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ABSTRACT

CHARACTER SUMS OF QUADRATIC FORMS OVER FINITE FIELDS
AND THE NUMBER OF RATIONAL POINTS FOR SOME CLASSES OF

ARTIN-SCHREIER TYPE CURVES

Coşgun, Ayhan

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

July 2017, 80 pages

Exponential sums of quadratic forms over finite fields have many applications to var-
ious areas such as coding theory and cryptography. As an example to these appli-
cations, there is an organic connection between exponential sums of quadratic forms
and the number of rational points of algebraic curves defined over finite fields. This
connection is central in the application of algebraic geometry to coding theory and
cryptography. In this thesis, different facts and techniques of theory of finite fields
are combined properly in order to improve and generalize some of the results in the
existing literature on evaluation of exponential sums of certain quadratic forms. These
evaluations also correspond to the Walsh-Hadamard transforms of Boolean functions
in characteristic two. As a result of these evaluations, the number of rational points
are computed for some classes of Artin-Schreier type curves over finite fields.

Keywords: Finite Fields, Exponential Sums, Quadratic Forms, Algebraic Curves,
Artin-Schreier Type Curve, Rational Points, Boolean Functions, Gold Type Func-
tions, Kasami-Welch Type Functions, Walsh-Hadamard Transform

v



ÖZ

SONLU CİSİMLER ÜZERİNDE KUADRATİK FORMLARIN KARAKTER
TOPLAMLARI VE BAZI ARTIN-SCHREIER TİPİ EĞRİ SINIFLARININ

RASYONEL NOKTA SAYILARI

Coşgun, Ayhan

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Temmuz 2017 , 80 sayfa

Sonlu cisimler üzerinde kuadratik formların üstel toplamlarının kodlama teorisi ve
kriptografi başta olmak üzere birçok alana uygulaması bulunmaktadır. Örneğin, ku-
adratik formların üstel toplamları ile yine sonlu cisimler üzerinde tanımlı cebirsel
eğrilerin rasyonel nokta sayıları arasında organik bir bağlantı bulunmaktadır. Bu bağ-
lantı, cebirsel geometrinin kodlama teorisi ve kriptografiye uygulanmasında temel
teşkil etmektedir. Bu tezde, sonlu cisimler teorisinin farklı bilgileri ve teknikleri uy-
gun bir şekilde bir araya getirilerek bazı kuadratik formların üstel toplamlarının he-
saplanması üzerine literatürde var olan sonuçlar geliştirilmiş ve genelleştirilmiştir.
Karakteristik iki olduğunda bu hesaplamalar aynı zamanda Boole fonksiyonlarının
Walsh-Hadamard dönüşümlerine de denk gelmektedir. Bu hesaplamaların bir sonucu
olarak, bazı Artin-Schreier tipi eğri sınıflarının rasyonel nokta sayısı bulunmuştur.

Anahtar Kelimeler: Sonlu Cisimler, Üstel Toplamlar, Kuadratik Formlar, Cebirsel Eğ-
riler, Artin-Schreier Tipi Eğriler, Rasyonel Noktalar, Boole Fonksiyonları, Gold Tipi
Fonksiyonlar, Kasami-Welch Tipi Fonksiyonlar, Walsh-Hadamard Dönüşümü
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CHAPTER 1

INTRODUCTION

Exponential sums are one of the powerful tools in both analytic and elementary num-

ber theory for solving a wide range of problems from the theory and applications. The

study of exponential sums gains importance in modern number theory as most of the

significant results have been acquired due to exponential sums and several problems

in theory and applications can be reduced to evaluation of them. Analogously, the

study of exponential sums over finite fields leads to fruitful results in various applica-

tions of finite fields. For instance, the nonlinearity and the Walsh spectrum of Boolean

functions can be expressed by means of exponential sums and similarly the study of

bentness of Boolean functions can be easily linked with the evaluation of exponential

sums (see [35]). The special homomorphisms of finite fields called characters play a

basic role in setting exponential sums for finite fields.

Algebraic curves over finite fields is an area where number theory and algebraic ge-

ometry meet and this area have attracted the interests of researchers of number theory

and algebraic geometry since the seminal work of Hasse and Weil in the 1930s and

1940s. But after the papers of Goppa [24, 25, 26] in the period 1977-1982, where

wonderful applications of algebraic curves over finite fields were explored, this area

attracted new researchers such as coding theorists and algorithmically inclined math-

ematicians. Algebraic curves over finite fields have many applications to various

areas such as coding theory, finite geometry, cryptography and low discrepancy point

sets (see, for example [36, 37, 42, 43]). The number of rational points of algebraic

curves is important for these applications. Indeed, the major reason why Goppa’s

work drew the attentions of coding theorsits is the applications of curves with many

rational points to coding theory. There is a close connection between character sums

and the number of points of curves defined over finite fields. Thus, evaluating the
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related character sums is crucial and central in both theory of exponential sums and

theory of algebraic curves over finite fields.

Before giving the outline of the thesis we need some mathematical concepts. We

present some definitions and preliminaries in the next chapter and then give the out-

line of the thesis at the end of the chapter.
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CHAPTER 2

DEFINITIONS AND PRELIMINARIES

Let p be a prime number. For positive integers e and m, let q = pe and let Fqm denote

the finite field with qm elements. For any integer n dividing m, the relative trace map

TrFqm/Fqn from Fqm to Fqn is defined by

TrFqm/Fqn : Fqm −→ Fqn

x 7−→ x+ xq
n

+ xq
2n

+ · · ·+ xq
m−n

.
(2.1)

In particular, the trace map TrFqm/Fp from Fqm to the prime subfield Fp is called the

absolute trace and we will denote it simply by TrFqm . Let K = Fqm and F = Fqn .

Then the trace map TrK/F satisfies the following properties (see [34, Theorems 2.23,

2.25 and 2.26]):

(i) TrK/F (x+ y) = TrK/F (x) + TrK/F (y) for all x, y ∈ K;

(ii) TrK/F (cx) = cTrK/F (x) for all c ∈ F and x ∈ K;

(iii) TrK/F is a linear transformation from K onto F , where both K and F are

viewed as vector spaces over F ;

(iv) TrK/F (a) = m
n
a for all a ∈ F ;

(v) TrK/F
(
xq

n)
= TrK/F (x) for all x ∈ K;

(vi) for any x ∈ K, we have TrK/F (x) = 0 if and only if x = βq
n − β for some

β ∈ K;

(vii) if E is an intermediate field between K and F , then

TrK/F (x) = TrE/F
(
TrK/E (x)

)
.
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The canonical additive character χ1 of Fqm is defined by

χ1 (x) = (ζp)
TrFqm (x)

where ζp = e
2πi
p is the p − th root of unity. Any additive character χc, for c ∈ Fqm ,

of Fqm can be written in terms of χ1 as χc (x) = χ1 (cx). By the properties of trace

function we have also χ1 (x+ y) = χ1 (x)χ1 (y) and χ1

(
xp

i
)

= χ1 (x) for all

x, y ∈ Fqm and i ∈ Z. One of the useful properties of χ1 is the following (see [34,

Theorems 5.4] for proof). Let θ ∈ Fqm , then

∑
x∈Fqm

χ1 (θx) =

 qm if θ = 0,

0 if θ 6= 0.

Let Ψ1 be the canonical additive character of Fqn for any n dividing m. Then by trace

properties, for any x ∈ Fqn and θ ∈ Fqm we have χ1 (θx) = Ψ1

(
xTrFqm/Fqn (θ)

)
and

we obtain the following result.

Lemma 1. Let χ1 be the canonical additive character of Fqm , θ ∈ Fqm and n|m.

Then

∑
x∈Fqn

χ1 (θx) =

 qn if TrFqm/Fqn (θ) = 0,

0 if TrFqm/Fqn (θ) 6= 0.

2.1 Artin-Schreier Curves

In this thesis, by an Artin-Schreier curve X we mean a smooth, geometrically irre-

ducible projective curve over a finite field Fqm whose affine equation is given by

X : yq
n − y = F (x) (2.2)

for some integer n and F (x) ∈ Fqm [x]. Artin-Schreier curves were studied by various

authors in literature (see for instance [44, 31, 27, 12, 13, 14, 22, 39, 1] ). There is

a close connection between exponential sums and the number of points of curves

defined over finite fields. Let N denote the number of solutions of the equation

yq
n − y = F (x)

in Fqm × Fqm (i.e. the number of affine points of X). Let χ1 be the canonical additive

character of Fqm and recall that χ1(x) = χ1(x
qn) for all integers n and x ∈ Fqm .

4



Define ϕ(x, y) = F (x)− yqn + y. Thus,

N = |{(x, y) ∈ Fqm × Fqm : ϕ(x, y) = 0}| .

Then we have

∑
θ∈Fqm

χ1 (θϕ(x, y)) =

 qm if ϕ(x, y) = 0,

0 if ϕ(x, y) 6= 0.

Hence we get
∑

x,y∈Fqm

∑
θ∈Fqm

χ1 (θϕ(x, y)) = Nqm. By changing the summation order

we get

qmN =
∑
θ∈Fqm

∑
x,y∈Fqm

χ1 (θϕ(x, y))

=
∑
θ∈Fqm

∑
x∈Fqm

χ1 (θF (x))
∑
y∈Fqm

χ1

(
θy − θyqn

)
.

(2.3)

The inner sum is∑
y∈Fqm

χ1

(
θy − θyqn

)
=
∑
y∈Fqm

χ1

(
(θy)q

n
)
χ1

(
−θyqn

)
=
∑
y∈Fqm

χ1

(
(θq

n − θ)yqn
)

=
∑
y∈Fqm

χ1

(
(θq

n − θ)y
)

=

 qm if θ ∈ Fqm ∩ Fqn ,

0 if θ /∈ Fqm ∩ Fqn .

Then by simplifying equation (2.3) we get

N =
∑

θ∈Fqm∩Fqn

∑
x∈Fqm

χ1 (θF (x)) . (2.4)

Therefore, we will deal with the character sums of the form (2.4) in this thesis in

order to find the number of rational points of some Artin-Schreier type curves.

Let N (X) denote the number of Fqm-rational points of the curve X and g (X) denote

the genus of it. The Hasse–Weil inequality states that:

qm + 1− 2g (X)
√
qm ≤ N(X) ≤ qm + 1 + 2g (X)

√
qm.

The curve X is said to be maximal over Fqm if the upper bound is attained and minimal

over Fqm if the lower bound is attained. Maximal curves provide the best algebraic

geometry codes.

5



2.2 Quadratic Forms

In this section, we recall some basic facts about quadratic forms (see [34, Chapter 6]

for example). Quadratic forms are functions of algebraic degree 2.

Definition 1. For an integer m ≥ 2, a map Q : Fqm 7−→ Fq is called a quadratic

form of dimension m over Fq if

(i) Q(ax) = a2Q(x) for all a ∈ Fq and x ∈ Fqm and

(ii) the corresponding mapping BQ : Fqm × Fqm 7−→ Fq given by BQ(x, y) =

Q(x+ y)−Q(x)−Q(y) is symmetric and bilinear.

We define the radical of Q to be the radical of the bilinear form BQ. More precisely,

rad (Q) = {y ∈ K|BQ(x, y) = 0 for all x ∈ Fqm} .

Then, we will denote the dimension of the radical (dimension as a vector space over

Fq) by r (Q) = dim rad (Q). There is another invariant associated to a quadratic form

related to character sum of it. If Q : Fpm 7−→ Fp, then we have∑
x∈Fpm

(ζp)
Q(x) = Λ(Q)p

1
2
(m+r(Q)) (2.5)

where Λ(Q)is uniquely determined according to type of the form and described as

follows (for further details see [34, 28, 18, 15, 5] ):

• if p = 2, then Λ(Q) takes values in the set {−1, 0,+1};

• if p is odd, then Λ(Q) takes values in the set
{
− (ςp)

m−rad(Q) ,+ (ςp)
m−rad(Q)

}
;

where ςp = i
1
4
(p−1)2 is a complex number depending on p. We will call Λ(Q) as the

invariant of Q throughout the thesis. Hence, evaluating character sum of a quadratic

form Q is the same with determining r(Q) and Λ(Q).

There are a few ways to represent a quadratic form . One of them is the single variable

approach (or polynomial representation). Any quadratic form Q : Fpm 7−→ Fp can

be represented as

Q(x) = TrFpm

bm2 c∑
i=0

aix
pi+1

 (2.6)

6



where ai ∈ Fpm . If m is odd, the representation is unique, otherwise am/2 is unique

only modulo Fpm/Fp (see [19]). Let c = max
{

0 ≤ i ≤ bm
2
c : ai 6= 0

}
in the repre-

sentation (2.6). The following is an another well-known fact and employed in many

papers:

rad (Q) = {x ∈ Fpm|R∗(x) = 0}

and so

dim rad (Q) = logp
[
deg

(
gcd

(
R∗(x), xp

m − x
))]

where

R∗(x) =
c∑
i=0

ai

(
xp

c+i

+ xp
c−i
)

is the radical polynomial of Q.

In literature, the character sums of the form∑
x∈Fpm

χ1 (F (x)) (2.7)

where F (x) ∈ Fpm [x], are called Weil sums. The sum of F (x) = γxp
a+1 + αx ∈

Fpm [x] is evaluated by Carlitz with a = 1 for p = 2 in [3] and for odd p in [4].

Then the evaluation for general a is carried out by Coulter in [11, 9, 10]. In [28], Hou

evaluated the sum for a general F (x) =
c∑
i=0

γix
pai+1+αx ∈ Fpm [x] explicitly for p =

2 under some restrictions on ai’s. [18] is the extension of [28] to odd characteristics.

Fitzgerald in [21] evaluated the sum for the binomial F (x) = x2
b+1 +x2

a+1 ∈ F2m [x]

completely without any restrictions on m, a, and b.

2.3 Linearized Polynomials

A polynomial of the form

L(x) =
c∑
i=0

aix
qi ∈ Fqm [x]

is called a linearized polynomial over Fqm . Its q-associate is defined as

l(t) =
c∑
i=0

ait
i ∈ Fqm [t]

7



and L(x) is called the inverse q-associate of l(t).

Let A(x), B(x) ∈ Fqm [x] be linearized polynomials and a(t), b(t) ∈ Fqm [t] be their

q-associates. Then we define the right division “|r" in Fqm [x] by

A(x)|rB(x) if and only if B(x) = C(x) ◦ A(x)

for some linearized polynomial C(x) ∈ Fqm [x]

When, m = 1, in particular, we have

• q-associate of A(x) ◦ B(x) is a(t)b(t) and inverse q-associate of a(t)b(t) is

A(x) ◦B(x),

• A(x)|rB(x) if and only if A(x) divides B(x) in ordinary sense.

The following is a well-known fact about linearized polynomials and it provides con-

venience in the proofs of Lemma 7, Lemma 9 and Lemma 10 in Chapter 4. We

give a proof here for completeness and refer to [34] for further details on linearized

polynomials.

Proposition 1. Suppose L1(x), L2(x) ∈ Fq[x] are two linearized polynomials over

Fq, and their q-associates are l1(t), l2(t) ∈ Fq[t] respectively. Then

gcd (L1(x), L2(x)) = the inverse q-associate of gcd (l1(t), l2(t))

where gcd (L1(x), L2(x)) is the greatest common divisor of two polynomials L1(x)

and L2(x) for Euclidean division.

Proof. Let gcd (L1(x), L2(x)) = A(x), gcd (l1(t), l2(t)) = b(t) and B(x) be the

inverse q-associate of b(t). Then we will show that A(x) = B(x).

• B(x) divides A(x):

Let l1(t) = c1(t)b(t) and l2(t) = c2(t)b(t) for some c1(t) and c2(t) in Fq[t]. Then

their inverse q-associates are L1(x) = C1(x) ◦ B(x) and L2(x) = C2(x) ◦ B(x)

8



where C1(x), C2(x) are inverse q-associates of c1(t) and c2(t), respectively. So

B(x)| gcd (L1(x), L2(x)) = A(x).

• A(x) divides B(x):

As gcd (L1(x), L2(x)) = A(x), we have L1(x) = D1(x)◦A(x) and L2(x) = D2(x)◦
A(x) for some linearized polynomials D1(x), D2(x) ∈ Fq[x]. Then their q-associates

are l1(t) = d1(t)a(t) and l2(t) = d2(t)a(t) where d1(t), d2(t) are q-associates of

D1(x) and D2(x), respectively. So a(t)| gcd (l1(t), l2(t)) = b(t). That is, A(x)|B(x).

Now we are ready to give the outline of the thesis.

2.4 Outline of the Thesis

The thesis consists of five chapters including this chapter and the previous chapter

Introduction.

In this thesis, we consider the Artin-Schreier curve over a finite field Fqm whose affine

equation is of the form

X : yq
n − y = γ1x

qb+1 + γ2x
qa+1 + αx+ β (2.8)

for some integer n and γ1, γ2, α, β ∈ Fqm .

In Chapter 3, we consider the case where γ1 = 0 and α = 0. Then, using the results

of Coulter in [9, 11] we compute the number of rational points of the curve

X : yq
n − y = γxq

a+1 + β. (2.9)

in all characteristics. At the end of Chapter 3, we give new examples of maximal and

minimal curves that are contained in the class of the curve (2.9).
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In Chapter 4, we consider a binomial quadratic term in the curve (2.8) in even char-

acteristic. Firstly, making use of the results in [21, 28] we evaluate the sum∑
x∈F2m

χ1

(
x2

b+1 + x2
a+1 + αx

)
which corresponds to the Walsh transform (see Definition 3 in Chapter 4 ) of the

Gold type Boolean function f(x) = TrF2m

(
x2

b+1 + x2
a+1
)

at the point α ∈ Fqm .

Due to this evaluation we also correct a recent result in [41]. Then, we generalize

these results to the evaluation of the sum∑
x∈F2m

χ1

(
γx2

b+1 + γx2
a+1 + αx

)
(2.10)

where the coefficient γ is taken arbitrarily from F2m ∩ F2b−a and without any re-

strictions on m, a, b and α. Finally, at the end of Chapter 4, using the sum (2.10)

we compute the number of rational points of the curve (2.8) for the case q = 2,

gcd (m,n) = 1 and γ1 = γ2 = γ ∈ F2m ∩ F2b−a . More precisely, we consider the

curve

X : y2
n

+ y = γx2
b+1 + γx2

a+1 + αx+ β (2.11)

with γ ∈ F2m ∩ F2b−a in Chapter 4. Furthermore, we give examples of maximal and

minimal curves contained in the class of the curve (2.11).

We finish the thesis with Chapter 5 by giving some concluding remarks.
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CHAPTER 3

FURTHER RESULTS ON RATIONAL POINTS OF THE

CURVE yq
n − y = γxq

a+1 + β OVER Fqm

3.1 Introduction

In this chapter we consider the class of Artin-Schreier type algebraic curves which

are of the form (2.9). The number of rational points of these curves is determined in

many cases in [40] (see also [12, 44]) and we improve these results by determining

the number of rational points of these curves in some of the remaining cases for odd

characteristic. Furthermore, we obtain analogous results for even characteristic. The

results in this chapter are based on the publication [6].

Let p be a prime number. For positive integers e and m, let q = pe and let Fqm denote

the finite field with qm elements.

Let n and a be positive integers and β, γ ∈ Fqm with γ 6= 0. We consider the Artin-

Schreier type curve X of the form

X : yq
n − y = γxq

a+1 + β. (3.1)

Using [42, Proposition 6.4.1] we note that the genus of the curve X in (3.1) is

g(X) =
(qn − 1)qa

2
.

Let N denote the number of solutions of the equation

yq
n − y = γxq

a+1 + β

in Fqm × Fqm . For the number N(X) of Fqm-rational points of X we have

N(X) = 1 +N
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since there is only one rational point at infinity. Hence determining N(X) is the same

as determining N . This number is determined exactly in many cases in [40] for odd

q and we have included these results in the Appendix A for the completeness of the

chapter.

There is a close connection of the number of Fqm-rational points of X to the weight

distribution of some linear codes (see, for example [42] Section 9.2) and to cross-

correlation of some sequences used in communication (see, for example [30]). More-

over, there are explicit maximal and minimal curves in the form of X (see Section

3.5 below and the references therein). Although the form of X is quite simple, it

seems that finding its exact number of Fqm-rational points in some remaining cases is

difficult (see the experimental results in the last part of Section 3.3 below).

Throughout the chapter we choose and fix q,m, n, a, γ and β as above. The integer n

does not necessarily divide m. Besides this, our first observation shows that nothing

changes in terms of the number of rational points of X if we choose the integer n as a

divisor of m.

Lemma 2. Put δ = gcd(m,n) and let X1 and X2 be the Artin-Schreier type curves

given by

X1 : yq
n − y = γxq

a+1 + β,

X2 : yq
δ − y = γxq

a+1 + β.

Then, N(X1) = N(X2).

Proof. The result follows easily by equation (2.4) as Fqm ∩ Fqn = Fqgcd(m,n) = Fqδ .

Therefore, we will assume n | m throughout the chapter. Moreover, we define non-

12



negative integers s, t and positive integers r,m1, a1 as follows:

m = 2srm1,

a = 2tra1,

where gcd(m1, a1) = gcd(2, rm1a1) = 1. Furthermore let u be the nonnegative

integer and ρ, n1,m2 be the positive integers so that

n = 2uρn1 and m1 = n1m2

where gcd(2, ρn1) = 1, ρ|r and n1|m1. Observe that if we fix m, a and n, then all

of the parameters introduced here are uniquely determined. Also note that u ≤ s as

n|m. Finally let

A = TrFqm/Fqn (β).

For the sake of simplicity we list all the notations used in this chapter:

• m, n and a are positive integers such that n|m.

• m = 2srm1 and a = 2tra1 such that gcd(2, rm1a1) = 1 and gcd(m1, a1) = 1.

• n = 2uρn1 such that gcd(2, ρn1) = 1, ρ|r and n1|m1 with m1 = n1m2.

• A = TrFqm/Fqn (β).

• q = pe where p is a prime number.

• q1 = q2
tr.

• q2 = q2
tρ.

• q3 = q
n

2u−t = q2
tρn1 .

• k = 2t+1r.

• v = 2s−(t+1).

• B1 = gcd (2s−um2, q2 + 1).

• ω is a generator of F∗qm = Fqm \ {0}.

• ω′ = ω
qm−1
qn−1 generates F∗qn = Fqn \ {0}.

13



• ω′′ =
(
ω
′) qn−1

q3−1 generates F∗q3 = Fq3 \ {0}.

• S =
{

0, 1, 2, . . . , q
n−1
q3−1 − 1

}
.

• S0 =

{
i ∈ S :

((
ω
′)i
γ
) qm−1

q1+1
= (−1)v

}
.

• Ai = TrFqn/Fq3

((
ω
′)i
A
)

.

• M0 = |{i ∈ S0 : Ai = 0}|.

• M0 = |{i ∈ S \ S0 : Ai = 0}|.

• h is the uniquely determined integer with 0 ≤ h < qm − 1 such that γ = ωh.

We note that the finite fields Fqm , Fqn , Fq1 , Fq2 and Fq3 form the lattice in Figure 3.1.

Fqm

Fqn Fq1

Fq3

Fq2

Figure 3.1: Extensions of Fq2 .

For the finite fields having odd characteristic, N is determined explicitly in the fol-

lowing cases in [40]:

• for s ≤ t,

• for s ≥ t+ 1 and u ≤ t,

• for t+ 1 ≤ u ≤ s and A = 0.
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It remains to consider the case t+1 ≤ u ≤ s andA 6= 0. We have completed this case

in this chapter except the subcase that u ≥ t + 2 with h ≡ 0 mod
(
q1+1
q2+1

B1

)
. For

this special subcase, we present some experimental results in the last part of Section

3.3 below. Moreover, we obtain analogous results for even q for all cases except the

subcase that u ≥ t+ 2 with h ≡ 0 mod
(
q1+1
q2+1

B1

)
.

Here we note that in [40], the results were obtained by using some facts on quadratic

forms and some properties of function fields. In this chapter, apart from the tech-

niques in [40], we use also some explicit evaluations of Weil sums as in [9, 10, 11].

In particular, we use explicit evaluations of Weil sums for equation (3.5) in Section

3.3 in the proof of Theorem 1. We determined it explicitly in some cases using a

specific subfield. It seems difficult to evaluate the corresponding exponential sum in

(3.5) in all cases. For the subcase u ≥ t + 2 with h ≡ 0 mod
(
q1+1
q2+1

B1

)
, it seems

that new techniques are required to evaluate the corresponding Weil sums.

This chapter is organized as follows. We state our result for odd q in the rest of this

section and then we compare our result with some known results. In Section 3.2

we present some preliminaries. Then we give the proof of our main result in odd

characteristic and present some computational results in Section 3.3. In Section 3.4

we give our analogous results for even q and in Section 3.5 we give examples of

maximal and minimal curves in the class of the curves considered in this chapter. In

Appendix A we recall the number of rational points of the special curves obtained in

[40].

Now we are ready to give our main result for the finite fields of odd characteristic.

Theorem 1. Assume that q is odd, t+ 1 ≤ u ≤ s and A 6= 0. Let l be the integer with

0 ≤ l < qn − 1 such that −Aqn−q
n
2 =

(
ω
′)l

as ω
′

is a generator of F∗qn . Moreover,

put l
′
=

l

q
n
2 − 1

and recall that B1 = gcd (2s−um2, q2 + 1).

• Case s=t+1 (=u):

If h 6≡ q1+1
2

mod
(
q1+1
q2+1

B1

)
, then

N = qm + q
m
2 .

15



If h ≡ q1+1
2

mod
(
q1+1
q2+1

B1

)
, then

N =



qm + q
m
2

[
q

(k+n)
2 + q

n
2 + 1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′m2

B1

≡ B2 mod
(
q2+1
B1

)
,

qm + q
m
2

[
1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′m2

B1

6≡ B2 mod
(
q2+1
B1

)
,

where B2 =
q1+1
2
− h

q1+1
q2+1

B1

.

• Case s ≥ t+2:

If h 6≡ 0 mod
(
q1+1
q2+1

B1

)
, then

N = qm − q
m
2 .

If h ≡ 0 mod
(
q1+1
q2+1

B1

)
and u = t+ 1, then

N =



qm − qm2
[
q

(k+n)
2 + q

n
2 + 1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′ 2s−um2

B1

≡ B2 mod
(
q2+1
B1

)
,

qm − qm2
[
1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′ 2s−um2

B1

6≡ B2 mod
(
q2+1
B1

)
,

where B2 =
−h

q1+1
q2+1

B1

.

In the following remark, we compare our results with the results in [12] and [44].

Remark 1. The curve

X : yq
n − y = γxq

a+1 + β

is considered in [12] and [44] for some cases. We compare our main result and the

main result of [9] with corresponding results given in [12, 44] below.
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• In [12], N is determined for the case where n|a and β = 0. This is a special

subcase of Theorem 13 and Theorem 14 given in the Appendix A.

• Using the results in [44], the case u + 1 ≤ s ≤ t and the case u ≤ t with

s ≥ t+ 1 can be obtained. The first case corresponds to a subcase of Theorem

13 and the second case coincides with Theorem 14 given in the Appendix A.

• The case t + 1 ≤ u ≤ s is not considered in [12, 44]. Therefore, Theorem 15

given in the Appendix A (the main theorem of [40]) and Theorem 1 (the main

result of this chapter) have no intersection with these two works.

3.2 Preliminaries

In this section we give some preliminaries that we use in Section 3.3. Throughout this

section we assume that q is odd.

Definition 2. We define the function S: F∗qn −→
{

(−1)v+1q
(m+k)

2 ,−(−1)v+1q
m
2

}
as

follows:

S(θ) =

 (−1)v+1q
(m+k)

2 if (θγ)
qm−1
q1+1 = (−1)v ,

−(−1)v+1q
m
2 if (θγ)

qm−1
q1+1 6= (−1)v .

The following lemma is a formulation of N in terms of Weil sums by rearranging

the results found in [9]. So, it converts the problem of finding the number of rational

points to the problem of evaluating certain exponential sums.

Lemma 3. N = qm +
∑
θ∈F∗qn

Ψ1 (θA)S (θ) where Ψ1 is the canonical additive char-

acter of Fqn .

Proof. We have

N =
∑
θ∈Fqn

∑
x∈Fqm

χ1

(
θ
(
γxq

a+1 + β
))

(3.2)

by equation(2.4) where χ1 is the canonical additive character of Fqm . As β ∈ Fqm is

a fixed element, equation (3.2) yields

N = qm +
∑
θ∈F∗qn

χ1 (βθ)
∑
x∈Fqm

χ1

(
θγxq

a+1
)
. (3.3)
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For the case t+ 1 ≤ u ≤ s, we have qa = pea, qm = pem, and

d = gcd (ea, em) = e gcd (a,m) = e2tr = e
k

2

which gives

em

d
=
e2srm1

e2tr
= 2s−tm1

is even. Hence by Theorem 2 of [9] we have

∑
x∈Fqm

χ1

(
θγxq

a+1
)

= S(θ) =



q
(m+k)

2 if (θγ)
qm−1
q1+1 = −1 with s = t+ 1,

−qm2 if (θγ)
qm−1
q1+1 6= −1 with s = t+ 1,

−q
(m+k)

2 if (θγ)
qm−1
q1+1 = 1 with s ≥ t+ 2,

q
m
2 if (θγ)

qm−1
q1+1 6= 1 with s ≥ t+ 2.

Finally noting that χ1(θβ) = Ψ1(θA) we complete the proof.

Remark 2. Note that the function S(θ) in Lemma 3 depends on gcd (a,m) = 2tr

rather than the parameter a1. Thus, the right hand side of equation (3.3) does not

depend on a1. That is, if all of the other parameters are fixed, the value of N does not

change when a1 is changed. But note that a1 directly affects the genus of the curve

given in (3.1).

The exponential sum in Lemma 3 will be divided into two pieces (as in equation (3.5)

below) due to two different conditions in the definition of the function S. The fol-

lowing lemma shows that the elements of F∗q3 are independent of these two conditions

and so the function S is constant on F∗q3 .

Lemma 4. Let t+ 1 ≤ u ≤ s. Then q3 − 1 divides
qm − 1

q1 + 1
.

Proof. The exponent qm−1
q1+1

in Lemma 3 has the following factorization for the case

t+ 1 ≤ u ≤ s :

qm − 1

q1 + 1
=

q2
srm1 − 1

q2tr + 1

=

(
q2

s−1rm1 + 1
)(

q2
s−2rm1 + 1

)
· · ·
(
q2

trm1 + 1
) (
q2

trm1 − 1
)

(q2tr + 1)
.

Since m1 is odd,
(
q2

trm1 + 1
)

is divisible by
(
q2

tr + 1
)
. As

(
q2

trm1 − 1
)

is divisible

by
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(
q

n
2u−t − 1

)
=
(
q2

tρn1 − 1
)

= q3 − 1,

qm−1
q1+1

is also divisible by q3 − 1.

This motivates us to work in the subfield Fq3 ⊂ Fqn instead of Fqn itself. Note that

for all θ ∈ F∗qn we can write θ =
(
ω
′′)j (

ω
′)i for some i ∈

{
0, 1, 2, . . . , q

n−1
q3−1 − 1

}
and j ∈ {0, 1, 2, . . . , q3 − 2} since we have the set equality

F∗qn =

qn−1
q3−1

−1⊔
i=0

q3−2⊔
j=0

{(
ω
′′
)j (

ω
′
)i}

. (3.4)

3.3 Proof of Theorem 1

Now we will give a detailed proof of Theorem 1. Thus throughout this section we

assume that q is odd.

Firstly, we will obtain exponential sums over F∗q3 where the index of these sums runs

through the whole subgroup F∗q3 ⊂ F∗qn . Then, we will make use of the set equality

(3.4) in order to formulate the number N in terms of some cardinalities.

We have S =
{

0, 1, 2, . . . , q
n−1
q3−1 − 1

}
. Then for any θ =

(
ω
′′)j (

ω
′)i ∈ F∗qn with

i ∈ S and j ∈ {0, 1, 2, . . . , q3 − 2} we have

(θγ)
qm−1
q1+1 =

((
ω
′
)i
γ

) qm−1
q1+1

since ω′′ ∈ F∗q3 and q3 − 1 divides qm−1
q1+1

. So let

S0 =

i ∈ S :

((
ω
′
)i
γ

) qm−1
q1+1

= (−1)v

 .

Furthermore, define

Ai = TrFqn/Fq3

((
ω
′
)i
A

)
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for all i ∈ S. Then by a simple observation we have Ψ1(θA) = τ1

((
ω
′′)j

Ai

)
where

τ1 is the canonical additive character of Fq3 .

Therefore, by Lemma 3 and set equality (3.4), equation (3.3) becomes

N = qm + (−1)v+1q
m
2

 q
k
2

∑
θ∈F∗qn

(θγ)
qm−1
q1+1 =(−1)v

Ψ1 (θA) −
∑
θ∈F∗qn

(θγ)
qm−1
q1+1 6=(−1)v

Ψ1 (θA)



= qm + (−1)v+1q
m
2

q k2 ∑
i∈S0

q3−2∑
j=0

τ1

((
ω
′′
)j
Ai

)
−
∑
i∈S\S0

q3−2∑
j=0

τ1

((
ω
′′
)j
Ai

) .
(3.5)

Now we define the cardinalities :

M0 = |{i ∈ S0 : Ai = 0}| and M0 = |{i ∈ S \ S0 : Ai = 0}|.

As ω′′ is a generator of the multiplicative group F∗q3 , we have

∑
i∈S0

q3−2∑
j=0

τ1

((
ω
′′
)j
Ai

)
= M0(q3 − 1) + (|S0| −M0) (−1)

= q3M0 − |S0| .

(3.6)

Similarly,

∑
i∈S\S0

q3−2∑
j=0

τ1

((
ω
′′
)j
Ai

)
= M0(q3 − 1) +

(
|S| − |S0| −M0

)
(−1)

= q3M0 + |S0| −
qn − 1

q3 − 1
.

(3.7)

Finally, putting (3.6) and (3.7) into (3.5) we get the following proposition.

Proposition 2. We have

N = qm + (−1)v+1q
m
2

[
q
k
2 (q3M0 − |S0|)−

(
q3M0 + |S0| −

(
qn − 1

q3 − 1

))]
. (3.8)
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In order to find N we need to compute the numbers M0, M0 and |S0| when v is even

and when v is odd separately. Proposition 3 below shows that the sum of M0 and M0

is fixed, and it is enough to find M0 only.

Proposition 3. We have M0 +M0 =
qn − q3
q3(q3 − 1)

.

Proof. For all θ ∈ F∗qn we have

θ =
(
ω
′′
)j (

ω
′
)i

for some i ∈ S and j ∈ {0, 1, 2, . . . , q3 − 2}. Then, for a fixed

j ∈ {0, 1, 2, . . . , q3 − 2}

we have

TrFqn/Fq3 (θA) =
(
ω
′′
)j

TrFqn/Fq3

((
ω
′
)i
A

)
=
(
ω
′′
)j
Ai = 0

if and only if Ai = 0. Therefore, there are q3−1 choices for j. This gives the equality∣∣{θA ∈ F∗qn : TrFqn/Fq3 (θA) = 0
}∣∣ = (q3 − 1) |{i ∈ S : Ai = 0}|

= (q3 − 1)
(
M0 +M0

)
.

As A 6= 0, θA runs through F∗qn . Then,∣∣{θA ∈ F∗qn : TrFqn/Fq3 (θA) = 0
}∣∣ =

∣∣{z ∈ Fqn : TrFqn/Fq3 (z) = 0
}∣∣− 1.

Since the polynomial TrFqn/Fq3 (z) = z + zq3 + z(q32) + · · · + z

(
qn

q3

)
splits in Fqn , it

has qn

q3
distinct roots in Fqn (see [34, Theorem 2.25]). Thus,∣∣{z ∈ Fqn : TrFqn/Fq3 (z) = 0

}∣∣− 1 =
qn

q3
− 1.

Finally, we get (q3 − 1)
(
M0 +M0

)
= qn

q3
− 1 which completes the proof.

The following proposition is another way of expressing M0 in terms of the number of

the roots of a polynomial in F∗qn . If the cardinality in the following proposition can be

evaluated, then the subcase which is not addressed in this chapter will be solved.
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Proposition 4. We have M0 =

∣∣∣∣{z ∈ F∗qn : g(z) =
(
(zq3 − z) γ

A

) qm−1
q1+1 − 1 = 0

}∣∣∣∣
(q3 − 1)q3

.

Proof. Firstly,

M0 =

∣∣∣∣{i ∈ S0 : TrFqn/Fq3

((
ω
′
)i
A

)
= 0

}∣∣∣∣
=

∣∣∣∣∣∣
i ∈ S :

((
ω
′
)i
γ

) qm−1
q1+1

= 1 and TrFqn/Fq3

((
ω
′
)i
A

)
= 0


∣∣∣∣∣∣ .

As θ =
(
ω
′′)j (

ω
′)i for some i ∈ S and j ∈ {0, 1, 2, . . . , q3 − 2} for all θ ∈ F∗qn , we

have

TrFqn/Fq3 (θA) = TrFqn/Fq3

((
ω
′′
)j (

ω
′
)i
A

)
= 0

if and only if

TrFqn/Fq3

((
ω
′
)i
A

)
= 0.

Also we have (θγ)
qm−1
q1+1 =

((
ω
′)i
γ
) qm−1

q1+1
. Thus, the integer j does not affect the set

conditions above and there are q3 − 1 free choices for j. That is,∣∣∣∣∣
{
i ∈ S :

((
ω
′)i
γ
) qm−1

q1+1
= 1 and TrFqn/Fq3

((
ω
′)i
A
)

= 0

}∣∣∣∣∣
=

1

q3 − 1

∣∣∣∣{θ ∈ F∗qn : (θγ)
qm−1
q1+1 = 1 and TrFqn/Fq3 (θA) = 0

}∣∣∣∣ .
Moreover, we know that TrFqn/Fq3 (θA) = 0 if and only if θA = σq3 − σ for some

σ ∈ Fqn (see [34, Theorem 2.25]). This yields,

1

q3 − 1

∣∣∣∣{θ ∈ F∗qn : (θγ)
qm−1
q1+1 = 1 and TrFqn/Fq3 (θA) = 0

}∣∣∣∣
=

1

q3 − 1

∣∣∣∣{σq3−σ
A

: σ ∈ Fqn and
(
σq3−σ
A

γ
) qm−1
q1+1 = 1

}∣∣∣∣
=

1

q3 − 1

∣∣∣∣{σq3 − σ : σ ∈ Fqn and
(
σq3−σ
A

γ
) qm−1
q1+1 = 1

}∣∣∣∣ .
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The polynomial p(x) = xq3 − x is constant on each coset of the quotient group

(Fqn/Fq3 ,+) and this means we have q3 repeated values for σq3 − σ. In other words

we have

1

q3 − 1

∣∣∣∣{σq3 − σ : σ ∈ Fqn and
(
σq3−σ
A

γ
) qm−1
q1+1 = 1

}∣∣∣∣
=

1

(q3 − 1)q3

∣∣∣∣{z ∈ Fqn : g(z) =
[
(zq3 − z) γ

A

] qm−1
q1+1 − 1 = 0

}∣∣∣∣
=

1

(q3 − 1)q3

∣∣∣∣{z ∈ F∗qn : g(z) =
[
(zq3 − z) γ

A

] qm−1
q1+1 − 1 = 0

}∣∣∣∣ .

We continue our proof by considering our two cases.

Case s=t+1 (=u):

As u = t+ 1 in this case, u− t = 1 and then q3 = q
n
2 . So,

qn − 1

q3 − 1
=
qn − 1

q
n
2 − 1

= q
n
2 + 1.

Before finding |S0|, we will firstly find the integers i ∈ S such that Ai = 0 in order to

describe M0 and M0. Note that by Proposition 3 we get M0 +M0 = 1. Now we will

find the conditions when M0 = 1 and when M0 = 1.

We have

TrFqn/F
q
n
2

((
ω
′
)i
A

)
= Ai =

(
ω
′
)i
A+

((
ω
′
)i
A

)q n2
= 0

if and only if

(
ω
′)i(q n2 −1)

= −Aqn−q
n
2 =

(
ω
′)l

or equivalently

l − i
(
q
n
2 − 1

)
≡ 0 mod (qn − 1) . (3.9)

As we have
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i ∈ S =
{

0, 1, 2, . . . , q
n−1
q3−1 − 1

}
=
{

0, 1, 2, . . . , q
n
2

}
and l ∈ {0, 1, 2, . . . , qn − 2}, the inequality

1− qn < l − i
(
q
n
2 − 1

)
< qn − 1

holds for all i ∈ S. That is, (3.9) is equivalent to l − i
(
q
n
2 − 1

)
= 0. Thus, the only

integer i such that Ai = 0 is i =
l

q
n
2 − 1

= l
′ which lies in the set S.

Then we get

M0 =

 1 if l′ ∈ S0

0 if l′ ∈ S \ S0

and M0 =

 0 if l′ ∈ S0

1 if l′ ∈ S \ S0.

Now we will describe the set S0. This is the case where v = 2s−(t+1) = 20 = 1. So,

S0 =

i ∈ S :

((
ω
′
)i
γ

) qm−1
q1+1

= −1

 .

Put R =
qm − 1

qn − 1
from now on. Given γ = ωh we have

((
ω
′)i
γ
) qm−1

q1+1
= −1

if and only if

h+ iR ≡ q1 + 1

2
mod (q1 + 1) (3.10)

where ω′ = ωR. Note that

R ≡ m2
q1 + 1

q2 + 1
mod (q1 + 1).

So (3.10) is equivalent to

h+ im2
q1 + 1

q2 + 1
≡ q1 + 1

2
mod (q1 + 1). (3.11)

As gcd
(
m2

q1+1
q2+1

, q1 + 1
)

= q1+1
q2+1

B1, there is no integer i satisfying (3.11) if

h ≡ q1 + 1

2
mod

(
q1 + 1

q2 + 1
B1

)
(3.12)

24



does not hold.

Assume that h ≡ q1 + 1

2
mod

(
q1 + 1

q2 + 1
B1

)
holds. Put

B2 =
q1+1
2
− h

q1+1
q2+1

B1

.

Then (3.11) is equivalent to

i
m2

B1

≡ B2 mod

(
q2 + 1

B1

)
. (3.13)

Note that i is uniquely determined modulo
q2 + 1

B1

by (3.13). Thus, S0 will be explic-

itly

S0 =

{
i ∈ S : i

m2

B1

≡ B2 mod
(
q2+1
B1

)}
when (3.12) holds. So, putting

|S0| =
q
n
2 + 1

(q2 + 1)/B1

=
q
n
2 + 1

q2 + 1
B1

in the formula (3.8) we get the desired result explicitly for the case where (3.12) holds.

Now, assume that h 6≡ q1 + 1

2
mod

(
q1 + 1

q2 + 1
B1

)
. Then, there is no integer i ∈ S

satisfying (3.11) and so satisfying (3.10). Thus,

S0 =

{
i ∈ S :

((
ω
′)i
γ
) qm−1

q1+1
= −1

}
= ∅.

Therefore, l′ /∈ S0. Hence, by putting |S0| = 0, M0 = 0 and M0 = 1 in the formula

(3.8) we find N explicitly for the case where (3.12) does not hold.

This completes the proof of the case s = t+ 1.

Case s ≥ t+2 :

This time we will describe S0 firstly. This is the case where v = 2s−(t+1) is even in

the formula (3.8). So,

S0 =

i ∈ S :

((
ω
′
)i
γ

) qm−1
q1+1

= 1

 .
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As γ = ωh, we have

((
ω
′)i
γ
) qm−1

q1+1
= 1

if and only if

h+ iR ≡ 0 mod (q1 + 1). (3.14)

Note that

R ≡ 2s−um2
q1 + 1

q2 + 1
mod (q1 + 1)

in this case. So, (3.14) is equivalent to

h+ i2s−um2
q1 + 1

q2 + 1
≡ 0 mod (q1 + 1). (3.15)

We have 2 cases again. Note that

gcd

(
2s−um2

q1 + 1

q2 + 1
, q1 + 1

)
=
q1 + 1

q2 + 1
B1.

Hence if

h ≡ 0 mod

(
q1 + 1

q2 + 1
B1

)
(3.16)

does not hold, then there is no integer i satisfying (3.15).

Assume that h ≡ 0 mod

(
q1 + 1

q2 + 1
B1

)
holds and put

B2 =
−h

q1+1
q2+1

B1

.

Then (3.15) is equivalent to

i
2s−um2

B1

≡ B2 mod

(
q2 + 1

B1

)
. (3.17)

Hence, (3.17) determines i modulo
q2 + 1

B1

again and we obtain

S0 =

{
i ∈ S : i

2s−um2

B1

≡ B2 mod
(
q2+1
B1

)}
.

26



Therefore, |S0| =
|S|

(q2 + 1)/B1

=
(qn − 1)B1

(q3 − 1)(q2 + 1)
in the formula (3.8).

For the assumption u = t+ 1, we will have u− t = 1 and so q3 = q
n

2u−t = q
n
2 . This

yields

qn − 1

q3 − 1
=
qn − 1

q
n
2 − 1

= q
n
2 + 1

again as above. By the same argument, the only integer i ∈ S such that Ai = 0 is

l
′
=

l

q
n
2 − 1

. Hence

M0 =

 1 if l′ ∈ S0

0 if l′ ∈ S \ S0

and M0 =

 0 if l′ ∈ S0

1 if l′ ∈ S \ S0.

Therefore, N is found for the case where u = t+ 1 and (3.16) holds.

Now, assume h 6≡ 0 mod

(
q1 + 1

q2 + 1
B1

)
. Then, there is no integer i ∈ S satisfying

(3.15) and so satisfying (3.14). Thus, S0 = ∅. So we have |S0| = 0 and M0 = 0 in

the formula (3.8). By Proposition 3, M0 =

qn

q3
− 1

q3 − 1
. So N is found explicitly for the

case (3.16) does not hold.

This completes the proof of Theorem 1.

We finish this section with some experimental results for the subcase that s = u ≥
t + 2 with h ≡ 0 mod

(
q1+1
q2+1

B1

)
. Proposition 2 and Proposition 3 together show

that the computation of N depends only on the computation of M0 as |S0| can be

computed in each case. Therefore, in the experimental results below, we compute M0

only.

Let A =
(
ω
′)c for some integer c such that 0 ≤ c < qn − 1. Under the assumptions

• s = u = t+ 2

• m1 = 1

• B1B2 + c ≡ 0 mod (q2 + 1)
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we can show that M0 = 1 :

As m1 = 1, we have m2 = 1, n1 = 1 and q2 = q3. Then we have

S0 =

{
i ∈ S : i

m2

B1

≡ B2 mod

(
q2 + 1

B1

)}
in this case (note that s = u ). This yields that i ∈ S0 implies i = f(q2 + 1) + B1B2

for some integer f . So i+ c ≡ 0 mod (q2 + 1). Then put ci = i+ c mod
(
qn−1
q3−1

)
.

Note that ci is uniquely determined by the integer i as c is fixed. We have,

Ai = TrFqn/Fq3

((
ω
′
)i
A

)
= 0

if and only if

TrFqn/Fq3

((
ω
′
)ci)

= 0.

That is, (
ω
′
)ci

+
(
ω
′
)ciq3

+
(
ω
′
)ciq32

+
(
ω
′
)ciq33

= 0. (3.18)

Put z =
(
ω
′)ci(q3−1). Then z(q32+1) = 1 as ci ≡ 0 mod (q2 + 1). Hence (3.18) is

satisfied if and only if

1 + z + z(q3+1) + z(q32+q3+1) = (z + 1) (zq3 + 1) = 0.

This happens only when

ci ≡
qn − 1

2(q3 − 1)
mod

(
qn − 1

q3 − 1

)
.

So ci =
qn − 1

2(q3 − 1)
is determined uniquely. This yields that there is only one i ∈ S0

such that Ai = 0 and so M0 = 1.

For the case B1B2 + c 6≡ 0 mod (q2 + 1), we have examples with q = 3 calculated

in Magma. In each example, we find M0 = q3 + 1.

• If q = 3, s = 2, u = 2, t = 2, ρ = 1, m = 4r and n = 4ρ, we have M0 = 4

and M0 = 9.
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• If q = 3, s = 2, u = 2, t = 2, ρ = 3, m = 4r and n = 4ρ, we have M0 = 28

and M0 = 729.

• If q = 3, s = 2, u = 2, t = 2, ρ = 5, m = 4r and n = 4ρ, we have M0 = 244

and M0 = 590049.

3.4 Analogous results for the finite fields having even characteristic

Throughout this section we consider finite fields of characteristic 2. So we have

p = 2 in this section. The following is analogous to Theorem 13 and Theorem 14 in

the Appendix A.

Theorem 2. Assume that p = 2 and u ≤ t.

• Case s ≤ t:

N = qm.

• Case t+1 ≤ s:

If (γ)
qm−1
q1+1 6= 1, then

N =


qm + (−1)vq

m
2 (qn − 1) if A = 0,

qm − (−1)vq
m
2 if A 6= 0.

If (γ)
qm−1
q1+1 = 1, then

N =


qm − (−1)vq

m+k
2 (qn − 1) if A = 0,

qm + (−1)vq
m+k

2 if A 6= 0.

The equation (3.3) in Section 3.2 is valid also for p = 2. So the proof of Theorem 2

can be obtained similarly using Weil sums evaluated in [11]. Furthermore, note that
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the cases t + 1 ≤ s and s ≤ t with m
n

is even are covered by the approach in [44].

This explains how we prove Theorem 2.

Next we present our results for the case t + 1 ≤ u ≤ s in Theorem 3 and Theorem

4 which are analogous versions of Theorem 15 in the Appendix A and Theorem 1

respectively. Then, we give a sketch of the proof for both, Theorem 3 and Theorem

4.

Theorem 3. Assume that p = 2, t + 1 ≤ u ≤ s and A = 0. Recall that B1 =

gcd (2s−um2, q2 + 1).

If h 6≡ 0 mod
(
q1+1
q2+1

B1

)
, then

N = qm − (−1)v+1q
m
2 (qn − 1).

If h ≡ 0 mod
(
q1+1
q2+1

B1

)
, then

N = qm + (−1)v+1q
m
2

[
B1
qn − 1

q2 + 1
(q

k
2 + 1)− (qn − 1)

]
.

Theorem 4. Assume that p = 2, t + 1 ≤ u ≤ s and A 6= 0. Let l be the integer with

0 ≤ l < qn − 1 such that −Aqn−q
n
2 =

(
ω
′)l

as ω
′

is a generator of F∗qn . Moreover,

put l
′
=

l

q
n
2 − 1

and recall that B1 = gcd (2s−um2, q2 + 1).

If h 6≡ 0 mod
(
q1+1
q2+1

B1

)
, then

N = qm + (−1)v+1q
m
2 .

If h ≡ 0 mod
(
q1+1
q2+1

B1

)
and u = t+ 1, then

N =



qm + (−1)v+1q
m
2

[
q

(k+n)
2 + q

n
2 + 1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′ 2s−um2

B1

≡ B2 mod
(
q2+1
B1

)
,

qm + (−1)v+1q
m
2

[
1−B1(q

k
2 + 1)

(
q
n
2 +1
q2+1

)]

if l
′ 2s−um2

B1

6≡ B2 mod
(
q2+1
B1

)
,
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where B2 =
−h

q1+1
q2+1

B1

.

Proof. The proofs of Theorem 3 and Theorem 4 are the same with the proof of Theo-

rem 1 with two small modifications. According to the results in [11], we only change

the definitions of the set S0 defined in Section 3.1 and the function S given in Defini-

tion 2 as follows:

For p = 2, define

S0 =

i ∈ S :

((
ω
′
)i
γ

) qm−1
q1+1

= 1


and

S(θ) =

 (−1)v+1q
(m+k)

2 if (θγ)
qm−1
q1+1 = 1 ,

−(−1)v+1q
m
2 if (θγ)

qm−1
q1+1 6= 1 .

Then, one can deduce that equation (3.8) is valid also for p = 2 by following the

analogous steps in Section 3.2 and Section 3.3. Hence the proof of Theorem 3 and

Theorem 4 can be similarly obtained using equation (3.8).

3.5 Examples of maximal and minimal curves

For the number N(X), the Hasse–Weil inequality states that:

qm + 1− 2g(X)
√
qm ≤ N(X) ≤ qm + 1 + 2g(X)

√
qm.

Since the genus of the curve is g(X) =
(qn − 1)qa

2
, we get

qm + 1− (qn − 1)qaq
m
2 ≤ N(X) ≤ qm + 1 + (qn − 1)qaq

m
2 .

A class of maximal and minimal curves which follows from the results of Theorem

14 of the Appendix A is already given in both [12] and [44]. Now in the following

corollary, we give our examples of maximal and minimal curves which are not cov-

ered in [12] and [44]. The following corollary is a result of Theorem 3 and Theorem

15 in the Appendix A.
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Corollary 1. Consider the curve

X : yq
n − y = γxq

a+1 + β

and let all other variables be given as in Section 3.1.

• Case p=2 : Under the conditions

(i) A = 0,

(ii) h ≡ 0 mod
(
q1+1
q2+1

B1

)
,

(iii) a1 = 1 and B1 = q2 + 1,

the curve X is maximal if s = t+ 1 and minimal if s ≥ t+ 2.

• Case p is odd : Under the conditions

(i) A = 0,

(ii) h ≡ 0 mod
(
q1+1
q2+1

B1

)
,

(iii) a1 = 1 and B1 = q2 + 1,

(iv) s ≥ t+ 2,

the curve X is minimal.

Example 1. Let β = 0, γ = 1, q = 2e,m = 2s
(
q2

t
+ 1
)
, n = 2u, a = 2t for some pos-

itive integers e, s, t, u with t + 1 ≤ u ≤ s. Hence the curve X will be maximal when

s = t+ 1 and it will be minimal when s ≥ t+ 2.

• Choose e = s = u = t+ 1 = 10000. Then X is maximal.

• Choose e = u = t+ 1 = 10000 and s = 50000. Then X is minimal.
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CHAPTER 4

WALSH TRANSFORMS OF GOLD TYPE AND

KASAMI-WELCH TYPE FUNCTIONS AND RATIONAL

POINTS

4.1 Introduction

In this chapter, we evaluate the Walsh transforms of Gold type and Kasami-Welch

type Boolean functions firstly. Then we use these results in order to compute the

number of rational points of a class of Artin-Schreier type curves which have the form

(2.11). The results of this chapter are based on the publication [7] and the submitted

paper [8].

Definition 3. Let f be a Boolean function f : Vm −→ F2, where Vm is a m-

dimensional vector space over F2. The Walsh transform (or Walsh-Hadamard trans-

form) of f at α is the function fW : Vm −→ Z defined by

fW (α) =
∑
x∈Vm

(−1)f(x)+〈α,x〉 (4.1)

where 〈α, x〉 denotes an (non-degenerate) inner product on Vm.

We refer, for example, to [2] for more details on Walsh transform for Boolean func-

tions. Let K = F2m denote the finite field of 2m elements. When Vm = K, a natural

choice for 〈α, x〉 is TrK(αx). Then equation (4.1) becomes

fW (α) =
∑
x∈K

(−1)f(x)+TrK(αx). (4.2)

The Walsh spectrum of a Boolean function f : K −→ F2 is defined to be the set
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{
fW (α) : α ∈ K

}
.

When the spectrum is precisely
{
±2

m
2

}
, f is called bent function. For an integer

0 ≤ r ≤ m, a function f : K −→ F2 is called r-plateaued (r-partially bent) if

its Walsh spectrum is
{

0,±2
1
2
(m+r)

}
. Bent functions have significance due to their

applications in cryptography and r-plateaued functions gain interest as they can be

used to construct bent functions (see [32, 41] for instance).

Among the most famous examples of functions having 3-valued Walsh spectrum, we

have Gold functions [23] f(x) = TrK
(
x2

a+1
)
, with a relatively prime to m and m

odd. Gold [23] determined fW (α) in terms of fW (1) and fW (1) is evaluated first in

[16] and then in [32]. Furthermore, more general Gold functions are studied in the

appendix of [16].

The other famous examples having 3-valued Walsh spectrum are Kasami-Welch func-

tions [29] (see also [17]) f(x) = TrK
(
x4

a−2a+1
)
, with the same hypothesis that a is

relatively prime to m and m is odd. Both Gold and Kasami-Welch functions have the

spectrum
{

0,±2
(m+1)

2

}
(i.e. they are 1-plateaued).

In this chapter, we deal with the Walsh transforms of Gold type and Kasami-Welch

type functions firstly. Without loss of generality we assume 0 ≤ a < b (a = b is a

trivial case) and by a Gold type function we mean

f(x) = TrK

(
x2

a+1 + x2
b+1
)
, (4.3)

and by a Kasami-Welch type function we mean

f(x) = TrK

(
x

2ta+1
2a+1

)
, t odd. (4.4)

Gold type functions were studied by various authors in literature. For instance, in

[32], Lahtonen, McGuire and Ward give fW (0) for f(x) = TrK

(
x2

a+1 + x2
b+1
)

,

where gcd (b− a,m) = gcd (b+ a,m) = 1 and m odd. Then, using the results of

Fitzgerald in [21], Roy [41] evaluated fW (α)

• for any α ∈ K with m odd,

• for α ∈ K with TrK(α) = 0 and m even,

34



and stated that the case

• TrK(α) = 1 with m even

is open. However, we observed that Roy’s result for the case

• α ∈ K with TrK(α) = 0 and m even

does not hold for some α’s. We give a counterexample for such an α in Example 2

below in Section 4.3. In Corollary 2 in Section 4.3, we will complete the evaluation of

fW (α) by fixing the problem in the result of Roy and giving fW (α) for the remaining

open case TrK(α) = 1 with m even.

In Section 4.3 we consider a more general function f(x) = TrK

(
x2

a+1 + x2
b+1
)

with the assumption that

gcd (b− a,m) = gcd (b+ a,m) (not necessarily = 1)

and generalize Roy’s results by evaluating fW (α) except a very particular case (see

Theorem 6 and Theorem 7).

In Section 4.4, the condition

gcd (b− a,m) = gcd (b+ a,m)

is removed. Theorem 10 completes the evaluation of fW (α) without any restriction

on m, a, b and α. Moreover, in the second result Theorem 11 of Section 4.4 we

generalize the results found in Theorem 10. Let fγ be the following function

fγ(x) = TrK

(
γx2

a+1 + γx2
b+1
)
, (4.5)

where the coefficient γ is taken arbitrarily from F2m ∩ F2b−a . Explicit evaluation of

the Walsh transform of fγ at α ∈ K is given in Theorem 11 without any restriction

on m, a, b and α.

Kasami-Welch type functions, f(x) = TrK (xc) where c = 2ta+1
2a+1

and t is odd, were

studied by Niho in his thesis [38]. In [32], Lahtonen, McGuire and Ward evaluated
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fW (1) under certain conditions. In [33], Langevin, Leander and McGuire gave a

counterexample to a conjecture of Niho [38] by determining the Walsh spectrum of

f explicitly when m = 25, a = 3, t = 19 and when m = 23, a = 1, t = 7. Then,

Roy in [41] generalized the related result in [32] when m is odd. We also give a

generalization of Roy’s result for m even with Theorem 8 in Section 4.3 below.

Eventually, in this chapter we improve and generalize the related results [32, 41] in

literature.

The rest of the chapter is organized as follows. We introduce some notation and give

some background in Section 4.2. In Section 4.3, the case where gcd (b− a,m) =

gcd (b+ a,m) is analyzed. Finally, this condition is removed in Section 4.4.

4.2 Preliminaries

In this section we introduce our notation and present some background about quadratic

forms that we use when proving our results in Section 4.3 and Section 4.4.

Let n be an arbitrary positive integer. Throughout the chapter vp(n) will denote the

highest non-negative exponent v such that pv divides n (that is, the p-adic valuation)

and
(
a
n

)
will denote the Jacobi symbol of a modulo n. For finite fields F and E, we

will write TrE/F for the relative trace from E to F and for the absolute trace from E

to F2 we will write TrE . As the characteristic is 2 in this chapter and the second root

of unity is−1, we will use sometimes (−1)TrE(x) for χ
E

(x) where χ
E

is the canonical

additive character of a finite field E of characteristic 2. Furthermore, for the sake of

simplicity we will put

• d1 = gcd (b− a,m),

• d2 = gcd (b+ a,m),

• if d1 = d2 then d = d1 = d2,

• e = gcd (d1, d2),

• ν = max {v2(b− a), v2(b+ a)},
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• Sn =
{
x ∈ K : TrK/F2n

(x) = 0
}

for any n dividing m,

throughout the chapter.

Let

R(x) =
c∑
i=0

aix
2i + α,

where ai, α ∈ K. Let Q : K −→ F2 be the quadratic form given by

Q(x) = TrK (xR(x)) .

Then we have ∑
x∈K

(−1)Q(x) = Λ (Q) 2
1
2
(m+r(Q)) (4.6)

where r (Q) = dim rad (Q) is the dimension of the radical and Λ (Q) ∈ {−1, 0,+1}
is the invariant of Q.

Combining definition (4.2) and equation (4.6) above, we have that if

f(x) = TrK

(
x

c∑
i=0

aix
2i

)
,

then

fW (α) = Λ (Q) 2
1
2
(m+r(Q)) (4.7)

where R(x) =
c∑
i=0

aix
2i + α. Therefore, in order to evaluate fW (α) it is enough to

determine Λ (Q) and r (Q). Furthermore, quadratic functions are r (Q)-plateaued by

equation (4.7).

Moreover, we remind the well-known fact

rad (Q) = {x ∈ K|R∗(x) = 0}

and so

dim rad (Q) = log2

[
deg

(
gcd

(
R∗(x), x2

m

+ x
))]
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where

R∗(x) =
c∑
i=0

ai

(
x2

c+i

+ x2
c−i
)

is the radical polynomial of Q.

It is easy to observe that rad (Q) is independent of the affine part ofQ, and this yields:

Lemma 5. DefineQ1(x) = TrK (xR1(x)) andQ2(x) = TrK (xR2(x)) whereR1(x) =
c∑
i=0

aix
2i + α1 ∈ K[x] and R2(x) =

c∑
i=0

aix
2i + α2 ∈ K[x]. Then

r (Q1) = r (Q2) .

When f(x) = TrK

(
x2

a+1 + x2
b+1
)

, the dimension of the radical r(f) is computed

in [21] and we will use this result frequently in our proofs.

Theorem 5. ( Theorem 1.5 (3) in [21] ) If f(x) = TrK

(
x2

a+1 + x2
b+1
)

, 0 ≤ a < b,

and ν = max {v2(b− a), v2(b+ a)}, then

r(f) =


d1 + d2 − e, if v2(m) ≤ ν ,

d1 + d2, if v2(m) > ν.

Therefore by equation (4.7), Lemma 5 and [21, Theorem 1.5], it will be enough to

determine the invariant Λ(Q) of

Q(x) = TrK

(
x2

a+1 + x2
b+1 + αx

)
in order to evaluate the Walsh transform of f at α.

4.3 When gcd (b− a,m) = gcd (b+ a,m)

In this section, the function f(x) = TrK

(
x2

a+1 + x2
b+1
)

with the assumption that

gcd (b− a,m) = gcd (b+ a,m)
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is considered.

Firstly, we will give a counterexample to the result in [41] and then present our main

result in Theorem 6. Moreover, Theorem 7 and Corollary 2 solves an open problem

of [41] and Theorem 8 generalizes a result of [41].

In the example below, we will see that the result in [41, Theorem 11] does not hold

for some α ∈ K.

Example 2. Let m = 2, so K = F4. Also let f(x) = TrK

(
x2

0+1 + x2
1+1
)

. So,

a = 0, b = 1 and gcd (b− a,m) = gcd (b+ a,m) = 1. Then, by [21, Theorem

2.1] we have fW (0) = 0. Therefore, we would have fW (α) = 0 for all α ∈ K with

TrK(α) = 0 according to [41, Theorem 11].

Now, let ϑ ∈ K = F4 be the element such that ϑ2 = ϑ + 1 (Note that x2 + x + 1 is

irreducible over F2 ). Then F4 = {0, 1, ϑ, ϑ+ 1}.

For α = 1 (so TrK(1) = 1 + 12 = 0 ) we have

fW (1) =
∑
x∈K

(−1)TrK(x2+x3+x)

= (−1)TrK(02+03+0) + (−1)TrK(12+13+1)

+ (−1)TrK(ϑ2+ϑ3+ϑ) + (−1)TrK((ϑ+1)2+(ϑ+1)3+(ϑ+1))

= (−1)TrK(0) + (−1)TrK(1) + (−1)TrK(0) + (−1)TrK(0) = 4

and so fW (1) 6= 0.

The problem in the proof of [41, Theorem 11] is about the image Im(L) of L where

L(x) = x2
a

+ x2
−a

+ x2
b

+ x2
−b .

In [41, Theorem 7] it is shown that when gcd (b− a,m) = gcd (b+ a,m) = 1 and

m is odd, we have Im(L) = K0 where K0 is the set of elements of K with absolute

trace 0. The equality “ Im(L) = K0" is assumed also in the proof of [41, Theorem

11], when m is even. However, the equality is not true for even m.
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For any integer n dividing m, define the set

Sn =
{
x ∈ K : TrK/F2n

(x) = 0
}

from now on. In fact, we will see below in Lemma 7 that

Im(L) =

 Sd, if m/d is odd ,

S2d, if m/d is even .

Therefore, [41, Theorem 11] (where d = 1 and m is even) does not necessarily hold

for an α ∈ K such that TrK/F22 (α) = 1 as in the Example 2, although we have still

TrK(α) = 0.

Before proving Lemma 7 we will present the following observation which will play a

central role in its proof.

Lemma 6. Assume gcd (b− a,m) = gcd (b+ a,m). Put d = gcd (b− a,m)

(= gcd (b+ a,m)) and let δ = gcd(2d,m). Then we have δ ∈ {d, 2d} and

(i) δ = d⇐⇒ m/d is odd⇐⇒ δ|(b− a) and δ|(b+ a),

(ii) δ = 2d⇐⇒ m/d is even⇐⇒ δ 6 |(b− a), δ 6 |(b+ a) and δ|2a, δ|2b.

Proof. We have δ = gcd(2d,m) =

 d, if m/d is odd ,

2d, if m/d is even .

If δ = d, then δ|(b− a) and δ|(b+ a) by assumption. So (i) is proved.

Assume δ = 2d. So m/d is even and v2(m) > v2(d). Then we get v2(b − a) =

v2(b+ a) = v2(d). Hence, δ 6 |(b− a) and δ 6 |(b+ a).

Furthermore, v2(2b) > v2(d) and v2(2a) > v2(d) and this yields v2(2b) − v2(d) =

v2 (2b/d) ≥ 1 and v2(2a) − v2(d) = v2 (2a/d) ≥ 1. Then, both 2b/d and 2a/d are

even (note that d divides both 2b and 2a). That is, δ = 2d divides both 2b and 2a.

Now we are ready for the next lemma.
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Lemma 7. Let L : K −→ K where L(x) = x2
a

+ x2
−a

+ x2
b

+ x2
−b

. Under the

notation of Lemma 6 we have

Im(L) = Sδ.

Proof. Clearly L : K −→ K is linear. We claim:

(1) Im(L) ⊆ Sδ.

(2) Ker(L) = F2δ .

Proof of (1) : We will show that TrK/F
2δ

(L(x)) = 0 for all x ∈ K.

TrK/F
2δ

(L(x)) = TrK/F
2δ

(
x2

a

+ x2
−a

+ x2
b

+ x2
−b
)

= TrK/F
2δ

(
x2

a

+ x2
m−a

+ x2
b

+ x2
m−b
)
.

Case (i): If δ = d, δ|(b− a) by Lemma 6. Then

[
x2

a](2δ)m+b−a
δ

= x2
a+m+b−a

= x2
m+b

= x2
b

and [
x2

m−a
](2δ)m−(b−a)

δ

= x2
m−b

similarly. That is, TrK/F
2δ

(
x2

a)
= TrK/F

2δ

(
x2

b
)

and TrK/F
2δ

(
x2

m−a
)

=

TrK/F
2δ

(
x2

m−b
)

.

Case (ii): If δ = 2d, δ|2b and δ|2a by Lemma 6. Then

[
x2

a](2δ)m−2a
δ

= x2
m−a

and
[
x2

b
](2δ)m−2b

δ

= x2
m−b

.

Thus, TrK/F
2δ

(
x2

a)
= TrK/F

2δ

(
x2

m−a
)

and TrK/F
2δ

(
x2

b
)

= TrK/F
2δ

(
x2

m−b
)

.

Therefore, in both cases we get TrK/F
2δ

(L(x)) = 0 for all x ∈ K.

Proof of (2) :

L(x) = x2
a

+ x2
−a

+ x2
b

+ x2
−b

= 0 if and only if x2a+b
+ x2

b−a
+ x2

2b
+ x = 0.
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It will be sufficient to show that

gcd
(
x2

a+b

+ x2
b−a

+ x2
2b

+ x, x2
m

+ x
)

= x2
δ

+ x.

The linearized polynomial x2a+b
+ x2

b−a
+ x2

2b
+ x ∈ F2[x] has the 2-associate

xa+b + xb−a + x2b + 1 which has the following factorization

xa+b + xb−a + x2b + 1 =
(
xa+b + 1

) (
xb−a + 1

)
.

Since gcd (b− a,m) = gcd (b+ a,m) = d, we have

gcd
(
xa+b + 1, xm + 1

)
= xd + 1 and gcd

(
xb−a + 1, xm + 1

)
= xd + 1.

Then

gcd
(
xa+b + xb−a + x2b + 1, xm + 1

)
=

 xd + 1, if m/d is odd ,

x2d + 1, if m/d is even

= xδ + 1

and the result follows by Proposition 1.

Hence, K/Ker(L) ∼= Im(L) implies |Im(L)| = 2m−δ and then Im(L) = Sδ as

|Sδ| = 2m−δ.

Now we present the main result of the section. The evaluation of fW (0) is already

completed in [21]. We find fW (α) in terms of fW (0) in some cases of our main

result, and we give fW (0) in absolute value only.

Theorem 6. Assume that gcd (b− a,m) = gcd (b+ a,m), 0 ≤ a < b, and put d =

gcd (b− a,m) (= gcd (b+ a,m)). Let K = F2m , E = F2δ where δ = gcd(2d,m),

and f(x) = TrK

(
x2

a+1 + x2
b+1
)

.

Case 1 : “v2(b− a) = v2(b+ a) = v2(m)− 1" does not hold:

If TrK/E (α) = 0, then we choose θ ∈ K such that θ2
a

+ θ2
−a

+ θ2
b

+ θ2
−b

= α (see

Lemma 7 for existence of such θ). Then,
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fW (α) =


(−1)

TrK

(
θ2a+1+θ2b+1+αθ

)
fW (0), if TrK/E(α) = 0 ,

0, otherwise,

where |fW (0)| = 2
1
2
(m+δ).

Case 2 : If v2(b− a) = v2(b+ a) = v2(m)− 1:

In this case [K : E] is odd. Put τ = TrK/E (α). Then TrK/E (α + τ) = TrK/E(α) +

τTrK/E(1) = τ+τ = 0 and hence we choose θ ∈ K such that θ2
a
+θ2

−a
+θ2

b
+θ2

−b
=

α + τ (see Lemma 7 for existence of such θ). Then,

fW (α) = (−1)
TrK

(
θ2a+1+θ2b+1+αθ

)
fW (τ).

Furthermore, if Ω denotes the set of odd prime divisors of m/2d with the property

that

min {vp(m), vp(b− a)}+min {vp(m), vp(b+ a)}

is odd, then

fW (τ) =

 Λ (g) 2
1
2
(m+2d), if v2(m)− 1 > 0 ,∏

p∈Ω

(
2
p

)
Λ (g) 2

1
2
(m+2d), if v2(m)− 1 = 0 ,

where g is the quadratic form g(x) = TrE

(
x2

a+1 + x2
b+1 + xτ

)
and Λ (g) denotes

its invariant.

Remark 3. To avoid a very long and complicated statement in Theorem 6, we will

continue the evaluation of Λ (g) separately in Theorem 7.

Proof. Firstly,

fW (0) =
∑
x∈K

(−1)f(x) = Λ (f) 2
1
2
(m+r)

where
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r = deg
(
gcd

(
xa+b + xb−a + x2b + 1, xm + 1

))
= deg

(
xδ + 1

)
= δ

by Proposition 1 and proof of Lemma 7. As the dimension of the radical does not

depend on α, we have fW (α) = 0 or |fW (α)| = 2
1
2
(m+δ). So it is left to determine

the sign of fW (α).

By [21, Theorem 2.1],

invariant of f =Λ (f) = 0

if and only if

v2(b− a) = v2(b+ a) = v2(m)− 1

Thus,

fW (0) = 0 if and only if v2(b− a) = v2(b+ a) = v2(m)− 1.

Case 1 : When “v2(b− a) = v2(b+ a) = v2(m)− 1" does not hold.

In this case we are sure that fW (0) 6= 0. Then, by [28, Proposition 3.2],

fW (α) =


(−1)f(x0)fW (0), if R∗(x) = α2b has a solution x0 ∈ K,

0, otherwise,

whereR∗(x) = x2
b+a

+x2
b−a

+x2
2b

+x is the radical polynomial ofR(x) = x2
a
+x2

b .

We have

R∗(x) = α2b for some x0 ∈ K if and only if L (x0) = α for the same x0 ∈ K

if and only if TrK/E(α) = τ = 0

by Lemma 7.
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When τ = 0, let θ ∈ K be such that α = θ2
a

+ θ2
−a

+ θ2
b

+ θ2
−b and observe that

TrK (αθ) = TrK

(
θ2

a+1 + θ2
−a+1 + θ2

b+1 + θ2
−b+1

)
= 0 as

(
θ2
−t+1

)2t
= θ2

t+1 for

all integers t. Hence,

f(θ) = TrK

(
θ2

a+1 + θ2
b+1
)

= TrK

(
θ2

a+1 + θ2
b+1 + αθ

)
and

fW (α) =


(−1)

TrK

(
θ2a+1+θ2b+1+αθ

)
fW (0), if τ = 0 ,

0, otherwise.

Case 2 : v2(b− a) = v2(b+ a) = v2(m)− 1.

This is the case when v2 (m/d) = 1. So we have δ = 2d.

We will use a similar idea as Roy used in [41]. For any element θ of K, we have

fW (α) = χK

(
θ2

a+1 + θ2
b+1 + αθ

)∑
x∈K

χK

(
x2

a+1 + x2
b+1 + x (L(θ) + α)

)
where L(θ) = θ2

a
+ θ2

−a
+ θ2

b
+ θ2

−b .

Now, let τ = TrK/E(α) ∈ E. Then we have

TrK/E (α + τ) = TrK/E(α) + τTrK/E(1).

The extension degree m/δ is odd in this case, and then TrK/E(1) = 1. So,

TrK/E (α + τ) = τ + τ = 0

Then, by Lemma 7 there exists θ ∈ K such that L(θ) = α + τ . That is,

L(θ) + α = τ.

Therefore,

fW (α) = χK

(
θ2

a+1 + θ2
b+1 + αθ

)∑
x∈K

χK

(
x2

a+1 + x2
b+1 + xτ

)
= (−1)

TrK

(
θ2a+1+θ2b+1+αθ

)
fW (τ)
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where θ ∈ K such that α + τ = θ2
a

+ θ2
−a

+ θ2
b

+ θ2
−b .

Let Λ (hτ ) denote the invariant of the quadratic form

hτ (x) = TrK

(
x2

a+1 + x2
b+1 + xτ

)
.

So,

fW (τ) = Λ (hτ ) 2
1
2
(m+2d).

It is left to relate Λ (hτ ) and Λ (g). In literature, the relation between Λ (hτ ) and

Λ (g) is given in both [28] and [21] in a similar way. Note that we have v2(m) =

v2(2d). Let Ω denote the set of odd prime divisors of m/2d with the property that

min {vp(m), vp(b− a)}+min {vp(m), vp(b+ a)} is odd. Then, combining Lemma

5 and [21, Theorem 3.7] we get

Λ (hτ ) = Λ (g)

 +1, if v2(m)− 1 > 0 ,∏
p∈Ω

(
2
p

)
, if v2(m)− 1 = 0 .

This result can also be observed by [28, Theorem 4.2].

This completes the proof of Theorem 6.

For the case v2(b − a) = v2(b + a) = v2(m) − 1, the evaluation of fW (α) depends

on the evaluation of Λ (g) according to Theorem 6.

Next we evaluate Λ (g) when v2(b − a) = v2(b + a) = v2(m) − 1, τ ∈ F22 and d is

odd.

Theorem 7. Under the notation of Theorem 6, assume v2(b − a) = v2(b + a) =

v2(m)− 1, τ ∈ F22 and d is odd. Then

Λ (g) =

 +1, if τ = 1 ,

0, otherwise.
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Proof. By the assumptions we have 0 = v2(d) = v2(b− a) = v2(b+ a) = v2(m)− 1

and δ = 2d. Let Λ (hτ ) denote the invariant of the quadratic form

hτ (x) = TrF4

(
x2

a+1 + x2
b+1 + xτ

)
.

Since v2(2d) = 1 = v2(2) we can apply the same method in the proof of Theorem 6.

Let Ω denote the set of prime divisors of dwith the property thatmin {vp(2d), vp(b− a)}+
min {vp(2d), vp(b+ a)} is odd. But as d| (b± a) we have

min {vp(2d), vp(b− a)}+min {vp(2d), vp(b+ a)} = vp(2d) + vp(2d) = 2vp(2d)

is always even and Ω = ∅. Then, combining Lemma 5 and [21, Theorem 3.7] we get

Λ (g) = Λ (hτ ) .

Now, we will focus on Λ (hτ ). By equation (4.6),

Λ (hτ ) 2
1
2
(2+r(hτ )) =

∑
x∈F4

(−1)hτ (x).

As F4 = {0, 1, ϑ, ϑ+ 1} where ϑ2 = ϑ+ 1, we are left to deal with 4 cases for τ .

(1) τ = 0:

As v2(b−a) = v2(b+a) = v2(2)−1, we have Λ (hτ ) = Λ (h0) = 0 by [21, Theorem

2.1].

(2) τ = 1:

• hτ (0) = TrF4 (0) = 0,

• hτ (1) = TrF4 (1) = 0,

• hτ (ϑ) = TrF4

(
ϑ2a+1 + ϑ2b+1 + ϑ

)
= TrF4

(
ϑ2a+1 + ϑ2b+1

)
+ 1,

• and

hτ (ϑ+ 1) = TrF4

(
(ϑ+ 1)2

a+1 + (ϑ+ 1)2
b+1 + (ϑ+ 1)

)
= TrF4

(
ϑ2a+1 + ϑ2b+1 + ϑ2a + ϑ2b + (ϑ+ 1)

)
= TrF4

(
ϑ2a+1 + ϑ2b+1

)
+ TrF4 (ϑ) + TrF4 (ϑ) + TrF4 (ϑ+ 1)

= TrF4

(
ϑ2a+1 + ϑ2b+1

)
+ 1.
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Thus, ∑
x∈F4

(−1)hτ (x) = 2− 2(−1)
TrF4

(
ϑ2a+1+ϑ2b+1

)
.

As ϑ2 = ϑ+ 1, we have

ϑt =


1 if t ≡ 0 mod 3 ,

ϑ if t ≡ 1 mod 3 ,

ϑ+ 1 if t ≡ 2 mod 3 .

Thus,

TrF4

(
ϑ2t+1

)
=

 0 if t is odd,

1 if t is even.

In our case, we have v2(b+ a) = v2(d) = 0 and so b+ a is odd. Then, one of a and b

is odd and the other one is even. That is,

TrF4

(
ϑ2a+1 + ϑ2b+1

)
= 1 (4.8)

for all such a and b. Finally we deduce that
∑
x∈F4

(−1)hτ (x) = 4 and Λ (hτ ) = +1 for

τ = 1.

(3) τ = ϑ:

• hτ (0) = TrF4 (0) = 0,

• hτ (1) = TrF4 (ϑ) = 1,

• hτ (ϑ) = TrF4

(
ϑ2a+1 + ϑ2b+1 + (ϑ+ 1)

)
= 1 + 1 = 0,

• and

hτ (ϑ+ 1) = TrF4

(
(ϑ+ 1)2

a+1 + (ϑ+ 1)2
b+1 + (ϑ+ 1)ϑ

)
= TrF4

(
ϑ2a+1 + ϑ2b+1 + ϑ2a + ϑ2b + 1

)
= 1,

using equation (4.8). Then,
∑
x∈F4

(−1)hτ (x) = 0 and Λ (hτ ) = 0 for τ = ϑ.

(4) τ = ϑ+ 1:
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• hτ (0) = TrF4 (0) = 0,

• hτ (1) = TrF4 (ϑ+ 1) = 1,

• hτ (ϑ) = TrF4

(
ϑ2a+1 + ϑ2b+1 + ϑ(ϑ+ 1)

)
= 1 + 0 = 1,

• and

hτ (ϑ+ 1) = TrF4

(
(ϑ+ 1)2

a+1 + (ϑ+ 1)2
b+1 + (ϑ+ 1)2

)
= TrF4

(
ϑ2a+1 + ϑ2b+1 + ϑ2a + ϑ2b + ϑ

)
= 0,

using equation (4.8). Then,
∑
x∈F4

(−1)hτ (x) = 0 and Λ (hτ ) = 0 for τ = ϑ+ 1.

As a consequence, we can complete the evaluation of fW (α) where f is as given

in [41, Theorem 11]. The following corollary completely solves the open problem

stated in [41] (see pages 901-903 of [41]), in particular in the paragraph before [41,

Theorem 9] and in the Remark in page 903.

Corollary 2. Under the notation of Theorem 6, with m even and d = 1, we have

Case 1 : v2(m) > 1

fW (α) =


(−1)

TrK

(
θ2a+1+θ2b+1+αθ

)
fW (0), if τ = 0 ,

0, otherwise,

where |fW (0)| = 2
1
2
(m+2).

Case 2 : v2(m) = 1

fW (α) =


(−1)

TrK

(
θ2a+1+θ2b+1+αθ

)∏
p∈Ω

(
2
p

)
2

1
2
(m+2), if τ = 1 ,

0, otherwise,

where Ω denotes the set of odd prime divisors of m/2 with the property that
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min {vp(m), vp(b− a)}+min {vp(m), vp(b+ a)}

is odd.

The following is a related but a different result. It gives a generalization of one of the

main results of [41] (see [41, Theorem 7]) for m even.

Theorem 8. Let K = F2m , m even, a be such that gcd (2m − 1, 2a + 1) = 1. Let t

be odd and c = 2ta+1
2a+1

with a is a positive integer. If f(x) = TrK (xc) on the field K,

then

fW (1) = 2
1
2
(m+r(m))

where r(m) = gcd ((t− 1)a,m) + gcd ((t+ 1)a,m)− gcd (2a,m).

Proof. Since gcd (2m − 1, 2a + 1) = 1, we have

fW (1) =
∑
x∈K

χ
K

(
x

2ta+1
2a+1 + x

)
=
∑
x∈K

χ
K

(
x2

ta+1 + x2
a+1
)

= Λ (Q) 2
1
2
(m+r(Q))

where Q(x) = TrK
(
x2

ta+1 + x2
a+1
)
. Denote r (Q) by r(m). Then

gcd (2m − 1, 21 + 1) = 1 if and only if v2(m) ≤ v2(a)

( see [28, Lemma 5.3] ). So

v2(m) ≤ v2(a) ≤ v2(ta+ a)

and

v2(m) ≤ v2(a) ≤ v2(ta− a)

as t is odd. Then, by [21, Theorem 1.5] we have

r(m) = gcd (ta− a,m) + gcd (ta+ a,m)− gcd (s,m)

where s = gcd (ta+ a, ta− a) = 2a.
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Now, it is left to determine Λ(Q). Combining [21, Theorem 3.7] and [21, Theorem

4.9] we obtain Λ(Q) = 1.

4.4 When not necessarily gcd (b− a,m) = gcd (b+ a,m)

In this section, a different point of view rather than the approaches in Section 4.3 is

applied in the proofs in order to remove the assumption

gcd (b− a,m) = gcd (b+ a,m) (4.9)

for the function f(x) = TrK

(
x2

a+1 + x2
b+1
)

.

One of the major effects of the removal of the condition (4.9) is the difficulty in

determining the image of L(x) = x2
a

+ x2
−a

+ x2
b

+ x2
−b . Indeed, it is easy to

observe Im(L) = Im(R∗). This difficulty can be observed by comparing Lemma 8,

9, 10 of this section (where we find Im(R∗) instead ) with Lemma 7 of Section 4.3.

Especially in Lemma 10, some foresight is needed in order to determine a candidate

set for the image of L (see the explanation below the equation (4.14)). Another effect

of the removal of the condition (4.9) is the following. The idea mentioned in the

proof of Case 2 of Theorem 6, which is similar to the one used in [41], will not

work anymore when (4.9) is removed since the image of L in Lemma 10 is rather

complicated than the one in Lemma 7. Instead, we will use another idea which is

explained in details in the proof of Case 2 of Theorem 10 below.

We organized the rest of the section as follows. Firstly, before the statement of the

main results we need the explicit image of a certain linearized polynomial which will

play a central role in the proofs. Then we present the main result of the section in

Theorem 10 and prove it by making use of the results [28, 21]. Finally, we present

the second result Theorem 11 of the section which is a generalization of the results of

Theorem 10.

For any quadratic form f : K −→ F2 (having an affine part or not), we have by

Lemma 5 and equation (4.7) that the relation between fW (0) and fW (α) depends
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only on the relation between the invariants Λ (f) and Λ (Q), and this relation is given

by [28, Proposition 3.2] unless fW (0) = 0. Therefore, if fW (0) 6= 0, we obtain the

following useful result

fW (α) =


(−1)f(x0)fW (0), if R∗(x) = α2b has a solution x0 ∈ K,

0, otherwise.
(4.10)

Let

f(x) = TrK

(
x2

a+1 + x2
b+1
)

.

Then, R∗(x) = x2
b+a

+ x2
b−a

+ x2
2b

+ x and

R∗(x0) = α2bfor some x0 ∈ K ⇐⇒ R∗
(

(x0)
2−b
)

= α for the same x0 ∈ K

⇐⇒ α ∈ Im(R∗) where R∗ : K −→ K.

So we need the image of R∗ : K −→ K explicitly. Firstly, the cardinality of the

image can be observed easily. Since Ker(R∗) = rad (Q), |Ker(R∗)| = 2r(Q). Then,

K/Ker(R∗) ∼= Im(R∗) implies |Im(R∗)| = 2m−r(Q). As r (f) = r (Q), it is given in

[21, Theorem 1.5] and we obtain

|Im(R∗)| =


2m−(d1+d2−e), if v2(m) ≤ ν ,

2m−(d1+d2), if v2(m) > ν.

We remind our notation for Sn for any integer n dividing m :

Sn =
{
x ∈ K : TrK/F2n

(x) = 0
}
.

Lemma 8. Im (R∗) ⊆ Sd1 ∩ Sd2

Proof. As d1|(b− a) and x22b
=
(
x2

b+a
)2b−a

, we have
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TrK/F
2d1

(
x2

2b
)

= TrK/F
2d1

(
x2

b+a
)

and TrK/F
2d1

(
x2

b−a
)

= TrK/F
2d1

(x).

Thus,

TrK/F
2d1

(
x2

b+a
+ x2

b−a
+ x2

2b
+ x
)

= 0 for all x ∈ K.

As d2|(b+ a), by a similar observation we have

TrK/F
2d2

(
x2

b+a
+ x2

b−a
+ x2

2b
+ x
)

= 0 for all x ∈ K

and the result follows.

Now we are ready to give Im (R∗) explicitly when v2(m) ≤ ν.

Lemma 9. Im (R∗) = Sd1 ∩ Sd2 when v2(m) ≤ ν.

Proof. It is enough to prove |Sd1 ∩ Sd2| = 2m−(d1+d2−e) as

|Im (R∗) | = 2m−(d1+d2−e)

when v2(m) ≤ ν.

Let G1, G2 : K −→ K be linearized polynomials given by

G1(x) = x+ x2
d1 + x2

2d1 + · · ·+ x2
(m/d1−1)d1

and

G2(x) = x+ x2
d2 + x2

2d2 + · · ·+ x2
(m/d2−1)d2 .

So G1 = TrK/F
2d1

(x), G2 = TrK/F
2d2

(x) and both G1 and G2 split over F2m . Then,

gcd (G1, G2) splits over F2m . That is,

|Sd1 ∩ Sd2|=the number of roots of gcd (G1, G2) = deg (gcd (G1, G2)).
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Let g1 and g2 denote the 2-associates of G1 and G2 respectively.

g1(t) = 1 + td1 + t2d1 + · · ·+ t(m/d1−1)d1 =
tm − 1

td1 − 1

and

g2(t) = 1 + td2 + t2d2 + · · ·+ t(m/d2−1)d2 =
tm − 1

td2 − 1
.

Then,

gcd (g1, g2) = gcd

(
tm − 1

td1 − 1
,
tm − 1

td2 − 1

)
=

(tm − 1) gcd
(
td1 − 1, td2 − 1

)
(td1 − 1) (td2 − 1)

=
(tm − 1) (te − 1)

(td1 − 1) (td2 − 1)
=

tm+e − tm − te + 1

td1+d2 − td1 − td2 + 1
.

So deg (gcd (g1, g2)) = m− (d1 + d2 − e) and this yields

deg (gcd (G1, G2)) = 2m−(d1+d2−e).

When v2(m) > ν, Im (R∗) is a proper subset of Sd1 ∩ Sd2 and determination of it

requires some extra work.

Observe that d1|m2 and d2|m2 if v2(m) > ν. Let r∗(t) ∈ F2[x] denote the 2-associate

of R∗(x) . Then,

r∗(t) = ta+b + tb−a + t2b + 1 =
(
tb+a + 1

) (
tb−a + 1

)
.

Since gcd
(
tb−a + 1, tm + 1

)
= td1 + 1, gcd

(
tb+a + 1, tm + 1

)
= td2 + 1,

(
td1 + 1

)
|
(
tm/2 + 1

)
and

(
td2 + 1

)
|
(
tm/2 + 1

)
,

we get

gcd (r∗(t), tm + 1) =
(
td1 + 1

) (
td2 + 1

)
when v2(m) > ν. Thus,

gcd
(
R∗(x), x2

m

+ x
)

=
(
x2

d1 + x
)
◦
(
x2

d2 + x
)
.
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Furthermore, we have

tm + 1 =
(
td1 + 1

) (
td2 + 1

) tm + 1

(td1 + 1) (td2 + 1)

=
(
td1 + 1

) (
td2 + 1

) (tm/2 + 1
)

(td1 + 1)

(
tm/2 + 1

)
(td2 + 1)

.

(4.11)

Let the inverse 2-associates of

(
tm/2 + 1

)
(td1 + 1)

and

(
tm/2 + 1

)
(td2 + 1)

be L1(x) and L2(x) re-

spectively. Explicitly,

L1, L2 : K −→ K

where

L1(x) = x+ x2
d1 + x2

2d1 + · · ·+ x2
m
2 −d1 (4.12)

and

L2(x) = x+ x2
d2 + x2

2d2 + · · ·+ x2
m
2 −d2 . (4.13)

Finally, taking inverse 2-associates of each term in equation (4.11)

x2
m

+ x = gcd
(
R∗(x), x2

m

+ x
)
◦ [(L1 ◦ L2) (x)] . (4.14)

As roots of gcd
(
R∗(x), x2

m
+ x
)

are exactly Ker (R∗(x)) and R∗(x) is an additive

polynomial, equation (4.14) gives a clue about Im (R∗).

Lemma 10. Im (R∗) = {x ∈ K : (L1 ◦ L2) (x) = 0} when v2(m) > ν.

Proof. Firstly, as

(
tm/2 + 1

)
(td1 + 1)

(
tm/2 + 1

)
(td2 + 1)

has degree m− (d1 + d2), we have

deg (L1 ◦ L2) = 2m−(d1+d2).

Then,

|{x ∈ K : (L1 ◦ L2) (x) = 0}| ≤ deg (L1 ◦ L2) = 2m−(d1+d2).

Therefore, it will be enough to show Im (R∗) ⊆ {x ∈ K : (L1 ◦ L2) (x) = 0} as

|Im (R∗)| = 2m−(d1+d2).
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Let z = x2
b+a

+ x2
b−a

+ x2
2b

+ x =
(
x2

b−a
+ x
)
◦
(
x2

b+a
+ x
)

for some x ∈ K.

Then,

(L1 ◦ L2) (z) = L1 ◦ L2 ◦
(
x2

b−a
+ x
)
◦
(
x2

b+a

+ x
)

has the 2-associate

(tm + 1)

(td1 + 1) (td2 + 1)

(
tb−a + 1

) (
tb+a + 1

)
= (tm + 1)

[(
tb−a + 1

) (
tb+a + 1

)
(td1 + 1) (td2 + 1)

]
.

Hence,

(L1 ◦ L2) (z) =
(
x2

m

+ x
)
◦ (G(x)) = 0

where G(x) is the inverse 2-associate of

(
tb−a + 1

) (
tb+a + 1

)
(td1 + 1) (td2 + 1)

. This completes the

proof.

The following result gives computation of Walsh transform of f when its domain is

restricted to a special subfield and under some other conditions. It has an importance

due to its role in proof of Theorem 10.

Theorem 9. Let hθ(x) = TrF22e

(
x2

a+1 + x2
b+1 + θx

)
, 0 ≤ a < b, with θ ∈ F2e and

assume that v2(b− a) = v2(b+ a) < v2(m). Then

Λ (hθ) =


+1, if θ = 1 ,

0, otherwise.

Proof. Put µ = v2(b−a) = v2(b+a) and observe that v2 (d1) = v2 (d2) = v2 (e) = µ.

Furthermore, we have

e|2a and e|2b.

Let b− a = 2µA and b + a = 2µB with A = 2k + 1, B = 2l + 1 for some k, l ∈ Z.

So 2b = 2µ(B + A), 2a = 2µ(B − A) and clearly v2(2b) > v2(e), v2(2b) > v2(e).

Hence,
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e|a and e|b.

On the other hand, b = 2µ(l + k + 1), a = 2µ(l − k) and the parities of (l + k + 1)

and (l − k) are different. Hence, we have one of the following 2 cases:


v2(e) < v2(b)

and

v2(e) = v2(a)

 or


v2(e) < v2(a)

and

v2(e) = v2(b)

.

That is,


b ≡ 0 mod (2e)

and

a ≡ e mod (2e)

 or


a ≡ 0 mod (2e)

and

a ≡ e mod (2e)

.

This yields

x2
a+1 + x2

b+1 = x2
e+1 + x2

0+1 = x2
e+1 + x2

for all x ∈ F22e . Then,

TrF22e

(
x2

a+1 + x2
b+1 + θx

)
= TrF22e

(
x2

e+1 + x2 + θx
)

= TrF22e

(
x
(
x2

e

+ x+ θ
))

= TrF2e

(
TrF22e/F2e

(
x
(
x2

e

+ x+ θ
)))

= TrF2e

((
x2

e

+ x+ θ
)

TrF22e/F2e
(x)
)

= TrF2e

((
x2

e

+ x+ θ
) (
x2

e

+ x
))

as
(
x2

e
+ x+ θ

)
∈ F2e for any x ∈ F22e . And this gives,∑

x∈F22e

(−1)hθ(x) =
∑
x∈F22e

(−1)TrF2e ((x
2e+x+θ)(x2e+x)).

Observe that the relative trace map

TrF22e/F2e
: F22e −→ F2e

x 7−→ x2
e

+ x
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maps F22e onto F2e and y = x2
e

+ x runs through F2e exactly 2e times when x runs

through F22e once. So

TrF2e

((
x2

e

+ x+ θ
) (
x2

e

+ x
))

= TrF2e
((y + θ) y)

= TrF2e

(
y2 + θy

)
= TrF2e

(y + θy) = TrF2e
(y(θ + 1))

and

∑
x∈F22e

(−1)TrF2e ((x
2e+x+θ)(x2e+x)) = 2e

∑
y∈F2e

(−1)TrF2e
(y(θ+1))

=


22e, if θ = 1,

0, otherwise.

Therefore,

Λ (hθ) =


+1, if θ = 1 ,

0, otherwise.

Finally we are ready to present the main result of the section. The evaluation of

fW (0) is already completed in [21]. Λ (f) can be evaluated explicitly by combining

[21, Theorem 3.7] and [21, Theorem 4.9]. Therefore, fW (α) will be given in terms

of Λ (f) in some cases of the main result.

Theorem 10. Let K = F2m and f(x) = TrK

(
x2

a+1 + x2
b+1
)

, 0 ≤ a < b.

Case 1 : “v2(b− a) = v2(b+ a) = v2(m)− 1" does not hold:

(a) v2(m) ≤ ν :

If α ∈ Sd1 ∩ Sd2 , then we choose y0 ∈ K such that R∗ (y0) = α (see Lemma 9 for

existence of such y0). Then,
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fW (α) =


(−1)

f
(
y0

2b
)
Λ (f) 2

1
2
(m+d1+d2−e), if α ∈ Sd1 ∩ Sd2 ,

0, otherwise.

(b) v2(m) > ν :

LetL1 andL2 be given by equations (4.12) and (4.13) respectively. If (L1 ◦ L2) (α) =

0, then we choose y0 ∈ K such that R∗ (y0) = α (see Lemma 10 for existence of such

y0). Then,

fW (α) =


(−1)

f
(
y0

2b
)
Λ (f) 2

1
2
(m+d1+d2), if (L1 ◦ L2) (α) = 0 ,

0, otherwise.

Case 2 : v2(b− a) = v2(b+ a) = v2(m)− 1:

If (L1 ◦ L2) (α + 1) = 0, then we choose y0 ∈ K such that R∗ (y0) = α + 1 (see

Lemma 10 for existence of such y0). Then,

(a) v2(m)− 1 > 0 :

fW (α) =


(−1)

f
(
y0

2b
)
+TrK(y0)2

1
2
(m+d1+d2), if (L1 ◦ L2) (α + 1) = 0 ,

0, otherwise.

(b) v2(m) = 1 :

Let Ω denote the set of odd prime divisors of m/2e with the property that
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min {vp(m), vp(b− a)}+min {vp(m), vp(b+ a)}

is odd. Then,

fW (α) =



(−1)
f
(
y0

2b
)
+TrK(y0)

[∏
p∈Ω

(
2
p

)]
2

1
2
(m+d1+d2),

if (L1 ◦ L2) (α + 1) = 0,

0, otherwise.

Proof. Firstly,

fW (0) =
∑
x∈K

(−1)f(x) = Λ (f) 2
1
2
(m+r(f))

where r(f) is given by [21, Theorem 1.5] as

r(f) =


d1 + d2 − e, if v2(m) ≤ ν ,

d1 + d2, if v2(m) > ν.

As r (f) = r (Q) by Lemma 5, it is left to determine Λ (Q) where

Q(x) = TrK

(
x2

a+1 + x2
b+1 + αx

)
.

Furthermore, by [21, Theorem 2.1],

Λ (f) = 0 ⇐⇒ v2(b− a) = v2(b+ a) = v2(m)− 1.

Thus,

fW (0) = 0 ⇐⇒ v2(b− a) = v2(b+ a) = v2(m)− 1.

Case 1 : “v2(b− a) = v2(b+ a) = v2(m)− 1" does not hold.

In this case we are sure that fW (0) 6= 0. Then by equation(4.10),

fW (α) =


(−1)f(x0)fW (0), if R∗(x) = α2b has a solution x0 ∈ K,

0, otherwise.
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Since we have

R∗(x0) = α2bfor some x0 ∈ K ⇐⇒ R∗ (y0) = α with y0 = (x0)
2−b

⇐⇒ α ∈ Im(R∗) where R∗ : K −→ K,

the result follows by Lemma 9 and Lemma 10.

Case 2 : v2(b− a) = v2(b+ a) = v2(m)− 1.

In this case fW (0) = 0 and we can not use [28, Proposition 3.2] to relate Λ (f) and

Λ (Q).

The idea applied here is to use another quadratic form onK for which [28, Proposition

3.2] is applicable (i.e its Walsh transform at 0 ∈ K is not equal to 0) and the value of

its Walsh transform at some point is equal to fW (α). As f does not contain an affine

part, we need to consider a quadratic form with affine part. The simplest case is the

following. Let

g(x) = TrK

(
x2

a+1 + x2
b+1 + x

)
and observe that

gW (α + 1) =
∑
x∈K

χ
K

(
x2

a+1 + x2
b+1 + αx

)
= fW (α).

Then, if gW (0) 6= 0 we can find gW (α + 1) in terms of gW (0).

In order to show Λ(g) 6= 0, we define another quadratic form on a special subfield

where calculations are easier and relate the invariant of it to Λ(g).

Let

h1(x) = TrF22e

(
x2

a+1 + x2
b+1 + x

)
and Λ (h1) denote its invariant. Observe that Λ (h1) = +1 by Theorem 9.

Note that we have v2(m) = v2(2e). So the relation between Λ (g) and Λ (h1) is

determined similarly to the proof of Theorem 6 by combining Lemma 5 and [21,
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Theorem 3.7]. Let Ω denote the set of odd prime divisors of m/2e with the property

that min {vp(m), vp(b− a)}+min {vp(m), vp(b+ a)} is odd. Then,

Λ(g) =

 +1, if v2(m)− 1 > 0 ,∏
p∈Ω

(
2
p

)
, if v2(m)− 1 = 0 .

Finally, as gW (0) 6= 0 we get

gW (α + 1) =


(−1)g(x0)gW (0), if R∗(x) = (α + 1)2

b has a solution x0 ∈ K,

0, otherwise.

Since we have

R∗(x0) = (α + 1)2
bfor some x0 ∈ K ⇐⇒ R∗ (y0) = α + 1 with y0 = (x0)

2−b

⇐⇒ (α + 1) ∈ Im(R∗)

and g (x0) = f (x0) + TrK (x0) = f
(
y0

2b
)

+ TrK (y0) with y0 = (x0)
2−b , the result

follows by Lemma 10.

This completes the proof of Theorem 10.

Next, using the result in Theorem 10 we will evaluate fWγ (α) for any α ∈ K where

fγ(x) = TrK

(
γx2

a+1 + γx2
b+1
)

, with γ ∈ F2d1 .

Theorem 11. Let K = F2m and f(x) = TrK

(
x2

a+1 + x2
b+1
)

, 0 ≤ a < b. Let

fγ(x) = TrK

(
γx2

a+1 + γx2
b+1
)

,0 ≤ a < b, be given for any γ ∈ F2d1 .

Case 1 : “v2(a) = v2(b) < v2(m)" does not hold:

For any γ ∈ F2d1 there exists Γ ∈ F2d1 such that γ = Γ2a+1 and

fWγ (α) = fW (α/Γ) .
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Case 2 : v2(a) = v2(b) < v2(m) :

(a) v2(m) ≤ ν :

If
α

γ2−b
∈ Sd1 ∩ Sd2 , then we choose y0 ∈ K such that R∗ (y0) =

α

γ2−b
(see Lemma

9 for existence of such y0). Then,

fWγ (α) =


(−1)

[
m+d1+d2−e

2µ+1 +f
(
y0

2b
)]

2
1
2 (m+d1+d2−e), if α

γ2−b
∈ Sd1 ∩ Sd2,

0, otherwise,

where µ = v2(a) = v2(b).

(b) v2(m) > ν :

LetL1 andL2 be given by equations (4.12) and (4.13) respectively. If (L1 ◦ L2)
(

α

γ2−b

)
=

0, then we choose y0 ∈ K such that R∗ (y0) =
α

γ2−b
(see Lemma 10 for existence of

such y0). Then,

fW (α) =


(−1)

[
m+d1+d2

2µ+1 +f
(
y0

2b
)]

2
1
2 (m+d1+d2), if (L1 ◦ L2)

(
α

γ2−b

)
= 0 ,

0, otherwise,

where µ = v2(a) = v2(b).

Proof. Firstly, we have v2 (b± a) = min {v2(b), v2(a)} , if v2(b) 6= v2(a) ,

v2 (b± a) > v2(b) = v2(a), if v2(b) = v2(a).

Case 1 : “v2(a) = v2(b) < v2(m)" does not hold.
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In this case we have v2 (d1) ≤ v2 (a). In order to see this, assume firstly v2(b) 6=
v2(a). Then, v2 (d1) ≤ v2 (b− a) = min {v2(b), v2(a)}. On the other hand, if

v2(a) = v2(b) ≥ v2(m) then v2 (d1) ≤ v2 (m) ≤ v2 (a).

As v2 (d1) ≤ v2 (a), by [28, Lemma 5.3] we get

gcd
(
2a + 1, 2d1 − 1

)
= 1.

Thus, the map

F2d1 −→ F2d1

x 7−→ x2
a+1

(4.15)

is a permutation on F2d1 .

Let γ ∈ F∗
2d1

and α ∈ K be given.Then there exists Γ ∈ F∗
2d1

such that γ = Γ2a+1.

Furthermore, we have Γ2a+1 = Γ2b+1 for any Γ ∈ F2d1 ⊆ F2b−a .

Then,

fWγ (α) =
∑
x∈K

χ
K

(
γx2

a+1 + γx2
b+1 + αx

)
=
∑
x∈K

χ
K

(
Γ2a+1x2

a+1 + Γ2b+1x2
b+1 + αx

)
=
∑
x∈K

χ
K

(
(Γx)2

a+1 + (Γx)2
b+1 + (α/Γ) (Γx)

)
=
∑
x∈K

χ
K

(
x2

a+1 + x2
b+1 + (α/Γ)x

)
= fW (α/Γ)

and the result follows by Theorem 10.

Case 2 : v2(a) = v2(b) < v2(m).

In this case v2 (d1) > v2 (a) and the above map (4.15) is not a permutation on F2d1 .

Let

Qγ(x) = fγ(x) + TrK (αx) = TrK

(
γx2

a+1 + γx2
b+1 + αx

)

and observe that the radical polynomial of Qγ is equal to γR∗(x) where R∗(x) =
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x2
b+a

+ x2
b−a

+ x2
2b

+ x. Then, by [28, Theorem 5.1]

Λ (Qγ) =


(−1)

m+r(fγ)
2µ+1 (−1)fγ(x0), if γR∗(x) = α2b has a solution x0 ∈ K,

0, otherwise,

where µ = v2(a) = v2(b).

As Ker(γR∗) = Ker(R∗), we have

r (Qγ) = r (fγ) = r(f) =


d1 + d2 − e, if v2(m) ≤ ν ,

d1 + d2, if v2(m) > ν,

by [21, Theorem 1.5]. Furthermore,

γR∗(x0) = α2bfor some x0 ∈ K ⇐⇒ R∗ (y0) =
α

γ2−b
with y0 = (x0)

2−b

⇐⇒ α

γ2−b
∈ Im(R∗),

and the result follows by Lemma 9 and Lemma 10.

4.5 Rational Points of the Curve y2n + y = γx2
b+1 + γx2

a+1 + αx+ β over F2m

and Examples of Maximal and Minimal Curves Contained in This Class

In this section we consider the curve (2.8) in even characteristic together with the

assumptions q = 2, gcd (m,n) = 1 and γ1 = γ2 = γ ∈ F2m ∩ F2b−a . Without these

assumptions it is much more difficult to find the number of rational points explicitly,

at least requires new techniques, and this problem remains open in literature except

very particular cases. We manage to evaluate the two-piece sum in equation (3.5) of

Chapter 3 according to the sum
∑
x∈Fqm

χ1

(
θγxq

a+1
)

which is 2-valued. However, the

Weil sum

65



∑
x∈F2m

χ1

(
γx2

b+1 + γx2
a+1 + αx

)

corresponding to the curve (2.8) is 3-valued and much more complicated according

to Theorem 10 and Theorem 11.

Let X be the the Artin-Schreier type curve of the form

X : y2
n

+ y = γx2
b+1 + γx2

a+1 + αx+ β

with gcd (m,n) = 1 and γ ∈ F2m ∩ F2b−a . If N denotes the number of solutions of

the affine equation of X, for the number N(X) of F2m-rational points of X we have

N(X) = 1 +N

since there is only one rational point at infinity. Since fWγ (α) is evaluated in Theorem

11 where fγ(x) = TrK

(
γx2

b+1 + γx2
a+1
)

, it is enough to determine N(X) in terms

of fWγ (α).

Theorem 12. N(X) = 1 + 2m + (−1)TrK(β)fWγ (α)

Proof. By equation (2.4) we get

N =
∑

θ∈F
2gcd(m,n)

∑
x∈F2m

χ1

(
θ
(
γx2

b+1 + γx2
a+1 + αx+ β

))
=
∑
θ∈F2

χ1 (θβ)
∑
x∈F2m

χ1

(
θγx2

b+1 + θγx2
a+1 + θαx

)
=
∑
θ∈F2

(−1)TrK(θβ) fWθγ (θα)

= 2m + (−1)TrK(β)fWγ (α)

The Hasse-Weil inequality implies

2m + 1− 2g(X)
√

2m ≤ N(X) ≤ 2m + 1 + 2g(X)
√

2m.

By [42, Proposition 6.4.1] the genus of the curve X is g(X) =
(2n − 1) 2b

2
. Hence,

2m + 1− (2n − 1) 2b
√

2m ≤ N(X) ≤ 2m + 1 + (2n − 1) 2b
√

2m.
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As fWγ (α) = Λ (Qγ) 2
1
2
(m+r(Qγ)) where

Qγ(x) = TrK

(
γx2

a+1 + γx2
b+1 + αx

)
and

r (Qγ) = r (fγ) =


d1 + d2 − e, if v2(m) ≤ ν ,

d1 + d2, if v2(m) > ν,

we have the following corollary.

Corollary 3. Under the conditions

(i) m is even, n = 1,

(ii) v2(m) > ν,

(iii) (b± a)|m,

the curve X is maximal if (−1)TrK(β)Λ (Qγ) = +1 and minimal if (−1)TrK(β)Λ (Qγ) =

−1.

Example 3. Let m = 1000, n = 1 b = 60 and a = 40. So we have v2(b − a) =

v2(b + a) = v2(m) − 1 > 0 and the condition “v2(a) = v2(b) < v2(m)" does not

hold. For any element α ∈ F2m , choose γ = α2a+1. Then, combining Theorem 11 and

Theorem 10 we have Λ (Qγ) = +1. Thus, it is left to choose β ∈ F2m in order to

make the curve X maximal or minimal. When TrK(β) = 0, X is maximal and when

TrK(β) = 1, X is minimal.

• Let β = 0. Then X is maximal.

• Let β ∈ F23 be an element such that β3 = β2 + 1 (x3 + x2 + 1 is irreducible

over F2). Then, TrF23 (β) = β + β2 + β4 = β + β2 + (β2 + 1 + β) = 1. Thus,

TrK (β) = TrF23

(
TrK/F23 (β)

)
= TrF23

(
β TrK/F23 (1)

)
= TrF23 (β) = 1.

So X is minimal.
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CHAPTER 5

CONCLUSION

5.1 Contributions of the Thesis

Quadratic forms are among the most useful tools in finite geometry. In this thesis, we

evaluate the exponential sums of certain quadratic forms over finite fields. There is a

natural connection between these exponential sums and the number of rational points

of algebraic curves defined over finite fields. Therefore we manage to compute the

number of rational points of certain Artin-Schreier type curves. In both ways, this

thesis contributed to the existing literature about quadratic forms and rational points.

• In Chapter 3, we compute the number of rational points of the curve (3.1) which

is a general version of the curve considered in [44]. Thus, the results of this

chapter improves the work done in [44].

Secondly, Chapter 3 is a continuation of [40] and so we complete the work done

in [40] by Chapter 3.

Thirdly, if we neglect the linear term of Coulter’s curve [12], the curve (3.1) is

also a general version of Coulter’s curve. Hence our results improve also the

results of [12].

Finally, we give new examples of maximal and minimal curves that are in the

class of the curve (3.1).

• In Chapter 4, we evaluated the Walsh transform of a Gold type (4.3) and a

Kasami-Welch type (4.4) Boolean functions without any restriction on m, a,

b and α. The Walsh transforms of (4.3) and (4.4) were given in literature by

[32, 41] in some restrictions on m, a, b and α. Therefore, by the results in

Chapter 4 we improve the results of [32, 41] and furthermore correct a result in
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[41].

Secondly, in Section 4.4 we generalize our own results by evaluating the Walsh

transforms of (4.5).

Thirdly, in Section 4.5 we compute the number of rational points of the curve

(2.11) which is considered in several contexts before (see [20, Section 4] for

instance) when n = 1 and except the coefficient γ ∈ F2m ∩ F2b−a . Then we

give examples of maximal and minimal curves that are in the class of the curve

(2.11).

5.2 Future Study

The majority of the problems in the cases that are not considered in this thesis remain

open in literature. Thus, those cases may constitute the topic of our future studies.

• It seems difficult to evaluate the exponential sum in (3.5) in all cases. The

subcase u ≥ t+ 2 with h ≡ 0 mod
(
q1+1
q2+1

B1

)
is not considered in this thesis

and it seems that new techniques are required to evaluate the sum. It will be

one of our interests in future to investigate new techniques to evaluate the sum.

• The coefficient γ for the Gold type function fγ (4.5) is restricted to be in F2m ∩
F2b−a and the Walsh transforms of fγ are computed under this restriction. Apart

from the techniques used in Chapter 4, some more powerful techniques are

needed to remove this restriction and to evaluate the Walsh transforms of fγ for

any γ ∈ F2m

• Moreover, the evaluation of exponential sum of a quadratic form that has more

than two terms is open in general. There are some conjectures and some explicit

evaluations in very particular cases, but there is not a specific method for the

solution of problem in general.
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APPENDIX A

SOME RELATED PREVIOUS RESULTS

Here we recall some of the results obtained in [40] related to the results of Chapter

3 for completeness. Let p be odd and q, m, a, n, β, γ, A, N be defined as above in

Section 3.1.

Let N(m,n) denote the cardinality

N(m,n) =
∣∣{x ∈ Fqm | TrFqm/Fqn

(
γxq

a+1 + β
)

= 0
}∣∣ .

Therefore, we have N = qnN(m,n). The number N(m,n) is computed in [40]

instead of N .

Theorem 13. Assume that s ≤ t. Let η and η′ denote the quadratic characters of Fq
and Fqm , respectively.

• If m/n is even and A = 0, then

N(m,n) =

 qm−n − (qn − 1) qm/2−n if η
(
(−1)m/2

)
η′(γ) = 1,

qm−n + (qn − 1) qm/2−n if η
(
(−1)m/2

)
η′(γ) = −1.

• If m/n is even and A 6= 0, then

N(m,n) =

 qm−n + qm/2−n if η
(
(−1)m/2

)
η′(γ) = 1,

qm−n − qm/2−n if η
(
(−1)m/2

)
η′(γ) = −1.

• If m/n is odd and A = 0, then

N(m,n) = qm−n.

• If m/n is odd, A 6= 0 and n is even, then

N(m,n) =


qm−n + q(m−n)/2 if (u1, u2) ∈ {(1, 1), (−1,−1)} ,

qm−n − q(m−n)/2 if (u1, u2) ∈ {(1,−1), (−1, 1)} ,
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where u1 and u2 are the integers in the set {−1, 1} given by

u1 = η
(
(−1)m/2

)
η′(γ) and u2 = η

(
(−1)n/2

)
η′(A).

• If m/n is odd, A 6= 0 and n is odd, then

N(m,n) =


qm−n + q(m−n)/2 if (u1, u2) ∈ {(1, 1), (−1,−1)} ,

qm−n − q(m−n)/2 if (u1, u2) ∈ {(1,−1), (−1, 1)} ,

where u1 and u2 are the integers in the set {−1, 1} given by

u1 = η
(
(−1)(m−1)/2

)
η′(γ) and u2 = η

(
(−1)(n−1)/2

)
η′(A).

Theorem 14. Assume that s ≥ t + 1 and u ≤ t. Let ω be a generator of the mul-

tiplicative group Fqm \ {0} and let h be the integer with 0 ≤ h < qm − 1 such that

γ = ωh.

• Case s = t+ 1: Put q1 = q2
tr.

If h 6≡ m1
q1+1
2

mod (q1 + 1), then

N(m,n) =

 qm−n + qm/2−n if A 6= 0,

qm−n − (qn − 1)qm/2−n if A = 0.

If h ≡ m1
q1+1
2

mod (q1 + 1), then for k = 2t+1r we have that

N(m,n) =

 qm−n − q(m+k)/2−n if A 6= 0,

qm−n + (qn − 1)q(m+k)/2−n if A = 0.

• Case s ≥ t+ 2: Put q1 = q2
tr.

If h 6≡ 0 mod (q1 + 1), then

N(m,n) =

 qm−n − qm/2−n if A 6= 0,

qm−n + (qn − 1)qm/2−n if A = 0.

If h ≡ 0 mod (q1 + 1), then for k = 2t+1r we have that

N(m,n) =

 qm−n + q(m+k)/2−n if A 6= 0,

qm−n − (qn − 1)q(m+k)/2−n if A = 0.
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Theorem 15. Assume that t + 1 ≤ u ≤ s and A = 0. Let ω be a generator of the

multiplicative group Fqm \ {0} and let h be the integer with 0 ≤ h < qm − 1 such

that γ = ωh.

• Case s = t+ 1: Put B1 = gcd
(
m2, q

2tρ + 1
)
.

If h ≡ n1m2
q2tr+1

2
mod

(
q2tr+1

q2tρ+1
B1

)
, then

N(m,n) = qm−n − (qn − 1)q
m
2
−n +B1

qn − 1

q2tρ + 1

(
q
m
2
+2tr−n + q

m
2
−n
)
.

If h 6≡ n1m2
q2tr+1

2
mod

(
q2tr+1

q2tρ+1
B1

)
, then

N(m,n) = qm−n − (qn − 1)q
m
2
−n.

• Case s ≥ t+ 2: Put B1 = gcd
(
2s−um2, q

2tρ + 1
)
.

If h ≡ 0 mod
(
q2tr+1

q2tρ+1
B1

)
, then

N(m,n) = qm−n + (qn − 1)q
m
2
−n −B1

qn − 1

q2tρ + 1

(
q
m
2
+2tr−n + q

m
2
−n
)
.

If h 6≡ 0 mod
(
q2tr+1

q2tρ+1
B1

)
, then

N(m,n) = qm−n + (qn − 1)q
m
2
−n.
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