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ABSTRACT

LANDAU AND DIRAC-LANDAU PROBLEM ON ODD-DIMENSIONAL
SPHERES

COŞKUN, ÜMİT HASAN
M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Seçkin Kürkçüoğlu

June 2017, 58 pages

In this thesis, solutions of the Landau and Dirac-Landau problems for charged

particles on odd-dimensional spheres S2k−1 in the background of constant SO(2k−
1) gauge fields are presented. Firstly, reviews of the quantum Hall effect and in

particular the Landau problem on the two-dimensional sphere S2 and and all

even-dimensional spheres, S2k, are given. Then, the key ideas in these problems

are expanded and adapted to set up the Landau problem on S2k−1. Using group

theoretical methods, the energy levels of the appropriate Landau Hamiltonian

together with its degeneracies are determined. The corresponding wave functions

are given in terms of the Wigner D-functions of the symmetry group SO(2k) of

S2k−1. The explicit local forms of the lowest Landau level wave functions are

constructed for a particular set of SO(2k − 1) gauge field background charges.

We access the constant SO(2k − 2) gauge field backgrounds on the equatorial

S2k−2 and obtain the differential geometric structures on the latter by forming

the relevant projective modules. Finally, we examine the Dirac-Landau prob-

lem on S2k−1 and obtain the energy spectrum, degeneracies and number of zero
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modes of the gauged Dirac operator on S2k−1.

Keywords: Quantum Hall Effect, Odd-Dimensional Spheres, Landau Problem,

Dirac-Landau Problem
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ÖZ

TEK BOYUTLU KÜRELER ÜZERİNDE LANDAU VE DIRAC-LANDAU
PROBLEMİ

COŞKUN, ÜMİT HASAN
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Seçkin Kürkçüoğlu

Haziran 2017 , 58 sayfa

Bu tezde S2k−1 tek boyutlu küreleri üzerinde ve sabit SO(2k− 1) arkaplan ayar

alanları etkisindeki yüklü parçacıklar için Landau ve Dirac-Landau problemle-

rinin çözümleri sunuldu. Başlangıç olarak, kuantum Hall etkisi bilhassa Landau

probleminin iki küre, S2, ve tüm çift boyutlu küreler, S2k, üzerindeki inceleme-

leri verildi. Akabinde, bu problemlerdeki kilit fikirler genişletilip uyarlanılarak

S2k−1 üzerinde Landau problem kuruldu. Grup teori teknikleri kullanılarak uy-

gun Landau Hamiltonianlarının enerji seviyeleri ile birlikte eşenerjili durumları

da belirlendi. Bu enerji seviyelerine tekabül eden dalga fonksiyonları S2k−1’in

simetri grubu olan SO(2k) grubunun Wigner D-fonksiyonları türünden verildi.

SO(2k − 1) arkaplan ayar yüklerinin belirli durumları için en düşük Landau

seviyelerindeki dalga fonksiyonlarının açık yerel biçimleri kuruldu. Ekvatoral

S2k−2’ler üzerindeki sabit SO(2k − 2) arkaplan ayar alanlarına ulaştık ve ilgili

projektif modülleri kurarak bu arkaplan ayar alanlarının diferansiyel geomet-

rik yapılarını elde ettik. Son olarak, S2k−1 üzerinde arkaplan ayar alanını içe-
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ren Dirac-Landau problemini inceledik ve S2k−1 üzerindeki Dirac operatörünün

enerji spektrumunu, eşenerjili durumlarının ve sıfır modlarının sayısınını elde

ettik.

Anahtar Kelimeler: Kuantum Hall Etkisi, Tek-Boyutlu Küreler, Landau Prob-

lemi, Dirac-Landau Problemi
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CHAPTER 1

INTRODUCTION

Quantum Hall effect (QHE) is one of the most striking phenomena in condensed

matter physics in its breath and depth and has been an important research

subject ever since its experimental discovery [1]. QHE can be summarized as

the quantization of the resistivity ρ or the conductivity σ in planar many-body

electron systems in very low temperatures and very high external magnetic fields.

The quantization of the Hall resistance was first observed in 1980 by von Klitzing,

Dorda and Pepper [1]. von Klitzing was awarded the 1985 Nobel prize for this

discovery.

The theoretical framework to explain QHE on two dimensional systems was

first given by Laughlin [2]. In his work, Laughlin developed a many-body wave

function, which is called the Laughlin-wave function, for two dimensional elec-

tron systems under the influence of an external perpendicular magnetic field.

His explanation was a phenomenological model for both the integer filling fac-

tors ν ∈ Z+ and also for the fractional filling factors ν = 1
m
, where m is an

odd integer. Robert Laughlin was awarded the 1998 Nobel Prize in Physics

for this theoretical discovery. In QHE, although the system is invariant under

the translations the Hamiltonian is not invariant under such a transformation.

Hamiltonian changes under a translation up to a gauge transformation, in other

words it remains invariant under a combination of a translation accompanied by

a gauge transformation. Such a combination can be employed to define the so

called the magnetic translations.

The formalism for Landau quantization on two dimensional sphere S2 is given
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by Haldane in 1983 [3]. Haldane set up and solved the problem of an electron

confined to move on a 2-sphere, S2 and subject to a fixed magnetic field (in

magnitude) background which is provided by a Dirac monopole placed at the

center of the sphere. In this model, the degeneracies are finite at each Landau

level because of the compact geometry and the magnetic translations are easily

found to be left translations commuting with the Hamiltonian and covariant

derivatives. Haldane was able to construct many particle wave functions both

at integer and at ν = 1
m

(m is odd integer) fractional filling factors, and the

latter was turned out to be very useful on understanding some properties of

FQHE [4].

In the past decade or so, formulation of QHE on higher-dimensional manifolds

and investigations on its several aspects have been a continually appearing theme

in contemporary theoretical physics. After the pioneering work of Zhang & Hu

[5] in formulating the QHE problem on S4, a multitude of articles have explored

the formulation of QHE on various higher-dimensional manifolds, such as CPN ,

the even-dimensional spheres S2k, complex Grassmann manifolds Gr2(CN) as

well as on a particular flag manifold [6, 7, 8, 9, 10, 11]. One motivation for

their study is to understand the generalization of the massless excitations, (chi-

ral bosons) which are known to be present at the edge of the two-dimensional

quantum Hall samples (see, for instance, [12]). However, it turns out that,

not only photons and gravitons, but somewhat undesirably even higher mass-

less spin states occur at the the edges, which are effectively described by chiral

and gauged Wess-Zumino-Witten (WZW) theories and therefore has interesting

physical content in their own right [13, 14]. There are also strong motivations

emerging from physics of D-branes and strings, as certain configurations with

open strings ending on D-branes have low energy limits, which are effectively

described by the QHE on spheres [15, 16]. Relation between the matrix algebras

describing fuzzy spaces, such as the fuzzy sphere S2
F , higher-dimensional fuzzy

spheres S2k
F , fuzzy complex projective spaces CPN

F and the Hilbert spaces of the

lowest Landau level (LLL) of QHE on aforementioned manifolds have also been

explored in the literature to shed further light into the geometrical structure of

the LLL [17], while in the present work we will have the opportunity to present
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yet another facet of this relationship in a particular example. Thus, expanding

upon these concrete developments and along with the novel motivations emerg-

ing from the physics of TIs, in this thesis, our ultimate goal is to investigate the

formulation of QHE on all odd-dimensional spheres S2k−1.

As we have already noted, QHE problem on S3 is solved by Nair & Daemi

[18] and a complementary treatment is recently given in Hasebe’s work [19]1.

The clear path for the construction of QHE over compact higher dimensional

manifolds appear to be closely linked to the coset space realization of such

spaces. Indeed odd spheres can also be realized as coset manifolds as S2k−1 ≡
SO(2k)

SO(2k−1)
≡ Spin(2k)

Spin(2k−1)
. In their approach Nair & Daemi took advantage of the

fact that S3 can also be realized as S3 ≡ SU(2)×SU(2)
SU(2)D

owing to the isomorphisms
SU(2)×SU(2)

Z2
= SO(4) and SU(2)

Z2
= SO(3), and they subsequently constructed the

Landau problem for a charged particle on S3 under the influence of a constant

SU(2)D gauge field background carrying an irreducible representation (IRR) of

the latter. This quick approach is not immediately applicable to higher dimen-

sional odd spheres. Nevertheless, coset space realization of S2k−1 in terms of the

SO(2k)/SO(2k − 1) can be used to handle this problem.

A brief summary of our results and their organization in this thesis is in order. In

chapter 2, we give a review of the classical and quantum Hall effects based on the

lecture notes [23, 4, 12]. In chapter 3, we give a short review of the Haldane’s

Landau quantization on S2 [3] and the Landau problem on even-dimensional

spheres, S2k, constructed by Y. Kimura and K. Hasebe [6]. Building upon

the ideas of [6], we set up and solve the Landau problem for charged particles

on odd-dimensional spheres S2k−1 in the background of constant SO(2k − 1)

gauge fields carrying the irreducible representation
(
I
2
, I

2
, · · · , I

2

)
. In particular,

we determine the spectrum of the Hamiltonian, the degeneracy of the Landau

levels and give the eigenstates in terms of the Wigner D-functions, and for odd

values of I the explicit local form of the wave functions in the lowest Landau

level. In this section, we also demonstrate in detail, how the essential differential

geometric structure of the Landau problem on the equatorial S2k−2 is captured

1 Other recent developments in solving Landau problem and Dirac-Landau problem in flat higher
dimensional spaces are reported in [20, 21, 22].
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by constructing the relevant projective modules and the related SO(2k − 2)

valued curvature two-forms. We illustrate our general results on the examples of

S3 and S5 for concreteness and in the latter case identify an exact correspondence

between the union of Hilbert spaces of LLL’s with I ranging from 0 to Imax = 2K

or Imax = 2K + 1 to the Hilbert spaces of the fuzzy CP 3 at level K or that of

winding number ±1 line bundles over CP 3 at level K, respectively. In section

3 we determine the spectrum of the Dirac operator on S2k−1 in the same gauge

field background together with its degeneracies and also compute the number of

its zero modes. Some relevant formulas from the representation theory of groups

is given in a short appendix for completeness.
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CHAPTER 2

BASIC ASPECTS OF PLANAR QUANTUM HALL

EFFECT

In this chapter, we will discuss and develop the essential aspects of classical and

(integer) quantum Hall effects (IQHE). Firstly, we start from an elementary level

and review the classical dynamics of an electron subject external electromagnetic

field. We use these developments to give a brief description of the classical

Hall effect and explain the physical meaning of the conductivity and resistivity

tensors in classical Hall effect. Subsequently, we study the quantization of the

classical dynamics of an electron confined to a plane and subject to an external

magnetic field. This is known as the Landau problem in the literature. This

is followed by a qualitative discussion of IQHE. Our discussion in this chapter

is not exhaustive and only oriented to provide the reader with sufficient details

to view the discussions in the ensuing chapters in a more concrete and broader

perspective. We closely follow the lecture notes of D. Tong on the subject, which

are available from the web [24] and also the books of Ezawa [12], Jain [4] and

the review of Girvin [23] in this chapter.

2.1 Classical Hall Effect

2.1.1 Cyclotron Motion

In this section, we briefly recall the Lagrangian and the Hamiltonian formula-

tions describing the dynamics of a charged particle in external electromagnetic
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fields. Lagrangian formulation gives us a clear path to obtain the equations of

motions for a charged particle in electromagnetic field. We will see that electrons

perform cyclotron motion when they are subject to a pure perpendicular mag-

netic field. Hamiltonian formulation is used to pass to the quantum mechanical

description of this system in a rather straightforward manner as we will see in

section 2.2.1.

The Lagrangian of a point particle with mass m and charge q moving with

the velocity ~̇x in an electromagnetic field with the electric and magnetic fields
~E = −~∇φ and ~B = ~∇× ~A respectively, is given by

L =
1

2
m~̇x2 + q~̇x · ~A− qφ, (2.1)

where ~A is the vector potential and φ is the scalar potential. The j-th component

of the conjugate momentum obtained from (2.1) is,

pj =
∂L

∂ẋj
= mẋj + qAj. (2.2)

The equations of motion can be obtained by the Euler-Lagrange equations. First,

we need the partial derivatives of the Lagrangian (2.1) with respect to xj,

∂L

∂xj
= qẋi

∂Ai
∂xj
− q ∂φ

∂xj
, (2.3)

and the equation of motion is

d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= qẋi

∂Ai
∂xj
− q ∂φ

∂xj
−mẍj − qẋi

∂Aj
∂xi

= 0, (2.4)

which implies

mẍj = qẋi

(
∂Ai
∂xj
− ∂Aj
∂xi

)
− q ∂φ

∂xj
,

= qẋiεijkBk + qEj,

= q(~̇x× ~B + ~E)j,

(2.5)

or,

m~̈x = q(~̇x× ~B + ~E). (2.6)

This is just the Lorentz force equation as we may have already anticipated.
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The corresponding Hamiltonian to (2.1) is calculated as

H = piẋi − L

=
1

2m
(~p− q ~A)2 + qφ

=
1

2m
~π2 + qφ,

(2.7)

where we have introduced the notation ~π := m~̇x = ~p − q ~A for the mechanical

momentum. This is the momentum that can be experimentally measured in

the system as opposed to the conjugate momentum ~p. We will elaborate on

the physical meaning of ~π’s later in section 2.2.1 when we discuss the Landau

problem.

Now, let us consider a simple configuration in which the charged particle is an

electron of charge −e (e > 0) with massm. We consider that there is an external

magnetic field in the z direction, ~B = Bk̂, and no electric field. The Lorentz

force equation (2.6) now becomes,

m~̈x = −q~̇x× ~B = −eB~̇x× k̂. (2.8)

If the electron is confined to move on the xy-plane the equation (2.8) can be

written as two coupled second order ordinary differential equations,

mẍ = −eBẏ and mÿ = eBẋ. (2.9)

We may write,

ẍ+ iÿ =
eB

m
(−ẏ + iẋ)

= i
eB

m
(ẋ+ iẏ).

(2.10)

Introducing a complex variable z = x+ iy and ωc := eB
m
, we may express (2.10)

as

z̈ = iωcż. (2.11)

Integrating with respect to time yields

ż = ż0e
i(ωct+α), (2.12)
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where ż0 and α are determined by initial conditions. We may express this

equation (2.12) as

ẋ(t) = ẋ(0) cos(ωct+ α) and ẏ(t) = ẏ(0) sin(ωct+ α), (2.13)

where α is therefore the initial phase and with the notation ~v = (ẋ(t), ẏ(t)), we

see that

v(t) =
√
ẋ2(t) + ẏ2(t)

=
√
ẋ2(0) + ẏ2(0)

=: v(0) = v0,

(2.14)

is the magnitude of the velocity of the particle on the xy-plane which stays

constant throughout the motion. Integrating once more gives

x(t) = x0 +R sin(ωc + α) and y(t) = y0 +R cos(ωc + α). (2.15)

Thus, the particle is performing a circular motion with frequency ωc about circle

of radius R centered at (x0, y0). The radius of the cyclotron orbit is related to

initial velocity of the particle. We immediately see that it is given by

R =
v0

ωc
=
v0m

eB
. (2.16)

2.1.2 Classical Hall Effect

The classical Hall effect, discovered in 1879 by E. H. Hall [25], is, at the mi-

croscopic level, also related to the cyclotron motion of the charged particles in

magnetic fields. In the classical Hall effect, a basic experimental setup includes

a strip of a metal or a semiconductor and a pure perpendicular magnetic field

to the strip. If we make a current Ix to flow along x-direction, charge carriers in

the sample begin to divert to one side and accumulate on that side. Specifically,

an electron moving in the −x direction will be deflected to the −y direction by

the magnetic force. As a result, one edge of the strip becomes positively charged

while the electrons accumulate on the opposite edge and an electric field forms

due to this polarization. In a short amount of time, electric and magnetic forces

will counterbalance and the system will arrive its equilibrium state which means

8



VH

~B

Ix

Figure 2.1: Basic setup of the Hall effect

the net force vanishes. In this equilibrium state, we have

~FN = 0 = m~̈x = −e( ~E + ~̇x× ~B), (2.17)

which gives

ẋ = −Ey
B
. (2.18)

The relation between the velocity and the current is given by

Ji = −enẋi, (2.19)

where n is the charge density of the sample. From (2.18) and (2.19) we obtain

Ey
Jx

=
B

en
. (2.20)

(2.20) is a particular form of the Ohm’s Law relating electric field to the current

via the resistivity tensor ρ, Ei = ρijJj as we will discuss in more detail in the

next subsection. Let us however note that for a sample of side length L, we may

write

Rxy =
Vy
Ix

=
EyL

JxL
=
B

en
, (2.21)

where Rxy is called the Hall resistance. Normally resistivity and resistance differ

by a factor related to geometry. We see that the Hall resistance Rxy and Hall

resistivity are equal.

Let us also write that the potential Vy measured across the Hall sample is known

as the Hall voltage, and we may write VH = Vy for notational clarity.
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2.1.3 The Drude Model

Previously, we have not incorporated the effect of an electric field in the dynamics

of charges in a constant perpendicular magnetic field. Such an electric field

accelerates the charged particles and creates a current in the direction of the

electric field. In this section, we briefly present the Drude model to explain the

conductivity of a metal subject to electromagnetic fields. In this model, we have

a linear friction term in the form

~FD = −m
τ
~̇x, (2.22)

where τ is called scattering time, is also introduced. τ has the meaning of

average time between scattering events. We follow [24] here to construct the

Drude model. We add the electric field term −e ~E and the linear friction term

in (2.22) in equation (2.6), which yields

m~̈x = −e~̇x× ~B − e ~E − m

τ
~̇x. (2.23)

This is called the Drude equation [26].

For steady state solution, i.e. non-accelerating electron solutions (~̈x = 0), equa-

tion (2.23) reduces to

0 = −eBεijẋj − eEi −
m

τ
ẋi

=
B

n
εijJj − eEi +

m

neτ
Ji

=⇒
(
εij
eBτ

m
+ δij

)
Jj =

e2nτ

m
Ei,

(2.24)

where n is the density of electrons and we have used Ji = −neẋi in arriving at

equation (2.24). This equation can be interpreted as the Ohm’s law. This latter

can be written in the form

~J = σ ~E or Ji = σijEj, (2.25)

where σij is called the conductivity tensor. Inverting equation (2.24) we get

σij =
e2nτ

m

1

m2 + eBτ 2

(
m2δij − eBτmεij

)
,

=
nme2τ

m2 + (eBτ)2

(
−εij

eBτ

m
+ δij

)
.

(2.26)
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Physically, the conductivity tensor should be a rotationally invariant object, as

this macroscopic quantity could not depend on how we choose our coordinate

frame in the laboratory. In two dimensions, this fact simply implies that σij
can only be composed of the rotational invariant tensors δij and εij in two

dimensions, thus it must have the form

σij = σDδij + σODεij

=

 σD σOD

−σOD σD

 ,
(2.27)

where σD stands for the diagonal conductivity σD = σxx = σyy and σOD stands

for the off-diagonal conductivity σOD = σxy = σyx with σOD = nme2τ
m2+(eBτ)2

eBτ
m

and

σD = nme2τ
m2+(eBτ)2

.

By definition, the resistivity is just the inverse of the conductivity, ρij = (σ−1)ij.

Thus, the resistivity tensor is

ρij = (σ−1)ij =
m

ne2τ

(
δij +

eBτ

m
εij

)
. (2.28)

While the Hall resistivity ρxy takes the form

Rxy = ρxy =
m

ne2τ

(
δxy +

eBτ

m
εxy

)
=

m

ne2τ

(
eBτ

m

)
=
B

en
.

(2.29)

Comparing with (2.29), we see that for classical Hall system Rxy = ρxy and

conclude that the Hall resistivity obtained from the more elementary model we

have given in section 2.1.2 and from the Drude model are exactly the same. This

result indicates the fact that the Hall resistivity only depends on the magnetic

field and the charge density.

2.2 Integer Quantum Hall Effect

Our discussion in this section is oriented to sketch some of the essential features

of IQHE. We will not attempt to give a full construction of IQHE in this section.

Many excellent references can be consulted to obtain a broader and a complete

understanding of IQHE [24, 4, 23].
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2.2.1 Landau Problem

In this section, we review Landau quantization which is the quantization of

the cyclotron orbits of charged particles in magnetic fields. This quantization

process discretizes the energy levels of the particles and corresponding energy

levels are called Landau levels. Understanding Landau quantization is central

for obtaining a complete picture of QHE.

The Poisson brackets of position and conjugate momentum variables are readily

given by

{xi, pj} = δij and {xi, xj} = {pi, pj} = 0, (2.30)

while a straightforward calculation gives

{πi, πj} = {mẋi,mẋj} = {pi + eAi, pj + eAj} = −e
(
∂Aj
∂xi
− ∂Ai
∂xj

)
= −eεijkBk

(2.31)

In order to proceed with the quantization of the classical system described in

section 2.1, we can start by replacing the classical quantities by their correspond-

ing quantum operators. Thus, the Poisson brackets can now be replaced by the

canonical commutation relations

[xi, pj] = i~δij and [xi, xj] = [pi, pj] = 0. (2.32)

Using the above commutation relations, the commutation relation of the kine-

matical momentum components πx and πy now reads

[πx, πy] = −ie~B. (2.33)

We can define new operators out of the πx and πy operators, so called the

annihilation and creation operators, as

a =
1√

2e~B
(πx − iπy) and a† =

1√
2e~B

(πx + iπy), (2.34)

with

[a, a†] = 1. (2.35)

12



The quantum mechanical Hamiltonian

H =
~π2

2m
=

(~p+ eA)2

2m
, (2.36)

can be cast in the form

H =
~π2

2m
=
π2
x + π2

y

2m
− ~ωc

2
+

~ωc
2

=
1

2m
(π2

x + π2
y − e~B) +

~eB
2m

=
~eB
m

[
1

2e~B
(π2

x + π2
y − i[πx, πy]) +

1

2

]
= ~ωc

(
a†a+

1

2

)
,

(2.37)

which is the same as that of the harmonic oscillator Hamiltonian with frequency

ωc. We can choose to use the Fock space or the occupation number basis, i.e.

the Hilbert space is

H = span{|0〉 , |1〉 , |2〉 , . . . , |n〉 , . . . }. (2.38)

States |n〉 are in one to one correspondence with the eigenvalues, n, of the

number operator N = a†a. Using (2.35) and the fact that the vacuum state |0〉
is annihilated by a, i.e. a |0〉 = 0, we can show that

a† |n〉 =
√
n+ 1 |n+ 1〉 and a |n〉 =

√
n |n− 1〉 . (2.39)

Therefore, the state |n〉 can be built by acting on the ground state n-times with

the creation operator:

|n〉 =
1√
n

(a†)n |0〉 . (2.40)

Spectrum of the Hamiltonian is simply

En = ~ωc
(
n+

1

2

)
. (2.41)

These energy levels are called the Landau levels.

Let us also define the guiding-center coordinates

X = x+
1

eB
πy and Y = y − 1

eB
πx, (2.42)

which satisfy the commutation relations

[X, Y ] = il2B, (2.43)
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and where lB =
√

~
eB

is called the magnetic length which is the natural length

scale in QHE and we will comment on its physical meaning further in the later

sections. We may also define a relative position vector with respect to guiding-

center coordinates (X, Y ) as

~R =

(
− 1

eB
πy,

1

eB
πx

)
. (2.44)

Heisenberg equations of motions tell us that

dX

dt
=

1

i~
[X,H] = 0,

dY

dt
=

1

i~
[Y,H] = 0, (2.45)

with the obvious solutions that X and Y are constant of motion, while

dπx
dt

=
1

i~
[πx, H] = ωcπy,

dπy
dt

=
1

i~
[πy, H] = −ωcπx. (2.46)

We may write

dπx
dt

+ i
dπy
dt

= ωcπy − iωcπx

= −iωc(πx + iπy).

(2.47)

Introducing a complex variable u = πx + iπy, we may express (2.47) as

du

dt
= −iωcu. (2.48)

Integrating with respect to time yields

u = e−iωctu0 (2.49)

where u0 is determined by initial conditions. Thus we have

πx = cos(ωct)u0 and πy = sin(ωct)u0. (2.50)

This means that there is cyclotron motion with respect frequency ωc = eB
m

= ~
ml2B

about the guiding-center, and the guiding center coordinates remain at rest. This

picture also justifies the name "guiding center" for (X, Y ).

The corresponding wave functions to the energy levels (2.41) can be found by

specifying a gauge choice for the external perpendicular magnetic field. We will

first choose the Landau gauge given by

~A = xBĵ. (2.51)
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Clearly, this choice of gauge gives the perpendicular constant magnetic field as

~∇× ~A = −∂Ay
∂z

î+
∂Ay
∂x

k̂ = Bk̂. (2.52)

This choice of gauge breaks the transitional symmetry in the x direction as well

as the rotational symmetry of the Hamiltonian and it is therefore appropriate

for rectangularly shaped Hall samples.

In this gauge, Hamiltonian (2.7) becomes

H =
1

2m
[p2
x + (p2

y + exB)2]. (2.53)

We immediately gather that [H, py] = 0, as there is no dependence on the y-

coordinate in the Hamiltonian. This implies that H and py can be diagonalized

simultaneously. As the eigenstates for py are of the form eiky with the eigenvalue

k = py/~, we may write down the energy eigenstates as

ψ(x, y) = eikyϕ(x). (2.54)

Substituting (2.54) in (2.53) we get a one-dimensional Schrödinger equation by

Hψ(x, y) = H(eikyϕ(x))

= eiky
[
p2
xϕ(x) + e2B2(x+ kl2B)2ϕ(x)

]
= Eeikyϕ(x)

=⇒ Hxϕ(x) = Eϕ(x)

(2.55)

with the effective Hamiltonian

Hx =
1

2m

[
p2
x + e2B2(x+ kl2B)2

]
. (2.56)

The effective Hamiltonian (2.56) is just in the form of the Hamiltonian for a one-

dimensional harmonic oscillator, whose central position is shifted to x = −kl2B.
The energy levels are then given by (2.41) as expected. The ground state wave

function, or the lowest Landau level (LLL) wave function, whose energy can be

obtained by setting n = 0 in (2.41) as ELLL = ~ωc/2 is

ψ0,k ∼ eikye
− (x+kl2B)2

2l2
B , (2.57)

up to an overall normalization. n-th Landau level states up to a normaliza-

tion factor can be obtained by multiplying (2.57) with the Hermite polynomials

15



|ψ|2

x
x = −kl2B

Figure 2.2: The probability density |ψLLL|2 peaks around x = −kl2B

Hn(x+ kl2b ), we have

ψ0,k ∼ eikye
− (x+kl2B)2

2l2
B Hn(x+ kl2B). (2.58)

Landau gauge provides a useful way to estimate the degeneracy at any Landau

level. We observe that the energy levels depend only on the quantum number

n ∈ Z+ while the wave functions are depending on both n and the wave number

k in the y-direction. In order to determine the degeneracy at any Landau level,

we may pick a rectangular region on the (x, y) plane. Let us consider that this

rectangular region has sides of length Lx and Ly respectively. We intend to find

the number of quantum states that are bounded in the region R, 0 ≤ x ≤ Lx,

0 ≤ y ≤ Ly. Assuming periodic boundary conditions in the y-direction, i.e.

imposing

ψ(x, y + Ly) = ψ(x, y), (2.59)

we have

eik(y+Ly) = eiky, (2.60)

which implies that eikLy = 1 and therefore k is quantized in units of 2π
Ly
. We

may write

k =
2π

Ly
m, m ∈ Z, (2.61)

We further see from (2.57) and (2.58) that the Landau levels wave functions

are localized around x = −kl2B. We may write dx = −l2Bdk and therefore the
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interval 0 ≤ x ≤ Lx corresponds to having quantized values of k in the range

−Lx
l2B
≤ k ≤ 0. Consequently, total number of states in the region R can be

estimated as

N :=

∫ 0

−Lx/lB
dk

2π
Ly

=
Ly
2π

∫ 0

−Lx/l2B
dk =

LxLy
2πl2B

=
eBA

2π~
, (2.62)

where A = LxLy is the area of the region R. We also infer from this result that

the density of states, i.e. the number of states per unit area, is the same at all

Landau levels and it is given by

ρ =
1

2πl2B
. (2.63)

We will see that ρ plays an important role in obtaining an intuitive understanding

of both the integer and fractional quantum Hall effects.

Up to now, we have derived the energy eigenvalues and the corresponding wave

functions of the Landau problem by using the Landau gauge. It is also instructive

to consider the problem in the so called the symmetric gauge.

For this purpose, the vector potential can be chosen as

~A =
1

2
B(−yî+ xĵ) (2.64)

which is called the symmetric gauge. Clearly, it yields ~∇ × ~A = Bk̂. In fact,

we can see that ~Asym and ~ALandau are indeed related by a gauge transformation

given as

~Asym = ~ALandau + ~∇Λ (2.65)

with Λ = −1
2
Bxy.

We can also introduce a second pair of annihilation and creation operators as

b =

√
eB

2~
(X + iY ) and b† =

√
eB

2~
(X − iY ), (2.66)

where

[a, a†] = [b, b†] = 1 and [a, b] = 0. (2.67)

We have another number operator for the operator b defined by

M = b†b. (2.68)

17



Since [a, b] = 0 they are diagonalizable simultaneously and any general Fock

state |n,m〉 satisfies

N |n,m〉 = n |n,m〉 and M |n,m〉 = m |n,m〉 . (2.69)

a, a† and b, b† operator pairs act on the state |n,m〉 and give

a |n,m〉 =
√
n |n− 1,m〉, a† |n,m〉 =

√
n+ 1 |n+ 1,m〉 ,

b |n,m〉 =
√
m |n,m− 1〉, b† |n,m〉 =

√
m+ 1 |n,m+ 1〉 .

(2.70)

If we define the ground state as |0, 0〉, which means we have a |0, 0〉 = b |0, 0〉 = 0,

then the state |n,m〉 can be constructed as

|n,m〉 =
(a†)n(b†)m√

n!m!
|0, 0〉 . (2.71)

In contrast to the Landau gauge the symmetric gauge violates the transitional

symmetry in the (x, y) plane. Nevertheless, it leaves the rotation symmetry of

the Hamiltonian invariant. That is, we have that [H,L] = 0, where L is the

angular momentum operator given by

L = xpy − ypx
= b†b− a†a.

(2.72)

Then we may simultaneously diagonalizeH and L, and we distinguish the degen-

erate energy eigenstates at a given Landau level using the angular momentum

quantum number.

The construction of the wave functions in the symmetric gauge at the lowest

Landau level, (n = 0), deserves special emphasis. The effect of the annihilation

operator on the lowest Landau level states is a |0,m〉 = 0. This relation can also

be given as a first order differential equation that is required to be satisfied by

the ground state wave functions. First observe that we may write,

a =
1√

2e~B
(πx − iπy)

=
1√

2e~B

[
−i~

(
∂

∂x
− i ∂

∂y

)
+
eB

2
(−y − ix)

] (2.73)

Let us introduce the complex variables z and z̄1

z = x− iy, z̄ = x+ iy. (2.74)
1 If we choose to work with z = x+ iy and z̄ = x− iy, we should set B < 0 to obtain holomorphic

functions instead of anti-holomorphic ones.
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The corresponding holomorphic and anti-holomorphic derivatives are

∂ :=
1

2

(
∂

∂x
+ i

∂

∂y

)
and ∂̄ :=

1

2

(
∂

∂x
− i ∂

∂y

)
. (2.75)

These satisfy ∂z = ∂̄z̄ = 1 and ∂z̄ = ∂̄z = 0 as can easily be verified. Annihila-

tion and creation operators can be reexpressed as

a = −i
√

2

(
lB∂̄ +

z

4lB

)
and a† = −i

√
2

(
lB∂ −

z̄

4lB

)
. (2.76)

Thus we have the first order differential equation

−i
√

2

(
lB∂̄ +

z

4lB

)
ψLLL = 0, (2.77)

whose solution can be written as

ψLLL(z, z̄) = f(z)e−|z|
2/4l2B , (2.78)

where f(z) is an holomorphic function. The degenerate states at LLL can be

obtained by employing the other set of annihilation-creation operators, b and b†.

These operators have the differential forms

b = −i
√

2

(
lB∂ +

z̄

4lB

)
and b† = −i

√
2

(
lB∂̄ −

z

4lB

)
. (2.79)

Using the fact that

bψLLL;m=0 = 0, (2.80)

we find that

ψLLL;m=0 ∼ e−|z|
2/4l2B , (2.81)

up to a normalization factor. With a repeated application of b† on (2.81) degen-

erate states at the LLL can be obtained as

ψLLL;m ∼
(
z

lB

)m
e−|z|

2/4l2B , (2.82)

where the factor of
(
z
lB

)
results from the m−times repeated application of b†

on ψLLL;m=0. These eigenstates also provide a basis for the angular momentum

operator,

LψLLL;m = m~ψLLL;m. (2.83)

Another crucial point we need to mention is that by a repeated application of

creation operator a† = −i
√

2
(
lB∂ − z̄

4lB

)
on the LLL wave function (2.82), we

can determine the higher Landau level wave functions.
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Rxy

B

Figure 2.3: Dependence of Rxy on B field

2.2.2 Brief Explanation of Integer Quantum Hall Effect

Quantum Hall effect is a very curious phenomenon which is observed in two-

dimensional electronic systems in the presence of external strong perpendicular

magnetic fields (∼ 10 T) and at low temperatures (∼ 4 K). The reason behind

such a configuration is the fact that magnetoresistance of the material becomes

negligible at low temperatures and strong magnetic fields [27]. It was discovered

that independent of all the microscopic details, the size, the shape of the sample

and exactly what the sample was made of, when a certain current through the

sample is put, a certain voltage is measured which is called the Hall voltage.

The ratio of the Hall voltage to the current as units of Ohms was found to be

universal by K. von Klitzing, G. Dorda and M. Pepper in 1980 paper which

was the experimental discovery of the integer quantum Hall effect (IQHE) [1].

They performed an experiment on a metal-oxide-semiconductor (MOSFET) by

trapping the electrons between silicon and silicon oxide. They showed that the

Hall resistivity takes discrete values given by

RH =

(
~
e2

)
1

ν
, (2.84)

where ν is an integer and the term ~/e2 is called the von Klitzing constant

which is approximately 25812.807 Ohms. ν is called the filling factor whose

physical meaning is the relation between the number of electrons in the system

and number of the available quantum states in a Landau level. For instance,

ν = 1 corresponds to a configuration in which each degenerate state in the LLL
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is occupied by only one electron.

Previously, we have mentioned that the mechanism behind the IQHE can be

explained by the Landau quantization. Depending on the magnetic field B,

each Landau level can accommodate only limited number of electrons. When

the total number of the electrons in the sample and the capacity of the Landau

levels balance, which means that some Landau levels are completely field, the

sample exhibits the IQHE phenomena.

Another astonishing observation is that unlike the classical Hall resistivity be-

havior, the quantized Hall resistivity is found to have plateaus at the each dis-

crete values of the Hall resistivity given in (2.84). These plateaus can be

Figure 2.4: Plateau behaviour of the Hall resistivity.2

explained by the impurities in the sample.

A short time after the discovery of the IQHE, At lower temperatures (≤ 2

K), Horst L. Störmer, Daniel C. Tsui, and Arthur C. Gossard showed that the

filling factor ν can also take fractional values and this was the discovery of the

FQHE [29]. For fractional filling factor such as, ν = 1/m, m is odd integer,

it means that an electron occupies more than one Landau site. This is the

fractional QHE whose detailed discussion is beyond the scope of this thesis. The

2Note. From "Metrology and microscopic picture of the integer quantum hall effect" by J. Weis and

K. von Klitzing, 2011, Philosophical Transactions of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences 369 (2011) 3954 [28].
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Landau quantization alone is not sufficient to explain FQHE. Together with the

Landau quantization we must consider the correlations between the electrons.

The explanation of FQHE is more complex because each fractional number case

needs a different mechanism to explain. The interested reader can consult the

references [12], [4] and [23].
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CHAPTER 3

LANDAU PROBLEM ON S2 AND EVEN SPHERES

This chapter is a review of the Landau problem on S2 and on even-dimensional

spheres, S2k, and the formulations needed in the construction of following chap-

ters. The discussion in this chapter is based on Haldane’s original paper [3], the

article of Greiter [30] and Master thesis of F. Ballı [31]. Formulations of QHE

on S2k follow the original paper of Hasebe and Kimura [6].

3.1 Landau Problem on S2

The dynamics of a charged particle on the surface of a sphere S2 with radius R, in

the presence of a magnetic monopole background, was first solved by Haldane in

1983. He proposed a translationally invariant model of fractional quantum Hall

effect developed by Laughlin. In the system proposed by Haldane, electrons are

confined to move on the two-sphere in the presence of a perpendicular magnetic

field which can be created by placing a magnetic monopole in the center of the

two-sphere. In natural units (c = ~ = 1), the magnetic field created by this

monopole magnetic charge is given by

~B =
g

R2
r̂ =

n

2eR2
r̂, (3.1)

where e and g are electron and magnetic monopole charges respectively, and

also we have implemented the Dirac quantization rule given by

eg = ~
n

2
, n ∈ Z. (3.2)

The Hamiltonian which describes the dynamics of an electron with mass m

confined on S2 with radius R in terms of the kinematical angular momentum
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operator is given by

H =
~Λ2

2mR2
, (3.3)

where ~Λ is the kinematical angular momentum of the charged particles given by

~Λ = ~r × ~π = ~r × (−i~~∇+ e ~A). (3.4)

We can compare H in (3.3) with that of particle on S2, when there is no external

magneti field. In this case the Hamiltonian is

H0 =
L2

2mR2
=

1

2mR2
(~r ×−i~~∇)2, (3.5)

where Li are the orbital angular momentum operators satisfying the commuta-

tion relations

[Li, Lj] = iεijkLk. (3.6)

The spectrum and corresponding wave function of this Hamiltonian are easily

obtained, since we already know that L2Ylm = l(l+ 1)~2Ylm, where Ylm(θ, φ) are

the spherical harmonics. Thus, we have that the spectrum of H0 is given by
l(l+1)~2
2mR2 and corresponding wave functions are just the spherical harmonics.

The commutator of the Cartesian components of ~Λ can be calculated as

[Λi,Λj] = iεijk~(Λk − ~
n

2
r̂k). (3.7)

The commutator of Λ with r̂ can easily be calculated as

[Λi, r̂j] = i~εijkr̂k. (3.8)

Observe that the dynamical angular momentum is parallel to the surface of the

sphere

r̂ · ~Λ = ~Λ · r̂ = 0. (3.9)

We see that ~Λ itself does not satisfy angular momentum algebra. We introduce

a total angular momentum operator ~J by

~J = ~Λ + ~
n

2
r̂, (3.10)

and ~J satisfies angular momentum algebra

[Ji, Jj] = i~εijkJk. (3.11)
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It is possible to calculate the total angular momentum of the electric charge

magnetic monopole system. Using (3.1) and ~E = e
4πr2

r̂ and the fact that

~Jem =

∫
~r × ( ~E × ~B)d3x. (3.12)

We can show that

~Jem = egr̂ =
n~
2
r̂, (3.13)

where the last equality is due to the Dirac quantization condition given in (3.2).

Thus the radial part of the total angular momentum in (3.10) is that of the

electromagnetic field. Using (3.9) and commutation relations of ~Λ we can further

show that

[Ji,Λj] = i~εijkΛk,

[Ji, r̂j] = i~εijkr̂k,
(3.14)

Also note that the radial component of ~J is

~J · r̂ = r̂ · ~J = ~
n

2
. (3.15)

With the help of (3.10) and (3.15) we can write ~Λ2 in the following form

~Λ2 = ~J2 −
(
~
n

2

)2

. (3.16)

Let us understand the physical content of this result. From (3.15) we infer that
~J should be able to take the value n/2. Thus, for this reason, we may always

express

j =
n

2
+ k, (3.17)

where k is an arbitrary positive integer. Note that, since ~J fulfill the SU(2)

algebra we can write

~J2 = ~2j(j + 1)

= ~2
(
k +

n

2

)(
k + 1 +

n

2

)
.

(3.18)

Consequently, the energy eigenvalues can be expressed as

Ek =
~

2mR2

(
|J |2 −

(n
2

)2
)

=
~

2mR2

(
k +

n

2

)(
k + 1 +

n

2

)
=

~eB
2m

(2k + 1) +
~

2mR2
k(k + 1).

(3.19)
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where we have used (3.1) to write the last line. Ek is the energy of kth- Landau

level. In other words k labels the energy levels of the charged particle in this

problem. The LLL is obtained by setting k = 0 and we have

ELLL =
eB

2m
, (3.20)

which is the same as the LLL energy in the planar case as given in (2.41) in the

previous chapter.

We may also consider taking the planar limit by taking R → ∞ and n → ∞
while keeping the ration n

R2 = 2eB fixed. From (3.19) we see that this yields

energy spectrum E = ~eB
m

(k + 1/2) = ~ωc(k + 1/2) which is the same as that of

the planar problem obtained in (2.41).

Let us also note that for a given j value the z-component Jz of ~J , can take

2j + 1 different values, −j,−j + 1, . . . , j − 1, j. Thus for j = n
2

+ k there are

2j + 1 = n+ 2k + 1 different values of Jz. This gives the number of degenerate

eigenstates of the Hamiltonian at a given Landau level k.

Our next task is to obtain the energy eigenstates of Landau levels. Up to this

point, we have not chosen a gauge yet. We may follow Haldane’s original ap-

proach here and choose the latitudinal gauge

~A = − ~n
2eR

cot θϕ̂. (3.21)

By establishing an analogy between spin and the radial component of ~J , We

introduce spinor coordinates ξ =

 u

v

 for the particle,

u = cos

(
1

2
θ

)
e

1
2
iϕ, v = sin

(
1

2
θ

)
e−

1
2
iϕ, (3.22)

On the other hand, in these coordinates angular momentum operator Ji can be

expressed as

Ji =
1

2
(σi)γρξγ∂ρ, γ, ρ : 1, 2. (3.23)

where σi are the Pauli sigma matrices. In explicit form, we have

Jx =
1

2
(u∂v + v∂u), Jy = −i1

2
(u∂v − v∂u), Jz =

1

2
(u∂u − v∂v). (3.24)
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Equation (3.15) suggests us to solve the following eigenvalue equation satisfied

by the LLL wave functions Ψ(u, v)(n),

(r̂ · ~J)Ψ(u, v)(n) = ~
n

2
Ψ(u, v)(n). (3.25)

We know that u and v transform under the action of spin 1/2 IRR of SU(2)

group. A general element g of SU(2) in spin 1/2 IRR can be parametrized as

g =

 ᾱ β̄

−β α

 , |α|2 + |β|2 = 1. (3.26)

Left action of g on ξ gives ᾱ β̄

−β α

 u

v

 =

 η1

η2

 . (3.27)

Partial derivatives with respect to u and v can be obtained via Jacobian trans-

formation of η1 and η2 ∂u

∂v

 = J(η1, η2)

 ∂η1

∂η2


=

 ∂η1
∂u

∂η2
∂v

∂η1
∂u

∂η2
∂v

 ∂η1

∂η2


=

 ᾱ −β
−β̄ α

 ∂η1

∂η2

 .

(3.28)

This allows us to rewrite (3.25) as

1

2
(η1∂η1 − η2∂η2) = ~

n

2
Ψ(u, v)(n). (3.29)

There are two solutions of (3.29) with eigenvalues n/2 and −n/2. Choosing n/2
gives the solution

Ψ(u, v)(n) = ηn1 = (ᾱu+ β̄v)n (3.30)

3.2 Landau Problem on Even Spheres S2k

A k-sphere is a generalization of the circle. The k-sphere is a k-dimensional

manifold and it can be embedded in the (k + 1)-dimensional Euclidean space,
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Rk+1. For (X1, X2, ..., Xk, Xk+1) ∈ Rk+1, Sk is the set of points satisfying the

constraint
k+1∑
r=1

X2
α = R2, r : 1, . . . , k + 1, (3.31)

where R is the "radius" of the k−sphere. From the above definition, an even

dimensional sphere, S2k, can be defined by embedding it in R2k+1 and the coor-

dinates Xi satisfy

2k+1∑
i=1

X2
i = R2, i : 1, 2, ..., 2k + 1. (3.32)

Just as SO(3) is the group of symmetry, i.e. isometry group of S2, SO(2k + 1)

is the isometry group, i.e. group under whose action (3.32) remains invariant.

For our purposes, another useful definition of even-dimensional spheres is given

as the coset spaces

S2k =
SO(2k + 1)

SO(2k)
. (3.33)

The holonomy group of the even sphere manifolds S2k is SO(2k). This is the

subgroup of the north pole of S2k remains unrotated. For instance, the holonomy

group of S2 is simply SO(2) =U(1) which is a one parameter subgroup of SO(3)

corresponding to a rotation about a fixed axis. For S4, we have SO(4) as the

isometry group which is a six parameter group, under whose action a given point

on S4 will remain unrotated.

We follow the work of Hasebe and Kimura [6] to briefly discuss the Landau

problem on S2k. For this purpose, we introdue the Hopf spinor Ψ =

 Ψ+

Ψ−

,

which can be built as,

Ψ+ =

√
R +X2k+1

2R
Ψ(2k−2),

Ψ− =
1√

2R(R +X2k+1)
(X2k − iXiγ

i)Ψ(2k−2), (3.34)

where γi’s are generalized Clifford algebra gamma matrices in (2k−1)-dimensional

space1.

1 Gamma matrices in different dimensions are discussed in more detail in the beginning of the
next chapter
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In (3.34), ψ(2k−2) is a spinor involving coordinates of S2k−2. This can be built

iteratively starting with the Hopf spinor on S2. Hence, there are such of spinors

Ψ on S2k down to Ψ(2) on S2 which can be shown as,

Ψ→ Ψ(2k−2) → Ψ(2k−4) → · · · → Ψ(2). (3.35)

The spinor lives on S2k is characterized as a section of the Spin(2k) bundle on

S2k and the spin connection one form may be written as

A := Ψ†dΨ = Ψ(2k−2)† · iAidXi ·Ψ(2k−2). (3.36)

Using (3.34 A may be evaluated to be

Aa = − 1

R(R +X2k+1)
Ξ+
abXb, A2k+1 = 0, (3.37)

where Ξab’s are Spin(2k) generators,

Ξab = −i1
4

[Γa,Γb], a, b : 1, .., 2k. (3.38)

Ξab is a reducible representation of Spin(2k) and it can be decomposed into two

irreducible representations of Spin(2k)

Ξab =

Ξ+
ab 0

0 Ξ−ab

 , (3.39)

This configuration corresponds to a non-abelian magnetic monopole placed at

the center of S2k and the Spin(2k) gauge connection on S2k is generated by this

monopole. The corresponding curvature tensor is given by

R2Fab = −(XaAb −XbAa − Ξ+
ab), R

2Fa2k+1 = (R +X2k+1)Aa, (3.40)

and one can show that R4F 2
ab = Ξ+2

ab . As a result, there is a connection between

the SO(2k + 1) spinor IRR index I and the monopole charge g. Let us make

this observation more concrete.

The magnitude of the angular momentum of the monopole is actually the eigen-

value of the Spin(2k) quadratic Casimir operator, R4F 2
ab = Ξ+2

ab .

For a more general background gauge field we may consider the I-fold symmet-

ric tensor product of (1/2, . . . , 1/2) which is simply the (I/2, . . . , I/2) IRR of
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SO(2k). Due to (3.40), magnitude of this background field is fixed a related to

the Casimir of the SO(2k) in this IRR. The monopole charge g and the index I

are related by g = I/2.

The Hamiltonian for the charged particles on S2k can be written as

H =
~2

2MR2

∑
i<j

Λ2
ij, (3.41)

where Λij is called covariant angular momentum,

Λij = −i(XiDj −XjDi), (3.42)

and Di = ∂i + iAj is the covariant derivative as usual. The commutators of the

covariant angular momentum is Λij is

[Λij,Λkl] = i[δikΛjl + δjlΛik − δjkΛil − δilΛjk]

−i[XiXkFjl +XjXlFik −XjXkFil −XiXlFjk]. (3.43)

This shows that Λij’s do not satisfy the SO(2k + 1) algebra because of the

existence of the gauge field Fij which contributes to the total angular momentum

of the configuration.

The covariant angular momentum Λij is parallel to the tangent space of the

sphere S2k but the monopole angular momentum R2Fij is orthogonal to the

S2k. This can be verified by calculating, ΛijFij = FijΛij = 0.

The total angular momentum is

Lij = Λij +R2Fij, (3.44)

specifically,

Lab = L
(0)
ab + Ξ+

ab, La2k+1 = L
(0)
a2k+1 +RAa +XaA2k+1.

We can show that this new operator satisfies the SO(2k + 1) algebra; i.e.

[Lij, Lkl] = i(δikLjl + δjlLik − δjkLil − δilLjk), (3.45)

In addition, the Hamiltonian (3.41) commutes with the Lij due to the SO(2k+1)

symmetry in the system. Now, we rewrite the Hamiltonian in terms of the total
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angular momentum and the monopole angular momentum as

H =
1

2MR2

∑
i<j

(L2
ij −R4F 2

ij) (3.46)

We see from the Hamiltonian above, the energy spectrum is simply the difference

between quadratic Casimirs of Spin(2k + 1) IRR of (n + I/2, I/2, . . . , I/2) and

SO(2k) IRR of (I/2, . . . , I/2). Then, the energy spectrum reads,

E(n, I) =
~2

2MR2
[n2 + n(I + 2k − 1) +

1

2
Ik], (3.47)

where n, I = 0, 1, 2, · · · . n labels the Landau level.

The lowest Landau level (LLL) is obtained by setting n = 0. The energy and

the degeneracy of the LLL are given as

ELLL =
~2

2M

I

2R2
k, (3.48)

d(I)=
(I + 2k − 1)!!

(2k − 1)!!(I − 1)!!

k−1∏
l=1

(I + 2l)!l!

(I + l)!(2l)!
≈I 1

2
k(k+1). (3.49)

The wave functions of the LLL are given as the SO(2k+ 1) spinors carrying the

(I/2, . . . , I/2) IRR.
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CHAPTER 4

LANDAU PROBLEM ON ODD SPHERES

In this chapter, we present our original results on the formalism of Landau

problem over odd spheres. Developments in this chapter are based on the article

[32], published in Phys Rev D, coauthored with S. Kürkçüoğlu and G.C. Toğa.

4.1 Landau Problem on Odd Spheres S2k−1

Our main problem is to solve non-relativistic dynamics of charged particles on

odd spheres, S2k−1, in the presence of a constant background gauge field. Via

group theoretical methods we will determine energy spectrum and corresponding

wave functions. First, we need to introduce some necessary definitions.

In previous chapter we have given the general definition of higher dimensional

spheres. Using the coset definition of spheres we can define S2k−1 as

S2k−1 =
SO(2k)

SO(2k − 1)
. (4.1)

Representation theory of SO(2k) can be constructed by exploiting the relation-

ship between the spin group Spin(2k) and SO(2k). Since Spin(2k) is the uni-

versal covering space of SO(2k) the representation theory of Spin(2k) will be

sufficient for our purposes. The generators of Spin(2k) can be constructed by

2k × 2k dimensional Γ matrices. The Clifford algebra is

{Γa,Γb} = 2δab, a, b : 1, 2, . . . , 2k, (4.2)

where Γa are the generators of the Clifford algebra in 2k dimensions. The explicit
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forms of these matrices are

Γµ =

 0 −iγµ
iγµ 0

 ,

Γ2k =

 0 12k−1×2k−1

12k−1×2k−1 0

 ,

Γ2k+1 =

−12k−1×2k−1 0

0 12k−1×2k−1

 ,

µ : 1, 2, . . . , 2k − 1, (4.3)

where γµ’s are the generators of Clifford algebra in (2k − 1) dimensions and µ

runs from 1 to 2k − 1. We are now able to construct the generators of SO(2k)

and SO(2k−1) in terms of these gamma matrices defined above. The generator

of SO(2k) may be written by

Ξab = − i
4

[Γa,Γb], a, b : 1, 2, ..., 2k, (4.4)

and the generator for SO(2k − 1) is given by

Σµν = − i
4

[γµ, γν ], µ, ν : 1, 2, . . . , 2k − 1. (4.5)

While Σµν forms an irreducible representation (IRR) of SO(2k − 1) , Ξab form

reducible representation and it can be decomposed into two fundamental IRR’s

Ξab = Ξ+
ab ⊕ Ξ−ab

=

Ξ+
ab 0

0 Ξ−ab

 (4.6)

and

Ξ±µν = Σµν , ∓Ξ±2kµ =
1

2
γµ (4.7)

We introduce eigenspinors of our Hamiltonian

Ψ =
1√

2R(R +X2k)
[(R +X2k)12k +XµΓµ]φ (4.8)

where φ = 1√
2

 φ̃

φ̃

 with φ̃ being a normalized 2k−1 component spinor. With

these definition and conventions Ψ is normalized, i.e. Ψ†Ψ = 1. Then we

introduce a Hopf-like projection by

Xa

R
= Ψ†ΓaΨ (4.9)
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this map together with Ψ provides us fractionalization of Xa. The spinor Ψ can

be used to build the spin connection over S2k−1 as

A = φ̃(−iAadxa)φ̃, (4.10)

this A is also called SO(2k− 1) gauge field. The components of this gauge field

given in the appendix B.1 are

Aµ = − 1

R(R +X2k)
ΣµνXν , A2k = 0. (4.11)

Components of field strength can be calculated using commutator of covariant

derivatives, which are defined as Da = ∂a + iAa,

Fab = −i[Da, Db] = ∂aAb − ∂bAa + i[Aa, Ab] (4.12)

Calculations presented in appendix B.2 yields,

Fµν =
1

R2
(XνAµ −XµAν + Σµν), F2kµ = −R +X2k

R2
Aµ (4.13)

Taking square of (4.13) gives

R4
∑
a<b

F 2
ab −

∑
µ<ν

Σ2
µν = 0 (4.14)

The second term in (4.14) is proportional to identity due to Schur’s lemma. In

fact, it is the eigenvalue of the Casimir operator of SO(2k − 1) Lie algebra. As

a result, we can choose the constant gauge field as the I−fold symmetric tensor

product of the fundamental spinor representation of SO(2k − 1),(
I

2

)
≡
(
I

2
, . . . ,

I

2

)
=

(
1

2
, . . . ,

1

2

)
⊗s · · · ⊗s

(
1

2
, . . . ,

1

2

)
,

(4.15)

where ⊗s denotes symmetric tensor product.

The Hamiltonian which describes the dynamics of a charge particle on S2k−1 in

the presence of a constant SO(2k − 1) gauge field can be written down as

H =
~

2MR2

∑
a<b

Λ2
ab, (4.16)

where Λab are defined as

Λab = −i(XaDb −XbDa). (4.17)
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It is important to note that commutators of Λab which are calculated as

[Λab,Λcd] =i(δacΛbd + δbdΛac − δbcΛad − δadΛbc)

− i(XaXcFbd +XbXdFac −XbXcFad −XaXdFbc),
(4.18)

does not satisfy SO(2k) commutation relations, due to the existence of the back-

ground gauge field. This issue can be fixed by defining a new operator Lab which

combines Λab and the spin angular momentum of the background gauge field,

Lab = Λab +R2Fab. (4.19)

Specifically we can write

Lµν = L(0)
µν + Σµν , L2kµ = L

(0)
2kµ −RAµ, (4.20)

where L(0)
ab = −i(Xa∂b −Xb∂a) generates SO(2k) over S2k−1. Now, the commu-

tators of Lab

[Lab, Lcd] = i(δacLbd + δbdLac − δbcLad − δadLbc), (4.21)

satisfies the SO(2k) commutation relations as expected.

Now, the Hamiltonian (4.16) takes the following form,

H =
~

2MR2

(∑
a<b

L2
ab −

∑
µ<ν

Σ2
µν

)
, (4.22)

where we have used the fact that

ΛabFab = FabΛab = 0. (4.23)

Our next task is to obtain the energy spectrum of this Hamiltonian. We already

know that Σµν is in the
(
I
2

)
IRR of SO(2k − 1). Hence, we can determine the

IRR of SO(2k) by looking at its restriction into IRR of the subgroup SO(2k−1).

These restriction rules are called branching rules. An SO(2k) IRR can be labeled

by integers or half odd integers (λ1, λ2, . . . , λk) with λ1 ≥ λ2 ≥ . . . |λk|. λi ≥ 0

for i = 1, 2, . . . , k − 1 and additionally λk can have negative values. Two IRRs

of SO(2k) labeled by (λ1, λ2 . . . , λk) and (λ1, λ2 . . . ,−λk) are conjugate to each

other. On the other hand, IRRs of SO(2k − 1) are labeled by k − 1 integers

(µ1, µ2, . . . , µk−1) satisfying µ1 ≥ µ2 ≥ · · · ≥ µk−1. Like previous case, µi are
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integers or half odd integers. However, the last index µk−1 must be a positive

number. In these specific IRRs, the branching rule from SO(2k) to SO(2k − 1)

state that

λ1 ≥ µ1λ2 ≥ · · · ≥ µk−1 ≥ |λk|. (4.24)

Subsequently,
(
I
2

)
IRR of SO(2k − 1) appears in this branching if the following

conditions satisfy,

λ1 ≥
I

2
, λ2 = λ3 = · · · = λk−1 =

I

2
, |λk| ≤

I

2
. (4.25)

Hence, it is convenient to write λ1 = n+ I
2
(n ∈ Z≥0), and we can set λk = s for

some |s| ≤ I
2
. As a result the most general IRR of SO(2k) is

(
n+ I

2
, I

2
, . . . , I

2
, s
)
.

This general IRR can be decomposed into SO(2k − 1) IRRs as(
n+

I

2
,
I

2
, · · · , I

2
, s

)
=
⊕n+ I

2

µ1= I
2

⊕ I
2

µ2=s

(
µ1,

I

2
, · · · , I

2
, µ2

)
. (4.26)

Squared terms in (4.22) are quadratic Casimirs of SO(2k) and SO(2k−1) in the

IRRs
(
n+ I

2
, I

2
, · · · , I

2
, s
)
and

(
I
2
, I

2
, · · · , I

2

)
, respectively. Hence the spectrum of

the Hamiltonian can be calculated as

E =
~

2MR2

(
C2
SO(2k)

(
n+

I

2
,
I

2
, · · · , I

2
, s

)
− C2

SO(2k−1)

(
I

2
,
I

2
, · · · , I

2

))
=

~
2MR2

(
n2 + s2 + n(I + 2k − 2) +

I

2
(k − 1)

)
.

(4.27)

The lowest Landau level (LLL) is not unique, it depends on the background

charge I. If I is even the LLL can be obtained by setting n = 0 and s = 0, if I

is odd we must set n = 0 and s = ±1
2
, thus we have

ELLL =


~

2MR2
I
2
(k − 1) for even I ,

~
2MR2

(
I
2
(k − 1) + 1

4

)
for odd I

(4.28)

Here n and s are the quantum numbers which are labeling the Landau levels.

We know that each Landau level is highly degenerate. The number of the degen-

eracy can be found by calculating the dimension of the IRR
(
n+ I

2
, I

2
, · · · , I

2
, s
)

of SO(2k). The degeneracy of the Landau level labeled by (n, s) is then

d(n, s) =
k∏
i<j

(
mi −mj

gi − gj

) k∏
i<j

(
mi +mj

gi + gj

)
, (4.29)
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where gi = k − i and m1 = n + I
2

+ g1, mi = I
2

+ gi (i = 2, . . . , k − 1), and

mk = s+ gk. For the LLL, in a large I limit degeneracy goes like

d(0, 0)→ I
(k−1)(k+2)

2

d(0,±1

2
)→ I

(k−1)(k+2)
2 .

(4.30)

The thermodynamic limit which can be taken by the following. As I,R → ∞
while the "magnetic length" scale keeping fixed lM = R√

I
, we have

E(n, s) −→ ~
2M`2

M

(
n+

1

2
(k − 1)

)
, ELLL =

~
2M`2

M

k − 1

2
, (4.31)

and we see that the LLL energy has the same form as in the standart integer

quantum hall effect in 2D up to an overall constant.

We have found the energy levels. Now our next task is to find corresponding

wave functions. In fact, the wave functions can be written in terms of Wigner

D-functions D(n+ I
2
, I
2
,..., I

2
,s)(g)[L][R] of SO(2k) with

(
n+ I

2
, I

2
, . . . , I

2
, s
)
IRR. The

[L] and [R] indices represent the states in the current IRR of SO(2k) with respect

to the IRRs of SO(2k− 1) found in the branching. However, instead of working

with Wigner D-functions we will use 2k−1-component spinors from (4.8)

Ψ± =
1

2

1√
R(R +X2k)

((R +X2k)I2k−1 ∓ iXµγ
µ)φ̃ , Ψ =

 Ψ+

Ψ−

 . (4.32)

In fact, they are the LLL wave functions for I = 1. Ψ+ and Ψ− correspond to

s = 1
2
and s = −1

2
respectively. A more compact notation for Ψ± is

Ψ±a := K±αβφ̃β, (4.33)

and they satisfy that

LµνΨ
±
α = K±αβ(Σµν)βγφ̃γ , L2kµΨ±α = K±αβ(∓1

2
γµ)βγφ̃γ . (4.34)

Using these identities we calculate that∑
a<b

L2
abΨ

± =
∑
µ<ν

(
Σ2
µν +

1

4
γ2
µ

)
Ψ± ,

=
∑
µ<ν

(
Σ2
µν +

1

2

(
k − 1

2

))
Ψ± ,

(4.35)
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What are the LLL wave functions for a general odd I ? It can be constructed

as the I-fold symmetric product of Ψ±a

ΨI =
∑

α1 ,···αI

fα1 ···αI Ψα1 · · ·ΨαI , (α = 1, 2, . . . , 2k−1) (4.36)

where fα1...αI are total symmetric coefficients in its indices. They also obey

Γαα1α2
fα1α2...αI = 0, fααα3...αI = 0 so they eliminate the representations different

than symmetric that appear in the I−fold tensor product of SO(2k − 1).

For many particle systems the LLL wave function is simply Slater determinant

of ΨI . For a system with N particles, the LLL wave function is

ΨI
N =

∑
α1 ,···αI

εα1 ···αI ΨI
α1

(x1) · · ·ΨI
αI

(xN) , (4.37)

where εα1 ···αI is the generalized Levi-Civita symbol.

4.2 The Equatorial S2k−2

The results we have found for the odd spheres can lead us to explore the known

results of the Landau problems on even spheres, S2k−2. First we calculate that

(K±)2 =
1

R
(X2kI2k−1 ∓ iXµγ

µ) . (4.38)

The equatorial S2k−2 can be obtained by identifying one of the coordinates of

S2k−1,customarily the last coordinate x2k, to zero. Thus, on the equatorial S2k−2

K± takes the form

(K±0 )2 := (K±)2
∣∣∣
x2k=0

= ∓i 1

R
Xµγ

µ , (4.39)

where R is the radius of S2k−2. Now, we are able to introduce an idempotent

on S2k−2 as

Q = i(K±0 )2 , Q† = Q , Q2 = I2k−1 . (4.40)

Using this idempotent we can construct the rank-1 projection operators as

P± =
I2k−1 ±Q

2
(4.41)

and observe that P2
± = P±.

Let us denote the algebra of functions on S2k−2 as A. The free A-module can be
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written as A2k−1
= A⊗C2k−1 and the projective modules P±A2k−1 . This means

we may write

A2k−1

= P+A2k−1 ⊕ P−A2k−1

, (4.42)

where P+A2k−1 and P−A2k−1 are of dimension 2k−2.

1-rank projectors can be used to construct higher rank projectors. Specifically,

rank I projectors can be constructed by

PI± =
I∏
i=1

I±Qi
2

, Qi = I2k−1 ⊗ I2k−1 ⊗ · · · ⊗Q⊗ · · · ⊗ I2k−1 , (4.43)

where Qi is the I-fold tensor product of identity matrices except that its ith

entry is Q. PI± and Qi act on the free module A2k−1

I = A⊗ C2k−1

I , where C2k−1

I

is the I-fold tensor product of C2k−1 , C2k−1

I = C2k−1 ⊗ · · · ⊗ C2k−1 . Without

going into technical details, we may state that P± are unitarily equivalent to

projections P ′I± which project to the
(
I
2
, I

2
, · · · , I

2

)
IRR of SO(2k − 2). The

unitary equivalence of P± and P ′I± can be demonstrated building upon the ideas

presented in [33]. However, we will not consider this here.

The branching of the
(
I
2
, I

2
, · · · , I

2

)
IRR of SO(2k − 2) under the IRR of the

SO(2k − 2) reads (
I

2
,
I

2
, · · · , I

2

)
=

I
2⊕

µ=− I
2

(
I

2
,
I

2
, · · · , I

2
, µ

)
. (4.44)

We see that in the right hand side of (4.44) the
(
I
2
, I

2
, . . . ,±

∣∣ I
2

∣∣) IRRs of SO(2k−
2) appears so PI± are the projections to this IRR.

The connection two forms constructed from PI± are

F± = PI± d (PI±) d (PI±) . (4.45)

Hence, together with (4.44), we can say that F± are just the SO(2k − 2) back-

ground gauge fields on even spheres S2k−2. Lastly, an important topological

number, which is Chern number, is

c±k−1 =
1

k!(2π)k

∫
S2k−2

PI±
(
d (PI±)

)2k−2
. (4.46)

where c±k−1 is the (k−1)th Chern number with ck−1 ≡ c+
k−1 > 0 and c−k−1 = −ck−1.

In fact, the degeneracy of the LLL on S2k−2 is related with this Chern number.

The correspondence between these two numbers is ck−1(I) = dS
2k−2

LLL (k−1, I−1).
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4.3 Landau Problem on S3

The energy levels of the Landau problem on three sphere can be obtained by

setting k = 2 in (4.27),

En,s =
~

2MR2

(
n2 + 2n+ In+

I

2
+ s2

)
, (4.47)

and the degeneracy of the (n, s)th Landau level can be easily calculated by the

dimension of the
(
n+ I

s
, s
)
IRR of SO(4)

d(n, s) = (n+
I

2
+ s+ 1)(n+

I

2
− s+ 1) = (n+

I

2
+ 1)2 − s2 . (4.48)

The LLL is then

ELLL =
~

2MR2

I

2
, I even , ELLL =

~
2MR2

(
I

2
+

1

4

)
, I odd , (4.49)

and their degeneracies are

d(n = 0, s = 0) = (
I

2
+ 1)2

d(n = 0, s = ±1

2
) = d(0,+1/2) + d(0,−1/2)

=
1

2
(I + 1)(I + 3).

(4.50)

These results are first considered by Nair and Daemi and are all in agreement

with the result of their work.

We can also obtain equatorial sphere S2 by setting x4 = 0. The idempotent now

takes the form Q = ~σ · X̂ and corresponding projectors are P± = I2±σ·X̂
2

, with

X̂ = X
R
. This yields the Abelian Dirac monopole connection Bµ = 1

2
εµνρFνρ =

I
2
Xi
R3 . Finally, the first Chern number c1(I) = I corresponds the zero modes of

the Dirac operator on two sphere in them monopole background.

4.4 Landau Problem on S5

Another illustration is 5-sphere defined as a coset space S5 ≡ SO(6)/SO(5).

Setting k = 3 gives the energy levels as

E =
~

2MR2
(n2 + 4n+ In+ I + s2) , (4.51)
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and its degeneracy is just the dimensiın of the
(
n+ I

2
, I

2
, s
)
IRR of SO(6) as

d(n, s) =
1

12
(n+ 1)2(n+ I + 3)

(
(n+

I

2
+ 2)2 − s2

)(
(
I

2
+ 1)2 − s2

)
. (4.52)

For the LLL,

ELLL =
~

2MR2
I , I even , ELLL =

~
2MR2

(
I +

1

4

)
, I odd (4.53)

d(n = 0, s = 0) =
1

3 · 26
(I + 2)2(I + 3)(I + 4)2 , I even , (4.54)

and

d(n = 0, s = ±1

2
) = d(0,+1/2)+d(0,−1/2) =

1

3 · 25
(I+1)(I+3)3(I+5) , I odd .

(4.55)

The equatorial four sphere S4 can be obtained by setting X6 = 0 of S5. The

idempotent and the corresponding projectors now take form Q = γµXµ
R

and P± =

I4±Q
2

on the equatorial S4. The field strength is Fij = 1
R2 (XjAi −XiAj + Σ+

ij),

F5i = −R+X5

R2 Ai, i = (1 , · · · , 4), where Ai = − 1
R(R+X5)

Σ+
ijXj, A5 = 0, and

Σ+
ij = −i1

4
[σi , σj].

4.5 Dirac-Landau Problem on S2k−1

In this section, our aim is to determine the spectrum of the Dirac operator for

charged particles on S2k−1 under the influence of a constant SO(2k − 1) gauge

field background.

Let us briefly recall the situation in the absence of a background gauge field. In

this case, Dirac operator for odd-dimensional spheres S2k−1 is well-known. It

can be expressed in the form [34]

D± =
1

2
(1∓ Γ2k+1)

∑
a<b

(−ΞabL
(0)
ab + k − 1

2
) , (4.56)

where L(0)
ab is given after (4.19) and carriers the (n, 0, · · · , 0) IRR of SO(2k) and

Ξab given in (4.4) carries the reducible representation
(

1
2
, 1

2
, · · · , 1

2

)
⊕
(

1
2
, 1

2
, · · · ,−1

2

)
of SO(2k). The projectors P∓ = 1

2
(1∓Γ2k+1) allows us to pick either of the two
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inequivalent representations. To obtain the spectrum of D±, we simply need to

observe that

(n, 0, · · · , 0)⊗
(

1

2
,
1

2
, · · · ,±1

2

)
=

(
n+

1

2
,
1

2
, · · · ,±1

2

)
⊕
(
n− 1

2
,
1

2
, · · · ,∓1

2

)
,

(4.57)

Since the
(

1
2
, 1

2
, · · · ,±1

2

)
IRRs of SO(2k) are conjugates, both representations

yield the same spectrum for the Dirac operator D± as expected, which is found

to be [34]

E↑ = n+ k − 1

2
, E↓ = −(n+ k − 3

2
) , (4.58)

for the spin up and spin down states, respectively. Using the notation j↑↓ = n± 1
2
,

we can express the spectrum of D± more compactly as E↑↓ = ±(j↑↓ + k − 1).

Let us now consider the gauged Dirac operator, which can be written by replac-

ing L(0)
ab with Λab = Lab −R2Fab as

D±G =
1

2
(1∓ Γ2k+1)

∑
a<b

(
−Ξab(Lab −R2Fab) + k − 1

2

)
. (4.59)

It is not possible to obtain the spectrum DG in the same manner as that of the

zero gauge field background case. There is, however, a well-known formula on

symmetric spaces that relates the square of the gauged Dirac operator to the

gauged Laplacian, the Ricci scalar of the manifold under consideration and a

Zeeman energy term related to the curvature of the background gauge field [35].

Furthermore, on a symmetric coset space, say K ≡ G
/
H, a particular gauge

field background which is compatible with the isometries of K generated by G

(in the sense that the Lie derivative of the gauge field strength along a Killing

vector of K is a gauge transformation of the field strength) is given by taking the

gauge group as the holonomy groupH and identifying the gauge connection with

the spin connection. Then the square of the Dirac operator can be expressed as

[35]

(iD±G)2 = C2(G)− C2(H) +
R
8
, (4.60)

where R is the Ricci scalar of the manifold K and C2(G) and C2(H) are

quadratic Casimirs of G, H, respectively, and C2(H) is evaluated in the IRR of

H characterizing the background gauge field, while C2(G) is evaluated in certain

IRRs of G containing the fixed combinations of the background isospin of the
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gauge field and the intrinsic spin of the fermion. These considerations fit per-

fectly with our problem for odd spheres S2k−1 under fixed SO(2k−1) gauge field

backgrounds, since in the present problem we have taken the gauge group as the

holonomy group SO(2k − 1) of the odd-spheres and the gauge connection has

already been identified with the spin connection and taken explicitly in the IRR

of SO(2k− 1), which is the I-fold symmetric tensor product of the fundamental

spinor representation
(

1
2
, · · · 1

2

)
. Therefore, we can write

(iD±G)2 = C2
SO(2k) (n+ J, J, · · · , J,±s̃)−C2

SO(2k−1)

(
I

2
,
I

2
, · · · , I

2

)
+

1

4
(2k2−3k+1)

(4.61)

where 2(2k2 − 3k + 1) is nothing but the Ricci scalar of the sphere S2k−1 and J

takes on the values J = I
2

+ 1
2
(I ≥ 0) and J = I

2
− 1

2
(I ≥ 1) corresponding to

the spin up and spin down states, respectively and |s̃| ≤ J . We find

E↑ = n(n+ 2k − 1) + I(n+ k − 1) + k(k − 1) + s̃2 , I ≥ 0 , (4.62)

E↓ = n(n+ I + 2k − 3) + s̃2 , I ≥ 1 (4.63)

It is readily seen that the spectrum for conjugate SO(2k) IRRs coincide with

s̃→ −s̃.

Degeneracy of E↑ and E↓ are given by the dimensions of the IRRs (n+J, J, · · · , J,
s± 1

2
) with J = I

2
+ 1

2
and J = I

2
− 1

2
, respectively. They can be computed from

(4.29) with gi = k− i and m1 = n+ J + g1 , mi = J + gi (i = 2, · · · , k− 1) and

mk = s̃+ gk.

The Hamiltonian for the Dirac-Landau problem may be taken asH = 1
2MR2 (iD±G)2.

For even I, we see that the LLL is given by taking n = 0 and s̃ = ±1
2
in (4.63)

yielding ELLL↓ = 1
4
with the same degeneracy for both of the operators (iD±G)2

and given as d(n = 0, s̃ = 1
2
) = d(n = 0 , s̃ = −1

2
), which can be computed from

(4.29) using the facts given in the previous paragraph. For odd I, we see that

LLL is given by taking n = 0 and s̃ = 0 in (4.63) yielding ELLL↓ = 0. These are

the zero modes of the Dirac operators D±G with the degeneracy d(n = 0, s̃ = 0).
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For S3, we find that the LLL degeneracy for even I is given as

d(n = 0, I) =

I(I + 2)

4
for even I

(I + 1)2

4
for odd I,

(4.64)

which is the number of zero modes of Dirac operators D±G. These match with

results of [18]. Another example is S5, with the LLL degeneracy for even I given

as 1
3·26 I(I + 2)3(I + 4), and for odd I it is 1

3·26 (I + 1)2(I + 2)(I + 3)2.

We may recall that on even dimensional manifolds, Atiyah-Singer index theorem

relates the number of zero modes, i.e. index of the Dirac operator to Chern

classes, which are integers of topological significance [36]. On odd dimensional

manifolds, however, there is known such general index theorem. One possible

candidate for a topological number on these manifolds could be conceived as the

Chern-Simons forms. Nevertheless, for odd spheres it is not too hard to see that

these vanish identically when evaluated for the SO(2k − 1) connection. Thus,

it remains an open question to find out if and how the zero modes of D±G are

related to a number of topological origin.

Finally, let us also note that setting I = 0 in (4.62), we have s̃ = ±1
2
and we

find E↑ = (n + k − 1
2
)2, which matches with the known result for D± given in

(4.58). Explicitly, we have E↑ =
√
E↑, while E↓ = −

√
E↑ with n → n − 1 and

s̃→ −s̃. The latter are necessary to match the IRR
(
n+ 1

2
, 1

2
, · · · , 1

2
,±1

2

)
with

the second summand in (4.57).
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CHAPTER 5

CONCLUSION

In this thesis, we have given the reviews of QHE on simple planar systems, two

sphere S2 and even-dimensional spheres S2k. Then, by adapting the methods

used by Hasebe and Kimura, we have solved the Landau problem and the Dirac-

Landau problem for charged particles on odd-dimensional spheres S2k−1 in the

background of constant SO(2k − 1) gauge fields. First, using group theoretical

arguments, we have determined the spectrum of the Schrödinger Hamiltonian

together with its degeneracies at each Landau level. We gave the corresponding

eigenstates in terms of the Wigner D-functions in general, while for odd values

of I an explicit local form of the LLL eigenstates is also obtained. We have

noticed a peculiar relation between the Landau problem on S2k−1 and that on the

equatorial S2k−2, which allowed us to give the background SO(2k−2) gauge fields

over S2k−2 by constructing the relevant projective modules. Additionally, for the

Landau problem on S5, we were able to demonstrate an exact correspondence

between the union of Hilbert spaces of LLL’s with I ranging from 0 to Imax = 2K

or Imax = 2K + 1 to the Hilbert spaces of the fuzzy CP 3 or that of winding

number ±1 line bundles over CP 3 at level K, respectively. This correspondence

also means that the quantum number s = ±1
2
for the LLL over S5 is actually

related to the winding number κ = ±1 of the monopole bundles over CP 3
F

via s = κ
2
, which permits us to give, in a sense, a topological meaning to the

±1 values of 2s. In the last section, we have determined the spectrum of the

Dirac operators on S2k−1 in the same gauge field background together with their

degeneracies and found the number of their zero modes as well. Our results are

in agreement with the spectra of the ungauged Dirac operators on S2k−1 for
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I = 0 and generalizes it to all constant spin connection SO(2k−1) backgrounds.
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APPENDIX A

SOME REPRESENTATION THEORY

A.1 Branching Rules

Irreducible representations of SO(N ) and SO(N −1)can be given in terms of the

highest weight labels [λ] ≡ (λ1 , λ2 , · · · , λN−1 , λN ) and [µ] ≡ (µ1 , µ2 , · · · , µN−1)

respectively. Branching of the IRR [λ] of SO(N ) under SO(N − 1) IRRs follows

from the rule [37]

[λ] =
⊕

λ1≥µ1≥λ2≥µ2≥···≥λk−1≥µk−1≥|λk|

[µ], for N = 2k (A.1)

[λ] =
⊕

λ1≥µ1≥λ2≥µ2≥···≥λk−1≥µk−1≥λk≥|µk|

[µ], for N = 2k + 1 (A.2)

A.2 Quadratic Casimir operators of SO(2k) and SO(2k − 1) Lie alge-

bras

Eigenvalues for the quadratic Casimir operators of SO(2k) and SO(2k − 1) in

the IRRs [λ] ≡ (λ1, λ2 · · · λk), [µ] ≡ (µ1, µ2 · · · µk−1), respectively are given as

[37]:

C
SO(2k)
2 [λ] =

k∑
i=1

λi(λi + 2k − 2i)

C
SO(2k−1)
2 [µ] =

k−1∑
i=1

µi(µi + 2k − 1− 2i) .

(A.3)
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Eigenvalues of quadratic Casimir operators of some specific IRRs are given as

C
SO(4)
2

(
n+

I

2
, s

)
=
I2

4
+ In+ I + n2 + 2n+ s2

C
SO(3)
2

(
I

2

)
=
I2

4
+
I

2

C
SO(6)
2

(
n+

I

2
,
I

2
, s

)
=
I2

2
+ In+ 3I + n2 + 4n+ s2

C
SO(5)
2

(
I

2
,
I

2

)
=
I2

2
+ 2I

(A.4)

A.3 Relationship between Dynkin and Highest weight labels

Throughout this thesis highest weight labels (HW) has been used to label the

irreducible representations of Lie algebras. Another more common way to label

the IRRs is Dykin labeling (index). The relationship between Dykin labels and

highest weight labels are as follows. For a SO(5) IRR , the labels are given as

(p, q)Dynkin ≡ (λ1, λ2)HW

and the relation between these labels are given by

λ1 = p+
q

2
λ2 =

q

2

Then for instance, we have (I/2, I/2)HW corresponds to (0, I)Dynkin.

For a SO(6) IRR , the labels are related by

(p, q, r)Dynkin ≡ (λ1, λ2, λ3)HW

and the relation between these labels are given by

λ1 = q +
p+ r

2
λ2 =

p+ r

2
λ3 =

p− r
2

For SO(4) IRRs the labels are related by

(p, q)Dynkin ≡ (λ1, λ2)HW

and the relation between these labels are given by

λ1 =
p+ q

2
λ2 =

p− q
2

For instance, (n+I/2, s)HW corresponds to (1
2
(n+I/2+s), 1

2
(n+I/2−s))Dynkin.
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APPENDIX B

DETAILS OF SOME COMPUTATIONS IN CHAPTER 4

B.1 Calculation of Gauge Field Aµ

We may express (4.8) as

Ψ =
1√
2

1√
2R(R +X2k)

[(R +X2k)12k + ΓµXµ]

 φ̃

φ̃

 . (B.1)

Writing out the spinor indices explicitly we have

Ψα =
1

2

1√
R(R +X2k)

[
(R +X2k)φ̃α +Xµ(Γµ)αα′φ̃α′

]
. (B.2)

Ψ†α =
1

2

1√
R(R +X2k)

[
(R +X2k)φ̃

†
α +Xµ(Γµ)α′′αφ̃

†
α′′

]
. (B.3)

The SO(2k − 1) gauge field is given by (4.10). Showing the spinor indices

explicitly we may write

−iAa = Ψ†α(∂aΨ)α, (B.4)

or

−iAµ = Ψ†α(∂µΨ)α, −iA2k = Ψ†2k(∂2kΨ)α. (B.5)

Let us first note that we have

∂aR =
Xa

R
, ∂aX2k = δa2k, ∂aXµ = δaµ. (B.6)

With these we have

∂a
1√

2R(R +X2k)
= − 1

(2R(R +X2k))3/2
(2Xa +

1

R
XaX2k +Rδa2k), (B.7)
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and

∂aΨα =− 1√
2

1

(2R(R +X2k))3/2
(2Xa +

1

R
XaX2k +Rδa2k)(R +X2k)φ̃α

− 1√
2

1

(2R(R +X2k))3/2
(2Xa +

1

R
XaX2k +Rδa2k)Xµ(Γµ)αα′φ̃α′

+
1√
2

1

(2R(R +X2k))3/2
(
Xa

R
+ δa2k)φ̃α

+
1√
2

1

(2R(R +X2k))3/2
δaµ(Γµ)αα′φ̃α′ .

(B.8)

With these we can now compute Aa, we have

Ψ†∂aΨ =
1

2

[
− 1

(2R)2
(2Xa +

1

R
XaX2k +Rδa2k) +

1

2R

(
Xa

R
+ δa2k

)
− 1

(2R)2(R +X2k)2
(2Xa +

1

R
XaX2k +Rδa2k)XµXµ +

1

(2R)(R +X2k)
Xµ

]
φ̃†2kαφ̃α

− 1

2

[
2

(2R)2(R +X2k)
(2Xa +

1

R
XaX2k +Rδa2k)Xµ −

1

2R
δaµ

− 1

2R(R +X2k)
(
Xa

R
+ δa2k)Xµ

]
(Γµ)αα′φ̃

†
αφ̃α′

+
1

2

[
− 1

(2R)2(R +X2k)2
(2Xa +

1

R
XaX2k +Rδa2k)XµXν

1

2
[Γµ,Γν ]αα′φ̃

†
αφ̃α′

+
1

2R(R +X2k)
Xνδaµ

1

2
[Γµ,Γν ]αα′φ̃

†
αφ̃α′

]
.

After straightforward manipulation the terms in the first square bracket in the

above expression an be shown to vanish for both a = µ and a = 2k components.

We also have that

φ̃†α(Γµ)αα′φ̃α′ = −iφ̃†γµφ̃+ iφ̃†γµφ̃ = 0 (B.9)

upon using Γµ given in (4.3) and that

XµXν [Γµ,Γν ]αα′ = 0 (B.10)

since XµXν is symmetric under the exchange of µ, ν while [Γµ,Γν ] is antisym-

metric.

Thus we have

Ψ†∂aΨ =
1

4R(R +X2k)
Xνδaµ

1

2
[Γµ,Γν ]αα′φ̃

†
αφ̃α′ (B.11)
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from which we immediately see that A2k = 0 since µ 6= 2k. Finally for a = µ we

find

Ψ†∂aΨ =
1

4R(R +X2k)
Xν(φ̃

†, φ̃)

 1
2
[γµ, γν ] 0

0 1
2
[γµ, γν ]

 φ̃

φ̃


= φ̃†

(
i

R(R +X2kΣµνXν)

)
φ̃

= φ̃†(−iAµ)φ̃

(B.12)

and therefore Aµ = − 1
R(R+X2k)

ΣµνXν as we wanted to show.

B.2 Calculation of Field Strength Fµν and F2kµ

Field strength is given by

Fab = ∂aAb − ∂bAa + i[Aa, Ab], a, b : 1, 2, . . . , 2k. (B.13)

First, we give calculation of F2kµ,

F2kµ = ∂2kAµ − ∂µA2k + i[A2k, Aµ] = ∂2kAµ, (B.14)

where µ runs from 1 to 2k−1. The second and the third term on the right hand

side of (B.14) vanishes because A2k = 0. Thus, we have

F2kµ = ∂2kAµ = −Σµν

[
∂2k

(
1

R(R +X2k)

)
Xν +

1

R(R +X2k)
∂2kXν

]
= Σµν

[
X2k

R
(R +X2k) +R +X2k

R2(R +X2k)2

]
Xν

= −R +X2k

R2
Aµ.

(B.15)

Second, we calculate Fµν ,

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], µ, ν : 1, 2, . . . , 2k − 1. (B.16)

We need to calculate

i[Aµ, Aν ] = i
1

R2(R +X2k)2
[ΣµσXσ,ΣνρXρ]

= i
XσXρ

R2(R +X2k)2
[Σµσ,Σνρ]

=
XσXρ

8R2(R +X2k)2
(δµνΣσρ + δσνΣρµ + δµρΣνσ + δσρΣµν)

=
1

8R2(R +X2k)2
(XνXρΣρµ +XσXµΣνσ + (R2 −X2

2k)Σµν),

(B.17)
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and we have

∂µAν = ∂µ

(
− 1

R(R +X2k)
ΣνρXρ

)
= Σνρ

(
Xρ

R3(R +X2k)2

Xµ

R
(2R +X2k)−

1

R(R +X2k)
δµρ

)
=

2R +X2k

R3(R +X2k)2
XρXµΣνρ −

1

R(R +X2k)
Σνµ.

(B.18)

Similarly, we have

∂νAµ = ∂ν

(
− 1

R(R +X2k)
ΣµγXγ

)
= Σµγ

(
Xγ

R3(R +X2k)2

Xν

R
(2R +X2k)−

1

R(R +X2k)
δνγ

)
=

2R +X2k

R3(R +X2k)2
XγXνΣµγ −

1

R(R +X2k)
Σµν .

(B.19)

Finally, we obtain

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

=
1

R2
(XνAµ −XµAν + Σµν).

(B.20)
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