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ABSTRACT

BURIED WIRE DETECTION USING GROUND PENETRATING RADARS

YILMAZ, Utku

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozda§� Akar

July 2017, 134 pages

Buried explosives pose great threat for national security of the countries strug-

gling with these explosives as the damage caused by them increase day by day.

There are several sensors developed for detection of buried explosives such as

land mines, unexploded ordnances and improvised explosive devices (IEDs).

Among these, IEDs are quite hard to detect with majority of sensors due to

their irregular shape and contents. The di�culties in IED detection have led

researchers to aim the triggering mechanisms of IEDs. As the new jamming

systems in the military industry can successfully block the wireless control links

of IEDs, the threat has shifted to the use of command wires. So, the detection

of buried command wires become a critical ability for buried explosive detection

systems.

Ground penetrating radars have shown their capabilities on detection of buried

objects in many operational concepts. Ground penetrating radars can construct

the 3-D image of the subsurface medium with high spatial and temporal resolu-
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tion and distinguish objects with di�erent electromagnetic properties.

In this thesis, wire detection problem is studied using ground penetrating radars.

Firstly, extensive simulations are carried out on gprMax software, a powerful

open source FDTD simulation environment, by changing simulation parameters

such as transmitting frequency, electromagnetic properties of soil and clutter,

depth and radius of wire, in order to observe the e�ects of these parameters.

Then, a simulated 3-D GPR database is generated consisting of wires in di�erent

orientations together with di�erent types of clutter. In the second step, wire

detection and classi�cation problem is studied. The possible wire locations are

found using a morphologically improved version of 2-D LMS �ltering. Then

a novel 3-D feature set is extracted with the help of 3-D curve reconstruction

algorithm. Using the generated database, SVM classi�er is trained and the

performance of proposed algorithms is shown.

Keywords: Ground Penetrating Radar, Detection, Feature Extraction, Classi�-

cation, Wire Detection
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ÖZ

YERE NÜFUZ EDEN RADARLAR �LE GÖMÜLÜ TEL TESP�T�

YILMAZ, Utku

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozda§� Akar

Temmuz 2017 , 134 sayfa

Yere gömülü patlay�c�lar�n neden oldu§u hasar günden güne artmakta; bu da bu

patlay�c�lar ile mücadele içinde olan ülkelerin milli güvenli§i için tehdit olu³tur-

maktad�r. May�n, patlamam�³ mühimmat ve el yap�m� patlay�c� (EYP) gibi yere

gömülü patlay�c�lar�n tespiti için çe³itli sensörler geli³tirilmi³tir. Bu patlay�c�lar

aras�nda, EYP'lerin boyut ve içeriklerinin çok çe³itli olmas�, EYP'lerin tespit

edilmesini güçle³tirmektedir. Tespit konusundaki bu problemler, ara³t�rmac�lar�

EYP tetik mekanizmalar�n� hede�emeye yönlendirmi³tir. Askeri sanayideki yeni

kar�³t�r�c� sistemler ile kablosuz kontrol ba§lant�lar� engellenebildi§i için tehdit,

kablolu tetik mekanizmalar�n�n kullan�m�na yönelmi³tir. Bu nedenle, yere gö-

mülü komuta tellerinin tespiti, yere gömülü patlay�c� sistemleri için çok kritik

bir yetenek olmaktad�r.

Yere nüfuz eden radarlar, yere gömülü objelerin tespitindeki kapasitelerini çe³itli

operasyonel konseptlerde göstermi³tir. Yere nüfuz eden radarlar, yer alt� orta-

m�n�n yüksek uzamsal ve zamansal çözünürlükte 3 boyutlu görüntüsünü olu³tu-
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rabilmekte ve farkl� elektromanyetik özellikteki objeleri ay�rt edebilmektedirler.

Bu tezde, yere nüfuz eden radarlar ile tel tespiti problemi üstüne çal�³�lm�³t�r.

Öncelikle, güçlü bir aç�k kaynak sonlu farklar yöntemi yaz�l�m� olan gprMax ile

benzetim parametrelerinin etkilerini inceleme amac�yla yay�n frekans�, topra§�n

ve di§er objelerin elektromanyetik özellikleri, telin çap� ve derinli§i gibi benzetim

parametreleri de§i³tirilerek detayl� benzetimler yap�lm�³t�r. Ard�ndan farkl� tel

ve karga³a konumlar� için 3 boyutlu bir veri kütüphanesi haz�rlanm�³t�r. Tezin

ikinci bölümünde, tel tespit ve tehis problemi çal�³�lm�³t�r. Matematiksel biçim-

sellik ile iyile³tirilmi³ 2 boyutlu LMS ile olas� tel konumlar� ön görüntülenmi³tir.

Ard�ndan, 3 boyutlu e§ri olu³turma metodu ile, yenilikçi bir 3 boyutlu öz ni-

telik kümesi ç�kar�lm�³t�r. Veri kütüphanesi ile, SVM s�n��and�r�c�s� e§itilmi³ ve

önerilen metotlar�n performanslar� incelenmi³tir.

Anahtar Kelimeler: Yere Nüfuz Eden Radar, Tespit, Öznitelik Ç�kar�m�, S�n�f-

land�rma, Tel Tespiti
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CHAPTER 1

INTRODUCTION

1.1 The Concept of Humanitarian Demining

Humanitarian demining of various explosives is a serious problem for the coun-

tries those have struggled in major wars like World War II and those are strug-

gling with asymmetric warfare. There are still millions of buried explosives scat-

tered around the world [1], [2]. The explosives that are buried underground can

be mainly divided into three groups; landmines, unexploded ordnances (UXO)

and improvised explosive devices (IED).

The landmines are produced in di�erent sizes; such as anti-tank landmines and

anti-personnel landmines. In Ottawa Convention, 1999, the use and stockpiling

of anti-personnel landmines are prohibited [1]. But still there are millions of

landmines buried underground unexploded . Anti-tank landmines are triggered

with great pressure, or magnetically; aiming to damage tanks and armoured

heavy vehicles. Anti-personnel landmines on the other hand, are triggered with

very little pressure and aims to kill or maim the person stepping on the landmine.

As the detection technology advances, the metal content of the mines gets lower

for minimum detectability. For instance, there exist minimum metal landmines

that are quite hard to detect with electromagnetic induction (EMI) sensors.

Although their size and metal content di�er a lot; they share the very same

structure in general. Their shape observed with an underground imaging sensor

mainly shares the same characteristics, which creates a framework that allows

the classi�cation of mines from any form of clutter.
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UXOs are the unexploded remains of warfare, such as missiles and various kinds

of bombs. There still exist many UXOs in the heavily bombed areas of ma-

jor wars such as World War II and they pose a great danger for construction

industry. Their shape and size di�er a lot. Yet, the areas possibly containing

UXO are known; and with some extra carefulness; these UXO can be detected

and demined well. Since the con�ict is over at these areas, demining missions

are not time critical. However, despite being not time critical, UXOs are still

perilous. UN (United Nations) statistics have shown that two deminers dies for

every 1000 UXOs demined as stated in [3].

The IEDs, also known as the handmade explosives however is a great problem

in case of an asymmetric warfare. They can be created in any shape and any

size. Also very simple and easy to �nd materials can be used for creating IEDs.

Therefore detection of such explosives is a great problem for humanitarian dem-

ining [4]. The IEDs can be detonated with various ways. UNIDIR (United

Nations Institute for Disarmament Research) classi�es IEDs under three trig-

gering mechanisms [5], namely victim operated, time operated and command

operated IEDs.

The victim operated IEDs are designed to detonate when the victim contacts

the triggering mechanism. When enough precautions are taken, these kind of

IEDs are safe to demine mostly.

Another triggering mechanism is time operated IEDs. These IEDs are detonated

with an alarm, or a timer. These IEDs are commonly seen inside cities; rather

than the roads in rural areas.

The last triggering mechanism is command operated IEDs. These IEDs are the

most dangerous and harmful ones since they are triggered with exact timing

to cause the highest impact on the target. They pose a great challenge for

IED detection in rural areas. The command operated IEDs can be divided into

three subsections. Infra-red controlled IEDs works like victim operated IEDs;

they are triggered when the victim blocks the light beam. The radio / remote

controlled IEDs are triggered with electromagnetic waves such as car alarms,

wireless sensors, cell phones, pagers, radios. The common countermeasure for
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these IEDs is jammers. The new jamming systems in the military industry can

successfully block the triggering signal. The last command type is command

wire operated IEDs. These IEDs can be commanded from great distances. They

cannot be jammed e�ectively, and they can be triggered with exact timing; which

would cause great harm. As there is a lack in countermeasures for command wire

operated IEDs, these IEDs poser a great challenge for humanitarian demining.

1.2 Sensors and Methods Used for Landmine, IED and UXO detec-

tion

Landmines, UXOs and IEDs can be detected by using many di�erent sensors.

These sensors can be listed as ground penetrating radars (GPR), infra-red (IR)

and hyper spectral cameras, electromagnetic induction (EMI) sensors, magne-

tometers, acoustic and seismic sensors, nuclear quadrupole resonators, X-ray

backscattering sensors and even the biological methods including dogs, bees and

fungi [6]. The list can be extended further including radiometers, trace explosive

detection systems, neutron based methods and remote sensing systems [7]. All

these sensors have their pros and cons.

Ground penetrating radars can detect objects that have di�erent electrical prop-

erties than the general soil pro�le. GPR detections also includes the depth in-

formation. The detection range varies from very shallow points to the mid range

for an anti-personnel (AP) landmine. The detection range can be extended for

massive objects. On the other hand, hardware design of ground penetrating

radars can be quite complex compared to majority of other sensor types.

The infra-red (IR) and hyper spectral cameras can also be used for explosive

detection [8]. These electro-optical sensors can successfully detect the anomalies

on the soil surface at a large distance. Therefore, they are quite useful to detect

the explosives betimes, without approaching the explosive, when explosives are

shallowly buried or recently buried and left an anomaly on the soil surface.

However, when the explosives are buried deeper these cameras fail to detect

these objects. Also, if the explosives are buried long ago, then the anomalies on
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the soil surface disappear and it becomes impossible to detect these explosives.

Electromagnetic induction sensors, also known as the metal detectors, are one

of the oldest methods used for landmine detection. They can locate the metal

particles buried under ground. They have the greatest detection range compared

to all other sensors; they can locate massive metal particles buried very deep.

Also the EMI sensors with di�erential coil structures can detect very small metal

particles. However, most EMI designs are not capable of �nding the depth of

objects. Also EMI sensors struggle at detecting the minimum metal landmines.

Magnetometers are passive sensors that sense the small anomalies in the mag-

netic �eld of the earth. However, they can't be used with other active elec-

tromagnetic sensors. Therefore, their usage in terms of hybrid solutions are

limited.

In addition to these, acoustic and seismic sensors can be used for explosive

detection as well. However, the major problem of these sensors is that very

low percentage of the acoustic waves penetrate the soil due to air to ground

interference. Moreover, seismic sensors are quite infeasible for moving vehicle

detection systems.

Nuclear quadrupole resonators and X-ray backscattering sensors are some other

alternatives that can be used for explosive detection; yet their performance is

debatable and only a few examples are seen in the industry.

The biological methods, especially dogs are used commonly for explosive detec-

tion. Also, rats are being used for landmine and UXO detection. For instance,

Apopo organization [9], states that they have demined over 100.000 landmines

and UXOs using rats.

The fusion of all these sensors used for explosive detection generally shows an

improvement in the detection capability of the system. For instance, the fusion

of GPR and EMI is widely studied in both literature [10] and industry. In

[11], a context dependent EMI and GPR sensor fusion method is suggested for

landmine detection. Moreover, fusion of IR cameras with GPR is also another

hot topic in the literature [8].
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Along all these sensors, GPRs have shown their potential in terms of detecting

the explosives regardless of the metal content of explosives and locating explo-

sives in 3-D with a high precision at the cost of complex hardware and software

design.

1.3 Wire Detection Problem

Although, GPRs are capable of detecting various objects underground, detection

of IEDs is still a major problem for GPRs due to the irregular shapes and

contents of IEDs [4]. Therefore, researchers aim to detect or block the remote

command links of IEDs rather than detecting the IEDs. As the new jamming

systems achieve a high success rate of blocking wireless command links, the

threat has shifted to wired command links. As a consequence, the need to

develop a system capable of detecting command wires has urged [12]. In the

literature, to the best of our knowledge, there are a few studies focusing on the

command wire detection problem.

In [13], antenna and hardware design problem for buried wire detection is stud-

ied. The hybrid dual polarization system has one spiral antenna for transmitting

and two vivaldi antennas for receiving, placed perpendicular to each other. The

system works in the frequency band starting from 1.2 GHz to 4 GHz and it's

placed 3 cm above the ground surface. The wires, having diameter of 3 mm

and length of 80 cm are buried 15 cm deep inside the soil with εr = 4. Only

a B-scan data is collected using the system, with the step size of 1 cm. The

hyperbola signatures caused by wire scattering are observed in the B-scan data.

However, this study only focuses on the hardware design of the GPR; therefore

the detection and classi�cation of wires are not investigated. Moreover, [13] is

the only study that focuses on the detection of buried wires, to the best of our

knowledge.

In [14], di�erent measurements are conducted for command wire detection using

electromagnetic waves in anechoic chambers in air medium. The study has

concluded that use of circular polarization is best for linear object detection.
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In [12], unburied command wire detection problem is studied using LIDARs

(laser imaging detection and ranging). The study has shown that LIDARs can

be used for detection of command wires having diameter at least 3 mm. The

study has also shown the image processing algorithms for detecting linear objects

in LIDAR images.

Also, there is a patent application, [15], for a frequency stepped forward looking

sensor in HF (high frequency) band. However, the details regarding the system

design is missing and the concept is unclear in the patent application.

In [16], detection of unburied thin wires is investigated using forward looking

multiple input multiple output synthetic aperture radar (MIMO SAR). The

experimental set-up successfully detected the IED command wires with diameter

of 0.98 mm, which are placed on the ground surface. Detection of buried wires

is not investigated in this study, but the authors conclude that the detection

of buried wires is much harder. The reason behind the di�culty mentioned is

not stated explicitly in the paper. However, it is likely that the height of the

antenna being more than 2 meters and the forward looking structure play a role

in the penetration performance of the GPR.

Pipe detection is studied in the literature ([17], [18]) for urban uses of ground

penetrating radar; yet the diameter of pipes are quite large compared to com-

mand wires. Moreover, wires are electrically very thin, compared to the wave-

length of the electromagnetic waves propagating in the soil medium. However,

diameter of pipes are generally comparable with the wavelength of the elec-

tromagnetic waves. Therefore, the problem cannot be considered as linearly

scalable in this concept.

There are some hand-held cable detector devices in the military industry yet

their performance are not proven. Even, some producers avoid publishing the

sensor types used in these devices; which leaves a big question mark behind.

The antenna design of GPR is di�erent but highly related topic. In [19], the

antenna design is studied for maximizing signal returns from di�erent objects.

It concludes that, antenna footprint plays signi�cant role in detection of long
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metal pipes. Also, it investigates the e�ects on the return signal with di�erent

angles of metal pipe.

1.4 Scope of the Thesis

The scope of this thesis is to investigate the buried command wire detection

problem using ground penetrating radars and to propose signal processing algo-

rithms for detection and classi�cation of buried wires.

Firstly, a database of 2-D (B-scan) and 3-D (C-scan) GPR data is generated by

gprMax software, a powerful 3 Dimensional Finite Di�erence Time Domain (3-D

FDTD) simulation environment. The e�ects of various simulation parameters

and the characteristics of the buried wires are investigated extensively.

Then, command wire detection problem is investigated, which is divided into six

steps; ground bounce and mutual coupling removal, depth weighing, prescreen-

ing, curve reconstruction, feature extraction and classi�cation. Morphologically

Improved 2-D LMS prescreener is proposed for detection of possible wire loca-

tions. A novel 3-D curve based feature extraction method is proposed. The

extracted features are used for training and testing of classi�er. Performance

of proposed algorithms is shown. The �owchart of the processing methods are

presented in Figure 1.1.

Figure 1.1: Flowchart of the processing methods
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1.5 Outline of the Thesis

In Chapter 1, �rstly, an overall information is presented about humanitarian

demining activities, including di�erent sensor types to detect various kinds of

explosives. The studies in the literature related with command wire detection

problem is summarized afterwards. Then, the scope of thesis is explained and

the outline of thesis is presented.

In Chapter 2, the basics of ground penetrating radar is introduced. The problem

de�nition regarding the scope of thesis is explained in detail.

In Chapter 3, �rstly, the simulation environment is de�ned. Then, the analysis

on simulation parameters are presented in order to observe the possible e�ects

regarding di�erent parameters. Then, the C-scan simulations are explained in

detail.

In Chapter 4, the preprocessing methods are presented, which are divided into

three steps. In the �rst step, the ground bounce signal and mutual coupling

is eliminated. In the second step, the attenuation e�ect occurring along depth

axis is normalized. In the last step, possible wire locations are detected using

prescreening algorithm.

In Chapter 5, the classi�cation problem is studied, which is divided into three

steps. In the �rst step, the free form 3-D curve of wire detections is recon-

structed. In the second step, a novel set of 3-D features are extracted using

the reconstructed curve and the original detections. In the last step, a feature

based classi�cation algorithm is used for classifying objects. After all these, the

performance of the overall algorithm chain is evaluated.

In Chapter 6, the thesis is summarized with few words, the �nal remarks are

discussed to conclude the thesis and the possible future works are suggested.
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CHAPTER 2

BACKGROUND INFORMATION AND PROBLEM

DEFINITION

Ground penetrating radars are active electromagnetic sensors that transmits

electromagnetic waves in a frequency band into the air medium. The waves pen-

etrate into the ground and propagate in the subsurface medium. They scatter

as they propagate and gets re�ected at certain discontinuities in the subsurface

medium. Presence of an object which has di�erent electromagnetic properties

than the general soil pro�le would make a discontinuity in the electromagnetic

pro�le of the soil. These re�ections are received by the receiving antenna el-

ement. The basics of ground penetrating radar is well described in [20] and

[21].

The wire detection problem using GPR can be modelled as in Figure 2.1. The

radar, which has multiple transmitting and receiving antennas (T/R pairs), is

mounted on a platform, such as a ground vehicle. The dimension that antennas

are stacked is called cross-track dimension, the movement direction is called as

along-track dimension and the time axis is mapped to depth axis. The antenna

array is held up at a prede�ned height above the surface. A thin wire is placed

in a free form inside the soil medium. GPR antenna array transmits and receives

the electromagnetic waves as it moves in along-track dimension.
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Figure 2.1: The problem de�nition for command wire detection using GPR

2.1 Electromagnetic Wave Propagation Model

The basic idea of wave propagation is presented in Figure 2.2. The received

signal is divided into three categories; mutual coupling, ground bounce and

target signals.

In each transmit/receive (T/R) pair, the transmitting (TX) element will radiate

the electromagnetic waves. A portion of waves will be directly received by the

receiving (RX) element, which is the mutual coupling signal numbered as (1) in

the Figure 2.2.
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The waves will also reach the ground surface. Majority of the waves will get

re�ected at the surface, and received by the RX element, which is the ground

bounce signal numbered as (2) in Figure 2.2.

The remaining waves will penetrate into the soil and propagate and scatter

in this lossy medium. When the waves reaches a distinct discontinuity in the

electromagnetic pro�le of the soil medium, such as a wire, waves will get re�ected

at this point, propagates in soil and air and �nally received by RX element. This

is the target re�ection numbered as (3) in Figure 2.2.

There also exist subsurface re�ections, which is not presented in Figure 2.2. As

the electromagnetic waves propagate inside soil, waves also scatter back and

received by RX element.

Figure 2.2: Electromagnetic wave propagation model of GPR, where the received
signals are divided into three categories; the mutual coupling signal (1), the
ground bounce signal (2) and the target re�ection (3)
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2.2 De�nition of GPR Data Outputs

2.2.1 De�nition of A-scan

This transmitting and receiving process, explained in Electromagnetic Wave

Propagation Model section, for a single pair at a single location is called A-

scan, as described in Figure 2.3; which is a time domain data modelling the

backscatters in depth direction.

Figure 2.3: Description of GPR A-scan

A sample raw A-scan data is presented in Figure 2.4. The target re�ection is not

visible since ground bounce and mutual coupling signals, occurring at the early

time indices, dominate the signal. Ground bounce and mutual coupling removal

algorithm which is explained in detail in Chapter 4 is applied on the data. After

the ground bounce and mutual coupling removal, the target re�ection becomes

visible as presented in Figure 2.5.
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Figure 2.4: Raw A-scan data. Since mutual coupling and ground bounce domi-
nates the signal, the target re�ection is not visible at all.

Figure 2.5: A-scan data, after ground bounce and mutual coupling removal. The
target re�ection becomes visible after the removal.
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2.2.2 De�nition of B-scan

The sensor array stands perpendicular to the along track direction, parallel to

the ground. The direction that antenna array is aligned is called as cross-track.

The output of a sensor array is called B-scan as shown in Figure 2.6, which is

the combination of all transmit/receive pairs in the antenna array. Alternatively,

B-scan can be de�ned such that it is the combinations of the A-scans for a single

transmit/receive pair as it moves in along-track direction. Brie�y, the B-scan

is a 2-D data which is the combinations of A-scans at several cross-track, or

alternatively, along-track positions.

Figure 2.6: Description of GPR B-scan

A sample B-scan simulation output is given in Figure 2.7 and 2.8. In Figure

2.7, the raw data is presented; which is mainly dominated by the ground bounce

signal and mutual coupling signals de�ned earlier occurring in the early time

samples. As a result, target re�ection is merely visible in Figure 2.7. Ground

bounce and mutual coupling signals, as stated previously, are major components

of raw GPR data. These two signals occur at the early time indices of RX

sampling and dominate the GPR data generally. In Figure 2.8, the ground

bounce and mutual coupling signals are removed. After the removal, the target

re�ection becomes much more visible.
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Figure 2.7: Raw B-scan data. Since mutual coupling and ground bounce domi-
nates the signal, the target re�ection is not visible at all.

Figure 2.8: B-scan data, after ground bounce and mutual coupling removal. The
target re�ection becomes visible after ground bounce removal.
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2.2.3 De�nition of C-scan

The B-scan is usually collected using an antenna array. Therefore, whole data

is collected at one time instant. In order to create the third dimension, the

antenna array is moved in the along-track direction. As the vehicle moves,

antenna array collects data for several along-track positions as shown in Figure

2.9. The combination of the data collected from all transmit/receive pair for

several along track positions creates the C-scan data, which is a 3-D data as

shown in Figure 2.10.

Figure 2.9: C-scan data acquisition model
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Figure 2.10: Description of GPR C-scan

As the number data sampling positions increase, the information obtained from

the data increases. For instance, it's very hard to distinguish a target from

clutter only using an A-scan since any clutter-like objects may result in same

response easily. B-scan is the most studied GPR output in the literature since it's

easy to generate and process; and also o�ers quite valuable information about the

target. Most GPR signal processing algorithms can successfully process B-scan

images and detect targets. C-scan outputs, however, need more computational

power since the number of A-scans to be processed is increased by the multiple

of the number of along-track positions. Nevertheless, the C-scan o�ers even

more information about the environment, therefore o�ers more capabilities for

detection of complex targets.

A sample C-scan simulation output is presented in Figure 2.11 and 2.12. In

Figure 2.11, the raw data is presented; which is mainly dominated by the ground

bounce signal. In Figure 2.12, the ground bounce signal and mutual coupling

signals are removed. Note that, after the removal, the target re�ections become

much more visible.
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Figure 2.11: Raw C-scan data. Since ground bounce and mutual coupling dom-
inate the signal, the target re�ections are not visible at all.

Figure 2.12: C-scan data, after ground bounce and mutual coupling removal.
The target re�ections became visible after ground bounce removal.
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CHAPTER 3

SIMULATION ENVIRONMENT

In this thesis, wire detection and classi�cation problem is studied on the simu-

lated data generated on gprMax software [22], which is an open source FDTD

simulator speci�cally developed for ground penetrating radar applications. Cur-

rently, there are more than 150 studies published in well-respected journals [23]

in the literature citing the Reference [22] and [24]. These two references explains

the newest capabilities of the gprMax software, which are also applied in this

thesis.

The gprMax software allows users to de�ne materials with di�erent electro-

magnetic properties with di�erent geometries, de�ne sources and receivers at

desired locations with di�erent waveforms and polarizations. The medium is

divided into a number of FDTD cells (also known as Yee cells [25], named after

Kane S. Yee) and the simulation is performed for each receiver and transmitter

positions for a given time window, fully implemented in time domain.

The simulation software also allows stepping the source and receivers spatially in

order to create B-scans. The capabilities of the simulation software also covers

some advanced soil modelling, including inhomogeneous soils with di�erent water

densities and roughness [24]. The inhomogeneous soil model is based on the real

measurements of the dielectric properties of various soil types conducted in [26].

The gprMax software also allows parallel computing. In order to create a C-

scan, simply the B-scans are repeated for several cross-track positions in parallel

using an High Power Computing (HPC) system supplied by Aselsan. The HPC
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system in Aselsan consists of 640 cores of state-of-art CPUs (central processing

unit) and terabytes of RAM (random access memory) and it expands annually.

The default simulation environment is described in Table 3.1. In each simulation,

only a single parameter of the environment is changed in order to observe the

e�ect of the speci�c change in the parameter. The geometric view of the default

simulation environment is presented in Figure 3.1. There is a single T/R pair and

it only moves in along-track (Y) dimension. The input �le of gprMax software

for the default simulation environment described in Table 3.1 is presented in

Appendix B1.

Table3.1: Default Simulation Parameters

Name Value Unit Explanation
x 300 mm Size of the simulation along x
y 500 mm Size of the simulation along y
z 150 mm Size of the simulation along z

∆x 1 mm Size of discreet Yee cells along x
∆y 1 mm Size of discreet Yee cells along y
∆z 1 mm Size of discreet Yee cells along z
t 7.5 ns Size of time window

∆t 1.924 ps Sampling interval in time axis
εr 6 - Relative permittivity of the soil
σ 10−5 S/m Conductivity of the soil
µr 4 - Relative permeability of the soil
σ∗ 10−2 Ohms/m Magnetic loss of the soil
fc 2.5 GHz Center frequency of the waveform
hs 100 mm Height of the soil on z direction
ha 50 mm Height of the air on z direction
hw 50 mm Depth of wire buried inside soil
r 2 mm Radius of the wire

PolTX x - Polarization of transmitting antenna
PolRX x - Polarization of receiving antenna
φ 90 Degrees Angle of the wire in XY plane
xTX (130, 100, 120) mm Initial position of transmitter (x,y,z)
xRX (170, 100, 120) mm Initial position of receiver (x,y,z)

∆xTX (0, 10, 0) mm Spatial sampling step of TX
∆xRX (0, 10, 0) mm Spatial sampling step of RX
K 31 - Number of spatial sampling points
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Figure 3.1: Geometrical view of default simulation environment

3.1 Analysis on Simulation Parameters

The simulation parameters in Table 3.1 are kept constant except the parame-

ters examined in the analysis section unless stated otherwise. In this section,

frequency of signal, depth, angle, isolation and radius of wire, TX/RX sepa-

ration and polarization of antennas, electromagnetic properties, inhomogeneity

and roughness of soil, looping wire, presence of other wires and rocks are inves-

tigated.

The e�ects of these speci�c changes in the simulation parameters are observed.

In all �gures of this chapter, the simulation outputs are time clipped to eliminate

ground bounce and mutual coupling signals in order to enhance the contrast in

the images. The B-scan images are presented with gray scale color mapping.

The contrast in all images are adjusted to the same value. The color mapping

is described in Figure 3.2.
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Figure 3.2: Colour mapping used for B-scan visualization. The data after ground
bounce clipping is presented in gray scale, mapped between "+ Maximum Value"
and "- Maximum Value".

In all simulations, "Gaussian Derivative" waveform is used always. Gaussian

derivative signal can be expressed as Equation 3.1, where t is the time in seconds,

fc is the center frequency in Hertz. The time domain and frequency domain

Gaussian Derivative signals at center frequency, fc of 2.5 GHz are presented in

Figure 3.3 and 3.4 respectively.

w(t) = −4π2f 2
c

(
t− 1

fc

)
e−2π2f2c (t− 1

fc
)
2

(3.1)

Figure 3.3: Time domain Gaussian Derivative waveform for the center frequency
of 2.5GHz

22



Figure 3.4: Frequency domain Gaussian Derivative waveform for the center fre-
quency of 2.5GHz

3.1.1 Frequency of GPR Signal

In the default simulation parameters listed in Table 3.1, the center frequency

was selected as 2.5 GHz. In order to observe the e�ects of center frequency of

the signal, center frequency has changed for 1, 1.5, 2, 2.5, 3 and 4 GHz. The

GPR B-scans after ground bounce and mutual coupling removal are presented

in Figure 3.5, 3.6 and 3.7

Figure 3.5: B-scans for Gaussian Derivative waveform with center frequency of
1 GHz (left) and 1.5 GHz (right)
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Figure 3.6: B-scans for Gaussian Derivative waveform with center frequency of
2 GHz (left) and 2.5 GHz (right)

Figure 3.7: B-scans for Gaussian Derivative waveform with center frequency of
3 GHz (left) and 4 GHz (right)

Frequency plays key role in all kinds of radar systems. The radar cross section

is directly related with the frequency of the radar system [27] [21]. Radius of

the wire in the simulations is 2 mm by default, as given in Table 3.1. The wave-

length, λ, of an electromagnetic wave at the center frequency, fc, propagating

underground can be obtained with λ = csoil
fc

relation where csoil is the speed
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of light in the soil medium that can be expressed as csoil = c0√
εrµr

, where c0 is

the speed of light in vacuum, εr is the relative permittivity of the soil medium

and µr is the relative permeability of the soil medium. In [26], the relative per-

mittivity of the soil medium, εr, for di�erent soil types with changing moisture

contents are measured for several frequencies in 0.3 - 1.3 GHz range. Dependent

of the soil moisture, εr can be as low as 4.5 and it increases as the moisture

content increases. It has been observed that, wavelength of the GPR signal, λ

is quite large compared to the radius of the wire. Therefore, as stated in [27],

the amplitude of the signal return is most likely to increase as the frequency

increases. In the Figure 3.5 and 3.6, the strength of the signal return increases

as the frequency increases as expected. Moreover, resolution of the received sig-

nal gets better as the bandwidth of the signal increases [27], [21]. In Figure 3.5

and 3.6, it's observed that the resolution gets better as the frequency, therefore

bandwidth, of the signal increases.

However, changing frequency has several drawbacks. The �rst drawback is that

higher frequencies get attenuated faster than the lower frequencies as they prop-

agates in lossy medium. Therefore, deeper targets may become undetectable if

the frequency is increased too far. The second drawback is about the hardware

design. Most GPR systems are designed as ultra wide band (UWB) in order to

increase the resolution of the GPR data, since resolution of a radar system is

directly related with the bandwidth of the signal [27], [21]. Increasing the center

frequency of Gaussian Derivative signal will result in a need for higher band-

width; which may be infeasible after some bandwidth / center frequency ratio

for hardware design in reality. The last drawback is that increasing frequency in

FDTD simulations will require smaller Yee cell sizes [25]; which will drastically

increase the simulation time. Also, using a large Yee cell with a relatively high

frequency will result in mismatches in FDTD simulation and the results will be

incorrect.

The frequency analysis has shown that 2.5 GHz center frequency is su�cient

and feasible in reality [28]. The rest of the simulations are performed using 2.5

GHz center frequency.

25



3.1.2 Electromagnetic Properties of the Soil

In Table 3.1, relative permittivity of the soil, εr, is given 6 and relative perme-

ability of the soil, µr, is given 4 as default. These properties play signi�cant role

in the propagation of the electromagnetic waves. εr is changed to 4 and 8 while

µr stays as default value, 4, in order to observe the e�ects due to the change in

εr. Similarly, µr is changed to 2 and 6 while εr stay as default value, 6. GPR

B-scans after ground bounce and mutual coupling removal are shown in Figure

3.8 and 3.9.

The speed of the electromagnetic wave changes with csoil = c0√
εrµr

relation, where

c0 is the speed of light in vacuum, εr is the relative permittivity of the soil

medium and µr is the relative permeability of the soil medium. As expected,

the location of the target signal return along time axis changes according to

the εrµr product. Moreover, the amplitude of the target re�ection signal gets

smaller for higher εrµr product. The soil moisture plays signi�cant role on εr as

stated in [26]. The default simulation parameters in Table 3.1 are valid choices

for soils with volumetric moisture content of 5% [26]. Therefore, εr is selected

as 6 and µr as 4 for default values for the rest of the simulations.

Figure 3.8: B-scans in the soil with µr of 4 and εr of 4 (left) and εr of 8 (right)
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Figure 3.9: B-scans in the soil with εr of 6 and µr: 2 (left) and µr of 6 (right)

3.1.3 Depth of Wire

The depth of wire was 5 cm by default given in Table 3.1. It is changed to 3,

4, 6 and 7 in order to observe the e�ects of depth of wire on the output signal.

The results of ground bounce clipped GPR B-scans are shown in Figure 3.10

and 3.11.

Figure 3.10: B-scans for wire depth of 1 cm (left) and 3 cm (right)
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Figure 3.11: B-scans for wire depth of 7 cm (left) and 9 cm (right)

As the depth of wire increases, the time index that the target re�ection is ob-

served gets delayed. The amplitude of the target re�ection signal is expected to

decrease as the depth of wire increases since the electromagnetic waves would

propagate in lossy medium longer. However, Figure 3.12 shows the contrary,

where the A-scans at the positions where T/R pair is most close to the wire

are plotted for di�erent depth values. It was seen that the amplitude of the

target re�ection is not just related with depth for shallowly buried wires; other

environment parameters also play a signi�cant role in this.

Figure 3.12: A-scans at the closest T/R pair position to the wire for changing
wire depths
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3.1.4 Radius of the Wire

In Table 3.1, the radius of the wire is given as 2 mm; which is a suitable value

for real applications as investigated in [13]. Although in reality, command wire

diameters may decrease up to 1 mm [16], [14]. The radius is changed as 3, 5 and

6 mm and the outputs of the simulations are presented in Figure 3.13 and 3.14.

Figure 3.13: GPR B-scan for wire radii of 2 mm (left) and 3 mm (right)

Figure 3.14: GPR B-scan for wire radii of 5 mm (left) and 6 mm (right)
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The radius of the wire is expected to directly be related with the amplitude of

the return signal; since it plays key role in the radar cross section of the wire.

As expected, the signal return gets smaller for smaller radii; yet the wire is easily

distinguishable at the default value, that is 2 mm of radius. Note that, Yee cells

([25] which was explained in the beginning of the chapter) of FDTD simulations

are 1 mm in each directions as given in Table 3.1.

Therefore, in order to correctly model the wires in 3-D, having radius smaller

than 2 mm, Yee cell size should be made smaller. The change in Yee cell sizes

dramatically a�ects the simulation time. Especially in the C-scans, the simu-

lation time is a great concern. Therefore, Yee cell sizes are kept constant for

reasonable C-scan simulation times; and hence, wires with smaller radii are not

modelled. For a more detailed analysis, A-scans at the positions where T/R pair

is closest to the wire are plotted in Figure 3.15.

Figure 3.15: A-scans at the closest T/R pair position to the wire for changing
wires radii

The amplitude of the target re�ection signal gets smaller for smaller radii in

Figure 3.15. Moreover, the time index that the peak amplitude is observed also

changes as the radius changes. The reason behind is that the depth of the wire

is de�ned as the center of the wire.
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Therefore, as the radius of the wire decreases, the upper most border of the wire

goes to a deeper location. Moreover, since the command wire is modelled as per-

fect electric conductor, the εr is in�nity and therefore all of the electromagnetic

wave is directly re�ected back without any penetration into the wire. Hence,

the target re�ection that is observed is mainly composed of the electromagnetic

waves that are re�ected at the upper boundary of the wire in the depth axis.

3.1.5 TX-RX Separation

The transmitting and receiver element separation is another parameter that

a�ects the GPR outputs. If the T/R pair is separated too much, the amplitude

of the return signal gets smaller since the electromagnetic waves propagate longer

distances. The separation is also an important parameter for hardware design.

The distances should be realistic for antenna T/R array design. The default

value of T/R element separation in Table 3.1 is 4 cm. TX/RX Separation of

2, 4, 6 and 8 cm are investigated and the ground bounce and mutual coupling

removed B-scans are presented in Figure 3.16 and 3.17. The TX/RX separation

plays signi�cant role on the return signal amplitude. The amplitudes of the

A-scan signals are plotted in Figure 3.18. For the separation of 8 cm, the return

signal has been decreased drastically.

Figure 3.16: GPR B-scan with TX/RX separation of 2 cm (left) and 4 cm (right)
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Figure 3.17: GPR B-scan with TX/RX separation of 6 cm (left) and 8 cm (right)

It can be concluded that; shorter TX/RX separation would result in better

target returns for shallowly buried targets. Yet, 2 cm of separation is not very

feasible for hardware design in reality. However the default value, 4 cm, is more

feasible for antenna design. Therefore for the rest of the simulations, the TX/RX

separation value is kept constant as 4 cm, as given in Table 3.1.

Figure 3.18: A-scans at the closest T/R pair position to the wire for changing
TX/RX separations
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3.1.6 Presence of Isolation Material on the Wire

In the environment de�ned in Table 3.1, the wire is modelled as a perfect electric

conductor without coating. Yet, in reality, there can be an isolation material

on the wire; which may a�ect the GPR signal. An isolation layer, having elec-

tromagnetic properties of εr = 2 and µr = 1, with thickness of 5 and 10 mm

is modelled and analyzed. The results of ground bounce and mutual coupling

removed GPR B-scans for isolated wires are shown in Figure 3.19.

Figure 3.19: GPR B-scan of wires with isolation layer of 5 mm thickness (left)
and 10 mm thickness (right)

The A-scans at the closest point of T/R positions to the wire is plotted in Figure

3.20. The isolation is modelled as a plastic with a small εr and unity µr. The

only signi�cant observation was that the target re�ections for isolated wires

occur at earlier time indices.

The reason behind is that electromagnetic wave propagates faster in the isolation

medium having smaller εr and µr values than soil. Since isolation does not a�ect

simulation much, rest of the simulations were generated without isolation.

33



Figure 3.20: GPR A-scan of wires with isolation layer of 5 and 10 mm thickness

3.1.7 Angle of the Wire

In the simulation environment de�ned in Table 3.1, the wire is placed perpen-

dicular to the along-track direction in XY plane, making the angle of 90o with

the movement direction. In reality, wire may go in any directions. Therefore

an analysis on the wire positioning is conducted to observe the possible e�ects.

Direction of the wire is changed from 75o to 0o with steps of 15o. The positioning

of the wire with φ = 30o is presented in Figure 3.21.

Figure 3.21: Simulation set-up for wire positioned with 30 degrees in XY plane

The GPR data after ground bounce and mutual coupling removal for the wire
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directions swept from 75o to 0o with linear steps of 15o are shown in Figure

3.22, 3.23 and 3.24. The problem has been also investigated in [19] antenna

design for pipe detection problem and in [13] antenna design considering buried

wire detection problem. The results were matching with the simulation results

presented.

Figure 3.22: B-scans for wires with φ angle of 75o (left) and 60o (right)

Figure 3.23: B-scans for wires with φ angle of 45o (left) and 30o (right)
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Figure 3.24: B-scans for wires with φ angle of 15o (left) and 0o (right)

The information that the analyses provided is very powerful; dependent of di-

rection of the wire, the hyperbola pattern may widen. Moreover, when the wire

is positioned in the along-track direction, the target response becomes �at in all

A-scans; which may be confused as a constant subsurface re�ection when looking

in a single B-scan. Therefore, regular hyperbola recognition methods like [29]

and [30] are not suitable for detecting the wires placed in along the along-track

direction. This results leads to the fact that use of C-scan is compulsory for a

functional wire detection and classi�cation system. This result has also shaped

the algorithms suggested in Chapter 5.

Angle of the wire is also highly related with the polarization of the antenna,

which is investigated in the next analysis. Note that, the antenna polarization

is in X direction, as given in Table 3.1.

3.1.8 Polarization of the Antenna

The TX and RX antenna polarization are de�ned as X direction in Table 3.1.

X direction corresponds to the cross-track dimension in the simulation environ-

ment. The TX and RX antenna polarizations are changed to Y direction; which
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corresponds to the along-track dimension. The ground bounce and mutual cou-

pling removed B-scans for x and y polarization are presented in Figure 3.25. The

A-scans at the location where the T/R pair is closest to the wire are presented

in Figure 3.26. The hyperbola signature of the wire is considerably lost in Y

polarization con�guration. However, surprisingly, in the A-scans at the loca-

tion where the T/R pair is closest to the wire, the amplitude of Y polarization

con�guration is greater than the X polarization antenna. On the contrary, the

expectations was to have a greater amplitude for the polarization in the same

direction with the wire direction. In [14], the command wire scattering prob-

lem is analyzed in air medium and found out that when the wire is placed in

the same direction with the antenna polarization, the wire scattering amplitude

gets improved by 1 dB (which is not a very promising improvement), compared

to the perpendicular case. The study, [14], concludes that the use of circular

polarization is the best for command wire detection.

However, the simulation result presented in Figure 3.26 is dependent on various

parameters, and could not be generalized. The signi�cant observation made in

this analysis is only that the hyperbola signature has been narrowed with the

polarization that is perpendicular to the wire direction.

Figure 3.25: B-scans for TX and RX antenna polarizations of X (left) and Y
(right)
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Figure 3.26: A-scan data of X and Y antenna polarizations

3.1.9 Inhomogeneity of Soil

The simulations so far are generated using the soil modelled as a homogeneous

medium, whose electromagnetic properties are de�ned in Table 3.1. However,

soil in reality is highly inhomogeneous. The contents of soil varies much; even

distinct layers can be formed underground. Also the moisture in the soil varies

in reality. Therefore, a set of simulations are generated using the inhomogeneous

soil option of gprMax software [24]. gprMax software allows users to de�ne an

inhomogeneous soil, with a water fraction range. Then, it generates a number

of materials within the de�ned water fraction range, using the result of real

measurements of various soils conducted on [26].

In Figure 3.27 and 3.28, B-scans obtained from a soils with sand fraction of

0.5, clay fraction of 0.5, bulk density of 2g/cm3, sand density of 2.66g/cm3 and

changing volumetric water fraction ranges are presented.

As the water concentration of the soil increases, the resulting εr value of the

soil increases since εr of water is 81; that is quite large compared to the soil's.

As a result, increase in εr a�ects the time index that signal is observed. The

inhomogeneities, however, played very little role in the hyperbola structure of

the received signal.
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Figure 3.27: B-scan data with inhomogeneous soil, with volumetric water frac-
tion ranging from 0.001 to 0.05 (left) and 0.01 to 0.05 (right)

Figure 3.28: B-scan data with inhomogeneous soil, with volumetric water frac-
tion ranging from 0.001 to 0.25 (left) and 0.05 to 0.25 (right)

3.1.10 Surface Roughness

Same as inhomogeneities, the simulations so far are generated with �at ground

surface. However, in reality the soil surface would be considerably rough. This

will directly a�ect the ground bounce removal performance of the system. There-
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fore, some simulations are generated using the roughness option provided in

gprMax software [24]. The roughness levels are changed for ±2mm, ±5mm,

±10mm and ±15mm values; as the environment is presented in Figure 3.29 and

3.30.

The B-scan outputs of the soils with changing roughness levels are presented

in Figure 3.31 and 3.32. As the roughness increases, the hyperbola signature

gets distorted, which can be especially seen in 1.5 cm roughness case; which is

a relatively small value for roughness in real scenarios.

Figure 3.29: The simulation environments with surface roughness of ±2mm

(left) and ±5mm (right)

Figure 3.30: The simulation environments with surface roughness of ±10mm

(left) and ±15mm (right)
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Figure 3.31: B-scan data with roughness of ±2mm (left) and ±5mm (right)

Figure 3.32: B-scan data with roughness of ±10mm (left) and ±15mm (right)

3.1.11 Presence of Another Wire

The default simulation environment described in Table 3.1 has only a single wire

inside the soil. Hence, the presence of another target in the B-scan outputs are

investigated. The default simulation environment in Figure 3.1 is widened along

Y axis in order to investigate targets with the distance of 40, 30, 20 and 10 cm

between. The wires are positioned with φ = 90o at the depth of 5 cm. The

B-scan outputs are shown in Figure 3.33 and 3.34.

When the distance between two wires are enough large, like in 40 cm separation
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case, the target re�ection can be distinguished very easily. However, as the

wires are positioned too close to each other, like in 10 cm separation case, the

re�ections begin to collide. Moreover, the secondary re�ections gets considerably

higher when as seen in 10 cm case; which may be confused with another target.

Figure 3.33: B-scan data of two wires with separation of 10 cm (left) and 20 cm
(right)

Figure 3.34: B-scan data of two wires with separation of 30 cm (left) and 40 cm
(right)
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3.1.12 Looping Wire

The wires used as command wire for IED detonation can be two core cables in
order to form a closed circuit loop. Therefore, a looping wire case is analyzed.
The simulation set-up is presented in Figure 3.35.

Figure 3.35: Geometrical view of the simulation environment with looping wire

The B-scan outputs after ground bounce and mutual coupling removal, obtained

from the simulation environments with looping wire at depth of 3 cm and 7 cm

are presented in Figure 3.36. The simulation results highly resembles with single

wire case, but the amplitude of the target re�ection is improved slightly.

Figure 3.36: B-scan data of looping wires at depth of 3 cm (left) and 7 cm (right)

43



3.1.13 Presence of Rocks with Di�erent Electrical Properties

Homogeneous soils and inhomogeneous soils with di�erent material concentra-

tions are studied so far in the simulations. However, clutter objects like rocks

may cause false alarms in GPR systems.

Therefore, presence of rocks in the soil is investigated. The rocks are modelled

as spherical objects with 2 cm radius and electromagnetic properties, scattered

around the soil. The simulation environment is presented in Figure 3.37.

Figure 3.37: Geometrical view of the simulation environment with multiple rocks

The electromagnetic properties of the rocks should be di�erent than the soil in

order to create a discontinuity in the electromagnetic pro�le of the soil. The

default soil parameters was εr = 6 and µr = 4 as given in Table 3.1. The

electromagnetic properties, (εr, µr) pairs, of rocks are changed to (4,2), (2,4),

(4,4), (2,7), (6,7) and the last one is modelled as a perfect electric conductor.

The B-scans with the rocks having electromagnetic properties listed, are shown

in Figure 3.38, 3.39 and 3.40.

These simulations are also gave valuable information about command wire de-

tection problem. Dependent on the electromagnetic properties of the rocks, the

re�ections caused by rocks may be observed at the upper boundary of the rock
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as seen in right side of Figure 3.40, or at the lower boundary of the rock as seen

in left side of Figure 3.40. Moreover, the wire re�ection cannot be discriminated

from the rock re�ections; they share the very common re�ection characteris-

tics. It leads to the following strong and important conclusion; that command

wire detection problem should be studied on C-scan data and B-scan data is

insu�cient for proper discrimination.

Figure 3.38: B-scan outputs of rocks with (εr, µr) of (4,2) (left) and (2,4) (right)

Figure 3.39: B-scan outputs of rocks with (εr, µr) of (4,4) (left) and (2,7) (right)
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Figure 3.40: B-scan outputs of rocks with (εr, µr) of (6,7) (left) and perfect
conductor (right)

3.2 C-scan Simulations

C-scan environment is modelled as 1 x 1 x 0.20 meters in cross-track, along-track

and depth dimensions. T/R pairs are placed along X direction, starting from 10

cm and goes to 90 cm with 5 cm steps; which results in 17 T/R pairs in total.

The transmit and receive elements in a pair is separated by 2 cm. The antenna

array moves along track direction with 1 cm steps, starting from 10 cm and goes

to 90 cm; which results in 81 along track positions. The scanning geometry is

presented in Figure 3.41. The soil depth is 15 centimetres and T/R pairs are

placed 3 centimetres above the surface.

The Yee cell size was selected as 1 mm in the B-scan simulations section. How-

ever, with 1mm Yee cell size, FDTD simulation of one A-scan position takes

approximately takes 4 hours using 8 CPU cores in parallel with 2 GHz clock in

the HPC system. All along track simulations for each T/R pair run in parallel.

In total 136 CPU cores (8 CPU cores for each T/R pair) are used in parallel to

generate a single C-scan data, which �nishes in 2 weeks in real-time.

Since, 2 weeks of simulation time is not feasible for generating enough simula-
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Figure 3.41: Positions of T/R elements in XY (Cross/Along Track) dimension.

tions to test the performance of algorithms, the Yee cell size is increased to 2

mm for C-scan simulations. With this change, the simulation time decreased

by 16 which can be roughly obtained with 24 relation, where 2 is the scaling

amount and 4 is the number of dimensions; x, y, z and t. As a result, a single

C-scan simulation takes roughly one day to complete.

Note that, in any FDTD simulation, the wire cross section should be modelled

with at least 2 Yee cells in each dimension. When the wire cross section is mod-

elled with a single Yee cell, angles in each dimension leads to discontinuities in

the wire model. Therefore, the minimum radius for a wire that can be success-

fully modelled is 2 mm for C-scan simulations. All of the C-scan simulations are

performed with 2 mm of wire radius. There was a trade-o� between simulation

time and minimum wire radius in the C-scans. It should be noted that, since

the wires are electrically very thin, the problem is linearly scalable; such that
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wires with smaller radii will have the same characteristics, except the amplitude

will gets smaller. However, as expected, after some value, the extremely thin

wire should be indistinguishable from the clutter environment.

The Gaussian derivative waveform at center frequency of 2.5 GHz is used in C-

scan simulations. The TX and RX antenna polarizations are in the X direction;

that is the cross-track direction.

In the C-scan simulations, the soil is modelled as inhomogeneous soil with sand

fraction of 0.5, clay fraction of 0.5, bulk density of 2g/cm3, sand density of

2.66g/cm3 and water fraction ranging from 0.01 to 0.25. In total, 50 di�erent

materials are generated and the inhomogeneous soil is generated randomly in

each simulation, using the features provided by gprMax software [24].

The simulations also generated with surface roughness. The majority of the

simulations are generated using ±5mm surface roughness option. In a few sim-

ulations, the roughness level is increased to ±10mm. Again, the roughness is

applied randomly on each data, by using the surface roughness feature of gprMax

software [24].

The wires in the C-scan simulations are buried between 1 and 14 cm depth.

Besides the wire object, there also exist plastic objects, rocks and landmines

and IEDs that are connected to the wire.

The complete list of C-scan simulations are presented in Appendix A. The top-

down looking geometries of simulations are listed. The output of preprocessing

algorithms of Chapter 4 and the curve reconstruction algorithm of Chapter 5

are presented in Appendix A.

3.3 Validity of Simulation Parameters in Reality

The antenna array is consisting of 17 T/R pair in C-scan simulations, each one is

separated with 5 centimetres, while the separation of transmitting and receiving

elements in a pair is 2 cm. The dimensions of antenna array is realizable with

the use of Vivaldi antennas. There are several systems in the industry using 5
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cm spacing in the antenna array [31].

The array collects data at each 1 centimetre displacement in the along-track

dimension. In the industry, GPRs are commonly sampling with 5 cm spacing

in along-track dimension [31]. Collecting data with 1 centimetre steps could be

too time consuming in reality, especially in time critical operations in humani-

tarian demining. However, this value should not be too large; otherwise some

important signals may have been missed. In [32], the e�ect of spatial sampling

is investigated for landmine and IED detection. The e�ect of spatial sampling

would be more critical for wire detection problem, considering its thin structure.

There exist prototype systems sampling with 1 cm steps [13] as well. Moreover,

it has been observed in the analysis on antenna polarization that the hyperbola

signature gets narrowed when the antenna polarization is perpendicular to the

wire direction. Using larger spatial sampling steps may result in loss of the

target re�ection.

T/R pairs are located 3 centimetres above the ground in simulations. Height of

the antenna is small for real o�-road applications; especially surface can harm

the antenna array. However, in the industry, there exist some systems with 4 cm

antenna height [8] and the experimental systems working with antenna height of

3 cm above the ground [13]. Moreover, there exist some systems whose radoms

directly touches the soil surface [33].

The Yee cell size is used for determining the time step in the simulations. In the

C-scan simulations, Yee cell size is chosen as 2 mm. The time step is calculated

as 3.85 picoseconds with using the formula in Equation 3.2. In the literature, the

sampling intervals of the radars are commonly not stated explicitly, yet there

are some studies stating their sampling interval. In [32], sampling interval of

the radar was roughly 91 picoseconds. In [33], the sampling interval was 62.5

picoseconds. The one of the best values of sampling interval in the industry was

8 picoseconds as stated in [31]. The sampling interval used in simulations is

smaller than the industry standards; however, such a �ne value can be reached

in few years as the new technologies emerge.
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The simulation model is an impulse radar, using Gaussian derivative waveform

at the center frequency of 2.5 GHz. The frequency spectrum of the Gaussian

Derivative waveform has been presented previously in Figure 3.4. The -10 dB

band of the waveform starts from 489 MHz and goes up to 5.528 GHz. The

-20dB band of the waveform 151 MHz and goes up to 6.909 GHz. These bands

are realizable since utilizing the 200 MHz - 7 GHz band has already achieved

in the industry [28]. Although, in reality, the antenna design would be critical

for realization of the desired impulsive waveform, especially in time domain. In

some cases, it may not be possible to realize the desired waveform using an

impulse radar. Therefore, stepped frequency continuous wave ground penetrat-

ing radars (SFCW GPR) are being utilized to overcome this problem. In these

radars, the frequency domain information are collected from continuous waves

at stepped frequencies and there are transformed into time domain data. The

equivalent time domain sampling interval is the critical parameter in wire detec-

tion problem. In [34], behaviour of SFCW GPRs such as data collection mode

and time-frequency transformation method are explained in detail.

Radius of the wire is chosen as 2 mm in the simulations. In [13], the wires with

diameter of 3 mm buried 15 cm deep are detected using a dual polarization

hybrid system. The radius of command wires can be thin as 0.5 mm in reality.

For instance, in [16], unburied command wires with diameter of 0.98 mm are

detected using MIMO SAR. However, modelling a wire with 0.5 mm radius

required Yee cell size of at most 0.5 mm. Decreasing Yee cell size to 0.5 mm

from 2 mm results in increase in the simulation time of 44 (the forth power of the

scaling factor). In the current con�guration, the C-scan simulations take 1 day

to complete with 2 mm Yee cell size. However it would take 8 months with 0.5

mm resolution. There exist a trade-o� between simulation time and minimum

wire radius. The current con�guration with 2 mm of Yee cell size is preferred,

in order to generate enough number of simulations for evaluation of detection
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and classi�cation algorithms. However, note that in the previous section with

title "Analysis on Simulation Parameters", the radius of wire is investigated.

For smaller radii, the amplitude of the signal decreases. Signal may still be

detectable with 0.5 mm radius.

The depth of wire changes from 1 cm to 14 cm in the simulations. This is a

valid range for real applications. In [14], it's stated that the command wires are

generally buried several inches below the ground surface.

Electromagnetic properties of the soil are modelled using the real measurements

of various soil types studied by Peplinski in [26]. The inhomogeneous soil mod-

elling is fractally generated using a seeding for randomization inside the gprMax

software as explained in [22] and [24].

Surface roughness has been selected as 1 cm deviation for majority of the C-

scan simulations, and 2 cm for the rest of the simulations. However, it can be

more severe in reality. But again, in order not to increase the size of simulation

environment, the roughness level is not increased any further.
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CHAPTER 4

GPR SIGNAL PREPROCESSING METHODS

In the literature, there are many studies focusing on the GPR Signal Prepro-

cessing Algorithms such as [35], [31] and [28]. The scope of this thesis to suggest

methods to process the raw GPR data and to detect and discriminate the com-

mand wires with a high probability of detection and low false alarm rate.

All of the signal preprocessing methods explained in this chapter is applied on

a sample C-scan data. The data is obtained from the simulation environment

presented in Figure 4.1; which is also the 4th simulation given in Appendix A.

The GPR signal preprocessing methods are divided into 3 sections below, that

are ground bounce and mutual coupling removal, depth weighing and pre-screening.

In the ground bounce and mutual coupling step, the unwanted high amplitude

signals, which are ground bounce and mutual coupling signals, are eliminated

and the subsurface re�ections are minimized as well. In the depth weighing step,

the attenuation e�ect, which occurs because of the propagation inside a lossy

medium, seen in depth axis is reversed. In the prescreening step, the foreground

of the signal is ampli�ed and the background is suppressed and unwanted small

detections are cleared. At the end of this chapter, the performance of signal

preprocessing algorithms are evaluated.
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Figure 4.1: The sample C-scan environment used for visualization of the outputs
of signal preprocessing methods

4.1 Ground Bounce and Mutual Coupling Removal

GPR data is mostly dominated with the mutual coupling and ground bounce

signals. In each transmit/receive pair, a mutual coupling signal will be observed.

The time index of this signal is equal to the one-way propagation time of the

electromagnetic waves, propagating from the transmitting antenna to the receiv-

ing antenna in the air medium. The ground bounce signal is the main re�ection

from the ground surface. Therefore the total distance that electromagnetic wave

propagates is equal to the distance from transmitting antenna to the ground and

from ground to the receiving antenna. As a consequence, the signal will be ob-

served at the time value equal to the one-way electromagnetic propagation time

of this distance in the air medium. In almost every case, these two signals will

be quite larger than the target signal. Without eliminating these signals, it

would be impossible to make reliable detections. Therefore, a ground bounce

and mutual coupling removal process should be applied to the raw data. The

ground bounce and mutual coupling removal process is also known as clutter
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reduction in the literature. There are some methods used for ground bounce

removal; including time gating, mean subtraction, median subtraction and PCA

[36]. These methods are explained in following sections. There exists also some

sophisticated ground bounce removal algorithms such as ICA in [36], DILBERT

in [37], and adaptive ground bounce removal algorithm [38]. In [39], a novel

method that estimates the parametric damped exponentials adaptively for clut-

ter reduction is proposed. In [40], a subspace decomposition method is used for

removing ground bounce and stationary clutter. Yet, the performance of these

algorithms are debatable compared to the processing power needs; especially

when the simple algorithms can achieve the same performance [41].

4.1.1 Time gating

The easiest yet e�ective ground bounce and mutual coupling removal method is

time gating. In this method, the raw data is clipped after some known index.

The process is described in Algorithm 1. For each cross-track and along-track

positions, �rst L samples in A-scan is gated out.

X is the raw GPR data, in the dimensions of I x J x K, where I is the number

of cross-track positions, J is the number of along-track positions and K is the

number of depth bins. L∗ is a prede�ned clipping length. Y is the output of

ground bounce and mutual coupling removal algorithms, whose size is I x J

x K − L∗. Throughout the thesis, I is 17, J is 81 as de�ned previously and

K is 1040, since time windows of the simulation was 4 ns, while the sampling

time was 3.849 picoseconds. L∗ is determined as 220 empirically. Use of smaller

L∗ resulted in worse ground bounce removal, while use of higher L∗ resulted
in minimum detectable depth. 220 value is chosen since it eliminates ground

bounce and mutual coupling signals e�ectively, and minimum detectable depth

is found to be smaller than 1 cm.

The output of this algorithm is shown in Figure 4.2. Note that, due to the

high amount of subsurface re�ections, the contrast is selected di�erent for this

method than the rest of ground bounce and mutual coupling removal methods.
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Algorithm 1 Ground Bounce and Mutual Coupling Removal: Time gating
1: for i = 1, i <= I, i+ + do

2: for j = 1, j <= J, j + + do

3: Y(i, j, k)← X(i, j, k + L∗)
4: end for

5: end for

Figure 4.2: Ground bounce and mutual coupling removed C-scan data using
time clipping method

This method lacks the capability of eliminating the subsurface re�ections. It also

lacks the capability of adapting the change in the time indices of ground bounce

signal. Mutual coupling signal mostly stays at the same time index, since it

may only change when the distance between transmitting and receiving antennas

change. However, the time index of ground bounce signal may change especially

when the GPR is mounted on a vehicle; since distance between antenna pair and

the soil surface changes as it moves. Therefore, an algorithm should track the

ground bounce peak location and apply time gating according to the calculated

point [41]. The approach is described in Algorithm 2. For each along-track and

cross-track positions, the index of the highest amplitude is found and data is

clipped L samples after the peak location.

X is the raw GPR data, in the dimensions of I x J x K. L is the length

of additional clipping in time axis, which is applied after the peaks of A-scan
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signals. k∗ is the time index, where the A-scan signal has the highest amplitude.

Y is the output of ground bounce and mutual coupling removal algorithms,

whose size is I x J x K2, where K2 is adjusted previously, guaranteeing that

the length of clipped A-scan data in depth axis is larger or equal than K2.

Throughout the thesis, K2 is determined as 800, since for all of the simulations

in Appendix A, the lengths of clipped data are always bigger than 800. Moreover,

L is determined as 110 empirically, since smaller values of L leads to decreased

removal performance, while larger values a�ect minimum detectable depth.

Algorithm 2 Ground Bounce and Mutual Coupling Removal: Peak �nding and

time gating
1: for i = 1, i <= I, i+ + do

2: for j = 1, j <= J, j + + do

3: k∗ ← argmax
k
|X(i, j, k)|

4: Y(i, j, k)← X(i, j, k + k ∗+L)

5: end for

6: end for

Note that the peak location may be adaptively updated and tracked for more

complex o�-road conditions. It's reported that when the receiving antenna

touches vegetation physically; the distortions may be even greater than the

ground bounce signal, resulting in incorrect peak estimations. Therefore, at

these instants, the adaptive peak tracking method is a necessity in order to

eliminate the peak miscalculation [42].

Note that, mutual coupling signal should also be considered; the amplitude of

mutual coupling may be greater than ground bounce signal, depending on the

design of the GPR system. The sample C-scan data has roughly same peak

location for each scan point; although it had considerable roughness. This leads

visibly no di�erence in the output. Therefore, the output of this improvement is

not presented. However, this improvement is a must for real time applications,

where the distance between antenna array and the soil can vary signi�cantly.

57



4.1.2 Mean and Median subtraction

This method simply calculates the mean or the median of the all values in the

C-scan data for a speci�c depth bin, and creates a median/mean vector for all

depth bins. This vector is subtracted from each A-scan vector in the C-scan

data. The pseudo-code is given in Algorithm 3. X is the raw GPR data with

the size of I x J x K, Y is the output of ground bounce and mutual coupling

removal algorithm having same size as X. mmedian andmmean are median and

mean subtractions vectors of length K. In Figure 4.3 and 4.4, the mean and

median subtractions applied on C-scans are presented.

Algorithm 3 Ground Bounce and Mutual Coupling Removal: Mean & Median

Subtraction
1: for k = 1, k <= K, k + + do

2: mmedian(k)← median(X(:, :, k)

3: mmean(k)← mean(X(:, :, k)

4: end for

5: for i = 1, i <= I, i+ + do

6: for j = 1, j <= J, j + + do

7: Y(i, j, k) = X(i, j, k)−m(k)

8: end for

9: end for

Figure 4.3: Ground bounce and mutual coupling removed C-scan data using
mean subtraction method
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Figure 4.4: Ground bounce and mutual coupling removed C-scan data using
median subtraction method

Note that result obtained from mean subtraction has some visible bands with

high amplitude at the same depth bins that targets are observed, due to incorrect

subtraction caused by biased estimation. On the other hand, median subtraction

is not a�ected from the existence of an high amplitude target, because of its

nature.

It should also be noted that, the ground bounce and mutual coupling signals

are still considerably dominant; therefore a time clipping algorithm should be

applied in order to completely eliminate the ground bounce and mutual coupling

signals. Since, only buried wires are investigated in this thesis, use of time

clipping is appropriate. Combined solution is explained in Algorithm 4.

4.1.3 Principal Component Analysis

The principal component analysis (PCA) is another ground bounce and mutual

coupling removal method that can be applied [43], [33]. It assumes that the

ground bounce and mutual coupling signals are the major signal returns, and the

rest of the signal parts are very small compared to this part. In this method, �rst

the 2-D data, single B-scan, is decomposed using Singular Value Decomposition

(SVD). The rank of the B-scan can be at most equal to the number of along

track positions. SVD of a two dimensional matrix X of size K x J (K � J)

can be expressed as Equation 4.1.
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X = UDVT (4.1)

Where U = [u1, ..., uJ ] is a matrix of size K x K and V = [v1, ..., vJ ] is a

J x J matrix of orthonormal basis vectors and D is a KxJ matrix, whose

diagonal entries are the singular values in the decreasing order. The principal

component analysis assumes that the clutter is spanning the �rst p singular

vectors. Therefore, signal is projected onto the orthogonal subspace to reduce

the clutter. The projection onto the orthogonal subspace can be expressed as

Equation 4.2. Y is the same size of X. SVD is applied on the B-scans of each

T/R pair separately. The result is presented in Figure 4.5. It has been seen that

�rst 3 singular values are related with clutter, by looking the time index of the

signal. The data is projected on the subspace orthogonal to the �rst 3 singular

vectors.

Y =
J∑

j=p+1

D(j, j)ujv
T
j (4.2)

Figure 4.5: Ground bounce and mutual coupling removed C-scan data using
PCA method applied on each B-scans separately

PCA algorithm shows promising results at especially eliminating the ground

bounce signal for extremely shallow and above surface points. However, this

study mainly focuses on buried wires. Moreover, PCA is a computationally

costly algorithm.
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4.1.4 Utilized Ground Bounce andMutual Coupling Removal Method

There exist many solutions for ground bounce and mutual coupling removal

as stated in previous subsections. In this study, peak tracking, time clipping

and median subtraction is utilized as the ground bounce and mutual coupling

removal algorithm because of two reasons.

The �rst reason is that the computational requirements of this method is real-

izable compared to more complex algorithms such as PCA, ICA [36] or damped

exponential [39] methods.

The second reason is that median �ltering has shown the best performance for

minimizing the subsurface re�ections as seen in Figure 4.4, compared to mean

subtraction given in Figure 4.3. Mean subtraction re�ections especially in case

of a strong target re�ection, such as the re�ections of a landmine, since these

high amplitude re�ections act like a dominant component in GPR data. PCA

has shown promising results, but the computational cost of PCA is a serious

concern.

For each cross-track and along-track position, peak alignment and time gating

is applied. After this, the median vector is obtained for each depth bins and

the median subtraction is applied to the gated signal. The utilized approach is

described in Algorithm 4.

L is the length of additional time clipping applied after ground bounce peak, k∗
is the time index of the peak signal in each A-scan, m is the median subtraction

vector, X is the raw input data of size I x J x K and Y is the output of utilized

ground bounce and mutual coupling removal algorithm, in the size of I x J x K2,

where K2 is prede�ned such that it guarantees that the length of clipped A-scan

data is larger or equal than K2 for each along-track and cross-track position.

The result of this method is presented in Figure 4.6. The next signal preprocess-

ing steps (depth weighing and prescreening) will be studied using this algorithm

applied on the data in prior.
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Algorithm 4 Ground Bounce and Mutual Coupling Removal: Utilized Method
1: for i = 1, i <= I, i+ + do

2: for j = 1, j <= J, j + + do

3: k∗ ← argmax
k

X(i, j, k)

4: Y(i, j, k)← X(i, j, k + k ∗+L)

5: end for

6: end for

7: for k = 1, k <= K, k + + do

8: m(k)← median(Y(:, :, k)

9: end for

10: for i = 1, i <= I, i+ + do

11: for j = 1, j <= J, j + + do

12: Y(i, j, k) = Y(i, j, k)−m(k)

13: end for

14: end for

Figure 4.6: Ground bounce and mutual coupling removed C-scan data using
peak tracking, time clipping and median subtraction method

4.2 Depth Weighing

The electromagnetic waves get attenuated as they propagate in a lossy medium.

Therefore, a whitening process should be applied to the data along depth axis in

order to eliminate the depth dependent attenuation e�ects. An ideal whitener
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would bring the powers of target re�ections from di�erent depths to the same

level. Hence, depth whitening can be considered as an equalization process.

There are few methods in the literature, one of them is covered in this study;

which is depth dependent whitening. Moreover, another method, logarithmic

weighing, is proposed for the depth weighing as well. These methods are ex-

plained below.

4.2.1 Depth Dependent Whitening

In this method, the C-scan data is divided into several overlapping depth seg-

ments. For each depth segment, the mean (µ) and variance (σ) of all voxels are

estimated. The main assumption in this method is that the mean and variance

of the signal does not vary much in the chosen depth segment. The algorithm

can be made adaptive as done in [31]; the mean and variance values can be

adaptively calculated as the vehicle and GPR system moves. Then, using these

mean and variance values, the signal can be whitened along depth axis. The

algorithm is explained in Algorithm 5.

Algorithm 5 Depth Weighing: Depth dependent whitening
1: for k = 1, k <= K, k + + do

2: y ← Y(:, :, k)

3: µ←
∑
y

4: σ ← (y − µ)T (y − µ)

5: Z(:, :, k)← y−µ
σ

6: end for

Y is the input of depth weighing block in the size of I x J x K2. y is the

vectorized form of C-scan data at the kth depth index, which has the length of

I times J . µ is the calculated mean value of the depth bin. σ is the calculated

standard deviation of the depth bin. Z is the output of depth weighing block

in the the same size of Y. The C-scan output of this algorithm is presented in

Figure 4.7.
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Figure 4.7: Whitening applied on C-scan data

This method yet lacks a very fundamental property required for an ideal depth

whitener; it should equalize the strength of the signals coming from di�erent

depths. However, this approach equalizes the signal, without any concern of

target existence. Hence, at some regions of the soil; where the signal amplitude

varies very little, the amplitude of the whitening output increases drastically

due to the low standard deviation. Therefore, this algorithm is not very suitable

for weighing.

4.2.2 Proposed Weighing Method

Since depth dependent adaptive whitening is not suitable for all kinds of GPR

data, especially when the subsurface re�ections does not vary much, another

method should be investigated. Logarithmic weighing is proposed in this study

for depth weighing, since it does not create an unbalance between the depth bins

which is clearly seen in Figure 4.7.

Once the logarithmic weighing vector is generated, for each cross-track and

along-track positions, the A-scans are multiplied with the weighing vector ele-

ment wise; in other words, Hadamard product is applied on A-scans with log-

arithmic weighing vector. The procedure is described in Algorithm 6. w is the

weighing vector of length K2, k is the depth index number, and Aw is the pre-
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de�ned positive ampli�cation value, which is determined as 10 dB, empirically.

Use of very high Aw will result in decreased signal strength for the shallow points

of the soil, whereas use of small Aw will result in decreased performance of the

depth weighing. For instance, when Aw is set to zero, the depth weighing step

has no e�ect on the data. The result of proposed method is presented in Figure

4.8. Y is the input of depth weighing block in the size of I x J x K2. Z is the

output of depth weighing block, having same size as Y.

Algorithm 6 Depth Weighing: Proposed method - Logarithmic weighing

1: w(k)← 10Awk/K2

2: for i = 1, i <= I, i+ + do

3: for j = 1, j <= J, j + + do

4: Z(i, j, :)← Y(i, j, :) ◦ w Hadamard product

5: end for

6: end for

A future study can be suggested here for adaptive calculation of the Aw value,

in order to adept the changes in the soil; since attenuation of the soil highly

completely dependent on the electromagnetic properties of the soil.

The logarithmic weighing along depth has shown considerably better results

compared to whitening operation. Therefore, it's been chosen as the suitable

method for depth weighing. The next algorithm steps are studied on the data

processed with this algorithm in prior.

Figure 4.8: Weighing along depth axis applied on C-scan data
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4.3 Pre-screening

After the weighing, the data would be almost ready for detection. Yet, still the

target signal wouldn't be enough strong to be detected easily. The prescreening

process is applied as a remedy; which is used for separating the background

and foreground. The foreground is de�ned as the anomaly on the data, which

shows an abnormal pattern, di�erent than the regularly occurring patterns in

the background. There are some prescreening algorithms in the literature. In

this study two methods are investigated; namely, least mean squares (LMS) [28]

and robust principal component analysis (RPCA) [44] algorithms. The methods

are explained in the following subsections.

4.3.1 Least Mean Squares Pre-screener

Least Mean Squares algorithm is well studied in the literature. Especially 2-

D LMS has many examples in the literature such as [45]. Yet, there are few

studies focusing on 3-D LMS, [46]. The high computational power required for

the algorithm leaded researches to study faster and alternative ways to perform

LMS [47]. For instance, KLMS can also be applied to GPR data as a prescreener

as studied in [48] and [49], which requires less computational power.

2-D LMS requires less computational power than 3-D one, as expected as ex-

plained in [28]. The algorithm will run in parallel for each transmit/receive pair

and each depth segment separately. The LMS weigh vector and LMS output is

updated every time the GPR system moves along-track. Firstly, for each depth

segment, a cell is constructed. The middle point of the cell is the point of inter-

est, and it is guarded by a few guard bins. The LMS �lter, s, is initialized as a

constant vector having unity energy. Then, for each cross-track and along-track

positions, LMS �ltering is applied on the depth segment. In the LMS �ltering,

�rst the product of LMS �lter with samples of depth weighing output inside the

cell is computed. The error value, e is calculated as the di�erence of the middle

value from the calculated value. The LMS �lter is updated using the updating

coe�cient, µ, the error value and the normalized samples of depth weighing
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output inside the cell. If the absolute of calculated error value is greater than

the detection threshold, it is written inside T matrix, which is the output of

prescreener in the size of I x J x NC. Otherwise, the corresponding value in T

matrix is set to zero.

The algorithm is described in Algorithm 7. cl is the length of the LMS cells

along depth axis which should be odd number, gl is the length of guard bins, cs

is the step size of cells in depth axis. NC is the number of cells to be processed,

mp is the middle point of the LMS cells; which corresponds to the point of

interest. K2 is the number of depth bins, ind is a vector of indices of depth axis

to be processed. The LMS �lter coe�cient vector is s, u is the input vector for

a given cross-track, along-track and depth segment.

The output of the algorithm is presented in Figure 4.9. The top-down looking

energy map of the processed data is presented in Figure 4.10. In this presentation

method, the power along each A-scan is summed and plotted in the along-track

axis and cross-track axis. The contrast is adjusted to enhance the visibility

of small clutter-like objects. The calculation of energy map is described by

Equation 4.3. E is the energy map, presented in Figure 4.10. T is the output

of prescreener.

Figure 4.9: 2-D LMS pre-screener applied on C-scan data
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Algorithm 7 Prescreener: 2-D LMS
1: mp← (cl − 1)/2 + 1, the mid point

2: NC ←
⌊
K2

cl
− 1
⌋
∗ cl
cs
, the number of cells

3: for d = 0, d < NC, d+ + do

4: ind← [d ∗ cs+ 1 : d ∗ cs+ c]

5: ind(mp− gl : mp+ gl)← [ ]

6: s← 1 (1, cl−2∗gl+1)

7: s← s

‖s‖

8: for i = 1, i <= I, i+ + do

9: for j = 1, j <= J, j + + do

10: u← Z(i, j, ind)

11: e← Z(i, j, d ∗ cs+mp+ 1)− uT s
12: s← s + µ ∗ e ∗ u

‖u‖

13: s← s

‖s‖

14: if |e| > Threshold then

15: T(i, j, d+ 1)← e

16: else

17: T(i, j, d+ 1)← 0

18: end if

19: end for

20: end for

21: end for

3-D LMS is the expansion of 2-D LMS into the third dimension as suggested

in [46]. Due to the increase in the dimensionality, the computational power

required for this algorithm is quite large; which makes it hard to implement in

real-time systems. 3-D LMS algorithm works as following as described in [46].

Firt, there processing planes are obtained; which are the depth slice, B-scan

slice along-track and B-scan slice cross-track. Then the data is taken out using

a guard band. Then, the points in a prede�ned neighbourhood of the point of

interest is taken and vectorized. From this point on, LMS algorithm works same

and the prediction errors in these three planes are summed using a weighing for

each plane. In [46], weighing vectors are determined empirically.
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Figure 4.10: The energy map of the C-scan data after 2-D LMS pre-screener

E(i, j) =
NC∑
k=1

T(i, j, k)2 (4.3)

4.3.2 Robust Principal Component Analysis Pre-screener

Robust principal component analysis is rather a recent method [44] applied as

a GPR prescreening algorithm. RPCA is a decomposition method, which sepa-

rates the sparse foreground information from the background. RPCA algorithm

decomposes the preprocessed 2-D GPR input signal, such as cross track B-scans,

which are represented as X matrices in this subsection, into L and S matrices,

where L is low rank and S is sparse matrices as in Equation 4.4. S is considered

as the prescreening output. It is applied on each B-scans separately, since RPCA

does not support 3-D computations yet.

X = L+ S (4.4)

The estimation of S and L matrices can be done by complex optimization of

Equation 4.5. There are several numerical solutions in the literature for the

complex optimization problem of RPCA [50].

(
L̂, Ŝ

)
= argmin

L,S
‖L‖∗ + λ‖S‖1 (4.5)
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In [44], RPCA is applied to the frequency domain GPR data. The sparse out-

put of the RPCA is transformed back to time domain. However, performance of

RPCA on time domain was also promising for the simulated data given in Ap-

pendix A. Figure 4.11 shows the sparse output of RPCA applied on the B-scan

simulation provided. The energy map of the processed C-scan data is presented

in Figure 4.12. Energy map is obtained with Equation 4.3.

Figure 4.11: 2-D RPCA pre-screener applied on C-scan data

Figure 4.12: The energy map of the C-scan data after 2-D RPCA pre-screener
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4.3.3 Proposed Prescreening Algorithm

As described earlier, 3-D LMS needs great computational power, hence it's not

very suitable for real-time systems. RPCA is a very promising prescreening al-

gorithm; yet the complex optimization problem in RPCA is a great concern for

computational power in real time systems. On the other hand, 2-D LMS is a

reliable and well studied algorithm. Hence, in this study, 2-D LMS is chosen as a

prescreening algorithm. Mathematical morphologies and connected component

analysis is conducted on the pre-screener output in order to enhance the de-

tection performance and eliminate false detections. The connected component

analysis and the mathematical morphologies that are used and are explained in

Appendix C1 and C2 respectively.

The proposed pre-screener, the morphologically improved 2-D LMS �ltering, is

explained in Algorithm 8. The structure of the algorithm until the 21th line is

identical with the Algorithm 7 except B matrix, which is the binary detection

matrix having same size with T and values of 0 and 1. After this point, �rst

the 3-D structuring element, se, used in mathematical morphologies is de�ned.

The element is de�ned as a 3-D matrix of ones in the dimensions of 2 x 2 x

40. Then, using se, the B matrix is dilated and D is obtained, which is in

the same size of B. Then, connected component analysis is performed. For

each connected component, the volume, v, of the groups are calculated. If the

volume is smaller than the prede�ned volume threshold, Thresholdvol, then the

connected component group in the dilated image is cleared. After this, D image

is eroded back using se, and E matrix is obtained. As the �nal step, the T

matrix is multiplied with binary E matrix element-wise, in order to clear the

detections that are cleared with binary mathematical morphologies. ◦ symbol
is used for Hadamard product.

The result of Morphologically Improved 2D LMS algorithm is presented in Figure

4.13. The energy map of the Morphologically Improved 2-D LMS method is

presented in Figure 4.14.Energy map is obtained with Equation 4.3.
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Algorithm 8 Proposed Prescreener: Morphologically Improved 2-D LMS
1: for d = 0, d < NC, d+ + do

2: ind← [d ∗ cs+ 1 : d ∗ cs+ cl]

3: ind(mp− gl : mp+ gl)← [ ]

4: s← 1 (1, cl−2∗gl+1)

5: s← s

‖s‖

6: for i = 1, i <= I, i+ + do

7: for j = 1, j <= J, j + + do

8: u← Z(i, j, ind)

9: e← Z(i, j, d ∗ cs+mp+ 1)− uT s
10: s← s + µ ∗ e ∗ u

‖u‖

11: s← s

‖s‖

12: if |e| > Threshold then

13: T(i, j, d+ 1)← e

14: B(i, j, k)← 1, Binary detections

15: else

16: T(i, j, d+ 1)← 0

17: B(i, j, k)← 0,

18: end if

19: end for

20: end for

21: end for

22: se← 1(2,2,40), the Structuring element

23: D← B⊕ se, the Dilated 3-D image

24: ConnectedComponentAnalysis(D)

25: for ∀ Connected Components do

26: v ← volume(Connected Component i)

27: if v < Thresholdvol then

28: D(Connected Component i)← 0

29: end if

30: end for

31: E← D	 se, the Eroded 3-D image

32: T← T ◦ E, Hadamard product
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Figure 4.13: Morphologically Improved 2-D LMS prescreener applied on C-scan
data

Figure 4.14: The energy map of the C-scan data after Morphologically Improved
2-D LMS prescreener

Note that, the use of mathematical morphologies and connected component

analysis, all of the clutter like objects in the sample C-scan data is cleaned.

These tools are presented in Appendix C1 and C2. Since, all of the small and

irrelevant points are cleaned out in the image, the contrast is adjusted to enhance

the visibility of energy di�erence between the landmine object and wire object.
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4.4 Analysis on the Performance of Utilized Preprocessing Methods

First, ground bounce and mutual coupling removal is applied on raw GPR data,

using time clipping and median �ltering. The equalization along depth axis is

achieved with logarithmic weighing. The possible wire locations are detected

using the morphologically improved version of 2-D LMS �ltering.

There are few parameters in the algorithms. In the ground bounce and mu-

tual coupling removal section, time clipping length in Algorithm 4 was adjusted

to a prede�ned value. In depth weighing section, the ampli�cation value in

Algorithm 6 was adjusted to a prede�ned value as well. In the prescreening sec-

tion, LMS cell size, guard cell size, LMS updating coe�cient, size of structuring

element of mathematical morphologies, neighbourhood de�nition of connected

component analysis, volume threshold was the �xed parameters in Algorithm 8.

The detection threshold in Algorithm 8, is however, is the real threshold value

of the overall system. Therefore, the performance is investigated for changing

values of the detection threshold.

4.4.1 De�nition of Detection and False Alarm for Performance Anal-

ysis

The detections and false alarms are evaluated on XY plane, using the energy

map described by Equation 4.3 and seen in Figure 4.14.

Real wire locations in XY plane is trimmed at the boundaries of scanning grid.

For instance, if a wire exceeds 90 cm in X direction, the real wire location is

clipped after this point. If there is a detection in the prescreener output, not

farther than 5 cm to the real wire position, then it is called detection.

Detection length ratio is the ratio of detected length to the total length of the

wire. It can be said that, when the wire is partially detected, the detection ratio

will be bigger than zero but smaller than one for an existing wire and it is called

a detection.

False alarm rate is the ratio of the total number of detections in the energy map,
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farther than 10 cm to any existing wire location to the total number of scanning

positions in the C-scan, which is equal to I times J .

4.4.2 Results of Performance Analysis of Preprocessing Algorithms

The results are presented with four graphs. Threshold value is swept from 0.03

to 0.4 level. Note that, these values are all related with the signal amplitudes

of the original collected data; therefore they are only meaningful when they are

compared with each other.

The probability of detection versus the detection threshold graph is presented in

Figure 4.15. The probability of false alarm versus the detection threshold graph

is presented in Figure 4.16. Combining probability of detection with probability

of false alarm measurements, the receiver operating characteristics, also known

as ROC curve is obtained as in Figure 4.17. The detection length ratio; which

is based on how long the wire is detected is presented in Figure 4.18.

Figure 4.15: The probability of detection versus detection threshold graph of
utilized preprocessing methods
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Figure 4.16: The probability of false alarm versus detection threshold graph of
utilized preprocessing methods

Figure 4.17: The ROC curve of the utilized preprocessing methods, Area under
ROC curve: 0.9086
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Figure 4.18: The detection length ratio versus detection threshold graph of
utilized preprocessing methods

It has been observed from the Figure 4.17, proposed prescreening algorithms can

achieve 90% probability of detection, with 16% false alarm rate. It should be

noted that, all types of objects other than wires, including landmines, are con-

sidered as false alarm in this analysis. The area under ROC curve is calculated

as 0.9086.
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CHAPTER 5

WIRE FEATURE EXTRACTION AND

CLASSIFICATION

The Morphologically Improved 2-D LMS prescreener has grouped the detections

that are connected to each other and spanning a volume bigger than a prede�ned

value. In order to determine whether these detections groups are related with

wires or not, a classi�cation problem of two classes should be studied.

There are few studies focusing on wire detection problem in the literature, which

are investigated in Chapter 1, and there is not a study focusing on detection and

classi�cation of wires. The closest matching well-studied detection problem is

pipe detection in the literature. In [18], neural networks are used for pipe detec-

tion using B-scans. However, study has only focused on hyperbola recognition

and assumed a single type of target.

In [51], the length and width features of linear objects are extracted iteratively

in GPR images using Radon transform. However, the algorithm works with

back-projected GPR images, where depth information has been lost. Moreover,

it only works with linear objects; which would fail when the wire is placed in free

form. Nevertheless, the study has shown that the width and length features are

useful to classify long and thin objects. However in this thesis, another method

should be used to extract these features for free form wires.

In [52], some possible features for landmine detection are listed as area, depth,

position, energy and their spatial variations. These features has given some

insight about what features can be extracted for 3-D wire classi�cation problem.
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In Chapter 3, it has been observed that the re�ections obtained from a wire

is generally weak in terms of signal strength. Moreover, it is not practically

possible to distinguish a wire from a stone in a single B-scan. Therefore, it can

be said that use of C-scans is compulsory for wire classi�cation. In Chapter 3,

the B-scan responses for di�erent wire angles are also investigated. It is observed

that, dependent on the angle the hyperbola signature widens and �nally becomes

a constant line when the wire is placed along-track direction. This phenomenon

has also shown in [13]. Moreover, the spatial sampling steps and the polarization

of the antenna also played role in the hyperbola signature in wire classi�cation

problem. Therefore 2-D hyperbola estimation algorithms such as [29] and [30],

are de�nitely not suitable for wire classi�cation problem.

Another possible feature extraction could have been achieved with convex or

concave hull, which can also be implemented on 3-D. However, convex hull will

de�nitely fail at some curvy wire orientations, such as the 13th simulation given

in Appendix A. Concave hull, on the other hand, seems more applicable. How-

ever, this algorithm only cares the outer boundary of the point cloud. Therefore,

concave hull would have problems when the wire re�ections collide with the re-

�ections of unwanted clutter objects.

In this study, feature based classi�cation is used in order to classify wires from

clutter objects. Target re�ections are considered as a point cloud scattered

around the wire position, rather than the hyperbolas in B-scans. The curve

of the wire in 3-D space should be reconstructed using the point cloud �rst in

order to compute the features and to examine the �tness of the point cloud to

the curve in 3-D.

5.1 Curve Reconstruction

There are some 3-D curve reconstruction algorithms in the literature [53], [54]

and [55]. Two methods are studied in this section. The �rst one is the singu-

lar value decomposition, which assumes existence of a straight line, although it

is impracticable in real applications. The second algorithm is a 3-D curve re-
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construction with moving least squares algorithm [53]. 3-D curve reconstruction

using MLS algorithm has shown promising results. These methods are explained

below.

5.1.1 3-D Line Fitting with Singular Value Decomposition

Singular value decomposition is a powerful tool and it has many applications,

including PCA mentioned earlier. It can also be used for estimating the principal

direction of the point cloud in 3-D. The indices of the mth connected point cloud

in cross-track, along-track and depth positions are listed asXm = [im jm km].

Mean values of i, j, k is subtracted from the X matrix. Then, the covariance

matrix is obtained by Cm = XTX relation. The singular values of Cm = UDVT

are decomposed. The orthonormal basis vector u1 in theUmatrix corresponding

to the largest singular value in the diagonal D matrix is the principal axis of the

point cloud. The straight line can be represented with a parametric equation in

3-D, passes through the mean values of i, j, k and goes in the direction of u1.

The pseudo code is given in Algorithm 9. t is the variable used for parametric

representation.

Algorithm 9 Straight line estimation using Singular Value Decomposition

1: [µi µj µk]←
[

1
N

∑
n im(n) 1

N

∑
n jm(n) 1

N

∑
n km(n)

]
2: Xm ←

[
im − µi j

m
− µj km − µk

]
3: Cm ← XTX

4: U D VT ← Cm : Singular Value Decomposition

5: [u1 u2 u3]← U

6: x← µi + u1(1) ∗ t
7: y ← µj + u1(2) ∗ t
8: z ← µk + u1(3) ∗ t

Line �tting with SVM assumes the existence of a single straight wire. Therefore,

this algorithm is not suitable for identifying free-form wires since in Appendix

A, majority of the simulations are consisting of curved wires.
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5.1.2 3-D Curve Reconstruction with Moving Least Squares

A sophisticated algorithm is required here to reconstruct free form 3-D curves

using the point cloud in 3-D; since wires could be placed in any form. There

are some studies in the computational geometry literature focusing on the curve

and surface reconstruction using point clouds such as [53], [54] and [55].

The method suggested in [53] has initially applied on 2-D, but the author ex-

plained the how to expand the method to further dimensions. It is mainly based

on moving least squares (MLS) method and author used minimum spanning

tree in order to select associated points in 3-D. This method is powerful and

promising and well �tting for the command wire detection problem; therefore

this method has been utilized in this thesis.

The idea behind the utilized method is to �nd the linear direction of neigh-

bouring points for each point in 2-D space and applying moving least squares to

move the points closer to the regression curve. As the method iterates, the point

cloud gets denser and form a curve. The direct application to 3-D is not easy

as explained in [53]. Therefore, point cloud is projected on the 2 surfaces that

are perpendicular to each other and parallel to the 3-D regression line. After

projection, 2-D MLS is used to �t the points on regression curve. The result is

projected back to 3-D.

In detail, �rst the i, j, k indices of a connected component group is mapped to

the real dimensions as given in Equation 5.1. For instance, cross-track indices,

i, are multiplied by 5 and added with 5 in order to map the indices in the range

of 1 to 17 into the range of 10 to 90 centimetres. Along track indices, j are

added with 9 in order to map the indices ranging from 1 to 81 into the range

of 10 to 90 centimetres. Depth indices, k are divided by a constant, c, which

is empirically found. The 3-D curve reconstruction algorithm using MLS is not

really dependent on this constant value; a rough value is su�cient. As long as

the product of c value in the Equation 5.1 and cs value in the Algorithm 8 is

bigger than 40, the algorithm works �ne. cs value in Algorithm 8 is selected 1

in order not to skip any depth segments. Hence, c value in the Equation 5.1 is
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selected as 50.

x = 5 + 5i, y = 9 + j, z =
k

c
(5.1)

The algorithm contains several optimization problems, which are repeated for

all points and the whole procedure is iterated few times to obtain better results.

In order to decrease the computational cost of the algorithm, a decimation al-

gorithm can be applied on z indices for each x and y positions since target

re�ections creates several detections in each A-scan. It can also be achieved by

increasing the cell size, cs value, in Algorithm 8 as long as the cells in Algorithm

8 overlap more than 50%.

After this, the following computations are repeated for each point in the con-

nected component group. When all of the points are processed, the algorithm

can be repeated for a few iterations to get better results.

In the �rst step of iterative algorithm, the distances, r, from the point of interest,

(x(k), y(k), z(k)), to the all other points in 3-D is calculated with Equation 5.2.

r = (x, y, z)− (x(k), y(k), z(k)) (5.2)

Then, the set of indices whose distances are smaller than a pre-selected value,

H, is chosen as in Equation 5.3; whose can be expressed as the points inside a

sphere with a radius of H and centred at the point of interest. The subsets of

x, y and z inside the sphere, which are presented as x̂, ŷ and ẑ , are obtained

as in Equation 5.4.

B = {n | r(k) < H} (5.3)

x̂ = x(i), ŷ = y(i), ẑ = z(i), i ∈ B (5.4)

Selection of H value is important since the points inside the sphere with radius

H, centred at the point of interest should have a linear trend. In other words;
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these points should be forming a point cloud distributed around the principal

axis in 3-D. This is achieved with high correlation along the principal axis. If H

value is selected too small; then the points would be highly uncorrelated; and

the algorithm would fail to �nd a principal axis. On the other hand when H

value is selected too large, the algorithm cannot adept to sharp corners and the

curve gets too much smooth. H value is selected as 20 cm, which is found as

applicable for wire detection problem empirically. The e�ect of selection of H is

investigated in Figure 5.5 and 5.6, in the end of this section.

The procedure is presented in Figure 5.1. In Figure 5.1, red point indicates the

current point of interest, blue points indicate the points inside the sphere with

radius H, centred at the point of interest and gray points indicate the irrelevant

points.

Figure 5.1: Selection of points in the neighbourhood of H. Red point is the point
of interest, blue points are the selected points and cyan points are the remaining
points in the point cloud.

On the second step of the iterative algorithm, a regression line is computed for

the point of interest, using the points inside the sphere with radius H. Com-

putation of 3-D regression line is explained in detail in the appendix of the [53]

reference. Basically, mean values of the point indices are subtracted from the

points such as given in Equation 5.5.
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x̃ = x̂−
∑

x, ỹ = ŷ −
∑

y, z̃ = ẑ −
∑

z (5.5)

Then, the normalization condition matrix is expressed as Equation 5.6 is calcu-

lated.

N =


∑
ỹ2
i + z̃2

i −
∑
x̃iỹi −

∑
x̃iz̃i

−
∑
ỹix̃i

∑
x̃2
i + z̃2

i −
∑
ỹiz̃i

−
∑
z̃ix̃i −

∑
z̃iỹi

∑
x̃2
i + ỹ2

i

 (5.6)

Then, eigenvalue decomposition is applied on the matrix. The eigenvectors are

named as α1, α2 and α3 in the increasing order to eigenvalues. The eigenvector

corresponding to the smallest eigenvalue, α1 is the regression line direction,

whereas remaining two eigenvectors, α2 and α3, are the orthonormal vectors of

the principal axis. Then, the points inside the sphere are projected on the plane

de�ned with α1 and α2 vectors, using Equation 5.7.

A = [α1 α2] (5.7)

P = A−1AHA (5.8)

[u v] = P [x̃ ỹ z̃] (5.9)

The projection procedure is presented in Figure 5.2. The red, blue and gray

points indicates the point of interest, neighbours of the point of interest and

irrelevant points respectively. The red, cyan and green arrows are the α1, α2

and α3 vectors respectively. The point cloud is aligned along the red arrow.

Then, the algorithm will be identically repeated for P1 and P2 planes. In the

�rst part of the algorithm, the points are projected on the P1 plane de�ned by

red and cyan arrows. MLS algorithm will be applied to these projected points.

In the second part of the algorithm, the points are projected on the P2 plane

which is de�ned by red and green arrows. Again MLS algorithm will be applied

to these projected points.
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Figure 5.2: Projection of points onto the two orthogonal planes

After this projection, the dimension of the point cloud is reduced to 2. On the

2-D plane, the MLS algorithm is much easier to apply. On this plane, the local

regression line is computed by minimizing the quadratic function in Equation

5.10. w is the weighing vector which is computed by Equation 5.11 inside the

sphere, and has 0 values outside of the sphere. The weighing vector is presented

in Figure 5.3, for H value of 20 cm.

[a, b] = argmin
a,b

N∑
i

(aui + b− vi)2wi (5.10)

w = 2
r3

H3
− 3

r2

H2
+ 1, r < H (5.11)

Figure 5.3: Weighing vector, w, for H value of 20
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Using the quadratic minimization results of Equation 5.10, transformation ma-

trix, M is generated as given in Equation 5.13; which is used to transform the

points such that the regression line is parallel to the x axis. Also, the trans-

formed value of the point of interest is subtracted from all points in order to

make the point of interest is the new origin as given in Equation 5.15. The

transformed point of interest is presented as [ũ∗ ṽ∗].

θ = − tan−1(a) (5.12)

M =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (5.13)

[ũ ṽ] = [u v] M (5.14)

[ũ ṽ] = [ũ ṽ]− [ũ∗ ṽ∗] (5.15)

After this transformation, the local quadratic regression curve is computed by

minimizing the Equation 5.16. Projection of the transformed point onto the local

quadratic regression curve is (0,c) point. Therefore this point is �rst inverse

transformed and the origin shifting subtraction is reversed as Equation 5.17.

Note that, MLS is applied on the plane de�ned by α1, α2 vectors. Therefore, the

output of MLS algorithm, t vector does not have the required information along

α3 vector. The output of MLS algorithm is corrected with Equation 5.19. The

point of interest is presented as t∗ vector in Equation 5.18, in order to enhance

the readability of the Equation 5.19. • operator is used for dot product.

[a, b, c] = argmin
a,b,c

N∑
i

(
aũ2 + bũ+ c− ṽ

)2
wi (5.16)

t = [ũ∗ c+ ṽ∗] M−1 AH (5.17)

t∗ = [x(k)y(k)z(k)] (5.18)

t∗ = t−
(
(t∗A−1AHAAH − t∗) • α3

)
αT3 (5.19)

After this procedure, the original point of interest, [xk yk zk] is replaced with

calculated MLS output, t∗ with Equation 5.19. The MLS is applied on the
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plane de�ned by α1, α2. The whole procedure is repeated for the plane de�ned

by α1, α3 by only replacing α2 variable with α3 in the expressions. The whole

procedure is summarized in the �owchart in Figure 5.4.

Figure 5.4: Flowchart of curve reconstruction algorithm

The results of curve reconstruction algorithm for two di�erent H values are shown

in Figure 5.5 and 5.6. Note that when H value is small, the curve reconstruction

algorithm has failed and made multiple branches.
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Figure 5.5: Output of the curve reconstruction algorithm with H = 10 cm.

Figure 5.6: Output of the curve reconstruction algorithm with H = 30 cm.

5.2 Feature Extraction

The curve reconstruction algorithm is applied on all connected component groups.

In order to classify these detection groups, some distinct features should be ex-

tracted. In [52], possible features that can be used for landmine classi�cation

are listed as area, energy and the spatial variations of these features. Since wire

classi�cation problem with GPR is not studied in the literature, there is not a
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baseline for feature selection methods. Therefore, selection of features are done

intuitively. The possible features that would be useful to identify a wire from

other clutter objects are determined as the mean and standard deviation of the

distance from the reconstructed curve, mean prescreener strength, length of re-

constructed curve and the total number of detections. The extraction methods

of these features are explained below.

5.2.1 Mean and standard deviation of distance from curve

The 3-D curve of the wire is constructed previously using 3-D MLS curve recon-

struction algorithm summarized in Figure 5.4. The detections can be considered

as a point cloud scattered around the reconstructed curve. The minimum dis-

tance from each detection point to the reconstructed curve is calculated with

Algorithm 10. x, y, z represents the indices of binary detections just obtained

after Equation 5.1. Xn, Yn, Zn represents the output of 3-D curve reconstruc-

tion algorithm, as calculated in Equation 5.19.

Algorithm 10 Feature Extraction: Distance from the curve
1: for ∀Connected Components do
2: K ← length(ConnectedComponenti)

3: for k = 1, k <= K, k + + do

4: d(k)← argmin
n

√
(x(k)−Xn)2 + (y(k)− Yn)2 + (z(k)− Zn)2

5: end for

6: end for

The distance vector, d will have a distribution. The mean and variance of this

distribution are valuable information that can be extracted from the vector. The

distributions of the calculated dimension vectors for the landmine and the wire

in the sample C-scan data (04th data on Appendix A) are presented in Figure

5.7.
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Figure 5.7: Histogram of the minimum distances from the curve for landmine
object and wire object in the sample data (4th Data Appendix A)

Two features, mean (σ1) and standard deviation (σ2) are calculated as in Equa-

tion 5.20 and 5.21. d is the calculated distance vector, K ,s the length of distance

vector.

σ1 =
1

K

K∑
i=1

d(i) (5.20)

σ2 =

√√√√ 1

K − 1

K∑
i=1

(d(i)− σ1)2 (5.21)

5.2.2 Average Pre-screener Strength

So far, only the binary detections of pre-screener are used in curve reconstruc-

tion and feature extraction algorithm. However, the pre-screener strength also

contains valuable information. For instance, wire re�ections generally have small

energy compared to massive metal objects, like landmines.

The average pre-screener strength is another feature that can be used in clas-

si�cation. The T matrix in Algorithm 8 is used for calculation. The feature is
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calculated for each connected component group as in Equation 5.22. Consider

B is the set of indices for a given connected component group.

σ3 =

√ ∑
i,j,k∈B

|T(i, j, k)|2 (5.22)

5.2.3 Curve length

In order to calculate the length of the curve, �rst the line should be approximated

with few samples as a spline curve. Otherwise, the points would be unorganized

and the calculated length wouldn't result in the real length. The approximation

is done as following;

First, a random point is selected as the starting point. Then, inside the neigh-

bourhood of 1 cm distance the farthest point to the starting point is selected as

the �rst point for one direction of the curve. The farthest point to the selected

point inside the same neighbourhood will be the �rst point for the opposite

direction. After the selection, the remaining points are cleared out. The proce-

dure is repeated for both directions until all of the points for both directions are

cleared out. The procedure is explained in Algorithm 11.

The points are organized by sequential process. Hence, calculation of length is

very easy; it can be calculated by taking di�erence of the Q vector of length N,

taking the norm to calculate the distance from di�erentiated X, Y and Z values.

The sum of the norms will result in the total length of the curve as given in

Equation 5.23. The length of the curve, σ4, is the forth feature that will be used

in classi�cation.

σ4 =
N−1∑
i=1

‖Q(i+ 1)−Q(i)‖ (5.23)
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Algorithm 11 Approximation of curve with few samples
1: for ∀Connected Components do
2: T (k)← [X(k) Y (k) Z(k)]: List of all points

3: ts ← T (1): The starting point

4: r(k)← ‖T (k)− T (1)‖: The distance vector from starting point

5: B ← r(k) < 5: The set of indices inside 5 cm sphere

6: P ← T (k), k ∈ B: The points inside 5 cm sphere

7: T ← T (k), k /∈ B: The points outside of 5 cm sphere

8: n← argmax
n∈B

r(n): The farthest point inside 5 cm sphere

9: t1 ← P (n): The �rst point in one direction

10: r(k)← ‖P (k)− t1‖: The distance vector from �rst point

11: n← argmax
n

r(k): The farthest point inside 5 cm sphere to �rst point

12: t2 ← P (n): The �rst point in opposite direction

13: Q←
[
tT1 t

T
s t

T
2

]T
: The queue vector

14: do

15: r(k)← ‖T (k)− t1‖: Distance vector from �rst point

16: B ← r(k) < 1: The set of indices inside 5 cm sphere

17: T ← T (k), k /∈ B: The points outside of 5 cm sphere

18: n← argmax
n∈B

r(n): The farthest point

19: t1 ← P (n): The continuing point in the �rst direction

20: Q←
[
tT1 Q

T
]T
: Updated queue vector

21: while B 6= ∅

22: do

23: r(k)← ‖T (k)− t2‖: Distance vector from second point

24: B ← r(k) < 1: The set of indices inside 5 cm sphere

25: T ← T (k), k /∈ B: The points outside of 5 cm sphere

26: n← argmax
n∈B

r(n): The farthest point

27: t2 ← P (n): The continuing point in the opposite direction

28: Q←
[
QT tT2

]T
: Updated queue vector

29: while B 6= ∅

30: end for
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5.2.4 Total Number of Binary Detections

The last feature that is covered in the thesis is the total number of binary detec-

tions for each connected component group, which can be basically expressed as

σ5 = N , where N is the total number of elements inside a connected component

group.

5.3 Classi�cation

Classi�cation problem is well studied in the GPR literature. They commonly

focus on landmine and UXO classi�cation as studied in [56], [57], [3], [58], [31]

and so on. However, wire classi�cation is not studied well in the GPR literature.

There is a large number of classi�cation methods in the literature. In this

thesis, a simple two-class classi�er is su�cient, since only wire objects will be

classi�ed using 5 features. SVM (support vector machine) is a well-known and

well-studied method and it �ts the wire classi�cation problem with 2 classes.

Therefore, SVM is selected as the classi�cation method in the thesis.

5.3.1 Support Vector Machine

SVM is a supervised classi�cation algorithm that tries to �nd a hyperplane

separating two classes; while minimizing the risk. Support vectors are the most

informative and hardest to classify points in the feature space. Support vectors

are used to de�ne the plane that separates two classes.

SVM classi�cation is based on two steps; training and classifying. The dual

problem is formulated as the optimization problem given in Equation 5.24. For

the training set, total number of N features vectors, xi, are extracted for each

detection group. Then, the labels, yi, are de�ned as +1 (wire class) and -1 (other

class) for each xi feature vectors.
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maximize
α

∑
i

αi −
1

2

∑
j,k

αjαkyjykκ(xj, xk)

subject to 0 ≤ αi ≤ C,
∑
i

αiyi = 0
(5.24)

The α vector is learnt and C is a non-negative regularization parameter. κ(xj, xk)

is the kernel function. Gaussian Radial Basis Function (RBF) kernel is used in

this thesis and it's expressed as in Equation 5.25, where σ is the sigma param-

eter of the Gaussian RBF kernel. The σ value can be optimized, when needed.

However, in this thesis, it is not optimized since the sample size (the C-scan

simulations in Appendix A) is small and optimization of σ may lead to false

conclusions. Therefore, σ value is kept constant as 1.

κ(xj, xk) = exp

(
−‖xj − xk‖

2

2σ2

)
(5.25)

A liner kernel could be used as well, instead of Gaussian RBF Kernel. Linear

kernel is expressed as in Equation 5.26.

κ(xj, xk) = xTj xk (5.26)

After training, a test data, z is classi�ed using the Equation 5.27. In this

equation, αi values can be zero for some i index. For the i indices such that αi

is non zero, the xi vectors are called "support vectors" and b is the bias of the

hyperplane.

f(z) =
N∑
i

αiyiκ(xi, z) + b (5.27)

There exist also multi-class SVM methods; which actually consider multiple

SVM classi�ers, all of them classi�es a class considering "one versus one" or "one
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versus all" strategies. At the end, the results of these classi�ers are combined

and multi class results are obtained. However, in wire detection problem, there

only exist two classes; wire and others. Therefore, use of a multi-class method

is not necessary in this concept.

The feature vectors, xi, for each connected component group will be consisting

of 5 features; mean and standard deviation of the distances from the constructed

curve, average pre-screener strength, length of the curve and total number of

binary detections. In order to train the SVM, �rst the feature vectors are labelled

using the method which will be explained under "Evaluation of the Performance

of Algorithm" section below. Using these labels, 70 percent of the feature vectors

for both wire class and other class are used for training the SVM. Then, the

remaining 30 percent wire and other classes are used for testing the trained

classi�er.

5.4 Evaluation of the Performance

The algorithm chain is explained in detail in the previous sections. The un-

processed raw GPR data at di�erent along-track and cross-track positions are

collected. Then, time clipping and median �ltering is applied on the data to re-

move ground bounce and reduce the clutter level. Logarithmic depth weighing is

applied along depth direction in order to equalize the signal levels coming from

di�erent depths. 2-D LMS �ltering is applied for each depth bin separately to

suppress the background and amplify the foreground. Mathematical morpholo-

gies are used for enhancing the performance of the prescreening algorithm. 3-D

Curve reconstruction with MLS algorithm is applied to the detections before

the feature extraction. Using this reconstructed curve, length of the curve is

calculated and mean and standard deviation of the distances between curve and

point cloud is derived. Also, volume of the point cloud is estimated using num-

ber of points in the cloud. The mean pre-screener strength is another feature

that is derived from the detection group. Later, SVM classi�er with Gaussian

RBF kernel is used for classi�cation problem.
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5.4.1 Labelling method

The performance of the algorithm chain is evaluated with the classi�er outputs.

The curve reconstruction algorithm gives the down-sampled 3-D curve, and this

data is stored. The true locations of the wires are also stored using the simulation

input �les. Then, the labelling of detections is performed by Algorithm 12. The

THd is the distance threshold, set to 10 cm empirically. Use of too larger distance

threshold results in false positive labelling. Use of too small distance threshold

results in misses. The range of 5 cm to 15 cm was found suitable for wire

detection problem. TH% is the percentage threshold set to 0.70 empirically. It

has been observed that in Appendix A, the IEDs connected to wires are detected

as connected to the wire. Therefore, this threshold is decreased to 70%. When

the single wire simulations are analysed, it has been seen that the TH% value

can be increased up to 95% levels, without any missing wires.

The labelling is done with top-down looking 2-D locations in XY plane, since

the position in Z axis depends on local electromagnetic properties of the soil and

cannot be trusted for labelling.

Algorithm 12 Automatic labelling of curves for supervised learning
1: for k = All Detection Groups do

2: for m = All Wires In Simulation do

3: d← distance(from : Reconstructed Curve, to : Real Wire)

4: if (number(d < THd) / length(d)) > TH% then

5: Class(k)← 1

6: WireID(k)← m

7: else

8: Class(k)← −1

9: WireID(k)← 0

10: end if

11: end for

12: end for

For instance, consider the C-scan data of number 13, given in Appendix A.
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The real input geometry of the wire and the reconstructed curve locations in

XY plane are presented in Figure 5.8. The reconstructed curve nearly perfectly

matches with the input �le geometry. The minimum distances from the recon-

structed curve to the input �le geometry is below 1.5 cm for 95 percent of the

curve.

Figure 5.8: Real input geometry and curve reconstruction output of C-scan Data
13 (Appendix A)

Another case is investigated for the sample data used in Chapter 4 and Chapter

5, which is the Test number 04 in the Appendix A. The real input geometry

of the wire and the reconstructed curve locations in XY plane are presented

in Figure 5.9. In this case, there is a landmine and a wire, where wire starts

from the boundary of the simulation environment and ends in the middle of

the medium. The wire is detected starting from 10 cm in X direction; which

corresponds to the location T/R pair 1. In this data, again, the majority of the

reconstructed curve lays within the input �le geometry, and therefore labelled

as wire. The curve reconstructed from the landmine is considerable farther than
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the real location of the wire and therefore classi�ed as not wire.

Figure 5.9: Real input geometry and curve reconstruction output of C-scan Data
04 (Appendix A)

The last case investigated is the C-scan Test Number 27 of the Appendix A. In

this scenario, wire is in contact with a plastic object; which is modelled as a

sample IED device. The detections coming from the plastic object also mixes

with the wire detections, and therefore reconstructed curve goes farther than

the actual point the wire ends. In this case, again, the curve should be labelled

as a wire. Although reconstructed curve �ts the input �le geometry mostly, the

minimum distances increase up to 20 cm at the farthest point of reconstructed

curve at IED side. Therefore, a threshold to the percentage value is de�ned for

labelling the curves, which is given as TH% in Algorithm 12.
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Figure 5.10: Real input geometry and curve reconstruction output of C-scan
Data 27 (Appendix A)

5.4.2 Performance Metrics of Classi�ers

The performance of the prescreening algorithms were evaluated for changing

detection thresholds of the prescreener in Algorithm 8 and presented in Figure

4.15, 4.16, 4.17 and 4.18 previously. The performance of the classi�er is evaluated

at a single detection threshold, where the probability of detection is high and

probability of false alarm is relatively smaller.

The reason behind this can be explained as following. For small values of detec-

tion threshold, the detections coming from clutter objects collide with wire de-

tections. In this case, curve reconstruction algorithm falsely reconstructs curves.

In some cases, the reconstructed curve is not labelled as wire, since it has consid-

erably drifted away from the real wire position. Moreover, the clutter features

merge with wire features. As a result, the classi�cation become meaningless
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for small values of detection threshold. For high values of detection threshold,

on the other hand, some wires are not detected. As a consequence, the overall

detection and classi�cation performance of the proposed system decreases.

Hence, the classi�cation performance is evaluated at a single detection threshold,

at the value of 0.11, which has resulted in best overall detection performance for

the system empirically.

5.4.2.1 Confusion matrix

Confusion matrices are useful tables that are commonly used to measure the

performance of decision algorithms. In confusion matrices, rows present the real

case and columns present the result of decisions [59]. A sample matrix , C, is

presented in Table 5.1.

Observation
Wire Clutter

Real
Wire A B
Clutter C D

Table5.1: A sample confusion matrix

In the sample confusion matrix, Table 5.1, there is A + B wire detections and

C+D clutter detections in reality. The classi�er has classi�ed A wires correctly;

which yields to true positives. However, B wires are misclassi�ed as clutter, these

are false negatives. The classier has correctly classi�ed D clutter objects; which

are true negatives. However, C clutter objects are misclassi�ed as wires, and

these are false positives.

5.4.2.2 Precision

Precision of a class is the ratio of the true classi�cations to the total number of

real points [59]. It can be formulated for two classes as Equation 5.28, where

C is the confusion matrix and i is the class number. For instance, precision of

wire class in Table 5.1 is A
A+B

and precision of clutter is D
D+C

.
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P (i) =
C(i, i)

C(1, i) + C(2, i)
(5.28)

5.4.2.3 Recall

Recall of a class if the ratio of true classi�cations to the total number of predic-

tions for this class [59]. It can be formulated for two classes as Equation 5.29.

For instance, recall of wire class in Table 5.1 is A
A+C

and recall of clutter is D
D+B

.

R(i) =
C(i, i)

C(i, 1) + C(i, 2)
(5.29)

5.4.2.4 Accuracy

Accuracy is the total number of true classi�cations to the total number of in-

stances for a classi�er [59]. It can be formulated as Equation 5.30.

A =
C(1, 1) + C(2, 2)

C(1, 1) + C(1, 2) + C(1, 2) + C(2, 2)
(5.30)

5.4.3 Performance of Utilized Algorithm Chain

The detection threshold of 0.11 is selected for evaluation of the classi�er; where

the prescreener achieved the detection rate of 91%, with the false alarm rate

of 25%. For smaller values of detection threshold, false alarms collide with de-

tections which distorts the performance of classi�cation. For higher values of

detection threshold, the number of detected wires decrease. Using the feature

sets obtained from the analysis, 100000 Monte Carlo simulations are performed

with the method described earlier. The classi�cation performance of the simu-

lation is presented in Table 5.2.
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Observation
Wire Clutter

Real
Wire 50.67 4.33
Clutter 3.98 52.02

Table5.2: Confusion matrix for Gaussian RBF Kernel SVM Classi�er with pre-
screener detection threshold value of 0.11

The mean precision, recall and accuracy and their standard deviations for the

threshold value of 0.11 are calculated and presented in Table 5.3. The same

metrics are obtained for linear kernel SVM classi�er as well. The metrics are

presented in Table 5.4.

Wire Clutter
Precision 92.13% 92.90%

σp 5.24% 2.55%
Recall 92.82% 92.53%
σr 2.28% 3.51%

Accuracy 92.52%
σa 2.40%

Table5.3: Precision, Recall and Accuracy of Gaussian RBF kernel SVM Classi�er
with prescreener detection threshold value of 0.11

Wire Clutter
Precision 92.43% 91.38%

σp 11.62% 3.36%
Recall 91.64% 93.37%
σr 2.98% 6.59%

Accuracy 91.90%
σa 4.94%

Table5.4: Precision, Recall and Accuracy of linear kernel SVM Classi�er with
prescreener detection threshold value of 0.11

The performance metrics given in Table 5.3 provide valuable information. It

has been seen that, for Gaussian RBF Kernel SVM, precision and accuracy of

both classes and the accuracy of the classi�er is all around the 92% levels. The
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standard deviation of wire precision is considerably high compared to standard

deviations. Since the sample size, the number of C-scans in Appendix A, is

considerably small for evaluating the performance of classi�cation algorithm,

the standard deviations are expected to be large.

Use of linear kernel has resulted in increased standard deviations; especially for

wire precision. Yet, the results have shown that the wire and clutter classes can

be considered linearly separable. A simple linear hyperplane can separate two

classes with overall accuracy of 91.9%.

There are 64 wires in total. The 30th and 35th simulations are having two

wires connected to an IED, and they are generally detected as connected to

each other. In Figure 4.15, it has been seen that the 59 wires of 64 in total are

detected successfully after prescreening step at threshold value of 0.11. If the

wires connected to the same IED device is counted as one, it can be said that

57 wires are successfully detected after prescreening, out of 62 wires in total.

For the threshold value of 0.11, after curve reconstruction algorithm, 55 wires are

successfully labelled as wire. However, the reconstructed curves for remaining 2

wires are not matching with the real wire positions, due to the collisions of wire

detections with clutter objects. Therefore, they are labelled as clutter, but did

not used for training of classi�er in order to avoid false training. For Gaussian

RBF Kernel SVM, the true classi�cation rate of the classi�er, in other words

the precision of wire class, for the given threshold is calculated as 92.13%. The

overall true positive detection rate of the proposed system is found as 81.73%,

which is calculated by the dividing the true positive rate to the number of real

wires. Moreover, the overall false alarm rate is found as 0.0663 false alarms

per meter square. It is calculated by dividing false positive rate to the total

searching area.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

In this thesis, detection of buried command wires that are used for IED detona-

tion is investigated using ground penetrating radars. Ground penetrating radars

are used extensively for explosive detection buried underground; yet there was a

few studies focusing on wire detection problem using ground penetrating radars.

The existing studies were focusing on the antenna and hardware design of GPRs,

and there was not a study focusing on the preprocessing and classi�cation part

of the GPRs for wire detection problem. Moreover, most of these studies were

investigating unburied wires. There was a lack in detection of the buried wires;

and hence, detection of buried wires is studied in this thesis.

In Chapter 1, the concept of humanitarian demining is explained in detail. Then,

the sensor types and methods used for buried explosive detection is explained.

After this, the studies focusing on or related with wire detection problem is

investigated. Then, the scope and outline of the thesis are presented.

In Chapter 2, the problem de�nition is given. Moreover, the basics of ground

penetrating radars are brie�y explained.

In Chapter 3, the simulation environment is described. A set of simulations

is generated by changing few simulation parameters to see the e�ects of these

speci�c changes. It has been observed identi�cation of wires is not possible by

looking at a single B-scan. Therefore, a set of C-scan simulations are prepared
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to test and evaluate the 3-D GPR signal processing and classi�cation methods

that are explained in Chapter 4 and 5.

In Chapter 4, the signal preprocessing methods are discussed under three sec-

tions. In the �rst section, time clipping, mean subtraction, median subtraction,

principal component analysis are investigated for ground bounce and mutual

coupling removal. In second section, depth whitening and logarithmic weighing

are investigated for depth weighing. In the last section, LMS, RPCA and mor-

phologically improved LMS are investigated for prescreening. Performance of

the algorithms is presented afterwards.

It has been observed that, median �ltering and time clipping is a simple yet

very e�ective method for ground bounce and mutual coupling removal for the

simulated data. A logarithmic scaling vector is proposed for depth weighing,

which have resulted in better equalization along depth compared to method

in the literature. The proposed prescreener, the morphologically improved 2-

D LMS, has shown improvements compared to the methods in the literature.

Although, detections coming from landmines, IEDs and rocks are labelled as

false alarm, the proposed prescreener has achieved 90% of probability of wire

detection with 16% false alarm rate. The area under the ROC curve of the

preprocessing algorithms is measured as 0.9086.

In Chapter 5, the feature extraction and classi�cation concept is investigated un-

der three sections. In the �rst section, SVD line constructor and 3-D MLS curve

reconstruction algorithms are investigated for curve reconstruction algorithms.

In the second section, feature vectors are extracted. In the last section, SVM

classi�er is studied for classi�cation. Performance of the algorithms is presented

afterwards.

The 3-D curve reconstruction with MLS algorithm is utilized before feature ex-

traction. It has been seen that, it can reconstruct 3-D curves of wires placed

free form in the space. However, the algorithm cannot be considered as ro-

bust against the clutter collisions. It has been seen that the curve reconstruc-

tion algorithm has incorrectly reconstructed curves for small values of detection

threshold, due to the clutter collisions; which results in decreased classi�ca-
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tion performance. Using the free-form 3-D curve, novel 3-D feature sets are

extracted. SVM classi�er with Gaussian Kernel is used for the feature based

classi�cation. SVM is trained and tested using di�erent samples obtained from

the simulations; and this process is repeated for several Monte Carlo runs to

evaluate the performance of classi�er. For an empirically found best resulting

threshold value, the precision and recall of both wires and clutter and the total

accuracy of the classi�er was found roughly 92%. Combining with the detec-

tion performance of preprocessing methods, it has been observed that the true

detection and classi�cation rate of the real wires was 81%.

6.2 Conclusion

The aim of this thesis is to detect and identify the buried wires with ground

penetrating radars which is a challenging problem because of its nature.

It has been seen that identi�cation of wires using B-scan is nearly impossible;

since the wire re�ections have small amplitudes and the hyperbola signature

highly depends on the orientation of the wire and the polarization of the antenna.

Therefore, C-scan data is utilized for wire detection problem. The continuity

of detections in 3-D, forming a thin and long point cloud is the distinctive

characteristics of wires, di�erent than any other type of clutter.

3-D signal processing algorithms are proposed for the preprocessing of GPR

data. Morphologically improved 2-D LMS �ltering is proposed to decrease the

number of false alarms. Preprocessing algorithms have achieved the area un-

der the ROC curve of 0.9086. Using the 3-D curve reconstruction algorithm,

the features that are useful to describe the thin and long structure of the wire

are extracted. Gaussian RBF Kernel SVM has been utilized for the problem;

however use of linear kernel in SVM classi�er has also resulted in a good perfor-

mance. Therefore, wire and clutter classi�cation problem with described feature

set can be considered as linearly separable.

In the end, the overall algorithm chain has achieved 81% wire detection and
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classi�cation rate while having false alarm rate of 0.067 false alarms per meter

square. It has shown that detection and identi�cation of wires of 2 mm radius,

buried 1 to 14 cm deep into the ground is possible with high probability of

detection and low false alarm rate.

However, the performance of the proposed algorithms highly depends on the

hardware design of the GPR. Detection performance of the wires placed per-

pendicular to the antenna polarization was considerably low; therefore dual po-

larization or circular polarization systems should be developed for buried wire

detection. Gaussian derivative waveform at 2.5 GHz center frequency is used

in the simulations; which occupies -20dB bandwidth starting from 150 MHz

and goes until 7 GHz. Use of smaller center frequencies resulted in decreased

amplitudes. The spatial resolution of the C-scan data was 1 cm in along-track

dimension and 5 cm in cross-track dimension. The temporal resolution was

about 4 picoseconds. Use of worse temporal and spatial resolutions may result

in decreased performance.

6.3 Future Work

There are few future works related with this study. Real measurements from

a high resolution GPR that is capable of utilizing di�erent polarizations (x, y,

dual, circular) should be collected and the performance of the proposed meth-

ods should be investigated with real data. The computational power needs of

algorithms was a concern in the whole thesis. However, curve reconstruction

algorithm for instance, can be improved to match with computational capabili-

ties of real systems. The improvements proposed on 2D LMS requires the whole

C-scan block. It should be improved such that the algorithm can run each time

the vehicle moves. The curve reconstruction algorithm should be improved with

a protection mechanism regarding the collided hyperbolas from di�erent targets.

Moreover, ground bounce peak tracking algorithm and calculation of logarithmic

depth weighing value can be made adaptive. Lastly, multi-class SVM classi�er

can be studied for classi�cation of command wires together with other objects

such as land mines, UXOs and IEDs.
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APPENDIX A

LIST OF C-SCAN SIMULATIONS

The table below presents the C-scan simulations generated to measure the per-

formance of utilized algorithms in Chapter 4 and 5. There are 60 C-scan simula-

tions in total. In the geometry column, the top-down looking geometries of the

3-D environment are presented. In the pre-screener and reconstructed curves

column, the energy maps of the utilized pre-screener outputs are presented in

gray scale; using the method described in Equation 4.3 given in Chapter 4. The

contrast is deliberately adjusted such that the zero energy locations have gray

color rather than black; considering the printing quality. The reconstructed

curves are also presented in these �gures. The blue curves represent the detec-

tions labelled as wire and red curves represent the detections labelled as clutter.

Note that, in case of a collision of wire with a clutter object, the curve is labelled

as wire again.

In the geometries, the thin dark blue lines represent the wires, light blue circles

represent the rocks, dark blue big circles are modelled as landmine and red ob-

jects are plastics, modelled as clutter and wire commanded IED simultaneously.

The detection threshold of prescreener is adjusted di�erently for each simulations

intentionally in order to make all wires detected and in order to minimize the

clutter collisions. These simulations are used for evaluating the performance

of preprocessing and classi�cation algorithms. The results are presented at the

ends of Chapter 4 and 5.
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TableA.1: List of C-scan simulations

Number Geometry Pre-screener output

and Reconstructed curves

01

02

03

04
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

05

06

07

08
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

09

10

11

12
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

13

14

15

16
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

17

18

19

20
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

21

22

23

24
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

25

26

27

28
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

29

30

31

32
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

33

34

35

36
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

37

38

39

40
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

41

42

43

44
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

45

46

47

48
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

49

50

51

52
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

53

54

55

56
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TableA.1: List of C-scan simulations - Continued

Number Geometry Pre-screener output

and Reconstructed curves

57

58

59

60
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APPENDIX B

GPRMAX INPUT FILES

B.1 B-scan input �le

The default simulation environment de�ned in Table 3.1 is generated with gprMax

software, using the following script. The script is evaluated with the stepping

parameter of 31.

#title: Bscan001

#domain: 0.30 0.50 0.15

#dx_dy_dz: 1e-3 1e-3 1e-3

#time_window: 7.5e-9

#num_threads: 8

#material: 6 1e-5 4 1e-2 soilX

#box: 0 0 0 0.30 0.50 0.10 soilX

#cylinder: 0 0.25 0.05 0.30 0.25 0.05 0.002 pec

#waveform: gaussiandot 1.00 2.5e9 src1

#hertzian_dipole: x 0.13 0.10 0.12 src1

#rx: 0.17 0.10 0.12

#src_steps: 0.00 0.01 0.00

#rx_steps: 0.00 0.01 0.00
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B.2 C-scan input �le

The 4th C-scan simulation in the Appendix A is used for presenting the result

of algorithms in Chapter 4 and Chapter 5. Its geometry is presented in Figure

4.1. The data of �rst T/R pair is generated with gprMax software, using the

following script. The script is evaluated with the stepping parameter of 81.

There are 17 scripts in total, evaluated in parallel in the HPC system provided

by Aselsan for obtaining C-scan.

#title: Cscan004

#domain: 1 1 0.20

#dx_dy_dz: 2e-3 2e-3 2e-3

#time_window: 4e-9

#num_threads: 8

#material: 5 1e-4 5 1e-2 rockX

#soil_peplinski: 0.5 0.5 2.0 2.66 0.001 0.25 my_soil

#fractal_box: 0 0 0 1 1 0.15 1.5 1 1 1 50 my_soil soilBox 20

#add_surface_roughness: 0 0 0.15 1 1 0.15 1.5 1 1 0.140 0.150 soilBox 120

#cylinder: 0 0.5 0.1 0.6 0.7 0.1 0.002 pec

#sphere: 0.3 0.2 0.07 0.04 rockX

#sphere: 0.3 0.4 0.07 0.04 rockX

#sphere: 0.9 0.2 0.05 0.05 rockX

#sphere: 0.8 0.9 0.05 0.04 rockX

#sphere: 0.1 0.7 0.03 0.02 rockX

#sphere: 0.9 0.7 0.03 0.03 rockX

#sphere: 0.1 0.9 0.02 0.05 rockX

#cylinder: 0.5 0.2 0.05 0.5 0.2 0.10 0.10 pec

#waveform: gaussiandot 1.00 2.5e9 src1

#hertzian_dipole: x 0.11 0.10 0.18 src1

#rx: 0.09 0.10 0.18

#src_steps: 0.00 0.01 0.00

#rx_steps: 0.00 0.01 0.00
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APPENDIX C

TOOLS USED FOR IMPROVING 2-D LMS

C.1 Connected Component Analysis

Connected component analysis is a powerful tool to identify and separate the

connected points in 3-D space. A target will have a group of connected points

in the C-scan GPR data. The connected component analysis groups the points

that are connected with each other in terms of the neighbourhood de�nition.

The connected component analysis in 3-D is performed using the 6, 18 and

26 neighbourhoods in general. The neighbourhood de�nitions are presented in

Figure C.1. While the point of interest is located at the center of these cubes,

the points inside the de�ned neighbourhood are considered to be connected with

the point of interest. Starting from a random point in 3-D space, the point cloud

of whole connected component can be found. Since, the temporal resolution in

along depth axis is considerably good; the e�ect of di�erent neighbourhoods are

minimal. In the following algorithm, 18 connected neighbourhood is used for

connected component analysis.

Figure C.1: Connectivity options of connected component analysis, 6 connected
neighbourhood (left), 18 connected neighbourhood (middle) and 26 connected
neighbourhood (right).
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C.2 Mathematical Morphologies

Mathematical morphologies are useful tools in image processing. By applying

these morphologies, distortions in the image can be reduced further [60]. These

operations have been applied on binary detections, but they might be applied

on the gray scale 3-D images as well.

C.2.1 Erosion

Erosion operation is one of the mathematical morphologies utilized in Algorithm

8, which erodes the outer border of the detection group and shrinks the volume

of the point data, using the 3-D structuring element se. The structuring element

was a binary cuboid in 3-D. Its lengths in along-track and cross-track dimensions

are selected as 2, and length along depth axis is selected as 40 samples which

are enough to get the secondary signals in the GPR signatures. The erosion

operation is symbolised with a sign shown in Equation C.1, where A is the

original 3-D image and B is the eroded 3-D image.

B← A	 se (C.1)

C.2.2 Dilation

Dilation operation is the other mathematical morphology utilized in Algorithm

8, which dilates the outer border of the detection group. On the contrary to

image erosion, dilation expands the volume of the point data, using the 3-D

structuring element. The dilation operation is symbolised with a sign shown

in Equation C.2, where A is the original 3-D image, se is the 3-D structuring

element and B is the 3-D dilated image.

B← A⊕ se (C.2)
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