if ∆1 and ∆2 are

equivalent orbits. In fact, by [2, Ex. 4.2.4] for two equivalent orbits Oi and Oj in Γi

the bijection

λ : Oi ÝÑ Oj

satisfying for any f P F , x P Oi λpx
f q “ λpxqf can be extended to a bijection c of N

so that c P CSχpF q.

With this observation, we can write CSχpF q as the direct product of the centralizers

where for each non-equivalent action of F we have a direct factor. So it is enough

to find the structure of the centralizer of F where each orbit in the action of F is

equivalent.

Let the type of F be tpF q “ ppm1, r1q, pm2, r2q, . . . , pmk, rkqq. Consider the re-

striction of the action of F on level mi where i ě 2 and consider the equivalence

class Γi corresponding to pmi, riq. Let Ωi be a representative of this class, we know

there are ri many copies of Ωi with the same action. By above observation we have

CSpχ,miqpF q – CSympΩiqpF|Ωi q o Sri – ΣrippCSympΩiqpF|Ωi qqq when we consider the

centralizer of F on levelmi`1 it will be isomorphic toCSpχ,miqpF q – CSympΩiqpF|Ωi qo
Srinmi – Σrinmi

ppCSympΩiqpF|Ωi qqq where the embedding is the strictly diagonal em-
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bedding. Continuing like this we get the centralizer to be isomorphic to

CSχpF|Ωi q – ΣξipCSympΩiqpF|Ωi qq

where charpξiq “
charpχq

n1n2...nmi´1
ri.

As for the orbits of length 1, on level m1, we have r1 many fixed points. Then any

element from Sr1 will commute with elements of F . After the level m1, the embed-

ding of Sr1 is inherited from the diagonal embedding of the group Sχ. Therefore, in

the end we will have a direct factor in the centralizer of F in Sχ which is Sχ1 where

χ1 “ă p1, r1q, pnm1 , km1q, pnm1`1, km1`1q, . . . ą.

Hence, we get the result.

5.4 Some topological properties of BTχztδu

Recall that we define the metric ρ on the set BTχztδu as ρpγ1, γ2q “
1

n`1
where n is

the common parts of the ends γ1, γ2.

The balls which we denote as Pnv consist of ends passing through the vertex v on

level n.

Lemma 5.18. [11, Lemma 2.4] Let χ “ xp1, k0q, pn1, k1q, . . .y P S1, that is k0 ě 2

and ni ě 2 for all i. Then BTχztδu is locally compact and Hausdorff.

Proof. Recall the definition of locally compactness. A topological space X is locally

compact if every point x P X has a compact neighborhood.

Let γ P BTχztδu. Then as γ is different from δ, there exists a vertex v on some

level m which is different then the vertex $$ . . . $ on the level m. Consider the ball

Pmv. Obviously, Pmv contains the end γ. On the other hand, by construction of the

tree Tχ,the subtree Pmv can be identified with the spherically homogeneous tree with

characteristic sequence pnm, nm`1, . . .q which is shown to be compact by Lemma

2.36.

The proof of the property of being Hausdorff, is the same as in the case of BTΩ, see

Lemma 2.36.
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Lemma 5.19. [11, Lemma 2.4] The group Sχ satisfies the Rubin’s theorem 4.3.

Proof. First of all BTχztδu is locally compact and Hausdorff. Let D be an arbitrary

open set and γ P D. Then we need to show that the set

B “ tgpγq | g P Sχ and g|pBTχztδuqzD “ identityu

is somewhere dense (that is the interior of the closure is nonempty).

Consider an arbitrary ball Pmv in D containing γ which is identified with the spher-

ically homogeneous tree TΩm where Ωm “ pnm, nm`1, . . .q. Then the homogeneous

finite symmetric group SpΩmq lies inside the group Sχ.

On the other hand, the set A “ tgpγq | g P SpΩmq and g|BTΩmzD
“ identityu which

is somewhere dense by Lemma 4.4, obviously lies in B. Hence, B is also somewhere

dense.

The above lemma tells that any automorphism of the group Sχ is induced by a home-

omorphism of the space BTχztδu. Furthermore we have the following result.

Theorem 5.20. The automorphism group AutpSχq is isomorphic to the normalizer

N “ NHompBTχztδuqpSχq in HompBTχztδuq.

Proof. The proof is the same as in the case of AutpHΩq, see the proof of Theorem

4.5.

For a metric space X with a metric ρ, recall the definition of uniform local isometry.

Definition 5.21. A bijection α of the metric spaceX is called uniform local isometry

if there exists a positive number δ, satisfying ρpxα1 , x
α
2 q “ ρpx1, x2q for all x1, x2 with

the property ρpx1, x2q ă δ.

Lemma 5.22. All finitely generated subgroups of ULIpBTχztδuq are residually finite.

Proof. Let G be a finitely generated subgroup in ULIpBTχztδuq. By definition of

uniform local isometry there exist δ ą 0 such that for any g P G, if ρpx, yq ď δ, then

ρpxg, ygq “ ρpx, yq.Now letm “ t1{δu and let χ1 “ă p1, rpχ,m´1qq, pnm, kmq, . . . ą
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. Consider AutpT 1χq, since every element of G preserves the distance after the level m

we can regard G as a subgroup of isometry group AutpT 1χq and AutpT 1χq is residually

finite.(As the intersection of level stabilizers is trivial.)

Lemma 5.23. For g P ULIpBTχztδuq, there exist α P AutpTχq and β P Sχ such that

g “ αβ.

Proof. The proof is the same as in the case of the spherically homogeneous tree TΩ,

see Lemma 3.16.

5.5 Level Preserving Automorphism of Sχ

For an increasing sequence N “ ta1 ě 3, a2, . . .u, an automorphism α of Sχ which

has the property αpSpχ, aiqq “ Spχ, aiq for all i is called N-level preserving auto-

morphism of Sχ. Before the main result we must prove two lemmas.

Lemma 5.24. CSpχ,jqpSpχ, iqq X CSpχ,kqpSpχ, jqq “ 1 for j ě 3

Proof. As Spχ, jq is isomorphic to a symmetric group and the symmetric groups of

order bigger than or equal to 6 has identity center, we have the result.

Lemma 5.25. CSpχ,jqpSpχ, iqq – Sni...nj´1
ˆ Sφpi,jq where φpi, jq is the number of

fixed points of the action of Spχ, iq in the group Spχ, jq

Proof. Note that when we embed Spχ, iq to Spχ, jq by diagonal embedding there are

φpi, jq many orbits of length 1 and the symmetric group consisting of φpi, jq many

elements will lie inside the centralizer CSpχ,jqpSpχ, iqq.

Since the embedding is diagonal we have nini`1 . . . nj´1 many orbits with rpχ, i ´

1q many elements. And by definition of the diagonal embedding the actions on all

orbits are equivalent to the action of Spχ, iq on rpχ, i´ 1q elements and the elements

permuting the orbits will also centralize the group Spχ, iq. Hence by [2, Chapter 4.2],

CSpχ,jqpSpχ, iqq – Sni...nj´1
ˆ Sφpi,jq

67



For an increasing sequence, N “ tai | ai ą 2u, of positive numbers, denote the N -

level preserving automorphisms of the group Sχ by BN . Then we have the following

result.

Proposition 5.26. BN forms a group and it is isomorphic to the Cartesian product of

the centralizers CSpχ,ai`1qpSpχ, aiqq.

Proof. Let α P AutpSχq. Then α|Spχ,aiq is an automorphism of Spχ, aiq since the

groups Spχ, aiq are isomorphic to a symmetric group of order bigger than 6 (as ai ą

2) the automorphism α|Spχ,aiq is inner. Hence, there exist αi P Spχ, aiq such that

α´1
i α|Spχ,aiq acts as identity on Spχ, aiq. On the other hand, since the groups satisfy

Spχ, aiq ď Spχ, ai`1q, for any element g P Spχ, aiq we must have gα
´1
i αi`1 “ g.

Hence, α´1
i αi`1 P CSpχ,ai`1qpSpχ, aiqq.

The rest of the proof is the same as the proof of the Proposition 4.8 for the N -level

preserving automorphisms of Spξq in Chapter 4.
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CHAPTER 6

HOMOGENEOUS FINITARY SYMMETRIC GROUPS

In this chapter, we will study the tree connection of the groups FSympκqpξq first

introduced in [4] and studied in further detail in [5].

6.1 Construction of the group FSympκqpξq

For any infinite cardinal κ, we start with the finitary symmetric group, FSympκq and

we regard κ as an ordinal number. Consider the embeddings

dp : FSympκq Ñ FSympκpq

where the image of any α P FSympκq is given by

pκs` iqd
ppαq

“ κs` iα, i P κ and 0 ď s ď p´ 1.

As in the finite case, see Section 2.1, we divide the ordinal κp into p equal parts and

in each part the action of dppαq is diagonally the same as the action of α.

If α “
ˆ

1 . . . n

i1 . . . in

˙

P FSympκq, then

dppαq “

¨

˝

1 . . . n κ` 1 . . . κ` n . . . κpp´ 1q ` 1 . . . κpp´ 1q ` n

i1 . . . in κ` i1 . . . κ` in . . . κpp´ 1q ` i1 . . . κpp´ 1q ` in

˛

‚

with the assumption that the elements in κps ` 1qzpκs ` supppαqq is fixed for s “

0, . . . , p´ 1.

Let ξ “ pp1, p2, . . .q be an infinite sequence of not necessarily distinct prime numbers

as before and ni “ p1p2 . . . pi. Consider the embedding sequences in the following
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way;

FSympκq
dp1
ÝÑ FSympκp1q

dp2
ÝÑ FSympκp1p2q . . .

Altpκq
dp1
ÝÑ Altpκp1q

dp2
ÝÑ Altpκp1p2q . . .

Then the direct limit group constructed with the above embedding sequences will be

FSympκqpξq and Altpκqpξq, respectively. If in the direct limit group the image of

FSympκniq (Altpκniq) is denoted by FSympκqpniq (Altpκqpniq), then we can write

FSympκqpξq “
8
ď

i“1

FSympκqpniq

Altpκqpξq “
8
ď

i“1

Altpκqpniq

The group FSympκqpξq is called homogeneous finitary symmetric group. The

classification of such groups and the structure of the centralizers of elements as well

as the finite groups was done by Kuzucuoğlu, Kegel and myself in [5].

6.2 A non-locally finite spherically homogenous tree

Similar to the finite and diagonal case, in this section we will construct a spherically

homogeneous rooted tree (which is not locally finite this time) and the homogeneous

finitary symmetric group will act on the boundary of this tree.

Let ξ “ pp1, p2, . . .q. Using this infinite sequence we will construct the vertex set and

the edge set. Denote the root by H as usual. Since we start the embeddings with

FSympκq, let there be κ many vertices in the first level. For the second level, let

there be p1 many vertices coming down from each vertex on the first level. Hence, as

an ordinal number we have κp1 many vertices in the second level. For the third level,

do the same thing by using the prime p2 and so we will have κp1p2 many vertices.

Continuing like this we will have the tree Tκpξq. See the figure below.

70



H

1

11

11
1

. . .
. . .

11
p 2

. . .
. . .

1p
1

1p
1
1

. . .
. . .

1p
1
p 2

. . .
. . .

n

n
1

n
11

. . .
. . .

n
1p

2

. . .
. . .

n
p 1

n
p 1

1

. . .
. . .

n
p 1
p 2

. . .
. . .

. . .
. . .. . .

. . .
. . .

. . .. . .
. . .

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Ý
Ñ
κ

m
an

y
ve

rt
ic

es

Ñ
κ
p

1
m

an
y

ve
rt

ic
es

Ñ
κ
p

1
p

2
m

an
y

ve
rt

ic
es

Fi
gu

re
6.

1:
Sp

he
ri

ca
lly

ho
m

og
en

eo
us

ro
ot

ed
tr

ee
T
κ
pξ
q

71



Lemma 6.1. Tκpξq is a spherically homogeneous tree.

Proof. Recall that if the full automorphism group of a tree acts transitively on each

level of the tree, then the tree is called spherically homogeneous.

Since the tree is rooted, any automorphism will fix the root. Also by definition of the

automorphism of a rooted tree, the levels of the vertex must be protected. Let v and

w be two vertices of level n. By the construction of the tree, the subtrees Tκv and Tκw

which are the rooted subtrees with root v and w respectively, are isomorphic. Now,

we can extend this isomorphism to an automorphism of the tree.

If on level n ´ 1 the vertices v and w are adjacent to the same vertex, then the map

sending Tκv to Tκw and fixing all the other vertices will be an automorphism of Tκpξq.

If they are not adjacent on level n´1, consider the first vertex that they are connected

by a path, name the vertex as u. By the construction Tκu is a locally finite spherically

homogenous tree. Hence, we can find an automorphism of Tκu that sends v to w.

Extend this automorphism to an automorphism of the tree Tκpξq by fixing every vertex

not belonging to the tree Tκu. Hence, in any case we find an automorphism of the tree

Tκpξq that sends v to w.

Consider the boundary BTκpξq of the tree Tκpξq. Since the tree is spherically homoge-

neous we can define the metric ρ which is mentioned in the Section 2.2.2. Recall the

metric is as follows;

Let γ1, γ2 be two ends in BTκpξq. Define ρpγ1, γ2q “
1

n`1
where n is the length of

common parts of the ends γ1, γ2. Recall that the map ρ defines an ultra-metric, for the

proof see the proof of Lemma 2.20 and the explanation below it.

With the ultra-metric ρ, BTκpξq becomes a metric space. Since the trees Tκpξq and

TΩ are spherically homogeneous, they share some of the topological properties and

definitions.

For the space BTκpξq the basic open sets are;

Pnvi “ tγ P BTκpξq | vi P V pTκpξqq, vi P γu

In other words, basic open set Pnvi includes the ends that passes through the vertex vi
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on the level n.

One can easily see that Pnvi is the boundary of the spherically homogenous rooted

tree with root vi and characteristic sequence ξ1 “ă pn`1, pn`2, . . . ą.

We will give some properties of this metric space, and these properties will be used

in the next section.

Recall that, a space X is locally compact if every element has a compact neighbor-

hood and called Hausdorff if for any two elements x ‰ y in the space X there exist

open sets U and V satisfying x P U , y P V and U X V “ H.

Lemma 6.2. BTκpξq is a locally compact and Hausdorff space.

Proof. Let γ P BTκpξq where ξ “ă p1, p2, . . . ą. Consider the basic open set Pnvi
which contains the end γ. By Lemma 2.36, Pnvi is compact. Hence, BTκpξq is locally

compact.

For the Hausdorff property, let γ1, γ2 be two ends. Let ρpγ1, γ2q “
1

n`1
, that is they

have n many common parts and after nth level the ends belong to different balls.

Choose two balls Pn`1v, Pn`1w on the pn ` 1qth level such that γ1 P Pn`1v and

γ2 P Pn`1w. By the Remark 2.24, two balls on the same level is either the same or

disjoint we have Pn`1v X Pn`1w “ H.

6.3 Tree connection of the homogeneous finitary symmetric groups

In this section we will construct a subgroup of the homeomorphism group of BTκpξq

which will be isomorphic to the homogeneous finitary symmetric group.

Definition 6.3. Define FHn as the subgroup of the homeomorphism group of BTκpξq

that only permutes the finitely many balls of level n. It is the similar case of Hn of

locally finite homogeneous tree TΩ, see Definition 3.13.

Since the group FHn acts transitively on the set of balls on the same level, there exists

an element from FHn that sends the ball Pnvi to Pnvj . It takes the ball Pnvi and glues

it on Pnvj . Different from the case of the group Hn, on level n we have κpn´1 many
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vertices, however the group FHn permutes only finitely many of them. Hence, the

group is isomorphic to FSympκpn´1q.

Lemma 6.4. FHn is a subgroup of HompBTκpξqq.

Before the proof, we need to label the vertices and ends. Let ξ “ă p1, p2, . . . ą. For

the labeling of the vertices see the Figure 6.1. Enumerate the κ many vertices of first

level starting from 1. (With the use of ordinal numbers). For the second level, label

the vertices adjacent to the vertex n on the first level by n1, n2, . . . np1. Continue like

this to have labeled vertices. After this labeling, since an end can be expressed by the

adjacent vertices, say γ “ pH, v1, v2, . . .q where vi is the vertex on level i, just put

the labels of vertices as follows; Since vi and vi`1 are adjacent for all i P N, if vi “

a1a2 . . . ai where a1 P |κ|, aj P t1, 2, . . . pju for all j ą 1, then vi`1 “ a1a2 . . . aiai`1.

Hence, we can write the vertex γ “ pH, a1, a1a2, . . . , a1a2 . . . ai, . . .q or simply we

will write γ “ a1a2 . . . ai . . .. Now we can prove the above lemma.

Proof. Let α be an element of FHn. Let γ1 “ a1a2 . . . P Pnv and γ2 “ b1b2 . . . P Pnw

be two ends in BTκpξq. The element α is one-to-one. Indeed, let αpγ1q “ αpγ2q. By

the labeling of the vertices, we can say v “ a1a2 . . . an and w “ b1b2 . . . bn. Since α

is a permutation on the balls of level n, and it sends γ1 and γ2 to the same element

we have v “ w, that is ai “ bi for all 1 ď i ď n. Note that by definition α does not

change the coordinates of an end after the nth coordinate, hence we have ai “ bi for

all i ą n. Hence, α is one-to-one.

Let γ “ a1a2 . . . an . . . be an arbitrary element. Since α is a permutation on the balls

of level n there exist a ball Pnw where w “ b1b2 . . . bn and α maps Pnw to Pnv where

v “ a1a2 . . . an. Choose the element γ1 “ b1b2 . . . bnan`1an`2 . . . in the ball Pnw,

then αpγ1q “ γ. Hence, α is onto.

Moreover, α sends basis elements (the balls) to basis elements and is bijective, hence

α is a homeomorphism.

Lemma 6.5. For any n, FHn acts on Vn, the vertex set of level n and for any k ą n

FHn is embedded into FHk via strictly diagonal embedding.
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Proof. Recall that Vn is the set of vertices on level n. With the labeling of the vertices,

we can write Vn “ ta1a2 . . . an | a1 P |κ| ai P t1, . . . piuu. Since an element from

FHn permutes the balls of level n and a ball in level n can be emphasized by its root

(a vertex in level n) we can regard the action as the action on Vn, that is if α sends Pnv

to Pnw, then α has action on Vn by sending v to w. Since α is a permutation on the

balls of level n, it is also a permutation on Vn. Notice that an element α from FHn

may change only the first n terms of an end and leaves the other parts same hence that

means for any k ą n the element α lies inside the group FHk.

Let us consider the permutation groups pFHn, Vnq and pFHk, Vkq. We will show the

embedding is strictly diagonal. Since FHn is a subgroup of FHk it acts on Vk. An

arbitrary orbit containing an element v “ a1a2 . . . ak of Vk is of the form

∆v “ tb1b2 . . . bnan`1an`2 . . . ak | b1 P |κ| bi P t1, . . . piuu

where aj’s are fixed coming from the terms of the vertex v. Define a map φ : Vn ÝÑ

∆v such that for v “ c1c2 . . . cn the image will be vφ “ c1c2 . . . cnan`1 . . . ak. Clearly

the map is a bijective map. Let α P FHn and v “ c1 . . . cn P Vn and αpvq “ w “

b1 . . . bn. Then we have

αpvφq “ αpc1c2 . . . cnan`1 . . . akq “ b1 . . . bnan`1 . . . ak “ pαpvqq
φ

Hence, the embedding is a strictly diagonal embedding.

For the boundary of the tree BTκpξq, the union
8
Ť

i“1

FHi will determine a direct limit

group, which will be denoted by FHκpξq. In the next theorem, we will give the con-

nection between FHκpξq and finitary homogeneous symmetric groups.

Theorem 6.6. FHκpξq is isomorphic to FSympκqpξq

Proof. Since FHκpξq is the direct limit of finitary symmetric groups with strictly diag-

onal type by theorem 4 of [6] it is isomorphic to the homogeneous finitary symmetric

group FSympκqpξq.

The construction of the homogeneous finitary symmetric groups was done in [5], and

the structure of centralizers of elements and finite groups was given in the same paper
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[5]. Moreover, the complete classification of the homogeneous finitary symmetric

groups was done in [6]. In the next section by using topological properties we will

give some properties about the automorphism groups of these groups.

6.4 Automorphism group of FHκpξq

Proposition 6.7. AutpFHκpξqq satisfies the Rubin’s theorem 4.3.

Proof. The topological space BTκpξq is locally compact and Hausdorff by Lemma 6.2.

Let D be an open set and x P D. We will show that the set

A “ tgpxq | g P FHκpξq and g|BTκpξqzD “ idu

is somewhere dense, that is intpĀq ‰ H.

Let x P D choose the smallest n and choose a vertex v such that x P Pnv and

Pnv Ă D. (If D is given as the whole space, choose the ball on the first level

that contains x). Observe that Pnv can be identified with the boundary of a lo-

cally finite spherically homogeneous tree Tξ1 where ξ1 “ă pn, pn`1, . . . ą. On the

boundary of Tξ1 consider the homogeneous symmetric group Hξ1 which is isomor-

phic to Spξ1q. By the Lemma 4.4, Hξ1 satisfies the Rubin’s theorem. Hence, the set

B “ tgpxq| g P Hξ1 and g|BT
ξ1
zPnv

“ idu has its interior of closure nonempty. Notice

that the action of Hξ1 on the ball Pnv is the same as the action of FHκpξq on the ball

Pnv. Hence, A “ B and intpB̄q ‰ H.

On the other hand, since Pnv Ă D we have B Ă A and by topological properties

H ‰ intpB̄q Ă intpĀq.

With the help of Rubin’s theorem, we conclude that any automorphism of the finitary

homogenous symmetric group is induced by an element of the homeomorphism group

of BTκpξq.

Theorem 6.8. The automorphism group of the group FHκpξq is isomorphic to the

normalizer of itself in the group of homeomorphisms of BTκpξq.
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Proof. We will show AutpFHκpξqq – NHompBTκpξqqpFHκpξqq. Denote the normalizer

group by N . Define a map

ψ : N ÝÑ AutpFHκpξqq

h ÝÑ ψh : FHκpξq ÝÑ FHκpξq

g ÝÑ h´1gh

where g P FHκpξq. Since normalizer acts on the group via conjugation, the map ψ is a

homomorphism. By Proposition 6.7, any automorphism is induced by a homeomor-

phism hence the map ψ is onto. To conclude it is enough to show that the centralizer

of the group FHκpξq in the homeomorphism group is trivial. Assume not. Let h ‰ id

be a homeomorphism in the centralizer. Choose an end γ so that hpγq “ γ1 ‰ γ.

Choose two elements g1, g2 in FHκpξq fixing γ and δ1 “ g1pγ1q ‰ g2pγ1q “ δ2. As

g1, g2 fixes γ, gh1 , g
h
2 must fix it.

h´1g1hpγq “ h´1g1pγ1q “ h´1
pδ1q “ γ

h´1g2hpγq “ h´1g2pγ1q “ h´1
pδ2q “ γ

But h´1 is a bijection so δ1 “ δ2, contradiction.

6.4.1 Level preserving automorphisms

For the group FSympκqpξq, where ξ “ă p1, p2, . . . ą and pi’s are not necessarily

distinct primes, we will define subgroups of automorphism group AutpFSympκqpξqq

which we call as level preserving automorphisms.

Definition 6.9. Consider the sequence N “ pn1, n2, . . .q associated with ξ where

ni “ p1p2 . . . pi. Let M be a subsequence of N obtained by deleting some of the

terms of N .

An automorphism α is calledM -level preserving if αpFSympκqpmiqq “ FSympκqpmiq

for all i P N.

If α and β are two M -level preserving automorphisms of FSympκqpξq, then obvi-

ously αβpFSympκqpmiqq “ αpFSympκqpmiqq “ FSympκqpmiq. Hence, M -level
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preserving automorphisms forms a subgroup. We will denote it byM´AutpFSympκqpξqq.

Before the characterization of M -level preserving automorphisms, we need two lem-

mas.

Lemma 6.10. The centralizer CSympκqpmiqpFSympκqpmi´1qq is isomorphic to the fi-

nite group Symp mi
mi´1

q.

Proof. Note that FSympκqpmi´1q has trivial center. By the strictly diagonal embed-

ding the group FSympκqpmi´1q acts on |κmi| with mi
mi´1

equivalent orbits hence by

[2, Ch. 4 Section 2], any element permuting the orbits will be in the centralizer.

Lemma 6.11. Let ξ “ă p1, p2, . . . ą. Then Sympκqpξq “
8
Ť

i“1

Sympκqpniq is a

subgroup of AutpFSympκqpξqq where n1 “ 1 and ni “ p1p2 . . . pi´1 .

Proof. Note that we can talk about the strictly diagonal embeddings

Sympκq
dp1
ÝÑ Sympκp1q

dp2
ÝÑ Sympκp1p2q . . .

and the direct limit group will be Sympκqpξq “
8
Ť

i“1

Sympκqpniq where n1 “ 1,

ni “ p1p2 . . . pi´1 and Sympκqpniq is the image of Sympκniq in the direct limit

group.

For an element α P Sympκqpξq, there exist a smallest ni such that α P Sympκqpniq.

Claim: α is an automorphism of FSympκqpξq.

As FSympκqpniq Ĳ Sympκqpniq, we have FSympκqpniqα “ FSympκqpniq. On

the other hand for j ą i, since Sympκqpniq Ă Sympκqpnjq, we can regard α as

an element of Sympκqpnjq. Hence, FSympκqpnjqα “ FSympκqpnjq. Therefore,

FSympκqpξqα “ FSympκqpξq. In particular, α is an M -level preserving automor-

phism where M “ pni, ni`1, . . .q.

Theorem 6.12. M ´ AutpFSympκqpξqq is isomorphic to the Cartesian product

Sympκq ˆ
8
ź

i“2

CSympκmiqpFSympκqpmi´1qq

In particular, M ´ AutpFSympκqpξqq has cardinality 2κ and every group of cardi-

nality ă κ can be embedded into M ´ AutpFSympκqpξqq.
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Proof. Let α be an M -level preserving automorphism where M “ pm1,m2, . . .q.

As α preserves the levels mi for all i P N, αpFSympκqpm1qq “ FSympκqpm1q

Therefore, the restriction of α to the group FSympκqpm1q is an automorphism of

FSympκqpm1q. By (Baer-Schrier-Ulam) theorem [2, Theorem 8.2.A]

AutpFSympκqq “ Sympκq

Hence, there exists an element g1 P Sympκq such that g´1
1 α is an automorphism

of FSympκqpξq as by Lemma 6.11, g1 P AutpFSympκqpξqq and by the construc-

tion it preserves the levels contained in M . Note that g´1
1 α|FSympκqpm1q

is identity

on FSympκqpm1q. Consider the element g´1
1 α restricted to FSympκqpm2q. Since

g´1
1 α is an automorphism of FSympκqpm2q, by the same argument above there

exists g2 P Sympκm2q such that g2 “ g´1
1 α|FSympκqpm2q

. Note that g2 centralizes

FSympκqpm1q. Hence, g2 P CSympκm2qpFSympκqpm1qq. Now g´1
2 g´1

1 α|FSympκqpm2q

centralizes FSympκqpm2q and again by construction it is an M -level preserving au-

tomorphsim. Hence, there exists g3 “ g´1
2 g´1

1 α|FSympκqpm2q
P Sympκm3q which is

also an element of the centralizer CSympκm3qpFSympκqpm2qq.

Continuing like this we will have α “ g1g2 . . . satisfying

1. g´1
k g´1

k´1 . . . g
´1
2 g´1

1 α|FSympκqpmkq “ idFSympκqpmkq

2. gk P CSympκmkqpFSympκqpmk´1qq

3. gkgn “ gngk for all k, n P N.

Note that the orbits of FSympκqpmk´1q on |κmk| are the same as the orbits of

Sympκmk´1q on |κmk| and ZpFSympκqpmk´1qq “ ZpSympκmk´1qq “ 1. Hence,

CSympκmkqpFSympκqpmk´1qq “ CSympκmkqpSympκmk´1qq

Therefore, gkgn “ gngk.

Let us denote Dk “ CSympκmkqpFSympκqpmk´1qq “ CSympκmkqpSympκmk´1qq.

By the third property, 3, above Di’s are normal subgroups of M -level preserving

automorphism group. If we can show that Dk X D1 . . . Dk´1Dk`1 . . . “ id for

any k P N, then we are done. Assume not. Let ak “ a1a2 . . . ak´1ak`1 . . . be

an element in the intersection. Let j be the smallest integer such that aj ‰ id.
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If j ą k and ak “ ajaj`1 . . .. Then for any element g P Sympκmkq we have

gak “ gajaj`1 . . . “ ajaj`1 . . . g “ akg. However, Sympκmkq has trivial center, it is

a contradiction. If j ă k and ak “ aj . . . ak´1ak`1 . . ., then considering the element

a´1
j “ aj`1 . . . ak´1a

´1
k ak . . . we turn into the first case and get again a contradic-

tion.
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CHAPTER 7

NORMALIZERS OF FINITE SUBGROUPS

A group acting on a set Ω is called semi-regular if the point stabilizers are identity

for all α P Ω. A transitive semi-regular group is called regular. In this chapter, we

will find the structure of a normalizer of a semi-regular finite subgroup of Spξq, see

Chapter 2. For a regular subgroup of SympΩq, the structure of normalizers are well

known. However, for readers convenience in the next two lemmas we will give the

structure of centralizers and normalizers of regular subgroups.

Lemma 7.1. The centralizer of the right regular representation of a group G is the

left regular representation (and vice versa). Moreover, right regular representation is

conjugate to the left regular representation.

Proof. Let ρ : G ÝÑ SympGq and λ : G ÝÑ SympGq be right and left regular

representations of G, respectively. We will show that CSympGqpρpGqq “ λpGq. Let

π P SympGq be an element in the centralizer. Then for all g P G we have ρgπ “ πρg

where ρg is the image of g under ρ. In particular, we have ρgπp1q “ πρgp1q. Hence,

πp1qg “ πpgq. If πp1q “ h´1 for some h P G, then we have h´1g “ λhpgq “ πpgq

for all g P G where λh is the image of h under the left regular representation. There-

fore, π “ λh. On the other hand, for any element λh in the left regular representation,

ρgλhpxq “ gxh´1 “ λhρgpxq.

Moreover, if we consider the element t in SympGq sending every element to its in-

verse, then we have t´1ρgtpxq “ g´1x “ λgpxq for all x P G. Hence, ρpGqt “

λpGq.

Lemma 7.2. [2, Corollary 4.2B] Let G be a regular subgroup of SympΩq. Then

N “ NSympΩqpGq – G¸ AutpGq.

81



Proof. Consider the map

ψ : N ÝÑ AutpGq

n ÞÝÑ ψpnq : G ÝÑ G

g ÞÑ n´1gn

It is obvious that ψ is a homomorphism. First, we will show that ψ is onto. Let σ be

an automorphism of G. Then since G is regular, for any α P Ω the point stabilizer,

Gα is identity. Therefore, the two transitive representations of G sending x to x and

sending x to xσ are equivalent by [2, Lemma 1.6]. Hence, the actions are conjugate,

that is there exists an element t P SympΩq such that xt “ xσ. Hence, ψptq “ σ.

On the other hand, Kerψ “ CSympΩqpGq and since G is regular by Lemma 7.1 we

have Kerψ – G. As ψ is onto we have N{G – AutpGq.

Moreover, G is a normal subgroup of N and N acts on Ω. Since G is regular, it is

transitive. Then for any x P Ω and n P N there exists g P G such that x.g “ x.n.

Hence, ng´1 P StabNpxq. Therefore, N “ GStabNpxq (Frattini Argument) and

StabNpxq – AutpF q. Since GX AutpGq “ t1u, we have N – G¸ AutpGq.

In this chapter, we will find the structure of normalizers of finite semi-regular sub-

groups of Spξq. Since Spξq is the union of finite symmetric groups, first for a finite

set Ω, we find the normalizer of a semi-regular subgroup in SympΩq. The structure

of normalizers of such groups is mentioned by Kohl in one of his talks, see [8]. How-

ever, the proof is not stated so for the readers convenience we will give the proof in

the following theorem.

Theorem 7.3. For a finite semi-regular subgroup F of SympΩq where |Ω| ă 8, let

∆1, . . . ,∆r be the orbits of F on Ω. Then NSympΩqpF q – F r ¸ pSymprq ˆ AutpF qq

Proof. By [2, Lemma 1.6B], since on each ∆i the action of F is transitive and F is

semi-regular the actions on the orbits are equivalent. Since the actions are equivalent

by [2, Exercises 4.2.5] the centralizer of F is isomorphic to F r ¸ Symprq. We know

that the centralizer is a normal subgroup of the normalizer. Hence, pF r ¸Symprqq Ÿ

NSympΩqpF q.
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Let F|∆i be the restriction of F on the orbit ∆i. Then F|∆i is regular hence by Lemma

7.2 NSymp∆iqpF|∆i q “ F|∆i ¸ AutpF|∆i q.

Let σi : ∆1 ÝÑ ∆i be the map inducing equivalent actions for all 1 ď i ď r. The map

σ1 is the identity map. Hence, for any α P ∆1 we have αfσi “ ασif by considering

σi as the transposition in SympΩq acting as identity outside of ∆1 Y ∆i. For any

1 ‰ f P F , since the orbits are equivalent and the group is semi-regular we can write

f “ f∆1 . . . f∆r where f∆i
is the restriction of f on the orbit ∆i. Now for a P ∆1,

obviously we have af∆1
σi “ aσif∆i and since σi is a transposition for any b P ∆i we

also have bσif∆1
σi “ pbσiqf∆1

σi “ pbσiqσif∆i “ bf∆i . Hence, we have fσi∆1
“ f∆i

.

Therefore, any f P F can be written as f “ f∆1 . . . f∆r where each f∆i
is determined

by fσi∆1
. Now, if α1 P AutpF|∆1

q, then we can say that α1 is a permutation on ∆1

because of the following;

Let F be a semi-regular subgroup of SympΩq, |Ω| ă 8, with orbits ∆1, . . . ,∆r. If

α is an automorphism of F , for an arbitrary orbit ∆i, fix an element ai P ∆i. Now, α

acts on ∆i via α ¨ b “ a
αpfbq
i where fb is the unique element such that afbi “ b, since

F is semi-regular, the existence and uniqueness of fb follows directly. We will show

that the action is well-defined and one-to-one. Obviously, if a “ b, then fa “ fb by

uniqueness of the element sending ai to a. Hence, α ¨ a “ a
αpfaq
i “ a

αpfbq
i “ α ¨ b.

So, the action is well-defined. Let α ¨ a “ α ¨ b. Then there exists fa, fb such that

afai “ a and afbi “ b. Hence, aαpfaqi “ a
αpfbq
i so aαpfaqpαpfbqq

´1

i “ ai. But since F

is semi-regular the point stabilizers are identity, so we have αpfaq “ αpfbq. Hence,

fa “ fb implying a “ b, by uniqueness of fa. Since ∆i is finite and we can define the

action of α within the orbits of F and we see that α is a permutation on each orbit of

F . Hence, α P SympΩq. Also note that, α has an action on each orbit ∆i. So, we

can think α “ α1α2 . . . αr, where each αi is the element of Symp∆iq, inducing an

automorphism of F|∆i .

Because of the above explanation, if α1 P AutpF|∆1
q, then ασi1 P AutpF|∆i q and for

any f “ f∆1 . . . f∆r P F we have,

fα1α
σ2
1 ...ασr1 “ fα1

∆1
f
α
σ2
1

∆2
. . . f

ασr1
∆r

“ fα1
∆1
f
σ2α

σ2
1

∆1
. . . f

σrα
σr
1

∆1
“ fα1

∆1
fα1σ2

∆1
. . . fα1σr

∆1
P F.

Notice that fα1
∆1

P F|∆1
so, α1α

σ2
1 . . . ασr1 induces an automorphism of F which
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normalizes F and it is uniquely determined by α1. Indeed, for any automorphism

β P AutpF|∆1
q there exists an element in the normalizer which is uniquely deter-

mined by β.

Conversely, let n P NSympΩqpF q, since n may permute the orbits of F and we know

the centralizer CSympΩqpF q – F r ¸ Symprq is contained in the normalizer we may

multiply n with an element π P Symprq in the centralizer so that nπ´1 acts trivial

on the set of orbits. Now, nπ´1 P NSympΩqpF q can be thought as an element of

Symp∆1q ˆ . . . ˆ Symp∆rq. Let nπ´1 “ m. Since m acts trivially on the set of

orbits we may consider m “ m∆1 . . .m∆r where m∆i
“ m|∆i

P Symp∆iq. Notice

that m∆i
P NSymp∆iqpF|∆i q that is, F

m∆i

|∆i
“ F|∆i for all 1 ď i ď r. Now, for each i

since F|∆i is regular by Lemma 7.2, we can write m∆i
“ αini where αi P AutpF|∆i q

and ni P F|∆i . Now, m can be written as α1n1α2n2 . . . αrnr. Moreover, since αi´1 P

Symp∆i´1q and ni P Symp∆iq we have αi´1ni “ niαi´1 for all 1 ď i ď r hence

m “ α1α2 . . . αrn1n2 . . . nr. Observe that each ni P F|∆i and the element s :“

n´1
1 n´1

2 . . . n´1
r m “ α1α2 . . . αr is an element of the normalizer.

For any f P F , since α1α2 . . . αr normalizes f , we have fα1α2...αr “ g for some

g P F . We know g and f can be written in the form f∆1f∆2 . . . f∆r and g∆1g∆2 . . . g∆r .

where f∆i
, g∆i

is the restriction of f and g to the orbit ∆i, respectively. Hence,

fα1α2...αr “ pf∆1f∆2 . . . f∆rq
α1α2...αr “ g∆1g∆2 . . . g∆r

Since each αi is an element of Symp∆iq, we can write pf∆1f∆2 . . . f∆rq
α1α2...αr “

fα1
∆1
fα2

∆2
. . . fαr∆r

“ g∆1g∆2 . . . g∆r .

Considering the fact that each f∆i
and g∆i

is determined by fσi∆1
and gσi∆1

, respectively,

we see fαi∆i
“ fσiαi∆1

“ gσi∆1
. So, σiαiσi P NSymp∆1qpF∆1q.

Observe that σiαiσi and α1 has the same action on F∆1 , because for the arbitrary

element f , fα1
∆1

“ g∆1 “ fσiαiσi∆1
. Hence, α´1

1 σiαiσi P CSymp∆1qpF∆1q – F∆1

and for each 1 ď i ď r there exists t1i P F∆1 such that α´1
1 σiαiσi “ t1i. Then

multiplying from left by σiα1 and from right by σi we have αi “ ασi1 t
σi
1i . Even-

tually, the element s “ α1α2 . . . αr “ α1α
σ2
1 t

σ2
12 . . . α

σr
1 t

σr
1r can be written as s “

α1α
σ2
1 . . . ασr1 t

σ2
12 . . . t

σr
1r , because of the fact that tσi1i P Symp∆iq and ασj1 P Symp∆jq

commutes. So, we get sptσr1r q
´1 . . . ptσ2

12q
´1 “ α1α

σ2
1 . . . ασr1 P AutpF q. Observe
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that this automorphism is uniquely determined by α1. Hence, there exist an au-

tomorphism α P AutpF q such that sptσr1r q
´1 . . . ptσ2

12q
´1α´1σr

1 . . . α´1
1 α´1 “ id. So

n P F|∆1
F|∆2

. . . F|∆rAutpF qSymprq. Since each F|∆i – F and for i ‰ j commutes

elementwisely, we have n P F rAutpF qSymprq.

Let α P AutpF q. Then by Page 83, α can be seen as an element of SympΩq and

can be written as α1α2 . . . αr where αi P Symp∆iq. For any f P F , write f in

the form f “ f∆1f
σ2
∆1
. . . fσr∆1

. We have fα “ fα1
∆1
fσ2α2

∆1
. . . fσrαr∆1

. Now, if fα “

g∆1g
σ2
∆1
. . . gσr∆1

we have α´1
1 ασii is in the centralizer CSymp∆iqpF|∆i q, so α´1

1 ασii is the

identity automorphism of F|∆i . Hence, we get that αi “ ασi1 for all 1 ă i ď r. On

the other hand, note that Symprq can be generated by σi’s for all 1 ď i ď r where

σi’s are the permutations inducing the equivalency of the actions of F on each orbit.

Now, ασi “ pα1α
σ2
1 . . . ασr1 q

σi “ ασi1 α
σ2σi
1 . . . ασrσi1 “ α for any 1 ă i ď r. Hence,

the elements of Symprq and AutpF q commute elementwisely.

Also observe that the intersection AutpF q X Symprq is trivial, since by Page 83,

AutpF q acts identity on the set of orbits but the elements in Symprq permutes the

set of orbits. By the structure of the centralizer, we know Symprq acts on F r and

the action of the group AutpF q on F r can be seen above. Hence, NSympΩqpF q –

F r ¸ pAutpF q ˆ Symprqq.

In fact, let F be a finite group acting on Ω where |Ω| ă 8 such that either Fα “ 1 or

Fα “ F for any α P Ω and let ∆1, . . .∆r be the orbits of length greater than 1. Then

it can easily be seen that the restriction of the action of F on the set ∆1 Y . . .Y∆r is

semi-regular. Moreover, we have the following result.

Corollary 7.4. For a finite subgroup F of SympΩq satisfying either Fα “ 1 or Fα “

F we have NSympΩq – pF
r ¸pSymprqˆAutpF qqqˆSympkq where r is the number

of orbits of length greater than 1 and k is the number of orbits of length 1.

Proof. The symmetric group on the set of all points fixed by F centralizes F . Indeed,

F can be seen as the subgroup of Symp|Ω| ´ kq which has a semi-regular action then

by Theorem 7.3 the result will follow.

Let F be a semi-regular finite subgroup of homogeneous symmetric group Spξq,
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where ξ “ă p1, p2, . . . ą. We are interested in the structure of the normalizer of

F . Since F is finite we can assume that F ď Sni for some i where ni “ p1p2 . . . pi.

Theorem 7.5. LetF be a finite semi-regular subgroup of Spξqwhere ξ “ă p1, p2, . . . ą.

If F is in Sni for some ni “ p1p2 . . . pi, then

NSpξqpF q{CSpξqpF q – AutpF q

Proof. Recall that we have strictly diagonal embeddings dpi`1 : Sni ÝÑ Sni`1
, and

the direct limit group via these embeddings are denoted by Spξq “
8
Ť

i“1

Spniq, where

Spniq is the image of Sni in the group Spξq.

Consider the map dpi`1 . For simplicity of the notation we will denote it by di`1. By

Theorem 7.3, we know the structure of normalizer of F in Sni is F r ¸ pAutpF q ˆ

Symprqq. When we embed F into Sni`1
via di`1 we also know that the normalizer is

F rpi`1 ¸ pAutpF q ˆ Symprpi`1qq. We need to show that the embedding of NSni
pF q

to NSni`1
pF q is inherited from the strictly diagonal embedding di`1. By [5, Theorem

3], we know the embeddings of the centralizers are inherited from di`1 so it is enough

to show the quotient groups are embedded via strictly diagonal embeddings.

We know that NSni
pF q{CSni pF q – AutpF q and similarly NSni`1

pF q{CSni`1
pF q –

AutpF q. Let ∆1,∆2, . . . ,∆r be the orbits of F in Sni and for all 2 ď t ď r let σt be

the bijective maps from ∆1 to ∆t inducing the equivalency of the actions as before.

Since F is embedded via strictly diagonal embedding, for all 1 ď k ď pi`1 and for

all 1 ď t ď r we know the structure of the orbits ∆pk´1qr`t “ tpk´1qni`a|a P ∆tu.

So for each k, there is a one-to-one correspondence between ∆t and ∆pk´1qr`t. Now

if we define ∆pk´1qr`1 Y ∆pk´1qr`2 Y . . .∆kr :“ Σk where 1 ď k ď pi`1, and

Σk “ tpk´1qni`1, pk´1qni`2, . . . , kniu, then Σ1YΣ2Y. . .YΣpi`1
will be equal to

the all set t1, 2, . . . , ni`1u. Keeping in mind that, the orbits are constructed via strictly

diagonal embedding, for all 1 ď k ď pi`1, there exist bijections βk : Σ1 ÝÑ Σk

where ∆j is mapped to ∆pk´1qr`j via strictly diagonal embedding. Hence, we have

σpk´1qr`t equals to the composition of maps σtβk for all 1 ď k ď pi`1 and 1 ď t ď r,

which induces the strictly diagonal embedding.

Recall, in the proof of Theorem 7.3, we see that for F Ă Sni`1
,AutpF q Ă Sympni`1q

any automorphism, α, of F can be written in the form α1α
σ2
1 . . . α

σpi`1r

1 where α1 is an
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automorphism of F|∆1
, the restriction of F on ∆1. Since each element ασi1 commutes

with each other by rearranging the elements we can write

α “ α1α
σr`1

1 . . . α
σppi`1´1qr`1

1

L

ασ2
1 α

σr`2

1 . . . α
σppi`1´1qr`2

1

L

. . .
L

ασr1 α
σ2r
1 . . . α

σpi`1r

1

Putting σtβk in the place of σpk´1qr`t,

α “ α1α
β2

1 . . . α
βpi`1

1

L

ασ2
1 α

σ2β2

1 . . . α
σ2βpi`1

1

L

. . .
L

ασr1 α
σrβ2

1 . . . α
σrβpi`1

1

The slashes are just for the readers to easily follow the writings. In fact, since ασk1

is an element of Symp∆kq in Sni . Consider any part separated with a slash. Each

separated part of the element α is of the form ασk1 α
σkβ2

1 . . . α
σkβpi`1

1 for some k. If

we denote that element by αk, then one can see that αk is an element of Symp∆kq ˆ

Symp∆r`kq ˆ . . . ˆ Symp∆ppi`1´1qr`kq. Indeed, by the structure of maps βj , the

element ασkβj1 acts on ∆pj´1qr`k in the same way as the action of element ασk1 on

∆k. Hence, di`1pα
σk
1 q “ ασk1 α

σkβ2

1 . . . α
σkβpi`1

1 for all 1 ď k ď r. Since dpi`1q is a

homomorphism we have, di`1pα1α
σ2
1 . . . ασr1 q “ α1α

σ2
1 . . . ασpi`1r .

Therefore, the automorphisms are inherited from the embeddings di`1 but the struc-

ture of the quotient group does not change. Therefore, continuing the embeddings we

get the automorphism group of F in the group Spξq and we get the result.

7.1 Normalizers of Finite Groups in Finitary Homogeneous Symmetric Groups

For an arbitrary cardinal κ, and a sequence of prime numbers ξ “ă p1, p2, . . . ą

recall that in Chapter 6 we constructed FSympκqpξq.

Since FSympκqpξq is the union of finitary symmetric group we can not have a finite

semi-regular subgroup, however we can extend the idea as follows. Let F be a finite

subgroup of FSympκqpξq. Since we can write FSympκqpξq as
8
Ť

i“1

FSympκniq and

F is finite, we may assume that F ď FSympκniq for some i P N. Then F acts on the

set κni with finite support. So we can write κni “ κnizsupppF qY supppF q. Assume

that the action of F on the set supppF q is semi-regular.

Then for these type of subgroups of FSympκqpξq, we have the following result.
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Theorem 7.6. Let F be a finite subgroup of FSympκqpξq which acts semi-regularly

on its support, supppF q. Then if F P FSympκniq for some ni “ p1p2 . . . pi we have

NFSympκqpξqpF q{CFSympκqpξqpF q – AutpF q

Proof. The proof follows from the fact that F can be viewed as a finite semi-regular

subgroup of the symmetric group on the set of the union of the orbits of length greater

than 1. Since the permutations of the orbits of length 1 lies in the centralizer by

Theorem 7.3, we have the result.
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