
PARALLEL COMPUTATION OF THE DIAGONAL OF THE INVERSE OF A
SPARSE MATRIX

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EDONA FASLLIJA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2017

Approval of the thesis:

PARALLEL COMPUTATION OF THE DIAGONAL OF THE INVERSE OF A
SPARSE MATRIX

submitted by EDONA FASLLIJA in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Murat Manguoğlu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. Bülent Karasözen
Department of Mathematics, METU

Assoc. Prof. Dr. Murat Manguoğlu
Computer Engineering Department, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering Department, METU

Assist. Prof. Dr. Kayhan İmre
Computer Engineering Department, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: EDONA FASLLIJA

Signature:

v

ABSTRACT

PARALLEL COMPUTATION OF THE DIAGONAL OF THE INVERSE OF

A SPARSE MATRIX

Fasllija, Edona

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Murat Manguoğlu

July 2017, 75 pages

We consider the parallel computation of the diagonal of the inverse of a large sparse

matrix. This problem is critical in many applications such as quantum mechanics and

uncertainty quantification, where a subset of the entries of the inverse matrix, usually

the diagonal, is required. A straightforward approach involves inverting the matrix

explicitly and extracting the diagonal of the computed inverse. This approach,

however, almost always is too costly for large sparse matrices since the inverse is

often dense. In this thesis, we develop a novel parallel algorithm for computing the

diagonal of the inverse based on the parallel DS factorization and approximate

inverse techniques combined with a special structural dropping strategy step that

exploits the peculiar sparsity pattern of the S matrix. We analyze the parallel

scalability and performance of the proposed algorithm using sparse matrices from

various applications.

Keywords: sparse matrices, inverse, diagonal, SPIKE

vi

ÖZ

SEYREK BİR MATRİSİN TERSİNİN DİAGONALİNİN PARALEL OLARAK

HESAPLANMASI

Fasllija, Edona

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Murat Manguoğlu

Temmuz 2017, 75 sayfa

Bu tezde büyük seyrek bir matrisin diagonalinin paralel olarak hesaplanmasını ele

alıyoruz. Bu problem, bir matrisin tersinin elemanlarının bir alt kümesinin hesap-

lanmasını gerektiren kuantum mekaniği ve belirsizlik ölçümü gibi birçok uygulama

için büyük önem arz etmektedir. Bu problemin en temel ele alış biçimi matrisin ter-

sinin açıkça hesaplanmasının ardından diagonalinin alınmasıdır. Seyrek matrislerin

tersinin yoğun olduğunu düşünürsek, bu yöntem bilgisayımsal olarak çok maliyetli-

dir. Bu tezde seyrek bir matrisinin diagonalini hesaplamak için paralel DS ayrıştırma

ve yaklaşık ters hesaplama metodlarını kullanan yeni paralel bir algoritma

geliştiriyoruz. Bunun yanında, S matrisin özel yapısından faydalanan yeni yapısal

atma stratejisini kullanıyoruz. Gelisştirdiğimiz algoritmanın farklı uygulamalardan

seyrek matrisler kullanarak paralel ölçeklenebilirliğini ve performansını inceliyoruz.

Anahtar Kelimeler: seyrek matris, ters, diagonal, SPIKE

Dedikuar Eartës. E lindur me dashuri. E rritur me dashuri. E dashur gjithmonë.

vii

viii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my thesis advisor Assoc. Prof. Dr. Murat

Manguoğlu for patiently steering me into the right direction during the research and

writing of this thesis. Without his valuable support and guidance, this study could not

have been successfully conducted.

Secondly, I would like to acknowledge the members of the committee, Prof. Dr. Halit

Oğuztüzün, Prof. Dr. Bülent Karasözen, Assist. Prof. Emre Akbaş and Assist. Prof.

Kayhan İmre, to whom I am gratefully indebted to for their very valuable comments

on this thesis.

My sincere thanks go to my work colleagues at the EU Projects Office of TUBITAK

for providing me with continuous support and encouragement throughout my years

of study.

Finally, I would like to express my profound gratitude to my family, my parents Astrit

and Liljana Fasllija, and my sister Ela Fasllija for supporting me throughout all my

studies. Last but not least, my most sincere thanks go to my spouse Ardi Xhelilaj,

and our little daughter Earta Xhelilaj, for providing me with unfailing support. This

accomplishment would not have been possible without them.

The work of this thesis has been partially led under the support of METU BAP-08-

11-2011-128 grant, on the Solution of Linear Systems on Parallel Computers.

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiv

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Applications of Computing the Diagonal of the Inverse of a
Matrix . 2

1.2 Applications of Computing the Diagonal of a Matrix Func-
tion . 3

1.3 Applications of Computing the Trace of the Inverse of a Ma-
trix . 4

1.4 Applications of Computing the Trace of a matrix function . . 5

2 ALGORITHMS FOR COMPUTING THE DIAGONAL OF THE MA-
TRIX INVERSE . 7

ix

3 COMPUTING THE DIAGONAL OF THE INVERSE USING DS
FACTORIZATION . 17

4 EXPERIMENTAL WORK . 29

4.1 Experimental Framework 29

4.2 Approximate Inverse Algorithms Experimental Results . . . 32

4.2.1 Effect of Stopping Tolerance on Number of Itera-
tions and Time 32

4.2.2 Effect of Initial Guess on Number of Iterations and
Time . 41

4.2.3 Effect of Dropping Strategy on Number of Itera-
tions and Time 46

4.3 The Parallel Results using the Proposed Algorithm 50

4.3.1 Comparison of the Straightforward algorithm to
the Proposed Algorithm 51

4.3.2 The parallel scalability 52

5 CONCLUSIONS . 55

REFERENCES . 57

APPENDICES

A . 61

A.1 Stopping Tolerance Tests Results 61

A.2 Initial Guess Tests Results 64

A.3 Dropping Strategy Test Results 67

A.4 Diagonal of Inverse Computation using DS Factorization . . 70

x

LIST OF TABLES

TABLES

Table 4.1 Input Matrices for Approximate Inverse Algorithms 30

Table 4.2 Input Matrices for Parallel Tests 50

Table 4.3 Solution Time (ms) and Speedup for the proposed algorithm com-
pared to the straightforward algorithm 51

Table A.1 Effect of Stopping Tolerance . 61

Table A.2 Effect of Initial Guess. 64

Table A.3 Effect of Dropping Strategy. 67

xi

LIST OF FIGURES

FIGURES

Figure 3.1 Sparsity Pattern Plots of S and S�1 obtained from gr_30_30 23

Figure 4.1 Sparsity Pattern Plots of gr_30_30 31

Figure 4.2 Sparsity Pattern Plots of dw256B 32

Figure 4.3 Number of Iterations for stopping tolerances for GMR 33

Figure 4.4 Number of Iterations for stopping tolerances for GSD 33

Figure 4.5 Number of iterations for stopping tolerances for CMR 34

Figure 4.6 Number of iterations for GMR, GSD, CMR for 10�5 stopping tol-
erance . 34

Figure 4.7 Number of Iterations for GMR, GSD, CMR for 10

�10 stopping
tolerance . 35

Figure 4.8 Number of Iterations for GMR, GSD, CMR for 10

�15 stopping
tolerance . 35

Figure 4.9 Time for stopping tolerances for GMR 36

Figure 4.10 Time for stopping tolerances for GSD 36

Figure 4.11 Time for stopping tolerances for CMR 36

Figure 4.12 Time for GMR, GSD, and CMR for stopping tolerance 10

�5 37

Figure 4.13 Time for GMR, GSD, and CMR for stopping tolerance 10

�10 . . . 37

Figure 4.14 Time for GMR, GSD, and CMR for stopping tolerance 10

�15 . . . 38

Figure 4.15 Error History Through Iterations for mcca 38

Figure 4.16 Error History Through Iterations for cage7 39

Figure 4.17 Error History Through Iterations for mesh1e1 39

Figure 4.18 Error History Through Iterations for cage6 39

Figure 4.19 Error History Through Iterations for Trefethen150 40

xii

Figure 4.20 Error History Through Iterations for mesh1em6 40

Figure 4.21 Error History Through Iterations for bfwb62 40

Figure 4.22 Iteration Numbers for initial guesses for GMR 42

Figure 4.23 Iteration Numbers for initial guesses for GSD 42

Figure 4.24 Iteration Numbers for initial guesses for CMR 42

Figure 4.25 Time for initial guesses for GMR 43

Figure 4.26 Time for initial guesses for GSD 43

Figure 4.27 Time for initial guesses for CMR 44

Figure 4.28 Iteration No. for GMR , GSD, CMR - M0 = ↵AT 44

Figure 4.29 Iteration No. for GMR , GSD, CMR - M0 = ↵I 45

Figure 4.30 Iteration No. for GMR , GSD, CMR - M0 = 0 45

Figure 4.31 Time for GMR , GSD, CMR - M0 = ↵AT 45

Figure 4.32 Time for GMR , GSD, CMR - M0 = ↵I 46

Figure 4.33 Time for GMR , GSD, CMR- M0 = 0 46

Figure 4.34 Number of Iterations for dropping strategies for GMR 47

Figure 4.35 Time for dropping strategies GMR 47

Figure 4.36 Time for dropping strategies GSD 48

Figure 4.37 Time for dropping strategies CMR 48

Figure 4.38 Time for numerical dropping for GMR, GSD,CMR 49

Figure 4.39 Time for structural dropping for GMR, GSD,CMR 49

Figure 4.40 Time for hybrid dropping for GMR, GSD,CMR 49

Figure 4.41 Execution time(ms) for the Straightfroward algorithm vs Proposed
Algorithm . 51

Figure 4.42 Execution Time . 52

Figure 4.43 Parallel running time as the number of threads change. 53

Figure 4.44 Duration of the three phases of the algorithm for bcsstk16 53

Figure 4.45 Duration of the three phases of the algorithm for saylr4 54

xiii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Computation of the diagonal of the inverse 22

Algorithm 2 Global Minimal Residual Descent Algorithm 24

Algorithm 3 Global Minimal Residual Descent Algorithm 24

Algorithm 4 Global Steepest Descent Algorithm 25

Algorithm 5 Column-Based Minimum Residual Iteration Algorithm 25

xiv

LIST OF ABBREVIATIONS

GMR Global Minimum Iteration Algorithm
GSD Global Steepest Descent Algorithm
CMR Column-Based Minimum Iteration Algorithm

xv

xvi

CHAPTER 1

INTRODUCTION

The computation of the diagonal of the inverse of a matrix is crucial to many appli-
cations, examples of which include quantum mechanics, Uncertainty Quantification,
Density Functional Theory, and Dynamic Mean Field theory. In this thesis, we aim
to develop a novel algorithm for computing the diagonal of the inverse of a sparse
matrix.

Given a large, sparse nonsingular matrix, A 2 Cn⇥n, we are concerned about finding
the vector that contains the same entries as the diagonal of the inverse of the matrix
A, A�1, which we denote by diag(A�1

).

Finding diag(A�1
) is considered challenging and computationally expensive since

A�1 is usually dense even if A itself is sparse. This makes it impractical to invert the
matrix explicitly and then extract the diagonal of the computed inverse.

This study is structured into two parts. In the first part, we start by introducing the
problem of computing the diagonal of the inverse of a large sparse matrix. We study
various academic and industry applications where the problem of the matrix inverse
diagonal computation arises. We next examine a number of existing algorithms and
techniques that have been developed for handling this problem. In the second part,
we describe the details of the methodology by which the study was conducted. Ex-
perimental results and implementation considerations are presented in the second part
followed by a summary of the findings and and conclusions drawn by the results of
the experiments.

1

1.1 Applications of Computing the Diagonal of the Inverse of a Matrix

Throughout this study, we focus on the case where only a specific set of entries of the
inverse of a sparse matrix, namely the diagonal, is needed. This problem is essential
to, among others, the Dynamic Mean-Field Theory, the Density Function Theory
in electronic structure calculations, and Uncertainty Quantification, which are also
the motivation for the work of this thesis. The problem of finding the diagonal of
the inverse mainly arises in the aforementioned applications in the following four
different forms:

1. finding the diagonal of a matrix inverse, diag(inv(A)),

2. finding the diagonal of a matrix function f(A), diag(f(A)),

3. finding the trace of a matrix inverse , Tr(inv(A)), or

4. or finding the trace of a matrix function f(A), Tr(f(A)).

The following sections go through example applications for diag(inv(A)) first, and
then give an insight on each of the other forms of the problem.

DMFT

Dynamic Mean Field Theory is a powerful tool in physics for studying quantum
many-body systems, and more specifically in the analysis of lattice models of cor-
related electron systems. The problem of computing the diagonal of the inverse of
a matrix arises in DMFT, specifically in quantum mechanical studies of highly cor-
related particles and the related Non Equilibrium Green’s Function approach. The
diagonal of a “Green’s function”, which solves Dyson’s equation in a self-consistent
way, is required to be computed in DMFT.[12]

The Dyson’s equation that needs to be solved repeatedly and for many frenquencies
,!’s, is the following:

G(!) =
⇥
(! + µ)I � V �

X
(!) + T

⇤�1
,

where µ is the chemical potential , V is the trap potential ,
P

(!) is the local self-
energy , and T is the hopping matrix. [12] In these settings, only the diagonal of
G(!) is of interest.

2

Uncertainty Quantification

Another important application where the problem of computing entries of a matrix
inverse also arises, is uncertainty quantification. Uncertainty Quantification for Risk
Analysis holds a key role for many different applications of Science, Engineering
and Business, such as Geology, Portfolio Management, Astrophysics and Signal Pro-
cessing, etc.[2] The computational challenge faced in these applications consists of
analysing very large amounts of data, and answering one of the most important ques-
tions in Data analysis for Risk Management , i.e. the degree of confidence in the
quality of data. The computation of the main diagonal of the inverse covariance ma-
trices is of extreme importance to Uncertainty quantification for risk analysis, since
these entries of the matrix inverse provide a very valuable measure for determining
the extend to which one can confide in the quality of data.

In [26], a class of covariance functions, namely the piecewise polynomial covari-
ance functions with compact support, is presented. Compact Support implies that the
covariance for points with a distance greater than a certain treshhold between them
becomes zero, hence leading to a sparse covariance matrix.

Denoting by A = [aij] the covariance matrix that is computed by the such a function,
by ↵ the compact treshold, and by � the smootheness of the function, we obtain the
following:

aij =

8
<

:
(1� r

↵)
� if r  ↵

0 if r > ↵
(1.1)

where r denotes the Euclidean distance between points i and j given as r(i, j) =p
i2 + j2.

Given that the covariance of points that have a distance greater than ↵ betwwen them
is equal to 0, the covariance matrix resulting from the expression above is sparse.

1.2 Applications of Computing the Diagonal of a Matrix Function

The problem of computing the diagonal of a matrix function is of paramount impor-
tance in Density Functional Theory (DFT). In this context, Density Matrices point to
the key properties of the atomic systems. The computation or the approximation of

3

the diagonals of the density matrices is critical because the diagonal entries of these
matrices represent the charge densities of the electronic distribution. There are three
main categories of the approaches to this problem,

1. The traditional way of computing the diagonal by calculating the eigenstates
associated with the energy levels. These algorithms are computationally ex-
pensive and have the disadvantage of scaling cubically with respect to the size
of the Hamiltionian matrix of the system.

2. The O(N) methods described in [13] which rely on the decaying property of the
density matrices and scale linealry with respect to the numbers of atoms.

3. Another approach that estimates the density matrix by expanding the Fermi-
Dirac operator of the Hamiltonian Matrix on a basis of Chebyshev polynomials.

In the context of the third approach, the density matrix denoted by D can be expressed
in the following form as

D = f(H) (1.2)

, where H denotes the abovementioned Hamiltonian matrix, and the function f is the
Fermi-Dirac operator for which the following expression holds:

f(✏) =
1

1 + exp(

✏�µ
K

B

T)
(1.3)

.

Here KB,µ,T denote the Boltzmann’s constant, the chemical potential, and the tem-
perature respectively.

The problem described above eventually evolves into the computation of the diagonal
of the density matrix D, otherwise formulated as diag(f(H)).

1.3 Applications of Computing the Trace of the Inverse of a Matrix

Applications of the problem of computing the trace of the inverse of a matrix include
the Generalized Cross-Validation approach used in Image Restoration. In this con-
text, regularized solutions of least-squares problems are to be solved and a certain
regularization parameter ⇢ is to be estimated. In the Cross-Validation approach to

4

this problem, the parameter ⇢ is chosen so that it minimizes the Generalized Cross
Validation function given as :

GV C =

kI � A(⇢)gk2
tr(I � A(⇢))

, (1.4)

, I being the identity matrix, and A is the n⇥ n symmetric influence matrix given as

A(⇢) = I �D(DTD + ⇢LLT
)

�1DT

, D and L being respectively the blurring and the regularization operator. Given that
the expression of A includes the inverse of another matrix, tr(I�A) can not be easily
computed. Hutchinson in [15] describes an unbiased stochastic estimator for the cal-
culation of the trace tr(I � A). This trace estimator can be used for the approximate
minimization of the GVC described, when A is the matrix that is associated with the
Laplacian smoothing splines when fitting these splines to very large data sets.

1.4 Applications of Computing the Trace of a matrix function

The computation (or estimation) of the trace of a matrix function is required in sev-
eral applications in Physics, Machine Learning, and more recently in Statistics, Data
Analysis, and Signal Processing. The most widely used techniques are based on
stochastic methods, such as stochastic estimations of tr(f(A)) for estimating Density
of States (also known as spectral density) of a matrix A in Quantum Chemistry, as
described in [27].

The main idea of this method is to use the Kernel Polynomial Method (KPM) for
the purpose of computing (estimating) the Desity of States , by first expanding the
Density of States into Chebyshev Polynomials, and then using statistical methods to
estimate the traces that are required in the calculations. Here, the Hermitian Matrix A
is rescaled such that its eigenvalues lie in the interval [-1, 1], which is also the interval
in which the Chebyshev Polynomials Tm(A) are defined. The coefficients (moments)
of the expansion are then given by

µm = Tr(Tm(A)) =

Z 1

�1

Tm(t)⇢(t)dt (1.5)

where ⇢(t) denotes the Density of States (DOS). Tr(Cm(t)) is estimated by statistical
methods for many m values, and these traces are eventually used to compute the
density states of ⇢.

5

Density of States are also used in many other applications in Physics, such as Solid-
State Physics, where they represents the number of energy levels per unit.

However, the computation of the diagonal problem is more complex and less dealt
with in the literature when compared to the problem of estimating the trace.

Existing Algorithms for Computing the Diagonal of Inverse

The algorithms for computing the diagonal of a matrix inverse range from the O(n3
)

naive algorithm that extracts the diagonal after explicitly computing the matrix in-
verse, to direct techniques based on the standard LU factorization [10, 11, 21, 16]
and iterative methods such as stochastic estimations[3] or inverse approximations[8].
Other approaches include probing methods[32], domain-decomposition methods[31],
multi-frontal methods[6], heuristic methods[1] that make use of elimination tree, etc.
We refer the reader to Chapter 2 for a more detailed description of the existing algo-
rithms for the computation of the diagonal of a matrix inverse.

We, on the other hand, propose an algorithm that uses the parallel DS factorization
technique to factorize the input matrix into D and S matrices in the first step, and
then constructs the required diagonal of the inverse by using the inverses of these
two matrices. The inverse of the S matrix is approximated via approximate inverse
techniques that exploit its peculiar sparsity structure. The details of the proposed
algorithm and its performance results obtained from various experiments are given in
chapter 3 and 4, respectively.

6

CHAPTER 2

ALGORITHMS FOR COMPUTING THE DIAGONAL OF THE MATRIX
INVERSE

The most obvious and straightforward approach is to compute explicitly the inverse
of A, and then select its diagonal. This approach would have in the worst case a
O(n3

) complexity , where n is the dimension of the matrix A. Improvements can be
made by taking into consideration and taking advantage of the sparsity pattern of the
A matrix via reordering techniques. While this approach may be favorable for 2D
problems, 3D problems still present a challenge. Hence, there is a clear necessity for
an efficient approach for computing the diagonal of the inverse of a sparse matrix.
In the past decades, several methods have been developed in order to address this
problem. The methods can be mainly categorized as :

1. Direct Methods [10, 16, 19]

2. Iterative Methods [4, 7, 18, 29]

3. Stochastic Methods [2, 3]

The primary purpose of using direct methods for solving linear systems is usually to
obtain simpler systems to solve by factorizing the matrix A of a linear system Ax = b

into the product of two or more factor matrices and then use those to solve the system.
These methods generally have four main stages: the reordering phase, symbolic and
numerical factorization, and triangular solves stage.

The reordering step prepares the original matrix for the factorization phase that fol-
lows by applying a pretreatment to it, either numerical or structural. Structural pre-
treatments generally consist of reordering the rows and columns of the original ma-
trix. The main aim is to reduce the number of the non-zero elements that show up in
the factor matrices but are not present in the original matrix.

7

The symbolic and numerical factorization phase takes the matrix that results from
the reordering phase and transforms it into a product of factor matrices. Examples of
such factorizations include LU : L being a lower triangular matrix and U the upper
triangular one,LDU LDLT , LLT , and Cholesky factorizations.

In the triangular solves phase, the linear system containing the factor matrices that
were computed in the factorization phase is solved. Generally, this is done in two
steps: the forward and backward substitution. In the case of LU factorization, the
system is solved as

(i) y = L�1b

(ii) x = U�1y

In case a factorization is applied to the sparse matrix A, A�1 is usually dense when
compared to the initial matrix or to the factors obtained from a certain factorization.
Hence, computing the whole A�1 instead of using its factors, would result in a much
less efficient method. Methods based on the standard LU factorization are one of the
main approaches for computing elements of the inverse of A. They involve solving
the equation AX = I after computing the LU factorization of the matrix A, i.e.
column-wise computation of the inverse of A. Hence, for computing the diagonal
entries, the entire lower triangle of A�1 has to be computed.

These methods take as their basic reference the work done by Takahashi, Fagan, and
Chin[30]. These authors were the first ones to use directly of the factors L and U
instead of using their inverses.

Duff, Erisman, and Reid [10] proposed an algorithm for computing only the elements
in the sparsity pattern of (L\U)

T . They propose a direct method for finding diag(B)

, where B = A�1 based on the LDU decomposition of A. The LDU factorization is
slightly different from the LU factorization, D is the diagonal matrix containing the
diagonal elements of U . Denoting B = U�1D�1L�1 , the following relations due to
Takahashi et al.[30] are utilized:

B = U�1D�1
+B(I � L) (2.1)

B = D�1L�1
+ (I � U)B (2.2)

These equations enable the computation of entries of B that belong only to the sparsity
pattern of the L and U matrices, with no further computation of any other entry of the

8

matrix. For example, the entries in the upper part of B can be computed by using only
the U matrix, since for this part the expression B(I�L), being lower triangular, does
not contribute. The equations can then be rewritten for the computations of a single
entry as follows:

bij = dij
�1 �

nX

k>i

uikbkj, for i  j (2.3)

bij = dij
�1 �

nX

k>j

uikbkj, for i � j (2.4)

Then started from the bnn entry, the entries can be computed . The whole matrix
can be computed using the equations above recursively. These algorithms can be
beneficial for the cases when the LDU factorization of a matrix is not expensive, and
does not require significant storage.

Erisman and Tinney [11] improved this algorithm further, by analyzing the special
case of computing the diagonal of the inverse, when the A matrix is a symmetric
matrix. They propose a method to compute a subset of entries of B based on the
theorem given below.

Defining a matrix C to be as :

Cij =

8
<

:
1 , if Lij or Uij 6= 0

0 , otherwise.
(2.5)

Hence the sparsity pattern of C is of the form (L+U)

T . The following theorem holds:

Any entry bij such that cji = 1 can be computed as a function of L, U and bp,q where
bpq such that cqp = 1, q � j, p � i . This implies that the equation below can be
constructed :

bij = �
nX

k=i+1

uikbkj (2.6)

A different form of this approach is exploited by Lin Lin et. al.[21] They describe
an algorithm called SelInv which computes selected entries of the inverse of a gen-
eral sparse matrix A. The method is based on a left-looking supernodal approach
that computes the LDLT factorization of A. They exploit supernodes and block al-
gorithms in order to achieve efficiency and performance. In addition, they propose to
use a relative index array for handling indirect addressing.

9

Li, Ahmed, Darvem and Klimeck developed a computationally efficient algorithm
named Fast Inverse using Nested Dissection (FIND) that is based on nested dis-
section [16]. The algorithm was then used to compute the required components of
non-equilibrium Green’s functions with an application on the simulation of nanoscale
devices. This method consists of mainly three steps: (i) modelling an elimination pro-
cess by using a graph structure, (ii) decomposing it into a tree structure (iii) traversing
the tree in an upward and downward fashion to find the diagonal matrix that contains
the same entries as the diagonal of A�1, denoted as diag(A�1

).

A close relative to the abovementioned algorithms is the one proposed by Lin et al.
in [19]. It describes a fast sequential algorithm to draw the diagonal or the sub-
diagonal elements of matrix inverses that are the output of a finite difference dis-
cretization process of a Laplacian operator or are extracted from lattice models with
a local Hamiltonian. Denoting by n the dimension of the matrix A, it is seen that
this approach lowers the complexity from O(n3

) to O(n1.5
) and O(n2

) for 2D and
3D problems,respectively. . This fast algorithm, similar to SelInv, first computes the
LDLT factorization of A, and then uses L and D matrices in order to compute the
desired entries of A�1. In the first step of the algorithm, the factorization step, Lin
et al perform a bottom up traversion and construct a hierarchy of Schur complements
of the interior points for the blocks of the domain by using Block Gaussian elimina-
tion. In the second step they extract the diagonal of the inverse matrix in a top-bottom
fashion by making use of the hierarchical dependence of matrix inverses.

In a more recent work[20], Lin describes the parallel version of this algorithm exe-
cuted on a distributed memory machine. In the parallel algorithm, the elimination tree
is used for organizing purposes. More specifically, the data is passed by level by level
along the elimination tree by making use of local buffers and relative indices , and
hence reducing the synchronization overhead. The fast algorithms decribed above,
however, depend on the domain shape and discretization stencil for the Laplacian
operator. Hence, the application of the algorithm is restricted.

Many investigations on the inverse of banded and tridiagonal matrices have been con-
ducted. Ran and Huang developed an algorithm for the inversion of a banded matrix
by first employing ‘twisted’ decompositions of matrices[25]. Based on the count of
arithmetic operations performed, the method is two times faster than the standard
approach of using direct methods based on the LU factorization. The complexity
is O(nb), b being the bandwidth of the matrix A. Bowden developed a method that
consists of defining a set of matrix sequences for the calculation the inverse of any

10

block-tridiagonal matrix efficiently [5]. They use recurrence relations for defining
four sequences of matrices and eventually define an expression for the computation
of any block(i,j) of matrix B.

Several sparse approximate inverse techniques have been proposed for the approx-
imation of A�1. Approximate inverse methods that are based on Frobenius norm
minimization are one subset of these techniques.

The approximate inverses of general sparse matrices are computed by attempting to
find a sparse matrix, denoted by M, that minimizes the Frobenius norm of the residual
matrix, I - AM,

F (M) = kI � AMkF 2 (2.7)

The objective function F (M) can be decoupled into the sum of the squares of the
2-norms of the individual columns of the residual matrix I - AM[8], as follows:

F (M) = kI � AMkF 2
=

nX

j=1

= kej � Amjk22, (2.8)

in which ej is the j-th column of the Identity matrix I, mj is the j-th column of the
matrix M.

Approximate Inverse Algorithms minimize the aforementioned function in two dif-
ferent ways, by minimizing it globally as a function of the sparse matrix M, or alter-
natively by minimizing the individual functions

f(j) = kej � AMjk22, j = 1, 2, 3, . . . , n. (2.9)

The Global Minimal Residual Algorithm and the Global Steepest Descent algorithms
follow the first approach. They describe global techniques to minimizing the objec-
tive function F (M) by treating M as an unknown sparse matrix, while Column-based
Minimum Residual algorithm approximates the matrix M by minimizing the individ-
ual functions mentioned above.

Another approach for approximate inverse algorithms are the ones based on the Newton-
Schulz iterations. These methods are also referred as Hotelling-Bodewig algorithms.
The well-known method of Schulz[14] is defined by

Vn+1 = Vn(2I � AVn), n = 0, 1, 2, ...n (2.10)

for the inversion of a matrix A 2 Cm⇥m. This approach has been used combined

11

with wavelets or hierarchical matrices in order to find the diagonal of V in [18].
Ceriotti et al.[7] also proposed a method for the computation of the Fermi function of
the Hamiltionian that combines polynomial expansion techniques with Newton-like
iterative approaches.

In both of the subsets of approximate inverse algorithms, a numerical dropping step
is usually applied in order to keep the approximated matrix sparse, which may affect
the convergence of the algorithms.

In [29] Saad and Sidje show how one can use the iterative Lanczos algorithm together
with sparse direct methods for approximating the diagonal of the Fermi-Dirac matrix
function. The Lanczos vectors for a Hermitian matrix A can be generated using the
following expression:

�i+1qi+1 = Aqi � ↵iqi � �iqi�1, (2.11)

where ↵i and �i+1 are chosen in such a way that the Lanzcos vector qi+1 has a unit
norm and is orthogonal to qi and qi�1. This method applies m steps of the Lanczos
algorithm on the Hamiltonian matrix H, usign a unit norm vector q1 as a starting
vector. As a result, the following expression is obtained:

HQm = QmTm + �m+1qm+1em
T , (2.12)

where Qm is given as Qm = [q1, ..., qm], qm+1 denotes the last vector obtained
from the Lanczos algorithm and em is a vector with a entry equal to 1 at the m-
th position and 0 elsewhere, Tm denotes a tridiagonal symmetric matrix given as
Tm = tridiag[�i,↵i, �i+1], with nonzero entries �i,↵i, �i+1 at the i-th row.

Taking n to be the iteration number, when m = n then

A = QnTnQn
T (2.13)

and
A�1

= QnTn
�1Qn

T . (2.14)

For m < n the expression above can be approximated as: A�1 ⇡ QmTm
�1Qm

T and
hence the diagonal can be computed via:

diag(A�1
) ⇡ diag(QmTm

�1Qm
T
) (2.15)

can be used. The resulting algorithm has the disadvantage that it usually requires all
of the n iterations to converge an accurate approximation of the diagonal of A�1.

12

In [32] Tang and Saad propose a probing method for the computation of the diagonal
of the inverse of a sparse matrix for the special case where the inverse exhibits a decay
property. In generic probing approaches , a subset or all of the entries of an unknown
matrix are extracted by using matrix-vector products. These methods prove to be quite
effective when the initial matrix A is diagonally dominant and/or positive definite,
which leads to A�1 being composed of many small entries. This method consists of
the following steps : (i) Small entries of A are discarded, hence A is sparsified, (ii) the
sparsity pattern of the sparsified A�1 is determined, (iii) appropriate probing vectors
are determined based on the properties of the inverse using graph coloring arguments,
and finally (iv) linear systems are solved either via direct or iterative methods. The
diagonal of the inverse of the matrix is extracted from these linear systems.

Stochastic methods can also be used for the estimation of the diagonal of a matrix
inverse. In [3] Bekas and Saad extended the idea of using an unbiased stochastic
estimator for estimating tr(I-A), using random vectors described by Hutchinson in
[15] to find diag(B). They apply matrix-vector products using random test vectors
to estimate the diagonal. This solution can achieve a desired accuracy only if the
number of vectors used is large enough, hence making the methods more expensive
from a computational point of view. Bekas at al. also described an approach that can
be thought of as a probing method for banded approximate inverses that makes use
of Hadamard vectors in [3]. These vectors are dense and do not exploit the sparsity
pattern except for the bandedness.

More recently, Bekas, Curioni and Fedulova [2] retrieve the diagonal entries of the
inverse of the covariance matrix by using a minimum bias stochastic estimator. A
quite accurate estimate of the diagonal is obtained by means of a few matrix vector
products that involve the inverse covariance matrix and specially designed vectors.

Campbell and Davis [6] describe a multifrontal method for computing a set of the
entries of the inverse for the case where of the matrix is numerically symmetric. This
method also exploits the Takahashi’s equations mentioned above. Multifrontal meth-
ods are a variant of direct methods, that consist of a multifrontal factorization and a
multifrontal solution phase. The method they proposed exploits the elimination tree
of the input matrix and Level 3 BLAS matrix-matrix computations.

Amstoy et al. [1] also proposed a method to compute entries of the inverse. Their
approach relies on a traditional solution method and the exploitation of the equation
AA�1

= I . They describe a heuristic method that applies a post-ordering step on
the elimination tree followed by a partitioning step of the nodes. More specifically, a

13

particular entry aij is computed using (A�1ej)i.

In the case of computing an entry of the diagonal, i.e. for finding aii
�1 :

1. solve x = L�1ei for x

2. solve y = U�1x for y

3. compute the i-the value aii
�1

= ei
Ty

For each diagonal entry aii
�1 that is to be computed, the following steps are followed:

i. traverse the elimination tree from the node i to the root by accessing only neces-
sary parts of L at each node,

ii. traverse the tree from the root to the node i by accessing only necessary parts of
U this time around.

Lastly, domain-decomposition techniques were also investigated for the purpose of
computing the diagonal of the inverse of a sparse matrix in [31]. Tang and Saad
describe two domain-decomposition methods, both of which can achieve better ef-
ficiency and performance if used together with iterative solvers and approximation
approaches. The first method is based on the divide-and-conquer concept. It applies
recursively the Sherman-Morrison-Woodbury formula. The main idea of the method
can be described as follows. An assumption is made on the decomposition of a non-
singular and complex symmetric matrix A 2 Cn⇥n into two matrices, the first being
a 2 ⇥ 2 block-diagonal matrix C, and the latter a low-rank matrix �L. Denoting the
dimension of first block of C and the rank of L by m and q respectively, the following
expression holds:

A = C � L,

C :=

"
C1

C2

#
,

L := EET

where C1 and C2 are the diagonal blocks of C of size m ⇥ m and (n � m) ⇥ (n �
m) respectively, and E 2 Cn⇥q , with 0 < q < m < n. Making the appropriate
substituions in the Sherman-Morrison-Woodbury formula, the diagonal of the inverse
can be found via

diag(A�1
) = diag(C�1

) + diag(UR�1UT
) (2.16)

14

with U 2 Cn⇥q equal to U := C�1E and R 2 Cq⇥q equal to R := Iq � ETU .

The latter method is a standard domain decomposition method where local solves and
global correction are used together. After possible row and column permutations, a
nonsingular and complex-symmetric matrix A has the form of:

C =:

"
B F

F T G

#
,

where B is a block-diagonal matrix of blocks Bj 2 Cn
j

⇥n
j , G 2 Cn

G

⇥n
G , and F is

composed of the bottom and rightmost blocks Fj 2 Cn
j

⇥n
g with nG + nB = n and

nB :=

Pp
j=1 nj .

Inverting both sides of the equation above, the following expression for the computa-
tion of the diagonal can be derived:

diag(A�1
) =

"
diag(B�1

) + diag(HS�1HT
)

diag(S�1
)

#

,
H = B�1F

and
S := G� F TB�1F

Despite the promising potential of the methods described in this section, many lim-
itations exist. Some of these limitations consist of high computational cost, difficult
implementation, inaccuracy of the solution, and high memory consumption. More-
over, not much has been done for a parallel solution of the problem. Hence there is
a need to explore more novel algorithms for finding the diagonal of the inverse of a
sparse matrix in parallel.

15

16

CHAPTER 3

COMPUTING THE DIAGONAL OF THE INVERSE USING DS
FACTORIZATION

We propose a novel parallel algorithm for computing the diagonal of the inverse of
a large sparse matrix. The proposed method is a hybrid method in the sense that
it uses both direct and iterative methods that were briefly described in the previous
chapter. This method pre-computes a less known parallel factorization instead of the
commonly used standard LU factorization: the parallel DS factorization [23] of the
matrix, and then uses the D and S matrices to compute the diagonal components of
A�1 via sparse approximate inverse.

We first give the mathematical formulation of the problem of computing the diagonal
of the matrix inverse, and then go through the details for each step of the proposed
algorithm.

Proposed Method Formulation

The problem to be solved is formally described below: Suppose A 2 Cn⇥n is a
nonsingular matrix, i.e. its inverse exists. We are interested in computing diag(A�1

),
the diagonal of A�1.

Given that ei is the i-the vector of the canonical basis, (i.e. all of the entries of ei are
0, except for the i-th entry, which is 1):

The i-th entry of the diagonal diag(A�1
) can then be calculated as follows:

a�1
ii = eTi A

�1ei, (3.1)

where eTi is the transpose of vector ei. In order to retrieve the complete diagonal of
the matrix, n linear systems of the form

17

Axi = ei, i = 1, 2, . . . , n

must be solved. The i-th entry of the diagonal will then be equal to

a�1
ii = eTi xi.

To achieve a less computationally expensive solution, we first compute the DS fac-
torization of the sparse matrix A, where D consists of the the diagonal blocks of the
A matrix, Aj , and S is the spike matrix with identity matrices as diagonal blocks,
together with spikes of m columns in the adjacent non-diagonal blocks. Then the
expression above can be rewritten as:

a�1
ii = eTi S

�1D�1ei

where

D =

0

BBBBBBBBBB@

A1

A2

A3

. . .
. . .

Ap

1

CCCCCCCCCCA

.

There are three different ways of parenthesizing this equation. Our approach corre-
sponds to the following parenthesization:

a�1
ii = eTi (S

�1
(D�1ei)).

Hence the equations to be solved this time around are of the form:

(i) solve Dyi = ei

(ii) solve Sxi = yi, or xi = S�1yi

(iii) a�1
ii = ei

Txi

After DS factorization, step (i) involves a linear system with a coefficient matrix
D, which involves analysis and factorization. Then, in step (ii), we use an iterative

18

method to compute the approximate inverse of S. We compute the reverse Cuthill
McKee ("RCM") ordering of the input matrices in the analysis phase before proceed-
ing with the DS factorization.

We notice that in step (i), there is a single non-zero entry on the RHS ei, and in
step (ii), only one entry is required to be computed from the solution vector. We
take advantage of this observation and the sparsity structure of the matrix for a more
efficient solution of the problem.

To compute the DS factorization, the original matrix A, or the reordered matrix Ar,
is factorized into the product of two matrices, namely D and S, using the sparse DS
factorization which is based on the SPIKE algorithm [24]. The SPIKE algorithm was
originally developed as a hybrid solver for banded systems of linear equations. It con-
sists of the preprocessing (partitioning), factorization and post-processing (solution)
phases. In this algorithm, the solution to the sparse AX = F system is considered,
where A is a banded n⇥n matrix of bandwidth b << n, and F is a n⇥s RHS matrix,
s being the number of right-hand-sides.

The banded linear system is partitioned into a block tridiagonal form [24]. The orig-
inal matrix is partitioned into blocks in the main diagonal which are denoted by
Aj ,(j = 1, .., p). These banded diagonal blocks are of size nj ⇥ nj , where nj is
calculated approximately as n/p, and p is the number of blocks.

Besides the diagonal blocks Aj , Bj denotes the first super-diagonal block and Cj

matrix the first sub-diagonal blocks that couples the Aj respectively. Each of these
blocks is of order m << nj . m is the semibandwidth and is calculated based on the
bandwidth b of the original matrix as b�1

2 for structurally symmetric matrices.

A can be then expressed in the form of the product of two factor matrices, namely the
D and S matrix.

The D matrix is the block-diagonal matrix composed of the diagonal blocks Aj . The
S matrix, given by D�1A, is the ‘spike’ matrix, which is a matrix whose block main
diagonals are identity matrices of order nj , together with spikes of m columns in the
immediate off-diagonal blocks, hence the name ‘Spike’.

These spikes are denoted as Wj and Vj and , and correspond to the right and left
spikes of each partition, each of size nj ⇥m. The next stage of the algorithm is the
solution of the system which consists of two steps:

19

(i) DG = F

(ii) SX = G

After performing the partitioning, the system in step (i) can be solved in parallel using
a number of options. When solving the system in step (ii), a further reduction can be
performed by identifying the independent reduced linear system, resulting in a much
smaller system of equations SrXr = Gr to be solved, from which the original solution
X can be restored.

In summary, the SPIKE algorithm consists mainly of the following three stages:

1. factorizing of the diagonal blocks Aj

2. solving the reduced system

3. retrieving the solution

To compute the DS factorization, we use the generalized sparse DS factorization al-
gorithm [22].

The Generalized DS factorization is similar to the original SPIKE algorithm in the
sense that it performs the DS factorization and partitioning of the matrix A , but it
does not assume a banded structure for the coefficient matrix A. The reordering step
is no longer needed in this case.

In the General DS factorization, similar to the banded DS factorization, given a gen-
eral sparse linear system:

Ax = f,

the coefficient matrix A is again partitioned into p block rows A = [A1, A2, . . . Ap]
T .

R is defined as A = D + R , where D consists of the p block diagonals of A, and R

is the matrix that contains the remaining elements of A. The S matrix is defined as
S = D�1A

Replacing A = D +R in the equation above we obtain

S = D�1A = D�1
(D +R) = I +D�1R.

20

The S matrix that results from the equation above is not banded any more and it
contains sparse spikes.

Although this is the basis algorithm, there are many alternatives available for each
step, giving rise to a f́amilyóf solvers. We refer the reader to [24] for a more detailed
description of the existing variations of the algorithm. Our proposed approach applies
the general DS factorization not to the AX = F system, but to the AX = I system,
to solve for X , the inverse of the A matrix and then extracting the diagonal: diag(X)

by computing the inverses of the D and S matrices.

In the solution step, The solution of the system AX = I reduces into two sub steps:

(i) solve DG = I , or G = D�1I

(ii) solve SX = G, or X = S�1G

The inverse of the D matrix can be computed with perfect parallelism, since the
inverse of a block diagonal matrix is composed of the independent inverses of the
diagonal blocks Aj . The computation of the Spike Matrix S can also done blockwise
in order to suit the parallel nature of the factorization.

Next, we iteratively approximate the inverse of the spike matrix S, via appropriate in-
verse approximation techniques for sparse matrices. Note that, since we approximate
the inverse of the S matrix, there is no need for solving a reduced system.

After the sparse DS factorization, the next step involves solving DG = I , or ex-
pressed in a different form as G = D�1I .The inverse of the block-diagonal matrix
D given as D = diag(A1, A2, . . . Ap) can be computed blockwise, in parallel, by
solving the following linear system of equations:

AjXj = Ij,

where j is the partition number, Ij is the identity matrix of the size nj of the diagonal
blocks of A, n

p .

For the further computation of a single entry of the diagonal, the equation above can
be reduced to

Dxi = ei, or as individual block linear systems, Ajxj i = eij

First, we will investigate the effectiveness of various algorithms form computing the
sparse approximate inverse of S. Then, we will study the effectiveness of the pro-

21

posed scheme for computing the diagonal of the inverse of a sparse matrix. The
pseudocode that includes the main steps of the proposed algorithm can be found be-
low:

Algorithm 1: Computation of the diagonal of the inverse

• Factorize the A matrix into D and S matrix

• Compute D�1

• Approximate S�1

• Compute the diagonal of A�1 using D�1 and S�1

Approximating S�1

In order to determine the strategy for the computation of the inverse of the SPIKE
matrix S, first the sparsity pattern of the original S matrix and its inverse were ob-
served.

The sparsity pattern of S and S�1

It was already mentioned that the matrix S has nj ⇥ nj identity matrix on the main
diagonal blocks, with spikes of m columns in the immediate off-diagonal blocks. The
inverse of the S matrix, keeps the same identity matrices as diagonal blocks, but the
spikes this time, instead of being the order nj ⇥m, become the order n ⇥m. In the
inverse of the S matrix these spikes are extended throughout whole columns. The spy
plots for the S and S�1 matrices obtained from the gr_30_30 matrix of the Collection
of Sparse Matrices of the University of Florida are depicted below.

22

Figure 3.1: Sparsity Pattern Plots of S and S�1 obtained from gr_30_30

(a) Sparsity structure of S
(b) Sparsity structure of reordered
S�1

Given that the sparsity structure of the inverse to be computed can be known before-
hand, we use sparse approximate inverse algorithms in order to compute the inverse
of the spike matrix S. These algorithms have many parameters and in the following
section we study various algorithms, as well as their parameters.

Sparse Approximate Inverse

Recall that in general the approximate inverse methods based on the minimization
of the Frobenius norm seek to find an approximate inverse for a sparse nonsingular
matrix by using iterative procedures. Without loss of generality, we assume the right
aproximate inverse.

The expression of the minimization of the residual I � AM was given as :

F (M) = kI � AMkF 2
=

nX

j=1

= kej � Amjk22. (3.2)

The equivalence expressed in the equation above gives rise to a series of options to be
followed. There are basically two options for iterative procedures for approximating
the inverse of a general sparse matrix,

1. Treating M as an unknown matrix entirely

2. Treating M as individual columns mj, j = 1, 2, . . . n

The Global Iteration methods follow a global approach to minimizing 3.2, by treating
M as an unknown sparse matrix. The function 3.2 is associated with the following

23

inner product of matrices:

hX, Y i = tr(Y TX)[8]. (3.3)

The column-oriented algorithms are based on minimizing the individual objective
functions of the expression 3.2, by treating individual columns of M mj, j = 0, 1, 2 . . . n.

ni iterations are used to approximately solve the n linear subsystems Amj = ej for
each column of M .

A series of decent steps are taken in a search direction denoted as G, each of them
defining a new iterate Mnew, as follows:

Mnew = M + ↵G (3.4)

There are options for the selection of the search direction G. The most obvious one is
choosing G to be equal to the residual matrix R = I � AM . This choice leads to the
Global Minimum Residual Iteration Algorithm. Another option for the selection of G
is to take it to be the direction of steepest descent, or G = ATR. Taking this direction
for G leads to the Global Steepest Descent Algorithm.

Based on various options for the criteria described above, three different algorithms
were inspected for the purpose of approximating the inverse of the S matrix. Two
of those algorithms were investigated under this global iteration category: the Global
Minimum Residual Algorithm and the Global Steepest Descent algorithms. The pseu-
docodes for these two approaches are given in Algorithm 3 and 4, respectively.

Algorithm 3: Global Minimal Residual Descent Algorithm
Input : initialM, stopTol, dropTol
Output: M

1: Select an initial M
2: Until convergence Do:
3: Compute C := AM and G := I � C

4: Compute ↵ =

tr(GTAG)
tr((AG)T (AG))

5: Compute M := M + ↵G

6: Apply numerical dropping to M
7: End Do

We note that Global Minimum Residual Iteration algorithm is guaranteed to converge
if A is SPD.

24

The difference of the Global Steepest Descent algorithm from GMRES is the direc-
tion G that is selected: GSD algorithm take G as the direction of the steepest descent,
i.e. the direction opposite to the gradient. In this case G = ATR, where R is the
residual matrix. Global Steepest Descent algorithm is guaranteed to converge if A is
nonsingular.

Algorithm 4: Global Steepest Descent Algorithm
Input : initialM, stopTol, dropTol
Output: M

1: Select an initial M
2: Until convergence Do:
3: Compute R = I � AM ,and G := ATR

4: Compute ↵ =

tr(GTAG)
tr((AG)T (AG))

5: Compute M := M + ↵G

6: Apply numerical dropping to M
7: End Do

Under the category of Column-based iteration Algorithms, the column-based version
of GMR is described by the Column-Based Minimum Residual Iteration Algorithm.
The pseudo code is given in Algorithm 5:

Algorithm 5: Column-Based Minimum Residual Iteration Algorithm
Input : initialM, stopTol, dropTol
Output: M

1: Start: set M = M0

2: For each column j = 1, ...n Do:
3: Define mj = Mej

4: For i = 1, ..., ni Do:
5: rj := ej � Amj

6: ↵j := (rj, Arj)/(Arj, Arj)

7: mj := mj + ↵jrj

8: Apply numerical dropping to mj

9: End Do
10: End Do

This algorithm is guaranteed to converge if the original matrix A is positive definite.

25

The Initial Guess

All three of the aforementioned approximate inverse algorithms need an initial guess
M0 in order to start their iterative process. In the column-based case, columns from
M0 are used as initial guesses for the solution of each subproblem. There exist two
main options for the selection of M0 : namely M0 = ↵I , where I is the Identity
matrix of size n, or M0 = ↵AT . The coefficient ↵ is chosen in a way that minimizes
the spectral radius ⇢(I � ↵M) as follows:

↵ =

tr(AM)

tr(AM)(AM)

T
(3.5)

Note that the second one of choosing the transpose of the original matrix as the initial
guess is a more dense option when compared to the Identity matrix as initial guess.
Additional analysis on the choice of initial guess is presented in the experimental
work section.

The Dropping Strategy

In the previous sections, it was already mentioned that, as the iterative process pro-
gresses, the matrix M tends to become more and more dense, hence making the
computations more and more expensive. A dropping strategy is needed in order to
preserve the computational efficiency of the methods. There are several directions
to take as a dropping strategy. Numerical dropping is the most obvious one. A new
dropping strategy is developed based on the special structure of the S matrix inverse
and explained in more detail in the following section. We first go through the tra-
ditional numerical dropping strategy that is performed in the Approximate inverse
iterative methods and then explain the new dropping strategies introduced in this the-
sis, namely the structural and hybrid dropping.

Numerical Dropping

A numerical dropping step can be performed in two possible places, either the iterate
M, or the search direction G. Two criteria can be used for determining a treshold for
the elements to be dropped: a dropping tolerance, or a maximum number of fill-ins
per column. In the first case, elements of M that are smaller than a tolerance value,
which do not contribute much to the eventual approximate inverse, are discarded.

26

The time at which the numerical dropping is done is another factor to be taken in
consideration. Dropping performed after the new iterate M is computed, or before
the new iterate M is updated, are some of the alternatives.

If the dropping is applied to the iterate M, the descent property of the algorithm is lost,
in other words there is no guarantee that the new iterate will have a smaller Frobenius
norm than the previous one. This phenomenon is known to spoil the minimization
process, since the residual norm increase at a certain point, and affect the quality and
convergence of the methods.

In the latter case of performing the numerical dropping step in the search direction
G, the descent property of the algorithm is maintained through the iterations. In this
case, the fill-in of the matrix M becomes difficult to control.

Structural Dropping

Previously, the structure of the inverse of the Spike matrix S was investigated. Given
that the sparsity pattern of the inverse to be approximated can be known beforehand, a
new dropping strategy besides the numerical one described above, namely structural
dropping strategy was developed. In this dropping strategy, elements that are outside
the sparsity pattern of S�1 are dropped or discarded. In the case of global iterations
where M is treated as an unkown matrix in its entirety, this dropping is performed to
the iterate M after it is updated. For the column-oriented case, the columns outside
the pattern of the spike columns are not traversed, in other words, no iterative process
is applied to these columns.

Hybrid Dropping

A combination of the two abovementioned strategies was also analysed with the ap-
proximate inverse algorithms, namely a hybrid dropping strategy. Using this strategy,
the Global iteration algorithms, perform two steps of dropping: first entries outside
the sparsity pattern are dropped, then the entries smaller than a dropping tolerance
value inside the sparsity pattern of S�1 are discarded. In the column oriented case,
the columns outside the spike pattern are also not traversed, while during the itera-
tions for the columns inside the spike pattern, a numerical dropping step is performed
to the vector mj after it is updated.

27

Other considerations

The iterative algorithms stop when the residual norm, kI � AMkF in the global case,
or kej � Amjk2 in the column-oriented case, is less than or equal to a certain stopping
tolerance value. Another alternative is setting a maximum number of iterations, or
both of the above.

In order for the abovementioned algorithms to be efficient, all the storing and op-
erating of matrices and vectors must be perfomed by treating them as sparse matri-
ces. In this sparse implementation, matrix-vector products are much more efficient
if the sparse matrix is stored by columns. In this way, not all the columns need to
be traversed in order to approximate the inverse. This is especially useful for the
Column-Oriented Minimum Residual Algorithm, which approximates each column
of the sparse matrix at a time.

Parallelization of the Proposed Method

Both of the strategies selected for each one of the two main phases of the proposed
method, the DS factorization and the approximate inversion phase, were chosen by
keeping in mind their potential for parallelization.

Most existing parallel solvers of systems of linear equations are based on the LU de-
composition, and consequently inherit the limits that the nature of this factorization
brings. The DS factorization was originally developed for parallel solvers of banded
systems of linear equations. The Spike Algorithm itself relies on the idea of partition-
ing the matrix in such a way that the communication between processes is necessary
only during the solution phase, and each processing element can work on its partition
of the matrix independently during the other stages.

The Column-based Approximate Inverse Algorithm is chosen as the best option for
the parallelization of the proposed method. Given that it computes the inverse of
the matrix S by iterating a certain number of iterations ni column-by-column, each
column’s inverse can be calculated independently without the need of any communi-
cation.

28

CHAPTER 4

EXPERIMENTAL WORK

We conduct two main sets of experiments throughout this study. In the first set, we
study the approximate inverse algorithms for computing the inverse of S (spike) ma-
trix. We investigate the effect of the various alternatives that we explain in detail in
Chapter 3, such as dropping tolerance, initial guess, and dropping strategy has on the
number of iterations, time to convergence, and the accuracy of the diagonal computed
using the approximated inverse of S. Three algorithms are then compared against each
other in order to find on the most appropriate and efficient one. In the second set of
experiments, we study the parallel scalability of the proposed algorithm that uses the
method that was studied in the first part.

4.1 Experimental Framework

For the first set of experiments, we implemented and tested the Approximate Inverse
Algorithms using MATLAB R2012a. We executed the tests on a 4-core Intel(R) Core
i7 processor running at 2.4GHz with a total of 8GB RAM memory.

We run the second set of tests on Greyfurt, which is a 64-core computer that has a
shared memory architecture with 4 16-core AMD Opteron 6376 processors running
at 2.3GHz with a total of 128 GB DDR3 memory. We implemented the parallel
algorithm using in C++ with OpenMP directives. We used the Armadillo [28] and
SuperLU[17] libraries in order to perform matrix operations.

For the first set of tests, we implemented the Global Minimum Residual Iteration al-
gorithm (GMR), Global Steepest Descent algorithm (GSD), and the Column-based
Minimum Residual Iteration algorithm (CMR). We give the pseudocodes for the al-
gorithms in Chapter 3. We test the algorithms with a set of predefined parameters,
such as maximum number of iterations, targeted stopping tolerance, dropping strat-

29

egy, etc. We examine the performance of these algorithms in terms of number of
iterations that is required to meet the desired stopping tolerance, the final residual
norm defined as the Frobenius norm of (I - AM), error history throughout iterations,
the time required, and the sparsity of the resulting matrix inverse. In the latter set,
we focus on measuring the time of execution for each of the substeps of the proposed
algorithm using 1, 2, 4, 8, 16, 32 and 64 cores.

We use the matrices in Table 4.1. in the aforementioned sets of experiments. The
matrices are obtained from the UF Sparse Matrix Collection [9]. The properties of the
matrices used are given in the table below. The property of S being positive definite
is important for the convergence of some approximate inverse algorithms. Therefore,
we choose the test matrices such that the resulting S matrix is positive definite even
though A may or may not be positive definite.

Table 4.1: Input Matrices for Approximate Inverse Algorithms

Matrix Name rows cols nonzeros A posdef S posdef

bfwb782 782 782 7514 no yes
bfwb62 62 62 450 no yes
cage6 93 93 785 no yes
cage7 340 340 3084 no yes
dw256B 512 512 2500 no yes
gr_30_30 900 900 7744 yes no
mcca 180 180 2659 yes yes
mesh1e1 48 48 306 yes yes
mesh1em6 48 48 306 yes yes
Trefethen_150 150 150 2040 yes yes

A matrix is positive definite if its eigenvalues are positive.

Sparsity Patterns of Some Input Matrices

Now we plot the factor matrices resulting from the DS factorization, namely D, D�1,
S and S�1 are plotted in order to investigate their sparsity patterns. In order to show
the general trend, the plots for gr_30_30 and dw256B matrices partitioned into p = 3

and p = 2 partitions respectively are given in Figures 4.1a - 4.1e and 4.2a -4.2e,
respectively. As it can be seen, the sparsity of S�1 follows the sparsity pattern of S.
The spikes in S are just extended in S�1 but the nonzero columns remain the same.

30

Figure 4.1: Sparsity Pattern Plots of gr_30_30

(a) Sparsity structure of A
(b) Sparsity structure of reordered
A

(c) Sparsity structure of D (d) Sparsity structure of S

(e) Sparsity structure of the S�1

31

Figure 4.2: Sparsity Pattern Plots of dw256B

(a) Sparsity structure of A
(b) Sparsity structure of reordered
A

(c) Sparsity structure of D (d) Sparsity structure of S

(e) Sparsity structure of S�1

4.2 Approximate Inverse Algorithms Experimental Results

In this section we experiment with the S matrices that arise from the matrices given
in Table 4.1.

4.2.1 Effect of Stopping Tolerance on Number of Iterations and Time

GMR, GSD, and CMR algorithms were tested with three different targeted stopping
tolerance as condition for convergence, namely 10

�5, 10�10, and 10

�15. The other
parameters are set as follows: The maximum number of iterations is set to 200, the

32

initial guess is taken as a zero matrix, and a numerical dropping strategy, with a drop
tolerance of 10�4 is used.

Unlike GMR and GSD, the CMR algorithm iterates for a certain number of iterations
on each column. In order to have comparable metrics for the number of iterations, the
total number of iterations performed for all of the input matrix columns was divided
by the number of columns to obtain an average number of iterations. The number
of iterations for various stopping tolerances for the three algorithms are shown in
Figures 4.3, 4.4, and 4.5, respectively:

0	

10	

20	

30	

40	

50	

60	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.3: Number of Iterations for stopping tolerances for GMR

0	

50	

100	

150	

200	

250	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.4: Number of Iterations for stopping tolerances for GSD

33

0	

5	

10	

15	

20	

25	

30	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.5: Number of iterations for stopping tolerances for CMR

As expected, in all of the matrices tested, the number of iterations increased with
decreasing stopping tolerance for all of the algorithms. GSD could not converge
within the maximum number of iterations for mcca for the stopping tolerance of 10�10

and 10

�15. The results of the table were also plotted under a different point of view.
The three algorithms were compared in terms of iterations they require to reach the
desired error tolerance. In Figure 4.6, 4.7, and 4.8, the required number of iterations
for a stopping tolerance of 10�5, 10�10 and 10

�15 are given respectively.

0	

20	

40	

60	

80	

100	

120	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

	N
um

be
r	o

f	I
Ite

ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.6: Number of iterations for GMR, GSD, CMR for 10�5

stopping tolerance

34

0	

20	

40	

60	

80	

100	

120	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

	N
um

be
r	o

f	I
Ite

ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.7: Number of Iterations for GMR, GSD, CMR for
10

�10 stopping tolerance

0	

50	

100	

150	

200	

250	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.8: Number of Iterations for GMR, GSD, CMR for
10

�15 stopping tolerance

The number of iterations until convergence was the highest for the GSD algorithm,
followed by GMR which had a slight difference in terms of number of iterations
when compared to CMR. For the mesh1e1 matrix, for the 10

�15 stopping tolerance
case, both the GMR and GSD algorithms required an equal number of iterations. The
time elapsed until convergence for GMR, GSD, and CMR are given in Figures 4.9,
4.10, and 4.11, respectively. We measure the wall-clock time using the tic and toc

functions of MATLAB. For the cases when the time measured was smaller that 1/10
of a second, the algorithms are run in a loop and an average is reported.

35

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ti
m
e(
m
s)
	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.9: Time for stopping tolerances for GMR

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ti
tle

	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.10: Time for stopping tolerances for GSD

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ti
m
e	
(m

s)
	

Matrix	

10⁻⁵	 10⁻¹⁰	 10⁻¹⁵	

Figure 4.11: Time for stopping tolerances for CMR

36

As seen in the figures, the elapsed wall-clock time closely follows the number of
iterations: time elapsed until convergence also increases with decreasing stopping
tolerance, i.e. increased accuracy for the S�1 approximation.

In Figures 4.12, 4.13, and 4.14 we give the elapsed wall-clock time for three algo-
rithms using a stopping tolerance of 10�5, 10�10, and 10

�15, respectively.

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ite
ra
&o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.12: Time for GMR, GSD, and CMR for stopping tol-
erance 10

�5

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ite
ra
&o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.13: Time for GMR, GSD, and CMR for stopping tol-
erance 10

�10

We observe that, regardless of the stopping tolerance, for three of the input matrices,
namely mcca, bfwb782, and Trefethen_150, GSD is the slowest, followed by GMR
and CMR. For cage7 and mesh1em6 the time elapsed is close to each other for all
three algorithms. CMR is the most time consuming algorithm for mesh1e1, cage6
and bfwb62.

37

1	

10	

100	

1000	

10000	

100000	

mc
ca
	

dw
25
6B
	

ca
ge
7	

me
sh
1e
1	

bfw
b7
82
	

ca
ge
6	

Tre
fet
he
n_
15
0	

me
sh
1e
m6
	

bfw
b6
2	

Ite
ra
&o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.14: Time for GMR, GSD, and CMR for stopping tol-
erance 10

�15

In order to examine how the residual norm, defined as kI � AMkF , changes with
the iterations for each algorithm, the following residual norm history graphics are
plotted under the following assumptions: stopping tolerance 10

�10, maximum num-
ber of iterations 200, initial guess M0 = ↵I , and numerical dropping strategy. Since
the Column-based Minimum Residual Iteration Algorithm computes the approximate
inverse column-by-column, which is quite different from the other two global Ap-
proximate Inverse Algorithms, in order to compare the residual norm of all of the
three algorithms, its residual norm per iteration was calculated by taking the average
residual norm of its columns per iteration.

1.0E-18	

1.0E-15	

1.0E-12	

1.0E-09	

1.0E-06	

1.0E-03	

1.0E+00	

1	 21	 41	 61	 81	 101	 121	 141	 161	 181	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.15: Error History Through Iterations for mcca

38

1.00E-18	

1.00E-15	

1.00E-12	

1.00E-09	

1.00E-06	

1.00E-03	

1.00E+00	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.16: Error History Through Iterations for cage7

1.00E-17	

1.00E-14	

1.00E-11	

1.00E-08	

1.00E-05	

1.00E-02	

1.00E+01	
1	 11	 21	 31	 41	 51	 61	 71	 81	 91	 101	 111	 121	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.17: Error History Through Iterations for mesh1e1

1.00E-17	

1.00E-14	

1.00E-11	

1.00E-08	

1.00E-05	

1.00E-02	

1.00E+01	
1	 10	 19	 28	 37	 46	 55	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.18: Error History Through Iterations for cage6

39

1.00E-18	

1.00E-15	

1.00E-12	

1.00E-09	

1.00E-06	

1.00E-03	

1.00E+00	

1	 11	 21	 31	 41	 51	 61	 71	 81	 91	 101	 111	 121	 131	 141	 151	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.19: Error History Through Iterations for Trefethen150

1.00E-17	

1.00E-14	

1.00E-11	

1.00E-08	

1.00E-05	

1.00E-02	

1.00E+01	
1	 11	 21	 31	 41	 51	 61	 71	 81	 91	 101	 111	 121	 131	 141	 151	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.20: Error History Through Iterations for mesh1em6

1.00E-17	

1.00E-14	

1.00E-11	

1.00E-08	

1.00E-05	

1.00E-02	

1.00E+01	

1	 5	 9	 13
	

17
	

21
	

25
	

29
	

33
	

37
	

41
	

45
	

49
	

53
	

57
	

61
	

65
	

69
	

73
	

77
	

81
	

85
	

89
	

93
	

97
	

10
1	

10
5	

10
9	

11
3	

11
7	

12
1	

12
5	

12
9	

13
3	

Re
si
du

al
	N
or
m
	

Itera0ons	

GlobMinResIter	

GlobSteepDesc	

ColMinResITer	

Figure 4.21: Error History Through Iterations for bfwb62

40

What can be observed from the residual norm history plots, is that GSD reaches
the desired tolerance for the longest time, while CMR follows the same pattern as
GMR, but reaches a more accurate tolerance for the same number of iterations, when
compared to GMR. In Figures 4.15 - 4.20 the residual history plots using all three
methods are given for mcca, cage7, mesh1e1, cage6, Trefethen150, mesh1em6 and
bfwb62, respectively. For all problems, GSD requires the largest number of iterations
to reach the desired tolerance, while CMR and GMR require fewer iterations. We
note that, for each method, the cost per iteration is different.

4.2.2 Effect of Initial Guess on Number of Iterations and Time

We have studied the effect of the initial guess for M0 using three different initial guess
matrices, namely M0 = ↵I and M0 = ↵AT , and the zero matrix.

The scale factor ↵ is chosen to minimize the norm of I � AM0. Thus, the initial
guess is of the form M0 = ↵G where G could be either the identity matrix or or the
transpose of the A matrix, AT . The optimal ↵ can be computed using

↵ =

tr(AG)

tr(AG(AG)

T
)

.

The tests were performed using a stopping tolerance of 10�10, maximum number of
iterations 200, and numerical dropping strategy. The table containing the detailed
numerical results can be found in the appendix. Here we summarize the results.

In Figure 4.21, 4.22, and 4.23 the required number of iterations to approximate the
inverse of the S matrix are given for GMR, GSD, and CMR, respectively.

41

0	

10	

20	

30	

40	

50	

60	

70	

80	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

αAt	 αI	 0	

Figure 4.22: Iteration Numbers for initial guesses for GMR

0	

50	

100	

150	

200	

250	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

αAt	 αI	 0	

Figure 4.23: Iteration Numbers for initial guesses for GSD

0	

10	

20	

30	

40	

50	

60	

70	

80	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

αAt	 αI	 0	

Figure 4.24: Iteration Numbers for initial guesses for CMR

42

In terms of number of iterations, the initial guess has little or no effect for both GMR
and GSD. The only exception is the gr_30_30 matrix with GMR, where the number
of iterations is larger for ↵I initial guess when compared to the other initial guesses.
For CMR, the number of iterations are also close to each other, with a slightly larger
number of iterations for ↵I for all of the matrices. The difference is substantial for
gr_30_30.

In Figures 4.33, 4.34, and 4.35, wall-clock times are given for GMR, GSD, and CMR,
respectively.

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

αAt	 αI	 0	

Figure 4.25: Time for initial guesses for GMR

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

αAt	 αI	 0	

Figure 4.26: Time for initial guesses for GSD

43

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

αAt	 αI	 0	

Figure 4.27: Time for initial guesses for CMR

The initial guess choice has little or no effect on the time elapsed for 5 of the input
matrices for GMR, namely bfwb62, bfwb782,dw256B, gr_30_30, and mcca. For the
remaining matrices, the ↵AT initial guess requires a longer time to meet the con-
vergence criteria, followed closely by ↵I and the 0 matrix initial guess. For CMR,
the time elapsed is close for initial guesses and for all of the matrices, except for
gr_30_30, where the time required to converge for the ↵I initial guess is consider-
ably longer than the other initial guesses. We also plot the data by fixing the initial
guess and changing the algorithm. Figures 4.28, 4.29, and 4.30 depict the number of
iterations and Figures 4.31, 4.32 and 4.33 the time until convergence for initial guess
↵AT , ↵I and 0 matrix, respectively.

0	

50	

100	

150	

200	

250	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.28: Iteration No. for GMR , GSD, CMR - M0 =

↵AT

44

0	

50	

100	

150	

200	

250	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.29: Iteration No. for GMR , GSD, CMR - M0 = ↵I

0	

50	

100	

150	

200	

250	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.30: Iteration No. for GMR , GSD, CMR - M0 = 0

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.31: Time for GMR , GSD, CMR - M0 = ↵AT

45

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.32: Time for GMR , GSD, CMR - M0 = ↵I

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

Gr
30
30
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.33: Time for GMR , GSD, CMR- M0 = 0

4.2.3 Effect of Dropping Strategy on Number of Iterations and Time

The three dropping strategies , namely the numerical, structural, and the hybrid drop-
ping strategies that were proposed in this thesis and described in detail in the previous
chapter were studied in terms of their effect on the performance of the Approximate
Inverse Algorithms for computing the inverse of the S matrix.

We observe that the dropping strategy had no or very little effect on the iteration num-
ber elapsed until the algorithms converged. As an example, the number of iterations
for the three different dropping strategies for the Global Minimum Residual iteration
algorithm are given in Figure 4.34:

46

0	

5	

10	

15	

20	

25	

30	

35	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

N
um

be
r	o

f	I
te
ra
-o

ns
	

Matrix	

numerical	 stuctural	 hybrid	

Figure 4.34: Number of Iterations for dropping strategies for GMR

Although the number of iterations is not affected, the dropping strategy is expected to
have an effect on the computational time, given that it affects the cost per iteration of
the algorithms. In Figure 4.35, 4.36, and 4.37 wall-clock times are given for GMR,
GSD, and CMR, respectively. The structural dropping strategy is seen to perform
better for CMR, followed by numerical dropping. The hybrid dropping strategy was
the most computationally expensive dropping strategy for all of the matrices.

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

numerical	 stuctural	 hybrid	

Figure 4.35: Time for dropping strategies GMR

47

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

numerical	 stuctural	 hybrid	

Figure 4.36: Time for dropping strategies GSD

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

numerical	 stuctural	 hybrid	

Figure 4.37: Time for dropping strategies CMR

Now, we fix the dropping strategy and provide the required number of iterations and
time for all the three methods. In figure 4.38, 4.39, and 4.40, the required time is given
using numerical dropping, structural dropping, and hybrid dropping, respectively. For
numerical dropping, GSD requires the longest time to converge for bfwb782, cage7,
mcca, and Trefethen150 followed by GMR, and CMR. GMR is faster than CMR
and then GSD for the mesh1e1 and mesh1em6 matrices, while GSD requires a short-
est amount of time for bfwb62, cage7 and dw256B, where GMR and CMR require
longer time to converge.

48

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.38: Time for numerical dropping for GMR, GSD,CMR

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
		

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.39: Time for structural dropping for GMR, GSD,CMR

1	

10	

100	

1000	

10000	

100000	

Bfw
b6
2	

Bfw
b7
82
	

Ca
ge
6	

Ca
ge
7	

Dw
25
6b
	

mc
ca
	

Me
sh
1e
1	

Me
sh
1e
m6
	

Tre
fet
he
n1
50
	

Ti
m
e	
(m

s)
	

Matrix	

GlobMinResIter	 GlobSteepDesc	 ColMinResIter	

Figure 4.40: Time for hybrid dropping for GMR, GSD,CMR

49

The time required for convergence slightly differ for the structural dropping strategy.
All of the three algorithms took similar times to converge for dw256B. GSD requires
the longer time to converge for all of the other input matrices. GMR performed better
than CMR for bfwb62, cage6,Trefethen150 and mesh1em6, while CMR converged
for a shorter time compared to GMR for bfwb782, cage7, mcca and mesh1e1.

In the hybrid dropping case, time to convergence was the shortest for GMR, fol-
lowed by GSD and then CMR for the following matrices: bfwb62, bfwb782, cage7,
mesh1e1 and mesh1em6. For cage6, GSD converged for the shortest time, followed
by close times for GMR and CMR. GSD required the longest time to converge for
mcca and Trefethen150,

4.3 The Parallel Results using the Proposed Algorithm

In the earlier sections, we have studied the performance of part of the proposed al-
gorithm, namely computing the approximate inverse of the S matrix. Based on the
results, we use the Column-based Minimum Iteration Algorithm, with structural drop-
ping and a stopping tolerance of 10�10. The algorithm described in this thesis is im-
plemented in its sequential version using C++ and the Armadillo library for matrix
operations. Next, OpenMP directives were added in order to introduce parallel sec-
tions. We use another set of matrices obtained from the UF Sparse Matrix Collection
listed in Table 4.2 which contains slightly larger matrices.

Table 4.2: Input Matrices for Parallel Tests

Matrix Name rows cols nonzeros A posdef S posdef
circuit_1 2,624 2,624 35,823 no yes
ex10 2,410 2,410 54,840 yes yes
saylr4 3,564 3,564 22,316 no yes
sherman4 1,104 1,104 3,786 no yes
orsirr_1 1,030 1,030 6,858 no yes
crystk01 4,875 4,875 315,891 no yes
s1rmq4m1 5,489 5,489 262,411 yes yes
bcsstk16 4,884 4,884 290,378 yes yes

50

4.3.1 Comparison of the Straightforward algorithm to the Proposed Algo-
rithm

The straightforward algorithm that computes the full inverse of the matrix sequen-
tially using a sparse direct solver (SuperLU) and then extracts its diagonal is used
as a baseline. The results are shown in Table 4.3. The speedup is calculated as
Speedup =

T ime
Straightforward

T ime
Parallel

and the time is given in milliseconds.

Table 4.3: Solution Time (ms) and Speedup for the proposed algorithm compared to
the straightforward algorithm

Matrix Name Number of Partitions Straightforward Parallel Speedup
circuit_1 3 578,0 55,6 10,4
ex10 2 273,1 31,7 8,6
saylr4 2 1744,7 231,8 7,5
sherman4 2 38,2 8,8 4,3
orsirr_1 2 39,5 10,9 3,6
cryst01 3 1721,8 593,1 2,9
s1rmq4m1 3 3325,6 734,8 4,5
bcsstk16 2 2576,1 147,0 17,5

The results in this table were plotted in Figure 4.41. For better visibility, the time axis
was logscaled.

1	

10	

100	

1000	

10000	

circuit_1	 ex10	 saylr4	 sherman4	 orsirr_1	 cryst01	 s1rmq4m1	 bcsstk16	

Ti
m
e	
in
	lo
gs
ca
le
(b
as
e=
10
)	

Matrices	

Sequental	Ex.	Time	 Parallel	Ex.	Time	

Figure 4.41: Execution time(ms) for the Straightfroward algorithm vs Proposed Al-
gorithm

As it can be seen from the speedup column, considerable improvements are achieved
from the proposed method executed in parallel. The proposed algorithm run in paral-
lel can be up to 17 times faster compared to the straightforward approach.

51

4.3.2 The parallel scalability

In this section, we study the parallel scalability of the proposed algorithm. We use
the Column-based Minimum Iteration Algorithm for approximating the inverse of the
S matrix. The parameters for CMR are structural dropping strategy, 10�10 stopping
tolerance and ↵I initial guess.

The algorithm was run with different numbers of threads in order to analyse its scal-
ability. First the total duration of the algorithm through different number of threads
was plotted for each duration in the following chart:

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

circuit_1		 ex10	 saylr4	 sherman4	 orsirr_1		 cryst01	 s1rmq4m1	 bcsstk16	

Ti
m
e	
(m

s)
	

Th
ou

sa
nd

s	

Matrices	

1	

2	

4	

8	

16	

32	

64	

Figure 4.42: Execution Time

In figure 4.52, the parallel speedup with respect to the sequential running time of the
algorithm is given. The speedup for orsirr_1 is the closest to the linear speedup, fol-
lowed by sherman4. circuit_1, bcsstk16, saylr4 and ex10, which scale similarly to
each other, but not as good as the first two matrices. Finally, cryst01 and s1rmq4m1

show a slower speedup when compared to the sequential running time of the other
matrices.

52

1	

2	

4	

8	

16	

32	

64	

n	=	1	 n	=	2	 n	=	4	 n	=	8	 n	=	16	 n	=	32	 n	=	64	

Sp
ee
du

p	

OMP	Thread	Number	

circuit_1		

ex10	

saylr4	

sherman4	

orsirr_1		

cryst01	

s1rmq4m1	

bcsstk16	

Linear	
Speedup	

Figure 4.43: Parallel running time as the number of threads change.

In Figures 4.54 and 4.53, detailed breakdowns of the time spent in each phase of the
proposed algorithm as the number of threads increase are given for the bcsstk16 and
saylr4 matrices, respectively.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1,000	

n	=	1	 n	=	2	 n	=	4	 n	=	8	 n	=	16	 n	=	32	 n	=	64	

Ti
m
e(
m
s)
	

Th
ou

sa
nd

s	

OMP	Thread	Number	

DS	 DIAG	 AINV	

Figure 4.44: Duration of the three phases of the algorithm for bcsstk16

53

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1	 2	 3	 4	 5	 6	 7	

Ti
m
e(
m
s)
	

Th
ou

sa
nd

s	

OMP	Thread	Number	

DS	 DIAG	 AINV	

Figure 4.45: Duration of the three phases of the algorithm for saylr4

The most time-consuming phase of the proposed method is the approximate inverse
calculation of the S matrix, followed by the calculation of the diagonal, and then
the factorization phase. The factorization phase scalability is bound by the number
of partitions, since we assign one partition per processing element. The reason we
kept the partition number generally low is explained with the effect that it has on the
sparsity pattern of the resulting matrix S. Increasing the partition number does de-
crease the execution time of the DS factorization with increasing number of threads,
but it also increases the number of spikes in the S matrix, hence increasing the num-
ber of columns that have to be traversed by the Column-Based Minimum Iteration
Algorithms.

54

CHAPTER 5

CONCLUSIONS

We developed a parallel algorithm for the computation of the diagonal of the inverse
of a sparse matrix. The main motivation for this work were the various science and
engineering applications in which this problem arises, such as Dynamic Mean Field
Theory, Uncertainty Quantification, and Density Function Theory.

The existing solutions to this problem ranged from the straghtforward solution of
full inversion of the sparse matrix to extract its diagonal, to direct methods based
on the standard LU factorization and triangular solves, and stochastic or iterative
approximations. However, most of these solutions were limited by the application
that motivated them. Moreover, we noticed that there was very little work done in
finding a parallel solution to this problem.

Our main objective was to develop a parallel algorithm for an efficient computation
of the diagonal of the sparse matrix inverse. The proposed method uses elements
of both direct and iterative methods. It first factorizes the sparse matrix into the
D and S matrices by applying the generalized sparse DS factorization. Next, it uses
approximate inverse algorithms for the inversion of the S matrix, which has a peculiar
sparsity structure. During this iterative phase of the proposed method, a new dropping
strategy based on the structure of the S matrix, namely structural dropping, is applied.

Various experiments were performed in order to analyse the performance of the pro-
posed method and the different parameters that affected its performance. We first
studied in detail the approximate inverse algorithms and how three different param-
eters, namely the stopping tolerance, the initial guess, and the dropping strategy af-
fected their performance. Based on the results of this first set of experiments and
other observations, we decided to use the Column-Based Minimum Iteration algo-
rithm with Structural dropping and ↵I intial guess for the second step of the parallel
algorithm. The parallel algorithm was implemented and tested agains the straightfor-

55

ward method. Next, the parallel scalability of the proposed method was studied and
the speedup against the sequentail running time of the algorithm were reported. We
noticed that the proposed algorithm perfomed significantly better when compared to
the straightforward algorithm, and the algorithm scales quite good with the increasing
number of threads. The Approximate Inverse computation is noticed to be the most
time-consuming step of the algorithm. Moreover, the parallelization of the DS fac-
torization step is bound to the number of partitions; even though the DS factorization
time decreases when increasing the number of partitions and executing the method in
parallel, the increased the number of non-zero entries on the resulting S matrix lead
to a siginifant increase in the second step of the proposed method.

The main advantages of the proposed algorithm are that it is applicable to general
matrices and not necessarily of a particular application, and that it is based on the
Generalized DS factorization and Approximate Inverse Algorithms, both of which
are suitable for parallelization.

Comparison of the proposed algorithm against other existing algorithms that find the
diagonal of the inverse of a sparse matrix is a remaining issue due to the lack of
available and non-application specific implementations of these methods.

56

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, Y. Robert, F.-H. Rouet, and B. Uçar.
On computing inverse entries of a sparse matrix in an out-of-core environment.
SIAM journal on Scientific Computing, 34(4):A1975–A1999, 2012.

[2] C. Bekas, A. Curioni, and I. Fedulova. Low cost high performance uncertainty
quantification. In Proceedings of the 2Nd Workshop on High Performance Com-
putational Finance, WHPCF ’09, pages 8:1–8:8, New York, NY, USA, 2009.
ACM.

[3] C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a
matrix. Applied numerical mathematics, 57(11):1214–1229, 2007.

[4] M. Benzi and G. H. Golub. Bounds for the entries of matrix functions with
applications to preconditioning. BIT Numerical Mathematics, 39(3):417–438,
1999.

[5] K. Bowden. A direct solution to the block tridiagonal matrix inversion problem.
International Journal Of General System, 15(3):185–198, 1989.

[6] Y. E. Campbell and T. A. Davis. Computing the sparse inverse subset: an inverse
multifrontal approach. University of Florida, Gainesville, FL, Tech. Rep. TR-
95-021, 1995.

[7] M. Ceriotti, T. D. Kühne, and M. Parrinello. An efficient and accurate decom-
position of the fermi operator. The Journal of chemical physics, 129(2):024707,
2008.

[8] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scientific Computing, 19(3):995–1023, 1998.

[9] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, Dec. 2011.

[10] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Inc., New York, NY, USA, 1986.

[11] A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse
of a sparse matrix. Commun. ACM, 18(3):177–179, Mar. 1975.

[12] J. K. Freericks. Transport in multilayered nanostructures: the dynamical mean-
field theory approach. World Scientific, 2006.

[13] S. Goedecker. Linear scaling electronic structure methods. Reviews of Modern
Physics, 71(4):1085, 1999.

57

[14] A. S. Householder. The theory of matrices in numerical analysis. Courier Cor-
poration, 2013.

[15] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix
for laplacian smoothing splines. Communications in Statistics-Simulation and
Computation, 19(2):433–450, 1990.

[16] S. Li, S. Ahmed, G. Klimeck, and E. Darve. Computing entries of the inverse of
a sparse matrix using the find algorithm. J. Comput. Phys., 227(22):9408–9427,
Nov. 2008.

[17] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user in-
terface. ACM Trans. Math. Softw., 31(3):302–325, September 2005.

[18] L. Lin, J. Lu, R. Car, and E. Weinan. Multipole representation of the fermi
operator with application to the electronic structure analysis of metallic systems.
Physical Review B, 79(11):115133, 2009.

[19] L. Lin, J. Lu, L. Ying, R. Car, E. Weinan, et al. Fast algorithm for extract-
ing the diagonal of the inverse matrix with application to the electronic struc-
ture analysis of metallic systems. Communications in Mathematical Sciences,
7(3):755–777, 2009.

[20] L. Lin, C. Yang, J. Lu, and L. Ying. A fast parallel algorithm for selected
inversion of structured sparse matrices with application to 2d electronic structure
calculations. SIAM Journal on Scientific Computing, 33(3):1329–1351, 2011.

[21] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E. Selinv—an algorithm
for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw.,
37(4):40:1–40:19, Feb. 2011.

[22] M. Manguoglu. A general sparse sparse linear system solver and its application
in openfoam. Partnership for Advanced Computing in Europe, 2012.

[23] M. Manguoglu. Parallel solution of sparse linear systems. In High-Performance
Scientific Computing, pages 171–184. Springer, 2012.

[24] E. Polizzi and A. Sameh. Spike: A parallel environment for solving banded
linear systems. Computers & Fluids, 36(1):113–120, 2007.

[25] R.-S. Ran and T.-Z. Huang. An inversion algorithm for a banded matrix. Com-
puters & Mathematics with Applications, 58(9):1699–1710, 2009.

[26] C. E. Rasmussen and C. K. Williams. Gaussian processes for machine learning.
2006. The MIT Press, Cambridge, MA, USA, 38:715–719, 2006.

[27] H. Röder, R. Silver, D. Drabold, and J. J. Dong. Kernel polynomial method for
a nonorthogonal electronic-structure calculation of amorphous diamond. Phys-
ical Review B, 55(23):15382, 1997.

[28] C. Sanderson and R. Curtin. Armadillo: a template-based c++ library for linear
algebra. Journal of Open Source Software, 1(2):26–32, 2016.

58

[29] R. B. Sidje and Y. Saad. Rational approximation to the fermi–dirac func-
tion with applications in density functional theory. Numerical Algorithms,
56(3):455–479, 2011.

[30] K. Takahashi. Formation of sparse bus impedance matrix and its application to
short circuit study. In Proc. PICA Conference, June, 1973, 1973.

[31] J. M. Tang and Y. Saad. Domain-decomposition-type methods for comput-
ing the diagonal of a matrix inverse. SIAM Journal on Scientific Computing,
33(5):2823–2847, 2011.

[32] J. M. Tang and Y. Saad. A probing method for computing the diagonal of a
matrix inverse. Numerical Linear Algebra with Applications, 19(3):485–501,
2012.

59

60

APPENDIX A

A.1 Stopping Tolerance Tests Results

Table A.1: Effect of Stopping Tolerance

matrix algorithm errtol #iter error time diff

mcca GlobMinResIter 1.e-05 11 5.49E-05 855.6 5.76E-06

1.e-10 22 7.66E-10 870.9 9.01E-11

1.e-15 33 9.49E-15 1231.4 4.72E-15

GlobSteepDesc 1.e-05 98 1.24E-05 1503 1.09E-09

1.e-10 200 1.07E-08 3481.6 9.44E-14

1.e-15 200 1.07E-08 3600.5 9.44E-14

ColMinResIter 1.e-05 4 1.15E-08 291.9 9.42E-07

1.e-10 7 1.37E-13 449.9 7.42E-12

1.e-15 10 3.30E-19 1112.4 3.07E-15

dw256B GlobMinResIter 1.e-05 2 1.99E-04 700.5 2.15E+00

1.e-10 4 7.46E-10 1712 6.57E-06

1.e-15 6 2.06E-15 1997 2.90E-10

GlobSteepDesc 1.e-05 4 3.40E-05 404.8 1.05E+00

1.e-10 8 5.08E-10 882.2 9.63E-06

1.e-15 12 7.99E-15 1202 1.40E-10

ColMinResIter 1.e-05 2 2.39E-08 560 1.37E-01

1.e-10 2 1.03E-13 1072 2.43E-06

1.e-15 2 3.50E-19 1074 7.84E-11

cage7 GlobMinResIter 1.e-05 7 1.67E-04 1522.1 5.37E+00

1.e-10 16 6.13E-10 3476 1.24E-05

1.e-15 24 7.65E-15 3656 1.58E-10

GlobSteepDesc 1.e-05 14 1.01E-04 1668.7 6.99E+00

1.e-10 30 1.39E-09 3051 4.51E-05

61

Table A.1 Continued

1.e-15 47 1.05E-14 5048 6.82E-10

ColMinResIter 1.e-05 5 1.42E-06 996 5.04E-01

1.e-10 9 3.67E-12 1762 3.03E-06

1.e-15 12 2.22E-19 2166 1.18E-10

mesh1e1 GlobMinResIter 1.e-05 12 5.99E-05 25.9 9.19E-02

1.e-10 22 4.95E-10 58.1 3.64E-07

1.e-15 28 1.31E-15 889.6 7.35E-12

GlobSteepDesc 1.e-05 37 6.11E-05 42.7 5.84E-02

1.e-10 80 6.26E-10 81.7 8.35E-07

1.e-15 123 6.43E-15 208.6 1.19E-11

ColMinResIter 1.e-05 9 6.19E-08 184.5 4.22E-02

1.e-10 16 8.97E-14 379.2 3.69E-07

1.e-15 23 1.87E-19 525.9 5.92E-12

bfwb782 GlobMinResIter 1.e-05 13 1.81E-04 13.2 204.884

1.e-10 28 2.60E-09 23.2 1.82E+00

1.e-15 44 1.92E-14 37 1.67E-05

GlobSteepDesc 1.e-05 37 8.88E-06 24.5 257.955

1.e-10 88 8.86E-11 57.2 2.57E+00

1.e-15 139 1.63E-15 91.2 4.84E-05

ColMinResIter 1.e-05 8 9.17E-07 9.4 12.212

1.e-10 15 7.81E-12 13.9 1.52E-01

1.e-15 22 1.02E-16 13.9 6.92E-06

cage6 GlobMinResIter 1.e-05 8 3.43E-05 37.8 2.69E+00

1.e-10 16 5.82E-10 68 3.29E-05

1.e-15 24 3.05E-15 269.4 3.91E-10

GlobSteepDesc 1.e-05 14 9.18E-05 67.1 4.16E+00

1.e-10 30 5.76E-10 388.6 4.11E-05

1.e-15 46 6.79E-15 405.5 4.52E-10

ColMinResIter 1.e-05 6 1.09E-07 372.2 4.18E-01

1.e-10 10 1.55E-12 812.5 4.07E-06

1.e-15 14 8.28E-18 1313 1.02E-10

Trefethen_150 GlobMinResIter 1.e-05 6 1.10E-04 123.6 5.93E-02

1.e-10 12 5.36E-11 1210.4 1.06E-06

1.e-15 18 1.16E-14 1838.5 1.58E-11

GlobSteepDesc 1.e-05 45 1.06E-04 1463.3 1.24E-01

62

Table A.1 Continued

1.e-10 102 1.02E-09 3365.3 1.18E-06

1.e-15 158 1.21E-14 3719.8 6.65E-10

ColMinResIter 1.e-05 4 8.26E-09 136.6 1.02E-02

1.e-10 8 1.33E-16 749.4 1.15E-07

1.e-15 15 1.27E-21 865.6 3.54E-12

mesh1em6 GlobMinResIter 1.e-05 15 4.59E-05 69.5 6.28E-02

1.e-10 32 3.71E-10 281.7 6.38E-07

1.e-15 48 6.06E-15 325.9 1.30E-11

GlobSteepDesc 1.e-05 47 6.50E-05 64.6 1.20E-01

1.e-10 102 6.82E-10 234.3 1.51E-06

1.e-15 158 5.82E-15 235.4 2.38E-11

ColMinResIter 1.e-05 10 3.70E-07 145.8 4.60E-02

1.e-10 19 3.65E-17 300.9 2.47E-07

1.e-15 28 6.60E-14 563.7 1.14E-11

bfwb62 GlobMinResIter 1.e-05 12 3.91E-05 28.9 0.4616

1.e-10 19 7.02E-10 41.2 8.57E-03

1.e-15 26 3.11E-15 64.9 7.03E-07

GlobSteepDesc 1.e-05 40 7.08E-05 104.4 10.383

1.e-10 87 7.73E-10 120 9.14E-02

1.e-15 135 6.63E-15 192.9 1.93E-06

ColMinResIter 1.e-05 7 3.28E-06 109.6 0.3203

1.e-10 13 1.56E-09 191.7 3.06E-02

1.e-15 19 8.83E-13 310.4 4.91E-07

63

A.2 Initial Guess Tests Results

Table A.2: Effect of Initial Guess.

matrix algorithm Initial guess #iter Sinv sparsity time error

Bfwb62 GlobMinResIter ↵AT 18 565 25.9 7.02E-06

↵I 17 753 24 2.20E-06

0 19 565 23 7.02E-06

GlobSteepDesc ↵AT 84 616 71.2 6.37E-06

↵I 86 719 161.6 7.73E-06

0 87 745 124.8 7.73E-06

ColMinResIter ↵AT 12 566 222.7 9.72E-10

↵I 17 764 285.1 6.30E-06

0 13 565 212.3 1.56E-05

Bfwb782 GlobMinResIter ↵AT 27 14016 23496.3 2.43E-05

↵I 27 20979 22899 2.50E-05

0 28 14016 23140.5 2.43E-05

GlobSteepDesc ↵AT 84 21250 53053.7 2.62E-05

↵I 87 19556 59144.50 2.61E-05

0 88 19738 59766.7 2.61E-05

ColMinResIter ↵AT 14 14387 13213.5 2.61E-05

↵I 19 21061 12595.6 2.61E-05

0 15 14437 12599.9 2.61E-05

Cage6 GlobMinResIter ↵AT 15 1121 835.8 5.82E-06

↵I 16 1209 274.1 3.24E-06

0 16 1121 89.2 5.82E-06

GlobSteepDesc ↵AT 28 1148 322.4 5.53E-06

↵I 29 1388 123.5 5.76E-06

0 30 1543 157.9 5.76E-06

ColMinResIter ↵AT 10 1119 761.6 4.56E-08

↵I 14 1204 585.2 6.68E-09

0 10 1118 328.2 1.55E-08

Cage7 GlobMinResIter ↵AT 15 3225 2861.4 6.13E-06

↵I 15 3279 2298 1.06E-05

0 16 3225 1730 6.13E-06

GlobSteepDesc ↵AT 28 3267 3477.2 1.54E-05

↵I 29 3389 3.013.5 1.39E-05

0 30 4033 3.282.2 1.39E-05

64

Table A.2 Continued

ColMinResIter ↵AT 8 3229 1552.6 2.82E-07

↵I 12 3283 1890.5 1.74E-08

0 9 3228 1893.1 3.67E-08

Dw256b GlobMinResIter ↵AT 3 571 1085.3 7.46E-06

↵I 4 571 1499.8 5.67E-07

0 4 571 1505.8 7.46E-06

GlobSteepDesc ↵AT 7 571 789.1 3.62E-06

↵I 7 571 865.8 5.08E-06

0 8 626 1299.1 5.08E-06

ColMinResIter ↵AT 2 571 931 1.69E-09

↵I 2 571 600.6 1.82E-10

0 2 571 808.1 1.03E-09

mcca GlobMinResIter ↵AT 21 1172 670.7 7.66E-06

↵I 19 2736 1165.5 9.44E-06

0 22 1172 1141.5 7.66E-06

GlobSteepDesc ↵AT 200 853 3902.8 7.80E-05

↵I 200 1845 3091 9.81E-05

0 200 1965 2.902 1.07E-04

ColMinResIter ↵AT 6 1204 621.6 2.26E-07

↵I 11 3052 619.7 1.76E-09

0 7 1192 273.8 1.37E-09

Mesh1e1 GlobMinResIter ↵AT 21 416 64.3 6.13E-06

↵I 22 509 33.7 1.06E-05

0 22 416 44.8 6.13E-06

GlobSteepDesc ↵AT 75 395 92.6 1.54E-05

↵I 79 497 81.3 1.39E-05

0 80 510 257.5 1.39E-05

ColMinResIter ↵AT 15 420 286.9 2.82E-07

↵I 19 518 251.5 1.74E-08

0 16 418 201.6 3.67E-08

Mesh1em6 GlobMinResIter ↵AT 31 467 249.2 3.71E-06

↵I 31 617 41 5.62E-06

0 32 467 36.4 3.71E-06

GlobSteepDesc ↵AT 97 434 104.6 6.00E-06

↵I 101 556 131.2 6.82E-06

65

Table A.2 Continued

0 102 570 143.2 6.82E-06

ColMinResIter ↵AT 18 468 251.8 4.15E-07

↵I 22 614 283.3

0 19 470 266.2

Trefethen150 GlobMinResIter ↵AT 11 350 1223.2 5.36E-07

↵I 14 431 507.4 3.20E-06

0 12 350 410.9 5.36E-07

GlobSteepDesc ↵AT 100 335 3637.6 1.01E-05

↵I 101 494 4628.4 1.02E-05

0 102 508 2234.9 1.02E-05

ColMinResIter ↵AT 7 349 524.7 1.20E-15

↵I 7 484 368 2.84E-11

0 8 354 512.7 1.33E-12

66

A.3 Dropping Strategy Test Results

Table A.3: Effect of Dropping Strategy.

matrix algorithm Drop strat #iter Sinv sparsity time error

Bfwb62 GlobMinResIter numerical 19 565 305.3 7.02E-10

stuctural 19 1388 98.1 7.02E-10

hybrid 19 565 297.5 7.02E-10

GlobSteepDesc num 87 745 163.7 7.73E-10

stuct 87 1388 377.7 7.73E-10

hybrid 87 642 450.1 7.73E-10

ColMinResIter num 13 565 295.9 1.56E-09

stuct 13 1388 306.5 1.31E-13

hybrid 13 1016 670.1 1.59E-09

Bfwb782 GlobMinResIter num 28 14016 18686.8 7.02E-10

stuct 28 212902 21615.7 7.02E-10

hybrid 28 14016 21166 7.02E-10

GlobSteepDesc num 88 19738 45175.2 7.73E-10

stuct 88 212902 44132.8 7.73E-10

hybrid 88 19194 48736.1 7.73E-10

ColMinResIter num 15 14437 10582.4 1.56E-09

stuct 14 212902 9222.9 1.31E-13

hybrid 14 26137 94842.8 1.59E-09

Cage6 GlobMinResIter num 16 1121 427.9 5.52E-10

stuct 16 5827 300.5 5.52E-10

hybrid 16 1121 1878.1 5.52E-10

GlobSteepDesc num 30 1543 113.3 7.76E-10

stuct 30 5889 728.1 7.76E-10

hybrid 30 1336 482.6 7.76E-10

ColMinResIter num 10 1118 668.2 3.43E-12

stuct 10 5827 309.2 2.34E-12

hybrid 10 2011 1641.60 4.26E-12

Cage7 GlobMinResIter num 15 3279 2489.4 6.13E-10

stuct 15 70174 2765.6 6.13E-10

hybrid 15 50611 3480.6 6.13E-10

GlobSteepDesc num 29 3389 4357.5 1.39E-09

stuct 29 70174 3961.4 1.39E-09

67

Table A.3 Continued

hybrid 28 52285 4464 1.39E-09

ColMinResIter num 8 70174 2288.1 3.67E-12

stuct 8 70174 2048.6 4.48E-12

hybrid 8 69918 12212.4 4.38E-12

Dw256b GlobMinResIter num 4 571 2000 7.46E-10

stuct 4 17886 1367.5 7.46E-10

hybrid 4 571 1942.3 7.46E-10

GlobSteepDesc num 8 626 953.1 5.08E-10

stuct 8 17886 1161.6 5.08E-10

hybrid 8 579 1437 5.08E-10

ColMinResIter num 2 571 1155.3 1.03E-13

stuct 1 17886 161.1 1.23E-13

hybrid 1 632 908.7 1.23E-13

mcca GlobMinResIter num 22 1172 1007 7.66E-10

stuct 22 9561 1646.8 7.66E-10

hybrid 22 4264 3191.3 7.66E-10

GlobSteepDesc num 200 1965 3362.9 1.07E-08

stuct 200 9561 4944.7 1.07E-08

hybrid 200 4418 4613.8 1.07E-08

ColMinResIter num 7 9561 455.9 1.37E-13

stuct 6 9561 264.5 1.63E-14

hybrid 6 6669 2058.6 1.82E-13

Mesh1e1 GlobMinResIter num 22 416 41.5 4.95E-10

stuct 22 1928 222.2 4.95E-10

hybrid 22 416 190.7 4.95E-10

GlobSteepDesc num 80 510 198.1 6.26E-10

stuct 80 1928 673.3 6.26E-10

hybrid 80 465 306.7 6.26E-10

ColMinResIter num 16 418 187 8.97E-14

stuct 16 1928 157.7 7.30E-14

hybrid 16 822 693.7 8.46E-14

Mesh1em6 GlobMinResIter num 32 467 78.8 3.71E-10

stuct 32 1928 126.7 3.71E-10

hybrid 32 467 137.9 3.71E-10

GlobSteepDesc num 102 570 234.4 6.82E-10

68

Table A.3 Continued

stuct 102 1928 579.4 6.82E-10

hybrid 102 506 410.9 6.82E-10

ColMinResIter num 19 470 215.6 3.65E-17

stuct 19 1928 192 2.56E-17

hybrid 19 883 773 2.73E-17

Trefethen150 GlobMinResIter num 12 350 768.8 5.36E-11

stuct 12 22500 484.8 5.36E-11

hybrid 12 20266 652.4 5.36E-11

GlobSteepDesc num 102 508 2338.2 1.02E-09

stuct 102 22500 2601 1.02E-09

hybrid 102 15088 3152.8 1.02E-09

ColMinResIter num 8 354 558.8 1.33E-16

stuct 8 22500 421.5 1.33E-16

hybrid 8 22004 2.412 1.33E-16

69

A.4 Diagonal of Inverse Computation using DS Factorization

d e f i n e ARMADONTUSEWRAPPER

i n c l u d e s t d i o . h

i n c l u d e s t d l i b . h

i n c l u d e c s t d l i b

i n c l u d e i o s t r e a m

i n c l u d e c t ime

i n c l u d e a r m a d i l l o

i n c l u d e omp . h

/ Number o f t h r e a d s used /

d e f i n e NRTHREADS 1

u s i n g namespace s t d ;

u s i n g namespace arma ;

i n t main (i n t a rgc , c h a r a rg v)

mat Ar , Ai i , D, S , R , Dinv , Sinv ,M, Aj , St , I , I n j ;

i n t i , n , n j , p , j , ind1 , i nd 2 =0 , i t e r c o u n t , k ;

uvec n nz i nd ;

uvec i n d ;

i n t t i d = 0 ;

i n t numth reads =0;

do ub l e n r j , Der ro r , DSerror , S e r r o r ;

vec e j , Avj , mj , r j , p j , e i , temp , d i r e c t d i a g , mydiag ;

i n t ni , nnz ;

do ub l e d i a g e n t r y ;

do ub l e t o t a l i t e r c o u n t , t o t a l e r r o r , a l p h a , a j , t o l ;

do ub l e s t a r t t i m e , s t o p t i m e ;

70

do ub l e f a c t t i m e , i n v t i m e , d i a g t i m e , t o t a l t i m e ;

c h a r matrixName = a rgv [1] ;

i n t p a r t i t i o n = a t o i (a rgv [2]) ;

Ar . l o a d (matrixName) ;

SpMat double Asp = s p m a t (Ar) ;

n = Ar . n r o w s ; / / m a t r i x s i z e

p = p a r t i t i o n ; / / p a r t i t i o n

n j = n / p ; / / b l o c k s i z e

ind1 = ind2 =0;

/ / FACTORIZATION

D = z e r o s (n , n) ;

R = z e r o s (n , n) ;

S = z e r o s (n , n) ;

Dinv = z e r o s (n , n) ;

I = eye (n , n) ;

I n j = eye (nj , n j) ;

Aj = z e r o s (nj , n j) ;

s p m a t Ds (n , n) ;

s p m a t Ss (n , n) ;

s p m a t Rs (n , n) ;

s p m a t Dinvs (n , n) ;

s p m a t S i n v s (n , n) ;

s p m a t Ms(n , n) ;

s p m a t Ajs (nj , n j) ;

s p m a t S t s (n , n) ;

s p m a t I s = speye s p m a t (n , n) ;

s p m a t I j = speye s p m a t (nj , n) ;

71

s p m a t I n j s = speye s p m a t (nj , n j) ;

e j = z e r o s (n) ;

Avj = z e r o s (n) ;

mj = z e r o s (n) ;

r j = z e r o s (n) ;

p j = z e r o s (n) ;

temp = z e r o s (n) ;

mydiag= z e r o s (n) ;

s p m a t e j s (n , 1) ;

s p m a t Avjs (n , 1) ;

s p m a t mjs (n , 1) ;

s p m a t r j s (n , 1) ;

s p m a t p j s (n , 1) ;

s p m a t mydiags (n , 1) ;

e i = z e r o s (n) ;

A i i = z e r o s (1 , 1) ;

a j = 0 ;

t o t a l e r r o r = 0 ;

t o t a l i t e r c o u n t = 0 ;

i t e r c o u n t = 0 ;

n i =200;

t o l = 0 . 0 0 0 0 0 0 0 1 ;

o m p s e t n u m t h r e a d s (NRTHREADS) ;

pragma omp p a r a l l e l s h a r e d (Asp , Ds , Dinvs , Ss , S t s , Rs , n , p , mydiag , a lpha , t o l)

p r i v a t e (Ms , k , ind , i , j , t i d , r j s , p j s , e j s , a j , n r j , ind1 , ind2 , Ajs , Ai i , S i n v s)

72

i f d e f OPENMP

numthreads = o m p g e t n u m t h r e a d s () ;

e n d i f

i f d e f OPENMP

t i d = o m p g e t t h r e a d n u m () ;

e n d i f

i f (t i d == 0)

s t a r t t i m e = o m p g e t w t i m e () ;

pragma omp f o r

f o r (j = 0 ; j p ; j ++)

ind1 = j n j + 1 1 ;

ind2 = (j + 1) n j 1 ;

/ / f i n d Ajs

Ajs=Asp (span (ind1 , i nd2) , span (ind1 , i nd2)) ;

Ds (span (ind1 , i nd2) , span (ind1 , i nd2)) = Ajs ;

Dinvs . submat (ind1 , ind1 , ind2 , i nd2) = s p s o l v e (Ajs , I n j) ;

/ / compute R

Rs = Asp Ds ;

Ss = I s + Dinvs Rs ;

i f (t i d == 0)

s t o p t i m e = o m p g e t w t i m e () ;

f a c t t i m e = s t o p t i m e s t a r t t i m e ;

/ / COLMINRESITER

i f (t i d == 0)

s t a r t t i m e = o m p g e t w t i m e () ;

73

S t s = t r a n s (Ss) ;

a l p h a = t r a c e (Ss) / t r a c e (S t s Ss) ;

Ms = a l p h a I s ;

pragma omp f o r s c h e d u l e (s t a t i c , 1 0) f i r s t p r i v a t e (mjs)

l a s t p r i v a t e (mjs)

f o r (j = 0 ; j n ; j ++)

e j s = I s . c o l (j) ;

mjs = Ms e j s ;

r j s = e j s Ss mjs ;

p j s = Ss r j s ;

f o r (i =0 ; i n i ; i + +)

a j = d o t (r j s , p j s) / d o t (p j s , p j s) ;

mjs = mjs + a j r j s ;

r j s = r j s a j p j s ;

p j s = Ss r j s ;

n r j = norm (r j s , " f r o ") ;

i f (n r j t o l)

b r e a k ;

Ms . c o l (j) = mjs ;

S i n v s = Ms ;

i f (t i d == 0)

s t o p t i m e = o m p g e t w t i m e () ;

i n v t i m e = s t o p t i m e s t a r t t i m e ;

/ / DIAGONAL

i f (t i d == 0)

74

s t a r t t i m e = o m p g e t w t i m e () ;

pragma omp f o r

f o r (i =0 ; i n ; i + +)

A i i = S i n v s . row (i) Dinvs . c o l (i) ;

mydiag (i) = A i i . a t (0 , 0) ;

i f (t i d == 0)

s t o p t i m e = o m p g e t w t i m e () ;

d i a g t i m e = s t o p t i m e s t a r t t i m e ;

t o t a l t i m e = f a c t t i m e + i n v t i m e + d i a g t i m e ;

Dinv = s p s o l v e (Ds , I) ;

S inv = s p s o l v e (Ss , I) ;

D e r r o r = norm (Dinv Dinvs , " f r o ") ;

DSer ro r = norm (Asp Ds Ss , " f r o ") ;

S e r r o r = norm (Sinv Sinvs , " f r o ") ;

mat Aspinv = s p s o l v e (Asp , I) ;

t o t a l e r r o r = norm (Aspinv . d i a g () mydiag , " f r o ") ;

r e t u r n 0 ;

75

