
MODELING OF EXCHANGE RATES BY
MULTIVARIATE ADAPTIVE REGRESSION SPLINES AND COMPARISON

WITH CLASSICAL STATISTICAL METHODS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ECE KÖKSAL
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ABSTRACT

MODELING OF EXCHANGE RATES BY
MULTIVARIATE ADAPTIVE REGRESSION SPLINES AND COMPARISON

WITH CLASSICAL STATISTICAL METHODS

Köksal, Ece
M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

June 2017, 77 pages

Economic factors like inflation, interest rates and exchange rates are among the leading
indicators of a country’s relative level of economic health. With the help of techno-
logical improvements and global requirements, trading volume and a wide range of
commerce network, exchange rates play a vital role in economics and finance since a
higher exchange rate may result in a lower trade balance of a country, whereas a lower
rate may cause an increase. Inflation, interest rates, domestic money supply growth, a
country’s balance of payments’ size and trend, a country’s economic growth, depen-
dency on outside sources and central bank intervention, are the factors which affect an
exchange rate. Since many dependent and independent factors affect exchange rates, it
is difficult to predict them. In areas of application, data mining is frequently used for
decision support, financial forecasting, marketing strategy, prediction, etc. The method
of data mining and machine learning is applied to analyze and forecast the future be-
havior of such complex systems. Modeling and prediction of exchange rates are still a
challenge, although mathematicians, economists and statisticians have worked to reach
a model with a superior forecasting ability for many years. Therefore, in this study, we
aim to generate mathematical models to forecast the monthly US Dollar (USD) / Turk-
ish Lira (TRY) and Euro (EUR) / Turkish Lira (TRY) exchange rates via data mining
tools. For this purpose, we apply a flexible model Multivariate Adaptive Regression
Splines (MARS) and widely used models Linear Regression (LR) and Support Vector
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Regression (SVR). In this study, MARS, LR and SVR models applied on USD / TRY
and EUR / TRY exchange rate data sets in the period of 01/01/2007 and 30/04/2015;
then the results of these models are compared and found out that MARS method has
superior forecasting ability over LR and SVR methods for USD / TRY and EUR / TRY
exchange rates. The thesis ends with a conclusion and an outlook to future investiga-
tions.

Keywords : Exchange-Rate Forecast, Linear Regression, Support Vector Regression,
Multivariate Adaptive Regression Splines, Optimization, Economics, Finance.
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ÖZ

ÇOK DEĞİŞKENLİ UYARLANABİLİR REGRESYON EĞRİLERİ İLE DÖVİZ
KURU MODELLEMESİ VE KLASİK İSTATİSTİKSEL YÖNTEMLERLE

KARŞILAŞTIRILMASI

Köksal, Ece
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Haziran 2017, 77 sayfa

Enflasyon, faiz oranları ve döviz kuru gibi ekonomik faktörler, bir ülkenin ekonomik
düzeyinin önde gelen göstergelerindendir. Küresel gereksinimler ve teknolojik gelişim
sayesinde ve genişleyen ticari hacim ve ağlar ile döviz kurları, ekonomi ve finans alan-
larında önemli bir rol oynar; çünkü yüksek bir döviz kuru, bir ülkenin dış ticaret den-
gesinde düşüşe neden olabilirken, daha düşük bir oran artışa neden olabilir. Enflasyon,
faiz oranları, yerel para arzındaki artış, bir ülkenin ödemeler dengesi ve eğilimi, ekono-
mik büyümesi, dış kaynaklara bağımlılığı ve merkez bankası müdahalesi gibi etken-
ler döviz kurunu etkileyen faktörlerdir. Bunlara benzer birçok bağımlı ve bağımsız
faktör döviz kurunu etkiler ve bu nedenle döviz kurlarını tahmin etmek zordur. Döviz
kurlarını tahminlemek amacıyla veri madenciliği, mali tahminler, pazarlama strateji-
leri benzeri metodlar sıklıkla kullanılır. Veri madenciliği ve makine öğrenimi yöntemi,
bu karmaşık sistemlerin gelecekteki davranışlarını analiz etmek ve tahmin etmek için
uygulanabilir. Matematikçiler, ekonomistler ve istatistikçiler yıllarca üstün tahmin
yeteneği olan bir modele erişmek için uğraşmış olsalar da döviz kurlarının model-
lenmesi ve tahmini çalışmaları hala devam etmektedir. Bu nedenle, bu çalışmada,
veri madenciliği araçları aracılığıyla aylık ABD Doları (USD) / Türk Lirası (TRY)
ve Avro (EUR) / Türk Lirası (TRY) kurlarını tahmin etmek için matematiksel mod-
eller üretmeyi amaçlıyoruz. Bu amaçla esnek bir model olan Çok Değişkenli Uyarla-
malı Regresyon Şemaları (MARS) ve yaygın olarak kullanılan modeller olan Lineer
Regression (LR) ve Support Vector Regression (SVR) methodları uygulanmaktadır.

ix



Bu çalışmada, 01/01/2007 ve 30/04/2015 dönemine ait USD / TRY ve EUR /TRY
kur verilerine uygulanan MARS, LR ve SVR modelleri ve bu modellerin sonuçları
karşılaştırılmıştır. Karşılaştırma sonucunda MARS methodunun LR ve SVR method-
larına göre USD / TRY ve EUR /TRY kur modelleri için daha üstün modelleme yeteneği
olduğu gözlemlenmiştir. Tez, sonuç ve gelecek araştırmalara yönelik bir görüş ile sona
ermektedir.

Anahtar Kelimeler : Döviz Kuru Tahminleri, Lineer Regresyon, Destek Vektör Re-
gresyonu, Çok Değişkenli Uyarlamalı Regresyonlu Şemaları, Optimizasyon, Ekonomi,
Finans.
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periences and expertise on modelling, and I express many great appreciation to her
patience, endless guidance and valuable advices during this study.

I also would like to thank Assist. Prof. Dr. Seza Danışoğlu who kindly answered
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CHAPTER 1

INTRODUCTION

For the most basic definition, exchange rate is the quotient of one national currency
with respect to another foreign currency. In other words, exchange rates can be re-
garded as the values of one nation’s currency in terms of other countries’ currencies.
There are various types of exchange rates which will be displayed subsequently.

A first categorization is set according to forex market which is accessible for a wide
range of buyers and sellers where currency trading continues for 24 hours a day, except
for holidays and weekends. In this category, it is usually hard for traders to distinguish
nominal exchange rate and real exchange rate. Forex market set exchange rates are
in continuous quotation. The rates which we follow with news or newspapers are this
kind of rates. However, real exchange rates are the adjusted nominal exchange rates
by inflation measure.

A second categorization of exchange rates is based on the number of currencies which
are taken into account. Bilateral exchange rates are related to two countries’ exchange
rates. These rates are the results of matching demand and supply balance in banking
transaction or in financial markets. Multilateral exchange rates, on the other hand,
are used to judge the general dynamics of a country’s currency toward other nations’
currencies. If a country enforces the existence of more than one exchange rate, then
multiple exchange rate s exist. But it requires the degree of capital control.

A third categorization is set according to exchange rates movements. Fluctuation of
exchange rates have an important effect on companies’ returns, especially, for multi-
national companies. For this reason, many companies can choose to use the forward
exchange rate to protect themselves from financial risks. The forward exchange rate
is fixed today to exchange the currency according to that rate on a specific future date
while the spot rate is the current exchange rate in the market.

After economic factors like inflation and interest rates, exchange rates are one of the
leading indicators of a country’s relative level of economic health. With the help
of technological improvements and global requirements, trading volume and a wide
range of commerce network, exchange rates play a vital role in any country’s level
of trade. Moreover, they affect and are affected by international trade in free-market
which helps to sustain a balance of trade and a balance of capital. Because of this
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reason, exchange rates can be analyzed and manipulated since they have an effect on
an investor’s real rate of return. For instance, a higher currency rate results in more
expensive exports and cheaper imports in foreign markets, while a lower currency rate
results in cheaper exports and more expensive imports with respect to a foreign mar-
ket. As a consequecny, a higher exchange rate may result in a lower balance trade of
a country, whereas a lower rate may cause an increase. For these reasons, exchange
rates are quite important in economics and finance.

Buying and selling of a currency determine the actual price of an exchange rate. More-
over, the exchange rates are also fixed by demand and supply power like commodities.
However, supply and demand can be affected by many factors. Inflation, interest rates,
domestic money supply growth, a country’s balance of payments’ size and trend, a
country’s economic growth, dependency on outside sources and central bank interven-
tion are the factors which affect an exchange rate. Since many dependent and indepen-
dent factors affect exchange rates, it is difficult to predict them. For instance, higher
interest rates create money saving among investors, and for this reason there exists
an inflow of hot money and appreciation in exchange rates. Similarly, if a country’s
economy is going down, interest rates will also go down since the Central Bank cuts
interest rates due to inflation decrease. As a result, the currency of a country begins to
depreciate. For these reasons, it is very difficult to predict exchange rates.

In our study, we tried to introduce an innovative approach to exchange rate model-
ing by using MARS methodology. Since real-life problems and natural phenomena
show a nonlinear behavior, nonparametric regression techniques - including MARS -
are the most powerful tools to build flexible models for high-dimensional nonlinear
data [18]. The main feature of MARS is the ability to automatically build nonlinear
models and models with interactions, which is very important in classification and re-
gression. MARS has this ability with the help of piecewise linear one-dimensional
basis functions BFs which take into account additive and interactive effects of predic-
tors to reach the response variable.

To do that, MARS has two stages, known as forward and backward stage. In the
forward stage, MARS adds Basis Functions (BFs) until it reaches a highest complex-
ity which causes an over-fitted model. At this point, MARS passes to the backward
stage by eliminating multi-variate BFs to get the eventual model. This elimination is
data-based and also specific for the analysis of MARS, hence MARS is a very useful
and helpful adaptive regression algorithm for high-dimensional data modelling. Hith-
erto, MARS has been employed for applications in many areas, including energy mar-
ket [49,50], banking sector [1], engineering [48], marketing and finance sector [2,32],
medical science [9], but MARS has not been used to model exchange rates. However,
MARS method was employed for most appropriate variable set selection to propose
and test exchange rate forecasting models by Plakandaras, Papadimitriou and Gogas in
their study “Forecasting Daily and Monthly Exchange Rates with Machine Learning
Techniques” [37].

The aim of the study [37] was to develop, test and compare a forecasting exchange
rate model for 5 selected currencies at both monthly and daily bases. To do that, the
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authors employed different Machine Learning (ML) methodologies and also employed
MARS method for variable selection [40]. They employed Ensemble Empirical Mode
Decomposition (EEMD) method on exchange rate data for decomposition, then MARS
worked on smoothed data to select the most proper input data set to be fed into two
diversified Support Vector Regression (SVR) model [11, 51]. These two SVR mod-
els provided one-period-ahead forecasts and a Neural Network (NN) was also used as
an alternative to SVR for comparison. At the final stage of their study, the authors
of [37] compared the sum of forecasted components to decide about the superior fore-
casting model for these selected 6 currencies [37]. Differently from these studies, we
attempted to employ MARS as a modelling tool to forecast exchange rates. To do that
we used the TL/USD and TL/EUR rates [18].

Chapter 2 prepared for a literature review of exchange rate modelling. In Chapter 3,
we explain the methodologies which we applied in our study including MARS, Cubic
Spline Interpolation (CSI), Linear Regression and Support Vector Regression (SVR),
respectively [24]. Chapter 4 covers the data used in MARS model. We introduced
our eventual exchange rate forecasting model by MARS, Linear Regression model
and Support Vector Regression model in Chapter 5 and compared the performances of
these models in Chapter 6. Eventually, Chapter 7 stands for our conclusions and the
overall findings of our study, as well as for an outlook to future works.
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CHAPTER 2

LITERATURE REVIEW

Even if it is hard to predict exchange rates, economists and mathematicians have been
trying to establish an exchange rate prediction model. The first attempt made to pre-
dict exchange rates is the “Bretton Wood Fixed Exchange Rate System” [5]. Since the
end of World War 2, the US and the US dollar have held powerful positions in inter-
national trade. In 1944, the Bretton Wood Agreement was signed at United Nations
Monetary and Financial Conference in Bretton Wood, New Hampshire. According to
this agreement, the International Monetary Fund, International Bank for Reconstruc-
tion and Development and the fixed exchange rate system were formed. Since the US
was the superior power and holding most of the gold in the world, it was decided that
all currencies tie to dollar, and are convertible to gold at 35 per ounce. Moreover, cen-
tral banks of other countries could maintain a fixed exchange rate between dollar and
their currencies.

In closer detail, if the currency of a country is less valuable against dollar, its cen-
tral bank could sell its own currency in exchange for dollar. This fixed exchange rate
system continued until 1971. Growing trading deficit and inflation rates in the US were
determining the value of the US dollar in those years. Japan and Germany were two
powerful competitors for the US and the value of their currencies started to increase.
With these developments, the US left the fixed value of exchange rate. In 1971, the
Smithsonian Agreement was signed instead of the Bretton Wood agreement but it did
not work [20]. In 1973, all nations agreed to use floating exchange rates. However, this
floating system was called managed float regime by economists since central banks had
the right to interfere in the rates. Since exchange rate forecasting has a quite high im-
portance for an economy, following the breakdown of Bretton Woods fixed exchange
rate system, economists, mathematicians and statisticians tried to build large numbers
of models to forecast exchange rates. All these model building attempts can be sepa-
rated into two main categories - monetary exchange rate models and models - that are
built on a micro-structural approach.

The first category, known as monetary exchange rate models, mainly focuses on the
effect of macroeconomic variables on exchange rates and for this reason they are
also called monetary exchange rate models. The leading studies on this category
are Mundell’s classic model published in 1968 [29], Fleming’s work published in
1962 [16] and Dornbuch’s sticky price monetary model built in 1976 [14]. How-
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ever, the flexible price monetary model studied by Bilson in 1978 [4], Stockman in
1980 [45], Lucas in 1982 [22] and the extension of flexible price monetary model
with interest rates by Frankel in 1979 [17] were used as a benchmark for years. Nev-
ertheless, the article “Empirical Exchange Rate Models of the Seventies” by Meese
and Rogoff changed the benchmark [25]. The aim of their work was to test different
monetary exchange rate models against random walk (RW) with drift model in out-
of-sample forecasting. To do that, they tested and compared time series and structural
exchange rates with regard to their out-of-sample forecasting accuracy. Their study
revealed that regardless of the version of the model used, none outperforms the ran-
dom walk in terms of Mean Square Error (MSE). This outcome was applied as new
benchmark in finance and economy for years to forecast exchange rates.

Firstly, they started with a structural model and selected three assets models to even-
tually dominate the current literature on exchange rate determination. They made this
selection with the consideration of relative tractability of data requirements. These se-
lected models were flexible price monetary model of Frankel and Bilson, the “sticky
price” monetary model of Dornbuch and Frankel and the “sticky price” monetary
model of Hooper and Morton. All these selected models suggested that the exchange
rate exhibits first degree homogeneity in relative money supplies. However, the Frankel-
Bilson model assumes that the purchasing power parity is zero while the Dornbuch-
Frankel model allows for a slow domestic price adjustment and the consequent de-
viations from purchasing power parity is zero. Similarly, the Hooper-Morton model
assumes that none of the variables in their model is equal to zero. Hence, it extends
the Dornbuch-Frankel model to allow for changes in the long-run real exchange rate.
By these models, Meese and Rogoff tried to forecast with the structural models using
a grid of coefficient constraints drawn from the theoretical and empirical literature on
money demand and purchasing power parity.

Secondly, Meese and Rogoff worked with univariate and multivariate time-series mod-
els. Many univariate time-series models are estimated for the logarithm of exchange
rate. Some pre-filtering techniques like differencing, depersonalizing and removing
time trends were applied on the data, then both actual and pre-filtered data were used
in the analysis. In that part of their study, Meese and Rogoff went into details of
mathematical techniques of analysis like Auto regression (AR), long AR, and Vector
Auto Regression (VAR). Their data were chosen to conform theoretical assumptions
underlying the specification of the structural models and all raw data were unadjusted.
Meese and Rogoff used monthly Dollar/Mark, Dollar/Pound and Dollar/Yen spot ex-
change rates, average value of trade weight dollar, forward rates of one, three, six
and twelve months’ maturities; short- and long-term interest rates started from March
1973. Then they made their analysis by using some statistical performance measures
like Mean Error (ME), Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). After getting empirical results, they concluded that their study with the Ran-
dom Walk Models performs no worse than the estimated univariate time-series models,
an unconstrained vector auto regression or candidate structural models in forecasting
three bilateral rates and the trade weighted dollar. They concluded that regardless of
the version of the monetary model used, none outperforms the Random Walk in terms
of Mean Square Error.
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However, in 2001, Mark and Sul rejected the univariate framework of Meese and Ro-
goff by using Panel regression model [23]. Mark and Sul argued that fundamentals
possess the important forecasting ability on cross-sectional data examination. Discus-
sion on superior exchange rates forecasting continued with Cheung in 2005 [8]. He
argued against the ability of the widely used Mean Square Error metric for evaluat-
ing the forecasting power of structural models. Cheung suggested the that forecasting
ability of each model depends on the time period considered during the evaluation.
Moreover, in 2009, Molodtsova and Papell worked on out-of-sample predictability for
monetary structural models compared to Random Walk for eleven different currencies
for short-time period forecasting [28]. They found that the fundamentals have not es-
tablished yet their value in exchange rate forecasting since their drawbacks have not
been overturned.

The second category is the micro-structural approach. This category mainly focuses on
short-term forecasts like daily forecasts. In 2002 and 2005, Evans and Lyons worked
on this category and found that institutional aims of exchange rate forecasting like or-
der flow have a great importance in forecasting. Before this study, in 2001, Evans also
found that order flow is a more reliable measurement in the exchange rate market [37].
In addition to this, Sager and Taylor showed a forecasting ability of different countries’
currencies and forecasting horizons. Then they rejected the superiority of order-flow
models according to their findings, while Killeen stated that predictive information
content in order-flow models decayed rapidly over time in 2006. He concluded his
study by stating that the forecasting ability of exchange rates is time limited since they
revert back to a Random Walk Model.

However, a main development was made by Karemera and Kim in 2006 [21]. They in-
troduced Auto Regressive Integrated Moving Average (ARIMA) models which outper-
form random walk models for many currencies on a monthly forecasting time period;
but, the forecasting ability strongly depended on the time period under the evalua-
tion. Moreover in 1993, Cheung already realized that long-run memory in exchange
rates and proposed the use of Auto Regressive Fractional Integrated Moving Average
(ARFIMA) [7]. Moreover in 2001, Bollerslev and Wright mentioned that the General-
ized Auto Regressive Conditional Heteroscedasticity models have a strong forecasting
ability, but they are tending to forecast worse than Auto Regressive models with high
frequency series [37].

Apart from these studies, many economists and statisticians are still working on ex-
change rate forecasting models. Obstfeld, for instance, focused on the European Mon-
etary System (EMS) to understand the behavior of exchange rates. According to him,
speculations against currency results objective economic conditions which make a li-
ability devaluation. As a result, even fixed rates can be sustained indefinitely in the
absence of speculative attacks. On the other hand, West and Cho aimed to compare
out-of-sample forecasting ability of univariate Generalized Auto Regressive Condi-
tional Heteroskedasticity (GARCH), Autoregressive and Nonparametric models for
conditional variances by using weekly rates of dollar for ten years. Their study proved
that GARCH models are superior to the other methods since GARCH has the smallest
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mean square error.

Clarida, Sarno, Taylor, Valento worked together to find whether allowing for non-
linearly in underlying data to generate process for term structure yield rate forecasting
is a better alternative, and to do this they used three regime Markov switching vectors
for spot rates of currencies. Their outputs of analysis revealed that preferences of non-
linearity in term structure appeared to be modelled well by a multivariate three-regime
Markov switching Vector Equilibrium Correction Model which allows for shifts in
both intercept and covariance structure. Hauner, Lee and Takizawa approached from
a different point of view; they tried to compare the extents which several models of
exchange rates determinations can take account of market exchange rate by using 50
currencies. They believed that their study is the first comprehensive investigation of
this motivation; so they mainly focused on which factors appear to enter the formation
of forecasts. Their finding is the view that the correct criterion is not mean square error
alone, but the contribution of forecast store aliasing the objective agents. A Turkish
scientist, Erataman [15], tried to focus on different aspects of exchange rate modeling;
he investigated the demand of a currency by dynamic programing approach and to do
that he used the Monte-Carlo simulation method [15]. In addition to all these studies,
Plakandras, Papadimitriou and Gogas [37] used a hybrid model which contains ma-
chine learning and statistical learning to model exchange rates. Multivariate Adaptive
Regression Splines (MARS), Support Vector Regression (SVR) and Ensemble Empiri-
cal Mode Decomposition (EEMD) are in their methodology [37]. Their hybrid system
modelled exchange rates for 5 currencies, daily and monthly, by selecting variables
from input variables which are both macroeconomic and financial variables.

To conclude, since exchange rates have a significant role in finance and economics,
it is vital to model them sufficiently correctly and reliably. To reach a model with
a superior forecasting ability, mathematicians, economists and statisticians have been
working for years. However, since the exchange rates are depending on many inde-
pendent, dependent and unpredictable variables, a model with a superior forecasting
ability has not been constructed yet even though these previous studies are loadstar for
future studies promisingly.
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CHAPTER 3

METHODOLOGY

In this chapter, we explain the methods which we used in our study to model exchange
rates with their brief descriptions and algorithms, thoroughly.

3.1 Linear Regression

Regression methods are basic and quite useful statistical tools in many areas, includ-
ing engineering, science and economics for prediction. Besides, it is easy to establish
a relationship between dependent variables and a model. With these features, we em-
ployed linear regression as a simplex tool to build a forecasting model for exchange
rates and to compare with MARS method.

The main aim of the linear regression (LR) is to model a relationship between vari-
ables by fitting a linear equation. In other words, we can say that linear regression is a
statistical tool to investigate and model the relationship between variables. Moreover, it
is the most basic and common analysis for prediction based on observations. The vari-
able, which we are trying to predict, is called dependent (response) variable referred
to as Y, the variable our prediction is based on is called independent vector variable
(predictor or regressor) and is referred to as X. There are several linear regression anal-
yses including simple linear regression, multiple linear regression, logistic regression,
ordinal regression, multinominal regression and discriminant analysis. If there exists
only one independent variable, then the prediction model is simple regression.

Multiple linear regression involves one independent variable and more than two de-
pendent variables; logistic regression involves one binary independent variable and
more than two dependent variables; ordinal regression contains one ordinal indepen-
dent variable and one or more than one nominal independent variables, multinominal
regression contains one nominal independent variable and one or more than one depen-
dent variables; finally, discriminant analysis contains one nominal dependent variable
and more than one independent variables.

The idea behind linear regression is to fit a single line through a scatter plot. We ex-
plain it in the following numerical example as expressed and illustrated by Table 3.1,
Figure 3.1 and Figure 3.2 for simple linear regression.
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Table 3.1: Example of data.

X y
1 2,25
2 0,75
3 3,00
4 5,12
5 4,45

Figure 3.1: Example of scatter plot.

We can represent simple linear regression as

Y = mX +m0 + ε, (3.1)

where y is the estimated dependent random variable, m is the regression coefficient,
m0 is the intercept, ε is the noise term ε, N(0, σ2)and X is the independent random
variable. The above model involves only one independent variable, for this reason it is
called “Simple Linear Regression Model”.

Sometimes, we write this equation with a common mathematical expression shortly
as

Ŷ = β0 + β1X, (3.2)

where β0 is the intercept and β1, the slope, is the change in the mean of the distribution
of the response produced by a unit change in X , and the X term is an independent
variable.

However, not all the observations are exactly on a straight line. In this case, the er-
ror term ε should be included in the regression equation:

Y = β0 + β1X + ε. (3.3)
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Figure 3.2: Example of scatter plot with regression line. The red line consists of
the predictions, the blue points are the actual observations, the vertical lines between
observation points and the red line presents the errors of prediction.

The error term ε is a random variable which accounts for the failure of the model to fit
the data correctly and it is normally distributed (ε ∼ N(0, σ2)).

Since the response variable, Y , is a random variable, there is a probability distribution
for Y at each value of X . Moreover, mean and the variance of independent variable
can be stated as

E(Y | X = x) = β0 + β1x (3.4)

and

V ar(Y | X = x) = V ar(β0 + β1x+ ε) = σ2. (3.5)

In simple linear regression equation, β0 and β1 are unknown parameters and they need
to be estimated. For this purpose, least-squares estimation seeks to minimize the sum
of squares, S(β0, β1), of the difference between the observed response variable yi and
the straight line.

Least-Squares (LS) criterion is to minimize S(β0, β1) =
∑n

i=1 ε
2
i =

∑n
i=1(yi − β0 −

β1xi)
2. The function S must be minimized with respect to the coefficients. Here,

(xi, yi) (i = 1, 2, ..., n) are the given data.

By least-squares approach, the unknown parameters β0, and β1, which minimize the
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objective function S(β0, β1), can be estimated as given below.

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

=

∑n
i=1(xi(xiyi − xiȳ − x̄yi + x̄ȳ)∑n

i=1(x
2
i − 2xix̄+ x̄2)

=

∑n
i=1(xiyi)− ȳ

∑n
i=1 xi − x̄

∑n
i=1 yi + nxȳ∑n

i=1 x
2
i − 2x̄

∑n
i=1 xi + nx̄2

=
1
n

∑n
i=1 x̄y − x̄ȳ

1
n

∑n
i=1 x

2
i − x̄2

=
x̄y − x̄ȳ
x̄2 − x̄2

=
Cov(x, y)

V ar(x)

= rxy
Sy

Sx

(3.6)

and

b0 = ȳ − b1x̄ =

∑n
i=1 yi
n

− b1
∑n

i=1 xi
n

, (3.7)

where rxy stands for sample correlation coefficient between X and Y; sx and sy are the
notations of sample standard deviation of X and Y, respectively. The average value of
the quantities is notated by the horizontal bar over the quantity.

The main difference between simple linear regression and multiple linear regression
is the number of independent variables. Multiple linear regression contains more than
one regressor and, in general, a multiple linear regression model with p regressors can
be represented as

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε. (3.8)

Similar to the simple linear regression, the error term ε is a random variable which ac-
counts for the failure of the model to fit the data correctly and it is normally distributed
(ε ∼ N(0, σ2)).

Multiple regression model can be formulized as

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip + εi

= β0 +

p∑
j=1

βjXij + εi (i=1, 2, . . . , n).
(3.9)

In simple linear regression, a single response variable Y is represented by a single
predictor variableXi for each observation; however, in multiple linear regression, more
than one predictor variable is available. For this reason, a multiple linear mean function
can be written as

E(Y |X = x) = β0 + β1X1 + β2X2 + . . .+ βpXp, (3.10)
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where β0 is the intercept and the further parameters βj are univariate slopes.

Similar to simple linear regression, all the coefficients βj are unknown parameters
and they are needed to be estimated. For this purpose, least-squares estimation seeks
to minimize the sum of squares of the differences between the observed response data
yi and regression line.

LS procedure seeks to to minimize S(β0, β1, . . . , βp) =
∑n

i=1 ε
2
i =

∑n
i=1(yi − β0 −∑p

j=1 βjxij)
2. The function S must be minimized with respect to the coefficients. Here,

(xi, yi) (i = 1, 2, . . . , n) again stand for the given data.

However, for simplicity in representations and calculations, we can unfold the re-
sponses for all observations into an n-dimensional vector which is called the response
data vector, written as

y =


y1
y2
...
yn

 , (3.11)

we can unfold all predictor data into n × (p + 1)-vector which is called the design
matrix written as

X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...

...
... . . .

...
1 xn1 xn2 . . . xnp

 . (3.12)

In this design matrix, the initial column of entries 1 stands for the constant factor of
the intercept coefficient β0.

We can unfold intercept and slopes into a (p + 1)-dimensional vector which is called
slope vector and written as

β =


β0
β1
...
βp

 . (3.13)

Lastly, we can unfold all error terms into n-dimensional vector which is called as error
or residual vector and written as

ε =

ε1...
εn

 . (3.14)

Finally, by using linear algebra notation, we can compactly summarize the linear mod-
els Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip + εi as

y = Xβ + ε, (3.15)
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whereXβ is the matrix-vector product.

The unknown parameters βj need to be estimated, the least-squares approach is used
to estimate them. For this purpose, least-squares estimation seeks to minimize the sum
of squares of the difference between the observed response data yi and the regression
line, where S(β) =

∑n
i=1 ε

2
i = εT ε = (y −Xβ)T (y −Xβ).

After solving the least-square equation where we assume that the matrix XTX is
invertible, the solution is

β̂ = (XTX)−1XTy. (3.16)

In addition to these explanations, we should recall the basic assumptions of linear
regression which are

• Linearity and Additivity,

• Independence of errors,

• Normality of errors,

• Homogeneous dispersion of errors.

Until now, we have discussed the definition and main properties of simple linear re-
gression and multiple linear regression which we employed in our study for compar-
ison of model performances. Apart from SLR and MLR, also there exist other linear
regression analysis which are Logistic Regression, Ordinal Regression, Multinominal
Regression and Discriminant Analysis.

3.2 Support Vector Regression

Another technique we employed in our study to model exchange rates and to compare
forecasting performances is Support Vector Regression. Before explaining Support
Vector Regression (SVR), it is helpful to shortly explain Support Vector Machines
(SVM) initially. SVM techniques are used to generate nonlinear boundaries by creating
a linear boundary in a large feature space. In the next subsection, we explain SVM and
SVR techniques briefly.

3.2.1 Support Vector Machines

Support Vector Machines approach, introduced by Boser, Guyon and Vapnik in 1992,
suggested to create nonlinear classifiers to maximum-margin hyperplanes with the help
of the kernel trick [6]. SVM technique, developed from Statistical Learning Theory of
Vapnik and Chervonenkis, invented by 1963 [44]; however, the technique gained pop-
ularity several years later. Kernel functions’ large margin hyperplanes, geometrical
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explanation of kernel functions for inner products in feature space, slack variable us-
age to deal with noise problem and similar optimization techniques have been widely
employed to recognize patterns since the 1960s. However, all these features were not
applied together to find maximal margin classifier called SVM until 1995, the date that
the soft margin version was invented. SVMs provide useful machine learning algo-
rithms for classifications and regression analysis. An SVM model is a representation
of data points in space which are the examples of separate categories divided by an
as wide as possible clear gap. The algorithm maps new examples into the space and
predicts which side of the gap they belong to.

Basically, a hyperplane or a set of hyperplanes in the high-dimensional space or in
an infinite-dimensional space are built by the SVM to use it for regression or classifi-
cation aspect. The algorithm succeeds to separate data points almost perfectly with the
help of hyperplanes. However, it is not often possible to separate points linearly. Be-
cause of this, the algorithm maps the finite-dimensional space into a relatively higher-
dimensional space which makes the separation task easier. Dot products are defined
by kernel functions k(x, y) which is suitable for the problem. An SVM defines the
hyperplanes as the set of points with their dot products with an element being a con-
stant in a higher-dimensional space. This vector which defines the hyperplane can be
a linear combination with parameters ai of the image of feature vectors xi occurred in
the dataset. As a result, after choosing the hyperplane, data points in a feature space
are mapped into the hyperplane as stated by

n∑
i=1

αik(xi,x) = constant. (3.17)

We should be aware that each term in the equation given above measures the closeness
of the test point x to the corresponding data set point xi, if k(x, y) is getting smaller as y
is growing further from x. Hence, the algorithm can measure the closeness of each test
point to the data points. Classifying data is the core goal of machine learning. In order
to separate data points into classes, an SVM regards a data points as a p-dimensional
vector. Then, we seek to separate data points with a (p-1)-dimensional hyperplane.This
application is called linear classifier. However, there may be many hyperplanes which
can classify the data, so that it is important to find the most reasonable or “optimal”
hyperplane. Choosing the hyperplane which represents the larger separation or the
margin between data points is one reasonable choice for the best hyperplane. The
hyperplane with the distance from itself to the nearest data point being maximal is
the best choice and it is called maximum-margin hyperplane. Moreover, the linear
classifier defined by this hyperplane is called maximum margin classifier or perception
of optimal stability. Figure 3.3 shows three different hyperplanes and according to the
explanation given above; hyperplane H3 is the best choice for given data points.

15



Figure 3.3: H1 does not separate data points, H2 separates data points with small
margin, H3 separates data points with maximum margin [26].

An SVM makes the optimal hyperplane choice by employing an iterative training al-
gorithm which minimizes the error function. By the form of this error function, SVM
models are categorized into four groups distinctly:

• Classification SVM Type 1, which is also known as C-SVM classification,

• Classification SVM Type 2, which is also known as v-SVM classification,

• Regression SVM Type 1, which is also known as ε-SVM regression,

• Regression SVM Type 2, which is also known as v-SVM regression.

For C-SVM type of SVM, the training algorithm leads to a minimization of the error
function:

minimize 1
2
wTw + C

∑n
i=1 ξi

ω, ξ

subject to the constraints:

yi(ω
TΦ(xi) + b) ≥ 1− ξi and ξi ≥ 0 (i = 1, 2, . . . , n). (3.18)

Here C is the capacity constant, ω the coefficient vector, b a constant, stands for the
parameters of nonseparable data points, ξ = (ξ1, ξ2, . . . , ξn)

T and n is the number of
training cases. It is important that y ∈ {±1} shows the class labels and xi shows the
independent variables. The kernel Φ is employed to transform the input data to the
feature space. Another important property about the error function of C-SVM type is
that the larger the C value becomes, the larger the penalized error grows. Hence, C
should be chosen carefully in order to avoid over-fitting.

In contrast to C-SVM type, for v-SVM type of SVM, the training algorithm aims at
the minimization of the error function:
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minimize 1
2
ωTw − vρ+ 1

n

∑n
i=1 ξi,

ω, ξ, ρ

subject to the constraints:

yi(ω
TΦ(xi) + b) ≥ ρ− ξi, ξi ≥ 0 (i = 1, 2, . . . , n) and ρ ≥ 0. (3.19)

On the other hand, in Regression SVM, the functional dependence of response variable
Y on the vector of regressor variables X should have to been estimated. As being the
case with all regression concepts, it is considered as the relationship between response
variable and the regressor variables is defined by a deterministic function f and some
additive noise ε:

Y = f(X) + ε. (3.20)

Then, the SVR algorithm comes into use in order to find the functional form of f that is
able to predict new cases which have not been used in the SVM before. For assessing f,
the algorithm employs training a SVM model based on the sample data set. According
to its definition, ε− SVM regression or v − SVM regression models are used to find
an error function.

For ε− SVM regression type of SVM the error function is:

1
2
ωTω + C

∑n
i=1 ξi + C

∑n
i=1 ξ

∗
i ,

which we minimize subject to:

ωTΦ(xi) + b− yi ≤ ε+ ξ∗i ,

yi − ωTΦ(xi) + bi ≤ ε+ ξi,

ξ∗i , ξi ≥ 0 (i=1, 2, . . . , n).
(3.21)

For the v − SVM regression model, the error function is given by:

1
2
ωTω − C[vε+ 1

n

∑n
i=1(ξi + ξ∗i )],

which we minimize subject to:

(ωTΦ(xi) + b)− yi ≤ ε+ ξi,

yi − (ωTΦ(xi) + b)− yi ≤ ε+ ξ∗i ,

ξ∗i , ξi ≥ 0 (i=1, 2, . . . , n), ε ≥ 0.

(3.22)

for some ε ≥ 0, there are various types of kernel functions which can be employed in
SVM models, including linear, polynomial, radial basis function (RBF) and sigmoid
given below:

k(xi,xj) = xT
i xj : Linear,

k(xi,xj) = e(−v‖xi−xj‖2) : RBF,

k(xi,xj) = (γxT
i xj + C)d : Polynomial,

k(xi,xj) = tanh(γxT
i xj + C) : Sigmoidal.

(3.23)
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where the terms C, d and γ stand for the adjustable kernel parameters in formulas.
Among these types of kernel functions, RBF is the most popular choice of kernel
function type employed in SVM due to its localization and the finite responses across
the whole range of the real x-axis.

3.2.2 Support Vector Regression

SVM methodology can be applied both to classification and regression problems. Sim-
ilar to the classification approach, the SVR algorithm runs to find and optimize gener-
alization bounds for regression. SVR algorithm resists a loss function which ignores
noise terms that stands for a certain distance from the real data points. This kind
of loss functions are called epsilon intensive loss functions. Examples given in Fig-
ure 3.4, Figure 3.5 and Figure 3.6 show the one-dimensional linear regression case and
the nonlinear regression case for an epsilon intensive loss function, respectively.

Figure 3.4: One-dimensional linear regression case for epsilon intensive loss function
[44].

By using epsilon intensive loss function, it is certain to have both a global minimum
and an optimum generalized bound at the same time as illustrated in Figure 6.

SVM Regression algorithm is started by mapping the input variable X onto an m-
dimensional feature space with the help of some fixed nonlinear mapping. After this,
the linear model, f(x, ω), is built on this feature space which is stated by

f(x,ω) =
m∑
j=1

ωjhj(x) + b, (3.24)

where hj(x) (j = 1, 2, . . . , m) stand for a nonlinear transformations set, and the term b
is the “bias” term. In this equation, it is assumed that data have zero mean; as a result,
the bias term is ignored.

The main aim of regression is to estimate a model which gives a rather true informa-
tion about the data. For this purpose, the SVM Regression procedure employs some
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Figure 3.5: Nonlinear regression case for epsilon intensive loss function [44].

Figure 3.6: Epsilon band with slack variables with selected data points [27].

loss function L(y, f(x, ω)) to measure the quality of the estimation. The type of the
loss function used for SVM Regression algorithm is suggested by Vapnik and called
an ε–intensive loss function:

Lε(y, f(x, ω)) =

{
0 , if |y − f(x, ω)| ≤ ε,
|y − f(x, ω)| − ε , otherwise. (3.25)

The empirical risk for the regression is given by

Remp(ω) =
1

n

n∑
i=1

Lε(yi, f(xi,ω)). (3.26)

With the help of ε–intensive loss function, the SVM Regression algorithm builds a
linear regression model for a high-dimensional feature space, and also lowers the com-
plexity of the model by minimizing the Euclidean norm ||ω||2. This procedure can be
explained by introducing the nonnegative slack variables ξi and ξ∗i (i = 1,2,..., n) which
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are used to measure the deviation of the following training samples outside the ε–zone.
As a result, SVM Regression can be described as the following minimization problem:

minimize 1
2
||ω||2 + C

∑n
i=1(ξi + ξ∗i ),

ω, ξ, ξ∗

subject to =

 yi − ωTxi − b ≤ ε+ ξ∗i ,
ωTxi + b− yi ≤ ε+ ξi,
ξi, ξ

∗
i ≥ 0 (i = 1, 2, . . . , n),

(3.27)

where ξi and ξ∗i are slack variables which are controlled by the penalty parameter C
and ε stands for the tolerance cord around the regression line, as described in Figure 6.

This optimization problem can be converted to a dual problem and its solution is given
below:

maximize f(x) =
nsv∑
i=1

(αi − α∗i )K(xi − x),

subject to 0 ≤ α∗i ≤ C, 0 ≤ αi ≤ C (i = 1, 2, . . . , nsv),

(3.28)

where nsv denotes the number of Support Vectors (SV) and the Kernel FunctionK(xi, x)
can be defined as given in the subsequent form:

K(xi,x) =
m∑
j=1

hj(x)hj(xi). (3.29)

It is obvious that the performance of an SVM regression equation depends on the
choice of the meta-parameters C, ε and the parameters in the kernel function. Hence,
the selection of optimal parameters is more difficult and complicated. Software im-
plementations to be used for SVM Regressions often view meta-parameters as user-
defined input parameters. The parameter C describes the trade-off between the flatness
of the model which is the complexity, and it measures the deviations bigger than the
ε term which are extinguished in optimization. For instance, if the C parameter con-
verges to infinity, then the objective only minimizes the empirical risk, regardless of
model complexity in the optimization. Beside these parametric properties, the param-
eter ε stands in the formula to control the width of the insensitivity zone of ε which is
used to fit the training data. Moreover, the number of support vectors in the regression
equation depends on the value of ε. For example, a greater ε causes less support vec-
tors in the equation. Also, greater ε values lead to more flat estimates. As a result, the
complexity of the model is affected by both the parameters C and ε differently.

The advantage of using the Support Vector Machine and Support Vector Regression
is that it prevents from the difficulties in the usage of linear functions for a high-
dimensional feature space and dual convex quadratic transformed optimization prob-
lems [3]. In addition to this, the advantage of using Support Vector Regression is the
penalization of the error terms which are greater than the threshold ε by the help of a
loss function. These loss functions mean advantages to the rare description of some
decision rule indeed, by permitting substantial algorithmic and representational bene-
fits.
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3.3 MARS Method

The third method we applied to model exchange rates and to compare forecasting
performances in our study is Multivariate Adaptive Regression Splines. The proper
selection of input variables is the main difficulty in modeling. We use Multivariate
Adaptive Regression Splines (MARS) for automatic variable selection based on the sta-
tistical loss metrics. Jerome H. Friedman who is a renowned statistician and physicist,
introduced Multivariate Adaptive Regression Splines (MARS) in 1991 [18] as a form
of regression analysis method which is both linear and nonlinear nonparametric func-
tion estimation and shows a great performance for fitting general nonlinear multivariate
functions. The original MARS algorithm was implemented in and produced by Salford
System Software called Salford Prediction Modeler (SPM) for the user’s benefit [39].

As distinct from other model-driven or supervised statistical learning methods, MARS
is a regression model, fundamentally. In addition to this, the MARS method is pow-
erful to capture significant nonlinearities and interactions. It was designed to predict
continuous numeric outcomes; however, it is useful to perform variable selection, vari-
able transformation, interaction detection and self-testing for higher dimensions at high
speed, and all of this “automatically”.

An easy, in fact, uni-variate representation of a MARS model compared to a para-
metric linear regression model is depicted in Figure 3.7.

Figure 3.7: Visualization of the MARS model.

Basically, MARS is a non-parametric regression technique and it may be treated as an
extension of linear models that can well approximate nonlinearities and interactions
between variables automatically through an adaptive algorithm. Its main ability is to
capture essential nonlinearities and interactions, and to predict continuous numeric
outcomes. MARS selects best variables in terms of high forecasting accuracy ability
according to empirical evidence of relevant literature.

MARS algorithm uses Basis Functions (BFs), which are also called splines, to have
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flexible regression models and these BFs are included into the algorithm as predictors
based on the initial data set. MARS model contains all possible knots and all possible
predictors with every possible interaction among themselves, and all these interactions
are shown by combination of BFs. After filling the MARS model with the optimum
quantities of BFs and knots, the algorithm uses the least-squares estimator method to
shape the final model which reveals the best approximating model for the original data
set with the remaining BFs. This algorithm is explained below applied by the usage of
Forward Stage and Backward Stage.

In the forward stage, the model is generally an over-fit model which contains a large
set of BFs. The algorithm adds basis functions to the model fast and continuously until
reaching the maximum number of basis functions in the model. Hence, the obtained
model includes all possible basis functions regardless of the contribution of these basis
functions to the performance of the model. Forward stage causes the model to be an
over-fit model; as a result, it needs to be cleaned from redundant BFs, and this neces-
sitates the called backward stage.

The need for the backward stage is to reduce the complexity of the model by delet-
ing the redundant BFs from the over-fit model. Backward stage algorithm keeps the
BFs which promise the smallest increase in Residual Sum of Squares (RSS) and pro-
vides the model with the best approximation of the initial data set. These BFs taken-off
procedure continues until achieving an optimal balance between variance and bias.

MARS sets up a model in two phases: the forward stage and the backward stage.
The forward stage starts with an intercept term which is the mean value of response
variables, then the basis functions in pairs are added to the model by MARS recurrently
to get a better performance. While applying forward and backward stage algorithm,
MARS splits the whole space of input data into several sub-regions and states different
mathematical equations for each sub-region. In other words, by these mathematical
equations, MARS creates links between sub-regions of input variables and outputs.
To do this, MARS benefits from the two-sided truncated power functions given be-
low [43]:

(x− t)+ =

{
x− t, if x > t,
0, otherwise, (3.30)

(x− t)− = (t− x)+ =

{
t− x, if t > x,
0, otherwise, (3.31)

where x, t ∈ R. These two functions given above are also called as reflected pair and
the symbols “+” and “-” explain that positive and negative parts are employed, respec-
tively.

Figure 3.8 shows a basis function pair as an example. This truncated power functions
or, in other words, hinge functions, are the key elements of MARS models. They are
used to partition the data into disjoint regions in order to create piecewise linearity.
These both function are a reflected pair together.
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Figure 3.8: Sample Truncated Function (x− t)+ (solid red) and (x− t)− (solid blue)
used by MARS algorithm [43].

The general model given below shows the relation between dependent or response
variable and the corresponding predictor variables:

Y = f(X) + ε, (3.32)

where the response variable showed by Y , X = (x1, x2, . . . , xp)T is a vector standing
for all the predictors and ε is an additive stochastic component with mean of zero and
finite variance. Then the main aim of MARS algorithm is to build reflected pairs of
each input xj (j = 1, 2, . . . , p) with p-dimensional knots ti = (ti,1, ti,2, . . . , ti,p)

T at
input data vectorsX i = (xi1, xi2, . . . , xip)

T (i=1,2,...,n) with the input data values xij .
Hence, the collection of Basis Functions (BFs) can be defined as

S : {(xj − t)+, (xj − t)− | t ∈ {x1j, x2j, . . . , xnj}, j = 1, 2, . . . , p}, (3.33)

where n is the number of observations (data). If all of the inputs are distinct, then there
exists 2np many BFs.

The model building procedure of MARS algorithm is similar to forward stepwise lin-
ear regression. However, instead of merely using the 1-dimensional linear coordinate
variables xj , MARS allows us to employ functions in set S and their products. The
MARS model at the end of the forward stage contains hinge functions, yielding the
model form

Y = a0 +
M∑

m=1

amBm(X) + ε, (3.34)

with a vector of random variables X and a vector and noise term ε. In fact, Y is the
output variable, X is the input variable of vector form X = (x1, x2, . . . , xp)T which
contributes to the functionBm, ε is the additive stochastic noise term which is supposed
to have normal distribution with finite variance and zero mean, a0 is the constant term
also called as intercept, M is the number of basis functions, am is the mth coefficient of
spline function, Bm is the mth basis function or product of two or more basis functions
from the set S, which is taken from a set of M linearly independent BFs [18]. Existing
BFs are multiplied by another reflected pair which joins further variable to create a new
BF that reveals the interaction between different variables. Moreover, these existing
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BFs stand in the model together with the newly created BFs, so that the so-called
spline fitting becomes a higher-dimension spline fitting. For the observations, which
are represented by (xi, yi) (i=1,2,...,n), the mth multivariate BF is defined as:

Bm(x) :=
Km∏
k=1

(Skm · (xv(k,m) − tkm))+, (3.35)

where K is the number of truncated linear function multiplicated in the mth BF, xv(k,m)

is the input variable related to the kth truncated linear function in the mth BF, tkm is the
knot value of variable xv(km), and Sk,m = ±1.

MARS algorithm is initiated with the constant function B0(x0) = 1 for a0 estimation
at the forward step. According to the definition, in the set S, all functions of Bm(x)
are candidate functions and, as a result, basis functions can be of one of the following
forms:

1. Can be a constant, 1, which means that there only exists an intercept term,

2. xk,

3. (xk − tj)+,

4. xkxl,

5. (xk − ti)+xl,

6. (xk − ti)+(xl − tj)+.

Self-interaction between input variables are not allowed by MARS algorithm; conse-
quently, any of the input variable cannot be the same for each BF. In other words,
MARS never uses the same input variables for each BFs; hence, different input vari-
ables xn and xl, and their corresponding knots ti and tj , are used by the BFs. At each
step, MARS model finds the knots and the corresponding pair of basis functions which
gives a maximum reduction in sum of squares of residual errors. These two basis
functions in the pair are superposable except that a different side of a mirror image of
hinge function is used for each function. The forward stage regards all product of BFs
BM(x) as new BFs and adds them into the model set. This term produces the largest
decrease in training terms and in the form of

aM+1Bn(x)(xj − t)+ + aM+2Bn(x)(t− xj)+, (3.36)

where aM+1 and aM+2 are coefficients which are determined by least-square estima-
tion. Correspondingly, the BFs given below are potential candidates for the MARS
algorithm:

1. 1,

2. xk,
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3. (xk − tj)+, if xk exists in the model,

4. xkxl, if xk and xl exist in the model,

5. (xk − ti)+xl, if xkxl and (xk − ti)+ exist in the model,

6. (xk − ti)+(xl − tj)+, if (xk − ti)+xl and (xl − tj)+xk exist in the model.

Then, the forward stage adds the winning products to the model. MARS searches all
combinations of existing terms, all variables and all values of each variable at the for-
ward stage. This adding-of-basis functions procedure continues until the change of
residual error becomes too small or the maximum number of terms added has reached
an over-fitted and complicated model. As a consequence, the model contains incorrect
terms and the model becomes highly complex. At the end of the forward stage, we can
see the maximal model which over-fits the given data.

At this point, the backward stage takes in charge. Since the current MARS model
is over-fit, the backward stage prunes the model in order to build a model with a more
accurate forecasting ability. To do that, it removes redundant basis functions which
contribute the smallest increase in residual squared error from the model at each step
one by one. This removing continues until getting the best sub-model, f̂a, of each
size (number of terms) α. The backward stage can select any term to delete while the
forward stage can only deal with pairs at each step, so that the backward stage has
an advantage over the forward stage. In other words, the backward stage eliminates
one side of pairs generally and terms in pairs appear rarely in the model. However,
the forward stage adds terms in pairs to the model. MARS uses the lack-of-fit (LOF)
criterion defined by Generalized Cross Validation (GCV) at the forward stage in order
to find the optimal number of terms, α, in the best-fit model as suggested by Fried-
man [18] and GCV reveals the lack of fit in the model. The GCV expression is written
as follows [12]:

LOF(f̂a) = GCV :=
n∑

i=1

(yi − f̂a(xi))2/(1− C(α)/n)2, (3.37)

where n is the number of data, f̂a is the estimated best model and C(α) is the effective
number of parameters, which stands for the number of terms in the model and the
number of parameters used in the selection of the optimal positions of the knots. It
is also a kind of complexity penalty that increases with the number of basis functions
(BFs) in the model, which is defined as:

C(α) = v + dK, (3.38)

where K is the number of knots selected at the forward stage, v is the number of linearly
independent functions in the model, d is a kind of penalty for each BF in the model
which is generally set as d=3 (d=2 is used for additive models). The details about d
are given by [18]. The numerator of the GCV term is the residual sum of squares; the
denominator penalizes any increasing variance in case of increasing model complexity.
With the help of the lack-of-fit criterion, the best-fit model is selected which minimizes
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GCV at the backward stage.

We can evaluate the performance of a developed MARS model in terms of Coeffi-
cient of Determination (R2). For an accurate model, the value of R2 should be close to
one. Figure 3.9 shows a the visualization of the MARS model.

Figure 3.9: Visualization of the MARS model [41].

The main advantage of the MARS method is that it does not require any assumptions
and it is more flexible than linear regression models. MARS can deal with both con-
tinuous and discrete data. Moreover, it is simple to understand and interpret. However,
the MARS method is sensitive to outliers and requires a significant amount of data
and a large number of variables. In addition to these items, there can be problems in
choosing predictor variables when a multi-collinearity problem exists. MARS elimi-
nates such a multi-collinearity problem at its backward stage. Friedman offers either
fitting a series of increasing-interaction order between models and to compare GCV to
select the model with lowest interaction order and an acceptable fit. The other solu-
tion proposed by Friedman is involving a penalty on inducing new variables into the
model so that the change by entering two inputs which are highly collinear would de-
crease [48].

Another main advantage of MARS algorithm comes from the use of certain piecewise
linear one-dimensional functions. This piecewise linearity allows MARS algorithm to
operate locally. The particular piecewise linear basis functions are zero over a part of
their range and this results in being nonzero over some small part of space only where
both components are nonzero when they become multiplied. In this way, one can use
nonzero components only where they are needed and build up the regression surface
with sufficient components. Moreover, piecewise linear basis functions do not allow
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for self-interaction between input variables. At each step, the MARS model finds the
knots and the corresponding pair of basis functions which give a maximum reduction
in terms of sum-of-squares residual error. These two basis functions in a pair are iden-
tical except that the different side of a mirror image of hinge function is used for each
function. This restriction permits prevention from the formation of high-order powers
of any input variable.

3.4 Cubic Spline Interpolation

Numerical or non-numerical observations collected for statistical analysis which are
broken down into components or units of data are called “disaggregated data”. Cu-
bic Spline Interpolation is one of the most common methods for disaggregation prob-
lems [24]. The major challenge that we faced with our data was a disaggregation
problem for GDP rate data. In order to abolish disaggregation, we employed Cubic
Spline Interpolation before LR, MARS and SVR applications.

This method cannot create new observations; it can only give estimated data points
from original data. As alternative methods to cope with the disaggregation problem,
Denton (1970) approach, Chow-Lin (1971) framework and using quarterly GDP ob-
servations for that quarters’ months can be applied. Abdul Rashid and Zanaib Jehan
(2013) compared Denton (1970) approach, Chow-Lin (1971) framework and Cubic
Spline Interpolation [10, 13, 38]. According to their study, these three methods give
similar and highly correlated results. Therefore, we used Cubic Spline Interpolation as
a remedy for the disaggregation problem.

Cubic Spline Interpolation (CSI) provides an almost perfect piecewise curve that passes
through the observations which are underlying the sample time period. The main aim
of this method is to receive a continuous interpolation formula in both first- and second-
order derivatives and both within the intervals and at interpolating nodes. CSI does
not need any high-frequency indicator variable observation related to low-frequency
series. As a result, it outfaces low-frequency-variable related observed indicators at
high-frequency choice. Moreover, it correlates each observed data point efficiently
and effectively. Beside these advantages, implementing CSI is relatively easy and time
saving.

Starting point of CSI is an engineering tool to draw a smooth curve which passes
though different observation points. The spline interpolation process uses estimated
coefficients of the cubic polynomial as weights of each interval. We can define the
piecewise function, say, S(y), to express n equally spaced internals as

S(y) = S1(y), if y1 ≤ y ≤ y2,

S2(y), if y2 ≤ y ≤ y3,

:

:

Sn−1(y), if yn−1 ≤ y ≤ yn.

(3.39)
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In order to state the splines which notated by S(y), we require 4n parameters to esti-
mate totally, as there are n evenly spaced intervals and 4 coefficients for each interval.
These four coefficients cut the curve; therefore, it should pass each of the observations.
As a result, the curve does not have any breaks in continuity.

The third-degree polynomial function Si(y) is defined as

Si(y) = β3i(y−yi)3+β2i(y−yi)2+β1i(y−yi)1+β0i, for y ∈ (yi, yi+1). (3.40)

In addition, there are two main conditions to receive cubic polynomial interpolation
which should be satisfied by the values of low-frequency series at both ends of sub-
interval. We can define these conditions as

Si(yi) = xi,

Si(yi+1) = xi+1,
(3.41)

where xi can be found by Equation (3.40).

These conditions provide a piecewise continuous function where each sub-functions
should unite the data points at each end of sub-intervals. Furthermore, we need to en-
force the first and second derivatives to make curves being smooth and almost perfect
for our purposes:

S
′

i−1(yi) = S
′

i−1(yi), S
′′

i−1(yi) = S
′′

i−1(yi) (n = 1, 2, . . . , n− 1). (3.42)

When we also satisfy this condition of first- and second-order derivatives to be contin-
uous, it results in an unbroken smooth curve over all the sub-intervals which is passing
though each data point.
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CHAPTER 4

EMPRICAL ANALYSES AND PREDICTION MODELS

The aim of our study is to build a model to forecast exchange rates by using monthly
data. We gathered together a variable dataset according to literature suggestions.
All real-life observation data set are compiled from Thompson Reuters data base for
EUR/TRY and USD/TRY can be found in Appendix B. However, we needed to elim-
inate the observation data set since some of the observations are highly correlated
among themselves. The eliminated data span the period from 01/01/2007 to 30/04/2015,
not including weekends and holidays. In order to model EUR/TRY exchange rate,
we used variables with their data given by EUR/TRY exchange rates, historical data
of EUR/TRY exchange rate, closing prices of major stock indices in Turkey and the
Eurozone, spot prices of five precious and non-precious metals and seventeen com-
modities and macroeconomic variables including the unemployment rate for Eurozone
and Turkey, the inflation rate for Eurozone and Turkey, and the monthly GDP rate for
Eurozone and Turkey. We also included EURIBOR rates of 3-months and 6-months
maturity, refinancing rate for Eurozone, and TRLIBOR rates of 3-months and 6-months
maturity. All those real-life observation data sets are compiled from Thompson Reuters
data base.

Similarly, to model USD/TRY exchange rate, we employed as variables, based on
the data of USD/TRY exchange rates, the historical data of USD/TRY exchange rate,
closing prices of major stock indices in Turkey and the United States, spot prices of
five precious and non-precious metals and seventeen commodities and macroeconomic
variables including unemployment rate for US and Turkey, inflation rate for US and
Turkey, and monthly GDP rate for US and Turkey. We also include the USLIBOR rates
of 6-months and 3-months maturity, US target rate and TRLIBOR rates of 6-months
and 3-months maturity. We collected all variables used in the model listed as given in
Table 4.1 and Table 4.2 below.

Moreover, we created dummy variables for the GDP rates and the inflation rate in
Turkey, US and Eurozone to detect the effect of negative and positive trends in these
variables on exchange rates.

In order to build a model with these variables, we required consistent time intervals.
Since our whole data observations do not provide the same time frequency, we need to
start with converting all data points to a monthly data basis. For instance, GDP rates are
calculated from an annual and a quarterly basis. Before adding GDP rates as input vari-
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Table 4.1: Input Variables for USD/TRY Model.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Ethanol Palladium S&P 500 TRLIBOR 6 months GDP Rate TR

Soybean Oil Gold BIST All USLIBOR 3 months Unemployment
Rate US

Canola Iron BIST 100 USLIBOR 6 months Inflation Rate
US

Lumber ø BIST30 USLIBOR 3 months GDP Rate US

Wheat ø ø ø History of
USD/TRY Rate

Feeder Cattle ø ø ø ø
Oat ø ø ø ø

Lean Hogs ø ø ø ø
Gasoil ø ø ø ø
Coffee ø ø ø ø
Cocoa ø ø ø ø
Sugar ø ø ø ø

Rough Rice ø ø ø ø
Corn ø ø ø ø

ø: not included in the model.

ables into our model, we need to convert quarterly GDP observations into monthly ob-
servations. This disaggregation problem can be treated by Cubic Spline Interpolation.
As alternatives for coping with the disaggregation problem, Denton (1970) approach,
Chow-Lin (1971) framework and using quarterly GDP observations for that quarters
months can be used [10,13]. Abdul Rashid and Zanaib Jehan compared Denton (1970)
approach, Chow-Lin (1971) framework and Cubic Spline Interpolation. According to
their study, these three methods give similar and highly correlated results. In the light
of Rashid’s and Jehan’s study, we chose to use Cubic Spline Interpolation [38]. This
method cannot create new observations; it can only give estimated data points from
original data. We applied Cubic Spline Interpolation method by the help of Matlab;
then we compared results both statistically and visually.

Another problem which we faced during our study is correlation and multi-collinearity.
Financial variables tend to move together because of the interaction between them. As
a result, this movement creates a linear relationship among variables. Linear relation-
ship between independent variables with a higher level causes the multi-collinearity
problem while building an econometric model. In order to deal with these difficulties,
we eliminated the input variables according to correlation among them. Moreover, the
created five alternative models for both the USD/TRL and EUR/TRL analysis. The
aim of these models is to overcome multi-collinearity among input variables. Lists of
input variables used in alternative models are given in Table 4.3 and Table 4.4
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Table 4.2: Input Variables for EUR/TRY Model.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Ethanol Platinum EUROSTOXX50 ECB Refinancing Rate Unemployment
Rate TR

Soybean Oil Silver BIST All TRLIBOR 3 months Inflation Rate
TR

Canola Palladium BIST 100 TRLIBOR 6 months GDP Rate TR

Lumber Gold BIST30 EURIBOR 3 months Unemployment
Rate EU

Wheat Iron ø EURIBOR 6 months Inflation Rate
US

Feeder Cattle ø ø ø GDP Rate EU

Oat ø ø ø History of
EUR/TRY Rate

Lean Hogs ø ø ø ø
Gasoil ø ø ø ø
Coffee ø ø ø ø
Cocoa ø ø ø ø
Sugar ø ø ø ø

Rough Rice ø ø ø ø
Corn ø ø ø ø

ø: not included in the model.

Alternative models created by the variables listed in Table 4.3 and Table 4.4 are given
in Table 4.5 and Table 4.6.
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Table 4.3: Input Variables for USD/TRY Alternative Models.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Wheat Gold BIST 100 TRLIBOR 6 months Unemployment
Rate TR

Sugar Iron S&P 500 USDIBOR 6 months Inflation Rate
TR

Rough Rice ø ø ø GDP Rate TR

Gasoil ø ø ø Unemployment
Rate US

Feeder Cattle ø ø ø Inflation Rate
US

Corn ø ø ø GDP Rate US

ø ø ø ø History of
USD/TRY Rate

ø: not included in the model.

Table 4.4: Input Variables for EUR/TRY Alternative Models.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Wheat Gold BIST All TRLIBOR 3 months Unemployment
Rate TR

Sugar Iron EUROSTOXX 50 EURIBOR 3 months Inflation Rate
TR

Rough Rice ø ø ø GDP Rate TR

Gasoil ø ø ø Unemployment
Rate EU

Feeder Cattle ø ø ø Inflation Rate
EU

Corn ø ø ø GDP Rate EU

ø ø ø ø History of
EUR/TRY Rate

ø: not included in the model.
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Table 4.5: Alternative Models for USD/TRY data.

Model 1 Model 2 Model 3 Model 4 Model 5
History of
USD/TRY Rate History of

USD/TRY Rate
History of
USD/TRY Rate

History of
USD/TRY Rate

History of
USD/TRY Rate

Rough Rice Gold Gasoil Inf US+

Dummy
Rough Rice

BIST 100 Inf TR+

Dummy
6 mo Libor TR Inf TR+

Dummy
BIST 100

6 mo Libor US Monthly GDP
US− Dummy

Monthly GDP
US− Dummy

Inf TR−
Dummy

Inf TR+

Dummy
ø ø ø Monthly GDP

US− Dummy
Inf TR−
Dummy

ø ø ø Monthly GDP
US+ Dummy

Monthly GDP
US+ Dummy

ø ø ø ø Monthly GDP
TR+ Dummy

ø: not included in the model.

Table 4.6: Alternative Models for EUR/TRY data.

Model 1 Model 2 Model 3 Model 4 Model 5
History of
EUR/TRY Rate

History of
EUR/TRY Rate

History of
EUR/TRY Rate

History of
EUR/TRY Rate

History of
EUR/TRY Rate

Rough Rice Wheat Rough Rice BIST All Rough Rice

Gasoil 3 mo Libor TR Wheat Inf EU−
Dummy Wheat

Inf EU−
Dummy

Inf TR+

Dummy
Inf EU−
Dummy

Inf EU+

Dummy
Inf EU−
Dummy

Inf TR+

Dummy
Inf TR−
Dummy

Inf EU+

Dummy
Inf TR+

Dummy
Inf EU+

Dummy
Inf TR−
Dummy

Monthly GDP
EU− Dummy

Inf TR+

Dummy
Inf TR−
Dummy

Inf TR+

Dummy
Monthly GDP
TR+ Dummy ø Inf TR−

Dummy
Monthly GDP
TR+ Dummy

Inf TR−
Dummy

ø ø Monthly GDP
EU− Dummy

Monthly GDP
TR− Dummy Iron

ø: not included in the model.
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In order to distinguish the effect of increase and decrease on exchange rates, we gener-
ated dummy variables for percentage change in inflation and monthly GDP rates. Al-
ternative variables were employed to solve collinearity problem contains these dummy
variables. In Table 4.5 and 4.6, these variables notated with abbreviations. Increase
in inflation for Eurozone is stated by Inf EU+ Dummy while decrease is stated by
Inf EU- Dummy. Similarly, these abbreviation is employed for inflations of Turkey
and US. Moreover, increase in monthly GDP rate for Eurozone is stated by Monthly
GDP EU+ Dummy while decrease is stated by Monthly GDP- Dummy. Similarly,
these abbreviations is employed for the monthly GDP rates of Turkey and US. Addi-
tion to these, the exchange rate data are a time-series data, exchange rates are affected
by the histories of themselves according to the nature of time series-data. History of
EUR/TRY Rate and History of USD/TRY notations are stands for the historical data
of EUR/TRY and USD/TRY exchange rates, respectively.

We modeled USD/TRY and EUR/TRY during the period from 01/01/2007 to 30/4/2015
by Linear Regression (LR), Support Vector Regression (SVR) and Multivariate Adap-
tive Regression Splines (MARS), with alternative models for our study. In order to
decide which forecasting method among those explained above is superior to the oth-
ers, we compared them statistically. For literal results, we split our dataset into testing
and training data. Then we fed test and train data into our different models.

4.1 Linear Regression Models

We started our modelling procedure by using Linear Regression as a primitive mod-
elling tool. After checking Linear Regression assumptions, including linear relation-
ship, normality, multi-collinearity, autocorrelation and homoscedasticity, we fed our
input variables of alternative models into the regression algorithm.

All alternative models were compared according to statistical modelling performance
measurements, including R, adjusted R2, Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), Root Mean Square Error (RMSE). This comparison re-
sulted in the insight that Model 4 for EUR/TRY data and Model 1 for USD/TRY data
have a better modelling performance among other alternative models.

According to Linear Regression algorithm results, we can model the EUR/TRY ex-
change rate by the input variables’ history of EUR/TRY exchange rate, BIST stock
indices which is notated as “BIST All” in our study, negative trend in inflation rate
for Turkey, positive trend in inflation rate of Turkey, negative trend in inflation rate of
Eurozone, positive trend in inflation rate of Eurozone, negative trend in monthly GDP
rate of Turkey and positive trend in monthly rate of Turkey within the time period from
01/01/2007 to 30/04/2015. However, the statistical importance of these input variables
should be checked to get an accurate model. For these purposes, we checked which of
those input variables are statistically important to model EUR/TRY data. The accurate
model was built by history of the EUR/TRY exchange rate, BIST All (Turkish Stock
Market) scores, positive trend in inflation rate of Eurozone and negative trend in GDP
rate of Turkey. Linear regression method modelled the EUR/TRY exchange rate by
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these 4 input variables. However, these input variables are also meaningful financially.
The link between inflation and exchange rates is known as it was mentioned in our
literature review part. In addition to this, Taylor and Sarno in their study explained that
nominal exchange rates are deflated by GDP deflators [46]. Stock markets, stock prices
and exchange rates are further interrelated financial indicators. It is not surprising that
LR model used BIST All variable to model the desired exchange rates [19]. Moreover,
since the exchange rate data are a time-series data, exchange rates are affected by the
histories of themselves according to the nature of time series-data.

Similarly, we can model the USD/TRY exchange rate by the input variables history
of the USD/TRY exchange rate, price of commodity rough rice, BIST 100 scores
of Turkey and 6 months LIBOR rate of US within the time period from 1/1/2007 to
30/4/2015. However, we checked the statistical importance of these variables in our
linear regression model and found that the history of the USD/TRY exchange rate,
price of commodity rough rice and 6 months LIBOR rate of US have a statistical im-
portance in our model. This means that macroeconomic variables of 6 months LIBOR
rate of US and price of rough rice as a commodity affect the USD/TRY exchange
rate. Moreover, since exchange rates are stochastic processes, the USD/TRY rate is
also affected by the history of itself. The link between interest rates and exchange
rates are known [42]. Besides, rough rice is an important import and export product.
Turkey also imports rough rice. According to ZMO (Agriculture Engineers Chamber
of Turkey) [47], Turkey imports rough rice mostly from Italy, United States, India,
Egypt, Thailand and Vietnam. This trade affects the USD/TRY exchange rate.

Table 4.7: Input variables used in Linear Regression Models for EUR/TRY and
USD/TRY data.

Model EUR/TRY Model USD/TRY Model

Input
Variable

History of EUR/TRY Data History of USD/TRY Data
BIST All Rough Rice

Inf EU+ Dummy 6 mo Libor US
GDP TR− Dummy ø

ø: not included in the model.

Final model found for Linear Regression methods includes 4 independent variables
for EUR/TRY data and 3 independent variables for USD/TRY data. The forecasting
models for EUR/TRY and USD/TRY data are given below respectively.

ŶEUR/TRY = 0, 019 + 0, 986 · {history of EUR/TRY rate} − 0, 000 · {BIST All}
+ 0, 016 · {Inf EU+ Dummy}+ 0, 008 · {GDP TR− Dummy},

ŶUSD/TRY = 0, 121 + 0, 884 · {history of USD/TRY rate} − 0, 038 · {Rough Rice}
+ 0, 006 · {6 mo Libor US}.

(4.1)
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4.2 Support Vector Regression Models

After LR models, we fed input variables of alternative models into SVR algorithm to
get the final model. Similar to the LR procedure, we checked our alternative models’
performance measures. According to these measures, Model 3 for the EUR/TRL data
and Model 5 for the USD/TRL data resulted in better modeling performances than the
others.

According to Support Vector Regression algorithm results, we can model the EUR/TRL
exchange rate by the following input variables’ history of the EUR/TRL exchange rate,
price of rough rice, price of wheat, negative trend in inflation rate of Eurozone, positive
trend in inflation rate of Eurozone, negative trend in inflation rate of Turkey, positive
trend in inflation rate of Turkey, negative trend in the monthly GDP rate of Eurozone
within the time period 01/01/2007 to 30/04/2015. We needed to check the statistical
importance of these inputs for the model accuracy. The history of EUR/TRL exchange
rate, price of rough rice, negative trend in monthly GDP rate of Eurozone, positive
trend in inflation rate of Eurozone and Turkey are important variables to build an accu-
rate model statistically. These input variables used in SVR model are also financially
important as mentioned in our LR modeling part.

We did likewise with the EUR/TRL model, following the same procedure for USD/TRL.
SVR algorithm used the history of USD/TRL exchange rate, price of rough rice,
BIST100 score of Turkey, negative trend in inflation rate of Turkey, positive trend
in inflation rates for Turkey, positive trend in monthly GDP rate of US and positive
trend in monthly GDP rate of Turkey as input variables. Similarly, the linear regres-
sion procedure, we have checked the statistical importance of these input variables
in the forecasting model. We observed that the input variables’ history of USD/TRL
exchange rate, price of rough rice, negative trend in inflation rate of Turkey, positive
trend in inflation rates for Turkey, positive trend in monthly GDP rate of US, are sta-
tistically important in the SVR model. This means that, according to SVR algorithm,
inflation rate of Turkey, positive trend in monthly GDP rate of US, price of rough rice
and history of USD/TRL exchange rate, affect the USD/TRL rate. This model is also
financially meaningful with these input variables.

Table 4.8: Input variables used in Support Vector Regression Models for EUR/TRL
and USD/TRL data.

Model EUR/TRY Model USD/TRY Model

Input
Variable

History of EUR/TRY Data History of USD/TRY Data
Rough Rice Rough Rice

Inf EU+ Dummy Inf TR+ Dummy
Inf TR+ Dummy Inf TR− Dummy

GDP EU− Dummy GDP US+ Dummy
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4.3 Multivariate Adaptive Regression Splines Models

The main aim of our study has been to build MARS models on exchange rates and to
compare the performance of the MARS models with classical statistical methods. For
this purpose, we eliminated input variables and created alternative models according
to collinearity and correlation criteria. After having got rid of the variables with higher
collinearity and correlation, we split the input variable data set into as test data set
and train data set. These test and train data sets without collinearity problem are fed
into MARS algorithm. At the end of this procedure, MARS gave us models for the
USD/TRY and EUR/TRY rates. Besides of conducting this, we tested the modeling
performances of alternative models according to R, Adjusted R2, MAPE, MAE and
RMSE scores. Model 4 for the EUR/TRY data and Model 5 for USD/TRY data per-
formed a better modeling among the other alternative models.

Model 4 for the EUR/TRY data includes the input variables history of the EUR/TRY
exchange rate, BIST All, negative trend in inflation rate of Turkey, positive trend in
inflation rate of Turkey, negative trend in inflation rate of Eurozone, positive trend in
inflation rate of Eurozone, positive trend in monthly GDP rate of Turkey and nega-
tive trend in monthly GDP rate of Turkey within the time period between 01/01/2007
to 30/04/2015. However, MARS algorithm made an elimination among these input
variables according to the lack-of-fit criterion at its backward stage. After these elim-
inations, the final MARS model for the EUR/TRY data includes the input variables
history of EUR/TRY exchange rate, positive trend in monthly GDP rate of Turkey and
positive trend in inflation rate of Turkey.

Similarly, Model 5 for USD/TRY data includes the input variables history of USD/TRY
exchange rate, price of rough rice, BIST 100, positive trend in GDP rate of US, posi-
tive trend in GDP rate of Turkey, positive and negative trend in inflation rate of Turkey,
within the time period from 01/01/2007 to 30/04/2015. At the backward stage of
MARS algorithm, these input variables are eliminated according to the lack-of-fit cri-
terion and the accurate model of the USD/TRY exchange rate contains the history of
USD/TRY exchange rate, positive trend in the GDP rate of Turkey and positive trend
in the inflation rate of Turkey. MARS algorithm suggests the modeling of USD/TRY
exchange rate by using these input variables.

Both the EUR/TRY exchange rate model and USD/TRY exchange rate model, which
were built by MARS method, are financially meaningful. The exchange rate data are
time-series data; as a result, exchange rates are affected by history of itself through the
nature of time-series data. Moreover, the financial effects of inflation rates and GDP
rates on exchange rates are mentioned in previous sections and sub-sections.
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Table 4.9: Input variables used in Multivariate Adaptive Regression Splines Models
for EUR/TRY and USD/TRY data.

Model EUR/TRY Model USD/TRY Model

Input
Variable

History of EUR/TRY Data History of USD/TRY Data
Inf TR+ Dummy Inf TR+ Dummy

GDP TR+ Dummy GDP TR+ Dummy

Final model found for Multivariate Adaptive Regression Spline methods by Salford
Prediction Modeler (SPM) includes 6 basis functions for both EUR/TRY and USD/TRY
data [39]. The forecasting models for EUR/TRY and USD/TRY data are given below
respectively.

ŶEUR/TRY = 0.516 + 0.948 max {0, history of EUR/TRY rate - 0.534}
− 0.744 max {0, 0.534 - history of EUR/TRY rate}
+ 0.032 max {0, GDP TR+ + 0.654} + max {0, - 0.654 - GDP TR+}
− 0.381 max {0, 0.557 - history of EUR/TRY rate } · max {0, GDP TR+ + 0.654}
− 0.010 max {0, INF TR+ - 8.675} · max {0, - 0.654 - GDP TR+}
− 0.366 max {0, history of EUR/TRY rate - 0.412} · max {0, - 0.654 - GDP TR+} ,

(4.2)

where GDP TR+ stands for positive trend in GDP rate of Turkey and INF TR+ stands
for positive trend in inflation rate of Turkey.

ŶUSD/TRY = 0.785 - 2.581 max {0, 0.748 - history of USD/TRY}
+ 0.014 max {0, GDP TR+ + 0.841} - 0.319 max {0, INF TR+ - 5.052}
+ 0.016 max {0, 5.052 - INF TR+}
+ 0.325 max {0, 0.668 - history of USD/TRY } · max {0, 5.052 - INF TR+}
+ 0.521 max {0, INF TR+ - 0.532} · max {0, - 0.748 - history of USD/TRY}
− 0.176 max {0, history of USD/TRY - 0.591} · max {0, - 0.841 - GDP TR+} ,

(4.3)

where GDP TR+ stands for positive trend in GDP rate of Turkey and INF TR+ stands
for positive trend in inflation rate of Turkey.
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CHAPTER 5

STATISTICAL EVALUATION

In our study, we aimed to model USD/TRY and EUR/TRY exchange rates by using dif-
ferent regression models which are LR, SVR and MARS. First, we created 5 alternative
models with various input variables according to correlation and multi-collinearity cri-
teria; then we fed our alternative models’ data into these model algorithms separately.
As a result, we received five forecasting models according to all these regression mod-
els for the USD/TRY and EUR/TRY data.

However, we needed to select one model among the other alternative models which
shows better statistical model accuracy performance measures, before making a com-
parison of forecasting ability of regression models. To do that, Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), R, Adjusted R2 and Root Mean
Square Error (RMSE) were used as statistical model accuracy measurements.

Table 5.1 presents the alternative models selected by statistical model accuracy mea-
surements for USD/TRY and EUR/TRY data, respectively.

Table 5.1: Alternative models used in forecasting regression model comparison.

Forecasting Regression Models
Exchange Rate LR SVR MARS

USD/TRY Model 1 Model 5 Model 5
EUR/TRY Model 4 Model 3 Model 4

We found that the models given in Table 6.1 are most accurate models to compare LR,
SVR and MARS methods. Before this comparison, we checked the accuracy of input
variables in forecasting models, respectively. After the input variable elimination, the
EUR/TRY exchange rate models for comparison include History of EUR/TRY Data,
BIST All, Inf EU+ Dummy and GDP TR− Dummy variables for LR model, History
of EUR/TRY Data, Rough rice, Inf TR+ Dummy, Inf EU+ Dummy and GDP EU−
Dummy for SVR model, and history of EUR/TRY Data, Inf TR+ Dummy and GDP
TR+ Dummy for MARS model as our input variables.

Similarly, the USD/TRY exchange rate models for comparison include History of
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USD/TRY Data, Rough rice, 6 Months LIBOR US for LR model, History of USD/TRY
Data, Rough rice, Inf TR+ Dummy, Inf TR− Dummy, GDP US+ Dummy for SVR
model, History of USD/TRY Data, Inf TR+ Dummy and GDP TR+ Dummy for MARS
model as input variables. After these input variable eliminations, our models were pre-
pared for method comparison.

Before comparison, in order to receive more accurate results, we split the data into
train data set and test data set; then we fed our data into the model algorithms. The
aim of using train data set is to find potential predictive relationships. In other words,
we built forecasting models with train data. On the other hand, the test data were used
to evaluate model performances. In machine learning studies and statistics, train and
test data are widely employed to get accurate results. We divided data as 60% of the
observations for train data and 40% of the observations for test data.

Forecasting models for the EUR/TRY and USD/TRY exchange rates were built by
train data with LR, SVR and MARS algorithm. In order to see which model has a
superior forecasting ability among the others, we need to check their R2, Adjusted
R2, Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) results. We turn to account and compare the model per-
formances by using these measurements.

MAPE is the most common measure to check the forecast error. It measures the accu-
racy of the fitted model values statistically. In order to apply MAPE, time-series data
should be homogeneous or equally spaced or they should be of identical size. MAPE
does not work if there exists a 0 value of the response the variable in data set. More-
over, if the predicted response values are too high, the MAPE value will exceed 100%,
and if the predicted response values are too low, there will be no upper limit for the
MAPE value. MAPE gives best results if there are no extreme observations in dataset.
Formulation of the MAPE given in below the equation,

MAPE =
100

n

n∑
i=1

(ŷi − yi)
y

, (5.1)

where ŷi is the forecast of the actual value of yi, and n is the number of the observations.

Similarly, to MAPE, MAE also measures forecasting error. It calculates the differ-
ence between forecasts and eventual outcomes. Equation (6.2) shows the calculation
of the MAE result:

MAE =
1

n

n∑
i=1

(ŷi − yi) =
1

n

n∑
i=1

|ei|, (5.2)

again ŷi being the forecast of the actual value of yi, n being the number of the obser-
vations and ei being the error term.

MAPE and MAE are independent of the input variables’ magnitude; as a result, they
allow us to compare Linear Regression Models, SVR models and MARS models to
forecast EUR/TL and USD/TL exchange rates.
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Both R and Adjusted R2, on the other hand, measure how well the data fit a curve
or a line as follows:

R =
1

1− n

n∑
i=1

(xi − x̄
sx

)(yi − ȳ
sy

)
, (5.3)

where sx =
√

1
1−n(

∑n
i=1 xi − x̄)2, sy =

√
1

1−n(
∑n

i=1 yi − ȳ)2 and

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

, (5.4)

Adjusted R2 = 1−
(

(n− 1)(1−R2)

n− k − 1

)
, (5.5)

where n is the number of observations, k is the number of independent variables in the
regression equation. RMSE measures the squared root of residuals’ variance as given
below:

RMSE =

√∑n
i=1(yi − ŷi)2

n
, (5.6)

where n is the number of observations, and ŷ is the forecast of the actual response.

It should be keep in mind that Adjusted R and R values which are closer to 1 are
better, while RMSE, MAPE and MAE values close to 0 provide better results.

The model accuracy performances of LR, SVR and MARS regression models for
EUR/TRY and USD /TRY are reported in Table 5.2 and Table 5.3, respectively.

Table 5.2: Comparison of the EUR/TRY models performances.

Forecasting Regression Models
LR SVR MARS

Train Test Train Test Train Test
MAE 0.003 0.009 0.003 0.018 0.002 0.008

MAPE 0.006 0.025 0.005 0.048 0.004 0.020
R 0.996 0.964 0.997 0.952 0.998 0.971

Adjusted R2 0.991 0.915 0.993 0.680 0.996 0.929
RMSE 0.004 0.011 0.004 0.021 0.003 0.009
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Table 5.3: Comparison of the USD/TRY models performances.

Forecasting Regression Models
LR SVR MARS

Train Test Train Test Train Test
MAE 0.006 0.018 0.006 0.023 0.003 0.012

MAPE 0.009 0.039 0.008 0.051 0.005 0.025
R 0.993 0.962 0.993 0.914 0.998 0.970

Adjusted R2 0.985 0.819 0.985 0.6477 0.996 0.917
RMSE 0.008 0.024 0.008 0.032 0.004 0.015

The training data have been gathered for the monthly USD/TRY and EUR/TRY ex-
change rates of 2007-2011, and the test data have been provided for the monthly
USD/TRY and EUR/TRY exchange rates of 2012-2015. For both LR, SVR and MARS
models, the predicted and observed values are given at Figures 5.1-5.4 on the same
graphs.

Figure 5.1: Real and Forecast Values of the EUR/TRY Exchange Rate for Training
Data.
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Figure 5.2: Real and Forecast Values of the USD/TRY Exchange Rate for Training
Data.

Figure 5.3: Real and Forecast Values of the EUR/TRY Exchange Rate for Test Data.
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Figure 5.4: Real and Forecast Values of the USD/TRY Exchange Rate for Test Data.

As we may make a deduction from Figure 5.1 - Figure 5.4, when the real and fore-
cast values of the Exchange Rates for LR, SVR and MARS algorithms are taken into
account, these can provide adequate results. Considering the modeling phases, LR
and MARS algorithms take less time and saving on time. When LR and MARS mod-
els are compared, for the test data, MARS model performed better than Linear Re-
gression model for USD/TRY exhange rate model when all measures are considered.
More specifically, MARS method provides higher R and Adjusted R2 results and lower
MAE, MAPE and RMSE results for test data. However, for EUR/TRY exchange rate
modeling, performance measures of LR and MARS models are close. In this circum-
stances, it depends on the modelers choice to select the method to model EUR/TRY
exchange rate.
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CHAPTER 6

CONCLUSION AND OUTLOOK

In this study, LR, SVR and MARS algorithms are applied to forecast EUR/TRY and
USD/TRY exchange rate models. Forecasting exchange rates are built by a training
dataset which has been collected from Thompson Reuters database, including the years
2007-2011. The testing dataset consist of monthly data, including the years 2012-2015.
Before using training data to build models, we needed to overcome the data disaggrega-
tion problem and multi-collinearity between independent variables. The Cubic Spline
Interpolation method enabled us to convert quarterly GDP rate data into monthly GDP
rate. Hence, dataset variables were represented as monthly basis. Moreover, to detect
the effect of change in inflation rates and GDP rates on the exchange rates, dummy
variables were employed. Addition to these, 5 alternative models were taken into ac-
count to overcome the multi-collinearity problem. These alternative models contain
input variables which do not have any correlation and multi-collinearity among them-
selves. Selection of the input variables for the alternative models were done according
to a literature suggestion.

Following these preparations, we eliminated the number of alternative models ac-
cording to performance measurements for LR, SVR and MARS, respectively. For
EUR/TRY exchange rate modeling, Model 4 for LR modeling, Model 3 for SVR
modeling and Model 4 for MARS modeling gave more accurate results when being
compared with the others. Similarly, for USD/TRY exchange ling, we received more
accurate results among the others in Model 1 for LR modeling, Model 5 for SVR mod-
eling and Model 5 for MARS modeling. However, input variables were eliminated
according to their statistical accuracy in the models. The final alternative models with
input variable eliminations are also financially meaningful. Alternative models for all
methods contain history of the exchange rates on the account of the fact that the nature
of being time series data. Except the history of the rates, for EUR/TRY exchange rate
modeling, LR models the rate by the input variables BIST All, Inflation and Monthly
GDP variables, SVR models the rate by price of commodity rough rice, Inflation and
Monthly GDP variables and MARS models the rate by Inflation and Monthly GDP.
The effect of inflation on exchange rates are known by Fisher Equation. According
to the equation, real interest rates are calculated by subtracting the inflation rate from
nominal interest rate. Moreover, forward rates can be calculated by inflation and the
spot rates. GDP rate also another key figure for exchange rates since the balance of
trade between imports and exports are crucial for economy. Besides, rough rice is
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an important import and export product. According to ZMO (Agriculture Engineers
Chamber of Turkey) [47], Turkey imports rough rice mostly from Italy, United States,
India, Egypt, Thailand and Vietnam. This trade affects the USD/TRY exchange rate.
Another factor which affects the exchange rates is stock prices. From asset pricing
viewpoint, the correlation between exchange rates and equity returns are known. From
foreign investors viewpoint, before investing on a foreign market they need the domes-
tic currency. This requirement causes increase in demand of the domestic currency.
Hence, the domestic currency gain power over other currencies. After this elimination,
we compared the model performances according to R2, Adjusted R, MAE, MAPE
and RMSE scores criteria. According to model performance comparison, it is realized
that MARS method outperform among LR and SVR methods for the EUR/TRY and
USD/TRY exchange rate for our data set.

In this study, we aimed to model EUR/TRY and USD/TRY exchange rates by the
Linear Regression (LR) method, Support Vector Regression (SVR) method and Mul-
tivariate Adaptive Regression Splines (MARS) method and compared these methods’
forecasting ability. According to our dataset and our forecasting models comparison,
we found out that MARS method has a superior forecasting ability over LR and SVR
methods for EUR/TRY and USD/TRY exchange rates.

This study may be extended for theoretical and practical purposes. Exchange rates
are in constant fluctuation. For this reason, modeling the exchange rates with daily
or hourly data can be one possible future study. Another issue is that, exchange rates
are quite sensitive to current-account deficits, public debt and political stability. In
order to see the effect of these variables on exchange rate modeling, we shall em-
ploy them as input variables can be another possible future work. Finally, modeling
performances of MARS methods including MARS, Robust Multivariate Adaptive Re-
gression Splines (RMARS), Robust Conic Multivariate Adaptive Regression Splines
(RCMARS) and Conic Multivariate Adaptive Regression Splines (CMARS) can be
compared [2, 30–36].
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APPENDIX A

Cubic Spline Interpolation Results

A.1 GDP for Turkey

Figure A.1: Original data for GDP rate for Turkey.

Figure A.2: GDP rate created by cubic spline interpolation for Turkey.
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Table A.1: Descriptive statistics of original data for GDP rate for Turkey.

Y: Original Data

Mean 1.054762
Standard Error 0.325087
Median 1.05
Mode 0.4
Standard Deviation 2.106807
Sample Variance 4.438635
Kurtosis 4.106684
Skewness -1.2144
Range 10.7
Minimum -5.9
Maximum 4.8
Sum 44.3
Count 42
Confidence Level (95%) 0.656527

Table A.2: Descriptive statistics of GDP rate created by cubic spline interpolation for
Turkey.

YY: Data created by CSI

Mean 1.008962
Standard Error 0.179735
Median 1.05292
Mode 0.4
Standard Deviation 2.001443
Sample Variance 4.005775
Kurtosis 5.623044
Skewness -1.41644
Range 13.20093
Minimum -7.22412
Maximum 5.97681
Sum 125.1113
Count 124
Confidence Level (95%) 0.355774

GDP rate for Turkey is distributed with mean of 1.054762and variance of 4.438635
within the range of -5.9 and 4.8. GDP rate created by cubic spline interpolation for
Turkey is distributed with mean of 1.054762 and variance of 4.005775 within the range
of -7.22412 and 5.97681.
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t-Test: Two-Sample Assuming Unequal Variances

Table A.3: t-Test: Two-Sample Assuming Unequal Variances for GDP rate of Turkey.

Y YY

Mean 1.054762 1.008962
Variance 4.438635 4.005775
Observations 42 124
Hypothesized Mean Difference 0
df 68
t Stat 0.123295
P(T≤t) one-tail 0.451119
t Critical one-tail 1.667572
P(T≤t) two-tail 0.902237
t Critical two-tail 1.995469

In order to test the difference between data Y and YY t-test is used. For this purpose,
we state our hypothesis as,

H0: µy − µyy = 0,

pval > α = 0.05,

tcritical = −1.995469 < tstat = 0.123295 < tcritical = 1.995469.

Therefore, we do not reject the null hypothesis.
The observed difference between the sample means is not convincing enough to say
that the original data and the data created by cubic spline differ significantly. Data and
the data created by cubic spline differ significantly.
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A.2 GDP for US

Figure A.3: Original data for GDP rate for US.

Figure A.4: GDP rate created by cubic spline interpolation for US.
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Table A.4: Descriptive statistics of GDP rate for the US.

C: Original data

Mean 0.383333333
Standard Error 0.103027159
Median 0.5
Mode 0.5
Standard Deviation 0.6676923
Sample Variance 0.445813008
Kurtosis 4.278986449
Skewness -1.773606763
Range 3.3
Minimum -2.1
Maximum 1.2
Sum 16.1
Count 42
Confidence Level (95%) 0.208067568

Table A.5: Descriptive statistics of GDP rate created by cubic spline interpolation for
the US.

CC: Data created by CSI

Mean 0.366271821
Standard Error 0.057228672
Median 0.5
Mode 0.5
Standard Deviation 0.637271524
Sample Variance 0.406114996
Kurtosis 4.463576276
Skewness -1.857661612
Range 3.413092562
Minimum -2.106952019
Maximum 1.306140542
Sum 45.41770582
Count 124
Confidence Level (95%) 0.113280648

GDP rate for US is distributed with mean of 0.383333 and the variance of 0.445813
within the range of -2.1 and 1.2 while GDP rate created by cubic spline interpolation
for US is distributed with mean of 0.366272 and variance of 0.406115 within the range
of -2.10695 and 1.306141.
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t-Test: Two-Sample Assuming Unequal Variances

Table A.6: t-Test: Two-Sample Assuming Unequal Variances for GDP rate of the US.

C CC

Mean 0.383333 0.366271821
Variance 0.445813 0.406114996
Observations 42 124
Hypothesized Mean Difference 0
df 68
t Stat 0.144767
P(T≤t) one-tail 0.442661
t Critical one-tail 1.667572
P(T≤t) two-tail 0.885323
t Critical two-tail 1.995469

In order to test the difference between data C and CC t-test is used. For this purpose,
we state our hypothesis as,

H0: µy − µyy = 0,

pval > α, = 0.05,

tcritical = −1.995469 < tstat = 0.144767 < tcritical = 1.995469.

Therefore, we do not reject the null hypothesis.
The observed difference between the sample means is not convincing enough to say
that the original data and the data created by cubic spline differ significantly. Data and
the data created by cubic spline differ significantly.
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A.3 GDP for EU

Figure A.5: Original data for GDP rate for the Eurozone.

Figure A.6: GDP rate created by cubic spline interpolation for Eurozone.
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Table A.7: Descriptive statistics of GDP rate for the Eurozone.

H: original data

Mean 0.192857
Standard Error 0.11305
Median 0.4
Mode 0.5
Standard Deviation 0.732651
Sample Variance 0.536777
Kurtosis 8.833221
Skewness -2.48455
Range 4.1
Minimum -3
Maximum 1.1
Sum 8.1
Count 42
Confidence Level (95%) 0.22831

Table A.8: GDP rate created by cubic spline interpolation for the Eurozone.

HH: data created by cubic spline

Mean 0.194374
Standard Error 0.064937
Median 0.378236
Mode 0.5
Standard Deviation 0.72311
Sample Variance 0.522888
Kurtosis 7.244153
Skewness -2.34076
Range 4.136463
Minimum -3.00415
Maximum 1.132308
Sum 24.10235
Count 124
Confidence Level (95%) 0.128539

GDP rate for Eurozone is distributed with mean of 0.192857 and the variance of
0.732651 within the range of -3 and 1.1 while GDP rate created by cubic spline inter-
polation for Eurozone is distributed with mean of 0.194374 and variance of 0.522888
within the range of -3.00415 and 1.132308.
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t-Test: Two-Sample Assuming Unequal Variances

Table A.9: t-Test: Two-Sample Assuming Unequal Variances for GDP rate of the
Eurozone.

H HH

Mean 0.192857 0.194373771
Variance 0.536777 0.522887632
Observations 42 124
Hypothesized Mean Difference 0
df 70
t Stat -0.01163
P(T≤t) one-tail 0.495376
t Critical one-tail 1.666914
P(T≤t) two-tail 0.990752
t Critical two-tail 1.994437

In order to test the difference between data H and HH t-test is used. For this purpose,
we state our hypothesis as,

H0: µy − µyy = 0,

pval > α = 0.05,

tcritical = −1.995469 < tstat = −0.01163 < tcritical = 1.995469.

Therefore, we do not reject the null hypothesis.
The observed difference between the sample means is not convincing enough to say
that the original data and the data created by cubic spline differ significantly. Data and
the data created by cubic spline differ significantly.
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APPENDIX B

Input Variables Used for Modeling

Table B.1: Input Variables for USD/TRY Model.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Ethanol Platinum Dow Jones US FED Target Unemployment
Rate TR

Soybean Oil Silver NASDAQ TR LIBOR 3 months Inflation Rate TR
Canola Palladium S&P 500 TR LIBOR 6 months GDP Rate TR

Lumber Gold BIST All US LIBOR 3 months Unemployment
Rate US

Wheat Iron BIST 100 US LIBOR 6 months Inflation Rate US

Soybean Meal ø BIST 30 ø History of
USD/TRY Rate

Oat ø ø ø GDP Rate US
Lean Hogs ø ø ø ø

Gasoil ø ø ø ø
Coffee ø ø ø ø
Cocoa ø ø ø ø
Sugar ø ø ø ø

Rough Rice ø ø ø ø
Feeder Cattle ø ø ø ø

Corn ø ø ø ø
Soybeans ø ø ø ø

ø: not included in the model.
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Table B.2: Input Variables for EUR/TRY Model.

Commodities Metals Stock Indices Interest Rates Macroeconomic
Variables

Ethanol Platinum EUROSTOXX50 ECB Refinancing Rate Unemployment
Rate TR

Soybean Oil Silver BIST All TR LIBOR 3 months Inflation Rate TR
Canola Palladium BIST 100 TR LIBOR 6 months GDP Rate TR

Lumber Gold BIST 30 EURIBOR 3 months Unemployment
Rate EU

Wheat Iron ø EURIBOR 6 months Inflation Rate EU

Soybean Meal ø ø ø History of
EUR/TRY Rate

Oat ø ø ø GDP Rate EU
Lean Hogs ø ø ø ø

Gasoil ø ø ø ø
Coffee ø ø ø ø
Cocoa ø ø ø ø
Sugar ø ø ø ø

Rough Rice ø ø ø ø
Feeder Cattle ø ø ø ø

Corn ø ø ø ø
Soybeans ø ø ø ø

ø: not included in the model.
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APPENDIX C

Descriptive Statistics of Data Used in Final Model

C.1 USD/TRY Data

Table C.1: Descriptive statistics of USD/TRY data.

WHEAT SUGAR ROUGHRICE IRON GOLD
Mean 598.19 16.95 12.90 80.64 1080.66

Standard Error 15.13 0.54 0.29 3.73 35.90
Median 592.75 16.36 13.66 69.69 1141.52
Mode 664.25 13.93 15.62 36.63 869.95

Standard Deviation 168.43 6.04 3.25 41.49 399.81
Sample Variance 28367.00 36.53 10.57 1721.45 159848.90

Kurtosis -0.48 -0.05 -0.36 -1.29 -1.13
Skewness 0.22 0.78 -0.12 0.29 0.01

Range 771.50 25.36 15.08 134.69 1406.30
Minimum 301.50 8.61 6.40 28.11 417.00
Maximum 1073.00 33.97 21.48 162.80 1823.30

Sum 74175.50 2101.45 1599.39 9998.84 134002.26
Count 124.00 124.00 124.00 124.00 124.00
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Table C.2: Descriptive statistics of USD/TRY data (cont’d).

GASOIL FEEDERCATTLE CORN BIST100 SP 500 US
Mean 745.30 130.84 454.44 54309.28 1379.06

Standard Error 17.80 3.23 15.06 1602.21 27.42
Median 709.63 115.34 404.38 54451.35 1324.27
Mode 915.00 146.30 362.50 #N/A #N/A

Standard Deviation 198.18 35.98 167.65 17841.45 305.37
Sample Variance 39276.01 1294.65 28107.84 318317161.36 93252.37

Kurtosis -1.06 1.12 -0.91 -1.01 0.11
Skewness 0.18 1.34 0.38 0.12 0.63

Range 876.00 144.43 619.00 65354.18 1369.41
Minimum 386.50 91.00 187.50 23591.64 735.09
Maximum 1262.50 235.43 806.50 88945.82 2104.50

Sum 92417.00 16224.55 56350.50 6734351.33 171003.63
Count 124.00 124.00 124.00 124.00 124.00
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Table C.3: Descriptive statistics of USD/TRY data (cont’d).

6MOLIBORTR 6MOLIBORUS UNEMPLOYMENT RATE TR UNEMPLOYMENT RATE TR
Mean 12.16 2.03 9.91 6.90

Standard Error 0.42 0.18 0.14 0.17
Median 10.51 0.74 9.55 6.70
Mode 8.10 5.33 9.10 4.70

Standard Deviation 4.70 1.96 1.58 1.88
Sample Variance 22.10 3.86 2.50 3.53

Kurtosis -1.39 -1.17 0.88 -1.48
Skewness 0.38 0.73 1.10 0.17

Range 16.93 5.27 7.50 5.60
Minimum 5.30 0.32 7.30 4.40
Maximum 22.23 5.59 14.80 10.00

Sum 1508.18 251.23 1229.00 855.90
Count 124.00 124.00 124.00 124.00
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Table C.4: Descriptive statistics of USD/TRY data (cont’d).

INFLATION IN USA INFLATION IN TR MONTHLY GDP US MONTHLY GDP TR
Mean 2.22 0.67 0.37 1.01

Standard Error 0.14 0.07 0.06 0.18
Median 2.12 0.56 0.50 1.05
Mode 1.66 0.42 0.50 0.40

Standard Deviation 1.51 0.79 0.64 2.00
Sample Variance 2.28 0.62 0.41 4.01

Kurtosis 0.20 0.43 4.46 5.62
Skewness -0.39 0.40 -1.86 -1.42

Range 7.70 4.70 3.41 13.20
Minimum -2.10 -1.43 -2.11 -7.22
Maximum 5.60 3.27 1.31 5.98

Sum 275.08 83.00 45.42 125.11
Count 124.00 124.00 124.00 124.00
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Table C.5: Correlation values of USD/TRY data.

TRY/USD WHEAT SUGAR ROUGHRICE IRON GOLD GASOIL FEEDERCATTLE
TRY/USD 1.00
WHEAT -0.27 1.00
SUGAR -0.39 0.29 1.00
ROUGHRICE -0.52 0.68 0.39 1.00
IRON -0.60 0.48 0.77 0.61 1.00
GOLD -0.75 0.56 0.69 0.65 0.88 1.00
GASOIL -0.40 0.70 0.37 0.75 0.64 0.66 1.00
FEEDERCATTLE -0.75 0.11 0.09 0.17 0.28 0.50 0.30 1.00
CORN -0.44 0.80 0.56 0.73 0.75 0.82 0.78 0.19
BIST100 -0.74 0.40 0.38 0.37 0.59 0.73 0.49 0.78
SP 500 US -0.55 0.14 -0.17 0.10 0.06 0.24 0.30 0.86
6MOLIBORTR 0.70 -0.28 -0.71 -0.44 -0.81 -0.82 -0.43 -0.46
6MOLIBORUS 0.79 -0.30 -0.64 -0.54 -0.79 -0.82 -0.41 -0.52
UNEMPLOYMENT RATE TR -0.06 -0.24 0.08 -0.06 -0.08 -0.13 -0.48 -0.18
UNEMPLOYMENT RATE US -0.41 0.24 0.79 0.43 0.77 0.67 0.23 -0.04
INFLATION IN US 0.48 0.03 -0.20 0.01 -0.15 -0.24 0.27 -0.21
INFLATION IN TR -0.04 -0.04 -0.04 0.09 -0.05 0.02 0.06 -0.01
MONTHLY GDP TR -0.03 -0.24 0.12 -0.28 0.08 0.07 0.10 0.27
MONTHLY GDP US 0.09 -0.11 0.22 -0.32 0.05 -0.01 -0.07 -0.01
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Table C.6: Correlation values of USD/TRY data (cont’d).

CORN BIST100 SP 500 US 6MOLIBORTR 6MOLIBORTR UNEMPLOYMENT RATE TR
TRY/USD
WHEAT
SUGAR
ROUGHRICE
IRON
GOLD
GASOIL
FEEDERCATTLE
CORN 1.00
BIST100 0.48 1.00
SP 500 US 0.08 0.74 1.00
6MOLIBORTR -0.52 -0.76 -0.23 1.00
6MOLIBORUS -0.53 -0.65 -0.20 0.88 1.00
UNEMPLOYMENT RATE TR -0.28 -0.18 -0.32 -0.12 -0.24 1.00
UNEMPLOYMENT RATE US 0.49 0.26 -0.37 -0.75 -0.77 0.35
INFLATION IN US -0.01 -0.28 -0.04 0.43 0.49 -0.52
INFLATION IN TR -0.01 0.01 0.07 -0.01 0.03 0.02
MONTHLY GDP TR -0.14 0.31 0.31 -0.26 -0.08 -0.25
MONTHLY GDP US -0.10 0.17 0.04 -0.28 -0.04 0.02
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Table C.7: Correlation values of USD/TRY data (cont’d).

UNEMPLOYMENT INFLATION INFLATION MONTHLY MONTHLY
RATE US IN US IN TR GDP US GDP TR

TRY/USD
WHEAT
SUGAR
ROUGHRICE
IRON
GOLD
GASOIL
FEEDERCATTLE
CORN
BIST100
SP 500 US
6MOLIBORTR
6MOLIBORUS
UNEMPLOYMENT RATE TR
UNEMPLOYMENT RATE US 1.00
INFLATION IN US -0.43 1.00
INFLATION IN TR -0.08 0.15 1.00
MONTHLY GDP TR 0.00 -0.02 0.06 1.00
MONTHLY GDP US 0.14 -0.21 -0.03 0.52 1.00
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C.2 EUR/TRY Data

Table C.8: Descriptive statistics of EUR/TRY data.

WHEAT SUGAR ROUGHRICE IRON GOLD
Mean 598.19 16.95 12.90 80.64 1080.66

Standard Error 15.13 0.54 0.29 3.73 35.90
Median 592.75 16.36 13.66 69.69 1141.52
Mode 664.25 13.93 15.62 36.63 869.95

Standard Deviation 168.43 6.04 3.25 41.49 399.81
Sample Variance 28367.00 36.53 10.57 1721.45 159848.90

Kurtosis -0.48 -0.05 -0.36 -1.29 -1.13
Skewness 0.22 0.78 -0.12 0.29 0.01

Range 771.50 25.36 15.08 134.69 1406.30
Minimum 301.50 8.61 6.40 28.11 417.00
Maximum 1073.00 33.97 21.48 162.80 1823.30

Sum 74175.50 2101.45 1599.39 9998.84 134002.26
Count 124.00 124.00 124.00 124.00 124.00
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Table C.9: Descriptive statistics of EUR/TRY data (cont’d).

GASOIL EUROSTOXX50 EURIBOR3MO CORN BISTALL
Mean 745.30 3112.93 1.80 454.44 53734.93

Standard Error 17.80 56.17 0.14 15.06 1618.98
Median 709.63 3013.53 1.25 404.38 53873.29
Mode 915.00 #N/A 0.21 362.50 #N/A

Standard Deviation 198.18 625.48 1.60 167.65 18028.16
Sample Variance 39276.01 391221.25 2.56 28107.84 325014627.06

Kurtosis -1.06 -0.53 -0.81 -0.91 -1.05
Skewness 0.18 0.54 0.73 0.38 0.12

Range 876.00 2536.42 5.28 619.00 66115.31
Minimum 386.50 1976.23 -0.01 187.50 22641.60
Maximum 1262.50 4512.65 5.28 806.50 88756.91

Sum 92417.00 386003.23 222.83 56350.50 6663130.98
Count 124.00 124.00 124.00 124.00 124.00
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Table C.10: Descriptive statistics of EUR/TRY data (cont’d).

3MOLIBORTR UNEMPLOYMENT RATE TR UNEMPLOYMENT RATE EU INFLATION EU
Mean 11.88 9.91 21.83 0.15

Standard Error 0.42 0.14 0.29 0.04
Median 10.08 9.55 22.59 0.19
Mode 10.00 9.10 #N/A 0.11

Standard Deviation 4.71 1.58 3.18 0.48
Sample Variance 22.16 2.50 10.13 0.23

Kurtosis -1.40 0.88 -1.08 1.34
Skewness 0.34 1.10 -0.32 -0.47

Range 17.14 7.50 10.49 2.89
Minimum 5.00 7.30 16.03 -1.54
Maximum 22.14 14.80 26.52 1.35

Sum 1473.08 1229.00 2707.23 18.14
Count 124.00 124.00 124.00 124.00
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Table C.11: Descriptive statistics of EUR/TRY data (cont’d).

INFLATION TR MONTHLY GDP EU MONTHLY GDP TR
Mean 0.67 0.19 1.01

Standard Error 0.07 0.06 0.18
Median 0.56 0.38 1.05
Mode 0.42 0.50 0.40

Standard Deviation 0.79 0.72 2.00
Sample Variance 0.62 0.52 4.01

Kurtosis 0.43 7.24 5.62
Skewness 0.40 -2.34 -1.42

Range 4.70 4.14 13.20
Minimum -1.43 -3.00 -7.22
Maximum 3.27 1.13 5.98

Sum 83.00 24.10 125.11
Count 124.00 124.00 124.00
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Table C.12: Correlation values of EUR/TRY data.

TL/EURO WHEAT SUGAR ROUGHRICE IRON GOLD
TL/EURO 1.00
WHEAT -0.27 1.00
SUGAR -0.39 0.29 1.00
ROUGHRICE -0.52 0.68 0.39 1.00
IRON -0.60 0.48 0.77 0.61 1.00
GOLD -0.75 0.56 0.69 0.65 0.88 1.00
GASOIL -0.40 0.70 0.37 0.75 0.64 0.66
EUROSTOXX50 0.46 -0.09 -0.57 -0.35 -0.63 -0.63
EURIBOR3MO 0.71 0.05 -0.52 -0.09 -0.59 -0.65
CORN -0.44 0.80 0.56 0.73 0.75 0.82
BISTALL -0.76 0.39 0.39 0.38 0.61 0.74
3MOLIBORTR 0.69 -0.29 -0.71 -0.45 -0.81 -0.82
UNEMPLOYMENT RATE TR -0.06 -0.24 0.08 -0.06 -0.08 -0.13
UNEMPLOYMENT RATE EU -0.73 0.06 0.52 0.21 0.68 0.74
INFLATION IN EU 0.09 0.04 -0.06 0.02 0.01 -0.01
INFLATION IN TR -0.04 -0.04 -0.04 0.09 -0.05 0.02
MONTHLY GDP EU 0.23 -0.22 0.01 -0.45 -0.14 -0.23
MONTHLY GDP TR 0.09 -0.11 0.22 -0.32 0.05 -0.01
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Table C.13: Correlation values of EUR/TRY data (cont’d).

GASOIL EUROSTOXX50 EURIBOR3MO CORN BISTALL 3MOLIBORTR
TL/EURO
WHEAT
SUGAR
ROUGHRICE
IRON
GOLD
GASOIL 1.00
EUROSTOXX50 -0.16 1.00
EURIBOR3MO -0.12 0.64 1.00
CORN 0.78 -0.42 -0.24 1.00
BISTALL 0.49 -0.17 -0.67 0.49 1.00
3MOLIBORTR -0.42 0.61 0.83 -0.53 -0.75 1.00
UNEMPLOYMENT RATE TR -0.48 -0.23 -0.17 -0.28 -0.17 -0.13
UNEMPLOYMENT RATE EU 0.32 -0.64 -0.95 0.38 0.73 -0.83
INFLATION IN EU 0.11 0.11 0.08 0.06 -0.03 -0.01
INFLATION IN TR 0.06 0.10 0.06 -0.01 0.01 -0.01
MONTHLY GDP EU -0.08 0.49 -0.07 -0.28 0.15 -0.05
MONTHLY GDP TR -0.07 0.09 -0.27 -0.10 0.16 -0.27
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Table C.14: Correlation values of EUR/TRY data (cont’d).

UNEMPLOYMENT UNEMPLOYMENT INFLATION INFLATION MONTHLY MONTHLY
RATE TR RATE EU IN EU IN TR GDP EU GDP TR

TL/EURO
WHEAT
SUGAR
ROUGHRICE
IRON
GOLD
GASOIL
EUROSTOXX50
EURIBOR3MO
CORN
BISTALL
3MOLIBORTR
UNEMPLOYMENT RATE TR 1.00
UNEMPLOYMENT RATE EU -0.07 1.00
INFLATION IN EU -0.06 -0.07 1.00
INFLATION IN TR 0.02 -0.04 0.07 1.00
MONTHLY GDP EU -0.22 0.04 0.13 0.02 1.00
MONTHLY GDP TR 0.02 0.20 0.12 -0.03 0.73 1.00
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