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ABSTRACT

QUANTAL DESCRIPTION OF SPINODAL INSTABILITIES IN
ASYMMETRIC NUCLEAR MATTER

Acar Çakırca, Fatma

Ph.D., Department of Physics

Supervisor : Prof. Dr. Osman Yılmaz

Co-Supervisor : Prof. Dr. Şakir Ayık

July 2017, 138 pages

Spinodal instability mechanism and early development of density fluctuations for

asymmetric hot nuclear matter produced in heavy-ion collisions are investigated in

non-relativistic and relativistic stochastic mean-field approaches. In relativistic ap-

proach, a stochastic extension of the relativistic mean-field approximation based on

non-linear Walecka model employed in a quantal framework. The mediator rho me-

son is added to the Walecka model in order to investigate the isospin dependence of

the system. The growth rates of the unstable collective modes are calculated and the

boundary of the spinodal region is obtained from the phase diagram for different ini-

tial conditions at different asymmetries. In general, growth of instabilities becomes

slower with increasing charge asmmetry. The baryon density correlation function

that includes information about the initial size of the condensing fragments is also

calculated for the collective modes.

In the non-relativistic framework, a complete treatment of density correlation func-

tions is presented by including collective modes and non-collective modes as well.
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The growth of density fluctuations in the spinodal region of asymmetric nuclear mat-

ter is investigated in the stochastic mean-field approach based on Skyrme-type effec-

tive interactions. It is possible to derive nearly analytical expression for the density

correlation function in the linear response limit of the stochastic mean-field approach,

which involves a counter integration over the complex frequency plane. In order to

provide a complete description of the correlation function, we evaluate collective and

also non-collective poles in numerical calculations. These investigations will allow

us to obtain more accurate information about the condensation mechanism and early

evolution of liquid-gas phase transformation of nuclear matter.

Keywords: Stochastic Mean Field Approach, Spinodal Instabilities, Nuclear multi-

fragmentation, Walecka Model.
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ÖZ

ASİMETRİK NÜKLEER MADDENİN SPİNODAL
KARARSIZLIKLARININ KUANTAL OLARAK İNCELENMESİ

Acar Çakırca, Fatma

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Osman Yılmaz

Ortak Tez Yöneticisi : Prof. Dr. Şakir Ayık

Temmuz 2017 , 138 sayfa

Relativistik ve relativistik olmayan stokastik ortalama alan yaklaşımları kullanılarak

ağır iyon çarpışmalarında ortaya çıkan asimetrik sıcak nükleer madde için spinodal

kararsızlık mekanizmaları ve yoğunluk dalgalanmalarının erken gelişimi çalışıldı. Bu

çalışmada, lineer olmayan Walecka modeline dayalı relativistik ortalama-alan modeli

stokastik bir yaklaşımda kuantal bir çerçevede kullanıldı. Sistemin izospin bağımlılı-

ğını incelemek için Walecka modeline aracı parçacık olarak rho mesonu eklendi. Bas-

kın kararsız modların büyüme oranları farklı başlangıç koşulları için değişik asimetri

değerlerinde hesaplandı ve faz diyagramları kullanılarak spinodal kararsızlık bölge-

sinin sınırları belirlendi. Asimetri arttıkça kararsızlıkların büyümesinin yavaşladığı

gözlemlendi. Ayrıca, yoğunlaşan damlacıkların ilk boyutları hakkında bilgi içeren

baryon yoğunluk fonksiyonları kollektif modlar için hesaplandı.

Relativistik olmayan hesaplarda kollektif katkılara ek olarak kollektif olmayan katkı-

lar göz önüne alınarak yoğunluk korelasyon fonksiyonlarının bütün gelişimi incelen-
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miştir. Spinodal bölgedeki yoğunluk dalgalanmalarının gelişimi Skyrme tipi etkileş-

meye dayanan Stokastik ortalama alan modeli kullanılarak asimetrik nükleer madde

için incelendi. Bu modelin lineer limitinde yoğunluk korelasyon fonksiyonları yakla-

şık analitik olarak ifade edilebilir. Bu hesaplar kompleks frekans düzleminde kontur

integrali içermektedir ve korrelasyon fonksiyonlarının nümerik hesapları hem kol-

lektif hem de kollektif olmayan katkılar değerlendirilerek yapılmıştır. Bu araştırma,

asimetrik nükleer maddenin yoğunlaşma mekanizması ve sıvı-gaz faz dönüşümünün

ilk evreleri hakkında bilgi edinmemizi sağlayacaktır.

Anahtar Kelimeler: Stokastik Ortalama Alan Yaklaşımı, Spinodal Kararsızlıklar, Nük-

leer Çoklu Parçalanma, Walecka Modeli.
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Ayık for his stimulating scientific discussions and critics on my thesis. With their

guidance and support, this Ph.D. program became an invaluable experience for me.

I also would like to thank Prof. Dr. Ahmet Gökalp for his useful suggestions and

critical comments during the writing period of this thesis.

I am deeply thankful to my parents Nefise and Cemil Acar, my sister Vildan and my

brother Ali for their love, support and trust at all stages of my life. Also, I wish to

thank my husband Mehmet Çakırca for his endless love and comforting support in

my life. The completion of this study would not have been possible without his love

and faith me. I dedicate this thesis to my family, my husband and my daughter.

I also express my gratitude to the examining committee members. I would like to

acknowledge the support of TUBITAK the Turkish Scientific and Technical Research

Council, through a graduate scholarship (2211). Also, this project is partially sup-

ported by TUBITAK with grant No. 110T274 and 114F151.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 EARLY GROWTH OF DENSITY FLUCTUATIONS WITHIN A NON-
RELATIVISTIC APPROACH . . . . . . . . . . . . . . . . . . . . . 7

2.1 Mean-field Approach and TDHF . . . . . . . . . . . . . . . 7

2.2 Stochastic Mean-Field Approach . . . . . . . . . . . . . . . 8

2.3 Skyrme Interaction . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Early Growth of Density Fluctuations . . . . . . . . . . . . . 12

2.4.1 Dispersion Relation . . . . . . . . . . . . . . . . . 12

2.4.2 Growth of Density Fluctuations . . . . . . . . . . 15

2.4.3 Pole Contribution to Density Correlations . . . . . 19

xi



2.4.4 Cut Contribution to Density Correlations . . . . . 22

3 NUMERICAL CALCULATIONS IN NON-RELATIVISTIC APPROACH 27

3.1 Spinodal Instabilities for Finite Temperature . . . . . . . . . 28

3.1.1 Growth Rates of Unstable Modes . . . . . . . . . 28

3.1.2 Boundary of Spinodal Region . . . . . . . . . . . 30

3.1.3 Spectral Intensity of Density Correlations . . . . . 32

3.1.4 Density Correlation Functions . . . . . . . . . . . 37

3.2 Spinodal Instabilities for Zero Temperature Case . . . . . . . 41

3.2.1 Growth Rates of Unstable Modes at Zero Temper-
ature . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Quantal Correlation Functions . . . . . . . . . . . 43

4 GROWTH OF DENSITY FLUCTUATIONS IN ASYMMETRIC NU-
CLEAR MATTER WITHIN A RELATIVISTIC MEAN-FIELD AP-
PROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Nonlinear Walecka Model including rho mesons . . . . . . . 49

4.2 Stochastic Extension of Relativistic Mean Field Theory . . . 53

4.3 Linear Response Treatment of Density Fluctuations . . . . . 55

4.4 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Growth of Baryon Density Fluctuations . . . . . . . . . . . . 69

5 NUMERICAL RESULTS IN RELATIVISTIC APPROACH . . . . . 75

5.1 Growth Rates of the Unstable Collective Modes . . . . . . . 75

5.2 Boundary of Spinodal Region . . . . . . . . . . . . . . . . . 80

5.3 Spectral Intensity of Density Correlations . . . . . . . . . . . 82

xii



5.4 Density Correlation Functions . . . . . . . . . . . . . . . . . 84

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

APPENDICES

A DERIVATION OF NON-RELATIVISTIC DISPERSION RELATION 95

B POLE CONTRIBUTION TO DENSITY CORRELATIONS . . . . . 99

C CUT CONTRIBUTION TO DENSITY CORRELATIONS . . . . . . 103

D POLE AND CUT CONTRIBUTIONS FOR SYMMETRIC NUCLEAR
MATTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E FOURIER TRANSFORM OF THE MESON FIELD FLUCTUATIONS119

F RELATIVISTIC LINHARD FUNCTIONS AND DERIVATIVE OF
THE SUSCEPTIBILITY . . . . . . . . . . . . . . . . . . . . . . . . 121

G BARYON DENSITY CORRELATION FUNCTIONS . . . . . . . . . 127

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



LIST OF TABLES

TABLES

Table 4.1 The NL3 parameter set and the predictions for the nuclear matter

properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiv



LIST OF FIGURES

FIGURES

Figure 2.1 The contour chosen to calculate the integral in Eq. (2.31). Crosses

±iΓk indicate the collective poles of the integrand, and dotted line along

the entire real ω-axis is the branch cut of the integrand. . . . . . . . . . . . 17

Figure 3.1 Growth rates of unstable modes as a function of wave number with

the initial density ρ = 0.3ρ0 for initial charge asymmetries I = 0.0, I =

0.4 and I = 0.8 at temperatures T = 1 MeV and T = 5 MeV. . . . . . . . 29

Figure 3.2 Growth rates of the most unstable modes as a function of the initial

density for initial charge asymmetries I = 0.0, I = 0.4 and I = 0.8 at

temperatures T = 1 MeV and T = 5 MeV. . . . . . . . . . . . . . . . . . 30

Figure 3.3 Phase diagram in density-temperature plane for different wave-

lengths corresponding to the potential given by Eq. (2.12). . . . . . . . . . 31

Figure 3.4 Spectral intensity of the correlation function as a function of wave

number at initial density ρ = 0.3ρ0 at time t = 40 fm/c at temperature

T = 1 MeV for three different charge asymmetries. Dotted, dashed-dotted

and solid lines are results of pole, cut and total contributions, respectively. 33

Figure 3.5 Spectral intensity of the correlation function as a function of wave

number at initial density ρ = 0.3ρ0 at time t = 40 fm/c at temperature

T = 5 MeV for three different charge asymmetries. Dotted, dashed-dotted

and solid lines are results of pole, cut and total contributions, respectively. 34

xv



Figure 3.6 Spectral intensity of the correlation function as a function of wave

number at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4 for

different times at temperature T = 1 MeV (a) and T = 5 MeV (b). Dots

on the solid lines at times t = 0 represent the initial conditions. . . . . . . 35

Figure 3.7 Spectral intensity of the correlation function as a function of wave

number due to the pole contributions only at initial density ρ = 0.3ρ0 and

charge asymmetry I = 0.4 for different times at temperature T = 1 MeV

(a) and T = 5 MeV (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.8 Density correlation function as a function of distance between two

space points for initial density ρ = 0.3ρ0, at temperature T = 1 MeV at

different charge asymmetries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.9 Density correlation function as a function of distance between two

space points for initial density ρ = 0.3ρ0, at temperature T = 5 MeV at

different charge asymmetries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.10 Density correlation function as a function of distance between two

space points at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4,

at temperatures T = 1 MeV and T = 5 MeV. . . . . . . . . . . . . . . . . 41

Figure 3.11 Growth rates of unstable modes as a function of wave number with

the initial density ρ = 0.3ρ0 for initial charge asymmetries I = 0.0, I =

0.4 and I = 0.8 at temperature T = 0 MeV. . . . . . . . . . . . . . . . . . 43

Figure 3.12 Spectral intensity of the correlation function as a function of wave

number at initial density ρ = 0.3ρ0 at time t = 40 fm/c at zero temper-

ature for three different charge asymmetries. Dotted, dashed-dotted and

solid lines are results of pole, cut and total contributions, respectively. . . . 44

xvi



Figure 3.13 Spectral intensity of the correlation function as a function of wave

number at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4 for

different times at zero temperature. Dots on the solid lines at time t = 0

represent the initial conditions. . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.14 Density correlation function as a function of distance between two

space points for initial density ρ = 0.3ρ0, at zero temperature and at dif-

ferent charge asymmetries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.1 Growth rates of the unstable collective modes as a function of wave

number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asym-

metry parameters I = 0.0, 0.5, 0.8 at T = 1 MeV . The solid lines

indicate the presence of the Coulomb interaction. . . . . . . . . . . . . . . 76

Figure 5.2 Growth rates of the unstable collective modes as a function of wave

number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asym-

metry parameters I = 0.0, 0.5, 0.8 at T = 5 MeV. The solid lines indicate

the presence of the Coulomb interaction. . . . . . . . . . . . . . . . . . . 77

Figure 5.3 Growth rates of the unstable collective modes as a function of wave

number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asym-

metry parameters I = 0.5 and 0.8 at T = 1 MeV and T = 5 MeV. The

solid and dashed lines are results of quantal and semi-classical calcula-

tions, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.4 Growth rates of the most unstable collective modes as a function

of initial baryon density in asymmetric matter with I = 0.0, 0.5 and 0.8

at temperature T = 1 MeV and T = 5 MeV. The solid lines indicate the

presence of the Coulomb interaction. . . . . . . . . . . . . . . . . . . . . 79

Figure 5.5 Growth rates of the most unstable collective modes as a function

of initial baryon density in asymmetric matter with I = 0.5 and 0.8 at

temperature T = 1 MeV and T = 5 MeV. The solid and dashed lines are

results of quantal and semi-classical calculations, respectively. . . . . . . . 80

xvii



Figure 5.6 Phase diagram in density-temperature plane for a set of wave-

lengths with asymmetries I = 0.0, 0.5 and 0.8 . . . . . . . . . . . . . . . 81

Figure 5.7 Spectral intensity of baryon density correlation function as a func-

tion of wave number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0

for asymmetry parameters I = 0.0, 0.5 and 0.8 at T = 1 MeV. . . . . . . . 83

Figure 5.8 Spectral intensity of baryon density correlation function as a func-

tion of wave number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0

for asymmetry parameters I = 0.0 and 0.5 at T = 5 MeV. . . . . . . . . . 84

Figure 5.9 Baryon density correlation functions as a function of distance at

initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry pa-

rameters I = 0.0, 0.5 and 0.8 at temperature T = 1 MeV. . . . . . . . . . 86

Figure 5.10 Baryon density correlation functions as a function of distance at

initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry pa-

rameters I = 0.0 and 0.5 at temperature T = 5 MeV. . . . . . . . . . . . . 87

Figure 5.11 Baryon density correlation functions as a function of distance at

initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 at temperatures T = 1

MeV and T = 5 MeV for asymmetry I = 0.5. The solid and dashed lines

are results of quantal and semi-classical calculations, respectively. . . . . . 88

xviii



CHAPTER 1

INTRODUCTION

The study of heavy-ion collisions provides opportunities to study the nuclear systems

under extreme conditions. Due to the collisions, different states of nuclear matter far

from equilibrium may produce. For instance, at high densities and temperatures, the

nucleons in the nucleus dissolve into a quark-gluon plasma. At lower temperatures,

which are achieved at the intermediate energy heavy-ion collisions with energies in

the order of ten MeV, no such exotic states emerge but there is a possibility to observe

the liquid-gas phase transition leading to the breakup of the nuclear system into many

fragments which is known as multifragmentation process [1].

The possibility of the liquid-gas phase transition is predicted because of the similar-

ity between the nuclear force and the intermolecular forces of classical Van der Waals

fluid which are attractive at short range and repulsive at long and intermediate ranges

[2]. The classical Van der Waals fluid enters the spinodal instability region at the crit-

ical temperatures and the liquid-gas phase transition occurs through the nature of the

intermolecular forces [3]. Likewise, at normal density and zero temperature, nuclear

matter behaves like Fermi liquid with specific quantum properties thus a change of

phase to the gas state is expected at high temperatures. In the recent years, the experi-

mental studies at intermediate energies have displayed the possibility for the decay of

highly excited and compressed nuclear matter into many fragments. Such multifrag-

mentation process can be considered as a signal that the nuclear system undergoes a

phase transition [4, 5].

Spinodal instability mechanism provides a possible description for the cluster forma-

tion in hot nuclear matter occuring just after the heavy-ion collisions [3]. A hot and
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compressed nuclear system at temperatures 10− 15 MeV is produced during the nu-

clear collisions at low bombarding energies. This system expands with the effect of

thermal pressure, then cools down and enters into the mechanically unstable region

at low densities below the density value of nuclear matter at equilibrium which is

approximately ρ0 = 0.16 fm−3. This unstable region of hot nuclear matter is named

as the spinodal instability region which is the domain of negative incompressibility

and of mechanical instability of uniform matter. In the experimental studies based on

nuclear multifragmentation, observations of charge correlations for fragments sug-

gest that a possible origin of phase transition and the resulting multifragmentation

can be explained through the density fluctuations arising due to the mechanical insta-

bilities in the spinodal region [6, 7]. The spinodal decomposition can be defined as

the growth of small density fluctuations in a short time interval around an equilibrium

density, that leads to the break up of the nuclear system into an ensemble of various

sized fragments [8, 9].

In this study, the spinodal instabilities of infinite asymmetric nuclear matter and the

early growth of density fluctuations are investigated. Infinite nuclear systems, where

the surface effects can be neglected, provide a theoretical framework for the investi-

gation of nucleon-nucleon interactions. At finite temperatures, this idealized system

provides a starting point to study not only many problems in nuclear physics but

also for understanding the evolution of early universe and some astrophysical sys-

tems such as neutron stars [10]. For instance, it has been suggested that the liquid-gas

mixture exists in the crusts of the neutron stars at very low temperatures [11]. The

neutron-rich matter with asymmetry I = 0.8 at low densities and low temperatures

around T = 1 MeV corresponds the typical conditions in the crust of the neutron stars

therefore the study of spinodal instabilities in asymmetric nuclear systems has great

importance in some astrophysical issues as well as nuclear collisions.

The mean field transport theories have been extensively employed to describe the re-

action dynamics at low energy nuclear collisions. In order to explain the growth of

density fluctuations, one requires a mean field model which includes dissipation and

fluctuation mechanisms together. The time dependent Hartree Fock (TDHF) model

and the semi-classical simulations based on the nuclear Boltzmann equation give a

good description for the average evolution of one-body observables at the initial phase
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of the collision, when the system is hot and compressed, but they become inadequate

when expansion and cooling drive to the system into the instability region in which

density fluctuations emerge [12, 13, 14, 15]. In the framework of these models, lim-

ited information about the spinodal instabilities can be obtained such as the growth

rates of the unstable modes and the boundary of spinodal region. However, density

fluctuation dynamics and condensation mechanism cannot be explained through the

standard mean field theories. These models include one-body dissipation mechanism,

collision of nucleons with the average nuclear potential, but the related fluctuation

mechanism are not incorporated into the description [16]. In order to describe the

dynamics of density fluctuations, the mean field approaches should be improved by

including dissipation and the resulting fluctuation mechanisms together.

Considerable effort has been made to develop the transport approach for describ-

ing the dynamical fluctuation mechanism beyond the mean field approximation [17].

There are basically two different mechanism for density fluctuations; collisional fluc-

tuations arising from two-body collisions and one-body mechanism or mean-field

fluctuations. Fluctuations and dissipation due to the collisional mechanism are im-

portant at intermediate and high energy nuclear collisions. The extended mean-field

theory, known as Boltzmann-Langevin (BL) model, provides a suitable description

for density fluctuations at these energy scales [16]. However, the mean field fluctu-

ations at the initial state are the dominant source of density fluctuations at low ener-

gies [17]. In order to understand the nuclear spinodal instabilities, extensive studies

are carried out based on the semi-classical BL type stochastic transport models [3].

Nevertheless, a large amount of numerical effort is required for the simulations of

BL approach and this model provides a framework only for semi-classical descrip-

tion. However, quantum statictical effects are important for spinodal decomposition

[16, 18].

Stochastic Mean Field (SMF) approach maintains a suitable basis for description of

density fluctuation dynamics at low energy nuclear systems [19]. The SMF approach

includes the one-body dissipation and the resulting fluctuation mechanism in accor-

dance with the quantal-dissipation and fluctuation relation, and furthermore the nu-

merical simulations of this model can be performed without much effort [16, 17].

Therefore, the SMF approach provides a useful microscopic tool to describe low en-
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ergy nuclear processes such as heavy-ion fusion near barrier energies, deep-inelastic

collisions and spinodal decomposition of nuclear matter in which the mean-field fluc-

tuation mechanisms play a dominant role [16].

In previous studies [9, 16, 17, 20], the spinodal dynamics and the early development

of density fluctuations are investigated by employing the SMF approach in a nonrel-

ativistic framework based on Skyrme type effective interactions, as well as in a rela-

tivistic framework based on Walecka-type effective field theory in the semi-classical

and quantal descriptions. In these studies, the early growth of density fluctuations is

calculated in the linear response regime of the SMF approach. For nuclear matter,

linearizing the equation of motion around a suitable initial state in the spinodal region

and using the one-sided Fourier transformation method, it is possible to carry out

nearly analytical treatment for the density correlation function in the linear response

regime. In these studies, only unstable collective modes are taken into account in

the calculations of correlation functions. As indicated in Ref. [21], it is nesessary to

include the effect of noncollective poles as well for a complete description of density

correlation functions. In this study, our aim is to calculate the correlation functions of

density fluctuations exactly by including collective as well as non-collective poles for

charge asymmetric nuclear matter. In the first part of this thesis, we investigate the

spinodal instabilities and the early growth of density fluctuations in a semi-classical

limit of the SMF approach in non-relativistic framework by including the effect of

non-collective poles.

In the second part of the thesis, early development of spinodal instabilities and density

correlation functions are studied within the stochastic extention of the Walecka-type

relativistic mean-field including rho mesons. In the previous investigations [9, 20],

the symmetric nuclear matter is studied through the standard Walecka model with

point couplings and with the extensions of the Walecka model including non-linear

self interaction terms of the scalar meson and density dependent couplings in the

semi-classical approximation. Furthermore, in a recent study, a quantal investigation

is presented for symmetric nuclear matter to examine the quantal effects on the early

growth of spinodal instabilities [17]. However, all these studies are performed for

symmetric nuclear matter. On the other hand, recent investigations on collisions of

radioactive nuclei and on formation and structure of neutron stars have attracted at-
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tention to the charged asymmetric nuclear matter [8]. In this work, we also study the

effect of asymmetry on spinodal instabilities of nuclear matter at subsaturation den-

sities. The early development of spinodal instabilities and baryon density correlation

functions are investigated for asymmetric nuclear matter by employing the stochastic

extension of the relativistic mean field theory in a quantal framework. The isospin

asymmetry is included into the system with the addition of rho mesons coupled to

baryon fields of Lagrangian density of nonlinear Walecka model.

In chapter 2, we present a brief description of TDHF theory and the stochastic mean-

field approach, and then the nearly analytical description of density fluctuations in-

cluding both collective and noncollective poles is presented for asymmetric nuclear

matter in non-relativistic approach. The numerical results of spinodal instabilities are

introduced at zero temperature and finite temperatures in chapter 3. We investigate the

growth rates of unstable modes and the boundary of the spinodal region for different

asymmetry values. Moreover, density correlation functions and the spectral intensity

of density correlations are also demonstrated. In chapter 4, the nonlinear Walecka

model including rho mesons is introduced and then by employing the stochastic ex-

tension of the relativistic mean field approach we develop a linear response treatment

for spinodal instabilities in the quantal framework. The results of numerical calcu-

lations are demonstrated for early growth of baryon density correlation functions for

different initial conditions in different charge-asymmetric nuclear matter in chapter

5. Finally, the conclusion is given in chapter 6.
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CHAPTER 2

EARLY GROWTH OF DENSITY FLUCTUATIONS WITHIN A

NON-RELATIVISTIC APPROACH

2.1 Mean-field Approach and TDHF

The study of nuclear matter, the theoretical uniform infinite system of nucleons, is an

important area of nuclear physics since it forms a starting point for describing more

complicated and realistic phenomena in nuclear physics such as the properties of finite

nuclei and the dynamics of heavy-ion collisions. The nuclear matter is a many body

system of strongly interacting nucleons (neutrons and protons). In describing the

many-body nuclear system, the mean field approximations are widely used to describe

the many static and dynamical aspects. According to the mean field description, the

complex many body problem is replaced with the effective one-body problem by

considering an ensemble of independent particles in a self-consistent mean-field [22].

In these approximations, two body collisions are neglected and the nucleons move

in a self-consistent potential produced by all other nucleons. The mean field model

also known as the time dependent Hartree-Fock (TDHF) has been used to describe

the nuclear collision dynamics at low energies (below 10 MeV per nucleon) and also

other many body systems [13, 14].

In the mean field description of a many body system, the time-dependent wave func-

tion, which is an anti-symmetric wave function, is taken to be a Slater determinant

constructed with a number of time dependent single-particle wave functions φi(~r, t)

Φ(~r1, ..., ~rN , t) =
1√
N !
det {φi(~rj, t)} (2.1)
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The single particle wave functions are determined by the time-dependent Hartree-

Fock equations with proper initial conditions according to [19, 23]

ih̄
∂

∂t
φj(~r, t) = h(ρ)φj(~r, t) , (2.2)

here h(ρ) denotes the Hamiltonian of self-consistent mean-field. However, in many

situations, the mean-field approximation is expressed by the single particle density

matrix ρ(~r, ~r′, t) instead of the single particle wave functions. The single particle

density matrix is defined as

ρ(~r, ~r′, t) =
∑
j

φ∗j(~r, t)njφj(~r
′, t) . (2.3)

Here nj denotes the occupation factor for the single particle states and it is equal to

one for occupied and zero for unoccupied states at zero temperature. In the mean field

approximation, the single-particle density matrix evolves according to the transport

equation

ih̄
∂

∂t
ρ(t) = [h(ρ), ρ(t)] (2.4)

which is known as TDHF equation.

The standard mean-field approach provides a useful description for the average be-

havior of collective motion of nuclear matter at low energy reactions by including

one-body dissipation mechanism. However, it becomes inadequate to describe the

fluctuation dynamics of one-body observables [13]. Therefore, we need an approx-

imation beyond the standard mean-field approach to include the fluctuation mecha-

nism. The stochastic mean-field approach (SMF) provides a powerful framework to

describe the nuclear collective motion by including one-body dissipation and fluctu-

ation mechanisms [19].

2.2 Stochastic Mean-Field Approach

TDHF maintains a deterministic description for evolution of the single particle den-

sity matrix starting from a well-defined initial state and leading to a well-defined final

state [14]. We can include the fluctuation mechanism into dynamics by considering

the superposition of determinantal wave functions rather than the single Slater de-

terminant description which used in the standard TDHF. In the stochastic mean-field
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description, an ensemble of single-particle density matrices as superposition of Slater

determinants is obtained by considering only the initial correlations [16, 22]. This

way, the zero-point quantal and thermal fluctuations at the initial state are considered

in a stochastic manner [14].

The SMF approach introduces a microscopic description for density fluctuations dy-

namics at low energy nuclear collisions. In the framework of this approach, one can

calculate not only the mean value of an observable but also the probability distribution

of the observables. In the SMF method, the source of the stochasticity stems from the

initial correlations and therefore the initial density fluctuations are simulated by using

an ensemble of density matrices instead of a single-particle density matrix [19].

In order to improve a stochastic description, it is needed to determine enough number

of occupied and unoccupied single particle states. A member of single particle density

matrix represented by the event label λ is written in the form

ρ̂λa(~r, ~r
′, t) =

∑
ij

φ∗i (~r, t;λ)〈i|ρλa(0)|j〉φj(~r′, t;λ) . (2.5)

Here the label a denotes the proton and neutron species and 〈i|ρλa(0)|j〉 are the time

independent elements of density matrix defined by the initial conditions. According

to the basic assumption of this approach, each element of density matrix is assumed

to be a Gaussian random number specified by an average value 〈i|ρλa(0)|j〉 = δijna(i)

and a variance

〈i|δρλa(0)|j〉〈j′|δρλb (0)|i′〉 =
1

2
δabδii′δjj′{na(i)[1−na(j)] +na(j)[1−na(i)]}. (2.6)

In the above expression 〈i|δρλa(0)|j〉 denotes the fluctuating parts of the initial density

matrix and na(i) are the average occupation numbers which are one for occupied

and zero for unoccupied states at zero temperature, and at finite temperature they are

determined by the Fermi-Dirac distribution na(j) = 1/[exp(εj − µa)/T + 1] , here

µa is the chemical potential and εj is the Fermi energy at the equilibrium density.

In this approach, different from the standard TDHF, the time dependent single particle

wave functions of nucleons are evolved by their own self-consistent mean field for

each event according to

ih̄
∂

∂t
φaj (~r, t;λ) = hλaφ

a
j (~r, t;λ) (2.7)
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where hλa = p2/2ma + Ua
(
ρλp , ρ

λ
n

)
indicates the self-consistent mean-field Hamilto-

nian and it depends on the proton and neutron local densities ρλa (~r, t) . Similar to

Eq. (2.4), the time evolution of the SMF approach in terms of single particle density

matrices of nucleons are given as

ih̄
∂

∂t
ρ̂λa(t) = [hλa(t), ρ̂

λ
a(t)] (2.8)

where the label a = p ↑, p ↓, n ↑, n ↓ represents the spin-isospin quantum numbers,

and hλa(t) is the mean-field Hamiltonian in the event.

The one-body dissipation and fluctuation mechanism is incorporated into the collision

dynamics within a stochastic manner by including the initial correlations in the SMF

approach. In this thesis, the early growth of density fluctuations is studied within the

framework of this approach in the spinodal region.

2.3 Skyrme Interaction

For nuclear matter, the Skyrme potential, which is zero-range, density and momen-

tum dependent, is widely used effective potential in Hartree-Fock calculations. The

Hamiltonian density for a system can be expressed as an algebraic function of the nu-

clear and kinetic energy densities by considering the simple structure of the Skyrme

force [24]. In its original form Skyrme’s interaction can be written as a potential,

V =
∑
i<j

V (i, j) +
∑
i<j<k

V (i, j, k) (2.9)

with two-body and three-body parts [23]. The range of the nuclear force is rather short

and therefore the nuclear potential is written as a zero-range force. Such forces are

useful since they are simple and describe many nuclear properties quite well. In the

short-range limit, the Skyrme interaction consists of zero-range force with momen-

tum dependent two-body force plus the density dependent two-body force. We have

performed the numerical calculations with an effective two-body Skyrme interaction

given as [25],

V1,2 = t0(1 + x0P
σ)δ(~r1 − ~r2) +

1

6
t3 (1 + x3P

σ)

[
ρ

(
~r1 − ~r2

2

)]α
δ(~r1 − ~r2)

(2.10)
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where P σ is the spin exchange operator and the parameters t0 = −2973 MeV · fm3,

t3 = 19034 MeV · fm3(α+1), x0 = 0.025, x3 = 0 and α = 1/6 give the correct values

for saturation density and binding energy of symmetric nuclear matter. The first term

is for the long-range attraction (t0 < 0) while the second term provides the short

range repulsion (t3 > 0) and this maintains the saturation at a certain density ρ0 [3].

According to the Skyrme interaction given in Eq. (2.10), the potential energy density

is expressed as [8, 25],

Hpot(ρn, ρp) =
A

2

ρ2

ρ0

+
B

α + 2

ρα+2

ρα+1
0

+
C(ρ)

2

ρ′2

ρ0

+
D

2
(~∇ρ)2 − D′

2
(~∇ρ′)2 (2.11)

where ρ = ρn + ρp and ρ′ = ρn − ρp are respectively the total and relative densities,

and ρ0 = 0.16fm−3 is the saturation density of nuclear matter. The coefficients

A, B and C are connected to the Skyrme parameters as follows [25]: A = 3
4
t0ρ0,

B = α+2
16
t3ρ

α+1
0 and C(ρ) = −ρ0

[
t0
2

(x0 + 1/2) + t3
12

(x3 + 1/2) ρα
]
.

Consequently, the mean-field potential for neutron and proton is given by

Ua(ρn, ρp) =
δHpot(ρn, ρp)

δρa

=A

(
ρ

ρ0

)
+B

(
ρ

ρ0

)α+1

+ C

(
ρ′

ρ0

)
τa +

1

2

dC

dρ

ρ′2

ρ0

−D∆ρ+D′∆ρ′τa

(2.12)

where τa = +1 for neutrons and τa = −1 for protons. The numerical parameters

A = −356.8 MeV, B = +303.9 MeV and D = +130.0 MeV fm5 are fitted to

the saturation properties of nuclear matter (the binding energy ε0 = 15.7 MeV per

nucleon at saturation density and compressibility coefficient K = 201 MeV ) and the

surface energy coefficient in the Weizsacker mass formula asurf = 18.6 MeV. The

numerical value of parameter D′ = +34 MeV fm5 is close to the value given by the

SkM∗ interaction [26]. The symmetry energy coefficient is equal to C(ρ) = C1 −
C2(ρ/ρ0)α with C1 = +124.9 MeV and C2 = +93.5 MeV . At saturation density,

the coefficient C(ρ0) = 31.4 gives the symmetry energy coefficient in the Weizsacker

mass formula as asym = εF (ρ0)/3 + C(ρ0)/2 = 28.0 MeV where εF (ρ0) = 36.9

MeV is the Fermi energy for the symmetric system at ρ = ρ0.
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Moreover, for symmetric nuclear matter the Eq. (2.12) reduces to

U(ρ) = A

(
ρ

ρ0

)
+B

(
ρ

ρ0

)α+1

−D∆ρ . (2.13)

2.4 Early Growth of Density Fluctuations

2.4.1 Dispersion Relation

In this part of the thesis, our aim is to investigate the early growth of density fluc-

tuations in spinodal instability region for asymmetric nuclear matter therefore it is

sufficient to linearize Eq. (2.8) around a uniform initial state, ρ̂0
a . A perturbation

δρ̂λa(t) = ρ̂λa(t) − ρ̂0
a of the single particle density matrix away from the initial state

are determined by the linearized TDHF equations which are given for fluctuations of

neutron and proton density matrices as

ih̄
∂

∂t
δρ̂λa(t) =

[
ha, δρ̂

λ
a(t)
]

+
[
δUλ

a (t), ρ̂0
a

]
(2.14)

where ha denotes the mean field Hamiltonian at the initial state and δUλ
a is the fluctu-

ating part of the mean-field in the event. This response treatment maintains a quantal

description for the early development of spinodal instabilities for nuclear matter [3].

We are interested in investigating the growth of spinodal instabilities in nuclear matter

around a uniform initial state. In this case, we assume that the mean field Hamiltonian

is uniform in the equilibrium state and the single-particle density matrix is diagonal

in momentum representation at the equilibrium 〈~p|ρ̂0|~p′〉 = δ(~p − ~p′)ρ0(~p) where

ρ0(~p) is a finite temperature Fermi-Dirac factor. This way, it is possible to provide

an almost analytical treatment for the density fluctuations by using the plane wave

representations. In the plane wave representation, the linearized TDHF equation can

be expressed as

ih̄
∂

∂t
〈~p1|δρ̂λa(t)|~p2〉 = 〈~p1|

[
ha, δρ̂

λ
a(t)
]
|~p2〉+ 〈~p1|

[
δUλ

a (t), ρ̂0
a

]
|~p2〉 (2.15)

where

〈~p1|
[
ha, δρ̂

λ
a(t)
]
|~p2〉 = 〈~p1|haδρ̂λa(t)|~p2〉 − 〈~p1|δρ̂λa(t)ha|~p2〉

= [εa(~p1)− εa(~p2)]〈~p1|δρ̂λa(t)|~p2〉 (2.16)
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and

〈~p1|
[
δUλ

a (t), ρ̂0
a

]
|~p2〉 = 〈~p1|δUλ

a (t)

∫
d~p′2|~p′2〉〈~p′2|ρ̂0

a|~p2〉

−〈~p1|ρ̂0
a

∫
d~p′1|~p′1〉〈~p′1|δUλ

a (t)|~p2〉

=

∫
d~p′2〈~p1|δUλ

a (t)|~p′2〉fa0 (~p′2)δ(~p2 − ~p′2)

−
∫
d~p′1〈~p′1|δUλ

a (t)|~p2〉fa0 (~p′1)δ(~p1 − ~p′1) .

(2.17)

Then, the linear response equation is found as

ih̄
∂

∂t
〈~p1|δρ̂λa(t)|~p2〉 = [εa(~p1)− εa(~p2)] 〈~p1|δρ̂λa(t)|~p2〉

− [fa0 (~p1)− fa0 (~p2)] 〈~p1|δUλ
a (t)|~p2〉. (2.18)

According to the basic assumption of the SMF approach, the elements of the initial

density matrix are uncorrelated Gaussian random numbers with zero mean values

and with well-defined variances. In the plane wave representation, their variances are

given by [16, 27, 28],

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λb,s′(0)|~p′ + h̄~k′/2〉

= δabδss′(2πh̄)3(2π)3δ(~p− ~p′)δ(~k − ~k′)fa0 (~p+ h̄~k/2)
(

1− fa0 (~p− h̄~k/2)
)
.

(2.19)

In this expression, the overline represents the ensemble average and δabδss′ reflects the

assumption that local density fluctuations are uncorrelated in the initial state. Here

fa0 (~p) is the Fermi-Dirac distribution function, fa0 (~p) = 1
e(ε−µa)/T+1

, for finite tem-

peratures. At zero temperature, it is zero for unoccupied states and one for occupied

states.

We can solve the linear response Eq. (2.18) by employing the method of one-sided

Fourier transformation in time [29, 30],

δρ̃λa(
~k, ω) =

∫ ∞
0

dteiωtδρλa(
~k, t) . (2.20)

After transformation, one-sided Fourier transformed form of the local density fluctu-

ations becomes∫ ∞
0

dt eiωt
∂

∂t
〈~p1|δρ̃λa(~k, t)|~p2〉 = −〈~p1|δρ̂a(0)|~p2〉 − iω〈~p1|δρ̃λa(~k, ω)|~p2〉 . (2.21)
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Here 〈~p1|δρ̂a(0)|~p2〉 is the source term arising from the initial conditions. We intro-

duce the Fourier transform of the mean-field potential in time as∫ ∞
0

dteiωt〈~p1|δUλ
a (t)|~p2〉 = 〈~p1|δUλ

a (ω)|~p2〉 . (2.22)

Finally, the linearized TDHF equation can be written as follows

〈~p1|δρ̃λa(~k, ω)|~p2〉 = − fa0 (~p1)− fa0 (~p2)

h̄ω − εa(~p1) + ε(~p2)
〈~p1|δUλ

a (ω)|~p2〉+ih̄
〈~p1|δρ̂a(0)|~p2〉

h̄ω − εa(~p1) + ε(~p2)
.

(2.23)

In this equation, we use the momentum vectors as ~p1 = ~p+ ~̄hk/2 and ~p2 = ~p− ~̄hk/2

and introduce the space Fourier transform of nucleon density fluctuations δρλa(~k, t)

which is related to the fluctuations of the density matrix according to

δρλa(
~k, t) =

∑
s

∫
d3p

(2πh̄)3
〈~p+ h̄~k/2|δρ̂λa,s(t)|~p− h̄~k/2〉 (2.24)

where the summation indicates the sum over the spin quantum numbers s =↑, ↓ .

Finally, we obtain a coupled algebraic equation for the Fourier transform of the local

proton and neutron densities δρλa(~k, ω): [
1 + F nn

0 χn(~k, ω)
]
δρλn(~k, ω) + F np

0 χn(~k, ω)δρλp(
~k, ω)[

1 + F pp
0 χp(~k, ω)

]
δρλp(

~k, ω) + F pn
0 χp(~k, ω)δρλn(~k, ω)

 = i

 Sλn(~k, ω)

Sλp (~k, ω)

 .

(2.25)

The details for the derivation of Eq. (2.25) are presented in Appendix A. In deriving

these coupled equations, we consider that the mean-field potential depends only on

the local nucleon densities, Uλ
a = U(ρλp , ρ

λ
n). In the above equation, F ab

0 denotes

the zeroth-order Landau parameters which defined as the derivative of the mean-field

potential energy with respect to the proton and neutron densities evaluated at the

initial state, F ab
0 = (∂Ub/∂ρa)0 and the integral χa(~k, ω) is the Linhard function for

protons and neutrons

χa(~k, ω) = −2

∫
d3p

(2πh̄)3

fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)

h̄ω − ~p · h̄~k/m
. (2.26)

Here the factor 2 comes from spin summation. The source term Sλa (~k, ω) is deter-

mined by the elements of the initial density fluctuation matrix δρ̂λa,s(0) in spin-isospin

channel as

Sλa (~k, ω) =
∑
s

h̄

∫
d3p

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉
h̄ω − ~p · h̄~k/m

. (2.27)
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The solution of the coupled algebraic equations in Eq. (2.25) for the Fourier transform

of the local density fluctuations are given by

δρλa(
~k, ω) =

i

ε(~k, ω)
Gλ
a(
~k, ω). (2.28)

The quantity Gλ
a(
~k, ω) is given for neutrons and protons as Gλ

n(~k, ω)

Gλ
p(
~k, ω)

 =

 [
1 + F pp

0 χp(~k, ω)
]
Sλn(~k, ω)− F np

0 χn(~k, ω)Sλp (~k, ω)[
1 + F nn

0 χn(~k, ω)
]
Sλp (~k, ω)− F pn

0 χp(~k, ω)Sλn(~k, ω)

 ,

(2.29)

and ε(~k, ω) denotes the susceptibility

ε(~k, ω) = 1 + F nn
0 χn(~k, ω) + F pp

0 χp(~k, ω) + [F nn
0 F pp

0 − F
np
0 F pn

0 ]χn(~k, ω)χp(~k, ω).

(2.30)

When ε(~k, ω) = 0, this equation indicates a dispersion relation for the system. In

the infinite nuclear matter, collective modes are determined by the wave number. The

solution of the dispersion relation gives the characteristic frequencies for the corre-

sponding wave numbers. The frequencies are real in the stable region (ρ > ρcritical)

and imaginary for the unstable modes (ρ < ρcritical ). In the following chapter, the

growth rates of the unstable modes will be presented as a function of wave number.

2.4.2 Growth of Density Fluctuations

In this part, the time-dependency of density fluctuations is determined by taking the

inverse Fourier transform of Eq. (2.28) in time according to the method of one-sided

Fourier transformation. The inverse transformation is expressed as a contour integral

in the complex ω-plane as [27, 28],

δρλa(
~k, t) = i

∫ +∞+iσ

−∞+iσ

dω

2π

Gλ
a(
~k, ω)

ε(~k, ω)
e−iωt, (2.31)

here the integration path passes above all singularities as shown in Fig.1 by line C1.

This integral can be calculated with the help of the residue theorem by closing the

contour in a suitable manner shown in Fig.1. The solutions of the dispersion relation,

ε(~k, ω) = 0 , gives the collective poles of the integral. In the spinodal region, we will

have two solutions with imaginary frequencies which is given by ω = ±iΓk. The

collective poles make the dominant contribution to the growth of density fluctuations.
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However, Bozek pointed out that [21], collective poles are not the only singularities

of this integral so the description of the growth of density fluctuations is not fully rep-

resented. In fact, the collective poles alone do not even satisfy the initial conditions.

Therefore, the effect of non-collective poles should be considered in addition to the

collective ones. By calculating the angular integral in the Lindhard function given

by Eq. (2.27), it is possible to see that, there is a cut singularity of the integrand in

Eq. (2.31) along real axis in the complex ω-plane. Moreover, Ga(~k, ω) may also have

singularities on the real axis [21]. The non-collective poles appear here as a cut sin-

gularity. Since the integrand in complex ω-plane is multivalued, the entire real ω-axis

is a brunch cut. To calculate the integral in Eq. (2.31), we choose the contour C, as

shown in Fig.1. We exclude the real ω-axis by drawing the contour from +∞ to the

origin just above the real ω-axis, and after jumping from the first Riemann sheet to

the second at the origin, by drawing contour just below the real ω-axis from origin to

+∞. Contour is completed with a large semi-circle and by jumping from the second

Riemann surface to the first one at origin, as shown in figure. As a result, we find the

integral which can be expressed as [27]

δρλa(
~k, t) = δρλa(P ;~k, t) + δρλa(C;~k, t), (2.32)

where the first term is the pole (P) contribution

δρλa(P ;~k, t) = −
∑
±

Gλ
a(
~k,±iΓk)

∂ε(~k, ω)/∂ω|ω=±iΓk
e±Γkt (2.33)

and the second term is the cut (C) contribution that is given by

δρλa(C;~k, t) = −i
∫ +∞

−∞

dω

2π

[
Gλ
a(
~k, ω + iη)

ε(~k, ω + iη)
− Gλ

a(
~k, ω − iη)

ε(~k, ω − iη)

]
e−iωt. (2.34)

We can obtain the information about the boundary of spinodal region and the growth

rates of the unstable modes in the spinodal region by using the dispersion relation.

However, our aim is to understand the dynamical evolution of the unstable nuclear

system in the instability region which is determined from the equal time correlation

function of density fluctuations. Actually, the density correlation function exhibits

initial times of the dynamics of liquid-gas phase transformation of nuclear matter.

In the Stochastic mean-field approach, the equal time density correlation function
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Figure 2.1: The contour chosen to calculate the integral in Eq. (2.31). Crosses ±iΓk
indicate the collective poles of the integrand, and dotted line along the entire real
ω-axis is the branch cut of the integrand.

σab(|~r − ~r′|, t) is defined in terms of the density fluctuations as follows

σab(|~r − ~r′|, t) = δρλa(~r, t)δρ
λ
b (~r
′, t) =

∫
d3k

(2π)3
ei
~k·(~r−~r′)σab(~k, t). (2.35)

Here |~r − ~r′| is the distance between two space locations and a, b represent the neu-

tron or proton. The local nucleon density fluctuations δρλa(~r, t) are obtained from

the Fourier transformation of δρλa(~k, t), similarly, the equal time correlation functions

σab(|~r− ~r′|, t) are determined by the Fourier transform of the spectral intensity func-

tions σab(~k, t) . In the SMF approach, the spectral intensity of density correlations is

related to the variance of the Fourier transform of density fluctuations according to

σab(~k, t)(2π)3δ(~k − ~k′) = δρλa(
~k, t)δρλb (−~k′, t). (2.36)

In the above expression, the bar represents the average taken over the ensemble pro-

duced from the distribution of the initial fluctuations. We calculate the spectral inten-

sity function by using the result in Eq. (2.32) and evaluating the ensemble average as
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follows

δρλa(
~k, t)δρλb (−~k′, t) =[

δρλa(P ;~k, t) + δρλa(C;~k, t)
] [
δρλb (P ;−~k′, t) + δρλb (C;−~k′, t)

]
=

δρλa(P ;~k, t) + δρλb (P ;−~k′, t) + δρλa(C;~k, t) + δρλb (C;−~k′, t)

+ δρλa(P ;~k, t) + δρλb (C;−~k′, t) + δρλa(C;~k, t) + δρλb (P ;−~k′, t).
(2.37)

Here the last two terms are equal each other. As a result, the spectral intensity is

expressed as

σab(~k, t) = σab(PP ;~k, t) + 2σab(PC;~k, t) + σab(CC;~k, t), (2.38)

where the first and last term are due to only pole and only cut parts of the spectral

intensity respectively and the middle term denotes the cross contribution. The spec-

tral intensity function for neutron and proton can be calculated separately (by taking

a, b = n or a, b = p). Similarly, the total spectral intensity is obtained by summing

over isospin components:

σ(~k, t) = σpp(~k, t) + 2σpn(~k, t) + σnn(~k, t). (2.39)

In the above expression, each isospin component of the spectral intensity includes

both pole and cut contributions given in Eq. (2.38). The expression for the total

correlation function of density fluctuations σ(|~r−~r′|, t) = σpp(|~r−~r′|, t) + σnn(|~r−
~r′|, t)+2σpn(|~r−~r′|, t), which is summed over neutron, proton and cross components,

is determined by using the total spectral density σ(~k, t) in Eq. (2.39). As mentioned

earlier, the standard solution including only the collective poles δρλa(P ;~k, t) differs at

t = 0 from the initial conditions and we need to include the cut contributions. We can

determine the initial conditions by using the Eq. (2.19) and the definition of density

fluctuations at Eq. (2.24) which must be equal to the initial condition of the spectral

density σ(~k, t). This leads to a non-trivial sum rule given in the following equation∑
p,n

∫
2

d3p

(2πh̄)3
fa0 (~p) (1− fa0 (~p)) = σpp(~k, 0) + 2σpn(~k, 0) + σnn(~k, 0). (2.40)

In the following subsections, the pole and cut contributions of the spectral intensity

function will be given.
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2.4.3 Pole Contribution to Density Correlations

The collective poles are determined from the roots of the dispersion relation, ε(~k, ω) =

0 . There are two collective poles namely the growing and decaying poles at ω =

±iΓk shown by cross at Fig. 2.1. In order to calculate the pole contribution, we

evaluate the integral in Eq. (2.31) by using the Cauchy-Residue theorem at these two

poles. Cauchy-Residue theorem for a counter integral
∫
C
f(z)dz ≡

∫
C
g(z)
h(z)

dz with

the conditions g(z0) 6= 0, h(z0) = 0 and ∂h
∂z
|z=z0 6= 0 gives∫

C

f(z)dz ≡
∫
C

g(z)

h(z)
dz = 2πiRes[f(z), z = z0] = 2πi

∑
k

lim
z→z0

g(z)

h′(z)
(2.41)

Then the pole contribution of the density fluctuation is written as

δρλa(P ;~k, t) =
i

2π
(2πi)

{
Gλ
a(
~k, iΓk)

∂ε(~k, ω)/∂ω|ω=iΓk

eΓkt +
Gλ
a(
~k, iΓk)

∂ε(~k, ω)/∂ω|ω=iΓk

eΓkt

}

= −
∑
±

Gλ
a(
~k,±iΓk)

∂ε(~k, ω)/∂ω|ω=±iΓk
e±Γkt = δρ+

a (~k)eΓkt + δρ−a (~k)e−Γkt

(2.42)

where the growing and decaying parts for neutron and proton are given by

δρ±n (~k) = −


[
1 + F pp

0 χp(~k, ω)
]
Sλn(~k, ω)− F np

0 χn(~k, ω)Sλp (~k, ω)

∂ε(~k, ω)/∂ω


ω=±iΓk

δρ±p (~k) = −


[
1 + F nn

0 χn(~k, ω)
]
Sλp (~k, ω)− F pn

0 χp(~k, ω)Sλn(~k, ω)

∂ε(~k, ω)/∂ω


ω=±iΓk

(2.43)

By using the definition in Eq. (2.36), the pole contribution of the spectral intensity of

density correlations can be expressed as

σab(PP ;~k, t)(2π)3δ(~k − ~k′) = δρλa(P ;~k, t)δρλb (P ;−~k′, t)

= δρ+
a (~k)δρ+

b (−~k′)e2Γkt + δρ−a (~k)δρ+
b (−~k′)

+ δρ+
a (~k)δρ+

b (−~k′) + δρ−a (~k)δρ−b (−~k′)e−2Γkt.

(2.44)

We calculate the neutron-neutron, proton-proton and neutron-proton density correla-

tions to obtain the total spectral intensity of pole contributions. For neutron-neutron
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we obtain

δρλn(P ;~k, t)δρλn(P ;−~k′, t) =

[1+F pp0 χp]2Sλn(~k,iΓ)Sλn(−~k′,iΓ)+[Fnp0 χn]2Sλp (~k,iΓ)Sλp (−~k′,iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=iΓ
e2Γkt

+
[1+F pp0 χp]2Sλn(~k,−iΓ)Sλn(−~k′,−iΓ)+[Fnp0 χn]2Sλp (~k,−iΓ)Sλp (−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=−iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ
e−2Γkt

+2
[1+F pp0 χp]2Sλn(~k,iΓ)Sλn(−~k′,−iΓ)+[Fnp0 χn]2Sλp (~k,iΓ)Sλp (−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ
.

(2.45)

For proton-proton

δρλp(P ;~k, t)δρλp(P ;−~k′, t) =

[1+Fnn0 χn]2Sλp (~k,iΓ)Sλp (−~k′,iΓ)+[F pn0 χp]2Sλn(~k,iΓ)Sλn(−~k′,iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=iΓ
e2Γkt

+
[1+Fnn0 χn]2Sλp (~k,−iΓ)Sλp (−~k′,−iΓ)+[F pn0 χn]2Sλn(~k,−iΓ)Sλn(−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=−iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ
e−2Γkt

+2
[1+Fnn0 χn]2Sλp (~k,iΓ)Sλp (−~k′,−iΓ)+[F pn0 χn]2Sλn(~k,iΓ)Sλn(−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ

(2.46)

For neutron-proton

δρλn(P ;~k, t)δρλp(P ;−~k′, t) =

− [1+F pp0 χp]F pn0 χpSλn(~k,iΓ)Sλn(−~k′,iΓ)+Fnp0 χn[1+Fnn0 χn]Sλp (~k,iΓ)Sλp (−~k′,iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=iΓ
e2Γkt

− [1+F pp0 χp]F pn0 χpSλn(~k,−iΓ)Sλn(−~k′,−iΓ)+Fnp0 χn[1+Fnn0 χn]Sλp (~k,−iΓ)Sλp (−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=−iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ
e−2Γkt

−2
[1+F pp0 χp]F pn0 χpSλn(~k,iΓ)Sλn(−~k′,−iΓ)+Fnp0 χn[1+Fnn0 χn]Sλp (~k,iΓ)Sλp (−~k′,−iΓ)

[∂ε(~k,ω)/∂ω]ω=iΓ[∂ε(−~k′,ω)/∂ω]ω=−iΓ

(2.47)

where the relation between Linhard functions is χa(~k, iΓ) = χa(~k,−iΓ) = χa(−~k, iΓ) =

χa(−~k,−iΓ) and the correlation between source terms are obtained by using the vari-

ance relation given in Eq. (2.19);

Sλa (~k, iΓ)Sλa (−~k′, iΓ) = Sλa (~k,−iΓ)Sλa (−~k′,−iΓ)

Sλa (~k, iΓ)Sλa (−~k′,−iΓ) = Sλa (~k,−iΓ)Sλa (−~k′, iΓ) (2.48)

and the cross terms correlations will be zero due to the main assumption of the SMF

approach, Sλp (~k, iΓ)Sλn(−~k′, iΓ) = Sλn(~k, iΓ)Sλp (−~k′, iΓ) = 0. The details of the
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calculations about the source correlations and the Linhard functions are given in Ap-

pendix B. Finally, the pole-pole contribution of the spectral intensity function can be

calculated as

σ̃ab(PP ;~k, t) =
E+
ab∣∣∣∣[∂ε(~k, ω)/∂ω
]
ω=iΓk

∣∣∣∣2
(
e+2Γkt + e−2Γkt

)
+

2E−ab∣∣∣∣[∂ε(~k, ω)/∂ω
]
ω=iΓk

∣∣∣∣2
(2.49)

where the quantities E±ab for neutrons and protons are given by

E∓nn = [1 + F pp
0 χp]

2 I∓n + [F np
0 χn]2 I∓p

E∓pp = [1 + F nn
0 χn]2 I∓p + [F pn

0 χp]
2 I∓n

E∓np = − (1 + F pp
0 χp)F

pn
0 χpI

∓
n − (1 + F nn

0 χn)F np
0 χnI

∓
p (2.50)

with the following integral

I∓a = 2h̄2

∫
d3p

(2πh̄)3

[
(h̄Γk)

2 ∓ (~p · h̄~k/m)2
]

[
(h̄Γk)2 + (~p · h̄~k/m)2

]2f
a
0 (~p+ h̄~k/2)

(
1− fa0 (~p− h̄~k/2)

)
.

(2.51)

The analytical calculations of density fluctuations are performed in the quantal frame-

work in this chapter. In the following chapter, we produce the numerical calculations

in the quantal framework for zero temperature case which is the extreme quantum

case; however, the numerical results are obtained in the semi-classical limit for fi-

nite temperature case. The expression for the Fermi-Dirac distribution function at

the semi-classical limit can be obtained by expanding the function for the condition,

h̄→ 0. The expansion gives

f0(~p± h̄~k/2) = f0(~p)± ∂f0(~p)

∂ε

(
h̄~k

2
· ~p
m

)
+

1

2

∂2f0(~p)

∂ε2

(
h̄~k

2
· ~p
m

)2

+ ... (2.52)

Here we take the first two terms of the expansion as the leading terms. This is a

good approximation for the long wavelength limit. As a result, semi-classical limit

of quantal expressions are obtained by replacing the integrals I∓a and χa(~k, ω) with

following expressions in the long wavelength limit

I∓a (sc) = 2h̄2

∫
d3p

(2πh̄)3

[
(h̄Γk)

2 ∓ (~p · h̄~k/m)2
]

[
(h̄Γk)2 + (~p · h̄~k/m)2

]2f
a
0 (~p) (1− fa0 (~p)) (2.53)
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and

χsca (~k, ω) = 2

∫
d3p

(2π h̄)3

~p · h̄~k/m
h̄ω − ~p · h̄~k/m

∂fa(p)

∂ε
. (2.54)

2.4.4 Cut Contribution to Density Correlations

The cut contribution includes the cut-cut part and the mixed cut-pole parts. To cal-

culate the cut-cut part, i.e. σab(CC;~k, t) ∼ δρλa(C;~k, t) + δρλb (C;−~k′, t), we use the

cut contribution of the Fourier transform of density fluctuations δρλa(C;~k, t) in the

explicit form as follows

δρλa(C;~k, t) = −i
∫ +∞

−∞

dω

2π
e−iωt

×


[
1 + F bb

0 χb(
~k, ω + iη)

]
Sλa (~k, ω + iη)− F ab

0 χa(~k, ω + iη)Sλb (~k, ω + iη)

ε(~k, ω + iη)

−

[
1 + F bb

0 χb(
~k, ω − iη)

]
Sλa (~k, ω − iη)− F ab

0 χa(~k, ω − iη)Sλb (~k, ω + iη)

ε(~k, ω − iη)


(2.55)

and

δρλb (C;−~k′, t) = −i
∫ +∞

−∞

dω′

2π
e−iω

′t

×

{
[1 + F aa

0 χ−a (ω′ + iη)]Sλb (−~k′, ω′ + iη)− F ba
0 χ−b (ω′ + iη)Sλa (−~k′, ω′ + iη)

ε(−~k′, ω′ + iη)

− [1 + F aa
0 χ−a (ω′ − iη)]Sλb (−~k′, ω′ − iη)− F ba

0 χ−b (ω′ − iη)Sλa (−~k′, ω′ + iη)

ε(−~k′, ω′ − iη)

}
.

(2.56)

where we use the shorthand notation for χ−(ω′+ iη) = χ(−~k′, ω′+ iη). In this case,

the cut-cut part of the spectral intensity contains four terms:

σ̃ab(CC;~k, t) = A+
ab(
~k, t) + Ã+

ab(
~k, t) + Ã−ab(

~k, t) + A−ab(
~k, t). (2.57)

The first term A+
ab(
~k, t) comes from the multiplication of the first terms in the ex-

pressions δρλa(C;~k, t) and δρλb (C;−~k′, t), and the last term A−ab(
~k, t) comes from the

multiplication of the second terms. After this calculations, the following expressions
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are obtained for neutron-neutron and proton-proton A∓nn(~k, t)

A∓pp(
~k, t)

 =

+∞∫
−∞

dω

2π

+∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ ∓ 2iη

 W∓
nn V ∓np

V ∓pn W∓
pp

⊗
 φnω∓iη)+φn(ω′∓iη)

ε(ω∓iη)ε(ω′∓iη)

φp(ω∓iη)+φp(ω′∓iη)

ε(ω∓iη)ε(ω′∓iη)


(2.58)

and for proton-neutron

A∓pn(~k, t) = −
+∞∫
−∞

dω

2π

+∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ ∓ 2iη

(
W∓
pn V ∓nn

)
⊗

 φn(ω∓iη)+φn(ω′∓iη)
ε(ω∓iη)ε(ω′∓iη)

φp(ω∓iη)+φp(ω′∓iη)

ε(ω∓iη)ε(ω′∓iη)

.
(2.59)

In these expressions and below, the symbol ⊗ denotes the matrix multiplication.The

double integrals in A±ab(~k, t) can be divided into the principle value and delta function

parts by using the identity 1/ (ω + ω′ ∓ 2iη) = P (1/ω + ω′) ± iπδ(ω + ω′). The

elements of W and V matrices are given by W∓
nn V ∓np

V ∓pn W∓
pp

 =

 (
1 + F pp

0 χ∓p
) (

1 + F pp
0 χ′∓p

)
(F np

0 )2χ∓nχ
′∓
n

(F pn
0 )2χ∓p χ

′∓
p (1 + F nn

0 χ∓n )
(
1 + F nn

0 χ′∓n
)


(2.60)

and  W∓
pn

V ∓nn

 =

 F pn
0 χ∓p

(
1 + F pp

0 χ′∓p
)

(1 + F nn
0 χ∓n )F np

0 χ′∓n

 . (2.61)

In these expressions and also below, η is an infinitesimal positive number and we use

the short hand notation χ∓a = χa(~k, ω ∓ iη), χ′∓a = χa(~k, ω
′ ∓ iη), and the quantity

φa(ω ∓ iη) is defined as

φa (ω ∓ iη) = 2

+∞∫
−∞

d3p

(2π h̄)3
fa0 (~p+ h̄~k/2)

[
1− fa0 (~p− h̄~k/2)

] 1

~p · ~k/m− (ω ∓ iη)
.

(2.62)

The terms Ã+
ab(
~k, t) and Ã−ab(~k, t) involve the product of the cross terms in Eqs. (2.54)

and (2.55), i.e. the product of first and second terms; and second and first terms. These

terms also involve double integrations over ω and ω′ and have similar structure with
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A±ab(
~k, t): Ã∓nn(~k, t)

Ã∓pp(
~k, t)

 =

−
+∞∫
−∞

dω

2π

+∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′

 W̃∓
nn Ṽ ∓np

Ṽ ∓pn W̃∓
pp

⊗
 φn(ω∓iη)+φn(ω′±iη)

ε(ω∓iη)ε(ω′±iη)

φp(ω∓iη)+φp(ω′±iη)

ε(ω∓iη)ε(ω′±iη)


(2.63)

and

Ã±pn(~k, t) =

+∞∫
−∞

dw

2π

+∞∫
−∞

dw′

2π

e−i(ω+ω′)t

ω + ω′

(
W̃∓
pn Ṽ ∓nn

)
⊗

 φn(ω±iη)+φn(ω′∓iη)
ε(ω±iη)ε(ω′∓iη)

φp(ω±iη)+φp(ω′∓iη)

ε(ω±iη)ε(ω′∓iη)

.
(2.64)

Although the denominator in the integrand in Ã±ab(~k, t) is zero when ω′=−ω , the

ratio [φ(ω ∓ iη) + φ(ω′ ± iη)] / (ω + ω′) is finite. Therefore, the integrand is a well-

behaved function in contrast to its appearance. The elements of W̃ and Ṽ matrices

are given by W̃∓
nn Ṽ ∓np

Ṽ ∓pn W̃∓
pp

 =

 (
1 + F pp

0 χ∓p
) (

1 + F pp
0 χ′±p

)
(F np

0 )2χ∓nχ
′±
n

(F pn
0 )2χ∓p χ

′±
p (1 + F nn

0 χ∓n )
(
1 + F nn

0 χ′±n
)


(2.65)

and  W∓
pn

V ∓nn

 =

 F pn
0 χ±p

(
1 + F pp

0 χ′∓p
)(

1 + F nn
0 χ±p

)
F np

0 χ′∓n

 . (2.66)

In a similar way, we can calculate the mixed pole-cut terms in the spectral intensity,

i.e. σab(PC;~k, t) ∼ δρλa(P ;~k, t) + δρλb (C;−~k′, t) = δρλa(C;~k, t) + δρλb (P ;−~k′, t),

by using the Eq. (2.42) and Eq. (2.55). In this case, the pole-cut contribution has also

four terms:

σ̃ab(PC;~k, t) = B+
ab(
~k, t) + B̃+

ab(
~k, t) + B̃−ab(

~k, t) +B−ab(
~k, t). (2.67)

Here, the first term B+
ab(
~k, t) arises from the multiplication of the first terms in the

expressions δρλa(P ;~k, t) and δρλa(C;−~k′, t), and the last term B−ab(
~k, t) comes from

the multiplication of the second terms. The second and third terms involve the product

of the cross terms. As a result, the following expressions are obtained for neutron-
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neutron and proton-proton B∓nn(~k, t)

B∓pp(
~k, t)

 =

±ie∓Γt

∂ε/∂ω|ω=∓iΓ

+∞∫
−∞

dω

2π

e−iωt

ω ∓ iΓ

 X∓nn Y ∓np

Y ∓pn X∓pp

⊗
 φn(∓iΓ)+φn(ω∓iη)

ε(ω∓iη)

φp(∓iΓ)+φp(ω∓iη)

ε(ω∓iη)


(2.68)

and for neutron-proton

B∓pn(~k, t) =
∓ie∓Γt

∂ε/∂ω|ω=∓iΓ

+∞∫
−∞

dω

2π

e−iωt

ω ∓ iΓ

(
X∓pn Y ∓nn

)
⊗

 φn(∓iΓk)+φn(ω∓iη)
ε(ω∓iη)

φp(∓iΓk)+φp(ω∓iη)

ε(ω∓iη)

.
(2.69)

Here , we use the short hand notation φa(∓iΓ) = φa(~k, ω = ∓iΓ) and the elements

of X and Y matrices are given by X∓nn Y ∓np

Y ∓pn X∓pp

 =

 (
1 + F pp

0 χ∓iΓp

) (
1 + F pp

0 χ∓p
)

(F np
0 )2χ∓iΓn χ∓n

(F pn
0 )2χ∓iΓp χ∓p

(
1 + F nn

0 χ∓iΓn

)
(1 + F nn

0 χ∓n )


(2.70)

and  X∓pn

Y ∓nn

 =

 F pn
0 χ∓iΓp

(
1 + F pp

0 χ∓p
)(

1 + F nn
0 χ∓iΓn

)
F np

0 χ∓n

 . (2.71)

where χ∓iΓa = χa(~k, ω = ∓iΓ). Similarly, the second and third terms can be calcu-

lated as B̃∓nn(~k, t)

B̃∓pp(
~k, t)

 =

∓ie∓Γt

∂ε/∂ω|ω=∓iΓ

+∞∫
−∞

dω

2π

e−iωt

ω ∓ iΓ

 X̃∓nn Ỹ ∓np

Ỹ ∓pn X̃∓pp

⊗
 φn(∓iΓ)+φn(ω±iη)

ε(ω±iη)

φp(∓iΓ)+φp(ω±iη)

ε(ω±iη)


(2.72)

and

B̃∓pn(~k, t) =
±ie∓Γt

∂ε/∂ω|ω=∓iΓ

+∞∫
−∞

dω

2π

e−iωt

ω ∓ iΓ

(
X̃∓pn Ỹ ∓nn

)
⊗

 φn(∓iΓ)+φn(ω±iη)
ε(ω±iη)

φp(∓iΓ)+φp(ω±iη)

ε(ω±iη)

.
(2.73)
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The elements of X̃ and Ỹ matrices are given by X̃∓nn Ỹ ∓np

Ỹ ∓pn X̃∓pp

 =

 (
1 + F pp

0 χ∓iΓp

) (
1 + F pp

0 χ±p
)

(F np
0 )2χ∓iΓn χ±n

(F pn
0 )2χ∓iΓp χ±p

(
1 + F nn

0 χ∓iΓn

)
(1 + F nn

0 χ±n )


(2.74)

and  X̃∓pn

Ỹ ∓nn

 =

 F pn
0 χ∓iΓp

(
1 + F pp

0 χ±p
)(

1 + F nn
0 χ∓iΓn

)
F np

0 χ±n

 . (2.75)

In the above expressions, we use φa(∓iΓ) which is defined as

φa(∓iΓ) = 2

+∞∫
−∞

d3p

(2πh̄)3
fa0 (~p+ h̄~k/2)

[
1− fa0 (~p− h̄~k/2)

] 1

~p · ~k/m± iΓ
. (2.76)

Likewise the pole contributions, the semi-classical limit of quantal expressions in

cut contribution calculations are obtained by using the Linhard functions given in

Eq. (2.53) and replacing the integrals φa(ω ∓ iη) and φa(∓iΓ) with the following

expressions in the long wavelength limit

φa(ω ∓ iη) = 2

+∞∫
−∞

d3p

(2π h̄)3
fa0 (~p) [1− fa0 (~p)]

1

~p · ~k/m− (ω ∓ iη)
(2.77)

and

φa(∓iΓ) = 2

+∞∫
−∞

d3p

(2πh̄)3
fa0 (~p) [1− fa0 (~p)]

1

~p · ~k/m± iΓ
. (2.78)
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CHAPTER 3

NUMERICAL CALCULATIONS IN NON-RELATIVISTIC

APPROACH

In chapter 2, we present the description of the density correlation functions including

collective and noncollective modes in the linear response framework of the Stochastic

mean-field approach. The calculations are introduced in the non-relativistic frame-

work for charge asymmetric nuclear matter. Actually, the calculations including col-

lective as well as noncollective modes are performed for both symmetric [27] and

asymmetric nuclear matter [28]. However, the numerical calculations for symmetric

matter give the same results with the calculations of asymmetric matter when I = 0.0.

Therefore, the calculations for the symmetric matter are not presented separately. The

analytical expressions for symmetric matter including cut contributions are relatively

simpler than those for asymmetric matter. We also derived the analytic expressions

for symmetric matter in Appendix D by employing the Skyrme potential given in Eq.

(2.13).

The early growth of density fluctuations including only the collective poles are stud-

ied in a quantal framework for symmetric and asymmetric nuclear matter in Ref.

[16]. The description including only the effects of collective poles provides a good

approximation for longer wavelengths however it does not satisfy the initial condi-

tions and leads to a singular behavior when the wave numbers approach their upper

limits specified by the dispersion relation. As pointed out in Ref. [21], the effect of

non-collective poles play an important role for a complete description of density cor-

relation function. In this study, we aim to calculate the correlation function exactly by

including the non-collective poles in addition to the collective poles for asymmetric
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nuclear matter. However, the evaluation of the cut contributions with the numerical

methods is very complicated in a quantal approach for finite temperature case. There-

fore in this chapter, we calculate numerically the growth of density fluctuations in a

semi-classical approach for finite temperatures and in a quantal description for zero

temperature by using the expressions derived in Chapter 2.

3.1 Spinodal Instabilities for Finite Temperature

In this section, the initial development of spinodal instabilities for asymmetric nuclear

matter is calculated numerically in the semi-classical approach by employing the ex-

pressions derived in the previous sections. The growth rates of the unstable modes

and the spinodal region boundary are investigated with the use of the dispersion re-

lation given in Eq. (2.30). Also, the early growth of density correlation functions

and the corresponding spectral intensities are examined for temperatures T = 1 MeV

and T = 5 MeV . In the numerical calculations, we employ the effective Skyrme

potential given in Eq. (2.12) for asymmetric nuclear matter. The calculations are per-

formed for the initial charge asymmetries I = 0.0, I = 0.4 and I = 0.8 to observe the

isospin dependency of the system. The initial charge asymmetry is defined according

to I =
(
ρ0
n − ρ0

p

)
/
(
ρ0
n + ρ0

p

)
.

3.1.1 Growth Rates of Unstable Modes

The growth rates of the unstable modes are obtained from the roots of the susceptibil-

ity, ε(~k, ω) = 0 . In Fig. 3.1, the growth rates for the unstable modes are presented as

a function of wave number for different values of initial asymmetry at temperatures

T = 1 MeV and T = 5 MeV, for the initial baryon density ρ = 0.3ρ0. For each

temperature and asymmetry values, the growth rate increases until a maximum at a

certain value of the wave number, then reduces to zero. As the asymmetry parameter

increases, the wave number associated with the maximum growth rate reduces from

0.8 fm−1 to 0.6 fm−1 for T = 1 MeV and shifts from 0.7 fm−1 to 0.5 fm−1 for T = 5

MeV. Also, the temperature dependency of unstable behaviour of the system can be

seen from the graph due to the fact that the growth rates reduce when temperature
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increases at the same initial density and asymmetry values.
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Figure 3.1: Growth rates of unstable modes as a function of wave number with the
initial density ρ = 0.3ρ0 for initial charge asymmetries I = 0.0, I = 0.4 and I = 0.8

at temperatures T = 1 MeV and T = 5 MeV.

Moreover, the growth time that characterizes the initial growth of density fluctuations

can be determined by using the inverse of the growth rate, τ = 1/Γk. For instance, the

shortest growth time is varying (30−50) fm/c for T = 1 MeV and (35−100) fm/c

for T = 5 MeV. It is seen from the graph that when asymmetry increases, the shortest

growth time also increases and this reflects the fact that the unstable behaviour of

density fluctuations is growing slowly for greater asymmetry values.

The most unstable modes are occurring around the wave numbers k ≈ (0.5−0.8) fm−1

with the corresponding wavelengths λ ≈ (8− 12) fm and this wavelength values be-

come important to determine the boundary of spinodal region. The asymmetry of the

system has a greater effect on the growth rate at the same temperature. In fact, the

neutron rich system displays less unstable behaviour than the symmetric system at

the same conditions.
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Figure 3.2: Growth rates of the most unstable modes as a function of the initial density
for initial charge asymmetries I = 0.0, I = 0.4 and I = 0.8 at temperatures T = 1

MeV and T = 5 MeV.

Fig. 3.2 represents the growth rates of the most unstable modes depending on ρ/ρ0

for asymmetry parameters I = 0.0, I = 0.4 and I = 0.8 at temperatures T = 1

MeV and T = 5 MeV. The most unstable behaviour occurs around ρ = 0.2ρ0 and the

density values for the most unstable modes do not exhibit any significant difference

with increasing asymmetry for each temperature values. Also, it can be observed that

the unstable response of the system shifts towards at slightly higher densities with

increasing temperature.

3.1.2 Boundary of Spinodal Region

In this section, the boundary of the spinodal instability region is determined from the

phase diagrams. Fig. 3.3 represents the phase diagrams corresponding to different
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Figure 3.3: Phase diagram in density-temperature plane for different wavelengths
corresponding to the potential given by Eq. (2.12).

wavelengths, starting from the uppermost boundary λ = ∞, in the temperature-

density plane. The boundaries of the spinodal region are introduced for the initial

asymmetry parameters I = 0.0, I = 0.4 and I = 0.8 to exhibit the isospin depen-

dence of the system. The upper limits of the parabola-like curves show the critical

temperatures of the corresponding wavelengths. In the region above the curve, there

is uniform nuclear matter which exists in the gas phase. However, the nuclear system

exhibits unstable behaviour and exists as a mixture of liquid and gas phases in the area

under the curve. In this spinodal region, small amplitude density fluctuations grow
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rapidly and lead to the multifragmentation of the system. The critical temperatures

increase with the rising wavelengths up to the upper limit λ =∞.

The value of the critical temperatures depends on the initial charge asymmetries I =

0.0, I = 0.4 and I = 0.8, are obtained as almost Tc = 15 MeV, Tc = 14 MeV and

Tc = 9 MeV, respectively. The critical temperatures occur approximately at the same

initial density ρ = 0.3ρ0. It is observed that with increasing charge asymmetry, the

spinodal instability region shrinks to smaller size, consistent with earlier calculations

[3]. The limiting phase transition boundary occurs at density value around ρ = 0.6ρ0

for asymmetries I = 0.0 and I = 0.4. The neutron rich nuclear matter with I =

0.8 and T = 1 MeV have importance since it corresponds to the structure of crust

of neutron stars. The nucleon density which restricts the spinodal boundary under

these conditions occurs around ρ = 0.55ρ0 and it is consistent with earlier results in

literature [31].

We choose a reference state from the spinodal region with an initial density ρ = 0.3ρ0,

at which the critical temperatures occur, in order to calculate the density correlation

functions and we make our calculations at two different temperatures T = 1 MeV

and T = 5 MeV.

3.1.3 Spectral Intensity of Density Correlations

In order to investigate the unstable dynamics of the nuclear matter in the spinodal

region, the behaviour of the density correlation functions carries valuable information.

According to the expression in Eq. (2.38), the total spectral intensity σ̃(~k, t) of density

correlation functions is illustrated in Figs. 3.4 and 3.5 as a function of wave number

k at time t = 40 fm/c for two different temperatures and three different initial charge

asymmetries. At each initial charge asymmetry and temperature value, the upper limit

of the wave number range kmax is specified from the condition that the growth rate

of the unstable modes become zero (Γk = 0) which can be seen from Fig. 3.1. In

the spectral intensity graphs, the largest growth occurs at the wave numbers which

encounter with those obtained in Fig. 3.1 for the most unstable modes. When the

initial charge asymmetry of the system increases, the growth rates decrease for both

temperature cases. Also, we deduce that the growth rate of the spectral intensity
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function is larger at high temperature case.
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Figure 3.4: Spectral intensity of the correlation function as a function of wave number
at initial density ρ = 0.3ρ0 at time t = 40 fm/c at temperature T = 1 MeV for three
different charge asymmetries. Dotted, dashed-dotted and solid lines are results of
pole, cut and total contributions, respectively.

In Figs. 3.4 and 3.5, dashed, dash-dotted and solid lines represent the result of calcu-

lations in Eq. (2.38) with pole contributions σab(PP ;~k, t) only, with cut contributions

only and the total of all terms, respectively. The cut part contains cut-cut contribution

σab(CC;~k, t) and the mixed terms due to pole and cut parts 2σab(PC;~k, t). From
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Figure 3.5: Spectral intensity of the correlation function as a function of wave number
at initial density ρ = 0.3ρ0 at time t = 40 fm/c at temperature T = 5 MeV for three
different charge asymmetries. Dotted, dashed-dotted and solid lines are results of
pole, cut and total contributions, respectively.

these figures, we make two significant investigations for each value of temperature

and asymmetry parameter. The first one is that the cut terms make a significant neg-

ative contribution in the early stages of growth, as a consequence slowing down the

growth of instabilities in the spinodal region. Collective poles presented by pole con-

tributions dominate the growth of density fluctuations during later times, and the cut
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terms representing the effects of non-collective poles do not evolve in time [3, 27, 28].

The second point is that both pole and cut contributions have divergent behavior with

opposite signs for higher wave number values. Consequently, these divergent behav-

iors cancel out each other to produce a nice regular behavior of the spectral intensity

as a function of wave number.
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Figure 3.6: Spectral intensity of the correlation function as a function of wave number
at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4 for different times at
temperature T = 1 MeV (a) and T = 5 MeV (b). Dots on the solid lines at times
t = 0 represent the initial conditions.

Fig. 3.6 indicates the total spectral intensity of density correlation function as a func-

tion of wave number k for charge asymmetry I = 0.4 at different times for initial

temperatures T = 1 MeV and T = 5 MeV. We notice that the total spectral inten-

sity including pole and cut contributions demonstrates the growth of the initial den-

sity fluctuations clearly. The curves representing the spectral intensity function show

more and more peaked-like behavior around the most unstable modes with increasing
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Figure 3.7: Spectral intensity of the correlation function as a function of wave number
due to the pole contributions only at initial density ρ = 0.3ρ0 and charge asymmetry
I = 0.4 for different times at temperature T = 1 MeV (a) and T = 5 MeV (b).

time. Moreover, the initial value of the spectral intensity at time t = 0 demonstrated

by the black solid line is calculated as the sum of the pole-pole terms, σab(PP ;~k, t),

cut-cut terms σab(CC;~k, t) and pole-cut terms 2σab(PC;~k, t) . Otherwise, the solid

circles on this line are obtained from the initial conditions given in the left hand side

of Eq. (2.40). It can be seen that both calculations are compatible and this shows the

validity of the nontrivial sum-rule presented by Eq. (2.40). As a result, the exact cal-

culation of the correlation functions with the additional cut contribution satisfies the

initial conditions. However, if only the collective poles are considered then the initial

fluctuations cannot be fully expressed. For instance, Fig. 3.7 indicates the spectral

intensity function calculated according to the pole contributions only. It appears from

the figure that the results at time t = 0 does not match the initial conditions given in
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Fig. 3.6. and a slight growth is observed at that time which is not concluded from

the results of the exact calculations. In addition, the singular behaviour is observed at

higher wave numbers for both temperatures. Although the collective poles play dom-

inant role in early growth of density fluctuations, they do not give the full description

of the growth of instabilities. Therefore, we also include the cut contributions which

reflect the effect of non-collective poles in order to calculate the density correlation

functions precisely.

3.1.4 Density Correlation Functions

The expression of the total density correlation function is obtained in the previous

chapter as a sum over neutron, proton and cross components by using the total spectral

intensity function. In this section, the numerical calculations of the equal time density

correlation functions, including collective and non-collective modes are presented in

the linear response framework in the semi-classical limit.

Fig. 3.8 indicates the equal time correlation functions σ(|~r−~r′|, t) of the total density

fluctuations in terms of distance between two space locations x = |~r − ~r′| at T = 1

MeV with the initial density ρ = 0.3ρ0 for three different times t = 20, 30, 40 fm/c.

The density correlation functions are calculated by using the full spectral intensities

which are given by solid lines in Fig. 3.4 and the graphs are plotted for three different

charge asymmetries to illustrate the asymmetry dependence of the system. The time

evolution of density fluctuations is faster for symmetric matter and decreases as the

matter becomes neutron-rich. In Fig. 3.9, the correlation functions are plotted for

the same initial conditions with Fig. 3.8 but at a higher temperature T = 5 MeV.

The growth of density fluctuations can be observed obviously from these figures. In

addition, we can obtain information about the typical size of condensing fragments

arising at the initial stages of spinodal decomposition. For this aim, we define the

correlation length xC as the width of the correlation function at half maximum. The

correlation length characterizes the size of the initial condensation regions throughout

the growth of fluctuations. The variance of the local density fluctuations δρλa(~r, t) is

approximately specified by σ(xC , t) in the correlation volume which is defined as

∆VC = 4πx3
C/3 . The number of nucleons in each correlation volume fluctuates with
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Figure 3.8: Density correlation function as a function of distance between two space
points for initial density ρ = 0.3ρ0, at temperature T = 1 MeV at different charge
asymmetries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c), respectively.

a dispersion ∆AC = ∆VC
√
σ(xC , t). Consequently, the total nucleon number in each

correlation volume varies approximately within the interval ∆A0 − ∆AC ≤ ∆A ≤
∆A0+∆AC , where we use ∆A0 = ∆VCρ0 that is the number of nucleons at the initial

uniform state. From this analysis we can deduce that the spinodal decomposition

mechanism does not give rise to equal sized fragments. On the contrary, it leads to a
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mixture of different sized clusters.

From Figs. 3.8 and 3.9, it is observed that the correlation length is not very sensitive

to the time evolution and temperature but depends on the initial charge asymmetry.

As an example, at temperature T = 5 MeV and the initial charge asymmetry I = 0.4,

the correlation length is approximately xC = 3.0 fm. In this case, the magnitude of

dispersion of density fluctuations is about
√
σ(xC , t) = 0.04 fm−3 at time t = 30 fm/c

and this result gives the number of nucleons in the correlation volume approximately

in the range of 1 ≤ ∆A ≤ 9 . For temperature T = 5 MeV and asymmetry I = 0.8 ,

the correlation length is approximately xC = 3.0 fm and the magnitude of dispersion

of density fluctuations is about
√
σ(xC , t) = 0.02 fm−3 at time t = 30 fm/c . This

gives us the number of nucleons fluctuating in the correlation volume in the range of

8 ≤ ∆A ≤ 16.

From the above discussion, we conclude that the spinodal decomposition provides

a dynamical mechanism for the liquid-gas phase transition. The linear response ap-

proach describes only the early phase of the transition inside the spinodal region. For

describing whole phase transition, we need to study nonlinear evolution of the den-

sity fluctuations. Since the density fluctuations grow nearly exponentially in time, the

linear response treatment of fluctuations over a limiting time does not give a realis-

tic description for instabilities. To exclude this undesirable result we can constraint

the linear response approach by the condition that the dispersion on the nucleon den-

sity fluctuations keeps below the average nucleon density in the correlation volume,

i.e.
√
σ(xC , t) ≤ ρ. This condition is satisfied for all the cases represented by Figs.

3.8 and 3.9 for the given times.

In the previous studies [9, 16, 17, 20], only the contributions of the collective poles

were included in the calculations of the density correlation functions. However, as

seen from Figs. 3.4 and 3.5, we encounter the problem that pole contributions have

divergent behavior as wave numbers approach its upper limit, k → kmax . Therefore,

we cut the spectral intensity graph at a suitable cut-off wave number value to cure this

problem. At the initial charge asymmetry I = 0.4, the cutoff value is taken kcut =

1.05 fm−1 (that is the local minimum point) for T = 1 MeV and kcut = 0.9 fm−1

for T = 5 MeV, then we plotted the equal time correlation functions graph after this
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Figure 3.9: Density correlation function as a function of distance between two space
points for initial density ρ = 0.3ρ0, at temperature T = 5 MeV at different charge
asymmetries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c), respectively.

cut-off approximation. In Fig. 3.10, calculations with cut-off are compared with the

complete calculations of the density correlation function at temperatures T = 1 MeV

and T = 5 MeV. Solid lines represent the total density correlation function whereas

the dashed lines show the pole contribution of correlation functions obtained from

the cut-off values. As seen from the graph, we can say that the cut-off provides a
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good approximation. However, the cut contributions are important for a complete

description. Moreover, we observe that the results obtained with pole approximations

are rather sensitive to the cut-off wave number at higher temperature case, since there

is no visible local minimum of the spectral intensity.
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Figure 3.10: Density correlation function as a function of distance between two space
points at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4, at temperatures
T = 1 MeV and T = 5 MeV.

3.2 Spinodal Instabilities for Zero Temperature Case

In this section, the numerical calculations of the early growth of density fluctuations

are presented for asymmetric nuclear matter at zero temperature case by using the

expressions given in Chapter 2. For zero temperature case, the momentum integral

is restricted to the Fermi surface since ∂εf0 = −δ(ε − εF ), so the integrals I±a in

the pole contribution expressions; and φa(iΓ) and φa(ω ± iη) in the cut contribution
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expressions give zero in the semi-classical limit. Consequently, there is no semi-

classical contribution at zero temperature and the calculations are performed in a

quantal framework.

In the quantal framework, the Linhard functions and the integral I±a at zero tempera-

ture can be expressed as

χa(~k, ω) = −2

∫
d3p

(2πh̄)3

θ(pF − |~p− h̄~k/2|)− θ(pF − |~p+ h̄~k/2|)
h̄ω − ~p · h̄~k/m

. (3.1)

and

I∓a = 2h̄2

∫
d3p

(2πh̄)3

[
(h̄Γk)

2 ∓ (~p · h̄~k/m)2
]

[
(h̄Γk)2 + (~p · h̄~k/m)2

]2

× θ(pF − |~p+ h̄~k/2|)
(

1− θ(pF − |~p− h̄~k/2|)
)
.

(3.2)

In addition, the integral φa(ω ± iη) in the cut contributions is given by

φa (ω ∓ iη) = 2

∫
d3p

(2π h̄)3

θ(pF − |~p+ h̄~k/2|)
(

1− θ(pF − |~p− h̄~k/2|)
)

~p · ~k/m− (ω ∓ iη)
. (3.3)

In the above expressions, θ(pF − p) is the step function. The polar parts of these

integrals are evaluated analytically and then the numerical methods are applied in the

evaluation of the resultant integrals.

3.2.1 Growth Rates of Unstable Modes at Zero Temperature

The growth rates of the unstable modes are obtained from the dispersion relation

at T = 0 MeV within the quantal approach. In Fig. 3.11, the growth rates for

the unstable modes are given as a function of wave number for different values of

initial asymmetry for the initial density ρ = 0.3ρ0. For each asymmetry values,

the growth rates show the similar behavior to the finite temperature case, increasing

until a maximum at a certain value of the wave number, then reduces to zero. The

wave number corresponding to the maximum growth rate decreases from 0.65 fm−1

to 0.5 fm−1 with the increasing values of asymmetry. In addition, the most unstable

modes are found to occur approximately between the wavelengths λ ≈ (10− 12) fm.
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The shortest growth time of primary density fluctuations can be obtained from the

inverse of the growth rate. As an example, the shortest growth time is about 30 fm/c

for symmetric matter and close to 65 fm/c when asymmetry I = 0.8. The results

again show the fact that the unstable behaviour of density fluctuations is growing

slowly for neutron rich systems.
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0

Figure 3.11: Growth rates of unstable modes as a function of wave number with the
initial density ρ = 0.3ρ0 for initial charge asymmetries I = 0.0, I = 0.4 and I = 0.8

at temperature T = 0 MeV.

3.2.2 Quantal Correlation Functions

Fig. 3.12 shows the total spectral intensity σ(~k, t) of density correlation functions as

a function of wave number k at time t = 40 fm/c at T = 0 MeV for three different

initial charge asymmetries. In this figure similar to the Figs. 3.4 and 3.5, dashed,

dash-dotted and solid lines demonstrate the result of calculations in Eq. (2.38) with

pole contributions σab(PP ;~k, t) only, with cut contributions only and the total of all

terms, respectively. The cut part contains cut-cut contribution σab(CC;~k, t) and the

mixed terms due to pole and cut parts 2σab(PC;~k, t). The cut contributions slow

down the growth of instabilities in the spinodal region as expected; however the cut

terms become more significant at higher values of asymmetry at T = 0 MeV in the

quantal framework. In addition, the cut and pole contributions have not a divergent
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behavior in the higher wave numbers, which occurred at finite temperature case, at

these calculations.
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Figure 3.12: Spectral intensity of the correlation function as a function of wave num-
ber at initial density ρ = 0.3ρ0 at time t = 40 fm/c at zero temperature for three
different charge asymmetries. Dotted, dashed-dotted and solid lines are results of
pole, cut and total contributions, respectively.

Fig. 3.13 represents the total spectral intensity of the correlation function σ(~k, t) for

charge asymmetry I = 0.4 as a function of wave number at different times for the
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temperature T = 0 MeV. The total spectral intensity includes pole and cut contribu-

tions of density fluctuations. Similar to the finite temperature case, the initial value

of the spectral intensity at time t = 0 represented by the black solid line is obtained

by numerical calculations of the pole-pole terms, σab(PP ;~k, t = 0) , cut-cut terms

σab(CC;~k, t = 0) and pole-cut terms 2σab(PC;~k, t = 0) . Moreover, the solid cir-

cles on this line are calculated by the initial conditions given in the left hand side of

Eq. (2.40). Eventually, the nice agreement of both calculations shows the validity

of the nontrivial sum-rule presented by Eq. (2.40) in the quantal framework for zero

temperature case.
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Figure 3.13: Spectral intensity of the correlation function as a function of wave num-
ber at initial density ρ = 0.3ρ0 and charge asymmetry I = 0.4 for different times at
zero temperature. Dots on the solid lines at time t = 0 represent the initial conditions.

Fig. 3.14 indicates the equal time correlation functions σ(|~r − ~r′|, t) of the total

density fluctuations in terms of distance between two space locations x = |~r − ~r′| at

T = 0 MeV with the initial density ρ = 0.3ρ0 for three different charge asymmetries

corresponding to Fig. 3.12. The density correlation functions are calculated by using

the full spectral intensities which are given by solid lines in Fig. 3.12 and the graphs

are plotted at three different times t = 20, 30, 40 fm/c . From this graph, we can

obtain information about the size of the condensation regions during the initial growth

of fluctuations by using the correlation length at T = 0 MeV . For example, the

45



correlation length is about xC = 2.0 fm at the initial charge asymmetry I = 0.4 and

in this case, the magnitude of dispersion of density fluctuations at t = 40 fm/c is

nearly
√
σ(xC , t) = 0.05 fm−3. As a result, the number of nucleons fluctuating in the

correlation volume occurs in the range 3 ≤ ∆A ≤ 7 . For I = 0.8 , the correlation

length is nearly xC = 3.0 fm and the initial size of the condensing droplets in the

correlation volume gets bigger for the same time.
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Figure 3.14: Density correlation function as a function of distance between two space
points for initial density ρ = 0.3ρ0, at zero temperature and at different charge asym-
metries I = 0.0, 0.4, 0.8 in sections (a), (b) and (c), respectively.
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CHAPTER 4

GROWTH OF DENSITY FLUCTUATIONS IN ASYMMETRIC

NUCLEAR MATTER WITHIN A RELATIVISTIC

MEAN-FIELD APPROACH

In the previous sections, the spinodal instabilities and early development of density

fluctuations are investigated in the framework of the non-relativistic approach since

the nuclear spinodal fragmentation occurs at low energies to permit the use of non-

relativistic kinematics [3]. However, it has been shown in the recent decades that

the nuclear many-body system is in principle a relativistic system of baryons and

mesons. Relativistic models have been employed with a great success to describe

various aspects of the nuclear structure and nuclear dynamics [32, 33]. A number

of investigations on spinodal instabilities in nuclear matter have been carried out by

employing the relativistic mean-field models [20].

In this part of the thesis, early development of spinodal instabilities and density fluc-

tuations are investigated for asymmetric nuclear matter by employing the stochastic

relativistic mean-field approach in the quantal framework.

4.1 Nonlinear Walecka Model including rho mesons

Quantum Hadrodynamics (QHD) is a general name for the relativistic quantum field

theories based on hadronic (baryon and meson) degrees of freedom and it gives a

theoretical framework for describing the relativistic nuclear many-body problem. It

was introduced by J. D. Walecka in early seventies. The strong interaction between
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the nucleons is analyzed in terms of meson exchanges in QHD formalism [10, 32].

The analysis based on QHD provide a suitable description for many baryon systems

at low energy scales [10].

In the original Walecka model, also known as QHD-I, the interaction between nu-

cleons are mediated by neutral scalar σ meson and neutral vector ω meson. In the

literature, there are several extensions of the standard Walecka model and different pa-

rameter sets obtained by fitting the properties of many nuclei. QHD-I describes well

the bulk properties of nuclear matter and provides the main feature of the nucleon-

nucleon interaction: short range repulsion coming from vector meson exchange while

the long-range attraction coming from scalar meson exchange [34]. However, this

model does not contain the isospin dependence and can only present a description for

the symmetric nuclear matter.

The presence of the isospin degree of freedom enriches the Walecka model and we

can examine the effect of asymmetry on the nuclear spinodal instabilities. There-

fore, a more realistic model can be obtained by inserting the coupling of charged

rho mesons to the Lagrangian of the original model. This extended model known as

QHD-II contains the nucleons, neutral scalar σ , neutral vector ω and isovector vector

ρ mesons [10].

The effective Lagrangian density of QHD-II including the baryon field ψ =

ψp
ψn


with mass M , the scalar meson field φ with mass ms, the vector meson field Vµ ≡
(V0, ~V ) with mass mv, the isovector field bµ ≡ (b0,~b) with mass mρ and the massless

photon field Aµ ≡ (V0, ~V ) is given by

L = ψ[γµih̄∂µ −Mc2]ψ +
1

2
∂µφ∂

µφ+ gsψψφ− U(φ)

−1

4
ΩµνΩ

µν +
1

2
µ2

vVµV
µ − gvψγ

µψVµ

−1

4
~Gµν

~Gµν +
1

2
µ2
ρ
~bµ ~bµ −

1

2
gρψγ

µ~τ ~bµψ

−1

4
FµνF

µν − e

2
(1 + τ3)ψγµAµψ (4.1)

where , µv ≡ mvc/h̄ and µρ ≡ mρc/h̄ are the mass parameters of vector and isovec-

tor meson fields. The related field tensors are represented as Ωµν = ∂µVν − ∂νVµ,
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~Gµν = ∂µ~bν − ∂ν ~bµ and Fµν = ∂µAν − ∂νAµ for the vector, isovector and pho-

ton fields, respectively. ~τ indicates the Pauli isospin matrices and 1
2
(1 + τ3) is the

isospin projection operator with the values τ3 = 1 for proton and τ3 = −1 for neutron

[10]. The neutron and proton form an isospin doublet with total isospin 1/2 and third

component ±1/2.

In the Lagrangian, the mass parameters and the strong coupling constants gs, gv and

gρ for the scalar, vector and isovector fields are phenomenological constants usually

determined by a fitting procedure to some properties of a set of spherical nuclei [35].

While the scalar meson potential is U(φ) = 1
2
µ2
sφ

2 in the standard Walecka model, it

is given by U(φ) = 1
2
µ2
sφ

2 + κ
3!
φ3 + λ

4!
φ4 in the nonlinear Walecka model, where κ

and λ are the self-coupling constants and µs ≡ (msc/h̄) . In this work, the nonlinear

Walecka model is used with the NL3 parameter set which provides a better description

for the nuclear structure properties and giant monopole excitations in medium weight

and heavy nuclei [20]. The original Walecka model gives nuclear compressibility

much higher than the experimental value and leads to a smaller effective nucleon

mass [9]. However, the nonlinear Walecka model which includes the nonlinear self-

interaction terms of the scalar meson field allows a more accurate value of nuclear

compressibility and the nucleon effective mass. In the NL3 parameter set given in

Ref. [35], the nucleon mass is taken to be 939 MeV and the other parameters are de-

termined by fitting the predicted values of different nuclear properties such as binding

energy, charge radii, and neutron radii of several spherical nuclei. The parameters in

the NL3 set are given in Table 4.1 with the corresponding nuclear properties.

The meson field equations can be found from the Lagrangian given in Eq. (4.1) by

applying the Euler-Lagrange equation as follows;

(∂µ∂
µ + µ2

s )φ+
κ

2
φ2 +

λ

6
φ3 = gsψ̄ψ , (4.2)

(∂µ∂
µ + µ2

v)V ν = gvψ̄γ
νψ, (4.3)

(∂µ∂
µ + µ2

ρ)
~bν =

1

2
gρψγ

ν~τψ . (4.4)

These are the usual Klein-Gordon equations with the source terms gsψ̄ψ , gvψ̄γ
νψ

and 1
2
gρψγ

ν~τψ. The field equation for the electromagnetic field is

∂µ∂
µAν = e

[
ψγν

1

2
(1 + τ3)ψ

]
. (4.5)
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Table4.1: The NL3 parameter set and the predictions for the nuclear matter properties

The NL3 Parameter Set
ms(MeV ) 508.194
mv(MeV ) 782.501
mρ(MeV ) 763.000
gs 10.217
gv 12.868
gρ 4.474
κ(fm−1) 10.431
λ -28.885
Nuclear Matter Properties
ρ0(fm−3) 0.148
E/A (MeV) -16.299
K (MeV) 271.76
M∗/M 0.60

Similarly, the Dirac equation for the baryon fields including the meson fields and

photon field interactions can be obtained as[
γµ(ih̄∂µ − gvVµ −

1

2
gρ~τ · ~bµ − e

1

2
(1 + τ3)Aµ)− (Mc2 − gsφ)

]
ψ = 0 . (4.6)

The field equations, Eqs. (4.2-4.6), are nonlinear coupled equations and the exact

solutions are very complicated. Therefore, the mean field approach (MFT) can be

applied as an approximate nonperturbative method at high baryon densities. In the

relativistic mean-field approximation, the meson field operators are replaced by their

ground state expectation values and the meson fields are treated as classical fields

φ → 〈φ〉 ≡ φ0

V µ → 〈V µ〉 ≡ V0g
µ0

bµa → 〈bµa〉 ≡ gµ0δa3b0

Aµ → 〈Aµ〉 ≡ gµ0A0 . (4.7)

Since nuclear system has well defined electric charge, only the neutral component of

the ρmeson field appears in the equation of motion, which is indicated by b3,µ(~r, t) ≡
[b3,0(~r, t), ~b3(~r, t)]. For a static uniform system at equilibrium, the quantities φ0, V0,

b0 andA0 are constants and the expectation values of vector components of the vector,
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isovector and photon fields vanish. Similarly, the ground state expectation values are

also substituted for the baryon sources in the meson field equations;

ψψ → 〈ψψ〉 = ρs

ψγµψ → 〈ψγµψ〉 = gµ0ρb

ψγµτaψ → 〈ψγµτaψ〉 = gµ0δa3ρ3

ψγµ
1

2
(1 + τ3)ψ → 〈ψγµ1

2
(1 + τ3)ψ〉 = gµ0ρp (4.8)

where the densities can be written in terms of proton and neutron densities as; ρs =

ρs,p + ρs,n, ρB = ρb,p + ρb,n, ~ρv = ~ρv,p + ~ρv,n and ρ3 = ρb,p− ρb,n. The field equations

are exactly solvable in the mean-field limit, thus MFT provides a meaningful starting

point to describe the relativistic nuclear many body system [10]. In our investigation

of spinodal instabilities, we use time-dependent Hartree Fock (TDHF) model as a

mean field approach in a quantal framework.

4.2 Stochastic Extension of Relativistic Mean Field Theory

The mean-field theory in terms of TDHF equations has been widely used to describe

the reaction dynamics in nuclear collisions at low energies. At this energy scales,

one-body dissipation mechanism plays a dominant role in nuclear dynamics and short

range two-body collisions can be neglected [13, 17]. The mean field description gives

a good approximation for average evolution of the collective motion. However, it is

completely inadequate to describe the fluctuation dynamics of one-body observables.

It is demonstrated that the stochastic mean field approach provides a useful descrip-

tion for the dynamics of density fluctuations at low energies [19].

In the SMF approach, different from the standard mean field theory, the initial quantal

zero-point and thermal fluctuations are incorporated into the calculations in a stochas-

tic manner. The initial fluctuations are simulated by considering an ensemble of initial

single-particle density matrices according to the self-consistent mean-field evolution

of each event [17, 36]. Each member of the relativistic single-particle density matrix

is developed in time with respect to its own self consistent mean-field hamiltonian
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ha(ρ
(λ)) [37],

ih̄
∂

∂t
ρ(λ)
a (t) = [ha(ρ

(λ)), ρ(λ)
a (t)] . (4.9)

where a = p, n denotes the neutron or proton and λ is the event label. This equation

is same as the non-relativistic TDHF equation given in Eq. (2.8). However, it should

be noted that ha(ρ(λ)) represents the relativistic mean-field Hamiltonian in the event

λ and ρa(t) is a 4×4 matrix in the spinor space whose elements are random Gaussian

numbers. For clarity of presentation, the event label is ignored in the rest of the

chapter.

In the Walecka model, the relativistic mean field theory is based on an effective inter-

action Lagrangian given in Eq. (4.1). By using the QHD-II Lagrangian, the relativis-

tic mean-field Hamiltonians are obtained for proton and neutron,

hp(ρ) = ~α · [c~p−gv
~V − 1

2
gρ~b3−e ~A]+β(Mc2−gsφ)+gvV0 +

1

2
gρb3,0 +eA0 (4.10)

and

hn(ρ) = ~α · [c~p− gv
~V +

1

2
gρ~b3] + β(Mc2 − gsφ) + gvV0 −

1

2
gρb3,0 . (4.11)

where ~α and β are Dirac matrices. Fluctuating meson fields are determined in terms

of the fluctuating densities from the usual Klein-Gordon equations as,

(∂µ∂
µ + µ2

s )φ(~r, t) = gsρs(~r, t)−
κ

2
φ2 − λ

6
φ3 , (4.12)

(∂µ∂
µ + µ2

v)Vµ(~r, t) = gvρµ(~r, t), (4.13)

(∂µ∂
µ + µ2

ρ)
~b3,µ(~r, t) =

1

2
gρρ3,µ(~r, t) , (4.14)

∂µ∂
µAµ(~r, t) = eρemµ (~r, t) . (4.15)

The fluctuating scalar ρs
a(~r, t), baryon ρb

a(~r, t) and current ~ρv
a(~r, t) densities for pro-

tons and neutrons are defined according to
~ρv
a(~r, t)

ρb
a(~r, t)

ρs
a(~r, t)

 =
∑
ij

Ψ†a,j(~r, t)


c~α

1

β

Ψa,i(~r, t)ρij(a) . (4.16)

where summations i, j run over a complete set of spinors Ψa,i(~r, t) and ρij(a) repre-

sents the time-independent elements of the single particle density matrix.
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4.3 Linear Response Treatment of Density Fluctuations

The linear response analysis of dynamical evolution is considered in order to investi-

gate the initial growth of density fluctuations in the spinodal region. The small am-

plitude fluctuations of the single particle density matrix around an equilibrium initial

state with proton and neutron densities, (ρ0
p, ρ

0
n) ≡ ρ0 , are obtained by considering

the linear limit of Eq. (4.9). For the fluctuating density matrices, δρa(t) = ρa(t)−ρ0
a,

the linearized TDHF equation becomes

ih̄
∂

∂t
δρa(t) = [ha(ρ0), δρ(t)] + [δh(t), ρ0

a] . (4.17)

Here ha(ρ0) represents the mean-field Hamiltonian for protons and neutrons in the

initial reference state given by

hp(ρ0) = ~α · c~p+ β(Mc2 − gsφ0) + gvV0 +
1

2
gρb3,0 + eA0 (4.18)

and

hn(ρ0) = ~α · c~p+ β(Mc2 − gsφ0) + gvV0 −
1

2
gρb3,0 . (4.19)

In the initial state, average baryon and scalar densities are assumed to be uniform.

Therefore, the meson field equations for asymmetric infinite nuclear matter in terms

of initial densities are written as

φ0 =
1

µ2
s

[
gs(ρ

0
s,p + ρ0

s,n)− κ

2
φ2

0 −
λ

6
φ3

0

]
V 0

0 =
gv

µ2
v
(ρ0

b,p + ρ0
b,n)

~V0 = 0

b0
3 =

1

2

gρ
µ2
ρ

(ρ0
b,p − ρ0

b,n)

~b3 = 0

A0
0 = 0

~A0 = 0 (4.20)

where ρ0
s,p, ρ

0
s,n, ρ0

b,p and ρ0
b,n are scalar and baryon densities for protons and neu-

trons in the initial state, respectively. The small amplitude fluctuations of the meson

fields are determined from the linearized Klein-Gordon equations. Meson fields are
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linearized around their initial values as φ = φ0 + δφ(~r, t), V µ = V µ
0 + δV µ(~r, t),

bµ = bµ0 + δbµ(~r, t) and Aµ = Aµ0 + δAµ(~r, t). The meson field fluctuations de-

pends on (~r, t) , however, their initial values φ0, V µ
0 and bµ3 are constants. Although

the vector components of the fields ~V , ~b, ~A are zero at the initial equilibrium state,

the corresponding fluctuations δ~V , δ~b and δ ~A are non-zero. Then, we obtain the

linearized equation for the scalar meson field as(
∂µ∂

µ + µ2
s + κφ0(~r, t) +

λ

2
φ2

0

)
δφ = gsδρs(~r, t) . (4.21)

Similarly, the linearized field equations for the vector meson, charged rho meson and

electromagnetic fields are obtained for the space and time components separately,

which are given as(
∂µ∂

µ + µ2
v

)
δV0(~r, t) = gv (δρb,p(~r, t) + δρb,n(~r, t))(

∂µ∂
µ + µ2

v

)
δ~V (~r, t) = gv (δ~ρv,p(~r, t) + δ~ρv,n(~r, t)) , (4.22)

(
∂µ∂

µ + µ2
ρ

)
δb0(~r, t) =

1

2
gρ (δρb,p(~r, t)− δρb,n(~r, t))(

∂µ∂
µ + µ2

ρ

)
δ~b(~r, t) =

1

2
gρ (δ~ρv,p(~r, t)− δ~ρv,n(~r, t)) (4.23)

and

∂µ∂
µδA0(~r, t) = δρb,p(~r, t)

∂µ∂
µδ ~A(~r, t) = δ~ρv,p(~r, t) (4.24)

Consequently, the fluctuating parts of the mean-field Hamiltonian for protons and

neutrons in the linearized TDHF equation are given in terms of meson field fluctua-

tions,

δha =

(
∂ha
∂Vi

)
0

δVi +

(
∂ha
∂V0

)
0

δV0 +

(
∂ha
∂φ

)
0

δφ

+

(
∂ha
∂b3,i

)
0

δb3,i +

(
∂ha
∂b3,0

)
0

δb0 +

(
∂ha
∂Ai

)
0

δAi +

(
∂ha
∂A0

)
0

δA0

(4.25)

where ( )0 denotes the corresponding values at the initial state. The derivatives can

simply be evaluated from Eqs. (4.10) and (4.11), then δhp and δhn can be found as

δhp(t) = −~α · [gvδ~V (~r, t) +
1

2
gρδ~b3(~r, t) + eδ ~A(~r, t)]− βgsδφ(~r, t) + gvδV0(~r, t)

+
1

2
gρδb3,0(~r, t) + eδA0(~r, t) (4.26)
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and

δhn(t) = −~α · [gvδ~V (~r, t)− 1

2
gρδ~b3(~r, t)]−βgsδφ(~r, t)+gvδV0(~r, t)− 1

2
gρδb3,0(~r, t) .

(4.27)

The linear response analysis for the instabilities in nuclear matter can be carried out

in an almost analytical framework by using the plane wave representation. In this

case, the plane wave representation of spinors for protons and neutrons (a = p, n )

maintains an appropriate description for the quantal investigation of the instabilities.

Positive energy (λ = +1) and negative energy (λ = −1) plane wave spinors with

spin quantum number s = ±1/2 can be expressed as [38],

| ψa,λ(~p, s)〉 = Na,λ(~p)

 χa,s
~σ·c~p

Mc2+λε∗(p)
χa,s

 | ei~p·~r/h̄〉 . (4.28)

Here, χα,s =

 1

0

 ,

 0

1

 denote spin states for protons and neutrons, Na,λ(~p) =√
[Mc2 + λε∗(~p)]/2λε∗(p) is the normalization factor and ε∗(p) =

√
~p2c2 +M∗2c4

indicates the effective single-particle energies in the initial state which is determined

by the effective nucleon mass M∗c2 = Mc2 − gsφ0. These plane wave spinors are

eigenstates of mean-field Hamiltonian in the uniform initial state, ha(ρ0) |ψa,λ(~p, s)〉 =

Ea,λ(~p) | ψa,λ(~p, s)〉 with the eigenvalues Ep,λ(p) = gvV0 + ∆E + λε∗(~p) for protons

andEn,λ(p) = gvV0−∆E+λε∗(~p) for neutrons, where ∆E = (gρ/2mρ)
2(ρ0

B,p−ρ0
B,n)

denotes the single-particle energy shift due to the asymmetry energy. It is possible to

express the fluctuating density matrix δρa(t) in terms of plane wave spinor represen-

tation as follows,

δρa(t) =
∑

λλ′s2s1

∫
d3p1d

3p2

(2πh̄)6
| Ψa,λ′(~p2, s2)〉δρs2s1a,λ′λ(~p2, ~p1, t)〈Ψa,λ(~p1, s1) | . (4.29)

In this study, the density fluctuations are analyzed in the no-sea approximation. In this

expansion, there are four different energy sectors (λ, λ′) = (+,+), (−,+), (+,−)

and (−,−) corresponding to positive-energy particle-hole excitations above the Fermi

level, negative-energy particle positive-energy hole, negative-energy hole positive-

energy particle and particle-hole excitations within the Dirac sea, respectively [37] .

The occupation numbers of unoccupied states are zero at zero temperature and very
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small at low temperatures in the no-sea approximation, therefore the contributions

coming from the sector (−,−) can be ignored in the calculations. According to ref.

[37], the particle-hole excitations corresponding to (+,−) and (−,+) sectors make

sizable contributions on the excitation strength of giant collective vibrations. How-

ever, it was found that contributions of these particle-hole sectors in the development

of unstable collective modes are less than 10% for symmetric nuclear matter [17].

In our calculations, we include (+,−) and (−,+) sectors because the magnitude of

these contributions tends to increase with increasing charge asymmetry of the system.

We consider the spin-averaged matrix elements of the fluctuating single-particle den-

sity matrix, δρa,λ′λ(~p2, ~p1, t) = 1
2

∑
s

δρssa,λ′λ(~p2, ~p1, t), to simplify the description. The

linearized TDHF equation is obtained in the plane wave representation by calculating

the matrix element δρa(t) between the spinors as follows,

ih̄
∂

∂t
〈Ψa,λ′(~p2, s2) | δρa(t) | Ψa,λ(~p1, s1)〉 =

[Ea,λ′(p2)− Ea,λ(p1)] 〈Ψa,λ′(~p2, s2) | δρa(t) | Ψa,λ(~p1, s1)〉

− [na,λ′(p2)− na,λ(p1)] 〈Ψa,λ′(~p2, s2) | δha(t) | Ψa,λ(~p1, s1)〉 (4.30)

where we use ρ0
aψa,λ(~p, s) = na,λ(p)ψa,λ(~p, s). The matrix elements for the fluctuat-

ing part of the Hamiltonian for proton and neutron becomes,

〈Ψp,λ′(~p2, s2) | δhp(t) | Ψp,λ(~p1, s1)〉 =

∫
d3xe−i

~k·~xu†λ′(~p2, s2)

×
{
−~α · [gvδ~V +

1

2
gρδ~b3 + eδ ~A]− βgsδφ+ gvδV0 +

1

2
gρδb3,0 + eδA0

}
uλ(~p1, s1)

(4.31)

and

〈Ψn,λ′(~p2, s2) | δhn(t) | Ψn,λ(~p1, s1)〉 =

∫
d3xe−i

~k·~xu†λ′(~p2, s2)

×
{
−~α · [gvδ~V +

1

2
gρδ~b3]− βgsδφ+ gvδV0 +

1

2
gρδb3,0

}
uλ(~p1, s1) .

(4.32)

Here uλ(~p, s) denotes the column vector,

uλ(~p, s) = Nλ(~p)

 χs
~σ·c~p

Mc2+λε∗(p)
χs

 , (4.33)
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where χs is spin wave function and u†λ(~p, s) is transpose of the column vector. In

the above expressions, we use the momentum vectors as ~p2 = ~p + ~̄hk/2 and ~p1 =

~p− ~̄hk/2. We also introduce 〈Ψa,λ′(~p2, s2) | δρa(t) | Ψa,λ(~p1, s1)〉 = δρa,λ′λ(~p2, ~p1, t),

then the linearized TDHF equations for proton and neutron becomes

ih̄
∂

∂t
δρp,λ′λ(~p2, ~p1, t) = [λ′ε∗(p2)− λε∗(p1)]δρp,λ′λ(~p2, ~p1, t)

− [np,λ′(p2)− np,λ(p1)]
{
−u†λ′(~p2, s2)βgsδφ(~k, t)uλ(~p1, s1)

−u†λ′(~p2, s2)~α · [gvδ~V (~k, t) +
1

2
gρδ~b3(~k, t) + eδ ~A(~k, t)]uλ(~p1, s1)

+u†λ′(~p2, s2)[gvδV0(~k, t) +
1

2
gρδb3,0(~k, t) + eδA0(~k, t)]uλ(~p1, s1)

}
(4.34)

and

ih̄
∂

∂t
δρn,λ′λ(~p2, ~p1, t) =[λ′ε∗(p2)− λε∗(p1)]δρn,λ′λ(~p2, ~p1, t)

−[nn,λ′(p2)− nn,λ(p1)]

{
−u†λ′(~p2, s2)~α · [gvδ~V (~k, t) +

1

2
gρδ~b3(~k, t)]uλ(~p1, s1)

− u†λ′(~p2, s2)βgsδφ(~k, t)uλ(~p1, s1)

+u†λ′(~p2, s2)[gvδV0(~k, t) +
1

2
gρδb3,0(~k, t)]uλ(~p1, s1)

}
(4.35)

In these expressions, na,λ(p) = 1/[exp(ε∗ − λµ∗a)/T + 1] denotes baryon occupation

factors for positive and negative energy states. Here, the reduced chemical potential

for proton is µ∗p = µ0
p−
[
gvV0 + 1

2
gρb3,0 + eA0

]
and it is µ∗n = µ0

n−
[
gvV0 + 1

2
gρb3,0

]
for neutron where µ0

a is the chemical potential for protons and neutrons at the ini-

tial state. The quantities δ~V (~k, t), δV0(~k, t), δ ~A(~k, t), δA0(~k, t), δφ(~k, t), δ~b3(~k, t),

and δb3,0(~k, t) represent the space Fourier transforms of fluctuating vector and meson

fields, respectively, with h̄~k = ~p2 − ~p1 . For a short hand notation, we define the

following quantities,

ξb
λ′λ(~p2, ~p1) = u†λ′(~p2, s2)uλ(~p1, s1)

ξsλ′λ(~p2, ~p1) = u†λ′(~p2, s2)βuλ(~p1, s1)

~ξv
λ′λ(~p2, ~p1) = u†λ′(~p2, s2)~αuλ(~p1, s1) (4.36)
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Consequently, the Eqs. (4.34-4.35) can be expressed as

ih̄
∂

∂t
δρp,λ′λ(~p2, ~p1, t) = [λ′ε∗(p2)− λε∗(p1)]δρp,λ′λ(~p2, ~p1, t)

+[npλ(p1)− npλ′(p2)]

{
−~ξv

λ′λ · [gvδ~V (~k, t) +
1

2
gρδ~b3(~k, t) + eδ ~A(~k, t)]

−ξs
λ′λgsδφ(~k, t) + ξb

λ′λ[gvδV0(~k, t) +
1

2
gρδb3,0(~k, t) + eδA0(~k, t)]

}
(4.37)

and

ih̄
∂

∂t
δρn,λ′λ(~p2, ~p1, t) = [λ′ε∗(p2)− λε∗(p1)]δρn,λ′λ(~p2, ~p1, t)

+[nnλ(p1)− nnλ′(p2)]

{
−~ξv

λ′λ · [gvδ~V (~k, t)− 1

2
gρδ~b3(~k, t)]

−ξs
λ′λgsδφ(~k, t) + ξb

λ′λ[gvδV0(~k, t)− 1

2
gρδb3,0(~k, t)]

}
. (4.38)

The space Fourier transformation of the meson field fluctuations and the derivation of

the quantities ξb
λ′λ(~p2, ~p1), ξs

λ′λ(~p2, ~p1) and ~ξv
λ′λ(~p2, ~p1) are given in Appendix E. We

neglect the slight difference of these quantities for proton and neutron due to their

effective masses. Moreover, it is possible to express the space Fourier transforms of

spin-isospin averaged baryon density, scalar density and vector density fluctuations

for protons and neutrons in terms of the fluctuating density matrix as
δ ~ρv

a(
~k, t)

δρs
a(
~k, t)

δρb
a(
~k, t)

 = γ
∑
λλ′

∫
d3p

(2πh̄)3


~ξv
λ′λ(~p2, ~p1)

ξs
λ′λ(~p2, ~p1)

ξb
λ′λ(~p2, ~p1)

 δρa,λ′λ(~p2, ~p1, t) (4.39)

where γ = 2 is the spin factor. The derivation of the above equation is also given in

Appendix E in detail.

4.4 Dispersion Relation

The solution for the linear response equations given in Eqs. (4.37-4.38) can be ob-

tained by employing the one-sided Fourier transformation method in time, δρ̃a(~k, ω) =∫∞
0
dteiωtδρa(~k, t). After transformation, the linearized TDHF equations for protons
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and neutrons becomes

ih̄[δρp,λ′λ(~p2, ~p1, 0)− iωδρ̃p,λ′λ(~p2, ~p1, ω) = [λ′ε∗(p2)− λε∗(p1)]δρp,λ′λ(~p2, ~p1, ω)

+[npλ(p1)− npλ′(p2)]

{
−~ξv

λ′λ · [gvδ~V (~k, ω) +
1

2
gρδ~b3(~k, ω) + eδ ~A(~k, ω)]

−ξs
λ′λgsδφ(~k, ω) + ξb

λ′λ[gvδV0(~k, ω) +
1

2
gρδb3,0(~k, ω) + eδA0(~k, ω)]

}
(4.40)

and

ih̄[δρn,λ′λ(~p2, ~p1, 0)− iωδρ̃n,λ′λ(~p2, ~p1, ω) = [λ′ε∗(p2)− λε∗(p1)]δρn,λ′λ(~p2, ~p1, ω)

+[nnλ(p1)− nnλ′(p2)]

{
−~ξv

λ′λ · [gvδ~V (~k, ω)− 1

2
gρδ~b3(~k, ω)]

−ξs
λ′λgsδφ(~k, ω) + ξb

λ′λ[gvδV0(~k, ω)− 1

2
gρδb3,0(~k, ω)]

}
. (4.41)

In these expressions, δρa,λ′λ(~p2, ~p1, 0) represents fluctuations of proton and neutron

density matrices in the initial state. It is possible to express the Fourier transformed

forms of the fluctuating meson fields in terms of fluctuating scalar, baryon and current

density fluctuations by applying one-sided Fourier transformation to the linearized

meson field equations. The solution of the free particle Klein-Gordon equations is

taken in the form of the plane wave function, φ(xµ) ≈ ei(
~k·~x−wt) = ei(kµx

µ). Conse-

quently, the Fourier transforms of the fluctuating meson fields become

δφ(~k, ω) =

[
gs

−w2 + k2 + µs2 + κφ0 + λ
2
φ2

0

]
δρs(~k, ω)

δV0(~k, ω) =
gv

−w2 + k2 + µv
2
δρb(~k, ω)

δ~V (~k, ω) =
gv

−w2 + k2 + µv
2
δ~ρv(~k, ω)

δb0(~k, ω) =
gρ

−w2 + k2 + µρ2

1

2
δρ3,0(~k, ω)

δ~b(~k, ω) =
gρ

−w2 + k2 + µρ2

1

2
δ~ρ3(~k, ω)

δA0(~k, ω) =
e

−w2 + k2
δρb,p(~k, ω)

δ ~A(~k, ω) =
e

−w2 + k2
δ~ρb,p(~k, ω) . (4.42)

As a result, the Fourier transforms of the linear response equations for protons and
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neutrons in terms of density fluctuations can be obtained as

δρ̃p,λ′λ(~p2, ~p1, ω)−Xp,λ′λ(~k, ω)

[
np,λ′(~p2)− np,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]
= ih̄

δρp,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
(4.43)

and

δρ̃n,λ′λ(~p2, ~p1, ω)−Xn,λ′λ(~k, ω)

[
nn,λ′(~p2)− nn,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]
= ih̄

δρn,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
. (4.44)

where the quantities Xp,λ′λ(~k, ω) and Xn,λ′λ(~k, ω) are given by

Xp,λ′λ(~k, ω) = G2
s ξ

s
λ′λδρ̃s(~k, ω)−G2

v[ξb
λ′λδρ̃b(~k, ω)− ~ξv

λ′λ · δ~̃ρv(~k, ω)]

−G2
ρ[ξ

b
λ′λδρ̃3,0(~k, ω)− ~ξv

λ′λ · δ~̃ρ3(~k, ω)]

−G2
γ[ξ

b
λ′λδρ̃p,b(

~k, ω)− ~ξv
λ′λ · δ~̃ρp,v(~k, ω)] (4.45)

and

Xn,λ′λ(~k, ω) = G2
s ξ

s
λ′λδρ̃s(~k, ω)−G2

v[ξb
λ′λδρ̃b(~k, ω)− ~ξv

λ′λ · δ~̃ρv(~k, ω)]

−G2
ρ[ξ

b
λ′λδρ̃3,0(~k, ω)− ~ξv

λ′λ · δ~̃ρ3(~k, ω)] . (4.46)

In these expressions, the effective coupling constants are defined in terms of the point

coupling constants as
G2

v

G2
s

G2
ρ

G2
γ

 =


g2

v/[−(ω/c)2 + k2 + µ2
v]

g2
s /[−(ω/c)2 + k2 + µ2

v − 2g2φ0 − 3g3φ
2
0]

g2
ρ/4[−(ω/c)2 + k2 + µ2

ρ]

e2/[−(ω/c)2 + k2]

 . (4.47)

Multiplying both sides of Eqs. (4.43) and (4.44) by ξb
λ′λ(~p2, ~p1) and integrating over

the momentum ~p and using the definitions given in Eq. (4.39) for baryon density fluc-

tuations, we obtain the following equations for the Fourier transforms of the baryon

density fluctuations for protons and neutrons as follows;
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δρ̃b
p(
~k, ω) = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
np,λ′(~p2)− np,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]{
ξb
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+ξb
λ′λ
~ξv
λ′λ · [(G2

v +G2
ρ +G2

γ)δ~̃ρ
v
p + (G2

v −G2
ρ)δ~̃ρ

v
n]

− ξb
λ′λξ

b
λ′λ[(G

2
v +G2

ρ +G2
γ)δρ̃

b
p + (G2

v −G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
ξb
λ′λ

δρp,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
(4.48)

and

δρ̃b
n(~k, ω) = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
nn,λ′(~p2)− nn,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]{
ξb
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+ξb
λ′λ
~ξv
λ′λ · [(G2

v −G2
ρ)δ~̃ρ

v
p + (G2

v +G2
ρ)δ~̃ρ

v
n]

− ξb
λ′λξ

b
λ′λ[(G

2
v −G2

ρ)δρ̃
b
p + (G2

v +G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
ξb
λ′λ

δρn,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
. (4.49)

Similarly, we can obtain equations for the Fourier transforms of the fluctuating vector

density of protons and neutrons after multiplication of Eqs. (4.43) and (4.44) by
~ξv
λ′λ(~p2, ~p1) and integrating over the momentum, which can be expressed as

δ~̃ρv
p = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
np,λ′(~p2)− np,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]{
ξv
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+~ξv
λ′λ
~ξv
λ′λ · [(G2

v +G2
ρ +G2

γ)δ~̃ρ
v
p + (G2

v −G2
ρ)δ~̃ρ

v
n]

− ξb
λ′λξ

b
λ′λ[(G

2
v +G2

ρ +G2
γ)δρ̃

b
p + (G2

v −G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
~ξv
λ′λ

δρp,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
(4.50)

and

δ~̃ρv
n(~k, ω) = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
nn,λ′(~p2)− nn,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]{
~ξv
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+~ξv
λ′λ
~ξv
λ′λ · [(G2

v −G2
ρ)δ~̃ρ

v
p + (G2

v +G2
ρ)δ~̃ρ

v
n]

− ~ξv
λ′λξ

b
λ′λ[(G

2
v −G2

ρ)δρ̃
b
p + (G2

v +G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
~ξv
λ′λ

δρn,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
. (4.51)
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Finally, the last two equations for the proton and neutron scalar density fluctuations

can be obtained by multiplying the Eqs. (4.43) and (4.44) by ξs
λ′λ(~p2, ~p1) and evalu-

ating in a similar procedure presented above. Consequently, we can find

δρ̃s
p = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
np,λ′(~p2)− np,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

]{
ξs
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+ξs
λ′λ
~ξv
λ′λ · [(G2

v +G2
ρ +G2

γ)δ~̃ρ
v
p + (G2

v −G2
ρ)δ~̃ρ

v
n]

− ξs
λ′λξ

b
λ′λ[(G

2
v +G2

ρ +G2
γ)δρ̃

b
p + (G2

v −G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
ξs
λ′λ

δρp,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
(4.52)

and

δρ̃s
n(~k, ω) = γ

∑
λλ′

∫
d3p

(2πh̄)3

[
nn,λ′(~p2)− nn,λ(~p1)

h̄ω − [λ′ε∗(p2)− λε∗(p1)

] {
ξs
λ′λξ

s
λ′λG

2
s (δρ̃s

p + δρ̃s
n)

+ξs
λ′λ
~ξv
λ′λ · [(G2

v −G2
ρ)δ~̃ρ

v
p + (G2

v +G2
ρ)δ~̃ρ

v
n]

− ξs
λ′λξ

b
λ′λ[(G

2
v −G2

ρ)δρ̃
b
p + (G2

v +G2
ρ)δρ̃

b
n]
}

+ih̄γ
∑
λλ′

∫
d3p

(2πh̄)3
ξs
λ′λ

δρn,λ′λ(~p2, ~p1, 0)

h̄ω − [λ′ε∗(p2)− λε∗(p1)]
. (4.53)

We have found six coupled algebraic equations represented above, which contain the

relations between the Fourier transforms of the small amplitude fluctuations for the

baryon density, the scalar density and the vector density of protons and neutrons.

These equations can be expressed as a matrix equation in the following form:



Ap1 Ap2 Ap3 An1 An2 An3

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2 Bn

3

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 F n

1 F n
2 F n

3





δρ̃v
p(
~k, ω)

δρ̃s
p(
~k, ω)

δρ̃b
p(
~k, ω)

δρ̃v
n(~k, ω)

δρ̃s
n(~k, ω)

δρ̃b
n(~k, ω)


= ih̄



S̃b
p(
~k, ω)

S̃s
p(
~k, ω)

S̃v
p(
~k, ω)

S̃b
n(~k, ω)

S̃s
n(~k, ω)

S̃v
n(~k, ω)


. (4.54)
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The elements of the coefficient matrix is given by



Ap1

Bp
1

Cp
1

Dp
1

Ep
1

F p
1


=



−
(
G2

v +G2
ρ +G2

γ

)
χv
p

−
(
G2

v +G2
ρ +G2

γ

)
χ̃v
p

1−
(
G2

v +G2
ρ +G2

γ

)
χ̃bp

−
(
G2

v −G2
ρ

)
χv
n

−
(
G2

v −G2
ρ

)
χ̃v
n

−
(
G2

v −G2
ρ

)
χ̃bn





Ap2

Bp
2

Cp
2

Dp
2

Ep
2

F p
2


=



−G2
sχ

s
p

1−G2
s χ̃

s
p

−G2
s χ̃

v
p

−G2
sχ

s
n

−G2
s χ̃

s
n

−G2
s χ̃

v
n




Ap3

Bp
3

Cp
3

Dp
3

Ep
3

F p
3


=



1 +
(
G2

v +G2
ρ +G2

γ

)
χbp(

G2
v +G2

ρ +G2
γ

)
χs
p(

G2
v +G2

ρ +G2
γ

)
χv
p(

G2
v −G2

ρ

)
χb
n(

G2
v −G2

ρ

)
χs
n(

G2
v −G2

ρ

)
χv
n





An1

Bn
1

Cn
1

Dn
1

En
1

F n
1


=



−
(
G2

v −G2
ρ

)
χv
p

−
(
G2

v −G2
ρ

)
χ̃v
p

−
(
G2

v −G2
ρ

)
χ̃bp

−
(
G2

v +G2
ρ

)
χv
n

−
(
G2

v +G2
ρ

)
χ̃v
p

1−
(
G2

v +G2
ρ

)
χ̃bn




An2

Bn
2

Cn
2

Dn
2

En
2

F n
2


=



−G2
sχ

s
p

−G2
s χ̃

s
p

−G2
s χ̃

v
p

−G2
sχ

s
n

1−G2
s χ̃

s
n

−G2
s χ̃

v
n





An3

Bn
3

Cn
3

Dn
3

En
3

F n
3


=



(
G2

v −G2
ρ

)
χbp(

G2
v −G2

ρ

)
χsp(

G2
v −G2

ρ

)
χv
p

1 +
(
G2

v +G2
ρ

)
χbn(

G2
v +G2

ρ

)
χ̃sn(

G2
v +G2

ρ

)
χ̃v
n


.

(4.55)

In the above expressions, the quantities χ’s and χ̃’s are the relativistic quantal Lind-

hard functions associated with baryon, scalar and vector densities. In our analysis

of spinodal instabilities in the relativistic mean field approximation, we consider the

longitudinal unstable collective modes. Hence, only the component along the propa-

gation direction are taken into account for the vector density fluctuations and we use

the notation δρ̃v
a(
~k, ω) = δ~̃ρv

a(
~k, ω)·~k and ξ̃v

a = ~ξv
a ·~k in the following expressions. For

the longitudinal modes, the Linhard functions for charge asymmetric nuclear matter

are given by
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
χv
a(
~k, ω)

χs
a(
~k, ω)

χb
a(
~k, ω)

 = γ
∑
λλ′

∫
d3p

(2πh̄)3


ξb
λ′λξ

v
λ′λ

ξb
λ′λξ

s
λ′λ

ξb
λ′λξ

b
λ′λ


× na,λ′(~p+ h̄~k/2)− na,λ(~p− h̄~k/2)

h̄ω − [λ′ε∗(~p+ h̄~k/2)− λε∗(~p− h̄~k/2)]
(4.56)

and
χ̃v
a(
~k, ω)

χ̃s
a(
~k, ω)

χ̃b
a(
~k, ω)

 = γ
∑
λλ′

∫
d3p

(2πh̄)3


ξs
λ′λξ

v
λ′λ

ξs
λ′λξ

s
λ′λ

ξv
λ′λξ

v
λ′λ


× na,λ′(~p+ h̄~k/2)− na,λ(~p− h̄~k/2)

h̄ω − [λ′ε∗(~p+ h̄~k/2)− λε∗(~p− ~k/2)]
. (4.57)

The stochastic source terms in Eq. (4.54) are given by,
S̃v
a(
~k, ω)

S̃s
a(
~k, ω)

S̃b
a(
~k, ω)

 = γ
∑
λλ′

∫
d3p

(2πh̄)3


ξv
λ′λ

ξs
λ′λ

ξb
λ′λ

 δρa,λ′λ(~p+ h̄~k/2, ~p− h̄~k/2)

h̄ω − [λ′ε∗(~p+ h̄~k/2)− λε∗(~p− h̄~k/2)]

(4.58)

where δρa,λ′λ(~p + h̄~k/2, ~p − h̄~k/2) = δρa,λ′λ(~p + h̄~k/2, ~p − h̄~k/2, 0) represents the

single-particle density matrix fluctuation in the initial state. We can solve the alge-

braic equation given in Eq. (4.54) for the proton and neutron baryon density fluctua-

tions by applying the Cramer’s rule. The proton density fluctuation δρ̃b
p(
~k, ω) is found

as

δρ̃b
p(
~k, ω) =

1

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 ih̄S̃b
p An1 An2 An3

Bp
1 Bp

2 ih̄S̃s
p Bn

1 Bn
2 Bn

3

Cp
1 Cp

2 ih̄S̃v
p Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 ih̄S̃b
n Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 ih̄S̃s
n En

1 En
2 En

3

F p
1 F p

2 ih̄S̃v
n F n

1 F n
2 F n

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.59)

where ε(~k, ω) denotes the susceptibility. If we expand this equation with respect to

the third column, we get
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δρ̃b
p(
~k, ω) =

+
ih̄S̃v

p

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bp
1 Bp

2 Bn
1 Bn

2 Bn
3

Cp
1 Cp

2 Cn
1 Cn

2 Cn
3

Dp
1 Dp

2 Dn
1 Dn

2 Dn
3

Ep
1 Ep

2 En
1 En

2 En
3

F p
1 F p

2 F n
1 F n

2 F n
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

ih̄S̃s
p

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 An1 An2 An3

Cp
1 Cp

2 Cn
1 Cn

2 Cn
3

Dp
1 Dp

2 Dn
1 Dn

2 Dn
3

Ep
1 Ep

2 En
1 En

2 En
3

F p
1 F p

2 F n
1 F n

2 F n
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
ih̄S̃b

p

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 An1 An2 An3

Bp
1 Bp

2 Bn
1 Bn

2 Bn
3

Dp
1 Dp

2 Dn
1 Dn

2 Dn
3

Ep
1 Ep

2 En
1 En

2 En
3

F p
1 F p

2 F n
1 F n

2 F n
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− ih̄S̃v

n

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 An1 An2 An3

Bp
1 Bp

2 Bn
1 Bn

2 Bn
3

Cp
1 Cp

2 Cn
1 Cn

2 Cn
3

Ep
1 Ep

2 En
1 En

2 En
3

F p
1 F p

2 F n
1 F n

2 F n
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
ih̄S̃s

n

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 An1 An2 An3

Bp
1 Bp

2 Bn
1 Bn

2 Bn
3

Cp
1 Cp

2 Cn
1 Cn

2 Cn
3

Dp
1 Dp

2 Dn
1 Dn

2 Dn
3

F p
1 F p

2 F n
1 F n

2 F n
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− ih̄S̃b

n

ε(~k, ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 An1 An2 An3

Bp
1 Bp

2 Bn
1 Bn

2 Bn
3

Cp
1 Cp

2 Cn
1 Cn

2 Cn
3

Dp
1 Dp

2 Dn
1 Dn

2 Dn
3

Ep
1 Ep

2 En
1 En

2 En
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.60)

where the five by five matrices are defined as Np
1 , Np

2 , Np
3 , Np

4 , Np
5 , Np

6 respectively.

By using these definitions, the baryon density fluctuations for proton can be expressed

as

δρ̃bp(
~k, ω) =

ih̄

ε(~k, ω)
[Np

1 S̃
b
p −N

p
2 S̃

s
p +Np

3 S̃
v
p −N

p
4 S̃

b
n +Np

5 S̃
s
n −N

p
6 S̃

v
n] . (4.61)

By the same way, the neutron density fluctuations δρ̃bn(~k, ω) is obtained as

δρ̃bn(~k, ω) =
ih̄

ε(~k, ω)
[−Nn

1 S̃
b
p +Nn

2 S̃
s
p −N

p
3 S̃

v
p +Nn

4 S̃
b
n −Nn

5 S̃
s
n +Nn

6 S̃
v
n] . (4.62)
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Here the expansion coefficients Nn
j , for j = 1, ..., 6 are given by

Nn
1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

F p
1 F p

2 F p
3 F n

1 F n
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Nn

2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

F p
1 F p

2 F p
3 F n

1 F n
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nn
3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

F p
1 F p

2 F p
3 F n

1 F n
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Nn

4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

F p
1 F p

2 F p
3 F n

1 F n
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nn
5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

F p
1 F p

2 F p
3 F n

1 F n
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Nn

6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(4.63)

Furthermore, the susceptibility is defined as the determinant of the coefficient matrix

in Eq. (4.54),

ε(~k, ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2 An3

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2 Bn

3

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 F n

1 F n
2 F n

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.64)

The condition ε(~k, ω) = 0 gives the dispersion relation. The boundary of the spinodal

region and the growth rates for the unstable collective modes in the spinodal region

can be calculated from the dispersion relation.
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4.5 Growth of Baryon Density Fluctuations

The time development of baryon density fluctuations is determined by taking the

inverse Fourier transform of δρ̃Ba (~k, ω) in time as δρ̃Ba (~k, t) =
∫

ω
2π
δρ̃Ba (~k, ω)e−iωt.

We can evaluate this integral with the help of residue theorem. When using the residue

theorem, we need to consider the poles arising from the susceptibility and source

terms S̃b
a, S̃

s
a and S̃v

a in Eqs. (4.61) and (4.62). As mentioned in Chapter 2, non-

collective poles are important for specifying density fluctuations at the initial state,

however the resulting density fluctuations do not grow in time [21]. Moreover, it is

known from the previous analysis that the contributions of the non-collective poles

are effective for higher wave numbers. Therefore, we neglect non-collective poles of

the susceptibility and poles of the source terms in this analysis. In the calculation of

density fluctuations, we keep only the collective poles of the susceptibility which give

the dominant contribution. There are two collective poles at ω = ∓iΓk in the spinodal

region and by evaluating these poles according to the Cauchy-Residue theorem, we

find

δρ̃Ba (~k, t) = δρ+
a (~k)e+Γkt + δρ−a (~k)e−Γkt (4.65)

where the growing and decaying parts of neutron and proton baryon density fluctua-

tions given as

δρ∓n (~k) = −h̄

{
−Nn

1 S̃
b
p +Nn

2 S̃
s
p −Nn

3 S̃
v
p +Nn

4 S̃
b
n −Nn

5 S̃
s
n +Nn

6 S̃
v
n

∂ε(~k, ω)/∂ω

}
ω=∓iΓk

(4.66)

and

δρ∓p (~k) = −h̄

{
Np

1 S̃
b
p −N

p
2 S̃

s
p +Np

3 S̃
v
p −N

p
4 S̃

b
n +Np

5 S̃
s
n −N

p
6 S̃

v
n

∂ε(~k, ω)/∂ω

}
ω=∓iΓk

.

(4.67)

The derivative of the susceptibility ∂ε(~k,ω)
∂ω

are presented in Appendix F.

By using the time development of density fluctuations, we can calculate the correla-

tion function of density fluctuations and obtain useful information about dynamical

evolution of the unstable nuclear system in the spinodal region. Here we consider

only the baryon density correlation function. The equal time baryon density correla-
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tion function can be defined as

σab(|~r − ~r′|, t) = δρBa (~r, t)δρBb (~r′, t) =

∫
d3k

(2π)3
ei
~k·~xσ̃ab(~k, t) (4.68)

where a and b represent the neutron or proton. Here x = ~r − ~r′ denotes distance

between two space locations and σ̃ab(~k, t) is the spectral intensity of the baryon den-

sity correlation functions. In the SMF approach, spectral intensities are defined as the

second moment of the Fourier transform of the baryon density fluctuations according

to,

δρ̃Ba (~k, t)(δρ̃Bb (~k′, t))∗ = (2π)3δ(~k − ~k′)σ̃ab(~k, t) (4.69)

where the overline denotes the average over the ensemble produced at the initial state.

In order to calculate the total spectral intensity function, we consider all the con-

tributions arising from protons, neutrons and cross terms as σ̃(~k, t) = σ̃pp(~k, t) +

σ̃np(~k, t) + σ̃pn(~k, t) + σ̃nn(~k, t). By using the growing and decaying parts of the den-

sity fluctuations, the spectral intensity of baryon density correlations can be expressed

as

σ̃BBab (~k, t)(2π)3δ3(~k − ~k′) = δρB+
a (~k)(δρB+

b (~k))∗e2Γkt + δρB−a (~k)(δρB−b (~k))∗e−2Γkt

+δρB+
a (~k)(δρB−b (~k))∗ + δρB−a (~k)(δρB+

b (~k))∗ .

(4.70)

According to the main assumption of the Stochastic mean-field approach, the variance

of the initial density fluctuations in the plane wave representation can be expressed in

the following form:

δρaλµ(~p2, ~p1, 0)δρbλ′µ′(~p2, ~p1, 0) = δabδλλ′δµµ′(2πh̄)6δ(~p1 − ~p′1)δ(~p2 − ~p′2)

×1

2
[nλ(~p2)(1− nµ(~p1)) + nµ(~p1)(1− nλ(~p2))]

(4.71)

where the factor (2πh̄)6 emerges due to the normalization in the plane wave represen-

tation. Each term in Eq. (4.70) is calculated by employing this result. For instance,

we obtain the first and second terms for proton-proton spectral intensity function by
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taking a = b = p as

(
δρBp (~k)

)± [(
δρBp (~k)

)±]∗
=

(2π)3δ(~k − ~k′)h̄2∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓ

∣∣∣2
×
{
K+p
BB|N

+
1p|2 −K

+p
BS(N+∗

1p N
+
2p +N+

2pN
+∗
1p ) +K+p

SS |N
+
2p|2 +K+p

V V |N
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3p|2
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4p|2 −K+n
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5p +N+

5pN
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SS |N
+
5p|2 +K+n

V V |N
+
6p|2

+ K+p
BV (N+

1pN
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3p +N+

3pN
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1p )−K+p

SV (N+
2pN
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3p +N+

3pN
+∗
2p )

+ K+n
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4pN
+∗
6p +N+

6pN
+∗
4p )−K+n

SV (N+
5pN

+∗
6p +N+

6pN
+∗
5p )
}

(4.72)

The third and fourth terms can be written as,

(
δρBp (~k)

)+
[(
δρBp (~k)

)−]∗
=

(2π)3δ(~k − ~k′)h̄2[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
×
{
K−pBBN

+
1pN

−∗
1p −K
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2p +K−pV VN
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3pN
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4p ) +K−nSSN
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5pN
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5p +K−nV VN
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6pN
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6p

+K−pBV (N+
1pN
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1p )−K−pSV (N+

2pN
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3pN
−∗
2p )

+ K−nBV (N+
4pN

−∗
6p +N+

6pN
−∗
4p )−K−nSV (N+

5pN
−∗
6p +N+

6pN
−∗
5p )
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(4.73)

and

(
δρBp (~k)

)− [(
δρBp (~k)

)+
]∗

=
(2π)3δ(~k − ~k′)h̄2[(

∂ε(k,ω)
∂ω

)
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(4.74)

In the above expressions, N+
ia factors are evaluated at ω = +iΓk and N−ia factors are

evaluated at ω = −iΓk for i = 1, ..., 6. According to the numerical calculations,

N±1a, N
±
2a, N

±
4a and N±5a are found as real and N±3a, N

±
6a are imaginary. There is a rela-

tion between them, that can be written asN−ia = N+
ia for i = 1, 2, 4, 5 andN−ia = −N+

ia
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for i = 3, 6. Consequently, if we write the spectral intensity function as

σ̃pp(~k, t) = h̄2
E+
pp∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2 (e2Γt+e−2Γt)+h̄2
E+−
pp + E−+

pp[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
(4.75)

where the short-hand notation E are used for the terms in parenthesis in Eqs. (4.72-

4.74), the contributions coming from K−aBV and K−aSV terms cancelled each other.

The spectral intensities σ̃nn(~k, t), σ̃pn(~k, t) and σ̃np(~k, t) can also be determined by

following the same steps. The detailed calculations are given in Appendix G. As a

result, the spectral intensity of density correlation functions can be written in a general

form as

σ̃ab(~k, t) = h̄2 E+
ab(
~k)

|[∂ε(~k, ω)/∂ω]ω=iΓk |2
(e+2Γkt + e−2Γkt) +

2h̄2E−ab(
~k)

|[∂ε(~k, ω)/∂ω]ω=iΓk |2
(4.76)

where the quantities E±ab for neutrons, protons and cross terms are given by

E±pp = K±pBB|N
+
1p|2 − 2K±pBS(N+

1pN
+
2p) +K±pSS |N

+
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The quantities K±a including the source term correlations are defined as
K±aBB

K±ass

K±avv

K±aBs
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∫
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v
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s
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(4.78)
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In this chapter, we consider only the pole contributions arising from the collective

poles and neglect the cut contributions due to the non-collective poles in the rela-

tivistic calculations. Therefore, the initial value of the density correlation function

does not match the initial condition given in Eq. (4.71) and the initial value of the

expression obtained by pole approximation diverges as Γk goes to zero for short wave-

lengths. In order to cancel out this divergent behaviour, we carry out the integration

in Eq. (4.68) up to a kcut. This cut-off value is taken sufficiently below the singular

behavior of σ̃ab(~k, t = 0).

Consequently, the total baryon density correlation function is expressed as the sum of

proton and neutron correlation functions and the cross-correlations according to,

σ(| ~r − ~r′ |, t) = σpp(| ~r − ~r′ |, t) + σnn(| ~r − ~r′ |, t) + 2σpn(| ~r − ~r′ |, t). (4.79)
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CHAPTER 5

NUMERICAL RESULTS IN RELATIVISTIC APPROACH

In chapter 4, early development of spinodal instabilities and density fluctuations are

investigated in the stochastic extension of the nonlinear Walecka model for asym-

metric nuclear matter. In this section, the numerical calculations are performed by

using the expressions evaluated in the previous chapter. We calculate essentially the

growth rates and phase diagrams of the unstable collective modes in the spinodal re-

gion, and early growth of the baryon density correlation functions. In the calculations,

we employ the NL3 parameter set given in Table 4.1 which includes the non-linear

self-interactions of the scalar meson. All of the calculations are performed for tem-

peratures T = 1 MeV and T = 5 MeV at two different initial densities ρB = 0.2ρ0

and ρB = 0.4ρ0 in order to observe the unstable behaviour of nuclear matter in the

spinodal region. Also the results are implemented for the initial charge asymmetries

I = 0.0, 0.5 and 0.8.

Furthermore, we compare the quantal calculations with the semi-classical results

given in Ref. [36, 39] for asymmetries I = 0.5 and 0.8 to examine the quantal

effects. In the semi-classical description [39], time evolution of density fluctuations

are given by the relativistic Vlasov equation instead of TDHF equation.

5.1 Growth Rates of the Unstable Collective Modes

By using the dispersion relation given in Eq. (4.62), we can obtain the growth rates of

the unstable collective modes characterized by the wave number. Fig. 5.1 represents

the growth rates of unstable modes as a function of wave number for temperature
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T = 1 MeV at the initial densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for different initial

asymmetries. We observe that the behavior of the dispersion relation of the unstable

collective modes is similar to those obtained in non-relativistic calculations. The

wave number around the maximum growth rate shifts approximately from 0.7 fm−1

to 0.5 fm−1 when the asymmetry parameter increases. For smaller densities, ρB =

0.2ρ0, unstable modes extend over a broader range of wave number compared to the

density ρB = 0.4ρ0. In order to observe the temperature dependence of the dispersion

relation Fig. 5.2 is introduced at temperature T = 5 MeV under the similar conditions

of Fig. 5.1. It can be seen from the graphs that the growth rates reduce as temperature

increases at the same initial density and asymmetry values. For different asymmetry

values, the wave numbers associated with the maximum growth rates change between

0.45 fm−1 to 0.6 fm−1 with the corresponding wavelengths λ = (10 − 14) fm for

density ρB = 0.2ρ0, and 0.3 fm−1 to 0.6 fm−1 for density ρB = 0.4ρ0. As a result,

the range of unstable modes reduces with increasing temperature, initial density and

asymmetry parameters. The unstable behaviour of the system have a strong isospin

dependence, therefore the neutron rich system displays less unstable activity under

the same conditions with symmetric matter.
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Figure 5.1: Growth rates of the unstable collective modes as a function of wave num-
ber at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry parameters
I = 0.0, 0.5, 0.8 at T = 1 MeV . The solid lines indicate the presence of the
Coulomb interaction.

In both graphs, the effects of the Coulomb interaction are also presented with the

separate curves. The solid lines indicate the calculations including the Coulomb in-
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Figure 5.2: Growth rates of the unstable collective modes as a function of wave num-
ber at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry parameters
I = 0.0, 0.5, 0.8 at T = 5 MeV. The solid lines indicate the presence of the Coulomb
interaction.

teraction while the dashed lines are drawn for the systems without the electromagnetic

interaction. It can be observed that there is a small cut-off at the long wavelength edge

at each graphs due to the electromagnetic interaction. Except this cut-off value, the

contribution of the Coulomb interaction does not change the behaviour of the disper-

sion relation and growth rates of unstable collective modes especially at the lower

densities.

Fig. 5.3 denotes the comparison of the quantal and semi-classical dispersion rela-

tions for initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 at T = 1 MeV and

T = 5 MeV for two different asymmetry parameters I = 0.5 and 0.8. In the figure,

the solid lines represent the quantal calculations while the dashed lines are the re-

sults of semi-classical calculations. The semi-classical results are also obtained in the

framework of the relativistic Walecka model with NL3 parameter set [39]. In semi-

classical results, the range of unstable modes are larger than the results of quantal

calculations at smaller densities, ρB = 0.2ρ0 , for both temperature and asymmetry

values. On the other hand, quantal and semi-classical calculations yield almost the

same results at density ρB = 0.4ρ0. As a result, the quantum statistical effects are

important at lower densities. The maximum of dispersion relation is reduced due to

quantal effects at the initial state therefore fluctuations take more time to develop in
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Figure 5.3: Growth rates of the unstable collective modes as a function of wave num-
ber at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry parameters
I = 0.5 and 0.8 at T = 1 MeV and T = 5 MeV. The solid and dashed lines are results
of quantal and semi-classical calculations, respectively.

the case of quantal calculations as in Ref. [16, 18].

Fig. 5.4 illustrates the growth rates of the most unstable collective modes depending

on the initial baryon density in asymmetric matter with I = 0.0, 0.5 and 0.8 at

two different temperatures T = 1 MeV and T = 5 MeV. The figure represents the

effect of Coulomb interaction and the isospin dependence of unstable behavior of

the system. The most unstable behavior of the system occurs around ρB = 0.2ρ0 at

temperature T = 1 MeV. At higher temperature of T = 5 MeV, the most unstable

modes shift toward slightly higher densities around ρB = 0.3ρ0. Furthermore, the

density values at which the most unstable modes occurs do not change significantly

with increasing asymmetry values. The contribution of electromagnetic interaction

becomes observable at higher densities. It can be seen from Figs. 5.1, 5.2 and 5.4 that
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the Coulomb force has little influence on the instabilities. Therefore, this influence

do not presented separately in the rest of the chapter and all the figures include the

Coulomb effect.

0 , 0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6
0 , 0 0

0 , 0 1

0 , 0 2

0 , 0 3

0 , 0 4

0 , 0 5

0 , 0 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , 7
 

 

Γ ma
x  ( 

c/f
m 

) 

ρ/ρ
0

T = 1  M e V  I = 0 . 0   C o u l o m b
 I = 0 . 5   C o u l o m b
 I = 0 . 8   C o u l o m b
 I = 0 . 0   
 I = 0 . 5  
 I = 0 . 8  

 

 

ρ/ρ
0

T = 5  M e V

Figure 5.4: Growth rates of the most unstable collective modes as a function of ini-
tial baryon density in asymmetric matter with I = 0.0, 0.5 and 0.8 at temperature
T = 1 MeV and T = 5 MeV. The solid lines indicate the presence of the Coulomb
interaction.

In Fig. 5.5, the comparison of the most unstable modes as a result of quantal and

semi-classical calculations are presented. Solid lines indicates the quantal results

when the dashed lines are drawn for the semi-classical calculations. At temperature

T = 1 MeV, the growth rates of the most unstable modes are higher in the semi-

classical calculations. However, quantal and semi-classical results display similar

behaviour at higher temperature. The density values corresponding to the most unsta-

ble modes are approximately same for each calculations. As a result, we can say that

quantal dispersion relation are very close to that found in the semi-classical calcula-

tions. Therefore, we conclude that the particle-hole excitations resulting from (−,+)

and (+,−) sectors, that do not have a counterpart in the semi-classical calculations,

do not give any significant addition to the dispersion relation and growth rates of the

unstable collective modes.
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Figure 5.5: Growth rates of the most unstable collective modes as a function of initial
baryon density in asymmetric matter with I = 0.5 and 0.8 at temperature T = 1 MeV
and T = 5 MeV. The solid and dashed lines are results of quantal and semi-classical
calculations, respectively.

5.2 Boundary of Spinodal Region

The boundary of the spinodal instability region can be determined through the phase

diagrams. In Fig. 5.6, the phase diagrams for asymmetric nuclear matter are given

as temperature versus density graphs for different wavelength values. The graphs are

introduced for initial asymmetries I = 0.0, 0.5 and 0.8 for comparison. The peaks

of each curve specify the critical temperatures for corresponding wavelengths. As

mentioned earlier, the nuclear system is in equilibrium above the critical temperature

while the system becomes unstable and exists as a mixture of liquid and gas phases

in the regions under the curves. The value of the critical temperature increases with

increasing wavelengths up to a saturation point. In this case, TC does not change with

the wavelengths above λ = 18 fm.

Furthermore, similar to the non-relativistic case, the critical temperature has a strong

dependence on the initial asymmetry value in the relativistic calculations. We con-

clude again that the spinodal instability region and also the critical temperature reduce

with increasing value of asymmetry parameter. The value of critical temperatures are

read as approximately Tc = 12 MeV, Tc = 11 MeV and Tc = 9 MeV for the corre-

sponding asymmetry values I = 0.0, 0.5 and I = 0.8. These critical temperatures
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occurs at density ρ = 0.3ρ0 for I = 0.0 and 0.5, and at ρ = 0.2ρ0 for I = 0.8.
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Figure 5.6: Phase diagram in density-temperature plane for a set of wavelengths with
asymmetries I = 0.0, 0.5 and 0.8 .

From the lowest panel of Fig. 5.6, we can obtain the limiting density value for phase

transition for neutron-rich matter at temperature T = 1 MeV with asymmetry I =

0.8 that are consistent with the conditions in the crusts of the neutron stars. In this

case, the phase transition takes place up to the limiting density value ρB = 0.5ρ0.

For asymmetries I = 0.0 and 0.5, the spinodal region are bounded with the value

ρB = 0.55ρ0.
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5.3 Spectral Intensity of Density Correlations

For the investigation of initial growth of baryon density fluctuations the density cor-

relation functions are defined in Eq. (4.68) in terms of spectral intensity σ(~k, t) of

density correlations. In Fig. 5.7, the total spectral intensity of density correlation

functions is illustrated as a function of wave number at temperature T = 1 MeV for

varying asymmetry parameters at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0.

In the spectral intensity graphs, it is observed that the maximum growth takes place

over the wave numbers corresponding to the range of dominant unstable modes ob-

tained in Fig. 5.1. The growth of the spectral intensities depend strongly on the initial

charge asymmetry; the growth rates reduce for both density cases with increasing

asymmetry value. By comparing the spectral intensities with densities ρB = 0.2ρ0

and ρB = 0.4ρ0, we deduce that the spectral intensities grow faster at lower densities

for temperature T = 1 MeV.

Fig. 5.8 are given for the system at T = 5 MeV with same conditions of Fig. 5.7. The

asymmetric nuclear matter with I = 0.8 and density ρB = 0.4ρ0 does not enter the

spinodal region at this temperature which can be observed from the phase diagram.

Therefore, this figure is drawn up to the asymmetry I = 0.5. Again, the range for

maximum growth match with the range of wave number for the most unstable collec-

tive modes. As the temperature increases, the growth of spectral intensities becomes

slower at lower densities, ρB = 0.2ρ0, while the growth becomes faster at higher den-

sities, ρB = 0.4ρ0. In addition, the range for the unstable collective modes decreases

with increasing temperature and initial density values.

In Figs. 5.7 and 5.8, the spectral intensities of density correlations are calculated

for only the collective poles. However, we know that there are also non-collective

poles arising from the susceptibility and source terms. The density fluctuations due

to non-collective poles do not grow in time and these poles are effective at higher

wave numbers. Therefore, we consider only the long wavelength regions in which

the dominant contribution comes from the collective poles. Consequently, spectral

intensity graphs are drawn up to a cut-off wave number between the values kcut =

0.7 − 1.15 fm−1. This cut-off value is determined due to the singular behavior of

pole contributions. The calculation of correlation functions up to the cut-off value is
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Figure 5.7: Spectral intensity of baryon density correlation function as a function of
wave number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry
parameters I = 0.0, 0.5 and 0.8 at T = 1 MeV.

a good approximation but it is necessary to include the cut contributions come from

the non-collective poles to satisfy the initial conditions accurately.
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Figure 5.8: Spectral intensity of baryon density correlation function as a function of
wave number at initial baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry
parameters I = 0.0 and 0.5 at T = 5 MeV.

5.4 Density Correlation Functions

The total correlation function of baryon density fluctuations is expressed as the sum

of proton and neutron correlation functions and the cross-correlations in Eq. (4.79).

The numerical calculation of baryon density correlation function gives a measure

about the typical size of primary condensed regions and time scale of condensa-

tion mechanism. Fig. 5.9 illustrates the equal time baryon density correlation func-

tions as a function of distance between two space locations x = |~r − ~r′| at T = 1

MeV with initial densities ρ = 0.2ρ0 and ρ = 0.4ρ0. The density correlation func-

tions are evaluated by using the total spectral intensities given in Fig. 5.7 and the

graphs are plotted for three different charge asymmetries. The time evolution of den-

sity fluctuations is faster for symmetric matter and decreases as the matter becomes

84



neutron-rich. At lower density case, σbb(x = 0, t = 50fm/c) = 0.018 fm−6 for

symmetric matter while σbb(x = 0, t = 50 fm/c) = 0.003 fm−6 for asymmet-

ric matter with I = 0.8. The baryon density fluctuations grow six times slower in

neutron-rich matter than in symmetric matter. From Fig. 5.9, we can also observe

the change in density correlations due to varying initial densities. At the higher den-

sity of ρB = 0.4ρ0, σbb(x = 0, t = 50 fm/c) = 0.0095 fm−6 for I = 0.0 and

σbb(x = 0, t = 50 fm/c) = 0.001 fm−6 for asymmetry parameter I = 0.8. At

lower densities, the time development of baryon density correlation function is faster

at temperature T = 1 MeV.

Furthermore, valuable information related to the approximate size of clusters formed

during the initial time of spinodal decomposition is obtained from these graphs. The

correlation length xc, which provide a measure for radius of correlation volume, is

defined as the width of the correlation function at half maximum. The correlation

length is about xc = 2.2 fm for symmetric matter and increases to xc = 2.7 fm

for asymmetric matter with I = 0.8 at density ρ = 0.2ρ0. At the higher density

of ρB = 0.4ρ0, it increases from about 2.5 fm to 3.3 fm when the matter becomes

neutron-rich. The nuclear matter with I = 0.8 at low temperature around T = 1

MeV reflects the typical conditions in the crust of neutron stars and the correlation

length at this condition gives the number of nucleons fluctuating in the correlation

volume in the range of 17 ≤ ∆A ≤ 27 .

In Fig. 5.10, the same graphs are given but at a higher temperature T = 5 MeV. At this

temperature, baryon density fluctuations grow slower than T = 1 MeV case at both

densities. For all asymmetry parameters, the growth rates decrease and the correlation

lengths increase as the temperature increases. For instance, in asymmetric matter with

I = 0.5 the correlation length increases from about xc = 2.8 fm at temperature T = 1

MeV to about xc = 3.3 fm at temperature T = 5 MeV for density ρB = 0.4ρ0. From

Figs. 5.9 and 5.10, we can conclude that the correlation length depends on the initial

charge asymmetry, temperature and the initial baryon density. Besides, we note that

the radius of the correlation volume calculated from density correlation functions is

consistent with the quarter wavelengths of the dominant unstable modes obtained

from the dispersion relations for the corresponding temperature, initial density and

charge asymmetries.
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Figure 5.9: Baryon density correlation functions as a function of distance at initial
baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry parameters I = 0.0, 0.5

and 0.8 at temperature T = 1 MeV.

In Fig. 5.11, the baryon density correlation functions of quantal and semi-classical

calculations are compared for asymmetric nuclear matter with I = 0.5 at densities

ρB = 0.2ρ0 and ρB = 0.4ρ0 for temperatures T = 1 MeV and T = 5 MeV at

times t = 0 and t = 50 fm/c. The solid and dashed lines denote the results of quan-
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Figure 5.10: Baryon density correlation functions as a function of distance at initial
baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 for asymmetry parameters I = 0.0 and
0.5 at temperature T = 5 MeV.

tal and semi-classical calculations, respectively. At lower temperature T = 1 MeV,

the growth of density correlation functions is larger in quantal calculations compared

to the semi-classical results due to the large quantal effects. On the other hand, the

baryon density correlation functions for semi-classical limit grow faster at tempera-

ture T = 5 MeV since the quantal effects are not important for higher temperatures.

From Fig. 5.11, we observe that at T = 5 MeV, the semi-classical calculations pro-

vide a good approximation for density correlation functions particularly at higher den-

sities. The correlation lengths are found nearly same for quantal and semi-classical

calculations hence we can conclude that the correlation length is not very sensitive to

the quantal effects.
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Figure 5.11: Baryon density correlation functions as a function of distance at initial
baryon densities ρB = 0.2ρ0 and ρB = 0.4ρ0 at temperatures T = 1 MeV and
T = 5 MeV for asymmetry I = 0.5. The solid and dashed lines are results of quantal
and semi-classical calculations, respectively.
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CHAPTER 6

CONCLUSION

In this thesis, early development of density fluctuations in the spinodal region are in-

vestigated for asymmetric nuclear matter in both the non-relativistic and relativistic

frameworks by employing the stochastic mean-field approach. The SMF approach

in either non-relativistic or relativistic frameworks goes beyond the standard mean

field theory by incorporating quantal and thermal fluctuations at the initial state in a

stochastic manner. The stochastic mean field approach includes the one-body dissi-

pation and the associated fluctuation mechanism in accordance with the fluctuation-

dissipation relation, and it introduces an effective description for the dynamics of

density fluctuations in low energy nuclear reactions. In our study, we investigate

the early growth of spinodal instabilities employing the SMF approach in the linear

response regime.

In the first part, we investigate the early growth of density fluctuations for charge

asymmetric nuclear matter in non-relativistic framework by including collective and

non-collective poles into the description. In the linear limit of SMF approach, we can

carry out an almost analytical treatment for the correlation functions of density fluc-

tuations by applying the one-sided Fourier transformation method. The density cor-

relation function provides a typical measure for the condensation regions during the

initial stages of the liquid-gas phase transition of the system. The one-sided Fourier

transformation offers a contour integration in the complex frequency plane including

collective and non-collective poles. In the standard treatment, this contour integral is

evaluated due to the two pole contributions from the zeros of the susceptibility associ-

ated with unstable collective poles, and non-collective poles were ignored. Although
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this standard approach provides a satisfactory description for the growth of density

fluctuations, it is inadequate in two points. It does not satisfy the initial conditions

and moreover leads to a divergent behaviour when the wave numbers close to their

upper limits. In this study, the density correlation functions are calculated including

the effects of collective poles as well as non-collective poles in terms of the cut contri-

bution in the complex frequency plane. The cut contribution also exhibits a divergent

behavior approaching to the upper limits of wave numbers but with the opposite sign.

As a consequence, these divergent behaviors with opposite signs cancel out each other

to generate a nice regular behavior of the spectral intensity function. A complete cal-

culation of density correlation functions are carried out by including both pole and

cut contributions in the linear response regime. Besides, the exact calculations of the

correlation functions satisfy the initial conditions, which reflects the validity of the

highly nontrivial sum rule.

The numerical results of spinodal instabilities and density fluctuations for asymmet-

ric nuclear matter is presented in a semi-classical approach for finite temperatures

and in a quantal framework for zero temperature. The calculations are carried out for

initial density ρ = 0.3 ρ0, at the critical temperatures occur, for different asymmetry

parameters I = 0.0, 0.4 and 0.8. The growth rates of the unstable modes are inves-

tigated and the boundary of the spinodal region is determined. The system displays

less unstable behavior with increasing asymmetry. Moreover, the asymmetry leads

to shrinking of the spinodal region, decreasing the critical temperature and density.

Furthermore, we can obtain information about the initial size of the condensing frag-

ments from the density correlation function. The correlation length characterizes the

size of the initial condensation regions during the growth of fluctuations. From our

results, it is observed that the correlation length is not very sensitive to the time evo-

lution and temperature but depends on the initial charge asymmetry. We also observe

that the spinodal instabilities are reduced by charge asymmetry, leading to larger sized

fragments.

In the second part of the thesis, we employ the stochastic extension of the Walecka-

type relativistic mean field model in order to examine the spinodal instabilities and

early development of condensation mechanism in the quantal framework. In the cal-

culations, the nonlinear Walecka model including the coupling of baryon fields to
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rho meson is utilized with the NL3 parameter set. We consider the linear response

analysis of dynamical evolution for the investigation of the early growth of density

fluctuations, thus the meson field equations are linearized around their initial equilib-

rium state. The quantal dispersion relation is obtained by retaining only the collective

poles. The growth rates of unstable collective modes are determined for two different

initial densities, ρB = 0.2ρ0 and ρB = 0.4ρ0, at temperatures T = 1 MeV and T = 5

MeV for asymmetric nuclear matter with I = 0.0, 0.5 and 0.8. We observe that the

range of unstable modes reduces with increasing values of temperature, initial den-

sity and asymmetry parameters. As a result, the most unstable behavior of the system

exhibits at lower temperatures around the initial density ρB = 0.2ρ0. The quantal

results are compared with the calculations in the semi-classical framework under the

same conditions [39]. We have found that at low densities, most unstable collective

modes shift towards relatively longer wavelengths and concentrated over a narrower

range in quantal calculations whereas the range of the unstable modes are broader in

the semi-classical results. On the other hand, at higher densities, ρB = 0.4ρ0, the

unstable response of the system nearly coincide in both calculations for all values of

temperatures and asymmetry parameters. Furthermore, the boundary of the spinodal

region is obtained from the phase diagram of nuclear matter. The liquid-gas phase

transition is expected below this boundary specified with the critical temperatures

and densities.

Within the framework of the stochastic mean field approach we are able to calculate

the growth of baryon density correlation function which provides further information

about the condensation mechanism throughout the initial time of phase transition. We

observe that the growth of baryon density correlation functions are relatively faster in

quantal calculations than in the semi-classical approach, except at higher temperature

T = 5 MeV with density ρB = 0.2ρ0 where the quantal growth occurs at a slower

range. We also note that the early size of primary clusters that is calculated from

the baryon density correlation functions are consistent with those extracted from the

dispersion relation.

In this work, the growth of density fluctuations is examined for asymmetric nuclear

matter in the linear response framework of SMF approach therefore we obtain only

the information about the early stages of the liquid-gas phase transition in the spin-
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odal region. For describing whole phase transition, we need to study the nonlinear

evolution of the density fluctuations by carrying out the long time simulations of the

SMF method. We also note that the relativistic calculations of this thesis are carried

out by including only the pole contributions and the cut contributions are neglected.

Although this approach gives satisfactory results, the complete treatment is always

desirable. Therefore, it is important to include the non-collective poles for a complete

description of baryon density correlation functions.

92



REFERENCES

[1] H. Jaqaman, A.Z. Mekjian, and L.Zamick, Phys. Rev. C 27 (1983) 2782.

[2] C. Wu and Z. Ren, Phys. Rev. C 83 (2011) 044605.

[3] Ph. Chomaz, M. Colonna and J. Randrup, Phys. Rep. 389 (2004) 263.

[4] N. Le Neindre et al. (INDRA and ALADIN Collaborations), Nucl Phys. 795
(2007) 47.

[5] E. Bonnet, et al. (INDRA and ALADIN Collaborations), Phys. Rev. Lett. 105
(2010) 142701.

[6] B. Borderie et al. (INDRA Collaboration), Phys. Rev. Lett. 86 (2001) 3252.

[7] L. Beaulieu et al., Phys. Rev. Lett. 84 (2000) 5971.

[8] V. Baran, M. Colonna, M. Di Toro, A.B. Larionov, Nucl. Phys. A 632 (1998)

287.

[9] S. Ayik, O. Yilmaz, N. Er, A. Gokalp, P. Ring, Phys. Rev. C 80 (2009) 034613.

[10] J. D. Walecka, Ann. Phys. 83 (1974) 491; B. D. Serot, J. D. Walecka, "Advances

in Nuclear Physics Vol.16", Plenium Press, New York, 1997.

[11] G. Hua, L. Bo, M. Di Toro, Phys. Rev. C 62 (2000) 035203.

[12] J. D. Frankland et al. (INDRA Collaboration), Nucl. Phys. A 689 (2001) 940.

[13] K. Washiyama, S. Ayik and D. Lacroix, Phys. Rev. C 80 (2009) 031602(R).

[14] S. Ayik, K. Washiyama and D. Lacroix, Phys. Rev. C 79 (2009) 054606.

[15] B. Borderie, et al., Nucl. Phys. A 734 (2004) 495.

[16] S. Ayik, N. Er, O. Yilmaz and A. Gokalp, Nucl. Phys. A 812 (2008) 44.

[17] O. Yilmaz, S. Ayik and A. Gokalp, Eur. Phys. J. A 47 (2011) 123.

[18] S. Ayik, M. Colonna and Ph. Chomaz, Phys. Lett. B 353 (1995) 417.

93



[19] S. Ayik, Phys. Lett. B 658 (2008) 174.

[20] S. Ayik, O. Yilmaz, F. Acar, B. Danisman, N. Er and A. Gokalp, Nucl. Phys. A
859 (2011) 73.

[21] P. Bozek, Phys. Lett. B 383 (1996) 121.

[22] D. Lacroix and S. Ayik, Eur. Phys. J. A 50 (2014) 95.

[23] P. Ring and P. Schuck, "The Nuclear Many-Body Problem", Springer, New

York, 1980.

[24] D. Vautherin, D. M. Brink, Phys. Rev. C 5 (1972) 626.

[25] M. Colonna, M. Di Toro, A. B. Larionov, Phys. Lett. B 428 (1998) 1.

[26] H. Krivine, J. Trainer and O. Bohigas, Nucl. Phys. A 336 (1990) 155.

[27] O. Yilmaz, S. Ayik, F. Acar and A. Gokalp, Phys. Rev. C 91 (2015) 014605.

[28] F. Acar, S. Ayik, O. Yilmaz and A. Gokalp, Phys. Rev. C 92 (2015) 034605.

[29] E. M. Lifshitz and L. P. Pitaevskii, "Physical Kinetics", Pergamon, Oxford,

1981.

[30] H.Heiselberg, C. J. Pethick and D. G. Ravenhall, Phys. Rev. Lett. 61 (1988) 818.

[31] J. Xu and C. M. Ko, Phys. Rev. C 82 (2010) 044311.

[32] B. D. Serot, J. D. Walecka, Int. J. Mod. Phys. E6 (1997) 515.

[33] P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193.

[34] J.D. Walecka, "Theoretical Nuclear and Subnuclear Physics", Imperial College

Press, 2004.

[35] G. A. Lalazissis, J. Konig and P.Ring, Phys. Rev. C 55 (1997) 540.

[36] O. Yilmaz, S. Ayik, F. Acar, S. Saatci, A. Gokalp, Eur. Phys. J A 49 (2013) 33.

[37] P. Ring et al., Nucl. Phys. A 694 (2001) 249.

[38] W. Greiner, "Relativistic Quantum Mechanics", Springer-Verlag, 1987.

[39] Selen Saatci, "Semi-Classical Descrition of Spinodal Instabilities of Asymmet-

ric Nuclear Matter In a Relativistic Stochastic Model", MS Thesis, METU,

2013.

94



APPENDIX A

DERIVATION OF NON-RELATIVISTIC DISPERSION

RELATION

The linearized TDHF equation after transformation is given in Eq. (2.23) as

〈~p1|δρ̃λa(ω)|~p2〉 = − fa0 (~p1)− fa0 (~p2)

h̄ω − εa(~p1) + ε(~p2)
〈~p1|δUλ

a (ω)|~p2〉+ ih̄
〈~p1|δρ̂a(0)|~p2〉

h̄ω − εa(~p1) + ε(~p2)
.

(A.1)

In this equation, we use the momentum vectors as ~p1 = ~p+ h̄~k/2 and ~p2 = ~p− h̄~k/2
and the equation becomes

〈~p+
h̄~k

2
|δρ̃λa(ω)|~p− h̄~k

2
〉

=
−[fa0 (~p+ h̄~k/2)− fa0 (~p− h̄~k/2)]

h̄ω − εa(~p+ h̄~k/2) + ε(~p− h̄~k/2)
〈~p+

h̄~k

2
|δUλ

a (ω)|~p− h̄~k

2
〉

+ih̄
〈~p+ h̄~k/2|δρ̂a(0)|~p− h̄~k/2〉

h̄ω − εa(~p+ h̄~k/2) + ε(~p− h̄~k/2)
. (A.2)

Here we use the following one-sided Fourier transformation in time,

〈~p+
h̄~k

2
|δρ̃λa(ω)|~p− h̄~k

2
〉 =

∫ ∞
0

dteiωt〈~p+
h̄~k

2
|δρ̃λa(t)|~p−

h̄~k

2
〉. (A.3)

By using the position and momentum space representations which are given as

〈~r|~p〉 =
1

(2πh̄)3/2
e
i
h̄
~p·~r

〈~p+
h̄~k

2
|~r〉 =

1

(2πh̄)3/2
e−

i
h̄

(~p+ h̄~k
2

)·~r (A.4)

we obtain the relation

〈~p+ h̄
~k

2
|δρ̃λa(ω)|~p− h̄

~k

2
〉 =

∞∫
0

dteiωt
∞∫

−∞

d3r

∞∫
−∞

d3r′〈~p+ h̄
~k

2
|~r〉〈~r|δρ̃λa(t)|~r′〉〈~r′|~p−

h̄~k

2
〉.

(A.5)
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Then by evaluating
∫
d3p integral of both sides and using the orthonormality relation

given by
∞∫
−∞

d3p e−
i
h̄
~p·(~r−~r′) = (2πh̄)3δ(~r − ~r′), we obtain

∫
d3p〈~p+

h̄~k

2
|δρ̃λa(ω)|~p− h̄~k

2
〉

=

∞∫
0

dteiωt
∞∫

−∞

d3r

∞∫
−∞

d3r′
∫

d3p

(2πh̄)3
e−

i
h̄
~p·(~r−~r′)e−

i
2
~k·(~r+~r′)〈~r|δρ̃λa(t)|~r′〉

=

∞∫
0

dteiωt
∞∫

−∞

d3re−i
~k·~rδρλa(~r, t) = (2πh̄)3δρ̃λa(

~k, ω).

(A.6)

By the similar way, the Fourier transform of the mean-field potential fluctuation be-

comes

〈~p+
h̄~k

2
|δUλ

a (ω)|~p− h̄~k

2
〉

=

∞∫
0

dteiωt
∞∫

−∞

d3r

∞∫
−∞

d3r′〈~p+
h̄~k

2
|~r〉〈~r|δUλ

a (t)|~r′〉〈~r′|~p− h̄~k

2
〉

=

∞∫
0

dteiωt
∞∫

−∞

d3r

(2πh̄)3

∞∫
−∞

d3r′e
− i
h̄

(
~p+ h̄~k

2

)
·~r
e
i
h̄

(
~p− h̄~k

2

)
·~r′
δUλ

a (t)δ(~r − ~r′)

=

∞∫
0

dteiωt
∞∫

−∞

d3r

(2πh̄)3
e−i

~k·~rUλ
a (t) = Uλ

a (~k, ω).

(A.7)

where we use the relation 〈~r|δUλ
a (t)|~r′〉 = δUλ

a (t)δ(~r − ~r′) . Then, by evaluating∫
d3p

(2πh̄)3 integral of both sides of Eq. (A.2) and using the space Fourier transform of

nucleon density fluctuations which is given in Eq. (2.24),

δρλa(
~k, ω) =

∑
s

∫
d3p

(2πh̄)3
〈~p+ h̄~k/2|δρ̂λa,s(ω)|~p− h̄~k/2〉 (A.8)

we obtain the following equation

ρ̃λa(
~k, ω) =

∑
s

∫
d3p

(2πh̄)3

fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)

h̄ω − ~p · h̄~k/m
δUλ

a (~k, ω)

+ih̄
∑
s

∫
d3p

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉
h̄ω − ~p · h̄~k/m

. (A.9)

96



Here we use εa(~p + h̄~k/2) − ε(~p − h̄~k/2) = ~p · h̄~k/m in the denominator. The

fluctuation of the mean-field potential depends on both neutron and proton density

fluctuations.

δUλ
n (~k, ω) =

(
δUn
δρn

)
0

δρλn(~k, ω) +

(
δUn
δρp

)
0

δρλp(
~k, ω)

δUλ
p (~k, ω) =

(
δUp
δρn

)
0

δρλn(~k, ω) +

(
δUp
δρp

)
0

δρλp(
~k, ω) (A.10)

where the equilibrium densities of neutron and proton has the same value ρ0 =

0.16 fm−3. If we define the zeroth-order Landau parameters, F ab
0 = (∂Ub/∂ρa)0,

and use the definition given in Eqs. (2.26-2.27), we obtain the following equations

for neutron and proton density fluctuations respectively

δρλn(~k, ω) = −χn(~k, ω)[F nn
0 δρλn(~k, ω) + F pn

0 δρλp(
~k, ω)] + iSλn(~k, ω)

δρλp(
~k, ω) = −χp(~k, ω)[F np

0 δρλn(~k, ω) + F pp
0 δρλp(

~k, ω)] + iSλp (~k, ω) (A.11)

and these equations can also be written in the following form [
1 + F nn

0 χn(~k, ω)
]
δρλn(~k, ω) + F np

0 χn(~k, ω)δρλp(
~k, ω)[

1 + F pp
0 χp(~k, ω)

]
δρλp(

~k, ω) + F pn
0 χp(~k, ω)δρλn(~k, ω)

 = i

 Sλn(~k, ω)

Sλp (~k, ω)

 .

(A.12)
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APPENDIX B

POLE CONTRIBUTION TO DENSITY CORRELATIONS

By using the definition of quantal Linhard function given in Eq. (2.26) for ω = ∓iΓ,

we get

χa(~k, iΓ) = 2

∫
d3p

(2πh̄)3

iΓh̄+ ~p · h̄~k/m
(Γh̄)2 + (~p · h̄~k/m)2

[fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)] (B.1)

where the term with iΓh̄ gives zero, then we obtain

χa(~k, iΓ) = χa(~k,−iΓ)

= 2

∫
d3p

(2πh̄)3

~p · h̄~k/m
(Γh̄)2 + (~p · h̄~k/m)2

[fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)].

(B.2)

Then the relation between the Linhard functions becomes

χa(~k, iΓ) = χa(~k,−iΓ) = χa(−~k, iΓ) = χa(−~k,−iΓ). (B.3)

In order to find the derivative of susceptibility at ω = ∓iΓ , we should calculate the

derivative of Linhard functions and the relation between them.

∂χa(~k, iΓ)

∂ω
= 2h̄

∫
d3p

(2πh̄)3

1

(iΓh̄− ~p · h̄~k/m)2
[fa0 (~p− h̄~k

2
)− fa0 (~p+

h̄~k

2
)]

= 2h̄

∫
d3p

(2πh̄)3

−(Γh̄)2 + (~p · h̄~k/m)2 + 2iΓh̄~p · h̄~k/m
((Γh̄)2 + (~p · h̄~k/m)2)2

×[fa0 (~p− h̄~k

2
)− fa0 (~p+

h̄~k

2
)]

(B.4)

In this equation, the following integral gives zero∫
d3p

(2πh̄)3

−(Γh̄)2 + (~p · h̄~k/m)2

((Γh̄)2 + (~p · h̄~k/m)2)2
[fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)] = 0. (B.5)
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Then,

∂χa(~k, iΓ)

∂ω
= 2h̄

∫
d3p

(2πh̄)3

2iΓh̄~p · h̄~k/m
((Γh̄)2 + (~p · h̄~k/m)2)2

×[fa0 (~p− h̄~k/2)− fa0 (~p+ h̄~k/2)]. (B.6)

This result gives us the following relations

∂χa(~k, ω)

∂ω

∣∣∣∣∣
ω=−iΓ

= − ∂χa(~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

∂χa(−~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

=
∂χa(~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

= − ∂χa(−~k, ω)

∂ω

∣∣∣∣∣
ω=−iΓ

(B.7)

with the resultant relations for the derivative of the susceptibility

∂εa(~k, ω)

∂ω

∣∣∣∣∣
ω=−iΓ

= − ∂εa(~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

∂εa(−~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

=
∂εa(~k, ω)

∂ω

∣∣∣∣∣
ω=iΓ

= − ∂εa(−~k, ω)

∂ω

∣∣∣∣∣
ω=−iΓ

. (B.8)

In order to calculate the pole contribution of the spectral intensity function, we need

the source term correlations. The definition of the source terms given in Eq. (2.27) as

Sλa (~k, ω) =
∑
s

h̄

∫
d3p

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉
h̄ω − ~p · h̄~k/m

. (B.9)

If we use −~k instead of ~k, the equation becomes

Sλa (−~k, ω) =
∑
s

h̄

∫
d3p

(2πh̄)3

〈~p− h̄~k/2|δρ̂λa,s(0)|~p+ h̄~k/2〉
h̄ω + ~p · h̄~k/m

. (B.10)

Therefore, the correlations in Eqs. (2.45-2.47) can be calculated as

Sλa (~k, iΓ)Sλa (−~k′, iΓ) =
∑
s,s′

h̄2

∞∫
−∞

∞∫
−∞

d3p

(2πh̄)3

d3p′

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λa,s′(0)|~p′ + h̄~k′/2〉
(iΓh̄− ~p · h̄~k/m)(iΓh̄+ ~p′ · h̄~k′/m)

= −2h̄2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

fa0+(1− fa0−)

(Γh̄)2 + (~p · h̄~k/m)2

(B.11)
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Sλa (~k,−iΓ)Sλa (−~k′,−iΓ) =
∑
s,s′

h̄2

∞∫
−∞

∞∫
−∞

d3p

(2πh̄)3

d3p′

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λa,s′(0)|~p′ + h̄~k′/2〉
(−iΓh̄− ~p · h̄~k/m)(−iΓh̄+ ~p′ · h̄~k′/m)

= −2h̄2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

fa0+(1− fa0−)

(Γh̄)2 + (~p · h̄~k/m)2

(B.12)

Sλa (~k, iΓ)Sλa (−~k′, −iΓ) =
∑
s,s′

h̄2

∞∫
−∞

∞∫
−∞

d3p

(2πh̄)3

d3p′

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λa,s′(0)|~p′ + h̄~k′/2〉
(iΓh̄− ~p · h̄~k/m)(−iΓh̄+ ~p′ · h̄~k′/m)

= 2h̄2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

(Γh̄)2 − (~p · h̄~k/m)2[
(Γh̄)2 + (~p · h̄~k/m)2

]2f
a
0+(1− fa0−)

(B.13)

Sλa (~k,−iΓ)Sλa (−~k′, iΓ) =
∑
s,s′

h̄2

∞∫
−∞

∞∫
−∞

d3p

(2πh̄)3

d3p′

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λa,s′(0)|~p′ + h̄~k′/2〉
(−iΓh̄− ~p · h̄~k/m)(iΓh̄+ ~p′ · h̄~k′/m)

= 2h̄2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

(Γh̄)2 − (~p · h̄~k/m)2[
(Γh̄)2 + (~p · h̄~k/m)2

]2f
a
0+(1− fa0−)

(B.14)

where we use the shorthand notation fa0+(1−fa0−) = fa0 (~p+h̄~k/2)
(

1− fa0 (~p− h̄~k/2)
)

.

In order to evaluate the above correlations, we use the variance relation for initial den-

sity matrix correlations given in Eq. (2.19) as

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉〈~p′ − h̄~k′/2|δρ̂λb,s′(0)|~p′ + h̄~k′/2〉

= δabδss′(2πh̄)3(2π)3δ(~p− ~p′)δ(~k − ~k′)fa0 (~p+ h̄~k/2)
(

1− fa0 (~p− h̄~k/2)
)
(B.15)

The factor δab gives the cross terms of the source term correlations as zero, i.e.

Sλp (~k, iΓ)Sλn(−~k′, iΓ) = Sλp (~k, iΓ)Sλn(−~k′, iΓ) = 0 . Finally, the following relations
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between the source correlations are found;

Sλa (~k, iΓ)Sλa (−~k′, iΓ) = Sλa (~k,−iΓ)Sλa (−~k′,−iΓ)

Sλa (~k, iΓ)Sλa (−~k′,−iΓ) = Sλa (~k,−iΓ)Sλa (−~k′, iΓ) (B.16)

For the integrals in the above expressions, we use the following definition

I∓a = 2h̄2

∫
d3p

(2πh̄)3

[
(h̄Γ)2 ∓ (~p · h̄~k/m)2

]
[
(h̄Γ)2 + (~p · h̄~k/m)2

]2f
a
0 (~p+ h̄~k/2)

(
1− fa0 (~p− h̄~k/2)

)
(B.17)

then the correlations of source terms can be written in terms of I∓a

Sλa (~k, iΓ)Sλa (−~k′, iΓ) = Sλa (~k,−iΓ)Sλa (−~k′,−iΓ) = −I+
a (2π)3

Sλa (~k, iΓ)Sλa (−~k′,−iΓ) = Sλa (~k,−iΓ)Sλa (−~k′, iΓ) = I−a (2π)3 (B.18)

By using these relations in Eqs. (2.45-2.47), we obtain the expressions in Eqs. (2.49-

2.50). In the numerical calculations of the spectral intensity function, we firstly eval-

uate the polar parts of the integrals χa(~k, ω), ∂χa(~k,ω)
∂ω

and I∓a , then the numerical

methods are used in the evaluation of the resultant integrals.
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APPENDIX C

CUT CONTRIBUTION TO DENSITY CORRELATIONS

In order to calculate the cut-cut part of spectral intensity of density correlations, we

use the relation σ̃ab(CC;~k, t)(2π)3δ(~k−~k′) = δρλa(C;~k, t) + δρλb (C;−~k′, t) and ob-

tain four terms for each isospin components;

σ̃ab(CC;~k, t) = A+
ab(
~k, t) + Ã+

ab(
~k, t) + Ã−ab(

~k, t) + A−ab(
~k, t). (C.1)

The first term A+
ab(
~k, t) is obtained from the correlations of the first terms in the

expressions δρλa(C;~k, t) and δρλb (C;−~k′, t). In the calculations, the Eq. (2.19) is

used and the cross term correlations of source terms Sλa (±~k, ω∓ iη)) will be zero due

to the factor δab . Therefore, we obtain the following expressions for neutron-neutron,

proton-proton and neutron-proton;

A+
nn(~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π
e−i(ω+ω′)t


[
1 + F pp

0 χp(~k, ω + iη)
] [

1 + F pp
0 χp(~k

′, ω′ + iη)
]
Sλn(~k, ω + iη)Sλn(−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
(F np

0 )2χn(~k, ω + iη)χn(~k′, ω′ + iη)Sλp (~k, ω + iη)Sλp (−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)


(C.2)
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A+
pp(
~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π
e−i(ω+ω′)t


[
1 + F nn

0 χn(~k, ω + iη)
] [

1 + F nn
0 χn(~k′, ω′ + iη)

]
Sλp (~k, ω + iη)Sλp (−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
(F pn

0 )2χp(~k, ω + iη)χp(~k
′, ω′ + iη)Sλn(~k, ω + iη)Sλn(−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

}
(C.3)

and

A+
pn(~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π
e−i(ω+ω′)t


[
1 + F nn

0 χn(~k, ω + iη)
]
F np

0 χn(~k′, ω′ + iη)Sλp (~k, ω + iη)Sλp (−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
F np

0 χp(~k, ω + iη)
[
1 + F pp

0 χp(~k
′, ω′ + iη)

]
Sλn(~k, ω + iη)Sλn(−~k′, ω′ + iη)

ε(~k, ω + iη)ε(−~k′, ω′ + iη)


(C.4)

In these expressions, the correlations of source terms can be obtained according to

the SMF approach,

Sλa (~k, ω + iη)Sλa (−~k′, ω′ + iη) =
∑
s,s′

h̄2

∞∫
−∞

d3p

(2πh̄)3

∞∫
−∞

d3p′

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λa,s(0)|~p− h̄~k/2〉
h̄(ω + iη)− ~p · h̄~k/m

〈~p′ − h̄~k′/2|δρ̂λa,s′(0)|~p′ + h̄~k′/2〉
(h̄(ω′ + iη) + ~p′ · h̄~k′/m

= 2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

fa0 (~p+ h̄~k/2)
(

1− fa0 (~p− h̄~k/2)
)

[
ω + iη − ~p · ~k/m

] [
ω′ + iη + ~p · ~k/m

]
(C.5)

where we use(
1

ω + iη − ~p · ~k/m

)(
1

ω′ + iη + ~p · ~k/m

)

=
−1

ω + ω′ + 2iη

[
1

~p · ~k/m− ω − iη
− 1

~p · ~k/m+ ω′ + iη

]
(C.6)
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and the correlation of source terms becomes

Sλa (~k, ω + iη)Sλa (−~k′, ω′ + iη) = 2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

−1

ω + ω′ + 2iη

×

[
1

~p · ~k/m− ω − iη
− 1

~p · ~k/m+ ω′ + iη

]
fa0 (~p+ h̄~k/2)

(
1− fa0 (~p− h̄~k/2)

)
(C.7)

Here the following definition φa(ω ∓ iη) will be employed

φa (ω ∓ iη) = 2

∫ +∞

−∞

d3p

(2π h̄)3
fa0 (~p+h̄~k/2)

[
1− fa0 (~p− h̄~k/2)

] 1

~p · ~k/m− (ω ∓ iη)
.

(C.8)

By applying the transition ~p → −~p in this definition, the following relations will be

found, φa(−ω − iη) = −φa(ω + iη) and φa(−ω + iη) = −φa(ω − iη). In this way,

the correlation of source terms can be expressed by

Sλa (~k, ω + iη)Sλa (−~k′, ω′ + iη) = −(2π)3δ(~k − ~k′) 1

ω + ω′ + 2iη

× [φa(ω + iη) + φa(ω
′ + iη)] (C.9)

Finally, A+
nn(~k, t), A+

pp(
~k, t) and A+

pn(~k, t) can be written as

A+
nn(~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ + 2iη
[
1 + F pp

0 χp(~k, ω + iη)
] [

1 + F pp
0 χp(~k, ω

′ + iη)
]

[φn(ω + iη) + φn(ω′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
(F np

0 )2χn(~k, ω + iη)χn(~k, ω′ + iη) [φp(ω + iη) + φp(ω
′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

}
(C.10)

A+
pp(
~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ + 2iη
[
1 + F nn

0 χn(~k, ω + iη)
] [

1 + F nn
0 χn(~k, ω′ + iη)

]
[φp(ω + iη) + φp(ω

′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
(F pn

0 )2χp(~k, ω + iη)χp(~k, ω
′ + iη) [φn(ω + iη) + φn(ω′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

}
(C.11)
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and

A+
pn(~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ + 2iη
[
1 + F nn

0 χn(~k, ω + iη)
]
F np

0 χn(~k, ω′ + iη) [φp(ω + iη) + φp(ω
′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

+
F np

0 χp(~k, ω + iη)
[
1 + F pp

0 χp(~k, ω
′ + iη)

]
[φn(ω + iη) + φn(ω′ + iη)]

ε(~k, ω + iη)ε(−~k′, ω′ + iη)

 .

(C.12)

The other terms in Eq. (C.1) also obtained for each isospin components as follows

A−nn(~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ − 2iη
[
1 + F pp

0 χp(~k, ω − iη)
] [

1 + F pp
0 χp(~k, ω

′ − iη)
]

[φn(ω − iη) + φn(ω′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)

+
(F np

0 )2χn(~k, ω − iη)χn(~k, ω′ − iη) [φp(ω − iη) + φp(ω
′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)

}
(C.13)

A−pp(
~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ − 2iη
[
1 + F nn

0 χn(~k, ω − iη)
] [

1 + F nn
0 χn(~k, ω′ − iη)

]
[φp(ω − iη) + φp(ω

′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)

+
(F pn

0 )2χp(~k, ω − iη)χp(~k, ω
′ − iη) [φn(ω − iη) + φn(ω′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)

}
(C.14)
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A−pn(~k, t) = −
∞∫

−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′ − 2iη
[
1 + F nn

0 χn(~k, ω − iη)
]
F np

0 χn(~k, ω′ − iη) [φp(ω − iη) + φp(ω
′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)

+
F np

0 χp(~k, ω − iη)
[
1 + F pp

0 χp(~k, ω
′ − iη)

]
[φn(ω − η) + φn(ω′ − iη)]

ε(~k, ω − iη)ε(~k, ω′ − iη)


(C.15)

Ã+
nn(~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F pp

0 χp(~k, ω + iη)
] [

1 + F pp
0 χp(~k, ω

′ − iη)
]

[φn(ω + iη) + φn(ω′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)

+
(F np

0 )2χn(~k, ω + iη)χn(~k, ω′ − iη) [φp(ω + iη) + φp(ω
′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)

}
(C.16)

Ã+
pp(
~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F nn

0 χn(~k, ω + iη)
] [

1 + F nn
0 χn(~k, ω′ − iη)

]
[φp(ω + iη) + φp(ω

′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)

+
(F pn

0 )2χp(~k, ω + iη)χp(~k, ω
′ − iη) [φn(ω + iη) + φn(ω′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)

}
(C.17)

Ã+
pn(~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F nn

0 χn(~k, ω + iη)
]
F np

0 χn(~k, ω′ − iη) [φp(ω + iη) + φp(ω
′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)

+
F np

0 χp(~k, ω + iη)
[
1 + F pp

0 χp(~k, ω
′ − iη)

]
[φn(ω + iη) + φn(ω′ − iη)]

ε(~k, ω + iη)ε(~k, ω′ − iη)


(C.18)
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Ã−nn(~k, t) = −
∞∫

−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F pp

0 χp(~k, ω − iη)
] [

1 + F pp
0 χp(~k, ω

′ + iη)
]

[φn(ω − iη) + φn(ω′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)

+
(F np

0 )2χn(~k, ω − iη)χn(~k, ω′ + iη) [φp(ω − iη) + φp(ω
′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)

}
(C.19)

Ã−pp(
~k, t) = −

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F nn

0 χn(~k, ω − iη)
] [

1 + F nn
0 χn(~k, ω′ + iη)

]
[φp(ω − iη) + φp(ω

′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)

+
(F pn

0 )2χp(~k, ω − iη)χp(~k, ω
′ + iη) [φn(ω − iη) + φn(ω′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)

}
(C.20)

Ã−pn(~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

e−i(ω+ω′)t

ω + ω′
[
1 + F nn

0 χn(~k, ω − iη)
]
F np

0 χn(~k, ω′ + iη) [φp(ω − iη) + φp(ω
′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)

+
F np

0 χp(~k, ω − iη)
[
1 + F pp

0 χp(~k, ω
′ + iη)

]
[φn(ω − iη) + φn(ω′ + iη)]

ε(~k, ω − iη)ε(~k, ω′ + iη)


(C.21)

To calculate the pole-cut contributions in the spectral intensity of density correlations,

we use the relation σ̃ab(PC;~k, t)(2π)3δ(~k − ~k′) = δρλa(P ;~k, t) + δρλb (C;−~k′, t) and

obtain four terms for each isospin components;

σ̃ab(PC;~k, t) = B+
ab(
~k, t) + B̃+

ab(
~k, t) + B̃−ab(

~k, t) +B−ab(
~k, t). (C.22)

The first term B+
ab(
~k, t) is obtained from the correlations of the first terms in the
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expressions δρλa(P ;~k, t) and δρλb (C;−~k′, t). We obtain B+
nn(~k, t) for neutron-neutron

B+
nn(~k, t) =

ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π
e−iωt


[
1 + F pp

0 χp(~k, iΓ)
] [

1 + F pp
0 χp(−~k′, ω + iη)

]
Sλn(~k, iΓ)Sλn(−~k′, ω + iη)

ε(−~k′, ω + iη)

+
(F np

0 )2χn(~k, iΓ)χn(−~k′, ω + iη)Sλp (~k, iΓ)Sλp (−~k′, ω + iη)

ε(−~k′, ω + iη)

 .

(C.23)

Here we use the following expression for the source term correlations

Sλa (~k, iΓ)Sλa (−~k′, ω′ + iη) =

2(2π)3δ(~k − ~k′)
∫

d3p

(2πh̄)3

fa0 (~p+ h̄~k/2)
[
1− fa0 (~p− h̄~k/2)

]
(
iΓ− ~p · ~k/m

)(
ω + iη + ~p · ~k/m

) (C.24)

with the definition

φa(∓iΓ) = 2

∞∫
−∞

d3p

(2π h̄)3
fa0 (~p+ h̄~k/2)

[
1− fa0 (~p− h̄~k/2)

] 1

~p · ~k/m∓ iΓ
. (C.25)

Then, the correlation of the source terms becomes

Sλa (~k, iΓ)Sλa (−~k′, ω′ + iη) = −(2π)3δ(~k − ~k′) 1

ω + iΓ
[φa(iΓ)− φa(−ω − iη)] .

(C.26)

By using the expressions above B+
nn is given by

B+
nn(~k, t) =

−ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F pp

0 χp(~k, iΓ)
] [

1 + F pp
0 χp(~k, ω + iη)

]
[φn(iΓ)− φn(−ω − iη)]

ε(~k, ω + iη)

+
(F np

0 )2χn(~k, iΓ)χn(~k, ω + iη) [φp(iΓ)− φp(−ω − iη)]

ε(~k, ω + iη)

}
.

(C.27)
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Similarly, B+
pp and B+

pn are obtained as

B+
pp(
~k, t) =

−ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F nn

0 χn(~k, iΓ)
] [

1 + F nn
0 χn(~k, ω + iη)

]
[φp(iΓ)− φp(−ω − iη)]

ε(~k, ω + iη)

+
(F pn

0 )2χp(~k, iΓ)χp(~k, ω + iη) [φn(iΓ)− φn(−ω − iη)]

ε(~k, ω + iη)

}
(C.28)

and

B+
pn(~k, t) =

ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F nn

0 χn(~k, iΓ)
]
F np

0 χn(~k, ω + iη) [φp(iΓ) + φp(ω + iη)]

ε(~k, ω + iη)

+
F pn

0 χp(~k, iΓ)
[
1 + F pp

0 χp(~k, ω + iη)
]

[φn(iΓ) + φn(ω + iη)]

ε(~k, ω + iη)

 .

(C.29)

Likewise, the other terms in Eq. (C.22) also obtained for each isospin case as follows

B−nn(~k, t) =
ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F pp

0 χp(~k,−iΓ)
] [

1 + F pp
0 χp(~k, ω − iη)

]
[φn(−iΓ)− φn(−ω + iη)]

ε(~k, ω − iη)

+
(F np

0 )2χn(~k,−iΓ)χn(~k, ω − iη) [φp(−iΓ)− φp(−ω + iη)]

ε(~k, ω − iη)

}
,

(C.30)
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B−pp(
~k, t) =

ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F nn

0 χn(~k,−iΓ)
] [

1 + F nn
0 χn(~k, ω − iη)

]
[φp(−iΓ)− φp(−ω + iη)]

ε(~k, ω − iη)

+
(F pn

0 )2χp(~k,−iΓ)χp(~k, ω − iη) [φn(−iΓ)− φn(−ω + iη)]

ε(~k, ω − iη)

}
,

(C.31)

B−pn(~k, t) =
−ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F nn

0 χn(~k,−iΓ)
]
F np

0 χn(~k, ω − iη) [φp(−iΓ) + φp(ω − iη)]

ε(~k, ω − iη)

+
F pn

0 χp(~k,−iΓ)
[
1 + F pp

0 χp(~k, ω − iη)
]

[φn(−iΓ) + φn(ω − iη)]

ε(~k, ω − iη)

 ,

(C.32)

B̃+
nn(~k, t) =

ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F pp

0 χp(~k, iΓ)
] [

1 + F pp
0 χp(~k, ω − iη)

]
[φn(iΓ)− φn(−ω + iη)]

ε(~k, ω − iη)

+
(F np

0 )2χn(~k, iΓ)χn(~k, ω − iη) [φp(iΓ)− φp(−ω + iη)]

ε(~k, ω − iη)

}
,

(C.33)

B̃+
pp(
~k, t) =

ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F nn

0 χn(~k, iΓ)
] [

1 + F nn
0 χn(~k, ω − iη)

]
[φp(iΓ)− φp(−ω + iη)]

ε(~k, ω − iη)

+
(F pn

0 )2χp(~k, iΓ)χp(~k, ω − iη) [φn(iΓ)− φn(−ω + iη)]

ε(~k, ω − iη)

}
,

(C.34)
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B̃+
pn(~k, t) =

−ieΓt

∂ε(~k, ω)/∂ω
∣∣
ω=iΓ

∞∫
−∞

dω

2π

e−iωt

ω + iΓ
[
1 + F nn

0 χn(~k, iΓ)
]
F np

0 χn(~k, ω − iη) [φp(iΓ) + φp(ω − iη)]

ε(~k, ω − iη)

+
F pn

0 χp(~k, iΓ)
[
1 + F pp

0 χp(~k, ω − iη)
]

[φn(iΓ) + φn(ω − iη)]

ε(~k, ω − iη)

 ,

(C.35)

B̃−nn(~k, t) =
−ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F pp

0 χp(~k,−iΓ)
] [

1 + F pp
0 χp(~k, ω + iη)

]
[φn(−iΓ)− φn(−ω − iη)]

ε(~k, ω + iη)

+
(F np

0 )2χn(~k,−iΓ)χn(~k, ω + iη) [φp(−iΓ)− φp(−ω − iη)]

ε(~k, ω + iη)

}
,

(C.36)

B̃−pp(
~k, t) =

−ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F nn

0 χn(~k,−iΓ)
] [

1 + F nn
0 χn(~k, ω + iη)

]
[φp(−iΓ)− φp(−ω − iη)]

ε(~k, ω + iη)

+
(F pn

0 )2χp(~k,−iΓ)χp(~k, ω + iη) [φn(−iΓ)− φn(−ω − iη)]

ε(~k, ω + iη)

}
,

(C.37)

and

B̃−pn(~k, t) =
ie−Γt

∂ε(~k, ω)/∂ω
∣∣
ω=−iΓ

∞∫
−∞

dω

2π

e−iωt

ω − iΓ
[
1 + F nn

0 χn(~k,−iΓ)
]
F np

0 χn(~k, ω + iη) [φp(−iΓ) + φp(ω + iη)]

ε(~k, ω + iη)

+
F pn

0 χp(~k,−iΓ)
[
1 + F pp

0 χp(~k, ω + iη)
]

[φn(−iΓ) + φn(ω + iη)]

ε(~k, ω + iη)

 .

(C.38)
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In numerical calculations, the real and imaginary parts of the expressions φa(ω ±
iη) and χa(ω ± iη) are evaluated separately. In the semi-classical limit, the integral

φa(ω + iη) is calculated as

φa (ω + iη) = 2

∞∫
−∞

d3p

(2πh̄)3
fa0 (~p) [1− fa0 (~p)]

1

~p · ~k/m− (ω + iη)

= 2

∞∫
0

p2dp

(2πh̄)3
fa0 (~p) [1− fa0 (~p)]

2πm

pk

1∫
−1

dz

[
P

(
1

z − mω
pk

)
+ iπδ

(
z − mω

pk

)]

= −2T

∞∫
0

p2dp

4π2h̄3

∂fa0 (p)

∂ε

m

pk

P 1∫
−1

dz

z − z0

+ iπ

1∫
−1

dzδ(z − z0)


(C.39)

where we use fa0 (~p) [1− fa0 (~p)] = −T ∂fa0 (p)

∂ε
and z0 = mω

pk
. Then the real and imagi-

nary parts of φa(ω + iη) becomes

Re φa (ω + iη) = − T

2π2h̄3

m

k

∞∫
0

pdp
∂fa0 (p)

∂ε
ln
∣∣∣∣z0 − 1

z0 + 1

∣∣∣∣ (C.40)

and

Im φa (ω + iη) =

 T m2

2πh̄3k
fa0

(
p = m|ω|

k

)
if − 1 < z0 < 1

0 else
. (C.41)

Similarly, the Linhard function given by

χa (ω ± iη) = 2

∞∫
−∞

d3p

(2πh̄)3

~p · ~k/m
(ω ± iη)− ~p · ~k/m

∂fa0
∂ε

= − 1

2π2h̄3

∞∫
0

p2dp
∂fa0
∂ε

1∫
−1

z dz

[
P

{
1

z − mω
pk

)
± iπδ

(
z − mω

pk

)}
(C.42)

can be divided into real and imaginary parts as

Re χa (ω + iη) = − 1

2π2h̄3

∞∫
0

p2dp
∂fa0 (p)

∂ε

[
2 + ln

∣∣∣∣z0 − 1

z0 + 1

∣∣∣∣] (C.43)

and

Im χa (ω + iη) =


m2

2πh̄3k
ω
k
fa0

(
p = m|ω|

k

)
if − 1 < z0 < 1

0 else
. (C.44)
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APPENDIX D

POLE AND CUT CONTRIBUTIONS FOR SYMMETRIC

NUCLEAR MATTER

Similar to the asymmetric matter case, we can solve the linear response Eq. (2.18) for

the symmetric matter by employing the one-sided Fourier transformation method in

time given in Eq. (2.20). This yields an algebraic equation for the Fourier transform

of the local density fluctuations, which can be solved to obtain

δρ̃λ(~k, ω) =
i

ε(~k, ω)
Gλ(~k, ω) (D.1)

where ε(~k, ω) = 1+F0χ(~k, ω) is the susceptibility with F0 = (∂U/∂ρ)0 as the zeroth

order Landau parameter, and χ(~k, ω) denotes the Lindhard function for symmetric

matter. The semi-classical expression of the Lindhard function is given by

χ(~k, ω) = 4

∫
d3p

(2πh̄)3

~p · h̄~k/m
h̄ω − ~p · h̄~k/m

∂f0

∂ε
. (D.2)

The quantity Gλ(~k, ω) for symmetric matter is determined by the initial conditions

Gλ(~k, ω) =
∑
s

h̄

∫
d3p

(2πh̄)3

〈~p+ h̄~k/2|δρ̂λs (0)|~p− h̄~k/2〉
h̄ω − ~p · h̄~k/m

. (D.3)

According to the stochastic mean-field approach, the variances of the elements of

initial density matrix in semi-classical limit are given by

< ~p+ h̄~k/2|δρ̂λs (0)|~p− h̄~k/2 >< ~p′ − h̄~k′/2|δρ̂λs′(0)|~p′ + h̄~k′/2 >

= δss′(2πh̄)6δ(~p− ~p′)δ(~k − ~k′) [f(~p) (1− f(~p))] . (D.4)

We can evaluate the total spectral intensity σ̃(~k, t) by evaluating the ensemble average

using the Eqs. (2.33) and (2.34) for pole δρ̃λ(P ;~k, t) and cut δρ̃λ(C;~k, t) part of the
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Fourier transform of density fluctuations and the Eq. (D.4) for the correlation of initial

fluctuations. As a result, the total spectral intensity for symmetric matter is expressed

as,

σ̃(~k, t) = σ̃(PP ;~k, t) + 2σ̃(PC;~k, t) + σ̃(CC;~k, t), (D.5)

where the first and last term are due to pole-pole and cut-cut parts of the spectral

intensity and the middle term denotes the mixed pole-cut contribution. The pole-pole

part is

σ̃(PP ;~k, t) =
E+∣∣∣∣ [∂ε(~k, ω)/∂ω

]
ω=iΓk

∣∣∣∣2
(
e+2Γkt + e−2Γkt

)
− 2E−∣∣∣∣ [∂ε(~k, ω)/∂ω

]
ω=iΓk

∣∣∣∣2
(D.6)

where the quantity E± is given by

E± = 4

∫
d3p

(2πh̄)3
f(~p) (1− f(~p))

(~p · ~k/m)2 ± Γ2
k[

(~p · ~k/m)2 + Γ2
k

]2 . (D.7)

The cut-cut contribution has four terms

σ̃(CC;~k, t) = A0(~k, t) + Ã+(~k, t) + Ã−(~k, t) + A−(~k, t), (D.8)

with

A∓(~k, t) =

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π

φ(ω ∓ iη) + φ(ω′ ∓ iη)

ε(~k, ω ∓ iη)ε(~k, ω′ ∓ iη)

1

ω + ω′ ∓ 2iη
e−i(ω+ω′)t, (D.9)

and

Ã∓(~k, t) = −
∞∫

−∞

dω

2π

∞∫
−∞

dω′

2π

φ(ω ∓ iη) + φ(ω′ ± iη)

ε(~k, ω ∓ iη)ε(~k, ω′ ± iη)

1

ω + ω′
e−i(ω+ω′)t. (D.10)

In the above expressions η is an infinitesimal positive number, and quantity φ(ω+ iη)

is given for symmetric matter in the semi-classical limit as

φ(ω + iη) = 4

∫
d3p

(2πh̄)3
f(~p) (1− f(~p))

1

~p · ~k/m− ω − iη
. (D.11)

The double integral in A∓(~k, t) can be divided into principle value and delta function

parts by using the identity 1/ (ω + ω′ ∓ iη) = P (1/ω + ω′) ± iηδ(ω + ω′). The

integrand of Ã∓(~k, t), in contrast to its appearance, is well behaved function, because

when ω′ = ω , the nominator is also zero therefore the following ratio becomes finite:

(φ(ω ∓ iη) + φ(ω′ ± iη)) / (ω + ω′).
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The mixed pole-cut term in the spectral intensity has also four terms;

σ̃(PC;~k, t) = B+(~k, t) + B̃+(~k, t) + B̃−(~k, t) +B−(~k, t), (D.12)

with

B∓(~k, t) = ±i e∓Γkt

∂ε(~k, ω)/∂ω
∣∣
ω=∓iΓk

∞∫
−∞

dω

2π

φ(∓iΓk) + φ(ω ∓ iη)

ε(~k, ω ∓ iη)

1

ω ∓ iΓk
e−iωt,

(D.13)

and

B̃∓(~k, t) = ∓i e∓Γkt

∂ε(~k, ω)/∂ω
∣∣
ω=∓iΓk

∞∫
−∞

dω

2π

φ(∓iΓk) + φ(ω ± iη)

ε(~k, ω ± iη)

1

ω ∓ iΓk
e−iωt.

(D.14)

Here the quantity φ(∓iΓk) is given by

φ(∓iΓk) = 4

∫
d3p

(2πh̄)3
f(~p) (1− f(~p))

1

~p · ~k/m± iΓk
. (D.15)
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APPENDIX E

FOURIER TRANSFORM OF THE MESON FIELD

FLUCTUATIONS

By applying the space Fourier transformation method, the Fourier transform of the

fluctuating meson fields are written as



δ~V (~k, t)

δV0(~k, t)

δφ0(~k, t)

δ ~A(~k, t)

δA0(~k, t)

δ~b3(~k, t)


=

∫
d3re−i

~k·~r



δ~V (~r, t)

δV0(~r, t)

δφ0(~r, t)

δ ~A(~r, t)

δA0(~r, t)

δ~b3(~r, t)


. (E.1)

The quantities ξb
λ′λ(~p2, ~p1), ξs

λ′λ(~p2, ~p1) and ~ξv
λ′λ(~p2, ~p1) defined in Eq.(4.39) can be

calculated as follows,

ξBλ′λ(~p2, ~p1) = u†λ′(~p2, s2)uλ(~p1, s1)

= Nλ′(~p2)Nλ(~p1)

(
1 +

c~p1 · c~p2

[λ′ε∗(p2) +M∗c2][λε∗(p1) +M∗c2]

)
(E.2)

ξsλ′λ(~p2, ~p1) = u†λ′(~p2, s2)βuλ(~p1, s1)

= Nλ′(~p2)Nλ(~p1)

(
1− c~p1 · c~p2

[λ′ε∗(p2) +M∗c2][λε∗(p1) +M∗c2]

)
(E.3)
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and

~ξv
λ′λ(~p2, ~p1) = u†λ′(~p2, s2)~αuλ(~p1, s1)

= Nλ′(~p2)Nλ(~p1)

(
c~p1 · k̂

[λ′ε∗(p2) +M∗c2]
+

c~p2 · k̂
[λε∗(p1) +M∗c2]

)
(E.4)

where the column vector is uλ(~p, s) = Nλ(~p)

 χs
~σ·c~p

Mc2+λε∗(p)
χs

 and the transpose

of the column vector is u†λ(~p, s) = Nλ(~p)
(
χ†s χ†s

~σ·c~p
Mc2+λε∗(p)

)
.

By using the definition of fluctuating densities given in Eq.(4.16) and the plane wave

representation of density fluctuation matrix given in Eq.(4.29), the spin averaged den-

sity fluctuations are defined according to
δ~ρa,v(~r, t)

δρa,s(~r, t)

δρa,b(~r, t)

 = γ
∑
λλ′

∫
d3p2d

3p1

(2πh̄)6
< ~r|Ψ†a,λ(~p2) >


~α

β

1

 < Ψa,λ′(~p1)|~r > .

(E.5)

Substituting the expression (4.28) for the plane wave spinors, we find
δ~ρa,v(~r, t)

δρa,s(~r, t)

δρa,b(~r, t)

 = γ
∑
λλ′

∫
d3p2d

3p1

(2πh̄)6
e−i~r·(~p2−~p1)/h̄u†a,λ(~p2, s)

×


~α

β

1

ua,λ′(~p1, s)δρa,λ′λ(~p2, ~p1, t) . (E.6)

By taking the space Fourier transforms of the fluctuating densities, we obtain the

following equation
δ~ρa,v(~k, t)

δρa,s(~k, t)

δρa,b(~k, t)

 = γ
∑
λλ′

∫
d3p

(2πh̄)3


~ξv
λ′λ(~p2, ~p1)

ξs
λ′λ(~p2, ~p1)

ξb
λ′λ(~p2, ~p1)

 δρa,λ′λ(~p2, ~p1, t) . (E.7)

120



APPENDIX F

RELATIVISTIC LINHARD FUNCTIONS AND DERIVATIVE

OF THE SUSCEPTIBILITY

In order to evaluate the Linhard functions, we consider (+,+), (+,−) and (−,+)

sectors. In the calculations, we use only the particle contributions and neglect the

anti-particle contributions since the anti-particle contributions is approximately zero

for low temperatures, na,− = 1
[e(ε
∗+µ∗a)/T+1]

≈ 0. Consequently, the relativistic quantal

Linhard functions can be written as follows,

χb
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
b

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
b

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
b

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]
,

(F.1)

χs
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
s

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
s

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
s

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]
,

(F.2)
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χv
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
v

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
v

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
v

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]
,

(F.3)

χ̃b
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

v ξ++
v

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

v ξ+−
v

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

v ξ−+
v

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]
,

(F.4)

χ̃s
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

s ξ++
s

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

s ξ+−
s

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

s ξ−+
s

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]
,

(F.5)

and

χ̃v
a(
~k, ω) = γ

∫
d3p

(2πh̄)3
ξ++

s ξ++
v

na+(~p+ h̄~k/2)− na+(~p− h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ+−

s ξ+−
v

na+(~p+ h̄~k/2)

h̄ω − [ε∗+(~p+ h̄~k/2)− ε∗−(~p− h̄~k/2)]

+ γ

∫
d3p

(2πh̄)3
ξ−+

s ξ−+
v

−na+(~p+ h̄~k/2)

h̄ω − [ε∗−(~p+ h̄~k/2)− ε∗+(~p− h̄~k/2)]

(F.6)
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where ε∗+(p) = +
√
~p2c2 +M∗2

0 c4 and ε∗−(p) = −
√
~p2c2 +M∗2

0 c4. In the spinodal

region, we calculate the Linhard functions at ω = iΓ and we obtain

χb
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
b [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
b na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
b [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
,

(F.7)

χs
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
s [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
s na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
s [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
,

(F.8)

χv
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

b ξ++
v [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

b ξ+−
v na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

b ξ−+
v [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
,

(F.9)

χ̃b
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

v ξ++
v [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

v ξ+−
v na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

v ξ−+
v [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
,

(F.10)
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χ̃s
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

s ξ++
s [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

s ξ+−
s na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

s ξ−+
s [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
,

(F.11)

and

χ̃v
a(
~k, iΓ) = γ

∫
d3p

(2πh̄)3
ξ++

s ξ++
v [na+(~p2)− na+(~p1]

−ih̄Γ− [ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2)− ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ+−

s ξ+−
v na+(~p2)

−ih̄Γ− [ε∗(~p2) + ε∗(~p1)]

(h̄Γ)2 + [ε∗(~p2) + ε∗(~p1)]2

+ γ

∫
d3p

(2πh̄)3
ξ−+

s ξ−+
v [−na+(~p1)]

−ih̄Γ− [−ε∗(~p2)− ε∗(~p1)]

(h̄Γ)2 + [−ε∗(~p2)− ε∗(~p1)]2
.

(F.12)

Here, we use the momentum vectors as ~p2 = ~p+ ~̄hk/2 and ~p1 = ~p− ~̄hk/2.

The definition of the susceptibility is given in Eq. (4.64) as the determinant of a

6× 6 matrix. The elements of this matrix depend on the Linhard functions. Thus, we

should obtain the derivative of the Linhard functions in order to find the derivative of

the susceptibility. According to definition of the Linhard functions given in Eqs.(4.56)

and (4.57), only the term 1
h̄ω−[λ′ε∗(~p2)−λε∗(~p1)]

depends on ω and the derivative of this

term is calculated as

∂

∂ω

1

h̄ω − [λ′ε∗(~p2)− λε∗(~p1)]
=

−h̄
h̄ω − [λ′ε∗(~p2)− λε∗(~p1)]2

≡ −h̄
[h̄ω −∆ε∗λλ′ ]

2

(F.13)

where we use ∆ε∗λλ′ ≡ [λ′ε∗(~p2) − λε∗(~p1)]. Then the derivative of the Linhard

functions at ω = ±iΓ can be calculated as ∂

∂ω


χv
a(
~k, ω)

χs
a(
~k, ω)

χb
a(
~k, ω)



ω=±iΓ

= γ
∑
λλ′

∫
d3p

(2πh̄)3


ξb
λ′λξ

v
λ′λ

ξb
λ′λξ

s
λ′λ

ξb
λ′λξ

b
λ′λ

 [na,λ′(~p2)− na,λ(~p1)]

×h̄Γ2 ∓ 2iΓ∆ε∗λλ′ − (∆ε∗λλ′)
2

[Γ2 + (∆ε∗λλ′)
2]2

(F.14)
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and ∂

∂ω


χ̃v
a(
~k, ω)

χ̃s
a(
~k, ω)

χ̃b
a(
~k, ω)



ω=±iΓ

= γ
∑
λλ′

∫
d3p

(2πh̄)3


ξs
λ′λξ

v
λ′λ

ξs
λ′λξ

s
λ′λ

ξv
λ′λξ

v
λ′λ

 [na,λ′(~p2)− na,λ(~p1)]

×h̄Γ2 ∓ 2iΓ∆ε∗λλ′ − (∆ε∗λλ′)
2

[Γ2 + (∆ε∗λλ′)
2]2

. (F.15)

In order to obtain the derivative of the susceptibility, ∂ε(~k, ω), we use the following

method:

If the entries An×n = [aij(t)] are differentiable functions of t, then

d(det(A))
dt

= det(D1) + det(D2) + ...+ det(Dn)

where Di is identical to An×n except that the entries in the ith row are replaced by

their derivatives. By this way, the derivative of the susceptibility becomes

∂ε(~k, ω)

∂ω
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Ap1
∂ω

∂Ap2
∂ω

∂Ap3
∂ω

∂An1
∂ω

∂An2
∂ω

∂An3
∂ω

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2 Bn

3

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 F n

1 F n
2 F n

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2 An3
∂Bp1
∂ω

∂Bp2
∂ω

∂Bp3
∂ω

∂Bn1
∂ω

∂Bn2
∂ω

∂Bn3
∂ω

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 F n

1 F n
2 F n

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ap1 Ap2 Ap3 An1 An2 An3

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2 Bn

3

∂Cp1
∂ω

∂Cp2
∂ω

∂Cp3
∂ω

∂Cn1
∂ω

∂Cn2
∂ω

∂Cn3
∂ω

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 F n

1 F n
2 F n

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ ...

(F.16)
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APPENDIX G

BARYON DENSITY CORRELATION FUNCTIONS

The total spectral intensity of the baryon density correlation function is given as

σ̃(~k, t) = σ̃pp(~k, t)+ σ̃np(~k, t)+ σ̃pn(~k, t)+ σ̃nn(~k, t). The spectral intensity functions

for proton-proton, neutron-neutron and mixed terms can be calculated separately by

using the growing and decaying parts of the density fluctuations given in Eqs. (4.66)

and (4.67). The spectral intensity for proton-proton is written as

σ̃BBpp (~k, t)(2π)3δ3(~k − ~k′) = δρB+
p (~k)(δρB+

p (~k))∗e2Γkt + δρB−p (~k)(δρB−p (~k))∗e−2Γkt

+δρB+
p (~k)(δρB−p (~k))∗ + δρB−p (~k)(δρB+

p (~k))∗. (G.1)

Here, the correlation of the growing modes can be written as a function of source

terms as

δρB+
p (~k)(δρB+

p (~k))∗
d+
ε d

+∗
ε

h̄2 =

S̃B+
p (~k)S̃B+

p (~k′)∗|N+
1p|2 − S̃B+

p (~k)S̃S+
p (~k′)∗N+

1pN
+∗
2p + S̃B+

p (~k)S̃V+
p (~k′)∗N+

1pN
+∗
3p

− S̃S+
p (~k)S̃B+

p (~k′)∗N+
2pN

+∗
1p + S̃S+

p (~k)S̃S+
p (~k′)∗|N+

2p|2 − S̃S+
p (~k)S̃V+

p (~k′)∗N+
2pN

+∗
3p

+ S̃B+
p (~k)S̃B+

p (~k′)∗N+
3pN

+∗
1p − S̃V+

p (~k)S̃S+
p (~k′)∗N+

3pN
+∗
2p + S̃V+

p (~k)S̃V+
p (~k′)∗|N+

3 |2

+ S̃B+
n (~k)S̃B+

n (~k′)∗|N+
4p|2 − S̃B+

n (~k)S̃S+
n (~k′)∗N+

4pN
+∗
5p + S̃B+

n (~k, )S̃V+
n (~k′)∗N+

4pN
+∗
6p

− S̃S+
n (~k)S̃B+

n (~k′)∗N+
5pN

+∗
4p + S̃S+

n (~k)S̃S+
n (~k′)∗|N+

5p|2 − S̃S+
n (~k)S̃V+

n (~k′)∗N+
5pN

+∗
6p

+ S̃B+
n (~k)S̃B+

n (~k′)∗N+
6pN

+∗
4p − S̃V+

n (~k)S̃S+
n (~k′)∗N+

6pN
+∗
5p + S̃V+

n (~k)S̃V+
n (~k′)∗|N+

6p|2

(G.2)

where we use the short-hand d+
ε = ∂ε(~k,ω)

∂ω
|ω=iΓ and d−ε = ∂ε(~k,ω)

∂ω
|ω=−iΓ for the grow-

ing and decaying modes respectively and we write S̃±a (~k) instead of S̃±a (~k, ω).
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Similarly, the correlation of decaying modes can be written as

δρB−p (~k)(δρB−p (~k))∗
d−ε d

−∗
ε

h̄2 =

S̃B−p (~k)S̃B−p (~k′)∗|N−1p|2−S̃B−p (~k)S̃S−p (~k′)∗N−1pN
−∗
2p + S̃B−p (~k)S̃V−p (~k′)∗N−1pN

−∗
3p

−S̃S−p (~k)S̃B−p (~k′)∗N−2pN
−∗
1p + S̃S−p (~k)S̃S−p (~k′)∗|N−2p|2 − S̃S−p (~k)S̃V−p (~k′)∗N−2pN

−∗
3p

+S̃B−p (~k)S̃B−p (~k′)∗N−3pN
−∗
1p − S̃V−p (~k)S̃S−p (~k′)∗N−3pN

−∗
2p + S̃V−p (~k)S̃V−p (~k′)∗|N−3p|2

+S̃B−n (~k)S̃B−n (~k′)∗|N−4p|2−S̃B−n (~k)S̃S−n (~k′)∗N−4pN
−∗
5p + S̃B−n (~k)S̃V−n (~k′)∗N−4pN

−∗
6p

−S̃S−n (~k)S̃B−n (~k′)∗N−5pN
−∗
4p + S̃S−n (~k)S̃S−n (~k′)∗|N−5p|2 − S̃S−n (~k)S̃V−n (~k′)∗N−5pN

−∗
6p

+S̃B−n (~k)S̃B−n (~k′)∗N−6pN
−∗
4p − S̃V−n (~k, )S̃S−n (~k′)∗N−6pN

−∗
5p + S̃V−n (~k)S̃V−n (~k′)∗|N−6p|2 .

(G.3)

The correlations for the cross terms become

δρB+
p (~k)(δρB−p (~k))∗

d+
ε d
−∗
ε

h̄2 =

S̃B+
p (~k)S̃B−p (~k′)∗N+

1pN
−∗
1p −S̃B+

p (~k)S̃S−p (~k′)∗N+
1pN

−∗
2p + S̃B+

p (~k)S̃V−p (~k′)∗N+
1pN

−∗
3p

−S̃S+
p (~k)S̃B−p (~k′)∗N+

2pN
−∗
1p +S̃S+

p (~k)S̃S−p (~k′)∗N+
2pN

−∗
2p − S̃S+

p (~k)S̃V−p (~k′)∗N+
2pN

−∗
3p

+S̃B+
p (~k)S̃B−p (~k′)∗N+

3pN
−∗
1p −S̃V+

p (~k)S̃S−p (~k′)∗N+
3pN

−∗
2p + S̃V+

p (~k)S̃V−p (~k′)∗N+
3pN

−∗
3p

+S̃B+
n (~k)S̃B−n (~k′)∗N+

4pN
−∗
4p −S̃B+

n (~k)S̃S−n (~k′)∗N+
4pN

−∗
5p + S̃B+

n (~k)S̃V−n (~k′)∗N+
4pN

−∗
6p

−S̃S+
n (~k)S̃B−n (~k′)∗N+

5pN
−∗
4p +S̃S+

n (~k2)S̃S−n (~k′)∗N+
5pN

−∗
5p − S̃S+

n (~k)S̃V−n (~k′)∗N+
5pN

−∗
6p

+S̃B+
n (~k)S̃B−n (~k′)∗N+

6pN
−∗
4p −S̃V+

n (~k)S̃S−n (~k′)∗N+
6pN

−∗
5p + S̃V+

n (~k)S̃V−n (~k′)∗N+
6pN

−∗
6p

(G.4)

and

δρB−p (~k)(δρB+
p (~k))∗

d−ε d
+∗
ε

h̄2 =

S̃B−p (~k)S̃B+
p (~k′)∗N−1pN

+∗
1p −S̃B−p (~k)S̃S+

p (~k′)∗N−1pN
+∗
2p + S̃B−p (~k)S̃V+

p (~k′)∗N−1pN
+∗
3p

−S̃S−p (~k)S̃B+
p (~k′)∗N−2pN

+∗
1p +S̃S−p (~k)S̃S+

p (~k′)∗N−2pN
+∗
2p − S̃S−p (~k)S̃V+

p (~k′)∗N−2pN
+∗
3p

+S̃B−p (~k)S̃B+
p (~k′)∗N−3pN

+∗
1p −S̃V−p (~k)S̃S+

p (~k′)∗N−3pN
+∗
2p + S̃V−p (~k)S̃V+

p (~k′a)∗N−3pN
+∗
3p

+S̃B−n (~k)S̃B+
n (~k′)∗N−4pN

+∗
4p −S̃B−n (~k)S̃S+

n (~k′)∗N−4pN
+∗
5p + S̃B−n (~k)S̃V+

n (~k′)∗N−4pN
+∗
6p

−S̃S−n (~k)S̃B+
n (~k′)∗N−5pN

+∗
4p +S̃S−n (~k)S̃S+

n (~k′)∗N−5pN
+∗
5p − S̃S−n (~k)S̃V+

n (~k′)∗N−5pN
+∗
6p

+S̃B−n (~k)S̃B+
n (~k′)∗N−6pN

+∗
4p −S̃V−n (~k)S̃S+

n (~k′)∗N−6pN
+∗
5p + S̃V−n (~k)S̃V+

n (~k′)∗N−6pN
+∗
6p .

(G.5)
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In order to calculate the correlations for the source terms, we use the definitions of

the source terms given in Eq. (4.58) and the following relation

δρaλµ(~p2, ~p1, 0)δρbλ′µ′(~p2, ~p1, 0) = δabδλλ′δµµ′(2πh̄)6δ(~p1 − ~p′1)δ(~p2 − ~p′2)

×1

2
[nλ(~p2)(1− nµ(~p1)) + nµ(~p1)(1− nλ(~p2))] .

(G.6)

According to this relation, proton-neutron and neutron-proton correlations are ob-

tained as zero, S̃p(~k)S̃n(~k′)∗ = S̃n(~k)S̃p(~k
′)∗ = 0. The other correlations are defined

as follows



K+a
BB

K+a
ss

K+a
vv

K+a
Bs

K+a
Bv

K+a
sv


=



S̃B+
a (~k)S̃B+

a (~k′)∗

S̃s+a (~k)S̃s+a (~k′)∗

S̃s+a (~k)S̃v+
a (~k′)∗

S̃B+
a (~k)S̃s+a (~k′)∗

S̃B+
a (~k)S̃v+

a (~k′)∗

S̃s+a (~k)S̃v+
a (~k′)∗


=



S̃B−a (~k)S̃B−a (~k′)∗

S̃s−a (~k)S̃s−a (~k′)∗

S̃s−a (~k)S̃v−
a (~k′)∗

S̃B−a (~k)S̃s−a (~k′)∗

S̃B−a (~k)S̃v−
a (~k′)∗

S̃s−a (~k)S̃v−
a (~k′)∗



= γ2
∑
λλ′

∫
d3p

(2πh̄)3



ξB
λ′λξ

B
λ′λ

ξs
λ′λξ

s
λ′λ

ξv
λ′λξ

v
λ′λ

ξB
λ′λξ

s
λ′λ

ξB
λ′λξ

v
λ′λ

ξs
λ′λξ

v
λ′λ


× (h̄Γk)

2 + [λ′ε∗(~p2)− λε∗(~p1)]2

{(h̄Γk)2 + [λ′ε∗(~p2)− λε∗(~p1)]2}2
naλ′(~p2)[1− naλ(~p1]

(G.7)
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and

K−aBB

K−ass

K−avv

K−aBs

K−aBv

K−asv


=



S̃B+
a (~k)S̃B−a (~k′)∗

S̃s+a (~k)S̃s−a (~k′)∗

S̃s+a (~k)S̃v−
a (~k′)∗

S̃B+
a (~k)S̃s−a (~k′)∗

S̃B+
a (~k)S̃v−

a (~k′)∗

S̃s+a (~k)S̃v−
a (~k′)∗



= −γ2
∑
λλ′

∫
d3p

(2πh̄)3



ξB
λ′λξ

B
λ′λ

ξs
λ′λξ

s
λ′λ

ξv
λ′λξ

v
λ′λ

ξB
λ′λξ

s
λ′λ

ξB
λ′λξ

v
λ′λ

ξs
λ′λξ

v
λ′λ


× (h̄Γk)

2 − [λ′ε∗(~p2)− λε∗(~p1)]2

{(h̄Γk)2 + [λ′ε∗(~p2)− λε∗(~p1)]2}2
naλ′(~p2)[1− naλ(~p1] .

(G.8)

By using these definitions, we can obtain the correlations for growing and decaying

parts of the proton-proton spectral intensity function as(
δρBp (~k)

)+
[(
δρBp (~k)

)+
]∗

=
(2π)3δ(~k − ~k′)h̄2∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2
×
{
K+p
BB|N

+
1p|2 −K

+p
BS(N+

1pN
+∗
2p +N+

2pN
+∗
1p ) +K+p

SS |N
+
2p|2 +K+p

V V |N
+
3p|2

+K+n
BB|N

+
4p|2 −K+n

BS(N+
4pN

+∗
5p +N+

5pN
+∗
4p ) +K+n

SS |N
+
5p|2 +K+n

V V |N
+
6p|2

+ K+p
BV (N+

1pN
+∗
3p +N+

3pN
+∗
1p )−K+p

SV (N+
2pN

+∗
3p +N+

3pN
+∗
2p )

+ K+n
BV (N+

4pN
+∗
6p +N+

6pN
+∗
4p )−K+n

SV (N+
5pN

+∗
6p +N+

6pN
+∗
5p )
}

(G.9)

and (
δρBp (~k)

)− [(
δρBp (~k)

)−]∗
=

(2π)3δ(~k − ~k′)h̄2∣∣∣∣(∂ε(k,ω)
∂ω

)
ω=−iΓ

∣∣∣∣2
×
{
K+p
BB|N

−
1p|2 −K

+p
BS(N−1pN

−∗
2p +N−2pN

−∗
1p ) +K+p

SS |N
−
2p|2 +K+p

V V |N
−
3p|2

+K+n
BB|N

−
4p|2 −K+n

BS(N−4pN
−∗
5p +N−5pN

−∗
4p ) +K+n

SS |N
−
5p|2 +K+n

V V |N
−
6p|2

+ K+p
BV (N−1pN

−∗
3p +N−3pN

−∗
1p )−K+p

SV (N−2pN
−∗
3p +N−3pN

−∗
2p )

+ K+n
BV (N−4pN

−∗
6p +N−6pN

−∗
4p )−K+n

SV (N−5pN
−∗
6p +N−6pN

−∗
5p )
}
. (G.10)
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The correlations for the mixed terms are obtained as

(
δρBp (~k)

)+
[(
δρBp (~k)

)−]∗
=

(2π)3δ(~k − ~k′)h̄2[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
×
{
K−pBBN

+
1pN

−∗
1p −K

−p
BS(N+

1pN
−∗
2p +N+

2pN
−∗
1p ) +K−pSSN

+
2pN

−∗
2p +K−pV VN

+
3pN

−∗
3p

+K−nBBN
+
4pN

−∗
4p −K−nBS(N+

4pN
−∗
5p +N+

5pN
−∗
4p ) +K−nSSN

+
5pN

−∗
5p +K−nV VN

+
6pN

−∗
6p

+K−pBV (N+
1pN

−∗
3p +N+

3pN
−∗
1p )−K−pSV (N+

2pN
−∗
3p +N+

3pN
−∗
2p )

+ K−nBV (N+
4pN

−∗
6p +N+

6pN
−∗
4p )−K−nSV (N+

5pN
−∗
6p +N+

6pN
−∗
5p )
}
, (G.11)

and

(
δρBp (~k)

)− [(
δρBp (~k)

)+
]∗

=
(2π)3δ(~k − ~k′)h̄2[(

∂ε(k,ω)
∂ω

)
ω=−iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=iΓ

]∗
×
{
K−pBBN

−
1pN

+∗
1p −K

−p
BS(N−1pN

+∗
2p +N−2pN

+∗
1p ) +K−pSSN

−
2pN

+∗
2p +K−pV VN

−
3pN

+∗
3p

+K−nBBN
−
4pN

+∗
4p −K−nBS(N−4pN

+∗
5p +N−5pN

+∗
4p ) +K−nSSN

−
5pN

+∗
5p +K−nV VN

−
6pN

+∗
6p

+K−pBV (N−1pN
+∗
3p +N−3pN

+∗
1p )−K−pSV (N−2pN

+∗
3p +N−3pN

+∗
2p )

+ K−nBV (N−4pN
+∗
6p +N−6pN

+∗
4p )−K−nSV (N−5pN

+∗
6p +N−6pN

+∗
5p )
}
. (G.12)

In the above expressions, N+
ia factors are evaluated at ω = +iΓk and N−ia factors are

evaluated at ω = −iΓk for i = 1, ..., 6. According to the numerical calculations,

N±1a, N
±
2a, N

±
4a and N±5a are found as real and N±3a, N

±
6a are imaginary. There is a rela-

tion between them, that can be written asN−ia = N+
ia for i = 1, 2, 4, 5 andN−ia = −N+

ia

for i = 3, 6. Consequently, we find the correlations of growing and decaying parts

equal to each other,
(
δρBp (~k)

)+
[(
δρBp (~k)

)+
]∗

=
(
δρBp (~k)

)− [(
δρBp (~k)

)−]∗
. In the

calculations of the cross terms, the contributions coming from K−aBV and K−aSV terms

cancelled each other. Finally, if we employ the above equations in Eq. (G.1), we get

σ̃pp(~k, t) = h̄2
E+
pp∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2 (e2Γt+e−2Γt)+h̄2
E+−
pp + E−+

pp[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
(G.13)
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where the short-hand notations are used for

E+
pp = E−pp =K+p

BB|N
+
1p|2 −K

+p
BS(N+

1pN
−
2p +N+

2pN
−
1p) +K+p

SS |N
+
2p|2 +K+p

V V |N
+
3p|2

+K+n
BB|N

+
4p|2 −K+n

BS(N+
4pN

−
5p +N+

5pN
−
4p) +K+n

SS |N
+
5p|2 +K+n

V V |N
+
6p|2

E+−
pp + E−+

pp = 2
{
K−pBB|N

+
1p|2 − 2K−pBS(N+

1pN
+
2p) +K−pSS |N

+
2p|2 +K−pV V |N

+
3p|2

+K−nBB|N
+
4p|2 − 2K−nBS(N+

4pN
+
5p) +K−nSS |N

+
5p|2 +K−nV V |N

+
6p|2
}

(G.14)

Similarly, we can write the spectral intensity for σ̃BBnn (~k, t) as

σ̃BBnn (~k, t)(2π)3δ3(~k − ~k′) = δρB+
n (~k)(δρB+

n (~k))∗e2Γkt + δρB−n (~k)(δρB−n (~k))∗e−2Γkt

+δρB+
n (~k)(δρB−n (~k))∗ + δρB−n (~k)(δρB+

n (~k))∗ (G.15)

The correlations are found for the growing, decaying and the mixed terms respectively

as,

(
δρBn (~k)

)± [(
δρBn (~k)

)±]∗
=

(2π)3δ(~k − ~k′)h̄2∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓ

∣∣∣2
×
{
K+p
BB|N

+
1n|2 −K

+p
BS(N+∗

1n N
+
2n +N+

2nN
+∗
1n ) +K+p

SS |N
+
2n|2 +K+p

V V |N
+
3n|2

+K+n
BB|N

+
4n|2 −K+n

BS(N+
4nN

+∗
5n +N+

5nN
+∗
4n ) +K+n

SS |N
+
5n|2 +K+n

V V |N
+
6n|2

+ K+p
BV (N+

1nN
+∗
3n +N+

3nN
+∗
1n )−K+p

SV (N+
2nN

+∗
3n +N+

3nN
+∗
2n )

+ K+n
BV (N+

4nN
+∗
6n +N+

6nN
+∗
4n )−K+n

SV (N+
5nN

+∗
6n +N+

6nN
+∗
5n )
}
, (G.16)

(
δρBn (~k)

)+
[(
δρBn (~k)

)−]∗
=

(2π)3δ(~k − ~k′)h̄2[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
×
{
K−pBBN

+
1nN

−∗
1n −K

−p
BS(N+

1nN
−∗
2n +N+

2nN
−∗
1n ) +K−pSSN

+
2nN

−∗
2n +K−pV VN

+
3nN

−∗
3n

+K−nBBN
+
4nN

−∗
4n −K−nBS(N+

4nN
−∗
5n +N+

5nN
−∗
4n ) +K−nSSN

+
5nN

−∗
5n +K−nV VN

+
6nN

−∗
6n

+K−pBV (N+
1nN

−∗
3n +N+

3nN
−∗
1n )−K−pSV (N+

2nN
−∗
3n +N+

3nN
−∗
2n )

+ K−nBV (N+
4nN

−∗
6n +N+

6nN
−∗
4n )−K−nSV (N+

5nN
−∗
6n +N+

6nN
−∗
5n )
}
, (G.17)
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and (
δρBn (~k)

)− [(
δρBn (~k)

)+
]∗

=
(2π)3δ(~k − ~k′)h̄2[(

∂ε(k,ω)
∂ω

)
ω=−iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=iΓ

]∗
×
{
K−pBBN

−
1nN

+∗
1n −K

−p
BS(N−1nN

+∗
2n +N−2nN

+∗
1n ) +K−pSSN

−
2nN

+∗
2n +K−pV VN

−
3nN

+∗
3n

+K−nBBN
−
4nN

+∗
4n −K−nBS(N−4nN

+∗
5n +N−5nN

+∗
4n ) +K−nSSN

−
5nN

+∗
5n +K−nV VN

−
6nN

+∗
6n

+K−pBV (N−1nN
+∗
3n +N−3nN

+∗
1n )−K−pSV (N−2nN

+∗
3n +N−3nN

+∗
2n )

+ K−nBV (N−4nN
+∗
6n +N−6nN

+∗
4n )−K−nSV (N−5nN

+∗
6n +N−6nN

+∗
5n )
}
. (G.18)

Then, the neutron-neutron spectral intensity function, σ̃nn(~k, t), can be written as

σ̃nn(~k, t) = h̄2 E+
nn∣∣∣(∂ε(k,ω)

∂ω

)
ω=iΓ

∣∣∣2 (e2Γt+e−2Γt)+h̄2 E+−
nn + E−+

nn[(
∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
(G.19)

where we use

E+
nn = E−nn =K+p

BB|N
+
1n|2 −K

+p
BS(N+

1nN
−
2n +N+

2nN
−
1n) +K+p

SS |N
+
2n|2 +K+p

V V |N
+
3n|2

+K+n
BB|N

+
4n|2 −K+n

BS(N+
4nN

−
5n +N+

5nN
−
4n) +K+n

SS |N
+
5n|2 +K+n

V V |N
+
6n|2

E+−
nn + E−+

nn =2
{
K−pBB|N

+
1n|2 − 2K−pBS(N+

1nN
+
2n) +K−pSS |N

+
2n|2 +K−pV V |N

+
3n|2

+K−nBB|N
+
4n|2 − 2K−nBS(N+

4nN
+
5n) +K−nSS |N

+
5n|2 +K−nV V |N

+
6n|2
}
.

(G.20)

Finally, the spectral intensity for the cross terms are given by

σ̃BBnp (~k, t)(2π)3δ3(~k − ~k′) = δρB+
n (~k)(δρB+

p (~k))∗e2Γkt + δρB−n (~k)(δρB−p (~k))∗e−2Γkt

+δρB+
n (~k)(δρB−p (~k))∗ + δρB−n (~k)(δρB+

p (~k))∗ (G.21)

The correlations for growing and decaying parts of the neutron-proton spectral inten-

sity function as(
δρBn (~k)

)+
[(
δρBp (~k)

)+
]∗

= −(2π)3δ(~k − ~k′)h̄2∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓ

∣∣∣2
×
{
K+p
BBN

+
1nN

+
1p −K

+p
BS(N+

1nN
+
2p +N+

2nN
+
1p) +K+p

SSN
+
2nN

+
2p +K+p

V VN
+
3nN

+
3p

+K+n
BBN

+
4nN

+
4p −K+n

BS(N+
4nN

+
5p +N+

5nN
+
4p) +K+n

SSN
+
5nN

+
5p +K+n

V VN
+
6nN

+
6p

+ K+p
BV (−iN+

1nN
+
3p + iN+

3nN
+
1p)−K

+p
SV (−iN+

2nN
+
3p + iN+

3nN
+
2p)

+ K+n
BV (−iN+

4nN
+
6p + iN+

6nN
+
4p)−K+n

SV (−iN+
5nN

+
6p + iN+

6nN
+
5p)
}

(G.22)
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and

(
δρBn (~k)

)− [(
δρBp (~k)

)−]∗
= − (2π)3δ(~k − ~k′)h̄2∣∣∣∣(∂ε(k,ω)

∂ω

)
ω=−iΓ

∣∣∣∣2
×
{
K+p
BBN

+
1nN

+
1p −K

+p
BS(N+

1nN
+
2p +N+

2nN
+
1p) +K+p

SSN
+
2nN

+
2p +K+p

V VN
+
3nN

+
3p

+K+n
BBN

+
4nN

+
4p −K+n

BS(N+
4nN

+
5p +N+

5nN
+
4p) +K+n

SSN
+
5nN

+
5p +K+n

V VN
+
6nN

+
6p

+ K+p
BV (iN+

1nN
+
3p − iN+

3nN
+
1p)−K

+p
SV (iN+

2nN
+
3p − iN+

3nN
+
2p)

+ K+n
BV (iN+

4nN
+
6p − iN+

6nN
+
4p)−K+n

SV (iN+
5nN

+
6p − iN+

6nN
+
5p)
}

(G.23)

The correlations for the mixed terms are obtained as

(
δρBn (~k)

)+
[(
δρBp (~k)

)−]∗
= − (2π)3δ(~k − ~k′)h̄2[(

∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
×
{
K−pBBN

+
1nN

+
1p −K

−p
BS(N+

1nN
+
2p +N+

2nN
+
1p) +K−pSSN

+
2nN

+
2p +K−pV VN

+
3nN

+
3p

+K−nBBN
+
4nN

+
4p −K−nBS(N+

4nN
+
5p +N+

5nN
+
4p) +K−nSSN

+
5nN

+
5p +K−nV VN

+
6nN

+
6p

+ K−pBV (iN+
1nN

+
3p + iN+

3nN
+
1p)−K

−p
SV (iN+

2nN
+
3p + iN+

3nN
+
2p)

+ K−nBV (iN+
4nN

+
6p + iN+

6nN
+
4p)−K−nSV (iN+

5nN
+
6p + iN+

6nN
+
5p)
}

(G.24)

and

(
δρBn (~k)

)− [(
δρBp (~k)

)+
]∗

= − (2π)3δ(~k − ~k′)h̄2[(
∂ε(k,ω)
∂ω

)
ω=−iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=iΓ

]∗
×
{
K−pBBN

+
1nN

+
1p −K

−p
BS(N+

1nN
+
2p +N+

2nN
+
1p) +K−pSSN

+
2nN

+
2p +K−pV VN

+
3nN

+
3p

+K−nBBN
+
4nN

+
4p −K−nBS(N+

4nN
+
5p +N+

5nN
+
4p) +K−nSSN

+
5nN

+
5p +K−nV VN

+
6nN

+
6p

+ K−pBV (−iN+
1nN

+
3p − iN+

3nN
+
1p)−K

−p
SV (−iN+

2nN
+
3p − iN+

3nN
+
2p)

+ K−nBV (−iN+
4nN

+
6p − iN+

6nN
+
4p)−K−nSV (−iN+

5nN
+
6p − iN+

6nN
+
5p)
}

(G.25)

When we calculate σ̃BBpn (~k, t) + σ̃BBnp (~k, t), the terms including K−aBV and K−aSV can-

celled each other. Finally, we obtain

σ̃np(~k, t)+σ̃pn(~k, t) =
2h̄2E+

np∣∣∣(∂ε(k,ω)
∂ω

)
ω=iΓ

∣∣∣2 (e2Γt+e−2Γt)+
2h̄2(E+−

np + E−+
np )[(

∂ε(k,ω)
∂ω

)
ω=iΓ

] [(
∂ε(k,ω)
∂ω

)
ω=−iΓ

]∗
(G.26)
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where

E+
np = E−np = −K+p

BBN
+
1nN

+
1p +K+p

BS(N+
1nN

+
2p +N+

2nN
+
1p)−K

+p
SSN

+
2nN

+
2p

−K+p
V VN

+
3nN

+
3p −K+n

BBN
+
4nN

+
4p +K+n

BS(N+
4nN

+
5p +N+

5nN
+
4p)

−K+n
SSN

+
5nN

+
5p −K+n

V VN
+
6nN

+
6p

E+−
np + E−+

np = 2
{
−K−pBBN

+
1nN

+
1p +K−pBS(N+

1nN
+
2p +N+

2nN
+
1p)−K

−p
SSN

+
2nN

+
2p

−K−pV VN
+
3nN

+
3p −K−nBBN

+
4nN

+
4p +K−nBS(N+

4nN
+
5p +N+

5nN
+
4p)

−K−nSSN
+
5nN

+
5p −K−nV VN

+
6nN

+
6p

}
.

(G.27)

In the numerical calculations, the derivative of the susceptibility is found as a complex

number, then the denominator of the second term becomes[(
∂ε(k, ω)

∂ω

)
ω=iΓ

] [(
∂ε(k, ω)

∂ω

)
ω=−iΓ

]∗
= i2

∣∣∣∣(∂ε(k, ω)

∂ω

)
ω=iΓ

∣∣∣∣2 . (G.28)

Therefore, if we define the K−a integrals positive as in Eq. (4.78), we can obtain the

spectral intensity of density correlations for all cases as follows

σ̃ab(~k, t) = h̄2 E+
ab(
~k)

|[∂ε(~k, ω)/∂ω]ω=iΓk |2
(e+2Γkt + e−2Γkt) +

2h̄2E−ab(
~k)

|[∂ε(~k, ω)/∂ω]ω=iΓk |2
(G.29)

where we use the following quantities,

E±pp = K±pBB|N
+
1p|2 − 2K±pBS(N+

1pN
+
2p) +K±pSS |N

+
2p|2 +K±pV V |N

+
3p|2

+K±nBB|N
+
4p|2 − 2K±nBS(N+

4pN
+
5p) +K±nSS |N

+
5p|2 +K±nV V |N

+
6p|2

E±nn = K±pBB|N
+
1n|2 − 2K±pBS(N+

1nN
+
2n) +K±pSS |N

+
2n|2 +K±pV V |N

+
3n|2

+K±nBB|N
+
4n|2 − 2K±nBS(N+

4nN
+
5n) +K±nSS |N

+
5n|2 +K±nV V |N

+
6n|2

E±pn = E±np = −K±pBB (N+
1pN

+
1n) +K±pBS (N+

2pN
+
1n +N+

1pN
+
2n)−K±pSS (N+

2pN
+
2n)

−K±pVV(N+
3pN

+
3n)−K±nBB (N+

4pN
+
4n) +K±nBS (N+

4pN
+
5n +N+

5pN
+
4n)

−K±nSS (N+
5pN

+
5n)−K±nVV (N+

6pN
+
6n) . (G.30)
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