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ABSTRACT 

 

 

A MULTI-MODE PROJECT SCHEDULING PROBLEM WITH A 

SINGLE NONRENEWABLE RESOURCE 

 

Altıntaş, Cansu                                                                                                    

M.S., Department of Industrial Engineering                                            

Supervisor: Prof. Dr. Meral Azizoğlu                                                                         

August 2017, 74 pages 

 

In this thesis, we consider a multi-mode project scheduling problem with a single 

nonrenewable resource. We assume that the resource is released in pre-specified 

times at pre-specified quantities and the resource is consumed at activity 

completions. The activities can be processed at different modes where a mode is 

defined by a processing time and a resource requirement amount. Our problem is 

to select the modes and timings of the activities so as to minimize the project 

completion time.  

We develop a mixed integer linear model and present a branch and bound 

algorithm. The results of our experiments have revealed that the mathematical 

model can handle only small-sized problem instances with up to 20 tasks and 

branch and bound algorithm can solve problem instances with up to 100 tasks for 

some resource release profiles. 

 

Keywords: Project scheduling, Multiple modes, Nonrenewable Resource, Branch 

and Bound Algorithm 
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ÖZ 

 

TEK YENİLENEMEYEN KAYNAK İLE ÇOKLU MODLU PROJE 

ÇİZELGELEME PROBLEMİ 

 

Altıntaş, Cansu                                                                                                 

Yüksek Lisans Endüstri Mühendisliği Bölümü                                                     

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu                                                                

Ağustos 2017, 74 sayfa 

 

Bu tezde, çoklu modlu, tek yenilenemeyen kaynaklı, bir proje çizelgeleme 

problemini ele aldık. Kaynağın daha önce berlirlenen zamanlarda ve miktarlarda 

aktarıldığını ve aktivite bitiş zamanlarında harcandığını varsaydık. Aktiviteler 

değişik modlarda proses edilebilmekte ve modlar işlem süresi ve kaynak 

gereksinim miktarı üzerinden tanımlanmaktadır. Problemimiz, proje bitiş 

zamanını enazlayacak şekilde aktivite modlarının seçilmesidir.  

Çalışmamızda, karmaşık tam sayılı doğrusal programlama modeli ve dal-sınır 

algoritması geliştirdik. Deneysel sonuçlarımız, matematiksek modelin iş sayısı 

20’ye kadar olan küçük ölçekli problemleri çözdüğünü; dal-sınır algoritmasının 

ise bazı kaynak profillerinde boyutları 100 işe ulaşan büyük ölçekli problemleri 

çözebildiğini göstermiştir. 

 

 

Anahtar Kelimeler: Proje çizelgeleme, Çoklu Modlar, Yenilenemeyen 

Kaynaklar, Matematiksel Model, Dal-Sınır Algoritması 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

A project is a set of interrelated activities to be executed over a fixed period to 

create a unique product or service. Project management has been an area that 

attracts the operational researchers for modelling and solving various problems in 

order to find effective and efficient ways for planning, organizing, directing, 

scheduling projects. Dating back to 1950s, problem natures, methodologies and 

solution approaches have been changing to adapt for the new practical problems. 

As an important step of project management, project scheduling defines the start 

and finish times of the project activities. The earliest method in this area is the 

critical path method (CPM) that finds the minimum project completion time 

schedule for unlimited resource availability case. The CPM’s assumption of 

unlimited availability of resources hardly holds in real life. Depending on the 

resource needs and resource types, various project scheduling problems can be 

defined. When the progress of the projects is subject to resource constraints, the 

associated problems are the resource constrained project scheduling problems 

(RCPSP). The basic resource categories are renewable and nonrenewable 

resources and new resource types have been introduced recently. Renewable 

resources are temporarily available on some time periods. They can be dedicated 

to some activities when they are available and they can be used again after the 

completion of these activities.  Labor, machine, equipment are some notable 

examples for renewable resources. Nonrenewable resources are consumed with 
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usage. The availability of a nonrenewable resource is limited with its release 

amount for the entire project. 

It is common to assume that nonrenewable resources are released as a lump sum at 

the beginning of the project but they can be also released in a progressive way 

throughout the project. The project budget, simply money, can be a good example 

for nonrenewable resources.  Recently, other resource types such as doubly 

constrained, partially renewable which have some features of renewable and 

nonrenewable resources are introduced. 

A generalization of the RCPSP is the multi-mode RCPSP (MRCPSP). In the 

MRCPS problems each activity can be executed in one of the several modes 

where a mode is defined by a processing time and a resource requirement amount. 

Mode selection represents the trade-off in such a way that an activity can be 

performed with a shorter duration if higher amount of resource is consumed. 

In this study, we assume that there is a single nonrenewable resource that is 

released in specified times at specified quantities in a progressive way. Resource 

units are consumed when the activities are completed. There are several activity 

execution modes, i.e., time/resource pairs for each non-dummy activity. Our 

decision is to select a mode for each activity to minimize the project completion 

time without violating resource constraints. 

In the absence of mode decisions, our problem is solved in polynomial time by the 

Carlier and Rinnooy Kan’s (1982) algorithm. The algorithm is based on shifting 

the late start schedule of the CPM to maintain resource feasibility. 

To the best of our knowledge, there exists a unique research by Azizoglu and et al. 

(2015) for the nonrenewable resource, mode selection problem. The study 

formulates the problem as a pure integer linear program and presents linear 

programming relaxation based heuristic approaches for its approximate solutions. 

A practical situation that is in accordance with our problem can be exemplified 

from the construction industry. A client orders a building from the building 
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contractor. The contractor has subcontractors to execute the project activities and 

pays them when any activity is completed. Subcontractors can choose to perform 

an activity with their own labor and equipment or outsource it. Depending on the 

selected execution way, that activity costs more and takes less time or vice versa. 

Another practical situation is the software business where the customer demands a 

specific software application for their accounting operations from a software 

developing company. According to the bid signed between the customer and 

software company pre-specified amounts at pre-specified times should be paid by 

the customer upon the satisfactory delivery of the software sub-modules. 

In this thesis, we first formulate the problem as a mixed integer programming 

model that finds the minimum project completion time schedule. We introduce 

lower and upper bounds on the optimal activity completion times and some mode 

elimination mechanisms in order to reduce the number of integer variables. We 

then present a branch and bound algorithm that enumerates the partial solutions 

based on the mode assignment decisions. Given the mode assignment decisions, 

the partial solutions are evaluated by using some relaxations and if possible, are 

eliminated using the properties of the optimal schedule. To the best of our 

knowledge, our branch and bound algorithm is the first optimization algorithm for 

the multi-mode, nonrenewable resource constrained project scheduling problem. 

We show that our branch and bound algorithm is much superior to the 

mathematical model that we propose and our mathematical model is much 

superior to the model proposed by Azizoğlu et al. (2015) in terms of number of 

integer decision variables. 

The thesis is organized as follows:  In Chapter 2, the comprehensive literature 

review of related problems is given. In Chapter 3, we give the problem definition 

and present the mathematical models: the previously presented pure integer 

programming model and our mixed integer programming model. We also discuss 

some special cases of our problem and develop some properties of the optimal 

solutions. Chapter 4 presents the branch and bound algorithm together with the 
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lower bonding mechanisms. We report on the results of our preliminary and main 

experiments in Chapter 5.  In Chapter 6, the concluding remarks and planned 

future studies are given. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

In this chapter, we first present one of the earliest, well-known algorithm as a 

review of the project scheduling problems in the absence of resource constraints 

and mode decisions. Then, we make a review of project scheduling problems with 

multiple activity execution modes where a mode of an activity is defined by its 

processing time and resource requirement amount. Then, we provide a review on 

resource constrained project scheduling problems with single and multiple modes. 

2.1 Problems Without Resource Constraints and Mode Decisions 

Single mode resource-unconstrained project scheduling problems can be solved in 

polynomial time by the well-known Critical Path Method (CPM) presented by 

Kelly and Walker (1959). The CPM is one of the earliest methods in this area that 

finds the schedule through the earliest and latest start and finish times for each 

activity without increasing the minimum project completion time. For the sake of 

completeness, we state the CPM. Since resource is not a concern, activity duration 

and precedence relations are the only parameters that define the problem.  The 

following notation will be used throughout the thesis: 

pi: Processing time of activity i 

IPi: Set of immediate predecessors of activity i 

ISi: Set of immediate successors of activity i 
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Given these two parameters, we find the following decisions: 

ESi: Earliest start time of activity i 

LFi: Latest finish (completion) time of activity i 

EFi: Earliest finish time of activity i 

LSi: Latest start time of activity i 

We define total slack time of an activity as the maximum amount of time an 

activity’s completion time can be delayed without delaying the minimum project 

completion time. 

TSi: Total slack time of activity i 

TSi = 𝐿𝑆𝑖 −  𝐸𝑆𝑖 = LFi − 𝐸𝐹𝑖 

When the total slack time of an activity is zero, it is a critical activity. If we 

increase the processing time of a critical activity, the project completion time 

directly increases. The activities with positive total slack values are non-critical 

activities. The critical path is a set with all critical activities. 

CP: Set of critical activities 

The CPM works as follows: 

Initially, the earliest start times of the activities with no predecessors are set to 0. 

Using the precedence relations, we sum the earliest start times and processing 

times to find the earliest finish times. Earliest start time of an activity is the 

maximum of the early finish times of its predecessors. After all earliest start and 

finish times are calculated, the maximum of the earliest finish times is taken as the 

earliest project completion time. Then, we initialize latest project completion time 

with earliest project completion time. Latest completion time of an activity is the 

minimum start times of all its immediate successors. After, we have earliest and 

latest finish times, we calculate the total slack for each activity which is the 

difference between the earliest and latest finish times. When both times are equal 

and correspondingly, total slack is zero, the activity is critical. By finding total 

slack for each activity, we obtain the critical path. Stepwise demonstration of the 

algorithm is as follows: 
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To illustrate the algorithm, we use the example project whose Activity on Node 

(AoN) representation is given in Figure 2.1 below. In AoN representation, each 

activity is represented as a node and arrows show the immediate precedence 

relations. 

 

Initialization: 

𝐸𝑆𝑖  = 0  i : 𝐼𝑃𝑖  = Ø 

Main Body: 

Repeat 

 𝐸𝑆𝑖 = 𝑀𝑎𝑥
𝑗∊𝐼𝑃𝑖

{𝐸𝑆𝑗 + 𝑝𝑗} i: ∀j ∊ 𝐼𝑃𝑖   

 𝐸𝑆𝑗  is calculated 

Until  𝐸𝑆𝑖 for i=1, 2, ..., N are calculated 

T = 𝑀𝑎𝑥
𝑖

{𝐸𝑆𝑖 + 𝑝𝑖} 

𝐿𝐹𝑖 = T i : 𝐼𝑆𝑖  = Ø 

Repeat 

     𝐿𝐹𝑖 = 𝑀𝑖𝑛
𝑗∊𝐼𝑆𝑖

{𝐿𝐹𝑗 − 𝑝𝑗}   i: ∀j ∊ 𝐼𝑆𝑖   

    𝐿𝐹𝑗  is calculated 

Until  𝐿𝐹𝑖 for i=1, 2, ..., N are calculated 

Finalization: 

Total slacki = 𝐿𝐹𝑖 − 𝐸𝑆𝑖 −  𝑝𝑖 i = 1, 2, ..., N 

Critical activities = {i = 1, 2, ..., N | Total slacki = 0} 
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Figure 2.1 AoN Representation of the Example Project 

In Figure 2.1, activities 1 and 8 are project start and project finish nodes, 

respectively. We define these dummy activities with zero processing times to 

denote the beginning and completion of the project. Table 2.1 below reports on 

the parameters of the network. 

Table 2.1 Data of the Example Project 

Activity 
Immediate 

Predecessors 

Duration 

(Hour) 

1 - 0 

2 1 2 

3 1 3 

4 2 4 

5 2 3 

6 4, 5 4 

7 3,5 2 

8 6, 7 0 

 

We now give the step by step implementation of the CPM. 

Initialization: 

 IP1 = Ø; ES1 = 0  
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Main Body: 

 IP2 = IP3 = {1} 

 ES2 = ES3 = ES1 + p1 = 0 + 0 = 0  

 We calculate ES4 and ES5 using ES2: 

 ES4 = ES2 + p2 = 0 + 2 = 2 

 ES5 = ES2 + p2 = 0 + 2 = 2 

 Activities 6, 7, 8 have 2 immediate predecessors. Therefore, 

 ES6 = Max {ES4 + p4; ES5 + p5} = Max {2 + 4; 2 + 3} = 6 

ES7 = Max {ES3 + p3; ES5 + p5} = Max {0 + 3; 2 + 3} = 5 

ES8 = Max {ES6 + p6; ES7 + p7} = Max {6 + 4; 5 + 2} = 10 

We calculate the earliest finish time of each activity. Since activity 8 is the 

project end node with zero processing time, its completion time gives the 

entire project completion time. 

ES8 = T = 10 

Using T, we now find latest finish times of activities. 

IS8 = Ø; LF8 = T = 10 

IS6 = IS7 = {8} so LF6 = LF7 = LF8 – p8 = 10 – 0 = 10 

IS5 = {6, 7}; LF5 = Min {LF6 – p6; LF7 – p7} = Min {10 – 4; 10 – 2} = 6 

Activities 3 and 4 have only one immediate successor. Therefore, 

 LF4 = LF6 – p6 = 10 – 4 = 6; 

LF3 = LF7 – p7 = 10 – 2 = 8; 
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IS2 = {4, 5}; LF2 = Min {LF4 – p4; LF5 – p5} = Min {6 – 4; 6 – 3} = 2 

IS1= {2, 3}; LF1 = Min {LF2 – p2; LF3 – p3} = Min {2 – 2; 8 – 3} = 0 

 

Finalization: 

Having calculated the earliest start and latest finish times of all activities, 

we find the total slack times. For example,  

TS2 = LF2 – ES2 – p2 = 2 – 0 – 2 = 0 

TS3 = LF3 – ES3 – p3 = 8 – 0 – 3 = 5 

Hence, we know that activity 2 is a part of the path while activity 3 is not. 

Table 2.2 summarizes the findings of the CPM implementation on example 

project. 

Table 2.2 The CPM Results of Example Project 

Activity 
Immediate 

Predecessors 

Duration 

(Hour) 

Earliest 

Start Times 

Latest Finish 

Times 

Total 

Slack 

1 - 0 0 0 0 

2 1 2 0 2 0 

3 1 3 0 8 5 

4 2 4 2 6 0 

5 2 3 2 6 1 

6 4, 5 4 6 10 0 

7 3,5 2 5 10 3 

8 6, 7 0 10 10 0 

 

The activities with zero total slack are the elements of the critical path set. The 

non-critical activities 3, 5 and 7 can be delayed as up to their total slack times. For 

instance, if activity 3 takes up to 4 more hours, the project does not delay. The 

thicker lines in Figure 2.2 illustrate the critical path. If any activity delays on 

critical path, the project completes later. 
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Figure 2.2 The Critical Path of the Example Project 

2.2 Problems with Mode Decisions with no Resource Constraints 

In project scheduling problems with multiple modes, each activity can be 

executed in one of the several modes where a mode is defined by a processing 

time and a resource requirement amount. The trade-off between time and resource 

consumption emerges with mode selection. For each activity, modes are non-

dominated by each other. Depending on the selected mode, an activity is 

performed with a shorter duration and higher resource consumption or vice versa. 

In the literature, discrete time/cost trade-off problems (DTCTP) have discrete 

activity durations which are non-increasing functions of the single nonrenewable 

resource. Those problems have been studied under two categories: the deadline 

problem (DTCTP-D) and the budget problem (DTCTP-B). 

The deadline problem minimizes the total resource cost subject to a specified 

deadline on the project completion time. Demeulemeester et al. (1998) present an 

exact branch and bound procedure to solve the deadline problem. Vanhoucke 

(2005), Akkan et al. (2005), Hafizoglu and Azizoglu (2010) are some of the most 

noteworthy studies on deadline problems. 

The budget problem assumes a limited resource that is released at the beginning 

of the project as a lump sum and minimizes the project completion time.  Since 

only a single resource is released at the beginning of the project, there is only one 

resource constraint. That is why, we present the literature review of the DTCTP 

1
START

2

3

4

5

6

7

8
END
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here. The DTCTP-B is shown to be strongly NP-hard by De et al. (1997). For this 

problem, Skutella (1998) proposes heuristic solutions, Hazir et al. (2010) and 

Degirmenci and Azizoglu (2013) present optimization algorithms. 

De et al. (1995) and Vanhoucke and Debels (2007) review the DTCTP and 

discuss their extensions. 

2.3 Problems with Resource Constraints with no Mode Decisions 

The assumption of unlimited availability of resources hardly holds in real life. 

When resource constraints are present, the problems are referred to as the resource 

constrained project scheduling problems (RCPSP). Even though new resource 

types have been introduced recently, Slowinski (1980) categorizes basic resource 

types as renewable, nonrenewable and doubly-constrained. Renewable resources 

are temporarily available on some time periods. They can be dedicated to some 

activities when they are available and they can be used again after the completion 

of these activities. Labor, machine, equipment can be examples for renewable 

resources. Nonrenewable resources are consumed with usage. The availability of a 

nonrenewable resource is limited with its release amount for the entire project. It 

is common to assume that nonrenewable resources are released as a lump sum at 

the beginning of the project but they can be also released in a progressive way 

throughout the project. The budget of the project can be an example for 

nonrenewable resources. The availability of doubly-constrained resource is 

limited both for the entire project and at every moment. These resources can be 

either consumed as nonrenewable resources or used during an activity execution 

as renewable resources. As shown by Talbot (1982), a pair of renewable and 

nonrenewable resources can replace a doubly-constrained resource. 

Resource constrained project scheduling problems have many variants depending 

on the objective function used, randomness of problem parameters and many 

other assumptions. The following literature review is for the studies with project 

completion time minimization objective where parameters are assumed to be 
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nonnegative and integer valued. Blazewicz et al. (1983) show that the RCPSP is 

an NP-hard problem. 

Exact algorithms are proposed for the RCPSP under the presence of only 

renewable resources such as in the studies of Demeulemeester and Herroelen 

(1992), Brucker et al. (1998) and Mingozzi et al. (1998).  

Carlier and Rinnooy Kan (1982) present an algorithm that finds optimal solution 

for the single nonrenewable resource with progressive resource arrival, project 

completion time problem. They present an exact method and show that this 

problem is solvable in polynomial time. 

There are several reported exact solution approaches for the RCPSP with both 

renewable and nonrenewable resources such as the study of Chaleshtarti and 

Shadrokh (2014). 

For hard problem instances that cannot be solved optimally, Kolisch and 

Hartmann (2005) summarize a large number of heuristics that have been proposed 

in the literature. 

Since the RCPSP with their variants and extensions are abundantly studied, many 

survey and review studies are present in the literature. The most noteworthy of 

these studies are by Özdamar and Ulusoy (1995), Herroelen et al. (1998), Kolisch 

and Padman (2001), Hartmann and Briskorn (2010). 

All the literature given so far are for the problems with deterministic problem 

elements. Herroelen and Leus (2005) provides a comprehensive review of the 

RCPSP under uncertainty. 

2.4 Problems with Resource Constraints and Mode Decisions 

A generalization of the RCPSP is the multi-mode RCPSP (MRCPSP). In the 

MRCPS problems each activity can be executed in one of the several modes. 
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Talbot (1982) introduces the mathematical model of the MRCPSP based on the 

RCPSP model. 

Following the idea to enumerate partial schedules, exact approaches based on the 

Branch and Bound (B&B) method are presented by Kolisch et al. (1995), 

Sprecher et al. (1997), Sprecher and Drexl (1998). Hartmann and Drexl (1998) 

compare all available B&B methods presented so far and propose an alternative 

exact solution approach. Instead of using the B&B method, Zhu et al. (2006) use 

an exact branch and cut algorithm and present the integer linear programming 

(ILP) formulation of the problem. These studies assume the presence of both 

renewable and non-renewable resources with the objective of makespan 

minimization. Some noteworthy approximation studies are due to Jozefowska et 

al. (2001), Alcaraz et al. (2003) and Van Peteghem and Vanhoucke (2009).  

Sabzehparvar and Seyed-Hosseini (2008) present an exact model for a MRCPSP 

in which the minimal or maximal time lags between a pair of activities vary 

depending on the selected modes and there are only renewable resources. 

Azizoglu et al. (2015) study a MRCPSP with a single nonrenewable resource and 

prespecified resource releases throughout the project.  They formulate the problem 

as a pure integer programming model and develop linear programming relaxation-

based solution algorithms. Ozdamar and Ulusoy (1994) propose a heuristic 

approach named local constraint based analysis (LCBA) for the MRCPSP with a 

single nonrenewable resource. Weglarz et al. (2011) provides a comprehensive 

review on MRCPSP. 

 

To the best of our knowledge, the most closely related study to ours is the study 

by Azizoglu et al. (2015). We study the same problem, propose an alternate 

mathematical programming model and an implicit enumeration technique, namely 

a branch and bound algorithm. 
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CHAPTER 3 

 

 

PROBLEM DEFINITION 

 

We study a multi-mode project scheduling problem with a single nonrenewable 

resource.  We first define the problem and give its mixed integer linear 

programming model.  We compare the model with the previously reported model 

in the literature. A condition for the existence of a feasible schedule and two 

special cases of the problem are stated. Finally the properties of the optimal 

solutions that help to reduce the problem size are discussed. 

3.1 The Mathematical Model 

There are N non-preemptive non-dummy activities. Two dummy activities 0 and 

N+1 represent the project start and completion, respectively. There exist 

precedence relations between activities. IPi denotes the set of immediate 

predecessors of activity i. Activity i cannot start until all activities in IPi are 

completed. 

Activity i has mi modes. Mode j of activity i is defined by two parameters as 

follows. pij, a processing time of activity i at mode j and cij, a resource 

requirement amount of activity i at mode j. Modes are assumed to be non-

dominated, i.e., the longer the activity duration, the lower the resource 

consumption. 

Bt denotes the amount of the resource released at time t and the resource is 

consumed at activity completions.  If the resource released is not entirely used by 

the activities at some time unit, all remaining amount is transferred to the next 

time unit. 
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Our problem is studied by Azizoglu et.al. (2015). In our study, we reformulate the 

problem. For the sake of completeness, we present the mathematical model of  

Azizoglu et al. (2015). Their decision variables xijt use time intervals of resource 

releases. The resource release is defined by two parameters, the amount Bt and the 

time instant It. It refers to the time instant at which the tth payment is received. For 

instance, B2 is the amount of resource released at time instant I2 as illustrated in 

Figure 3.1 below.  

 

Figure 3.1 An Illustration of the Resource Releases 

xijt denotes the mode selection and interval for each activity where; 

xijt = {
1      if activity i is completed on mode j in time interval (It-1, It ]
0      otherwise                                                                                        

 

for i = 1, 2,…,N + 1 and  j = 1, 2,…, mi and t = 0, 1, 2,…,T 

CTi denotes the completion time of activity i (i = 1, 2,…,N+1) 

T is the number of time instants, i.e., number of resource releases. 

So, It-1 + 1 ≤ CTi whenever ∑ xijt = 1
 mi

j =1  

The objective is to minimize the project completion time. They use the completion 

time of the dummy activity N+1 as below:  

Minimize CTN+1 

Constraint set of the model is as follows: 

∑ ∑ xijt
T
t =0  = 1mi

j =1    i = 1, 2,…, N+1        (1) 

CTi  ≥ CTk  + ∑  p
ij

 mi
j =1 ∑ xijt

T
t =1  i = 1, 2,…, N+1; k ∈ IPi        (2) 
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∑ ∑  cij
 mi
j =1 ∑ xijr ≤ ∑ Br

t
r =1  t

r =1
N
i =1  t=0,1,2,…,T                                               (3) 

CTi  ≤ ∑  It
𝑇
t =1 ∑ xijt

 mi

j =1   i = 1, 2,…, N+1        (4) 

CTi  ≥ ∑ ( It-1 + 1)𝑇
t =1 ∑ xijt

 mi

j =1  i = 1, 2,…, N+1        (5) 

CT0 = 0              (6) 

CTi  ≥ 0    i = 1, 2,…, N+1        (7) 

xijt  ∈ {0, 1}          i = 1, 2,…, N+1; j = 1, 2,…, mi; t = 0, 1,…, T                           (8) 

 

Equation set (1) guarantees that each activity i is completed to exactly one mode 

and one time interval. Constraint sets (2) and (3) together satisfy the precedence 

relations and ensures that the total amount of resource released until time It is 

greater than or equal to the total amount spent till time It, respectively. Constraint 

sets (4) and (5) are to define the activity completion times. Equation (6) sets the 

completion time of activity 0 so the project starts at time zero. Constraint sets (7) 

and (8) are for non-negativity and for assignment variables, respectively. 

In our model, we re-define the decision variables with the hope of having a more 

efficient model in terms of the computation time. As the number of indexes of a 

decision variable increases, the complexity of the model solutions increases. 

Likewise, integer decision variables are likely to increase the complexity more 

than the continuous decision variables. Recognizing this fact, we aim to define xijt 

as a continuous decision variable, and guarantee that it takes on value 0 or 1, at 

optimality. Recall that xijt involves both the mode assignment and timing 

decisions.  We separate these two decisions via two sets of binary decision 

variables. In our notation, we use zijt instead of xijt and our idea is as stated below: 

𝑧𝑖𝑗𝑡 = 𝑥𝑖𝑡*𝑦𝑖𝑗 

where 

xit = {
1      if activity i is completed at time t        
0      otherwise                                                  

 

for i = 1, 2,…,N + 1 and  t = 0, 1, 2,…,TUB 
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where TUB is an upper bound on the optimal project completion time. 

 

yij = {
1      if activity i is completed on mode j        
0      otherwise                                                      

 

for i = 1, 2,…,N + 1 and  j = 1, 2,…,mi 

 

zijt = {
1      if activity i is completed on mode j at time t        
0      otherwise                                                                      

 

for i = 1, 2,…,N + 1 and  j = 1, 2,…, mi and t = 0, 1, 2,…, TUB 

Nonlinearity exists in the following definition of 𝑧𝑖𝑗𝑡 

𝑧𝑖𝑗𝑡 = 𝑥𝑖𝑡*𝑦𝑖𝑗 

We resolve this problem by using the following constraint set: 

xit+ y
ij
-1 ≤ zijt                      

for i = 1, 2,…, N+1 and  j = 1, 2,…, mi and t = 0, 1,…, TUB 

0 ≤  zijt ≤ 1 

The constraint set above ensures that zijt takes values of 0 or 1. For example, if 

second mode is selected for activity 1 and this activity is completed at time 9, then 

y
1,2 = 1 and x1,9 = 1 

Correspondingly, z1,2,9 has to take value 1 as depicted below: 

x1,9+ y
1,2-1 ≤ z1,2,9 

1 + 1 – 1 ≤z1,2,9   

Since z1,2,9 is defined for the interval [0, 1], z1,2,9 should be 1. 
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In all other cases where zijt cannot be 1, but can take infinitely many values in 

[0,1].  However, at optimality, it takes zero, due to our minimization concern. 

As we redefine a decision variable, the number of variables and the number of 

constraints are affected. We now present our mathematical model. 

Our objective is to minimize the project completion time and stated below: 

Minimize Z = ∑ tT
t=1 xN+1,t            

N+1 is the dummy activity to represent the project completion. So, when the 

objective function minimizes the task (activity) N+1’s completion time, project 

completion time is minimized. 

Our constraint set is given below: 

∑ xit = 1
𝑇𝑈𝐵
t =0    i = 1, 2,…, N+1        (1) 

∑ y
ij
 = 1

 mi

j =1    i = 1, 2,…, N+1         (2) 

∑ txkt
𝑇𝑈𝐵
t =0 + ∑  p

ij

 mi

j =1 y
ij
 ≤  ∑ txit

𝑇𝑈𝐵
t =0  i = 1, 2,…, N+1; k ∈ IPi        (3) 

∑ ∑  cij
 mi
j =1 ∑ zijr ≤ ∑ Br

t
r =1  t

r =1
N
i =1  t= 0, 1,…,TUB                                            (4) 

xit+ y
ij
-1 ≤ zijt                     i = 1, 2,…, N+1; j = 1, 2,…, mi ; t = 0, 1,…, TUB        (5) 

0 ≤  zijt ≤ 1  i = 1, 2,…, N+1; j = 1, 2,…,  mi ; t = 0, 1,…, TUB    (6) 

z000 = 0                   (7) 

xit  ∈ {0, 1}                i = 1, 2,…, N+1; t = 0, 1,…, TUB                              (8) 

y
ij

 ∈ {0, 1}                i = 1, 2,…, n+1; j = 1, 2,…, mi                                      (9) 

 

The model uses TUB as an upper bound on the project completion time, and an 

upper bound on the optimal completion time of each activity. The computation of 

TUB is discussed in Chapter 5. 
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Equation set (1) guarantees that each activity is completed exactly at one time unit 

and equation set (2) ensures that each activity is assigned to exactly one mode.  

Constraint set (3) satisfies the precedence relationships among the activities and 

states that activity i cannot start until its predecessor activity k in IPi is completed. 

Constraint set (4) ensures that for every time unit t, resource consumption of the 

completed activities cannot be greater than the total amount of resource released.  

Constraint set (6) sets bounds on the continuous variables. Equation (7) ensures 

that the project starts at time 0. Constraint sets (8) and (9) are for the assignment 

of variables xit and y
ij
, respectively.  

Constraint set (5) constructs the relationship between binary decision variables xit, 

y
ij
 and continuous decision variable zijt so that it ensures that the continuous 

variables take value 0 or 1.  This is due to the structure of our objective function 

that penalizes the  zijt values.  For general objective functions, the following two 

sets of constraints should be included. 

zijt ≤ xit   i = 1, 2,…, N+1;  j = 1, 2,…,  mi ; t = 0, 1,…, TUB         

zijt ≤ y
ij
  i = 1, 2,…, N+1;  j = 1, 2,…,  mi ; t = 0, 1,…, TUB         

3.2 Comparison with the Previously Reported Model 

The model presented by Azizoglu et.al. (2015) (hereafter referred to as Model A) 

has two sets of decision variables: binary xijt and continuous CTi. We define 

decision variables with two sets of two binary variables and one continuous 

decision variable with three indexes. Table 3.1 compares our model and the Model 

A in terms of the number of decision variables. In the table, N is the number of 

activities, M is an upper bound on the number of modes for any activity, TUB is an 

upper bound on the optimal project completion time (we assume that there are TUB 

time instants used by Model A) 
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Table 3.1 Number of Decision Variables in Two Models 

 

Number of Binary 

Variables 

Number of Continuous 

Variables 

Model A N x M x TUB N 

Our Model N x M + N x TUB N x M x TUB 

 

The binary decision variables complicate the problem in a sharper way than the 

continuous variables. Note from the table that our model includes N x M + N x 

TUB, i.e., N(M + TUB) binary variables, whereas the existing model includes N x M 

x TUB  

binary variables. M + TUB is lower than M x TUB when M and TUB are higher than 

1. The difference between M + TUB and M x TUB increases significantly with 

increases in M and TUB. Table 3.2 reports the number of decision variables for two 

problem instances: one with small sized with 20 tasks, 3 modes for each task and 

one with medium sized with 30 tasks, 4 modes for each task. 

Table 3.2 Number of Decision Variables for an Example Project 

 

 

 

N = 20, M = 3, TUB =155 N = 30, M = 4, TUB =234 

Binary 

Variables 

Continuous 

Variables 

Binary 

Variables 

Continuous 

Variables 

Model A 9300 20 28080 30 

Our Model 3160 9300 7140 28080 

 

Table 3.2 reveals that, as N increases TUB increases. Note that the number of 

binary variables of the existing model is 9300 in instance N=20 and 28080 in 

instance N=30, whereas in our model, it is 3160 in instance N=20 and 7140 in 

instance N=30. Hence, the increase in the number of binary variables is faster in 

the existing model than our model. 
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3.3 A Feasibility Condition of the Mathematical Model  

Our mathematical model returns a feasible solution if the following condition is 

satisfied: 

∑ ci1
n
i =1 ≤   ∑ Br

 TL
r =1    

where  ci1 is the lowest resource consumption for activity i  and TL is the time that 

the last resource unit is released.  ∑ ci1
n
i =1   is the total amount of resource required 

when all activities are assigned to their first modes. This solution is the one having 

the minimum total resource requirement. If the minimum total resource 

requirement is no bigger than the total amount released, then the problem has a 

feasible solution. Otherwise, the resulting problem is infeasible. 

3.4 Two Special Cases 

We now state two special solvable in polynomial time cases of our problem that 

are defined in Azizoglu et al. (2015) 

3.4.1 All Resource Units Are Released at Time Zero 

When all resource units are released at time zero, the problem reduces to the 

discrete time/cost trade-off budget problem.  Recall that the discrete time/cost 

trade-off budget problem is strongly NP-hard (De et al., 1997) so is our problem 

with scheduled resource releases. 

3.4.2 Each Activity Has a Single Mode 

When all activities have single mode, the problem reduces to the project 

completion time problem with a single nonrenewable resource that is solved by 

Carlier and Rinnooy Kan (1982). They introduce an exact algorithm and show that 

the problem is solvable in polynomial time.  

For the sake of completeness, we state the algorithm below: 
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 Algorithm Carlier and Rinnooy Kan (Algoritm C&R)  

 Step 1  Let 
ip  be time to perform activity i  for i=1, 2,...,N 

Find the latest activity completion times by the Critical Path 

Method (CPM). 

Form a cumulative resource release graph by plotting t  

versus tA , where 
tA  is the total amount of resource 

released till the end of the period t . 
 

Form a cumulative resource requirement graph by plotting 

t  versus , tR  where 
tR  is the total amount of resource 

required till the end of period t , when the activities 

complete at their latest completion times. 

     Step 2  Two cases arise: 

Case A: tt AR   for all t  (i.e., the cumulative resource  

requirement graph is beneath the cumulative resource 

release graph.) 

The latest start schedule is optimal. 

Case B: 
tt AR   for at least one t  

Find the optimal schedule by shifting the cumulative 

resource requirement graph ( t  versus tR ) to the right until 

all its tR  values lie on or below the tA values of the supply 

graph. 

An illustration of the C&R algorithm is presented on the example instance taken 

from Klastorin (2004) (see Figure 3.2). 
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Figure 3.2 The Example Network 

 

Table 3.3 gives the project data and the early and late activity completion times 

returned by the Critical Path Method (CPM). The critical path found by the CPM 

is 1–2–4 and has a completion time of 13 days. 

Table 3.3 The CPM Results for The Example Network 

Activity 
Processing 

Times 

Resource 

Requirement 

Early  

Start Time 

Late  

Completion Time 

1 6 6 0 6 

2 5 12 6 11 

3 3 10 6 11 

4 2 8 11 13 
 

The early start times are the earliest start times of the activities while late 

completion times are the latest possible activity completion time without delaying 

the minimum project completion time. The resource arrivals are assumed to be at 

times 1, 7, 12, 20 with respective amounts of 5, 3, 10, and 18. The cumulative 

resource profiles are constructed as required (the dotted line, Rt) based on the late 

completion times of activities and as supplied (the solid line, At) as resource 

releases as in Figure 3.3. According to the algorithm, cumulative resource 

requirement line must be shifted to the right until it is on or below the cumulative 

resource supplied line. When minimum shift necessary is applied, project 

completion time of the problem is minimized. 

3 

4 5 

2 

0 1 
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Figure 3.3 Graphical Illustration of the Algorithm for The Example Problem 

3.5 Reductions in the Problem Size 

Recall that the complexity of the mathematical model stems from the number of 

binary variables. The model resides T x N activity completion time variables, i.e., 

xit s and ∑  mi  
𝑛
i =1 mode assignment variables, i.e., y

ij
s. This follows, the 

complexity depends on the number of activities, number of activity modes and the 

magnitude of the activity completion times. In the following subchapters we 

propose some mechanisms for reducing the problem size by eliminating some of 

the decision variables. 

3.5.1 Defining a Range for the Activity Completion Times 

We try to reduce the number of binary variables by imposing lower and upper 

bounds on the activity completion times.  Our aim is to define the activity 

completion times in a range, hence reduce the number of xit variables used.  In 

doing so, we let 

xit  ∈ {0, 1}      i = 1, 2,…,N+1;  t = Ei,…,  Li   

where Ei is a lower bound on the optimal completion time of activity i and Li is an 

upper bound on the optimal completion time of activity i. 
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Finding Ei 

In this chapter, we present lower bounds on the completion times of the activities 

en route to reducing the size of the model.  

The Critical Path Method (CPM) finds the earliest and latest start and finish times 

for each activity in the absence of resource constraints. Since our decision 

variables are defined for the completion times, the earliest finish time (EFi) from 

the CPM can be used by setting the processing times to their minimum possible 

values. The CPM parameters are then calculated. 

EFi: Earliest finish time of an activity i delivered by the CPM when the activity 

durations are taken from the modes with minimum durations. 

 

The CPM assumes unlimited resource availabilities. In order to make bounds 

stronger, we modify the earliest finish times so as to include the resource 

availability. The modified earliest finish time is as stated below: 

Note that ci1 is the minimum resource that can be consumed by activity i. Pi 

denotes the set of all, not only immediate, predecessors of activity i. The earliest 

time that ∑ ck1+ci1k ∈ Pi
 units of resource becomes available gives another lower 

bound on the activity completion times.  We let this time be ETi. 

Hence an overall lower bound on the completion time of activity i is Ei where 

Ei = Max{EFi , ETi}   

Modified earliest finish times, Ei values are used as to define the lower limits of 

the indices in our objective function and in constraint sets (1), (3), (4), (5) and (6). 

Finding  Li 

To find an upper bound on the optimal completion time of activity i, we use an 

upper bound on the optimal project completion time.  We let TUB be an upper 

bound on the optimal project completion time. To find TUB we evaluate the 

following four promising feasible schedules.  

i. Minimum activity time schedule 

For each activity i, use pi 1 and ci 1 where the first mode of an activity is the 

one having minimum processing time and using the maximum resource. 
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Apply Algorithm C&R to find the minimum project time schedule and let 

Z1 be the objective function value of the resulting schedule. 

ii. Minimum resource usage schedule 

For each activity i, use pi m(i) and ci m(i) where the mi
th mode of an activity is 

the one having maximum processing time and using the minimum 

resource. 

 

Apply Algorithm C&R to find the minimum project time schedule and let 

Z2 be the objective function value of the resulting schedule. 

iii. Median activity time schedule(s) 

Case 1. mi
 is odd, set k = mi / 2, round up k to the nearest integer 

For each activity i, use pi k and ci k  

 

Case 2. mi
 is even, set k = mi / 2 

For each activity i, use pi k and ci k  

 

Apply Algorithm C&R to find the minimum project time schedule and let 

Z3 be the objective function value of the resulting schedule.  

 

Case 3. mi
 is odd, set k = mi / 2, round down k to the nearest integer 

For each activity i, use pi k and ci k  

 

Case 4. mi
 is even, set k = mi / 2 

For each activity i, use pi k and ci k  

 

Apply Algorithm C&R to find the minimum project time schedule and let 

Z4 be the objective function value of the resulting schedule. 
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Note that minimum activity time schedule may be promising as the activities are 

likely to be completed early due to their low processing times. Minimum resource 

usage schedule may be also promising as the activities are not likely to wait for 

the resource releases. The disadvantages of using minimum activity time and 

minimum resource usage schedules are their high resource and long processing 

requirements, respectively. Median time and median resource schedule(s) 

somewhat dispels those disadvantages by consuming lower resource than the 

minimum activity time schedule and taking shorter activity time than minimum 

resource usage schedule. 

As an overall upper bound on the optimal project completion time, TUB, we use 

min{Z1, Z2, Z3, Z4}. 

TUB is used to define upper bounds on the activity completion times, UBis as 

follows: 

Apply CPM by setting pi = pi, 1. Let TCPM be the resulting project completion time 

and LCi be the latest completion time of activity i. Note that LCi is the latest time 

that activity i completes without exceeding the project completion time,  

LCi + TUB - TCPM is the latest time that activity i completes without exceeding TUB. 

As we are using the lowest activity times, LCi + TUB - TCPM is an upper bound on 

the optimal completion time of activity i. 

Hence an upper bound on the completion time of activity i is Li where Li = LCi + 

TUB - TCPM 

3.5.2 Mode Eliminations 

We now introduce the mode elimination rules for our makespan minimization 

problem. We aim to reduce the search size by eliminating some modes that cannot 

lead to an optimal or a feasible solution.  
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Long Mode Eliminations 

We first state a theorem for the elimination of the long modes that would lead to 

non-promising solutions. 

Consider an activity k performed at mode j with its original processing time and 

resource consumption, pk, j and ck, j, respectively. For all other activities we use pi 1 

and ci m(i), ∀ i ≠ k where 1st mode of an activity is the one with minimum 

processing times and last ( mi
th ) mode of an activity is the one with minimum 

resource requirement.  Let T be the project completion time when Algorithm C&R 

is applied to this single mode instance. 

Through the following theorem we show that if T > TUB then activity k cannot be 

assigned to mode j in any optimal solution. 

Theorem 1: If T> TUB then activity k cannot be assigned to mode j in any optimal 

solution. 

Proof: Note that the single mode problem takes the activity times at smallest 

possible values and resource requirements at their lowest possible levels. This 

follows the resulting project completion time T is a lower bound on the optimal 

project completion time when activity i is assigned to mode j. If T> TUB where 

TUB is the project completion time of any feasible solution, then activity i cannot 

be assigned to mode j in any optimal solution. □ 

Furthermore, if TUB is the deadline of the project then in any feasible solution 

activity i cannot be assigned to mode j. 

Using the result of the above Theorem 1, mode j of activity i is eliminated, 

however, not necessarily the modes of activity i with longer processing times. 

This is due to the fact that the longer activities may be processed earlier due to 

their lower resource requirements. In the Theorem 2 below, we will state the 

condition that we can eliminate more than one mode: 
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For activity k, we use pi k and ck  m(k) and for each activity i, pi 1 and ci m(i), ∀ i ≠ k. 

Let T be the project completion time when Algorithm C&R is applied to this 

single mode instance. Through the following theorem we show that if T > TUB 

then activity k cannot be assigned to modes j through mi in any optimal solution. 

Theorem 2: If T> TUB, then activity k cannot be assigned to modes j through mi in 

any optimal solution. 

The proof is omitted as it directly follows that of Theorem 1. 

High Resource Mode Eliminations 

We now state a theorem for the elimination of the high resource usage modes that 

would lead to infeasible solutions. 

 

We let Si be the set of activities whose latest completion times are earlier than the 

latest completion time of activity i. 

Accordingly, Si = {k | Lk ≤ Li} 

Theorem 3: If 𝑐𝑖,𝑗 + ∑ 𝑐𝑘,𝑚𝑘𝑘∈𝑆𝑖
>  ∑  𝐵𝑡

 𝐿𝑖
𝑡=1  then activity i cannot be assigned to 

modes j, j-1, j-2,…1. 

Proof: Note that Si contains all activities that should finish before the latest 

completion time of activity i, Li. Hence the total resource consumption by the 

activities in Si and activity i should not exceed the total amount of resource 

consumed by the end of time Li. This follows; once activity i is assigned to its rth 

mode, the following constraint should hold. 

𝑐𝑖,𝑟 + ∑ ∑ 𝑐𝑘,𝑗𝑋𝑘,𝑗𝑗𝑘∈𝑆𝑖
≤ ∑  𝐵𝑡

 𝐿𝑖
𝑡=1        

Note that ∑ ∑ 𝑐𝑘,𝑗𝑋𝑘,𝑗𝑗𝑘∈𝑆𝑖
≥ ∑ 𝑐𝑘,𝑚𝑘𝑘∈𝑆𝑖

 if 𝑐𝑖,𝑟 + ∑ 𝑐𝑘,𝑚𝑘𝑘∈𝑆𝑖
>  ∑  𝐵𝑡

 𝐿𝑖
𝑡=1  then 

activity i cannot be assigned to mode r without violating feasibility. 
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If 𝑐𝑖,𝑟 + ∑ ∑ 𝑐𝑘,𝑗𝑋𝑘,𝑗𝑗𝑘∈𝑆𝑖
≤ ∑  𝑅𝑡

 𝐿𝐶𝑖
𝑡=1   cannot be satisfied by mode r then it cannot 

be satisfied by any mode with higher resource consumption, i.e., the modes 1 

through r should be eliminated. □ 

For the sake of completeness, we restate our mathematical model that uses the 

completion time bounds and mode elimination rules. Note that, mi is modified if a 

mode of task i is eliminated due to our mode elimination mechanisms. 

 

xit = {
1      if activity i is completed at time t        
0      otherwise                                                  

 

for i = 1, 2,…,N + 1 and  t = Ei, Ei+1,…, Li 

 

yij = {
1      if activity i is completed on mode j        
0      otherwise                                                      

 

for i = 1, 2,…,N + 1 and  j = 1, 2,…,mi 

 

zijt = {
1      if activity i is completed on mode j at time t        
0      otherwise                                                                      

 

for i = 1, 2,…,N + 1 and  j = 1, 2,…, mi and t = Ei, Ei+1,…, Li 

 

Minimize Z = ∑ tT
t=1 xN+1,t            

Subject to 

∑ xit = 1𝐿𝑖
t =𝐸𝑖

   i = 1, 2,…, N+1        (1) 

∑ y
ij
 = 1

 mi

j =1    i = 1, 2,…, N+1         (2) 

∑ txkt
𝐿𝑘
t =𝐸𝑘

+ ∑  p
ij

 mi

j =1 y
ij
 ≤  ∑ txit

𝐿𝑖
t =𝐸𝑖

 i = 1, 2,…, N+1; k ∈ IPi        (3) 

∑ ∑  cij
 mi
j =1 ∑ zijr ≤ ∑ Br

t
r =0  

min{𝑡,𝐿𝑖} 
r =𝐸𝑖

N
i =1  t = 0, 1,…, TUB                                          (4) 

xit+ y
ij
-1 ≤ zijt                i = 1, 2,…, N+1; j = 1, 2,…, mi ; t = Ei, Ei+1,…, Li        (5) 

0 ≤  zijt ≤ 1         i = 1, 2,…, N+1;  j = 1, 2,…,  mi ; t = Ei, Ei+1,…, Li    (6) 

z000 = 0                   (7) 
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xit  ∈ {0, 1}            i = 1, 2,…, N+1; t = Ei, Ei+1,…, Li                              (8) 

y
ij
 ∈ {0, 1}            i = 1, 2,…, n+1; j = 1, 2,…, mi                                          (9) 

To see the effect of the problem size reduction mechanisms on the number of 

decision variables, we take an example instance from the project network with 20 

tasks. Consider a single task, Task 11 which has initially 4 modes. In our updated 

model, one of the task modes is eliminated by the mode elimination mechanisms.  

 

 Table 3.4 The Changes in The Number of Decision Variables 

 

TUB for this particular instance is 114 time units. Table 3.4 shows the changes in 

the lower and upper bound on the completion time of Task 11. 

So, the number of integer decision variables decreases from 114 to 75 and the 

number of continuous decision variables decreases to 225 from 456, when the 

bounds and mode elimination mechanisms are involved. Note that, these decreases 

are only for a single task of a small-sized project. The improvements due to these 

mechanisms would be much more significant when all tasks and larger-sized 

projects are considered. 

 

 

 

 

 

 

 The Lower 

Bound 

The 

Upper 

Bound 

Number 

of Modes 

Number 

of x11, t 

Number of 

z11,j,t 

Our Model without 

Reduction 

0 114 4 114 456 

Our Model with 

Reduction 

11 86 3 75 225 
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CHAPTER 4  

 

 

THE BRANCH AND BOUND ALGORITHM 

 

 

 

The problem of minimizing project completion with mode decisions and arbitrary 

resource release times reduces to the discrete time/cost deadline problem, when all 

resource units are released at time zero. The discrete time/cost deadline problem is 

NP-hard in the strong sense (see De et al. (1997)), so is our problem with arbitrary 

resource release times. This complexity result justifies the use of an implicit 

enumeration technique. We present a branch and bound algorithm to find the 

optimal mode assignments and the optimal project completion time. 

We first present our branching scheme. 

We start with the first activity, that is the dummy activity that represents for the 

project start. At each level of the branch and bound tree, we select a task. At level 

i, we consider task i and generate mi nodes: each representing the assignment of 

task i to one of the modes. 

Figure 4.1 illustrates our branching scheme: 
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Figure 4.1 The BAB Branching Scheme 

A node at the BAB tree represents a partial solution with a set of tasks with 

assigned modes. For example, in the BAB tree depicted in Figure 4.1, the shaded 

selection represents the assignment of task 1, 2 and 3 to modes 1, 2 and 1, 

respectively. At each node at level i, mi+1 nodes are emanating for representing an 

assignment of a mode to task i+1. 

We implicitly evaluate m1 partial solutions at level 1, m1 x m2 partial solutions at 

level 2 and so ∏ 𝑚𝑖
𝑟
𝑖=1  partial solutions at level i. Hence, at the final level N, we 

implicitly enumerate all feasible ∑ ∏ 𝑚𝑖
𝑘
𝑖=1

𝑁−1
𝑘=1  partial solutions (nodes) and 

∏ 𝑚𝑖
𝑁
𝑖=1  complete solutions.  

Our algorithm starts with an initial upper bound found through the following 

procedures that we used in Chapter 3 for problem size reductions. We let UB to 

denote the initial upper bound of the BAB algorithm. 

 



35 

 

To find UB we evaluate the following four promising feasible schedules.  

i. Minimum activity time schedule 

For each activity i, use pi 1 and ci 1 where the first mode of an activity is the 

one having minimum processing time and using the maximum resource. 

Apply Algorithm C&R to find the minimum project time schedule and let 

Z1 be the objective function value of the resulting schedule. 

 

ii. Minimum resource usage schedule 

For each activity i, use pi m(i) and ci m(i) where the mi
th mode of an activity is 

the one having maximum processing time and using the minimum 

resource. 

Apply Algorithm C&R to find the minimum project time schedule and let 

Z2 be the objective function value of the resulting schedule. 

 

iii. Median activity time schedule(s) 

Case 1. mi
 is odd, set k = mi / 2, round up k to the nearest integer 

For each activity i, use pi k and ci k  

 

Case 2. mi
 is even, set k = mi / 2 

For each activity i, use pi k and ci k  

Apply Algorithm C&R to find the minimum project time schedule and let 

Z3 be the objective function value of the resulting schedule.  

 

Case 3. mi
 is odd, set k = mi / 2, round down k to the nearest integer 

For each activity i, use pi k and ci k  

 

Case 4. mi
 is even, set k = mi / 2 

For each activity i, use pi k and ci k  
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Apply Algorithm C&R to find the minimum project time schedule and let 

Z4 be the objective function value of the resulting schedule. 

UB is the minimum objective function value of the feasible solutions above, i.e., 

UB = min{Z1, Z2, Z3, Z4}. 

We update the upper bound in two ways: 

i. At some intermediate nodes, by assigning the smallest processing time 

mode to all unassigned tasks. 

ii. At the final level, whenever a complete solution with a smaller project 

completion time is reached. 

We eliminate the modes by using the results of our optimality properties, i.e., 

whenever the total minimum resource requirement is higher than the remaining 

total resource releases. Formally, we fathom the node representing the assignment 

of mode j to task k, if 

 ck, j + ∑ ci,1 ≥  ∑ Bt − ∑ ci, j

k-1

i∈ S

T

t =1

N

i ∉S

xi, j 

where S is the set of assigned tasks, i.e., S = {1, 2,…, j−1} and ci,1 is the 

minimum resource consumption mode of activity i. 

For each uneliminated mode, we calculate a lower bound on the optimal project 

completion time. We eliminate the node if the lower bound is no smaller than the 

best known upper bound. 

If all nodes are eliminated at any level, then we backtrack to the previous level. 

We terminate whenever we reach the root node. 

We now explain our lower bounds. Our lower bounds are found by using the 

Carlier and Rinnooy Kan’s (C&R) Algorithm. For the node with set of assigned  
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tasks, S and unassigned tasks, 𝑆̅, we let 

 c𝑖 =  ∑ ci, j𝑖 xi, j  if   i ∈ S 

 p
i

=  ∑ p
i, j𝑖 xi, j  if   i ∈ S 

 c𝑖 =  ci, 𝑚𝑖 
   if   i ∈ 𝑆̅  

 p
𝑖

=  p
i,1 

   if   i ∈ 𝑆̅ 

where first and mi
th (last) modes of activity i are the minimum processing time and 

minimum resource consumption modes, respectively. 

Note that pi and ci, for i ∈ 𝑆̅, is a lower bound on the respective processing time 

and resource requirement of task i. Hence an optimal project completion time 

found using lower bounds on the processing time and resource requirements, 

provides a lower bound on the actual optimal project completion time. The 

optimal project completion time over any defined set of task modes is found by 

using the C&R Algorithm. 

Example 4.1: Consider an example instance whose precedence relations are given 

in Table 4.1 and illustrated by AoN diagram as in Figure 4.2. 

Table 4.1   The Example Project Data 

Activity 
Immediate 

Predecessors 

Number of 

modes 

1 - 1 

2 1 2 

3 1 3 

4 2 4 

5 2 1 

6 4, 5 2 

7 3,5 4 

8 6, 7 1 
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Figure 4.2 AoN Representation of Example Project 

According to the number of modes for each task, processing times and resource 

consumptions are generated and given below, in Tables 4.2 and 4.3, respectively: 

Table 4.2   The Processing Times of the Activities 

Tasks Mode 1 Mode 

2 

Mode 

3 

Mode 

4 

1 0 0 0 0 

2 4 5 0 0 

3 6 9 10 0 

4 3 5 7 9 

5 2 0 0 0 

6 1 6 0 0 

7 2 3 4 10 

8 0 0 0 0 
 

Table 4.3   The Resource Consumptions of the Activities 

Tasks Mode 1 Mode 

2 

Mode 

3 

Mode 

4 

1 0 0 0 0 

2 3 2 0 0 

3 8 5 2 0 

4 10 9 5 4 

5 5 0 0 0 

6 10 2 0 0 

7 7 5 3 1 

8 0 0 0 0 
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There are two resource releases at time 2 and time 10 with the amounts of 10 and 

15 units, respectively, i.e., B2=10 and B10=15. 

Assume a partial solution depicted in Figure 4.3 where first mode is assigned to 

Task 2 (and first mode is assigned to Task 1). We call this partial solution as node 

1.1. The cumulative resource supply line of node 1.1 is Bt. The original and 

shifted cumulative resource requirement profiles are denoted as dotted and straight 

Rt lines, respectively, as in Figure 4.3. We will refer to Figures 4.3 and 4.4, for 

some future illustrations. 

 

Figure 4.3 The BAB Tree Illustration of Node 1.1 

 

Task 1

Task 2

Task 3

Task 4

Task N

1

1 2

 2

 1 2  

21
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Figure 4.4 The Resource Profiles at Node 1.1 

After finding the lower bound of node 1.1, we then proceed to the next level for 

the mode assignment of Task 2. Node 1.1.2 represents the assignment of second 

mode to Task 2. 

 

Figure 4.5 The BAB Tree Illustration of Node 1.1.2 
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Bold lines in Figure 4.5 shows the partial schedule where modes 1, 1 and 2 are 

assigned to tasks 1, 2 and 3, respectively. We use the actual processing times and 

resource consumptions of Tasks 1, 2 and 3 according to their respective mode 

assignments. For all other not-yet-assigned tasks, we use the minimum resource 

consumptions and processing times. So, our input to the C&R algorithm is as in 

Table 4.4. 

Table 4.4   Input for the C&R Algorithm 

Activitiy 1 2 3 4* 5* 6* 7* 8* 

Mode 1 1 2 1 1 1 1 1 

Process time 0 4 9 3 2 1 2 0 

Resource 

consumption 
0 3 5 4 5 2 1 0 

*Not-yet assigned tasks 

Using these data, the C&R algorithm finds the cumulative resource supply profile 

and the cumulative resource requirement profile of given activity modes. The 

profiles are shown in Figure 4.6. Recall that, the cumulative resource requirement 

line should be on or below the cumulative resource supply line. If not, it should be 

shifted to the right till it is on or below the cumulative resource supply line. Note 

that, in our example, Rt is originally not below Bt and should be shifted to the right 

by one unit to satisfy this. The completion time of this shifted optimal schedule, 

hence a lower bound of our current node, node 1.1.2, is 12 time units.  

Note that, for node 1.1, p3 and c3 are at their minimum possible values, 6 and 2, 

respectively. When we proceed node 1.1.2, both p3 and c3 take their actual 

respective values of 9 and 5. These changes in timing and amount of cumulative 

resource requirement makes Rt of node 1.1 in Figure 4.4 significantly different 

than Rt of node 1.1.2 in Figure 4.6. We next discuss that, if one of p3 or c3 stays 

the same, the C&R algorithm may not be applied explicitly to arrive at a lower 

bound. 
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Figure 4.6 Illustration of the C&R Algorithm for Example 4.1 

Note that at any node, a lower bound is found by setting all tasks to their smallest 

processing time and lowest resource consumption modes. Having known this 

solution, a lower bound on the cost of assigning task i to its shortest time, hence 

highest resource consumption mode, does not require the use of the C&R 

algorithm. Only simple shifting may help to find a lower bound, i.e., the resource 

requirement profile is updated by increasing the resource consumption of task i by 

(ci, 1 − ci, 𝑚𝑖
) resource units. 

In Figure 4.7, consider the node where we assign the highest resource 

consumption, -thereby smallest processing time- mode, i.e., the first mode, to 

Task 3. We now find the lower bound of that node without applying the C&R 

algorithm. 
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Figure 4.7 BAB Tree Illustration of the Next Node of Example 4.1 

Cumulative resource requirement profile of the first two tasks with assigned 

modes {1, 1} and the remaining tasks with dummy modes is constructed and 

illustrated by Rt in Figure 4.4. So, p3 = 2 and c3 = 2 are used for the Task 3 while 

constructing the resource requirement profile. Now we are at the 1st mode node of 

Task 3 and change the resource consumption and process times with the actual 

parameters as p3 = 2 and c3 = 8. Due to the fact that processing time stays the 

same, the timings in the resource requirement profile does not change. The only 

change occurs at the resource requirement of Task 3 that affects the cumulative 

resource requirement of the tasks 3 through N. Thus, the resource requirement 

increases by 6 units, since  c3, 1 − c3, 𝑚3
 is 6 as of time 9. We know the timings 

from the existing profile of node 1.1 and this profile is by 6 units from time 9 as 

illustrated with the dotted line in Figure 4.8. Since the shifted line is now partially 

above the cumulative resource supply line, it has to be shifted to the right until it 

is fully on or below the Bt line. One may see from Figure 4.8 that, one unit of shift 

is sufficient to ensure feasibility, hence the optimality. Solid Rt line shows the 

shifted line. Hence, we find the lower bound as 12 by simply shifting the existing 

resource profile. 
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 21
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Figure 4.8 Illustration of Lower Bound Calculation of the New Node 

Moreover, finding a feasible solution where each task is assigned to its highest 

resource consumption,-thereby smallest processing time- mode requires only 

updating the resource requirement profile by (cmax, i − cmin, i) units, for each task i. 

As we find the lower bound of the BAB node with Task 3 and mode1, we can 

obtain the complete solution with minimum processing time modes by shifting an 

existing cumulative resource requirement profile. 

The following expression gives a lower bound on the optimal project completion 

time when task i is assigned to mode j: 

LBi, j = Max { 0,  pi, j – pi, 1 – (TSi + A) } + LF+A where  

TSi = Total slack time when task i is assigned to its minimum processing time 

mode 

A = Total amount of shift over the earliest completion time of the late start 

schedule due to resource usages 
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LF = The completion time of the late start schedule of the previous node which 

uses pi, 1 

Note that, (TSi + A) is the amount that the processing time of task i can be 

increased without increasing the total project completion time.  

The actual amount of increase over the minimum processing time is (pi, j – pi, 1) 

time units. If (pi, j – pi, 1) is greater than (TSi + A), there will be (pi, j – pi, 1) – (TSi + 

A) units of increase in the completion time of the late start schedule. Otherwise, 

the increase in the processing time value does not affect the overall project 

completion time. To illustrate, we use node 1.1.2 as in Figure 4.6. On the figure, 

we show the lower bound computation using only our total slack equation. 

Recall that, we need the latest finish time and the total slack time of Task 3 that 

are calculated for node 1.1. We also make use of the cumulative resource 

requirement profile of node 1.1.  

For node 1.1, we calculate the total slack times for all activities as follows: 

Total slacki = 𝐿𝐹𝑖 − 𝐸𝑆𝑖 −  𝑝𝑖 

TS3 = 𝐿𝐹3 −  𝐸𝑆3 −  𝑝3 = 6 – 0 – 6 =0 

We now illustrate the computation of A. 

Let A1 be the amount of required shift of the cumulative resource requirement 

profile of node 1.1. When the resource requirement of Task 3 is updated according 

to its respective value in new level, the cumulative resource requirement profile of 

node 1.1 is also updated. A is the amount of required shifts of the updated 

cumulative resource requirement profile of node 1.1. A is either equal to A1, if A1 is 

sufficient to maintain the resource profile feasibility for the updated resource 

profile, or greater than A1, if some extra shift is needed. 
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For our example instance, A1 is 3 units (see Figure 4.4). To find A, we update the 

cumulative resource requirement profile of node 1.1, by using the resource 

requirement of Mode 2 of Task 3, in place of its minimum resource requirement. 

The updated cumulative resource requirement profile is shown by the dotted line 

Rt, in Figure 4.9 below: 

 

Figure 4.9 The Updated Resource Profile of Node 1.1 Before the Shift 

As Figure 4.9 implies, four units of shift is necessary, i.e., A = 4. The Rt is shifted 

by 4 units as shown in Figure 4.10. Now, all the components of our lower bound 

expression are available; 

LB3, 2 = Max { 0,  p3, 2 – p3, 1 – (TS3 + A) } + LF + A 

LB3, 2 = Max { 0,  9 – 6 – (0 + 4) } + 8 + 4 = 12 

Note that, we find the same solution of Example 4.1 without referring to the C&R 

algorithm. However, we cannot guarantee on exact solution since we only 

consider  

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
u

m
u

la
ti

v
e 

R
es

o
u

rc
es

Time

  

  

Resource 

requirement

of task 3 is 

updated



47 

 

the total slack time of the current activity. In latter levels of the BAB tree, total 

slack times of the predecessors of the current activity will be also determinant on 

total amount of shift. That is why, what we suggest is as a lower bound on the 

exact solution of the partial schedule, which may give the exact solution 

depending on a particular instance. Our example instance is one of those instances 

where the resulting lower bound coincides to an optimal solution. 

 

Figure 4.10 The Updated Resource Profile of Node 1.1 After the Shift 

At level i, for task i, while assigning to mode j, the following path is followed: 

LBi = lower bound found for the tasks from 1, 2,…,i-1 with fixed modes and the 

others at (pi, 1, ci, mi) 

LB1
i, j = lower bound found by C&R algorithm 

LB2
i, j = Max { 0,  pi, j – pi, 1 – (TSi + A) } + LF+A 
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 If j = 1, then apply simple shifting to find LB1
i, 1 

If LB1
i, j ≥ UB, then fathom the node that represents assigning mode 

1 to task i 

 If j ≥ 2, then find LB2
i, j 

If LB2
i, j ≥ UB, then fathom the node else find LB1

i, j 

   If LB1
i, j ≥ UB, then fathom the node 

At some modes, we update UB by simply assigning all tasks to their shortest time 

modes, i.e., by shifting the resource profile to the right. Let UB2 be the resulting 

project completion time value. 

 If UB2 = LB, then fathom the node by assigning tasks i+1 through N to 

their first modes. 

 If UB2 < UB, then update UB and continue without fathoming. 
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CHAPTER 5 

 

 

COMPUTATIONAL EXPERIMENTS 

    

 

 

We design an experiment to test the performance of our solution approaches, i.e., 

mathematical model and branch and bound algorithm along with the bounding and 

mode elimination procedures. 

In this chapter, we first give our data generation scheme and then discuss the 

results of our computational study. While analyzing the results, we first state the 

performance measures and then present the results of our preliminary and main 

experiments. 

5.1 Data Generation 

The structures of the project networks directly affect the difficulty of the solution. 

For example, a project with a serial flow, i.e., each activity has a single 

predecessor and single successor, (see Figure 5.1), is solved, trivially. The 

network complexity is an important factor of many computational experiments. 

 

Figure 5.1 AoN Representation of the Example Serial Flow Project 
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Two measures are commonly used to define the complexity of the project 

networks. The first one is the coefficient of network complexity (CNC), 

introduced by Pascoe (1966) and simply defined as the number of arcs divided by 

the number of nodes. Thus, the higher the CNC, the more connected the network. 

Hence, for a fixed number of activities, an increase in CNC increases the 

complexity of the solutions. 

Second commonly used network complexity measure is the complexity index 

(CI). The need for another measure arises from the possibility to construct 

networks of equal number of arcs and nodes but varying degrees of difficulty. So, 

along with CNC, we use CI in order to better discriminate project network 

complexity. CI is introduced by Bein et al.(1992) and is defined as the number of 

node duplications needed to transform an Activity on Arc (AoA) network into a 

series or parallel network. It basically measures the closeness of a network to a 

series-parallel one. The related studies so far have shown that an increase in CI, 

increases the network complexity and the solution time. 

We take our precedence networks from Akkan et al. (2005). These networks have 

already specified CNC and CI values. We select 9 networks from Akkan et al.’s 

(2005) data set. The parameters of the selected networks are as stated below: 

Table 5.1 The Network Parameters 

Network 

Name 

N CI CNC 

N1 10 0 2 

N2 20 0 2 

N3 30 0 2 

N4 35 5 2 

N5 40 13 2 

N6 50 13 5 

N7 60 13 5 

N8 85 13 5 

N9 100 13 6 
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We generate the other parameters as explained below: 

Number of modes: The number of modes (mi) for each activity (i) is generated 

from a discrete uniform distribution between 1 and 4. We set the lower limit to 1, 

as some activities may have only one option for processing. We set the upper limit 

to 4, as usually there may not be too many options of realizing an activity. 

Consider an excavation activity for a construction project. The alternative ways 

for performing this activity is usually limited to outsourcing from two different 

agencies or putting extra capital or using own resources. 

Mode parameters: Resource consumption and activity processing times are 

generated from a discrete uniform distribution between 1 and 20 with no 

repetition. Activity durations and resource consumptions are sorted in an 

ascending order and a descending order, respectively, so that the modes are non-

dominated. 

Upper Bound on the Optimal Project Completion Time, TUB: Note that setting an 

appropriate upper bound on the optimal project completion time plays an 

important role on the complexity of the mathematical model. The constraint sets 

(4) through (6) and the decision variables xit are directly affected by the 

magnitude of TUB. If TUB is set too big, then there will be unnecessarily many 

constraints. If it is set too small, there may be infeasibilities. By recognizing this 

trade-off, we make use of the upper bound proposed in Chapter 3.6.1. Recall that 

to find TUB, we evaluate the following four feasible schedules: minimum activity 

time, minimum resource usage and median activity time schedules each with 

objective function values Z1, Z2, Z3, Z4. Thus;  

TUB = Minimum {Z1, Z2, Z3, Z4} 

For each instance, we find TUB and set T to TUB. Hence, the deadline differs for 

each instance depending on the minimum feasible schedule found. 

For BAB algorithm, we do not want T as a constraint, so we use nonbinding T 

value. We first sum the maximum processing times of all tasks for all 10 
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instances. Maximum of these values is summed with the latest resource release 

time. So, we ensure that T is big enough that it is not a constraint on the solutions. 

Resource releases: Resource release has two components: resource release amount 

and resource release time.  

Resource release amount: Recall that, in the absence of resource constraints, the 

problem can be solved by the CPM. Hence, the amount of available resources 

directly affects the complexity of solutions. To observe this effect, we construct 

three different resource profiles as large, average and small. We know that the 

first mode of an activity i, has the minimum processing time pi,1 and maximum 

resource consumption, ci,1. Correspondingly, mi, the last mode generated, has the 

maximum processing time pi, m(i) and minimum resource consumption ci, m(i).  Let 

bmax and bmin be the total resource requirements if all activities are executed in 

their maximum and minimum resource consumption modes, respectively.   

bmax =∑ 𝑐𝑖,1
𝑁
𝑖=1    

bmin =∑ 𝑐𝑖,𝑚𝑖
𝑁
𝑖=1  

Using bmax and bmin values, we find the total resource release amount for each 

profile as below: 

baverage= 
𝑏𝑚𝑎𝑥 + 𝑏𝑚𝑖𝑛

2
 

blarge=  
𝑏𝑚𝑎𝑥 + 𝑏𝑎𝑣𝑒𝑟𝑎𝑔𝑒

2
 

bsmall=  
𝑏𝑚𝑖𝑛 + 𝑏𝑎𝑣𝑒𝑟𝑎𝑔𝑒

2
 

Resource release times: When we consider our nonrenewable resource as money, 

we can expect that resource requirement of initial phases is greater than the final 

phases as many real life projects require the capital investment that of to initiate. 

To quantify these initial phases, we use a lower bound found by the Critical Path 

Method (CPM). Under unlimited resource assumption, CPM finds the completion 
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 time of a project with single mode activities. So, we solve the CPM for the first 

activity modes (with minimum processing time and zero resource consumption). 

The resulting project completion time is an obvious lower bound for the optimal 

project completion time, CPMLBpmin. Assume 5 release times, t1,2,3,4,5 (t1 is the 

beginning of the project) that resource releases are to be scheduled. When the 

resulting time points are not integers, we simply round down as stated below: 

t1=0 

ti = ti-1 +⌊ 
𝐶𝑃𝑀𝐿𝐵𝑝𝑚𝑖𝑛

5
⌋  for i = 2, 3, 4, 5 

For instance, when baverage is 880 and CPMLBpmin is 74, the resources are released 

as in Figure 5.2 below: 

 

Figure 5.2 Illustration of Resource Releases for the Example Instance 

We set a termination time limit of 2 hours, since our problem does not require 

immediate solutions as in many operational level problems like machine 

scheduling. 

We solve the mathematical models with IBM ILOG CPLEX 12.6. The BAB 

algorithm is coded in C++ using Microsoft Visual Studio 2012. All the 

experiments are conducted on a computer with Intel(R) Core(TM) i7-4790 CPU 

@ 3.60 GHz, 8 GB RAM and Windows 10. 
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5.2 Performance Measures 

In this subchapter, we present our performance measures that we use to evaluate 

the performance of our mathematical model and BAB algorithm, along with their 

modifications. 

For the mathematical model, we use three performance measures: 

1) Average Central Processing Unit (CPU) Time (in seconds) 

2) Maximum Central Processing Unit (CPU) Time (in seconds) 

3) Number of Unsolved Instances, out of 10, in our termination limit of 2 hours. 

We use five performance measures for the BAB algorithm: 

1) Average Central Processing Unit (CPU) Time (in seconds) 

2) Maximum Central Processing Unit (CPU) Time (in seconds) 

3) Average Number of Nodes 

4) Maximum Number of Nodes 

5) Number of Unsolved Instances, out of 10, in our termination limit of 2 hours. 

5.3 Preliminary Experiments 

We perform some preliminary tests to see the effect of some mechanisms on the 

performance of the solution approaches. 

5.3.1 Mathematical Model 

We aim to see the effects of the bounds on the activity completion times and mode 

elimination properties on the performance of the mathematical model. Basically, 

we want to see whether the extra effort spent to prepare and test the mechanisms 

is lower than the amount of reductions they would bring. In other words, we want  
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to see whether it is worth to use these mechanisms.  

For the preliminary experiments, we select N = 10 activities, and three different 

resource profiles: large, average and small. We generate 10 instances for each 

resource profile, hence solve a total of 30 instances. 

We test the following four versions of the mathematical model. 

M1: original model (without bounds and elimination mechanisms) 

M2: model with bounds but without elimination mechanisms 

M3: model with elimination mechanisms and without bounds 

M4: model with bounds and elimination mechanisms 

Table 5.2 reports on the solution times of the model versions for large, medium 

and small resource release amounts. The table includes the average and maximum 

solution times of 10 problem instances and the number of instances that remain 

unsolved after 2 hours. 

Table 5.2 The CPU Times (in Seconds) of the Mathematical Model 

 N = 10 

 Large Medium Small 

Avg Max Avg Max Avg Max 

M1 0.55 1.30 2.57 8.19 8.15 34.30 

M2 0.47 1.13 1.78 8.72 5.45 16.22 

M3 0.55 1.27 2.62 14.70 7.63 23.41 

M4 0.37 0.86 1.01 4.47 3.22 7.58 

 

The table reveals that incorporating the bounds on the activity completion times 

significantly improves the performance of the model. Note that for large resource 

profile case, the average CPU time reduces to 0.47 from 0.55 seconds with the 
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incorporation of the bounds. These are more significant for medium and small 

profiles where the CPU times are higher. For medium resource profiles, the 

average CPU time reduces to 1.78 from 2.57 seconds, whereas the reduction is to 

5.45 from 8.15 seconds for small resource profile case. On the other hand, the 

mode elimination mechanisms are not that effective. When the resource profiles 

are large and medium, i.e., the problem instances are easier to solve, it is not 

worth to incorporate the mode elimination mechanisms. However, when the 

instances are harder to solve, i.e., the resource profiles are small, then there is a 

slight reduction in the CPU times (the average CPU time reduces to 7.63 from 

8.15 seconds). We obtain the most significant reduction when the bounds and 

mode elimination mechanisms are used together. The CPU times reduce to 0.37, 

1.01 and 3.22 seconds from 0.55, 2.57 and 8.15 seconds for large, medium and 

small resource profiles, respectively. 

Using those results, we decide to perform our main experiment with larger-sized 

problem instances using the bounds and mode elimination mechanisms. 

5.3.2 Branch and Bound Algorithm 

We design eight versions of the branch and bound algorithm to see the effects of 

the lower bound on the complexity of the solutions. 

We use the following notation to state the versions of the branch and bound 

algorithm. 

S=Set of assigned tasks 

𝑆̅=Set of unassigned tasks 

The BAB versions are as stated below: 
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1. BAB1 = BAB where the lower bounds are found as follows: 

 c𝑖 =  ∑ ci, j𝑖 xi, j  if   i ∈ S  

 p
i

=  ∑ p
i, j𝑖 xi, j  if   i ∈ S 

 c𝑖 =  0   if   i ∈ 𝑆̅  

 p
𝑖

=  0   if   i ∈ 𝑆̅ 

2. BAB2 = BAB where the lower bounds are found by using Carlier and 

Rinnooy Kan’s (C&R) algorithm. For the node with set of assigned tasks, 

S and unassigned tasks, 𝑆̅, we let 

 c𝑖 =  ∑ ci, j𝑖 xi, j  if   i ∈ S  

 p
i

=  ∑ p
i, j𝑖 xi, j  if   i ∈ S 

 c𝑖 =  ci, 𝑚𝑖 
   if   i ∈ 𝑆̅  

 p
𝑖

=  p
i,1 

   if   i ∈ 𝑆̅ 

where first and mi
th modes of activity i are the minimum processing time 

and minimum resource consumption modes, respectively. 

3. BAB3 = BAB algorithm that uses the following lower bound for activity i 

and mode j: 

LBi, j = LF+A 

where LF is the earliest completion time of the late start schedule and A is 

the total shift of the earliest completion time of the late start schedule. 
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4. BAB4 = BAB that uses the following lower bound for activity i and mode 

j: 

LBi, j = Max { 0,  pi, j – pi, 1 – (TSi + A) } + LF+A 

The other four versions of the BAB algorithm, BAB5 through BAB8 look for the 

effect of the following local optimality check on the performance. 

Recall that finding a partial schedule is possible where the task at the next level is 

assigned to its highest resource consumption and smallest processing time mode 

by further shifting the resource requirement profile by (cmax, i − cmin, i) units, for 

the new task i. Using the similar approach, we can find a feasible solution where 

each task is assigned to its highest resource consumption,-thereby smallest 

processing time- mode by only shifting the resource requirement profile by (cmax, i 

− cmin, i) units, for each task i. In the next four BAB versions, we check the 

feasibility at some particular levels by updating the resource profile. A feasible 

solution is the optimal solution for that particular node. For example, in Figure 5.3 

mode assignments of tasks 1, 2 and 3 are done. Before proceeding to Task 4, all 

other tasks are assigned to their first modes. If the resulting assignment is feasible, 

then corresponding assignment is optimal for the current node since minimum 

processing times are used. Hence, the total number of nodes decreases. Note that, 

once we cannot find a feasible solution, the check is useless and kind of creating 

an additional computational burden. 
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Figure 5.3 Illustration of an Example Node from BAB Tree  

5. BAB5 = BAB that checks the local optimality starting from the 90%th level 

of the BAB tree. For example, for N=30, it starts checking the local 

optimality from the 27th level and checks the levels 27, 28, 29. 

6. BAB6 = BAB that checks the local optimality only for the last one-third of 

the BAB tree. For example, for N=30, it starts checking the local 

optimality starting from the 20th level. So it starts checking earlier than the 

BAB5. 

7. BAB7 = BAB that checks the local optimality starting from the first one-

third level of the BAB tree.  

8. BAB8 = BAB that checks the local optimality for all levels. 

Tables 5.3 and 5.4 give the CPU times and the average number of nodes of each 

version, respectively. 

 

 

 

 

Task 1
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Task 4

Task N

1

1 2

2

 1 2  

1

1
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Table 5.3 The CPU Times of the BAB Versions 

N = 30 

 Large Medium Small 

Avg Max Avg Max Avg Max 

BAB1 1481.84 5559.92 1470.48 4104.94 890.02 2874.47 

BAB2 0.17 1.14 1.86 12.28 3.02 10.33 

BAB3 0.22 1.69 2.64 17.54 4.27 14.53 

BAB4 0.12 0.78 1.49 9.54 2.66 8.43 

BAB5 0.12 0.81 1.50 9.55 2.66 8.45 

BAB6 0.13 0.92 1.73 11.27 3.01 9.86 

BAB7 0.13 0.95 1.76 11.28 3.08 10.01 

BAB8 0.14 0.95 1.77 11.30 3.11 10.14 

 

Table 5.4 The Average Number of Nodes of The BAB Versions 

N = 30 

 Large Medium Small 

BAB1 128832943 135005088 82509833 

BAB2 12833 163139 267593 

BAB3 12665 162898 266786 

BAB4 6387 85747 156414 

BAB5 6377 85734 156401 

BAB6 6378 85735 156401 

BAB7 6378 85735 156401 

BAB8 6378 85735 156401 

 

When the resource consumptions and processing times are changed to the 

minimum ones from zero, the average CPU times drastically decrease from 

1481.84 to 0.17, 1470.48 to 1.86, 890.02 to 3.02 seconds, for large, medium and 

small resource profiles, respectively. When the lower bound calculation with the 

earliest completion time of the late start schedule and the total shift of it is 

incorporated, as in BAB3, the average CPU times increase to 0.17 from 0.22, 1.86 
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from 2.64, 3.02 from 4.27 seconds, even though the total number of nodes 

decrease from 12833.40 

to 12665.30, 163139.70 to 162898.10, 267593.30 to 266786.50 for large, medium 

and small resource profiles, respectively. Note that, the additional effort spent to 

calculate the lower bound does not help to improve the performance of the 

algorithm. 

When the local optimal checks are included in the last 90% of the levels of the 

BAB tree, the average CPU times stay as same at 0.12 and 2.66 seconds for the 

large and small resource profiles, respectively. On the other hand, the average 

number of nodes significantly decrease from 6387 to 6377 and 156414 to 156401 

for the large and small resource profiles, respectively. For the medium resource 

profile, the average CPU time slightly increases from 1.49 to 1.50 seconds. 

For the last three BAB versions, i.e., BAB6, BAB7 and BAB8, the average number 

of nodes is the same with that of BAB5. It implies that all the node eliminations 

due to attaining the local optimal are in the last 90% of the levels of the BAB tree. 

So the additional computation effort spent for more frequent checks, i.e., at each 

level in BAB8, does not justify. Likewise, the average CPU times increase from 

0.12 to 0.13, 1.50 to 1.73, 2.66 to 3.01as the check level changes from 90% to 

66% for the large, medium and small resource profiles, respectively. The average 

CPU times become worse off, when the checks are done at each level, as the 

results of BAB8 indicate. 

Using those results, we decide to perform our main experiment with larger-sized 

problem instances using the BAB5 version since BAB5 is likely to lead to more 

drastic decreases in the number of nodes as the problem size increases. 

Considering the significant decrease in the average number nodes for all profiles, 

the slight increase in the average CPU time of the medium resource profile is 

negligible.  
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We also observe from the results that the resource profiles are significant in terms 

of the solution times. When the resource profiles are small, i.e., the resources are 

scarce, the resource distribution problem becomes harder to solve. On the other 

hand, when the resource profiles are large, the performance of the lower bounds 

significantly increases. 

5.4 Main Experiments 

5.4.1 Mathematical Model 

Through preliminary runs on small sized instances, we observe that using mode 

eliminations and activity completion time bounds significantly improves the 

performance of the model. Hence we perform our main runs on larger sized 

instances, using those mechanisms. For three different resource profiles and 

project networks and ten instances for each, we test the performance of our 

mathematical model on 90 problem instances. We report the results for N=10, 20 

and 30 in Tables 5.5 and 5.6. Table 5.5 gives the number of instances that could 

not solved in our termination limit of 2 hours. We perform our main experiments 

for the mathematical model using M4, the model with bounds and mode 

elimination mechanisms. 

Table 5.5 Number of Unsolved Instances out of 10 in 2 Hours 

N Large Medium Small 

10 0 0 0 

20 0 2 5 

30 9 10 10 

 

To see the effect of the termination time on the number of solved instances, we 

increase the time limit to 20 hours. After 20 hours, we end up with a single 

unsolved instance for medium resource profile and three unsolved instances for 

small resource profile. Hence, increasing the limit above 2 hours would not be 

much effective for the guarantee of optimality. 
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Table 5.6 gives the average and maximum CPU times, only for the instances that 

can be solved in 2 hours. 

Table 5.6 The Average and Maximum CPU Times (in Seconds) of the Solved 

Instances 

N Large Medium Small 

Avg Max Avg Max Avg Max 

10 0.37 0.86 1.01 4.47 3.22 7.58 

20 5.62 12.56 14.48 37.38 334.57 1430.14 

30 17.18 17.18 - - - -    

 

Note from Tables 5.5 and 5.6 that the performance of the model significantly 

deteriorates with the increase in the problem size. This is due to the increasing 

number of decision variables for mode assignments and completion times. 

When N is increased from 10 to 20, the average CPU times increase from 0.37 to 

5.62, 1.01 to 14.48 and 3.22 to 334.57 seconds, for large, medium and small 

resource profiles, respectively. When N becomes 30, the increases are more 

drastic, and majority of instances cannot be solved in 2 hours. Those results 

altogether verify the exponential nature of the model. 

We also observe from the results that the resource profiles play significant role in 

the difficulty of the attaining optimal solutions. The reductions in the amount of 

resource releases adds to the complexity of the model. Note that for N=20, when 

the resource profiles are large, medium and small, the respective average CPU 

times are 5.62, 14.48 and 334.57 seconds. 

When the resource profiles are small, i.e., the resources are scarce, the resource 

distribution problem becomes hard to solve one. On the other hand, when the 

resource profiles are large, the decisions related with resource distribution are 

taken much easily as the problem approaches to unlimited resource case. 
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5.4.2 Branch and Bound Algorithm 

We now discuss the performance of our branch and bound algorithm. We test the 

performance of our algorithm on 450 problem instances. We report the results in 

Tables 5.7, 5.8 and 5.9 for the large, medium and small resource profiles, 

respectively. The numbers within the parentheses denote the number of solved 

instances over 10 instances.  

Table 5.7 The Average and Maximum CPU Times (in Seconds) of the BAB 

Solutions with the Large Resource Profile 

 

* The termination limit of 2 hours is used for the unsolved instances  

Table 5.8 The Average and Maximum CPU Times (in Seconds) of the BAB 

Solutions with the Medium Resource Profile 

 

* The termination limit of 2 hours is used for the unsolved instances  

Average Max Average Max

30 0.13 0.93 6378 46061

35 1.10 5.06 35497 188627

40 18.10 95.42 426460 2553897

50 28.78 128.44 667720 3062342

60 (8) 2728.02 7200.00* 24494879 103423573

85 (7) 3358.59 7200.00* 14460183 58345064

100 (6) 3781.82 7200.00* 12912836 31257975

Network 

Size

CPU Times Nodes

Average Max Average Max

30 1.71 11.05 85735.50 558956.00

35 36.74 174.91 1495045.10 7986640.00

40 71.10 468.66 2575641.70 16957072.00

50 (7) 3704.54 7200.00* 47424312.29 113210258.00

60 (3) 5501.20 7200.00* 52176245.67 114562411.00

Network 

Size

CPU Times Nodes
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Table 5.9 The Average and Maximum CPU Times (in Seconds) of the BAB 

Solutions with the Small Resource Profile 

 

For all resource profiles, the increases in the number of tasks significantly affects 

the performance of the algorithm. When N=30, all instances could be solved in 

about 3 seconds. When N=50, some instances for medium profile and almost all 

instances for small profile could not be solved in 2 hours. 

Another significant factor that affects the performance is the resource profile. 

When the resource profile is large, the instances are much easier to solve. This is 

due to the fact that the resource requirements are not playing a major role in mode 

selection and usually the modes having higher requirements are selected easily. 

That is why, mode selection process is not as involved. When the resource profile 

is small, then there is a big trade-off between time and resource requirements of 

the activities. Therefore, the mode selection process that affects the complexity is 

hard. 

Note from the tables that for a moderate size problem with 35 tasks, the average 

CPU times are 1.1, 36.74 and 74.16 seconds, for large, medium and small 

resource profiles. When there are 50 tasks, all instances could be solved in almost 

2 minutes (the maximum CPU time is 128.44 seconds) for large resource profile. 

For the medium resource profile, we observe CPU times approaching to 2 hours 

(the maximum CPU time for the solves instances is 6210.80 seconds) for 7 

instances and 3 instances remain unsolved in 2 hours. 

Average Max Average Max

30 3.06 9.85 156411.50 508678.00

35 74.16 352.45 3049657.80 13642512.00

40 99.37 610.20 4022007.30 24643248.00

Network 

Size

CPU Times Nodes
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For large resource profiles, an optimal solution can be obtained to majority of the 

instances when the number of tasks is 100 or below. This limit is 50 tasks when 

the resource profile is medium and 40 tasks when the resource profile is small. 

When the resource profiles are medium or small, for large sized problem 

instances, our suggestion would be to decompose the project network into 

subnetworks and solve each network to optimality by the branch and bound 

algorithm. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

In this thesis, we consider a project scheduling problem with a single 

nonrenewable resource. We assume that the resource is released in scheduled 

times at specified quantities and the resource is consumed at activity completions. 

The activities can be processed at different modes where a mode is defined by a 

processing time and a resource requirement amount. Our problem is to select the 

modes and timings of the activities so as to minimize the project completion time.  

We formulate the problem as a mixed integer linear programming model. To 

reduce the number of integer variables we introduce bounds on the optimal values 

of the activity completion times and develop some mode elimination mechanisms. 

The results of our experiments have revealed that the complexity of the model 

solutions highly depends on the number of integer variables and the reduction 

mechanisms are very effective in reducing this complexity. Moreover, resource 

profiles play a significant role in the complexity of the solutions. When the 

resources are scarce, the resource distribution problem becomes hard to solve one. 

On the other hand, when the resource profiles are large, the decisions related with 

resource distribution are taken much easily as the problem approaches to 

unlimited resource case. We report that the complexity of the solution 

significantly increases, as the available amount of resource decreases. The project  
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networks with 30 activities cannot be solved in our time limits even with the large 

resource profile which points out the need for more efficient optimization 

algorithm. Recognizing this fact, we present our branch and bound algorithm 

(BAB). 

The results of our preliminary experiments show that the lower bounding 

mechanisms have significant effect on the performance of our BAB algorithm. 

The results of our main experiments reveal that the increases in the number of 

tasks significantly affects the performance of the algorithm for all resource 

profiles. Another significant factor that affects the performance is the resource 

profile. For large resource profiles, an optimal solution can be obtained in two 

hours for the majority of the instances when the number of tasks is 100 or below. 

This limit is 50 and 40 tasks when the resource profile is medium and small, 

respectively. Thus, we conclude that the scarcity of resource significantly 

increases the solution complexity. 

In this thesis, we present exact solution methods to the problem. In the future, 

heuristic methods that find good solutions in reasonable times can be studied. The 

heuristic procedures may decompose the problem into subproblems where each 

subproblem is solved by our branch and bound algorithm. Moreover, beam search 

algorithms that take their spirit from our branch and bound algorithm might be 

worth-developing. 

The future research may consider the generalization of our mixed integer linear 

programming model to all resource constrained programs including the renewable 

resources. The idea of connecting the mode decision and completion time 

variables using a continuous decision variable may be extended to all objective 

functions. 
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Another noteworthy research area might be to analyze the stochastic nature of the 

model with random resource release profile. Generating robust schedules that 

minimize the negative effects of uncertain events like late resource arrivals and 

few resource quantities may be worth-studying.   

In our study, we ignore the time value of the nonrenewable resource. 

Incorporating the time value, hence dealing with discounted cash flows, might be 

an interesting future research direction. 
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