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ABSTRACT 

PRICING WITH INFORMATIVE DELAY ANNOUNCEMENTS 

Karakaya,Sırma 

 M.S, Department of Industrial Engineering 

 Supervisor  :Assoc. Prof. Dr. Seçil Savaşaneril 

 Co-Supervisor: Prof. Dr.Yasemin Serin 

June 2017, 80 Pages 

In many industries price and delay (lead-time) information affect customer behavior. 

According to the provided delay information and/or price, customers choose either to 

stay or balk. In this thesis, we study the effects of these two decision variables on the 

profitability. For the pricing problem, we study two schemes: static pricing and 

dynamic pricing. For the delay announcement problem, we consider three schemes: no 

information sharing, partial information sharing, and full information sharing.  We 

model the system as a stochastic discrete-time Markovian queue, and model the pricing 

problems through Markov decision process. We compare several delay information 

and pricing schemes and through analytical results and numerical study identify the 

conditions that make specific delay information or pricing schemes more preferable. 

We also analyze the impact of the information asymmetry on the preference of the 

provider. We consider pricing schemes with varying levels of flexibility. Our findings 

show that even if the information asymmetry favors the service provider, the delay 

information scheme might severely curb the benefit of the pricing flexibility. 

Furthermore, results show that traffic intensity, customer-sensitivity level and price 

quotes have a significant impact on selecting the delay information scheme. 

Keywords:  Delay announcement, Dynamic Pricing, Stochastic Discrete-Time 

Markovian queue, Markov Decision Process, Information Asymmetry 
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ÖZ 

GECİKME SÜRELERİ BİLDİRİMİ ALTINDA FİYATLANDIRMA

Karakaya,Sırma 

 Yüksek Lisans, Endüstri Mühendisliği Bölümü 

 Tez Yöneticisi  :Doç. Dr. Seçil Savaşaneril 

 Ortak Tez Yöneticisi: Prof. Dr.Yasemin Serin 

Haziran 2017, 80 Sayfa 

Birçok endüstri alanında fiyat ve gecikme süresi (teslim tarihi) bilgileri müşteri 

davranışını etkilemektedir. Müşteriye verilen bilgiye göre müşteriler sistemde 

kalmaya veya sistemden ayrılmaya karar vermektedirler. Bu tezde, bu iki karar 

değişkeninin kar üzerine etkileri araştırılmaktadır. Fiyatlandırma problemi için statik 

fiyatlandırma ve dinamik fiyatlandırma olmak üzere iki senaryo, ilan edilen gecikme 

süresi için de üç farklı senaryo üzerinde çalışılmıştır. Müşterilere hiç gecikme bilgisi 

verilmemesi durumu, kısmi bilgi verilmesi durumu ve kesin bilgi verilmesi durumu. 

Sistem kesikli Markov kuyruğu şeklinde modellenmiş, fiyatlandırma problemi ise 

Markov karar verme süreci çerçevesinde ele alınmıştır. Gecikme süresi ve 

fiyatlandırma senaryoları karşılaştırılmış, analitik sonuçlar ve sayısal çalışmalarla 

hangi koşullarda hangi senaryoların daha tercih edilebilir olduğu belirlenmiştir. 

Ayrıca, bilgi asimetrisisin servis sağlayıcısının tercihleri üzerine etkileri de 

incelenmiştir. Fiyatlandırma problemi değişik fiyat esneklikleri altında çalışılmıştır. 

Bulgular, bilgi asimetrisinin servis sağlayıcısına fayda sağlasa bile, gecikme süresi 

senaryolarının fiyat esnekliklerinin yararlarını sınırlandığını göstermektedir. Ayrıca, 

trafik yoğunluğu, müşteri hassasiyet seviyesi ve fiyat atamaları da gecikme süresi 

senaryo seçimini etkilemektedir. 

Anahtar Kelimeler:  Gecikme süresi, Dinamik Fiyatlandırma, Stokastik kesikli 

Markov kuyruğu, Markov Karar Verme Süreci, Bilgi Asimetrisi 
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CHAPTER 1 

INTRODUCTION 

Price and delay information are the two factors that determine customer behavior and 

thus the system performance. Today, most firms accept the importance of these factors 

and use them as a weapon to gain the competitive advantage in today’s market 

conditions (Zhao et al. (2011)). A survey conducted by Performance Management 

Group shows that top 110 performers in five major manufacturing sectors do not only 

focus on the cost but also on the speed of the delivery time to attract more customers 

(Boyacı and Ray (2003)). Uzun and Poturak (2014) claim that in online shopping the 

first three factors that affect customers’ satisfaction is the convenience of trust, price 

and the quality of products. Corporate Executive Board’s multiple surveys consisting 

of more than 7000 customers and interviews show that the long-term relationship 

between a firm and a customer depends on more than 40 variables, including price and 

trust to the firms. Furthermore, for items costing more than $50, customers start to 

investigate other alternative firms, which simply indicate that, if firms cannot offer a 

competitive price they may lose their customers. (Spenner and Freeman (2012)). 

Although lead time and price quotation is important for the firms, there is still 

uncertainty about what should be the level of information revealed through quoted lead 

times and how should be a product or service priced. Often due to work congestion, 

quoted lead time and realized lead time differ from each other and this difference may 

negatively affect the credibility of the firm. While a shorter lead time attracts more 

customers, due to firms’ capacity constraints it might not always be possible to adhere 

to the announced lead time. A longer lead time, on the other hand, might cause losing 

the customers and thus losing profit in a competitive market. The lead time and price 
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quotation problem becomes more complex in the existence of heterogeneous 

customers. Customers may be either sensitive to delivery time or price or be sensitive 

to both. Firms should be well aware of the customer sensitivities to increase their 

chance to attract more customers.  

Companies’ may prefer static quotations or dynamic quotations (Zhang (2015)). Static 

quotations correspond to the case in which the lead time and price are pre-determined 

and fixed. For instance, some firms choose to offer price/lead time menus to attract 

both lead time sensitive and price sensitive customers. The basic idea is to offer longer 

lead times with lower prices and shorter lead times with higher prices. Dell, Roadway 

Express, Consolidated Freightways and Amazon are some firms that offer menus. 

Some firms prefer to promise a uniform lead-time guarantee to its customers. For 

instance, Domino Pizza guarantees 30 minute delivery, Federal Express, Ameritrade, 

an online trading market, promise to provide the service/product within a guaranteed 

time and accept to pay penalties if they cannot meet their promises (Boyacı and Ray 

(2003) and So (2000)).  

Dynamic quotations correspond to announcements that might change dynamically 

over time, depending on some system state. Each arriving customer can possibly be 

announced a different lead time and price. For instance, call centers choose either to 

share the number of customers in the queue or directly provide the estimated waiting 

time based on the current number of customers. In many queues, such as banks’, 

hotels’, and amusement parks’ queues, customer waiting positions are represented by 

ticket numbers where customers estimate their waiting time based on the number on 

the ticket. In a similar fashion, many hotels, airways, and telecommunication 

companies prefer to price their services dynamically to maximize their capacity 

utilization.  

Both quotation modes have advantages and disadvantages. Based on the market 

conditions, customer sensitivities, firms’ operational constraints one approach may 

outperform the other one. Under static quotation mode, since all customers are 

announced the same lead time and price, firms do not even have to keep track of 
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detailed information about the system state. However, some customers might consider 

the announced lead time and/or price high and choose to leave the system. Firms do 

not have much flexibility to attract these customers. Under dynamic quotation mode, 

firms have to make some investments to gather detailed information on real-time state 

of the system. While under dynamic quotation costly investments may be required and 

operational complexities might increase, lead-time announcements become more 

precise, which might be preferable by the customers.  

 

For the pricing problem, static pricing might be preferable since it does not require the 

update of the prices. Also, static pricing might increase the credibility of the firms 

because it ensures that all the arriving customers are proposed the same price.  

However, static pricing does not take demand fluctuations, market conditions and 

future available costs into consideration. Firms might not always estimate the right 

price; announced price may be considered high by the customers and cause customer 

lose, or price may be lower than customers’ willingness to pay and firms might not 

incur the highest possible profits. Dynamic pricing provides adjusting prices based on 

time and fluctuating demand. It allows maximizing profits with each customer. 

However, customers might realize that they pay higher prices than the others and this 

might cause customer dissatisfaction. Firms should provide the trust that they fairly 

quote prices.  

 

In real market conditions, we do not only observe static lead time with static pricing 

or dynamic lead time with dynamic pricing. Some firms prefer to adopt mixed 

strategies such as dynamic lead time with fixed price. For instance, McDonald’s follow 

a fixed price/variable lead time policy; lead time varies according to demand rates. 

(Webster 2002)).  Flight ticket sells can also be considered as an example of mixed 

strategy. For a given departure date and time (fixed lead time), different prices are 

proposed to the customers. Mixed approaches might be better for the firms since they 

are able to choose the most preferred scheme for lead time and the most preferred 

pricing scheme.  
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The existence of too many alternatives makes the decision of lead time and price 

announcement mode more difficult. The important point is to well analyze the 

conditions and understand which policies are better under which circumstances. The 

selection of these policies is important both in manufacturing and service systems. 

While lead time quotation is valid for manufacturing context, delay information is a 

valid term for service systems. In this thesis, we use delay information and lead time 

quotation interchangeably, since all the models provided in this thesis are applicable 

in both systems.  

 

This study investigates how much information regarding the delay should be revealed 

to the customers and how a service provider should quote prices. The amount of 

information revealed to the customers affect the customer’s purchasing decision, and 

to maximize profit the service provider must take customer response into 

consideration. For both price and delay announcement we define quotation schemes 

with various levels of “informativeness”.  

 

When announcing the delays, if customers are informed about the details regarding the 

customers waiting in the system, this corresponds to an informative scheme. In 

contrast, service provider may prefer to reveal minimal information regarding the 

delays, and this would correspond to a less informative delay announcement scheme. 

If the price is quoted based on real-time status of the system (e.g. congestion in the 

system), this corresponds to a more informative price quotation scheme. In contrast, if 

prices are static with respect to the system status, this corresponds to a less informative 

scheme. 

 

To understand the impact of quotation schemes with various levels of informativeness 

on profit, and find out about the interplay between price and delay announcements, we 

specifically define the following 2 schemes for pricing: (1) static pricing, and (2) 

dynamic pricing, and 3 schemes for delay announcement: (1) No information, (2) 

Partial information, (3) Full information. Overall, the profit of service provider is 

compared under 6 schemes. Furthermore, we assume that (1) the service provider 

might have perfect information regarding the system status, but may be selective in 
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revealing the information to the customers (asymmetric information case), or (2) might 

have exactly the same information level that the customers have, and reveals whatever 

information he has (symmetric information). In total, we study 12 scenarios. 

 

We compare these scenarios and through analytical results and numerical analysis 

identify the conditions that make specific delay information or pricing scheme 

preferable. We also analyze the impact of information asymmetry on the preference of 

the service provider.  As provided in Chapter 6, we consider pricing schemes with 

varying levels of price flexibility and assume customers are differently sensitive to the 

precision of the delay announcement.  

 

The outline of the study is as follows. In Chapter 2, we first provide the related 

literature. In Chapter 3, we introduce modeling assumptions for the service system and 

explain service provider’s and customers problem, seperately. Models under 

symmetric information and under asymmetric information cases are described in 

Chapter 4 and Chapter 5, respectively. In Chapter 6, findings upon computational 

analysis are discussed. In Chapter 7, general remarks are made and future research 

directions are discussed. 

 

 

 

 

 

 

 

 

 

 

5



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6



CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

We study different levels of delay information sharing and different pricing schemes, 

and the optimal policy in the presence of delay- and price-sensitive customers. Our 

research relates to three main streams of past research: (i) those on delay information 

sharing schemes, (ii) those on pricing schemes and (iii) those that jointly address delay 

and price quotation decisions under a given information and pricing scheme.  

 

2.1 Delay Information Sharing Schemes 

 

Delay information sharing might be viewed within supply chain information sharing. 

In the absence of information asymmetry, chain may become more coordinated. Papers 

by Güllü (1997), Gavirneni et al. (1999), Cachon and Fisher (2000), Smichi-Levi and 

Zhao (2003), Tian and Pan (2008) analyze the effect of downstream demand 

information sharing with the upstream, on upstream profits, or on total chain cost. 

Swaminathan et al. (1995), Chen and Yu (2005), Dobson and Pinker (2006), Choi et 

al. (2008), Bendre and Nielsen (2013) on the other hand, consider settings where 

upstream information such as capacity, quality or location in the transportation stage 

is shared with the downstream. Chen and Yu (2005) investigate the benefit to the 

downstream. Dobson and Pinker (2006), and Choi et al. (2008), investigate the benefit 

to the upstream. Swaminathan et al. (1995) and Bendre and Nielsen (2012) consider 

the benefit to the overall system. In our paper, we consider a setting where the upstream 

shares wait time information with the downstream. The upstream decides on how 

much information to reveal to the downstream, and how the revelation scheme affects 

the profitability of the upstream. 
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There exists a vein of past literature on service systems that incorporates the effect of 

delay announcements on customer behavior. Guo and Zipkin (2007) study three 

schemes of delay information sharing: no information partial information and full 

information. The system is modeled as a single-server M/M/1 queue. Each customer 

is assumed to have his own utility function which equals a reward for having the 

service minus a waiting cost. Waiting cost depends on a customer specific function. 

Service provider announces each arriving customer a delay and based on utility 

function customers choose either to enter or leave the system.  

 

Under no information all customers receive the same information. Under partial 

information, the provider tells the customer, the occupancy of the system as an arrival 

occurs. The customer either chooses to stay or balk after computing his utility function. 

Under full information, the provider tells the customers the exact waiting time. The 

authors compare scenarios in terms of throughput and utility of customers. Comparison 

of no information and partial information shows that more information improves at 

least one party but it is not clear whether the provider or the customers receive the 

benefit. With more information, average utility always increases but based on the cost 

scale distribution, the throughput may or may not increase. The same observation is 

also valid for the comparison between no information and full information scenarios. 

Comparison between partial and full information shows that if the cumulative 

distribution function of customer-type parameter is power distribution then more 

information increases throughput and the average utility. The authors claim that the 

shape of cost distribution may change the observations and the results are sensitive to 

modeling assumptions.  

 

Guo and Zipkin (2009) extend the study to the case where the service time has a phase-

type distribution. The authors propose two different queue models with different types 

of delay information at the existence of balking behavior. The first model is called 

partial information and the other one is called phase information. Both models are 

studied as M/M/1 and for both models FCFS discipline is assumed. In this paper, also 

customers are assumed to choose to stay or balk based on their own utility function. 

Under the first model each arriving customer learns the system occupancy in terms of 
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intervals. Therefore, customers are announced an approximation for the range of the 

current length. Under the second model, the service provider informs each customer 

about the remaining number of the phases in the system. It is assumed that for each 

customer’s service time K random number of phases exist. The number of phases is 

geometrically distributed and those phases have independent and identical exponential 

distributions. The statistic of remaining number of phases behaves as a continuous-

time Markov chain. By deriving and solving balance equations the system performance 

measures are observed.  Guo and Zipkin (2009) compare the two models in terms of 

customer and server utility. The authors claim that for both models announcing delay 

information more accurately may or may not be beneficial for the server and/or the 

customers. If customers are heterogeneous, the server benefits more from providing 

accurate delay information. If information benefits the server, the ratio of the average 

utility obtained from more information is greater than the ratio of their idle 

probabilities.  

 

Whitt (1999) considers a call center where customers are announced delays under 

different announcement schemes. The author proposes two models which both are 

modeled as birth-and-death (BD) stochastic process. For both models FCFS service 

discipline is adopted.  The first model represents the case which no delay information 

is provided to customers. Customers just learn whether they can immediately have 

service or not. The author regards this model as the traditional BD to describe 

performance when customers have opportunity to balk or renege from the system. It is 

assumed that, the customer waits until his delay threshold, and then reneges if service 

has not yet been provided. The second model represents the case where servers inform 

customers about anticipated delays or provide state information so that arriving 

customers compute an expected waiting time. In the second model, all reneging is 

replaced by balking. Authors explain this observation as because customers are aware 

of their expectations they always respond to additional information. When all servers 

are busy instead of reneging state-dependent balking.is observed. Once customers join 

the queue, customers are much more likely to remain until they begin service. Thus, 

reneging is less observed when customers understand/observe that the remaining time 

to wait is steadily declining. 
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As an alternative to the second model, Whitt (1999) introduces a BD model to 

represent state-dependent balking instead of time-dependent reneging. The author also 

deals with a variation of the second model where reneging is still observed. A general 

BD model representing state-dependent balking is defined and state-dependent 

reneging is also included. Whitt (1999) makes a stochastic comparison of models. The 

author claims that the first model produces higher throughput at the expense of having 

some customers wait without eventually receiving service. With common parameter 

tuples, the probability of receiving service of an arriving customer is very close for the 

two models. Also, the two models do not differ when all servers are busy. As the load 

increases the difference is more emphasized. Under heavy load, for both models low 

proportion of customers are served and the delays experienced by these customers are 

not large.  

 

Jouini et al. (2011) also analyze a call center with impatient customers. It is assumed 

that each arriving customer has different patience time, and it is exponentially 

distributed. The authors propose three models and this assumption is valid for all of 

them. The first model corresponds to the perfect setting where arriving customers are 

told the exact waiting time. Each arriving customer compares the announced lead time 

with his willingness to wait, and if it is less than his willingness to wait then he chooses 

to wait, if not he balks. Since the information provided is certain for this case no 

reneging behavior is observed. 

 

In the second model, the customers are not informed about delay. The authors claim 

that as uncertainty increases, the proportion of customers who are unwilling to wait 

also increases compared to the first model. The customers either choose to balk 

immediately either after they learn that all the servers are busy or after they learn that 

no information will be provided to them. If a customer does not balk then he either 

waits until his service ends or until the end of his willingness to wait which simply 

corresponds to the reneging behavior. It is assumed that once a service is provided to 

a customer he cannot renege. The authors suggest that this scenario can be modeled as 

M/M/s+M queuing system with balking. Under the third model, customers are 

announced a delay ensuring a coverage. Under this model, customers do not balk from 

10



the system due to uncertainty but as a function of announced delay. Customers may or 

may not update their patience value according to announced delay. The two cases are 

analyzed as they represent two different customer behaviors. Jouini et al. (2011) claim 

that as the announcement coverage increases reneging behavior decreases but balking 

behavior increases and more coverage may not always result in the benefit of the 

service provider. Also, a different version of the third model is introduced. Instead of 

announcing delay information with certain coverage a mean delay is announced.   

 

The authors conclude that announcements with higher reliability are more important 

when the arriving customer’s impatience is high, when system is smaller and when 

system congestion is high. Comparison of the second and the third model shows that 

under the second model, less balking but more reneging behavior is observed. As 

system size increases the performances of the two models become similar, and the 

benefit of more information decreases. Comparison between different versions of the 

third model show that if customers less frequently update their patience rate according 

to delay information, or if pooling increases, the performance of both models become 

similar.   

 

Allon et al. (2011a) consider a service system where both the service provider and the 

customers are strategic in their actions. The service provider is strategic in the way he 

provides information. He may choose to give truthful information or totally mislead 

customers about the delay which the authors define it as intentional vagueness. The 

customers are strategic in deciding whether to enter the system or balk and in the way 

they interpret the provided information. The authors model the game between the 

provider and the customers as Markov-perfect Bayesian Nash equilibrium (MPBNE). 

Their findings indicate that information improves the outcome for all the players and 

even though the information provided to customers is nonverifiable the profits of the 

firm and the average utility of the customers increase. 

 

Allon and Bassamboo (2011b) approach to delay announcement problem from a 

different perspective and investigate the timing of the delay announcement. Customers 

are either immediately or after some time informed about the announcement. The 
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effect of postponing the announcement of delay is analyzed in terms of profits and the 

utilities for the firm and the customers. The authors suggest that delaying the 

announcement improves the profit but in practice, this approach may be very costly. 

Furthermore, they suggest that under certain settings, providing delay information 

immediately may be better for the firm because immediately providing delay 

information may create credibility for the firm. An increase of the credibility of the 

firm improves not only the profits but also the customers’ overall utility. However, 

such an approach may also hurt a firm’s credibility if the firm is more sophisticated in 

its strategies.  

 

Service (or make-to-order manufacturing) systems where the server (manufacturer) 

provides varying levels of system observability can be considered in the same stream 

and are relevant to our study.  

 

Larsen (1998) studies a MTO manufacturer, where customers are either announced the 

steady-state or system state dependent delay information under a static pricing scheme. 

Both models are proposed within M/M/1 framework. When a customer arrives to the 

system, he decides to enter the system if his reward minus the sum of the price charge 

of his job and the expected waiting cost is positive. Otherwise, he immediately balks 

from the system. Assuming rewards are uniformly distributed, Larsen (1998) 

investigates how the total welfare and/or total profit changes with the reward. The 

author explains that changing the bounds of the reward means changing the 

transparency of the customers market. 

 

The author shows that if customers are announced the steady-state delay and if the 

market becomes more transparent, it not certain whether it is good or bad for the job 

shop, it depends on the parameters. For welfare optimization more transparency is 

often not beneficial. If customers are announced a system state dependent delay, for 

profit optimization again the transparency seems to be beneficial for the job shop but 

for the welfare optimization it is not certain whether transparency is better or not. For 

both scenarios, the optimal price for profit optimization is greater than the price for 

welfare optimization. When the range of uniform reward distribution decreases, the 
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welfare contribution also decreases and the profit contribution either increases or 

decreases. Comparison of scenarios shows that, except for a special case, more 

information is always better.   

 

Ding et al. (2014) consider an observable queue with a single server where customers 

are not directly announced a waiting time, but provided a ticket number which 

represents waiting positions. Customers may always observe the system state and may 

renege at any time. The tendency to renege is assumed to be dynamically dependent 

on difference between the ticket number and the number being served. The authors 

develop a procedure to be able to calculate the percentage of reneging customers 

approximately.  

 

Hassin (1986) addresses the question whether it is socially optimal to suppress 

information on the queue. If suppression is made, then customers decide on joining the 

queue on the basis of the known distribution of waiting times. Findings show that it is 

never socially optimal to suppress queue length information. 

 

Hassin (2007) extends the previous study by introducing the uncertainty on system 

parameters: service rate, the service quality, or the waiting conditions. The author 

questions whether the server should withhold these parameters from customers or 

inform them about the realized parameters of random variables. Additionally he 

investigates whether the server should set a priori or a posteriori price for the service. 

For uncertain service rate, µ, informing customers and adopting dynamic pricing yield 

either a greater or equal profit compared to profit when customers are informed and 

quoted a single price. Giving no information yields lower profit compared to the case 

where information is provided. As the uncertainty of µ increases, the difference 

between the profits obtained under informative and uninformative cases increases, and 

the server’s objective differs from the social welfare. For uncertain waiting cost, C, if 

waiting cost is high, informing customers is better. However, based on the C value 

informing customer may not always increase the profits with respect to uninformative 

case. For uncertain value (quality) of service, R, if C is close to 0 and the server is 

restricted to a single price, he is motivated to conceal the realized value of R from the 
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customers. Under informative case, and in the existence of two prices, profits increase 

as the uncertainty increases. If there is a single price, profits initially decrease as a 

function of variance and there is a profit increase only for larger variance. 

 

Shone et al. (2013) study an M/M/1 queue where the queue is either observable or not 

by the customers. There are two types of customers, selfish and altruistic. The models 

are compared in terms of system properties and performance measures under two 

different types of optimal customer behaviors which the authors call selfishly optimal 

and social optimal. Findings indicate that revealing or suppressing the information on 

the queue length may or may not affect the joining rate, and it depends on the input 

parameters and the type of the customer.  

 

Dobson and Pinker (2006) investigates the effect of level of delay information on a 

firm. The authors introduce a firm which has possibility to provide customers the 

estimates of lead time based on the number of customers in the queue. This firm is 

compared with the one that provides the same lead time to all its customers, based on 

the long run lead time averages. These two levels of information correspond to two 

different models. For both scenarios it is assumed that customers decide to make a 

request based on the announced lead time. If quoted lead time is higher than their 

willingness to wait, they depart from the system, if not then they submit their request. 

Customers have different willingness to wait. The scenarios are compared in terms of 

the firms’ throughput. 

 

In the first scenario because all the customers are quoted the lead time based on past 

averages, there is a single request submission and thus the system is regarded as an 

M/M/1 queue. In the second scenario, the firm announces customers the state-

dependent lead time which is provided based on the number of requests in the queue. 

The system can be characterized as a birth-death process. The authors show that 

announcing lead time based on the queue length may increase throughput and decrease 

the waiting time of customers. However, the benefit of sharing lead time information 

is dependent on the shape of the demand curve. They add that there are some cases 

which the throughput decreases as a result of increased information sharing. However, 
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they suggest that in many cases providing state-dependent lead time information is 

better than the information provided based on average values. It can increase a firm’s 

throughput while reducing customer waiting times and the variance in the waiting 

time. Furthermore, a firm’s throughput tends to increase with information sharing 

when customer lead time expectations are heterogeneous, and tends to decrease when 

expectations are homogeneous.  

 

In this thesis, we study three different levels of delay information sharing, which 

simply are no information, partial information and full information. We model 

different information levels under discrete-time Markov chain.  

 

2.2 Pricing Schemes 

 

Gayon et al. (2009) study different pricing strategies for a production-inventory system 

where the supply is capacitated and the demand is fluctuating. The demand is assumed 

to be dependent on both the environment and the quoted price. The paper proposes 

three different pricing schemes; static pricing, which all the customers are assigned a 

pre-determined price, environment dependent pricing, which a price for each 

environment is assigned and dynamic pricing which the price changes based on both 

the current environment and the stock level. The objective is to find an optimal 

replenishment under each pricing policy and decide which pricing policy is better 

under which conditions.  

 

The authors claim that when demand is stationary, static pricing is nearly optimal and 

the benefit of dynamic pricing over static pricing is relatively small. If demand rate is 

fluctuating, on the other hand, then dynamic pricing significantly improves profits with 

respect to static pricing. However, because changing prices may be costly and may 

cause negative customer reactions, environment dependent pricing might be preferred. 

It is as effective as dynamic pricing when demand environment fluctuates.     

Cachon and Feldman (2010) investigate whether a firm should change its prices 

dynamically to shifts in demand or adopt static pricing. The authors study three 

different pricing schemes, namely static pricing, dynamic pricing and a scheme that 
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combines static and dynamic pricing which they call constrained dynamic pricing. It 

corresponds to charging a list price and if necessary, marking down the price but never 

marking up. Findings show that in the presence of strategic customers, a firm may be 

better off with static pricing than dynamic pricing if the customers’ valuation for the 

product is highly variable and constrained dynamic pricing may be better than both 

static and dynamic pricing.  

 

Koenig and Meissner (2009) compare dynamic and list pricing for a firm selling 

multiple products. The authors claim that adopting dynamic pricing may be better with 

decreasing capacity when demand is held constant. If the capacity consumption is 

uniform then again choosing dynamic pricing might be better. However, if changing 

the prices is costly or impractical, list pricing might be preferred.  

 

In this thesis, we quantify the benefit of dynamic pricing over static pricing in the 

presence of various delay information sharing schemes.  

 

 

2.3 Joint Delay and Price Quotation 

 

In this section, we mention the studies that jointly consider delay (or lead-time) 

announcement and pricing policies. Our work is distinct in that these studies do not 

address the scheme selection problem, but rather determine the optimal policy under a 

given scheme.  

 

So and Song (1998) propose a framework to analyze pricing, delivery time guarantee 

and capacity expansion in service systems. All customers are quoted the same price 

and lead-time. Such a scheme corresponds to one of the information and pricing 

scheme couples in our study which we call static pricing no information (SPNI) 

scenario. We develop further more flexible schemes as well. As in our case, So and 

Song (1998)’s model is applicable to both service and MTO manufacturing systems. 

The authors’ findings indicate that if the demand is low, then quoting a smaller 

delivery time and a lower price is optimal. If operating costs are high then announcing 
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smaller delivery time but higher price is optimal. If the firm chooses to have high 

desired service level, then it should set a larger delivery time quote but a lower price. 

Finally, if firm has high unit operating cost, it becomes more critical to decide the 

guarantee the optimal delivery time and the corresponding price.  

 

So (2000) extends the previous study to a monopolistic versus a competitive setting. 

The author indicates that if firms are homogenous than the optimal policies are the 

same with the monopolistic market structure. If firms, however, are heterogeneous 

then based on the market and firms’ characteristics, the optimal policies change. While 

a high capacity firm competes with shorter time guarantee, a firm with lower unit 

operating costs competes with lower price. If the market is time-sensitive, firms 

compete less on price but on delivery time. That is why, in such a market prices are 

higher but delivery-times are shorter. If the market is price sensitive, prices are low 

but delivery times are longer. The author claims that the firms should be aware of the 

market sensitivity and should decide on their actions based on the market structure.  

 

Palaka et al. (1998) investigates lead-time setting, capacity utilization and pricing 

decisions in the existence of lead-time sensitive customers. The authors model the 

firm’s operations as M/M/1 queue and assume that demand is a linear function of price 

and lead-time. They investigate the effects of changing parameters such as unit waiting 

cost, price and lead-time sensitivities, and etc. on a firm’s decisions. Their findings 

show that as lead-time sensitivity increases the optimal price lowers. An increase in 

unit waiting cost results in lower optimal arrival rate and lead-time announcement. If 

unit lateness penalty is low, then firm chooses to increase price in order to decrease 

arrival rate. If penalty is high, firm chooses to announce high lead-times to avoid 

penalties. In order to compensate high quoted lead-times, it drops the prices.  

 

Boyacı and Ray (2003), analyze the delivery-time and price quotation policies for a 

firm that sells two substitutable products. One of the products has a shorter delivery 

time, and the other one has a faster delivery time. The paper aims to find a delivery-

time for the faster product and the optimal prices for both of them. The authors 

consider three cases; the firm is either constrained in capacity for none, or one or both 
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products. Under the assumption that the firm has no capacity constraint, an increase in 

the guaranteed lead time for the faster product results in a linear decrease, and either a 

linear increase or decrease in optimal prices for the fast and slow products, 

respectively. If the firm has capacity cost for faster product, the optimal price is higher 

for the slower product and lower for the faster product if the market is time sensitive 

compared to no capacity constraint case. Under this scenario, if the firm has capacity 

cost for the faster product, it should reduce time differentiation and reduce/increase 

price differentiation if the marginal cost is low/high. If the firm has capacity costs for 

both products, the optimal price for the faster product is higher.  For the slower product 

it is also higher for time sensitive market compared to the case when there is no 

capacity cost. Furthermore, again compared with no capacity cost case, the demand 

for the faster product is higher and lower for the slower product.  

 

Ray and Jewkes (2004) model an operating system of a firm and its customers where 

customers are either more sensitive to delivery time or the market price. The market 

price is assumed to be dependent on the length of delivery time. The objective of the 

firm is to maximize its profits by selecting an optimal delivery time with the 

assumption that reducing delivery time requires investment and the firm must satisfy 

a pre-specified service level. The authors conclude that the behavior of firms change 

according to the sensitivity of customers.  Furthermore, if price is dependent on the 

delivery-time then firms must give more importance to the selection of optimal 

delivery time.  

 

Zhao et al. (2011) investigates price and lead time quotation modes for a firm in either 

service or MTO manufacturing industries. They propose two models which they call 

uniform quotation mode (UQM) and differentiated quotation mode (DQM). Under 

UQM, the firm offers a single lead time and price. Under DQM the firm offers a menu 

of lead times and prices for customers to choose from. Customers are assumed to be 

either lead time sensitive (LS) or price sensitive (PS). The authors analyze which 

modes are better under which conditions. Their findings indicate that if LS customers 

do not value the product more than PS customers, adopting UQM is better than DQM, 

independently from any operational costs. If LS customers value the product more, 
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however, then the firm should check delay costs of customers. If delay cost of LS 

customers is higher than the delay cost of PS customers, then DQM should not be 

adopted. Apart from the valuation of LS customers to the product, the benefit of 

quotation mode is dependent on both the firm’s operational properties and customer 

characteristics. If PS customers have positive utilities in UQM and LS customers have 

positive utilities in DQM, then a firm should not adopt DQM.  

 

Afeche and Pavlin (2016) also investigate how should a firm design a price/lead time 

menu in the existence of time sensitive customers. The aim is to maximize revenues 

under the optimal price/lead time menu. The authors model a service or MTO provider 

as an M/M/1 model and analyze the necessary and sufficient conditions in terms of 

capacity, the market size and structure of delay-cost distribution. Their finding indicate 

that for fixed capacity as arrival rate increases revenue also increases but the service 

provided to the patient customers slows down. From these customers the gained 

revenue decreases. When the capacity is low, higher lead times should be offered to 

the customers and neither pooling nor strategic delay is optimal.  If the market size is 

sufficiently large, the arrival rate is smaller than the market size then providing shorter 

lead time to the impatient and higher lead time to the patient customers is optimal.  

Furthermore, at low arrival rates pooling is not optimal since the capacity is enough to 

provide all the customers relatively shorter lead time.  

 

Ata and Olsen (2008), Çelik and Maglaras (2008), Feng et al. (2010), and Hafizoğlu 

et al. (2016) consider dynamic pricing and lead-time quotation modes in the existence 

of either delay sensitive or price sensitive customers. In the paper of Ata and Olsen 

(2009) customers are assumed to be homogenous and have nonlinear disutility for 

delay. The firm is monopolist. The dynamic policies are investigated for convex, 

concave and convex-concave lead time cost functions and proved that these are 

asymptomatically optimal. Hafızoğlu et al. (2016) consider joint dynamic lead time 

and price quotation with two customer classes. The first class is contract customers 

whose orders are always satisfied and fulfilled based on a contract price and lead time 

based on a pre-determined time horizon. The second class is spot customers who are 
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dynamically quoted a price and lead time. The dynamic quotation problem is modeled 

as an infinite Markov decision process.   

 

2.4. Positioning our study in the literature 

 

This thesis study is closest to papers of Guo and Zipkin (2007) and Dobson and Pinker 

(2006). Along with those studies, we compare several delay information schemes in 

the presence of delay-sensitive customers, to identify the conditions under which each 

delay information scheme is beneficial to the service provider. However, we enrich the 

delay information sharing problem by extending it towards several dimensions. First, 

we model the customer utility by incorporating the sensitivity of the customers to the 

delay as well as to the precision of the quoted delay. We study the problem also under 

information asymmetry, which implies that the service provider may not reveal all the 

information to the customers. Finally, we study the interplay between the pricing 

schemes and the delay information schemes. We consider dynamic pricing and static 

pricing schemes, where dynamic pricing corresponds to a more flexible scheme. 

However, it turns out that depending on the delay information scheme and the 

information asymmetry the benefit of the flexibility might be slashed. Furthermore, 

our results show that pricing scheme has a significant influence on selecting the delay 

information scheme. 
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CHAPTER 3 

 

 

THE MODELING FRAMEWORK 

 

 

 

In this chapter, in §3.1 the modeling assumptions and the framework are introduced. 

Based on the framework, the main problem is introduced both from the service 

provider’s and the customers’ point of view. While for the provider, the problem is to 

choose the right lead time and price quotation scheme and thus maximizing the profits, 

for the customers the problem is to choose either to enter the system and have the 

service or immediately balk from the system. The detailed analysis of the problem for 

the service provider and for the customers can be found in §3.1.1 and §3.1.2, 

respectively. In §3.2, the studied scenarios are introduced and briefly explained. 

 

Table 1: Notation for Chapter 3. 

 

λ probability of customer arrival in a period 

µ probability of service completion in a period 

r customer valuation of the service (service reward), r>0 

p price quoted by the service provider 

w1 the announced delay (expected waiting time) to the arriving customer 

c1(w1) a non-decreasing function of w1 

w2 

the announced precision delay (variance of the waiting time) to the arriving 

customer 

c2(w2) a non-decreasing  function of w2 

Ɵ1 

sensitivity factor indicating the sensitivity of the customer to the precision of the 

announced delay (a continuous, strictly positive random variable) 

F(x) cumulative distribution function of Ɵ1 

Ɵ2 

sensitivity factor indicating the sensitivity of the customer to the precision of the 

announced delay (a continuous, strictly positive random variable)  

H(p,w

1,w2) 

probability that an arriving customer, who is quoted p, w1 and w2, purchases the 

service 
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3.1 Description of the Model 

 

We model the system as a discrete-time stochastic process. Every period a customer 

arrival or a service completion may take place. At most one customer arrives per period 

with probability λ. In every period, a service is completed with probability µ if there 

is a customer in service. There are no limits on waiting room capacity, and a single 

server is assumed. Given this description, the system can be said to evolve following 

a discrete-time version of an M/M/1 queue and can be modeled through a discrete-

time Markov chain.  

 

3.1.1 The Service Provider’s Problem 

 

The service provider provides service to the arriving customers following a first-come-

first-served (FCFS) policy. Upon arriving, a customer may find other customers 

waiting in the queue. The arriving customer is quoted a price and announced how much 

she will wait in total (queue+her own service). This announced duration might involve 

some error and service provider also informs the customer on the precision of the 

announcement. If the customer accepts the quotes, she joins the queue, otherwise she 

leaves the system (balks).  

 

The objective of the service provider is to maximize his profit per period, where profit 

is defined as revenue minus waiting cost. It is assumed that for each time unit a 

customer is waiting in the system a unit waiting cost is incurred. Given a specific 

pricing and delay announcement scheme, the decision to be made is what price to quote 

to the arriving customers. We assume service provider always makes truthful delay 

announcements. The truthfulness is ensured by quoting the “expected value of the 

waiting time” and quoting the precision of the announcement, where we use the 

“variance of the waiting time” as a proxy for the error/precision of the announcement. 

As we will see in the following sections, under a given scenario, given that the service 

provider always provides truthful announcements, he does not make any decisions 

regarding the announcement of the expected value of delay and the precision of the 
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announced delay. The only decisions to be made are the amount of information to be 

revealed with the customers and the price quote. 

 

3.1.2  Customer’s problem 

 

Each customer receiving service gains a utility from the service, but the utility may be 

trimmed due to the price to be paid or the delay faced. If the “net” utility gained is 

negative, the customer leaves the system without entering. The utility function of a 

customer is as follows: 

 

U(p, Ɵ1,w1, Ɵ2,w2):= r - Ɵ1c1(w1)- Ɵ2 c2(w2)-p      (1) 

 

The service reward, r, is assumed same for all customers. Customers differ in their 

valuation of waiting time and have different sensitivities to precision of the announced 

waiting time. The sensitivities are expressed by the customer-type parameters Ɵ1, Ɵ2 

respectively. Actually, these parameters make the utility function customer specific.  

For the sake of simplicity, we assume Ɵ2=1. 

 

Under the no information, partial information and full information delay 

announcement schemes, customers use the service provider’s announcements on 

expected delay and the precision of the delay to evaluate their utility. Let the 

probability that an arriving customer, who is quoted p, w1 and w2, purchases the service 

be denoted with H(p,w1,w2). Given that Ɵ2=1, and that c1(w1) is a positive non-

decreasing function of w1 and c2(w2) is a positive non-decreasing function of w2, 

H(p,w1,w2) is obtained as follows: 

       

                                   H(p,w1,w2) =P (U(.)>0) 

                                                      =P (r-Ɵ1 c1(w1)-c2(w2)-p>0) 

                                                   =P (Ɵ1<
𝑟−𝑝−𝑐2(𝑤2)

𝑐1(𝑤1)
) 
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Note that whenever H(p,w1,w2)(0,1), H(.) is a monotone decreasing function of w1 

and w2.  

 

3.2. Analysis of the Scenarios  

In Figure 1, we define each delay information scheme and each pricing scheme. 

 

 

Figure 1: Detailed explanation of scenario abbreviations 

 

For the pricing, static scheme corresponds to the setting where all arriving customers 

are quoted the same price. In dynamic scheme on the other hand, each arriving 

customer may be quoted a different price depending on the status of the system. 
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For delay announcements, no information scheme corresponds to a setting where the 

current status of the system is ignored and all customers are announced the same, 

steady-state, expected delay. The precision of the announcement is measured with the 

“variance” of the delay and all similarly customers are quoted the steady state variance 

of the delay. 

 

Partial information scheme corresponds to a setting where the service provider is more 

informative regarding the delays. The announcements are made based on the number 

of customers waiting in the system. Conditioning delay announcements on the number 

of customers still leaves some uncertainty regarding the actual delay faced by the 

customers. Now, the precision of the delay is also conditioned on the number of 

customers in the system. If there are a few number of customers waiting in the system, 

the precision of expected delay would be high (variance of delay would be low), 

whereas as the number of customers in the system increase the precision would be low 

(variance would be high). 

 

Full information scheme corresponds to a setting where the service provider gives 

perfect information regarding the delays. The delay announcements are now made 

based on the actual workload in the system. This means there is no uncertainty 

regarding the actual delay, whatever is announced to the customer is exactly the 

realized delay (the realized delay is announced to the customer).  

 

We analyze each of these scenarios under the symmetric information and asymmetric 

information cases. Under symmetric information the service provider announces the 

delays in the most informative way, but may have limited information on the system 

status. Since he shares all the information he has, the service provider and the 

customers have the same level of information. Specifically, we consider the cases 

where the service provider has no information on the system status, can only observe 

the number of customers in the system, and can fully observe the remaining workload 

and any arriving customer’s workload. Under asymmetric information, the service 

provider is fully informed regarding the status of the system, in that he can fully 

observe the remaining workload and any arriving customer’s workload. However, he 
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may announce the delays to the customers based on either no information, or partial 

information, or full information scheme. Although the service provider has always full 

information customers might have less or the same level of information with the 

customers.  

 

 

Figure 2:  Explanation of scenario abbreviation reading 

In Figure 2, we explain how to read a scenario explanation. For a scenario 

abbreviation, Part XX shown in Figure 2 always corresponds to the pricing scheme. It 

might be either dynamic pricing or static pricing. While under static pricing all 

customers are quoted a fixed price, under dynamic pricing based on the service 

provider’s knowledge about the system state, prices are quoted dynamically. Notice 

that if the server provider has partial information then price quotations are made based 

on the number of customers in the system, if he has full information, however, then 

price quotations might be done based on perfect information. YY always corresponds 

to the information scheme provided to the customers. It might be either, NI, PI or FI. 

Z corresponds to the information symmetry. Z might be either “s” or “a” which show 

symmetric or asymmetric cases, respectively. Notice that if information is symmetric 

then it can be considered that the service provider has YY amount of information; 

either he has no information (NI), or partial information (PI) or full information (FI). 

If information is asymmetric, then the service provider has full information, 

independently from the information level provided to customers.  

We specify the decisions of the service provider and the response of the customers 

under each of the 12 scenarios. In Chapter 4, we first study the scenarios under 
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symmetric information (6 scenarios) and then in Chapter 5, we move on to the case of 

asymmetric information (6 scenarios). 
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CHAPTER 4 

 

 

SYMMETRIC INFORMATION 

 

 

 

Under symmetric information the service provider is assumed to have no, partial and 

full information regarding system status, respectively. Provider makes delay 

announcements considering the information regarding the system status, in the most 

informative way. We describe the models constructed under static pricing, with no, 

partial and full information delay announcement schemes in detail. We denote these 

scenarios with SPNIs, SPPIs, SPFIs, respectively. Then we model the dynamic pricing 

counterparts, which we denote with DPNIs, DPPIs, and DPFIs.  

 

Table 2:  Additional Notation for Chapter 4. 

 

Xn System state defining the number of customers in the system in period n 

πi  Steady-state probability of being in state i 

 Traffic intensity /server utilization,  = 
𝜆

𝜇
 

W The total waiting time in the system of a customer arriving in steady-state 

Yi Service time of ith customer in the system 

N 

A random variable denoting the number of customers in the system including the arriving 

customer in steady-state 

E[N] 

Steady-state expected number of customers in the system (including the arriving 

customer) 

пi Profit obtained per period in the long run under scenario i 

𝑤1
𝑖  Expected waiting time when the arriving customer finds i customers in the system  

𝑤2
𝑖  Variance of waiting time when the arriving customer finds i customers in the system 

Wi 

A random variable denoting waiting time for i customers in the system (including the 

arriving customer) 

 

29



Table 2 continued 

𝑤1
(𝑤𝑜,𝑗)

 
Expected waiting time when the system workload is wo and arriving customer  
brings j amount of workload 

𝑤
2
(𝑤𝑜,𝑗)

 
Variance of waiting time when the system workload is wo and arriving 

customer brings j amount of workload 
  

WOn Total workload of the system in period n 

Yn Workload of arriving customer in period n 

bj Probability that the arriving customer brings j amount of workload 

λwo,j (p) 
Probability that an arrival with j amount of workload enters given that the 

quoted price is p, at state wo. 

λwo(p) 
Effective arrival probability to the system at state  wo given that the quoted 
price is p 

 

4.1. Static pricing under no information (SPNIs) 

 

No information symmetric scheme scenario corresponds to the case where the 

information on system state is neither known by the service provider nor 

communicated with arriving customers Each side has the same level of information. 

All arriving customers are quoted the same price p, and are announced the same 

expected waiting time in the system, w1, and the same variance of the waiting time in 

the system, w2.  Announced expected waiting time and the variance of the waiting time 

are not based on real-time information, but on long-term equilibrium.  Based on this 

information, customers choose to join or leave the system. Because all customers are 

given the same information, the probability of customers join the system becomes the 

same. 

 

Before determining w1 and w2, we derive expected waiting time and the variance of 

waiting time for a general discrete-time single server queue. Suppose the customers 

arrive to the system with probability λ and service completion occurs with probability 

with µ, where <. (For the sake of simplicity, we initially treat the case where the 

arrival rate λ is not affected by the announcements. Then, we will incorporate the effect 

of w1 and w2). We define the state of the discrete-time Markov chain as the number of 
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people in the system at period n and denote it with Xn. Then Xn{0, 1,…}. Let i denote 

the steady-state probability that there are i customers in the system. 

Lemma 1: For the discrete-time queue with parameters λ and µ, in steady-state,  

π0= 
(µ−𝜆)

µ(1−𝜆)
 and πi=

(µ−𝜆)

µ(1−𝜆)
(
𝜆(1−µ)

µ(1−𝜆)
)
𝑖

 where   i=1,2,... 

Proof.  For this chain, the transition probability function is as follows:       

P(𝑋𝑛+1 = k|𝑋𝑛 = i) =    

{
 
 

 
 
 (1 − 𝜆) + 𝜆µ                                for i = i = 0
(1 − 𝜆)(1 − µ) + 𝜆µ     for i ≠ 0 and k = i
(1 − 𝜆)µ                    for i ≠ 0 and k = i − 1
(1 − µ)𝜆                         for ∀ i and  k = i + 1
0                                                         otherwise

 

 

 

Figure 3: Transition diagram of discrete-time queue. 

 

Then flow balance equations are: 

                           π0 = [((1 − 𝜆) + 𝜆µ )] π0 + [(1 − 𝜆)µ ] π1 

                              π1 = [(1 − µ)𝜆] π0 + [(1 − 𝜆)(1 − µ) + 𝜆µ] π1 +[(1 − 𝜆)µ ] π2 

                               … 

                              πi = [(1 − µ)𝜆] πi-1 + [(1 − 𝜆)(1 − µ) + 𝜆µ] πi +[(1 − 𝜆)µ ] πi+1 

                          … 

which yield  
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πi=[
𝜆(1−µ)

µ(1−𝜆)
] πi-1 ,   i>=1, or      𝜋𝑖 = 𝑖𝜋0,   where =

𝜆(1−µ)

µ(1−𝜆)
                                                                              

Since steady-state probabilities add up to 1: ∑ 𝜋𝑖
∞
𝑖=0 = 1, π0 +     π0 +  2

 π0   + …=1. 

Then π0 = 1 − ,   and  𝜋𝑖 = (1 − ) i,    i=1, 2, …  

In order to system to reach the steady-state the following should hold [
𝜆(1−µ)

µ(1−𝜆)
  ] < 1,  

which is ensured under µ> λ . 

……………………………………………………………………………  □ 

Proposition 1. For the discrete-time queue with parameters λ and µ, in steady-state 

expected waiting time in system for a customer is  
1−𝜆

µ−𝜆
  on expectation, and the variance 

of the waiting time in the system is 
(1− µ)(1−𝜆)

(µ−𝜆)2
 .  

Proof. Note that the service time for each customer is a geometric random variable 

with parameter µ, and the expected service time for a customer is  
1

µ
. An arriving 

customer who finds i customers in the system should wait  
i

µ
   time units plus her own 

service time  
1

µ
.  We define: 

W: the total waiting time in the system of a customer, who has arrived in steady-state,  

Yi: service time of ith customer in the system i=1,2,… Note Yi’s are iid. Then, 

                                               𝑊 =      ∑ 𝑌𝑖
𝑁
𝑖=1    

where N is the random variable denoting the number of customers in the system in 

steady-state together with the arriving customer. Note N-1 ~geo (1-). Then E[N] is 

the steady-state expected number of customers including the arriving customer,: 

    

       E[N] = ∑ (𝑖 + 1)𝜋𝑖
∞
i=0 , 

     E[N] = π0 ∑ 𝑖 𝑖−1∞
i=1   .  
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Notice that ∑ 𝑖𝑖−1∞
𝑖=1   is the derivative of ∑ 𝑖∞

𝑖=0   with respect to  where  < 1. 

Therefore, ∑ 𝑖∞
𝑖=0    = 

1

1−
 and ∑ 𝑖 𝑖−1∞

𝑖=1   =
d(

1

1−
)

𝑑𝑝
 = 

1

(1−)2
 .  

Expected value of W can be obtained from Wald’s equality a                             

𝐸[𝑊] = 𝐸[𝑌]𝐸[𝑁] =
1

µ
 𝜋0

1

(1 − )2
 =  1 +

1 − µ

µ − 𝜆
 

The variance of the waiting time, W is                  

                          Var(W) = Var (∑ 𝑌𝑖
𝑁
𝑖=1 ) = Var (E[W|N)]) + E [Var(W|N)]              (2) 

   E[W|N=n] = E (∑ Yi
n
i=1  ) =E (Y1 + Y2 + Y3 + …) = 

𝑛

µ
        

  Var (E [W|N]) = Var (
N

 µ
 ) =   

1

µ2
𝑉𝑎𝑟(𝑁) = ( 

1

µ2
)

 

(1−)2
   

For the second term in Equation (2) 

Var (W|N=n) = Var (∑ 𝑌𝑖
n
𝑖=1   ) = n

1− µ

µ2
      

E[Var (W|N=n)]= E[N
1− µ

µ2
] = (

1

1−
) ( 

1−𝜇

µ2
) 

Thus,              Var(W) = 
1

µ2
  

 

(1−)2
  +  

1

1−
 
1− µ

µ2
 =

+(1− µ)(1−)

(1−)2µ
2  =

(1− µ)(1−𝜆)

(µ−𝜆)2
   

           □ 

According to quoted expected waiting time and the variance of the waiting time, 

customers either accept to purchase the service or they immediately balk from the 

system. Because not all arriving customers directly enter the system, the effective 

probability of customer arrival to the system is now: 

λe =λH(p, w1,w2) 

Therefore, λ in the expressions shown in the proof of Proposition 1 should be replaced 

by λe. The steady-state expected waiting time and the variance of the waiting time under 

λe are: 
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w1(λe) =
(1−𝜆𝑒  )

(µ−𝜆𝑒) 
 and w2(λe) = 

(1−𝜆𝑒  )(1−µ)

(µ−𝜆𝑒)
2 

  

Remark. One might ask whether expected waiting time for an arriving customer and 

the variance of waiting time can be obtained given that the service provider does not 

have any information regarding the system status. To obtain those values, a discrete-

time Markov chain (MC) with the number of customers in the system as the state, is 

defined. Note that in steady-state, it is not necessary to keep track of real-time 

information to be able to announce w1 and w2 and to determine p. As long as the 

relationship between λe and w1 and w2, is known the provider is able to determine the 

optimal static price; the assumption that the service provider needs no information on 

system status does not violate the validity of the analysis. 

Proposition 2. Under SPNIs scenario, given Ɵ1~U[a,b], Ɵ2=1,c1(w1), c2(w2) for a 

given p there exists a unique equilibrium arrival rate  and it is 0≤ 𝜆𝑒 ≤ 𝜆  . 

Proof. As λe increases, the expected waiting time in the system, w1, and the variance 

of the waiting time in the system, w2, increase. Note that c1(w1) and c2(w2) are 

monotone non-decreasing functions of w1 and w2, respectively. Therefore c1(w1) and 

c2(w2) will also remain the same or increase. The structure of H(p,w1(λe), w2(λe))  

implies that an increase in c1(w1) and c2(w2) results in the decrease of H(p,w1(λe), 

w2(λe)). We know that the effective probability of arrival is λe = λH(p,w1(λe), w2(λe)). 

Because  H(p,w1(λe), w2(λe)) is continuous in [0,1],  the domain and range of 

λH(p,w1(λe), w2(λe))  is [0, ].  Fixed Point Theorem suggests that for a continuous 

function there exists a fixed point which satisfies x=f(x). Since H(.) is non-decreasing 

in [0,1], there exists a fixed point that satisfies λe = λH(p,w1(λe), w2(λe)) which is 

unique, which we denote with λe.              

            

The objective of the service provider is to set the price, p*, that maximizes the profit 

obtained per period in the long run. We assume there is a waiting cost for the service 

provider per period. As long as there are customers waiting in the system, there is a 

penalty of customer dissatisfaction and waiting cost might be considered as this 

penalty. Notice that for the service provider it is not always better to accept all the 
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customers because as customers wait in the system the service provider has to pay 

penalty. Let waiting cost is denoted with h.  

Then the expected waiting cost is expressed as: ∑ ℎ𝑖𝜋𝑖
∞
𝑖=0  =h 



1−
  = h 

𝜆(1−µ)

µ−λ
. Let 

пSPNI(p) denote the profit obtained per period in the long run. Then  

    пSPNI= max
𝑝
{ 𝜆𝑒 𝑝 − ℎ 

𝜆𝑒(1−µ)

µ−𝜆𝑒
 }  

Proposition 3a. Let p =max
𝑝
{𝑝: 𝜆𝑒 = 𝜆} and  �̅�= min

𝑝
{𝑝: 𝜆𝑒 = 0}.  Then p is a lower 

bound on optimal price; p* and �̅� is an upper bound on p*.  

Proof. Note that H(p, w1(λe), w2(λe)) is a decreasing function of p. H(p,w1(λe), w2(λe)) 

is continuous in [0,1]. If the service provider quotes a price which is too low, due to 

the structure of H(p, w1((λe), w2(λe)) the probability of customers that join the system 

will be high. The highest value of H(p,w1(λe), w2(λe )) is 1 and there exists a p value, 

which ensures H(p, w1(λe),w2(λe)) equals to 1 and thus λe=λ. The maximum value of 

all price values, that yield H(.)=1, say p, must be a lower bound on the optimal price, 

since any price lower than p will decrease the revenue. Similar reasoning reveals, the 

minimum value of all price values that yield H(.)=0 must be an upper bound on the 

optimal price. 

 

Proposition 3b. The equilibrium effective arrival rate, e, is non-increasing in p. 

Proof. Since H is non-increasing in p, e, is non-increasing in p. 

 

Example 1. 

Suppose that for all arriving customers the value of the service is the same and equals 

to 10. The probability of a service completion in a system is; µ=0.75, arrival 

probability of a customer during a period is; λ=0.1. The service provider quotes a price; 

35



p=3. Assuming Ɵ1 is uniformly distributed between 1 and 2, Ɵ2=1 and there is no 

waiting cost, we obtain  H(p,w1,w2 ) as: 

𝐻(𝑝, 𝑤1, 𝑤2)

=

{
 
 
 
 
 
 

 
 
 
 
 
 

 

0,         
7 −

(0.75)(1 − λe)
(0.75 − λe)2

1 +
1 − λe
0.75 − λe

− 1 ≤ 0

7 −
(1 −  0.75)(1 − λe)

(0.75 − λe)2

1 +
1 − λe
0.75 − λe

− 1, 0 <
7 −

(0.75)(1 − λe)
(0.75 − λe)2

1 +
1 − λe
0.75 − λe

− 1 < 1

         1,               
7 −

(0.75)(1− λe)
(07.5 − λe)2

1 +
1 − λe
0.75 − λe

− 1 ≥ 1

 

If we solve λe= λH(𝑝,𝑤1, 𝑤2) under p=3, we obtain λe=λ=0.1. This value shows us that 

quoted price is too low compared to the reservation price and all arriving customers 

accept to purchase the product. If the quoted price increases, effective arrival rate first 

remains at value 0.1 and then decreases. Figure 4 shows the effective probability of 

arrival with respect to price 

 

 

Figure 4:  𝜆𝑒 values with respect to price from 1 to 10.  
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In accordance with Proposition 3b, we observe that 𝜆𝑒  is  a decreasing function of p. 

The service provider might choose to quote low prices to the arriving customers. As 

he quotes low prices the probability of customers to join the system is higher, but at 

the same time the profit that can be obtained is low. If the service provider chooses to 

quote higher prices the probability of customers to join the system is lower and 

although the quoted price is high, profits will possibly be low. Therefore, the service 

provider should decide an optimal price to maximize his profits.   

Figure 5 illustrates the relationship between p and the profit.  As shown below, up to 

some p value (p of Proposition 3) increasing p results in a linear increase in the profit 

(since λe=λ for p[0,p]). Increasing p beyond p may or may not increase the profit.  In 

the figure, we observe that an increase beyond p, decreases the profit. Therefore, 

quoting customers a low price or a too high price is a disadvantage for the service 

provider.         

                   

 

Figure 5: Profit as a function of the quoted price. 
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4.2 Static pricing under partial information (SPPIs) 

 

Under this scenario, the service provider only knows about the number of customers 

in the system and each arriving customer is announced a delay (expected waiting time) 

and the precision of the delay (variance of the waiting time) based on the number of 

customers in the system upon arrival.  Like SPNIs case, we assume all customers are 

quoted the same price p, but expected waiting time and the variance of waiting time 

are customer specific, i.e., an arrival who sees i customers waiting is quoted 𝑤1
𝑖  and 

𝑤2
𝑖 .  A customer accepts price p if her utility is greater than or equal to 0. The 

probability that a customer arriving to the state i, quoted p, purchases the service is 

H(p, 𝑤1
𝑖 , 𝑤2

𝑖). Notice that for each arriving customer, the probability of purchasing the 

service may now be different depending on the system status.  Again, we define the 

system state Xn as the number of people in the system in period n. According to the 

quoted price and delay information, arrival to state i occurs with probability 𝜆𝑒
𝑖  (p)= 

λH (p, 𝑤1
𝑖 , 𝑤2

𝑖 ) where  i=0,1,2,... . We obtain 𝑤1
𝑖  and 𝑤2

𝑖  as follows.   

Let Wi be a random variable denoting time for waiting for i customers in the system 

including the arriving customer: 

𝑊𝑖 =∑Yj

i+1

j=1

 

The announced delay 𝑤1
𝑖  for an arriving customer who finds i customers in the system 

is: 

𝑤1
𝑖= E[Wi] = 

i+1

µ
 

The precision 𝑤2
𝑖   of the announced delay who finds i customers in the system is:  

                    𝑤2
𝑖 =Var (Wi)  = (𝑖 + 1)

1− µ

µ2
 

Now, the effective arrival rate is different at each state; a customer arrives with 

probability λ but effective probability of arrival at state i is: 
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𝜆𝑒
𝑖 = λH (p, 𝑤1

𝑖 , 𝑤2
𝑖 )          (3) 

As the number of customers in the system increases, the expected waiting time in the 

system increases and the precision for the announced waiting time decreases (variance 

increases). Thus the probability of accepting to purchase the service decreases as the 

number of customers waiting in the system increases. So, we expect smaller effective 

arrival rates as the number of customers waiting in the system increases.  

Proposition 4:  There exists an �̅�, such that arrival rate to state i≥ �̅̅̅�  is 0. 

Proof: As the number of people in the system increases, effective arrival rate 

decreases. This is because H(p, 𝑤1
𝑖 , 𝑤2

𝑖 ), is monotone decreasing in i. Due to the 

structure of H(.) there exists a state at which effective arrival probability is 0. Notice 

that when the number of customers in the system increases, the variance of the waiting 

time in the system increases and the probability of a customer to purchase the service 

decreases.  Similarly, as the number of customers in the system increases, the service 

provider quotes longer waiting time  (𝑤1
𝑖  increases as the number of customers in the 

system increases) and the probability of customers to purchase the service decreases. 

           

         □ 

As the arriving customers are quoted a price, p, 𝑤1
𝑖  and 𝑤2

𝑖 , they either choose to enter 

the system or immediately balk from the system. The state transition diagram of the 

corresponding DTMC is given in Figure 6.  

 

 

     Figure 6: Transition diagram for SPPIs scenario. 
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The transition probability function is expressed as follows: 

P(Xn+1 = k|Xn = i) =    

{
 
 

 
 
 (1 − 𝜆𝑒

𝑖 ) + 𝜆𝑒
𝑖 µ                                 for  i = k = 0

(1 − 𝜆𝑒
𝑖 )(1 − µ) + 𝜆𝑒

𝑖 µ          for  i ≠ 0 and k = i

 (1 − 𝜆𝑒
𝑖 )µ                            for i ≠ 0 and k = i − 1

(1 − µ)𝜆𝑒
𝑖                                        for k = i + 1
0                              otherwise 

 

Note that in (3), the effective arrival probability  𝜆𝑒
𝑖   is a function of i as well as the 

quoted price p. The objective of the service provider is to maximize his profit. 

Therefore, he should select the price p such that the profit obtained per period is 

maximized. 

пSPPI = maxp{∑ 𝜋𝑖 𝑖 𝜆𝑒
𝑖 𝑝 −  𝑖ℎ) } 

where πi’s depend on the quoted price. 

Example 2. 

Suppose that all the arriving customers has a constant reservation price; r= 10, the 

probability of a service completion in a system is; µ=0.75, arrival probability of a 

customer is; λ=0.1, Ɵ1~U[1,2] and Ɵ2=1. Assuming there is no waiting cost, we 

analyze the effect of quoting different prices on the effective arrival rate for the 

customer, who finds 2 customers in the system. Figure 7 shows 𝜆𝑒
2 values with respect 

to p values with price set  {1,2,…,10}. 
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Figure 7: 𝜆𝑒
2   values in response to p. 

 

From Figure 7 we observe that as price increases the effective arrival rate decreases. 

For high prices effective arrival rate becomes 0 which corresponds to the case that no 

customers accept to purchase the service. 

Profit per period in response to quoted prices may be observed in Figure 8. Notice that, 

as for SPNIs scenario, quoting price too low or too high may cause the service provider 

lose profit.  

 

Figure 8: Profit as a function of the quoted price. 
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4.3 Static pricing under full information (SPFIs) 

 

This scenario corresponds to the case where the service provider has full information 

regarding the state of the system. Provider is able to observe the total system workload. 

Since the information scheme is symmetric this information is fully shared with the 

arriving customer. To facilitate the analysis, we treat each arriving customer as an 

arriving workload to the system. In the corresponding Markov chain we define WOn 

as the total workload of the system in period n.  Each customer arrives to the system 

and server completes a generic job with probability µ in a period. This is equivalent to 

saying that, the workload brought by each customer has geometric distribution with 

parameter µ while server completes the job with probability 1 in each period. 

Depending on both the total workload of the system (WOn) and the workload of the 

arriving customers in period n (Yn) the service provider is able to observe the total 

workload and he announces the exact waiting time. Notice that previously we defined 

Yi as the time for waiting time for just the service of ith customer in the system. 

Actually, Yi and Yn are independent and identically distributed random variables. 

Under SPFIs, an arriving customer, who finds a workload of wo and brings a workload 

of j will be announced 𝑤1
(𝑤𝑜,𝑗)

 =wo+j. The expected waiting time is simply the current 

workload in the system. Since there does not exist any uncertainty inherent in this 

announcement, 𝑤2
(𝑤𝑜,𝑗)

 will be 0. Then we may define the probability of a customer to 

purchase the service as  

H(p, 𝑤1
(𝑤𝑜,𝑗)

 , 𝑤2
(𝑤𝑜,𝑗)

). 

We observe that the probability of customers to purchase the service decreases as the 

total workload of the system increases. In order to maximize the steady-state expected 

profit per period, the service provider must determine a static price to quote to all 

arriving customers. In order to find the price, the effect of a quoted price on the steady 

state probabilities should be analyzed. We determine the effective arrival rate, at each 

state, where state is defined as the total workload in the system. Let: 
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WOn: total workload of the system at period n. WOn  {0,1, 2,..} 

bj: probability that the arriving customer brings workload j, bj =P(Yn=j) =(1-µ)j-1 µ, 

j=1,2,3.., 

λwo,j (p): the probability that an arrival with j amount of workload enters if the quoted 

price is p,  at state wo=0,1,.. j=1, 2,… 

                 λwo,j(p) =λbj H(p,wo+j

λwo(p): effective arrival probability to the system at state is wo given that the quoted 

price is p,  

    λwo(p) = ∑ 𝜆𝑤𝑜,𝑗
∞
𝑗=1  (p)     

We may think λwo,j’s as the effective arrival probability of j amount of workload. We 

may introduce the transition probabilities as follows: 

 

 

𝑃(𝑊𝑂𝑛+1 = 𝑤𝑜2|𝑊𝑂𝑛 = 𝑤𝑜1)  

= {

λ(p)b𝑤𝑜2−𝑤𝑜1+1𝐻(𝑝, 𝑤𝑜2 + 1  ,0)     for 𝑤𝑜2  ≥ 𝑤𝑜1 ,wo1 = 1, . . or 𝑤𝑜2 = 0,𝑤𝑜2 > 0 

(1 − λ𝑤𝑜2(𝑝) ) + 𝜆𝑏1𝐻(𝑝, 1  ,0)                                      for 𝑤𝑜1 = 𝑤𝑜2 = 0
(1 − λ𝑤𝑜2(𝑝) )                                                 for 𝑤𝑜1  ≠ 0,𝑤𝑜2 = 𝑤𝑜1 − 1

0                                               otherwise

 

In the following, we show part of the transition diagram (in fact in each state infinitely 

many number of arcs should leave) 
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Figure 9: Transition diagram for SPFI scenario. 

 

The steady state values may be directly found from flow balance equations.  Let 𝜋𝑤𝑜  

denote the steady-state probability that workload is wo. The steady-state profit per 

period is expressed as follows:                                                                                                                          

п𝑆𝑃𝐹𝐼 = 𝑚𝑎𝑥𝑝 {∑ 𝜋𝑤𝑜(𝑆𝑃𝐹𝐼, 𝑝)𝑤𝑜 (∑ 𝜆𝑤𝑜,𝑗(𝑝)(𝑝 − ℎ(𝑤𝑜 + 𝑗 − 1))𝑗 } 

Example 3. 

Suppose for a system the customers’ arrival probability is; λ=0.1, for each arriving 

customer the reservation price; r=10, the probability of service completion; µ=0.75, 

Ɵ1~U[1,2], Ɵ2=1 and there is no waiting cost. For a customer who brings 2 units of 

workload and already finds 2 units of system workload, we calculate the probability 

of entrance of this customer to the system; λ22(p) with respect to quoted prices. Notice 

that, since the workload of the arriving customer is 2 and finds 2 units of workload to 

be completed, the customer will be announced 4 units of waiting time. Figure 10 shows 

λ22(p) values with respect  to p value. As the quoted prices increase, we observe that 

the probability of customer to purchase the service decreases. Although we illustrate 

the example for λ22(p) the relationship is valid for all λij(p) values.  
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Figure 10:  λ22(p) values in response to p 

 

Again, as for the other SPs scenarios, we observe that up to a price threshold, the server 

is able to increase his profits. There is a peak price point where the service provider 

maximizes his profits, and prices higher than the threshold just decreases the profit 

that the server can obtain.   
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 Figure 11: Profit with respect to price  

 

4.4 Dynamic pricing under no information (DPNIs) 

 

The scenario corresponds to the case where each arriving customer is announced the 

same w1 and the same w2. Since the service provider has the same amount of 

knowledge with the customers and each arriving customer is announced the same lead-

time information, the prices that should be quoted to each customer should be the same. 

This implies that DPNIs scenario is equivalent to SPNIs scenario.  

 

4.5 Dynamic pricing under partial information (DPPIs) 

 

Under this scenario, the service provider can only have information regarding the 

number of customers in the system and makes delay announcement that fully reveals 

this information. Service provider may quote different prices to customers depending 

on the system state. Therefore, the probability of a customer to purchase the service 

may not vary solely due to the announced delay and its precision anymore, but also 

due to the quoted price.  As in the other scenarios, the aim of the service provider is to 

maximize his profit per period. We model service provider’s problem through 

stochastic dynamic programming. We consider the quotation of prices as the possible 

actions.  

Defining v(i) as the bias function under optimal policy and g as the expected gain per 

period under the expected average reward criteria the optimality equation is: 

v(i)+g = 
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{
 
 

 
 

max
p∈P

 { 𝜆𝑒
𝑖 (p)𝑝 − 𝑖ℎ + 𝜆𝑒

𝑖 (𝑝)µ v(𝑖) + 𝜆𝑒
𝑖 (𝑝)(1 − µ)v (𝑖 + 1) +

(1 − 𝜆𝑒
𝑖 (𝑝))µv (𝑖 − 1)   + (1 − 𝜆𝑒

𝑖 (𝑝)) (1 − µ)v(𝑖)} , 𝑖 ≠ 0

max
p∈P

{ 𝜆𝑒
𝑖 (𝑝)𝑝 −  𝑖ℎ + 𝜆𝑒

𝑖  (𝑝)µ v(𝑖) + 𝜆𝑒
𝑖 (𝑝) (1 − µ)v  (𝑖 + 1) + (1 − 𝜆𝑒

𝑖 (𝑝))v(𝑖)} , 𝑖 = 0

 

 

The transition probabilities under price p are as follows: 

P(k|i,p)=    

{
 
 
 

 
 
  𝜆𝑒

𝑖 (𝑝)µ + (1 − 𝜆𝑒
𝑖 (𝑝))   for i = k = 0 

𝜆𝑒
𝑖 (𝑝)µ + (1 − 𝜆𝑒

𝑖 (𝑝)) (1 − µ)  for i ≠ 0 and k = i

𝜆𝑒
𝑖 (𝑝)(1 − µ) for i ≥ 0 and k = i + 1

(1 − 𝜆𝑒
𝑖 (𝑝))µ  for i ≠ 0 and k = i − 1

0 otherwise
 

 

The single stage expected reward function:  

 r(i, p) = 𝜆𝑒
𝑖 (𝑝)𝑝 − 𝑖ℎ    , i≥0 

Notice that our model satisfies the conditions for the application of MDP. 

Although system state goes to infinity, we observe that at some system state 

customers start to not to accept to join the system and therefore there exists a 

state that the system state will not go after. For all the scenarios, this observation 

is valid which implies that for all DP models, conditions for the use of MDP are 

satisfied.  

Example 4. 

Consider a system where the customers’ arrival probability is λ=0.1, the service 

completion probability is µ=0.75. Assuming there is no waiting cost, all customers are 

partially informed about the delay, we observe the following pricing quotations with 

respect to the number of customers in the system: 
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Table 3: The quoted prices with respect to the number of customers in the system 

(excluding the arriving customer) 

 

Number of customers in the system  0 1 2 3 4 

Quoted prices to the customers 5 3 2 1 10 

 

As observed from Table 3, as the number of customers in the system increases the 

service provider chooses to quote lower prices to the arriving customers. This is 

because; as the number of customers in the system increases the service provider 

announces higher expected waiting times. If he, at the same time, quotes higher prices, 

the probability of customers to join the system becomes too low and thus the provider’s 

expected profit significantly decreases. After some point, however, the provider 

chooses to quote the higher prices and reject the customers. By rejecting an arriving 

customer the provider tries to keep the system state at some level and thus be always 

able to announce short waiting time.   

 

4.6 Dynamic pricing under full information (DPFIs) 

 

In this scenario, the service provider has perfect information regarding the workload 

in the system and reveals this information fully to the customers. Workload 

corresponds to the service time. Arriving customers are quoted a price and because the 

exact workload is known by the service provider, customers are announced the exact 

waiting time. As in the SPFI scenario, we consider each arriving customer as a 

workload and the workload brought by each customer is geometrically distributed with 

parameter µ.  Defining (WOn, Yn) as the total workload of the system in period n and 

the workload brought by the arriving customer, we again resort to MDP to solve 

service provider’s problem and introduce the recursive function.   

v(w0,j)+g= 
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{
 
 
 
 

 
 
 
 

𝑚𝑎𝑥𝑝𝜀𝑃{H(p,wo + j, 0)(p − h(wo + j − 1)) +

H(p,wo + j, 0)∑ λb(k)v (wo + j − 1, k)∞
k=1

+  

H(p, wo + j, 0)(1 − λ)v (wo + j − 1, 0) +

(1 − H(p,wo + j, 0))∑ λb(k)v ((wo − 1)+, k)∞
k=1

    

+(1 − H(p,wo + j, 0))(1 − λ)v ((wo− 1)+, 0)}   if  wo ≥ 0,   j ≠ 0 

𝑚𝑎𝑥𝑝𝜀𝑃{H(p,wo + j, 0)(p − h(wo + j − 1)) +

∑ λb(k)v ((wo − 1)+, k) + (1 − λ)v ((wo − 1)+, 0)∞
k=1 }   if   wo ≥ 0,   j = 0

 

                              (4) 

where g and v(wo,j) denote the optimal gain and bias functions, respectively. 

The expected reward is: 

r(wo, j , p) = {
H(p, 𝑤𝑜 + 𝑗, 0)(p − ℎ(𝑤𝑜 + 𝑗 − 1))      if 𝑗 > 0

0                                     if 𝑗 = 0
   

Based on  Equation (4) we have the following transition probabilities: 

P(Wn+1=𝑤𝑜2, Yn+1=𝑗2| Wn=𝑤𝑜1, Yn=𝑗1, p )  

=

{
 
 
 
 

 
 
 
 

(1 − H(p,𝑤𝑜1 + 𝑗1, 0))λb(𝑗2)       for  𝑗1 ≠ 0,𝑤𝑜2 = (𝑤𝑜1 − 1)
+ , 𝑗2 ≠ 0 

(1 − H(p,𝑤𝑜1 + 𝑗1, 0)(1 −  λ)          for  𝑗1 ≠ 0,𝑤𝑜2 = (𝑤𝑜1 − 1)
+, 𝑗2 = 0

λb(𝑗2)                                                for  𝑗1 = 0,𝑤𝑜2 = (𝑤𝑜1 − 1)
+, 𝑗2 ≠ 0 

(1 −  λ)                                                  for 𝑗1 = 0,𝑤𝑜2 = (𝑤𝑜1 − 1)
+, 𝑗2 = 0

H(p,𝑤𝑜1 + 𝑗1, 0)λb(𝑗2)                     for   𝑗1 ≠ 0,𝑤𝑜2 = 𝑤𝑜1 + 𝑗1 − 1, 𝑗2 ≠ 0

H(p,𝑤𝑜1 + 𝑗1, 0)(1 − λ)                         for    𝑗1 ≠ 0,𝑤𝑜2 = 𝑤𝑜1 + 𝑗1 − 1, 𝑗2 = 0
  
  

 

Example 5. 

Suppose we have a system such that the customers’ arrival probability is λ=0.1, the 

probability of service completion is µ=0.75 and the reservation price for all the arriving 

customers is 10. Assuming there is no waiting cost, and customers are announced the 

exact waiting time, the quoted prices with respect to system state is provided in Table 

4:   

 

Table 4:  The quoted prices with respect to arriving workload and system workload. 
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From Table 4 we observe that the service provider chooses to quote lower prices as 

the arriving workload amount increases. However, this decrease continues up to some 

level. After this level, making comment on the policy of price quotation becomes 

difficult. We are not able to observe a monotonic behavior for the price quotation. 

However, we can conclude that for the two customers that bring the same amount of 

workload, the provider often quotes lower price to the customer that arrives to a more 

crowded system and higher price to the other customer that arrives to a relatively 

empty system. If both the system workload and the arriving workload are high, on the 

other hand, the provider chooses to quote a higher price and rejects the arriving 

customer. 

 

 

 

 

 

 

 

       Arriving workload 
       (Yn) 

System  
Workload (WOn) 

1 2 3 4 5 6 7 8 9 10 

0 8 6 4 4 3 3 8 4 4 6 

1 6 4 4 3 3 7 9 5 8 9 

3 3 3 3 4 4 4 10 10 10 6 

5 2 2 10 10 10 10 10 10 10 10 
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CHAPTER 5  

 

 

ASYMMETRIC INFORMATION 

 

 

 

In this setting, the service provider has perfect information and chooses the amount of 

information to reveal to the customers. The information is revealed in the form of delay 

announcements (w1) and the precision of the delay (w2). 

 

5.1 Static pricing no information is revealed (SPNIa) 

 

Under this scenario, we assume the service provider has perfect information regarding 

the system status but all arriving customers are announced the same delay and 

precision of delay. We present the following property.  

Conjecture 1. The scenarios SPNIa and SPNIs are equivalent. In other words, if 

customers are not revealed delay information, then the service provider is indifferent 

between having no and perfect information on system status. Additional information 

does not any benefit to the provider. 

Given that the prices under both systems are identical, in steady-state an arriving 

customer to either system will face a waiting time which has the same distribution. 

This implies, if all customers are to be quoted the same expected waiting time and the 

precision, those announcements must be the same under SPNIa and SPNIs.   
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Note that the results can be extended to the case where service provider has partial 

information regarding system status but reveals no information to the customers. 

Again, in that case whether the service provider has partial information on system 

status or no information would not make any difference in terms of customer response. 

Since in steady-state SPNIa and SPNIs are equivalent, we adopt the model of SPNIs 

for this scenario. 

 

5.2 Static pricing partial information (SPPIa) 

 

The service provider has perfect information and decides to reveal partial information 

to the customers. A customer is announced the delay and the precision of the delay 

based on the number of customers in the system. Similar to the result in Conjecture 1, 

because static pricing policy is adopted, extra information known by the service 

provider makes no difference on the profit. All customers are quoted the same price 

and customers choose to accept to purchase the service based on the announced delay 

(expected waiting time) and the precision of delay (the variance of the waiting time). 

Therefore, the model is equivalent to the SPPIs.   

 

5.3 Static pricing full information (SPFIa)  

 

The service provider has perfect information and all the customers are announced the 

exact waiting time. Therefore, by definition SPFIa and SPFIs are equivalent models.  

 

 

5.4 Dynamic pricing under no information (DPNIa) 
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This scenario corresponds to the case which the service provider has perfect 

information about the total system workload, but all customers are announced the same 

delay (expected waiting time) and the precision of the delay (variance of delay). 

According to the system state price quotations to each arriving customer might differ. 

Defining the system state as (Won, Yn) (the system workload, the workload of the 

arriving customer), the following are introduced:  

w1: announced delay (steady-state expected system workload) to the arriving customer  

w2: announced precision of delay (steady-state variance of system workload 

announced to the arriving customer)  

w1=∑ ∑ (𝑤𝑜 + 𝑗)π(𝑤𝑜, 𝑗)(a)𝑗=0wo=0                     (5) 

w2= ∑ ∑ (𝑤𝑜 + 𝑗)2π(𝑤𝑜, 𝑗)(a)𝑗=0𝑤𝑜=0  -w1
2       (6) 

From (5) and (6), it may be observed that the steady-state delay information depend 

on the quoted prices. As the service provider quotes a different price to each state we 

solve the service provider’s problem by MDP and introduce the following optimality 

equation.  

{
 
 
 
 

 
 
 
 

𝑚𝑎𝑥𝑝𝜀𝑃{H(p,w1, w2)(p − h(wo + j − 1)) +

H(p, w1, w2)∑ λb(k)v (wo + j − 1, k)∞
k=1

+  

H(p,w1, w2)(1 − λ)v (wo + j − 1, 0) +

(1 − H(p,w1, w2))∑ λb(k)v ((wo− 1)+, k)∞
k=1

    

+(1 − H(p, w1, w2))(1 − λ)v ((wo − 1)
+, 0)}   if  wo ≥ 0,   j ≠ 0 

𝑚𝑎𝑥𝑝𝜀𝑃{H(p,w1, w2)(p − h(wo + j − 1)) +

∑ λb(k)v ((wo − 1)+, k) + (1 − λ)v ((wo − 1)+, 0)∞
k=1 }   if   wo ≥ 0,   j = 0

 

      (7) 

subject to Equation (5) and Equation (6). 

As prices are quoted dynamically, it is challenging to calculate the steady-state delay 

information and thus solve the above optimality equation. In order to find the steady-

state expected waiting time and the steady-state variance of the waiting time in the 

system and thus be able to solve MDP defined in (7) we propose the following 

algorithm.  

53



The algorithm steps are: 

 Step 1.  Let iter=0. Assign values to w1(iter=0), and w2(iter=0). 

 Step 2. Given H(p,w1(iter),w2(iter)) solve the MDP (in Equation 4). Find the 

quoted price to each state under the corresponding optimal pricing policy. Let 

the vector of prices under the corresponding policy be denoted with �̅�(iter). If 

�̅�(iter)= �̅�(iter-1), go to Step 3. Else go to Step 4.  

 Step 3. Return the optimal expected profit. 

 Step 4. Let iter=iter+1. Using H(p,w1(iter-1),w2(iter-1)) determine steady-      

state probabilities of states and through Equations (5) and (6) determine 

w1(iter), w2(iter). Go to Step 2.       

□ 

Note that the algorithm does not guarantee to find an optimal solution. Also, there 

might be some cases that no convergence is observed.    

Example 6. 

Suppose we have a system such that the customers’ arrival probability is λ=0.1, the 

probability of service completion is µ=0.75 and the reservation price for all the arriving 

customers is 10. The service provider has perfect information but choose to announce 

the steady state expected waiting time and the precision of the waiting time and can 

quote any price from the set p={1,2,..10}. The quoted prices with respect to system 

state when waiting cost is 0.5 is provided in Table 5.  
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Table 5:  The quoted prices to customers with respect to arriving workload and 

system workload when h=0.5 

 

 

From Table 5, we observe that if there is waiting cost, for a constant arriving workload 

value, as the system workload increases the provider chooses to increase prices and 

after some point always chooses to reject customers. For a constant system workload, 

however, we cannot observe a monotonic price quotation behavior. We are not able to 

make a conclusion about the relationship between Yn and price quotations.  

                                                                                 

5.5 Dynamic pricing under partial information (DPPIa) 

 

Under this scenario, we assume the service provider has perfect knowledge about the 

system, he knows both the number of customers in the system, and the workload of 

each arriving customer. However, customers are only announced the expected waiting 

     Arriving workload 

(Yn) 

System  

Workload (Xn) 

1 2 3 4 5 6 7 8 9 10 

0 5 5 5 5 5 5 6 6 6 7 

1 5 5 5 5 5 6 6 6 7 10 

3 5 5 5 5 6 6 7 9 9 8 

5 5 5 6 6 7 8 10 10 8 8 

7 5 6 6 7 7 9 9 8 - - 

10 6 - - - - - - - - - 
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time and the variance of the expected waiting time in terms of the number of customers 

in the system. For the model we introduce the following: 

woi
n: workload of the ith customer currently in the system, woi

n >0. Note woi
n denotes 

the remaining workload of the customer currently in the service at the beginning of 

period n. 

𝑊𝑂̅̅ ̅̅ ̅n: a vector denoting workloads of customers in the system in period n (not 

including the arriving customer).  𝑊𝑂̅̅ ̅̅ ̅n =(wo1
n,wo2

n,…. 𝑤𝑜𝑋𝑛
n)  We assume 𝑊𝑂̅̅ ̅̅ ̅n is a 

vector with a dynamic dimension. When there is at least one customer, all elements of 

the vector are strictly positive. The dimension of the vector is determined by the 

number of customers in the system. If there are no customers in the system then ||𝑊𝑂̅̅ ̅̅ ̅n 

||=0 otherwise, ||𝑊𝑂̅̅ ̅̅ ̅n ||=Xn  

Note Xn is a function of workload vector 𝑊𝑂̅̅ ̅̅ ̅n, and can be directly derived from 𝑊𝑂̅̅ ̅̅ ̅̅ n. 

We explicitly include Xn in the state definition for clarity. Note that Xn+1 is either Xn-1 

or Xn, or Xn+1. 

v(𝑊𝑂̅̅ ̅̅ ̅n, j, i.): the bias function under optimal policy given that the state is (𝑊𝑂𝑛̅̅ ̅̅ ̅̅ ̅, j, 

i), Then: 

v(𝑊𝑂𝑛̅̅ ̅̅ ̅̅ , j, i.)= v((wo1
n,wo2

n,… woi
n),j, i) 

The related function can be found on pages 59 and 60 .  

 

5.6  Dynamic pricing under full information (DPFIa) 

 

Since all arriving customers are perfectly informed, the model is the equivalent of 

DPFI under the case; the service provider has the same amount of information with 

the customers. For the details you may refer to DPFIs scenario.  
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v((wo1,wo2,…woi),j,i)+g= 

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 maxpεP{ H(p,w1

i , w2
i )p − ih + H(p, w1

i , w2
i ) ∑ (λb(j2)v((wo2 , wo3 , . . woL , j), j2, i ))) +

∞

j2=1

(1 − H(p,w1
i , w2

i )) ∑(λb(j2)v ((wo2 , wo3 , . . woL ), j2, i − 1 ))

∞

j2=1

+

(1 − H(p,w1
i , w2

i ))(1 − λ)v ((wo2 , wo3 , . . woL ), 0, i − 1 )}   if  wo1 = 1  and  j > 0

maxpεP{ H(p,w1
i , w2

i )p − ih + ∑ (λb(j2)v((wo2 , wo3 , . . woL ), j2, i − 1 ))) +

∞

j2=1

(1 − λ)v((wo2 , wo3 , . . . woL ), 0, i − 1)}    if wo1 = 1  and  j = 0

maxpεP{ H(p,w1
i , w2

i )p − ih + H(p, w1
i , w2

i )∑ (λb(j2)v ((wo1 − 1,wo2 , . . woL , j ), j2, i + 1 )) + 

∞

j2=1

H(p, w1
i , w2

i )(1 − λ)v ((wo1 − 1,wo2 , . . woL , j ), 0, i + 1 ) +

(1 − H(p,w1
i , w2

i )) ∑(λb(j2)

∞

j2=1

v ((wo1 − 1,wo2 , . . , . woL ), j2, i ) +

(1 − H(p,w1
i , w2

i ))(1 − λ)v ((wo1 − 1,wo2 , . . , woL ),0, i )}   if    wo1  ≥ 2 and  j > 0

maxpεP{ H(p,w1
i , w2

i )p − ih + ∑(λb(j2)v ((wo1 − 1,wo2 , . . , . woL ), j2, i ) +

∞

j2=1

(1 − λ)v ((wo1 − 1,wo2 , . . , . woL ),0, i )} if  wo1  ≥ 2 and  j = 0                                                                                                 (8)
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Equation 8 continues: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 maxpεP{ H(p,w1

i , w2
i )p − ih + H(p,w1

i , w2
i ) ∑(λb(j2)v ((0), j2, 0 ) + H(p,w1

i , w2
i )(1 − λ)v ((0) , 0,0 ) +

∞

j2=1

(1 − H(p,w1
i , w2

i )) ∑(λb(j2)

∞

j2=1

v ((0), j2, 0) + (1 − H(p,w1
i , w2

i ))(1 − λ)v ((0),0,0)}   if    i = 0 and  j = 1

maxpεP{ H(p,w1
i , w2

i )p − ih + H(p, w1
i , w2

i )∑(λb(j2)v (j − 1, j2, 1 ) + H(p,w1
i , w2

i )(1 − λ)v ( j − 1,0,1) +

∞

j2=1

(1 − H(p,w1
i , w2

i )) ∑(λb(j2)

∞

j2=1

v ((0), j2, 0) + (1 − H(p,w1
i , w2

i ))(1 − λ)v ((0),0,0)}   if    i = 0 and  j > 1

maxpεP{ H(p,w1
i , w2

i )p − ih + ∑(λb(j2)v ((0), j2, 0 ) +

∞

j2=1

(1 − λ)v((0), 0,0)}    if i = 0  and  j = 0

 

             □ 
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CHAPTER 6 

 

 

COMPUTATIONAL ANALYSIS 

 

 

 

This section presents the results of computational study and analyzes under which 

conditions which schemes are better for the service provider. Through this analysis, 

we aim to analyze whether adopting a more or less informative scheme is better for 

the service provider. Also, we would like to quantify the benefit of dynamic pricing 

beyond static pricing. Obviously, dynamic pricing is more profitable than static 

pricing. However, the delay information scheme and information asymmetry affect 

this benefit. By analyzing symmetric and asymmetric schemes, we analyze whether 

extra information known by the service provider yields a benefit for him or not. In §6.1 

we first introduce our experimental setting. Then in §6.2.1 general observations and in 

§6.2.2 further observations related with each scenarios are provided. 

 

6.1 Experimental Setting  

We assume λ={0.1,0.2,0.3,0.4,0.5,0.6,0.7}. For all models µ is assumed to be 0.75. 

For the unit waiting cost three cases are analyzed, h={0,0.5,1}. Whenever a customer 

arrives to the system s/he is announced a waiting time w1, variance of the waiting time, 

w2, and quoted a price, p. We assume the service provider has various levels of price 

flexibility. Under low price flexibility, p={1,10}; under moderate flexibility, 

p={1,3,5,7,10}; and under high price flexibility, p={1,2,3,4,5,6,7,8,9,10}. In the 

sequel, price flexibility is abbreviated with pf, with levels 1,2 and 3, where pf=1 
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denotes the lowest flexibility level. The utility function of a customer was defined in 

Equation (1) as follows: 

U(p,,w1,w2):= r - Ɵ1c1(w1)- Ɵ2c2(w2)-p                                               (1)

      

In the equation r is assumed to be the same for all customers and set equal to 10. Ɵ1 is 

assumed to be a random variable which is uniformly distributed between 1 and 2. We 

assume customers are differently sensitive to the precision of delay. While some might 

give less importance to the quoted variance of the waiting time, for some, the variance 

of the waiting time might have more importance. We assume customers have three 

levels of sensitivity to the precision of the waiting time. In order to provide these levels 

we assume Ɵ2={0.5, 1, 2} corresponding to robust, moderately sensitive and highly 

sensitive customers. In the equation, c1(w1)=1+w1, and c2(w2)=w2. According to the 

defined parameters, the probability of customers to join the system is obtained as: 

H(p,w1,w2)=max(0;min(1;( 
r−p−Ɵ2w2

1+w1
− 1))) 

The customer sensitivity is abbreviated with cs, with levels 1,2 and 3, where cs=1 

denotes the lowest sensitivity level. 

In total, there are 7 distinct scenarios to analyze; SPNIs, SPPIs, SPFIs, DPPIs, DPFIs, 

DPNIa, DPPIa, (see sections 4 and 5) each requiring 126 instances. Due to 

computational difficulty we were not able to obtain the results for DPPIa, which leaves 

us with 6 distinct scenarios. For the asymmetric setting we base our conclusions on 

comparison of NIa and FIa.  For obtaining the optimal profit per unit time and the 

optimal policy, under static pricing an exhaustive search is made. Under dynamic 

pricing, the corresponding stochastic dynamic program is modeled as a linear program 

and GAMSv24.2.2 modeling language with CPLEX solver is used. The solution times 

were negligible. 

Notice that all the observations and results obtained in this chapter are sensitive to the 

experimental setting. The generality of the results might be investigated through 

different experimental settings. 
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6.2 Observations and Results  

 

We present the results in two parts. First, general observations are made and no 

discussion is provided since the intuition behind is relatively straightforward. Then 

specific observations along with discussions are presented.  

 

6.2.1 General Observations 

 

 Under all scenarios, as the price flexibility increases, the profit either increases 

or remains the same. 

 By Proposition 1 we know that SPNIs and SPNIa models are equivalent and 

by definition SPFIs and SPFIa models are equivalent. For this reason, under 

static pricing scheme, all observations that are made for symmetric scheme 

(in§6.2.2 ) are also valid for the asymmetric setting.  

 For any delay information sharing scheme, profit under DP is at least as high 

as the profit under SP. Under both symmetric and asymmetric settings, the gap 

between static and dynamic pricing increases as price flexibility, arrival rate 

and the amount of information increases. 

6.2.2 Further Observations  

 

Observation 1. Under static pricing and symmetric scheme when there is no waiting 

cost, for no information (NI) and partial information (PI) schemes, as customer 

sensitivity increases the profit decreases under all pricing flexibilities.  

Discussion. Under no information, the service provider announces each arriving 

customer the same steady-state expected waiting time and the variance of the waiting 

time. While, less sensitive customers give less importance to the announced variance 

of waiting time and more likely to join the system,  more sensitive customers give 
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more importance to the variance of the waiting time and are more likely to interpret 

the announced variance as high. Therefore, the probability of these customers to join 

the system is lower than less sensitive customers. That is why, as customer sensitivity 

increases, the probability of customers to join the system decreases and thus the profits 

decreases. Under partial information the provider announces the variance in terms of 

the number of customers in the system. In a similar fashion, if we compare robust and 

highly sensitive customers arriving to the same system state, more sensitive customers 

are less likely to enter the system and therefore the provider’s profit decreases as the 

customer sensitivity increases. Under full information, the service provider announces 

the exact waiting time with perfect precision and therefore customer sensitivity loses 

its effect on the profits.  

 

Observation 2. Under static pricing and symmetric scheme, when there is no waiting 

cost: 

a. Under low price flexibility, and moderate λ, and under all customer 

sensitivities, NI always yields the highest profit.  

b. Under moderate price flexibility, and high λ and customer sensitivity, FI 

outperforms the other schemes. Under moderate λ and low and moderate 

customer sensitivity, PI may outperform other schemes.  

c. Under high price flexibility, under all λ’s and customer sensitivities, FI 

outperforms the other schemes (except when λ=0.1, cs=1)  

Discussion. Under low price flexibility the service provider is not able to control 

demand effectively and no information could be the preferred scheme. For low λ, there 

is no significant difference among the schemes. Since the arrival probability is low, 

the system is often empty and the provider is able to announce short waiting time under 

all schemes. Under moderate λ and low price flexibility the provider might choose to 

use precision of information as a tool to control the demand and might prefer to lower 

the information accuracy.    
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From Observation 1, we know that as the customer sensitivity increases the profit 

under SPPIs decreases and profit under SPFIs does not change. Therefore, in the 

existence of low or moderately sensitive customers PIs might perform better than FIs. 

We know that as λ, price flexibility and customer sensitivity increases FI outperforms 

other schemes. Therefore, under moderate price flexibility, the increase in λ results in 

the favor of FI.  Under the combination of moderate λ and low and moderate customer 

sensitivities, however, FI may perform worse than PI. Under these settings, the 

provider uses delay accuracy as a tool to control the demand. Under NI, accuracy is 

very low this inaccuracy decreases the probability of customers to join the system, 

under FI because the provider gives perfect information, announcing high waiting 

times decrease the joining probability. PI provides equilibrium in terms of accuracy 

and expected waiting time and therefore we observe in some cases that PI outperforms 

FI 

Observation 3. Under static pricing and symmetric scheme when waiting cost is not 

low, under low price flexibility: 

a. For low or moderate λ, profits under SPNI are not affected by customer 

sensitivity.  

b. For high λ, under both NI and PI the profit increases with customer sensitivity. 

Discussion a. Figure 12a  shows the average profit under SPNIs with respect to 

customer sensitivity levels under low price flexibility, under λ=0.2 and averaged over 

h=0.5 and h=1. As shown in the figure, profit is not affected by customer sensitivity.   

Under NI, when price flexibility is so low accept all and reject all are the only possible 

policies and when λ is relatively low, the provider is able to announce short steady-

state waiting time and low variance of the waiting time. The announced waiting time 

and the variance of the waiting time are interpreted as relatively low even by the most 

sensitive customers and customers are likely to join the system. Effective arrival rate 

is not affected significantly. Therefore, the sensitivity of customers becomes 

unimportant in terms of the profit.  
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Discussion b. Figure 12b shows the average profit with respect to customer 

sensitivities under SPNIs when λ=0.6, price flexibility is low and averaged over h=0.5 

and h=1. As shown from the figure, as customer sensitivity increases to the precision 

of the waiting time, profits under Nis increases. For high λ, when price flexibility is 

low; the service provider has not flexibility to trim the arrival rate but just has chance 

to accept or reject the customers. Although a decrease in customer sensitivity increases 

the probability of joining the system, this may not be something desirable as there is 

waiting cost. Under high waiting cost, uncontrolled arrival rate may result in negative 

profit. As a result an increase in customer sensitivity may increase the profit. When 

waiting cost is low, or when price flexibility is high, the provider has more flexibility 

to control the joining rates to the system and less sensitive customers are more 

desirable for the provider.   

 

  

(a) λ=0.2     (b) λ=0.6 

Figure 12: Average profit with respect to customer sensitivities under low price 

flexibility and averaged over h=0.5 and h=1 

 

Low price flexibility together with unresponsiveness to customer sensitivity makes FI 

vulnerable to increase in λ. Thus in the presence of waiting cost, under high customer 

sensitivity and high λ, PI outperforms FI and NI. Figure 13 shows average profit under 

SPs schemes with respect to λ’s under low price flexibility and high customer 
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sensitivity, averaged over h=0.5 and h=1. As shown form the figure, as λ increases 

profits under SPFIs scheme decreases and SPPIs scheme outperforms SPFIs.  

 

 

 

Figure 13: Average profit of SPsym schemes with respect to λ’s under pf=1, cs=3 

and averaged over h=0.5 and h=1 

 

Observation 4. Under static pricing and symmetric scheme, when waiting cost is not 

low, FI always outperforms less informative schemes under high price flexibility. 

Discussion. We observe that service provider may not benefit price flexibility under 

no or partial information, whereas it benefits the flexibility under full information. The 

reason is that, the impact of a change in price is much higher under less informative 

schemes, thus even if pricing flexibility has increased less informative schemes are 

more conservative in making a change in price to increase the profit. 

Under FI, the effective arrival rate can be more flexibly determined under a flexible 

price scheme. As the price flexibility increases, the service provider has increased 

control over the customer arrival. By quoting a high price s/he may make the arriving 

customers balk the system and may keep the system relatively “empty” and may 
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always announce arriving customers short waiting times under the more informative 

scheme.  

We observe that the gap between FI and other schemes increases with λ and customer 

sensitivity and price flexibility, in the favor of FI.  

Observation 5. Under symmetric scheme, as information sharing increases, the benefit 

of dynamic pricing beyond static pricing also increases.  

Discussion. As the amount of information revealed to the customers increases, the 

benefit of adopting dynamic pricing is more pronounced. From definition, we know 

that SPNIs and DPNIs models are equivalent and therefore as expected there is no 

profit difference between DPNIs and SPNIs. The striking result is, as shown in Figure 

14, as price flexibility increases under partial information availability, adopting 

dynamic policy rather than static pricing does not make much difference in terms of 

profit. Figure 14a shows the average profits for SPs schemes and also average profit 

differences between DPs and SPs schemes under low price flexibility. As shown, under 

low price flexibility for both PIs and FIs, dynamic pricing yields significantly higher 

profits compared to static pricing. Figure 14b, shows the average profits under static 

pricing and the difference between dynamic pricing and static pricing under high price 

flexibility. As shown, for PIs there is no significant difference between dynamic and 

static pricing.  

We conclude that even if service provider has moderate information availability on 

system status, quoting different prices to arriving customers does not bring any benefit. 

In other words, unless the system status is perfectly observable, quoting the same menu 

price to all customers is preferable.  
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(a) pf=1 (b) pf=3 

Figure 14: Average profit under DPsym and SPsym under, averaged over all cs, λ’s and 

h=0.5 and h=1. 

 

Observation 6. Under asymmetric scheme, the benefit of dynamic pricing beyond static 

pricing increases with:  

(i) the amount of information revealed to the customers,  

(ii) the waiting cost for NI.  

 

 (a) h=0.5 (b) h=1 

Figure 15: Average profit under DPasym and SPasym underpf=3, averaged over all cs, and 

λ’s. 
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Discussion. From Figure 15 (a) and (b) profit difference between dynamic pricing and 

static pricing might be observed for NIa and FIa schemes, under h=0.5 and h=1, 

respectively. As for symmetric scheme, also for asymmetric scheme the benefit of 

dynamic pricing is mostly observed by full information. Independently from the 

waiting cost, if the provider chooses to reveal all information he has, it is better for 

him to adopt dynamic pricing.  However, we observe that under FI, as holding 

increases, the benefit of dynamic pricing decreases when price flexibility is low. The 

reason is when price flexibility is low increase in the waiting cost affects the profits 

significantly, however, under high price flexibility profits are nor significantly 

affected. For NIa also choosing dynamic pricing is better but if waiting cost is low, the 

benefit of dynamic pricing is not significant. As waiting cost increases, the benefit of 

dynamic pricing increases.  
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

In this thesis, we study three different schemes of delay information which we call no 

information, partial information and full information. For the pricing problem, we 

study two schemes; static pricing and dynamic pricing.  For the service provider we 

assume either he has the same level of information with the customers and has either 

no information, or partial information or full information (symmetric information) or 

has full information and chooses the amount of information to be revealed with the 

customers (asymmetric information).  We model the system as a stochastic discrete-

time Markovian queue, and model pricing problems through Markov decision process. 

We compare several delay information and pricing schemes and through analytical 

results and numerical study identify under which conditions which schemes are more 

preferable. We consider the service provider has varying levels of price flexibility. 

Furthermore, we assume customers are either robust, or moderately or highly sensitive 

to the precision of the delay. We observe that customer sensitivities might significantly 

affect the provider’s profit and the provider should consider customer sensitivity levels 

while deciding delay information and pricing schemes.  

For the symmetric scheme our findings are:  

 If the provider adopts static pricing, and there is no waiting cost, under low 

price flexibility and moderate λ, NI always yields the highest profit 

independently from customer sensitivity. Under moderate flexibility and high 

λ and high customer sensitivity PI may outperform the other schemes and under 

high price flexibility for all λ’s and customer sensitivities, FI outperforms the 

other schemes.  For very low λ, while the most informative scheme (FI) yields 
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the highest profit, the least informative scheme (NI) yields a higher profit than 

partial information scheme (PI).  

 

 If the service provider adopts static pricing and if there is no waiting cost,  

under no information (NI) and partial information (PI) except for very low λ 

(λ=0.1), profits decreases as customer sensitivity increases. For very low λ, 

customer sensitivity does not significantly affect the profits. For all sensitivity 

levels the same profits are obtained.  

 

 If the service provider adopts static pricing and if the waiting cost is not low,  

under low price flexibility  and under low and moderate λ, profits are not 

affected by the customer sensitivity under NI. Under high λ, under both NI and 

PI the profit increases with customer sensitivity. 

 

 Dynamic pricing always yields a higher or the same profit compared to static 

pricing. The benefit of dynamic pricing increases as the information sharing 

increases.  

 

 Under DPPIs scheme, the provider quotes lower prices as the number of 

customers in the system increases. In order to keep the system relatively empty, 

after some state he chooses to quote the highest possible price and reject the 

arriving customers. By such a pricing quotation policy, he is always able to 

announce short waiting time and low variance of the waiting time. Under 

DPFIs schemes we are not able to observe a monotonic behavior for the price 

quotation.  

 

 

 

For the asymmetric scheme our findings are:  

 All observations done under static pricing and symmetric scheme are also valid 

for static pricing and asymmetric scheme. Under no and partial information 

72



schemes, additional information to the provider does not have extra benefit. 

Under full information, by definition, symmetric and asymmetric schemes 

become equivalent. 

 

 Under asymmetric scheme, the benefit of dynamic pricing beyond static 

pricing increases with the amount of information revealed to the customers and 

with the waiting cost under NI.  

 

 Under DPNIa, as the arriving workload increases, the provider initially chooses 

to quote higher prices but then lowers. If the amount of arriving workload is 

too high, however, the provider chooses to reject customers. 

Our observations show that the preferences for delay information scheme and pricing 

schemes might be different depending on the market conditions (arrival probabilities), 

sensitivity level of the customers, and conditions of the service provider; the waiting 

cost and price flexibility of the provider.  

Our study can be extended in several directions. The observations done in this thesis 

are sensitive to modeling assumptions. Changing the parameter settings might result 

in different observations. For all the models, we assume that the sensitivity indicating 

parameters; Ɵ1 is uniformly distributed between 1 and 2 and Ɵ2 is a constant value.  

Furthermore, we set c1(w1) and c2(w2) functions as linear functions of w1 and w2, 

respectively. We might make our observations for different distributions of Ɵ1 and Ɵ2 

and for nonlinear c1(w1) and c2(w2) functions which implies different structure for 

utility function. 

For all the models we assume that the capacity is infinite and there is a single server. 

We may model the scenarios with a certain capacity and/or increase the number of 

servers. We assume customers just decide whether to enter the system or not. We might 

model the systems in the existence of strategic customers who also aim maximize their 

own utility and act in this manner. For all the models, we only consider the provider’s 

profit. Like in the paper of Hassin (2007) we might also take the social welfare into 

account.  
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Finally, for all the models we assume the information provided by the provider is 

considered to be truthful by the customers. We might consider the case, which the 

provider does not always provide truthful information.  
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