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ABSTRACT 

 

DYNAMIC ANALYSIS OF BEAMS WITH BREATHING CRACK USING 

 FINITE ELEMENT METHOD 

 

 

 

Özkan, Berkay 

MSc, Department of Mechanical Engineering 

Supervisor: Prof. Dr. Fevzi Suat Kadıoğlu 

 

July 2017, 102 pages 

 

Nonlinear dynamic characteristics of a beam with a breathing crack are investigated 

using finite element method. This thesis has two main objectives: (1) to obtain a 

foresight for the vibration based crack detection by using finite element method (2) to 

investigate the effects of crack location, crack depth, excitation frequency, excitation 

amplitude and boundary conditions on the indications of crack presence. Two 

dimensional finite element approach is used to model a square cross sectional beam 

subjected to dynamic loading. Frictionless contact is introduced to avoid any 

penetration between the crack faces. Time histories and Fourier spectra are obtained 

for nodal acceleration at specified sensor locations on the beam. On the basis of the 

results of this research, the capability of finite element method on the crack detection 

is evidenced by the generation of sub- and higher-harmonics in the Fourier spectra. 

Both time and frequency domain responses deviate considerably from vibration 

response of an intact beam. The depth and position of the crack change the amplitude 

of the harmonics, which can be interpreted as an indicator on the severity of the 

damage. Furthermore, exciting the beam with frequency of first natural mode of the 

beam, makes the harmonics more detectable on the frequency domain.  

 

Keywords: Nonlinear vibration, Breathing crack, Finite element method, Crack 

detection, Lateral vibration of beams 
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ÖZ 

 

AÇILIP KAPANAN ÇATLAKLI KİRİŞLERİN SONLU ELEMAN 

YÖNTEMİ KULLANILARAK DİNAMİK ANALİZİ 

 

 

 

Özkan, Berkay 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Fevzi Suat Kadıoğlu 

 

Temmuz 2017, 102 sayfa 

 

Açılıp kapanan çatlaklı kirişlerin doğrusal olmayan dinamik karakterleri sonlu eleman 

yöntemi ile analiz edilebilir. Bu tezin iki temel amacı vardır: (1) sonlu eleman analiz 

yöneteninin, titreyen yapılarda çatlak tespit edebilme kabiliyetini belirlemek (2) çatlak 

pozisyonunun, çatlak derinliğinin, tahrik etme frekansının, tahrik etme pozisyonunun, 

tahrik genliğinin ve sınır şartlarının çatlaktan kaynaklanan belirtiler üzerindeki etkisini 

belirlemek. Dinamik yükleme altındaki kare kesit alanına sahip kiriş, iki boyutlu sonlu 

eleman yaklaşımı kullanılarak modellenmiştir. Çatlak yüzeylerinin iç içe geçmesinin 

engellenmesi amacıyla, sürtünmesiz kontak modeli kullanılmıştır. Algılayıcı 

konumlarından, ivme ve yer değiştirme verisi, zaman düzleminde toplanmıştır. Elde 

edilen sonuçlara dayanarak, sonlu eleman analiz yönteminin, çatlak tespiti 

konusundaki yetkinliği, düşük ve yüksek harmoniklerin varlığı ile kanıtlanmıştır. 

Toplanan titreşim verisinde, çatlaklı kirişlerden alınan verilerin, çatlaksız kirişten 

alınandan oldukça farklılaştığı gözlemlenmiştir. Çatlak derinliği ve pozisyonunun, 

titreşim verisi üzerindeki etkisi kullanılarak, hasar miktarı hakkında yorum 

yapılabilmektedir. Çatlaklı kirişleri birinci eğilme frekansında tahrik etmenin, frekans 

düzleminden hasar tespitini daha kolay hale getirdiği gözlemlenmiştir. 

  

Anahtar Sözcükler: Doğrusal olmayan titreşim, açılan kapanan çatlak, sonlu eleman 

yöntemi, çatlak tespiti, kirişlerin enine titreşimi  
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CHAPTER 1 

CHAPTER 

 

INTRODUCTION 

 

 

 

Structural health monitoring has attracted the attention of researchers for the last few 

decades. The online monitoring of the structures is important especially in aerospace 

industry. The HUMS systems, for instance, are integrated to some helicopters in order 

to monitor safety of the rotorcraft. Reliable methods for detecting a failure in the 

structure are under investigation in the literature. One of the methods for analyzing the 

vibration response of the damaged structure under harmonic load. 

Early studies conducted on the subject of damage detection in a simple structures like 

beams and shells focused on the modal characteristics. The change in the natural 

frequencies of the structure was taken into account in order to detect the presence of 

the cracks in these structures. Later, researchers were interested with the forced 

vibration characteristics of the damaged beams. These studies were based on linear 

approaches due to the fact that the interaction of the crack surfaces were not introduced 

in the model.  Recent studies on this subject turned to nonlinear approaches for the 

investigation of the damage in the structure. More realistic representations of the 

nonlinear behavior of the structure caused by the interaction of the crack faces were 

studied in the recent publications by analytical, experimental and numerical methods. 
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The main objective of this study is to point out the effectivity of numerical methods 

on the detection of crack induced nonlinear effects such as generation of sub/super 

harmonics in the frequency response of the structure under forced vibration. Further, 

the effect of the crack location, crack depth, excitation frequency, excitation 

amplitude, excitation location and boundary conditions on the characteristics of 

harmonics are investigated. The analysis is conducted on a beam cantilevered from 

one side or both sides. A commercial finite element software is used in the modelling 

of the beam. Moreover, the time domain response is post processed to obtain clear 

frequency content. 

 

1.1. Literature Review 
 

The crack models which are used in the literature with the aim of detection, 

localization and identification of cracks can be classified into two major categories: 

(1) open crack models and (2) breathing or opening and closing crack models. In other 

words, the cracks are classified as linear where the crack closure effects are neglected 

or nonlinear where the crack face penetration is not allowed during vibration. 

Preliminary studies were concentrated on former one because of the technological 

limitations and the lack of theoretical approaches on the relevant subjects. Particularly, 

the number of numerical studies on the vibrations of cracked beams have increased in 

the last decades due to reduction in the computation times and advances in the 

modelling techniques of complex structures, i.e. geometries including contacts, cracks 

etc., by using easily available software packages. This literature review especially 

focuses on the numerical studies on the dynamic responses of cracked beams.  

The studies on the open crack models were limited to the examination of modal 

characteristics of the beam. Namely, these damage detection approaches were based 

on the deviations in the natural frequencies and modes shapes resulting from changes 

in the system damping, mass and stiffness matrices. The most commonly encountered 

techniques used in the literature to represent open cracks were slots, grooves and linear 

elastic elements. Cawley and Ray (1988) conducted several experiments on the 
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cracked and slotted beams with different depth and profile to estimate the natural 

frequency changes due to cracks of depth equal to those of the slots. Authors 

concluded that there are differences between the slotted and cracked specimens. 

Particularly, the specimens having small cracks and slots show considerable difference 

in the natural frequency shift due to the limitations of the cutter used to open slots. 

 

Figure 1: (a) Stepped cantilevered beam. (b) The rotational spring representation of 

the crack by (Nandwana and Maiti, 1997). 

 

Researchers chose the linear elastic elements to represent cracks by assuming that the 

effect of cracks is local according to Saint Venant’s principle. In other words, the 

effect of a crack reduces asymptotically with the distance. Tsai and Wang (1996) 

modeled a crack on a shaft as a joint of a local spring with a constant stiffness value 

that was derived from LEFM with the assumption of small deformations, 

homogeneous material and open crack. Authors attempted to estimate the crack depth 

by using the fundamental frequency shift from the one obtained from baseline intact 

shaft. In another study, the crack was modelled with constant stiffness rotational spring 

by Nandwana and Maiti (1997). The crack was located on a stepped beam as shown 

in Figure 1.  A two-dimensional finite element model was also constructed with eigth-

noded isoparametric elements in this study as presented in Figure 2. 
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Figure 2:  (a) Stepped beam geometry (b) Two dimensional finite element 

discretization by (Nandwana and Maiti, 1997) 

 

Crack tip was meshed with smaller quad elements than the rest of the beam was 

modelled with. The beam behaved linearly since no contact definition was available 

on the crack faces. The authors claimed that the method predicted the location of crack 

with less than 3% error and crack size with the error less than 5%. Lele and Maiti 

(2002) published an article on this subject using rotational spring approach on short 

beams. The rotational spring method used in this paper was the same with other studies 

in the literature. A constant stiffness rotational spring was inserted to the cracked 

section. Their finite element model came up with better modelling of cracked region 

as shown on Figure 3. 
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Figure 3: Finite element discretization of a cracked beam (Lele and Maiti, 2002). 

 

The authors of this paper reported that the error of their analytical model reached up 

to 10% depending on the crack size and the considered natural frequency.  Loya, et al 

(2006) modeled the crack by using linear and rotational springs together. The authors 

separated the beam into two parts from the cracked face and connected them with 

massless linear and rotational springs to represent the shear and bending stiffness of 

the beam. The model is demonstrated in Figure 4. Timoshenko beam theory was used 

to formulate the governing dynamic equations of the cracked beam with the 

corresponding compatibility equations. The authors compared direct and perturbative 

solutions using this model and showed good correlation between them. The vibration 

of a beam containing several cracks was studies by Aydın (2008). A Rotational spring 

was located instead of the crack in this study. The stiffness of the spring was taken as 

constant. The author examined the natural frequencies and mode shapes under 

different boundary conditions such as pinned-pinned, clamped-pinned, clamped-free, 

clamped-clamped and spring-spring. The effect of axial load was also investigated in 

this study. It was concluded that the fundamental frequency dropped about %50 due 

to a crack having a depth of 50% of the cross section. The solutions with different 

depth ratios and axial loads were also presented in this study.  

Some of the previous studies introduced the effect of the crack by reducing the section 

modulus. These studies can be divided into two groups which use different approaches 

to introduce local reduction of modulus or local flexibility. First group of studies 

consider the construction of weaker stiffness matrix for the cracked section. Simply, 

it requires the computation of compliance matrix for the cracked section. 
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Figure 4: The combined rotational and linear spring representation of an edge crack 

by (Loya, Rubio and Saez, 2006). 

Tlaisi, et al. (2011) conducted a research on the cracked circular shafts supported on 

bearings. Both numerical and experimental results were obtained in the article. The 

authors represented the actual crack with the shorter beam elements on the finite 

element model of the shaft, which reduces the modulus at the specified region. The 

representative model is illustrated on Figure 5. Two types of crack models were 

studied. The authors concluded that the crack represented by short elements as in the 

case of Figure 5a showed better agreement with the test results. Zheng and 

Kessissoglou (2004) added the flexibility of the crack to overall structure rather than 

a cracked section. In other words, the elements of overall stiffness matrix was 

multiplied by an additional dimensionless flexibility coefficient. The authors claimed 

that the results showed better accuracy in natural frequencies than those obtained by 

local stiffness matrix approach. 

 

Figure 5: Diagram of: (a) one element representing crack effect and (b) a wider 

element representing the crack effect by (Tlaisi, Swamidas, Haddara and Akınturk, 

2012). 
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The second group of studies considered the construction of element stiffness matrix 

for cracked finite element which was then assembled with intact system stiffness 

matrix, rather than calculating section compliance matrix. With element stiffness 

matrix, computational time became shorter and uncertainties in the stiffness or 

compliance calculation were avoided as stated by Saavedra and Cuitino (2001) in their 

article. Hjelmstad and Shin (1996) used this technique comprehensively. Instead of 

dealing with the system stiffness matrix, the authors of this article, were dealt with the 

element constitutive properties. In other words, the change in element constitutive 

properties can be considered as damage indications. The authors argued that this 

approach is attractive since it preserves structure topology and essential features of the 

flow of forces. Also, it was stated that element-based analysis came up with direct 

indications of damage. Two-dimensional plane stress element model and Euler beam 

element model were constructed in this article. The parametric constitutive properties 

were selected as Young’s modulus E for plane stress elements and flexural stiffness 

EI for Bernoulli-Euler beam elements. Namely, these properties of the elements in the 

vicinity of the crack location were adjusted by the authors. Chondros (1998) developed 

a cracked beam model in which the crack flexibility was distributed throughout the 

beam. The authors also compared this model with the one which has local flexibility. 

The results showed good agreement with the local flexibility models and test results. 

 

Figure 6: Stiffness section diagram of a bilinear system having breathing crack by 

(Chondros, Dimarogonas and Yao, 2001) 
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The studies related to breathing (opening and closing) crack models suggested that 

when the accuracy is the concern, the nonlinear effects due to crack face interaction 

cannot be disregarded. It is obvious that the global stiffness matrix depends on the 

state of the crack whether it is open, closed or both (partial contact of crack faces). 

Gudmundson (1982) emphasized the importance of crack closure by conducting 

experiments on transverse vibration of cracked beams. The author concluded that 

depending on the size and location, the crack may be closed, open or partially open. It 

was concluded that the techniques relying on the natural frequencies of the structure 

may fail to detect the crack if the crack stays closed due to crack closure effects. Clark 

et al. (1987) conducted several experiments on specimens under four point bending 

load to figure out the effect of crack closure on the crack detection methods. Thus, 

researchers gave more importance to the dynamic behavior of the cracked beams by 

considering the breathing behavior of the crack. In the breathing crack models, there 

are two distinct approaches. There are continuous models and bilinear models. The 

first group of studies defined the stiffness of the beam with a piecewise continuous 

function changing between two crack phases, i.e. open or close, whereas other group 

of studies defined it continuously. Chondros, Dimarogonas and Yao (2001) examined 

a one dimensional beam with breathing crack. In Figure 6, the transverse vibration of 

a cracked beam is presented. The modelled beam showed bilinear behavior since the 

transition from open to closed crack occurs exactly at the undeformed position. It can 

be observed that t1, t2 and t3 are the instants when the beam is in undeformed position. 

The authors indicate that the frequency drop due to crack was lower in breathing crack 

models than open crack models. It is also worth to note that under sufficient preload, 

the fatigue cracks can be considered as breathing cracks. Otherwise, the crack remains 

closed due to crack closure effects. 

In bilinear models, crack phase changes instantaneously. Namely, the crack either 

closes or opens. This behavior is given by a piecewise function of stiffness or load on 

the cracked section in the literature. In the studies which used the stiffness matrix as a 

function, the common approach was that the additional flexibility of the cracked 

section is found by using linear elastic fracture mechanics and assembled with the 

intact beam stiffness matrix when the crack is open. In addition, the open and closed 
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crack modes were determined by a parameter such as curvature of the beam under 

deformation or relative displacements of crack faces. This parameter was used as a 

center point of piecewise continuous stiffness function. The governing equations of 

motion for this approach can be represented by Equation 1 using the general equation 

of motion for a damped system. 

𝑴�̈� + 𝑪�̇� + 𝑲′𝒙 = 𝑭𝑠𝑖𝑛(𝑤𝑡)    (1) 

And, 

𝑲′ = {
𝑲𝒊𝒏𝒕𝒂𝒄𝒕, 𝑐𝑟𝑎𝑐𝑘 𝑐𝑙𝑜𝑠𝑒
𝑲𝒄𝒓𝒂𝒄𝒌, 𝑐𝑟𝑎𝑐𝑘 𝑜𝑝𝑒𝑛

      (2) 

𝑲𝒄𝒓𝒂𝒄𝒌 = 𝑲𝒊𝒏𝒕𝒂𝒄𝒕 + 𝑲𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦     (3) 

Where, M stands for mass matrix of the beam, C is the system damping matrix. It was 

assumed that mass and damping matrices of the system do not change with the crack. 

𝐾′ is the system stiffness matrix. It is a piecewise continuous function, which 

interchanges between intact and cracked system stiffness matrices. The stiffness 

matrix of cracked system was found mostly by introducing the flexibility matrix to the 

intact beam stiffness matrix. Flexibility of the system due to crack can be calculated 

by LEFM. The calculation of flexibility matrix is formulated in Equation 4 to 6. The 

strain release rate is given in Equation 4 in a general form.  

J =
∂U(F,A)

∂A
      (4) 

In this equation, “U” is the strain energy in the system and “F” and “A” are the external 

force on the system and the area effected by the external force. The partial derivative 

of the system strain energy by the area gives the strain release rate of the system. The 

strain release rate is also defined by Griffith-Irwin theory for linear elastic fracture 

mechanics with the stress intensity factors at a crack tip under three different modes. 

The Equation 5 defines the strain release rate in the Griffith-Irwin theory. 

𝐽 =
(1−𝜐2)

𝐸
𝐾𝐼

2 +
(1−𝜐2)

𝐸
𝐾𝐼𝐼

2 +
(1+𝜐)

𝐸
𝐾𝐼𝐼𝐼

2    (5) 



 

 

10 

 

The strain intensity factors under different modes are required to calculate the strain 

release rate from Equation. By relating the Equation 4 and 5, the following equation 

is reached. 

(1−𝜐2)

𝐸
𝐾𝐼

2 +
(1−𝜐2)

𝐸
𝐾𝐼𝐼

2 +
(1+𝜐)

𝐸
𝐾𝐼𝐼𝐼

2 =
∂U(F,A)

∂A
   (6) 

The strain energy in the system can also be defined by Castigliano's theorm follows, 

𝑢 =
𝛿𝑈(𝐹,𝐴)

𝛿𝐹
      (7) 

By substituting Equation 6 to 7, 

 

𝑢 =
𝛿

𝛿𝐹
∫ (

(1−𝜐2)

𝐸
𝐾𝐼

2 +
(1−𝜐2)

𝐸
𝐾𝐼𝐼

2 +
(1+𝜐)

𝐸
𝐾𝐼𝐼𝐼

2) ∂A
𝑎

0
   (8) 

 

The flexibility compliance matrix coefficients can be found by, 

𝐶 =
𝜕𝑢

𝜕𝐹
      (8) 

Finally, 

𝐶 =
𝜕2

𝜕𝐹𝜕𝐹
∫ (

(1−𝜐2)

𝐸
𝐾𝐼

2 +
(1−𝜐2)

𝐸
𝐾𝐼𝐼

2 +
(1+𝜐)

𝐸
𝐾𝐼𝐼𝐼

2) ∂A
𝑎

0
  (9) 

 

𝑲𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑪−𝟏             (10) 

From Equation 10, the introduced flexibility due to crack to the stiffness matrix can 

be calculated by the stress intensity factor of the crack tip.  

In some of the studies, the stiffness of the cracked and intact beam were obtained from 

static solutions. Considering the force displacement graphs, the stiffness change can 

be observed. A representative force displacement graph of a cracked beam is 
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demonstrated in Figure 7. Dimarogonas and Papadopoulos (1983) considered the 

effect of crack closing and opening with local flexibility matrix calculated from 

LEFM, in particular, stress intensity factors and strain energy densities, on rotating 

machines. 

 

 

Figure 7: A force displacement graph (Worden, Farrar, Haywood and Todd, 2008) 

 

Qian et al. (1990) published an article on the vibration of a beam having transverse 

edge crack. The authors introduced the bilinear behavior of the cracked beam by 

constructing two stiffness matrices for open and closed modes of the crack. The stress 

sign of the crack face stress was considered to determine the mode of the crack whether 

it is open or closed. Chati et al. (1997) investigated the vibration of the cracked beam 

by using bilinear models. The non-linearity due to presence of the crack is examined 

mathematically using equivalent one and two degree of freedom spring mass model. 

For extending the approach to infinite degree of freedom systems, a finite element 
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model was constructed in this article. In addition, the authors attempted to establish an 

effective natural frequency for the cracked beam by considering the natural 

frequencies of cracked and intact beam. The cracked beam and its simplified 1D spring 

mass model can be seen on Figure 8. 

 

Figure 8: Beam model and spring mass model (Chati, Rand and Mukherjee, 1997). 

 

The stiffness of the system is different when x is positive and negative. When x is 

positive, the crack is open. Otherwise, the crack is closed. The authors defined the 

natural frequency of this one dimensional nonlinear model as “bilinear frequency”. It 

is formulated by Equation 11. 

𝜔𝑜 =
2𝜔1𝜔2

𝜔1+𝜔2
      (11) 

where,  
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𝜔1 = √
𝑘1

𝑚
 𝑎𝑛𝑑 𝜔2 = √

𝑘1+𝑘2

𝑚
     (12) 

 

Where, 𝜔1 and  𝜔2 are two linear natural frequencies of the one dimensional model 

when the x<0 and x>0, respectively. 𝜔𝑜 stands for the “bilinear natural frequency” of 

the system. This is a very basic but effective mathematical representation of natural 

frequency of a cracked beam. The authors compared their finite element results with 

bilinear frequency of their beam and correlate the results with small errors.  In Figure 

9, the finite element model of the authors is shown. Two models were constructed. 

One of them is constraint and other one is unconstraint model. The crack face 

penetration was not allowed in constraint model. The authors calculated the bilinear 

natural frequency by using the natural frequencies of these two FE models and try to 

extend their approaches to infinite degree of freedom systems. It was concluded that 

using bilinear frequency as an effective natural frequency was a good approximation 

for such cracked beams where eigenvalue solutions cannot be obtained due to 

nonlinearity caused by crack face interaction.  

 

 

Figure 9: The undeformed mesh model (Chati, Rand and Mukherjee, 1997). 

 

Saavedra and Cuitino (2001) investigated the vibration characteristics of free-free 

beam by using the same method. Stiffness matrix was defined by a piecewise 

continuous function which uses the relative rotation of the adjacent nodes as a center 

point. The authors observed the higher even harmonics due to crack induced nonlinear 

behavior. It was also reported that the forcing frequency should be the half of the 
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natural frequency to obtain high vibration amplitude at the specified location where 

the acceleration and displacement results were obtained. In the article of Chatterjee 

(2010) higher order FRFs were investigated by using a bilinear oscillator given in 

Figure 10. The generation of higher harmonics on the frequency response of cracked 

beam vibration were systematically explained by Volterra series response 

representations. 

 

Figure 10: The bilinear oscillator (Chatterjee, 2010). 

 

Giannini et al. (2013) demonstrated systematically the crack identification procedure 

by using bilinear finite element model. The breathing behavior of the cracked beam 

was given by piecewise continuous stiffness function as given in Equation 13. 

 

𝐾𝑑 = 𝐾𝑖𝑛𝑡𝑎𝑐𝑡 − 𝐻(𝜃𝑖 − 𝜃𝑗)𝐾𝑐𝑟𝑎𝑐𝑘𝑒𝑑 : {
𝐻(𝜃𝑖 − 𝜃𝑗) = 1, 𝜃𝑖 > 𝜃𝑗

𝐻(𝜃𝑖 − 𝜃𝑗) = 1, 𝜃𝑖 < 𝜃𝑗

  (13) 

 

Where 𝐾𝑑 is the stiffness matrix for the element having breathing crack and 𝜃𝑖 stands 

for the rotation on the ith section. The value of the Heaviside function is determined by 
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the relative rotation of the ith and jth sections. 𝐾𝑐𝑟𝑎𝑐𝑘𝑒𝑑 is the stiffness of the cracked 

finite element which was determined by non-dimensional flexural damage parameter 

calculated by moments of inertia of cracked and intact beam. Important remarks were 

drawn by the author: examination of higher harmonics gave ability to detect cracks up 

to 5% depth when single mode techniques could detect cracks only larger than 15%. 

Batihan and Cigeroglu (2009) investigated the vibration characteristics of a beam with 

an breathing edge crack by a SDOF system with an bilinear stiffness using Galerkin’s 

Method.  Their model is presented in Figure 11. They solved the dynamic equations 

with harmonic balance method in order to interchange from nonlinear differential 

equations to nonlinear algebraic equations of motion. Further, the authors analyzed the 

effect of crack location and crack position. One of their important outcome is that the 

location is crack may be insignificant depending of the slope at the cracked section. 

For their clamped-clamped beam, the slope is zero at the mid-section at the 

fundamental frequency, thus the crack cannot be detected at this section. Also, it is 

observed by the authors that the crack depth has significant effect on the amplitudes 

of the harmonics. They also concluded that the crack parameters have more effects on 

the higher harmonics than on the first harmonic. This study seems to have similar 

purpose with this thesis. The crack depth and crack location are also parameters 

investigated in this thesis. The effect of crack location show similar pattern in both 

studied. The Table 18 shows the effect of crack depth on the crack detection parameter. 

The depth has significant effect on both studies. Further, the effect of crack location 

is concluded in both study such that it is significantly affected by the mode shape at 

the regarding frequency and crack location. In both study, it is stated that the crack 

location cannot be considered as an independent parameter for the crack detection 

since depending on the crack location its effect may be insignificant on the frequency 

response. 
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Figure 11: (a) The clamped-clamped beam with a crack at the mid-section (b) The 

SDOF model of beam by (Batihan and Cigeroglu, 2015) 

 

The studies mentioned above assumed the crack either open or close. The change from 

closed configuration to open configuration occurs instantaneously. The typical load 

displacement curve for a cracked beam was given by Newman et al (1988) as in Figure 

12. Clark et al. (1987) conducted several experiments to investigate this crack closure 

effect. In Figure 13, the resulting displacement force curve shape of the authors is 

presented.   
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Figure 12: Typical load displacement curve (Newman Jr and Elber, 1988) 

 

Figure 13: Force displacement graph from test (Clark, Dover and Bond, 1987). 

 

Later, the researchers tried to simulate the vibration of the cracked beam more 

realistically. This approach started with some periodic functions of stiffness matrix 

and evolved to finite element simulation of cracked beam with incremental time steps. 

Cheng et al. (1999) investigated the vibration of the cracked beam by using a cosine 

function for stiffness matrix. Rather than using directly a constant flexibility matrix, 

the authors gave the stiffness matrix as shown in Equation 14. 
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𝐾 = 𝐾𝑖𝑛𝑡𝑎𝑐𝑡 + ∆𝐾(1 + cos(𝑤𝑡))    (14) 

 

where, 

 

∆𝐾 =
1

2
(𝐾𝑐𝑟𝑎𝑐𝑘𝑒𝑑 − 𝐾𝑖𝑛𝑡𝑎𝑐𝑡)     (15) 

 

The authors observed the generation of sub- and super-harmonics. Further, it was 

suggested to use non-linear vibration methods to detect the crack rather than to analyze 

the natural frequency shift. Pugno and Surace (2000) published an article on the 

vibration of cracked beam with several breathing cracks. The authors of this article 

pointed out the effect of crack closure. The ratio of instantaneous curvature of the 

beam to the maximum curvature was taken as a parameter by the authors to adjust the 

stiffness matrix such that transition from open crack mode to closed mode became 

smoother. Kisa and Brandon (2000) modified the stiffness matrix incrementally such 

that the transition of the stiffness matrix from open to closed crack phase occurs 

incrementally. In detail, the contact area of the crack was increased in each increment 

such that the interchange from open to closed crack did not happen instantaneously. 

The contact was formulated mathematically by two different springs by the author. 

One of them deal with the normal contact stiffness and other one stands for the 

stiffness in tangential direction. Carneiro and Riberio (2015) implemented p-version 

FEM to simulate the vibration of a cracked beam. Equations of motion was solved by 

Newmark’s method in time domain. The authors employed the rigidity function 

proposed by Christides and Barr (1984) to introduce the flexibility of crack. It was 

assumed that the effect of crack was local and obeyed the principal of Saint Venant. 

The authors suggested that using velocities and accelerations gives more valuable 

information about the detection of cracks. 
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Figure 14: Excitation of a cantilever beam and representations of the clamping with 

three different models (Nandi and Neogy, 2002). 

Development of technological facilities and advances in numerical methods allowed 

researchers to analyze the contacting conditions more precisely.  Thus, the simulation 

of cracked beam developed, as well. In contrast to the previous studies which modeled 

the crack as either fully open or fully closed or having stiffness in between, the studies 

published in the last decade considered the instantaneous contact of the crack faces as 

a variable in the equation of motion. These studies were done by finite element method 

in general. Nandi and Neogy (2002) studied the breathing behavior of the transverse 

vibrating beams by introducing contact condition with small displacement approach. 

Contact was solved by virtual work method using two dimensional finite elements. 

The position and size of the crack was taken as a parameter. Further, the authors 

investigated the effect of the clamping by two heavy jaws. Different boundary 

conditions representing the imperfections in the clamping were presented by the 

authors as in Figure 14. The multiples of the excitation frequency was observed in the 

Fourier spectra by the authors. Also, the difference between the beams, hold perfectly 

and imperfectly, was stated. It was suggested to use half of the natural frequency of 

the cracked beam since the amplitude of the 2nd harmonic was considerably amplified 

which was used as a damage indicator. Moreover, it was worth to note that the relative 

amplitude of the generated higher harmonics might be so small such that they cannot 
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be observed in a noisy data. Andreaus et al. (2007) modelled the vibration of the beam 

which has asymmetric edge crack under harmonic tip load. The beam was constructed 

with two dimensional elements as presented in Figure 15.  

 

Figure 15: Finite element modelling of a cracked beam under contact condition 

(Andreaus, Ugo, Casini, Paolo, Vestroni and Fabrizio, 2007). 

Frictionless contact was introduced by the authors between the crack faces. The 

constructed finite element model was compared with the bilinear oscillator results. 

The bilinear oscillator used for comparison with the constructed finite element model 

was shown in Figure 16.  

 

Figure 16: Bilinear oscillator representing the cracked beam vibration under forced 

vibration (Andreaus, Ugo, Casini, Paolo, Vestroni, Fabrizio and 2007). 

The comparison was drawn such that bilinear oscillator results had good agreement 

with the finite element results. The authors suggested that for complex response of the 
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cracked beam, bilinear approach can give precise preliminary results especially about 

the best excitation frequency. Further, the authors indicated that exciting the cracked 

beam with (1/n) or n times the first natural frequency can give observable higher- or 

sub-harmonics at nth and (1/n)th harmonics. Orhan (2007) simulated the transversal 

vibration of cracked beam using three dimensional finite elements. Free and force 

vibration results of the cracked beam were compared in this study. Single and double 

crack configurations were modelled without any crack face interaction. The finite 

element model of the author presented in Figure 17.  The author concluded that using 

free vibration results was more effective in detection of two crack configuration. Using 

force vibration results, however, the crack location and depth can be determined more 

precisely since their effect on natural frequency is very small. 

 

Figure 17: Three dimensional finite element model (Orhan, 2007). 

Andreaus, Baragatti, & Vestroni (2011) compared three different numerical models 

for the vibration of the beam which has non-propagating transverse crack. The first 

model was one dimensional beam with a rotational spring at the crack location. The 

constant stiffness value of the spring was determined from LEFM. The second model 

of the authors was two dimensional finite element model. A contact algorithm was 

defined for the elements at the crack face such that penetration of the faces was 

prevented. The equation of motion for this model was solved with Newmark iteration. 
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The last model was a spring mass damper system. Authors compared three numerical 

model by examining the generation of sub- and super-harmonics in the Fourier spectra, 

the shape of the modal line and the deviations in phase portrait. The excitation 

frequency used in this article was one-third and one-half of the first natural frequency 

of the intact beam. Further, different crack sizes and locations were compared. Time 

history of the transversal acceleration of intact and cracked beams was presented in 

Figure 18 to show how the curve was deviated when a crack is introduced to the beam. 

 

Figure 18: Typical displacement responses of a beam in time domain (Andreaus, 

Baragatti, & Vestroni, 2011) 

The harmonic acceleration response deviated due to generation of sub- and higher-

harmonics. The authors concluded that existence of a fatigue crack had considerable 

effect on the generation of harmonics which did not appear on the vibration of an intact 

beam. It was stated that second and third harmonic components were very sensitive to 

the existence of a crack. Moreover, the authors emphasized that the sub-multiples of 

natural frequency, i.e. 1/2 or 1/3 of the natural frequency, can be used as the excitation 

frequency to detect very small cracks. Bouboulas and Anifantis (2010) studied 

nonlinear behavior of a beam with nonpropagating edge crack using conventional two 

dimensional finite element method and compared their study with the former open 

crack methods and breathing crack methods in the literature. The authors employed 

the interaction between the crack lips by master-slave concept. In this concept, the 

penetration of the surface nodes through the counter surface nodes were prevented, 

and internal forces were raised after equilibrium conditions were satisfied. The 
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equation of motion of the cracked beam solved by iterative approach, particularly by 

modified Newton Rapson iteration method. The objectives of the authors were to 

investigate the effect of crack angle, depth and position into vibrational behavior or 

the beam. The discretized beam model in this article is presented in Figure 19. The 

FFT was applied to obtain the content of the response by the authors. Further, 

continuous wavelet transforms (CWT) was employed to account for the time varying 

changes from transient region to steady state region. The differences of the results with 

the previous authors were tabulated. There were slight deviations at the relative 

frequency of the harmonics from the compared finite element approaches published 

before.  

 

Figure 19: Finite element model (Bouboulas, A. S. and Anifantis, N. K., 2010). 

Bouboulas and Anifantis (2013) extended their study to three dimensional finite 

elements method. Both torsional and axial modes of the beam were taken into account 

in the vibration of the cracked beam. Surface and edge crack configurations were 

analyzed and compared with open crack models. The finite element models of the 

cracked beam are illustrated in Figure 20. Full frictionless contact model was 

employed for the crack interaction. The authors investigated the effect crack angle, 

size and location on the response by considering axial and torsional modes of the beam 

and compared the results with the previous studies. Some differences was observed 

with the previous two dimensional methods especially in second bending natural 

frequency. Jyrki, Kari and Anthony (2013) investigated the minimum crack length that 

can be detected by vibrational methods on cantilevered beam with central crack. A 

structured sensor network and data interpretation methods were utilized in this article. 

Abaqus Explicit finite element code was employed to simulate the transversal 

vibration of the cracked beam under random excitation.  The finite element model is 

shown on Figure 21. Two dimensional 4 node linear elements with reduced integration 
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were used.  Rayleigh damping coefficients were introduced to damp the system. 

Further, the static deflection of the cracked beam was correlated with the analytical 

solution. It was indicated that there were some degree of noise on the acceleration 

response, which affect the smallest crack size that can be identified. The authors 

conclude that the minimum central crack size that can be identified on a cantilevered 

beam is 10% of the beam cross section. Also, authors suggested to put several sensors 

to both side of the crack to obtain valuable information.  

 

Figure 20: Three dimensional finite element model of a cracked beam (Bouboulas, 

A. S. and Anifantis, K. N., 2013) 

 

Figure 21: Two dimensional finite element model (Jyrki, Kari and Anthony, 2013) 

Sinenko and Zinkovskii (2015) published an article about the effects of force 

application location on the frequency content of the response. Three dimensional finite 

element model was constructed for the cracked beam as shown in Figure 22. It was 

stated that using three dimensional finite element model allowed to consider all 

vibrational modes. The authors investigated the relative amplitudes of the sub- and 
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super-harmonics in the identification of the crack. The authors claimed that there are 

strong dependence of harmonics on the location of excitation point. Moreover, it was 

stated that there are some excitation point locations where no sub- and super-

harmonics were generated in the response.  

 

Figure 22: Three dimensional finite element model (Sinenko and Zinkovskii, 2015). 

Broda et al. (2016) simulate the longitudinal vibration of a cracked cantilevered beam 

using two dimensional finite element method. The authors attempted to isolate the 

crack induced nonlinearities. It was claimed that the generated nonlinear features in 

the response could be because of boundary conditions or sensor network. The finite 

element model used in this article is presented in Figure 23.  

 

Figure 23: Two dimensional finite element model (Broda, Pieczonka, Hiwarkar, 

Staszewski , & Silberschmidt, 2016). 
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Several boundary conditions, such as fixed-free and free-free, were applied in order to 

comment on the effects of boundary conditions on the response. Orthogonal and 

slanted crack configurations were considered. The authors related the existence of 

crack on the beam to a parameter, called as “coefficient of nonlinearity” which was 

the ratio of higher-harmonics to the fundamental frequency. The results were 

compared with the fatigue cracked beams under forced longitudinal forced vibration. 

The authors concluded that fixed-free boundary condition and second harmonic gave 

the strongest crack localization effect. Further, the authors suggested that the 

excitation amplitude should be high enough such that it can open the crack. Even 

though the experimental results illustrated the localization of crack, the authors 

indicated that the indications were very weak and further information must be obtained 

for complex structures.  

The following table summarizes the literature review in this study. The major 

considerations are the boundary conditions, excitation type and the crack modelling 

used. Also the availability of the experimental works are presented in the Table 1. 

Considering the many articles addressed in this literature review one can draw the 

following conclusions; 

 The cracked beam FE models are constructed by using rotational springs, 

stiffness matrix reduction or modification, cracked beam elements, 2D/3D 

solid elements. 

 The presence of a sharp fatigue crack manifests itself as generation of sub-

super harmonics in the response. 

 Half or one third of the 1st natural frequency is found as the best excitation 

frequency in order to observe nonlinear effects in the response although there 

are some studies where the beam is excited with the 1st natural frequency. 

 Smallest detectable crack size suggested as 10% of the cross section depth to 

observe the nonlinear effects on the frequency response 
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Table 1: List of references 

REFERENCE CRACK TYPE BC EXC EXP. 

Cawley and Ray (1988) Slot, Fatigue Fixed-Free Modal Yes 

Nandwana and Maiti (1997) Rotational Spring Fixed-Free Modal Yes 

Lele and Maiti (2002) Rotational Spring Fixed-Free Modal Yes 

Aydın (2008) Rotational Spring Pinned, clamped, 

free 

Modal No 

Zheng and Kessissoglou 

(2004) 

Stiffness matrix Fixed-Free Modal No 

Saavedra and Cuitino (2001) Stiffness matrix  Free-Free, Fixed-

Free 

Forced Yes 

Hjelmstad and Shin (1996) Modulus  Fixed-Free Forced Yes 

Chondros and Dimarogonas 

(1998) 

Stiffness matrix  Fixed-Free Forced Yes 

Clark et al. (1987) Fatigue Cracked 4 point Bending No Yes 

Dimarogonas et al. (1983) Stiffness matrix Rigid Body Yes No 

Qian et al. (1990) Stiffness matrix Fixed-Free Yes Yes 

Chati et al. (1997) Stiffness matrix + 

FEM 

Fixed-Free Yes No 

Chatterjee (2010) Stiffness matrix Free-Free Yes No 

Giannini et al. (2013) Stiffness matrix Fixed-Free Yes No 

Cheng et al. (1999) Stiffness matrix Fixed-Free Yes No 

Pugno and Surace (2000) Stiffness matrix Fixed-Free Yes No 

Kisa and Brandon (2000) Stiffness matrix Fixed-Free Modal No 

Carneiro and Riberio (2015) Reduced Compliance Fixed-Fixed Forced No 

Nandi and Neogy (2001) FEM  Contact Fixed-Free Forced No 

Andreaus et al. (2007) FEM  Contact Fixed-Free Forced No 

Orhan (2007) FEM Fixed- Free Forced No 

Andreaus and Baragatti (2009) Fatigue Crack Fixed- Free Free Yes 

Andreaus et al.2011) Spring + FEM  Fixed- Free Forced No 
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Bouboulas and Anifantis 

(2010) 

FEM Contact Fixed- Free Forced No 

Bouboulas and Anifantis 

(2013) 

FEM Contact Fixed- Free Forced No 

Jyrki, Kari and Anthony (2013) FEM Contact Fixed- Free Forced No 

Sinenko and Zinkovskii (2015) FEM Contact Fixed- Free Forced No 

Broda et al. (2016) FEM Contact Fixed- Free, Free-

Free 

Forced Yes 

 

1.2.Objective of this study 
 

This study is a part of a research about the crack identification on a fatigue cracked 

cantilever beam by analytical, numerical and experimental methods. There are several 

researches on this subject, however there is still a need for more discussion about finite 

element method used for simulating the vibration of a beam due to limitations in 

number of iterations in numerical calculations. The current solutions seem to be 

unsatisfactory in the validation of numerical results with the experimental results. This 

study presents an alternative way to model the crack front and much more digitized 

time domain solutions than the previous works published on this subject. The main 

objective in this study is to point out the effectivity of numerical methods on the 

detection of crack induced nonlinear effects such as generation of sub- and higher-

harmonics with an alternative mesh pattern and finer resolution in the vibration 

response. Further, the effect of the crack location, crack depth and excitation frequency 

on the characteristics of harmonics are investigated in this research. 
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CHAPTER 2 

 

 

FINITE ELEMENT MODEL 

 

 

 

The vibration analysis for the detection of cracks on the structures is conducted using 

an aluminum beam with a square cross section. The material properties of the material 

is given in the following sections. The numerical simulation of this beam is employed 

by two dimensional finite element method. Pre-processing is performed in 

ABAQUSTM software and post-processing is performed in MATLABTM. Available 

crack models, i.e. seam, XFEM and slot type, are compared and the most functional 

one is selected for the analysis. The crack tip singularity is confirmed by NASGROTM 

software by conducting static analysis. Different boundary conditions are applied to 

the beam such as fixed-free and fixed-fixed. Forced vibration response of the beam at 

the specified locations are obtained under harmonic and impulse loading.  

2.1. Specimen Dimension 
 

A square cross sectional beam is modelled with the dimensions given in Figure 24. 

The free length of the beam is 500 mm for all the cases. The length of the model is 

adjusted according to the boundary condition. The length of the cantilevered part is 

taken as 40 mm for each case. For example, fixed-free model is 540 mm as given in 

Figure 25. 
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Figure 24: Dimensions of the modelled beam. 

 

 

Figure 25: The model dimensions for a) fixed-free b) fixed-fixed beam 
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2.2. Geometrical Parameters 
 

The parameters are the position and depth of crack, load location and amplitude, free 

length of the beam and the location of sensors. The representation of the parameters 

are given in Figure 26. 

 

 

Figure 26: Geometrical parameters of the beam. 

 

The description of the geometrical parameters are given in Table 2. These parameters 

are adjusted for different case studies in order to observe their effects on the frequency 

response of the cracked beam. The sensor location is not unique for this study. There 

are 5 sensors on the beam with a distance of 100 mm from each other. Also, the force 

amplitude is not fixed. The excitation amplitude effect is examined in the following 

case studies in the numerical results part. The cross section of the beam is square, thus 

the value of b and h are the same.  
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Table 2: Geometrical parameters 

L Free length of the beam 

Lcrack Crack Location 

Lforce Force location 

La Accelerometer location 

hc Crack Depth 

 

 

2.3. Discritication and element properties 
 

2.3.1.Intact beam 

 

The global element size is selected as the same with the cracked beam such that no 

stiffness variation is encountered in the analysis due to number of degrees of freedom. 

 

 

Figure 27: Finite element discretization of the intact beam. 

 

Plane stress finite elements are used by assuming the distribution of the strain through 

the thickness is negligible. Also, the element type is selected as explicit, which is 

compatible with the solution method.  
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Table 3: Element properties of the intact beam 

Parameters Values & Types 

Global edge length 4 mm 

Number of elements 690 

Number of nodes 834 

Element type CPS4R (Plane stress, 4 Node, Reduced Integration) 

 

The quadratic type elements would give better accuracy but the computational time 

increases with higher order element types. Thus, linear elements are used in this 

analysis. The global element length is selected such that the height of the beam is 

represented with enough number of elements with good aspect ratio. 

2.3.2.Cracked beam 

 

The homogeneous distribution of the element shape and size cannot be employed for 

the cracked beams because of the crack tip singularity. The elements should be 

arranged such that the stress distribution around the crack tip correctly represented. 

Triangular elements are used around the crack tip is in this analysis. There should be 

sufficient number of elements around the crack tip. It is set to 12 element in this case. 

There are five types of crack configuration in this study. The length and position of 

the cracks are changed to decide on their effects. Thus, there are six finite element 

models for these configurations. Crack length is the depth of the crack from the free 

surface and the crack position is the distance between the crack and cantilevered end. 
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Configuration 1 

 

 

Figure 28: Finite element model for 1st configuration cracked beam. 

 

Table 4: Finite element properties for 1st configuration cracked beam 

Parameters 
Values & Types 

Global edge length 
4 mm 

Crack depth 
4 mm 

Crack location 
195 mm from the fixed end 

Minimum edge length 
0.52 mm (at the crack tip) 

Number of elements 
816 

Number of nodes 
960 

Element type 
CPS4R + CPS3 (Plane Stress, 3 Node) 

 

 

Linear tri and quadrilateral elements are used in this model. Tri elements are located 

at the crack tip and aligned around the crack tip by using mesh seed method. There are 

some distortions at the elements around the crack tip because of the transition from 

quad to tri type elements. Their effects on the stiffness matrix of the beam are assumed 

be negligible. The minimum edge length is important since it affects the stable time 

increment. Smaller the minimum edge length in the model, smaller the time increment 

and longer the computational time of the solution. Thus, a balance must be attained 
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between the minimum element size and the computational time. The time increment 

is also affected by the modulus and density of the smallest element. 

 

Configuration 2 

 

Figure 29: Finite element model for 2nd configuration cracked beam. 

 

Table 5: Finite element properties for 2nd configuration cracked beam 

Parameters Values & Types 

Global edge length 4 mm 

Crack depth 7 mm 

Crack location 195 mm from the fixed end 

Minimum edge length 0.67 mm (at the crack tip) 

Number of elements 932 

Number of nodes 1093 

Element type CPS4R + CPS3 (Plane Stress, 3 Node) 
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Configuration 3 

 

 

Figure 30: Finite element model for 3rd configuration cracked beam. 

 

Table 6: Finite element properties for 3rd configuration cracked beam 

Parameters Values & Types 

Global edge length 4 mm 

Crack depth 10 mm 

Crack location 195 mm from the fixed end 

Minimum edge length 0.76 mm (at the crack tip) 

Number of elements 721 

Number of nodes 861 

Element type CPS4R + CPS3 (Plane Stress, 3 Node) 
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Configuration 4 

 

 

Figure 31: Finite element model for 4th configuration cracked beam. 

 

Table 7: Finite element properties for 4th configuration cracked beam 

Parameters Values & Types 

Global edge length 4 mm 

Crack depth 10 mm 

Crack location 255 mm from the fixed end 

Minimum edge length 1.14 mm (at the crack tip) 

Number of elements 979 

Number of nodes 843 

Element type CPS4R + CPS3 (Plane Stress, 3 Node) 
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Configuration 5 

 

 

Figure 32: Finite element model for 5th configuration cracked beam. 

 

Table 8: Finite element properties for 5th configuration cracked beam 

Parameters Values & Types 

Global edge length 4 mm 

Crack depth 10 mm 

Crack location 315 mm from the fixed end 

Minimum edge length 1.14 mm (at the crack tip) 

Number of elements 979 

Number of nodes 843 

Element type CPS4R + CPS3 (Plane Stress, 3 Node) 

 

  



 

 

39 

 

Configuration 6 

 

 

Figure 33: Finite element model for 6th configuration cracked beam. 

 

Table 9: Finite element properties for 6th configuration cracked beam 

Parameters Values & Types 

Global edge length 4 mm 

Crack depth 10 mm 

Crack location 250 mm from the fixed end 

Minimum edge length 1.14 mm (at the crack tip) 

Number of elements 979 

Number of nodes 843 

Element type CPS4R + CPS3 (Plane Stress, 3 Node) 
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2.4. Loads and boundary conditions 
 

Two different boundary conditions are compared in this study, which are fixed-free 

and fixed-fixed. The total length of beam is adjusted such that the free length of the 

beam is 500 mm for each configuration. For the fixed regions 40 mm of the beam is 

given zero displacements in every direction. Configurations 1,2,3,4 and 5 are given in 

Figure 34. The left side is the fixed part and load is applied 125 mm from the fixed 

end. 

 

 

Figure 34: Boundary conditions and external load for the configurations 1,2,3,4,5. 

 

Configurations 6 is given the fixed-fixed boundary conditions in Figure 35. And the 

load is applied from the same location. 

 

 

Figure 35: The boundary conditions and external load for the configurations 6. 
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2.5. Material definitions 
 

The material properties which are used through the numerical simulations of the intact 

and cracked beam are summarized in Table 10. 

 

Table 10: Material properties of the FE model 

Parameters Values & Types 

Material  Aluminum 

Density 2700 kg/m3 

Elastic Modulus 70000 MPa 

Poisson’s Ratio 0.3 

 

2.6. Crack modelling 
 

The crack models available in the Abaqus software are examined with static analysis. 

The selected crack models must be compatible with the solution method. Dynamic 

explicit solver is used throughout the simulations. The compatible crack models are 

slot type, Abaqus extended FEM (XFEM) and seam crack.  Slot type cracks can be 

utilized by opening a slight gap between the elements at the crack location. A 

representative slot type crack can be seen in Figure 36. This type of crack does not 

come up with true stress profile at the crack tip. Crack tip singularity cannot be 

represented with this model. Comparison is made between other models. 
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Figure 36: Slot type crack. 

XFEM crack modelling tool of Abaqus is very effective. There is no need to adjust the 

mesh with the crack position. A two dimensional face is modelled and located at the 

crack section to represent the crack face as presented in Figure 37. 

 

Figure 37: XFEM crack model. 

Abaqus automatically calculate the stress intensity factor with the specified 

mathematical theorie. The accuracy of the stress profile can be attained with the 

number of stress contours selected from the Abaqus user interface. The problem with 

this crack type is that XFEM is not compatible with the dynamic explicit solvers and 
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two dimensional elements. Thus, XFEM crack model is not used in this analysis. The 

seam crack model seems to be best choice due its compatibility with the explicit solver 

and plane stress elements. 

  

 

Figure 38: Seam crack model. 

 

A representative seam crack can be seen in Figure 38. The figure shows the upper face 

of the beam at the crack section. The bold line show the seam crack face. Namely, 

there are duplicate nodes at the bold line, which separates the elements at the both 

sides of the crack line. After introducing contact condition to the both sides of the face, 

opening and closing crack behavior can be attained. Since stress gradient at the crack 

front is too high, the mesh geometry and shape is important. The meshes must be 

refined at this location. Figure 39 shows the crack tip meshing approach in this study. 

Two dimensional beam is partitioned with three circles. The mesh type at this location 

is set to sweep with quad dominated element shape from Abaqus mesh control tool. 

Other parts of the beam has quad form elements. Further, the crack edges are seeded 

in order to have uniform and enough number of elements at the crack faces. 
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Figure 39: Crack tip meshing. 

As indicated before, the elements on the seam line do not share any nodes. Thus, they 

can be separated from each other. Transition elements from fine to course mesh has 

irregular form but it has negligible effects on the overall vibration behavior of the 

beam. The mesh size changes for each configuration. The minimum edge length is 

arranged such that the time step is not too small.  For the perfect representation of the 

crack tip singularity, mid side node method could be used. This kind high degree 

elements, however, needs implicit solvers and long computational time. 

The mid side method is summarized in Figure 40. There are nodes at the one fourth of 

the element edges. These quadratic degree elements gives more realistic stress 

distribution at the crack tip. The stress is decaying with the inverse of the square root 

of the radius from the crack front. This profile can be attained by mid side node 

method. In this study, linear elements are used since the overall stiffness of the beam 

is not effected drastically by the crack tip stress profile. 
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Figure 40: Mid side node method. 

 

2.7. Contact definition 
 

Abaqus explicit surface to surface contact method is used. The crack face friction is 

considered to be negligible. Thus, the normal contact is defined as “Hard contact” 

from pressure over-closure part. Also, there is no prevention to the separation of the 

surfaces after contact. Tangential property of the contact is “frictionless”. Introducing 

contact condition through the crack face utilizes partial contact condition in the 

simulation. 

 

2.8. Sensor network 
 

The acceleration and displacement responses are collected from 5 different locations 

in each configuration from root to the free end with a constant spacing. The free length 
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of the beam is taken as 500 mm in each configuration in this study. Thus, the spacing 

is taken as 100 mm. The representative sensor network is given in Figure 41. 

 

 

Figure 41: Sensor network on the beam. 

 

For configuration 6, the sensor 5 is not located since the beam is fixed at that location. 

There is no displacement or acceleration at this location. 

 

2.9. Damping 
 

For the dissipation of the energy on the vibrating beam, some damping is introduced 

to the model. The explicit solver of the Abaqus software has bulk viscosity constants 

in the step definition in order to damp the high frequency numerical vibration content. 

This damping, however, is not enough to damp the vibration in the interested 

frequency range. Thus, additional damping definitions, called “Rayleigh damping” are 

introduced to the model. The Rayleigh damping has two coefficients; “alpha” and 

“beta”. Alpha is available mass proportional damping coefficient to damp the lower 

frequency range. Beta is a stiffness proportional coefficient, which stands in order to 

damp high frequency vibration. The calculation of the Rayleigh damping coefficients, 

the following procedure is followed. 

Let 𝜉𝑖 is the damping coefficient at the specified frequency.  

𝜉𝑖  = 0.05 

Calculation of Rayleigh coefficients given in Abaqus manual 6.14 as follows, 
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𝜉𝑖 =
𝛼

2𝑤𝑖
+

𝛽𝑤𝑖

2
 

Stiffness proportional damping coefficient “Beta” reduces the stable time increment 

in explicit analysis. Thus, beta is not used for this analysis. Then, 

𝛼 = 2𝜉𝑖𝑤𝑖 

For the fundamental frequency of 𝑤1 = 64 𝐻𝑧. The Rayleigh coefficients used for 

configuration 1 to 5 are as follows, 

𝛼 = 6.4 

𝛽 = 0 

For the configuration 6, the fundamental natural frequency is 𝑤1 = 403 𝐻𝑧. Then, 

𝛼 = 40.3 

𝛽 = 0 
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CHAPTER 3 

 

 

NUMERICAL CALCULATIONS 

 

 

 

Finite element model of the intact and damaged beams are constructed. There are six 

different FE models for different crack depth, position and boundary conditions. The 

initial conditions are not specified, they are taken as zero by default. The time domain 

response of the model to the applied load is recorded from different sensor locations 

and evaluated. 

 

3.1. Solution method 
 

The vibration of the beam is governed by the dynamic equation of motions. For 

complicated structures and boundary conditions, the analytical solution would be 

difficult or impossible. These kind of differential equations must be solved by 

discretization of the domain into small steps and solving each step separately. There 

are some methods to solve steady state response of the structure, but they are 

compatible only with linear systems, in which the stiffness matrix does not change 

with time. Methods based on Eigen modes of the structure are cost-effective in 

accordance to the direct integration methods. Thus, linear systems are generally solved 

by these methods. For the vibration of a cracked beam, which is a nonlinear system, 

there are two methods for the solution of time domain transient and steady state 

response. They are implicit and explicit solvers. The common purpose of these 

methods is to find the parameter such as displacement, at a later time by knowing the 

variable at the current time. Each method has its own advantages and disadvantages. 
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3.1.1.Dynamic implicit solver 

 

Implicit solvers use not only the current dynamic variables, but also the same 

quantities at the later time to solve the quantities at the later time. There is theoretically 

no limit for the time step size in implicit solvers. For the response to be realistic, the 

time step should not be too high, i.e. not more than two orders or magnitude larger 

than stability limit. Thus, the given time step affect the quality of the response. As a 

rule of thumb, the time step must not be larger than one tenth of the system vibration 

period in order to ensure that the solution is converges and unrealistic results are 

avoided. There is a limit which defines this stability. Thus, the stability limit and 

period of vibration provides a clue for the selection of the solver type by considering 

the computational time and quality of the results. The most crucial characteristics of 

the implicit method is that the equilibrium must be attained at each time step with the 

internal, external and inertial forces on the body. The equilibrium equations are solved 

iteratively. To attain the equilibrium at each time step is not cos-effective for this 

study. The computational time doubled and sometimes tripled in the simulations of 

this study when dynamic implicit solver is used. Thus, dynamic explicit solver seems 

to be better choice for the simulations of the cracked beam. A comparison between the 

explicit and implicit dynamic analysis results are presented in the following sections. 

3.1.2.Dynamic explicit solver 

 

Explicit solver use central difference method to estimate the later time. The 

mathematical procedure for the calculation of the displacements is summarized in the 

Equations 16-19.  

�̇�(𝑖+
1

2
) = �̇�(𝑖−

1

2
) +

∆𝑡(𝑖+1)+∆𝑡(𝑖)

2
�̈�(𝑖)    (16) 

 

𝒖(𝑖+1) = 𝒖(𝑖) + ∆𝑡(𝑖+1)�̇�(𝑖+
1

2
)
   (17) 
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Where, �̇� is the velocity and �̈� is the displacement. The superscript (i) stands for the 

increment number. Using these equations, the later state of the system can be 

calculated by knowing the mid increment values at the (𝑖 −
1

2
) and (𝑖) The explicit 

solver uses diagonal element mass matrices, which make this method cost-effective. 

The acceleration at the current state can be calculated using diagonal mass matrix as 

given in Equation 18. 

 

�̈�(i) = 𝐌−1 ∗ (𝐅(i)– 𝐈(i))     (18) 

 

Where M is the diagonal lumped mass matrix, F is the externally applied load and I is 

the inertial force vector. Since the calculation of the acceleration at the current state is 

governed by Equation 18, no iterations are needed. For the initial step, the mid 

increments calculated from the initial conditions for the velocity and acceleration. 

 

�̇�(i−
1

2
) = �̇�(0) −

∆𝐭(0)

2
�̈�(0)     (19) 

 

There is a stability limit for the time increment in explicit analysis since the central 

difference method is conditionally stable. The stability can be attained by setting the 

time increment according to the following inequality. 

 

𝛥𝑡 ≤
2

𝜔𝑚𝑎𝑥
=

𝑙

𝐶
= 𝑙√

𝜌

𝐸
     (20) 
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Where, ωmax is the highest Eigen value, “l” is the minimum edge length and “c” is 

the speed of sound in the system and “E” is the modulus of the corresponding element. 

Namely, the time step is governed by the speed of sound, minimum edge length and 

the smallest element in the model. If the damping of the system is considered, the 

stability condition becomes smaller. The calculated time step is multiplied by a factor 

calculated with the critical damping coefficient at the highest mode as given in 

Equation 21. 

 

𝛥𝑡 ≤
2

𝜔𝑚𝑎𝑥
(√1 + 𝜉2 − 𝜉)     (21) 

 

Where, 𝜉 stands for the critical damping coefficient at 𝜔𝑚𝑎𝑥 and 𝜉 is the critical 

damping coefficient. Thus, the damping should be selected carefully if the 

computational time is considered. There is a default damping parameter, called “bulk 

viscosity” in Abaqus for the unsteady response features due to numerical calculations. 

For the damping of the structure’s vibration, however, an additional damping 

parameter such as Rayleigh damping parameters, should be introduced by considering 

the drop in the time step. The Rayleigh damping coefficients given in the analysis are 

alpha and beta. Alpha damp the system by modifying the mass matrix and beta damp 

the system by modifying the stiffness matrix. Determination of these constant is 

important since any unrealistic coefficient value may drastically increase the 

computational time. Also the size of the minimum element and the modulus of this 

element are important parameters for the computational time. That’s why, the meshes 

at the crack front is selected such that the time step is acceptable. The analysis and 

simulations in this study are done by dynamic explicit method which is 

computationally more effective. The comparison between a dynamic explicit and 

implicit acceleration FFT results given in Figure 42-43. There is no much difference 

in the amplitudes and frequencies of the harmonics but with the same time increment, 
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the explicit analysis has computationally effectiveness with little loss of accuracy at 

the amplitudes at the sub and super harmonics. 

 

Figure 42: FFT of the acceleration responses at sensor 1 of configurations 3 with 

wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale with 

dynamic implicit solver 

 

3.2. Signal processing 
 

For the static evaluations, compliance and force-displacement curves are obtained 

directly from static solvers and post-processing tools of Abaqus. For dynamic 

evaluations, it is not as straight forward as in the case of static analysis. The output is 

in time domain. The data is crowded and non-linear effects are not visible. Without 

having frequency content of the response, crack identification is almost impossible. 

Thus, a procedure is devised to elicit a clear frequency spectra from time domain 

response. The procedure is presented in Figure 44. 
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Figure 43: FFT of the acceleration responses at sensor 1 of configurations 3 with 

wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale with 

dynamic explicit solver 

 

 

Figure 44: Post processing procedure. 

 

The transient solution (first 2 seconds) subtracted from overall solution of 5 seconds 

in order to obtain the steady state solution at the end. Than the data is edited such that 

the fundamental frequency has a complete harmonic cycle in the time domain 

response. Otherwise, FFT results have high amount of leakage. This process is done 

with the following formula. The total sampling time for steady state response is 3s. 

Thus, integer number of complete cycles at the fundamental frequency must be found. 

 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑐𝑦𝑐𝑙𝑒𝑠 =  
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

1

𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

   (22) 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

5

Frequency [Hz]

A
c
c
e
le

ra
ti
o
n
 [

m
m

/s
2
]

 

 

Explicit



 

 

55 

 

The integer part of the calculated real number from Equation 22 is taken and multiplied 

with the fundamental excitation frequency in order to find the exact sampling time 

having complete harmonic cycle at the fundamental frequency. There is still some kind 

of leakage due to discrete time response but it is in the acceptable level for this 

analysis. Further, FFT of the acceleration results by using flat top filter in Matlab are 

also given in Appendix in order not to have any doubt about the amplitudes at the 

frequency response. 

There is no aliasing problem for the response, since the resolution of the data is too 

high than the resolution required to obtain the required frequency band. There are 107 

points in 1 second solution. The total solution time is 5 seconds for each case in 

dynamic evaluations. Last 3 second of the response is taken as steady state response 

for all cases. Thus there are 3*107 data point in each solution. This number of data 

points is far enough to catch the frequencies in the interested band of 0-500 Hz without 

aliasing problem. Thus, no additional anti-aliasing filter is applied to time domain 

response. Figure 45 shows raw and post-processed data step by step. The steady state 

response is checked by taking FFT of different sampling times. For the same analysis, 

last 4s, 3s and 2s responses are presented in Figure 46, 47, and 48. 

 

  



 

 

56 

 

    (a)                (b) 

 

   (c)            (d) 

 

Figure 45: Post processing of time domain response (a) raw data (b) steady state 

response (c) (representative) complete cycle editing (d) FFT response 
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Figure 46: The last 4 s of acceleration responses at sensor 1 of configurations 3 with 

wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N. 

 

 

Figure 47: The last 3 s of acceleration responses at sensor 1 of configurations 3 with 

wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N. 
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Figure 48: The last 2 s of acceleration responses at sensor 1 of configurations 3 with 

wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N. 

 

Table 11: The acceleration amplitude at different sampling time 

 𝑨𝒎𝒂𝒙,𝒊 Difference 

% 

𝒘𝒎𝒂𝒙,𝒊 Difference 

% 

Last 4 s 2.418E5 - 384 %0 

Last 3.5 s 1.971E5 %18 384 %0 

Last 3 s 1.929E5 %2 384 %0 

 

The amplitudes of the maximum harmonic and its frequency is given in Table 11. The 

transient response has not been damped between last 4 and 3.5 s. The difference 

between this 0.5 s at the amplitude of the maximum harmonic is 18%. The steady state 

response almost reached between the last 3.5 and 3s. The difference at the amplitude 

of the maximum harmonic is only 2%. Also, 3s sampling time is good enough for the 

resolution at the frequency spectra.  The frequency of the maximum harmonic is 

constant for last 4, 3.5 and 3s. Thus, the analysis is done at last 3s for the case studies. 
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3.3. Discerete fourier transform 
 

For the evaluatıon of crack existence on the structure by using vibration response, the 

frequency content of the time signal should be obtained. The discrete time signal is 

transformed into frequency spectra with discrete Fourier transform and with signal 

processing methods. In this section, the analytical background of discrete Fourier 

transform is discussed.  

A cyclic continuous signal can be represented with Fourier series as follows, 

 

𝑥(𝑡) = 𝑐0 + 𝑐1𝑒
𝑖2𝜋𝑡

𝑇 + 𝑐2𝑒
𝑖4𝜋𝑡

𝑇 + ⋯ = ∑ 𝐶𝑛𝑒𝑖
2𝜋𝑛𝑡

𝑇∞
𝑛=0    (23) 

 

A discrete signal can be represented with the vector in Equation 24. 

 

𝑥[𝑛] = [𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑁]     (24) 

 

Finally, the Fourier transform of a discrete signal is represented with Equation 25. 

 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒𝑖
2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0      (25) 

Where, 

“X” is the signal “x” in frequency domain, “k” represent the number of frequency 

component, “N” stands for the number of samples in the signal, “x” is the time signal, 

“n” is the nth sample and “j” is the imaginary unit.  
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If data points are limited there should be aliasing problem when using the DFT 

algorithm. Namely, if the number of data points are not enough, the maximum 

frequency content should be lower than the half Nyquist frequency which is twice the 

maximum frequency occurring in the signal. From the equation, the maximum 

frequency content which can be calculated is limited to (N-1)/T when the data points 

are limited. For the simulation in this study, the number of points are enough to have 

true frequency content from DFT algorithm. If the number of points were less, than 

zero padding which is the generation of imaginary zero amplitude points in the signal, 

could be used to increase the number of data point that can be used with discrete 

Fourier transform. As an important reminder, the signal should have frequency content 

with a constant period. Thus, the DFT algorithm is used for steady state solution, 

which is found after subtracting first 2 seconds of the solution from the whole 5 

seconds solution in this study. 
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CHAPTER 4 

 

 

NUMERICAL RESULTS 

 

 

 

4.1. Statical analysis results 
 

The cracked and intact beams are investigated under static load as a first step in order 

to obtain the displacement at a given load level and to observe the stiffness change in 

the open and closed crack phases. Further SIF is obtained to ensure the quality of the 

FEA. 

4.1.2.Force displacement graph 

 

An incremental loading is applied to the cracked and intact beam. Force is applied into 

upward and downward directions in order to check the closed and open crack phase 

stiffness. The force-displacement curve is given in Figure 50. Configuration 3 is used 

in this analysis. 

 

 

Figure 49: Static analysis model 

It can be seen that the closed crack stiffness and intact beam stiffness are very similar. 

The open crack phase of the cracked beam, however has lower stiffness and higher 
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displacement. The stiffness change from open to close form does not happen 

instantaneously in the lateral vibration of the beam but this gives an idea about how 

much nonlinearity is given to the system with a crack having a depth of 10 mm. 

 

 

Figure 50: Force displacement curve. 

 

4.2. Dynamic analysis results 
 

4.2.1.Linear normal mode analysis 

 

The linear normal mode analysis is applicable for linear structures. The crack face 

interaction in this study makes the system nonlinear. Thus, the natural frequencies of 

the cracked beam cannot be found by Eigen value problems. There is an approach in 

the literature for bilinear systems. The cracked beams are also kind of bilinear systems. 

There are two stiffness matrices. One for the crack open case and the other for the 

crack closed case. Then, the cracked beam natural frequency can be estimated by 

Equation 26 (Chati, Rand, & Mukherjee, 1997). 



 

 

63 

 

fbilinear =  
2fcrackedfintact

(fcracked+fintact)
     (26) 

 

The following table shows the bilinear natural frequencies of the configurations used 

in this study. The natural frequencies of the cracked beams are used to excite them at 

their natural frequencies. 

 

Table 12: Table of configurations 

Model Crack  Position Crack Depth BC 

Configuration 1 195 mm 4 mm Fixed-Free 

Configuration 2 195 mm 7 mm Fixed-Free 

Configuration 3 195 mm 10 mm Fixed-Free 

Configuration 4 255 mm 10 mm Fixed-Free 

Configuration 5 315 mm 10 mm Fixed-Free 

Configuration 6 250 mm 10 mm Fixed-Fixed 
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Figure 51: Linear mode shapes of the cracked beam configuration 2. (a) 1st mode 

shape (b) 2nd mode shape (c) 3rd mode shape 

 

Table 13: Linear normal mode results 

Models 1st Mode 2nd Mode 3rd Mode 

Configuration 1 64.07 Hz 398.82 Hz 1106.1 Hz 

Configuration 2 62.65 Hz 388.00 Hz 1081.9 Hz 

Configuration 3 60.86 Hz 373.14 Hz 1052.5 Hz 

Configuration 4 62.94 Hz 363.32 Hz 1107.5 Hz 

Configuration 5 63.84 Hz 367.65 Hz 1036.1 Hz 

Configuration 6 384.8 Hz 1120.5 Hz 1990.8 Hz 
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Table 14: Bilinear natural frequencies 

Models 
actfint  crackedf  bilinearf  

Configuration 1 64.42 Hz 64.07 Hz 64.24 Hz 

Configuration 2 64.42 Hz 62.65 Hz 63.52 Hz 

Configuration 3 64.42 Hz 60.86 Hz 62.58 Hz 

Configuration 4 64.42 Hz 62.94 Hz 63.67 Hz 

Configuration 5 64.42 Hz 63.84 Hz 64.12 Hz 

Configuration 6 403.5 Hz 384.8 Hz 393.9 Hz 

 

 

The natural frequency is lower for the beam having crack with higher depth and small 

distance to the fixed end. The excitation frequency for the configurations 1-5 is taken 

as 63.6 Hz which is the average of the natural frequencies at these configurations. It is 

just an approach for this study. The bilinear natural frequencies for the cracked beam 

is an estimation since the there is also transition phase from closed to open crack mode. 

Thus, having average as an excitation frequency seems to be a good approach. The 

configuration 6 is excited with its bilinear natural frequency which is indicated in the 

table. 
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4.2.2.Free vibration results 

 

 

Figure 52: FFT of acceleration response of free vibration of configuration 3 after 

initial velocity condition of 100 mm/2 from the crack tip  

 

 

Figure 53: FFT of displacement response of free vibration of configuration 3 after 

initial velocity condition of 100 mm/2 from the crack tip  
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4.2.3.Frequency response analysis 

 

The forced vibration characteristics of the cracked and intact beams are analyzed in 

this section. Different configurations with different crack sizes, depths and boundary 

conditions are compared step by step. The aim of this study is to show the capability 

of the finite element method in detection of crack induced harmonics in the Frequency 

spectra. For this purpose, a damage indicator is defined with the Equation 27 as 

defined in (Broda, Pieczonka, Hiwarkar, Staszewski , & Silberschmidt, 2016).   

 

𝐷𝑐,𝑖 =
𝐴𝑚𝑎𝑥,𝑖

𝐴𝑒
      (27) 

 

Where, 𝐷𝑐,𝑖 is the damage indicator due to crack at the ith sensor location, 𝐴𝑚𝑎𝑥,𝑖 stands 

for the maximum of the amplitudes at the harmonics except the fundamental frequency 

and 𝐴𝑒 is the amplitude of the  fundamental harmonic at the selected sensor location. 

The damage indicators are calculated in each case study in order to determine how the 

parameters, such as excitation frequency and sensor location, affect the damage 

indications. Displacement and acceleration responses are obtained in each case 

studies. The parameters in the dynamic analysis are given in Equation 28. The case 

studies in which the effect of the parameters are examined are summarized in the Table 

15. 

 

𝐿𝐶 =
𝐿𝑐𝑟𝑎𝑐𝑘

𝐿
, 𝑤𝐶 =

𝑤

𝑤𝑛
, 𝐿𝐹 =

𝐿𝑓𝑜𝑟𝑐𝑒

𝐿
, 𝑑𝐶 =

ℎ𝑐𝑟𝑎𝑐𝑘

ℎ
    (28) 
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Table 15: Summary of case studies 

 Case 

Study 1 

Case 

Study 2 

Case 

Study 3 

Case 

Study 4 

Case 

Study 5 

Case 

Study 6 

Configurations 3,4,5 1,2,3 3 3 6 3 

Boundary 

Condition 

Fixed-

Free 

Fixed-

Free 

Fixed-

Free 

Fixed-

Free 

Fixed-

Fixed 

Fixed-

Free 

𝐿𝐶 3 types 0.39 0.39 0.39 0.50 0.39 

𝑤𝐶 1.00 1.00 3 types 0.50 0.50 1.00 

𝐿𝐹 0.25 0.25 0.25 0.25 0.25 2 types 

𝑑𝐶 0.50 3 types 0.50 0.50 0.50 0.50 

Force, “A” 100 N 100 N 100 N 3 types 100 N 100 N 

* Force is applied Asin (wt) 

4.2.3.1.Sensor selection 

 

For the case studies in the following sub sections, a single sensor location is selected 

such that the harmonics are clear in the frequency response. For this purpose, the 

sensor locations for a type of crack and excitation frequency range are compared with 

each other to find the best sensor location that shows the highest damage indication as 

given by Equation 27. The response in Figure 54 shows the acceleration response at 

the intact beam. The acceleration is purely harmonic for the intact beam. The 

acceleration response at the cracked beam, however, shows deviations from the 

harmonic behavior as in Figure 55. The amplitudes of the harmonics can be seen in 

frequency spectra presented in Figure 56. The damage parameters are shown in the 

last column of the Table 16. Sensor 1 ( at 100 mm from the support) shows the damage 

better than all the sensors even if the amplitudes are smaller than other sensors.. This 

is the sensor closest the fixed end of the beam. From now on, the case studies are 

evaluated with the data obtained from sensor 1. 
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Figure 54: The acceleration time responses at all sensor locations for configuration 2 

excited at 𝐿𝑓 = 0.25 with 100 N. The curves are from 5 to 1 in top to bottom order. 

 

Figure 55: The acceleration time responses at all sensor locations for configuration 2 

excited at 𝐿𝑓 = 0.25 with 100 N. The curves are from 5 to 1 in top to bottom order. 
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Figure 56: FFT of the acceleration responses at all sensor locations for configuration 

2 excited at 𝐿𝑓 = 0.25 with 100 N. The curves are from 5 to 1 in top to bottom order. 

 

Table 16: Damage indicator parameter at each sensor location 

 𝑨𝒎𝒂𝒙,𝒊 [mm/s^2] n* 𝑨𝒆 [mm/s^2] 𝑫𝒄,𝒊 

Sensor 1 9.517E4 6th  4.866E4 0.511 

Sensor 2 3.532E5 6th 1.333E5 0.377 

Sensor 3 1.333E6 6th 8.533E4 0.063 

Sensor 4 1.856E6 6th 5.198E4 0.028 

Sensor 5 2.389E6 6th 2.147E5 0.008 

*The nth harmonic which has the maximum amplitude. 
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4.2.3.2.Case study 1 – Effect of crack location 

For this case study, the crack is located at three different locations on the cantilever 

beam. The crack depth is kept constant at half of the beam height in each analysis. The 

displacement of the beam is expected to be higher at the cracked beam than intact 

beam.  

 

Figure 57: FFT of the acceleration responses at sensor 1 of configurations 3, 4 and 5 

with wc=1.00, Lf = 0.25,dc = 0.5 and excitation amplitude of 100 N in linear scale. 

Table 17: Damage indication parameter at sensor location 1 

 𝑨𝒎𝒂𝒙,𝟏 𝑨𝒆 𝑫𝒄,𝟏 

Intact ~0 2.085E5 0.00 

Lc = 0.39 1.929E5 4.279E4 4.50 

Lc = 0.51 8.954E5 2.395E5 3.74 

Lc = 0.63 4.189E5 2.358E5 1.77 
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Figure 58: FFT of the acceleration responses at sensor 1 of configurations 3, 4 and 5 

with wc=1.00, Lf = 0.25,dc = 0.5 and excitation amplitude of 100 N in logarithmic 

scale. 

 

Figure 59: FFT of the displacement responses at sensor 1 of configurations 3, 4 and 5 

with wc=1.00, Lf = 0.25, dc = 0.5 and excitation amplitude of 100 N in linear scale. 
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Figure 60: FFT of the displacement responses at sensor 1 of configurations 3, 4 and 5 

with wc=1.00, Lf = 0.25, dc = 0.5 and excitation amplitude of 100 N in logarithmic 

scale. 

 

The results show an interesting pattern as a result of the simulation. The amplitude of 

the acceleration is the highest when the crack is located near to the middle sections of 

the beam. Also, the maximum amplitude (6th) of the harmonics is very high when the 

crack is at the 0.51 of the beam length. This can be explained with the second mode 

of the beam. The second natural frequency for the fixed free beam configurations are 

at about 390 Hz. The 6th harmonic in the frequency response coincident with the 10% 

band of the second natural frequency of the cantilevered beam. 

First two mode shapes of the cracked beam given in Figure 61. The mode shape of the 

second natural frequency is mostly affected by the cracks at the mid-section of the 

beam since the curvature is high at the cracked section in second mode shape. As a 

result, the crack location can be selected after a preliminary study on the structure’s 

modal characteristic, the excitation frequency and amplitude. 
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Figure 61: The first two mode shapes of the beam 

 

The location of the crack cannot be taken as an independent parameter in the crack 

detection analysis. On the other hand, the damage parameter is the highest when the 

crack is closest to the cantilever end of the beam. Even though the amplitudes of the 

harmonics (Ae and Amax, i ) are is not the highest ones among the others, the damage 

parameter is the highest for the crack location of 0.39 of the free length of the beam. 

The displacement responses can also be seen on Figure 59-60. One can observe that 

cracked beam response converges to that of the intact beam when the crack approaches 

to the free end of the beam. 

4.2.3.3.Case study 2 – Effect of crack depth 

 

In this case study, the crack location is taken as constant. The depth of the crack is 

changed from 20% of the cross section to the 50% percent of the cross section to 

observe the changes in the damage indicator parameter and the generation of the 

harmonics. Nonlinearity is expected to be lower for the smallest cracks and that the 

response approaches to the intact beam behavior when the crack gets smaller. Figures 

62-63 and 64-65 show the acceleration and displacement response of the beam when 

it is excited with the first natural frequency of the beam. Since the highest amplitude 

harmonics are clearly observed, the excitation amplitude is taken as 100N for this 

study. The effect of the excitation is examined at the following sections, as well. Force 

location is 125 mm from the fixed end throughout this case study. The amplitudes of 

the harmonics and damage indicators can be seen in Table 18. The damage indicator 
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is too small for the smallest crack depth as expected since the stiffness of the open and 

close crack phases of the beam become very close when the crack depth gets smaller. 

As a result, the amplitude of the harmonics get smaller. It is hard to detect cracks with 

depth of %20 or smaller of the cross section. The damage indicator does not increase 

linearly as in the Table 18. 

Table 18: Damage indication parameter at sensor location 1 

 𝑨𝒎𝒂𝒙,𝟏 𝑨𝒆 𝑫𝒄,𝟏 

Intact ~0 2.085E5 0.00 

dc = 0.20 1.139E4 1.293E5 0.08 

dc = 0.35 4.866E4 9.517E4 0.51 

dc = 0.50 1.929E5 4.279E4 4.50 

 

 

Figure 62: FFT of the acceleration responses at sensor 1 of configurations 1, 2 and 3 

with wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale. 
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Figure 63: FFT of the acceleration responses at sensor 1 of configurations 1, 2 and 3 

with wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale. 

 

Figure 64: FFT of the displacement responses at sensor 1 of configurations 1, 2 and 3 

with wc =1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale. 
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Figure 65: FFT of the displacement responses at sensor 1 of configurations 1, 2 and 3 

with wc =1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale. 

 

The damage parameter increases rapidly after a certain depth of crack. The change of 

damage indicator from %20 depth to %35 depth is much smaller than from %35 to 

%50 depth. As a result, the amplitudes of the harmonics increase rapidly after a certain 

crack depth. The amplitude of the acceleration at the excitation frequency converges 

to the intact beam when the crack depth gets smaller. 

 

4.2.3.4.Case study 3 – Effect of excitation frequency 

 

The excitation frequency is one of the parameters that affects the crack detection 

capability. The excitation frequencies coincident with one of the natural frequencies 

of the structure amplify the structure’s displacement and acceleration response. The 

amplitudes of the harmonics are amplified, as well. The responses are presented in 

Figure 66-69 for this case study. The half natural frequency is selected as a first one 

since the second harmonic is coincide with the 1st natural frequency of the structure. 
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The wc of 2.45 is selected because none of the harmonics is coincide with any of the 

natural frequencies. 

 

Figure 66: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale. 

 

Table 19: Damage indication parameter at sensor 1 

 𝑨𝒎𝒂𝒙,𝒊 n* 𝑨𝒆 𝑫𝒄,𝟏 

wc = 0.50 2.239E3 12th 1.646E3 1.36 

wc = 1.00 1.929E5 6th 4.279E4 4.50 

wc = 2.00 7.725E3 ½th    5.804E3 1.33 
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Figure 67: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale. 

 

Figure 68: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, Lc = 0.39 and excitation amplitude of 100 N in linear scale. 
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Figure 69: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale. 

 

The damage indicator has the highest value when the beam is excited with the first 

natural frequency as expected. When the frequency of the vibration is higher than the 

natural frequency, the amplitudes of the harmonics becomes smaller. For the excitation 

at 153 Hz, none of the natural frequencies are excited since none of the harmonics is 

coincident with it. Thus, the damage indicator for wc = 2.45 has the smallest value. 

Excitation with the half natural frequency excites the first and second natural 

frequencies, thus it makes the crack more detectable at the vibration response. The 

displacement response of the beam shows similar pattern with the acceleration 

response. Most of the work in the literature conduct the analysis with the half natural 

frequency in order to make the second harmonic, which is actually the first natural 

frequency, more detectable since it is amplified at natural frequency. Also, exciting 

the beam with the first natural frequency, amplify the displacement and acceleration 

and make the system more nonlinear. A real crack may not open when the force at this 

section is not high enough to overcome crack closure effects. As a result, the excitation 

frequency selection seems to be a system dependent parameter. 
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4.2.3.5. Case study 4 – Effect of excitation amplitude 

 

The amplitude of the vibration is an important parameter for this study since the 

nonlinearity in the system is not too high and system may behave like linear when the 

amplitude is small. The following figures show the frequency response under different 

excitation amplitudes. 

 

 

Figure 70: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, wc = 1.00 and Lc = 0.39 in linear scale. 
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Figure 71: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, wc = 1.00 and Lc = 0.39 in logarithmic scale. 

 

Figure 72: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, wc = 1.00 and Lc = 0.39 in linear scale. 
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Figure 73 : FFT of the displacement responses at sensor 1 of configuration 3 with dc 

= 0.50, Lf=0.25, wc = 1.00 and Lc = 0.39 in logarithmic scale. 

 

The excitation with 5 N seems to have noisy content. No additional filter is applied 

intentionally to show the difference when the force is too small. One of the reason of 

the noise is that the time domain response does not reach to steady state because of the 

amplitude of the excitation. The amplitude of the transient part in the exact solution of 

an underdamped system is a function of the amplitude of vibration. Smaller the 

excitation amplitude, higher the amplitude of the transient component. Moreover, one 

cannot see the crack closure effects from the finite element results in this study since 

there is no residual stresses due to crack opening in FE model.  In a real structure, one 

may not detect any nonlinear characteristic in the structure even if it exists when the 

load is too small. Further, the damage indication parameter is not good for any of the 

amplitude in this case study. Thus, when the amplitude of the excitation is low and 

excitation frequency is the half of the 1st natural frequency, the damage indication 

parameter is very small even if the second harmonic excites the first natural frequency. 
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Table 20: Damage indication parameter at sensor 1 

 𝑨𝒎𝒂𝒙,𝒊 n* 𝑨𝒆 𝑫𝒄,𝟏 

F = 50 N 4.672E4 6th 9.740E3 4.79 

F = 100 N 2.143E5 6th 3.366E4 6.36 

*The nth harmonic which has the maximum amplitude. 

 

4.2.3.6.Case study 5 – Effect of boundary condition 

 

The beam is constraint from both sides and one side in this case study. The first and 

second natural frequency of the beam having 500 mm free length and constraint from 

both sides are 384 Hz and 1120 Hz, respectively. The beam constraint from one side 

has its first two natural frequencies at 63.6 Hz and 385 Hz. The beams are excited with 

their half natural frequency of 192.5 Hz and 31.8 Hz. The results of the acceleration 

and displacement are presented in Figure 74 to 77. The harmonic content is clear both 

in acceleration and displacement results. Considering Table 21, the beam having fixed-

fixed boundary condition has much higher amplitudes of acceleration and damage 

indicator parameter than the beam having fixed-free boundary condition. Both beams 

are excited at half of their first natural frequencies and have the highest harmonics at 

their first natural frequencies. The boundary condition seems to have great effect on 

the crack detection capability. For the fixed-fixed boundary condition, the crack is at 

exactly the maximum displacement point which is the midpoint of the beam. This 

makes the harmonics more detectable in the frequency spectra. Thus, boundary 

conditions should be applied by considering the mode shapes of the structure and 

location of the crack. Higher crack opening during vibration makes the system more 

nonlinear. The second natural frequency of the fixed-fixed beam is outside of the 

frequency of interest but a harmonic at the first natural frequency is enough to 

comment on the damage indication characteristics of the structure. The harmonic 

content is visible at the displacement frequency response, as well.  
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Figure 74: FFT of the acceleration responses at sensor 1 of configuration 6 with dc = 

0.50, Lf=0.25, wc = 0.50, Lc = 0.50 and excitation amplitude of 100 N in linear scale. 

 

Figure 75: FFT of the acceleration responses at sensor 1 of configuration 6 with dc = 

0.50, Lf=0.25, wc = 0.50, Lc = 0.50 and excitation amplitude of 100 N in log scale. 
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Figure 76: FFT of the displacement responses at sensor 1 of configuration 6 with dc = 

0.50, Lf=0.25, wc = 0.50, Lc = 0.50 and excitation amplitude of 100 N in linear scale. 

 

Figure 77: FFT of the displacement responses at sensor 1 of configuration 6 with dc = 

0.50, Lf=0.25, wc = 0.50, Lc = 0.50 and excitation amplitude of 100 N in log scale. 

 

 

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Frequency [Hz]

D
is

p
la

c
e
m

e
n
t 

[m
m

]

 

 

Fixed-Fixed

Fixed-Free

0 100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Frequency [Hz]

D
is

p
la

c
e
m

e
n
t 

lo
g
[m

m
]

 

 

Fixed-Fixed

Fixed-Free



 

 

87 

 

Table 21: Damage indication parameter at sensor 1 

 𝑨𝒎𝒂𝒙,𝒊 𝑨𝒆 𝑫𝒄,𝟏 

Fixed - Fixed 7.701E4 2.968E4 2.59 

Fixed – Free 2.239E3 1.646E3 1.36 

 

4.2.3.7.Case study 6 – Effect of force location 

 

In this case study, the location of the force is changed. The locations are 125 mm far 

from the fixed end and 125 mm from the free end. Configuration 3 finite element 

model is used for this analysis, since it has the highest crack depth and highest 

nonlinearity on the structure. The acceleration and displacement frequency spectra are 

given in Figure 78 to 81. It can be seen that the amplitudes are higher in the beam 

which is excited from the point that is closer to the fixed end, as expected. Highest 

amplitude of the harmonics is observed in second natural frequency of the structure in 

the acceleration graph for both beam. The amplitudes of the highest and fundamental 

harmonics and damage indication parameter are summarized in Table 22.  The 

amplitude of the highest harmonic is at the fundamental or excitation frequency in the 

acceleration response. The damage indication parameter is higher in the beam which 

is excited from the point which is closer to the fixed end even if the amplitude is higher 

in its counterpart. The difference is not too much. Thus, the excitation of the structure 

might be selected by considering other constraints such as force actuator 

configuration, the support structure configuration since the amplitude of the vibration 

will be higher at the regions which is close to the free and of the beam.  

Table 22: Damage indication parameter at sensor 1 

 𝑨𝒎𝒂𝒙,𝒊 𝑨𝒆 𝑫𝒄,𝟏 

Lf = 0.25 1.929E5 4.279E4 4.50 

Lf = 0.75 1.338E6 3.341E5 4.00 
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Figure 78: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lc=0.39, wc = 1.00 and excitation amplitude of 100 N in linear scale. 

 

Figure 79: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lc=0.39, wc = 1.00 and excitation amplitude of 100 N in logarithmic scale. 
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Figure 80: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lc=0.39, wc = 1.00 and excitation amplitude of 100 N in linear scale. 

 

 

Figure 81: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lc=0.39, wc = 1.00 and excitation amplitude of 100 N in logarithmic scale. 
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CHAPTER 5 

 

 

DISCUSSION & CONCLUSION 

 

 

 

Structural health monitoring has become an increasingly demanding subject in the 

industry because it decreases the service and maintenance costs. Further, the safety of 

the structures is crucial in the aerospace industry. As a result of these demands, 

monitoring of the structures during their service life becomes a requirement. Structural 

monitoring can detect the upcoming failure in advance and warn the operator about 

the failure. The number of academic studies on this subject is also increasing day by 

day in the literature. One of the most demanding methods in structural health 

monitoring is the one which use the vibration responses and the modal characteristics 

of the structure. In this study, the vibration based structural health monitoring method 

was studied using finite element analysis on a cracked cantilever beam under forced 

vibration. To objectives of the study is to show the ability of finite element method in 

the detection of cracks on the structure using vibration responses and to examine the 

effects of different structural parameters such crack depth, crack location, excitation 

frequency and amplitude and boundary condition on the crack indications. For this 

purpose, six different square cross sectional cracked beams are modelled using finite 

element method with two dimensional plane stress elements. Seam crack method is 

conducted to employ the crack on the structure. Frictionless contact condition is 

assumed for the interaction of the crack faces. The cracked and intact beams are 

excited with a harmonic load. Five different sensor locations are selected to observe 

the vibration of the beam. The one closest to the fixed end of the beam is selected to 

process the vibration data since it is showed that this sensor demonstrate the damage 
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very clearly on the frequency spectra of the acceleration and displacement through a 

proposed damage indicator. The crack detection capability is set to a parameter, called 

“damage parameter” in the case studies. It is the ratio of highest amplitude of the 

harmonics to the fundamental harmonic at the excitation frequency. The results show 

that the crack depth has drastic effects on the damage parameter. The damage 

parameter increases with the crack depth. It increases exponentially with the crack 

depth. Also, there is a limit to detect the cracks on the structure. Very small cracks are 

hard to detect since the structure behaves like linear. The location of the crack affect 

the damage parameter such that the ones closer to the fixed end of the beam gives 

higher damage parameter. When the crack become closer to the free end, the beam 

behaves like an intact beam. The excitation frequency is important to detect the cracks. 

The highest damage indicator is seen when the crack is excited with the first natural 

frequency. There are studies on the literature which suggest to use half natural 

frequency in excitation but the results of this study demonstrate that exciting the beam 

with the first natural frequency shows higher damage indicator than the ones excited 

with the half natural frequency. There might be other problems in the real structures 

or test setups when the beam is excited with the first natural frequency due to high 

level of vibration. The amplitude of excitation is another parameter in this study. It is 

observed that the higher the amplitude, higher the damage parameter. The change is 

not too much from 5 N to 50 N. When the amplitude is too low, the data becomes 

noisier. Two types of boundary conditions are applied to the beam, which are fixed-

fixed and fixed-free. The free length of the beam is kept constant. Both beams are 

excited at their first natural frequencies. The results show that fixed-fixed boundary 

condition amplify the damage indicator. This increase in the damage indicator cannot 

be explained just by the boundary condition since the mode shape of the beam is 

different for both configurations. Thus, the location of the crack can affect the results. 

Lastly, a beam is excited from different locations of the beam to observe the effect of 

the force location under constant force. Not much difference is observed from the 

results. The beam excited from the point which is closer to the fixed end of the beam 

has slightly higher damage indictor parameter value.  
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To sum up, the aim of this study is to prove the capability of the finite element method 

on the structural health monitoring using vibration response of the structure. This 

objective is done clearly. Using this finite element method, the effects of different 

parameters on the damage indication is investigated. There are still more subject that 

can be examined in this subject such as the crack closure effects, test validation and 

contact friction. The author leaves these subjects as a future work on this subject.  
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APPENDIX 

 

 

 

DYNAMIC ANALYSIS RESULTS WITH FLAT TOP FILTER 

 

 

 

CASE STUDY 1 – EFFECT OF CRACK LOCATION 

 

Figure 82: FFT of the acceleration responses at sensor 1 of configurations 3, 4 and 5 

with wc=1.00, Lf = 0.25,dc = 0.5 and excitation amplitude of 100 N in logarithmic 

scale with flat top filter. 
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CASE STUDY 2 – EFFECT OF CRACK DEPTH 

 

Figure 83: FFT of the acceleration responses at sensor 1 of configurations 1, 2 and 3 

with wc=1.00, Lf = 0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale 

with flat top filter. 

CASE STUDY 3 – EFFECT OF EXCITATION FREQUENCY 

 

Figure 84: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, Lc = 0.39 and excitation amplitude of 100 N in log scale with flat top. 
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CASE STUDY 4 – EFFECT OF EXCITATION AMPLITUDE 

 

Figure 85: FFT of the displacement responses at sensor 1 of configuration 3 with dc = 

0.50, Lf=0.25, wc = 1.00 and Lc = 0.39 in logarithmic scale with flat top filter. 

 

CASE STUDY 5 – EFFECT OF BOUNDARY CONDITION 

 

Figure 86: FFT of the acceleration responses at sensor 1 of configuration 6 with dc = 

0.50, Lf=0.25, wc = 0.50, Lc = 0.50 and excitation amplitude of 100 N in log scale 

with flat top filter. 
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CASE STUDY 6 – EFFECT OF EXCITATION LOCATION 

 

Figure 87: FFT of the acceleration responses at sensor 1 of configuration 3 with dc = 

0.50, Lc=0.39, wc = 1.00 and excitation amplitude of 100 N in logarithmic scale with 

flat top filter. 
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