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ABSTRACT

A BAYESIAN LONGITUDINAL CIRCULAR MODEL AND MODEL
SELECTION

ÇAMLI, ONUR

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Zeynep Işıl Kalaylıoğlu

August 2017, 88 pages

This research was motivated by a recent medical study that aims to estimate the gen-
eral fetal head progression trajectory during the first stage of normal labour adjusted
for maternal characteristics and environmental factors. A rather primitive manual
method for determining the progression has recently been replaced by an ultrasound
technology that can precisely measure the fetal’s head angle. The particular chal-
lenge with such data is the model selection procedures that could objectively assess
the models when outcome data are longitudinal and circular. A Bayesian random
intercept model on the circle was considered and the current model selection meth-
ods used in Bayesian analysis of circular data were reviewed and commented. Then
criteria based on minimizing a predictive loss was focused and some new methods
and new extensions to a current method were proposed. Extensive Monte Carlo sim-
ulation studies controlled for the sample size and intraclass correlation were used to
study the performances of the model and these model selection criteria under various
realistic longitudinal settings. Relative bias and mean square error were used to evalu-
ate the performance of the estimators under correctly specified models and robustness
to model misspecification. Several quantities were used to evaluate the performances
of the model selection criteria such as frequency of selecting the true model and a
ratio that measures the strength of the particular selection. Simulations reveal a no-
ticeable or equivalent gain in performance achieved by the proposed methods. A
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conventional longitudinal data set (sandhopper data) was used to further compare the
Bayesian model selection methods for circular data. This research hopes to address
and contribute to the model selection in circular data, a rather fertile area for method-
ological and theoretical development, while the demand increases with the advancing
technology as seen in our motivating data set.

Keywords: Directional Statistics, Random Effects, Model Selection, Medicine, Biol-
ogy.
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ÖZ

BAYESCİ UZUNLAMASINA DAİRESEL BİR MODEL VE MODEL SEÇİMİ

ÇAMLI, ONUR

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Zeynep Işıl Kalaylıoğlu

Ağustos 2017 , 88 sayfa

Normal doğum eyleminin ilk evresinde anneliğe özgü özelliklere ve çevresel faktör-
lere göre şekillenen genel cenin baş ilerleme yörüngesini tahmin etmeyi amaçlayan
yakın tarihli bir tıbbi araştırma gerçekleştirilen tez çalışmasına motivasyon kaynağı
olmuştur. Daha önceleri ilerlemeyi belirlemek için oldukça ilkel elle yapılan bir yön-
tem günümüzde yerini ceninin baş açısını tam olarak ölçebilen bir ultrason teknolo-
jisine bırakmıştır. Böyle veriler ile ilgili zorluk, sonuç verisi uzunlamasına ve yön-
sel veri olduğunda modelleri tarafsızca değerlendirebilen model seçim yöntemleridir.
Çember üzerinde Bayesci rassal kesen içeren bir model düşünülmüş ve açısal verilerin
Bayesci analizinde kullanılan güncel model seçme metodları gözden geçirilerek de-
ğerlendirilmiştir. Daha sonra tahmini bir kayıbın minimum düzeye indirilmesine da-
yalı olan kriterlere odaklanılmıştır. İki tane yeni metot ve var olan bir yöntem için yeni
bir genişletme önerilmiştir. Çeşitli gerçekçi uzunlamasına senaryolar altında modelin
ve model seçim kriterlerinin performanslarını incelemek için, örneklem hacmi ve sı-
nıf içi korelasyonu için kontrol edilen kapsamlı Monte Carlo simülasyon çalışmaları
yapılmıştır. Modelin doğru belirlenmesi durumunda tahmin edicilerin performansla-
rını ve yanlış model belirlenmesine karşı sağlamlıklarını değerlendirmek için nisbi
sapma ve hata kareler ortalaması ölçüleri kullanılmıştır. Model seçme kriterlerinin
performanslarını değerlendirmek için doğru modeli seçme sıklığı ve belli bir seçim-
deki kararlılığı ölçen bir oran gibi birkaç ölçüt kullanılmıştır. Simülasyonlar, önerilen
yöntemlerle elde edilen performansların dikkat çekici veya eşdeğer olduğunu ortaya

vii



koymuştur. Açısal veriler için Bayesci model seçme kriterlerini daha fazla kıyasla-
mak için bilinen uzunlamasına bir veri seti (kum çekirgesi veri seti) kullanılmıştır.
Bu araştırma, motive edici veri setimizde görüldüğü gibi gelişen teknoloji ile talep
arttıkça, metodolojik ve teorik gelişme için oldukça verimli bir alan olan yönsel veri-
lerde model seçimine değinmeyi ve katkıda bulunmayı ummaktadır.

Anahtar Kelimeler: Yönsel İstatistikler, Rassal Etkiler, Model Seçme, Tıp, Biyoloji.
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CHAPTER 1

INTRODUCTION

1.1 A Motivating Dataset and Overview

Our research is motivated by an ongoing observational study at Ankara University,

Department of Gynecology. The aim of the study is to develop a model for the fetus’s

head progression in the first stage of labour for normal birth based on the angle of

head shown in Fig 1.1.

Figure 1.1: (Left) Regression plot showing relation between palpated head stations

and angle of progression. (Right) Illustration of the limits of actual fetal head place-

ments according to angle of progression with ultrasonography (Yuce et. al., 2015)

Head progression shows the movement of the fetus towards the outer world. Gynecol-

ogists use such models as reference curves to determine whether the head progression

of the fetus in a particular first stage labour is normal so that the birth will result in

a normal birth. The reference curve that is currently in use was constructed based

on cervical dilation (Zhang et. al., 2010). However there is a new technique based

1



on an ultrasound technology that measures the head progression angle precisely. The

aim of the gynecological researchers at Ankara University is to construct a new refer-

ence curve using the angle data obtained by this technology and adjust it for maternal

characteristics. Using this reference line, the gynecologist will be able to better tell

whether a particular fetus’s head angle is compatible with the angles observed in a

situation that resulted in a normal birth. The dataset consists of angle data represent-

ing the movement of the head of the fetus and maternal characteristics. Angles are

recorded about every 30 minutes during the first stage of the labour. Maternal charac-

teristics include baseline characteristics and time dependent characteristics measured

at the time of head angle recording such as current age, weight and height, parity,

abortion history, and cervical dilation. The response data obtained in this study has

two properties; circular and repeated and it is called longitudinal circular data. Since

motivating data set is not complete yet, it will not be pursued further in the application

section.

Repeated and circular observations (i.e. longitudinal circular data) arise in many

different researches in fields such as medicine, meteorology, biology, geology and

psychology. For instance, animal scientists wanted to understand the factors effecting

the direction the sandhoppers jump to and so they recorded the direction each time

a sandhopper moved (Scapini, 1997). All such examples require the use of circular

statistics for longitudinal circular data. There have been a lot of statistical methods to

analyze longitudinal data in linear structure. For example, see Diggle et al. (2002),

Fitzmaurice et al. (2004), Hedeker and Gibbons (2006), Gelman and Hill (2007), and

Fitzmaurice et al. (2008). However, the statistical analysis of circular longitudinal

response data is a fertile area of statistics. There is a limited number of literature on

statistical modeling of longitudinal circular response data. Also, model assessmen-

t/comparison/selection are not well addressed in circular data literature, particularly

for complex modeling such as longitudinal modeling. Longitudinal structures and the

difficulties in working with circular distributions may play an important role in these

limitations. Our focus in this thesis is modeling and model selection for circular lon-

gitudinal responses.
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1.2 Literature Review

There are several methods to analyze longitudinal response data on R. However,

methods for the analysis of longitudinal circular response data, i.e. data on S, is still

limited in the literature. Current frequentist and Bayesian literature for longitudinal

circular regression are given below.

Literature Review on Longitudinal Circular Regression

Artes et al. (2000) considered estimating equations for longitudinal circular data.

They proposed a method based on the quasi-likelihood theory of Wedderburn (1974)

and the generalized estimation equations approach of Liang and Zeger (1986). Their

estimating function was defined as a measurable function of the data and the param-

eters of interest. They derived estimating equations for modeling the mean resultant

length and the circular mean separately. They then derived estimating equations for a

mixed model and examined the consistency and asymptotically normality properties

of the estimators. They used the Newton method, the Newton modified method and

one based on the modified Newton method.

D’Elia (2001) developed a variance components model for longitudinal circular data

in which response variable model includes both fixed effects of explanatory variables

and random components which consists of random intercept and temporal stochas-

tic process. Response variable is assumed to have a von Mises distribution. They

considered at least two different sources of random variation, between subject varia-

tion and within subject correlation. These are incorporated into the model framework

through the random intercept and the temporal stochastic process respectively. Ran-

dom intercept is assumed to have a normal distribution with zero mean and variance.

Temporal stochastic process is assumed to have Stationary Gaussian Process. They

used a simulated maximum likelihood approach to estimate the model parameters.

McMillan et. al. (2013) also used random intercepts to account for the correla-

tion between the repeated circular measurements proposed for a two-part mixture of

wrapped Cauchy densities. Proposed model can be used for modeling repeated mea-

surements of bimodal angular data. This model is based on the work of McMillan

et. al. (2011) in which the maximum likelihood is used for inference on the two-part
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wrapped Cauchy model.

Hall et. al. (2015) considered an approach to fit a marginal regression model for these

data sets. This approach is a marginal version of the spherically projected multivari-

ate linear model and it makes it possible the use of a working correlation matrix and

a robust variance-covariance estimator. Hence, someone who want to use this ap-

proach should determine a working correlation matrix. They proposed this model to

fit using an extension of the expectation–maximization (EM) algorithm in which the

maximization (M) step is replaced by the solution of a generalized estimating equa-

tions. As a matter of principle, the EM algorithm can be applied to fit this model, but

there are some practical obstacles. One of the obstacles is that there is the challenge

of correctly modeling the correlation matrices and the variance of cluster- specific

latent response. Another obstacle is that to calculate the expectation (E) step we need

to calculate some terms which have no closed form, therefore an intractable multidi-

mensional integral must be evaluated. To overcome these obstacles, they formulate

the EM algorithm under independence, by introducing a working correlation matrix

into the estimating equations and this methodology is known as expectation solution

(ES) algorithm.

Lagona (2016) developed a flexible model based on the multivariate von Mises distri-

bution (MVM). Both mean and concentration parameters of this distribution depend

on some covariates through some link functions. In that study, a regression model that

can accommodate various correlation structures such as heteroscedasticity, unstruc-

tured correlation, and specific autoregressive correlation structures is suggested. This

proposed model can be considered as a multivariate extension of the generalized lin-

ear model developed by Fisher and Lee (1992) for independent circular response. The

maximum likelihood estimation technique is used to obtain the model parameters by

maximizing the log-likelihood function of model. However, this estimation method

arises some problems. When the bivariate case is concerned, since the normalizing

constant of MVM density can be derived, the estimates of parameters can be obtained.

On the other hand, when the dimension is larger than two, the analytical form of the

normalizing constant of MVM density cannot be obtained and numerical integration

is not applicable. Therefore, to obtain the estimation of model parameters, a Monte

Carlo approximation of the log-likelihood is used. To maximize the Monte Carlo ap-
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proximation of the log-likelihood, they used classic Newton type procedures by using

the properties of centered MVM distribution. The MVM density is not closed under

marginalization and its normalizing constant is challenging, for this reason they used

a simple Gibbs sampling to obtain samples from the MVM density. These distribu-

tional properties of the MVM distribution still make difficult the estimation of the

model parameters.

Maruotti et. al. (2016) used the mixed projected normal distribution to deal with

longitudinal circular data. They introduced a time-dependent mixed effect projected

normal regression model based on a hidden Markov heterogeneity structure. Their

model can be considered as an extension of the model developed by Presnell et. al

(1998), since the conditional distribution of the circular response is projected nor-

mal. The developed model is useful tool for modeling multivariate circular variables

and quite general. They used a maximum likelihood approach based on the radial

projection of a bivariate normal distribution to make inference on model. An expec-

tation–maximization algorithm is used to obtain the maximum likelihood estimation

of the model parameters. However, their estimation produce does not produce stan-

dard errors of the estimates, since approximations based on the observed information

matrix often require very large sample size. To get through this problem, they used

parametric bootstrap approach and then calculated the approximate standard error of

each parameter estimator.

Under the longitudinal and circular structure, Maruotti (2016) considered the imple-

mentation of flexible circular regression model, thus, the projected normal regression

model is extended in two directions. To analyze the longitudinal circular data, first

of all they used correlated random coefficients to introduce dependence between pro-

jections, and then defined a mixed effects model for radial projections onto the cir-

cle. Finally, they extended the variance component model methodology. The method

can be considered an extension of the method developed by Presnell et. al. (1998).

However, the proposed model is a semi-parametric extension of the projected normal

model, because there is no any assumption on the distribution of random effects and

any limitation on the covariance structure of random effects. To obtain the maximum

likelihood estimations of the proposed semi-parametric model parameters, the EM

algorithm was used again without any parametric assumption on the random effects
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distribution. At first appearance, the proposed model may be seen very attractive,

but there are some computationally disadvantages and restrictions. In addition, their

parameter estimation procedure does not generate standard errors of the estimates.

Therefore, to obtain standard errors of the parameters, a parametric bootstrap tech-

nique is employed.

Rueda et. al. (2016) developed a flexible piecewise circular regression model for

analysis of longitudinal circular data. In their model, both response variable and co-

variate variable are circular and this model works under the assumption that these

circular variables have the von Mises distribution which is the most important and

key distribution for circular data. Although the proposed model can allow for flexible

relationships between covariate and response variable in different sectors (subjects or

units), it can be considered as an extension of the model introduced by Downs and

Mardia (2002). To make inference on their model, they used the maximum likeli-

hood estimation method. However, there are some constraints on the parameters for

existence of continuous solution. To obtain the maximum likelihood estimates for

their model, they rewrite the model as the piecewise circular-linear model, and then

they describe the derivation of maximum likelihood estimators by using the theory

developed by Fisher and Lee (1992) for circular–linear model and the R package of

Agostinelli and Lund (2011). The drawback of their model is that the estimation of

the model parameters can be obtained when there is only one circular regressor vari-

able since they used the circular–linear model developed by Fisher and Lee (1992) in

their estimation procedure.

In Bayesian analysis framework, Antonio et. al (2014) developed a circular longitudi-

nal model to analyze short series of longitudinal circular data. Their proposed model

is based on projected normal distribution. In their model, a mixed effect linear model

is used to determine each of the two components. They used a Metropolis within

Gibbs scheme to obtain inferences about the model parameters.

Literature Review on Model Selection for Longitudinal Circular Regression

Selection of an appropriate approximating model is critical to statistical inference.

As mentioned above, when a circular data is given, there is some class of parametric

and semi-parametric models that can be fitted. In literature, there are a lot of model
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selection criteria used to select, compare and assess models with linear variables, but

when modeling with circular variables is of concern, these usual model selection cri-

teria employed for linear data may not be appropriate, like the other usual statistical

tools not being suitable for analysis of circular data; as they do not account for the cir-

cular nature of the data. When modeling with circular variables is of concern, D’Elia

(2001) used a test statistic which is based on the likelihood ratio criterion to com-

pare some nested models and then by using the Akaike Information Criterion (AIC)

(Akaike, 1973), they preferred the model which has fewer parameters. Carnicero et.

al. (2008) used the Bayesian Information Criterion (BIC) (Schwarz, 1978), to se-

lect the number of terms to include in their mixture model. McMillan et al. (2013)

employed the log pseudo-marginal likelihood (LPML) of Geisser and Eddy (1979)

as a criterion for model selection and they preferred the model which maximizes

the LPML. Rueda et. al. (2016) used the Generalized Information Akaike Criterion

(GAIC) to assess the performance of models and they preferred the model that has

the largest GAIC.

All these model selection criteria based on information theory and they were not de-

veloped especially for the circular nature of the data. Recently few model selection

criteria specifically developed for circular data emerged. A model selection criterion

which will be detailed in Chapter 4 was developed by Ravindran et. al. (2011) by

using the decision theoretic framework of Gelfand and Ghosh (1998). This model

selection criterion is called Circular Predictive Discrepancy (CPD). Maruotti et. al.

(2016) used the circular distance suggested by Jammalamadaka and SenGupta (2001)

to define the average prediction error (APE) to compare the prediction abilities of the

models. They also used the AIC and the BIC to select the number of hidden states

in their model which based on a hidden Markov heterogeneity structure. Maruotti

(2016) again used the penalized likelihood criteria, as the AIC and the BIC, to de-

termine the number of mixture components in their model which is based on finite

mixture models. They also used the APE to compare the performance of models.
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1.3 Our Objectives and Scope of the Study

As presented in Section 1.2, there are currently two basic approaches to regression

modeling of longitudinal circular response data. These are i. use of multivariate cir-

cular distributions (estimating equations), ii. random effects models using projected

normal distribution. The main drawback with these approaches are, respectively i.

high dimensionality problem with multivariate distributions when within sample size

(number of repeated measurements (i.e. longitudinal observations)) is large, ii. pro-

jected normal approach doubles the dimension of latent random effects space. We

consider a modeling strategy that avoids these problems.

Another challenge with such data is the model assessment, comparison and selection

procedures that objectively assess the models when outcome data are longitudinal

and circular/directional. In this thesis, we focus on predictive model assessment.

Performances of traditional criteria employed for longitudinal linear predictive model

assessment such as AIC, BIC, DIC versions (Celeux et al., 2006), and prediction error

based statistics are largely unknown for circular variables. We focus on the prediction

error based model assessment methods.

The aims of this thesis are then listed as follows;

• Develop a new class of Bayesian models for longitudinal circular responses

based on random intercept where response variable is circular and covariates

are linear.

• Develop some novel predictive model assessment tools that take the account of

circular properties of the data.

• Evaluate and compare the performances of model selection approaches.

• Illustrate the utilization of the considered model and new model selection cri-

teria by using a real longitudinal angular data set.

This thesis is organized as follows. Chapter 2 gives some preliminaries and explains

some basic definitions for circular data. Then, some properties of the most common

circular distributions, such as the von Mises, the wrapped Cauchy and the projected
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normal distributions are presented in this chapter. The theory of linear circular regres-

sion model is also presented in this chapter. Chapter 3 gives some basic information

about longitudinal circular data and explains the Bayesian methodology of with ran-

dom intercept model, Bayesian analysis of the model which contains getting full con-

ditional distributions, sampling methods, parameter estimations and implementation

of the Markov Chain Monte Carlo (MCMC) scheme. Chapter 4 gives the proposed

model selection criteria which are based upon predictive loss. Some properties of

these model selection criteria and the selected model selection criteria currently used

in practice are presented in this chapter. Chapter 5 gives the details of the extensive

simulation study illustrating the performance of our considered model, our estimation

procedure and comparing the performances of proposed model selection criteria and

the other criteria. Application to a real data set is also presented in Chapter 6. Chapter

7 concludes the study with some discussion.
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CHAPTER 2

PRELIMINARIES OF CIRCULAR DATA ANALYSIS

This chapter is concerned with the basic properties of circular measurements, basic

summary statistics, most common circular distributions such as the von Mises dis-

tribution and the wrapped Cauchy distribution, the simplest theory of linear- circular

regression model in which the relationship between a circular response variable and

some linear covariates can be investigated. Researcher can come across circular data

in a number of different areas such as meteorology, medicine, biology, earth sciences,

physics, geology and psychology. and hence they should learn to analyze circular

data as well as to assess and to compare circular models. For instance, in meteorol-

ogy, wind directions or the times of year at which heavy rain occurs are circular data

(Mardia and Jupp, 2000). In biology, the orientation of animals such as the direction

of homing pigeons and escaping of the sand hoppers are circular data. In medicine

the positional changes of the fetus in the birth canal, the fetal head progression in the

first stage of labor are circular data. Data that are represented on unit circle, such as

angles, are called circular data. For instance, directions, measurements recorded over

a 24 hour period or a week or a year, are also circular. Circular data can be measured

in degree or radian with the range (0◦, 360◦) or (0, 2π) respectively. The starting

points and endpoints are the same location on the circle for circular data. Since the

angular value depends on the choice of the initial direction and the sense of rotation;

clockwise or counter-clockwise, the numerical representation of a circular observa-

tion is not unique. Anyone who takes East as the initial direction and anticlockwise

as the direction of rotation can consider the value of a circular observation as 75◦ and

the value of the same circular observation can be considered as 15◦ by someone else

who takes North as the initial direction and clockwise as the direction of rotation.
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Figure 2.1: Varying value of a circular observation.

From Figure 2.1, it can be easily concluded that the choice of initial direction and ro-

tation effect the representation of a circular observation. As mentioned above, circular

data can be represented as angles or as points on the circumference of a unit circle

and may be uniquely determined by two coordinates. The rectangular (Cartesian)

coordinate system with origin 0 and polar coordinate system can be used for this pur-

pose. Any point on the plane can be represented by using its rectangular coordinates

or its polar coordinates as (X, Y) or (r, θ), respectively. (X, Y) are two perpendicular

axes through the origin. r is the radius, θ is its direction. When a point in Cartesian

Coordinates (X, Y) is given then by using the trigonometric functions sine and co-

sine, its counterpart in Polar Coordinates (r, θ) can be obtained. From Figure 2.2 the

rectangular coordinates of a point are given in terms of its polar coordinates by

x = r cos(θ), y = r sin(θ). (2.1)
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Figure 2.2: Rectangular and polar coordinates for an circular observation.

2.1 Basic Summary Statistics

Standard statistical approaches, such as descriptive statistics and classical modeling

are not suitable for circular data and differ from those of linear methods. For example,

let the directional data be x = (12◦, 348◦). The simple mean is 180◦ which is obvi-

ously incorrect as it is the opposite direction that does not represent the average data.

The true simple mean is 0◦. Because of such problems, an exclusive set of statisti-

cal approaches have been developed for analyzing circular data including descriptive

statistics, statistical distributions and modeling (Fisher, 1993; Mardia and Jupp, 2000;

Jammalamadaka and SenGupta, 2001).

2.1.1 Mean Direction and Mean Resultant Length

Let θ1, . . . , θn be a random sample of circular observations of size n on the unit

circle. From Figure 2.2, let xi = cos(θi), yi = sin(θi) be polar transformation for

each observation. Then, define x̄ = 1
n
(x1 + ...+xn) = 1

n
(cos(θ1) + ...+ cos(θn)) and

ȳ = 1
n
(y1 + ... + yn) = 1

n
(sin(θ1) + ... + sin(θn)). Then mean resultant length R̄ is

given by

R̄ = (x̄2 + ȳ2)1/2. (2.2)
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Figure 2.3: The mean resultant length R̄ and the angle of mean direction θ̄ for a set

of circular observation (Mardia, 1792)

The angle of mean direction is given by

θ̄ =



arctan( ȳ
x̄
) if x̄ > 0, ȳ > 0,

arctan( ȳ
x̄
) + 2π if x̄ > 0, ȳ < 0,

arctan( ȳ
x̄
) + π if x̄ < 0,

π
2

if x̄ = 0, ȳ > 0,

undefined if x̄ = 0, ȳ = 0.

(2.3)

The relationship between the mean resultant length and mean direction is

cos(θ̄) =
x̄2

R̄
, sin(θ̄) =

ȳ2

R̄
. (2.4)

From (2.3) and (2.4), it can be concluded that the angle of mean direction is not equal
1
n
(θ1 + ...+ θn).

2.1.2 Circular Variance and Circular Standard Deviation

The resultant length of the resultant vector is defined by
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R = R̄n (2.5)

and lies in the range (0, n) where R̄ is the mean resultant length which was given in

2.2 and lies in the range (0, 1). For circular data, when R̄ is close to 1, this implies

that the data set is highly concentrated and when R̄ is close to 0, the data set is the

less concentrated. R̄ sometimes can not be suitable to show the dispersion of circular

data. Then, the circular variance is defined by

V = 1− R̄ (2.6)

and lies in the range (0,1). The variation in the circular observation about the mean

direction can be measured by using the circular variance. As the value of the mean

resultant length decreases, the circular variance increases. However, when the circular

variance is equal to 1, this does not imply that the data set has maximum dispersion.

The circular standard deviation is defined by

v = (−2 log(1− V ))1/2. (2.7)

2.1.3 Circular Symmetry Coefficient

The circular symmetry coefficient (s) is defined (Fisher, 1993) as follows

s =
ρ2 sin(µ2 − 2θ̄)

(1− R̄)
3
2

,where ρ2 =
1

n

n∑
i=1

cos 2(θi − θ̄) (2.8)

and

µ2 =


tan−1(S̄2/C̄2) if S̄2 > 0, C̄2 > 0,

tan−1(S̄2/C̄2) + π if C̄2 < 0,

tan−1(S̄2/C̄2) + 2π if S̄2 < 0, C̄2 > 0,

(2.9)

where,

S̄2 =
1

n

n∑
i=1

sin(2θi), C̄2 =
1

n

n∑
i=1

cos(2θi). (2.10)
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Here, θ̄ is the mean direction defined in equation 2.3 and R̄ denotes the mean resultant

length defined in equation 2.2. s is nearly zero for symmetric unimodal data sets.

2.1.4 Circular-Circular Association

Let (Φ1, Ψ1) and (Φ2, Ψ2) be two independent random vectors of (Φ, Ψ). The circular

correlation coefficient is defined by (Fisher and Lee, 1983)

ρT =
E[sin(Φ1 − Φ2) sin(Ψ1 −Ψ2)]

{E[sin2(Φ1 − Φ2)]E[sin2(Ψ1 −Ψ2)]}1/2
. (2.11)

This quantity explains association between two circular random variables. It takes

values between -1 and 1. If Φ and Ψ are independent, then ρT = 0.

Given a random sample of n observations of (Φ, Ψ), (φ1,ψ1), . . . , (φn,ψn), the

estimate of ρ̂T is calculated as follows

ρ̂T =
4(AB − CD)

{(n2 − E2 − F 2)(n2 −G2 −H2)}1/2
(2.12)

where,

A =
∑n

j=1 cosφj cosψj , B =
∑n

j=1 sinφj sinψj ,

C =
∑n

j=1 cosφj sinψj , D =
∑n

j=1 sinφj cosψj ,

E =
∑n

j=1 cos 2φj , F =
∑n

j=1 sin 2φj ,

G =
∑n

j=1 cos 2ψj , H =
∑n

j=1 sin 2ψj .

2.1.5 Circular Distance

Let x1 and x2 be any two points on circle and θ1 and θ2 be two angles corresponding to

x1, x2 respectively. The circular distance between these two points can be measured

by using

d(θ1, θ2) = (1− cos(θ1 − θ2)). (2.13)
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2.2 Most Common Circular Distributions

There are various distributions for circular data, such as uniform distribution, Car-

dioid distribution, wrapped normal distribution (WN), wrapped Cauchy distribution

(WC) and von Mises distribution (vM). These distributions can be divided as unimodal-

multi modal, symmetric-asymmetric, univariate-multivariate. Moreover, the distribu-

tions developed for circular data may be discrete or continuous. A circular probability

density function (pdf) should satisfy three basic conditions;

1. f(θ) ≥ 0 ;

2.
∫ 2π

0
f(θ)dθ = 1;

3. f(θ) = f(θ + k2π) for any integer k.

Last one is the periodicity. In this section, three of these distributions will be given.

These are the most common distribution in circular methodology.

2.2.1 The Von Mises (Circular Normal) Distribution

Probability density function for vM distribution is defined as

f(θ|µ, κ) = [2πI0(κ)]−1 exp{κ cos(θ − µ)}, 0 ≤ θ < 2π, κ ≥ 0 (2.14)

where µ is the mean direction and the concentration parameter is κ. Here, I0(κ) is the

modified Bessel function of order zero and the first kind (Abramowitz and Stegun,

1965) and it is equal to

I0(κ) = (2π)−1

∫ 2π

0

exp(κ cos(φ))dφ. (2.15)

I0(κ) also can be a calculated by using following expression;

I0(κ) =
∞∑
r=0

(r!)−2(
1

2
κ)2r. (2.16)
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It was introduced by von Mises (1918). This distribution is symmetric about the

direction µ as well as µ + π by the properties of the cosine function. The density

has the maximum value at θ = µ because the maximum value of cosine function is

equal 1 and to satisfy this value the cosine function should be evaluated at 0, in other

words µ is the modal direction. The minimum value of the cosine function is -1 and

when the cosine function is evaluated at µ ± π, the density has the minimum value.

Therefore, µ ± π is the anti-modal direction of vM distribution. This distribution is

a unimodal distribution. When concentration parameter κ is equal to 0, it reduces to

uniform distribution and for small κ, the distribution can be approximated by cardioid

distribution which is another circular distribution. Moreover, vM distribution can

be approximated to wrapped normal (WN) and wrapped Cauchy (WC) distribution

which will be discussed in next section. As κ increases, the distribution converges to

a point at µ. Circular dispersion can be calculated for this distribution by using

δ = [κA1(κ)]−1 (2.17)

where A1(κ) is the mean resultant length and it is equal to I1(κ)/I0(κ). Here I1(κ)

denotes the modified Bessel function of order one and the first kind. In order to

calculate values of the modified Bessel function of order p and the first kind, the

following expression can be used ;

Ip(κ) =
∞∑
r=0

[(r + p)!r!]−1(
1

2
κ)2r+p, p = 1, 2, ... (2.18)

2.2.2 The Wrapped Cauchy Distribution

Another symmetric and unimodal distribution for circular data is WC distribution.

This distribution can be obtained by wrapping the Cauchy distribution on the real line

around the circle and it was presented by Lévy (1939). Probability density function

for WC distribution is defined as

f(θ|µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 ≤ θ < 2π, 0 ≤ ρ < 1 (2.19)

18



where µ is the mean direction and ρ is mean resultant length. As ρ increases, the

distribution becomes concentrated at a point µ and as ρ approaches to 0, it reduces

to uniform distribution. When modeling unimodal and symmetric data is concerned,

this distribution can be used as an alternative to the vM distribution for suitable the

dispersion parameters.

Circular dispersion can be obtained for this distribution as

δ = (1− ρ2)/(2ρ2). (2.20)

2.2.3 The Projected Normal Distribution

Let a random vector X = (X1, X2)′ has a bivariate normal distribution, with mean

µ and covariance matrix Σ. Let U = X
‖X‖ . Then the random unit vector U is a point

on the unit circle and has a projected normal(PN) distribution (Small, 1996; Mardia

et. al., 2000) with the same parameters which is denoted as PN2(µ,Σ). Probability

density function for two dimensional PN distribution is defined as

f(θ|µ,Σ) =
φ2(µ1, µ2; 0,Σ)

C(θ)
+
aD(θ)Φ1(D(θ))φ1(aC(θ)−

1
2 (µ1 sin θ − µ2 cos θ))

C(θ)
(2.21)

a = (σ1σ2

√
1− ρ2)−1

C(θ) = a2(σ2
2 cos2 θ − ρσ1σ2 sin 2θ + σ2

1 sin2 θ)

D(θ) = a2C(θ)−
1
2 (µ1σ2(σ2 cos θ − ρσ1 sin θ) + µ2σ1(σ1 sin θ − ρσ2 cos θ)),

where φ2 and Φ2 denote the 2-dimensional probability density function and cumula-

tive density function of standard normal distributions, respectively. µ = (µ1, µ2)′ is

mean vector and Σ is covariance matrix as given below

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2
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where σ2
1 and σ2

2 denote the variances ofX1 andX2 and ρ is the correlation coefficient

between the two variables.

2.3 Regression Models

In this section, the theory of regression models for the circular variable will be de-

scribed. In the literature, there are several regression models when the modeling with

a circular variable is of concern. These regression models can be divided into three

different groups. The first one is circular-circular regression model in which both

response and explanatory variables are circular. The second one is circular-linear re-

gression model that can be used to investigate the relationship between linear response

variable and circular explanatory variables. The last one is linear-circular regression

model, in which the variation of circular response variable can be explained in terms

of some linear covariates. These regression models are generally developed under the

von Mises distribution assumptions due to its established theoretical framework and

some key properties for statistical inference. Our interest lies in linear-circular re-

gressions. The variation of a circular response variable can be explained in a number

of ways in terms of some linear covariates. For example, the mean direction or the

dispersion of circular response variable can be modeled in terms of some explanatory

variables, or we can model both the mean direction and the dispersion of circular

response variable. In this study, the variation of circular response variable will be ex-

plained by modeling mean direction in linear-circular regression model. Other cases

will not be discussed further.

2.3.1 Linear-Circular Regression Models

As mentioned above, the model in which the response variable is circular and explana-

tory variables are linear is called linear-circular regression model. In this model, the

circular response variable is regressed on to one or more linear covariates and the vari-

ation of circular response can be investigated by modeling either its mean direction,

concentration or both. Our interest lies in mean modeling.
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2.3.1.1 Modeling the Mean Direction

In this section, regression model in which the mean direction is modeled in terms

of some covariates will be given. Let θ1, ..., θn be a random sample of circular ob-

servations from von Mises distribution with mean directions µi’s and concentration

parameters κ. That is θi ∼ vM(µi, κ) for i = 1, ..., n. Xi be the vector of linear

explanatory variables for the ith case. Firstly, Gould (1969) developed a regression

model in which the structure

µi = µ0 +
∑

βiXi, i = 1, ..., n, (2.22)

was considered for the mean direction, where, µ0 is any constant, Xi is the vector

of explanatory variables for the ith case and βi is the vector of regression coeffi-

cients. The maximum likelihood estimates of the model parameters were obtained

by using some iterative methods. The maximum likelihood estimations are equal to

least squares estimations for this model. The likelihood function of this model has

infinitely many equally high peaks, which lead to some problems in defining maxi-

mum likelihood estimators. This model was discussed by Laycock (1975) and some

optimal designs were described for the related model. As an alternative to Gould’s

model, a different approach was proposed by Johnson and Wehrly (1978) for the case

of only one linear covariate by using the joint distribution of the circular response

variable and linear explanatory variable. They proposed the structure

µi = µ0 + 2πF (xi), i = 1, ..., n, (2.23)

for the mean direction of von Mises distribution, where F (x) is an exactly determined

cumulative distribution function. In this model, the mean direction µ and concentra-

tion parameter κ can be estimated directly. This alternative approach was extended

by Fisher and Lee (1992) to the case in which there are multiple linear covariates by

using a general link function. For the mean direction, the structure

µi = µ0 + g(βTXi), i = 1, ..., n, (2.24)

21



was suggested by them, where β is vector of regression coefficients and Xi is the

vector of predictors for the ith case and g is a general link function. They mapped

the real line onto the unit circle by using the link function and just monotone link

function was considered. The function g should be monotone and range from −π to

π with g(0) = 0. Some useful link functions are g(x) = 2πF (x) where F(x) is a cdf

and g(x) = 2 tan−1(x). Maximum likelihood estimates of model parameters can be

obtained by using some iterative methods, however, when there are more than a few

explanatory variables, it is difficult to work with the likelihood. George and Ghosh

(2006) suggested a semi-parametric Bayesian approach to linear-circular regression.

In this approach, nonparametric distribution such as Dirichlet process can be used as

prior distribution for the regression coefficients. The projected normal distribution is

another distribution which is used to propose an alternative approach for modeling the

mean direction when the response variable is circular and the covariates are linear. In

this alternative approach, a linear function of explanatory variables are used to explain

the variation of the mean vector of the bivariate normal distribution. Some procedures

can be used for obtaining the maximum likelihood estimations of model parameters.
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CHAPTER 3

LONGITUDINAL CIRCULAR DATA

In this chapter, some basic properties of longitudinal data, an overview of the consid-

ered longitudinal circular random intercept model and Bayesian analysis of the model

are presented.

3.1 Basis of Longitudinal Data

Longitudinal data occur when repeated observations are taken from the same indi-

vidual through time. The longitudinal structure enables us to explore the change for

each subject in response variable over time. Additionally, differences among subjects

can be investigated in a repeated measurements study. In a longitudinal study, the

primary objective is to assess the change within an individual over time and deter-

mine the covariates that affect the change (Fitzmaurice et al., 2004). There are three

different sources of variation in longitudinal data. The first one is the variation of

response variable among subjects, the second one is the variation of response vari-

able over time within subjects and the next one is measurement error. Longitudinal

data structures are mainly divided into three groups in Ilk (2008) as unconstrained,

constrained and fully constrained. In unconstrained data, the number of time points

for subjects is not equal to each other and repeated measurements are not taken from

subjects on common time points. In constrained data, the number of time points is

the same for all subjects but time points are not common. In fully constrained data,

the number of time points is the same for all subjects and measurements are taken

from each subject on the same time points. Longitudinal data can be constructed ei-
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ther prospectively or retrospectively. In the first way, repeated measurements from

the same subject are taken in time, on the other hand, in the latter historical records

are used to collect longitudinal data. Variables in longitudinal data can be divided

as time dependent covariates, time independent covariates and response variable. Al-

though, time dependent covariates can take different values in time, time independent

covariates stay the same over time. These covariates can be continuous, discrete or

categorical. Similarly, response variable in longitudinal data can be discrete, contin-

uous or categorical as well as univariate or multivariate. Models built for continuous

response may not be suitable for discrete or categorical response, thereby the choice

of analysis is an important issue in longitudinal data and it depends on the variables

in data set and design of data. Whether response variable is univariate or multivariate

also plays important role in determining the models. Longitudinal data sets can be

constructed either in long form or wide form and it can be reshaped from the long

form to the wide form or vice versa.

A brief illustration of univariate longitudinal circular structure is presented before

proceeding to longitudinal circular models. Assume that circular measurements are

taken repeatedly from N subjects over time. Then, θij indicates the circular response

variable for the ith subject on jth time point. For each subject, grouping the circular

response variable into an ni x 1 response vector is appropriate as following;

θi =


θi1

θi2
...

θini

 , i = 1, ..., N (3.1)

Since the number of time points for each subject may not be equal to each other, it

is denoted by ni for subject i. When all subjects have the same number of repeated

measures, there is no need to include the index i in ni. Moreover, associated p × 1

linear covariates vector is denoted by
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Xij =


Xij1

Xij2

...

Xijp

 , i = 1, ..., N ; j = 1, ..., ni. (3.2)

Note that Xijp denotes the value of pth covariate for subject i on jth time point. These

p covariates may change over time or not change as mentioned earlier.

3.2 A Longitudinal Circular Random Effects Model

Let θij ∈ [−π, π] be a circular random variable in a repeated measurements study

and let the number of time points for each subject be the same and common. That

is, i = 1, ..., n, j = 1, ...,m and θij denotes the measure of a circular response for

subject i on time point j. Then, we consider the following random intercept model

(which we will denote by LCRIM)

θij = 2 arctan(b0i + βXij) + εij, i = 1, ..., n, j = 1, ...,m

εij
ind∼ vM(0, κ)

(3.3)

where b0i is subject specific random intercept for subject i which has a normal dis-

tribution with mean µb0 and variance σ2
b0

. Xij are linear covariates, β are regression

coefficients, and κ is the concentration parameter. b0i and εij’s are assumed inde-

pendent. It is also assumed that θij and θij
′

are conditionally independent given a

subject-specific random intercept.

An equivalent hierarchical representation is given as follows:

θij|b0i ∼ vM(µij, κ), i = 1, ..., n, j = 1, ...,m

µij = g(b0i + βXij)

b0i ∼ N(µb0 , σ
2
b0

).

(3.4)
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with monotone increasing link function such as g(x) = 2 arctan(x).

Interpretation of the regression coefficients in a circular model is different than those

in a regression model defined on Euclidean space and thus requires special attention.

First of all, for the correct interpretation, the initial direction and the direction of

rotation should be determined clearly. To illustrate, let the initial direction be North

and the direction of rotation be clockwise. Then, a positive βp means that an increase

in the pth covariate will lead to a clockwise advance from North in the directional

response. In other words, when there is one unit change in the pth covariate, there

will be a change in tan(
θij
2

) as βp.

3.3 Bayesian Analysis of LCRIM

In this section, a Bayesian analysis of longitudinal circular random intercept model

is presented. In this framework, first, prior distributions are specified for all un-

known parameters of the model. Second, all these distributions are combined into

the joint posterior distribution. Afterwards the full conditional distribution are de-

rived from the joint posterior distribution for each parameter. Finally, Markov Chain

Monte Carlo (MCMC) methods are employed to obtain the random samples from the

marginal posterior distribution for each parameter of model and the parameter esti-

mates. The directed graphical model (DAG) for LCRIM is presented in Appeddix

A.

The longitudinal circular random intercept model given in Section 3.2 has the pa-

rameter space consisting of (κ,β, µb0 , τ ) where κ is the concentration parameter,

β = {βp; p = 1, ..., k} is a vector of regression coefficients, τ = 1
σ2
b0

and µb0 is

the mean of the assumed distribution of the random intercept. We choose to use the

standard prior distributions; Normal distributions for the parameters in R and Gamma

distributions for the parameters in R+. The prior distributions are βp ∼ N(µβp , σ
2
βp

),

κ ∼ Ga(aκ, bκ), µb0 ∼ N(µ0, σ
2
0), and τ ∼ Ga(aτ , bτ ) with known hyperpriors.

Let Dobs = {θ,X} and Dcomp = {θ,X, b0} be the observed and complete data

matrices respectively. Complete data matrix includes both the observables and un-

observables (latent variable random intercept). The joint posterior distribution of all
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unknown quantities given the observed data Dobs is presented as

f(κ,β, µb0 , τ, b0|Dobs) =
f(Dobs, b0|κ,β, µb0 , τ)f(κ,β, µb0 , τ)

f(Dobs)

=
f((Dcomp|κ,β, µb0 , τ)f(κ,β, µb0 , τ)

f(Dobs)

∝f(Dcomp|κ,β, µb0 , τ)f(κ,β, µb0 , τ)

(3.5)

where f(Dcomp|κ,β, µb0 , τ) and f(κ,β, µb0 , τ) denote the complete data likelihood

function and the joint prior distribution of the parameters respectively. Since the de-

nominator does not include κ, β, µb0 or τ , it is not really important and the proportion

can be used instead of equality. Then, the joint posterior density of variables can be

obtained by multiplying the complete data likelihood by the prior distributions for

each variable. The complete data likelihood function for LCRIM can be written as

below:

L(κ,β, µb0 , τ |Dcomp) =
n∏
i=1

(
m∏
j=1

f(θij|b0i,β, κ)

)
f(b0i|µb0 , τ), (3.6)

where f(θij|b0i,β, κ) denotes the conditional circular pdf (vM) and f(b0i|µb0 , τ) is

the prior distribution for b0i (Normal distribution). Then,

L(κ,β, µb0 , τ |Dcomp) =
n∏
i=1

(
m∏
j=1

[2πI0(κ)]−1 exp{κ cos(θij − 2 arctan(b0i + βXij))}

)
√
τ√

2π
exp{−τ(b0i − µb0)2

2
}

(3.7)

After a little bit of algebra,
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L(κ,β, µb0 , τ |Dcomp) =[2πI0(κ)]−mnexp{κ
n∑
i=1

m∑
j=1

cos(θij − 2 arctan(b0i + βXij))}

(
τ

2π
)
n
2 exp{−τ

n∑
i=1

(b0i − µb0)2

2
}.

(3.8)

Then, the joint posterior density of all unknown variates is presented as

f(κ,β, µb0 , τ, b0|Dobs) ∝[2πI0(κ)]−mnexp{κ
n∑
i=1

m∑
j=1

cos(θij − 2 arctan(b0i + βXij))}

(
τ

2π
)
n
2 exp{−τ

n∑
i=1

(b0i − µb0)2

2
} 1√

2πσβ
exp{−(β − µβ)2

2σ2
β

}

baκκ
Γ(aκ)

κaκ−1exp{−κbκ}
1√

2πσ0

exp{−(µb0 − µ0)2

2σ2
0

}

baττ
Γ(aτ )

τaτ−1exp{−τbτ}

(3.9)

This joint posterior density should be integrated out for all the other parameters to

obtain the marginal posterior density for each parameter. However, the joint poste-

rior density is very complicated and not available in closed form, thereby, MCMC

methods (e.g. Gibbs sampling) are used to draw a random sample from the marginal

posterior density. Gibbs sampling algorithm uses the full conditional distributions of

the parameters to draw samples from the marginal posterior densities of the parame-

ters.

The full conditional density for each variable can be derived from the joint posterior

density given in equation 3.9.

Full conditional distribution for µb0 ,
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f(µb0|β, κ, τ, b0, Dobs) =
f(β, κ, µb0 , τ, b0|Dobs)

f(β, κ, τ, b0|Dobs)

∝ f(β, κ, µb0 , τ, b0|Dobs).

(3.10)

The denominator does not contain µb0 and is a fixed value for a given set of (β, κ, τ ,

b0) at a given Gibbs iteration and thus the proportion can be used instead of equality.

Then, the full conditional distribution for µb0 is represented as

f(µb0|β, κ, τ, b0, Dobs) ∝(
τ

2π
)
n
2 exp{−τ

2

n∑
i=1

(b0i − µb0)2}

1√
2πσ0

exp{−(µb0 − µ0)2

2σ2
0

}

∝ exp{−τ
2

n∑
i=1

(b0i − µb0)2 − (µb0 − µ0)2

2σ2
0

}

(3.11)

After a little bit of algebra

f(µb0|β, κ, τ, b0, Dobs) ∝ exp{−1

2
(1 + nτ)(µb0 −

τ
∑
b0i

1 + nτ
)2} (3.12)

Hence, the full conditional distribution for µb0 is a normal distribution with mean
τ
∑
b0i

1 + nτ
and variance (1 + nτ)−1. µ0 and σ2

0 are considered as 0 and 1 respectively

for simplicity.

Full conditional distribution for τ ,

f(τ |β, κ, µb0 , b0, Dobs) =
f(β, κ, µb0 , τ, b0|Dobs)

f(β, κ, µb0 , b0|Dobs)

∝ f(β, κ, µb0 , τ, b0|Dobs).

(3.13)
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The denominator again does not include τ and the proportion can be used instead of

equality. Then, the full conditional distribution for τ is represented as

f(τ |β, κ, µb0 , b0, Dobs) ∝τ
n
2 exp{−τ

n∑
i=1

(b0i − µb0)2

2
} baττ

Γ(aτ )
τaτ−1exp{−τbτ}

∝ τ
n
2

+aτ−1exp{−τ(bτ +
1

2

n∑
i=1

(b0i − µb0)2}

(3.14)

which can be recognized as the kernel of a gamma distribution with shape parameter
n
2

+ aτ and scale parameter bτ + 1
2

∑n
i=1(b0i − µb0)2.

Joint full conditional distribution for β and κ,

f(β, κ|µb0 , τ, b0, Dobs) =
f(β, κ, µb0 , τ, b0|Dobs)

f(µb0 , τ, b0|Dobs)

∝ f(β, κ, µb0 , τ, b0|Dobs).

(3.15)

The denominator again does not include β and κ so the proportion can be used instead

of equality. Then, the joint full conditional distribution for β and κ is represented as

f(β, κ|µb0 , τ, b0, Dobs) ∝[2πI0(κ)]−mnexp{κ
n∑
i=1

m∑
j=1

cos(θij − 2 arctan(b0i + βXij}

1√
2πσβ

exp{−(β − µβ)2

2σ2
β

} baκκ
Γ(aκ)

κaκ−1exp{−κbκ}

(3.16)

which is very complicated to recognize as any closed form distribution. MCMC meth-

ods (e.g. Gibbs sampling algorithm, Metropolis-Hastings (M-H) algorithms) can be

used to deal with this complicated situation. For computationally more efficient block

sampling algorithm, joint full conditional distribution was employed for these param-

eters. In Bayesian approach, latent random intercept can be viewed as an unknown
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parameter and the following full conditional distribution is employed to sample for

random intercept,

f(b0i|β, κ, µb0 , τ,Dobs) =
f(β, κ, µb0 , τ, b0|Dobs)

f(β, κ, µb0 , τ |Dobs)

∝ f(β, κ, µb0 , τ, b0|Dobs), for i = 1, .., n.

(3.17)

Since the denominator again does not involve b0i, this full conditional distribution can

be expressed as

f(b0i|β, κ, µb0 , τ,Dobs) ∝ exp{κ
n∑
i=1

m∑
j=1

cos(θij − 2 arctan(b0i + βXij}

exp{−τ
2

n∑
i=1

(b0i − µb0)2}, for i = 1, .., n.

(3.18)

In order to obtain the predicted data, a posterior predictive distribution is used as fol-

lows. Let θpred = (θpred1 , ..., θpredn ) and θobs = (θobs1 , ..., θobsn ) be predicted (unknown)

and observed data, respectively. Predicted data are obtained from posterior predictive

distribution as follows

f(θpredi |θobs) =

∫
f(θpredi |Ω)f(Ω|θobs)dΩ, for i = 1, ..., n, (3.19)

where f(θpred|Ω) is the posterior predictive density of the data which is the density

evaluated at θpred given the parameter vector Ω = (β, κ, µb0 , τ, b0) and f(Ω|θobs) is

the joint posterior density of the all parameters given the observed data θobs.

For each parameter, sampling algorithms within the Gibbs sampling are presented in

Table 3.1.
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Table 3.1: The Sampling Algorithms

Latent/ Sampling
Parameter Method

β Adaptive Metropolis Block
κ Adaptive Metropolis Block
b0i Adaptive Metropolis
µb0 Direct Sampling
τ Direct Sampling
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CHAPTER 4

MODEL ASSESSMENT COMPARISON AND SELECTION

With the advances in technology, more circular data emerge in several different areas

requiring complex circular data modeling and accordingly a lot of statistical models

that can be used to analyze circular data have been developed. However, research on

model comparison and selection in complex circular modeling literature is rather in

its infancy: e.g. studies on their performances are inadequate. In this thesis, we focus

on predictive model selection. Below we list the methods in circular literature that

can be used for predictive model assessment, comparison and selection.

• GAIC: Developed by Ye (1998); adapted for circular data and its performance

is evaluated for distinguishing between standard circular-circular and circular-

piecewise regressions by Rueda et al. (2016).

• DIC: Developed by Spiegelhalter et al. (2002); its variants for random effects

models were developed by Celeux et al. (2006); original DIC is adapted for cir-

cular models and its performance is evaluated by Ravindran and Ghosh (2011)

for selecting the best wrapped model.

• CPO: Conditional predictive ordinate developed by Geisser and Eddy (1979);

asymptotically equivalent to AIC; used by Nunez-Antonio et al. (2011) for

missing and by McMillan et al. (2013) for repeated measures circular data

modeling.

• AIC: Penalty (number of parameters) is not clear for complex models such

as mixed effects models; however it is still in use for comparing models for

longitudinal/clustered circular data.
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• Average circular residual: Defined as the average cosine distances between the

observed and predicted circular data; used by Maruotti et al. (2016) to compare

the prediction abilities of complex longitudinal models (PN and VM models

with random effects with HMM vs. Gaussian).

• CPD (Circular Predictive Discrepancy): Developed by Ravindran and Ghosh

(2011); it is based on the decision theoretic model choice approach of Gelfand

and Ghosh (1998) for linear data; its performance is evaluated in selecting the

best wrapped distribution.

In this thesis, we focus on the prediction error based methods (namely CPD), pro-

pose new methods and compare the proposed method with CPD. In this chapter

CPD measure and proposed model assessment and model comparison criteria are

presented in detail.

4.1 Circular Predictive Discrepancy Measures

4.1.1 Circular Predictive Discrepancy-Type 1

Loss functions for circular data are quite different from those of linear data. When it

is desired to define a loss function for circular data, the nature of circular data must

also be taken into account. In the context of circular data, although the theory of loss

functions is a rather neglected issue of statistics, Ravindran, et. al. (2011) defined

a loss function measuring the difference between the predicted and the observed cir-

cular measurements. They used the theory of decision (Gelfand and Ghosh, 1998)

to define this loss function and called it Absolute Predicted Errors (we will call it

APE1). It is given by

APE1 =
n∑
i=1

min(|θpredi − θobsi |, 2π − |θ
pred
i − θobsi |). (4.1)

They proposed a circular predictive discrepancy-type 1 as a model selection criteria

as follows
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CPD1 = E[APE1|θobs]. (4.2)

We will call this Circular Predictive Discrepancy-Type 1 and denote it by CPD1.

This criterion is based on minimizing a predictive loss. They used posterior predictive

distribution to calculate CPD1. Although loss functions for linear data can be broken

into two terms as a penalty term and a goodness of fit term,CPD1 can not be split into

these two terms. LowerCPD1 indicates a better fit. Note that,APE1 for longitudinal

circular data would be as follows

APE1 =
n∑
i=1

m∑
j=1

min(|θpredij − θobsij |, 2π − |θ
pred
ij − θobsij |). (4.3)

4.1.2 Circular Predictive Discrepancy-Type 2

Jammalamadaka and SenGupta (2001) presented a definition of circular distance be-

tween any two points on the circle as follows. Letting α and β be two angles

d(α, β) = 1− cos(α− β). (4.4)

It is clear that this circular distance is a monotone increasing function of angle be-

tween two points K and L points in Figure 4.1: e.g. θ. Since cosine function can take

values between -1 and 1, the minimum and maximum values that circular distance

between any two points can take are equal to 0 and 2, respectively.

We employ the circular distance suggested by Jammalamadaka and SenGupta (2001)

to introduce a model comparison criterion for circular data and call it Circular Pre-

dictive Discrepancy-Type 2 (CPD2). For longitudinal circular data, we define it as

follows

CPD2 = E[APE2|θobs], (4.5)
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Figure 4.1: Circular distance between K and L points. Adapted from Jammalamadaka

and SenGupta (2001).

where

APE2 =
n∑
i=1

m∑
j=1

(1− cos(θpredij − θobsij )). (4.6)

This is the total angular distance between the observed and the predicted angles

(points on the unit circle). Any model with lowest CPD2 is selected as the best

fitting model.

4.2 Plug-in Absolute Predicted Errors

4.2.1 Plug-in Absolute Predicted Errors-Type 1

We use the theoretic framework of loss function of Ravindran et. al. (2011) to define

a model comparison criterion directly for longitudinal circular data and call it Plug-in

Absolute Predicted Errors-Type 1 (PAPE1). It can be defined as follows

PAPE1 =
n∑
i=1

m∑
j=1

min(|E[θpredij |θobsij ]− θobsij |, 2π − |E[θpredij |θobsij ]− θobsij |), (4.7)

where E[θpredij |θobsij ] is posterior predictive mean for subject (cluster) i on time point

j circular outcome. Again, posterior predictive distribution is employed to obtain
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posterior predictive mean and this model comparison criterion is depending on min-

imizing a predictive loss. A model with lowest PAPE1 is selected as a best fitting

model.

4.2.2 Plug-in Absolute Predicted Errors-Type 2

We employ posterior predictive mean in APE2 to obtain a model comparison cri-

terion directly for longitudinal circular data and call it Plug-in Absolute Predicted

Errors-Type 2 (PAPE2). It is given by

PAPE2 =
n∑
i=1

m∑
j=1

(1− cos(E[θpredij |θobsij ]− θobsij ) (4.8)

where E[θpredij |θobsij ] again denotes the posterior predictive mean for subject i’s jth

circular predicted value. In order to obtain posterior predictive mean, posterior pre-

dictive distribution should be used. The logic for this model comparison criterion is

the same as CPD2 mentioned earlier. A model is preferred which gives the lowest

value of PAPE2.
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CHAPTER 5

SIMULATION STUDY

In this chapter, an extensive Monte Carlo (MC) simulation study is presented under

various realistic balanced longitudinal settings. Aims of this MC simulation study are

to show the performance of the parameter estimation technique for the longitudinal

circular random intercept model presented in Chapter 3 and to evaluate the perfor-

mances of model selection and comparison criteria detailed in Chapter 4. A number

of different simulation scenarios are controlled for the sample size, effect size and

intraclass correlation coefficient value, ICC=0.20, 0.50, 0.88. Choice of ICC values

represent low, mild and high intraclass correlation, respectively. R language and en-

vironment (R Development Core Team, 2017) is used to simulate data sets for the

different scenarios. In order to implement MCMC scheme, OpenBUGS which is an

open source software for Bayesian statistics is employed. R programming language

and OpenBUGS program are integrated to carry out all analyses in this thesis. The

number of repeated measurements which is the same for all subjects is assumed to be

equal to five for all simulation scenarios and the time points that measurements are

taken are common (i.e. equally spaced) for each subject. All Monte Carlo scenarios

are repeated 100 times.

In order to investigate the performance of parameter estimations, Relative Bias (RB)

and Mean Square Error (MSE) are used. Calculation of these measures are as follows

RB =
E(β̂)− β

β
, MSE = E[(β̂ − β)2], (5.1)

where, β is true value for estimation of interest and β̂ is the value for estimator of
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interest. If RB and MSE of parameter estimators do not change under model mis-

specification, then parameter estimators are robust to model misspecification. Fre-

quency of selecting the true model and average stability coefficient (ASC) which will

be detailed in Section 5.3.2 are used to evaluate the performances of model selec-

tion criteria. The posterior mean, standard deviation, 2.5th percentile, median, 97.5th

percentile for parameters are also computed for each scenario.

Convergence diagnosis is an significant issue in MCMC studies and requires special

attention. We used trace plots and Brooks-Gelman-Rubin (BGR) statistic (Brooks and

Gelman, 1998) for convergence diagnostics and for determining burn-in (warm-up)

period as well as size of MCMC samples to be used for final posterior inference. To

calculate the BGR statistic, we used two different chains with different initial values.

BGR statistic with the value less than 1.1 indicates convergence. This condition is

satisfied for all scenarios. Another important issue in MCMC studies is to determine

the number of samples that is needed for posterior inference. It is known that the

more samples are saved after convergence, the more accurate will be the posterior

estimates. Given a chain size, accuracy of the posterior estimates is determined by

Monte Carlo (MC) error. MC errors less than 5% of the sample standard deviation

indicates sufficient accuracy. All simulation scenarios are run until this rule is met.

This extensive simulation study is basically divided into two groups as parameter

estimations (Section 5.1) and model assessment, comparison and selection (Section

5.2). Moreover, these sections are divided into two groups as specification of mean

models and different distributions.

Here we give a brief description of ICC in the circular context. ICC is the proportion

of between subject variability to the total variability containing error variance (un-

certainty) and between-subject variability. Let θij be circular observation for subject

(cluster) i on time point j, i = 1, ...n, j = 1, ...,m and then let,

θij = 2 arctan(b0i + βXij) + εij, (5.2)

where εij ∼ vM(0, κ), b0i ∼ N(µb0 , σ
2
b0

). Let σ2
ε denotes the common error variance,

namely V ar(εij) which is given by
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V ar(εij) = [κA1(κ)]−1 (5.3)

The calculation of ICC for tan(
θij
2

) can be denoted by

ICC =
σ2
b0

σ2
b0

+ [κA1(κ)]−1
. (5.4)

In the simulations, σ2
b0

and κ are chosen so that the simulations are controlled for ICC.

For instance, for ICC=0.20 and κ = 2, σ2
b0

is calculated as 0.18 using equation 5.4.

ICC is one of the most practical reliability measure that can be employed to evaluate

absolute agreement or level of consistency. There are many different formulas for cal-

culating the ICC (Haggard, 1958; Feldt, 1965; Bartko, 1966; Snedecor and Cochran,

1967; Winer, 1971; Hayes, 1973).

5.1 Parameter Estimations

In this section, performances of parameter estimators defined in Section 3.2 are in-

vestigated under correctly specified model and under model misspecification. Model

misspecification is introduced i. in the mean model of the distribution, and ii. in

distribution function specification.

5.1.1 Specification of Mean Models

The performance of parameter estimation technique is evaluated for linear-quadratic

mean models (Section 5.1.1.1) and main-interaction mean models (Section 5.1.1.2).

5.1.1.1 Linear and Quadratic Mean Models

In this study, we consider the two types of true models (TM). These are denoted by

TM1 and TM2 as follows:

TM1: µij = 2 arctan(b0i + β1xij + β2x
2
ij),
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TM2: µij = 2 arctan(b0i + β1xij).

As seen, TM1 is a quadratic model whereas TM2 is a linear model. We also con-

sidered two different values for β2. β2 is set at 1.5 or 0.3 representing effective and

relatively ineffective quadratic term to control the simulations for quadratic term ef-

fect size. The value of the concentration parameter, κ of vM distribution should be at

least 2 so that some statistical techniques can be applied and various key approxima-

tions such as Bessel function approximations are possible in circular statistics (Fisher,

1993). For this reason, the true value of the concentration parameter, κ is set equal to

2 and this value is used for all scenarios. True parameter values are given in parenthe-

ses in subsequent tables. Just single time-dependent linear explanatory variable xij is

used and produced by random draws from a standard normal distribution.

Fitted models denoted by M1 and M2 are as follows

M1: µij = 2 arctan(b0i + β1xij + β2x
2
ij)

M2: µij = 2 arctan(b0i + β1xij).

Tables show RB and MSEs of Bayesian estimators of the parameters of interest under

different TM, ICC, and β2. MSE values and true values of parameters are presented

in parenthesis throughout this thesis . For Tables 5.1-5.6, data are generated from

TM1. In these tables, Model=M1 lines determine the behaviour of the estimators

when fitted model correctly specifies the underlying true model whereas Model=M2

lines determine those under mean model misspecification. For Tables 5.7-5.9, TM2

is used to generate the data. Model=M2 lines indicate the behaviour of the estimators

for fitting true model and Model=M1 lines denote the results when the fitted model is

misspecified.

According to the results of Table 5.1 and Table 5.3, for low and mild ICC and high β2,

RB and MSE of all parameters converge to 0 fast when the mean model is correctly

specified, as sample size increases. RB and MSE are at acceptable level irrespec-

tive of the sample size when fitted model is correctly specified. For these scenarios,

parameter estimators are not robust to model misspecification
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Table 5.1: RB and MSE values. True model = TM1, ICC = 0.20, β2=1.5.

n Model β1(2.5) β2(1.5) κ(2) µb0(0) σ2
b0

(0.18)

20
M1 0.056(0.104) 0.062(0.093) 0.016(0.067) -0.006(0.0178) 0.005(0.0001)
M2 -0.093(0.161) - -0.299(0.396) 0.221(0.066) 0.002(0.0000)

50
M1 0.035(0.058) 0.035(0.054) 0.018(0.032) 0.017(0.009) 0.001(0.0002)
M2 -0.124(0.161) - -0.306(0.392) 0.234(0.064) -0.004(0.0001)

100
M1 0.012(0.015) 0.007(0.014) -0.003(0.009) 0.0002(0.004) -0.002(0.0002)
M2 -0.140(0.144) - -0.312(0.396) 0.222(0.054) -0.009(0.0002)

250
M1 0.004(0.008) 0.005(0.007) -0.0001(0.006) 0.0009(0.001) 0.005(0.0002)
M2 -0.147(0.142) - -0.323(0.421) 0.219(0.050) -0.021(0.0005)

500
M1 0.001(0.005) 0.0006(0.004) -0.0001(0.003) -0.001(0.0007) -0.0001(0.0003)
M2 -0.154(0.154) - -0.328(0.429) 0.213(0.046) -0.033(0.0012)

Table 5.2: RB and MSE values. True model = TM1, ICC = 0.20, β2=0.3.

n Model β1(2.5) β2(0.3) κ(2) µb0(0) σ2
b0

(0.18)

20
M1 0.088(0.199 ) -0.030(0.150) -0.0005(0.075) 0.004(0.024) 0.004(0.0001)
M2 0.041(0.128) - -0.007(0.074) 0.038(0.023) 0.004(0.0001)

50
M1 0.029(0.047) -0.072(0.042) 0.003(0.021) 0.002(0.008) 0.005(0.0002)
M2 0.007(0.040) - -0.004(0.021) 0.039(0.008) 0.004(0.0002)

100
M1 0.018(0.024) -0.028(0.022) -0.005(0.012) 0.008(0.004) 0.002(0.0002)
M2 0.001(0.019) - -0.011(0.012) 0.048(0.006) 0.002(0.0002)

250
M1 0.002(0.007) -0.028(0.007) -0.004(0.006) -0.002(0.002) 0.0006(0.0003)
M2 -0.009(0.008) - -0.009(0.006) 0.039(0.003) -0.0004(0.0003)

500
M1 0.006(0.004) 0.014(0.004) 0.001(0.002) -0.001(0.0008) 0.0003(0.0003)
M2 -0.005(0.0040) - -0.004(0.002) 0.041(0.002) -0.0006(0.0003)

Based on the results of Table 5.2 and Table 5.4, in terms of RB and MSE, in which

true β2 is not that large, parameter inferences for random intercept variance are robust

to model misspecification. This may be due to the small effect of quadratic term.

That is, there is almost no difference between these two models in these scenarios.

Parameter estimators of other parameters are not robust to model misspecification.

As sample size increases, RB and MSE for all parameters decrease, when the model

is both correctly specified and misspecified. Looking at the overall tables for low ICC
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Table 5.3: RB and MSE values. True model = TM1, ICC = 0.50, β2=1.5.

n Model β1(2.5) β2(1.5) κ(2) µb0(0) σ2
b0

(0.72)

20
M1 0.055(0.157) 0.076(0.151) 0.010(0.085) -0.0007(0.054) 0.219(0.154)
M2 -0.053(0.295) - -0.308(0.434) 0.383(0.231) 0.294(0.285)

50
M1 0.024(0.056) 0.031(0.054) 0.002(0.038) 0.009(0.024) 0.057(0.046)
M2 -0.105(0.169) - -0.327(0.450) 0.362(0.163) 0.053(0.059)

100
M1 0.014(0.025) 0.023(0.025) 0.007(0.013) 0.005(0.011) 0.029(0.029)
M2 -0.130(0.136) - -0.323(0.425) 0.362(0.145) 0.035(0.055)

250
M1 0.010(0.009) 0.009(0.009) 0.005(0.009) 0.0006(0.004) 0.014(0.009)
M2 -0.137(0.131) - -0.316(0.406) 0.346(0.125) -0.011(0.020)

500
M1 0.003(0.005) 0.003(0.005) 0.0004(0.003) 0.006(0.003) 0.009(0.006)
M2 -0.145(0.140) - -0.322(0.417) 0.356(0.131) -0.010(0.011)

Table 5.4: RB and MSE values. True model = TM1, ICC = 0.50, β2=0.3.

n Model β1(2.5) β2(0.3) κ(2) µb0(0) σ2
b0

(0.72)

20
M1 0.118(0.224) 0.019(0.137) 0.037(0.119) -0.007(0.077) 0.183(0.114)
M2 0.069(0.147) - 0.027(0.106) 0.061(0.067) 0.157(0.101)

50
M1 0.039(0.056) -0.029(0.046) 0.006(0.033) -0.013(0.028) 0.119(0.063)
M2 0.011(0.044) - -0.002(0.032) 0.053(0.029) 0.113(0.063)

100
M1 0.016(0.025) -0.078(0.023) 0.005(0.018) 0.007(0.014) 0.032(0.024)
M2 -0.003(0.021) - -0.002(0.017) 0.071(0.017) 0.025(0.022)

250
M1 0.004(0.010) -0.054(0.010) 0.006(0.007) 0.008(0.005) 0.025(0.011)
M2 -0.012(0.011) - -0.0006(0.007) 0.074(0.009) 0.024(0.012)

500
M1 0.002(0.005) -0.021(0.005) -0.006(0.003) 0.005(0.003) 0.006(0.005)
M2 -0.008(0.005) - -0.012(0.004) 0.073(0.008) 0.004(0.005)

(Table 5.2) and mild ICC (Table 5.4), RB and MSE quantities are at acceptable level

irrespective of sample size and ICC values.

According to Table 5.5 when ICC is high, parameter estimators are not robust to

model misspecification. Random effects variance has little bit high values for these

quantities compared to low and mild ICC when the model is not correctly specified.

As sample size increases, RB and MSE of the parameters decrease when correct

model is fitted. For all parameters, when the model is correctly specified, RB and

MSE measures are at acceptable level irrespective of the sample size.
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Table 5.5: RB and MSE values. True model = TM1, ICC = 0.88, β2=1.5.

n Model β1(2.5) β2(1.5) κ(2) µb0(0) σ2
b0

(5.28)

20
M1 0.009(0.015) 0.016(0.015) -0.004(0.088) 0.009(0.019) 0.828(3.852)
M2 0.002(0.019) - -0.231(0.293) 0.102(0.022) 3.610(4.057)

50
M1 0.072(0.121) 0.097(0.109) 0.019(0.032) -0.027(0.212) 0.781(3.195)
M2 0.013(0.209) - -0.210(0.197) 0.931(1.281) 2.926(3.566)

100
M1 0.017(0.039) 0.016(0.039) -0.006(0.015) -0.037(0.065) 0.549(2.348)
M2 -0.035(0.106) - -0.220(0.209) 0.919(0.982) 2.595(2.814)

250
M1 0.003(0.011) 0.003(0.011) 0.001(0.005) -0.036(0.021) 0.155(0.552)
M2 -0.027(0.035) - -0.219(0.198) 0.558(0.341) 2.203(2.772)

500
M1 0.004(0.004) 0.006(0.004) 0.004(0.003) -0.009(0.008) 0.009(0.195)
M2 -0.024(0.015) - -0.218(0.194) 0.545(0.356) 2.066(2.578)

Table 5.6: RB and MSE values. True model = TM1, ICC = 0.88, β2=0.3.

n Model β1(2.5) β2(0.3) κ(2) µb0(0) σ2
b0

(5.28)

20
M1 0.154(0.799) -0.156(0.653) -0.005(0.062) 0.034(0.596) 1.868(3.832)
M2 0.077(0.510) - -0.005(0.058) 0.166(0.574) 1.554(2.975)

50
M1 0.059(0.140) 0.067(0.118) -0.003(0.039) -0.009(0.169) 0.882(2.504)
M2 0.026(0.106) - -0.013(0.039) 0.181(0.186) 0.906(2.913)

100
M1 0.005(0.033) -0.062(0.033) 0.005(0.013) 0.077(0.103) 0.373(1.651)
M2 -0.019(0.0326) - -0.003(0.013) 0.247(0.162) 0.444(1.820)

250
M1 0.003(0.003) -0.013(0.003) 0.006(0.007) -0.0004(0.002) 0.027(0.395)
M2 -0.003(0.003) - -0.004(0.007) 0.044(0.004) 0.172(0.495)

500
M1 0.003(0.002) -0.011(0.002) 0.001(0.003) 0.003(0.004) -0.014(0.241)
M2 -0.010(0.004) - -0.011(0.005) 0.106(0.019) 0.086(0.289)

Results of Table 5.6 indicate that parameter estimators are not robust to model mis-

specification when the ICC is high. RB and MSE quantities decrease as sample size

increases for both models. M1 and M2 have very close values for MSE of all param-

eters.
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Table 5.7: RB and MSE values. True model = TM2, ICC = 0.20.

n Model β1(2.5) κ(2) µb0(0) σ2
b0

(0.18)

20
M2 0.042(0.135) -0.009(0.071) -0.021(0.025) 0.004(0.0001)
M1 0.083(0.187) -0.008(0.071) -0.009(0.030) 0.005(0.0001)

50
M2 0.029(0.047) 0.005(0.031) -0.0008(0.0105) 0.004(0.0001)
M1 0.046(0.058) 0.006(0.031) 0.002(0.011) 0.005(0.0001)

100
M2 0.015(0.020) 0.006(0.014) 0.0008(0.004) 0.003(0.0002)
M1 0.024(0.023) 0.007(0.014) -0.007(0.005) 0.003(0.0002)

250
M2 0.003(0.008) 0.004(0.006) 0.004(0.002) 0.0004(0.0003)
M1 0.007(0.009) 0.004(0.006) 0.003(0.002) 0.0008(0.0003)

500
M2 -0.0005(0.003) 0.003(0.003) -0.003(0.0007) 0.002(0.0003)
M1 0.001(0.003) 0.003(0.003) -0.0009 (0.0008) 0.002(0.0003)

Table 5.8: RB and MSE values. True model = TM2, ICC = 0.50.

n Model β1(2.5) κ(2) µb0(0) σ2
b0

(0.72)

20
M2 0.081(0.167) -0.0008(0.080) -0.036(0.056) 0.122(0.085)
M1 0.129(0.282) 0.001(0.081) -0.039(0.058) 0.150(0.100)

50
M2 0.019(0.045) 0.019(0.023) 0.009(0.021) 0.062(0.054)
M1 0.037(0.056) 0.020(0.023) 0.008(0.021) 0.072(0.058)

100
M2 0.017(0.026) -0.0004(0.017) -0.007(0.010) 0.047(0.037)
M1 0.027(0.030) -0.0005(0.017) -0.007(0.012) 0.053(0.039)

250
M2 0.004(0.008) 0.005(0.005) 0.015(0.005) 0.026(0.009)
M1 0.008(0.009) 0.005(0.005) 0.013(0.005) 0.028(0.009)

500
M2 0.0002(0.005) 0.0005(0.003) 0.007(0.002) 0.001(0.005)
M1 0.0003(0.005) 0.0005(0.003) 0.008(0.002) 0.002(0.006)
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Table 5.9: RB and MSE values. True model = TM2, ICC = 0.88.

n Model β1(2.5) κ(2) µb0(0) σ2
b0

(5.28)

20
M2 0.042(0.131) 0.008(0.081) -0.014(0.175) 2.026(22.456)
M1 0.083(0.174) 0.005(0.081) -0.051(0.180) 2.340(26.319)

50
M2 0.018(0.066) 0.004(0.032) 0.003(0.104) 0.666(4.300)
M1 0.037(0.079) 0.002(0.033) -0.028(0.116) 0.748(4.643)

100
M2 0.016(0.026) 0.002(0.015) 0.011(0.054) 0.426(1.298)
M1 0.023(0.031) 0.0002(0.017) -0.005(0.069) 0.524(1.766)

250
M2 -0.004(0.002) 0.001(0.005) 0.008(0.002) -0.015(0.561)
M1 0.070(0.033) -0.041(0.012) -0.074(0.007) 0.575(1.140)

500
M2 0.0004(0.002) 0.005(0.003) 0.003(0.002) 0.017(0.226)
M1 0.046(0.016) -0.012(0.004) -0.087(0.010) 0.333(0.415)

General results of Tables 5.7-5.9, in which true model is TM2, reveal that RB and

MSE for all parameter estimators are smaller for M2, for correctly specified model,

irrespective of the sample size and ICC values. This implies that the estimations of all

parameters based on M2 are better than those for M1. Moreover, for all parameters,

RB and MSE decrease for both models as the sample size increases from 20 to 500.

Random effects variance and concentration parameter inferences are robust to model

misspecification for low ICC. Parameter estimator for random intercept parameters

are robust to model misspecification for mild ICC.

5.1.1.2 Interaction and Main Effect Mean Models

In this study, two types of true models (TM) are again considered. These are denoted

by TM1 and TM2 and are as follows:

TM1: µij = 2arctan(b0i + β1xij + β2d1i + β3d2i + β4xijd1i + β5xijd2i),

TM2: µij = 2arctan(b0i + β1xij + β2d1i + β3d2i)

As seen, TM1 is an interaction model whereas TM2 is a main effect model. We also

considered two different values for coefficients of interaction effects. β4 and β5 are
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set at (2, 2.5) or (0.3, 0.5) representing effective and relatively ineffective interaction

terms to control the simulations for interaction term effect size. This simulation study

is controlled for four different sample sizes n=20, 50, 100, 250. Dichotomous dummy

variables, d1 and d2 are used to include a time-independent categorical variable with

three levels. In order to generate this categorical variable, the inverse transformation

method (Martinez et. al., 2002) is used with the probabilities 0.33, 0.34, 0.33.

Fitted models denoted by M1 and M2 are as follows

M1: µij = 2 arctan(b0i + β1xij + β2d1i + β3d2i + β4xijd1i + β5xijd2i),

M2: µij = 2 arctan(b0i + β1xij + β2d1i + β3d2i).

When data are generated from TM1, RB and MSEs of Bayesian estimators of the

parameters of interest under different ICC, β4 and β5 are presented in Tables 5.10-

5.15. In these tables, Model=M1 lines determine the behaviour of the estimators

when fitted model correctly specifies the underlying true model whereas Model=M2

lines determine those under mean model misspecification. For Tables 5.16-5.18, data

are generated from TM2. Model=M2 lines indicate the behaviour of the estimators

for fitting true model and Model=M1 lines denote the results when the fitted model is

misspecified.

According to general results of Tables 5.10, 5.12 and 5.14, when the sizes of interac-

tion effects are large, RB and MSE for all parameters are general smaller for M1 (the

correct model). As the sample size increases from 20 to 250, these measures decrease

when the model is correctly specified. Parameter estimators are not robust to model

misspecification.
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Table 5.10: RB and MSE values. TM = TM1, ICC = 0.20, β4 = 2, β5 = 2.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(2) β5(2.5) κ(2) µb0(0) σ2
b0

(0.18)

20
M1 0.204(1.112) 0.359(1.087) 0.263(0.903) 0.587(7.066) 0.541(6.973) 0.004(0.059) 0.019(0.144) 0.019(0.000)
M2 0.696(3.478) -0.045(0.467) -0.184(0.490) - - -0.031(0.052) 0.044(0.310) 0.020(0.000)

50
M1 0.049(0.161) 0.154(0.266) 0.126(0.257) 0.200(1.336) 0.217(1.561) 0.007(0.025) -0.042(0.026) 0.036(0.0001)
M2 0.598(2.412) -0.045(0.129) -0.164(0.215) - - -0.038(0.029) -0.074(0.068) 0.045(0.0003)

100
M1 0.041(0.059) 0.023(0.062) 0.066(0.112) 0.001(0.287) 0.065(0.534) 0.002(0.013) -0.010(0.015) 0.025(0.0002)
M2 0.540(1.884) -0.126(0.097) -0.198(0.178) - - -0.037(0.016) -0.017(0.033) 0.037(0.0002)

250
M1 0.019(0.022) 0.023(0.023) 0.024(0.034) 0.030(0.116) 0.042(0.180) -0.0001(0.006) -0.002(0.005) 0.010(0.0003)
M2 0.534(1.816) -0.137(0.064) -0.222(0.186) - - -0.045(0.014) -0.002(0.013) 0.031(0.0003)

Table 5.11: RB and MSE values. TM = TM1, ICC = 0.20, β4 = 0.3, β5 = 0.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(0.3) β5(0.5) κ(2) µb0(0) σ2
b0

(0.18)

20
M1 0.141(0.382) 0.132(0.362) 0.195(0.451) 0.686(0.750) -0.667(1.135) 0.024(0.074) 0.053(0.082) 0.030(0.000)
M2 0.199(0.394) 0.027(0.202) 0.006(0.203) - - 0.023(0.070) 0.045(0.088) 0.031(0.000)

50
M1 0.108(0.204) 0.062(0.133) 0.073(0.156) -0.190(0.337) -0.812(0.350) 0.015(0.031) 0.029(0.034) 0.021(0.0001)
M2 0.148(0.193) 0.013(0.075) -0.040(0.088) - - 0.013(0.030) 0.030(0.035) 0.021(0.0001)

100
M1 0.035(0.088) 0.050(0.050) 0.039(0.060) 0.194(0.132) -0.776(0.171) 0.013(0.021) -0.004(0.012) 0.021(0.0002)
M2 0.130(0.135) 0.011(0.033) -0.053(0.040) - - 0.010(0.021) -0.004(0.014) 0.022(0.0002)

250
M1 0.007(0.018) 0.020(0.019) 0.009(0.020) 0.180(0.053) -0.790(0.062) 0.000(0.004) 0.002(0.004) -0.002(0.0002)
M2 0.110(0.085) -0.009(0.013) -0.069(0.029) - - -0.003(0.004) 0.002(0.006) 0.0003(0.0002)

Table 5.12: RB and MSE values. TM = TM1, ICC = 0.50, β4 = 2, β5 = 2.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(2) β5(2.5) κ(2) µb0(0) σ2
b0

(0.72)

20
M1 0.017(0.017) -0.019(0.017) -0.012(0.017) 0.008(0.007) 0.009(0.005) 0.050(0.094) -0.005(0.022) 0.081(0.055)
M2 0.212(0.300) -0.083(0.028) -0.099(0.048) - - -0.022(0.073) -0.163(0.047) 0.033(0.053)

50
M1 0.006(0.021) 0.003(0.028) 0.003(0.019) -0.0001(0.011) -0.006(0.011) 0.009(0.024) -0.002(0.018) 0.048(0.048)
M2 0.281(0.523) -0.086(0.037) -0.129(0.073) - - -0.035(0.029) -0.156(0.046) 0.004(0.069)

100
M1 0.012(0.018) 0.005(0.020) 0.008(0.023) -0.002(0.017) -0.003(0.014) -0.004(0.015) -0.002(0.013) -0.001(0.027)
M2 0.364(0.851) -0.093(0.037) -0.154(0.101) - - -0.047(0.025) -0.127(0.035) -0.0547(0.033)

250
M1 -0.0008(0.002) -0.005(0.002) 0.002(0.001) 0.001(0.0008) -0.0004(0.0008) 0.003(0.005) 0.004(0.002) 0.036(0.015)
M2 0.212(0.284) -0.078(0.015) -0.106(0.038) - - -0.057(0.019) -0.169(0.031) -0.068(0.018)

Table 5.13: RB and MSE values. TM = TM1, ICC = 0.50, β4 = 0.3, β5 = 0.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(0.3) β5(0.5) κ(2) µb0(0) σ2
b0

(0.72)

20
M1 0.014(0.022) -0.009(0.019) 0.003(0.015) 0.056(0.012) -0.797(0.013) 0.031(0.109) 0.036(0.023) 0.132(0.094)
M2 0.064(0.049) -0.017(0.021) -0.023(0.017) - - 0.026(0.108) -0.002(0.022) 0.096(0.081)

50
M1 0.014(0.020) -0.007(0.018) -0.013(0.017) 0.044(0.016) -0.795(0.018) -0.008(0.026) 0.024(0.017) 0.073(0.056)
M2 0.084(0.065) -0.016(0.019) -0.055(0.028) - - -0.013(0.026) -0.011(0.017) 0.042(0.051)

100
M1 0.011(0.012) 0.006(0.019) -0.008(0.021) -0.063(0.025) -0.795(0.018) 0.0004(0.012) 0.006(0.011) 0.047(0.023)
M2 0.087(0.059) 0.002(0.018) -0.060(0.033) - - -0.003(0.012) -0.019(0.012) 0.031(0.021)

250
M1 -0.001(0.007) -0.010(0.013) 0.008(0.012) 0.046(0.018) -0.788(0.016) -0.003(0.004) -0.003(0.006) 0.0004(0.008)
M2 0.085(0.053) -0.018(0.013) -0.047(0.020) - - -0.007(0.005) -0.029(0.009) -0.008(0.009)
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Table 5.14: RB and MSE values. TM = TM1, ICC = 0.88, β4 = 2, β5 = 2.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(2) β5(2.5) κ(2) µb0(0) σ2
b0

(5.28)

20
M1 0.0001(0.0003) 0.0003(0.0001) -0.0007(0.0001) -0.0006(0.0001) 0.0004(0.0001) -0.011(0.100) -0.001(0.0002) 0.335(5.888)
M2 0.019(0.003) -0.002(0.0001) -0.002(0.0001) - - -0.077(0.102) -0.009(0.0003) 0.961(5.412)

50
M1 -0.0004(0.0007) -0.001(0.0002) -0.0001(0.0002) -0.0005(0.0002) 0.0001(0.0001) 0.022(0.047) -0.002(0.0006) 0.109(3.758)
M2 0.049(0.016) -0.007(0.0003) -0.007(0.0004) - - -0.048(0.040) -0.020(0.001) 0.050(5.731)

100
M1 0.0004(0.001) 0.0004(0.0005) 0.0015(0.0003) 0.001(0.0003) -0.001(0.0002) 0.009(0.022) 0.001(0.0008) 0.058(1.203)
M2 0.087(0.049) -0.008(0.0006 ) -0.009(0.0006) - - -0.052(0.028) -0.031(0.002) -0.047(1.759)

250
M1 0.001(0.002) -0.001(0.0005) -0.002(0.0007) -0.0004(0.0007) 0.0004(0.0006) -0.002(0.005) -0.001(0.001) 0.008(0.486)
M2 0.166(0.174) -0.019(0.002) -0.024(0.003) - - -0.052(0.016) -0.058(0.006) -0.093(0.945)

Table 5.15: RB and MSE values. TM = TM1, ICC = 0.88, β4 = 0.3, β5 = 0.5.

n Model β1(2.5) β2(1.5) β3(1.8) β4(0.3) β5(0.5) κ(2) µb0(0) σ2
b0

(5.28)

20
M1 0.0006(0.0004) 0.0006(0.0001) 0.0005(0.0001) 0.003(0.0002) -0.799(0.0002) 0.001(0.084) 0.003(0.0003) 0.215(9.648)
M2 0.006(0.0008) 0.0003(0.0001) -0.0006(0.0001) - - -0.007(0.081) 0.001(0.0003) 0.146(9.247)

50
M1 -0.0005(0.001) 0.0002(0.0002) 0.0004(0.0002) -0.003(0.0005) -0.799(0.0004) -0.006(0.033) 0.003(0.0006) 0.010(2.866)
M2 0.013(0.002) -0.002(0.0002) -0.002(0.0002) - - -0.013(0.033) -0.002(0.0006) -0.064(2.713)

100
M1 0.001(0.002) -0.0009(0.0004) 0.0005(0.0004) -0.003(0.0007) -0.800(0.0006) 0.001(0.015) 0.002(0.001) 0.039(1.494)
M2 0.024(0.006) -0.002(0.0004) -0.003(0.0004) - - -0.003(0.015) -0.006(0.001) -0.029(1.355)

250
M1 0.003(0.001) 0.002(0.0008) -0.001(0.0007) 0.009(0.001) -0.798(0.001) 0.003(0.007) 0.006(0.001) 0.005(0.629)
M2 0.045(0.015) -0.0005(0.0009) -0.008(0.001) - - -0.0009(0.007) -0.009(0.002) -0.046(0.645)

Results of Tables 5.11, 5.13 and 5.15 indicate that when the effects of interaction

terms are small, RB and MSE for random intercept parameters are very close to each

other for both models irrespective of the sample size when ICC is low (Table 5.11).

As sample size increases, RB and MSE for all parameter estimators decrease when

ICC is low, when fitted model is correctly specified. Parameter estimators are not

robust to model misspecification for all ICC.

According to the results of Table 5.16, regression coefficients have smaller RB and

MSE values when the model is correctly specified. When random intercept parame-

ters are concerned, RB and MSE are very close to each other for both models. Ran-

dom effects parameters inferences are robust to model misspecification. As the sam-

ple size increases, RB and MSE for all parameters of interest decrease for both models

and both RB and MSE of all parameters are at an acceptable level for all sample sizes.
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Table 5.16: RB and MSE values. True model = TM2, ICC = 0.20.

n Model β1(2.5) β2(1.5) β3(1.8) κ(2) µb0(0) σ2
b0

(0.18)

20
M2 0.088(0.198) 0.198(0.282) 0.142(0.659) 0.015(0.094) -0.040(0.081) 0.030(0.0001)
M1 0.177(0.769) 0.336(1.105) 0.292(1.232) 0.010(0.094) -0.042(0.105) 0.030(0.0001)

50
M2 0.044(0.058) 0.049(0.084) 0.049(0.081) -0.002(0.025) 0.003(0.025) 0.025(0.0001)
M1 0.031(0.111) 0.096(0.146) 0.111(0.196) -0.003(0.025) 0.006(0.025) 0.026(0.0001)

100
M2 0.013(0.025) 0.016(0.029) 0.012(0.029) 0.007(0.019) -0.010(0.011) 0.021(0.0002)
M1 0.018(0.054) 0.027(0.037) 0.040(0.066) 0.007(0.019) -0.012(0.012) 0.024(0.0002)

250
M2 0.005(0.007) -0.003(0.010) -0.0001(0.013) 0.0009(0.004) -0.01(0.004) -0.017(0.0002)
M1 0.008(0.019) 0.003(0.013) 0.008(0.024) 0.001(0.04) 0.009(0.004) -0.017(0.0002)

Table 5.17: RB and MSE values. True model = TM2, ICC = 0.50.

n Model β1(2.5) β2(1.5) β3(1.8) κ(2) µb0(0) σ2
b0

(0.72)

20
M2 0.005(0.0154) 0.004(0.019) 0.001(0.018) 0.014(0.080) -0.007(0.024) 0.123(0.086)
M1 -0.126(0.129) 0.070(0.029) 0.112(0.057) -0.064(0.075) 0.201(0.066) 0.741(0.566)

50
M2 0.014(0.024) -0.008(0.014) 0.003(0.021) 0.010(0.021) 0.016(0.017) 0.097(0.043)
M1 -0.157(0.188) 0.099(0.039) 0.162(0.108) -0.043(0.030) 0.214(0.061) 0.509(0.233)

100
M2 -0.0003(0.002) 0.002(0.001) 0.001(0.001) -0.011(0.014) -0.003(0.002) -0.006(0.018)
M1 -0.071(0.034) 0.052(0.007) 0.064(0.014) -0.092(0.0483) 0.160(0.027) 1.119(0.752)

250
M2 -0.002(0.003) 0.003(0.002) 0.002(0.002) 0.003(0.008) -0.002(0.002) 0.013(0.010)
M1 -0.132(0.112) 0.0890(0.020) 0.122(0.050) -0.067(0.025) 0.226(0.053) 0.766(0.339)

Table 5.18: RB and MSE values. True model = TM2, ICC = 0.88.

n Model β1(2.5) β2(1.5) β3(1.8) κ(2) µb0(0) σ2
b0

(5.28)

20
M2 0.0005(0.0006) -0.002(0.0001) -0.0009(0.0001) 0.017(0.010) -0.005(0.0003) 0.321(2.471)
M1 -0.009(0.0008) 0.0006(0.0001) 0.002(0.0001) -0.076(0.114) 0.004(0.0002) 1.138(5.974)

50
M2 -0.002(0.001) -0.0004(0.0003) -0.0006(0.0002) 0.009(0.027) 0.001(0.0007) 0.037(2.211)
M1 -0.023(0.004) 0.005(0.0001) 0.005(0.0002) -0.079(0.053) 0.018(0.0006) 0.903(3.679)

100
M2 0.004(0.002) -0.002(0.0003) 0.0001(0.0004) 0.002(0.021) -0.003(0.0007) 0.010(1.972)
M1 -0.035(0.009) 0.007(0.0003) 0.010(0.0006 ) -0.079(0.044) 0.027(0.001) 0.907(2.677)

250
M2 0.004(0.003) -0.002(0.001) 0.001(0.0006) 0.005(0.007) 0.003(0.002) 0.021(0.502)
M1 -0.081(0.043) 0.016(0.001) 0.023(0.002) -0.064(0.023) -0.065(0.056) 0.669(1.109)

Table 5.17 and Table 5.18 show that M2 has smaller RB and MSE for all parameters

irrespective of the sample size when mild and high ICC are concerned. This means

that, all parameters of interest are better estimated based on M2, as expected. As

sample size increases, RB and MSE for all parameters converge to 0 when the model

is correctly specified. Parameter estimators are not robust to model misspecification.
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5.1.2 Different Distributions

In this section, an interesting simulation study is designed in order to evaluate the per-

formance of the vM based parameter estimators when the true data generation process

is from different circular distributions. Data sets are generated from WC distribution

and vM distribution, then vM distribution is fitted to each of data generated from the

distributions mentioned earlier. This scheme is repeated 100 times. The reasons for

choosing WC distribution are as follows: i. WC distribution is symmetric and uni-

modal distribution, like vM distribution, ii. for analyzing symmetric unimodal circu-

lar data, WC distribution is proposed as an alternative to vM distribution for suitable

the dispersion parameters (Kent and Tyler, 1988). We generate the WC distributed

circular responses using the following

θij ∼ WC(µij, ρ), i = 1, ...n, j = 1, ...,m,

µij = (b0i + βXij) [mod 2π],
(5.5)

where µij and ρ denote the mean direction and the mean resultant length, respectively.

b0i is subject specific random intercept, β is a vector of regression coefficients and Xi

is a vector of linear covariates. For the circular regression purpose, the range of µij

is converted from (0, 2π) to (−π, π). Only one linear covariate following a standard

normal distribution is used. This simulation study is controlled for four different

sample sizes, n=50, 100, 250, 500 and three different ICC values, ICC=0.20, 0.50,

0.88.

True models denoted by TM1 and TM2 are given in the hierarchical representation as

follows

TM1: θij ∼ vM(µij, κ)

µij = 2 arctan(b0i + β1xij),

TM2: θij ∼ WC(µij, ρ)

µij = (b0i + β1xij) [mod 2π]

where κ and ρ are set at 2 and 0.64 respectively so that the two distributions have
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the same circular dispersion, which is 0.72. Fitted model is TM1. RB and MSEs of

Bayesian estimators of the parameters under different ICC and sample size are pre-

sented in Tables 5.19-5.21. In these tables, results corresponding to True Model=TM1

are the results when there is no misspecification whereas results corresponding to True

Model=TM2 are the results under misspecification.

According to the results of Tables 5.19-5.21 RB and MSE of parameter estimators are

generally smaller for TM1. As the sample size increases, these quantities decrease for

TM1 irrespective of ICC values. Parameter estimations are better based on TM1 for

all ICC values. Parameter inferences are not robust to distribution misspecification.

Table 5.19: RB and MSE values. ICC = 0.20.

n True Model β1(2.5) δ(0.72) µb0(0) σ2
b0

(0.18)

50
TM1 0.023(0.039) 0.013(0.008) -0.002(0.008) 0.018(0.0001)
TM2 -0.055(0.060) -0.949(0.583) 0.007(0.0091) -0.047(0.0001)

100
TM1 0.016(0.019) -0.008(0.003) 0.005(0.005) 0.028(0.0002)
TM2 -0.091(0.069) -0.959(0.566) -0.010(0.004) -0.106(0.0004)

250
TM1 0.009(0.008) -0.010(0.001) -0.001(0.001) 0.008(0.0002)
TM2 -0.103(0.073) -0.963(0.559) 0.005(0.002) -0.224(0.002)

500
TM1 0.003(0.003) -0.0003(0.0007) 0.001(0.001) -0.014(0.0003)
TM2 -0.110(0.079) -0.961(0.560) -0.005(0.001) -0.331(0.004)

Table 5.20: RB and MSE values. ICC = 0.50.

n True Model β1(2.5) δ(0.72) µb0(0) σ2
b0

(0.72)

50
TM1 0.021(0.052) 0.003(0.006) 0.003(0.018) 0.094(0.041)
TM2 0.030(0.056) -0.847(0.409) 0.017(0.027) -0.305(0.061)

100
M1 0.006(0.033) 0.008(0.004) -0.012(0.010) 0.058(0.032)
M2 -0.067(0.063) -0.793(0.344) 0.0004(0.010) -0.417(0.098)

250
TM1 -0.0005(0.008) -0.001(0.001) -0.006(0.004) 0.018(0.010)
TM2 -0.096(0.071) -0.815(0.352) -0.006(0.004) -0.505(0.137)

500
TM1 0.007(0.004) -0.001(0.0007) 0.001(0.002) 0.028(0.007)
TM2 -0.112(0.085) -0.811(0.345) 0.003(0.002) -0.562(0.166)
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Table 5.21: RB and MSE values. ICC = 0.88.

n True Model β1(2.5) δ(0.72) µb0(0) σ2
b0

(5.28)

50
TM1 0.033(0.064) 0.002(0.009) -0.071(0.126) 0.043(1.658)
TM2 -0.106(0.131) -0.036(0.815) 0.055(0.136) -0.054(0.935)

100
TM1 0.009(0.029) -0.001(0.004) 0.005(0.078) 0.095(1.593)
TM2 -0.137(0.143) 0.443(2.132) 0.020(0.130) -0.131(1.227)

250
TM1 0.011(0.014) -0.0004(0.001) 0.014(0.027) 0.026(0.518)
TM2 -0.182(0.221) -0.408(0.141) -0.003(0.049) -0.280(2.532)

500
TM1 0.002(0.006) 0.0004(0.0008) 0.006(0.012) -0.001(0.261)
TM2 -0.183(0.216) -0.388(0.109) 0.019(0.032) -0.305(2.784)

5.2 Model Assessment, Comparison and Selection

In this section, model assessment, comparison and selection criteria detailed in Chap-

ter 4 are evaluated for their ability to select the true model. This simulation scenario

is divided into groups as in Section 5.1.

5.2.1 Selection Over the Mean Models

The performances of criteria are evaluated for linear-quadratic mean models (Sec-

tion 5.2.1.1) and main-interaction mean models (Section 5.2.1.2). The frequency of

selecting the true model is used to assess the performances of criteria.

5.2.1.1 Quadratic and Linear Mean Models

Tables 5.22-5.24 show the frequency of selecting the true model (out of 100 replica-

tions) for each criterion when the true model is TM1 mentioned in Section 5.1.1.1.

When the true model is TM2 mentioned in Section 5.1.1.1, the frequency of selecting

the true model for each criterion is presented in Table 5.25.

According to Tables 5.22-5.24, when the effect of quadratic term is large (β2 = 1.5),

in other words, when there is a relatively emphasized nonlinearity in data generation

model, the criteria perform equivalently. When the effect of quadratic term is small
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(β2 = 0.3) the frequencies of selecting true model for CPD1 and CPD2 are greater

than those of PAPE1 and PAPE2 for all ICC and sample sizes. The frequency of

selecting true model increases for all criteria as the sample size increases for all ICC

values when the quadratic effect is relatively ineffective.

Table 5.22: Frequency of selecting the true model, low ICC (0.20).

β2 0.3 1.5
n 20 50 100 250 500 20 50 100 250 500
CPD1 49 61 77 96 98 100 100 100 100 100
PAPE1 32 55 60 86 90 97 100 100 100 100
CPD2 49 60 76 96 98 100 100 100 100 100
PAPE2 35 56 66 87 92 97 100 100 100 100

Table 5.23: Frequency of selecting the true model, mild ICC (0.50).

β2 0.3 1.5
n 20 50 100 250 500 20 50 100 250 500
CPD1 49 68 76 90 98 100 100 100 100 100
PAPE1 36 56 58 79 83 99 100 100 100 100
CPD2 49 68 76 91 98 100 100 100 100 100
PAPE2 34 56 57 79 83 99 100 100 100 100

Table 5.24: Frequency of selecting the true model, high ICC (0.88).

β2 0.3 1.5
n 20 50 100 250 500 20 50 100 250 500
CPD1 36 71 83 84 99 98 100 100 100 100
PAPE1 23 50 70 75 97 98 100 100 100 100
CPD2 36 73 83 84 99 98 100 100 100 100
PAPE2 23 52 67 75 97 98 100 100 100 100

According to Table 5.25, when the true model is the linear model, performances of

the criteria improve with larger ICC. PAPE type criteria perform in general better

than CPD type criteria except when ICC is low and sample size is large. Between the

PAPE1 and PAPE2, PAPE2 performs generally better than PAPE1. It appears

that CPD1 and CPD2 have tendency to select the more complex model as the best

fitting model. On the other hand, PAPE1 or PAPE2 seem to better capture the
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difference between the simpler and the more complex model. The performance of

PAPE1 and PAPE2 is prospering and these criteria seem to be promising.

Table 5.25: Frequency of selecting the true model. Data generation model: Linear
Model.

ICC 0.20 0.50 0.88
n 20 50 100 250 500 20 50 100 250 500 20 50 100 250 500
CPD1 62 66 60 64 51 63 63 59 59 57 70 78 65 100 100
PAPE1 70 64 50 54 47 73 77 73 67 60 81 83 78 100 100
CPD2 61 65 60 64 52 63 63 59 57 57 70 78 65 100 100
PAPE2 68 67 45 59 46 78 77 73 67 62 80 87 81 100 100

5.2.1.2 Interaction and Main Effect Mean Models

When the true model is TM1 mentioned in Section 5.1.1.2 under different ICC, sam-

ple size and the size of interaction effects, the frequency of selecting the true model

for each criterion is presented in Tables 5.26-5.28. Table 5.29 indicates the frequency

of selecting the true model for each criterion, when the true model is TM2 mentioned

in Section 5.1.1.2 under different ICC and sample size.

Table 5.26: Frequency of selecting the true model, ICC=0.20

(β4,β5) (0.3, 0.5) (2, 2.5)
n 20 50 100 250 20 50 100 250
CPD1 39 40 60 77 79 100 100 100
PAPE1 14 11 12 15 32 55 68 87
CPD2 38 40 60 78 79 100 100 100
PAPE2 12 10 12 13 28 52 66 84

Table 5.27: Frequency of selecting the true model, ICC=0.50

β4,β5 (0.3, 0.5) (2, 2.5)
n 20 50 100 250 20 50 100 250
CPD1 62 74 71 87 92 96 99 100
PAPE1 21 13 18 11 24 17 18 4
CPD2 60 74 70 87 92 96 99 100
PAPE2 23 10 15 7 23 15 16 2
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Table 5.28: Frequency of selecting the true model, ICC=0.88

β4,β5 (0.3, 0.5) (2, 2.5)
n 20 50 100 250 20 50 100 250
CPD1 72 72 75 89 82 99 100 100
PAPE1 22 15 5 1 41 30 20 10
CPD2 70 72 75 89 83 99 100 100
PAPE2 19 13 4 1 37 27 17 8

As seen from the results of Tables 5.26-5.28, the performances of CPD1 and CPD2

are better than those of PAPE1 and PAPE2 irrespective of sample size and ICC

value.

According to results of Table 5.29, in which data are generated from TM2, when

ICC is low, there is an interesting picture of the frequency of selecting true model for

each criterion. PAPE1 and PAPE2 outperform CPD1 and CPD2 irrespective of

the sample size for low ICC, especially for the relatively small sample size. PAPE1

and PAPE2 again outperform CPD1 and CPD2 for both mild and high ICC for the

relatively small sample size. Moreover, the performances of all criteria are more sat-

isfactory for both mild and high ICC. As the sample size increases, the performances

of all criteria get better for mild and high ICC. In order to select the best fitted model

when data sets are generated from TM2, PAPE1 and PAPE2 can be preferred irre-

spective of the sample size and ICC, especially for the relatively small sample size.

Table 5.29: Frequency of selecting the true model. Data generation model: Main
Effect Model.

ICC 0.20 0.50 0.88
n 20 50 100 250 20 50 100 250 20 50 100 250
CPD1 66 64 53 63 90 96 100 100 95 98 100 100
PAPE1 86 89 79 77 99 100 100 100 99 100 100 100
CPD2 66 64 55 63 90 96 100 100 95 98 100 100
PAPE2 86 90 79 75 99 100 100 100 99 100 100 100
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5.2.2 Different Distributions

In this section, the results of Monte Carlo simulation study are presented to compare

the performance of criteria over 100 Monte Carlo replications, when data sets are

generated from two different distributions. The logic behind data generation process

is the same as in Section 5.1.2. We introduce a new statistic called Average Stabil-

ity Coefficient (ASC) to compare the performances of the model selection criteria in

the settings such as the one presented in this section. A brief description of ASC is

presented below. In this simulation study, we consider two different data generation

processes where two different circular distributions are used for each data generation

process. On the other hand, that in circular data literature, there is only one circu-

lar regression model, namely vM regression. Hence, the frequency of selecting true

model can not be calculated for this simulation study and a new quantity should be

introduced (e.g our average stability coefficient). It is straightforward that when the

data sets are generated from WC distribution (TM2 mentioned in Section 5.1.2) and

the fitted distribution is vM distribution, each criterion is supposed to take maximum

value. On the other hand, when data are generated from vM distribution (TM1 men-

tioned in Section 5.1.2) since the distribution used in both processes is the same, each

criterion is supposed to take minimum value. The difference between values of each

criterion for TM1 and TM2 should be as large as possible to have a good performance

in selecting the best fitting model. This difference can be measured by using the ratio

of value of criterion for TM2 to that for TM1 in each Monte Carlo replication. The

ASC is proposed as follows;

ASCtm =
1

M

M∑
i=1

tm2/tm1, (5.6)

where M is the number of Monte Carlo replications, tm denotes a particular criterion,

tm1 denotes the value of criterion of interest when the data set is generated from

TM1, and tm2 denotes the criterion value when TM2 is used to generate data set for

each Monte Carlo replication. For instance, in order to calculate ASC for CPD1,

the value of this criterion for TM2 is divided by its value for TM1 for each Monte

Carlo replication and then, the average of these M ratios is found to obtain ASC
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for this criterion. This coefficient shows the stability of the model selection tool on

a particular selection and the further it is upwardly away from the unity, the more

strongly the criterion selects the true model. This coefficient allows us to examine the

decisiveness of the method. Tables 5.30-5.32 indicate ASC of each criterion for low,

mild and high ICC, respectively.

According to the results of Tables 5.30-5.32 ASC values of CPD2 are greater than

those of other criteria irrespective of the sample size and ICC. This means that CPD2

can select more strongly the true model and it outperforms the others. As ICC in-

creases, ASC of CPD1 and CPD2 consistently increases. There may be a relation-

ship between ICC and the decisiveness of the method on selection of the true model.

Table 5.30: ASC values over 100 Monte Carlo replications, ICC=0.20

n 50 100 250 500
ASC(CPD1) 1.358 1.375 1.377 1.372
ASC(PAPE1) 1.230 1.233 1.244 1.242
ASC(CPD2) 1.518 1.544 1.547 1.538
ASC(PAPE2) 1.328 1.334 1.348 1.344

Table 5.31: ASC values over 100 Monte Carlo replications, ICC=0.50

n 50 100 250 500
ASC(CPD1) 1.414 1.428 1.430 1.432
ASC(PAPE1) 1.268 1.281 1.287 1.285
ASC(CPD2) 1.598 1.688 1.622 1.626
ASC(PAPE2) 1.368 1.387 1.397 1.391

Table 5.32: ASC values over 100 Monte Carlo replications, ICC=0.88

n 50 100 250 500
ASC(CPD1) 1.494 1.512 1.487 1.491
ASC(PAPE1) 1.182 1.183 1.171 1.181
ASC(CPD2) 1.715 1.741 1.705 1.710
ASC(PAPE2) 1.233 1.235 1.220 1.233
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The computational times of the simplest case and the most complex case for one

Monte Carlo iteration are equal to 628.05 and 4223.05 seconds, respectively. In the

simplest case, data sets are generated from a linear mean model, sample size is equal

to 20 and ICC is low. In the most complex case, data sets are generated from an

interaction mean model with relatively ineffective interaction effects, sample size is

equal to 250 and ICC is high. MC study was repeated 250 times for the simplest case

and it was seen that there was no significant difference between results of MS study

with 100 repeated and results of MC study with 250 repeated. For more complex

case, MC studies would take longer time. Therefore, the number of MC iteration is

selected as 100.

5.3 An Additional Simulation Study

Some authors, e.g. Lagona (2016), include an intercept parameter defined on the

unit circle instead of a linear intercept parameter that is defined in the link function,

in circular regression models. In the first approach, intercept is the initial circular

response (θij) whereas in the latter model, it is the initial value of tan(θij/2). These

two approaches have never been compared in the literature.

In this simulation study, we provide the comparison for performances of criteria under

the first approach. Interested reader further can compare the results in this section and

those in the previous section under the latter approach, which is our main model of

interest.

We found out that, in the longitudinal setting, first approach has a considerable com-

putational burden. Therefore we do not pursuit further to simulation scenarios other

than the ones presented here.

5.3.1 Selection Over the Mean Models

The performances of criteria are evaluated for quadratic mean models (Section 5.3.1.1)

and interaction mean models (Section 5.3.1.2). The frequency of selecting the true

model is used to assess the performances of criteria.
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5.3.1.1 Quadratic Mean Models

In this study, one type of true model (TM), in which data are generated from a

quadratic mean model is considered and is as follows:

TM: µij = b0i + 2 arctan(β1xij + β2x
2
ij),

where b0i is random intercept for subject i and it follows a truncated normal distri-

bution lying within the interval (-π, π). Lagona (2016) also used a circular regres-

sion model with an offset parameter lying within the interval (-π, π), as in the TM.

This study is controlled for two different sample sizes, n=500, 1000 and ICC values,

ICC=0.33, 0.50. We also considered two different values for quadratic term. β2 is set

at 1.5 or 0.3 representing effective and relatively ineffective quadratic term to control

the simulations for quadratic term effect size. Just single time-dependent linear ex-

planatory variable xij is used and produced by random draws from a standard normal

distribution.

Fitted models are labeled by M1 and M2 and are as follows

M1: µij = b0i + 2 arctan(β1xij + β2x
2
ij)

M2: µij = b0i + 2 arctan(β1xij).

Table 5.33 shows the frequency of selecting the true model under different sample

sizes, ICC values and sizes of quadratic term. According to results of Table 5.33,

for both low and mild ICC, all criteria successfully select the correct model when

candidate set includes models with same distributions with same concentrations but

different mean models with linear and quadratic term, when the effect of quadratic

term is relatively emphasized (β2 = 1.5). When the effect of quadratic term is small,

PAPE1 and PAPE2 outperform the other criteria irrespective of sample size and

ICC values. PAPE1 in particular select the correct model more strongly even when

the true effect size of quadratic term is small.
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Table 5.33: Frequency of selecting the true model.

ICC 0.33 0.50
β2 0.3 1.5 0.3 1.5
n 500 1000 500 1000 500 500 1000
CPD1 60 55 100 100 58 100 100
PAPE1 64 66 100 100 63 100 100
CPD2 60 55 100 100 58 100 100
PAPE2 63 66 100 100 61 100 100

5.3.1.2 Interaction Mean Models

In this study, one type of true model (TM) in which data are generated from a inter-

action mean model is considered and is as follows:

TM: µij = b0i + 2 arctan(β1xij + β2d1i + β3d2i + β4xijd1i + β5xijd2i),

We also considered two different values for coefficients of interaction effects. β4 and

β5 are set at (2, 2.5) or (0.3, 0.5) representing effective and relatively ineffective inter-

action term to control the simulations for interaction term effect size. This simulation

study is controlled for one sample size n=500 and ICC value, ICC=0.33. Dichoto-

mous dummy variables, d1 and d2 are again used to include a time-independent cat-

egorical variable with three levels as in Section 5.1.1.2. Fitted models are labeled by

M1 and M2 and are as follows

M1: µij = b0i + 2 arctan(β1xij + β2d1i + β3d2i + β4xijd1i + β5xijd2i),

M2: µij = b0i + 2 arctan(β1xij + β2d1i + β3d2i)

The results of this simulation study are presented in Table 5.34. According to the

results of Table 5.34, when the size of interaction effect is small, PAPE2 outperforms

the other criteria. Performances of PAPE1 and CPD2 are the same for ineffective

interaction effects whereas CPD1 performs worse. When effective interaction effects

are concerned, CPD1 and CPD2 outperform PAPE1 and PAPE2. However, there
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is a little bit difference between their the frequency of selecting true model for low

ICC (0.33).

Table 5.34: Frequency of selecting the true model. ICC=0.33, n=500.

(β4, β5) (0.3,0.5) (2.0,2.5)
CPD1 74 96
PAPE1 76 95
CPD2 76 96
PAPE2 79 95

5.3.2 Different Distributions

In this section, the results of Monte Carlo simulation study are presented to compare

the performances of criteria, when data sets are generated from two different distri-

butions. The logic behind data generation process is the same as in Section 5.1.2.

ASC is used to study the performances of all criteria. This simulation study is con-

trolled for two different sample sizes, n=500, 1000 and ICC values, ICC=0.33, 0.50.

True models denoted by TM1 and TM2 are given in the hierarchical representation as

follows

TM1: θij ∼ vM(µij, κ)

µij = b0i + 2 arctan(β1xij),

TM2: θij ∼ WC(µij, ρ)

µij = (b0i + β1xij) [mod 2π]

where κ and ρ are set at 1.10 and 0.45 respectively so that the two distributions have

the same circular dispersion, which is 2. Fitted model is TM1.
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Table 5.35: Average Stability Coefficients over 100 Monte Carlo replications.

ICC 0.33 0.50
n 500 1000 500 1000
ASC(CPD1) 1.115 1.120 1.117 1.118
ASC(PAPE1) 1.200 1.204 1.159 1.164
ASC(CPD2) 1.149 1.157 1.152 1.154
ASC(PAPE2) 1.264 1.269 1.208 1.214

Table 5.35 presents ASC of each criterion under different sample sizes and ICC val-

ues. According to results of Table 5.35, PAPE2 can select more strongly the true

model since ASC of this method is higher than those of the others irrespective of

sample size and ICC. In terms of ASC, performances of CPD1 and CPD2 are close

to each other for all sample sizes and ICC values. Overall, PAPE2 seems to perform

more satisfactorly when it is appropriate to use these methods. It is more decisive in

its selection compared to others.
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CHAPTER 6

APPLICATION

In this chapter, we illustrate the considered model and model selection on a real data

set consisting of sandhopper orientations.

6.1 Data Description

Borgioli et al. (1999) and D’Elia et al. (2001) presented a longitudinal study in order

to determine factors affecting the escaping mechanism of sandhoppers. In the original

study, there were 144 sandhoppers but we are only able to retrieve a subset of the data.

This subset contains 65 sandhoppers. Escape directions of each animal with respect

to North were recorded 5 times (every 10 minutes), i.e equally-spaced repeated mea-

surement study, with some covariates such as wind direction, the length of the left and

right ocular diameters, and sun azimuth. Wind direction and sun azimuth variables

are circular continuous variables. In our considered model, covariates should be lin-

ear, therefore, for modeling purposes the circular continuous variable wind direction

is transformed into a categorical variable with four categories: wind from land [337◦,

66◦], wind from longshore-east [67◦, 156◦], wind from sea [157◦, 246◦], and wind

from longshore-west [247◦, 336◦], with wind from the land taken as the reference

category. Eye symmetry index (Eye) is constructed from ocular diameters, as

Eye = log(
max.diam.right × min.diam.right

max.diam.left × min.diam.left
). (6.1)

When Eye = 0, both eyes are equally wide for animal, Eye > 0 (or < 0) when right eye
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(left eye) is wider, respectively. Finally, the circular continuous variable sun azimuth

is transformed into a categorical one with two categories: Morning [124◦, 149◦] and

Afternoon [240◦, 269◦]. It is expected that animals will escape towards the sea and

theoretical escape direction (TED) (the sea direction) is at 201◦.

6.2 Exploratory Analysis

First we summarize the main characteristics of data set ignoring for a moment the

longitudinal structure of the data. Figure 6.1 represents the circular frequency distri-

bution for each release separately. As seen from Figure 6.1 each marginal distribution

of the escape directions for each release seems as a symmetric and unimodal distri-

bution.

Figure 6.1: Circular frequency distributions of escape directions in 5 releases.

Circular summary statistics including the mean direction, mean resultant length, cir-

cular variance, circular symmetry coefficient and p-values of large-sample test for

circular symmetry coefficient for the escape direction at each release are presented
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in Table 6.1. Results of Table 6.1 show that the mean direction (θ̄) of each release

is close to 201◦ (TED) and there is a gradual approach to the TED (excluding 4th

release). There is an increase in mean resultant lengths (R̄). Circular variance (V)

decreases in subsequent releases. In other words, as the lag increases the dispersion

around the mean direction decreases. Circular symmetry coefficient (s) verifies that

each marginal distribution is a symmetric and unimodal distribution since circular

symmetry coefficient is close to 0 for each release. A large-sample test for reflective

symmetry (Pewsey, 2002) is performed to investigate whether the null hypothesis of

circular reflective symmetry is rejected. Since all p-values (Table 6.1) are greater than

0.05, we can say that each marginal distribution is a symmetric distribution.

Table 6.1: Circular summary statistics for each marginal distribution (at each release).

Release θ̄ R̄ V s p-value

1st 167.088 0.523 0.477 -0.244 0.283
2nd 171.401 0.528 0.472 0.026 0.912
3rd 193.242 0.576 0.424 0.098 0.733
4th 190.887 0.627 0.373 0.170 0.582
5th 194.585 0.667 0.333 0.204 0.543

Figure 6.2: Plot of the empirical distribution of data set against von Mises distribution.

A Watson’s goodness of fit test (Stephens, 1970; Jammalamadaka and SenGupta,

2001) is performed to investigate whether vM is a good fit for the data that consist of
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all the 5 jumps together. Test statistic is calculated as 0.0883 and p-value is equal to

0.092 (at significance level 0.05). Hence we can say that a vM distribution is a good

fit for the data. Moreover, Figure 6.2 confirms that this data set seems to follow a vM

distribution.

Since repeated measurements are taken from same animal, these five escape direc-

tions at each release are correlated. Thereby, the longitudinal structure of data set

should be considered while analyzing it. First of all, a circular-circular correlation

coefficient (Jammalamadaka and Sarma, 1988) is used to calculate correlation be-

tween successive measurements for same individual (autocorrelation coefficient). Ta-

ble 6.2 represents circular autocorrelation coefficients for escape directions. It is clear

from Table 6.2 that, there is a correlation between successive releases and as the lag

increases, autocorrelation within same animal decreases (except 4th release).

Table 6.2: Autocorrelation coefficient for escape directions.

Release 1st 2nd 3rd 4th 5th

1st 1 0.76 0.58 0.61 0.56
2nd 1 0.70 0.67 0.68
3rd 1 0.77 0.69
4th 1 0.87
5th 1

Longitudinal plot (spaghetti plot) of escape directions (in degree) at all releases for

each animal is presented in Figure 6.3. Variability within any animal over time and

variability between animals at any release can be explored by using this spaghetti plot.

In this plot, the variability in each line represents variability within each sandhopper.

Variability between animals represented by the space between lines.

6.3 Modeling

Borgioli et al. (1999), D’Elia (2001), Antonio and Pena (2014), Lagona (2016) and

Maruotti (2016) previously worked on this data set. D’Elia (2001) used a variance

component model under a vM distribution assumption. Antonio and Pena (2014)
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Figure 6.3: Longitudinal plot of escape directions for each sandhopper.

employed a projected circular longitudinal model under the projected bivariate normal

distribution assumption (in Bayesian setting). Lagona (2016) exploit a mixed-effects

model under the multivariate vM distribution assumption. Maruotti (2016) used a

mixed-effects model under the projected bivariate normal distribution assumption.

In order to analyze this data set, four types of nested models are considered and

represented in Table 6.3:

Table 6.3: Nested Models

Covariates Mean Models

Sun µij = β0 + 2 arctan(b0i + β1Sun+ β2Time)

Sun + Eye µij = β0 + 2 arctan(b0i + β1Sun+ β2Eye+ β3Time)

Sun + Wind µij = β0 + 2 arctan(b0i + β1Sun+ β2Lse+ β3Sea+ β4Lsw + β5Time)

Sun + Wind + Eye µij = β0 + 2 arctan(b0i + β1Sun+ β2Lse+ β3Sea+ β4Lsw + β5Eye+ β6Time)

Here, β0 is an offset parameter within (−π, π), b0i is subject specific random intercept

for subject i which follows a normal distribution with mean zero and variance σ2
b0

.

The values of all criteria are calculated for each model and presented in Table 6.4.

According to results of Table 6.4, CPD1 and CPD2 suggest that "Sun+Eye" model

should be preferred, on the other hand PAPE1 suggests that "Sun+Wind+Eye" model
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should be preferred. PAPE2 select "Sun+Wind" model as the best fitting model to

sandhopper data set. Based on the results of Table 6.4, the suggestion of CPD1

and CPD2 are consistent with the previous analysis of this data set in the literature.

As seen in the simulation studies, since some factors can affect the performances of

criteria, especially the performance of PAPE1 and PAPE2, we select "Sun+Eye"

model (the selection of CPD1 and CPD2) as the best fitting model for sandhopper

data set.

Table 6.4: Model comparison

Models
Tools S S+E S+W S+W+E

CPD1 206.900 206.000 206.800 206.100
PAPE1 390.004 390.237 389.216 389.153
CPD2 90.520 89.870 90.490 89.910
PAPE2 231.055 231.110 230.184 230.329

For "Sun+Eye" model, parameter estimations, posterior standard deviations, MC er-

rors and 95% credible intervals are presented in Table 6.5. Parameter estimations are

again consistent with previous analysis of this data set. MC errors of all parameters

are less than 5% of their posterior standard deviations. All parameters of the model

are significant. It is clear that the random intercept should be included in the model

since the random intercept variance is significantly different from zero (0.270, 0.755).

This means that there is variability between animals and random intercept may ac-

count for this variability. The MCMC convergence diagnostics for the selected model

("Sun+Eye") are given in Appendix B.

Table 6.5: Parameter Estimates

Par. Est. Std. MC Error 95% Credible Int.

β0 2.871 0.083 0.002 (2.701, 3.031)
Sun 0.239 0.096 0.003 (0.052, 0.428)
Eye -1.101 0.101 0.002 (-1.300, -0.904)
Time 0.054 0.013 0.0003 (0.028, 0.080)
κ 3.655 0.278 0.005 (3.125, 4.213)
σ2
b0

0.463 0.124 0.002 (0.270, 0.755)
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Interpretations of parameters are clear enough. For instance, interpretation of Sun

coefficient is as follows. For simplicity, let Eye covariate be 0 and Time covariate be

1. Then,

for Sun=0, µij = 2.871 + 2 arctan(0.239× 0− 1.101× 0 + 0.054× 1) ≈ 170.168◦

for Sun=1, µij = 2.871 + 2 arctan(0.239× 1− 1.101× 0 + 0.054× 1) ≈ 197.097◦.

This means that when Sun=1, there will be an increase as 2 arctan(0.239) ≈ 26.929◦

in mean direction of sandhopper. Other parameters can be interpreted in a similar

way.
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CHAPTER 7

CONCLUSION

In this thesis, modeling and model selection for repeated and circular observations

(i.e. longitudinal circular data) which arise in many different areas such as biology,

meteorology, medicine, biology, and geology have been investigated. Taking into

account this data structure, a random intercept Bayesian model for longitudinal cir-

cular responses has been considered. The main benefits of this model is twofold: i.

it overcomes the high dimensionality problem with multivariate distributions when

within sample size is large, ii. it avoids the projected normal distribution based mod-

eling that doubles the dimension of the latent random intercept space. We considered

Bayesian approach which is particularly useful to deal with random intercept models.

The major benefits of Bayesian in random intercept model is twofold: i. it treats the

parameters and the latent random intercept within the same framework, ii. estimation

of random intercept, test of random intercept variances are readily available in the

posterior output. Considered Bayesian longitudinal circular random intercept model

is working under the assumption of vM distribution but the Bayesian methodology

can be adjusted for the other possible circular distributions. A detailed analysis of

considered model has been provided in Bayesian framework. Full conditional distri-

butions have been derived for each parameter and Gibbs sampling algorithm has been

used to draw samples from the marginal posterior distributions. Bayesian estimators

have been employed to efficiently estimate the model parameters. The performances

of parameter estimators have been evaluated by using RB and MSE under correctly

specified models. These measures also have been used to assess robustness of the

Bayesian estimators to model misspecification. In terms of Bayesian parameter esti-

mators, the main results of this thesis are listed below:
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• Inferences for regression coefficients and concentration parameter are not ro-

bust to model misspecification irrespective of sample size, ICC value, and size

of quadratic and interaction terms.

• Robustness of inference of random intercept parameters depends on many fac-

tors including quadratic and interaction effect sizes, sample size, and ICC value.

• Inferences of all parameters are not robust to distribution misspecification irre-

spective of sample size and ICC value.

• According to overall results, RB and MSE of Bayesian estimators are at accept-

able level for all simulation scenarios.

On the other side, new methods based on minimizing a predictive loss have been

considered to assess, compare and select the best fitting model given a set of candi-

date models. Their performances have been compared for a current model selection

method (CPD1). The frequency of selecting the true model has been used to eval-

uate the performances of methods under model misspecification. A new quantity

called Average Stability Coefficient (ASC) has been introduced to assess the stability

of methods on a particular selection under distribution misspecification. In terms of

model assessment, comparison and selection, the results of this thesis are as follows:

• The performance of criteria depends on many factors including sample size,

ICC value, the size of quadratic and interaction terms.

• Whether an intercept parameter is defined on the unit circle instead of a linear

intercept parameter defined in the link function can also affect the performances

of criteria.

• The performances of CPD1 and CPD2 are comparable irrespective of sample

size, ICC value and the size of quadratic and interaction terms. The perfor-

mances of PAPE1 and PAPE2 are likewise comparable for all simulation

scenarios.

• According to general results of the simulation study, CPD1 and CPD2 have

better performance than the others.
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When uncertainty in the estimator is large and the function to be plugged-in (in our

case APE) is nonlinear, errors from using plug-in (in our case PAPE1 and PAPE2)

may be large (Rossi et. al, 2005). This means that the size of uncertainty in the

estimator affects the performance of plug-in estimators. (For instance, on another

context, in terms of estimating MSE, Maithy and Sherman (2008) showed that plug-

in estimators perform inferior compared to bootstrap method in adaptive linear re-

gression). For the correct evaluation of performances of these estimators (PAPE1

and PAPE2), uncertainty in prediction of θ̂pred and theoretical properties of these

tools should be further investigated. For this reason, CPD1 and CPD2 should be

preferred to determine the best fitting model when model selection for longitudinal

circular response is concerned.
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APPENDIX A

DIRECTED GRAPHICAL MODEL (DAG) FOR LCRIM

Figure A.1 represents the directed graphical model (DAG) for LCRIM. In this graph-

ical model, solid arrows denote a stochastic relationship, hollow arrows indicate logi-

cal relationship. Stochastic nodes (variables) and constants are represented as ellipses

and rectangles respectively in the DAG. Loops (repeated parts) in the model are de-

noted by plates.

Figure A.1: DAG of LCRIM.
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APPENDIX B

MCMC CONVERGENCE DIAGNOSTICS FOR "SUN+EYE"

MODEL

In order to assess convergence in Gibbs Sampling, we used the following practical

guidelines by starting two different chains with different initial values;

• History plots of the sample values versus iteration,

• Brooks-Gelman-Rubin (BGR) statistics (Brooks and Gelman, 1998).

We checked convergence for each parameter of the model. Figures B.2 and B.1 show

the history plots of all the parameters for "Sun+Eye" model. Figure B.3 represents

the BGR statistics for the model of interest. In order to investigate the slow conver-

gence, we also provided the autocorrelation plots indicating the serial correlation in

the chains. The autocorrelation plots are presented in Figure B.4.

According to Figures B.2 and B.1, we can be reasonably confident that convergence

has been achieved since all the chains appear to be overlapping one another. Figure

B.3 shows that convergence has been achieved after about 10000 iteration as the BGR

statistics for all parameters tend to 1 and converge to stability. We determined the

burn-in period of the Markov chain by using these figures for the LCRIM.
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Figure B.1: The History Plots for the regression coefficients.
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Figure B.2: The History Plots for κ and σ2
b0

.

Figure B.3: The Brooks-Gelman-Rubin’s Convergence Diagnostics for "Sun+ Eye"

Model.
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Figure B.4: The Autocorrelation Plots for "Sun+ Eye" Model.
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