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ABSTRACT 

 

MULTI-SEGMENT CONTINUOUS CABLES WITH FRICTIONAL CONTACT 

ALONG THEIR SPAN 

Demir, Abdullah 

Ph.D. in Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Mustafa Uğur Polat 

July 2017; 90 pages 

 

Cables are highly nonlinear structural members under transverse loading. This 

nonlinearity is mainly due to the close relationship between the final geometry under 

transverse loads and the resulting stresses in its equilibrium state rather than the 

material properties. In practice, the cables are usually utilized as isolated single-

segment elements fixed at the ends. Various studies and solution procedures suggested 

by researchers are available in the literature for such isolated cables. However, not 

much work is available for multi-segment continuous cables with multiple 

intermediate supports between its two ends. 

In this thesis, a solution procedure based on contact mechanics is proposed for the non-

linear interaction between a multi-segment continuous cable and an elastic structure 

such as a plane truss. The intermediate supports represent the target nodal points of the 

structure where the cable is likely to come into contact with the structure. Therefore, 

the intermediate supports of the multi-segment continuous cable are assumed to be 

frictional and elastic. Moreover, the cables are not constrained to be in contact with 

each of these target supports. Actual support locations along the cable are determined 

in the course of the iterative non-linear analysis.  
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A cable and a bar element are formulated mathematically with their geometric 

nonlinearities. The coupling is established and non-linear interaction between the two 

structures is determined by the principles of contact mechanics. Proposed 

mathematical model is coded and verification analyses are done with a sample model 

composed of a cable and a truss structure. A number of case studies are carried out for 

a real-life application of truss structures post-tensioned by a continuous cable. 

Keywords: cable, structural cable, multi-segment continuous cable, contact 

mechanics, continuous cable with multiple supports 
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ÖZ 

 

AÇIKLIĞI BOYUNCA SÜRTÜNMELİ KONTAK HALİNDEKİ ÇOK AÇIKLIKLI 

SÜREKLİ KABLOLAR 

Demir, Abdullah 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Mustafa Uğur Polat 

Temmuz 2017; 90 Sayfa 

 

Kablolar eksenine dik yükler altında son derecede doğrusal olmayan davranış 

gösterirler. Bunun nedeni kablonun malzeme davranışından ziyade kablonun böyle bir 

yük altındaki son konumu ve dolayısı ile oluşan gerilmeler ile uygulanan yük 

arasındaki yakın ilişkidir. Uygulamada kablolar daha çok iki ucu sabit tek parça 

eleman olarak kullanılır. Literatürde böyle bir kullanım durumunda kablonun analizi 

için araştırmacılar tarafından önerilen değişik yaklaşımlar mevcutur. Ancak iki ucu 

arasında bazı ara noktalarda da mesnetlenen çok parçalı sürekli kablolar için fazlaca 

bir çalışma bulunmamaktadır. 

Bu tezde, çok parçalı bir kablonun düzlem kafes kiriş gibi elastik bir başka yapı ile 

doğrusal olmayan etkileşimi için kontak mekanik prensiplerine dayanan bir çözüm 

yöntemi önerilmektedir. Çok parçalı kablonun ara mesnetleri kablonun yapısal sistem 

ile temas oluşturacağı olası kontak noktalarını temsil etmektedir. Dolayısı ile kablo 

boyunca ara mesnetler sürtünmeli ve elastik olarak kabul edilmektedir. Ayrıca kablo 

doğrusal olmayan analiz sürecinin her aşamasında yapısal sistem üzerinde seçilen olası 

kontak noktaları ile kontak halinde olmaya da zorlanmamaktadır. Kablo boyunca 
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elastik yapısal sistem ile oluşacak kontak noktaları olan ara mesnetlerin gerçek 

konumları doğrusal olmayan artımsal ve iteratif analiz sürecinde belirlenmektedir.  

Bu amaçla matematiksel olarak formüle edilen bir kablo ve bir çubuk elemanı 

kullanılarak yapısal sistem ile kablo modellendikten sonra kablo ile yapısal sistemin 

kuplajı ve iki yapı arasındaki doğrusal olmayan etkileşim kontak mekanik prensipleri 

bazında belirlenmektedir. Önerilen yöntem için oluşturulan bir bilgisayar yazılımı 

kullanılarak yöntemin verifikasyonu kablo ve kafes kiriş sistemden oluşan örnek 

problemlerle yapılmıştır. Yöntem ard germeli kafes kiriş sistem gibi pratik uygulama 

örnekleri ile de test edilmektedir. 

Anahtar Kelimeler: kablo, yapısal kablo, çok açıklıklı sürekli kablo, kontak mekanik, 

çok mesnetli sürekli kablo  
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CHAPTERS 

CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 General 

Cables are structural elements having negligibly small stiffness in bending and used to 

span long distances. They are used in cable-stayed bridges, guyed towers, offshore 

structures, marine vehicles, transmission lines, cable roofs, pre-stressing applications 

and tensegrity works. Besides, cables are the indispensable elements for tensioning 

applications. 

Basically, if cables are assumed to be weightless and no transverse loading, they are 

geometrically linear structural elements. Although, this assumption could be valid for 

cables having smaller cross-sectional areas, there are many applications of cables like 

suspension bridges where the cables have considerable self-weight and subject to 

transverse loading. Hence, geometric nonlinearity is the main issue for cable analysis 

having the effect of its own weight and transverse loading. 

Structural cables are usually used in conjunction with some other structural 

components. Besides its geometric nonlinearity, there is another issue which makes 

the analysis of cables more troublesome. This is the contact of cables with other 

structural elements along their span. Depending on the structural design, cables can be 

fixed at some predefined support locations or slipping might occur on some parts of 

the structure. In addition, in the course of their loading history, cables can establish 

contact with some parts of the structure and/or loose contact with some other parts of 

it. This inherent motion of cable can only be modelled by defining the contact between 

the cable and the elastic structure, which is the purpose of this thesis. 
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1.2 Purpose 

Extensive research have been made for cables passing through the pulleys having 

predefined location in space. However, pulleys are elastic structural elements and their 

initial positions can change. Besides, cables can be in contact with structure/pulley or 

not, depending on many constraints like support conditions, loading regime, the shape 

of structure, position of contact points and cable length (see Figure 1.1) for both 

application phase of the cables and the loading phase of the structures. Furthermore, 

the contact points between cables and the structures can change continuously during 

loading phase of the application such as post-tensioning of structures.  

 

Figure 1.1 Contact between cable and elastic structure 

As a result, designing cables with restricted contact points will result in unexpected 

stress distribution in the post-tensioned structure. Therefore, the contact between the 

cable and the structure should be modelled without any restriction on the location of 

contact points to accurately model the interaction between the cable and the structure 

and obtain a true distribution of stresses. The aim of this thesis is to model the contact 

between cables and the elastic structures with their inherent motion. A 2D truss system 

is selected as an elastic structure. A post-tensioning application is modelled for this 

elastic structure by shortening the continuous cable. 
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1.3 Previous Studies  

Handling of the interaction problem between cables and the structures requires both 

the non-linear analysis of cables and the mechanics of contact between elastic bodies.. 

Therefore, the literature is surveyed separately in these two areas. 

1.3.1 Studies on Cables 

Cables are non-linear structural elements widely used in many civil engineering 

applications. The non-linearity is due to their bendable geometry. In other words, 

cables have nearly zero bending stiffness. Thus, they cannot resist compressive forces. 

Therefore, cables can be called as tension only members. 

In general, cables are composed of many wires. This composition satisfies the 

condition that, cable has a constant cross-sectional area whereas has a smaller bending 

stiffness compared with a bar having the same cross sectional area. The most 

commonly used cables are composed of seven wires, which are called 7-wire strands. 

There are many types of cables composed of wires and/or strands. 

Being a tension only member and having approximately no bending stiffness as 

explained above, cables are generally used with long geometries supported at both 

ends. Under these circumstances, cables make sags due to its self-weight. Researchers 

firstly tried to solve the cable problem by assuming them as weightless and having a 

parabolic shape. “Equivalent modulus of elasticity approach” is the name of the 

method proposed by Dischinger (1949). This method was improved by Ernst (1965) 

with the name; equivalent secant modulus of elasticity approach. Hajdin (1998) 

summarized the methods. Although, these are old studies, parabolic cable elements 

were used in recent studies (Ren et al 2008). 

The first cable solution considering its self-weight was proposed by Micholas and 

Brinstiel (1962). Skop and O’Hara made further researches (1970). Peyrot and Goulois 

(1979) developed a code and verify their proposed method. Polat (1981) uses Newton-

Raphson method for nonlinearity in his thesis. Demir (2011) developed the cable 

element in 3D. There are many other finite element methods proposed by researchers 
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Fleming (1979), Chue (1983), Wang (1984), Wang et al (1989), Der Kiureghian et al 

(2005), Andreu et al (2006), Santos et al (2011), Mostafa et al (2013), Ahmadizadeh 

(2013), Greco et al (2014). 

Although the solution of tension only elements have been generally named as cable 

solution, Demir (2011) proposed an approach for the solution of cables by 

distinguishing between the two types as single-segment cables (SSC) and multi-

segment continuous cables (MSCC). In his description, single-segment cable is a cable 

with stationary supports at its ends. In contrast, the multi-segment continuous cables 

are those, which are also supported by some stationary intermediate supports along 

their span and, over which, they can slip with or without friction. The difference is 

illustrated in Figure 1.2 and Figure 1.3. 

 

Figure 1.2 Single-segment cable 

 

Figure 1.3 Multi-segment continuous cable 

Multi-segment cable analysis was first studied by McDonald and Peyrot (1988). 

Similar studies have been carried out by McDonald and Peyrot (1990), Aufaure (1993), 

Bruno et al (1999), Aufaure (2000), Zhou et al (2004), Such et al (2009), Impollonia 

(2011). In these researches, a finite element having three nodes were defined. Thus, 

cable having three node can satisfy the stress continuity through its geometry. In 

contrast to these researches, Demir (2011) proposed two methods termed as Direct 

Stiffness Approach and Tension Distribution Method. Basically, both methods divide 

the cable into segments (naming whole structure as multi-segment continuous cable) 
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and search for an equilibrium state satisfying the stress continuity at intermediate roller 

supports. 

In this thesis, a new method based on the principles of contact mechanics is proposed 

for cables in contact with elastic structures, which can also be called as multi-segment 

continuous cables in contact with elastic structures. In this new method, the single-

segment cable solution proposed by Skop and O’Hara (1970) and reformulated by 

Demir (2011) is used. This formulation is given in Chapter 3. 

In the proposed method of Demir (2011) for multi-segment continuous cables, the 

cable is forced to pass through the predefined positions of roller supports. In contrast, 

the method proposed in this thesis establishes a contact between the cable and the 

elastic structure. Thus, the cable has the ability to establish contact with the elastic 

structure at some point during the loading phase. It can move together with the elastic 

structure or make a relative motion without losing its contact. It is not forced to remain 

in contact throughout the loading history. 

1.3.2 Studies on Contact Mechanics 

Contact Mechanics is the study of solids in interaction. Interaction is established with 

the relation between overlap and corresponding forces. As it is known from the 

mechanics of material, the deformations and the forces are related to each other by the 

material properties. In addition to the relation in mechanics of materials, the relation 

between overlaps and he corresponding forces is needed in contact mechanics. This 

relation can be thought as imposition of constraints. 

Imposition of specific displacements on solids can be called as the basis of contact 

mechanics. The two widely used approaches to constrain the solids are the Lagrange 

Multiplier Method and the Penalty Method. In these methods, the solids are 

constrained to have the specified displacements in specified nodes. These constraints 

are satisfied by defining an additional potential. 

In contrast to these methods, in contact mechanics, the solids are free to displace until 

they touch each other. Although a contact surface is to be defined, solids can be in 
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contact at any node on defined contact surface. Therefore, contact mechanics can be 

regarded as the generalized version of Lagrange Multiplier or Penalty approaches. 

The research of Hughes et al (1977) is the milestone of the contact mechanics, which 

bases on their series of reported researches (1974, 1975, 1975). Bathe and Chaudhary 

published a tidy work (1985) based on researches of Hughes et al (1977). In research 

of Bathe and Chaudhary (1985) contact mechanics was formulated well for 2D case. 

This formulation is the basis of the contact mechanics part of this thesis given in 

Chapter 4. 

There are many other formulations for contact mechanics in literature made by 

Schreppers et al (1992), Taylor et al (1993), Feng (1995), Laursen et al (1997), Chawla 

et al (1998), Fujun et al (2000), McDevitt et al (2000), Feng et al (2003), Khenous et 

al (2006), Feng et al (2006), Deufhard et al (2008). Most of them deal with large 

deformations. Some of them formulates it in 3D and some of them deal with the contact 

search algorithm, which determines the contact conditions between solids. Most recent 

studies deal with the contact mechanics consisting of dynamic motions (Deufhard et 

al 2008), elastodynamic problems (Khenous et al 2006) and some hyperelastic bodies 

(Feng et al 2003, 2006). 
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CHAPTER 2 

 

2. FORMULATION OF GEOMETRICALLY NONLINEAR BAR ELEMENT 

 

2.1 General 

2D structural truss system is selected as the elastic structure in contact with cable as 

mentioned in Section 1.2. Therefore, a formulation for bar element having nonlinear 

geometry is needed. The formulation can be found in various textbooks in the 

literature, e.g. Bathe (1996). So, a brief summary is given in this chapter. 

2.2 Updated Lagrangian Formulation 

In Lagrangian incremental analysis approach, the equilibrium of the body at time 

t t referring to time t  is expressed using the principle of virtual displacements as 

follows; 

t

t t t t t t t

t ij t ij

V

S d V W           (2.1) 

Where t tW  is the external virtual work, 
t t

t ijS
 are the second Piola-Kirchhoff 

stresses referring to configuration at time t  and 
t t

t ij


 are the Green-Lagrange strains 

referring to configuration at time t . 

Knowing that; 

t t t t

t ij t ij t ij ij t ijS S S S            (2.2) 

And 
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t t

t ij t ij            (2.3) 

Where 
t

ij are the components of the Cauchy stress tensor at time t  and 
t ij  are the 

components of the Green-Lagrange strain increment tensor in the interval  ,t t t  

referring to configuration at time t . 

Writing Eq. (2.3) in variational form 

t t

t ij t ij             (2.4) 

Where;   

t ij t ij t ije           (2.5) 

Where; t ije  is the linear part of t ij  with additional initial displacement effect and t ij  

is the non-linear part of t ij . 

 , ,

1

2
t ij t i j t j ie u u   

, ,

1

2
t ij t k i t k ju u   

Substituting Eq. (2.2), Eq. (2.4) and Eq. (2.5) into Eq. (2.1) and using approximations 

t ij t ijrs t rsS C e  and t ij t ije   , linearized equilibrium equations for Updated 

Lagrangian formulation is achieved. 

t t t

t t t t t t t

t ijrs t rs t ij ij t ij ij t ij

V V V

C e e dV dV W e dV             (2.6) 

Substituting the element coordinate and displacement interpolations into Eq. (2.6), 

governing equation of motion is achieved. 

 t t t t t

t L t NL

   K K U F R       (2.7) 



9 
 

Where t

t LK  and t

t NLK  are the linear and nonlinear part of the structural stiffness matix, 

t t
F  is the vector of applied nodal loads at time t t  and t

R  is the vector of 

equivalent nodal response of equilibrium stresses at time t . Elements of Eq. (2.7) are 

defined for truss element in the following part of this chapter. 

2.2.1 Formulation of Truss Element 

The large rotation-small strain finite element formulation for a straight truss element 

with constant cross-sectional area is considered. The deformations of the element are 

specified by the displacements of its nodes in the following figure. 

 

Figure 2.1 Deformation of a bar element 

The derivation is simplified by considering a coordinate system aligned with the bar 

element at time t. 

 

Figure 2.2 Coordinate system of a bar element 
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Rewriting the principle of virtual work expression defined in Eq. (2.6) in rotated 

coordinate system and knowing that the only non-zero stress component is
11

t , 

1111 11 11 11 11 11 11
t t t

t t t t t t t

t t t t t

V V V

C e e dV dV W e dV            (2.8) 

Where the tilde on top of a symbol indicates that the parameter is defined in rotated 

coordinate system. 

1111tC E  

11

t
t P

A
   

tV AL  

Hence, Eq. 2.8 becomes 

   11 11 11 11

t t t t

t t tEA e e L F L W F e L          (2.9) 

Rewriting Eq. 2.5 for defined coordinate system of bar element, 

11 1,1t te u          (2.10) 

    2 2

11 1,1 2,1

1

2
t t tu u          (2.11) 

In variational form; 

11 1,1t te u           (2.12) 

1,1

11 1,1 2,1

2,1

t

t t t

t

u
u u

u
   

 
    

 
      (2.13) 

Writing Eq. (2.10) and Eq. (2.13) in terms of displacements, 

 1
11 1,1

1

1
1 0 1 0t t t

u
e u

x L


   


u      (2.14) 
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11

1 0

0 1 1 0 1 01 1

1 0 0 1 0 1

0 1

T

t
L L

  

   
  

              
   

  

u u     (2.15) 

Where 

1

1

1

2

2

1

2

2

u

u

u

u

 
 
 
 
 
  

u  

Substituting Eq. (2.12), Eq. (2.14) and Eq. (2.15) into Eq. (2.9), 

1 0 1 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 1 0 1 0 1 0

0 0 0 0 0 1 0 1

1

0

1

0

t
T T

t t T t

EA F

L L

W F

 



        
      

      
       
               

   
  
   
  
   

  

u u u u

u

 (2.16) 

Relation between the local coordinate system and the global coordinate system is given 

as; 

1 1

1 1

1 1

2 2

2 2

1 1

2 2

2 2

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

t t

t t

t t

t t

u u

u u

u u

u u

 

 

 

 

    
    

     
    
    

       

u     (2.17) 

Substituting Eq. (2.17) into Eq. (2.16), linear and nonlinear parts of the stiffness matrix 

and the internal response vector of the equation of motion defined in global coordinate 

system are obtained.  
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         

      

    

 

2 2

2 2

2

2

cos cos sin cos cos sin

sin cos sin sin

cos cos sin

sin

t t t t t t

t t t t

t

t L
t t t

t

EA

L sym

     

   

  



  
 
 

  
  

 
 
 
 

K (2.18) 

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

t
t

t NL

F

L

 
 


 
 
 

 

K       (2.19) 

cos

sin

cos

sin

t

t

t t

t

t

F









 
 
 
 
 
 

R         (2.20) 

Hence, deformations of a bar element is obtained by applying Eq. (2.18), Eq. (2.19) 

and Eq. (2.20) in Eq. (2.7). Correct result for deformations are reached through 

Newton-Raphson iterations, which is a well-known procedure for the solution of 

nonlinear equations. 
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CHAPTER 3 

 

3. SINGLE AND MULTI-SEGMENT CABLE 

 

3.1 Single-Segment Cable Analysis 

Cables display nonlinear behavior under transverse loading. In the past, this behavior 

was undervalued or some simplifying assumptions were made. The Method of 

Imaginary Reactions was proposed by Skop and O’Hara (1970) and improved by Polat 

(1981) to handle with this nonlinearity and/or to solve cable correctly. In this method, 

cable is defined as a determinant structural system by assigning a reaction to one of its 

ends. This reaction determines the position of the other end. Therefore, there is a 

relation between the assumed reaction at one end and the position of the second end. 

This relation is defined as a stiffness matrix of cable. Solution of cable is achieved 

iteratively by using stiffness matrix. Formulation of stiffness matrix of cable and 

iterative procedures are defined below. 

3.1.1 Cable Equilibrium Equations 

A cable, having total unstressed length UL  and stressed length SL , is supported 

between points A  and B . Cable in space is shown in Figure 3.1. 

As in Figure 3.1, AP  and BP  are the position vectors of supports at the ends of the cable. 

Let M  be any point on the cable defined by the following parameters;  

ul ; unstressed arc length form point A  to M . 

sl ; stressed arc length from point A  to M . 
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Figure 3.1 Configuration of single-segment cable in space. 

Relation between ( )ud lP  and sdl  is defined with the unit tangent along the cable,  

ˆ( )ul . 

ˆ( ) ( )u u sd l l dl P τ         (3.1) 

The unknowns in Eq. (3.1) are; ˆ( )ulτ  and the differential stressed arc length of the 

cable sdl . 

The unit tangent along the cable can also be defined with ( )ulR  and ( )uT l which are 

reaction vector at ul  and tension at ul , respectively. 

( )
ˆ( )

( )

u
u

u

l
l

T l


R
τ          (3.2)

 

The elongation of the differential element is; 

u s ul dl dl            (3.3) 

The strain of this element is the elongation divided by the original length. 

( ) s u
u

u

dl dl
l

dl



         (3.4) 

From Eq. (3.4) the stressed length of the element can be written as;

 

A B

M
udl

ul

AP
BPx

y

z

 ulP
   u ul d lP P
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 1 ( )s u udl l dl          (3.5)
 

Substituting Eq. (3.5) into Eq. (3.1), 

 
( )

ˆ( ) 1 ( )u
u u

u

d l
l l

dl
  

P
τ        (3.6) 

Finally, writing Eq. (3.6) in integral form,

 

 
0

( )
( ) (0) 1 ( )

( )

ul

u u

x
l l dx

T x
  

R
P P       (3.7a) 

Since (0) AP P , 

 
0

( )
( ) 1 ( )

( )

ul

u A u

x
l l dx

T x
  

R
P P       (3.7b) 

Consequently, AR , which is equal to 0( )lR , is the only unknown in this equation and 

it can be regarded as the initial condition of the problem. 

3.1.2 Stiffness Matrix 

If a virtual displacement, BP , is given to support B , there will be a change in the 

reactions at the other support, AR . The relation between these parameters are 

explained by the stiffness matrix, K . 

A B  R K P          (3.8) 

The stiffness matrix is determined by using the variational approach as follows: 

From variation of Eq. 3.7b, BP  is determined. 
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 
0

0

( )
1 ( )

( )

1 ( ) 1 ( )
( ) ( )

( ) ( )

U

U

L

u
B u u

u

L

u u
u u u

u u

l
l dl

T l

l l
l l dl

T l T l



 

 
     

 

    
      

   





R
P

R R

   (3.9) 

Unknowns are ( )uT l , ( )ulR  and 
1 ( )

( )

u

u

l

T l

 
 
 

 in Eq. (3.9). 

   

 

2

2

1 ( ) ( ) 1 ( ) ( )1 ( )

( ) ( )

( ) ( ) 1 ( ) ( )

( )

u u u uu

u u

u u u u

u

l T l l T ll

T l T l

l T l l T l

T l

 

 

     
  
 

   


    (3.10) 

Thus, unknowns are ( )uT l , ( )uT l , ( )ulR , ( )ul  in Eq. (3.9). 

Tension in cable is; 

 
1/ 2

( ) ( ) ( )u u uT l l l R R        (3.11) 

In variational form; 

 

 
1/ 2

( ) ( ) ( )1
( )

2 ( ) ( )

u u u

u

u u

l l l
T l

l l

  
 



R R R

R R
      (3.12) 

Or 

( ) ( )
( )

( )

u u
u

u

l l
T l

T l


 

R R
       (3.13) 
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Figure 3.2 Reactions on cable 

Many external forces, could be applied to the cable. If no external load is applied, there 

will be only self-weight of the cable.
 

( )ext u ul lF W          (3.14) 

From the free body diagram of cable element shown in Figure 3.2, reaction at point M 

is;
 

( ) ( )u A ext ul l R R F         (3.15a) 

For the whole cable 

( ) ( )U A ext UL L R R F
       (3.15b) 

 B ULR R          (3.16) 

Substituting Eq. (3.16) into Eq. (3.15b), 

 B A ext uL R R F         (3.17) 

From variation of Eq. (3.17), 

( )u A Bl    R R R         (3.18) 

The strain can also be expressed by the stress-strain relationship as;
 

A

M M

W

AR

 u
R l  u

R l

 

AR

 ulR  ulR

W



18 
 

( )
( ) u

u

T l
l

EA
          (3.19)

 

( )uT l  is the tension at M and E , A  and   are material properties of cable. 

The variational form of strain, ( )ul , from Eq. (3.4). 

1
( ) ( )

( ) u u
u

T l T l
l

EA EA



 


 

   
 

       (3.20a)

2

( ) ( )
( )

( )

u u
u

u

l l
l

T l





R R
      (3.20b) 

So, substituting Eq. (3.11) Eq. (3.13) and Eq. (3.20b) into Eq. (3.10), 

 

 
 

2

2

3

( ) ( ) ( ) ( )
( ) ( ) 1 ( )

1 ( ) ( ) ( )

( ) ( )

1 1 ( )
( ) ( )

( )

u u u u
u u u

u u u

u u

u

u u

u

l l l l
l T l l

l T l T l

T l T l

l
l l

T l

 


 

 
 

 
  
 

 
  

R R R R

R R

 (3.21) 

Finally, substituting Eq. (3.18) and Eq. (3.21) into Eq. (3.9), 

 3

0

1 ( ) 1 (1 ) ( )
( ) ( )

( ) ( )

UL

u u
B A u A u u

u u

l l
l l dl

T l T l

      
      

  
P R R R R   (3.22) 

In global coordinate directions Eq. (3.22) will be; 

1 2 3 4

0

ˆ ˆ
UL

BX AX uP C R C C C dl     
 i i       (3.23a) 

1 2 3 4

0

ˆ ˆ
UL

BY AY uP C R C C C dl     
 j j       (3.23b) 

1 2 3 4

0

ˆ ˆ
UL

BZ AZ uP C R C C C dl     
 k k       (3.23c) 
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Where; 

1

1 ( )

( )

u

u

l
C

T l

 
  
 

 

2 3

1 (1 ) ( )

( )

u

u

l
C

T l

   
  
 

  

 3 ( ) ( ) ( )X u AX Y u AY Z u AZC R l R R l R R l R        

4
ˆ ˆ ˆ( ) ( ) ( )X u Y u Z uC R l R l R l   

 
i j k  

Writing Eq. (3.23a, b, c) in the form of Eq. (3.8). 

1

BX AX

BY AY

BZ AZ

P R

P R

P R



    
   
     
       

K        (3.24) 

Where the stiffness matrix is; 

   

   

   

2

1 2 2 2

0 0 0

2

2 1 2 2

0 0 0

2

2 2 1 2

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

e e e

e e e

e e

L L L

X u u X u Y u u X u Z u u

L L L

Y u X u u Y u u Y u Z u u

L L

Z u X u u Z u Y u u Z u

C C R l dl C R l R l dl C R l R l dl

C R l R l dl C C R l dl C R l R l dl

C R l R l dl C R l R l dl C C R l d

     

      

     

  

  

 

K

0

eL

ul

 
 
 
 
 
 
 
 
 
 



 

Inverse of stiffness matrix is the flexibility matrix, 1F K .  

So, Eq. (3.8) can be rewritten as; 

1

B AP R  K         (3.25a) 

or 

B AP R  F          (3.25b) 
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3.1.3 Newton-Raphson Method 

 Being an iterative technique, Newton-Raphson method is used to solve equations 

numerically. The method is based on making linear approximations to achieve a 

solution for nonlinear systems. Aim is to reach the solution linearly. Therefore, 

solutions are always approximate. It is appropriate to find a solution for nonlinear 

behavior of cable by Newton-Raphson Method. 

It is seen in Eq. (3.7b) that the position of cable is a function of AR . However, it is not 

known for equilibrium state ,A solR . Newton-Raphson method is used to find a solution 

with linear approximations.  

The step-by-step procedure to find the unknown support reactions of cable is explained 

below and described schematically in Figure 3.3. 

1. Initiate the solution by defining a reaction
 i
AR . 

2. Determine the cable configuration, position of the cable end 
   i

ULP   and 

stiffness matrix  i
K . 

3. Determine the misclose vector and the error as; 

   
( )

i i

B UL M P P        (3.26) 

   i i
E  M         (3.27) 

4. Calculate a better approximation for
 i
AR . 

        
1

1i i i i

A A



 R R K M       (3.28) 

5. Go to step 2 and continue iterations until  iE ERR . where ERR  is the target 

error for approximate result. 

Assigning an initial reaction for the support is a very important step for the solution. 

A better assign will decrease the amount of iteration very much.  
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Figure 3.3 Newton-Raphson method in schematic form for single-segment cable 

3.2 Multi-Segment Cable Analysis 

Multi-segment cables are monolithic cables with multiple intermediate supports. Cable 

is free to slide on supports by defined stationary and frictionless intermediate roller 

supports. Method was proposed by Demir (2011). In that research, cable is divided 

into a number of elements and each segment is analyzed as an independent single-

segment cable. The stress continuity requirement between the adjacent cable segments 

is enforced in each iteration until complete equilibrium is reached. Two analysis 

methods were proposed in research of Demir (2011): Direct stiffness approach and 

tension distribution method. 

 0

AR
 1
AR  2

AR
 actual

AR

 0
( )SLP

 1
( )SLP

 2
( )SLP

BP

 SLP

AR

 0
S

 1
S

 2
S

 0
M

 1
M

 2
M
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3.2.1 Direct Stiffness Approach 

The only unknown for defined system is the length of each segment. So, total cable 

length is distributed to each segment to start the solution procedure. Unstressed 

length of thi  segment is denoted by 
( )u il  as seen in Figure 3.4. 

 

Figure 3.4 Configuration of multi-segment continuous cable 

Thus, total unstressed length of the system having n  segment is; 

( )

1

n

U u i

i

L l


          (3.29) 

Each segment is solved by single-segment cable procedure by knowing its cable 

length. Thus, tensions at the cusp of segments are known for each single segment cable 

solution. Wrong distribution of segmental lengths will lead to unbalanced tension of 

cable on roller supports. This unbalanced tension at thi  roller support ( thi roller support 

is the connection point of  thi  segment and  1
th

i   segment) is given in Eq. (3.30) as 

 i
T . 

( ) ( 1) ( )i F i L iT R R           (3.30) 

Where ( 1)F iR   and ( )L iR  are shown in Figure 3.5. 

 

Figure 3.5 Cable tensions at support i . 

1 i

n

(1)ul

( )u il
(2)ul

( 1)u il 

( )u nl
( 1)u nl 

( 1)F iR ( )L iR

i
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There must be some unstressed length adjustments  UL  between neighboring 

segments, which makes cable system into complete equilibrium. 

( ) ( )

segment

U i U iL L           (3.31a) 

( 1) ( )

segment

U i U iL L           (3.31b) 

Where; ( )

segment

U iL  and ( 1)

segment

U iL   are the changes in unstressed length of segments i and 

1i  , respectively, and 
( )U iL  is the adjustment applied to cable segments at support  

i . 

In the course of iterative solution process for the equilibrium state of cable system, 

there is always a need for some correction in the currently assumed distribution of total 

cable length among its segments. This is necessary to move closer to the equilibrium 

state by minimizing the unbalanced reactions between cable segments. It can be 

achieved, if a quasi-linear behavior of the system is assumed at the end of each 

predictive solution step. With this assumption, we can set up a relationship between 

the anticipated unstressed length adjustment  
( )U jL  at any support j  and the 

corresponding change it would create in the unbalanced reactions at support i . This 

change in unbalanced reactions, 
( )iT  can be expressed as follows. 

( ) ( )i ij U jT K L           (3.32a) 

Or in matrix form; 

     UT K L           (3.32b) 

Where; 

 

(1)

(2)

( )n

T

T
T

T








 
 
 

  
 
 
 
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 

(1)

(2)

( )

U

U

U

U n

L

L
L

L








 
 
 

  
 
 
 

 

11 1

1

n

n nn

K K

K

K K

 
 


 
  

 

Coefficient matrix  K  can be regarded as a stiffness matrix with each term 
ijK  giving 

the change in unbalanced reactions 
( )iT  at support i  due to a change in unstressed 

length 
( )U jL  at support j  between cable segments j  and 1j  . 

The tangential stiffness matrix  K  in Eq. (3.33) can be constructed column-by-

column by adjusting the unstressed lengths of cable segments at support j  by a small 

amount l  and calculating the resulting changes in the unbalanced reactions ( )it  at 

all support locations from the reanalysis of the cable system with the changed segment 

lengths at support j . The thj  column of  K  is then obtained as; 

( ) /i iK t l    ( 1,2,..., )i n       (3.33) 

In the correction step, the objective is to find the required amount of length adjustment 

at each support to eliminate the current values of unbalanced reactions at supports. 

This is obtained from Eq. (3.32b) as; 

         
1

UL K T F T


             (3.34) 

Where the matrix  F  can be regarded as a kind of flexibility matrix giving the 

changes in cable segment lengths for a set of axial forces applied along the cable at 

internal supports (segment junctions). If the cable behavior were linear as assumed, 

the length adjustments  UL  of Eq. (3.34) would eliminate the unbalanced reactions 

at internal supports and bring the cable system into true equilibrium.  
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However, in general, this will not be the case since the cable behavior is nonlinear and 

some additional iterations will be needed before reaching the final equilibrium. 

Therefore, Newton-Raphson iterations are continued in this predictive/corrective 

algorithm to reach the final equilibrium state. 

Length adjustments for whole system can be applied by Eq. (3.35) for Newton-

Raphson iteration number 1m . 

   1

( ) ( ) ( )

m m segment

u i u i U il l L

          (3.35) 

3.2.2 Tension Distribution Method (Relaxation Method) 

Tension distribution method is adapted from the moment distribution method, which 

is commonly used for the analysis of continuous beams. This method is a special form 

of the direct stiffness approach. The basic difference is in the way the cable segment 

lengths are adjusted for a better approximation to equilibrium state. In Direct stiffness 

approach, the increment for each segment is determined for whole system by 

calculating the stiffness matrix of the system totally. On the other hand, in tension 

distribution method, increment of two adjacent segments are determined by calculating 

the stiffness matrix of connecting roller support while keeping all other segment 

lengths as they are. Therefore, in the corrective stage following a predictive solution, 

an influence (stiffness) coefficient is calculated at a selected joint first by introducing 

a virtual adjustment at the joint and the actual amount of adjustment required to 

eliminate the unbalanced reaction at the joint is determined based on this information. 

A cycle will be completed for whole system, if increment on each roller support is 

found and applied. So, iterative cyclic calculations are carried out until an equilibrium 

state is reached where the unbalanced reactions at internal supports became negligibly 

small. 

It is expected that; application of length adjustment
( )U iL , for thi  roller support make 

the tension difference
( )iT , zero. Relation between 

( )U iL and
( )iT  is expressed in Eq. 

(3.36). 
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( ) ( ) ( )i i U iT k L           (3.36) 

The tangential stiffness matrix of thi  roller support
( )ik , can be found by adjusting the 

unstressed lengths of adjacent segments by a small amount l  and calculating the 

resulting changes in the unbalanced reactions t   at that support. 

( ) /ik t l           (3.37) 

Length adjustment for that roller support can be found with Eq. (3.38), 

1

( ) ( ) ( ) ( )U i i i iL k T f T             (3.38) 

As was mentioned, it is expected that; unbalanced tension on each roller support be 

zero in one cycle of length adjustments. However, it is not possible due to nonlinear 

behavior of cable. Therefore, Newton-Raphson iterations are used to handle with that 

nonlinearity. 

Length adjustments for adjacent segments can be applied by Eq. 3.35 for Newton-

Raphson iteration number 1m . 
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CHAPTER 4 

 

4. CONTACT MECHANICS 

4.1 General 

Contact mechanics have been in use for the solution of solids in contact. There is 

extensive research on the topic. Problem is very complex and computationally 

difficult. Complexity is due to the combination of different solids. Computational 

difficulty is due to searches for contact occurrence. Basically, two structures in space 

have their own solutions. If they are in interaction or in contact, solution will be 

integrated. These integrated calculations are called contact mechanics. 

A contact is basically composed of interaction of two or more structures. Considering 

the contact between two structures, one of them is termed as target and the other as 

contactor. Both have their own domain in space. Invasion of their domains is called as 

contact occurrence. This invasion can be eliminated by applying corresponding contact 

forces. Potential of a contact due to invasion will be defined in this chapter. 

As far as the mechanical behavior is concerned, a contact can be classified into two: 

Sticking and sliding contact. In sticking contact of discretized structures, there is no 

relative motion between the contact node and the target surface. In contrast, there is a 

change in position between the contact node and the target body in sliding contact. 

Potentials of sticking and sliding conditions are different from each other.  

A simple contact having one target element and one contact node is defined 

geometrically, before defining the potentials of sticking and sliding conditions. Nodes 

of target element are denoted as A and B. Contact node is denoted as k. Contact point 

is denoted as C and some vector definitions are given as follows: 
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Figure 4.1 Geometry of contact 

 1it t

A


P = Position vector for node A after iteration  1i   at time  t t  

 1it t

B


P = Position vector for node B after iteration  1i   at time  t t  

 1it t

k


P = Position vector for node k after iteration  1i   at time  t t  

 1it t

C


P = Position vector for point C after iteration  1i   at time  t t  

 1i

k


O = Overlap 

 1i

jd


= Length of the segment. 

rn , sn = Unit vectors along local axes r, s 

i , j = Unit vectors along global axes x, y 

 1i



= A parameter about the location of C 
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k
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x

r

s

 1it t
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
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 1it t

B


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 1it t
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
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 1i
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
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 1it t
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
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Figure 4.2 Contact forces 

 1it t

k


λ = Contact force at node k 

4.2 Potential of Sticking Contact 

A contact is classified as sticking contact if it satisfies either of following two 

conditions. First, point k has penetrated into the target body in  1
th

i   iteration 

whereas there is no contact in  2
th

i   iteration. Second, point k has penetrated into 

the target surface at  1
th

i   iteration and exerted a force on target surface (traction 

force), which is smaller than frictional capacity. 

In sticking contact, it is assumed that the force applied to the target surface cause 

sticking which means that relative motion between contact and target is zero. In other 

words, position of point C with respect to node A and B does not change after the 

iteration. This leads to an assumption that; 
 1i




 does not change during sticking 

condition. Accordingly, potential of contact forces for sticking contact is derived 

below. 

Overlap can be written as; 

     1 1 1i i it t t t

k k C

    O P P        (4.1) 

B AC

k

 1it t

k


λ

 1it t

k

 λ

 1i

jd


   1 1i i

jd
 
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Length of the element is; 

     1 1 1i i iT t t t t

j r B Ad
     

 
n P P       (4.2) 

Corresponding 
 1i




 is; 

 

 

   

 

      1 1 1 1 1 1

1 1

T T
i i i i i it t t t t t t tr r

C A k k Ai i

j jd d


        

 
      

   

n n
P P P O P  (4.3) 

Reactional forces at node A and B can be written in terms of the contact force and 

 1i



; 

      1 1 1
1

i i it t t t

A k
     λ λ       (4.4a) 

     1 1 1i i it t t t

B k
    λ λ        (4.4b) 

Corresponding potential is; 

              1i i i i i i it t T t t T t t T

k k k k A A B B
        λ u O λ u λ u    (4.5) 

Where; 
 i
Au , 

 i
Bu , 

 i
ku  are incremental displacements at nodes A, B and k in  

th
i  

iteration, respectively. 

Assuming that   does not change during sticking contact condition (as explained 

before), potential can be written in terms of 
 1i




. 

                     1 1 1
1

T T
i i i i i i i i it t T t t t t

k k k k k A k B  
             λ u O λ u λ u  

Or 

               1 1 1
1

i i i i i i it t T

k k k k A B  
           

 
λ u O u u    (4.6) 

 



31 
 

New contact force at node k is defined in terms of old contact force and change in 

contact force, as follows. 

     1i i it t t t

k k k

  λ λ λ        (4.7) 

Substituting Eq. (4.7) into Eq. (4.6), 

                  1 1 1 1
1

T
i i i i i i i it t

k k k k k A B  
             

 
λ λ u O u u  (4.8) 

Displacement of point C can be written as; 

          1 1
1

i i i i i

C A B 
       

 
u u u      (4.9) 

Potential is redefined by substituting Eq. (4.9) into Eq. (4.8); 

          1 1
T

i i i i it t

k k k k k C
       

 
λ λ u O u     (4.10) 

Derived potential can be perceived from figure below. 

 

Figure 4.3 Geometry of contact in sticking condition 
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  1i
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

 1i
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
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 1i
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
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B  i

A i
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 i
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 i
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 i
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4.3 Potential of Sliding Contact 

A contact is classified as sliding contact if it satisfies following condition: Point k has 

penetrated into the target surface at  1
th

i   iteration and exerted a force on target 

surface (traction force), which is greater than frictional capacity. 

In sliding contact, contact node applies a force on target element, which has traction 

force greater than frictional capacity. Therefore, projection point of contact node k  on 

target element, which is named as C, changes its position. This means that   changes 

during iteration. However, frictional force is assumed to be constant during iteration. 

So potential becomes; 

               1
1

i i i i i i it t T

k k k k A B  
         

 
λ u O u u    (4.11) 

Where; 
     1i i i

  


   

Assuming new penetration is almost zero, that is; 
   i it t t t

k C

 P P  

 

 

             1 1 1

1
1

T
i i i i i i ir

k k A Bi

jd
  

  


         
 

n
u O u u   (4.12) 

Change in   is redefined by substituting Eq. (4.9) into Eq. (4.12); 

 

 

     1

1

T
i i i ir

k k Ci

jd





     
 

n
u O u       (4.13) 

This relation can be perceived from figure below. 
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Figure 4.4 Geometry of contact in sliding condition 

Change in contact force in local direction is given as follows. 

   i i

k s s  λ n         (4.14) 

     1i i it t t t

k k s s
  λ λ n        (4.15) 

Potential is redefined by substituting Eq. (4.15) into Eq. (4.11); 

                  1 1 1 1
1

T
i i i i i i i it t

k k s s k k A B   
             

 
λ n u O u u  (4.16) 

The potential derived for sliding contact has the parameter
 1i




. This is due to 

simplify the problem. The parameter 
 i  can be used in Eq. (4.16) instead of

 1i



, 

however this will complicate the problem very much. Instead, the parameter 
 i can 

be revised iteratively by using Eq. (4.12) or Eq. (4.13). 

4.4 Governing Finite Element Equations 

A structural system has a potential  . New potential is achieved by subtracting 

contact potential from the present potential. 
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new k

k

          (4.17) 

If 0new  , governing finite element equations will be; 

   

  

 

 

   

 

1 1
11

*

1 1

*

i it t t t ii t tit t t t
c

c
T

i iit t t t

c c

    

  

        
          
             

K K RU F R

0 0K 0 Oλ
 (4.18) 

Where; 

 1it t 
K  ; Tangential stiffness matrix of complete system (DDOF x DDOF) 

 1
*

it t

c


K  ; Components of contact stiffness matrix 

 1it t

c


K  (Dimension is 

changing according to contact conditions) 

 i
U   ; Incremental displacements (DDOF x 1) 

 i
λ   ; Incremental contact forces (CDOF x 1) 

t t
F   ; Total applied external loads (DDOF x 1) 

 1it t 
R  ; Equivalent nodal forces (DDOF x 1) 

 1it t

c


R  ; Contact forces (DDOF x 1) 

 1it t

c


O  ; Overlaps (CDOF x 1) 

DDOF  ; Displacement degrees of freedom 

CDOF  ; Contact degrees of freedom 

TDOF  ; Total degrees of freedom (TDOF=DDOF+CDOF) 
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Governing finite element equations for sticking and sliding condition of small system defined before is given below, respectively. 

 

 

   

 

 

   

   

 

 

 

 

 

 

 

 
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1 1

1

1

1 1

1 1

1 0

0 1

1 0

0 1

0

0

01 0 1 0 0 0 0
0

0 1 0 1 0 0 0

i

kx

i

ky

i i

Ax

i it t i t t
Ay

i i

Bx

i i

By

i i i

kx

i i i

ky

u

u

u

u

u

u









  

  



  





 

 

  
   

     
        
         
    
   
  
       
          

K F  

 

 

    

    

   

   

 

 

1

1

1 1

1 11

1 1

1 1

1

1

1

1

0

0

it t

kx

it t

ky
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If two structures are not in contact, defined nodal point forces will be treated as 

unbalanced forces and minimized by nonlinear procedures. If two structures are in 

contact, nodes in contact are named as active nodes and nodes not in contact are named 

as passive nodes. Passive nodes are treated as unbalanced forces as explained above. 

In contrast, forces on active nodes are used to determine
 1it t

c


R . In finite element 

equations above, 
 1it t

c


R  is determined from  it t λ  for each iteration. 

4.5 Governing Finite Element Equations in Local Coordinates 

A structure in contact can easily be solved by defined equations for pure sticking and 

sliding conditions. However, these equations are hard to apply as a computer code for 

solutions of both cases. Because, size of stiffness matrix changes for changing 

condition and coordinate transformation is needed. 

Therefore, a general set of governing finite element equations is defined in Eq. (4.20a). 

In fact, this set is the same with the finite element equations of sticking condition Eq. 

(4.19a) but new definition can be easily converted for sliding condition as Eq. (4.20b). 

This conversion is done by making stiffness elements in r direction zero. 

Besides, the use of finite element equations 4.19a and 4.19b, pushes solver to assume 

that structures are sticks together for first contact occurrence. However, solver should 

not make an assumption for initial contact occurrence if it uses Eq. (4.20a) and (4.20b).



37 
 

 
     

   

         

 

 

 

 

 

 

 

 

 
1 1

1

1

1 1

1

1

1 1
0 0

0 0

i

kx

i

ky

i
s r

Ax
i it t

i t t it ts r
Ay

i i

s r Bx

T T T ii i

Bys r s r s r

i

ks

i

kr

u

u

u

u

u

u





 





 
 



 

 
  
  
   

    
          
    
   
    

    
   

     
 

n n

K n n F R

n n

n n n n n n 0

 

 

    

    

   

   

 

 

1

1

1 1

1 1

1 1

1 1

1

1

1

1

it t

kx

it t

ky

i it t

kx

i it t

ky

i it t

kx

i it t

ky

i

ks

i

kr

O

O





 

 

 

 





 

 

 

 





 
 

 
 
   
 
   

  
  
 
  
  
    
 

 (4.20a) 

  
    

 

    

 

 

 

 

 

 

 

 

 1

1 1

1

1

1 1

1

1 0

0 0

it t
i

kx
kx

t t
i

ky
s

i
i it t

Ax
s

t ti it t

Ayi

s i

Bxi iT T T

s s s i

By

i

ks

u

u

u

u

u

u







 







 

 



 

 
   
                                             
         

n

K n

F R
n

n n n

 

    

    

   

   

 

1

1 1

1 1

1 1

1 1

1

1

1

i

ky

i it t

kx

i it t

ky

i it t

kx

i it t

ky

i

ksO



 

 

 

 



 

 

 

 



 
 

 
 
   
 
   
 
  
 
  
 
  

     (4.20b) 

3
7
 



38 
 

Where; 
sx

s

sy

n

n

 
  
 

n , 
rx

r

ry

n

n

 
  
 

n  

4.6 Contact Conditions 

Contact mechanics needs some algorithms to apply the finite element equations as 

derived above. An algorithm is needed to decide whether the structures are in contact 

or not. After that, if structures are in contact, another algorithm is needed to decide 

whether structures stick together or slide. In the first algorithm, history of 

displacements and current position of the structures must be kept and some vector 

operations must be carried out. In the second algorithm, tractions at contact points must 

be determined and then decision on the type of contact condition must be made, 

accordingly. 

4.6.1 Contact Search Algorithm 

During the solution procedure, contact conditions can change in any iteration. A 

contact can occur for separate structures or a separation can occur for a bonded 

structures. Therefore, contact conditions must be checked in every iteration  i . In this 

search, initial positions and contact conditions have to be known since the contact 

search is based on initial conditions. 

Initially, it is assumed that the structures are disconnected. Therefore comparing the 

positions of structures in final iteration with initial positions of structures will give the 

contact conditions. Accordingly, a comparison is made between initial and final signs 

of cross products of vectors from contact node to the end nodes of target element. 

Besides, a most possible target element is defined for each contact node to minimize 

the calculation time for contact search algorithm. This determination is made by 

comparing the angles between vectors from the contact node to the end nodes of each 

target element. The target element having maximum angle is the most possible target 

element for the contact node.  
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Figure 4.5 Vectors and angles for contact search 
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Where; 
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j


P  ; Position vector of 

thj  contact node at  1
th

i   iteration 
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  is calculated as described below. This angle can 

be regarded as the angle of 
thj  contact node with thl target element which has end 
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The target element l  having the maximum angle 
  ,

max i

j l
  is the most possible target 

element for contact node j . A possible target element is calculated for each contact 

node to decrease the calculation time. 

After determination of possible target elements. Sign of cross products 
 
 1

,

i

j l
sxp

  of 

vectors from each contact node to the end nodes of possible target element are 

calculated. 

 
 

 
 

 
  1 1 1

, , , 1

i i i

j l j l j l
sxp sign

  


 v v        (4.23) 

If sign of cross products 
 
 1

,

i

j l
sxp

  of previously mentioned vectors changes during 

iteration, contact will occur at that contact node (
thj  contact node) with that target 

element ( thl  target element). 

In other words, if summation of 
 
 1

,

i

j l
sxp

  at initial position and final position is zero 

there will be a contact. 

 
 

   
 1 11

, , ,

i i

j l j l j l
ssxp sxp sxp

 
         (4.24) 

4.6.2 Contact Type Algorithm 

Sticking and sliding contact types are different each other. As can be seen in Section 

4.4, stiffness matrices are different. Therefore, contact type must be classified. This 

classification is based on traction forces applied on contact surface. These traction 

forces for contact node k  can be determined from
 1it t

k


, as described in the 

following section. A frictional constant can be assumed for both kinetic and static case 

either as equal or different for each case. Contact type classification will change 
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according to the assumption made for frictional constants. Therefore, contact type 

classification is explained in the following two parts for each assumption. 

4.6.2.1 Case of Static Friction Being Equal to Kinetic Friction 

Tangential traction force applied to a target element is
 1it t

t krT 
 . Normal traction 

force applied to a target element is
 1it t

n ksT 
 .  Assuming that the coefficient of 

static friction s  is equal to coefficient of kinetic friction k  ( s k    ), frictional 

capacity of the contact will be equal to
 1it t

f n ksT T  
  .  

If frictional capacity fT  is smaller than tangential traction tT , the contact node slides 

on the target element. So, Eq. (4.20b) will be used for new iteration and tangential 

traction force will be made equal to frictional capacity. 

If frictional capacity fT  is greater than tangential traction tT , the contact node sticks to 

the target element. So, Eq. (4.20a) will be used for new iteration. 

4.6.2.2 Case of Static Friction Being Different from Kinetic Friction 

Tangential traction force applied to a target element is
 1it t

t krT 
 . Normal traction 

force applied to a target element is
 1it t

n ksT 
 .  Assuming static coefficient of 

friction s  not equals to kinetic coefficient of friction k , static an kinetic frictional 

capacity of the contact will be equal to 
 1it t

fs s ksT  
  and 

 1it t

fk k ksT  
 , 

respectively. 

If the contact is previously in sliding condition and kinetic frictional capacity fkT  is 

smaller than tangential traction tT , the contact node slides on the target element. So, 

Eq. (4.20b) will be used for new iteration and tangential traction force will be made 

equal to kinetic frictional capacity fkT . 
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If contact is previously in sliding condition and kinetic frictional capacity fkT  is greater 

than tangential traction tT , node sticks to the target element. So, Eq. (4.20a) will be 

used for new iteration. 

If contact is previously in sticking condition and static frictional capacity fsT  is smaller 

than tangential traction tT , the contact node slides on the target element. So, Eq. (4.20b) 

will be used for new iteration and tangential traction force will be made equal to kinetic 

frictional capacity fkT . 

If contact is previously in sticking condition and static frictional capacity fsT  is greater 

than tangential traction tT , node sticks to the target element. So, Eq. (4.20a) will be 

used for new iteration. 
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CHAPTER 5 

 

5. SOLUTION PROCEDURE 

 

5.1 General 

Contact mechanics is composed of many different formulations with nested 

algorithms. First of all, discretized models of elastic solids are needed. In this thesis, 

one of the solids is selected as a truss structural system and modelled by using 2D bar 

elements (Chapter 2), the other solid is a cable formulated as explained in Chapter 3. 

Secondly, some algorithms are needed for contact mechanics to determine the 

condition of contact, i.e., a contact search algorithm (Section 4.6.1) and contact type 

algorithm (Section 4.6.2). Besides, some iterative algorithms should be used to imitate 

the post-tensioning operation by decreasing the cable length. 

5.2 Governing Set of Equations 

Governing set of equations are given in Eq. (4.18). In this set of equations,  1it t 
K  

is the tangent stiffness matrix of both the truss structural system and the cable. 

Dimension of this matrix is the total displacement degrees of freedom (DDOF) for the 

whole system. Stiffness of bar elements calculated by Eq. (2.12) and Eq. (2.13) and 

the stiffness of the cable element calculated by Eq. (3.24) are assembled into the 

tangent stiffness matrix  1it t 
K . Contact stiffness matrix 

 1it t

c


K in Eq. (4.18) is 

determined from the defined potentials for both sticking and sliding conditions. 

Basically, contact stiffness matrix relates the displacements of target degrees of 

freedom (e.g. node A and B) and contact degrees of freedom (e.g. node k). 

The total applied loads 
t t

F  minus the equivalent nodal forces 
 1it t 

R  of the existing 

stresses in the structures is equal to the stiffness matrix of the structural system 
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multiplied by the deformations, as given in Eq. (2.7). However, the contact starts with 

the intrusion of the previously defined domains of the structures and this intrusion is 

rectified by the application of contact forces. Thus, additional contact forces 
 1it t

c


R  

applied to both structures.  

There will be no contact forces 
 1it t

c


R  and contact stiffness 

 1it t

c


K  until the first 

intrusion is detected. After the first intrusion, the contact stiffness 
 1it t

c


K  is formed 

and the change in displacements,  i
U , and change in the contact forces,  i

λ , 

corresponding to applied contact forces 
 1it t

c


R  and overlaps 

 1it t

c


O  of first 

intrusion are determined. 

5.3 Solution Procedure 

Inputs are determined as the initiation of the solution. Then, structure is initially solved 

for applied dead loads, because the post-tensioning application starts after positioning 

of the truss system. After solving the truss system initially, cable is solved for its initial 

length to determine its geometry. This geometry is needed for contact search 

algorithm. In this phase, it should be beware that structures are separate. Thus, 

initiation of the solution is finished. 

Post-tensioning is applied by decreasing the cable length. So, the cable length is 

decreased and the cable is analyzed once again for its decreased length. Afterwards, 

the contact search is carried out to determine the contact occurrence as initial step of 

the iterations. If there is no contact, the cable length is decreased a bit more. If there is 

a contact, the stiffness of the structure and the stiffness of the cable is determined and 

assembled into the tangent stiffness matrix  1it t 
K . Then, the contact forces 

 1it t

c


R  

are determined. Thus, the governing set of equations gets ready for solution. 

After the application of constraints, change in displacements  i
U  and change in 

contact forces 
 i

λ  are determined and the location of the nodal points of truss system 

are revised. If the norm of change in displacements  i
U  and/or change in the contact 

forces 
 i

λ  are not smaller than a preset error tolerance, the cable is reanalyzed with 
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applied contact forces and the cable geometry is revised for the subsequent iteration. 

Otherwise, the solution is considered acceptable for the current unstressed length of 

the cable. The process is continued until target length or the post-tensioning force in 

the cable is reached. 

A detailed description of the proposed solution procedure is also presented in the form 

of flow charts in Figure 5.1 -5.4, below. 
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Figure 5.1 Flow diagram of the proposed algorithm 
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Figure 5.2 Flow chart for the analysis of the elastic structure 
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Figure 5.3 Flow chart for the analysis of cable 
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Figure 5.4 Flow chart for contact search 
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CHAPTER 6 

 

6. VERIFICATION AND VALIDATION OF PROPOSED ALGORITHM 

 

6.1 General 

A procedure for the solution of the interaction between a structure and a cable has been 

formulated.  In order to check the validity and efficiency of the proposed algorithm, it 

is implemented into a special-purpose finite element code. A number of test problems 

are solved to check the major parameters of the algorithm. The results are compared 

with those obtained by the commercially available general-purpose finite element 

program ANSYS.  

6.2 Verification Test Structure 

Verification model is selected as a steel truss structure having three contact nodes and 

a cable. Geometry of the model is shown below. The truss structure has a depth of 

1.50m and a span of 12.0m. In order to simulate the real-life tensioning of the cable by 

a jacking operation, the length of the cable is gradually shortened by deleting the 

element of its numerical model one by one beginning from one of its ends.  

The self-weight of both the cable and the truss structure is included in the analysis.  

Density of the cable is taken as 7850 kgf/m3 and the gravitational acceleration is taken 

as 9.81m/s2. In addition to its self-weight, the truss structure is also loaded by service 

load. This service load is represented by 150.0 kN point loads acting at each node of 

its top chord.  All elements of the truss structure and the cable are defined as having a 

circular cross-section with a diameter of 20mm. Rather flexible elements are selected 

for the truss structure to emphasize the geometrically nonlinear behavior of the 

structure. 
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Figure 6.1 Geometry of the verification model 

There are three major parameters and conditions affecting the behavior and the 

accuracy in the predicted results of the numerical simulation of nonlinear problems. 

These are the initial conditions, the number of finite elements in the model and the 

convergence criteria selected. These conditions have to be specified properly to have 

a correct result.  

6.2.1 Initial Configuration of Cable 

Initial unstressed length of the cable and its initial configuration are critical for the 

resulting solution. First of all, the initial unstressed length of cable must be long 

enough such that there will be no contact with the structure at the onset of simulation. 

Secondly, the cable must initially be in its natural shape under its own weight between 

the end nodes. However, in the commercial computer program ANSYS it is not easy 

to define the cable geometry in its natural state under its own weight. Therefore, two 

initial cable configurations (initial configurations I & II) are selected for verification 

by ANSYS, as shown below. 

 

Figure 6.2 Initial cable configuration I 
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Figure 6.3 Initial cable configuration II 

In both configurations, LINK10 is used to model cable element with tension only 

option. Truss elements are modelled with LINK180. Contact and target elements are 

modelled with CONTA175 and TARGE169, respectively. 

6.2.1.1 Some Theoretical Anticipations for Verification 

It is known that, if the contact between the cable and the truss structure is frictionless, 

the cable tension at both ends (node 1 and node 17) will be equal. If both tensions are 

equal, the length of cable on either side of the contact node 19 will be equal and there 

will be no displacement at node 19 in the horizontal direction x. 
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This theoretically expected behavior is true if the cable is shortened from both sides at 

the same time and by the same amount in a frictionless environment. Therefore, the 

cable is started with its initial configuration I in ANSYS and a uniform temperature 

change is imposed, which satisfies the initial (13.2m) and final (12.6m) cable lengths 

to make the verification results comparable. The results of both simulations are shown 

below in Tables 6.1 and 6.2. 

Table 6.1 Structural displacements for frictionless symmetric tensioning 

Disp. Proposed method ANSYS Difference (%) 

Node UX (m) UY (m) UX (m) UY (m) UX UY 

6 6.47E-04 -3.76E-03 6.47E-04 -3.76E-03 -0.06% -0.14% 

19 5.90E-14 -7.68E-03 -3.26E-14 -7.68E-03 --- -0.07% 

14 -6.47E-04 -3.76E-03 -6.47E-04 -3.76E-03 -0.06% -0.14% 

 

Table 6.2 Contact forces for frictionless symmetric tensioning 

Contact  

Forces 
Proposed method ANSYS Difference (%) 

Node FX (N) FY (N) FX (N) FY (N) FX FY 

6 9.00E+04 2.76E+05 9.00E+04 2.76E+05 -0.01% -0.05% 

19 -4.52E-13 3.23E+05 0.00E+00 3.23E+05 --- -0.04% 

14 -9.00E+04 2.76E+05 -9.00E+04 2.76E+05 -0.01% -0.05% 

 

It is seen that, both solutions have almost zero displacement at Node 19 in the 

horizontal direction, which is consistent with the expectations. 

The initial and the final geometry of the structure predicted by ANSYS and the 

proposed procedure are illustrated below. 
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Figure 6.4 Initial and final geometry of the structure predicted by the proposed 

procedure 

 

Figure 6.5 Initial and final geometry of the structure predicted by ANSYS 
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6.2.1.2 The Mesh Size and the Convergence Criteria Number of Cable Finite 

Elements and Maximum Allowable Error 

The mesh size and the convergence criteria are very critical for the accuracy of the 

predicted results in the finite element solution of nonlinear problems. In the subject 

test structure, the truss system has 36 elements and this is sufficient due to the basic 

assumptions in its formulation. However, the cable must be divided into a number of 

sub-elements and the solution accuracy increases with the increased number of 

divisions. Therefore, the simulation have been repeated for different number of finite 

elements of the cable in a frictionless environment with a displacement based 

convergence criterion of 0.001. In this analysis, the initial configuration II is used for 

ANSYS. The results are listed in Table 6.3 below and shown graphically in Figures 

6.6 and 6.7. 

Table 6.3 Displacements of Node 19 for different number of cable finite elements 

No. of 

Finite 

Elements  

X-Displacement (m) Y-Displacement (m) 

Proposed 

Method 
ANSYS 

Proposed 

Method 
ANSYS 

200 -8.6800E-05 -2.8580E-05 -7.0465E-03 -7.0385E-03 

300 -5.3900E-05 -2.2505E-05 -7.3160E-03 -7.3410E-03 

500 -2.2380E-05 -1.5518E-04 -7.5960E-03 -7.6460E-03 

1000 7.6450E-05 1.8963E-04 -7.6305E-03 -7.6376E-03 

2000 3.3890E-05 6.9277E-05 -7.6805E-03 -7.7252E-03 
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Figure 6.6 Displacement in X direction of Node 19 vs. the number of finite elements 

 

Figure 6.7 Displacement in Y direction of Node 19 vs. the number of finite elements 

Using a course mesh with a small number of finite elements for the cable cannot 

converge to the expected mid-span deflection in x direction although the vertical 

deflection at mid-span is acceptable. Therefore, it is decided that a finite element mesh 

with 500 elements is sufficient for the cable for acceptable results. 

A set of analyses is carried out for different levels of maximum allowable error with a 

mesh of 500 finite elements of the cable. The results are listed in Table 6.4 below and 

shown graphically in Figures 6.8 and 6.9. 
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Table 6.4 Displacements of node 19 for different maximum allowable error. 

Maximum  

Allowable  

Error 

X-Displacement (m) Y-Displacement (m) 

Proposed 

Method 
ANSYS 

Proposed 

Method 
ANSYS 

0.001 -5.3900E-05 -2.2505E-05 -7.3160E-03 -7.3410E-03 

0.0001 -1.2800E-06 -3.7232E-06 -7.3667E-03 -7.3763E-03 

0.00001 9.8000E-07 8.4505E-07 -7.3724E-03 -7.3780E-03 

0.000001 3.9476E-08 7.1634E-08 -7.3733E-03 -7.3779E-03 

0.0000001 8.5631E-09 -7.4702E-09 -7.3743E-03 -7.3778E-03 

 

 

Figure 6.8 Displacement in X direction of Node 19 vs. the maximum allowable error. 

 

Figure 6.9 Displacement in Y direction of Node 19 vs. the maximum allowable error. 
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It seen that the mid-span deflection in X direction of Node 19 converges to zero by 

decreasing the maximum allowable error. It is decided that a convergence criterion of 

1.0x10-5 m is sufficient for the Euclidian norm of the nodal displacements of all nodes 

in the model to have acceptable results from the analysis. 

6.2.2 Frictional Environment 

There will always be some friction between two contacting elements even if the 

magnitude of which may be very small. The magnitude of the contact friction is 

controlled by the specified coefficient of friction. The frictional capacity between two 

elements in contact is the normal force on the interface surface multiplied by the 

frictional coefficient.  

In this study, only kinetic friction is considered assuming that the difference between 

the static and kinetic friction is negligible. The same test structure used for the 

frictionless environment is analyzed for different coefficients of friction defined for 

each of the contact nodes 6, 19 and 14. Initial configuration II is used for ANSYS and 

the bottom end of the cable is gradually forced by a series of prescribed displacements 

to its final position at Node 17. In contrast, cable is shortened by deleting finite 

elements beginning from Node 17, in proposed method.  Thus, a jacking operation is 

simulated. In the following tables displacements (m) and contact forces (N) of each 

contact element for different coefficients of friction are given 

Table 6.5 Displacements of Node 6 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) X-Disp (m) Y-Disp (m) X-Disp (m) Y-Disp (m) 

0.04 1.178E-03 -4.111E-03 1.188E-03 -4.125E-03 -0.39% 

0.08 1.638E-03 -4.897E-03 1.626E-03 -4.871E-03 0.55% 

0.12 2.064E-03 -5.614E-03 2.057E-03 -5.626E-03 -0.14% 

0.16 2.477E-03 -6.379E-03 2.480E-03 -6.389E-03 -0.15% 

0.2 2.896E-03 -7.160E-03 2.913E-03 -7.094E-03 0.71% 

0.3 3.889E-03 -9.139E-03 3.902E-03 -9.126E-03 0.07% 

0.4 4.933E-03 -1.100E-02 4.919E-03 -1.090E-02 0.85% 
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Table 6.6 Contact forces of Node 6 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) FX (N) FY (N) FX (N) FY (N) 

0.04 1.002E+05 2.709E+05 1.003E+05 2.704E+05 0.15% 

0.08 1.100E+05 2.631E+05 1.099E+05 2.636E+05 -0.12% 

0.12 1.196E+05 2.577E+05 1.191E+05 2.568E+05 0.36% 

0.16 1.278E+05 2.491E+05 1.281E+05 2.501E+05 -0.36% 

0.2 1.369E+05 2.435E+05 1.369E+05 2.439E+05 -0.14% 

0.3 1.573E+05 2.270E+05 1.577E+05 2.272E+05 -0.16% 

0.4 1.775E+05 2.128E+05 1.771E+05 2.125E+05 0.19% 

 

These two tables show that increasing frictional constant increases both displacement 

and contact force at Node 6 in X direction. In contrast, this increase decreases both 

displacement and contact force at Node 6 in Y direction. 

Table 6.7 Displacements of Node 19 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) X-Disp (m) Y-Disp (m) X-Disp (m) Y-Disp (m) 

0.04 9.371E-04 -7.270E-03 9.360E-04 -7.275E-03 -0.06% 

0.08 1.859E-03 -7.200E-03 1.871E-03 -7.191E-03 0.07% 

0.12 2.800E-03 -7.139E-03 2.804E-03 -7.125E-03 0.15% 

0.16 3.744E-03 -7.070E-03 3.737E-03 -7.078E-03 -0.05% 

0.2 4.668E-03 -7.050E-03 4.660E-03 -7.053E-03 0.02% 

0.3 7.024E-03 -7.042E-03 6.989E-03 -7.055E-03 0.15% 

0.4 9.320E-03 -7.021E-03 9.288E-03 -7.030E-03 0.17% 

 

Table 6.8 Contact forces of Node 19 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) FX (N) FY (N) FX (N) FY (N) 

0.04 1.280E+04 3.229E+05 1.277E+04 3.227E+05 0.08% 

0.08 2.573E+04 3.234E+05 2.551E+04 3.231E+05 0.08% 

0.12 3.813E+04 3.230E+05 3.824E+04 3.235E+05 -0.13% 

0.16 5.110E+04 3.233E+05 5.094E+04 3.237E+05 -0.11% 

0.2 6.362E+04 3.239E+05 6.350E+04 3.238E+05 0.03% 

0.3 9.539E+04 3.235E+05 9.520E+04 3.240E+05 -0.13% 

0.4 1.262E+05 3.236E+05 1.264E+05 3.233E+05 0.06% 
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An increase is obvious for both displacement and contact force for Node 19 in X 

direction. However, there is almost no change in Y direction. 

Table 6.9 Displacements of node 14 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) X-Disp (m) Y-Disp (m) X-Disp (m) Y-Disp (m) 

0.04 -3.039E-04 -2.579E-03 -3.062E-04 -2.561E-03 0.66% 

0.08 1.362E-04 -1.749E-03 1.359E-04 -1.746E-03 0.17% 

0.12 5.838E-04 -9.429E-04 5.850E-04 -9.416E-04 0.05% 

0.16 1.050E-03 -1.462E-04 1.041E-03 -1.487E-04 0.78% 

0.2 1.504E-03 5.626E-04 1.521E-03 5.774E-04 -1.27% 

0.3 2.720E-03 2.569E-03 2.693E-03 2.535E-03 1.14% 

0.4 3.928E-03 4.489E-03 3.909E-03 4.452E-03 0.69% 

 

Table 6.10 Contact forces of node 14 for different coefficients of friction 

Frictional 

Coefficient 

Proposed Method ANSYS Difference 

(%) FX (N) FY (N) FX (N) FY (N) 

0.04 -8.020E+04 2.834E+05 -8.048E+04 2.840E+05 -0.24% 

0.08 -7.072E+04 2.919E+05 -7.018E+04 2.908E+05 0.42% 

0.12 -5.932E+04 2.970E+05 -5.964E+04 2.975E+05 -0.20% 

0.16 -4.855E+04 3.058E+05 -4.885E+04 3.044E+05 0.45% 

0.2 -3.782E+04 3.134E+05 -3.869E+04 3.113E+05 0.62% 

0.3 -9.320E+03 3.262E+05 -9.194E+03 3.287E+05 -0.76% 

0.4 2.121E+04 3.451E+05 2.100E+04 3.466E+05 -0.43% 

 

Both, the displacement and contact force increase with increasing frictional constant 

in either direction at Node 14. 

6.2.2.1 Cable Tension for Different Frictional Coefficients 

The tension at cable ends is expected to be different for any case except for the 

frictionless case (Section 6.2.1.1). Tension at the end where the jacking operation side 

is greater than the other side. Because accumulation of friction forces makes the 

tension of cable on the pulling side greater. Variation of tensile force at the cable ends 

are shown below for varying coefficients of friction. 
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Figure 6.10 Cable tensions vs coefficients of friction 

Cable tension at the ends is almost identical for smaller coefficient of friction. The 

difference between tensions at cable ends is increasing with the increasing coefficient 

of friction. Moreover, while the tension at anchored side is decreasing, the tension at 

the jacking side is increasing with increasing coefficient of friction. 

6.2.3 Altered Cable Lengths 

In the verification model, the coefficient of friction is assumed to be 0.2 and the cable 

is started with an initial unstressed length of 13.2m. Later, it is gradually decreased to 

12.6m in the course of simulation. In the proposed method, this shortening is made by 

deleting the cable finite elements one by one starting with the element adjacent to Node 

17 whereas a cable having the final unstressed length is placed in the initial 

configuration II and its free end is forced to its target location on the structure by 

gradually applied prescribed displacements in ANSYS. The mid-span displacement at 

Node 19 and the cable tension at nodes 1 and 17 are given below for different cable 

lengths. The difference in cable tension and mid-span deflection between the 

predictions of the proposed scheme and ANSYS is negligibly small for slack cables 

and increases with the increasing cable tension although it is still very small. 
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Table 6.11 Results for different final lengths of cable  

Cable 

Length 

Mid-span 

Disp. (m) 

Difference 

Mid-span 

Disp. 

Cable Tension 

(N) 

Difference 

Cable Tension 

Node 1 Node 17 Node 1 Node 17 

13.20 1.8537E-01 0.000% 2.4829E+02 2.4829E+02 0.091% 0.045% 

13.10 1.8537E-01 0.000% 2.5388E+02 2.5388E+02 -0.092% -0.092% 

13.00 1.8537E-01 0.000% 2.6832E+02 2.7026E+02 -0.005% 0.041% 

12.99 1.8537E-01 0.000% 2.9109E+02 2.9811E+02 -0.061% -0.042% 

12.98 1.8536E-01 0.000% 3.2381E+02 3.3822E+02 0.011% -0.015% 

12.97 1.8535E-01 0.000% 3.7657E+02 4.0289E+02 0.018% -0.083% 

12.96 1.8533E-01 0.000% 4.8337E+02 5.3378E+02 0.027% -0.030% 

12.95 1.8524E-01 0.000% 9.5082E+02 1.1069E+03 -0.012% -0.104% 

12.90 1.6227E-01 0.000% 1.1874E+05 1.4521E+05 -0.057% 0.022% 

12.80 1.1228E-01 -0.009% 3.7177E+05 4.5221E+05 -0.028% -0.127% 

12.70 6.0703E-02 0.012% 6.2835E+05 7.6023E+05 0.150% -0.164% 

12.60 8.4534E-03 -0.023% 8.8876E+05 1.0697E+06 0.310% -0.274% 

 

Gradual change in mid-span displacement and cable tension is shown below for 

changing length of cable. 

 

Figure 6.11 Mid-span displacement vs. final cable length 
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Figure 6.12 Cable tension vs. final cable length 
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       CHAPTER 7 

 

7. CASE STUDIES 

7.1 General 

In order to show the use of the proposed procedure in a practical situation, 

strengthening of an existing truss structure often encountered in structural engineering 

practice is selected as a case. The ultimate goal is, for one reason or another, to increase 

the load carrying capacity of the given structure.  

The existing structure is defined and alternative approaches to the solution of the 

problem are described below from an engineer’s point of view. It is assumed that a 

post-tensioning by cables is selected by the engineer as the most feasible and practical 

solution to the task of strengthening the given structure. The numerical simulation of 

alternative operations of post-tensioning is carried out using the procedure proposed 

and outlined in this thesis. Finally, a brief discussion of the simulation results is given. 

7.2 Description of the Sample Truss Structure                          

A 2D steel roof truss structure is selected for post-tensioning. The plane truss is one of 

the individual trusses of a space frame roof structure in which a number of such trusses 

are placed parallel to each other with a spacing of 3.0m. The displacements at one end 

is restrained and the other end is free to slide in the horizontal direction, as shown in 

Figure 7.1. The structure has a total span length of 75.0m and consist of 25 panels with 

a uniform length of 3.0m each. The roof structure is 4.0m deep and each layer is 2.0m 

high. In its existing state, it is composed of 179 bar elements. Element labeling scheme 

is given in Appendix 1. 

Besides the usual self-weight, the roof structure is subject to a top cover load of 22.65 

kgf/m2 and the bottom cover load of 11.33 kg/m2. In addition, the structure is to resist 
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a snow load of 169.89 kg/m2. Considering the spacing of 3.0m between such trusses 

in the roof structure, the loading corresponds to a nodal cover load of 2.0 kN/node 

along the top chord and 1.0 kN/node along the bottom chord. The snow load along the 

top chord is 15.0 kN/node. These loads are factored loads for LRFD format. Initially, 

no other load is acting on the structure.  

 

Figure 7.1 Geometry of structure 

7.2.1 Original Design of the Truss Structure 

The initial design of the steel truss with the given loads was based on the requirements 

of the ANSI/AISC 360-10 code for steel structures. All of the elements of the structure 

are circular hollow sections and made of S235 steel. The sections used in the model 

are grouped and labeled as Type1 through Type5, as defined in Table 7.1 below. The 

top layer member are of Type1, the bottom layer members are of Type2 and middle 

layer members are of Type3. The diagonals in the first 5 panels from each end are of 

Type4 and all other diagonals and posts are of Type5 members. A list of the element 

types for each member and the element type descriptions are given in  

 and Appendix 4. Initially, the resulting stresses (see Appendix 5) are at limit state for 

elements 75, 82, 98 and 105 which are the bottom chord members near the mid-span.  

Table 7.1 Circular pipe sections used in the structure 

Name 

Outer 

Diameter 

(mm) 

Inner 

Diameter 

(mm) 

Sectional 

Area 

(mm2) 

Type1 219.1 195.1 7807.486 

Type2 219.1 199.1 6569.07 

Type3 88.9 80.9 1066.885 

Type4 139.7 127.7 2520.186 

Type5 139.7 131.7 1705.256 
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7.2.2 Case I: Internal Post-tensioning 

The objective is to strengthen and increase the load carrying capacity of the structure 

with post-tensioning application. Two cables having 42 mm nominal diameter and 

1030 mm2 metallic area and a total breaking force of 2840 kN is used for this purpose. 

Although the post-tensioning can be applied to the structure in its native form, a 

number of members are added to the structure to increase the eccentricity (Appendix 

2) and, consequently, the effectiveness of the post-tensioning operation. Final 

geometry of the truss system with the additional members and the initial state of the 

post-tensioning cable is shown in Figure 7.2. The highlighted nodes are the contact 

nodes at which the structure and the cable interacts. It is assumed that the friction at 

contact nodes is negligibly small. 

 

Figure 7.2 Geometry of the structure for Case I 

The cable has an initial unstressed length of 80.0m and it is modelled with 2000 

elements. Post-tensioning operation is started with the cover load already on the 

structure but no snow load and performed by decreasing the cable length until the 

strength limit state in the structure is reached. The limit state is reached after deleting 

106 of the cable finite elements at one end. In this limit state, four truss members 

become critically stressed and they are the same elements (members 75, 82, 98 and 

105) at the bottom chord of the truss structure (Appendix 6). However, this time they 

are in compression. At this state, the unstressed cable length is 75.76m and the cable 

tension is 1582 kN. 

After post-tensioning operation, the snow load is applied on the structure. It is 

gradually increased until another strength limit state is reached. Finally, a critical 

compressive stress level is reached in the elements 3, 59, 66, 73, 103, 110, 117 and 

173 of the top chord of truss (Appendix 7). At this state, the nodal snow load is 28 

kN/node and the cable tension becomes 1915 kN.  Thus, the structure is capable 
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resisting a snow load of 28 kN/node as opposed to 15 kN/node in its original state. 

This amounts to some 87% increase in snow load capacity or 72% increase in total 

load-carrying capacity of the structure.  

7.2.3 Case II: External Post-tensioning with Nearby Anchorage 

It is a customary practice to apply post-tensioning to an existing member or a structure 

by fixing the cable ends on the structure itself. This provides post-tensioning by itself. 

Although it is more beneficial to fix the cable ends on an external rigid structure or 

ground them as in the case of suspension bridges, this is, in general, not possible and/or 

practical for structures supported by long columns.  

An alternative anchoring option for the post-tensioning cable is considered in this case 

study. Assuming that a given truss structure is supported by R/C columns and the 

column cross-sectional dimensions are such that anchoring the cable ends on the 

columns is possible, external post-tensioning operation can be used  for strengthening. 

This way, the cable tension is transferred to an external body, which will reduce the 

level of straining in most of the truss members. Therefore, the cable end are assumed 

to be anchored at some points near the support locations of the structure as shown in 

Figure 7.3. However, the axial compressive force in the end posts are expected to be 

critically high. Straining in the members of the structure near the support locations are 

also expected to be high. Because of this anticipated behavior the vertical end posts of 

the truss structure are reinforced with additional circular hollow sections having a 

cross-sectional area of 200 cm2. 

 

Figure 7.3 Geometry of structure in Case II 

The distance between the cable anchorage points and the structural support locations 

is taken as 0.30 m, which is reasonable for practical applications. The post-tensioning 

cable is 88.0 m long and mathematically modelled by 2200 finite elements.  
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 The simulation of the strengthening procedure by external post-tensioning of the 

structure follows the same steps as in the case of internal post-tensioning of Case I. 

With the cover load on the structure, the cable length is reduced to 83.76 m. At this 

state, the elements 75, 82, 98 and 105 of the bottom chord are in limit state (Appendix 

8 and the tension in the cable is 1543 kN. 

Snow load is then applied and gradually increased until the elements in the top chord 

reaches a strength limit state (Appendix 9). In this final state, the snow load is 30.0 

kN/node and the cable tension is 1886 kN. Thus, the snow load capacity is increased 

by 100% or the total load carrying capacity is increased by 83%. 

7.2.4 Case III External Post-tensioning with Remote Anchorage 

In order to see the influence on the effectiveness of the guy cable orientation, Case II 

is repeated with the cable ends anchored at a distance of 4.0m away from the supports 

of the truss structure. Initial length of the cable is taken as 90.0 m and it is 

mathematically modelled using 2250 finite elements. In the first phase of strengthening 

the structure is post-tensioned by reducing the cable length down to 87.0 m. In this 

state, the elements 75, 82, 98 and 105 are in limit state as in Case II (Appendix 10) and 

the cable tension is 1618 kN. In the second phase, snow load is applied and gradually 

increased until the elements in the top chord reaches a strength limit state (Appendix 

11). At the end of this second phase, the snow load on the structure is 60kN/node and 

the cable tension is 2462 kN. Hence, the snow load capacity is increased by 300% with 

this orientation of the guy cables. 

7.3 Discussion on the Results of Case Studies 

The numerical procedure proposed in this study for the simulation of post-tensioning 

operations on structures is used for strengthening of an existing steel truss structure.  

Two alternative options are considered for post-tensioning of the existing structure. 

For situations where the space around the structure is limited, usual procedure of 

internal post-tensioning as it is widely used for reinforced concrete members is the 

only choice. In this type of post-tensioning application, the tensile force created in the 
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cable by the jacking operation is totally absorbed by the structure. Therefore, the 

effectiveness of the operation is expected to be limited and the results are in line with 

this anticipation. 

In most of the practical situations, such structures are usually supported by an 

underlying base structure or abutments in which there is always some room for 

anchoring the cable ends at tome points outside the subject structure. In such cases, an 

external post-tensioning is practical and feasible. Part of the resulting cable tension of 

the post-tensioning operation is transferred to the other supporting structure. This way, 

the amount of additional straining in the structure due to cable tension to be absorbed 

by the subject structure is expected to be reduced. The simulation results prove this 

anticipation to be true and, as a result, the amount of gain in the load carrying capacity 

of the structure goes up to 300% as opposed to a relatively limited gain of 72% in the 

case of internal post-tensioning. It is also seen that the level of effectiveness of the 

external post-tensioning operation is closely related to the inclination of the guy cable 

which in turn depends on the distance of the cable anchorage point from the support 

of the subject structure. It is further seen that an optimum situation for the effectiveness 

of the post-tensioning operation is when the inclination of the guy cable or the location 

of the cable anchorage point is such that the reaction of the cable on the end post of 

the subject structure is a vertical compression. 
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CHAPTER 8 

 

8. SUMMARY AND CONCLUSIONS 

 

8.1 Summary 

In this thesis, an analysis procedure is formulated and proposed for the cable-structure 

interaction problem encountered in various practical applications of structural 

mechanics. Although there are several approaches to the analysis of cables, only a few 

study is available in the literature for their interaction with other structures taking into 

account the complex contact problem between them. The algorithms proposed by the 

researchers are usually for a multi-segment continuous cable assuming a frictionless 

environment and stationary support locations. The algorithm proposed in this thesis is 

for a multi-segment continuous cable supported with frictional and non-stationary 

elastic supports. 

The proposed approach couples the elastic structural system with the cable by 

considering the contact conditions and the resulting contact forces between them. For 

this purpose a nonlinear cable and a geometrically nonlinear bar element have been 

formulated in addition to a contact search algorithm and a procedure for the calculation 

of the resulting forces between the cable and the structure in case of a contact. The 

proposed algorithm is checked and verified by the simulation of a post-tensioning 

operation of a 2D truss structure. A practical application of the proposed scheme is 

presented by considering the strengthening of an existing structure as a case study.  

8.2 Conclusions 

A unified procedure based on contact mechanics is proposed for the solution of the 

interaction problem between multi-segment continuous cable and elastic structures. It 
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is implemented into a finite element code, tested and verified. It is shown that the 

procedure and the resulting tool is very convenient for the simulation of the post-

tensioning process of structures using cables.  

The proposed procedure has some comparative advantages over some alternative 

approaches readily available to engineers in the commercial finite element programs. 

First of all, it is natural and closely mimics the real-life application of the post-

tensioning process in the field by shortening the unstressed length of the tensioning 

cable. It makes it possible for the engineer to observe the variation of the stresses in 

various parts of the structure in the course of the tensioning process. This is important 

because it is seen that some parts of the structure becomes temporarily overstressed 

although the resulting stresses at the end of the tensioning process are within the safe 

limits. 

Another point is that, in the proposed procedure it is not necessary to define the initial 

geometry of the post-tensioning cable at the onset of the simulation process. Given the 

unstressed length and the location of its end points, it is started in its natural form since 

the form-finding step of the cable is an integral part of its equilibrium state. This is 

seen to be a major drawback in the use of the capabilities of the commercially available 

general-purpose finite element programs for the simulation of the post-tensioning 

process. 

In an effort to verify the response of the structure during post-tensioning process 

predicted by the proposed algorithm, the same simulations are also performed using 

the general-purpose finite element program ANSYS for a number of cases. In practice, 

the post-tensioning of existing structures can be of two types. In one approach the ends 

of the tensioning cable are anchored on the structure itself. Consequently, the cable 

tension is transferred to the subject structure. This can be termed as a self-contained or 

free-standing or simply internal post-tensioning. In an alternative approach, the ends 

of the tensioning cable are grounded on another structure external to the subject 

structure. This way the cable tension is transferred to the other structure. This type of 

tensioning can be termed as external post-tensioning. Example simulations of both 

types are performed and the results are seen to be in a reasonably good agreement.  

Handling the internal type of post-tensioning is much easier and natural with the 
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proposed algorithm as opposed to using a general-purpose finite element program and 

as expected, an external type of post-tensioning is seen to be much more effective in 

the case of increasing the load carrying capacity of existing structures. 
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APPENDIX 

 

Appendix 1 Element labels of the original truss structure  

 

 

Appendix 2 Element labels of the truss structure after modification 
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Appendix 3 Element types of truss system 
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1 4 38 1 75 2 112 2 149 4 

2 4 39 3 76 5 113 5 150 4 

3 1 40 2 77 5 114 5 151 4 

4 3 41 4 78 5 115 5 152 1 

5 2 42 4 79 5 116 5 153 3 

6 4 43 5 80 1 117 1 154 2 

7 4 44 5 81 3 118 3 155 4 

8 4 45 1 82 2 119 2 156 4 

9 4 46 3 83 5 120 5 157 4 

10 1 47 2 84 5 121 5 158 4 

11 3 48 5 85 5 122 5 159 1 

12 2 49 5 86 5 123 5 160 3 

13 4 50 5 87 1 124 1 161 2 

14 4 51 5 88 3 125 3 162 4 

15 4 52 1 89 2 126 2 163 4 

16 4 53 3 90 5 127 5 164 4 

17 1 54 2 91 5 128 5 165 4 

18 3 55 5 92 5 129 5 166 1 

19 2 56 5 93 5 130 5 167 3 

20 4 57 5 94 5 131 1 168 2 

21 4 58 5 95 5 132 3 169 4 

22 4 59 1 96 1 133 2 170 4 

23 4 60 3 97 3 134 5 171 4 

24 1 61 2 98 2 135 5 172 4 

25 3 62 5 99 5 136 5 173 1 

26 2 63 5 100 5 137 5 174 3 

27 4 64 5 101 5 138 1 175 2 

28 4 65 5 102 5 139 3 176 4 

29 4 66 1 103 1 140 2 177 4 

30 4 67 3 104 3 141 4 178 4 

31 1 68 2 105 2 142 4 179 4 

32 3 69 5 106 5 143 4 180 5 

33 2 70 5 107 5 144 4 181 5 

34 4 71 5 108 5 145 1 182 5 

35 4 72 5 109 5 146 3 183 5 

36 4 73 1 110 1 147 2 184 5 

37 4 74 3 111 3 148 4 185 5 
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Appendix 4 Properties of element types 

Name 

Outer 

Diameter 

(mm) 

Inner 

Diameter 

(mm) 

Area 

(mm2) 

Type1 219.1 195.1 7807.49 

Type2 219.1 199.1 6569.07 

Type3 88.9 80.9 1066.88 

Type4 139.7 127.7 2520.19 

Type5 139.7 131.7 1705.26 
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Appendix 5 Resultant stresses of elements for initial case 
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1 -61.3 37 32.7 73 -173.8 109 13.2 145 -112.9 

2 -61.5 38 -128.6 74 16.4 110 -169.0 146 8.2 

3 -26.2 39 10.0 75 203.2 111 14.6 147 132.8 

4 -0.1 40 151.1 76 26.3 112 198.3 148 66.9 

5 33.6 41 58.5 77 -22.9 113 37.5 149 -65.9 

6 97.4 42 -57.4 78 -22.4 114 -36.1 150 -45.1 

7 -103.4 43 -52.6 79 4.4 115 -33.1 151 37.5 

8 -60.5 44 41.6 80 -177.0 116 20.6 152 -94.9 

9 50.3 45 -142.0 81 20.8 117 -162.2 153 5.8 

10 -51.8 46 11.8 82 204.8 118 13.6 154 111.8 

11 -12.0 47 166.9 83 17.6 119 190.5 155 75.6 

12 61.8 48 73.7 84 -7.2 120 49.4 156 -74.2 

13 95.4 49 -72.9 85 13.8 121 -48.5 157 -49.7 

14 -88.4 50 -46.2 86 -34.2 122 -39.6 158 42.3 

15 -54.7 51 34.6 87 -168.3 123 27.6 159 -74.6 

16 46.7 52 -153.2 88 16.7 124 -153.2 160 1.3 

17 -74.6 53 12.6 89 191.5 125 12.6 161 88.1 

18 1.3 54 180.0 90 -48.2 126 180.0 162 84.6 

19 88.1 55 61.6 91 -48.2 127 61.6 163 -82.2 

20 84.6 56 -60.7 92 61.6 128 -60.7 164 -54.7 

21 -82.2 57 -39.6 93 61.6 129 -46.2 165 46.7 

22 -49.7 58 27.6 94 13.8 130 34.6 166 -51.8 

23 42.3 59 -162.2 95 -34.2 131 -142.0 167 -12.0 

24 -94.9 60 13.6 96 -177.0 132 11.8 168 61.8 

25 5.8 61 190.5 97 20.8 133 166.9 169 95.4 

26 111.8 62 49.4 98 204.8 134 73.7 170 -88.4 

27 75.6 63 -48.5 99 17.6 135 -72.9 171 -60.5 

28 -74.2 64 -33.1 100 -7.2 136 -52.6 172 50.3 

29 -45.1 65 20.6 101 -22.4 137 41.6 173 -26.2 

30 37.5 66 -169.0 102 4.4 138 -128.6 174 -0.1 

31 -112.9 67 14.6 103 -173.8 139 10.0 175 33.6 

32 8.2 68 198.3 104 16.4 140 151.1 176 97.4 

33 132.8 69 37.5 105 203.2 141 58.5 177 -103.4 

34 66.9 70 -36.1 106 26.3 142 -57.4 178 -61.3 

35 -65.9 71 -27.0 107 -22.9 143 -40.4 179 -61.5 

36 -40.4 72 13.2 108 -27.0 144 32.7     
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Appendix 6 Resultant stresses of elements for case 1 without snow load 
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1 -107.5 38 -30.1 75 -204.5 112 -202.0 149 100.5 

2 -107.7 39 -95.7 76 -36.9 113 -24.4 150 52.4 

3 -147.5 40 -185.6 77 9.7 114 15.2 151 -54.5 

4 0.0 41 -13.6 78 38.2 115 11.1 152 -59.9 

5 -38.0 42 2.5 79 11.8 116 -15.5 153 -102.7 

6 -166.8 43 5.3 80 4.8 117 -19.6 154 -147.4 

7 118.9 44 -8.6 81 -161.7 118 -111.0 155 -95.5 

8 75.6 45 -27.6 82 -200.3 119 -198.7 156 96.2 

9 -83.4 46 -117.6 83 -73.2 120 -24.4 157 51.3 

10 -110.1 47 -189.5 84 -19.2 121 22.6 158 -52.2 

11 -94.5 48 -13.7 85 15.5 122 11.2 159 -85.5 

12 -86.7 49 18.2 86 18.5 123 -11.3 160 -107.6 

13 -139.3 50 8.4 87 10.7 124 -24.1 161 -116.7 

14 152.7 51 -9.8 88 -118.0 125 -111.7 162 -91.5 

15 49.2 52 -24.1 89 -167.1 126 -193.8 163 94.1 

16 -51.1 53 -111.7 90 -32.4 127 -19.4 164 49.2 

17 -85.5 54 -193.8 91 -32.4 128 20.0 165 -51.1 

18 -107.6 55 -19.4 92 -93.0 129 8.4 166 -110.1 

19 -116.7 56 20.0 93 -93.0 130 -9.8 167 -94.5 

20 -91.5 57 11.2 94 15.5 131 -27.6 168 -86.7 

21 94.1 58 -11.3 95 18.5 132 -117.6 169 -139.3 

22 51.3 59 -19.6 96 4.8 133 -189.5 170 152.7 

23 -52.2 60 -111.0 97 -161.7 134 -13.7 171 75.6 

24 -59.9 61 -198.7 98 -200.3 135 18.2 172 -83.4 

25 -102.7 62 -24.4 99 -73.2 136 5.3 173 -147.5 

26 -147.4 63 22.6 100 -19.2 137 -8.6 174 0.0 

27 -95.5 64 11.1 101 38.2 138 -30.1 175 -38.0 

28 96.2 65 -15.5 102 11.8 139 -95.7 176 -166.8 

29 52.4 66 -15.2 103 -8.5 140 -185.6 177 118.9 

30 -54.5 67 -113.5 104 -125.6 141 -13.6 178 -107.5 

31 -33.7 68 -202.0 105 -204.5 142 2.5 179 -107.7 

32 -101.5 69 -24.4 106 -36.9 143 6.0 180 -8.13 

33 -179.4 70 15.2 107 9.7 144 -104.2 181 -1.49 

34 -97.3 71 18.1 108 18.1 145 -33.7 182 -60.7 

35 100.5 72 -4.4 109 -4.4 146 -101.5 183 -60.7 

36 6.0 73 -8.5 110 -15.2 147 -179.4 184 -1.49 

37 -104.2 74 -125.6 111 -113.5 148 -97.3 185 -8.13 
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Appendix 7 Resultant stresses of elements for case 1 with snow load 
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1 -201.5 38 -181.6 75 -18.1 112 -19.6 149 47.5 

2 -201.7 39 -104.2 76 -14.5 113 14.0 150 10.5 

3 -208.0 40 -53.3 77 -14.9 114 -24.2 151 -25.0 

4 -0.3 41 51.0 78 19.2 115 -27.4 152 -179.3 

5 -8.3 42 -63.4 79 18.7 116 -0.1 153 -117.7 

6 -92.8 43 -56.8 80 -194.0 117 -206.8 154 -52.6 

7 27.9 44 36.2 81 -172.9 118 -118.6 155 -30.5 

8 21.3 45 -193.9 82 -11.5 119 -24.8 156 32.6 

9 -46.2 46 -128.8 83 -70.1 120 24.7 157 3.7 

10 -191.4 47 -39.9 84 -30.6 121 -25.8 158 -16.8 

11 -128.0 48 68.1 85 32.7 122 -33.4 159 -187.4 

12 -35.6 49 -62.0 86 -18.4 123 16.1 160 -128.9 

13 -61.7 50 -45.1 87 -176.9 124 -202.3 161 -42.2 

14 85.5 51 26.4 88 -124.0 125 -120.7 162 -15.1 

15 -4.5 52 -202.3 89 15.1 126 -30.4 163 20.7 

16 -10.3 53 -120.7 90 -94.1 127 46.0 164 -4.5 

17 -187.4 54 -30.4 91 -94.1 128 -44.3 165 -10.3 

18 -128.9 55 46.0 92 -43.4 129 -45.1 166 -191.4 

19 -42.2 56 -44.3 93 -43.4 130 26.4 167 -128.0 

20 -15.1 57 -33.4 94 32.7 131 -193.9 168 -35.6 

21 20.7 58 16.1 95 -18.4 132 -128.8 169 -61.7 

22 3.7 59 -206.8 96 -194.0 133 -39.9 170 85.5 

23 -16.8 60 -118.6 97 -172.9 134 68.1 171 21.3 

24 -179.3 61 -24.8 98 -11.5 135 -62.0 172 -46.2 

25 -117.7 62 24.7 99 -70.1 136 -56.8 173 -208.0 

26 -52.6 63 -25.8 100 -30.6 137 36.2 174 -0.3 

27 -30.5 64 -27.4 101 19.2 138 -181.6 175 -8.3 

28 32.6 65 -0.1 102 18.7 139 -104.2 176 -92.8 

29 10.5 66 -209.3 103 -206.7 140 -53.3 177 27.9 

30 -25.0 67 -120.1 104 -133.8 141 51.0 178 -201.5 

31 -167.9 68 -19.6 105 -18.1 142 -63.4 179 -201.7 

32 -113.6 69 14.0 106 -14.5 143 -40.8 180 -15.3 

33 -67.8 70 -24.2 107 -14.9 144 -91.3 181 -6.96 

34 -42.6 71 -11.7 108 -11.7 145 -167.9 182 -80 

35 47.5 72 8.8 109 8.8 146 -113.6 183 -80 

36 -40.8 73 -206.7 110 -209.3 147 -67.8 184 -6.96 

37 -91.3 74 -133.8 111 -120.1 148 -42.6 185 -15.3 
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Appendix 8 Resultant stresses of elements for case 2 without snow load 
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1 -90.4 38 -16.0 75 -197.4 112 -195.0 149 96.6 

2 -90.6 39 -85.5 76 -35.3 113 -22.5 150 50.2 

3 -130.0 40 -178.6 77 10.8 114 14.3 151 -52.4 

4 -0.3 41 -13.0 78 35.6 115 10.1 152 -42.9 

5 -35.5 42 2.1 79 9.5 116 -14.3 153 -92.3 

6 -159.2 43 4.9 80 17.2 117 -5.2 154 -143.8 

7 117.7 44 -8.2 81 -146.2 118 -100.2 155 -91.7 

8 73.4 45 -13.6 82 -194.1 119 -191.9 156 92.4 

9 -80.7 46 -106.9 83 -68.5 120 -22.3 157 49.2 

10 -93.6 47 -182.4 84 -15.0 121 20.7 158 -50.0 

11 -82.2 48 -13.1 85 11.8 122 10.0 159 -67.5 

12 -82.7 49 17.4 86 16.3 123 -10.2 160 -96.5 

13 -135.3 50 8.0 87 21.9 124 -9.2 161 -114.3 

14 148.0 51 -9.5 88 -106.4 125 -101.1 162 -87.8 

15 47.7 52 -10.2 89 -162.4 126 -187.4 163 90.1 

16 -49.4 53 -101.1 90 -25.3 127 -17.4 164 47.2 

17 -69.8 54 -186.5 91 -25.9 128 18.0 165 -48.8 

18 -96.9 55 -18.8 92 -87.6 129 7.2 166 -91.1 

19 -111.8 56 19.4 93 -88.2 130 -8.7 167 -82.9 

20 -88.7 57 10.7 94 11.5 131 -12.4 168 -85.6 

21 91.2 58 -11.0 95 16.8 132 -106.8 169 -135.0 

22 49.7 59 -5.9 96 17.3 133 -183.5 170 146.8 

23 -50.6 60 -100.3 97 -146.2 134 -11.7 171 73.2 

24 -44.9 61 -191.3 98 -194.2 135 16.1 172 -80.1 

25 -92.3 62 -23.7 99 -67.2 136 4.1 173 -127.4 

26 -141.6 63 22.1 100 -16.3 137 -7.5 174 -0.2 

27 -92.7 64 10.7 101 34.9 138 -14.5 175 -38.8 

28 93.4 65 -15.2 102 10.2 139 -85.5 176 -158.7 

29 50.8 66 -1.6 103 5.1 140 -180.1 177 116.8 

30 -52.9 67 -102.5 104 -113.4 141 -12.1 178 -90.4 

31 -19.5 68 -194.6 105 -197.7 142 1.3 179 -90.6 

32 -91.2 69 -23.7 106 -34.1 143 5.1 180 -7.81 

33 -172.7 70 15.4 107 9.4 144 -100.9 181 -1.63 

34 -94.5 71 17.2 108 16.5 145 -17.8 182 -59.4 

35 97.6 72 -5.0 109 -4.5 146 -91.2 183 -59 

36 5.6 73 4.8 110 -1.1 147 -174.6 184 -2.61 

37 -101.4 74 -113.5 111 -102.4 148 -93.5 185 -7.56 
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Appendix 9 Resultant stresses of elements for case 2 with snow load 
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1 -120.6 38 -174.8 75 4.8 112 2.0 149 39.6 

2 -120.7 39 -91.9 76 -10.2 113 18.9 150 5.4 

3 -191.4 40 -35.9 77 -15.7 114 -28.3 151 -20.7 

4 -0.6 41 56.1 78 14.1 115 -31.3 152 -168.8 

5 -4.2 42 -68.4 79 16.5 116 1.0 153 -104.6 

6 -73.5 43 -61.6 80 -193.0 117 -202.9 154 -38.4 

7 23.8 44 39.7 81 -154.1 118 -106.1 155 -22.1 

8 16.3 45 -188.3 82 10.6 119 -4.1 156 23.9 

9 -38.3 46 -116.3 83 -63.3 120 29.4 157 -1.7 

10 -176.8 47 -21.2 84 -26.7 121 -30.1 158 -12.0 

11 -98.4 48 74.5 85 29.2 122 -37.2 159 -174.7 

12 -27.0 49 -68.4 86 -23.7 123 18.4 160 -112.6 

13 -54.4 50 -49.3 87 -176.7 124 -197.5 161 -30.8 

14 71.2 51 29.3 88 -109.7 125 -108.3 162 -6.7 

15 -9.8 52 -197.7 89 34.8 126 -10.5 163 10.8 

16 -4.8 53 -108.3 90 -90.1 127 51.6 164 -9.9 

17 -175.0 54 -10.4 91 -90.2 128 -49.8 165 -4.8 

18 -112.7 55 51.4 92 -33.2 129 -49.4 166 -176.5 

19 -30.4 56 -49.6 93 -33.2 130 29.4 167 -98.4 

20 -6.8 57 -37.1 94 29.2 131 -188.1 168 -27.3 

21 10.9 58 18.3 95 -23.6 132 -116.3 169 -54.4 

22 -1.7 59 -203.0 96 -193.0 133 -21.3 170 71.1 

23 -12.1 60 -106.1 97 -154.1 134 74.7 171 16.3 

24 -169.1 61 -4.0 98 10.6 135 -68.6 172 -38.2 

25 -104.6 62 29.2 99 -63.1 136 -61.7 173 -191.1 

26 -38.1 63 -29.9 100 -26.8 137 39.8 174 -0.6 

27 -22.3 64 -31.3 101 14.0 138 -174.6 175 -4.6 

28 24.1 65 0.9 102 16.6 139 -91.9 176 -73.5 

29 5.5 66 -206.4 103 -204.5 140 -36.1 177 23.7 

30 -20.7 67 -107.1 104 -119.6 141 56.2 178 -120.3 

31 -159.7 68 2.1 105 4.8 142 -68.5 179 -120.5 

32 -101.1 69 18.8 106 -10.1 143 -44.5 180 -16.5 

33 -50.8 70 -28.1 107 -15.8 144 -86.3 181 -2.56 

34 -35.0 71 -15.4 108 -15.4 145 -159.5 182 -79.1 

35 39.8 72 10.0 109 10.1 146 -101.1 183 -79.1 

36 -44.5 73 -204.5 110 -206.3 147 -51.0 184 -2.68 

37 -86.4 74 -119.7 111 -107.1 148 -34.8 185 -16.4 
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Appendix 10 Resultant stresses of elements for case 3 without snow load 
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1 -72.0 38 105.3 75 -207.4 112 -202.7 149 97.9 

2 -72.2 39 -28.7 76 -28.2 113 -20.7 150 50.5 

3 -9.7 40 -187.3 77 17.2 114 16.8 151 -53.3 

4 -0.4 41 -11.3 78 21.7 115 8.4 152 78.0 

5 -42.5 42 0.1 79 -4.0 116 -14.0 153 -35.9 

6 -150.6 43 2.7 80 131.1 117 114.4 154 -151.8 

7 133.5 44 -7.2 81 -63.9 118 -43.3 155 -92.7 

8 75.2 45 107.2 82 -209.3 119 -199.1 156 93.5 

9 -82.9 46 -50.8 83 -44.9 120 -20.0 157 49.6 

10 27.5 47 -190.5 84 8.5 121 19.5 158 -50.8 

11 -34.4 48 -10.4 85 -16.6 122 8.1 159 53.1 

12 -90.9 49 15.0 86 7.9 123 -10.0 160 -40.5 

13 -138.5 50 6.0 87 126.9 124 110.8 161 -122.0 

14 151.8 51 -8.6 88 -44.0 125 -44.6 162 -88.8 

15 47.8 52 110.1 89 -180.0 126 -194.9 163 91.3 

16 -50.0 53 -44.6 90 23.7 127 -15.2 164 47.5 

17 51.6 54 -194.3 91 23.4 128 16.3 165 -49.6 

18 -40.8 55 -16.2 92 -74.8 129 5.5 166 29.2 

19 -120.3 56 17.2 93 -75.2 130 -8.1 167 -34.9 

20 -89.4 57 8.6 94 -16.8 131 108.0 168 -92.8 

21 92.0 58 -10.4 95 8.3 132 -50.7 169 -138.3 

22 50.0 59 113.9 96 131.2 133 -191.3 170 151.1 

23 -51.2 60 -43.3 97 -63.9 134 -9.5 171 75.1 

24 76.7 61 -198.7 98 -209.3 135 14.1 172 -82.5 

25 -35.9 62 -20.9 99 -44.1 136 2.2 173 -7.9 

26 -150.3 63 20.4 100 7.6 137 -6.8 174 -0.4 

27 -93.3 64 8.9 101 21.2 138 106.3 175 -44.7 

28 94.2 65 -14.6 102 -3.5 139 -28.7 176 -150.3 

29 50.9 66 117.8 103 123.2 140 -188.3 177 132.9 

30 -53.6 67 -44.0 104 -49.2 141 -10.7 178 -71.9 

31 102.2 68 -202.5 105 -207.6 142 -0.5 179 -72.0 

32 -34.7 69 -21.5 106 -27.3 143 3.6 180 -5.68 

33 -181.7 70 17.5 107 16.3 144 -103.7 181 -4.95 

34 -95.2 71 12.6 108 12.1 145 103.4 182 -60.5 

35 98.5 72 -9.6 109 -9.3 146 -34.7 183 -60.3 

36 3.9 73 122.9 110 118.2 147 -183.0 184 -5.6 

37 -104.0 74 -49.3 111 -43.9 148 -94.6 185 -5.51 
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Appendix 11 Resultant stresses of elements for case 3 with snow load 
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1 -129.6 38 -134.4 75 147.6 112 142.8 149 2.6 

2 -129.7 39 -20.9 76 17.6 113 55.9 150 -28.6 

3 -78.7 40 59.7 77 -26.1 114 -60.8 151 -0.3 

4 -1.6 41 116.9 78 -22.3 115 -70.5 152 -102.1 

5 11.4 42 -131.9 79 1.3 116 9.6 153 -41.0 

6 1.7 43 -122.3 80 -203.5 117 -196.0 154 26.8 

7 -24.4 44 80.8 81 -51.5 118 -35.6 155 27.6 

8 -26.9 45 -161.9 82 147.9 119 129.6 156 -24.3 

9 -13.0 46 -50.9 83 -31.8 120 73.7 157 -41.5 

10 -79.2 47 90.5 84 -1.3 121 -71.8 158 14.7 

11 -46.3 48 151.5 85 1.8 122 -80.4 159 -94.6 

12 3.3 49 -142.8 86 -71.8 123 40.8 160 -55.0 

13 1.7 50 -101.3 87 -189.8 124 -182.5 161 19.1 

14 25.5 51 61.3 88 -29.0 125 -39.9 162 54.7 

15 -56.3 52 -182.3 89 165.5 126 114.1 163 -47.5 

16 27.7 53 -39.9 90 -75.2 127 111.6 164 -56.2 

17 -94.0 54 113.9 91 -75.1 128 -108.0 165 27.6 

18 -54.9 55 111.9 92 25.1 129 -101.1 166 -79.8 

19 18.5 56 -108.3 93 25.2 130 61.1 167 -46.2 

20 54.9 57 -80.5 94 1.9 131 -162.2 168 3.9 

21 -47.7 58 41.0 95 -71.9 132 -51.0 169 1.6 

22 -41.6 59 -195.8 96 -203.5 133 90.8 170 25.8 

23 14.8 60 -35.5 97 -51.5 134 151.2 171 -26.9 

24 -101.6 61 129.5 98 147.9 135 -142.5 172 -13.1 

25 -41.0 62 74.0 99 -32.0 136 -122.2 173 -79.3 

26 26.3 63 -72.1 100 -1.0 137 80.6 174 -1.6 

27 27.9 64 -70.7 101 -22.2 138 -134.7 175 12.2 

28 -24.5 65 9.8 102 1.1 139 -20.9 176 1.6 

29 -28.7 66 -206.0 103 -209.3 140 60.0 177 -24.2 

30 -0.2 67 -33.3 104 -40.1 141 116.7 178 -129.9 

31 -102.9 68 142.7 105 147.7 142 -131.7 179 -130.0 

32 -34.5 69 56.1 106 17.3 143 -90.3 180 -25.2 

33 25.6 70 -61.1 107 -25.8 144 -89.8 181 -2.92 

34 4.7 71 -49.6 108 -49.5 145 -103.3 182 -106 

35 2.4 72 14.8 109 14.6 146 -34.5 183 -106 

36 -90.5 73 -209.2 110 -206.1 147 26.0 184 -2.7 

37 -89.7 74 -40.0 111 -33.3 148 4.4 185 -25.2 
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