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Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Erol Şahin
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Signature :

iv



ABSTRACT

STRATIFIED CALIBRATION AND GROUP SYNCHRONIZED FOCAL
LENGTH ESTIMATION FOR STRUCTURE FROM MOTION ALGORITHMS

Çalışkan, Akın

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

July 2017, 86 pages

The estimation of unknown calibration parameters of the cameras without using any
calibration pattern is critical for the performance of the 3D computer vision applica-
tions such as structure from motion, pose estimation, visual odometry, and it is still an
open problem for the researchers. In this thesis, our contribution is two folded. First
of all, we propose a novel stratified approach for estimating both the focal length
and the radial distortion of a camera from given 2D point correspondences without
knowing any calibration information, such as the focal length of a camera. We as-
sume that the images share the same intrinsic parameters and we further assume that
the optical image centers are known. Our method progresses first by showing that
the distortion on the point coordinates can be removed without the knowledge of the
true focal length by enforcing the epipolar geometry constraint. Next, by using the
distortion free correspondences, we estimate the true focal length of the camera by en-
forcing the trace constraint. Secondly, we utilize the idea of estimation of calibration
parameters from two cameras, and propose method for estimation of focal lengths
of all cameras, which can be all different, used in structure from motion pipeline.
The relation of focal lengths between two adjacent cameras are defined from a trace
constraint, and this is followed by using the group synchronization method for all
cameras in a dataset to estimate unknown focal lengths. In this step a novel energy
function is proposed together with global optimum solution. The optimal solution
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for this function gives the resultant focal lengths with an error which can be handled
by bundle adjustment stage of structure from motion algorithms, even if very limited
number of focal lengths are available. In both contributions, our methods are quite
easy to implement compared to other methods in the literature and we demonstrate
their accuracy and robustness against noise on synthetically generated data sets. Fur-
thermore, we perform experiments for the accuracy of our first method on real image
pairs by comparing our results against a method that uses a calibration pattern, and for
the accuracy and complexity of the second method on real data sets used in structure
from motion pipelines.

Keywords: Self-Calibration, Focal Length Estimation, Radial Distortion Removal,
Structure From Motion, Multiple View Geometry, Non-Linear Optimization

vi



ÖZ

HAREKETTEN YAPI ÇIKARIM ALGORİTMALARI İÇİN KATMANLI
KALİBRASYON VE GRUP SENKRONİZE ODAK UZAKLIĞI KESTİRİMİ

Çalışkan, Akın

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Temmuz 2017 , 86 sayfa

Kalibrasyon için özelleşmiş levhaların kullanılmadığı ve bir kameranın kendine özgü
parametrelerinin kestirimi 3 boyutlu bilgisayarlı görü uygulamalarının performansı
için çok kritik bir önem taşımaktadır ve halen açık bir problemdir. Bu uygulamalara
hareketten yapı çıkartma, poz kestirimi, görsel poz takibi örnek olarak verilebilir. Bu
tezde yapılan katkı iki aşamalıdır. İlk olarak özgün bir yaklaşım ile odak derinliği
ve radyal bozulmanın sadece iki tane görüntü kullanılarak kestirildiği katmanlı bir
algoritma önerilmiştir. Bu yöntemde sadece iki görüntü arasındaki eşleşen noktalar
kullanılmıştır ve herhangi bir kalibrasyon levhasından yararlanılmamıştır. Tezde öne-
rilen yöntemde iki görüntünün de aynı kamera parametrelerine sahip olduğu ve optik
görüntü merkezlerinin önceden bilindiği varsayılmıştır. Önerilen yöntemde öncelikle
radyal bozulma, yerel gerçeklik odak derinliği bilgisi olmadan, epipolar geometri kı-
sıtları kullanılarak kaldırılmaktadır. Sonrasında doğru odak derinliği, ağ diyagramı
kısıtı ve radyal bozulmaya uğramamış nokta eşlemeleri kullanılarak hesaplanmakta-
dır. Tezdeki ikinci katkı olarak, iki görüntüden kamera parametrelerinin kestirim fikri
kullanılarak, hepsi birbirinden farklı olabilecek kameralardan oluşan, hareketten yapı
çıkartma algoritmasına girdi olarak verilen bir veri kümesinin hepsinin odak derin-
liğini bulmak önerilmektedir. Ardışık gelen iki kameranın odak derinliği arasındaki
ilişki ağ diyagramı kısıtına dayanarak çıkartılmaktadır. Sonrasında, grup senkronizas-
yon metodu kullanılarak bilinmeyen bütün kameraların odak derinlikleri bulunmak-
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tadır. Bu aşamada özgün bir maliyet fonksiyonu önerilmektedir ve bu fonksiyonun en
optimal çözümü hesaplanmaktadır. Sonuç olarak hesaplanan odak derinliği değerle-
rindeki hata oranı, bilinen odak derinliği değerleri çok az bir oranda olsa bile, hare-
ketten yapı çıkartma algoritmalarının demet duzenleme adımında düzeltilebilecek se-
viyededir. Yapılan iki katkıda da, önerilen yöntemler diğer metodlara kıyasla kolayca
uygulanabilir yöntemlerdir ve sentetik veri deneylerinde gürültüye karşı gürbüzlük-
leri gösterilmiştir. Ayrıca, ilk önerilen yöntem gerçek veri setlerinde de denenmiş ve
kalibrasyon levhası ile elde edilen sonuçlarla, bu yöntemden elde edilenler karşılaş-
tırılmıştır. Yine ikinci önerilen yöntemin gerçek veri setleri kulanılarak gürbüzlüğü
gözlemlenmiştir.

Anahtar Kelimeler: Öz Kalibrasyon, Odak Derinliği Kestirimi, Radyal Bozulma Dü-
zeltimi, Hareketten Yapı Çıkarımı, Çoklu Görünüm Geometrisi, Doğrusal Olmayan
Optimizasyon
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

There is no shortage of debate about how reconstructing the 3D models change the

way human or robots visualize in many applications, including virtual reality [46],

augmented reality [26, 3], mixed reality [27, 25], medical and scientific visualization

[18, 29], defense, flight simulation and training [28]. With this technology, people

can feel the atmosphere of being in a stadium while watching a football game [64],

or architects can work on the real model of their work in a detailed 3D, Figure 1.1, or

tourists can visit a city in full scale without going there exactly [1, 56], or self-driving

cars can navigate themselves in a crowded city [65, 48].

That is not a dream to being integrated with these technologies in our daily life. How-

ever, although there are so much work so far, there will be much more effort needed

to make this technology as being perfect as it will be. For this purpose, the research

studies on 3D computer vision falls into two main groups that have been studied for

more than 20 years. First of all, the visualization of 3D models for the natural hu-

man perception is one of the most significant challenges in this area [54, 43]. As an

ultimate goal, the reconstructed models should be as real world object in terms of

scale, color and interaction with others. Secondly, recovering the 3D structure, i.e.

3D models, of a scene is one of the most fundamental goals in 3D computer vision,

which is strictly connected to the former group of research, and effect its success or

failure. For this reason, researchers put their efforts to generate more realistic 3D

models. The main direction on this research is mainly determined by the type of the
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Figure 1.1: 3D Experience of watching a game in a stadium [64] , modeling the

buildings, visiting a city [1, 56], navigating an autonomous car [65, 48].

capturing device used in the application. One group of research is conducted with the

depth cameras [32, 17], such as products named as Kinect [14], intel real sense [13].

A sample 3D model generated with volumetric 3D reconstruction pipeline proposed

in [32] is illustrated in Figure 1.2.

This approach reconstructs the 3D model of a scene from captured depth data [32] by

merging them in an order. In details, this approach gets realistic models in real time

with low resolution for indoor environments [57], while they could not be success-

ful for outdoor scenes due to the depth sensor failure. Furthermore, there is another

group of research for 3D model generation of a scene, which is recovering the 3D

structure of a scene from set of images [1, 58, 56, 52, 51], and known as “multiview

structure from motion (SfM)”. The early research on SfM started with the estimation

of structure from two views [21]. This is followed by utilizing more than two images,

which are captured by the same camera, for generating the 3D structure. This ap-

proach is called sequential, or incremental, structure from motion [51] and illustrated
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Figure 1.2: A Sample 3D model of a scene, which is generated by volumetric 3D

reconstruction algorithm [32]

in Figure 1.3. The motivation of using more images for recovering the scene structure

is to increase the resolution and the information inside the model.

Figure 1.3: Incremental, or sequential, Structure from Motion: Set of images and

resultant 3D model of a scene [51].

Furthermore, there is one more SfM approach [1, 58, 56] that generates 3D model

from extremely large collection of photographs, such as those that can be download
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from internet after a search for a keyword, for example searching "ROME" keyword

in a Flicker [15] web site [1]. In Figure 1.4, sample photographs for Notre Dame

cathedral and the resulting 3D model are illustrated [58]. In this case, it is possible

to reconstruct a 3D model of a scene without going there, and to use a large set of

photographs to increase the resolution of the model; however, this approach intro-

duces researcher with new challenges due to processing of very large collection of

data. For instance, as it is stated in [58], the downloaded photographs are from differ-

ent cameras, such as point and shot cameras, action cameras,or smart phone cameras,

and they are captured in various time intervals. This makes the feature-matching step

more difficult and forces those algorithms to be more robust against different type

changes [55].

Figure 1.4: Global Structure from Motion: Large set of images and resultant 3D

model of a scene [58].

Furthermore, the processing periods become longer, and they tend to increase expo-

nentially as the number of photographs increases. It is also computationally complex

to estimate global poses for each camera [61, 62] in global SfM pipelines.

As another complexity problem, global SfM approach uses all available Exchange-

able Image File (EXIF) data, where information on image, such as camera intrinsic

parameters, are stored, of the input set of photographs, and estimates the missing cal-

ibration parameter during the structure recovery stage [1, 53]. Although it seems that

there is a solution to calibrate all the cameras using reprojection error minimization

[21], i.e. bundle adjustment, the complexity of this stage become obstructive for large

datasets. The time consumed during this stage could decrease by providing initial fo-

cal length values, i.e. the optimization algorithm in bundle adjustment stage could

converge faster if the initial values of unknown focal lengths are close the real values

[62]. Hence, alternative solutions are developed in order to increase performance of
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this stage, which are called as focal length initialization algorithms.

In [31], focal length of cameras are estimated during the camera pose estimation

phase and the these initial values of focal lengths are used in the bundle adjustment

stage, which increases the performance of this step. Another work [62] proposes a

solution for estimating the calibration parameters from two views and propagates this

approach for each camera pair in the dataset. However, these methods solve focal

length initialization up to some extend. In other words, the capability of these meth-

ods on solving initialization problem has limitations prescribed upon the different

focal lengths [62]; they can only estimate focal length of a dataset if there is small

variation in focal lengths. Hence, this is a real challenge and a fundamental problem

for the researchers working on 3D computer vision. Apart from the accurate focal

length initialization, considering that it is critical for 3D generation algorithms to be

fast, initialization stage should be really fast not to be the bottleneck for the complex-

ity of the full pipeline [53]. So, this is another constraint to be handled.

In conclusion, it is known that the goal of global SfM algorithms is to use all available

photographs of a place, or scene, for recovering 3D structure, and it is critical for these

algorithms to initialize the focal length of each camera fast and accurately. The goal

of this thesis is fully matched with this purpose, and the contributions in this scope

are explained in details during the next chapters.

1.2 Contribution of the Thesis

This thesis mainly focuses on the estimation of the calibration parameters for un-

known cameras from a set of images, possibly captured with independent cameras

or a video sequence whose calibration is unknown. The first goal of this thesis is to

remove lens distortion, which is an inevitable effect for popular action cameras. Af-

ter removal of lens distortion, the subsequent aim is to compute the focal length of a

camera from two views without using any calibration pattern. A novel and easy way

to implement approach is proposed and its results are more accurate than the relevant

algorithms in the literature.

As a second goal of this thesis, a novel approach for estimating the focal lengths of
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all cameras in a Structure from Motion (SfM) input dataset consisting of indepen-

dently captured images is proposed. In this novel approach, the relation between the

unknown focal lengths is derived from the geometric constraint between any pair of

views, and extension of this idea to all of the cameras in a dataset is undertaken by

minimization of a novel cost function. This technique also proposes an approach for

estimating the focal lengths in parallel for all cameras.

1.3 Scope and Organization of Thesis

In this thesis, the intrinsic camera calibration from two views and the focal length

estimation for all cameras in a set of pictures, which is a crucial input for any 3D

modelling and reconstruction algorithms from 2D images, are examined. In Chapter

3, the focal length estimation algorithm from two views is described in details, and

the result of the experiments are presented. The group synchronized focal length esti-

mation algorithm, which is the second contribution in this thesis, is explored in Chap-

ter 4. As a comprehensive guide for multiview-geometry and the literature for the

proposed methods, Chapter 2 presents all necessary background information about

camera calibration and geometric constraints. The thesis is concluded based on the

observations from the simulations in Chapter 5.
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CHAPTER 2

CAMERA CALIBRATION AND MULTI-VIEW GEOMETRY

The general purpose cameras are produced with a certain specifications, such as focal

length, resolution of the sensor and lens model. However, due to possible errors dur-

ing the production, these specifications are not reliable in any application that requires

some precision. Hence, there are various approaches that are based on visual data for

estimating the camera parameters, which is called as camera calibration process.

Utilization of images from unknown cameras is another reason for the requirement

of such calibration algorithms. This also requires estimating the camera parameters

before using these images.

Understanding the lens model of the camera, and estimating the camera parameters

are quite important in 3D computer vision due to the fact that accuracy of the geomet-

ric modeling algorithms strictly relies on the correctness of the calibration parameters

[21]. Therefore, it is essential to understand camera models, which are described in

Chapter 2.1. The intrinsic calibration process is explored in Chapter 2.3. Camera

models are strictly related to the lens distortion, and this is investigated in Chapter

2.1. This is followed by the removal of lens distortion in Chapter 2.4 in order to

utilize geometric constraints accurately, which is explored in Chapter 2.2.

2.1 Camera Models and Lens Distortion

A camera captures a scene after projecting an object point in 3D world to the 2D

image plane. There are two main types of projection, namely central projection (e.g.

perspective projection) and parallel projection (e.g. orthographic projection) [21]. In
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this thesis, central projection is considered that is known to be more accurate with

respect to its parallel counterpart. The group of cameras modeling with the central

projection falls into two groups in terms of the location of the center of the cameras

[21]. The center of the first group cameras at a finite location, whereas that of other

group of cameras is at infinity. The name of the former one is finite cameras, and

the latter is named as infinite cameras. In the scope of this thesis, finite cameras are

utilized, which are mostly preferred in the applications.

Figure 2.1: Pinhole Camera Model [21]

Figure 2.2: Fisheye Projection Models. (i) perspective projection, (ii) stereographic

projection, (iii) equdistance projection, (iv) equisolid angle projection, (v) orthogonal

projection [37]

Among the finite cameras, the most simplest and basic camera model is the pin hole

camera model [21], which is illustrated in Figure 2.1. In this model, central projection
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of the 3D point is a point on image plane, and the center of projection is the origin of

the Euclidean coordinate system in this figure. The image plane is a planar surface at

z = f , and f stands for the camera parameter about that optical component, namely

focal length. In this model,C is the camera center, which is also a center of projection,

and p is the principal point. A 3D point X projects to x, i.e. the ray aiming the center

of projection from X intersects the image plane at x. In this model, the line starting

from camera center and intersecting the image plane at principal point, which also

perpendicular to the image plane at this point is called principal axis.

As a subgroup of the central projection, there is a type of projection model considered

in the scope of this thesis, which is called Fisheye projection [37]. This projection

type models the radial distortion on the images; in other words, the straight lines are

not projected as linear curves to an image plane, and this causes geometric constraints

fail. The main motivation behind the usage of Fisheye cameras is to enable capturing

more scene regions in the image, i.e. field of view (FOV) of a camera is large. It

should be noted that recently popularized action cameras are typically utilize such

lenses that yield Fisheye distortion.

The fish eye projection falls into four groups [37], namely stereographic projection,

equdistance projection, equisolid projection, and orthogonal projection. All of these

projection is illustrated in Figure 2.2. Among these projection models, the equidis-

tance model is the most commonly used model to calibrate Fisheye lens, so this model

will be used in the following section where the radial distortion is removed.

2.2 Fundamentals of Multiview Geometry

In the case of one pair of cameras as illustrated in Figure 2.3, the 3D point X is

projected as 2D point u to the image planes of cameras, and this projection is written

as:

λu = PX (2.1)

where P is 3x4 matrix, λ is unknown scalar value, points are in homogeneous coor-

dinates, u = (u, v, 1)T , and X = (x, y, z, 1)T . The projection matrix, P , can be rep-
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Figure 2.3: Epipolar Geometry Between Two Cameras

resented by 3x3 camera matrix, K, 3x3 rotation matrix, and 3x1 translation vector,t,

which is given in Equation 2.2.

P = K
[
R|t
]

(2.2)

Here K matrix contains camera intrinsic parameters, R matrix shows the pointing

direction of the camera, and t states the camera position in 3D coordinate system.

The general camera matrix is written as:

K =


f s cx

0 αf cy

0 0 1

 (2.3)

where f is focal length, cx, cy is the principal point coordinates, α is the aspect ratio

of the pixels, s is the skew parameter. In the scope of this thesis, also as in the most

of the digital cameras, the pixels of the cameras are square, α = 1, and the skew is

set to zero, s = 0. The principal point of the camera is very close to the image center,

so it is taken as an initial value for principal point coordinates. The four (out of

five) calibration parameters are set to some values which are quite close to their exact

values; however, the focal length should be estimated correctly. Reducing the number
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of unknown by setting these parameters to initial values is helpful for the estimation

of focal length value, this is followed by estimating the exact values afterwards. In

the scope of this thesis, the new camera matrix which is up to focal length is defined

and it has the form:

K =


f 0 0

0 f 0

0 0 1

 (2.4)

The epipolar geometry is defined as intrinsic projective geometry between two views

[21]. It only depends on the intrinsic parameters of the camera and the relative pose

between two views. As it can be observed in Figure 2.3, the projection of X is u

and u′ on image planes, respectively. In this epipolar relation, 3D point X , and two

camera centers constructs an epipolar plane. The epipole, e is the intersection point of

the line connecting camera centers and the image plane. Epipolar line, l, connect the

projected point on image plane and the epipole, e. Epipolar line reduces the search

space of the corresponding point of u in the second image plane, which indicates that

this point should be on the line, l′.

For a camera pair in Figure 2.3, one can define an epipolar geometry relation, which

is first stated by fundamental matrix, F . Fundamental matrix represents the intrinsic

geometry. It is 3x3 matrix of rank 2. If point u is the projection of X on one image

and the u′ is on the other image, then there is a relation between u and u′:

u′
T
Fu = 0 (2.5)

The epipolar lines can be derived from fundamental matrix, F :

l′ = Fu (2.6)

l = Fu′ (2.7)

Secondly, in the case of fully calibrated cameras, i.e. calibration parameters are com-

pletely known, there is one more geometric relation defined by using Essential matrix,
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E. The normalized image coordinates, x = K−1u, and x′ = K−1u′ are related with

essential matrix, E:

x′
T
Ex = 0 (2.8)

where E is a 3x3 and rank-2 with two equal singular values. These specifications

turns to the constraints on essential matrix:

det(E) = 0 (2.9)

2EETE − tr(EET )E = 0 (2.10)

Equation 2.9 is called the rank constraint [21] and the latter one is the most significant

constraint used in the scope this thesis, which is called as trace constraint [50]. The

detailed proof is given in the Appendix A. Nevertheless, the noise robustness of this

constraint against correspondence errors, and the calibration algorithms constructed

on this constraint show that this constraint is very crucial.

2.3 Estimation of Intrinsic Calibration Parameters

The estimation of intrinsic camera calibration parameters is a critical step for 3D

computer vision algorithms. Among previous studies on this topic, there are two main

approaches, which are explored in this chapter. The first group of approaches mainly

relies on dedicated calibration images. For this scenario, the images of a predefined

(calibration) pattern in the scene is utilized, and the parameters are estimated by using

the point correspondences between these calibration images [6]. For the cases, for

which it is not possible to capture calibration pattern by the camera (but arbitrary

images are available for the camera), another group of approaches is available where

they estimate the calibration parameters of the camera matrix in 2.4 by using point

correspondences. The method in the latter group will be explored in Chapter 2.3.1.
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Figure 2.4: Sample Calibration Images of a Planar Calibration Pattern.

The former group of methods starts by capturing the calibration images. As it is illus-

trated in Figure 2.4, the images of calibration pattern are captured by the camera in a

variety of different poses. Next, the corresponding points are detected as the corners

of the calibration pattern and the plane structure and distances between corners of the

calibration pattern are known. With these input data and the camera matrix in 2.3,

this problem is modelled as a maximum likelihood estimation problem by using the

cost function defined for corresponding points [6].

In the second group of estimation methods, the geometric relation between at least

two views is utilized. Typically, the camera matrix for which the focal length is the

only unknown is considered. The problem turns to a focal length estimation from

multiple view, which is explored in details in the next chapter.

2.3.1 Focal Length Estimation From Two Views

For focal length estimation from two views, Sturm [60] proposes a method that links

the fundamental matrix to the focal length by using Kruppa equations [23]. In Li

[44], a system of polynomial equations are formed in terms of the trace constraint

for the essential matrix [50] and the singularity constraint [21] on the fundamental
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matrix in terms of focal length. Another polynomial equation solution is proposed

by Stewenius [59] and Kukelova et al. [39] that again exploit the trace constraint

for essential matrix and rank constraint for fundamental matrix in order to define

those equations but the solution is obtained by using a Gröbner solver [39] and these

methods differentiate from each other by their use of different basis selections. The

most relevant work to the focal length estimation part of the proposed approach in this

thesis is Kanatani et al. [34], which proposes a solution for focal length estimation

from two views. In this approach [34], the previously derived constraint on essential

matrix [33] is utilized to estimate focal length with the only fundamental matrix

input.

Although utilization of the same constraint on the essential matrix for in the given

solutions as in [34] is proposed, this constraint is tried to be solved in a quite different

way so that the solution becomes more robust and operates under many different

camera configurations compared to the algorithm presented in [34]. Kanatani et al.

augment their previous work in [35] by using some heuristic metrics to improve the

robustness of their earlier work. A detailed comparison of these algorithms with the

proposed approaches is presented in Chapter 3 to highlight how the proposed way of

solving the trace constraint compares to Kanatani in terms of performance. Finally,

in a later study [36], Kanatani et al. proceed to show that their former approach is not

feasible for two view problems and formulate their method for the three view case.

In distinction to the focal length estimation from two views, estimating the relative

pose with both unknown focal length and radial distortion without using any cali-

bration pattern is still an open issue. To the best of our knowledge, the algorithm

proposed by Jiang et al. [30] is the only method for this purpose. In this method,

a system of polynomial equations is generated by using the trace constraint and the

singularity constraint for the essential matrix together with the epipolar constraint on

the fundamental matrix that includes the distortion formulation via the one parameter

division model [30]. Then this polynomial system is solved by using the Gröbner

Basis method. Although this method solves the focal length problem together with

radial distortion, it is computationally quite expensive and not feasible for practical

applications.
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2.4 Removal of Lens Distortion

The observed radial distortion should be removed in order to be able to use the epipo-

lar geometry constraints for image pairs. Hence, there are some proposed methods in

the literature for this purpose [6, 24, 38, 5, 19, 9, 42, 24, 40, 45, 10, 41, 39], which fall

into two main groups: First of all, if the calibration images for the camera are avail-

able, the radial distortion model is utilized for point correspondences and lines on the

calibration pattern. However, in the case of lack of calibration images, the previously

proposed methods model this problem as the estimation of distortion parameters in

order to satisfy epipolar constraints, which is explained in details in the next chapter.

2.4.1 Radial Distortion Estimation From Two Views

Radial distortion modeling for the estimation of epipolar geometry is quite a difficult

task but still there are many algorithms already proposed for this purpose in the liter-

ature, [38, 5, 19, 9, 42, 24, 40, 45, 10, 41, 39]. Fitzgibbon [19] proposes a solution for

the cameras that have the same radial distortion. In this method, epipolar constraint

is utilized with one parameter division model and at least nine corresponding points

are required. Since only epipolar constraint is utilized, the problem is formulated by

a quadratic eigenvalue problem. Li et al. [45] also solve the radial distortion problem

similar to [19] but they use kernel voting instead of median of the distribution in their

estimation decision. Another method different than [19] is proposed by Barreto et

al. [5], which utilizes the epipolar constraint for radial fundamental matrix. This

method estimates the radial distortions of the cameras even if they are not identical.

In distinction to the methods above, a minimal solution to the estimation of the epipo-

lar geometry under radial distortion is proposed by [42, 10, 41, 38, 9, 39]. In these

methods, epipolar constraint and singularity of the fundamental matrix is utilized with

one parameter division distortion model. Moreover, in all of these techniques, a sys-

tem of polynomial equations is solved by the Gröbner Basis method [16]. By using

slightly different constraints or problem requirements, these algorithms differentiate

from each other in terms of the number of minimal correspondences they require.

Most recently, the difference between the minimal solvers are analyzed in a study by

Kukelova et al. [40]. As a result of this study, authors propose a more robust method
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which needs of minimum ten point correspondences. As a last group in the scope of

radial distortion estimation, Brito et al. [24] propose a solution based on the fact that

epipolar lines going through the distortion center should remain straight in the case

of radial distortion. By using this observation, the proposed method estimate the con-

stant radial distortion parameter from two views by using the one parameter division

model.

2.5 3D modelling and the Effect of Calibration

In general, 3D model extraction relies on the epipolar geometry between image pairs,

so it is crucial to estimate camera calibration parameters, and to remove radial distor-

tion before step on the 3D model generation. That is, accurate triangulation requires

to known exact camera calibration parameters [11, 12]. In case of any mistake on

those parameters, it is inevitable to have erroneous 3D models and the error is ex-

pected to propagate as the number of input image increases. Hence, true focal length

values are estimated during recovering of 3D model by minimizing the re-projection

error, which is named as bundle adjusment stage in SfM algorithms [21].

2.6 Focal Length Estimation for Unknown Cameras in Structure from Motion

Algorithms

Among the large set of images which is given as input to SfM algorithms, it is pos-

sible to face with the unknown focal lengths. For instance, it is easily observed in

the global SfM algorithms, which utilize the large set of images downloaded from

internet and many of them has no EXIF data [1]. There are two approaches in order

to estimate unknown focal lengths in these datasets. First of all, bundle adjustment

step can estimate the true focal length values using the known ones as recovering the

3D structure [51, 52]. This is considered as a solution for sequential SfM algorithms,

where the projection matrix is computed in an order, and calibration parameters are

extracted from them; however, this approach is not feasible for the global SfM algo-

rithms due to the computational complexity. Hence, the second group of approach is

emerged for this purpose. In this approach, the unknown focal lengths are estimated
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by using the two view relations in the dataset, where unknown focal length is esti-

mated by using its connected pair with known focal length [62, 8]. In general, these

methods are limited to the variance of focal lengths in the dataset and it is required

to know at least one of the focal lengths in image pair. In details, this causes the er-

ror propagation, and increase in the computational complexity of bundle adjustment

step. In [8], the unknown focal lengths are estimated by using the connected views, in

which one pair has known focal length. This method utilizes Gröbner basis approach

to solve polynomial equations, which gives the estimated focal lengths. Another work

[62] proposes an approach using two views relations in a connectivity graph of SfM

pipeline, which again use the known focal lengths to estimate unknown ones in a two

view relation. However, these approaches are able to solve focal length estimation

problem in large datasets up to some extend. That is, the performance of this ap-

proach depends on the ratio of unknown focal lengths in dataset and the variation in

the focal length distribution. Also, these methods are open to error propagation as the

number of image in dataset increases [11, 12].

In this thesis, we propose another approach for estimating the unknown focal length

using geometric constraint and without necessity to use known focal lengths for each

pair. That is, it is not necessary to known one of the focal length in the adjacent rela-

tion in order to estimate unknown focal length, only their relation, which is computed

using geometric constraint, is critical. Then, each relation is utilized in a novel cost

function defined to estimate all unknown focal lengths at one step. The proposed

method is able to estimate the unknown focal lengths for both sequential and global

SfM algorithms as an initialization step. Hence, this makes bundle adjustment step

converge fast with the accurate initialization.
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CHAPTER 3

STRATIFIED ESTIMATION OF FOCAL LENGTH AND

RADIAL DISTORTION

In this thesis, we study the problem of estimating radial distortion parameters and

fixed focal length from two views. We have two main goals in this section: a compu-

tationally simple algorithm and robustness against image pixel noise. The proposed

method operates in two successive stages: first, we use one parameter division dis-

tortion model of [19] and estimate a radial distortion parameter via transforming the

problem to a quadratic eigenvalue one. After this step, we undistort the image cor-

respondences and estimate the focal length by enforcing the trace constraint over the

computed fundamental matrix by using the relation between the fundamental matrix

and the essential matrix.

The contributions of our method is twofold: firstly, we show that the scaling param-

eter used in [19] for normalizing image coordinates can be theoretically up to an

arbitrary scale. Depending on the utilized scale, the estimated radial distortion coef-

ficient should change. However, using the input scale parameter and the estimated

distortion coefficient corresponding to this scale produces the same undistorted im-

age coordinates whether the scale is set to including the correct parameter or not.

Therefore, we show that it is possible to remove the effects of the radial distortion

problem from the image correspondences without the requirement of finding the cor-

rect radial distortion parameter. The true radial distortion parameter for the cameras

can be obtained, only after the true focal length is utilized as the scaling parameter.

Our second contribution is the introduction of a new algorithm for estimating the focal

length from a fundamental matrix between two images that share exactly the same
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focal length. We extend the method of [7] for situations, where both focal lengths are

not known for both of the images, as opposed to only one of them being unknown

by developing the trace constraint equation (Appendix A) for the essential matrix in

terms of the unknown focal length into a set of polynomial constraint equations. We

introduce different ways of solving these equations and investigate their robustness

under noise.

It should be noted that the methods in [34, 35] employ the same constraint for the

estimation of the focal length. The unknown focal length is obtained by utilizing the

first and second derivatives of the constraint equation. However, as reported by the

authors themselves, the developed solution is prone to severe ’imaginary focal length’

degeneracy and is not able to operate for fixated camera cases, i.e. when the epipolar

line passes through the principal point. The proposed method, on the other hand, does

not suffer from any of these degeneracy. Non-fixated camera assumption is observed

to be a limiting condition for practical uses; even though the epipolar line might not

pass through the image center, if it passes close to it, it causes the solution to be badly

conditioned. Hence, these methods are not practical.

In this section, we explain our proposed solution for estimating both the focal length

and the radial distortion parameters of a camera using two images of a general scene.

We assume both of the images are captured with the same camera without any change

in their parameters and from two different viewpoints. We further assume that the

camera principal point is known and radial distortion has a first order characteristic

with a single unknown parameter.

Our method operates in a stratified manner: we first remove the distortion effects

without any knowledge about the camera parameters and without estimating the true

distortion parameter and then estimate the focal length of the camera by using these

undistorted image coordinates after imposing the so-called trace constraint over the

estimated fundamental matrix. Once the true focal length is estimated, the true radial

distortion parameter is recovered.
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3.1 Radial Distortion Removal using Two-View Geometry

Let’s define the intrinsic matrix and our distortion model more specifically. The cam-

era is defined as an extended pinhole camera model with a one parameter division

radial lens distortion proposed in [19]. The intrinsic matrix is defined as

K =


f 0 cx

0 f cy

0 0 1

 (3.1)

where cx and cy are assumed to be at the center of the image, f is the unknown focal

length and the distortion model is

pu ∼


xd

yd

1 + λrd
2

 . (3.2)

where pu = [xu, yu, 1] is the undistorted image coordinates, pd = [xd, yd, 1] is the dis-

torted image coordinates, rd =
√
x2d + y2d is the distance of the distorted coordinates

from the image center and λ is the unknown radial distortion parameter. From this

point on, we assume that the image coordinates ( i.e. (x., y.) ) are given with respect

to a coordinate system center at the image origin.

In the next subsections, we will first show how to recover undistorted image corre-

spondences from the distorted ones using the division model without any knowledge

about the camera and then present our method for recovering the true focal length and

the distortion parameter.

In this paper, as explained above, we use the extended pinhole camera model with a

one-parameter division radial distortion model proposed in [19] (which is also used

in [30], [41], [38] and [31] ). According to the division model, an undistorted image

point, pu = [xu, yu, 1] is computed from a corresponding distorted image point, pd =

[xd, yd, 1] by using the formula:

pu ∼ pd/(1 + λr2d). (3.3)
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Developing this equation projectively, we have:
xu

yu

1

 =


xd

yd

1 + λ(x2d + y2d)

 (3.4)

=


xd

yd

1

+ λ


0

0

x2d + y2d

 (3.5)

xu = xd + λrd (3.6)

In [19], a quadratic eigenvalue problem (QEP) [63, 20] is formed by inserting this

new definition for an undistorted point to the epipolar constraint:

(x′d + λr′d)TF (xd + λrd) = 0

x′Td Fxd + λ(r′Td Fxd + x′Td Frd) + λ2r′Td Frd = 0

which is quadratic in the unknown λ and linear in F . Expanding and reorganizing the

terms, the following equation is found:

(D1 + λD2 + λ2D3)f = 0 (3.7)

where f represents the entries of the fundamental matrix in column form and the three

design matrices are equal to:

D1 = [x′dxd x′dyd x′d y′dxd y′dyd y′d xd yd 1]

D2 =
[
0 0 x′dr

2
d 0 0 y′dr

2
d xdr

′2
d ydr

′2
d r2d + r′2d

]
D3 =

[
0 0 0 0 0 0 0 0 r′2d r

2
d

]
(3.8)

Equation 3.7 is a quadratic eigenvalue problem (QEP) [63, 20], in which the aim is to

find λ values assuming that f is a nonzero vector. The solution for this problem falls

into two groups [63], namely the direct QEP solvers and the ones that linearize this

problem and solve it as generalized eigenvalue problem. The latter group of solution

requires D1, D2, D3 matrices to be in a specific forms whereas the former group
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approach propose a general solution. Hence, in the scope of this thesis, the second

group of solution is utilized, which is available as MATLAB function , "polyeig".

This solver is also implemented in our library1 written in C++.

With the proposed solver, the QEP above has at most 10 solutions for which in prac-

tice no more than 6 are real [19]. The straightforward solution of this equation, how-

ever, is problematic due to numerical factors and therefore it is recommended in [19]

to scale the image coordinates with the diagonal length of the image. Subtracting the

image center and scaling the image coordinates is equivalent to normalizing the image

coordinates using the inverse of the intrinsic matrix, i.e. dividing image coordinates

by the focal length is equivalent to scaling. However, since focal length is not known,

the image diagonal is proposed as a way to normalize image coordinates.

In theory, any scaling will not change the solution to the Equation 3.7 for the funda-

mental matrix. However, by scaling the coordinates, the estimated λ will be scaled

with 1
scale2

. This can be seen easily by going back to Equation 3.6 and making the

scaling of x and y coordinates explicit. Additionally, while undistorting the image

coordinates, the same scaling coefficient needs to be used while using the estimated

λ. In Figure 3.1, we give an example of the recovered undistorted coordinates when

using different scale parameters. As can be seen, results are equal to the order of

−10. This means that, so long as a scaling parameter is used that prevents numerical

errors in the solution of Equation 3.7, one can use the estimated λ value to recover

the undistorted image coordinates.

In brief, in order to find out the undistorted image coordinates, we propose the fol-

lowing method: we first extract the image center from the correspondences and then

scale them with 1000. Afterwards, within a RANSAC loop, we select 9 correspon-

dences randomly and estimate the radial distortion parameter using Equation 3.7. As

previously explained, this results in 4-6 solutions. As suggested by [19], we collect

these possible solutions and select the median value of these as the λ-estimate for

the 1000-scale solution. It is also possible to use kernel voting [45] for λ estimation.

However, based on our synthetic data experiments, median based method has better

accuracy under noisy observations.

1 This is publicly available in https://github.com/akcalakcal/Open_SfM_METU
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Figure 3.1: Recovering undistorted coordinates. Experiments are conducted for dif-

ferent scale parameters, i.e. s = 1000 (left) and s = 4000 (right). Mean square error

values between the groundtruth location and the recovered location are 8.55x10−10,

6.75x10−10 for s = 1000 and s = 4000 , respectively.

Once the radial distortion parameter is found with the selected scale parameter (i.e.

1000), we undistort the image coordinates according to Equation 3.6 using estimated

lambda and the used scale. With these undistorted correspondences, we estimate

the fundamental matrix using all the inliers of the previous stage via the standard

normalized 8-point algorithm [21].

3.2 Trace Constraint Based Focal Length Estimation from Two Views

In the previous section, radial distortion is eliminated by using the epipolar constraint

over the correspondences between the two views. In this section, we explain how

to estimate the unknown focal length from the computed fundamental matrix. To

reiterate, we assume that the focal length is the same for both of the images.

Our algorithm is an extension of [7]. In [7], the focal length estimation problem is

formulated for the case where one of the images is calibrated and the focal length is

found for only the second image. We follow a similar line of formulation where the

trace constraint equation over the essential matrix is developed to find a polynomial in

terms of the unknown focal length parameter with the estimated fundamental matrix.

However, since we assume both of the images are uncalibrated, our polynomial is of

higher degree.

24



The essential matrix has the property that its two singular values are of equal magni-

tude and the third singular value is zero. The trace constraint given below enforces

this property (detailed proof is given in [50] and Appendix A):

2EETE − tr(EET )E = 0 (3.9)

The above equation can be rewritten in terms of the fundamental matrix by a change of

variable via E = KTFK. Here, we use a simplified intrinsic matrix definition K =

diag(f, f, 1) for notational simplicity ( fundamental matrix is computed accordingly

from zero-centered coordinates ):

G(f)
def
= 2KTFKKFTKTKTFK − tr(KTFKKFTKT )KTFK = 03×3 (3.10)

The G(f) matrix above is only a function of the focal length given the fundamental

matrix. In the ideal case, all of its entries should be zero for the true focal length value,

i.e. G(f) = 03x3. However, due to noise, this does not occur and therefore to find

the focal length the norm of the matrix ||G(f)||2 is minimized which is a 12th degree

polynomial whose coefficients are calculated using the entries of F , which is written

in details in Appendix B. The minimization is accomplished by finding the roots of
dG(f)TG(f)

df
= 0, an 11th degree polynomial. Rejecting the f = 0 trivial solution, the

local minima of this polynomial yields the correct focal length.

The elements of G(f)TG(f) matrix with row-major indices (1,2,4,5), (3,6,7,8) and

(9) are 12th, 10th and 8th degree polynomials, respectively. Since all elements of the

matrix are non-negative and their sum is equal to zero in the ideal case, the value of

each of the elements should be equal to zero ( or should be as close to zero as pos-

sible for the noisy data case ). Therefore, one can utilize these polynomial equations

(Appendix B) individually to estimate a focal length value as well. If the f = 0 trivial

solution is rejected the degrees of all the polynomials reduce to 8th.

During our experiments, we have observed that solving the individual elements of

the G(f)TG(f) matrix also produces the correct focal length; i.e. the roots of the

2nd, 4th, 6th and 8th entries of the G(f)TG(f) matrix produce the same focal length
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estimates. Additionally, we have also observed that using the remaining entries of the

G(f)TG(f) matrix for focal length estimation is quite susceptible to be corrupted by

the noise and baseline of the camera pair. Therefore, compared to using the complete

norm solution, using the solutions of the individual elements produce a much more

robust algorithm.

Typically, the elements of G(f) are quite small and hence the coefficients of the

norm polynomial is quite close to the computation limit of most numerical libraries.

Therefore, we recommend scaling the value of f in the K matrix before computing

the coefficients i.e. f = αf̂ with α = 1000.

Once the focal length is found as explained above from the computed fundamental

matrix, we correct the estimated radial distortion parameter found in the previous

stage by the true focal length via:

λtrue = λest ∗
scale2

f 2
(3.11)

3.3 Experimental Results

In this section, we present experiments on synthetic and real data sets to validate our

approach. First, we show on synthetically constructed data sets numerical stability,

noise and robustness properties of our pipeline. For some of these data sets, we also

compare the proposed approach against other methods present in the literature. As

our method is composed of two stages, we investigate both of these stages separately

in order to understand their strengths and weaknesses. Finally, we demonstrate the

performance of our approach on real data sets captured with different cameras.

3.3.1 Synthetic Data Experiments

In order to measure the accuracy and robustness of our proposed solution quantita-

tively, we generated synthetic sequences with known camera parameters and motions.

The procedure for data generation can be explained as follows: 200 3D points within

a cube centered at the origin are initialized randomly and projected onto two cameras
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placed dcam units away looking in the direction of the points with θcam degree angle

between their z-axes. The angle separation mimics a turn-table type motion and it is

randomly selected from the interval [20, 40] degrees. The cameras are then initialized

to have a 1024x1024 pixel resolution with a specific focal length and radial distortion

parameter. Depending on the experiment below, we add different amounts of noise to

the distorted image coordinates and use these in our experiments to recover the true

focal length and the true radial distortion parameters.

3.3.1.1 Radial Distortion Removal Results

In this part, we measure the accuracy and robustness of removing radial distortion

from the available image correspondences without knowing the true camera focal

lengths. Here, we compare the performance of three methods: the method that we are

using in our pipeline [19], a kernel voting based method [45] and a Gröbner based

one [10]. It should be noted that the second algorithm operates very similarly with

[19], except that the radial distortion parameter selection at the end is accomplished

via a kernel voting scheme. Therefore, we use our own implementations below for

the first two algorithms. The third algorithm [10], however, is relatively difficult to

implement but its code is available online. We use the original implementation by the

authors during the experiments below.

Numerical Stability for Radial Distortion Removal: Numerical stability of each

of three methods, [19, 45, 10], is evaluated by using noise-free data with relative

error between the estimated λ and the ground truth, (λ − λgt)/λgt. The experiment

is run for 5000 times and the resulting error distribution is shown in log10-scale in

Figure 3.2. As it is observed from the figure, the Gröbner-based method has poor

numerical stability compared to the other two.

Noise Sensitivity for Radial Distortion Removal: In this experiment, distorted im-

age pixel coordinates are perturbed with Gaussian noise of varying standard devia-

tions σ = [0, 0.01, 0.1, 0.5, 1.0] and the solvers are executed 300 times for each σ

value. Then, the error between the estimated λ value and ground truth is calculated in

a log10-scale. As it can be observed in Figure 3.3, Fitzgibbon’s method [19] performs
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Figure 3.2: Comparison of λ estimation methods in terms of numerical stability of

scale parameter
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Figure 3.3: Noise sensitivity experiments are conducted for each method. Radial

distortion is estimated 300 times and then distribution of relative error is plotted by

using BOXPLOT function of MATLAB. Each box represents the values in between

%15 and %75 of the distribution whereas horizontal line in each box stands for rep-

resenting the median value in the distribution.
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better than other the two methods in terms of noise sensitivity.

3.3.1.2 Focal Length Estimation Results

In this section, synthetically generated 3D points are projected onto the image planes

without any radial distortion with the assumption that radial distortion is eliminated

by algorithm that is explained in the previous step. The corresponding image pixel

coordinates are utilized in order to estimate the focal length for the camera with the

assumption that focal length values are identical.

Similarly, we compare the proposed algorithm for focal length estimation against

other methods from the literature [60] [44]. All of these methods, including the pro-

posed one, only require the fundamental matrix as input and produce an estimate

for the focal length. As a result, the quality of the input fundamental matrix plays

an important role in the estimated focal lengths for each of these algorithms. Here,

we compare these methods in terms of their noise sensitivity and robustness to out-

liers with the same fundamental matrix estimated by using the normalized 8-point

algorithm [22] within a RANSAC framework. We should also note that to avoid a

degenerate turn-table type motion [60], we generate the poses of the camera in such a

way that the camera translates along the x-axis and has small rotational perturbations,

i.e. it is not strictly a pure translation motion. Before going forward with the compar-

isons, we first compare the robustness of two different constraint sets that have been

introduced in Section 3.2, namely using the minimization of the norm of G(f) or its

individual elements.

Constraint Selection: In Figure 3.4, we compare the robustness of different con-

straint sets under noise with respect to small motions. In these experiments, we

change the rotation angle between the two cameras and added σ = 0.2 Gaussian

noise to the projected image coordinates and then tried to recover the focal length

using the polynomial equations found by either using the norm of the G(f) or us-

ing individual elements of the G(f)TG(f) matrix. We ran the experiment 300 times

and then show the percentage of the truly recovered focal lengths in the y-axis. We

assumed the focal length as true if it is within 5% of the actual value. As it can be

observed from the results, as the camera axes start to align, i.e. rotation angle between
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Figure 3.4: Success rate of focal length estimation is evaluated for different rotation

angles. Gaussian noise with 0.2 standard deviation is added to the corresponding

points. The focal length estimation is accepted as successful if the estimation error

is less than %5 of the true value. Success rate is observed for different solutions pro-

posed for out method. There are three groups of solutions for which success rates are

the same for all elements in a group. These three groups consists of the polynomials

numbered as {1, 3}, {2, 4, 6, 8} and {5, 7, 9}. Norm solution is compared with one of

the polynomial solutions in each group for simplicity.

the axes gets smaller, the robustness of using the full 11th degree polynomial suffers

more compared to individual elements due to numerical problems. Hence, in prac-

tice, we use the focal length estimate from the {2nd, 4th, 6th, 8th} polynomial entries

of the G(f)TG(f) matrix. The remainder of the experiments will only be presented

for this case.

Noise Sensitivity for Focal Length Estimation: In this experiment, undistorted im-

age pixel coordinates are perturbed with Gaussian noise of varying standard devia-

tions. This experiment is conducted with σ values of [0,0.01,0.1,0.5,1.0]. The pro-

posed solver and the others are run 100 times for each σ value. Then, the relative error
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Figure 3.5: Radial distortion free corresponding points are perturbed with different

Gaussian noise levels. Afterwards, focal length is estimated by using our proposed

method, Sturm [60] and Li [44]. In this experiment camera motion is modeled so as to

be a non-degenerate case for [60] in order to compare methods. For each noise level,

focal length estimation algorithm runs for 100 times and the resultant percentage

accuracy distribution is obtained. Distribution of relative error is plotted by using

BOXPLOT function of MATLAB. Each algorithm is labeled with a different color.

The line inside each box shows the median value of the distribution. Estimation

results of Li [44] is strongly affected by noise, because the kernel voting is used with

fixed parameters. Nonetheless, the proposed method by Sturm [60] is not numerically

stable when compared with our solution, even though the noise sensitivity of [60] is

comparable with our solver.

is computed between the true focal length and the estimated one in a log10-scale. In

Figure 3.5, the results are shown for comparison. The proposed method performs

quite well compared to others. Additionally, while Sturm’s method [60] works as

good as ours for low noise situations, it quickly becomes unusable above σ = 0.3
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Figure 3.6: Radial distortion free corresponding points are perturbed with different

Gaussian noise levels. Fundamental matrix is then calculated from those correspond-

ing points. Afterwards, focal length is estimated by using our proposed method. In

this experiment turntable motion is modeled with 20 degree rotation angle. For each

noise level, focal length estimation algorithm runs for 100 times and the resultant per-

centage accuracy distribution is obtained. Distribution for each noise level is plotted

by using BOXPLOT function of MATLAB. The blue box represents the values in

the range of %15 and %75. Line inside the blue box shows the median value of the

distribution.

noise levels. We also show the performance of our method separately for increased

detail in Figure 3.6 with a turn-table type motion.

3.3.2 Real Data Experiments

In this section, we evaluate the overall pipeline for radial distortion removal and focal

length estimation by using real data. We generate datasets by using a Commercial off-
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the-shelf (COTS) camera (GoPro HERO 4 Black), which has a large Field-of-View

(FOV). This camera has three different FOV settings, namely wide (∼ 140◦), medium

( ∼ 115◦) and narrow (∼ 80◦). Different FOV values mean different amount of radial

distortion. For medium and wide FOV modes, we capture 25 image pairs 2. In Figure

3.7 (a-b) and (c-d) we show the example of radially distorted and undistorted image

pairs captured by GoPro camera with medium and wide FOV settings.

Figure 3.7: In this experiment, stereo image pairs are captured by using GoPro Hero

4 Black camera in two different FOV mode, namely, Medium - ∼ 110◦ and Wide -

∼ 140◦ FOV modes. Images denoted by (a-b) and (c-d) are radially distorted and

the undistorted images, respectively, in which removal of radial distortion is done by

using our pipeline. Then focal lengths are estimated from these image pairs.

In these experiments, we use a resolution of 1920x1080 pixels for both cameras. First,

SIFT features [47] are detected for both images and then tentative (putative) matches

are obtained. The matches whose values are under certain threshold are selected as

best matches and they are utilized for the estimation of the radial distortion param-

eter. The tentative matches are undistorted by using the estimated radial distortion

parameter of the division model (3.6). Next, we run RANSAC algorithm with the

configuration where the minimum number of iteration is 300 and the threshold is 3

pixels in order to compute a fundamental matrix, F , by utilizing these undistorted

2 Datasets is publicly available at akincaliskan.net/focalDataset.zip
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tentative matches. The computed F matrix is given as input to our proposed algo-

rithm to estimate the focal length and the accuracy of out results is measured using a

calibration pattern based method 3 . As it is stated before, the focal length estimation

algorithm is run after the removal of radial distortion for 25 image pairs with different

FOV values. In Figure 3.8, estimated focal length fe and ground truth focal length fgt

values are plotted for datasets. We can see that the estimates for solvers are close to

the ground truth value from the calibration. The median of relative error percentage

distribution for 110◦ and 140◦ Field-of-View value are 7.18 and 8.11, respectively.

Figure 3.8: Proposed pipeline is evaluated by using randomly chosen 25 image

pairs which are radially distorted and recorded by GoPro HERO 4 Black camera,

in Medium and Wide FOV mode (110◦ and 140◦ respectively). First radial distortion

is removed, then focal length is estimated for each image pairs. As a result, estimated

focal lengths are compared with the one that is computed by using calibration pattern,

labeled as fgt. That is, relative error percentage is computed by using ground truth

focal lengths.

3 C++ calibration code is publicly available at akincaliskan.net/thesisCodes.zip
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CHAPTER 4

GROUP SYNCHRONIZED FOCAL LENGTH ESTIMATION

FROM VIEWING GRAPH

Accuracy of the model generated as a result of SfM algorithms relies on the esti-

mation accuracy of the intrinsic camera calibration parameters, especially the focal

length estimate. Even if the focal length values can be estimated during the bundle

adjustment step of any SfM pipeline, estimating the focal length correctly before the

bundle adjustment step reduces the time consuming for any SfM pipeline. In the

literature, as previously explained in Chapter 2, there are algorithms that is capable

of estimating the focal length in a sequential order from the input dataset by using

two view geometry. In this case, the accuracy depends on the variance of the values

of focal lengths; mostly, it is preferred that the unknown focal lengths are equal to

each other. Nevertheless, in this thesis, we propose a method for estimating focal

lengths of each camera in SfM dataset. This method exploits the geometric relation

between two views in order to derive a linear relation between focal lengths, which

differentiate the proposed method from some other two view focal length estima-

tion algorithms [39, 34, 35]. In other words, a novel constraint is proposed from

the geometric constraint and group synchronization approach [4] is utilized with this

constraint. Moreover, in this thesis, we test our method against different initialization

scenarios, i.e. sequential focal length estimation using camera relations, and the one

without any initialization. The proposed group synchronization based method out-

performs the previously proposed focal length estimation algorithms for large SfM

datasets.

It is easy to estimate the focal length of one camera, if the fundamental matrix de-
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fined between two views and the focal length of the other camera are both known.

This relation can be represented by a non-linear function, P (F̂ , f2), Equation 4.2,

where the details of this function is given in Appendix B. The value of this function

turns out be equal to zero due to the trace constraint relation between two cameras,

i.e. P (F̂ , f2) = 0. Using this relation, it is possible to solve for unknown focal

length, if the other one is provided. The usage of trace constraint for estimation of

unknown focal length is previously proposed in [7]. In Chapter 3, estimation of both

of the unknown, but equal, focal lengths of two views is proposed. This solution is ex-

tended by the idea that there is one fundamental matrix available and none of the focal

lengths of these two views are known. In this case, we only have nonlinear functions,

H(F, f1, f2), Equation 4.1 if cameras share the same focal lengths, and we require

to derive a relation between these two focal length values if they are not the same. For

this purpose, the possible focal length values are computed from the possible field of

view hypothesis for the first camera. Then, the correspondent focal length values for

the second camera are estimated for each of these hypotheses. As a result of this, the

linear relation between focal lengths can be computed, which is called as constraint in

this thesis. The selection of this function is important; i.e., if there is an approximate

linear relation between focal lengths, it will be possible to extend our focal length

estimation formulation as a group synchronization problem which is feasible for cost

function modeling that can be solved by non-linear optimization methods.

4.1 Linear Modeling Between Focal Lengths

There is no linear relation defined between focal lengths of two adjacent cameras in

case of only the fundamental matrix is available. If the two views share the same focal

length, then this focal length is computed by using the geometric constraint between

them (Chapter 3), or if one of the focal length is known, then the other camera’s focal

length is estimated by using the geometric relation between cameras [7]. This relation

is based on trace constraint, which is explained in Appendix B. If the trace constraint

is satisfied between two cameras, the Equation 3.9 holds for any Essential Matrix,

E. Using this relation and replacing E matrix with the E = K1
TFK2, the following
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function is obtained whose value is equal to zero:

H(F, focal1 = f, focal2 = f) =

k1 × f 12 + k2 × f 10 + k3 × f 9 + k4 × f 8+

k5 × f 7 + k6 × f 8 + k7 × f 9 + k8 × f 8+

k9 × f 3 + k10 × f 2 + k11 × f 0 = 0

(4.1)

where coefficients, ki, are defined in Appendix B. This relation can be replaced by

another function, if one of the focal lengths is known. In this case, the known cam-

era matrix, K1 is merged with the fundamental matrix, F . Then, a new function,

P (F̂ , focal2), is obtained as below:

P (F̂ , focal2 = f) =

t1 × f 6 + t2 × f 4 + t3 × f 2 + t4 = 0
(4.2)

where coefficients, ti, are defined in Appendix B. This method for focal length esti-

mation is very similar the one proposed in [7]. However, this utilized for derivation a

linear relation between focal lengths, instead of finding an unknown focal length.

(a) Focal length, f1, = 441 px,

turntable angle,θ = 12 degree

(b) Focal length, f1, = 441 px,

turntable angle,θ = 18 degree

(c) Focal length, f1, = 441 px,

turntable angle,θ = 15 degree

Figure 4.1: Focal length relation under turntable motion. There are two cameras

whose FOV value in the interval [90,120] and there is a turntable motion from first

camera to second one in which the degree of motion is in the interval [10,20] degree.

The Focal length of first camera is 441 pixels, and correspondent camera is chosen

randomly from the adjacency matrix created during global SfM.

In this thesis, the linear relation is approximately estimated from the focal length

pairs. These pairs are calculated by using Equation 4.2. For example, in Figure 4.1,
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(a) Focal length, f1, = 364 px,

turntable angle,θ = 11 degree

(b) Focal length, f1, = 364 px,

turntable angle,θ = 16 degree

(c) Focal length, f1, = 364 px,

turntable angle,θ = 20 degree

Figure 4.2: Focal length relation under turntable motion. There are two cameras

whose FOV value in the interval [90,120] and there is a turntable motion from first

camera to second one in which the degree of motion is in the interval [10,20] degree.

The Focal length of first camera is 364 pixels, and correspondent camera is chosen

randomly from the adjacency matrix created during global SfM.

(a) Focal length, f1, = 307 px,

turntable angle,θ = 13 degree

(b) Focal length, f1, = 307 px,

turntable angle,θ = 11 degree

(c) Focal length, f1, = 307 px,

turntable angle,θ = 18 degree

Figure 4.3: Focal length relation under turntable motion. There are two cameras

whose FOV value in the interval [90,120] and there is a turntable motion from first

camera to second one in which the degree of motion is in the interval [10,20] degree.

The Focal length of first camera is 307 pixels, and correspondent camera is chosen

randomly from the adjacency matrix created during global SfM.

this relation is illustrated for different cases in which cameras are at different poses.

These figures make it easy to visualize the linearization idea. In Figure 4.1, the focal

length relations between a camera, which has focal length value of 441 pixels, and

different cameras are plotted. The resulting plot shows that the focal length relation

can be represented quite well by a linear function. This is followed by two other

typical camera pairs, which are shown in Figure 4.2 and 4.3, for both of which a

linear relation is observed again.
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There is a linear function proposal in this thesis, which is called as L1, which maps

one camera’s focal length value to the other one’s focal length after multiplying by a

constant value. That is, two focal lengths are related by a constraint. Under this linear

model, the estimation of the parameters of linear function can be simply obtained by

least square fitting. As it is illustrated in Figure 4.1, 4.2, 4.3, most of the relations

can be modeled by the L1 relation, and in the scope of this thesis, this relation will be

assumed to be valid for focal length estimation.

4.2 Group Synchronization of a Graph

View graph [62] is a representation of a set of views that have pairwise geometrical

relation, Figure 4.4. The aim of this study is to estimate focal length of each view,

within the view graph assuming that some of the cameras have known calibration pa-

rameters. If all the relations within the graph is utilized for this purpose, this problem

is then called as synchronization [4]. In other words, the goal of the synchronization

problem is to infer the unknown states from the available measures in the network

of nodes where the difference or the ratios of the connected nodes are known. The

finite group is a set of limited number of elements together with group operation that

satisfy the fundamental properties [4]. If the states of the nodes are represented by

finite group elements, then the problem turns to group synchronization.

In order to define the focal length estimation from viewing graph problem in the

scope a group synchronization problem, we need to represent it with the necessary

mathematical relations. A finite digraph
#»

G is denoted by
#»

G = (V,E) with vertex

set V = {1, 2, ..., N} and edge set E ⊆ {1, 2, ..., N} x {1, 2, ..., N}. In this thesis,
#»

G represent the viewing graph and it is assumed to be a connected graph unless

otherwise stated. The viewing graph is also represented by an adjacency matrix, A,

where Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Adjacency matrix is utilized in

the optimization step of the group synchronization.

After fundamental definitions related to the graph theory, we need to define the group

synchronization within the graph. Let (Σ, ∗) be a finite group and the underlying

set of this group is IR. In other words, the edge and vertex labeling of the graph,
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Figure 4.4: View Graph Generation. View graph is a representation of the relation

between cameras in SfM algorithms [62]. "0" value stands for there is no matching

between images on the camera position, where as "1" states that two images have

enough points to be matched.
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which will be mentioned later, are defined in IR. Since the aim is to find the group

synchronization over the graph, we need to relate the finite group (Σ, ∗) with the given

graph using the proper labeling, which is called Σ − labelled graph. If the labeling

of the edge set of the graph is defined in Σ, then this is called Σ− labelled graph. If

the relation between the vertex label and the edge label defined by group operation

(∗) hold for all the pairs in graph, then we can call it consistent labeling, i.e. group

synchronization of the graph. Any estimation error which terminates this labeling

results in a consistency error. Then, the group synchronization over the graph is not

satisfied.

4.3 Trace Constraint Based Consistency Constraint

In our case, initially, each edge between any two nodes in the view graph is labeled

by the Fundamental matrix, F , between two cameras viewing the same scene, as it is

defined in any SfM algorithm; however, different from the case in [4], we should find

a new labeling in order to use it during focal length estimation. The relation between

two corresponding views is represented by F matrix, i.e. edge labeling, whereas the

vertex labeling can be obtained by the corresponding focal length of each camera.

Since F matrix and focal length,f , are defined in different underlying set of groups,

namely F ∈ IR3x3 and f ∈ IR, we should find edge labeling defined in the same set

of f . In this study, we propose a method to extract edge labeling by using geometric

relation between two views, i.e. fundamental matrix. As it is presented in Algorithm

1 below, in case of vertex labeling in which xi = fi, the edge labeling zij is computed

from the fundamental matrix. The proposed method also satisfy the rule for being

defined in the same set for both edge and vertex labeling.

4.4 Group Synchronized Focal Length Estimation Method

After defining the Σ−labelled graph by the proposed labeling methods, now it is time

to satisfy the group synchronization all over the graph by minimizing the consistency

error. Consistency error is defined as the cumulative error within the graph between

estimated edge labels and the edge labels computed from the ratio of estimated focal
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Algorithm 1 Edge Labeling Algorithm

1: Input: Keypoint matches between connected nodes of the graph
#»

G = (V,E),

∀Pi(x, y) and ∀Pj(x, y). Possible focal length set, Sf = {..., fk, .., fl, ...}.
2: Output: Ratio of actual focal lengths of the connected nodes, xi, xj , i.e. cam-

eras. Edge labeling result, i.e. zij

3: GENERATE the polynomial function, P (F̂ , f2) = 0 from Equation 4.2.

4: INITIALIZE set P = {}, where focal length pairs are stored

5: for f1 ∈ Sf do

6: COMPUTE f̂2 from P (F̂ , f2) = 0

7: ADDPAIR (f1, f̂2) to set P

8: end for

9: DRAW pairs in set P on two-dimensional plot. Estimate f2 = α∗f1
10: A = B = 0

11: for (f1, f̂2) ∈ P do

12: A = A + f12

13: B = B + f1 ∗ f̂2
14: end for

15: α = A/B

16: return zij = α
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lengths. In other words, our aim is to find the vertex values which yield the most

consistent (estimated) edge labeling. This problem is modeled as an unconstrained

optimization problem with an initial guess of vertex values, i.e. initial focal length

values. After that, the rest of the problem is solved by a non-linear least square

approach, namely Levenberg-Marquardt [49].

4.4.1 Initialization of Focal Length Values in Viewing Graph

Since unconstrained optimization problem is solved by non-linear least square method

to obtain a solution, the initial vertex labeling values are crucial. In our formulation,

a priori values of the vertex labeling values become the initial estimation of focal

lengths of the cameras. Estimation of the focal lengths values can be obtained by

selection of any path from the viewing graph. In this study, we also propose the ro-

bustness of the global synchronization methods to any path selected from viewing

graph. However, path selection between two nodes (cameras) should be settled into

a formulation. In order to make this path selection easier, we propose a method that

find a maximum spanning tree (MST) starting from a vertex whose focal length is

known a priori. The procedure is explained below in Algorithm 2: Only inputs to

the algorithm is viewing graph with the related correspondences between connected

nodes and the error threshold for the view graph’s robustness to noise.

Although initialization is proposed as a crucial step for the next step, i.e. solution of

the optimization problem, the experiments are conducted to show whether this step

is necessary or not. For this purpose, in the experimental work, the initialization for

unknown focal lengths are tested for both cases, namely initialization with MST, and

initialization with arbitrary number. As a result of the experimental stages, arbitrary

initialization is better than MST method, which is preferred in previous SfM studies

[62]. Also, it is beneficial for the complexity of the overall solver to skip MST based

initialization step, since the tree construction, and search in a tree are computationally

costly for large set of datasets. Hence, arbitrary initialization is used in the proposed

method. The result of experiments, that are explained in 4.5, shows that the proposed

solver with given constraints is able to find the correct focal length values in accurate

and fast way.
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Algorithm 2 Focal Lengths Initialization In Viewing Graph

1: Input: Viewing graph,
#»

G = (V,E). Threshold value, TMSE for the node elimi-

nation based on mean square error (MSE) of the edge labeling estimation.

2: Output: Focal length estimation path. {(nodei), (nodej), (nodek), ...} starting

from the node with known focal length

3: Change the edges of viewing graph with the number of correspondences between

the nodes and name it as
#  »

Gu = (V,Eu).

4: for Each edge ∈ #  »

Gu do

5: Compute edge labeling zij from Algorithm 1

6: Compute mean square error (MSE) of the estimation step: errij =

(
∑

j f̂j
2
− fj2)

7: if errij > TMSE then

8: Remove the corresponding node from
#  »

Gu

9: end if

10: end for

11: Estimate Maximum Spanning Tree [REF] from the
#  »

Gu.

12: Return the path, {(nodei), (nodej), (nodek), ...}, starting from the first node of

the tree.
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4.4.2 Non-Linear Optimization For Focal Length Estimation Problem

After the estimation of constraints of focal lengths of adjacent cameras, the set of

focal length values which accounts for the minimum value of objective function are

estimated. In this formulation, the objective function is non-linearly dependent to the

focal length values; hence, this problem is solved by one of the common methods

proposed by Levenberg-Marquat [49]. In order to satisfy the group synchronization,

there should be a zero consistency error between the estimated edge labels and the

computed ones from the vertex labeling. Let ZA = [zij]NxN be a matrix consisting

of the estimated edge labeling values from the fundamental matrix values according

to the Algorithm 1. The value of the edge label for the same index in the ZA is

also computed from the vertex label, i.e. zij = xi/xj . By using the vector of the

vertex labels, X =
[
x1 x2 ... xN

]T
and Xinv =

[
x1
−1 x2

−1 ... xN
−1
]

the

edge labeling matrix is also represented: ẐA = XXinv. The cost function for the

group synchronization here defined as:

min[
x1 x2 ... xN

]T
NxN∑
k=1

(ZA(k)− ẐA(k))
2

(4.3)

where Xinit is computed by using Algorithm 2 or initial values of unknown focal

lengths are set to an arbitrary value. In order to solve the optimization problem, non-

linear least square methods used with the choice of Cauchy Loss function. The im-

plementation of the solver utilizes the Ceres library [2], which is the mostly preferred

non-linear optimization library in SfM algorithms.

4.5 Experimental Results

The experiments are conducted with both synthetic and real data, which will be ex-

plored in details in the following part of the thesis. First of all, synthetic data experi-

ments are designed to show how the focal length estimation method is robust to noise

and how well is this proposed method solve the focal length estimation in case of

minimum number of known focal lengths. Secondly, the real data experiments are set
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up to justify the proposed method can be used in the SfM pipelines with the real data

as an initial stage, and how successful is this method in the case of minimum number

of known focal lengths.

4.5.1 Synthetic Data Experiments

The aim of the synthetic data experiments are three folded. First of all, the robustness

of the method for estimation of focal lengths with given constraints is tested against

noisy constants and the missing focal lengths values. Secondly, the robustness of

the constraint in case of noisy pixel correspondences is investigated. Finally, this is

followed by an experiment in which the full pipeline starting from point correspon-

dences and ending up with the estimated focal length values is observed in the case

of noisy pixel correspondences. In each group of experiments, the number of camera,

that of missing focal lengths and the approximated linear functions are changing in

order to observe robustness in a wide spectrum.

The synthetic experiments are conducted with randomly generated cameras whose

field of view are selected from a realistic interval in practice. Poses between the cam-

eras are computed from randomly generated rotation matrices and translation vectors.

The pixel correspondences are computed by using these rotation matrices and trans-

lation vectors. In the first group of experiments, the constraints are computed from

previously generated focal lengths and the focal length estimation accuracy is tested

under different level of noise added to ground-truth constraint values. There are N

number of cameras generated, and their FOV values are randomly selected from the

interval [90, 120] degrees. The size of images is selected 1024x1024 for convenience.

The randomly generated focal lengths and the corresponding constraint are given as

input to the focal length estimation algorithm which is proposed in Chapter 4.4.2,

then the Gaussian noise with mean at zero and standard deviations at different values

are added to the exact constraint values. These experiments are conducted for differ-

ent number of cameras and various the number of broken focal lengths in each setup

to investigate estimation accuracy relation between them.

In the first setup, an experiment is performed for the synthetically generated 10 cam-

eras, 1 of them is broken, i.e. the broken focal length ratio is 10%. The robustness
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Figure 4.5: Robustness of Focal Length Estimation Algorithm Against Noise in Con-

straint Values. There are 10 cameras randomly generated and 1 of them have broken

focal lengths. In this setup, the noise is added to the exact values of constraints which

are calculaated using the L1 function defined in Chapter 4.1.
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of the accuracy of estimation result is then plotted for different noise levels in Figure

4.5. The median of the focal length estimation error distribution increases while the

standard deviation of the additive Gaussian noise gradually changing from 0 to 0.3.

During the interval, the first three quantiles of the error distribution stays under 10%,

which can be compensated by following steps in SfM pipeline. This result is due to

the fact that the bundle adjustment algorithm handles the error under a certain level.

Figure 4.6: Robustness of Focal Length Estimation Algorithm Against Noise in Con-

straint Values. There are 20 cameras randomly generated and 2 of them have broken

focal lengths. In this setup, the noise is added to the exact values of constraints which

are calculaated using the L1 function defined in Chapter 4.1.

In the next phase of the experiments, the same setup is tested with different number of

cameras but under same broken focal length ratio. In Figure 4.6, 20 cameras are ran-

domly generated, and the the focal length estimation algorithm runs with constraints

under different levels of noise. The trend of error distribution is slightly different

than the one observed with 10 cameras, and the error distribution still stays in the safe

region.
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Figure 4.7: Robustness of Focal Length Estimation Algorithm Against Noise in Con-

straint Values. here are 40 cameras randomly generated and 4 of them have broken

focal lengths. In this setup, the noise is added to the exact values of constraints which

are calculated using the L1 function defined in Chapter 4.1.
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This simulation is followed by other experiment conducted with 40 cameras with

same broken focal length ratio at 10%. During the same noise interval, the error

distributions are illustrated in Figure 4.7.

Different than the broken focal length ratio at 10%, the experiments for ratios at 20%

and 50% are also conducted. The graphical results are not included in this thesis, but

the important statistical measurements of estimation error distributions are tabulated

in Table 4.1. In this table, the overall estimation error is presented; in some cases,

the error is out of the secure region, and they are highlighted. Main trend shows that

the ratio of broken focal length increases from 10% to 50%. Through this change, the

accuracy of focal length estimation slightly declined. This is observed in all synthetic

experiments with different cameras. According to the results of our synthetic data ex-

periments, on the other hand, with a constant broken focal length ratio, it is observed

that the accuracy of focal length estimation under noisy constraints slightly changes

for the different number of cameras. However, the affect of noisy constraints is easily

observed when the number of camera is at high level.

Table 4.1: Focal length estimation errors are shown in the table for different broken
focal length ratios under noisy constraint values. The standard deviation of additive
Gaussian noise are 0, 0.02, 0.05, 0.1, 0.2, 0.3. The ratio of broken focal lengths starts
from 10% and gradually increases towards 50%.

Broken f Ratio 10% Broken f Ratio 20% Broken f Ratio 50%

0.02 0.05 0.1 0.2 0.3 0.02 0.05 0.1 0.2 0.3 0.02 0.05 0.1 0.2 0.3

10 cams
median 0.161 0.559 1.083 2.558 4.873 0.378 0.760 0.910 1.774 5.934 0.619 0.390 1.831 3.541 8.128

1st quan 0.031 0.260 0.179 0.622 2.425 0.180 0.315 0.051 1.166 2.154 0.278 0.153 0.743 1.233 4.114

3rd quan 0.288 0.997 1.795 4.246 7.922 0.538 0.989 1.806 2.648 9.531 0.809 0.779 3.311 4.501 10.99

20 cams
median 0.378 0.760 0.910 1.774 5.934 0.178 0.656 0.925 2.317 5.569 0.157 0.760 0.516 3.534 5.991

1st quan 0.180 0.315 0.052 1.166 2.154 0.076 0.465 0.169 0.686 4.005 0.089 0.427 0.207 2.085 3.490

3rd quan 0.538 0.989 1.806 2.648 9.531 0.339 1.027 1.555 3.462 7.431 0.320 1.087 0.935 4.660 8.076

40 cams
median 0.148 0.256 1.383 3.706 7.202 0.079 0.285 0.940 4.245 6.675 0.346 0.305 0.633 5.398 10.39

1st quan 0.077 0.116 0.798 2.974 4.867 0.033 0.125 0.545 3.537 5.147 0.237 0.144 0.264 4.638 9.455

3rd quan 0.281 0.402 2.221 5.426 8.445 0.181 0.465 1.387 5.144 8.858 0.455 0.542 1.137 6.391 11.97

80 cams
median 0.111 0.600 1.726 6.061 10.81 0.089 0.640 1.458 8.388 15.69 0.096 0.313 1.946 6.121 16.32

1st quan 0.062 0.414 1.309 5.224 10.12 0.043 0.499 1.032 7.859 14.87 0.035 0.178 1.670 5.571 15.43

3rd quan 0.168 0.755 2.080 6.733 11.91 0.131 0.772 1.733 8.894 16.46 0.172 0.473 2.366 6.605 17.32

The result of this experiment is important for two main reasons which will be explored

in the following part. First of all, this experiment shows the robustness of the con-

straint based focal length estimation method against the noise added to constraints.

Secondly, the results state that constraint based focal length estimation method can
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be utilized in an application if the constraint error under a certain level. This scenario

is followed by the second group of experiments that are designed for observing the

estimation error of constraint against the additive noise on pixel coordinates. It is still

useful in SfM with this error ratios, however, the detailed experiments which prove

this will be explored in the following chapter.

Figure 4.8: Robustness of Constraint Estimation Against Noise in Pixel Coordinates.

here are 10 cameras randomly generated and 2 of them have broken focal lengths.

In this setup, the noise is added to the pixel coordinates, and constraint is estimated

using the L1 function defined in Chapter 4.1.

During the previous experiments, the robustness of the focal length estimation algo-

rithm against the noisy constraint is demonstrated. This is followed by the experiment

in which the robustness of the constraint estimation against noisy pixel correspon-

dences is investigated. In these experiments, Gaussian noise is added to the pixel

coordinates, and the constraints are estimated with these noisy correspondences. On

the other hand, the ground truth constraints are computed from the ground truth focal

lengths. The estimation accuracy is measured by the relative error on the estimation
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of constraints. It is considered that the performance of constraint estimation should be

investigated for different number of cameras and the ratio of the broken focal lengths.

For this purpose, there are three group of experiments conducted. In the first group of

experiments, the broken focal length is set to 20% and number of cameras generated

is changing from 10 to 20 cameras. The relative estimation error of the constraints

from noisy correspondences for 10 cameras is illustrated in Figure 4.8. The constraint

error increases gradually with the increasing standard deviation of Gaussian noise. In

details, although there is an increasing error in constraint estimation, the first three

quantile of error distribution is far less than 20% , which is the limit of percentage er-

ror that can be handled by group synchronized focal length estimation method. This

is followed by another experiment in which the broken focal length ratio is 40%.

In Figure 4.9, it is illustrated that the constraint estimation is affected by the noisy

pixel correspondences, and the increase in the standard deviation of Gaussian results

in decreasing the accuracy of constraint estimation method. However, the first three

quantile of the error distribution stays under 20%.

As a last experiment in this set, with the ratio of broken focal length of 60%, the

constraint estimation error is observed and the results are plotted in Figure 4.10. The

estimation error characteristics is not different from previous experiments, and the

first three quartile is still under 20%. In details, the estimation error is its minimum

value when the standard deviation is around 1 pixels, and it is followed by slight in-

crease in the median of estimation error as standard deviation is incremented. Apart

from the experiments with 10 cameras, there is one more group of experiments de-

signed for 20 cameras and different ratio of broken focal lengths in order to observe

estimation error in terms of number of cameras. The result of this experiment is illus-

trated in Table 4.2, which has the same values with the Figures 4.8, 4.9,4.10. There

is a slight increase in constraint estimation error, if the number of camera increases,

whereas the error values are close to each other for different noise level, and they

are less than the critical ratios, 20%. As a second observation, ratio of broken focal

length cannot cause big change of estimation error in the case of same pixel noise. In

conclusion, for this group of experiments, the proposed constraint extraction method

is robust to pixel noise and this robustness continue for different number of cameras,

and this robustness stays for various ratios of broken focal lengths.
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Figure 4.9: Robustness of Constraint Estimation Against Noise in Pixel Coordinates.

here are 10 cameras randomly generated and 4 of them have broken focal lengths.

In this setup, the noise is added to the pixel coordinates, and constraint is estimated

using the L1 function defined in Chapter 4.1.
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Figure 4.10: Robustness of Constraint Estimation Against Noise in Pixel Coordinates.

There are 10 cameras randomly generated and 6 of them have broken focal lengths.

In this setup, the noise is added to the pixel coordinates, and constraint is estimated

using the L1 function defined in Chapter 4.1.
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Table 4.2: Constraint estimation errors are shown in the table for different broken
focal length ratios under noisy pixel coordinate values. The standard deviation of
additive Gaussian noise are 0, 1.0, 2.0, 3.0, 4.0, 5.0. The ratio of broken focal lengths
starts from 20% and gradually increases towards 60%.

Broken f Ratio 20% Broken f Ratio 40% Broken f Ratio 60%

1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0

10 cams
median 4.540 5.006 6.020 7.098 6.453 4.915 4.611 5.003 4.885 5.692 3.393 3.713 4.539 5.440 5.686

1st quan 1.643 1.770 2.305 2.374 1.968 0.788 1.438 1.818 2.465 2.154 0.888 1.272 1.592 1.903 2.279

3rd quan 12.39 14.29 14.08 15.05 15.16 8.702 9.443 9.791 9.860 11.25 13.73 12.84 12.72 13.18 13.09

20 cams
median 6.946 6.335 7.454 7.328 8.109 5.337 5.431 4.987 5.934 6.544 6.554 7.584 7.002 9.189 8.927

1st quan 2.005 2.104 2.294 3.342 3.154 1.624 1.743 1.646 2.243 2.879 1.880 2.626 2.240 3.159 3.133

3rd quan 13.18 13.68 14.11 14.47 16.11 11.02 10.96 12.27 11.15 12.75 13.76 15.06 14.61 16.23 16.28

Based on the result of the previous step, i.e. the robustness of constraint estimation,

we design a new set of experiments to test the full focal length estimation pipeline

against pixel noise as it is planned in the beginning of experiment section. For this

purpose, the first group of experiment is designed with randomly chosen 10 cameras

and their connectivity graph. Then, the error of focal length estimation algorithm is

tested in the case of that the Gaussian noise with various standard deviation values is

added to the pixel values. The standard deviation of the noise are {0, 1.0, 2.0, 3.0,

4.0, 5.0}. For each broken focal length, the initial value is set to 100 which is very

different the actual value.

In this experiment, first of all, the constraint is estimated from noisy correspondences

and then the focal length estimation algorithm, which is based on the non-linear cost

function, finds the unknown focal length values. The result of this experiments are

conducted with that of previous experiment, i.e. the error distribution of constraint

estimation is plotted in Figure 4.8 for ratio of broken focal 20% and the that of focal

length estimation in Figure 4.11 and Figure 4.13 are the result of same experimental

setup. This is due to the fact that it is essential to investigate the accuracy of focal

length estimation with the error of constraint estimation.

There are two different figures for this experiment to show the performance of focal

length estimation method. First of all, the relative estimation error is computed by

using both known and unknown focal length values. It is important to observe how

much does the known focal length change during the non-linear optimization stage.

Intentionally, the known focal lengths are not set as constant variable in the solver,
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Figure 4.11: Robustness of Focal Length Estimation Against Noise in Pixel Coordi-

nates. There are 10 cameras randomly generated and 2 of them have broken focal

lengths. In this setup, the noise is added to the pixel coordinates, and constraint is

estimated using the L1 function defined in Chapter 4.1, and group synchorized ap-

proach utilizes these constraints. This graph illustrates the focal lengh estimation

error including all cameras in dataset

so it is valuable to compare the result for all focal length and that for only broken

focal lengths. For this purpose, the error distribution of focal length estimation is

illustrated in Figure 4.11 for all cameras. This is followed by the error distribution for

only broken focal lengths in Figure 4.13. Although there is a slight change for the first

three quartile of the distributions, these values increase with the incremental noise in

pixels, but the median of these distributions are under 10% for all noise standard

deviation values.

Apart from the experiment with 10 cameras and the ratio of broken focal length of

20%, there is also two group of experiments designed for different ratios, namely 40%

and 60% with the 10 cameras. The estimation results for these ratios is illustrated in
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Figure 4.12: Robustness of Focal Length Estimation Against Noise in Pixel Coordi-

nates. There are 10 cameras randomly generated and 2 of them have broken focal

lengths. In this setup, the noise is added to the pixel coordinates, and constraint is

estimated using the L1 function defined in Chapter 4.1, and group synchorized ap-

proach utilizes these constraints. This graph illustrates the focal lengh estimation

error including all cameras in dataset

Figure 4.13 and Figure 4.14, respectively. The first three quartile of error distribution,

in the case of ratio is equal to 40%, is under the 10% for all noise levels. During this

interval, these values of the distribution starts at low levels, around 1%, and increase

to the level around 5%. In the letter experiment, although the first quartile values of

the error distribution more than that of the former experiment, they are still below the

10%. Also, these values gradually increase as the standard deviation changes from

1.0 px to 5.0 px.

Different than the experiments designed for 10 cameras and ratios at 20%, 40% and

60%, the experiments for different number of cameras are also conducted. The graph-

ical results are not illustrated here, but the important statistical measurements of focal
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(a) Relative error is estimated for all fo-

cal lengths

(b) Relative error is estimated for bro-

ken focal lengths

Figure 4.13: Robustness of Focal Length Estimation Against Noise in Pixel Coor-

dinates. There are 10 cameras randomly generated and 4 of them have broken focal

lengths. In this setup, the noise is added to the pixel coordinates, and constraint is esti-

mated using the L1 function defined in Chapter 4.1, and group synchorized approach

utilizes these constraints.

(a) Relative error is estimated for all fo-

cal lengths

(b) Relative error is estimated for bro-

ken focal lengths

Figure 4.14: Robustness of Focal Length Estimation Against Noise in Pixel Coor-

dinates. There are 10 cameras randomly generated and 6 of them have broken focal

lengths. In this setup, the noise is added to the pixel coordinates, and constraint is esti-

mated using the L1 function defined in Chapter 4.1, and group synchorized approach

utilizes these constraints.

length estimation error distributions are demonstrated in Table 4.3. In details, for

the scenario with 10 cameras and 20% ratio, there is a slight change in the values of

known focal lengths, so it causes a change in the statistical measurements, such as

first/third quartile and median of distribution. This is different for the experimental
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setup with 40% and 60% ratios, that is the solver doesn’t make a considerable change

on the values of known focals. Also, first three quartile of the error distribution of

the focal length estimation are under 10% in these cases, though the quartile values

gradually increase with the incremental noise on pixel coordinates.

Table 4.3: Focal length estimation errors, considering all cameras and only unknown
focal length, are shown in the table for different broken focal length ratios under noisy
pixel coordinate values. The standard deviation of additive Gaussian noise are 0, 1.0,
2.0, 3.0, 4.0, 5.0. The ratio of broken focal lengths starts from 20% and gradually
increases towards 60%.

Broken f Ratio 20% Broken f Ratio 40% Broken f Ratio 60%

1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0

10 cams, all focals
median 3.584 3.748 4.481 4.107 5.911 1.383 1.639 1.619 1.968 1.981 7.001 6.649 7.282 5.948 6.457

1st quan 1.129 1.064 0.359 0.882 2.235 0.631 0.783 0.484 0.829 0.971 2.355 2.145 2.058 2.403 3.147

3rd quan 7.597 7.338 8.082 7.324 9.084 3.616 3.173 3.183 4.335 4.448 8.667 8.404 9.116 8.458 9.570

10 cams, broken focals
median 7.517 3.748 6.264 5.147 8.970 1.639 2.223 1.816 1.743 2.512 7.619 7.470 7.375 6.627 6.864

1st quan 3.584 1.737 3.991 1.690 5.793 1.114 1.169 0.705 0.834 1.397 3.796 4.908 4.189 3.919 3.867

3rd quan 9.081 5.961 10.57 7.536 13.78 4.278 4.297 3.129 4.791 4.783 8.800 8.686 9.388 8.641 9.794

20 cams, all focals
median 8.006 5.384 5.384 4.551 8.021 3.636 9.002 7.846 9.677 8.931 6.114 4.448 3.563 8.558 4.984

1st quan 4.178 3.017 3.923 2.544 6.433 1.567 3.409 5.024 5.811 5.309 1.650 2.214 1.044 6.624 2.394

3rd quan 9.299 7.294 8.191 8.472 11.30 5.309 10.58 10.73 11.13 11.37 9.246 8.216 7.141 11.25 7.316

20 cams, broken focals
median 11.31 5.583 4.578 4.545 12.57 5.309 8.254 7.846 10.04 9.661 5.309 8.254 7.846 10.04 9.661

1st quan 9.299 0.6973 4.224 3.993 8.162 2.039 4.342 6.066 8.281 7.674 2.039 4.342 6.066 8.281 7.674

3rd quan 13.19 7.715 9.591 9.771 14.68 5.622 9.592 10.73 11.26 11.37 5.622 9.592 10.73 11.26 11.37

As a second group of experiment, there are randomly generated 20 cameras with

different ratio of broken focal length. The error distributions of this experimental are

written in Table 4.3. In details, for the ratios 20% and 60%, there is a slight change

on known focal lengths during the optimization stage, whereas this change is far less

than others in the experiment with 40% ratio. Apart from this observation, there is a

slight increase in focal length estimation error if the number of camera changes from

10 to 20, i.e. the number of camera goes up. This is observed for the ratios of 20%,

40% and 60% during the experiment.

At the beginning of synthetic data experiemtns, there are three steps defined for the

experiment stage, namely focal length estimation accuracy with noisy constraints,

constraint estimation accuracy with noisy pixel coordinates and focal length estima-

tion accuracy with again noisy pixel correspondences. As a result of this stage, it is

observed that it is possible to estimate the unknown focal lengths from a geometric

constraints by using the proposed method. The median of error distribution of focal

length estimation stays under 10%, which is the safe region, if the constraint estima-
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tion accuracy is above 80%. This slightly changes, but stays in safe region in general,

if the number of cameras or the ratio of broken focal lengths increase.

Figure 4.15: The dataset is used for real data experiments. 10 images, at 3456 x 5184

resolution, from the cameras that have different focal length values are chosen. The

focal length values are changing from 9000 to 19000 pixels.

4.5.2 Real Data Experiments

Apart from the synthetic data experiments, the proposed approach for focal length

estimation is also tested with real data. The real data experiments are important for

two main reasons, which will be explored in the following chapter. First of all, the

relation between focal lengths of cameras in a real data set is observed, and it is

critical to utilize proposed focal length estimation method in the thesis. Secondly, the

performance of group synchronized focal length estimation is observed with the real

data, and the result will show whether this method is useful for SfM algorithms or not.

For this purpose, one of the known SfM data set 1 is utilized during the experiments.

This datasets contains number of photographs of a scene , and the focal length value

of each camera is changing from around 9000 pixels to 19000 pixels. The images are

at 3456 x 5184 resolution. For the real data experiments, 10 cameras from the data
1 This dataset is publicly available in https://github.com/pyp22/datasets
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set are randomly chosen, which are illustrated in Figure 4.15.

Figure 4.16: The view graph for the dataset is generated after keypoint extraction and

image matching stages within the input image set [62]

This is followed by extracting and describing the feature points for images, and then

find matched image pairs in the dataset. As a result of the matching phase, the relation

between images are represented in a view graph, which is given in Figure 4.16. Each

row and column index stands for a camera in a dataset. The library2 developed for

the thesis is utilized for all of these stages. With the view graph input, as a first stage

in the experiments, relation between focal lengths are computed by using Algorithm

1. As an observation, the relation between a set of focal length pairs are illustrated in

Figure 4.17. The focal length from a logical interval is chosen for camera 0 and the

correspondent focal lengths are computed by using Equation 4.2 for cameras 1 and 5.

It is observed that this relation is modeled by linear function, L1, which is defined in

Chapter 4.1. This is followed by estimating all constraints between connected image

pairs for this dataset. With the estimated constratins and the EXIF data for input

images, the relative error of constraint estimation is computed. It is observed that

the median error of constraint estimation is 21%, which is very close to safe region

defined in synthetic data experiments. With this constraint estimation accuracy, this is

followed by the the performance analysis of focal length estimation algorithm, which

2 The library developed in c++ is publicly available in https://github.com/akcalakcal/Open_
SfM_METU
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is proposed in this thesis.

(a) Focal Length, f1, = 9066 px (b) Focal Length, f1, = 9066 px

Figure 4.17: Focal length relation between two cameras in a dataset, which is utilized

for real data experiments. The relation between camera 0 and two other cameras,

namely camera 1 and 5, are plotted. The focal length of the camera 0 is given as 9066

pixels in the EXIF data.

As a second group of experiments, error distribution of the focal length estimation

algorithm with different ratios of broken focal length, and the various initial values

for unknown focal lengths are tested. First of all, the ratio of broken focal length is

set to 20% and the focal length of unknown cameras are estimated. This is repeated

by 100 times for randomly chosen broken cameras each time with the same ratio, and

the initial focal length value for the broken cameras is set to 100. The result of of this

experiments is illustrated in Table 4.4. It is observed that the first three quartile of

error distribution is around 0 value. This is slightly changed if the ratio of unknown

focal length is increased to 40%. During this experiment, the third quartile of the error

distribution rise around 13% values, whereas the median of the distribution remains

around 0 value. This is followed by another experiment, which is designed for 60%

ratio of broken focal length. This is the starting point to think about the limits of

the proposed focal length estimation algorithm in this thesis. During the real data

experiments, it is experienced to test proposed algorithm for higher ratio of broken

focal lengths than the ones that is tested for the synthetic data experiments. This is

because, the aim of this experiment is to explore the limit of this algorithm, so the

experiments with the 60% ratio of broken focal length is critical step. As a result

of this experiment, the median of error distribution gets closer to the arbitrary error

boundary defined during the synthetic data experiments, which is 10%, but remains
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in the safe region.

With the same number of camera, which is 10, and initial value for focal lengths value,

which is 100, there is another group of experiments designed for 70% and 80% ratio of

broken focal lengths. During these experiments, the the median of error distribution

increased together with the third quartile, which means that some of the unknown

focal length values are set to correct ones whereas others are slightly different than

the ground truth values. This is followed by the increased of median value up to

37.05% in the case of 80% ratio of broken focal lengths, which shows that the focal

length estimation method with the L1 linearization starts to fail at this level. It may be

considered by the reader that this is also because of the initial value for the unknown

focal length; hence, the second group of experiments are conducted for this purpose.

In details, this group of experiments is constructed with the same ratio of broken focal

lengths but with different initial values for the non-linear optimization steps. Each

column in Table 4.4 stands for this experiment for different ratios. It is observed

that the estimation results slightly change for different percentage of ratios, i.e. initial

value is not the main factor to be considered for the focal length estimation algorithm,

and solver can start with any initial value.

In conclusion, the performance of the focal length estimation value is limited with the

ratio of broken focal length, and the median of the distribution reach to higher values

if the ratio is more than 70%. So, this method is useful up to ratio of unknown focal

length in a SfM pipeline.
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Table 4.4: The proposed focal length estimation algorithm is tested with real data,
which is used in SfM algorithms. The ratio of broken focal length in the dataset is
changing from 20% to 80%, and the estimation accuracy is observed with these ratios.

Broken f Ratio

20% 40% 60% 70% 80%

10 cams, finit = 100
median 0.0 0.0 9.42 18.62 37.05

1st quan 0.0 0.0 0.0 0.0 8.54

3rd quan 0.0 14.33 33.86 46.98 73.50

10 cams, finit = 1000
median 0.0 0.0 10.69 18.53 36.56

1st quan 0.0 0.0 0.0 0.0 7.98

3rd quan 0.0 14.89 34.96 49.88 73.49

10 cams, finit = 4000
median 0.0 0.0 10.86 19.14 36.55

1st quan 0.0 0.0 0.0 0.0 8.55

3rd quan 0.0 13.14 34.07 47.50 73.47

10 cams, finit = 8000
median 0.0 0.0 9.72 17.73 35.94

1st quan 0.0 0.0 0.0 0.0 7.99

3rd quan 0.0 13.62 35.17 49.76 73.43
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, we have proposed a novel stratified calibration algorithm for estimating

both the focal length and the radial distortion parameter of a camera from given 2d

point correspondences. We show here that by using the one parameter division model

of [19], it is possible to recover the undistorted image correspondences. Moreover,

we have introduced a completely new method for recovering the camera focal length

by enforcing the trace constraint over the essential matrix via the estimated funda-

mental matrix. Finally, we have shown with synthetic and real experiments that our

method compares favorably against other approaches presented in the literature.

As a second contribution in this thesis, novel method for estimating the unknown focal

lengths in SfM dataset using the geometric constraints between image pairs and group

synchronization based on derived linear relation is proposed. In conclusion, it is stated

that the proposed approach is useful as an initialization stage in SfM algorithms, after

that the performance of the method is shown in the experimental stages. As a result

of synthetic data experiments, the performance of the proposed methods is tested for

the noise sensitivity. The results show that this method is robust to the pixel noise.

Another group of experiments are conducted with the real data. The result of real data

experiments illustrated that this method is useful for the SfM pipelines as an initial

stage. If we know the focal lengths of the at least 30% of all cameras in a dataset, it

is possible to recover unknown focal lengths with the median of the estimation error

under 10%.

As a future work of this study, it is a research problem to increase the performance

of the group synchronized focal length estimation method by developing the model
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between unknown focal lengths.
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APPENDIX A

DERIVATION OF TRACE CONSTRAINT

Essential matrix, E, has important properties; by definition, E matrix is rank-2 ma-

trix, and two of three singular values are same and the third one is equal to 0. With

these properties, E matrix is written as a multiplication of a skew-symmetric matrix

and the rotation matrix [21]. Hence, an essential matrix is written as:

E = TaR (A.1)

where R is a 3x3 rotation matrix, and Ta is a 3x3 skew symmetric matrix, which is

written for any vector a ∈ R3, and a = [a1, a2, a3]
T :

Ta =


0 −a3 −a2
a3 0 −a1
−a2 a1 0

 (A.2)

This is followed by rewriting the trace constraint in Equation 2.10, of E matrix:

EETE = (0.5) ∗ tr(EET )E (A.3)

First of all, the left side of this equation is represented by Ta and R matrices:

EETE = TaRR
TTa

TTaR (A.4)
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EETE = TaTa
TTaR (A.5)

Secondly, the same replacement is applied for the right side:

tr(EET )E = tr(TaTa
T )TaR (A.6)

With this representations, the problem turns to satisfaction of the following equation:

TaTa
TTa =

1

2
∗ tr(TaTaT )Ta (A.7)

Let x be an arbitrary vector in R3. The multiplication of x with TaTaT yields the

following equation:

TaTa
Tx = Ta(a× x)

TaTa
Tx = (a× x)× a

TaTa
Tx = (a.a)x− (a.x)a

(A.8)

This is followed by:

TaTa
T = (a.a)I − (a⊗ a)

TaTa
TTa = (a.a)Ta

(A.9)

Apart from the left side, the right side of the equation is written as following:

1

2
∗ tr(TaTaT ) =

1

2
∗ tr((a.a)I − (a⊗ a)) = a.a

1

2
∗ tr(TaTaT )Ta = (a.a)Ta

(A.10)

In conclusion, it is shown that left and right side of the Equation A.7 is equal to each

other. So, proof is done.
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APPENDIX B

DERIVATION OF NON-LINEAR EQUATION FOR FOCAL

LENGTH ESTIMATION BASED ON TRACE CONSTRAINT

In the scope of this thesis, there are two different approach proposed for focal length

estimation, which utilize the trace constraint [50]. First of all, in Chapter 3.2, focal

length can be estimated if two camera share the same focal length and the fundamental

matrix which defines the epipolar geometry between these views is known. Secondly,

if the fundamental matrix between two view is estimated and one of the camera’s

focal length is known, then the focal length of other camera can be estimated. In

the following, the functions used for the focal length estimation are derived in details

form the trace constraints and geometric constraints.

First of all, trace constraint of an essential matrix is written as it is stated in [50]:

2EETE − tr(EET )E = 0 (B.1)

The essential matrix, E, is also writin in terms of fundamental matrix ,F , and the

camera matrices, K, of cameras, which are same in this problem:

E = KTFK (B.2)

As it is explained in the Chapter 2.1, the camera matrix in the form of 2.4 is preferred

in order to model this solution for focal length estimation. This is followed by com-

pute essential matrix E in terms of elements of fundamental matrix F , and the the

shared focal length of cameras.
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E =


f 0 0

0 f 0

0 0 1



f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3



f 0 0

0 f 0

0 0 1

 (B.3)

E =


f 2 × f1,1 f 2 × f1,2 f × f1,3
f 2 × f2,1 f 2 × f2,2 f × f2,3
f × f3,1 f × f3,2 f × f3,3

 (B.4)

With this form of essential matrix, E, the first part of the trace constraint, which is

EET is constructed:

EET = (f4f1,1
2 + f4f1,2

2 + f2f1,3
2) (f4f1,1f2,1 + f4f1,2f2,2 + ff1,3f2,3) (f3f1,1f3,1 + f3f1,2f3,2 + ff1,3f3,3)

(f4f2,1f1,1 + f4f2,2f1,2 + f2f2,3f1,3) (f4f2,1
2 + f4f2,2

2 + f2f2,3
2) (f3f2,1f3,1 + f3f2,2f3,2 + ff2,3f3,3)

(f3f3,1f1,1 + f3f3,2f1,2 + ff3,3f1,3) (f3f3,1f2,1 + f3f3,2f2,2 + ff3,3f2,3) (f2f3,1
2 + f2f3,2

2 + f3,3
2)


(B.5)

This is followed by the construction of EETE, which is demonstrated in a vector

form for inconvenience:

vec(EE
T

E) =



((f6f1,1
3 + f6f1,1f1,2

2 + f4f1,1f1,3
2) + (f6f1,1f2,1

2 + f6f1,2f2,2f2,1 + f3f1,3f2,3f2,1) + (f4f1,1f3,1
2 + f4f1,2f3,2f3,1 + f2f1,3f3,3f3,1))

((f6f1,1
2f1,2 + f6f1,2

3 + f4f1,3
2f1,2) + (f6f1,1f2,1f2,2 + f6f1,2f2,2

2 + f3f1,3f2,3f2,2) + (f4f1,1f3,1f3,2 + f4f1,2f3,2
2 + f2f1,3f3,3f3,2))

((f5f1,1
2f1,3 + f5f1,2

2f1,3 + f3f1,3
3) + (f5f1,1f2,1f2,3 + f5f1,2f2,2f2,3 + f2f1,3f2,3f2,3) + (f3f1,1f3,1f3,3 + f3f1,2f3,2f3,3 + ff1,3f3,3

2))

((f6f2,1f1,1
2 + f6f2,2f1,2f1,1 + f4f2,3f1,3f1,1) + (f6f2,1

3 + f6f2,2
2f2,1 + f4f2,3

2f2,1) + (f4f2,1f3,1
2 + f4f2,2f3,2f3,1 + f2f2,3f3,3f3,1))

((f6f2,1f1,1f1,2 + f6f2,2f1,2
2 + f4f2,3f1,3f1,2) + (f6f2,1

2f2,2 + f6f2,2
3 + f4f2,3

2f2,2) + (f4f2,1f3,1f3,2 + f4f2,2f3,2
2 + f2f2,3f3,3f3,2))

((f5f2,1f1,1f1,3 + f5f2,2f1,2f1,3 + f3f2,3f1,3
2) + (f5f2,1

2f2,3 + f5f2,2
2f2,3 + f3f2,3

3) + (f3f2,1f3,1f3,3 + f3f2,2f3,2f3,3 + ff2,3f3,3
2))

((f5f3,1f1,1
2 + f5f3,2f1,2f1,1 + f3f3,3f1,3f1,1) + (f5f3,1f2,1

2 + f5f3,2f2,2f2,1 + f3f3,3f2,3f2,1) + (f3f3,1
3 + f3f3,2

2f3,1 + ff3,3
2f3,1))

((f5f3,1f1,1f1,2 + f5f3,2f1,2
2 + f3f3,3f1,3f1,2) + (f5f3,1f2,1f2,2 + f5f3,2f2,2

2 + f3f3,3f2,3f2,2) + (f3f3,1
2f3,2 + f3f3,2

3 + ff3,3
2f3,2))

((f4f3,1f1,1f1,3 + f4f3,2f1,2f1,3 + f2f3,3f1,3
2) + (f4f3,1f2,1f2,3 + f4f3,2f2,2f2,3 + f2f3,3f2,3

2) + f2f3,1
2f3,3 + f2f3,2

2f3,3 + f3,3
3))



(B.6)
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As a second part of the trace constraint, the following equation is written:

vec(tr(EE
T

)E) =



(f6(f1,1
3 + f1,2

2f1,1 + f2,1
2f1,1 + f2,2

2f1,1) + f4(f1,3
2f1,1 + f2,3

2f1,1 + f3,1
2f1,1 + f3,2

2f1,1) + f2f3,3
2f1,1)

(f6(f1,1
2f1,2 + f1,2

3 + f2,1
2f1,2 + f2,2

2f1,2) + f4f1,3
2f1,2 + f2,3

2f1,2 + f3,1
2f1,2 + f3,2

2f1,2) + f2f3,3
2f1,2)

(f5(f1,1
2f1,3 + f1,2

2f1,3 + f2,1
2f1,3 + f2,2

2f1,3) + f3(f1,3
3 + f2,3

2f1,3 + f3,1
2f1,3 + f3,2

2f1,3) + ff3,3
2f1,3)

(f6(f1,1
2f2,1 + f1,2

2f2,1 + f2,1
3 + f2,2

2f2,1) + f4(f1,3
2f2,1 + f2,3

2f2,1 + f3,1
2f2,1 + f3,2

2f2,1) + f2f3,3
2f2,1)

(f6(f1,1
2f2,2 + f1,2

2f2,2 + f2,1
2f2,2 + f2,2

3) + f4(f1,3
2f2,2 + f2,3

2f2,2 + f3,1
2f2,2 + f3,2

2f2,2) + f2f3,3
2f2,2)

(f5(f1,1
2f2,3 + f1,2

2f2,3 + f2,1
2f2,3 + f2,2

2f2,3) + f3(f1,3
2f2,3 + f2,3

3 + f3,1
2f2,3 + f3,2

2f2,3) + ff3,3
2f2,3)

(f5(f1,1
2f3,1 + f1,2

2f3,1 + f2,1
2f3,1 + f2,2

2f3,1) + f3(f1,3
2f3,1 + f2,3

2f3,1 + f3,1
3 + f3,2

2f3,1) + ff3,3
2f3,1

(f5(f1,1
2f3,2 + f1,2

2f3,2 + f2,1
2f3,2 + f2,2

2f3,2) + f3(f1,3
2f3,2 + f2,3

2f3,2 + f3,1
2f3,2 + f3,2

3) + ff3,3
2f3,2)

(f4(f1,1
2f3,3 + f1,2

2f3,3 + f2,1
2f3,3 + f2,2

2f3,3) + f2(f1,3
2f3,3 + f2,3

2f3,3 + f3,1
2f3,3 + f3,2

2f3,3) + f3,3
3)



(B.7)

Finally, the previously defined function G(f) , Equation 3.10 is stated in terms of

focal length, f , and the elements of fundamental matrix, F . In fact,

G(f) =


g(f)1,1 g(f)1,2 g(f)1,3

g(f)2,1 g(f)2,2 g(f)2,3

g(f)3,1 g(f)3,2 g(f)3,3

 (B.8)

and each elements of G(f) is stated in following:

g(f)1,1 =

(f6(2f1,1
3 + 2f1,1f1,2

2 + 2f1,1f2,1
2 + 2f1,2f2,2f2,1 − f1,1

3 − f1,2
2f1,1 − f2,1

2f1,1 − f2,2
2f1,1)

+ f4(2f1,1f1,3
2 + 2f1,1f3,1

2 + 2f1,2f3,2f3,1 − f1,3
2f1,1 − f2,3

2f1,1 − f3,1
2f1,1 − f3,2

2f1,1)

+ f3(2f1,3f2,3f2,1)

+ f2(2f1,3f3,3f3,1 − f3,3
2f1,1))

(B.9)
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g(f)1,2 =

(f6(2f1,1f1,2 + 2f1,2
3 + 2f1,1f2,1f2,2 + 2f1,2f2,2

2 − f1,1
2f1,2 − f1,2

3 − f2,1
2f1,2 − f2,2

2f1,2)

+ f4(2f1,3
2f1,2 + 2f1,1f3,1f3,2 + 2f1,2f3,2

2 − f1,3
2f1,2 − f2,3

2f1,2 − f3,1
2f1,2 − f3,2

2f1,2)

+ f3(2f1,3f2,3f2,2) + f2(2f1,3f3,3f3,2 − f3,3
2f1,2))

(B.10)

g(f)1,3 =

(f5(2f1,1
2f1,3 + 2f1,2

2f1,3 + 2f1,1f2,1f2,3 + 2f1,2f2,2f2,3 − f1,1
2f1,3 − f1,2

2f1,3 − f2,1
2f1,3 − f2,2

2f1,3)

+ f3(2f1,3
3 + 2f1,1f3,1f3,3 + 2f1,2f3,2f3,3 − f1,3

3 − f2,3
2f1,3 − f3,1

2f1,3 − f3,2
2f1,3)

+ f2(2f1,3f2,3
2) + f(f1,3f3,3

2 − f3,3
2f1,3))

(B.11)

g(f)2,1 =

(f6(2f2,1f1,1
2 + 2f2,2f1,2f1,1 + 2f2,1

3 + 2f2,2
2f2,1 − f1,1

2f2,1 − f1,2
2f2,1 − f2,1

3 − f2,2
2f2,1)

+ f4(2f2,3f1,3f1,1 + 2f2,3
2f2,1 + 2f2,1f3,1

2 + 2f2,2f3,2f3,1 − f1,3
2f2,1 − f2,3

2f2,1 − f3,1
2f2,1 − f3,2

2f2,1)

+ f2(2f2,3f3,3f3,1 − f3,3
2f2,1))

(B.12)

g(f)2,2 =

(f6(2f2,1f1,1f1,2 + 2f2,2f1,2
2 + 2f2,1

2f2,2 + 2f2,2
3 − f1,1

2f2,2 − f1,2
2f2,2 − f2,1

2f2,2 − f2,2
3)

+ f4(2f2,3f1,3f1,2 + 2f2,3
2f2,2 + 2f2,1f3,1f3,2 + 2f2,2f3,2

2 − f1,3
2f2,2 − f2,3

2f2,2 − f3,1
2f2,2 − f3,2

2f2,2)

+ f2(2f2,3f3,3f3,2 − f3,3
2f2,2))

(B.13)

g(f)2,3 =

(f5(2f2,1f1,1f1,3 + 2f2,2f1,2f1,3 + 2f2,1
2f2,3 + 2f2,2

2f2,3 − f1,1
2f2,3 − f1,2

2f2,3 − f2,1
2f2,3 − f2,2

2f2,3)

+ f3(2f2,3f1,3
2 + 2f2,3

3 + 2f2,1f3,1f3,3 + 2f2,2f3,2f3,3 − f1,3
2f2,3 − f2,3

3 − f3,1
2f2,3 − f3,2

2f2,3)

+ f(2f2,3f3,3
2 − f3,3

2f2,3))

(B.14)
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g(f)3,1 =

(f5(2f3,1f1,1
2 + 2f3,2f1,2f1,1 + 2f3,1f2,1

2 + 2f3,2f2,2f2,1 − f1,1
2f3,1 − f1,2

2f3,1 − f2,1
2f3,1 − f2,2

2f3,1)

+ f3(2f3,3f1,3f1,1 + 2f3,3f2,3f2,1 + 2f3,1
3 + 2f3,2

2f3,1 − f1,3
2f3,1 − f2,3

2f3,1 − f3,1
3 − f3,2

2f3,1)

+ f(2f3,3
2f3,1 − f3,3

2f3,1))

(B.15)

g(f)3,2 =

(f5(2f3,1f1,1f1,2 + 2f3,2f1,2
2 + 2f3,1f2,1f2,2 + 2f3,2f2,2

2 − f1,1
2f3,2 − f1,2

2f3,2 − f2,1
2f3,2 − f2,2

2f3,2)

+ f3(2f3,3f1,3f1,2 + 2f3,3f2,3f2,2 + 2f3,1
2f3,2 + 2f3,2

3 − f1,3
2f3,2 − f2,3

2f3,2 − f3,1
2f3,2 − f3,2

3)

+ f(2f3,3
2f3,2 − f3,3

2f3,2))

(B.16)

g(f)3,3 =

(f4(2f3,1f1,1f1,3 + 2f3,2f1,2f1,3 + 2f3,1f2,1f2,3 + 2f3,2f2,2f2,3 − f1,1
2f3,3 − f1,2

2f3,3 − f2,1
2f3,3 − f2,2

2f3,3)

+ f2(2f3,3f1,3
2 + 2f3,3f2,3

2 + 2f3,1
2f3,3 + 2f3,2

2f3,3 − f1,3
2f3,3 − f2,3

2f3,3 − f3,1
2f3,3 − f3,2

2f3,3)

+ (2f3,3
2 − f3,3

2))

(B.17)

For the simplicity, G(f) matrix is denoted by focal length, f , and ai,j coefficients,

which will be beneficial for the next step:

G(f) =



(f6(a1,1) + f4(a1,2) + f3(a1,3) + f2(a1,4)) (f6(a2,1) + f4(a2,2) + f3(a2,3) + f2(a2,4)) (f5(a3,1) + f3(a3,2) + f2(a3,3) + f(a3,4))

(f6(a4,1) + f4(a4,2) + f2(a4,3)) (f6(a5,1) + f4(a5,2) + f2(a5,3)) (f5(a6,1) + f3(a6,2) + f(a6,3))

(f5(a7,1) + f3(a7,2) + f(a7,3)) (f5(a8,1 + f3(a8,2) + f(a8,3)) (f4(a9,1) + f2(a9,2) + (a9,3))



(B.18)

In the ideal case, the L2 norm of G(f) should be equal to 0 with the true focal length.

81



So, the norm of the matrix, ‖G(f)‖2 , is calculated as 12th degree polynomial:

‖G(f)‖2 =

k1 × f 12 + k2 × f 10 + k3 × f 9 + k4 × f 8+

k5 × f 7 + k6 × f 8 + k7 × f 9 + k8 × f 8+

k9 × f 3 + k10 × f 2 + k11 × f 0 = 0

(B.19)

The correspondent ki values are written in the following set of equations:

k1 = a1,1a1,1 + a2,1a2,1 + a4,1a4,1 + a5,1a5,1

k2 = 2a1,1a1,2 + 2a2,1a2,2 + a3,1a3,1 + 2a4,1a4,2 + 2a5,1a5,2 + a6,1a6,1

+ a7,1a7,1 + a8,1a8,1

k3 = 2a1,1a1,3 + 2a2,1a2,3

k4 = 2a1,1a1,4 + a1,2a1,2 + 2a2,1a2,4 + 2a3,1a3,2 + 2a4,1a4,3 + a4,2a4,2 + 2a5,1a5,3

a5,2a5,2 + 2a6,1a6,2 + 2a7,1a7,2 + 2a8,1a8,2 + a9,1a9,1

k5 = 2a1,2a1,3 + 2a2,2a2,3 + 2a3,1a3,3

k6 = 2a1,2a1,4 + a1,3a1,3 + a1,4a1,3 + 2a2,2a2,4 + a2,3a2,3 + 2a3,1a3,4

+ a3,2a3,2 + 2a4,2a4,3 + 2a5,2a5,3 + 2a6,1a6,3 + a6,2a6,2 + 2a7,1a7,3

+ a7,2a7,2 + a8,1a8,3 + a8,2a8,2 + a9,1a9,2

k7 = a1,3a1,4 + 2a2,3a2,4 + 2a3,2a3,3

k8 = a1,4a1,4 + a2,4a2,4 + 2a3,2a3,4 + a3,3a3,3 + a4,3a4,3 + a5,3a5,3

+ 2a6,2a6,3 + 2a7,2a7,3 + 2a8,2a8,3 + 2a9,1a9,3 + a9,2a9,2

k9 = 2a3,3a3,4

k10 = a3,4a3,4 + a6,3a6,3 + a7,3a7,3 + a8,3a8,3 + 2a9,2a9,3

k11 = a9,3a9,3

(B.20)

where the ai,j values are stated in Equation B.18.

The definition of function, H(F, focal1 = f, focal2 = f) = 0, which is given in
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Chapter 4.1, is equal to norm of G(f) with given fundamental matrix, F . In other

words, the function defined in Equation 4.1 is stated as following:

H(F, focal1 = f, focal2 = f) =

k1 × f 12 + k2 × f 10 + k3 × f 9 + k4 × f 8+

k5 × f 7 + k6 × f 8 + k7 × f 9 + k8 × f 8+

k9 × f 3 + k10 × f 2 + k11 × f 0 = 0

(B.21)

Apart from estimation of equal focal length of two views using the geometric con-

straint, i.e. fundamental matrix, F , there is another approach for estimating the un-

known focal length if the other focal length is known in addition to F matrix. In

this case, camera matrix of known camera, K1 is merged with the F matrix, which

is called F̂ , and essential matrix is represented in terms of F̂ and focal2. This is

followed by rewriting trace constraint using this relation. Similar steps with the pre-

vious derivation is conducted, and the Ĝ(f) matrix is computed in terms of unknown

focal length, f . The L2 norm of this matrix should be 0 with the true focal length.

So, the norm of this matrix, ‖Ĝ(f)‖
2

, is calculated as 6th degree polynomial:

‖Ĝ(f)‖
2

=

t1 × f 6 + t2 × f 4 + t3 × f 2 + t4 = 0
(B.22)

The correspondent ti values are written in the following set of equations utilizing the

elements of F̂ matrix:

t1 = â21,1 + b̂21,1 + ĉ21,1 + d̂21,1 + ê21,1 + ĝ21,1

t2 = 2â1,1â1,2 + 2b̂1,1b̂1,2 + 2ĉ1,1ĉ1,2

+ 2d̂1,1d̂1,2 + 2ê1,1ê1,2 + 2ĝ1,1ĝ1,2

+ ĥ21,1 + ĵ21,1 + k̂21,1

t3 = â21,2 + b̂21,2 + ĉ21,2 + d̂21,2 + d̂21,2 + ĝ21,2

+ 2ĥ1,1ĥ1,2 + 2ĵ1,1ĵ1,2 + 2k̂1,1k̂1,2

t4 = ĥ21,2 + ĵ21,2 + k̂21,2

(B.23)
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where the coefficients are related to the elements of F̂ as it is stated in the following

equations:

â1,1 = ((f̂1,1f̂1,1f̂1,1)) + (f̂1,1((f̂1,2f̂1,2))) + (f̂1,1((f̂1,3f̂1,3))) + (f̂1,1((f̂2,1f̂2,1)))

+ (2(f̂1,2f̂2,2f̂2,1)) + (2(f̂1,3f̂3,3â2,1))− (f̂1,1((â2,2f̂2,2)))− (f̂1,1((f̂2,3f̂2,3)))

(B.24)

â1,2 = (f̂1,1((f̂3,1f̂3,1))) + (2(f̂1,2f̂3,2f̂3,1)) + (2(f̂1,3f̂3,3f̂3,1))− (f̂1,1((f̂3,2f̂3,2)))

− (f̂1,1((f̂3,3f̂3,3)))

(B.25)

b̂1,1 = (f̂1,2((f̂1,1f̂1,1))) + ((f̂1,2f̂1,2f̂1,2)) + (f̂1,2((f̂1,3f̂1,3))) + (2f̂1,1f̂2,1f̂2,2)+

(f̂1,2((f̂2,2f̂2,2))) + (2f̂1,3f̂3,3f̂2,2)− (f̂1,2((f̂2,1f̂2,1)))− (f̂1,2((f̂2,3f̂2,3)))

(B.26)

b̂1,2 = (2f̂1,1f̂3,1f̂3,2) + (f̂1,2((f̂3,2f̂3,2))) + (2f̂1,3f̂3,3f̂3,2)− (f̂1,2((f̂3,1f̂3,1)))

− (f̂1,2((f̂3,3f̂3,3)))

(B.27)

ĉ1,1 = (f̂1,3((f̂1,1f̂1,1))) + (f̂1,3((f̂1,2f̂1,2))) + ((f̂1,3f̂1,3f̂1,3)) + (2f̂1,1f̂2,1f̂2,3)

+ (2f̂1,2f̂2,2f̂2,3) + (f̂1,3((f̂2,3f̂2,3)))− (f̂1,3((f̂2,1f̂2,1)))− (f̂1,3 × ((f̂2,2 × f̂2,2)))

(B.28)

ĉ1,2 = (2f̂1,1f̂3,1f̂3,3) + (2f̂1,2f̂3,2f̂3,3) + (f̂1,3((f̂3,3f̂3,3)))− (f̂1,3((f̂3,1f̂3,1)))

− (f̂1,3((f̂3,2f̂3,2)))

(B.29)

84



d̂1,1 = (f̂2,1((f̂1,1f̂1,1))) + (2f̂2,2f̂1,2f̂1,1) + (2f̂1,3f̂2,3f̂1,1) + ((f̂2,1f̂2,1f̂2,1))

+ (f̂2,1((f̂2,2f̂2,2))) + (f̂2,1((f̂2,3f̂2,3)))− (f̂2,1((f̂1,2f̂1,2)))− (f̂2,1 × ((f̂1,3 × f̂1,3)))

(B.30)

d̂1,2 = (f̂2,1((f̂3,1f̂3,1))) + (2f̂2,2f̂3,2f̂3,1) + (2× f̂2,3f̂3,3f̂3,1)− (f̂2,1((f̂3,2f̂3,2)))

− (f̂2,1((f̂3,3f̂3,3)))

(B.31)

ê1,1 = (2f̂1,1f̂2,1f̂1,2) + (f̂2,2((f̂1,2f̂1,2))) + (2f̂1,3f̂2,3f̂1,2) + (f̂2,2((f̂2,1f̂2,1)))

+ ((f̂2,2f̂2,2f̂2,2)) + (f̂2,2((f̂2,3f̂2,3)))− (f̂2,2((f̂1,3f̂1,3)))− (f̂2,2((f̂1,1f̂1,1)))

(B.32)

ê1,2 = (2f̂2,1f̂3,1f̂3,2) + (f̂2,2((f̂3,2f̂3,2))) + (2f̂2,3f̂3,3f̂3,2)− (f̂2,2((f̂3,1f̂3,1)))

− (f̂2,2((f̂3,3f̂3,3)))

(B.33)

ĝ1,1 = (2f̂1,1f̂2,1f̂1,3) + (2f̂2,2f̂1,2f̂1,3) + (f̂2,3((f̂1,3f̂1,3))) + (f̂2,3((f̂2,1f̂2,1)))

+ (f̂2,3((f̂2,2f̂2,2))) + ((f̂2,3f̂2,3f̂2,13))− (f̂2,3((f̂1,1f̂1,1)))− (f̂2,3((f̂1,2f̂1,2)))

(B.34)

ĝ1,2 = (2f̂2,1f̂3,1f̂3,3) + (2f̂2,2f̂3,2f̂3,3) + (f̂2,3((f̂3,3f̂3,3)))− (f̂2,3((f̂3,1f̂3,1)))

− (f̂2,3 × ((f̂3,2 × f̂3,2)))

(B.35)

ĥ1,1 = (f̂3,1((f̂1,1f̂1,1))) + (2f̂1,2f̂1,1f̂3,2) + (2f̂1,3f̂1,1f̂3,3) + (f̂3,1((f̂2,1f̂2,1)))

+ (2f̂2,2f̂2,1f̂3,2) + (2f̂2,1f̂2,3f̂3,3)− (f̂3,1((f̂1,2f̂1,2)))− (f̂3,1((f̂1,3f̂1,3)))

− (f̂3,1 × ((f̂2,2 × f̂2,2)))− (f̂3,1 × ((f̂2,3 × f̂2,3)))

(B.36)
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ĥ1,2 = ((f̂3,1f̂3,1f̂3,1)) + (f̂3,1((f̂3,2f̂3,2))) + (f̂3,1((f̂3,3f̂3,3))) (B.37)

ĵ1,1 = (2f̂1,1f̂1,2f̂3,1) + (f̂3,2((f̂1,2f̂1,2))) + (2f̂1,3f̂1,2f̂3,3) + (2f̂2,1f̂2,2f̂3,1)

+ (f̂3,2((f̂2,3f̂2,2))) + (2f̂2,3f̂2,2f̂3,3)− (f̂3,2((f̂1,1f̂1,1)))− (f̂3,2((f̂1,3f̂1,3)))

− (f̂3,2((f̂2,1f̂2,1)))− (f̂3,2((f̂2,3f̂2,3)))

(B.38)

ĵ1,2 = (f̂3,2((f̂3,1f̂3,1))) + ((f̂3,2f̂3,2f̂3,2)) + (f̂3,2((f̂3,3f̂3,3))) (B.39)

k̂1,1 = (2f̂1,1f̂1,3f̂3,1) + (2f̂1,2f̂1,3f̂3,2) + (f̂3,3((f̂1,3f̂1,3))) + (2f̂2,1f̂3,1f̂2,3)

+ (2f̂2,2f̂3,2f̂2,3) + (f̂3,3((f̂2,3f̂2,3)))− (f̂3,3((f̂1,1f̂1,1)))− (f̂3,3((f̂1,2f̂1,2)))

− (f̂3,3((f̂2,1f̂2,1)))− (f̂3,3((f̂2,2f̂2,2)))

(B.40)

k̂1,2 = (k̂3,3((k̂3,1k̂3,1))) + (k̂3,3((k̂3,2k̂3,2))) + ((k̂3,3 × k̂3,3 × k̂3,3)) (B.41)

In conclusion, the definition of function, P (F̂ , focal2 = f), which is given in Chap-

ter 4.1, is equal to norm of Ĝ(f) with given fundamental matrix,F , and known focal

length. That is, the function defined in Equation 4.2 is stated as following:

P (F, focal2 = f) =

t1 × f 6 + t2 × f 4 + t3 × f 2 + t4 = 0
(B.42)
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