
IMPROVED DIFFERENTIAL ATTACKS ON RECTANGLE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ASUMAN ŞENOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CYBER SECURITY

AUGUST 2017





Approval of the thesis:

IMPROVED DIFFERENTIAL ATTACKS ON RECTANGLE

submitted by ASUMAN ŞENOL in partial fulfillment of the requirements for the de-
gree of Master of Science in Cyber Security Department, Middle East Technical
University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics

Assist. Prof. Dr. Aybar Can Acar
Head of Department, Cyber Security

Assist. Prof. Dr. Aysu Betin Can
Supervisor, Informatics Institute, METU

Dr. Cihangir Tezcan
Co-supervisor, Department of Mathematics, METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assist. Prof. Dr. Aysu Betin Can
Informatics Institute, METU

Assist. Prof. Dr. Aybar Can Acar
Informatics Institute, METU

Assist. Prof. Dr. Cengiz Acartürk
Informatics Institute, METU

Prof. Dr. Ali Aydın Selçuk
Computer Engineering Department, TOBB ETU

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ASUMAN ŞENOL

Signature :

v



ABSTRACT

IMPROVED DIFFERENTIAL ATTACKS ON RECTANGLE

Şenol, Asuman

M.S., Department of Cyber Security

Supervisor : Assist. Prof. Dr. Aysu Betin Can

Co-Supervisor : Dr. Cihangir Tezcan

August 2017, 93 pages

Differential attacks aim to capture the round keys by examining the changes in the
output when a small change is applied to the input. This method is based on examin-
ing the differential behavior of the cryptosystem and guessing the affected round keys
by using candidate plaintext and ciphertext pairs. It was shown that it may not be pos-
sible for the attacker to fully uncover the guessed keys. This situation occurs when
the cipher contains S-boxes after the key addition layer and the guessed keys have
a specific difference for a fixed S-box output difference for some S-boxes. Such an
S-box property is called a differential factor. Because of the uncovered keys which is
caused by not taking differential factors into account, attacks in the literature obtained
by theoretical methods may not work correctly in practice. In addition to that, more
powerful differential attacks can be proposed with undisturbed bits because these bits
provide discovering longer differential characteristics. As these attacks are corrected
by considering differential factors and undisturbed bits, the claimed time complexity
may increase or decrease. Rectangle and Present are two lightweight block ciphers
with SPN structure and their S-boxes have differential factors and undisturbed bits. In
this work, we corrected previously published differential attacks on Rectangle and on
Present by the help of undisturbed bits and we showed that these attacks can actually
be performed with time complexities reduced with the help of differential factors and
undisturbed bits .

vi



Keywords: differential cryptanalysis, block cipher, lightweight, differential factor

vii



ÖZ

RECTANGLE ALGORİTMASINDA GELİŞTİRİLMİŞ DİFERANSİYEL
SALDIRILAR

Şenol, Asuman

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Aysu Betin Can

Ortak Tez Yöneticisi : Dr. Cihangir Tezcan

Ağustos 2017 , 93 sayfa

Diferansiyel saldırılar, girdiye küçük bir değişiklik uygulandığında çıktıdaki değişik-
likleri inceleyerek raund anahtarlarını yakalamayı amaçlar. Bu yöntem, kriptosiste-
min diferansiyel davranışını incelemek ve etkilenen raund anahtarlarını, aday düz me-
tin ve şifreli metin çiftlerini kullanarak tahmin etmek üzerine kuruludur. Saldırganın
tahmin edilen anahtarları tam olarak elde etmesi bazı durumlarda mümkün değildir.
Bu durum, şifre ekleme katmanının ardından S kutuları içerdiğinde ve tahmin edilen
anahtarların, bazı S kutuları için sabit bir S kutusu çıktı farkı için belirli bir farkı ol-
duğunda ortaya çıkar. Böyle bir S-box özelliği, diferansiyel faktör olarak adlandırılır.
Farklı diferansiyel faktörlerin dikkate alınmamasıyla ortaya çıkan açık anahtarlar ile
teorik yöntemlerle elde edilen saldırılar uygulamada doğru şekilde çalışmayabilir. Bu
özelliğe ek olarak, daha güçlü ataklar karıştırılmamış bitler ile yapılabilir çünkü bu
bitler daha uzun diferansiyel karakteristiklerin keşfedilmesini sağlarlar. Bu saldırı-
lar, farklı faktörleri ve karıştırılmamış bitleri göz önüne alarak düzeltildiğinde, iddia
edilen zaman karmaşıklığı artabilir veya azalabilir. Rectangle ve Present SPN ya-
pısında hafif blok şifrelerdir ve S kutuları diferansiyel faktörlere ve karıştırılmamış
bitlere sahiptir. Bu çalışmada, önceden Rectangle ve Present algoritmalarına yapı-
lan, yayınlanmış diferansiyel saldırıları karıştırılmamış bitler yardımı ile düzelttik ve
bu saldırıların differansiel bitler yardımı ile zaman karmaşıklıklarının azaltılmasıyla
gerçekleştirilebileceğini gösterdik.

viii



Anahtar Kelimeler: diferansiyel kriptanaliz, blok şifre, hafif şifre, diferansiyel faktör

ix



To Yasir
For his support, his patient and his advice

x



ACKNOWLEDGMENTS

I would like to thank my supervisor Assist. Prof. Dr. Aysu Betin Can and co-
supervisor Dr. Cihangir Tezcan for their constant support, guidance and friendship.
While I was writing the thesis, Dr. Tezcan spared all his support even though he was
not in Turkey. Dr. Tezcan always supported me like he was in Turkey. It was a great
honor to work with him for the last two years and our cooperation influenced my
academical life highly.

I have learned many theories in the courses of Master Degree Program, I have also
had the opportunity to try these theories practically while working. During this time,
all my colleagues supported and encouraged me to accomplish my master’s degree
successfully. Also, I would like to thank my team leaders for helping me to go to
school at any time.

Lastly, sincerest thanks to my mom Gülay Şenol, my dad Yıldırım Şenol, my brother
Can Şenol. Throughout my entire life, they have supported me materially and morally.
I especially thank to my fiance Yasir Yazıcı, he is with me with his love, his knowl-
edge and his experience at every moment. He supports and believes in me all the way
through my academic life.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND ON CRYPTOGRAPHY . . . . . . . . . . . . . . . 5

2.1 Foundation of Cryptography . . . . . . . . . . . . . . . . . . 5

2.2 Evolution of Cryptography . . . . . . . . . . . . . . . . . . 5

2.3 Characteristics of Modern Cryptography . . . . . . . . . . . 6

2.4 Context of Cryptography . . . . . . . . . . . . . . . . . . . 6

xii



2.5 Purposes of Cryptography . . . . . . . . . . . . . . . . . . . 7

2.6 Types of Cryptography . . . . . . . . . . . . . . . . . . . . 8

2.6.1 Secret Key Cryptography . . . . . . . . . . . . . . 8

2.6.2 Public Key Cryptography . . . . . . . . . . . . . . 8

2.6.3 Hash Functions . . . . . . . . . . . . . . . . . . . 9

3 BLOCK CIPHERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Types of Block Ciphers According to Their Structure . . . . 11

3.2 Modern Block Cipher Types . . . . . . . . . . . . . . . . . . 12

3.3 Cryptanalysis of Block Ciphers . . . . . . . . . . . . . . . . 14

3.4 Lightweight Block Ciphers . . . . . . . . . . . . . . . . . . 15

3.4.1 Design of Lightweight Block Ciphers . . . . . . . 15

3.4.2 The Most Widely Known Lightweight Block Ci-
phers . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2.1 Present . . . . . . . . . . . . . . . . 17

3.4.2.2 PRINTCipher . . . . . . . . . . . . . 18

3.4.2.3 Desl, Desx and Desxl . . . . . . . . . 19

3.4.2.4 Led . . . . . . . . . . . . . . . . . . . 20

3.4.2.5 Katan and Ktantan . . . . . . . . . . 20

3.4.2.6 Klein . . . . . . . . . . . . . . . . . . 21

3.4.2.7 Lblock . . . . . . . . . . . . . . . . . 22

3.4.2.8 Twine . . . . . . . . . . . . . . . . . 23

3.4.2.9 Epcbc . . . . . . . . . . . . . . . . . . 23

xiii



3.4.2.10 Puffin . . . . . . . . . . . . . . . . . 24

4 S-BOXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Introduction of S-Box . . . . . . . . . . . . . . . . . . . . . 27

4.2 S-Box Properties . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Differential Uniformity . . . . . . . . . . . . . . . 27

4.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Non-linearity . . . . . . . . . . . . . . . . . . . . 28

4.2.4 Balancing . . . . . . . . . . . . . . . . . . . . . . 28

4.2.5 Strict Avalanche Criterion (SAC) . . . . . . . . . . 29

4.2.6 Branch Number . . . . . . . . . . . . . . . . . . . 29

4.2.7 Undisturbed Bits . . . . . . . . . . . . . . . . . . 29

4.2.8 Differential Factors . . . . . . . . . . . . . . . . . 30

4.3 Differential Factors and Cryptanalysis . . . . . . . . . . . . 31

5 ATTACKS ON BLOCK CIPHERS . . . . . . . . . . . . . . . . . . . 33

5.1 Cryptanalytic Attacks . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Differential Cryptanalysis . . . . . . . . . . . . . . 35

5.1.1.1 Overview of Basic Attack . . . . . . . 37

5.1.1.2 Extracting Key Bits . . . . . . . . . . 37

5.1.1.3 Complexity of the Attack . . . . . . . 38

5.1.2 An Example of Differential Cryptanalysis: Differ-
ential Cryptanalysis of UltraLightweight Present
Cipher . . . . . . . . . . . . . . . . . . . . . . . 38

xiv



5.2 Corrected Attack on Present . . . . . . . . . . . . . . . . . 40

6 OVERVIEW OF RECTANGLE . . . . . . . . . . . . . . . . . . . . 43

6.1 The Last Version of The Rectangle Algorithm . . . . . . . . 44

6.1.1 Representation of Plaintext and Subkey as Matrix . 44

6.1.2 Substitution and Permutation Operations . . . . . . 45

6.1.2.1 S-box . . . . . . . . . . . . . . . . . 45

6.1.2.2 Differential Factors . . . . . . . . . . 46

6.1.3 Key Schedule . . . . . . . . . . . . . . . . . . . . 46

6.1.4 Whole Cipher . . . . . . . . . . . . . . . . . . . . 48

6.2 The Rec-0(First Version of the Rectangle Algorithm) . . . . 49

6.2.1 Representation of Plaintext and Subkey as Matrix . 49

6.2.2 Substitution and Permutation Operations . . . . . . 50

6.2.2.1 S-box . . . . . . . . . . . . . . . . . 50

6.2.2.2 Differential Factors . . . . . . . . . . 50

6.2.3 Key Schedule . . . . . . . . . . . . . . . . . . . . 51

6.2.4 Whole Cipher . . . . . . . . . . . . . . . . . . . . 51

6.3 Differential Attacks on Rectangle . . . . . . . . . . . . . . . 51

6.3.1 19-round Related-key Differential Attack on Rec-0 52

6.3.1.1 Differential Characteristics . . . . . . 52

6.3.1.2 A related-key differential attack on Rec-
0 with key length 80 . . . . . . . . . . 54

xv



6.3.2 18-round Related-key Differential Attack on Rect-
angle . . . . . . . . . . . . . . . . . . . . . . . . 61

7 CORRECTIONS AND IMPROVEMENTS ON DIFFERENTIAL AT-
TACKS ON RECTANGLE . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Improvement on 19-Round Related-Key Differential Attack
on Rec-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Experimental Differential Cryptanalysis . . . . . . . . . . . 64

7.3 Improvement on 18-Round Differential Attack on Rectangle 69

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDICES

A APPENDIX I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xvi



LIST OF TABLES

TABLES

Table 3.1 Sample Substitution Table . . . . . . . . . . . . . . . . . . . . . . . 13

Table 3.2 Sample Permutation Table . . . . . . . . . . . . . . . . . . . . . . 14

Table 3.3 S-box of Present Cipher . . . . . . . . . . . . . . . . . . . . . . . 17

Table 3.4 S-box of PRINTCipher . . . . . . . . . . . . . . . . . . . . . . . . 19

Table 3.5 S-box of Desl and Desxl Cipher . . . . . . . . . . . . . . . . . . . 19

Table 3.6 S-box of Led Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3.7 S-box of Klein Cipher . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.8 S-box of Lblock Cipher . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 3.9 S-box of Epcbc Cipher . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3.10 S-box of Puffin Cipher . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.11 Comparison of lightweight block ciphers . . . . . . . . . . . . . . 26

Table 4.1 Undisturbed bits of Rectangle Cipher . . . . . . . . . . . . . . . . 30

Table 5.1 Differential distributions of the S-box in Present . . . . . . . . . . . 39

Table 5.2 Differential Factors of Present . . . . . . . . . . . . . . . . . . . . 39

Table 5.3 16-round differential-linear attack of [62]. Values that need to be
obtained are shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 6.1 S-box of Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 6.2 Differential Factors of Rectangle . . . . . . . . . . . . . . . . . . . 46

Table 6.3 Round Constants of Rectangle Cipher . . . . . . . . . . . . . . . . 47

xvii



Table 6.4 S-box of REC-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 6.5 Differential Factors of the S-box of Rec-0 . . . . . . . . . . . . . . 50

Table 6.6 Differential distributions of the S-box in Rec-0 . . . . . . . . . . . . 53

Table 6.7 n-round differential characteristics with fewer active S-boxes and
the differences of the 2nd round and the 16th round subkeys are . . . . . . 53

Table 6.8 All 15-round differential characteristics with 26 − 30 active S-boxes 54

Table 7.1 19-round differential-linear attack of Rec-0. differential factors are
shown in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 7.2 19-round differential-linear attack of Rec-0. Bits that should be
captured because of undisturbed bit in the 1st are shown in bold. . . . . . . 69

Table 7.3 The input difference and the output difference of the 14-round dif-
ference propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xviii



LIST OF FIGURES

FIGURES

Figure 3.1 The Structure of Feistel Ciphers . . . . . . . . . . . . . . . . . . . 12

Figure 3.2 The Structure of SPN Type of Ciphers . . . . . . . . . . . . . . . . 13

Figure 3.3 The Structure of Present Cipher . . . . . . . . . . . . . . . . . . . 18

xix



LIST OF ABBREVIATIONS

DDT Difference Distribution Table

IC Integrated Circuit

IoT Internet of Things

LFSR Linear Feedback Shift Register

MILP Mixed-Integer Linear Programming

RC Round Constant

REC-0 The old version of RECTANGLE Cipher

SPN Substitution Permutation Network

xx



CHAPTER 1

INTRODUCTION

People have kept secrets for centuries for different reasons like private communica-

tion, secure commerce and so on. For this purpose, they created different methods

like changing the original content of a message with numbers, symbols and pictures

in history. This way, they were able to assure that the content of their message can

only be seen by the authorized people. This was the initial state of encryption. Since

then, the encryption has evolved and become more complex over the centuries. Now,

encryption can be done by advanced mathematical techniques with the beginning of

the Information Age.

There are continuous changes in today’s information technology environment. At

the beginning of Information Age, information technology systems were based on

host technology that a supercomputer served many users through thin clients. After

these times, one user - one computer model which means each user has his own

computer became popular. This model is still widely used today. On the other hand,

we have observed that there is a growing interest in controlling several electronic

devices that interact with each other through the network by one user. This is one

user-many computer model which is commonly known as "Internet of Things (IoT)"

or "Smart Object" networks. RFID tags, sensors, contact-less smart cards, health-

care devices are some examples of IoT devices and as the number of IoT devices

increase, security emerges as a growing problem every day. Cyber Security has gained

importance with the improvement of the technology especially with the development

of IoT technologies and it aims to protect devices from unauthorized access.

The security in IoT devices is provided by cryptography as are in the other devices.

1



However, IoT devices generally operate on platforms with limited resources and lim-

ited computing power. Because of those reasons, modern cryptographic algorithms

that is suitable for personal computers are not suitable for IoT devices. Thus, the need

for the algorithms that is used in IoT devices which require less power, less energy,

less cost, and less memory has arisen. To meet this need, lightweight cryptographic

algorithms are used.

Mostly block ciphers are used in lightweight cryptography and these block ciphers

have exposed to several attacks. Differential cryptanalysis is one of the most im-

portant attack type to capture key bits. Since differential cryptanalysis are usually

theoretical, various calculation errors arise when they are not tested in practice. In

this thesis, we study the problems that arise when the theoretical differential attacks

are not practically tested.

1.1 Contributions of the Thesis

One user - many computer model developed quickly in the last ten years and this

development brought new challenging problems at the same time. The main reason

for these problems are related to the physical and economic constraints of them. In

other words, conventional encryption techniques are not suitable for these devices

since they have limitations. This indecency has accelerated the development of the

lightweight cryptography.

A lot of lightweight ciphers have emerged along with the rapid developments in this

area as we have explained in Section 3.4.2. As different lightweight ciphers are pro-

posed, many differential attacks against to these ciphers have been done and still

continued to be done. However these attacks are mostly theoretical and they are not

checked practically. Dr. Tezcan noticed the presence of differential factors and undis-

turbed bits [55], when he investigated these theoretical attacks. At the end of these

researches, the following result has been achieved: if differential factors and undis-

turbed bits are not considered by the attackers, the attacks in the literature obtained

by theoretical methods may not work correctly in practice. When these attacks are

corrected by considering them, the claimed time complexity may increase or decrease

2



due to differential factors.

In this thesis, we have investigated Rectangle and Present cipher to see if it contains

a differential factor and a undisturbed bit. We started our research by examining the

whole ciphers to understand the 18-round [69], and 19-round [45] differential attacks

on Rectangle [69] block cipher and 16-round[62] differential attack on Present. Con-

sequently, the time complexity of the 19-round related-key differential attack of [45]

increased by a factor of 21.07 with the help of two differential factors and we showed

that 3 more bits of the key should be guessed because of the undisturbed bits. In

addition to that, we showed that the 16-round differential attack of [62] on Present

needs to guess 8 more bits of the key due to the undisturbed bits. These observations

and improvements were also published in [57] and [56].

1.2 Outline

In the first chapter, we introduce you about our motivation. We also define the prob-

lem that we want to solve in this thesis and explain the contribution of the thesis. In

the second and third chapters, we give a short introduction about cryptographic prim-

itives and block ciphers, respectively. Chapter 4 gives an overview of S-boxes and the

properties of it. In Chapter 5, we discuss the attack types of block ciphers. Moreover,

after investigating the structure of Rectangle [69] in Chapter 6, we investigate the

18-round [69], and 20-round [45] differential attacks on Rectangle [69] block cipher

and we provide some corrections for these attacks considering differential factors in

Chapter 7. Chapter 8 summarizes the dissertation.

3



4



CHAPTER 2

BACKGROUND ON CRYPTOGRAPHY

In this chapter, we give brief information about cryptography.

2.1 Foundation of Cryptography

The foundations of cryptography is based on the Roman and Egyptian civilizations.

The first known example of cryptography is ’hieroglyph’. About 4000 years ago, the

Egyptians communicated with the help of hieroglyphic messages in a hidden way. It

consists of more than 700 signs and each sign represents either a particular object or

a specific voice as described in [36].

2.2 Evolution of Cryptography

During and after the European Renaissance, different cryptographic techniques were

used at various Italian and Papal states. In addition, several analysis and attack tech-

niques had been explored to break the secret codes in this period. The milestones of

this field are as follows:

• New coding techniques such as Vigenere Cipher were found in the 16th century.

The Vigenere Cipher was developed by Blaise de Vigenere and it is a simple

form of polyalphabetic substitution.

• Only after the 19th century, cryptography has become more sophisticated than

transient approaches to cryptography. Morse code play fair, beale ciphers are

5



found and used in this century.

• In the early 20th century, mechanical and electromagnetical machines were

discovered such as the Enigma rotor machine. They provided more efficient

way for encoding.

• During World War II, both cryptography and cryptanalysis became based on

advanced mathematics.

With this progress, government agencies, military units and some institutional houses

began to adopt using cryptography to protect their secrets from others. Now, with the

advent of computers and the Internet, modern cryptography methods are used by the

people all over the world.

2.3 Characteristics of Modern Cryptography

Modern cryptographic algorithms work on binary bits rather than letters and se-

quences as in traditional methods. In addition to that, the coding algorithms are not

kept as a secret in modern cryptography. Confidentiality is achieved by only using a

secret key. The difficulties on calculation make it difficult for an attacker to obtain the

original information even if he knows the algorithm used in coding.

2.4 Context of Cryptography

The study of cryptosystems can be divided into two categories.

• Cryptography : Cryptography is the art and science of concealing the mes-

sages to provide security. This word is the combination of two Greek words;

’Krypto’ means hidden and ’graphene’ means writing. Cryptography ensures

the safety of data. It is generally based on mathematical algorithms. One can

think of cryptography as the establishment of a large set of tools with different

techniques in security applications.

6



• Cryptanalysis : Cryptanalysis is the science of analyzing the security in the

ciphers by finding the weaknesses in design. Cryptanalysis is the sibling of

cryptography and they are inseparable fields. When a new encryption technique

is designed, its cryptanalysis results are published with it too.

2.5 Purposes of Cryptography

The purposes that are intended to be fulfilled by cryptography is as follows:

1. Confidentiality

Confidentiality is the most fundamental security purpose of cryptography. It

aims to keep information away from an unauthorized person. Confidentiality

can be achieved in numerous ways, from providing physical security to using

mathematical algorithms for data encryption.

2. Data Integrity

Data Integrity aims to detect any changes in the data. The data may be altered

intentionally or accidentally by an unauthorized person. Integrity confirms that

the data has not been changed since it was last created, transmitted or stored by

an authorized user. Data integrity can not prevent data from being altered, but

it can detect whether data is being manipulated by an unauthorized user or not.

3. Authentication

Authentication provides identification of the sender. Receiver can be sure that

the received data is only sent by the verified sender with the help of the authen-

tication.

4. Non-Repudiation

Non-Repudiation provides that an entity cannot deny the his previous commit-

ments or actions. Non repudiation is the most desirable feature when there is

a disagreement about a data exchange especially while making an online pay-

ment.

7



2.6 Types of Cryptography

There are three cryptography techniques which are secret key cryptography, public

key cryptography and hash functions.

2.6.1 Secret Key Cryptography

This encryption technique uses only one key. Sender and recipient applies a key

to encrypt and decrypt messages with the same key. Since only single key is used

for both encryption and decryption in this technique, it can also be called symmetric

encryption. Key distribution is the biggest problem in this technique and this problem

can be solved by asymmetric cryptography.

There are two main types of symmetric algorithms which are Block Ciphers and

Stream Ciphers.

A stream cipher is an encryption algorithm that encrypts each binary digit in a data

stream with a key. A5/1 [21] is the most widely used stream cipher algorithm in

GSM in order to provide air communication privacy. RC4 [52] and E0 [19] are the

other examples of stream ciphers and are used in web and blue-tooth communication,

respectively.

A block cipher is an encryption algorithm that encrypts a fixed size of n-bits of data

at one time. 64 bits, 128 bits, and 256 bits of blocks can be used. Block ciphers are

the main scope of this thesis and we inform you about the block ciphers in Chapter 3

in detail.

2.6.2 Public Key Cryptography

It is suggested by Diffie & Hellman in 1976 [18]. It ensures that the people who

have never been seen and talked before can communicate securely in an unsecured

channel. There are two keys in this type of cryptography; one public, one private.

While public key is known everyone, private key is kept secret; i.e., only owner knows

it. All messages (text, binary files, or documents) are encrypted using the public key.

8



These can only be decrypted using the matching private key, but only by applying the

same algorithm.

It provides solutions of authentication, non repudiation problems unlike in secret key

cryptography. However, it is slower than symmetric encryption. In addition to that,

much more processing power is required to encrypt and decrypt the content of the

message.

Rsa [43], Diffie-Hellman [18], Digital Signature Algorithm, ElGamal [20] are the

examples of asymmetric cryptography usage.

2.6.3 Hash Functions

A hash function maps variable length inputs to fixed length output(buckets). Block

lenght can be 128 or 192 bits. Hash functions are used in many parts of cryptography

like digital signatures, message authentication codes, pseudo random number gener-

ators, key derivation functions. There are many different types of hash functions with

different security features. These features are as follows:

1. Collision Resistance : The most basic security property of a hash function is

collision-resistance, which suggests that it should be hard to find two inputs x1

and x2 such that h(x1) = h(x2) where h is the hash function. If a person can find

collision easily, he can get a authentic digitally signed message, find a different

message that produces the same digest (collision), and then he can use the same

signature as the fake message. Thus, someone trying to verify the signature can

not recognize the difference. The cost of finding a collision is 2n/2 where n is

the number of bits.

2. Preimage Resistance : This property suggests that it should be hard to find any

input x such that h(x) = y for a given output y. A generic attack would require

around 2n operations where n is the number of bits.

3. Second Preimage Resistance : This property suggests that it should be hard to

find any other input x2 such that h(x2) = y for given an output y and input x1

such that h(x1) = y. A second-preimage is also a collision but finding a second-

9



preimage requires around more operations then collision, i.e., 2n operations

where n is the number of bits.

10



CHAPTER 3

BLOCK CIPHERS

In a block cipher, plaintext information is divided into fixed size of n-bits of data

which are called blocks. Moreover, encryption for block ciphers consists of several

rounds which contains various operations. Each block is encrypted at a time, by

repeating the round function in each round. When each block is encrypted, they are

combined together to obtain ciphertext.

While encrypting, all block sizes have to be same because otherwise cipher text mes-

sage cannot be uniquely decrypted to a single plaintext block with one to one map-

pings. If a block is less than the block size, several methods can be used to equalize

the block length like ciphertext stealing, padding.

3.1 Types of Block Ciphers According to Their Structure

There are two main variations of the block cipher both of which aim to increase the

security of encrypted text.

• Product Ciphers Product ciphers consists of multiple operations such as shift-

ing, substituting, permutation. The combination could provide more powerful

cryptosystem than other one that is used alone.

• Iterated Block Ciphers An iterated block cipher involves different numbers of

repeated round functions. The idea behind of it is making cipher more secure

by repeatedly using round functions.

11



3.2 Modern Block Cipher Types

Modern block ciphers consists of multiple operations iteratively so they have both

product and iterated block cipher feature.

• Feistel Ciphers : Feistel ciphers are a special class of iterated - product

block ciphers. Plaintext is encrypted by spliting them into two halves. The

round function f is applied to one half using a subkey and the output of f is

exclusive-ored with the other half as shown in Figure 3.1. The two halves are

then swapped. Each round follows the same pattern except for the last round

where there is no swap.

Des, Tea [65], Xtea [38], Rc5 [42], Rc6 [14] , Camellia [2] are the examples

of Feistel ciphers.

f1

f2

f3

f4

L0 R0

L4 R4

Figure 3.1: The Structure of Feistel Ciphers

• Substitution-Permutation Network Ciphers : SPN is a highly organized

way of constructing a product-iterated cipher. Each round consists of three

operation; substitution, transposition of the bits (i.e., permutation of the bit

positions), and key mixing. As presented in Figure 3.2,

1. Firstly, plaintext blocks are XORed with the key,

2. Then substitution is applied to obtained bits,

3. After that operation, the positions of bits are permutated,

12



4. Lastly, one more key XOR can be applied to obtained bits.

There are a few SPN ciphers; Aes [17], the Aes finalist Serpent [5], the light

weight block cipher Present [9], Rectangle [68] and etc. The operations to

provide better security are as follows:

S

S

S

S

S

S

S

S

k1

k2

Figure 3.2: The Structure of SPN Type of Ciphers

1. Substitution : Substitution operation is generally provided by S-boxes. In

general, an S-box takes some number of input bits and transforms them

into some number of output bits. When one input bit changes, about half

of the output bits should also change in a good S-box. In Chapter 2, S-box

is introduced.

Table 3.1: Sample Substitution Table

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

2. Permutation : The permutation operator,P-box, is a permutation of all bits,

it transposes the bits or permutates the bit positions, and then feeds them

to the next round S boxes. A good P-box has the property that the output

bits of any S-box are distributed to as many S-box inputs as possible.

13



For security, it is expected that for any chosen key, a good block cipher

acts like a randomly selected permutation. Beside, it is expected no rela-

tion between permutations that are obtained by keys that are related some-

how.

Table 3.2: Sample Permutation Table

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

3. Key-mixing : In key-mixing operation, generally bitwise exlusive-OR is

used between the key bits(associated with round-subkey) and the data

block input. The subkey is produced by the cipher’s master key with a

process that is known as key schedule.

3.3 Cryptanalysis of Block Ciphers

Security in block ciphers is based on only the secrecy of the key. The person who has

captured the key will also get secure information. There are various methods used to

capture this secret key. The most obvious method is to try to decrypt ciphertext with

all the possible keys, which is known as exhaustive search or brute force. This attack

is done by obtaining a plaintext ciphertext pair and encrypting plaintext with every

possible keys. While encrypting, if the encrypted text matches with the previously

obtained ciphertext, then that key is determined as the correct key. The key space

can be enlarged to protect the cryptosystem against this attack. For n-bit key, 2n

operations are required to perform an exhaustive search.

Table attack is the another method to capture key which requires less operations than

exhaustive search. In this method, a database is used to store all plaintext, ciphertext

pairs. A database query is used to find matching plaintext that corresponds ciphertext.

However, if the size of the file which contain plaintext,ciphertext pairs can be very

large, query execute times will be very high.

To say that a cipher is broken, it has to proposed an attack that requires less opera-

14



tions exhaustive search and less data than table attack. One of attack type to reduces

data and time requirements is Time-Memory Trade-Off attack,which is developed by

Hellman in [24]. The aim is performing exhaustive search and storing only a small

portion of the resulting tables in a short way.

Differential cryptanalysis is the other technique to break block ciphers by investigat-

ing the relation between the input and the corresponding output differences. However,

it may not be possible fully capture the attacked round key bits if the active S-box of

cipher has differential factors as described in [58]. In our study, we have investigated

the effects of differential factors on Rectangle cipher. Differential cryptanalysis and

differential factors are explained in detail in the following chapters.

3.4 Lightweight Block Ciphers

Embedded systems are deployed in various domains, including industrial installa-

tions, critical and nomadic environments, private spaces and public infrastructures.

Their operation typically involves access, storage and communication of sensitive

and/or critical information that requires protection, making the security of their re-

sources and services an imperative design concern. The demand for applicable cryp-

tographic components is therefore strong and growing. However, the limited re-

sources of these devices, in conjunction with the ever-present need for smaller size

and lower production costs, hinder the deployment of secure algorithms typically

found in other environments and necessitate the adoption of lightweight alternatives.

3.4.1 Design of Lightweight Block Ciphers

While traditional cryptography focuses on the solutions by ignoring the requirements

of constrained devices, lightweight cryptography mainly focuses on designing scheme

for devices constrained capabilities in power supply, connectivity, hardware and soft-

ware. There are some design criteria that must be carefully investigated to meet the

required design goals. Some of the design criteria examples are memory consump-

tion, power consumption, latency, chip area, cost of one implementation, side channel

resistance and throughput.

15



While designing lightweight block ciphers, there are four steps which are: specifica-

tion, design, implementation and cryptanalysis.

1. In specification step, main design criteria is defined with required threshold

value. Specifying design criteria depends mostly on platform where algorithm

is implemented.

2. The second step is designing. Block cipher is designed with respect to the

design criteria that is defined in previous step. New cipher is designed by opti-

mizing traditional cryptographic algorithms such as Des, Rsa [43] or designed

from scratch. In the former case, confidential algorithms should be selected

carefully while optimizing the certain parameters since this change may en-

hance complexity or compromise security. During design of lightweight block

ciphers,

(a) Smaller block size can be used. In this way, memory can be saved. Also

using small block size reduces the limits on the maximum number of

plaintext blocks to be encrypted. For instance, 232 blocks are used to

distinguish outputs of a 64-bit block cipher from a random sequence.

(b) Smaller key size can be used for efficiency.

(c) Rounds can be made simple. To achieve this, 4-bit S-boxes, bit permu-

tations(like in Present [9]) and recursive MDS matrices(like in Led [23])

are preferred. For better security, round numbers can be increased.

(d) Simple key schedules can be used. Complex key schedules increases the

memory, latency and the power consumption of implementation. To avoid

them, simple key schedules that can generate sub-keys on the fly can be

used. On the other hand, using simple key schedule results as related key,

weak keys, known keys or chosen keys attacks. To avoid these attacks, a

secure derivation function can be used like in [61].

(e) Minimal implementations can be used. Some applications may require

encryption operations, others need only decryption. Implementing only

necessary functions of a cipher requires less resources than implementing

the full cipher.

16



3. In the implementation step, lightweight cipher is implemented as specified in

the design step. Implementation cost should considered in this step and if the

cost is very high then some changes in the specification and design steps can be

made by returning these steps.

4. In the last step, lightweight cipher is tested by cryptanalysis to determine the

security of cipher.

3.4.2 The Most Widely Known Lightweight Block Ciphers

3.4.2.1 Present

Present [9] is the mostly known ultra-lightweight SPN type block cipher presented

at CHES 2007 firstly. It has been designed for area and power constraints devices. It

consists of 31 rounds. The block length is 64 bits and two key lengths of 80 and 128

bits are supported. S-box is 4 bits and used 16 times in one round.

Each round consists of the following 3 steps:

1. Subkey Addition: Key XORed with cipher.

2. Substitution Operation: Used 4 bits S-box.

3. Permutation Operation: Uses bit-wise permutation.

S-box used in Present cipher is provided in Table 3.3:

Table 3.3: S-box of Present Cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Security of Present Cipher :

The best known attack on Present is provided in [62] We improved this attack in [57].

This improvement is introduced in Chapter 5 in detail.

17



S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

Figure 3.3: The Structure of Present Cipher

3.4.2.2 PRINTCipher

PRINTCipher [31] is designed for integrated circuit (IC) printing. IC printing enables

circuits to be produced and personalized at very low costs.

PRINTCipher is a SPN type of cipher. It consists of 48 or 96 rounds and each round

also contains add key, substitution and permutation layers. It operates on 48-bit, 96-

bit blocks with key-sizes of 80, 160 bits. It has 16 identical 4 × 4 S-boxes.

PRINTCipher is a fixed key algorithm, i.e., key schedule is not used; so there is no

need to update key in each round. First the key is divided into two parts and the first

part is XORed with the ciphertext and the second part is used for permutation before

substitution.

Each round in PRINTCipher consists of the following 5 steps:

1. XORing key with cipher.

2. Applying linear diffusion.

3. XORing rightmost 6 bits with round-constant.

4. Permuting bits.

5. Mixing bits by using S-box.

S-box used in PRINTCipher is as shown in Table 3.4:

18



Table 3.4: S-box of PRINTCipher

x 0 1 2 3 4 5 6 7

S(x) 0 1 3 6 7 4 5 2

Security of PRINTCipher :

There are two attacks to break PRINTCipher in literature. The first one breaks less

than half of the rounds as shown in [1]. The second is subspace attack which was

presented in [34] and this breaks the full cipher. This attack can be seen as a weak-

key variant of a statistical saturation attack. For such weak keys, a chosen plaintext

distinguishing attack can be mounted in unit time.

3.4.2.3 Desl, Desx and Desxl

Desl [35] is the lightweight version of Des cipher. It consists of 16 rounds. It has a

56-bit key with a 64-bit block length based on Feistel network. Unlike the S-boxes

usage on Des, Desl uses a single 6×4 bits S-box 8 times. In addition, initial and final

permutations are not used to reduce the cost and the area of block cipher in Desl.

Desx is secure a variant of Des cipher. It consists of 16 rounds. The block length is 64

bits and it accepts 184 bits key. S-box used in Desl and Desxl cipher is as presented

in Table 3.5:

Table 3.5: S-box of Desl and Desxl Cipher

S 0 14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
S 1 5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
S 2 4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
S 3 9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

Security of Desl, Desx and Desxl Ciphers :

Up to now, there is no attack against Desl, Desx and Desxl in the literature.

19



3.4.2.4 Led

Led is a SPN type of lightweight block cipher. The block length is 64 bits and two key

lengths of 64 and 80 bits are supported. It consists of 32 rounds for a 64 bits key, 48

rounds for a 128 bits key. Each block of cipher is represented as a 4×4 nibble matrix.

It uses same inner transformation like on Aes; but the transformation is optimized for

hardware applications.

Key schedule is not used in Led. Instead of this, the key is XORed every 4 rounds.

This deficiency is compensated by an increased number of rounds compared to Aes.

Led cipher uses S-box of Present cipher as shown in Table 3.6.

Table 3.6: S-box of Led Cipher

x 0 1 2 3 4 5 6 7

S(x) 0 1 3 6 7 4 5 2

Security of Led Cipher :

There are two papers that investige the security of Led. In [25], meet-in-the-middle

technique is used to break 8 rounds of Led-64, and 16 rounds of Led-128 as shown.

In [37], the authors show attacks for Led-64 reduced to 12 and 16 rounds.

3.4.2.5 Katan and Ktantan

Katan and Ktantan are very efficient hardware oriented block ciphers, proposed at

CHES 2009 [10]. They both accept 80-bits keys. Block sizes can be 32, 48 and 64

bits in this ciphers.

Ktantan is more compact than Katan and it is more suitable for fixed key devices.

The 80 bits key is loaded into a register which is repeatedly clocked in Katan, whereas

in Ktantan, the key is fixed. Firstly, plaintext is divided into two parts. Then several

bits are taken and executed in two non linear boolean functionn. Lastly the output of

the boolean function is shifted to the left one bit. These operations are repated 254

times.

20



Security of Katan and Ktantan Ciphers :

In [64], a meet-in-the-middle attack was proposed and it recovers the 80 bits secret

key of the full round Ktantan-32, Ktantan-48, Ktantan-64 with the time complexity

272.9, 273.8, 274.4, respectively. Conditional differential is the best attack that has been

mounted as described in [28], [29]. In [28], conditional differential cryptanalysis was

proposed with practical complexity against Katan-32 on 78 rounds, Katan-48 on 70

rounds, Katan-64 on 68 rounds. In [29], the authors of [28] extended the results in

the related key settings against Katan-32 on 120 rounds, Katan-48 on 103 rounds,

Katan-90 on 68 rounds.

3.4.2.6 Klein

Klein is a SPN type of lightweight block cipher. It works especially on legacy sensor

platforms with very high performance and its hardware implementation is quite com-

pact. Substitution layer composes of 4 bits S-box. The permutation layer consists of

rotating and mixing operations. Block size of Klein is 64 bits and it accepts 64, 80,

96 bits key for 12, 16, 20 rounds, respectively. Each round in Klein Cipher consists

of the following 4 steps:

1. AddRoundKey Operation: Bit wise XOR.

2. SubNibbles Operation: Nibbles are passed through the S-box.

3. RotateNibbles Operation: Left two bytes of nibbles rotated.

4. MixNibbles Operation: Same as MixColumns in AES.

S-box used in Klein cipher is as shown in Table 3.7:

Table 3.7: S-box of Klein Cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

Key Schedule of Klein as follows:

21



1. Divide i-th subkey into two parts x,y where ki = x.y

2. Cycle left shift one bits in each part of key x, y (ki = x << .y <<)

3. Swap (x, y) such as (x, y) = (y, x ⊕ y).

4. XORed round-counter with 3rd byte of x and substitute 2nd and 3rd byte of y

with S-box.

Security of Klein Cipher :

In [3], the authors achieved to break up to 14 and 15 rounds for Klein-80 and Klein-

96, respectively.

3.4.2.7 Lblock

Lblock is a feistel type lightweight block cipher and it has been presented in [66].

The block length is 64 bits and two key lengths of 80 and 32 bits are supported for 32

rounds. Each round consists of 3 operations:

1. Subkey addition,

2. Substitution,

3. 4 bits permutation.

10 different 4 × 4 bits S-boxes are used. 8 S-boxes for ecryption, 2 S-boxes for key

scheduling as shown in Table 3.8.

Security of Lblock Cipher :

Although Lblock has proposed recently, there are several attempts against it. In [63],

biclique attack was presented against a full round version of Lblock with a complex-

ity slightly lower than exhaustive key search. In [47], zero-correlation linear attack

was introduced against Lblock by mounting a 22 rounds attack.

22



Table 3.8: S-box of Lblock Cipher

S 0 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5
S 1 4 11 14 9 15 13 0 10 7 12 5 6 2 8 1 3
S 2 1 14 7 12 15 13 0 6 11 5 9 3 2 4 8 10
S 3 7 6 8 11 0 15 3 14 9 10 12 13 5 2 4 1
S 4 14 5 15 0 7 2 12 13 1 8 4 9 11 10 6 3
S 5 2 13 11 12 15 14 0 9 7 10 6 3 1 8 4 5
S 6 11 9 4 14 0 15 10 13 6 12 5 7 3 8 1 2
S 7 13 10 15 0 14 4 9 11 2 1 8 3 7 5 12 6
S 8 8 7 14 5 15 13 0 6 11 12 9 10 2 4 1 3
S 9 11 5 15 0 7 2 9 13 4 8 1 12 14 10 3 6

3.4.2.8 Twine

Twine is a Feistel type lightweight block cipher [51]. The block length is 64 bits and

two key lengths of 80 and 128 bits are supported. It consists of 36 rounds whatever

the key length is. The F- function is repeated 8 times per round; it is composed of a

subkey addition and substitution operation.

Security of Twine Cipher :

In [13], two biclique attacks are presented on Twine-80 and on Twine-128 with the

time complexities 279.10 and 2126.82, respectively.

3.4.2.9 Epcbc

Epcbc is designed for electronic product code encryption. There are two types of

Epcbc cipher which consists of 32 rounds. The first type of cipher has a 96-bit key

with a 48-bit block length based on SPN and it is denoted Epcbc(48,96). On the other

hand, the second type of cipher, denoted Epcbc(96, 96) has an 96-bit key with a 96-bit

block length. Both of them use the structure of Present cipher (PR-48 and PR-96)

for encryption and they also use the S-box of Present cipher. The only difference

among them is key schedule. For Epcbc(48, 96), the left half of 96 bits key forms the

first subkey and applies variant-Feistel structure for 8 rounds. In each variant Feistel

structure is composed of 4 rounds of PR-96 cipher structure without key addition. For

Epcbc(96, 96), all 96 bits of key is used as the first subkey and it applies 32 rounds of

23



PR-96 cipher structure without any key addition for 32 subkeys. S-box used in Epcbc

cipher is as shown in Table 3.9:

Table 3.9: S-box of Epcbc Cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Security of Epcbc Cipher :

Using 32 rounds Epcbc ensures the security of the cipher against differential and linear

cryptanalysis as explained in [67].

3.4.2.10 Puffin

Puffin [12] is an involutional 32-rounds SPN type block cipher. Involutional means

that both encryption and decryption operations require same data path, in other words

the same primitive is used for both encryption and decryption processes. It has an

128-bit key with a 64-bit block length. It has a simple key scheduling algorithm.

Since it has low hardware complexity and good throughput, it is suitable for appli-

cation specific integrated circuit (ASIC) and field programmable gate array (FPGA)

technologies.

Each round of encryption / decryption consists of the following 3 steps:

1. Substitution S: Performs 4 × 4 S-box 16 times in parallel.

2. Key addition K: Bit wise XOR.

3. Permutation P: Used P-layer.

S-box used in Puffin cipher is as presented in Table 3.10:

Key Scheduling for Encryption is as follows : Apply permutation P in all rounds and

then take the inverse of the 1st, 2nd, 3rd and 5th bits in all rounds, except in 2nd, 5th, 6th

and 8th rounds.

24



Table 3.10: S-box of Puffin Cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) D 7 3 2 9 A C 1 F 4 5 E 6 0 B 8

Key Scheduling for Decryption is as follows: Apply the inverse permutation P in all

rounds and then take the inverse of the 30th, 62th, 71th and 120th bits in all rounds,

except in 2nd, 5th, 6th and 8th rounds.

Security of Puffin Cipher :

In [33], it was showed that Puffin can be broken by differential cryptanalysis faster

than exhaustive search by using less than the full code-book.

Comparison of lightweight block ciphers are as presented in Table 3.11:

25



Table 3.11: Comparison of lightweight block ciphers

Ciphers Function Architecture Structure Key Block Rounds
PRINTCipher-48 [31] Enc. Serialized SPN 80 48 48
PRINTCipher-48 [31] Enc. Round-based SPN 80 48 48
PRINTCipher-96 [31] Enc. Serialized SPN 160 96 96
PRINTCipher-96 [31] Enc. Round-based SPN 160 96 96
Led-64 [23] Enc. Serialized SPN 64 64 32
Led-80 [23] Enc. Serialized SPN 80 64 48
Led-96 [23] Enc. Serialized SPN 96 64 48
Led-128 [23] Enc. Serialized SPN 128 64 48
Ktantan-32 [10] Enc. Serialized LFSR 80 32 254
Ktantan-48 [10] Enc. Serialized LFSR 80 48 254
Ktantan-64 [10] Enc. Serialized LFSR 80 64 254
Present-80 [9] Enc. Serialized SPN 80 64 32
Present-80 [9] Enc. Round-based SPN 80 64 32
Present-128 [9] Enc. Serialized SPN 128 64 32
Present-128 [9] Enc. Round-based SPN 128 64 32
Epcbc-48 [67] Enc. Serialized SPN 96 48 32
Epcbc-96 [67] Enc. Serialized SPN 96 96 32
Des Enc. Serialized Feistel 56 64 16
Desl [49] Enc. Serialized Feistel 56 64 16
Desx [49] Enc. Serialized Feistel 184 64 16
Desxl [49] Enc. Serialized Feistel 184 64 16
Twine-80 [13] Enc. Round-based Feistel 80 64 36
Twine-80 [13] Enc. Serialized Feistel 80 64 36
Twine-80 [13] Enc+Dec Round-based Feistel 80 64 36
Twine-128 [13] Enc. Round-based Feistel 128 64 36
Twine-128 [13] Enc+Dec Round-based Feistel 128 64 36
Puffin [39] Enc+Dec Round-based SPN 128 64 32
Klein-64 [22] Enc+Dec Round-based SPN 64 64 12
Klein-80 [22] Enc+Dec Round-based SPN 80 64 16
Klein-96 [22] Enc+Dec Round-based SPN 96 64 20
Klein-64 [22] Enc+Dec Serialized SPN 64 64 12
Klein-80 [22] Enc+Dec Serialized SPN 80 64 16
Klein-96 [22] Enc+Dec Serialized SPN 96 64 20
Katan-32 [10] Enc. Serialized LFSR 80 32 254
Katan-48 [10] Enc. Serialized LFSR 80 48 254
Katan-64 [10] Enc. Serialized LFSR 80 64 254
Led-64 [23] Enc. Serialized SPN 64 64 32
Led-80 [23] Enc. Serialized SPN 80 64 48
Led-96 [23] Enc. Serialized SPN 96 64 48
Led-128 [23] Enc. Serialized SPN 128 64 48
Lblock [66] Enc. Round-based Feistel 80 64 32
Lblock [66] Enc. Serialized Feistel 80 64 32
Rectangle-80 [69] Enc. Round-based SPN 80 64 25
Rectangle-128 [69] Enc. Round-based SPN 128 64 25

26



CHAPTER 4

S-BOXES

4.1 Introduction of S-Box

The security of data is mostly dependent to substitution process in block ciphers. Sub-

stitution is a non linear transformation that provides confusion property as Shannon

suggests in [46]. If substitution layer is not used, it is possible to recover the key using

a simple Gaussian elimination, given a few known plaintext-ciphertext pairs. How-

ever, it is not sufficient for strong ciphers; diffusion property should also be included

in them. Shannon also suggests in [46] that, strong ciphers could be built by combin-

ing substitutions with transposition repeatedly. In this chapter, we analyze S-boxes,

the main element of the substitution process.

4.2 S-Box Properties

For strong encryption, S-boxes have the following properties.

4.2.1 Differential Uniformity

Definition 4.2.1 [44] Let F be an n × s S-box where n ≥ s. Let δ be the largest value

in differential distribution table of the S-box not counting the first entry in the first

row namely

δ = max
a∈Vn,a,0

max|
β∈Vs,
{x|F(x) ⊕ F(x ⊕ a) = β}|

27



δ is called the differential uniformity of f;i.e. the maximum value in a DDT.

S-box designers are inclined to keep differential uniformity low, since the differential

cryptanalysis used with high differential probability.

4.2.2 Robustness

Definition 4.2.2 [44] Let F = ( f1, ...., fs) be an n × s S-box, where fi is a function on

Vn, i = {1, .., s} and n ≥ s. Denote by L the largest value in the difference distribution

table of F, and by N the number of nonzero entries in the first column of the table. In

either case the value 2n in the first row is not counted. Then we say that F is R-robust

against differential cryptanalysis, where R is defined by

R = (1 −
N
2n )(1 −

L
2n ) (4.1)

Differential uniformity is used as the first indicator for the strength of an S-box,

whereas robustness gives more accurate information about the resistance to differ-

ential attack than differential uniformity. This is because discussion of robustness is

not as easy as in differential uniformity.

4.2.3 Non-linearity

Definition 4.2.3 S : {0, 1}x → {0, 1}y is defined as the least value of nonlinearity

of all nonzero linear combinations of x boolean functions fi : {0, 1} → {0, 1} , i =

x − 1, ..., 1, 0.

To increase S-box’s power against linear cryptanalysis, nonlinearity of a S-box must

be high.

4.2.4 Balancing

An S-box with n input bits and m output bits, (m ≤ n), is balanced if each output

occurs 2n−m times. For the S-box to be balanced it should have the same number of

0′s and 1′s.

28



4.2.5 Strict Avalanche Criterion (SAC)

The strict avalanche criterion arises when an input bit is changed, and each output bit

is changed by one half probability. The strict avalanche requires a significant change

in the output vector if there is a slight change in the input vector. To achieve this

effect, we need a function that has 50% dependency on each of the n input bits.

4.2.6 Branch Number

Definition 4.2.4 The branch number of an n ×n S-box is

BN = min
a,b

(wt(a ⊕ b) + wt(S (a) ⊕ S (b)))

where a, b ∈ F2
n and the branch number can take the value of the smallest 2 for a

bijective S-Box.

That property of a S-box is associated with algebraic attack and cube attacks. [15].

4.2.7 Undisturbed Bits

Definition 4.2.5 [54] Depending on the design of an S-box, when a specific differ-

ence is given to the input (resp. output), difference of at least one of the output (resp.

input) bits of the S-box may be guessed with probability 1. We call such bits undis-

turbed.

Undisturbed bits of the output difference remain invariant for a specific input differ-

ence of a S-box, . For instance, when we examine the Difference Distribution Table

of Rectangle cipher which is presented in Chapter 4, we can see that for a fixed input

difference at last two bits do not change and these two bits are undisturbed bits as

shown in Table 4.1.

Undisturbed bits can be used to find longer differential characteristics leading to more

effective differential attacks. When we look at the literature, we can see that undis-

29



Table 4.1: Undisturbed bits of Rectangle Cipher

Input Output
1x ??1?
4x ??11
5x ??0?
8x ???1
Cx ???0

turbed bits are used for different attacks of Present [64] and Serpent [69] block ci-

phers.

These bits can be used to find longer differential characteristics leading to more effec-

tive differential attack. In [54], it was shown that the attack on Present cipher reduces

to 7 rounds when the S-box is replaced with a similar one that lacks undisturbed bits.

4.2.8 Differential Factors

In a differential attack, all possible keys are tried on plain text pairs that are waiting

to satisfy different characteristics that enable us to guess the right subkeys. In order

to distinguish the correct key from the wrong key, the correct key must satisfy the dif-

ferential characteristic more than any other key. However, in some cases, the output

difference of the S-box process may be invariant when the round key is XORed with

a certain value. For this reason, some candidate keys may satisfy differential charac-

teristics for an equal number of times. In such case, the attacker can not capture the

whole round key bits. The Differential Factors were first proposed in [58] as follows:

Definition 4.2.6 Let S be a function from Fn
2 to Fm

2 . For all x, y ∈ Fn
2 that satisfy

S (x) ⊕ S (y) = µ, if we also have S (x ⊕ λ) ⊕ S (y ⊕ λ) = µ, then we say that the S-box

has a differential factor λ for the output difference µ. (i.e. µ remains invariant for λ)

Differential factors are observed mostly in small S-boxes of cryptographic algorithms

as discussed in [58]. Since lightweight block ciphers use small S-boxes to provide

trade-off between power and security, most of them have differential factors in their

S-boxes. For example, Serpent and Present are two different lightweight block ci-

30



phers that contain several differential factors. As shown in [58], [55] Serpent has

8 differential factors in their 4 S-boxes, Present has 2 differential factors. With the

help of these factors, the differential attack [7] of Serpent can be performed with the

time complexities reduced by a factor of 4. In addition, the differential attack [62] of

Present actually requires 270 memory accesses instead of 264 with them.

In [58], it is proven that the number of differential factors of a S-box is the same

with the number of differential factors of its inverse. Moreover, it also provides the

differential factors of the inverse S-box when we know the differential factors of the

S-box. Hence, there is no need to check the differential factors of the inverse of

S-boxes.

Theorem 4.2.7 If a bijective S-box S has a differential factor λ for an output differ-

ence µ, then S −1 has a differential factor µ for the output difference λ.

We have used the theorem above in our study because the S-box of Rectangle block

cipher was changed with the inverse of it to pretend differential attacks.

Theorem 4.2.8 [58] If λ1 and λ2 are differential factors for an output difference µ,

then λ1 ⊕λ2 is also a differential factor for the output difference µ. i.e. All differential

factors λi for µ form a vector space.

4.3 Differential Factors and Cryptanalysis

If a block cipher contains key XOR process in front of the substitution process, then

differential factor may affect cryptanalysis. In SPN type block ciphers, we could face

with this structure mostly; but this is not the case every time. Some conditions must

be satisfied;

1. There must be a differential factor λ for output difference µ for a S-box activated

by the attack.

2. The differential being used in the attack requires the output difference of this

S-box to be µ.

31



In differential cryptanalysis, the correct key is discovered by trying all candidate keys.

If a key k is the correct key then it must satisfy differential characteristic more times

than any other key. However, if S-box has differential factor, in a differential attack

for any key k, k and k ⊕ λ would get the same number of hits since λ is a differential

factor. Hence the attacker cannot distinguish half of the guessed keys with the other

half. As a result, during key guess step it is not possible to discover the key bits

where differential factors exist. These key bits must be discovered with the exhaustive

search. This decreases the time complexity of the key guess step. Because additional

bits have to be discovered, time complexity of exhaustive search step is increased.

This theorem is proved in [58].

Theorem 4.3.1 [58] In a block cipher let an S-box S contain a differential factor λ

for an output difference µ and the partial round key k is XORed with the input of

S. If an input pair provides the output difference µ under a partial subkey k, then

the same output difference is observed under the partial subkey k ⊕ λ. Therefore,

during a differential attack involving the guess of a partial subkey corresponding to

the output difference µ, the advantage of the cryptanalyst is reduced by 1 bit and the

time complexity of this key guess step is halved.

Corollary 4.1 [58] During a differential attack involving the guess of a partial sub-

key corresponding to the output difference µ of an S-box that has a vector space of

differential factors of dimension r for µ, the advantage of the cryptanalyst is reduced

by r bits and the time complexity of the key guess step is reduced by a factor of 2r.

Corollary 4.2 Differential factors reduce the key space for the key guess process and

therefore reduce the data complexity of the attack. Thus, memory required to keep

the counters for the guessed keys also reduces. Reduction in the data complexity may

also reduce the time complexity depending on the attack.

During our research, we have discovered the existence of differential factors on Rect-

angle. The differential factors are listed in Table 6.5.

32



CHAPTER 5

ATTACKS ON BLOCK CIPHERS

Up to this point, we have analyzed the structure of block ciphers. In this part, we

investigate the attacks on block ciphers; so that we can understand better why the

block ciphers are in this structure.

Kerchoff’s Principle: In 1883 Auguste Kerckhoffs wrote two journal articles on La

Cryptographie Militaire that includes the following principles. They gave a practical,

experience-based approach, including six design principles for military ciphers:

1. The system must be practically, if not mathematically, indecipherable.

2. It must not be required to be secret, and it must be able to fall into the hands of

the enemy without inconvenience.

3. Its key must be communicable and retainable without the help of written notes.

4. It must be applicable to telegraphic correspondence.

5. Apparatus and documents must be portable, and its usage and function must

not require the concourse of several people.

6. Finally, it is necessary, given the circumstances that command its application,

that the system be easy to use, requiring neither mental strain nor the knowledge

of a long series of rules to observe.

Nowadays, the second principle is widely known and only it is referred as Kerchoff’s

Principle by the most people which is a common mistake. This principle suggests

that cryptosystem should be secure even if everything about the system, except the

33



key, is publicly known. In other words, the encryption algorithm should not be secret

and the security should be provided by keeping the key as secret in cryptographic

systems. To obtain the secret key, the most obvious method is trying every possible

key to decrypt the ciphertext. This method is also known as exhaustive search or

brute force attack. This attack is performed by obtaining plaintext-ciphertext pairs.

By encrypting plaintexts with every possible key you can find the correct key when

the cipher text matches with the previously obtained ciphertext. Since this attack type

is very simple, it can be used for all block ciphers. Against to brute force attacks,

the key length should be selected as long as possible considering the power of the

current technology. Another method is table attack; every possible corresponding

plaintext - ciphertext pairs for encrypting key are obtained and stored in a database.

Then decrypting a cipher text requires only a database query operation that finds

matching plaintext for a ciphertext. In this attack, 2n data must be stored for the n-bit

block length. If an attack that captures encrypting key for a block cipher with less

operations than exhaustive search and needed less data than table attack, then that

block cipher is considered as broken. The following terminology is also useful to

know:

Corollary 5.1 An encryption scheme is called computationally secure if:

1. The cost of breaking the cipher exceeds the value of the encrypted information

2. The time required to break the cipher exceeds the useful lifetime of the infor-

mation.

Attacks to block ciphers can be categorized according to the information that is re-

quired to perform the attack:

1) Ciphertext-only attack: In this attack the attacker knows only the ciphertext

information. The attacker will try to find the key or decrypt one or more pieces

of ciphertext. The cipher should have significant weaknesses to perform a ci-

pher text-only attack (e.g. A5/1 Stream Cipher)

2) Known-plaintext attack: In this attack, attackers can get n plaintexts and the

corresponding ciphertexts. Exhaustive search or table attacks can be examples

34



of known-plaintext attack.

3) Chosen-plaintext attack: This is a known plaintext attack in which the at-

tacker can choose the plaintext to be encrypted and read the corresponding

ciphertext.

4) Chosen-ciphertext attack: The attacker has the ability to select any ciphertext

and study the plaintext produced by decrypting them.

5) Adaptive chosen-plaintext (ciphertext) attack: In this attack, the attacker is

able to request encryptions of some plaintexts possibly seeing them first and

then making some calculations using them. Collecting data becomes harder as

we move down the list.

6) Chosen-key attack: In this attack, the attacker is able to choose the relation

between two keys, used to encrypted two sets of plaintexts.

5.1 Cryptanalytic Attacks

Cryptanalysis is used to break cryptographic security systems and gain access to the

secret messages, even if the cryptographic key is unknown. Differential cryptanalysis

is one of the most important techniques investigate the security of a block cipher.

5.1.1 Differential Cryptanalysis

Although differential cryptanalysis have been discovered at least 30 years ago it was

not reported in the open literature until 1990. The first published effort appears in

late 1980s by a number of papers by Biham and Shamir. There are several types of

differential cryptanalysis. These are:

1) Related-Key Differential Cryptanalysis

The related key attack model [4] is the class of cryptanalytic attacks which

the attacker knows or selects the relationship between several keys and he can

encrypt / decrypt plaintexts with all these keys. The main aim of the attacker

35



is finding actual secret keys. The relation between the keys can be an arbitrary

bijective function. This relation is provided by just XOR with a constant.

K2 = K1 ⊕ C, where C can be chosen by attacker. Such a type relation allows

the attacker to monitor the propagation of XOR differences that are induced by

key difference C via the key-schedule of the cipher. This is the most complex

form of related-key differential attack. In the more complex forms, attacker can

associate other relations among the keys. For example in [8] the attacker choses

a desired XOR relation in the second subkey. Then he defines the new relation

between actual keys as following:

K2 = F−1(F(K1) ⊕C) = RC(K1),

where F is round function of AES-256 key schedule and C is the chosen con-

stant.

In Chapter 4, we have investigated related-key differential attack on Rectangle.

AES [8] is the another cipher which is applied related-key differential crypt-

analysis.

2) Truncated Differential Cryptanalysis [30]

Only some part of difference in a pair can be guessed by truncated differential

cryptanalysis after each round. More than one truncated differential character-

istics can be used together to reduce the time complexity of the attack. Crypton

[27], Prince [70], Skipjack[41], Salsa20 [16] are block ciphers which are ap-

plied truncated differential cryptanalysis.

3) Higher Order Differential Cryptanalysis [65]

While differential cryptanalysis explores the difference between two inputs,

higher-order differential cryptanalysis explores the effects of some differences

between a wider set of inputs. Spectr-H64 [32] is one of the cipher which is

applied higher-order differential cryptanalysis.

4) Impossible Differential Cryptanalysis [6]

Whereas regular differential cryptanalysis searches for differences higher than

expected probability, impossible differential cryptanalysis investigates differ-

ences that are impossible. Since the probability of such differences is zero, any

36



candidate key that is tried in the cryptanalysis process can not be the correct

key. Africacrypt [60], Camellia [26], Midori [11], Clefia [48] are the ciphers

applied impossible differential cryptanalysis.

5) Improbable Differential Cryptanalysis This cryptanalysis technique exam-

ines the differences that are less likely to exist for the correct key than a wrong

key. Present [53] and Clefia [59] are the ciphers which are applied improbable

differential cryptanalysis.

5.1.1.1 Overview of Basic Attack

Differential cryptanalysis is a chosen plaintext attack and it investigates the relations

of input differences and the corresponding output differences. Let consider a system

with input X = [X1X2....Xn] and output Y = [Y1Y2....Yn]. Let two inputs to the system

be X′ and X′′ with the corresponding outputs Y ′ and Y ′′, respectively. The input

difference is given by ∆X = X′ ⊕ X′′ and corresponding output difference is ∆Y = Y ′

⊕ Y ′′.

In a ideal cipher, a particular output difference ∆Y occurs given a particular input

difference ∆X with probability 1
2n where n is the block length. The main aim of

differential cryptanalysis is finding a scenario where a particular ∆Y occurs given a

particular input difference ∆X with the probability higher than 1
2n . The pair (∆X,∆Y)

is called differential. If after r rounds, ∆X input difference causes ∆Y output differ-

ence with some probability, it is called as differential characteristic. A differential

characteristic can be used to distinguish random encryption from the specific block

cipher by encrypting N plaintext with fixed key and comparing the ∆X and ∆Y results

with the differential characteristic. We expect to observe differential characteristic in

N plain text encryption with an expected value which is calculated by multiplying

differential characteristic probability and number of pairs.

5.1.1.2 Extracting Key Bits

To extract some key bits, one or more rounds are added to behind or front of the r

round differential. For example, if we have 4 rounds differential characteristics such

37



that ∆ X = 01000000 goes to ∆ Y = 00700000. We can add one round encryption

above the 4 round differential, then we can investigate the DDT of the related S-

boxes to find out possible input difference values that causes to ∆ X = 01000000. For

this input difference, we can pick random input values and encrypt them with every

possible key. After that encryption, if the output difference ∆ Y = 00700000, then we

can increase the counter value of the key. The correct key have the greatest counter

value. In this way, we can extract some bits of the subkeys.

5.1.1.3 Complexity of the Attack

In cryptanalysis, there are three things that dictate the complexity of the attack. The

first is Data Complexity that need to be acquired by an attacker. The second is Time

Complexity of the analysis required to derive the secret key. The third is Memory

Complexity,the amount of storage required to perform the attack.

5.1.2 An Example of Differential Cryptanalysis: Differential Cryptanalysis of

UltraLightweight Present Cipher

The best known differential attack on Present is provided in [62] by adding two

rounds to the bottom of the 24 different 14-round differentials which has different

input and same output difference.Recently, it was shown in [55] that this attack over-

looks 6 differential factors and therefore the number of bits that are actually captured

is 6 fewer than what is claimed. In this work we give another correction to this attack

due to undisturbed bits.

The differential distribution table is as shown in Table 5.1. If one examines that table,

he can easily notices that the differential uniformity of Present’s S-box is 4.

Present’s S-box has also following differential factors: The best known differential

attack on Present [62] breaks 16 round by adding two rounds to the bottom of 14

round differential ∆1 which has a probability of 2−62.

∆1: 0700000000000700→ 0000000900000009

38



Table 5.1: Differential distributions of the S-box in Present

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
A 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
B 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
C 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
D 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
E 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
F 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Table 5.2: Differential Factors of Present

S-box 0123456789ABCDEF λ µ

Present C56B90AD3EF84712 1 5
Present C56B90AD3EF84712 F F

39



Authors claim to capture 32 bits with 233.18 2-round encryptions, and remaining 48

bits are captured with 248 16-round encryptions via exhaustive search. However this

attack is corrected in [55] that authors fail to discover 6 differential factors which

are shown in Table 5.3. Therefore, as explained in [55], the number of bits that are

actually captured is 26 bits not 32 bits which require 227.18 2-round encryptions and

remaining 54 bits require 254 16-round encryptions.

The output difference of the characteristics activates the S-boxes S 0 and S 8 in the

round 15 and S 4, S 6, S 8, S 10, S 12, and S 14 in the round 16 which is shown in Table

5.3. Thus, this differential attack captures 32 bits of the key with a time complexity of

233.18 2-round Present encryptions, a data complexity of 264 chosen plaintexts, and a

memory complexity of 232 6-bit counters. This part of the attack works with a success

probability of 99.999993% and then the remaining 48 bits are obtained via exhaustive

search which requires 248 16-round Present encryptions.

Table 5.3: 16-round differential-linear attack of [62]. Values that need to be obtained
are shown in bold.

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

X1,I 0000 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0111 0000 0000
14-Round Differential ∆1

X14,P 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 1001
X15,S 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 0000 0000 0000 0000 ???0
X15,P 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 000? 0000 0000 0000 0000
X16,S 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 ???? 0000 0000 0000 0000

5.2 Corrected Attack on Present

The activated S-boxes of the round 16 have the input difference 1 and inverse of

Present’s S-box has a differential factor λ = 5 for µ = 1. Thus, µ = 1 coincides with

the input difference of these six S-boxes and it was shown in [55] that the advantage

of this attack is actually 26 bits instead of 32 bits. This theoretical result is also ex-

perimentally verified by removing the first few rounds of the 14-round differential so

that it remains within our computational power. This observation reduces the time

complexity of the first part of the attack to 227.18 2-round Present encryptions and

the memory complexity to 226 6-bit counters. However, the time complexity of ex-

40



haustive search for the remaining bits of the key is 254 16-round Present encryptions,

instead of 248 as it was claimed. We further give a correction to this attack due to the

undisturbed bits. Since the input difference 9 for the S-box only activates the most sig-

nificant three bits, it was assumed that we need to capture the values of three S-boxes

in the 16th round. However, we cannot verify the characteristic without knowing the

all four bits of the S-box output in the 15th round. We provided the parts that need

to be obtained in bold in Table 5.3. Thus, the attacker also needs to guess the 16th

round subkeys corresponding to S 0 and S 2. But the attackers advantage increases by

6 instead of 8 bits due to the following property.

Property 5.1 ([57]) Inverse of Present’s S-box S has the property lsb(S −1(x)) =

lsb(S −1(x ⊕ 5)) where lsb is the least significant bit.

Thus, a correct differential attack on 16-round Present needs to guess 32 key bits in

the 16-th round that correspond to the nibbles x0, x2, x4, x6, x8, x10, x12, x14 and 8 key

bits in the 15-th round. However, this attack provides 32-bit advantage to the attacker

instead of 40 bits because of the 6 differential factors corresponding to the nibbles

x4, x6, x8, x10, x12, x14 and the application of Property 5.1 to the nibbles x0 and x2.

Thus, the whole 80-bit key can be obtained after an exhaustive search that requires

248 16-round Present encryptions.

41



42



CHAPTER 6

OVERVIEW OF RECTANGLE

Small embedded devices such as sensor nodes, smart cards and RFIDs are widely

used nowadays. This widespread use has also brought security problems. Thus,

symmetric-key ciphers, especially block ciphers have gain importance in the secu-

rity of small embedded devices since they provide strong security at a lower cost.

Rectangle is one of the lightweight block cipher designed to meet this need.

Since bit-sliced technique is used in the design of Rectangle algorithm, it achieves a

very low cost in hardware and a very competitive performance in software. The block

length is 64 bits and two key lengths of 80 and 128 bits are supported.

It is a SPN type cipher. While 16 4 × 4 S-boxes are used in the substitution layer,

permutation is provided by using three rotations in the permutation layer. Before

discussing these layers in details, it is useful to talk about 3 main advantages of

Rectangle.[69]

1. Because Rectangle is designed according to bit-sliced design principle, it is

extremely suitable for hardware; it allows very efficient and flexible hardware

implementations. These data obtained in [69] can be helpful to explain these

arguments: with 80-bit key version, by using 0.13µm standard cell library at

100 KHz, a throughput of 246 Kbits/sec and an energy efficiency of 3.0 pJ/bit

with only 1600 gates was obtained for round-based implementation, a through-

put of 14.0 Kbits/sec and an energy efficiency of 32.05 pJ/bit with only 1111

gates was obtained for serialized implementation.

2. Again due to bit-slice style, Rectangle is faster than most of the other light-

43



weight block ciphers. Easy implementation of S-box and simple rotation op-

erations in permutation layer make Rectangle very friendly for both hardware

and software. In [69], this collobration can be is examplified with these data;

bit-slice implementation is achieved by a speed of about 30.5 cycles/byte for

encryption and 32.2 cycles/byte for decryption for one block of data. Imple-

mentation with a parallel mode of operation of Rectangle reaches speed of

about 3.9 cycles/byte for messages around 3000 bytes for encryption by using

Intel 128-bit SSE instructions on a 2.5GHz Intel(R) Core i5 − 2520M CPU.

3. The trade-off between security and performance is also achieved by Rectangle

with careful selection of S-box and asymmetric design of rotations in permuta-

tion layer.

6.1 The Last Version of The Rectangle Algorithm

After introducing Rectangle algorithm in 2014 in [69], researchers from Chinese

Academy of Sciences found all 15-round differential characteristics with 26 − 30

active S-boxes for given input, output and round subkey differences, which have a

total probability of 2−60.5. After this attempt, designers of Rectangle have changed

its key schedule and S-box. In this thesis, we have mentioned about the old type of

Rectangle as Rec-0 which we introduce you in details in the next section.

6.1.1 Representation of Plaintext and Subkey as Matrix

A 64-bit plaintext or a 64-bit intermediate result or a 64-bit ciphertext is called cipher

state and represented as a 4 × 16 rectangular array of bits. If P = p63||........||p1||p0

denotes cipher state, then we can arrange rows as in figure;

P =


p15 .... p2 p1 p0

p31 .... p18 p17 p16

p31 .... p34 p33 p32

p63 .... p50 p49 p48


P =


p0,15 .... p0,2 p0,1 p0,0

p1,15 .... p1,2 p1,1 p1,0

p2,15 .... p2,2 p2,1 p2,0

p3,15 .... p3,2 p3,1 p3,0


44



6.1.2 Substitution and Permutation Operations

Rectangle algorithm consists of 25 rounds; in each round there are 3 main operations;

adding subkey, substituting column and shifting rows. Adding subkey is simple XOR

operation of cipher state and subkey matrices. In substitution operation, the S-box is

applied to each column of the cipher state in parallel as the following way;
p0,15....p0,2 p0,1 p0,0

p1,15....p1,2 p1,1 p1,0

p2,15....p2,2 p2,1 p2,0

p3,15....p3,2 p3,1 p3,0


→


S (p0,15)....S (p0,2)S (p0,1)S (p0,0)

S (p1,15)....S (p1,2)S (p1,1)S (p1,0)

S (p2,15)....S (p2,2)S (p2,1)S (p2,0)

S (p3,15)....S (p3,2)S (p3,1)S (p3,0)


In the ShiftRow step, the last three rows are left rotated 1, 12, and 13 bits, respectively

as in figure. After 25 rounds of iterations, there is a final subkey XOR.

(p15.....p2 p1 p0)
<<< 0
−−−−→ (p15.....p2 p1 p0)

(p31...p18 p17 p16)
<<< 1
−−−−→ (p30...p17 p16 p31)

(p47...p34 p33 p32)
<<< 12
−−−−−→ (p35...p38 p37 p36)

(p63...p50 p49 p48)
<<< 13
−−−−−→ (p50...p53 p52 p51)

6.1.2.1 S-box

The S-box used in Rectangle is as given by the Table 6.1 ;

Table 6.1: S-box of Rectangle

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

45



6.1.2.2 Differential Factors

Differential factors of S-box used in Rectangle as shown in Table 6.2;

Table 6.2: Differential Factors of Rectangle

S-box 0123456789ABCDEF λ µ

Rectangle 65CA1E79B03D8F42 4 2
Rectangle 65CA1E79B03D8F42 C E

6.1.3 Key Schedule

As a key, Rectangle accepts 80 or 128 bits keys. Firstly, we introduce the usage of

the 80-bits key. When the key is provided by a user as 80 bits like V = v79 ||......||

v1||v0, the key is stored in an 80 bits key register and arranged as 5 × 16 array of bits

as shown in below.

v15 ...... v1 v0

v31 ...... v17 v16

v47 ...... v33 v32

v63 ...... v49 v48

v79 ...... v65 v64





K(0,15) ...... K(0,1) K(0,0)

K(1,15) ...... K(1,1) K(1,0)

K(2,15) ...... K(2,1) K(2,0)

K(3,15) ...... K(3,1) K(3,0)

K(4,15) ...... K(4,1) K(4,0)


In key register, Rowi = K(i,15)&......&K(i,1)&K(i,0) for 0 ≤ i ≤ 4 denotes 16-bits word.

In each round, the first 4 rows of the current contents of the key register is selected

to be XORed with 64-bits cipher state; i.e., Ki = Row3||Row2||Row1||Row0. After

completing selection part of Ki, the key is updated as follows:

1. S-box is applied to the the bits intersected at the 4 uppermost rows and the 4

rightmost columns like as follows:

K′3, j || K′2, j || K′1, j || K′0, j := S (K3, j || K2, j || K1, j || K0, j), j= 0, 1, 2, 3

2. A 1-round generalized Feistel transformation is applied as follows:

46



Row′0 := (Row0 <<< 8) ⊕ Row1,

Row′1 := Row2,

Row′2 := Row3,

4Row′3 := (Row3 <<< 12) ⊕Row4,

Row′4 := Row0

3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (K0,4 || K0,3 ||

K0,2 || K0,1 || K0,0), i.e.,

K′(0,4)||K′(0,3)||K′(0,2)||K′(0,1)||K′(0,0) = K(0,4)||K(0,3)||K(0,2)||K(0,1)||K(0,0) ⊕ RC[i]

At the end, K25 is extracted from the updated key state. All round constants RC[i] (i

= 0, 1,...., 24) are generated by a 5-bit LFSR. At each round, the 5 bits (rc4, rc3, rc2,

rc1, rc0) are left shifted over 1 bit, with the new value of rc0 being computed as rc4

⊕ rc2. The initial value is defined as RC[0] := 0x1. The round constants are listed in

Table 6.3.

Table 6.3: Round Constants of Rectangle Cipher

RC[0] = 0X01 RC[5] = 0X05 RC[10] = 0X13 RC[15] = 0X1C RC[20] = 0X0D
RC[1] = 0X02 RC[6] = 0X0B RC[11] = 0X07 RC[16] = 0X18 RC[21] = 0X1B
RC[2] = 0X04 RC[7] = 0X16 RC[12] = 0X0F RC[17] = 0X11 RC[22] = 0X17
RC[3] = 0X09 RC[8] = 0X0C RC[13] = 0X1F RC[18] = 0X03 RC[23] = 0X0E
RC[4] = 0X12 RC[9] = 0X19 RC[14] = 0X1E RC[19] = 0X06 RC[24] = 0X1D

When the key is provided by user as 128 bits, the key is stored in a 128 bits key

register and arranged as 4 × 32 array of bits as shown in below.
K(0,31) ...... K(0,2) K(0,1) K(0,0)

K(1,31) ...... K(1,2) K(1,1) K(1,0)

K(2,31) ...... K(2,2) K(2,1) K(2,0)

K(3,31) ...... K(3,2) K(3,1) K(3,0)


In key register, Rowi = K(i,31)&......&K(i,1)&K(i,0) for 0 ≤ i ≤ 3 denotes 32-bits word.

In each round, the 64-bit round subkey Ki consists of the 16 rightmost columns of

47



the current contents of the key. After completing selection part of Ki, the key is

updated as follows:

1. S-box applies to the bits intersected at the 4 uppermost rows and the 4 rightmost

columns as follows:

K′3, j || K′2, j || K′1, j || K′0, j := S (K3, j || K2, j || K1, j || K0, j), 0 ≤ j ≤ 7

2. A 1-round generalized Feistel transformation is applied as follows:

Row′0 := (Row0 <<< 8) ⊕ Row1,

Row′1 := Row2,

Row′2 := (Row2 <<< 16) ⊕ Row3,

Row′3 := Row0

3. A 5-bit round constant RC[i] is XORed with the 5-bit key state (K0,4 || K0,3 ||

K0,2 || K0,1 || K0,0), where RC[i],(i=0,1,....,24) are the same as those used in the

80-bit key schedule.

At the end, K25 is extracted from the updated key state. All round constants RC[i]

(i=0,1, ....,24) are generated by a 5-bit LFSR. At each round, the 5 bits (rc4, rc3, rc2,

rc1, rc0) are left shifted over 1 bit, with the new value of rc0 being computed as rc4

⊕ rc2. The initial value is defined as RC[0] := 0x1. We list all the round constants in

Table 6.3.

6.1.4 Whole Cipher

The Rectangle Algorithm consists of 25 rounds and a final subkey XOR.

A pseudo code is as follows:

48



GenerateRoundKeys()

for i = 0 to 24 do

{

AddRoundKey(STATE, Ki )

SubColumn(STATE)

ShiftRow(STATE)

}

AddRoundKey(STATE, K25 )

6.2 The Rec-0(First Version of the Rectangle Algorithm)

After the article that contains the 19-round differential attack was published, the al-

gorithm was changed to provide better security. The initial design of Rectangle,

which is now referred to as Rec-0, has a different key schedule and uses the inverse

of Rectangle’s S-box. Now we inform you about this design.

In this design, as in the last version of Rectangle there are 25 rounds. Each round is

composed of three steps: AddRoundkey, SubColumn and ShiftRow.

6.2.1 Representation of Plaintext and Subkey as Matrix

A 64-bit plaintext, or a 64-bit intermediate result, or a 64-bit ciphertext is called cipher

state and represented as a 4 × 16 rectangular array of bits. If P = p63||........||p1||p0

denotes cipher state, we can arrange rows as in figure;

P =


p15 .... p2 p1 p0

p31 .... p18 p17 p16

p31 .... p34 p33 p32

p63 .... p50 p49 p48


49



6.2.2 Substitution and Permutation Operations

In each round of Rectangle algorithm, there are 3 main operations; adding subkey,

substituting column and shifting rows. Adding subkey is simple XOR operation of

cipher state and subkey matrices, in substitution operation, the S-box is applied to

each column of the cipher state in parallel as in Rectangle;

In the ShiftRow step, the last three rows are left rotated 1, 12, and 13 bits, respectively

as in described above in Rectangle. After 25 rounds of iterations, there is a final

subkey XOR operation left.

6.2.2.1 S-box

The S-box used in Rec-0 is the inverse of the last version’s S-box as you can examine

in Table 6.4;

Table 6.4: S-box of REC-0

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 9 4 F A E 1 0 6 C 7 3 8 2 B 5 D

6.2.2.2 Differential Factors

Differential factors is also inverse of the last version’s differential factors as we figured

out in Theorem 4.2.7. You can examine in Table 6.5.

Table 6.5: Differential Factors of the S-box of Rec-0

S-box 0123456789ABCDEF λ µ

Rec-0 94FAE106C7382B5D 2 4
Rec-0 94FAE106C7382B5D E C

50



6.2.3 Key Schedule

The key schedule of Rectangle is composed of three steps. The S-box is the same as

in a round transformation. The key arranged as a 4 × 20 array of bits like in figure:

P =


k(0,20) .... k(0,2) k(0,1) k(0,0)

k(1,20) .... k(1,2) k(1,1) k(1,0)

k(2,20) .... k(2,2) k(2,1) k(2,0)

k(3,20) .... k(3,2) k(3,1) k(3,0)


The rows are left rotated 7 bits, 9 bits, 11 bits and 13 bits, respectively. The round

constants RC[i] (0 ≤ i ≤ 24) are generated by a 5-bit LFSR with the initial state

RC[0]=(0,0,0,0,1). At each round i ≥ 0, the round constant RC[i] = (ri,4, ... , ri,1, ri,0)

is equal to (ri−1,3, ... , ri−1,0, ri−1,4 ⊕ ri−1,2).

6.2.4 Whole Cipher

The psuedocode of the Rec-0 is the same as in the last version of Rectangle algorithm

as we mentioned above.

6.3 Differential Attacks on Rectangle

Before introducing differential attacks on Rectangle, some notations used in attacks

are as follows;

• P and (P’) denote plaintext pairs,

• C and (C’) denote plaintext pairs,

• ∆P and ∆C denotee differences of the plaintext and ciphertext,

• Ki, (Ki
i) denote the round subkey,

• Ii, (Ii
i) denote the input of the operation SubColumn in the ith round,

51



• Oi, (Oi
i) denote the input of the operation SubColumn in the ith round,

• ∆Ki denotes the difference of the round subkey,

• ∆Ii denotes the difference of the input of the operation SubCoulmn in the ith

round,

• ∆Oi denotes the difference of the input of the operation SubCoulmn in the ith

round.

After mentioning preparations above, we introduce you about related key differential

attack on 19-round Rec-0. In this attack, there is a 15-round differential characteris-

tics from second round to seventeenth round with the same input, output and round

subkey differences. A related-key differential attack on 19-round Rec-0 is obtained

by extending 15 round differential characteristics to 2 round backward and forward.

6.3.1 19-round Related-key Differential Attack on Rec-0

6.3.1.1 Differential Characteristics

According to Difference Distiribution Table of the S-box in Rectangle below, we can

compute the probability for a specific differential characteristic. The results of related

related-key attacks on the n-round reduced Rec-0 are showed in Table 6.6., where

7 ≤ n ≤ 15. The values of the ’Probability’ column are the probabilities of specific

differential characteristics which corresponds to the numbers of active S-boxes in

Table 6.7. When the numbers of the rounds are 7, 8 and 9 marked by ’ * ’, the values

in the column ’Number of active S-boxes’ correspond to the minimal numbers of

active S-boxes for all possible differential characteristics. When the numbers of the

rounds are 10, 11, 12, 13, 14, 15, the values in the column ’Number of active S-boxes’

correspond to the minimal numbers of active S-boxes for some possible differential

characteristics.

In [45], a 15-round differential characteristic with a probability 2−64 is provided. In

this differential characteristic, the input difference of the operation SubColumn in the

2nd round and the output difference of the operation SubColumn in the 16th round are

as follows;

52



Table 6.6: Differential distributions of the S-box in Rec-0

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 2 0 2 2 0 4 0 2 0 2
2 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4
3 0 2 0 2 4 0 0 0 2 0 0 2 0 0 2 2
4 0 0 0 0 0 4 2 2 0 0 0 0 4 0 2 2
5 0 0 0 0 0 2 0 2 2 2 4 0 0 2 2 0
6 0 4 2 2 0 0 0 0 0 4 2 2 0 0 0 0
7 0 2 2 0 4 0 0 0 2 0 2 0 0 0 2 2
8 0 0 2 2 0 4 0 0 0 0 2 2 4 0 0 0
9 0 0 0 4 0 2 0 2 2 2 0 0 0 2 2 0
A 0 0 2 2 0 0 0 0 0 0 2 2 4 4 0 0
B 0 2 0 2 4 0 2 2 2 0 0 2 0 0 0 0
C 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0
D 0 0 4 0 0 2 2 0 2 2 0 0 0 2 0 2
E 0 4 2 2 0 0 2 2 0 4 0 0 4 4 2 0
F 0 2 2 0 4 0 2 2 2 0 2 0 0 2 0 2

Table 6.7: n-round differential characteristics with fewer active S-boxes and the dif-
ferences of the 2nd round and the 16th round subkeys are

Rounds Number of active S-boxes Probability
7∗ 7 2−18

8∗ 10 2−25

9∗ 12 2−32

10 16 2−41

11 19 2−44

12 20 2−51

13 23 2−56

14 24 2−59

15 26 2−64

53



∆I2 =

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

∆O16 =

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

By fixing ∆I2, ∆O16, ∆K2 and ∆K16, all 15-round differential characteristics with 26,

27, 28, 29 and 30 active S-boxes by using the method proposed in [50] are obtained,

and the results are listed in Table 6.8. The total probability of all the differential

characteristics in Table 6.8 is 2−60.5. This high differential probability with given ∆I2,

∆O16, ∆K2 and ∆K16 can be used to construct a distinguisher and recover partial secret

keys. The attack progress is proposed in the next subsection.

Table 6.8: All 15-round differential characteristics with 26 − 30 active S-boxes

Number of active S-boxes Number of diff. characteristics Total probability
26 4 2−62

27 30 2−62

28 119 2−62.82

29 324 2−64.31

30 777 2−65.97

6.3.1.2 A related-key differential attack on Rec-0 with key length 80

In this section, we give a related-key differential attack on Rec-0 with the key length

80 by using the differential characteristics in previous section and by extending 2

rounds backward and forward. To achieve this, we assume that the 19-round reduced

Rectangle consists of 19 rounds of iterations and a final subkey XOR. We can number

the rounds from 0 to 19. The 0th round subkey K0 is the master key and the final

subkey is denoted by K19. Now we can examine the attack in detail.

54



Firstly, we extend 2 rounds backward. The output difference ∆O1 in the 1st round

is obtained by taking inverses of AddRoundKey and ShiftRow operations with using

the differences ∆I2 and ∆K2 as listed below;

∆O1 =

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

We analyzed DDT of S-box of Rec-0 and recognized that the output difference of the

S-box is 1000 for the 10th column only if the input difference of the S-box is 1100,

0110, 1110, 1101, 0111 or 1111, and similar observations are found for the 3rd and

9th columns. Thus, the input difference ∆I1 of the operation SubColumn in the 1st

round should be in the following form;

∆I1 =

0 0 0 0 ? ? 0 0 0 0 0 0 ? 0 0 0

0 0 0 0 0 1 ? 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ? ? 0 0 0 0 0 ? 0 0 0

0 0 0 0 0 ? ? 0 0 0 0 0 ? 0 0 0

,

where the question mark denotes an undetermined value which can be 0 or 1. Totally,

∆I1 has 6 × 7 × 6 = 27.98 cases. For a candidate ∆I1 in the 27.98 cases, the probability

of ∆O1 in (5) is equal to 1
6 ×

1
7 ×

1
6 = 2−7.98. By the key schedule, the difference of the

1st round subkey is as follows.

∆K1 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

In a similar way, the output and input differences of the operation SubColumn in the

0th round are

55



∆O0 =

0 0 0 0 0 ? ? 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 ? 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 ? 0 0 0 0 0 0 0

0 0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0

,

∆I0 =

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

.

So, there are 27.98 cases for ∆O0 and 236 cases for ∆I0. Therefore, for a random input

difference ∆I0, the probability of the output difference ∆O0 belonging to the 27.98

cases is 2−28.02. Besides, the differences of the 0th round subkey and the plaintexts are

as follows:

∆K0 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

∆P =

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

0 ? ? ? 0 ? ? ? ? ? 0 0 ? 0 0 0

,

In a similar way, we can extend 2 rounds forward. Since 17th round subkey is

∆K17 =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

the input and output differences of the operation SubColumn in the 17th round are

56



∆I17 =

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

,

∆O17 =

0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 ?

0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 ?

0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 ?

,

By the differential distributions of the S-box in Table 6.6, if the input difference of

the S-box is ∆IS = 0010, the output difference of the S-box ∆OS = 1010, 0110, 1110,

0011, 0111, 1111. Therefore, the difference of the 18th round subkey is

∆K18 =

0 0 0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0

,

where ∗ ∗ 1∗ ∈ 1010, 0110, 1110, 0011, 0111, 1111. In this attack, it is assumed that

the difference ∆K18 is determined, since the attack is used six times for each value

in the set 1010, 0110, 1110, 0011, 0111, 1111. Then the differences of the operation

SubColumn in the 18th round are

∆I17 =

0 0 0 0 0 0 ? 0 ∗ 0 0 0 0 0 0 ?

0 0 0 0 0 ? ∗ 0 0 0 0 0 0 0 ? 0

0 0 0 1 1 0 0 0 0 0 ? 0 0 0 0 0

0 0 ? 0 0 0 0 0 0 ? 0 0 0 0 0 0

,

∆O17 =

0 0 ? ? ? ? ? 0 ? ? ? 0 0 0 ? ?

0 0 ? ? ? ? ? 0 ? ? ? 0 0 0 ? ?

0 0 ? 1 1 ? ? 0 ? ? ? 0 0 0 ? ?

0 0 ? ? ? ? ? 0 ? ? ? 0 0 0 ? ?

,

57



where the ’*’ mark denotes a determined value in 0, 1 for a specific attack and the

mark ’?’ determined an undetermined value in 0, 1. The number of ∆O178 at most is

226.54. Since the difference of the final subkey

∆K19 =

0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0 0 0

0 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0

,

is determined, the number of the difference of the ciphertext

∆K19 =

0 ∗ ? ? ? ? ? 0 ? ? ? 0 0 0 ? ?

0 ? ? ? ? ? 0 ? ? ? 0 0 0 ? ? 0

0 0 ? ? 0 0 ? 1 1 ? ? 0 ? ? ? 0

0 ? ? 0 0 ? ? ? ? ? 0 ? ? ? 0 0

,

at most is 226.54. Therefore, the probability of the ciphertext difference satisfying the

form ∆ C is 2−37.46

Data Collection Phase

To find the expected number of the plaintext pairs corresponding to ∆I2 and ∆O16,

we should choose a 2x. For every structure, 236 plaintexts are captured by fixing the

values in the 0th, 1th, 2nd, 4th, 5th, 11th and 15th columns and traversing the values

in the 3rd, 6th, 7th, 8th, 9th, 10th, 12th, 13th and 14th columns. The 236 plaintexts can

generate 272 pairs. A pair of plaintext in a structure can result in the expected input

difference ∆I2 with the probability of 2−35.77. Thus, the expected number of plaintext

pairs corresponding to ∆I2 and ∆O16 is 2x+72−36−60.5 = 2x−24.5

Key Recovery Phase

For each structure, there are 272−37.46 = 234.54 ordered pairs left according to the dif-

ference of the ciphertext ∆C. Therefore, the excepted number of remaining pairs is

2x+34.54.

The details of attack as follows;

58



• Step 1: Guess the value of a part of subkey bits of K0.

1. Guess K(3)
0 and compute the output difference of the 3rd S-box for each

remaining plaintext pair; i.e

S (P(3) ⊕ K3)
0 ) ⊕ S (P′(3) ⊕ S (K(3)

0 ⊕ ∆K(3)
0 )

If the difference do not have the form ?000, discard the pair. Then the

number of expected remaining pairs is 2x+31.54.

2. Repeatedly guess K(6)
0 , K(7)

0 , K(8)
0 , K(9)

0 , K(10)
0 , K(12)

0 , K(13)
0 and K(14)

0 . There

are 2x+8.54 right pairs left.

• Step 2: Guess the value of a part of subkey bits of K0 by guessing some bits of

K0 and K1.

1. Since many bits of K1 are obtained from K0 directly by shifting and adding

constant, we only need to guess some bits for a column in K1. For the 3rd

column of K1, by the key schedule we have

(K(0,3)
1 , K(1,3)

1 , K(2,3)
1 , K(3,3)

1 ) = (K(0,16)
0 , K(1,14)

0 , K(2,12)
0 , K(3,10)

0 ) Therefore, we

need to guess K(0,16)
0 =K(0,3)

1 . Then the number of expected remaining pairs

is 2x+4.54.

2. Guess the bits K(1,1)
0 , K(2,19)

0 , K(3,17)
0 , and then check up whether

S (I(10)
1 ⊕ K(10)

1 ) ⊕ S (I′(10) ⊕ K(10)
1 ⊕ ∆K(10)

1 ) = 1000

since (K(0,10)
1 ,K(1,10)

1 ,K(2,10)
1 ,K(3,10)

1 )= (K(0,3)
0 ,K(1,1)

0 ,K(2,19)
0 ,K(3,17)

0 )

On average, there are 2x+0.54 right pairs left.

3. Similarly, as Step 2(2), guess the bits K(0,2)
0 , K(1,9)

1 , K(2,18)
0 , K(3,16)

0 , then

there are 2x−3.46 right pairs left on average.

• Step 3: Guess the value of a part of subkey bits of K19.

• For the 11th column of O18, the secret bits K(0,11)
19 , K(1,12)

19 , K(2,7)
19 and K(3,8)

19 of

K19 are involved. Guess the bits K(0,18)
0 , K(3,2)

19 , K(1,2)
0 , K(0,19)

0 and K(3,1)
0 , then

combining with the guessed bits from Step 1 to Step 2, the involved secret bits

K(0,11)
19 , K(1,12)

19 , K(2,7)
19 , K(3,8)

19 of K19 are determined. Then by using the method

in Step 1.a, there are 2x−7.46 right pairs left on average. Further, the bits K(0,12)
19

59



, K(1,13)
19 , K(2,8)

19 and K(3,9)
19 are also determined, which are related to the 12th

column of O18. Then there are 2x−11.46 right pairs left on average.

1. Guess K(1,16)
0 , K(2,4)

0 and K(1,11)
0 , then combining with the guessed bits

from Step 1 to Step 3(a), the secret bits K(0,1)
19 , K(1,2)

19 , K(2,13)
19 and K(3,14)

19 are

determined, which are related to the 1st column of O18. Then the number

of remaining expected pairs is 2x−14.46.

2. Similarly as Steps 3(a) and 3(b), we respectively guess the bits K(0,1)
0 ,

K(3,19)
0 and K(0,4)

0 for the 6th column, the bits K(1,8)
19 , K(1,18)

0 and K(2,2)
0 for

the 7th column, the bit K(2,12)
19 for the 0th column, the bits K(0,9)

19 , K(2,5)
19 ,

K(0,17)
0 , K(1,19)

0 and K(2,1)
0 for the 9th column, the bits K(2,6)

19 and K(3,7)
19 for

the 10th column, the bits K(0,5)
19 , K(1,6)

19 and K(3,2)
19 for the 5th column, and

the bits K(0,13)
19 , K(1,14)

19 and K(2,9)
19 for the 13th column. Then the number of

remaining expected pairs is 2x−36.46.

• Step 4: The involved secret bits of K18 have guessed in Steps 1 − 3, and we

do not need to guess any other secret bits. There are 2x−44.46 right pairs left on

average. Add one to the corresponding counter, if there is a right pair left.

• Step 5: If the counter is larger than 1, keep the guess of the subkey bits as the

candidates of the right subkeys. For each survived candidate, compute the seed

key by doing an exhaustive search for other secret bits.

Complexity Analysis

Since the expected number of the plaintext pairs corresponding to ∆I2 and ∆O16 is

2x+72−36−60.5 = 2x−24.5, we take x = 26 such that the expected number can reach to 3.

Therefore, the data complexity is 262. To analyze the time complexity, we analyze

the time complexity in each step. In the encryption phase, the time complexity is 263

19-round encryptions.

In Step 1.a, the time complexity is 2 × 2x+34.54 × 24 × 1
16 ×

1
19 ≈ 2x+29.54 19-round

encryptions. In Step 1.b, the time complexity is

2 × (2x+39.54 + 2x+40.54 + 2x+41.54 + 2x+42.54 + 2x+43.54 + 2x+44.54

60



+2x+45.54 + 2x+46.54) ×
1

16
×

1
19
≈ 2x+40.54

In Step 2, the time complexity is 2 × (2x+45.54 + 2x+44.54 + 2x+44.54) × 1
16 ×

1
19 ≈ 2x+39.54

19-round encryptions. In Step 3, the time complexity is

2 × (2x+45.54 + 2x+41.54 + 2x+40.54 + 2x+40.54 + 2x+40.54 + 2x+37.54

+2x+39.54 + 2x+38.54 + 2x+38.54 + 2x+38.54) ×
1

16
×

1
19
≈ 2x+38.54

In Step 4, the time complexity is about 2x+28.54 19-round encryptions. Therefore, the

total time complexity is 267.42. The memory complexity is 272 key counters.

In conclusion, it is found out a huge number of 15-round related-key differential char-

acteristics with the obtained input, output and round subkey differences. The total

probability is 2−60.5. Based on these differential characteristics, a related-key differ-

ential attack on the 19-round reduced Rec-0 by respectively extending 2 rounds back-

ward and forward is found in [45], with a data complexity of 262, a time complexity

of 267.42 19-round encryptions and a memory complexity of 272.

6.3.2 18-round Related-key Differential Attack on Rectangle

Revising the key schedule of Rec-0 made Rectangle more secure against related-

key attacks and the above 19-round related-key differential attack is not applicable to

Rectangle. In the single key scenario, designers provided in [45] a 14-round differ-

ence propagation with the probability of 2−62.83. Designers claim that they can mount

an attack on 18-round Rectangle using this 14-round characteristic without giving

the exact details of this attack. This is the highest number of rounds the designers can

break.

61



62



CHAPTER 7

CORRECTIONS AND IMPROVEMENTS ON DIFFERENTIAL

ATTACKS ON RECTANGLE

In this chapter, we introduce the improvements and corrections to the two differential

attacks on Rectangle and Present.

7.1 Improvement on 19-Round Related-Key Differential Attack on Rec-0

As we mentioned in the previous chapter, differences of the 2nd round and the 16th

round subkeys ∆K2 and ∆K16 are fixed in [45] to obtain differential characteristics.

The input and output differences ∆I2 and ∆O18 are fixed as summarized in the Table

7.1. 19 rounds are attacked by adding two rounds to the top and the bottom of 1254

characteristics with a total probability of 260.5 is obtained MILP based methods.

Table 7.1: 19-round differential-linear attack of Rec-0. differential factors are shown
in bold.

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

X0,I 0000 ???? ???? ???? 0000 ???? ???? ???? ???? ???? 0000 0000 ???? 0000 0000 0000
X0,O 0000 0?00 ??00 ?000 0000 000? 001? 01?0 0?00 ?000 0000 0000 000? 0000 0000 0000
X1,I 0000 0000 0000 0000 0000 ??1? ???? 0000 0000 0000 0000 0000 ??0? 0000 0000 0000
X1,O 0000 0000 0000 0000 0000 0001 0010 0000 0000 0000 0000 0000 0101 0000 0000 0000

15-Round Differential ∆1

X17,I 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0100
X17,O 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 ?1??
X18,I 0000 0000 ?000 0100 0100 00?0 00∗? 0000 000∗ ?000 0?00 0000 0000 0000 00?0 000?
X18,O 0000 0000 ???? ?1?? ?1?? ???? ???? 0000 ???? ???? ???? 0000 0000 0000 ???? ????

Since Rec-0 uses the inverse S-box of Rectangle, it has inverse differential λ = 4 of

63



Rectangle for µ = 2 as in the figure 6.5 as explained in Theorem 4.2.7. Since these

differential factors are two rounds away from the characteristic, Theorem 4.2.8 do not

apply.

7.2 Experimental Differential Cryptanalysis

Although we know that the differential factors are two rounds away from charac-

teristic we would like to analyze whether these differential factors affect the time

complexity of the attack or not. While analyzing the effects of these differential fac-

tors, we implemented Java codes with several aims. These codes can be found in

Appendix.

Our first aim is analyzing Rectangle algorithm and its differential cryptanalysis. To

achieve this goal, we reduced differential attack to two rounds. While the key-

schedule is used in Rectangle, we used two predetermined round keys which are

rk1 and rk2 by ignoring key-schedule. After that, we take 100 O and O’ pairs. We

decrypted them 2 rounds with rk1 and rk2 and then encrypted them with rk1 to get I

and I’. When we encrypted I and I’ with rk2 we saw the results of the decryption were

O and O’. In this way, we verified that we could successfully implemented Rectangle

cipher.

After that, we assumed that we do not know the rk2. Since there are 3 active S-boxes

in this round, we can captured 12 bits of the key by differential cryptanalysis. Hence

we considered 212 bits of the key to capture. We pick an array of 212 and one counter.

Then we encrypted I and I’ with every possible keys. When we observed O and O’,

we increased the counter. Finally, we saw that the counter value of the actual rk2 is

100. The other counter values of the wrong keys are smaller than 100. The steps of

our experiment are as follows:

1. Take 100 many O and O’ pairs.

2. Fix rk1 and rk2.

3. Decrypt O and O’ two round with rk1 and rk2 to get I and I’.

64



4. Encrypt I and I’ with rk1 1 round to get I2 I′2.

5. Take a counter, and reset value as 0.

6. Encrypt I2 I′2 with every possible key( only bits on the active S-boxes ) to get

O2 and O′2.

7. If O2 ⊕ O′2 equals to O ⊕ O′, increase the counter value 1.

8. Compare the key bits which have higher hit(the value of counter is 100) with

rk2.

This is the last step of the differential cryptanalysis; which is the extracting key bits.

In this part of analysis, the key bits on the active S-boxes can be captured by using

differential characteristics. The remaining key bits are founded by exhaustive search

as we introduced in Section 5.1.1.2. The total time complexity is summation of the

two steps’ complexities.

Our second aim is analyzing the effect of differential factors. Since we know that two

differential factors are two rounds away from the characteristic, we did not expect to

give any correction about the time complexity of the attack. Nevertheless, we want to

analyze the two differential factors of Rectangle cipher.

First, we took 100 O and O’ pairs. Then we decrypted them with rk1 and rk2 to

get I and I’. After that step, we encrypted I and I’ with rk1 ⊕ λ instead of rk1. If

the differential factors were one round above, we would face with two keys which

have same hits, i.e 100. Although, our differential factors are two round away from

characteristic, we found again two keys that have the counter value of 100. The steps

of our experiment is as follows:

1. Take 100 many O and O’ pairs( ∆I2 = O ⊕ O′ ).

2. Fix rk1 and rk2.

3. Decrypt O and O’ two round with rk1 and rk2 to get I and I’.

4. Check I ⊕ I′ = ∆I0.

5. Take a counter, and reset value as 0.

65



6. Encrypte I and I’ with (k1 ⊕ lambda) and k2 then check whether the output

difference is still ∆I2.

Up to this point, we used fixed keys both in two rounds to analyze Rectangle ci-

pher easily. However, Rectangle cipher uses key-schedule to provide more security.

Because of that reason, our experiment was not complete. We also implemented

key schedule algorithm and also tried to capture key bits as we explained above. In

this case, when we repeated the above experiment with two keys k1 and the k2 that

is calculated by key-schedule, we recognized that there are four key pairs that have

maximum counter value because of two differential factors. This was very impor-

tant for us since we found two key pairs that have maximum counter value while the

differential factors were two rounds away from the differential characteristic.

In addition to that, when we analyzing the key bits, we saw that differential factor

λ = 4 flips the value of the bit that corresponds to µ = 2.

We summarized this finding as the following property.

Property 7.1 The differential factor λ = 4 for µ = 2 flips the value of the bit that

corresponds to µ = 2. Namely, the second bits from the right of S (x) and S (y⊕ 4) are

the same (similarly for S (y) and S (x ⊕ 4)).

With this property, we can guess only half of the keys that correspond to the two S-

boxes x14 and x17 in the first round. Therefore, if we start guessing keys from these

two S-boxes, we reduce the time complexity of the first step of the attack by a factor

of 22. However, since the differential factors flips the values of the bits according to

the above property, we need to also try to find the complements of the two key bits

K(3,10)
0 = K(3,3)

1 and K(0,16)
0 = K(0,3)

1 in step 2 to avoid missing the correct key. With these

corrections, steps of this time complexities of the modified attack changed as 2x+38.29,

2x+39.29, 2x+38.55 and 2x+28.54 19-round encryptions, respectively; you can find details

of the steps of the new calculation as follows:

• Step 1: Guess the value of a part of subkey bits of K0.

1. Guess K(14)
0 and compute the output difference of the 14rd S-box for each

66



remaining plaintext pair; i.e

S (P(14) ⊕ K(14)
0 ) ⊕ S (P′(14) ⊕ S (K(14)

0 ⊕ ∆K(14)
0 )

This step has time complexity

2 × 2x+34.54 × 23 ×
1
16
×

1
19
≈ 2x+31.54

If the difference do not have the form ?000, discard the pair. Then the

number of expected remaining pairs is 2x+28.54.

2. Guess K(7)
0 and compute the output difference of the 7th S-box for each

remaining plaintext pair; i.e

S (P(7) ⊕ K(7)
0 ) + S (P′(7) ⊕ K(7)

0 ⊕ ∆K(7)
0 )

This step has time complexity

2 × 2x+31.54 × 26 ×
1
16
×

1
19
≈ 2x+28.54

If the difference do not have the form ?000, discard the pair. Then the

number of expected remaining pairs is 2x+28.54.

3. Repeatedly guess K(3)
0 , K(6)

0 , K(8)
0 , K(9)

0 , K(10)
0 , K(12)

0 , K(13)
0 . There are 2x +

7.54 right pairs left. This step has time complexity

2 × (2x+36.54 + 2x+37.54 + 2x+38.54 + 2x+39.54 + 2x+40.54

+2x+41.54 + 2x+42.54 + 2x+43.54) ×
1

16
×

1
19
≈ 2x+38.54

• Step 2: Guess the value of a part of subkey bits of K0 by guessing some bits of

K0 and K1.

1. Since many bits of K1 are obtained from K0 directly by shifting and adding

constant, we only need to guess some bits for a column in K1. For the 3rd

column of K1, by the key schedule we have

(K(0,3)
1 , K(1,3)

1 , K(2,3)
1 , K(3,3)

1 ) = (K(0,16)
0 , K(1,14)

0 , K(2,12)
0 , K(3,10)

0 ) Therefore,

we need to guess K(0,16)
0 =K(0,3)

1 and we also need K(3,10)
0 =K(3,3)

1 because

K(3,3)
1 was flipped when we apply Substitution operation to K(2,7)

1 . Then

the number of expected remaining pairs is 2x+5.54.

67



2. Guess the bits K(1,1)
0 , K(2,19)

0 , K(3,17)
0 , and then check up whether

S (I(10)
1 ⊕ K(10)

1 ) ⊕ S (I′(10) ⊕ K(10)
1 ⊕ ∆K(10)

1 ) = 1000

since (K(0,10)
1 ,K(1,10)

1 ,K(2,10)
1 ,K(3,10)

1 )= (K(0,3)
0 ,K(1,1)

0 ,K(2,19)
0 ,K(3,17)

0 )

On average, there are 2x+1.54 right pairs left.

3. Similarly, as Step 2(2), guess the bits K(0,2)
0 , K(1,9)

1 , K(2,18)
0 , K(3,16)

0 , then

there are 2x−2.46 right pairs left on average.

In step 2, time complexity is

2 × (2x+44.54 + 2x+43.54 + 2x+44.54) +
1
16
×

1
19
× 2x+38.54

As in [45] if we choose x = 26, we get a time complexity of 266.35 19-round encryp-

tions compared to 267.42 of the original attack. Thus, the time complexity of the attack

reduces with factor of 21.07 by using differential factors.

We further give a correction to this attack due to the undisturbed bits. For ∆I2 the

S-box only activates third bit, it was assumed that we need to capture the values of

one S-box in the first round. However, we cannot verify the characteristic without

knowing the all four bits of the S-box output in the 1st round. We provided the parts

that need to be obtained in bold in Table 7.2. Thus, the attacker also needs to guess

the 1st round subkey corresponding to S 2. But the attackers advantage increases by 3

instead of 4 bits due to the following property.

Property 7.2 Inverse of Rectangle’s S-box S has the property tb(S (x)) = tb(S (x⊕E)

where tb is the third bit.

Since K(0,2)
0 was guessed in Step 2.3, the time complexity in Step 2 increase like in

the following way;

2 · (2x+45.54 + 2x+45.54 + 2x+44.54) ·
1
16
·

1
19
≈ 2x+39.54

In addition, the time complexity of Step 1 is changed in the following way;

2 · (2x+36.54 + 2x+37.54 + 2x+38.54 + 2x+39.54 + 2x+40.54 + 2x+41.54 + 2x+42.54

+2x+44.54) ·
1
16
·

1
19
≈ 2x+39.54

68



Thus, the whole 80-bit key can be obtained after a 267.35 19-round Rectangle encryp-

tions instead of 267.42 encryptions. While these two complexities are very close to

each other and it is seem to be that there is no improvement on the attack, we have

corrected this attack by the help of the undisturbed bit. If the attackers tested this

attack practically, they show the attack could not be done due to undisturbed bit.

Table 7.2: 19-round differential-linear attack of Rec-0. Bits that should be captured
because of undisturbed bit in the 1st are shown in bold.

Differences in bits
Rounds x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

X0,I 0000 ???? ???? ???? 0000 ???? ???? ???? ???? ???? 0000 0000 ???? 0000 0000 0000
X0,O 0000 0?00 ??00 ?000 0000 000? 001? 01?0 0?00 ?000 0000 0000 000? 0000 0000 0000
X1,I 0000 0000 0000 0000 0000 ??1? ???? 0000 0000 0000 0000 0000 ??0? 0000 0000 0000
X1,O 0000 0000 0000 0000 0000 0001 0010 0000 0000 0000 0000 0000 0101 0000 0000 0000

15-Round Differential ∆1

X17,I 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0100
X17,O 0000 0000 0000 0000 0000 0000 ???? 0000 0000 0000 0000 0000 0000 0000 0000 ?1??
X18,I 0000 0000 ?000 0100 0100 00?0 00∗? 0000 000∗ ?000 0?00 0000 0000 0000 00?0 000?
X18,O 0000 0000 ???? ?1?? ?1?? ???? ???? 0000 ???? ???? ???? 0000 0000 0000 ???? ????

7.3 Improvement on 18-Round Differential Attack on Rectangle

After 19-round attack designers of Rectangle proposed another attack to break 18-

round of Rectangle by using 14 round characteristics [69]. The 14-round character-

istics contain also two differential factors since the inverse S-box of Rec-0 is used.

The differential factors are as shown in the Table 7.3.

Table 7.3: The input difference and the output difference of the 14-round difference
propagation

Input Difference of Round 0 Output Difference of Round 13
0000000000000000 0000000000000000
0010000100000000 0000000000000010
0000000100000000 0001000000000000
0000000000000000 0000000000000000

Since the details of the attack is not given, we can not give exact numbers about

improvements. However, we can say that the 14-round characteristics contain two

differential factors as shown in Table 7.3 and attacks on Rectangle using this or sim-

69



ilar characteristics should consider the effects of differential factors.

The time complexity of the 18-round attack is given as 278.67 18-round encryptions

for an 80-bit seed key and 2126.66 18-round encryptions for a 128-bit seed key. These

complexities are formed by calculations of two processes; extracting key bits by using

differential and trying all possible key bits by using exhaustive search for the remain-

ing bits. One of them can be marginally small according to other; in this case this part

can be negligible. On the other hand, these two calculations are very close to each

other.

Since we do not know the details of that attack we do not deduce the exact effect of

differential factors to attack. However we can say that if the first part of attack needs

more complexity, the attack can be performed with the complexity between 276.67 and

280.67. On the other hand, if the second part of the attack needs more complexity then

the attack can be performed with the complexity between 2124.66 and 2128.66.

70



CHAPTER 8

CONCLUSION

With the development of IoT technology, the need for lightweight block ciphers has

increased. Hence, a lot of new block ciphers were introduced and still continue to

be introduced. Against these ciphers, several attacks performed theoretically. Be-

cause those attacks are theoretical, they may contain incorrect results when they are

investigated in practice. Dr. Tezcan recognized differential factors in 2014 in [58]

while examining a theoretical attack on Present cipher. Until the differential factors

and undisturbed bits were introduced, cryptanalysis experts believed that they could

capture the whole key bits corresponding to the active S-boxes in a differential attack.

However, it came up that it could not be possible if these active S-boxes have differ-

ential factors. Thus, the correct key can be obtained by eliminating all or most of the

wrong keys; that also means reducing key space and time complexity.

In this thesis, we investigated the theory of differential factors, undisturbed bits and

their effects on 19 round differential attack on Rec-0 cipher, 18-round differential

attack on Rectangle and 16-round differential attack on Present. As a result of these

investigations, the time complexity of the 19-round related-key differential attack of

[45] on the initial version of Rec-0 decreased by a factor of 21.07 with the help of

differential factors. We also showed that the attackers should be captured 3 more bits

due to undisturbed bits. In addition to that we revealed some mistakes on 18-round

differential attack on Rectangle but we could not give exact time complexities of the

attack since we do not know the details of the attack. At the end, we showed that 16-

round differential attack on Present captures 32 bits instead of 40 bits. Therefore, we

said that the remaining 48 bits requires 248 16-round Present encryptions. We verified

71



also all these improvements experimentally. We completed this study in a search

group. Not only Revtangle and Present examined, but Pride was examined from

the other person in the search group also. We published all findings in [57] and [56]

briefly. Consequently, verifying theoretical attacks experimentally is so important

to check their effectiveness in practice. Although it is not feasible because of the

time, data and memory complexities, we are able to verify the theoretical results by

using reduced versions of them. We believe that cryptanalysis would benefit from the

practice of verifying theoretical results by experimenting on the reduced versions.

72



REFERENCES

[1] M. A. Abdelraheem, G. Leander, and E. Zenner. Differential cryptanalysis of
round-reduced printcipher: Computing roots of permutations. In A. Joux, edi-
tor, Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby,
Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733 of Lec-
ture Notes in Computer Science, pages 1–17. Springer, 2011.

[2] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita. Camellia: A 128-bit block cipher suitable for multiple platforms -
design and analysis. In D. R. Stinson and S. E. Tavares, editors, Selected Areas
in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo, On-
tario, Canada, August 14-15, 2000, Proceedings, volume 2012 of Lecture Notes
in Computer Science, pages 39–56. Springer, 2000.

[3] J. Aumasson, M. Naya-Plasencia, and M. O. Saarinen. Practical attack on 8
rounds of the lightweight block cipher KLEIN. In D. J. Bernstein and S. Chat-
terjee, editors, Progress in Cryptology - INDOCRYPT 2011 - 12th International
Conference on Cryptology in India, Chennai, India, December 11-14, 2011.
Proceedings, volume 7107 of Lecture Notes in Computer Science, pages 134–
145. Springer, 2011.

[4] E. Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229–246, 1994.

[5] E. Biham, R. J. Anderson, and L. R. Knudsen. Serpent: A new block cipher
proposal. In S. Vaudenay, editor, Fast Software Encryption, 5th International
Workshop, FSE ’98, Paris, France, March 23-25, 1998, Proceedings, volume
1372 of Lecture Notes in Computer Science, pages 222–238. Springer, 1998.

[6] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of skipjack reduced to
31 rounds using impossible differentials. In J. Stern, editor, Advances in Cryp-
tology - EUROCRYPT ’99, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 12–23.
Springer, 1999.

[7] E. Biham, O. Dunkelman, and N. Keller. Linear cryptanalysis of reduced round
serpent. In M. Matsui, editor, Fast Software Encryption, 8th International Work-
shop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers, volume
2355 of Lecture Notes in Computer Science, pages 16–27. Springer, 2001.

73



[8] A. Biryukov and D. Khovratovich. Related-key cryptanalysis of the full AES-
192 and AES-256. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Tokyo, Japan, December 6-10, 2009. Proceed-
ings, volume 5912 of Lecture Notes in Computer Science, pages 1–18. Springer,
2009.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block
cipher. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Com-
puter Science, pages 450–466. Springer, 2007.

[10] C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN -
A family of small and efficient hardware-oriented block ciphers. In C. Clavier
and K. Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, volume 5747 of Lecture Notes in Computer Science, pages
272–288. Springer, 2009.

[11] Z. Chen and X. Wang. Impossible differential cryptanalysis of midori. IACR
Cryptology ePrint Archive, 2016:535, 2016.

[12] H. Cheng, H. M. Heys, and C. Wang. PUFFIN: A novel compact block cipher
targeted to embedded digital systems. In L. Fanucci, editor, 11th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, DSD
2008, Parma, Italy, September 3-5, 2008, pages 383–390. IEEE Computer So-
ciety, 2008.

[13] M. Çoban, F. Karakoç, and Ö. Boztas. Biclique cryptanalysis of TWINE. IACR
Cryptology ePrint Archive, 2012:422, 2012.

[14] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin. Improved analysis
of some simplified variants of RC6. In L. R. Knudsen, editor, Fast Software
Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26,
1999, Proceedings, volume 1636 of Lecture Notes in Computer Science, pages
1–15. Springer, 1999.

[15] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. IACR Cryptology ePrint Archive, 2002:44, 2002.

[16] P. Crowley. Truncated differential cryptanalysis of five rounds of salsa20. IACR
Cryptology ePrint Archive, 2005:375, 2005.

[17] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography. Springer, 2002.

74



[18] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, 22(6):644–654, 1976.

[19] S. R. Fluhrer and S. Lucks. Analysis of the e0 encryption system. In S. Vau-
denay and A. M. Youssef, editors, Selected Areas in Cryptography, 8th Annual
International Workshop, SAC 2001 Toronto, Ontario, Canada, August 16-17,
2001, Revised Papers, volume 2259 of Lecture Notes in Computer Science,
pages 38–48. Springer, 2001.

[20] T. E. Gamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August
19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, 1984.

[21] T. Gendrullis, M. Novotný, and A. Rupp. A real-world attack breaking A5/1
within hours. IACR Cryptology ePrint Archive, 2008:147, 2008.

[22] Z. Gong, S. Nikova, and Y. W. Law. KLEIN: A new family of lightweight
block ciphers. In A. Juels and C. Paar, editors, RFID. Security and Privacy -
7th International Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011,
Revised Selected Papers, volume 7055 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2011.

[23] J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The LED block cipher.
In B. Preneel and T. Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September
28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer, 2011.

[24] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Informa-
tion Theory, 26(4):401–406, 1980.

[25] T. Isobe and K. Shibutani. Security analysis of the lightweight block ciphers
xtea, LED and piccolo. In W. Susilo, Y. Mu, and J. Seberry, editors, Information
Security and Privacy - 17th Australasian Conference, ACISP 2012, Wollongong,
NSW, Australia, July 9-11, 2012. Proceedings, volume 7372 of Lecture Notes in
Computer Science, pages 71–86. Springer, 2012.

[26] K. Jia and N. Wang. Impossible differential cryptanalysis of 14-round camellia-
192. In J. K. Liu and R. Steinfeld, editors, Information Security and Privacy
- 21st Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July
4-6, 2016, Proceedings, Part II, volume 9723 of Lecture Notes in Computer
Science, pages 363–378. Springer, 2016.

[27] J. Kim, S. Hong, S. Lee, J. H. Song, and H. Yang. Truncated differential at-
tacks on 8-round CRYPTON. In J. I. Lim and D. H. Lee, editors, Information

75



Security and Cryptology - ICISC 2003, 6th International Conference, Seoul, Ko-
rea, November 27-28, 2003, Revised Papers, volume 2971 of Lecture Notes in
Computer Science, pages 446–456. Springer, 2003.

[28] S. Knellwolf, W. Meier, and M. Naya-Plasencia. Conditional differential crypt-
analysis of nlfsr-based cryptosystems. In M. Abe, editor, Advances in Cryp-
tology - ASIACRYPT 2010 - 16th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 5-9,
2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages
130–145. Springer, 2010.

[29] S. Knellwolf, W. Meier, and M. Naya-Plasencia. Conditional differential crypt-
analysis of trivium and KATAN. In A. Miri and S. Vaudenay, editors, Selected
Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON,
Canada, August 11-12, 2011, Revised Selected Papers, volume 7118 of Lecture
Notes in Computer Science, pages 200–212. Springer, 2011.

[30] L. R. Knudsen. Truncated and higher order differentials. In Preneel [40], pages
196–211.

[31] L. R. Knudsen, G. Leander, A. Poschmann, and M. J. B. Robshaw. Printcipher:
A block cipher for ic-printing. In S. Mangard and F. Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume
6225 of Lecture Notes in Computer Science, pages 16–32. Springer, 2010.

[32] Y. Ko, D. Hong, S. Hong, S. Lee, and J. Lim. Linear cryptanalysis of SPECTR-
H64 with higher order differential property. In V. Gorodetsky, L. J. Popyack,
and V. A. Skormin, editors, Computer Network Security, Second International
Workshop on Mathematical Methods, Models, and Architectures for Computer
Network Security, MMM-ACNS 2003, St. Petersburg, Russia, September 21-23,
2003, Proceedings, volume 2776 of Lecture Notes in Computer Science, pages
298–307. Springer, 2003.

[33] G. Leander. On linear hulls, statistical saturation attacks, PRESENT and a
cryptanalysis of PUFFIN. In Paterson [39], pages 303–322.

[34] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A cryptanalysis
of printcipher: The invariant subspace attack. In P. Rogaway, editor, Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 206–221. Springer, 2011.

[35] G. Leander, C. Paar, A. Poschmann, and K. Schramm. New lightweight DES
variants. In A. Biryukov, editor, Fast Software Encryption, 14th International
Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised

76



Selected Papers, volume 4593 of Lecture Notes in Computer Science, pages
196–210. Springer, 2007.

[36] D. Meeks. Hieroglyphic dictionary, inventory of hieroglyphs and unicode. Doc-
ument Numérique, 16(3):31–44, 2013.

[37] F. Mendel, V. Rijmen, D. Toz, and K. Varici. Differential analysis of the LED
block cipher. IACR Cryptology ePrint Archive, 2012:544, 2012.

[38] D. Moon, K. Hwang, W. Lee, S. Lee, and J. Lim. Impossible differential crypt-
analysis of reduced round XTEA and TEA. In J. Daemen and V. Rijmen, edi-
tors, Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven,
Belgium, February 4-6, 2002, Revised Papers, volume 2365 of Lecture Notes in
Computer Science, pages 49–60. Springer, 2002.

[39] K. G. Paterson, editor. Advances in Cryptology - EUROCRYPT 2011 - 30th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume
6632 of Lecture Notes in Computer Science. Springer, 2011.

[40] B. Preneel, editor. Fast Software Encryption: Second International Workshop.
Leuven, Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture
Notes in Computer Science. Springer, 1995.

[41] B. Reichardt and D. A. Wagner. Markov truncated differential cryptanalysis of
skipjack. In K. Nyberg and H. M. Heys, editors, Selected Areas in Cryptogra-
phy, 9th Annual International Workshop, SAC 2002, St. John’s, Newfoundland,
Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in
Computer Science, pages 110–128. Springer, 2002.

[42] R. L. Rivest. The RC5 encryption algorithm. In Preneel [40], pages 86–96.

[43] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[44] J. Seberry, X. Zhang, and Y. Zheng. Pitfalls in designing substitution boxes
(extended abstract). In Y. Desmedt, editor, Advances in Cryptology - CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in
Computer Science, pages 383–396. Springer, 1994.

[45] J. Shan, L. Hu, L. Song, S. Sun, and X. Ma. Related-key differential attack on
round reduced RECTANGLE-80. IACR Cryptology ePrint Archive, 2014:986,
2014.

[46] C. E. Shannon. Communication theory - exposition of fundamentals. Trans. of
the IRE Professional Group on Information Theory (TIT), 1:44–47, 1953.

77



[47] H. Soleimany. Zero-correlation linear cryptanalysis of reduced-round lblock.
IACR Cryptology ePrint Archive, 2012:570, 2012.

[48] B. Sun, R. Li, M. Wang, P. Li, and C. Li. Impossible differential cryptanalysis
of CLEFIA. IACR Cryptology ePrint Archive, 2008:151, 2008.

[49] S. Sun, L. Hu, K. Qiao, X. Ma, J. Shan, and L. Song. Improvement on the
method for automatic differential analysis and its application to two lightweight
block ciphers DESL and lblock-s. In K. Tanaka and Y. Suga, editors, Advances
in Information and Computer Security - 10th International Workshop on Secu-
rity, IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings, volume 9241
of Lecture Notes in Computer Science, pages 97–111. Springer, 2015.

[50] S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, and L. Song. Au-
tomatic enumeration of (related-key) differential and linear characteristics with
predefined properties and its applications. IACR Cryptology ePrint Archive,
2014:747, 2014.

[51] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. $\textnor-
mal{\textsc{TWINE}}$ : A lightweight block cipher for multiple platforms.
In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, 19th In-
ternational Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012,
Revised Selected Papers, volume 7707 of Lecture Notes in Computer Science,
pages 339–354. Springer, 2012.

[52] S. E. Tavares and H. Meijer, editors. Selected Areas in Cryptography ’98,
SAC’98, Kingston, Ontario, Canada, August 17-18, 1998, Proceedings, volume
1556 of Lecture Notes in Computer Science. Springer, 1999.

[53] C. Tezcan. Improbable differential cryptanalysis. In A. Elçi, M. S. Gaur, M. A.
Orgun, and O. B. Makarevich, editors, The 6th International Conference on
Security of Information and Networks, SIN ’13, Aksaray, Turkey, November 26-
28, 2013, page 457. ACM, 2013.

[54] C. Tezcan. Improbable differential attacks on present using undisturbed bits. J.
Computational Applied Mathematics, 259:503–511, 2014.

[55] C. Tezcan. Differential factors revisited: Corrected attacks on PRESENT and
SERPENT. In T. Güneysu, G. Leander, and A. Moradi, editors, Lightweight
Cryptography for Security and Privacy - 4th International Workshop, LightSec
2015, Bochum, Germany, September 10-11, 2015, Revised Selected Papers, vol-
ume 9542 of Lecture Notes in Computer Science, pages 21–33. Springer, 2015.

[56] C. Tezcan, G. O. Okan, A. Şenol, E. Doğan, F. Yücebaş, and N. Baykal. On
differential factors. ISCTURKEY 2016, Ankara, Turkey, 103-110.

78



[57] C. Tezcan, G. O. Okan, A. Senol, E. Dogan, F. Yücebas, and N. Baykal. Dif-
ferential attacks on lightweight block ciphers present, pride, and RECTANGLE
revisited. In A. Bogdanov, editor, Lightweight Cryptography for Security and
Privacy - 5th International Workshop, LightSec 2016, Aksaray, Turkey, Septem-
ber 21-22, 2016, Revised Selected Papers, volume 10098 of Lecture Notes in
Computer Science, pages 18–32. Springer, 2016.

[58] C. Tezcan and F. Özbudak. Differential factors: Improved attacks on SERPENT.
In T. Eisenbarth and E. Öztürk, editors, Lightweight Cryptography for Security
and Privacy - Third International Workshop, LightSec 2014, Istanbul, Turkey,
September 1-2, 2014, Revised Selected Papers, volume 8898 of Lecture Notes
in Computer Science, pages 69–84. Springer, 2014.

[59] C. Tezcan and A. A. Selçuk. Improved improbable differential attacks on
ISO standard CLEFIA: expansion technique revisited. Inf. Process. Lett.,
116(2):136–143, 2016.

[60] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Impossible differential crypt-
analysis of reduced-round SKINNY. In M. Joye and A. Nitaj, editors, Progress
in Cryptology - AFRICACRYPT 2017 - 9th International Conference on Cryp-
tology in Africa, Dakar, Senegal, May 24-26, 2017, Proceedings, volume 10239
of Lecture Notes in Computer Science, pages 117–134, 2017.

[61] M. S. Turan and E. Uyan. Near-collisions for the reduced round versions
of some second round SHA-3 compression functions using hill climbing. In
G. Gong and K. C. Gupta, editors, Progress in Cryptology - INDOCRYPT 2010
- 11th International Conference on Cryptology in India, Hyderabad, India, De-
cember 12-15, 2010. Proceedings, volume 6498 of Lecture Notes in Computer
Science, pages 131–143. Springer, 2010.

[62] M. Wang. Differential cryptanalysis of reduced-round PRESENT. In S. Vaude-
nay, editor, Progress in Cryptology - AFRICACRYPT 2008, First International
Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008.
Proceedings, volume 5023 of Lecture Notes in Computer Science, pages 40–49.
Springer, 2008.

[63] Y. Wang, W. Wu, X. Yu, and L. Zhang. Security on lblock against biclique
cryptanalysis. In D. H. Lee and M. Yung, editors, Information Security Appli-
cations - 13th International Workshop, WISA 2012, Jeju Island, Korea, August
16-18, 2012, Revised Selected Papers, volume 7690 of Lecture Notes in Com-
puter Science, pages 1–14. Springer, 2012.

[64] L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling. Improved meet-
in-the-middle cryptanalysis of KTANTAN. IACR Cryptology ePrint Archive,
2011:201, 2011.

79



[65] D. J. Wheeler and R. M. Needham. Tea, a tiny encryption algorithm. In Preneel
[40], pages 363–366.

[66] W. Wu and L. Zhang. Lblock: A lightweight block cipher. IACR Cryptology
ePrint Archive, 2011:345, 2011.

[67] H. Yap, K. Khoo, A. Poschmann, and M. Henricksen. EPCBC - A block ci-
pher suitable for electronic product code encryption. In D. Lin, G. Tsudik, and
X. Wang, editors, Cryptology and Network Security - 10th International Confer-
ence, CANS 2011, Sanya, China, December 10-12, 2011. Proceedings, volume
7092 of Lecture Notes in Computer Science, pages 76–97. Springer, 2011.

[68] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. RECTAN-
GLE: A bit-slice ultra-lightweight block cipher suitable for multiple platforms.
IACR Cryptology ePrint Archive, 2014:84, 2014.

[69] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. RECT-
ANGLE: a bit-slice lightweight block cipher suitable for multiple platforms.
SCIENCE CHINA Information Sciences, 58(12):1–15, 2015.

[70] G. Zhao, B. Sun, C. Li, and J. Su. Truncated differential cryptanalysis of
PRINCE. Security and Communication Networks, 8(16):2875–2887, 2015.

80



APPENDIX A

APPENDIX I

package bruteforce;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.util.Arrays;

public class BruteForce

{

//this is a random key1

static boolean[] booleanKey={true,false,false,true,true,true,

false, false,false,false,false,false,false,false,false,true,

true,false,true,true,true,true,false,true,true,false,false,

false,false,true,false,true,true,true,true,true,false,false,

false,true,true,true,false,false,false,false,false,false,true,

false,true,false,false,false,false,true,true,true,false,false,

false,false,false,false};

//this is a random key2

static boolean[] booleanKey2 = {false,true,false,false,false,

true,false,true,false,false,true,true,true,false,false,false,

false,false,true,false,true,true,false,false,true,false,false,

81



true,true,true,true,false,true,false,false,false,false,false,

false,true,false,false,true,true,true,true,true,false,true,

true,true,false,false,false,false,false,false,false,false,

false,true,false,false,true};

//this is a random key3

static boolean[] booleanKey3 ={true,false,false,true,true,true,

false, false,false,false,false,false,false,false,false,true,

true,false,true,true,true,true,false,true,true,false,false,

false,false,true,true,true,true,true,true,true,false,false,

false,true,true,true,false,false,false,false,false,false,true,

false,true,false,false,false,false,true,true,true,false,false,

false,false,false,false};

//this is DeltaI2 from characteristic

static boolean[] InputDifference2={false,false,false,true,

false,false,false,false,false,false,true,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,true,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false};

//this is DeltaI1 from characteristic

static boolean[] booleanKeyDifference1 = {false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,true,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false};

82



//this is for key schedule, DeltaK2

static boolean[] booleanKeyDifference2 = {false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,true,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false,false,false,false,false,false,false,false,false,false,

false};

public static void main(String[] args) throws IOException {

boolean[][] arrayCiphertext = readTextFile("ciphertexts.txt");

int[] counters = new int[4096];

//starting of key schedule

boolean[] diffKey = addKeyOperation(booleanKeyDifference1,booleanKey);

boolean[] diffKey3 = addKeyOperation(booleanKeyDifference1,booleanKey3);

boolean[] diffKey2 = addKeyOperation(booleanKeyDifference2,

booleanKey2);

boolean[] manipulatedKey2 = booleanKey2.clone();

boolean[] manipulatedDiffKey2 = diffKey2.clone();

//end of key schedule

for (int i = 0; i < 100; i++)

{

boolean[] encryptedMatrix = arrayCiphertext[i];

boolean[] encryptedDiffMatrix = addKeyOperation(

encryptedMatrix,

InputDifference2);

boolean[] decryptedMatrix =

Decryption(booleanKey, booleanKey2,

83



encryptedMatrix);

boolean[] decryptedDiffMatrix =

Decryption(diffKey, diffKey2,

encryptedDiffMatrix);

boolean[] encryptedSubMatrix = Encryption(booleanKey3,

decryptedMatrix);

boolean[] encryptedSubDiffMatrix = Encryption(diffKey3,

decryptedDiffMatrix);

for (int k = 0; k < 4096; k++)

{

ManipulateKey_12Bit(manipulatedKey2, k);

ManipulateKey_12Bit(manipulatedDiffKey2, k);

boolean[] testOutputMatrix = Encryption(manipulatedKey2,

encryptedSubMatrix);

boolean[] testOutputDiffMatrix =

Encryption(manipulatedDiffKey2,

encryptedSubDiffMatrix);

boolean[] testOutputDeltaMatrix =

addKeyOperation(testOutputMatrix,

testOutputDiffMatrix);

if (CheckMatrixEquality(testOutputDeltaMatrix,InputDifference2))

{

counters[k] += 1;

}

}

}

84



for (int i = 0; i < 4096; i++)

{

System.out.println("---------------- Key [" + i + "]

-------------------------------------");

System.out.println("Counter Result : " + counters[i]);

ManipulateKey_12Bit(manipulatedKey2, i);

PrintMatrix2("Key Data", manipulatedKey2);

System.out.print("\n\n\n");

}

PrintMatrix2("Key 2", booleanKey2);

PrintMatrix2("Key 1", booleanKey);

PrintMatrix2("Key 3", booleanKey3);

}

public static void ManipulateKey_12Bit(boolean[] manipulatedKey,

int manipulateIndex)

{

boolean[] bitValues = new boolean[12];

for (int b = 0; b < 12; b++)

{

bitValues[b] = (manipulateIndex & (1 << b)) != 0;

}

manipulatedKey[3] = bitValues[0];

manipulatedKey[19] = bitValues[1];

manipulatedKey[35] = bitValues[2];

manipulatedKey[51] = bitValues[3];

85



manipulatedKey[10] = bitValues[4];

manipulatedKey[26] = bitValues[5];

manipulatedKey[42] = bitValues[6];

manipulatedKey[58] = bitValues[7];

manipulatedKey[9] = bitValues[8];

manipulatedKey[25] = bitValues[9];

manipulatedKey[41] = bitValues[10];

manipulatedKey[57] = bitValues[11];

}

// this is for checking two matrix equality

public static boolean CheckMatrixEquality(boolean[] matrix1,

boolean[] matrix2)

{

int matrixLength = matrix1.length;

if (matrixLength != matrix2.length)

{

System.out.println("Different matrix sizes

at equality check!");

return false;

}

for (int i = 0; i < matrixLength; i++)

{

if (matrix1[i] != matrix2[i])

return false;

}

return true;

}

86



public static boolean[][] readTextFile(String dosyaAdi)

throws FileNotFoundException,IOException{

boolean[][] arrayCiphertext = new boolean[100][64];

BufferedReader oku = new BufferedReader(new

FileReader(dosyaAdi));

String satir = oku.readLine();

int cipherTextIndex = 0;

while (satir != null)

{ String[] parts = satir.split(",");

for (int i = 0; i < 64; i++)

{

arrayCiphertext[cipherTextIndex][i]

= Boolean.parseBoolean(parts[i]);

}

cipherTextIndex++;

satir = oku.readLine();

}

return arrayCiphertext;

}

public static boolean[] Encryption(boolean[] key, boolean[] plaintext){

boolean[] postAddKeyMatrix = addKeyOperation(key, plaintext);

boolean[] postSubstitionMatrix

= SubstitutionOperation(postAddKeyMatrix);

boolean[] shiftResultMatrix = new boolean[64];

ShiftOperation(postSubstitionMatrix, shiftResultMatrix, 0, 0);

ShiftOperation(postSubstitionMatrix, shiftResultMatrix, 1, 1);

ShiftOperation(postSubstitionMatrix, shiftResultMatrix, 2, 12);

87



ShiftOperation(postSubstitionMatrix, shiftResultMatrix, 3, 13);

return shiftResultMatrix;

}

public static boolean[] Decryption(boolean[] key1, boolean[] key2,

boolean[] ciphertext){

boolean[] shiftResultMatrix = new boolean[64];

ShiftOperation(ciphertext, shiftResultMatrix, 0, 0);

ShiftOperation(ciphertext, shiftResultMatrix, 1, 15);

ShiftOperation(ciphertext, shiftResultMatrix, 2, 4);

ShiftOperation(ciphertext, shiftResultMatrix, 3, 3);

boolean[] postSubstitionMatrix =

SubstitutionOperationInverse(shiftResultMatrix);

boolean[] postAddKeyMatrix =

addKeyOperation(key2, postSubstitionMatrix);

ShiftOperation(postAddKeyMatrix, shiftResultMatrix, 0, 0);

ShiftOperation(postAddKeyMatrix, shiftResultMatrix, 1, 15);

ShiftOperation(postAddKeyMatrix, shiftResultMatrix, 2, 4);

ShiftOperation(postAddKeyMatrix, shiftResultMatrix, 3, 3);

postSubstitionMatrix =

SubstitutionOperationInverse(shiftResultMatrix);

postAddKeyMatrix = addKeyOperation(key1, postSubstitionMatrix);

return postAddKeyMatrix;

}

88



public static void PrintMatrix(String header1,String header2,

String header3, boolean[] values1, boolean[] values2,

boolean[] values3)

{

System.out.println(" "+ header1 +" "

+ header2 + " " + header3);

for (int r = 0; r < 4; r++)

{ String rowStr1 = "";

String rowStr2 = "";

String rowStr3 = "";

for (int c = 15; c >= 0; c--)

{

int linearIndex = r * 16 + c;

rowStr1 += (values1[linearIndex] == true ? "1" : "0");

rowStr2 += (values2[linearIndex] == true ? "1" : "0");

rowStr3 += (values3[linearIndex] == true ? "1" : "0");

}

System.out.println(rowStr1 + " " + rowStr2 + " "

+ rowStr3);

}

System.out.println("");

}

public static void ShiftOperation(boolean[] input, boolean[] output,

int rowIndex, int shiftAmount) {

int maxIndex = (rowIndex + 1) * 16;

for (int i = rowIndex * 16; i < maxIndex; i++)

{

89



int newIndex = i + shiftAmount;

if (newIndex >= maxIndex) {

newIndex -= 16;

}

output[newIndex] = input[i];

}

}

public static int CheckCounter(boolean[] ciphertext1, boolean[]

ciphertext2){

int counter=0;

if( ciphertext1.equals(ciphertext2)){

counter++;

}

return counter;

}

public static boolean[] SubstitutionOperation(boolean[] postAddKeyMatrix)

{

boolean[] substitionResultMatrix =

new boolean[postAddKeyMatrix.length];

for (int c = 0; c < 16; c++) {

int inputHexValue = 0;

inputHexValue += postAddKeyMatrix[c + 0] == true ? 1 : 0;

inputHexValue += postAddKeyMatrix[c + 16] == true ? 2 : 0;

inputHexValue += postAddKeyMatrix[c + 32] == true ? 4 : 0;

inputHexValue += postAddKeyMatrix[c + 48] == true ? 8 : 0;

90



int outputHexValue = SBoxOperation(inputHexValue);

substitionResultMatrix[c + 0] =

((outputHexValue & 1) == 0) ? false : true;

substitionResultMatrix[c + 16] =

((outputHexValue & 2) == 0) ? false : true;

substitionResultMatrix[c + 32] =

((outputHexValue & 4) == 0) ? false : true;

substitionResultMatrix[c + 48] =

((outputHexValue & 8) == 0) ? false : true;

}

return substitionResultMatrix;

}

public static boolean[] SubstitutionOperationInverse(boolean[]

postAddKeyMatrix) {

boolean[] substitionResultMatrix =

new boolean[postAddKeyMatrix.length];

for (int c = 0; c < 16; c++) {

int inputHexValue = 0;

inputHexValue += postAddKeyMatrix[c + 0] == true ? 1 : 0;

inputHexValue += postAddKeyMatrix[c + 16] == true ? 2 : 0;

inputHexValue += postAddKeyMatrix[c + 32] == true ? 4 : 0;

inputHexValue += postAddKeyMatrix[c + 48] == true ? 8 : 0;

int outputHexValue = SBoxOperationInverse(inputHexValue);

substitionResultMatrix[c + 0] =

((outputHexValue & 1) == 0) ? false : true;

substitionResultMatrix[c + 16] =

((outputHexValue & 2) == 0) ? false : true;

substitionResultMatrix[c + 32] =

91



((outputHexValue & 4) == 0) ? false : true;

substitionResultMatrix[c + 48] =

((outputHexValue & 8) == 0) ? false : true;

}

return substitionResultMatrix;

}

public static boolean[] addKeyOperation(boolean[] key,

boolean[] plaintext) {

boolean output[] = new boolean[64];

for (int i = 0; i < 64; i++) {

output[i] = key[i] ^ plaintext[i];

}

return output;

}

public static int SBoxOperation(int input) {

int[] sBox = {9, 4, 15, 10, 14, 1, 0, 6, 12, 7, 3,

8, 2, 11, 5, 13};

return sBox[input];

}

public static int SBoxOperationInverse(int input) {

int[] sBox = {6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3,

13, 8, 15, 4, 2};

return sBox[input];

92



}

public static void PrintMatrix2(String header, boolean[] values)

{

System.out.println("");

System.out.println(" * " + header);

System.out.println("========================================");

for (int r = 0; r < 4; r++)

{

String rowStr = "";

for (int c = 15; c >= 0; c--)

{

int linearIndex = r * 16 + c;

rowStr += (values[linearIndex] == true ? "1" : "0") + " ";

}

System.out.println(rowStr);

}

System.out.println("");

}

}

93


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Contributions of the Thesis
	Outline

	Background on Cryptography
	Foundation of Cryptography
	Evolution of Cryptography
	Characteristics of Modern Cryptography
	Context of Cryptography
	Purposes of Cryptography
	Types of Cryptography
	Secret Key Cryptography
	Public Key Cryptography
	Hash Functions


	Block Ciphers
	Types of Block Ciphers According to Their Structure
	Modern Block Cipher Types
	Cryptanalysis of Block Ciphers
	Lightweight Block Ciphers
	Design of Lightweight Block Ciphers
	The Most Widely Known Lightweight Block Ciphers
	Present
	PRINTCipher
	Desl, Desx and Desxl
	Led
	Katan and Ktantan
	Klein
	Lblock
	Twine
	Epcbc
	Puffin



	S-BOXES
	Introduction of S-Box
	S-Box Properties
	Differential Uniformity
	Robustness
	Non-linearity
	Balancing
	Strict Avalanche Criterion (SAC)
	Branch Number
	Undisturbed Bits
	Differential Factors

	Differential Factors and Cryptanalysis 

	ATTACKS ON BLOCK CIPHERS
	Cryptanalytic Attacks
	Differential Cryptanalysis
	Overview of Basic Attack
	Extracting Key Bits
	Complexity of the Attack

	An Example of Differential Cryptanalysis: Differential Cryptanalysis of UltraLightweight Present Cipher 

	Corrected Attack on Present

	OVERVIEW OF RECTANGLE
	The Last Version of The Rectangle Algorithm
	Representation of Plaintext and Subkey as Matrix
	Substitution and Permutation Operations
	S-box
	Differential Factors

	Key Schedule
	Whole Cipher

	The Rec-0(First Version of the Rectangle Algorithm)
	Representation of Plaintext and Subkey as Matrix
	Substitution and Permutation Operations
	S-box
	Differential Factors

	Key Schedule
	Whole Cipher

	Differential Attacks on Rectangle
	19-round Related-key Differential Attack on Rec-0
	Differential Characteristics
	A related-key differential attack on Rec-0 with key length 80

	18-round Related-key Differential Attack on Rectangle


	Corrections and Improvements on Differential Attacks on RECTANGLE
	Improvement on 19-Round Related-Key Differential Attack on Rec-0
	Experimental Differential Cryptanalysis
	Improvement on 18-Round Differential Attack on Rectangle

	CONCLUSION
	REFERENCES
	APPENDICES
	APPENDIX I

