
EFFICIENT AND FAIR ADAPTIVE STREAMING: ALGORITHM,
IMPLEMENTATION AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET ÖGE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2017

Approval of the thesis:

EFFICIENT AND FAIR ADAPTIVE STREAMING: ALGORITHM,
IMPLEMENTATION AND EVALUATION

submitted by AHMET ÖGE in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Electronics Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Department, METU

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Assist. Prof. Dr. Ulaş Beldek
Mechatronic Engineering Department, Çankaya University

Date: June 19, 2017

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: AHMET ÖGE

Signature :

iv

ABSTRACT

EFFICIENT AND FAIR ADAPTIVE STREAMING: ALGORITHM,
IMPLEMENTATION AND EVALUATION

Öge, Ahmet

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

June 2017, 68 pages

HTTP Adaptive Streaming (HAS) is a popular video streaming method where the

client downloads video segments over standard HTTP protocol. In HAS, the server

stores the video segments that are encoded in different qualities which determine the

video bit rates. To this end, the client first downloads a file which describes the

video segments. Then, using a rate adaptation algorithm, the client decides on the

most appropriate video bit rate for the next segment to download and sends an HTTP

request for that segment. The rate adaptation algorithm utilizes measurements of the

network bandwidth by dividing the previously downloaded segments’ sizes by their

download times. HAS exploits that HTTP is an ubiquitous application layer protocol

which can easily pass any network device, firewall and Network Address Translation.

Video streaming performance is measured by the user’s perception that is quantified

by Quality of Experience (QoE). Accordingly, video freezes must be avoided as they

decrease QoE significantly. The client aims for downloading at the highest quality

utilizing the available bandwidth as much as possible. However, if the requested bit

v

rate is increased too much, delays and packet loss events drive the client to decrease

the bit rate subsequently. Such frequent rate switches decrease the QoE. Furthermore,

it is desired that fairness among the clients is preserved where the clients that stream

over a common bottleneck link share the bandwidth fairly.

In this thesis, we provide an Efficient and Fair Adaptive STreaming (EFAST) archi-

tecture to improve the performance of HAS according to the performance metrics

that are defined above. In this architecture, clients rate adaptation is implemented by

using a Fuzzy Logic Controller. The inputs of EFAST Fuzzy Logic Controller are

the receiver buffer size and the estimated bandwidth. After fuzzy control steps, it

selects a proper video bit rate of next segment. An analytical model of rate adapta-

tion algorithm is defined to show that EFAST achieves the desired bit rate and buffer

occupancy. We implement EFAST in both simulation environment and in real life

network. We then perform experiments that evaluate the performance of EFAST in

comprehensive network scenarios. Furthermore, we compare EFAST to other well-

known HAS rate adaptation algorithms. Our results show that EFAST has more fairly

bandwidth allocation among clients who share bottleneck, low switch rate changes,

and high bottleneck efficiency with no buffer depletion.

Keywords: HTTP based Adaptive Streaming, Quality of Experience , Stability, Fair-

ness, Efficiency

vi

ÖZ

VERİMLİ VE ADALETLİ UYARLANABİLİR VİDEO AKIŞI: ALGORİTMA,
GERÇEKLEŞTİRİM VE DEĞERLENDİRME

Öge, Ahmet

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Güran Schmidt

Haziran 2017 , 68 sayfa

HTTP Uyarlanabilen Akış (HAS) İstemcinin video segmentleri standart HTTP proto-

kol üzerinden indiren popüler bir video akış yöntemidir. HAS’da sunucu videonun bit

hızını belirleyen farklı kalitede kodlanmış video segmentlerini depolar. Bu amaçla,

istemci ilk olarak video segmentleri tanımlayan dosyayı indirir. Ardından, bir hız

uyarlama algoritması kullanarak, istemci bir sonraki segmenti indirmek için en uy-

gun video bit hızına karar verir ve o segment için HTTP isteği gönderir. Hız uyarlama

algoritması daha önce indirilen segmentlerin boyutlarını indirme zamanına bölen ağ

bant genişliği ölçümleri kullanır. HAS HTTP’nin herhangi bir ağ aygıtı, güvenlik

duvarı ve Ağ Adres Çevirici’sini kolayca geçirebilen yaygın bir uygulama katman

özelliğinden faydalanır.

Video akış performansı Deneyim Kalitesi (QoE) tarafından belirtilen kullanıcının al-

gılamasıyla ölçülür. Buna göre, Deneyim Kalitesini önemli derecede azaltan video

donmalarından kaçınılmalıdır. İstemci mevcut bant genişliği mümkün olduğunca kul-

lanarak en yüksek kalitede indirmeyi hedeflemektedir. Ancak, eğer ki istenen video

vii

bit hızı çok fazla artıp ardından hemen düşerse deneyim kalitesini azaltan sık oran

değişikliği meydana gelir. Dahası, ortak darboğaz linki paylaşan istemciler arasında

adaletin korunması istenmektedir.

Bu tezde yukarda belirtilen HAS’ın performans metriklerini yükseltmek için Verimli

ve Adil Uyarlanabilen Akış (EFAST) mimarisi sağlıyoruz. Bu yapıda, istemcilerin

hız uyarlama algoritması Bulanık Mantık Kontrolcusu (FLC) kullanarak gerçeklen-

mektedir. Bulanık Mantık Kontrolcusu alıcı arabellek boyutu ve bant genişliği tah-

mini olmak üzere iki girdi alır. Bulanık kontrol adımlardan sonra, bir sonraki seg-

mentinin uygun video bit hızını seçer. Hız uyarlama algoritmasının analitik modeli

performans gelişimini gösterecek şekilde tanımlanmıştır. EFAST’ın değerlendirtme

sonuçları, diğer HTTP tabanlı Uyarlanabilir Akış çözümleri ile karşılaştırılması su-

nulmuştur. Ayrıca, simülasyon ortamında ve gerçek ağ ağında EFAST’ın performans

değerlendirilmesini inceliyoruz. Deneyler gösteriyor ki EFAST hiçbir video donması

yaşanmadan aynı darboğaz kanalı paylaşan istemciler arasında adaletli, az video bit

oranı değişikliği ve yüksek kanal verimi elde etmiştir.

Anahtar Kelimeler: HTTP tabanlı Uyarlanabilen Akış, Deneyim Kalitesini, Kararlı-

lık, Adillik, Verim

viii

To My Love

ix

ACKNOWLEDGMENTS

I would like to express my great appreciations to my supervisor Assoc. Prof. Dr.

Şenan Ece Güran Schmidt for her support and guidance throughout this thesis. I am

thankful for her guidance, which was very helpful in my research and writing of the

thesis.

I would also like to thank TÜBİTAK-BİDEB for their financial support during my

graduate education. In addition, I wish to thank ASELSAN A.Ş. for giving me the

opportunity of continuing my education. I wish to thank my colleagues and seniors

in the software design department.

I would like to express my special appreciation to Ahmet Emrah Demircan for his

contributions to improve my engineering skills. I would like to special thanks to my

family. Even if they could not be with me all the time, I can feel their best-wishes.

Finally, I would like to express my appreciation to my friends Erham Mergen, Sena

Alpaslan and Murat İlter. During thesis work, they helped me in every matter and

they didn‘t leave me alone.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 HTTP Adaptive Streaming 5

2.1.1 HTTP Adaptive Streaming Issues 7

2.1.2 Constraints and Performance Metrics for HAS . . . 10

2.2 Fuzzy Logic Basics . 12

2.2.1 Fuzzy Logic . 12

2.2.2 Fuzzy Logic Controller 13

3 PREVIOUS WORK ON HAS . 15

xi

4 PROPOSED EFAST (EFFICIENT AND FAIR ADAPTIVE STREAM-
ING) ALGORITHM . 21

4.1 Model and Operation . 22

4.2 Convergence of EFAST . 31

5 EVALUATION OF EFAST ARCHITECTURE 39

5.1 Experiments and Results . 39

5.1.1 Experiment 1: Performance of FEAST Under Con-
stant Bottleneck with 2 Clients 39

5.1.2 Experiment 2: Performance of FEAST Under Dif-
ferent C/N Ratios 43

5.1.3 Experiment 3: Performance Comparison Between
Simulation and Real-Network 47

5.1.4 Experiment 4: Performance of EFAST Under Vari-
able Bottleneck Link 51

5.2 Discussion and Comparison with ELASTIC, PANDA and
FESTIVE . 55

5.2.1 Experiment 5: Performance Comparison Under
Constant Bottleneck Link 55

5.2.2 Experiment 6: Performance Comparison with Var-
ious Numbers of Clients 57

5.2.3 Experiment 7: Performance Comparison with Dif-
ferent Ntcp/N Ratios 58

6 CONCLUSION . 63

REFERENCES . 65

xii

LIST OF TABLES

TABLES

Table 2.1 ON-OFF senario . 10

Table 3.1 Summary of HAS Solutions . 20

Table 4.1 Rule Table for the EFAST . 30

Table 5.1 Performance comparison of different ratios 46

Table 5.2 Results of comparison between real-network and simulation 51

Table 5.3 Video level of Elephant‘s Dream 57

Table 5.4 Number of Nc and Ntcp with different Ntcp/N 61

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Example of Media Presentation Description File Organization . . . 6

Figure 2.2 Download rate and estimated bandwidth of 8 clients 9

Figure 4.1 Model of EFAST . 23

Figure 4.2 Membership Function of Bandwidth Capacity 26

Figure 4.3 Membership function of buffer level 27

Figure 4.4 Membership function of change ratio 27

Figure 4.5 Transition Diagram of Cases . 33

Figure 4.6 Buffer Size of Client . 37

Figure 4.7 Video Bit rate of Client . 38

Figure 5.1 Video bit rate of client 1 and client 2 40

Figure 5.2 Buffer size of client 1 and client 2 40

Figure 5.3 Number of switches of client 1 and client 2 41

Figure 5.4 Unfairness Index of two clients 41

Figure 5.5 Network topology of simulation 42

Figure 5.6 Video bit rate of different C/N ratios 43

Figure 5.7 Buffer size of different C/N ratios 44

xiv

Figure 5.8 Unfairness Index of different C/N ratios 44

Figure 5.9 Bandwidth efficiency of different C/N ratios 45

Figure 5.10 Number of switches of different C/N ratios 45

Figure 5.11 Network topology of real-network 47

Figure 5.12 Video bit rate of real-network and simulation 48

Figure 5.13 Buffer size of real-network and simulation 48

Figure 5.14 Number of switches of real-network and simulation 49

Figure 5.15 Unfairness Index of real-network and simulation 49

Figure 5.16 Network topology of Experiment 4 52

Figure 5.17 Video bit rate of clients under variable bottleneck link 52

Figure 5.18 Buffer size of clients under variable bottleneck link 53

Figure 5.19 Unfairness Index of clients under variable bottleneck link 53

Figure 5.20 Number of switches of clients under variable bottleneck link . . . 54

Figure 5.21 Video bit rate of EFAST, PANDA, FESTIVE and ELASTIC 56

Figure 5.22 Bottleneck efficiency . 57

Figure 5.23 Jain Fairness Index . 58

Figure 5.24 Average video bit rate of EFAST, PANDA, FESTIVE and ELAS-

TIC . 59

Figure 5.25 Number of switches of EFAST, PANDA, FESTIVE and ELASTIC 60

xv

LIST OF ABBREVIATIONS

IP Internet Protocol

UDP User Datagram Protocol

RTP Real-time Transport Protocol

RTCP Real-time Transport Control Protocol

NAT Network Address Translator

HAS HTTP Adaptive Streaming

CDN Content Distribution Network

TCP Transmission Control Protocol

HTTP Hyper-Text Transfer Protocol

MSS Microsoft Smooth Streaming

MPEG Moving Pictures Experts Group

DASH Dynamic Adaptive Streaming over HTTP

MPD Media Presentation Description

URL Uniform Resource Locator

AIMD Additive Increase Multiple Decrease

QoS Quality of Service

QoE Quality of Experienc

NS2 Network Simulator 2

BD Buffer Depletion

JF Jain Fairness

UF Unfairness Index

SC Switch Change

FLC Fuzzy Logic Controller

ELASTIC fEedback Linearization Adaptive STreamIng Controller

FEAST Feedback Based Adaptive Streaming over HTTP

PANDA Probe AND Adapt

EFAST Efficient and Fair Adaptive STreaming

xvi

CHAPTER 1

INTRODUCTION

In the fast developing communications of the 21st century, intensity of network traf-

fic has been dramatically increasing where video traffic has the highest increase rate.

[5] states that annual global IP traffic is about 1.1 ZB per year. In addition, IP video

traffic is 70 percent of entire IP traffic. For increasing video traffic, changing net-

work substructure is inefficient and expensive. Thus, people work on miscellaneous

solutions about possibility of storage and transfer of video data on network.

One proposal is Video IP multicast [14]. In this approach, video data is dispatched in

multicast mode for increased bandwidth efficiency. However, it leads to some other

problems like addressing, dynamic registration, multicast routing and forwarding. In

order to solve multimedia video delivery problem, various protocols have been stud-

ied. Real-Time Transport Protocol [11] and Real-Time Transport Control Protocol

[10] are the most popular protocols among them. RTP which is running on top of

the UDP is developed for end to end audio and video transfer. RTCP which is work-

ing with hand in hand with the RTP, provides security by sending several controlling

packages. Even though these two protocols are used commonly, for real-time service,

they do not guarantee quality of service. Also because of using UDP they cannot pass

barriers like firewall or NAT.

Recently, the most popular multimedia streaming solution is HTTP based Adaptive

Streaming (HAS) [28]. In the application layer, it uses HTTP. Since HTTP is com-

monly used, it can pass firewall and NAT easily. It benefits from infrastructure of

existing content delivery networking (CDN) proxy and cache due to using standard

HTTP servers. Standard HTTP servers do not track any state and all states are re-

1

alized by client. Servers store video segments in different quality levels. Quality of

a video segment is defined with the encoding bit rate. Clients can adjust quality of

video segments and time delay of requesting new segments as they wish according to

computation and adaptation based on network load. To this end, the clients implement

some rate adaptation algorithm which makes use of clients’ measurements of the net-

work bandwidth. Such measurements are based on the download time and the size

of the downloaded segments. Therefore, the rate adaptation algorithm runs at client

side independently of server. Lately, companies like Apple, Adobe and Microsoft pay

attention to HAS studies. Apple HTTP Live Streaming [2], Adobe HTTP Dynamic

Streaming [1] and Microsoft Smooth Streaming [21] are some examples of commer-

cial video tools. However, there is no standard between these HAS player. Segment

formats and manifest format are not same; therefore there is no interoperability be-

tween devices and servers of various vendors. To solve this interoperability, MPEG

defines standard file format for HAS so that any standard-based client can download

video segments from any standard HTTP server. Thus, MPEG-DASH was developed

[22] which is one of the international standard for HAS. MPEG determines format of

MPD file which describes components such as type of codecs, encoded video bit rate

and manifest file.

Since HTTP works on TCP, it is under the influence of TCP’s feedback based data

rate adjustment. Therefore, HAS clients may not perceive the network load correctly

and may not select proper quality of the video segments and the time of requesting

new segments. The video played by a HAS client should not freeze so buffer should

not be empty anytime. Additionally, it should not download too much video data,

therefore receiver buffer should not be overloaded. Quality of the downloaded video

segments should switch as infrequently as possible. To this end, we identify three

performance metrics to investigate in this thesis for HAS service. The first one is

efficiency which implies downloading video segments at the possible highest bit rate

(High available bandwidth Efficiency). The second is stability which implies that the

bit rate of the downloaded segments switch as infrequently as possible. The third is

fairness where all clients that download over a common bottleneck link share the link

bandwidth as fair as possible. Here we note that these targets contradict with each

other.

2

There are many studies about HTTP based Adaptive Streaming which propose dif-

ferent rate adaptation algorithms. Most of these studies follow heuristic methods. In

addition, they evaluate their performance under basic network topologies only.

In this thesis study, we develop a systematic method that we call Efficient Fair Adap-

tive STreaming (EFAST). EFAST is a client side rate adaptation algorithm which

adheres to all MPEG-DASH standards. EFAST try to improve the performance met-

rics that we define above. To this end, EFAST implements a fuzzy-control based rate

adaptation algorithm. Different than, heuristic methods in the literature, we show

that EFAST achieves the desired system state under specific conditions. We evaluate

EFAST with network simulator 2 [23] and dummynet emulation [3] under a number

of different network scenarios. Our experimental results show that EFAST provides

high bandwidth efficiency, infrequent video rate switches and fair bandwidth alloca-

tion among clients.

The remainder of the thesis is outlined as follows, In Chapter 2, we provide back-

ground information about HAS service and Fuzzy control. In Chapter 3, we give

literature research of HAS and previous work on HAS. In Chapter 4, we present

EFAST architecture in detail. In Chapter 5, we give experimental research of our

solution and compare other HAS players. In Chapter 6, we summarize the thesis and

explain future work.

3

4

CHAPTER 2

BACKGROUND

2.1 HTTP Adaptive Streaming

HTTP based Adaptive Streaming (HAS) enables high quality streaming of media

content over the Internet delivered from conventional HTTP web server. In HAS, the

standard HTTP server stores small video segments of same length in different video

resolutions (bit rates). The client first downloads a description file about the stored

video segments. Then, the client selects the resolution of each segment and sends a

standard HTTP GET request to download it.

MPEG-DASH [27] is a standard that describes the format of the description file that is

called Media Presentation Description (MPD) file. Furthermore it provides media re-

lated functions such as segment formats, ad insertion and synchronization. [22] lists

main aims of HAS services such as efficient delivery of MPEG media over HTTP,

support of live streaming of multimedia content, ease of use of existing content dis-

tribution infrastructure components such as caches, proxies, CDNs, NATs and fire-

walls, support of integrated services with multiple components, support for signaling,

delivery, utilization of multiple content protection and support for efficient content

forwarding.

Segment sizes vary between 2 to 10 seconds in general. Each segment is playable

independently. Therefore, clients can play segments with different qualities. MPD

consists of more than one periods. Each of those periods contains timing information

and media components such as codec, resolution, audio components for various lan-

guages, subtitles etc. This information is arranged in adaptation sets. Each period can

5

Figure 2.1: Example of Media Presentation Description File Organization

support one or more adaptation sets which group media components. Adaptation sets

are divided into representations according to video quality. Representations consist of

the URLs and byte range for each accessible segment which is requested by clients.

In Figure 2.1, example of MPD file is given.

After downloading a segment, a client estimates available bandwidth by dividing seg-

ment size into downloading time and chooses the next video bit rate according to

estimated bandwidth. When amount of data in the client’s receiver buffer is low, the

client sends the request for a new segment immediately. However, when the buffer

is full, the client sends new segment request after some seconds which is called idle

waiting time. Idle waiting time causes ON-OFF traffic of HAS applications. Clients

determine next requested video quality according to the rate adaptation algorithm

6

to improve Quality of Experience (QoE) which is the user’s perception of the media

experience. To this end, watching the video without any freezes, achieving the maxi-

mum possible rate and maintaining the stability of the video streaming with minimum

number of changes in the rate (rate switches) is important. In addition the network

bandwidth should be used as efficiently as possible with a fair allocation among the

streaming users on the bottleneck link. Here we note that MPEG [27] does not pro-

vide a rate adaptation algorithm. We will discuss several rate adaptation algorithms

in Chapter 3.

2.1.1 HTTP Adaptive Streaming Issues

We identify the following three issues that motivate this thesis in accordance with the

previous literature on HAS.

The first issue is unfair bandwidth allocation among clients which share the same

bottleneck link. One would expect that HAS clients share bottleneck link fairly since

HTTP uses TCP. TCP connections share bottleneck bandwidth fairly thanks to the

property of additive increase multiple decrease (AIMD). However, because of ON-

OFF traffic behavior of HAS services, this fair share of clients is not realized. In

the ON period, clients download video segments from the server. However, if the

receiver buffer is full or exceeds certain level, clients stop downloading segments. If

one of the clients is in the OFF period, the other clients increase usage of bottleneck

link which is shared among other clients. When the client switches to ON period,

it starts to download video segment from server. In this case, clients do not share

equally bottleneck link. The duration of OFF period is changed according to different

rate adaptation algorithm. This OFF period is called idle waiting time. End of this

section, we will give a scenario and investigate how the idle waiting time affects

quality of experience in HAS services.

The second issue is the inaccuracy of the estimated bandwidth calculation. In HAS

services, estimated bandwidth is calculated by dividing downloaded segment size into

downloading time in general. Therefore, clients learn available bandwidth when each

video segment is downloaded. Even if it appears to be working, the available band-

width is not calculated correctly with this method. There are two reasons for this

7

problem to emerge. The first reason is that the segment duration is too long compared

to network variability. In general, segment size is approximately between 2 to 10 sec-

onds, thus clients calculate the estimated bandwidth or learn the available bandwidth

in each 2 to 10 seconds intervals. This time duration is not enough to adapt to the

network variability. If clients download video segments very fast compared to the

segment duration, receiver buffer increases continuously which causes buffer over-

flow or ON-OFF traffics. The second reason is that while clients are in OFF period,

they do not get any feedback information about network conditions. Once clients go

to OFF period, they stop downloading video segments during idle waiting time. After

idle waiting time duration finishes, they are starting to send HTTP Get requests to

download a new segment. Since clients did not learn the available bandwidth during

OFF period, they send new requests according to the past information. In addition,

when one client is in OFF period, the other clients increase their bandwidth usage of

bottleneck link. Once bandwidth usage increases, they increase video bit rate. How-

ever if a client that is in OFF period switches its state to ON period, the total download

rate exceeds the channel capacity. Therefore, clients decrease requested video bit rate

since downloading time of each segment increases. This situation causes frequent

video quality changes which decreases Quality of Experience (QoE). In addition, it

causes estimated bandwidth and instantaneous downloading rate fluctuations. When

we consider average estimated bandwidth and instantaneous download bit rate, they

do not converge to any level. They fluctuate around ideal average level.

We demonstrate the fluctuating behavior of instantaneous download bit rate and esti-

mated bandwidth with an example in Figure 2.2. To this end, we implement Microsoft

Smooth Streaming [21] in Network Simulator 2 [23]. In this example scenario, there

are 8 HAS (Microsoft Smooth Streaming) clients sharing a link with the bandwidth of

8Mb/s. Figure 2.2 shows that the average instantaneous video bit rates and the aver-

age estimated bandwidths over all clients with respect to time. There is a continuous

intersection between the curve of averaged estimation of bandwidths and the curve

of average download bit rate. Download bit rate follows estimated bandwidth curve.

When instantaneous download bit rate is lower than estimated bandwidth, clients in-

crease their video bit rates. Once total instantaneous download rate exceeds available

bottleneck link capacity, downloading time of each segment increases as packet loss

8

Figure 2.2: Download rate and estimated bandwidth of 8 clients

and packet delay occur. Since downloading time increases, estimated bandwidth de-

creases. Here we note that estimated bandwidth is calculated as dividing the down-

loading segment size into downloading time. When estimated bandwidth decreases,

clients decrease their video bit rate. If total instantaneous downloading rate is under

the available bottleneck capacity, estimated bandwidth increases. Therefore, fluctu-

ations between instantaneous download bit rate and estimated bandwidth constantly

occur.

Considering first and second issues mentioned above together, we demonstrate how

ON-OFF traffic affects performance of HAS services in scenario. The table 2.1 shows

ON-OFF period of three HAS clients which share C bps bottleneck link. Download

periods are not slotted in general. However, In order to understand effect of ON-OFF

traffic, we consider simple scenario. In T1, all three clients are in ON period. Thus, all

clients download segments withC/3 bps because of TCP fairness. In T2, client 1 goes

to OFF period so the other clients download segments withC/2 bps. In T3, only client

3 downloads segments with C bps. At the beginning of T4 period, both client 1 and

client 2 were starting to download a segment with the previous estimated bandwidth

such as C/3 bps for client 1, C/2 bps for client 2. Moreover client 3 continues to

download segment with C bps. Although bottleneck link capacity is C bps, total

requested video rate is about 11C/6 bps. Since total download rate exceeds available

bottleneck capacity, packet loss and delay of segments increase. This situation causes

estimated bandwidth and instantaneous download rate fluctuations. In T5, all clients

9

Table2.1: ON-OFF senario

T1 T2 T3 T4 T5 T6
Client 1 ON OFF OFF ON OFF ON
Client 2 ON ON OFF ON OFF ON
Client 3 ON ON ON ON OFF OFF

are OFF which means they stop downloading segments. Since bottleneck efficiency is

zero in this time interval, average throughput over session decreases. Consider entire

scenario, it is obvious that clients do not share bottleneck link fairly.

The third issue is selecting next requested video bit rate in an entirely heuristic way

rather than designing rate adaptation algorithm with a systematic approach. We dis-

cuss various rate adaptation algorithms in Chapter 3. These works obtain high per-

formance in specific scenarios. If network topology or any other parameters changes,

performances of that solutions are affected significantly. For each network topology,

optimizations of algorithms are needed. When designing HAS solution in systematic

way, it keeps Quality of Experience under different network topology.

2.1.2 Constraints and Performance Metrics for HAS

In this part, we define the constraints and the performance metrics of the HAS, HTTP

based adaptive streaming. The main constraint is that the buffer of the receiver must

not be empty (buffer depletion). When the buffer is empty, video freezes constantly

during the play that decreases the QoE, quality of experience. In HAS, clients select

the download bit rate of the video from server. Downloading at highest rate possi-

ble resulting in best video quality, however increases the segment size in bits and

the download time which might lead to buffer depletion under low bottleneck band-

width. If there is a quality difference between clients, we face unfairness problem

among clients sharing the same bottleneck. Furthermore frequent switches of the

downloaded segment bit rates also decreases QoE.

To this end, a good HAS scheme should avoid buffer depletions, minimize the unfair-

ness and rate switches, meanwhile maximizing the video download rate.

We next define these performance metrics:

10

Buffer Depletion:

Each HAS client has a buffer implemented to store downloaded video segments. Un-

derflowing this buffer leads to total stop or occasional freezing during video play,

which is a serious impact on a client’s QoE. We define BD, buffer depletion, for the

system as the number of buffer depletions per client over the session.

Bottleneck Bandwidth Efficiency:

The instantaneous download rate averaged over all connected clients is defined as:

da(t) =

∑u(t)
i=1 di(t)

u(t)
(2.1)

In equation (2.1), u(t) defines the number of total clients which are downloading

video segments and di(t) defines current download rate of ithclient. To get high ef-

ficiency or high throughput, u(t) × da(t) should be close to capacity of bottleneck

link between client and server C(t). Accordingly, bottleneck bandwidth efficiency

defined as:

η(t) =
u(t)× da(t)

C(t)
(2.2)

Rate Switch:

Clients are sensitive to frequent video download rate changes. If frequent rate changes

occur in a short amount of time, quality of server decreases significantly. The rate

switch is defined as the number of video bit rate variations over the session.

Fair bandwidth allocation among the clients:

If there is a quality difference between clients, bandwidth is shared unevenly. JF(t)

[12], instantaneous fairness, is termed as:

JF (t) =
(
∑u(t)

i=1 ri(t))
2

u(t)×
∑u(t)

i=1(ri(t))2
(2.3)

u(t) is number of total clients online to the server and ri(t) is current video bit rate

11

of the client i. We define unfairness index derived from Jain’s fairness index [12] as

follows:

UF (t) = 1− JF (t) (2.4)

Unfairness index UF (t) can vary between zero and one. When clients share available

bandwidth fairly, UF (t) close to zero. That also means, when the clients share the

available bandwidth unfairly, UF (t) becomes closer to one.

2.2 Fuzzy Logic Basics

2.2.1 Fuzzy Logic

Fuzzy Logic, was developed by Lütfü Aliasker Zade, is a form of logic which is

different from the classical logic approach [30]. Fuzzy logic is based on fuzzy set

and subset. In the classical approach, an entity is an element of a set or not. When it

is defined mathematically, if an entity is element of the set, it takes value of ‘1’ and

if the entity is not element of the set, it takes value of ‘0’. Fuzzy logic is extension

of classical set representation. In fuzzy set, all entities have a degree of membership.

Entity’s degree of membership can be any value between (0,1) and it is shown with

membership function.

Fuzzy sets are generally used for definition of social concepts which are unclear and

do not have certain and definitive values because it is impossible to categorize many

magnitudes and expressions with definite boundaries. For instance, if there is a rule

such as people under 30 years of age are young, in classical logic, both a 29 year

old person and a 20 year old person are in young category without any difference.

However, in fuzzy logic, they have different degrees in young category.

Fuzzy logic is used commonly in systems not having digital input similar the way

humans think. It is also used in systems which do not have a mathematical models

and it is difficult to create a mathematical model. For example, it gives concrete

results in nonlinear systems and solution of undefined problems.

12

2.2.2 Fuzzy Logic Controller

Fuzzy Logic Controllers, unlike classical and modern control theories, do not need

certain and definite mathematical models. The fundamental point of Fuzzy Logic

Controllers is generating information, experience, intuition and control strategy of

an expert system operator as a database in controller design. Control activities are

realized according to verbal term rules of information and experience. For instance,

if an expert defines control attitudes which are necessary for system as terms like

‘small’, ‘fast’ and ‘slow’, rules, composed of (IF-THEN) commands, will be derived

by using verbal term concepts.

Fuzzy control system is composed of four basic units which are Fuzzification, Knowl-

edge base, Inference engine and Defuzzification. Fuzzification element comes into

play as a first unit of fuzzy control system. Data, in form of precise and feedback

results, is fuzzificated in this unit by changing its scale [15]. Data, came in Infer-

ence engine unit, are combined with data of knowledge base like if-then-else rules

and fuzzificated data. In here, mentioned logical proposition according to structure

of problem can also be built with numerical values. In the last step, results, which

are derived by using logical decision propositions which are suitable for structure of

problem, are sent to Defuzzification unit. Each fuzzy data is converted to real num-

ber by again changing scale in relations of fuzzy set which are sent to defuzzification

unit.

13

14

CHAPTER 3

PREVIOUS WORK ON HAS

One of the oldest study of HAS is proposed in the article [18] by Liu at al. They pro-

vide a novel rate adaptation algorithm which measures available bandwidth based on

segment fetch time. In this algorithm, it uses the smoothed HTTP throughput to select

video bit rate. In addition, it aims to quickly adapt to match the available bandwidth

and video bit rates by using a set-wise increase and aggressive decrease method. This

algorithm calculates network capacity by dividing media segment duration into seg-

ment fetch time instead of using any transport layer information such as round trip

time and packet loss rate. According to network capacity, it increments video bit rate

in step-wisely and decrements video bit rate aggressively. Moreover, it calculates idle

waiting time to prevent buffer depletion. Although, simulation result shows that their

rate adaptation algorithm quickly adapts video bit rate to available bandwidth, they

simulate only one client. Thus, fairness issue is not considered.

In [7], ELASTIC proposes feedback linearization to select next video bit rate by

avoiding buffer overflow and underflow. ELASTIC is designed based on feedback

control theory. It keeps size of buffer in certain level to prevent buffer depletion. In

addition, it improves fairness by avoiding on-off traffic generation. Although experi-

ment results show that ELASTIC gets high performance such as fairness and channel

utilization compared to PANDA and FESTIVE, magnitude of video quality change is

high. Therefore, range of encoded video bit rates increase, there is no guarantee of

ELASTIC’s high performance.

Jiang et al. [13] provide FESTIVE algorithm which consists of harmonic bandwidth

estimator, delayed bit rate update mechanism and randomized scheduler. FESTIVE

15

calculates available bandwidth reliably by using harmonic mean of previous 20 suc-

cessful segment downloads. According to available bandwidth, it changes video qual-

ity gradually which implies that video player changes its video quality to the next

higher or lower level. In addition, it schedules the timing of next HTTP request ran-

domly to solve unfairness problem of clients which are sharing the same bottleneck

link. Experimental results show that FESTIVE performs higher performance such as

fairness, efficiency and stability compared to other video players such as Microsoft

smooth streaming (MSS), Netflix and Akamai. Although delayed bit rate update and

harmonic bandwidth estimator is more reliable bandwidth estimation method pro-

viding stability of video quality, it cannot adapt to the dynamic network conditions.

Therefore, when available bandwidth changes frequently, performance of FESTIVE

significantly decreases.

In [16], Li et al. presents PANDA (Probe AND Adapt) which is client-side rate

adaptation algorithm. It uses similar idea of TCP congestion control in application

layer. PANDA calculates available download rate by probing video data. After that,

it selects video bit rate and time delay until next segment request sends such that

available bandwidth and average data downloading times are equal. Experimental

results show that PANDA obtains high performance such as stability and fairness.

However, channel efficiency is not maximized. Since there is a time delay between

two consecutive segment requests, bottleneck efficiency decreases.

The paper [24] proposes feedback based Adaptive Streaming over HTTP (FEAST).

FEAST enables clients to determine more precise video bit rates. In addition, it pro-

vides fair usage of bandwidth among the clients, avoiding frequent video rate changes

and maintaining a high video quality by enabling clients to utilize the available band-

width as much as possible. Clients determine the requested video bit rates according

to feedback information from server side. In FEAST, there are 6 algorithms which

are improved in heuristic way. Although these algorithms are not based on math-

ematical theory, the simulation results show that FEAST fully utilizes the available

bandwidth, therefore, provides a fairer bandwidth allocation among the clients, which

results in less switch rate changes and buffer depletion compared to the other HAS

architectures such as MSS [21] and the algorithm of Liu et al [18]. Although FEAST

improves the Quality of Experience such as efficiency, fairness and stability, there

16

are two problems. Firstly, FEAST uses heuristic way to improve their performance.

It chooses some parameters which are used in FEAST algorithms according to their

network topology and encoded video bit rates. Therefore, these parameters depend

on network topology and encoded video bit rate. If network topology which is used in

FEAST simulation part is changed, the performance of FEAST could decrease. Sec-

ond problem is that FEAST algorithms are based on feedback information from the

HTTP server. Thus, since a server does not work as a standard HTTP server anymore,

the profit which standard HTTP protocol provides becomes meaningless.

Huang et al. [9] provides buffer-based rate adaptation algorithm which chooses next

video bit rate based on buffer level and capacity estimation if it is necessary. In this

model, there are two operation phases. In steady-state phase, clients choose next

video rate by considering only playback buffer level. In startup state, clients select

next video rate by using the capacity estimation. Although, it gets high performance

in constant bandwidth scenario, the performance significantly decreases when avail-

able bandwidth between server and client varies frequently.

Miller et al. [20] propose a rate adaptation algorithm that chooses next video rate

based on network conditions. While the algorithm avoids buffer underflow over ses-

sion, it maximizes average and minimum video bit rate. In addition, it minimizes

startup delay and number of video bit rate changes. when It takes two inputs such as

amount of data in buffer and available bandwidth, it creates output as next requested

video bit rate and time delay for sending new HTTP request. They evaluate adap-

tation algorithm in real network environment. The evaluation results show that the

adaptation algorithm perform similar performances in various scenarios. However,

they do not consider fairness issue over clients which share bottleneck link. There-

fore, the performance of adaptation algorithm decreases in concurrent clients scenario

compared to single client scenario.

Cicco et al. [8] states the model of the automatic stream-switching controller which

is the mathematical model of video streaming service. It describes dynamic behav-

ior of the control system which takes two inputs such as estimated bandwidth and

buffer level. It tries to select video bit rate as an available bandwidth which changes

dynamically. In this model, there are two controllers such as buffer controller and

17

stream-switching controller. Buffer controller sends control information about player

buffer length from client to server. In addition, Stream-switching controller sends

control information combining amount of player buffer and measured bandwidth to

server. When server receives these control information, it selects suitable video qual-

ity. The results of experiments show that players immediately adapt video rate to

bottleneck link capacity. Although various scenarios are considered, there is only one

player is simulated. When one or more players are simulated, unfairness problem

occurs. Despite the mathematical model is clearly indicated, the HTTP server is not

standard server since the server receives and processes control information. Thus, it

loses the benefit of standard HTTP properties.

Liu et al. [18] provides a novel rate adaptation algorithm which measures available

bandwidth based on segment fetch time. In this algorithm, it uses the smoothed HTTP

throughput to select video bit rate. In addition, it aims to quickly adapt to match the

available bandwidth and video bit rates by using a set-wise increase and aggressive

decrease method. This algorithm calculates network capacity by dividing media seg-

ment duration into segment fetch time instead of using any transport layer informa-

tion such as round trip time and packet loss rate. According to network capacity, it

increments video bit rate in step-wisely and decrements video bit rate aggressively.

Moreover, it calculates idle waiting time to prevent buffer depletion. Although, sim-

ulation result shows that their rate adaptation algorithm quickly adapts video bit rate

to available bandwidth, they simulate only one client. Thus, fairness issue is not

considered.

Vergados et al. [29] provides a fuzzy logic based rate adaptation over the MPEG-

DASH standard. They design fuzzy logic controller which is one of the most impor-

tant application of fuzzy logic. In this controller, it takes two inputs such as buffering

time and differential of the buffering time then creates output as available channel

throughput. By using output of fuzzy logic controller, the rate adaptation algorithm

chooses next video bit rate such that it tries to keep buffering time to certain target

level in order to avoid buffer depletion. Moreover, in order to avoid video bit rate

fluctuations, it does not change video bit rate when the buffer level exceeds or eludes

target buffer level for 60 seconds. Although, the idea of combining fuzzy logic con-

troller and rate adaptation of HTTP based adaptive streaming was quitted in 2014,

18

it needs more evaluations in various scenarios to decide that FDAST obtains high

performances such as stability and efficiency. In addition, the authors state that the

simulation result shows that FDASH obtains fairness among clients however there is

no performance metrics about fairness issue.

Another fuzzy logic based rate adaptation algorithm is stated in [26]. Sobhani et al.

suggests fuzzy logic controller which provides minimum ON-OFF traffic and maxi-

mum network utilization. In this model, it takes two inputs such as throughput and

amount of buffer. Since it considers both network characteristic and buffer level,

simulation result shows that it gets higher performance compared to FDASH algo-

rithm [29]. In addition, they measured estimated bandwidth by using exponentially

weighted moving average for avoiding unnecessary video bit rate fluctuations. More-

over, it adjusts idle waiting time according to network characteristic and buffer level.

Thanks to fuzzy logic controller, it minimizes negative effects of ON-OFF behavior

and obtains high performance such as high bandwidth efficiency and low switch rate.

However, because of ON-OFF traffic, there is still unfairness problem among clients

which share the same bottleneck link.

In Table 3.1 we summarize solution of HAS according to name of algorithm, approach

and target performance.

19

Table3.1: Summary of HAS Solutions

Algorithm,
year Approach Target

performance metrics Comments

[18],2011 Heuristic, Buffer based Efficiency,
Stability

Poor
evaluation

ELASTIC
[7], 2013

Feedback
Control theory, Buffer based

Fairness,
Efficiency,
Stability

[9],
2015

Heuristic,
Buffer based

Buffer depletion,
Stability

[20],2012 Heuristic,
Buffer based, Bandwidth based

Stability,
Efficiency

[8],2014 Mathematical model,
Buffer based, Bandwidth based

Fairness,
Efficiency,
Stability

Server
modified

FDASH[29],2014 Fuzzy
logic, Buffer based Stability Poor evaluation

[26],
2015

Fuzzy logic, Buffer based,
Bandwidth based

Efficiency,
Stability Poor evaluation

FEAST
[24],2014

Heuristic, Buffer based,
Bandwidth based

Fairness,
Efficiency,
Stability

Server
modified

FESTIVE
[13], 2012

Heuristic,Bandwidth based,
Buffer based,

Fairness,
Efficiency,
Stability

PANDA
[16], 2014

Heuristic,Bandwidth based,
Buffer based,

Fairness,
Efficiency,
Stability

EFAST, 2017 Fuzzylogic,Bandwidth based,
Buffer based,

Fairness,
Efficiency,
Stability

20

CHAPTER 4

PROPOSED EFAST (EFFICIENT AND FAIR ADAPTIVE

STREAMING) ALGORITHM

In this section, we will provide a solution of HTTP adaptive streaming with a sys-

tematic approach meanwhile using standard HTTP protocol that we call EFAST (Ef-

ficient and Fair Adaptive STreaming). EFAST provides a client side rate adaptation

algorithm that conform MPEG-DASH standards. EFAST improves the performance

and quality of experience of HTTP based adaptive streaming by providing high band-

width efficiency, low buffer depletion, infrequent rate switch and fairness. Network

state such as available bandwidth, traffic load, routing paths and packet delay vary

all the time, thus modeling HTTP adaptive streaming process becomes complex and

difficult. We design a fuzzy logic based rate adaptation controller since it has three

advantages compared to conventional control method. To begin with, numerous fuzzy

rules are necessary to implement a fuzzy logic controller, it is the exact opposite of

conventional control system which has a single control strategy to determine the ac-

tion. Therefore fuzzy logic controllers are more suitable to depict systems which may

be complex, nonlinear or both. Furthermore, control becomes more robust, since, it

has multiple strategies resulting in more resilience to single errors. Lastly, modeling

of the control strategy is done considering linguistic terms resulting in an easier rep-

resentation of human knowledge. To sum up, we propose EFAST, fair and efficient

adaptive streaming built on fuzzy logic controller.

21

4.1 Model and Operation

HTTP Adaptive Streaming is one of the client-server multimedia streaming applica-

tions that the client downloads video from standard HTTP server which contains small

video segments of same lengths in different video resolutions. In general length of the

segment varies between 2 to 10 seconds. Client starts to download the segment with

the lowest video bit rate. By using download time and segment size, client estimates

available bandwidth. Then client requests video bit rate according to rate adaptation

algorithm which directly affects QoE. Thus, we design rate adaptation mechanism

by considering the system requirements and quality of experience together. In our

design, we completely eliminate the idle waiting time for two reasons which are ob-

taining high bottleneck bandwidth efficiency and fairness among clients similar to

the work [7]. Firstly, since during idle waiting time clients do not download any seg-

ments, it causes a decrease in the throughput of session. In other words, clients do

not use network resources during idle waiting time which leads to a decrease in band-

width efficiency. Secondly, we have discussed that idle waiting time leads to unfair-

ness bandwidth allocation among clients. Thus, removing idle waiting time provides

fairness bandwidth allocation among clients thanks to TCP. Although removing the

idle waiting time improves performance, buffer management becomes more difficult.

Since the buffer is getting closer to getting full, there is no any other way to decrease

buffer size except for increasing the time to download the segment. Thus, we consider

buffer level to determine the next requested video bit rate. According to the buffer

level, client adjusts video bit rate in order to avoid buffer depletion such as buffer

overflow and buffer underflow. If client wants to decrease buffer level, it increases

downloading segment time via increasing video bit rate. Naturally, if client wants

to increase the buffer level, it decreases downloading segment time via decreasing

video bit rate. Thus, the video bit rate jumps to a lower level which impacts quality of

experience negatively. In addition, it also causes buffer underflow in the worst case.

When client downloads the video under available bandwidth, it decreases through-

put of session. Therefore, selecting next video bit rate according to buffer level is

not enough, EFAST also considers available bandwidth information together so that

client can play video with the maximum possible quality.

22

Figure 4.1: Model of EFAST

In our model, the client downloads the first segment with the lowest video bit rate

and then goes on determining the next requested video bit rate by using fuzzy logic

controller. To this end, we first define Ssize(m) and tdown(m) as the size and download

time of the last downloaded segment respectively. Accordingly, the instantaneous

download rate for segment of (m) is Ssize(m)/tdown(m).

In Figure 4.1, we show the model of EFAST. Let r(m), rnext(m), y(m), bes(m), bc(m)

and bl(m) denote the system variables defined as follows:

r(m): Downloading video bit rate for the last downloaded segment m (in bps)

r(m+ 1): Next Requested video bit rate (in bps)

y(m): Output of video downloading process; size of the selected and downloaded

segment (in bits). This becomes the input for the estimated bandwidth calculation.

bes(m): Estimated bandwidth after downloading segment m (in bps)

bc(m) = bes(m) − r(m): Bandwidth capacity (in bps). This parameter can take a

negative value.

bl(m): Buffer level after segment m downloaded which shows the amount of data in

the receiver buffer (in seconds)

q(m) Output of fuzzy logic controller

Estimated bandwidth is calculated by using the output of video streaming process

23

over last downloaded w segments as follows:

bes(m) =
1

w
·

w∑
k=0

Ssize(m− k)

tdown(m− k)
(4.1)

We use w = 3 for the rest of the thesis. Here we note that a larger w would decrease

the rate switches however the achieved efficiency will be less if the bottleneck use is

frequently changing.

Our fuzzy logic controller consists of four components, rule-base, interface mecha-

nism, fuzzification and defuzzification:

• A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification

of the expert‘s linguistic description of how to achieve good control

• An inference mechanism (also called an "inference engine" or "fuzzy infer-

ence" module), which emulates the expert‘s decision making in interpreting

and applying knowledge about how best to control the plant.

• A fuzzification, which converts controller inputs into information that the in-

ference mechanism can easily use to activate and apply rules.

• A defuzzification, which converts the conclusions of the inference mechanism

into actual output for the process.

In this fuzzy model, r(m + 1) is the output of fuzzy model which denotes next re-

quested video bit rate. bc(m) and bl(m) are the fuzzy inputs. EFAST aims for max-

imizing bottleneck bandwidth efficiency and fairness among the multimedia streams

which share the same bottleneck link while minimizing the occurrences of buffer de-

pletion and rate switches.

In our model, we need to provide a description of how to best control the plant in

some natural language. Firstly, we define a linguistic variable that describes varying

fuzzy control inputs and output each time. Secondly, we recognize linguistic values of

each input and output. Thirdly, we define membership functions to quantify meaning

of the linguistic values. Fourthly, we explain fuzzy rules which determine the relation

between linguistic variables of inputs and linguistic variables of output. Finally, we

24

recognize how to convert fuzzy output to next requested video bit rate. Let us define

linguistic variables of our Fuzzy Logic Controller (FLC):

“Bandwidth Capacity” describes bc(m)

“Buffer Level” describes bl(m)

“Change Ratio” describes q(m)

Now, we describe linguistic values for inputs and output. Let us define L(x) to rep-

resent the linguistic values of linguistic variable x. In this model, there are three

linguistic variables and each variable map to five linguistic values.

L(bc(m)) = { “Negative-Large”, “Negative-Small“, “Zero”, “Positive-Small”, “Positive-

Large” }

L(bl(m)) = { “Empty”, “Low”, “Medium”, “High”, “Full” }

L(q(m)) = { “Decrease-Large”, “Decrease-Small”, “No-Change”, “Increase-Small”,

“Increase-Large” }

Now let us define membership functions which quantify the meaning of linguistic

values. These functions are clearly defined within the numerical range of fuzzy inputs

and outputs. Membership functions are represented by µ(x) which takes a value

between zero and one. Therefore, all input values are mapped to linguistic values

which have values between zero and one. In Figure 4.2, it shows the membership

functions for bandwidth capacity. Encoded video bit rate at server is denoted by ri

where 1 <= i <= n. while r1 represents the lowest video bit rate, rn represents

maximum video bit rate. In addition, rk denotes current video bit rate where r(m) =

rk and 1 <= k <= n . R denotes maximum difference between consecutive encoded

video bit rate at server. We define design variables n1, n2, p1, p2:

R = {max((rk+1)− rk)|n > k ≥ 1}
p1 = {(rk+1)− rk|n > k,R|n = k}
p2 = {(rk+2)− rk|(n− 1) > k, 2 ·R|(n− 1) ≤ k}
n1 = {(rk−1)− rk|1 < k,−R|k = 1}
n2 = {(rk−2)− rk|2 < k,−2 ·R|k ≤ 2}

Figure 4.3 shows the membership function of buffer level. Let us define tmax as the

maximum size of buffer in client and design variables t1, t2, t3, t4, t5 and t6 are 50%,

25

Figure 4.2: Membership Function of Bandwidth Capacity

60%,70%,80%,90% and 100% of tmax respectively. Figure 4.4 shows membership

function of change ratio q(m).

Now we need to specify a set of rules. (a rule-base) that captures the expert’s knowl-

edge about how to control the plant. In order to determine proper rules, the rela-

tion between fuzzy inputs and outputs are investigated. For simplicity, we analyze

fuzzy inputs separately. The first fuzzy input is bandwidth capacity. When bandwidth

capacity is either "Positive-Small" or "Positive-Large", the estimated bandwidth is

larger than current video bit rate. Thus, client increases video bit rate in order to watch

video as high quality as possible and maximize available bandwidth efficiency. When

bandwidth capacity is either "Negative-Large" or "Negative-Small", the estimated

bandwidth is lower than current video bit rate. In this case, since available bandwidth

is overloaded, packet loss and delay significantly increases. Thus, downloading time

of segment increases, amount of buffer decreases. In a worse case, buffer underflow

occurs which significantly decreases quality of experience. For avoiding buffer under-

flow, when estimated bandwidth is lower than current download bit rate, client should

decrease video bit rate. When bandwidth capacity is "Zero", estimated bandwidth and

current video bit rate is almost equal. Therefore, client does not change the requested

video bit rate for avoiding frequent rate switches. Second fuzzy input is buffer level

26

Figure 4.3: Membership function of buffer level

Figure 4.4: Membership function of change ratio

27

which represents amount of data in receiver buffer. We divide buffer level according

the amount of data in receiver buffer such as "Empty", "Low", "Medium", "High" and

"Full". When buffer level is either "Empty" or "Low", client should decrease video

bit rate in order to avoid buffer underflow since downloading time is proportional to

video bit rate. When buffer level is either "Full" or "High", client should increase the

video bit rate for avoiding buffer overflow. Since we completely remove idle waiting

time in our model, client continuously downloads video segments. To this end, the

fairness is improved and we avoid buffer depletions by selecting video bit rate accord-

ing to the buffer level. Therefore, client decreases its buffer level via increasing video

bit rate. In this model, video bit rate is increased or decreased by 2 levels in maxi-

mum so that client avoids frequent rate switches and immediately adapts to dynamic

network conditions. Since we only specify a finite number of linguistic variables and

linguistic values, finite numbers of possible rules are also defined. In this fuzzy logic

controller, with two inputs and five linguistic values for each of these, there are at

most 52 = 25 possible rules. We define 25 rules considering both bandwidth capacity

and buffer level conditions. We summarize all rules in Table 4.1:

1. If buffer level is “Empty“ and bandwidth capacity is “Negative-Large“ than

change ratio is “Decrease-Large“.

2. If buffer level is “Empty” and bandwidth capacity is “Negative-Small” than

change ratio is “Decrease-Large”.

3. If buffer level is “Empty” and bandwidth capacity is “Zero” than change ratio

is “Decrease-Large”.

4. If buffer level is “Empty” and bandwidth capacity is “Positive-Small” than

change ratio is “Decrease-Small”.

5. If buffer level is “Empty” and bandwidth capacity is “Positive-Large” than

change ratio is “No-Change”.

6. If buffer level is “Low” and bandwidth capacity is “Negative-Large” than change

ratio is “Decrease-Large”.

7. If buffer level is “Low” and bandwidth capacity is “Negative-Small” than change

ratio is “Decrease-Large”.

28

8. If buffer level is “Low” and bandwidth capacity is “Zero” than change ratio is

“Decrease-Small”.

9. If buffer level is “Low” and bandwidth capacity is “Positive-Small” than change

ratio is “No-Change”.

10. If buffer level is “Low” and bandwidth capacity is “Positive-Large” than change

ratio is “Increase-Small”.

11. If buffer level is “Medium” and bandwidth capacity is “Negative-Large” than

change ratio is “Decrease-Large”.

12. If buffer level is “Medium” and bandwidth capacity is “Negative-Small” than

change ratio is “Decrease-Small”.

13. If buffer level is “Medium” and bandwidth capacity is “Zero” than change ratio

is “No-Change”.

14. If buffer level is “Medium” and bandwidth capacity is “Positive-Small” than

change ratio is “Increase-Small”.

15. If buffer level is “Medium” and bandwidth capacity is “Positive-Large” than

change ratio is “Increase-Large”.

16. If buffer level is “High” and bandwidth capacity is “Negative-Large” than change

ratio is “Decrease-Small”.

17. If buffer level is “High” and bandwidth capacity is “Negative-Small” than change

ratio is “No-Change”.

18. If buffer level is “High” and bandwidth capacity is “Zero” than change ratio is

“Increase-Small”.

19. If buffer level is “High” and bandwidth capacity is “Positive-Small” than change

ratio is “Increase- Large”.

20. If buffer level is “High” and bandwidth capacity is “Positive-Large” than change

ratio is “Increase-Large”.

21. If buffer level is “Full” and bandwidth capacity is “Negative-Large” than change

ratio is “No-Change”.

29

Table4.1: Rule Table for the EFAST

Change Ratio q(m) Bandwidth Capacity
Neg-Large Neg-Small Zero Pos-Small Pos-Large

Buffer Level

Empty Dec-Large Dec-Largee Dec-Large Dec-Small No-Change
Low Dec-Large Dec-Large Dec-Small No-Change Inc-Small
Medium Dec-Large Dec-Small No-Change Inc-Small Inc-Large
High Dec-Small No-Change Inc-Small Inc-Large Inc-Large
Full No-Change Inc-Small Inc-Large Inc-Large Inc-Large

22. If buffer level is “Full” and bandwidth capacity is “Negative-Small” than change

ratio is “Increase-Small”.

23. If buffer level is “Full” and bandwidth capacity is “Zero” than change ratio is

“Increase-Large”.

24. If buffer level is “Full” and bandwidth capacity is “Positive-Small” than change

ratio is “Increase-Large”.

25. If buffer level is “Full” and bandwidth capacity is “Positive-Large” than change

ratio is “Increase-Large”.

Now we summarize how fuzzy logic controller works. In the fuzzification step, non-

linear inputs bandwidth capacity and buffer level are mapped to linguistic values with

values between 0 and 1 by using membership functions. Inference mechanism de-

cides the current rules to apply by comparing controller inputs with the all the rules.

This mechanism checks for every rule. Then, all the decisions are used to create a

single conclusion by inference mechanism. After that, it combines all the recom-

mendations from all the rules to determine the fuzzy output. In the defuzzification

step, the latest controller output is provided by inference mechanism which is using

implied fuzzy sets and combination of their effects. In our system, we use center of

gravity defuzzification method to determine final output. In this method output of the

fuzzy logic controller is calculated as:

q(m) =

∑
i

∫
i
biµ(i)∑

i

∫
i
µ(i)

(4.2)

Where bi denotes the center of the membership function of output and µ(i) is the

30

implied fuzzy set. Since we use center of gravity method [25] for defuzzification, the

result of q(m) should be in range between -2 to 2. This output value does not describe

directly the next requested video bit rate. Thus, we make decision based on fuzzy

output by means of the following equation where encoded video bit rate at server are

defines as r1,r2, rk−1, rk, rk+1 · · · rn and current video bit rate is r(m) = rk.

r(m+ 1) =



rk+2 (q > 1.5)&(n > k + 1)

rk+1 (q > 1.5)&(n = k + 1),

rk+1 (1.5 ≥ q > 0.5)&(n > k),

rk (0.5 ≥ q ≥ −0.5)&(n > k > 1),

rk (q > 0.5)&(k = n),

rk (−0.5 > q)&(k = 1),

rk−1 (−0.5 > q ≥ −1.5)&(k > 1),

rk−1 (−1.5 > q)&(k = 2),

rk−2 (−1.5 > q)&(k > 2)

4.2 Convergence of EFAST

In this part, we show that, for a single client on the bottleneck link with bandwidth

of C bps, EFAST converges to the desired video bit rate of r(m) = C under some

predetermined conditions. Encoded video bit rates at the server are represented by ri

where 1 ≤ i ≤ n such that ri < ri+1 when 1 ≤ i < n and rn < 2C. Maximum size

of the receiver buffer is 20 · Sd where Sd represents segment duration. Here 20 factor

exists to prevent the buffer level jump two level.

Current video bit rate is r(m) = rk where 1 ≤ k ≤ n. Let us assume that there

exists a video bit rate rm where 1 ≤ m ≤ n such that rm = C . In addition, process

delay, propagation delay and queuing delay at routers are negligible, since they very

small compared to transmission delay of video packets. Size of HTTP GET request

is also very small compared to size of video packet, so it is negligible too. If these

assumptions are satisfied, the requested video bit rate converges to rm = C and buffer

level converges to an interval between 60% and 80% of the maximum buffer level.

31

EFAST fuzzy logic controller has two inputs, which are bandwidth capacity and

buffer level. Bandwidth capacity is defined as difference between estimated band-

width bes(m) and current video bit rate r(m) = rk. Client measures the instantaneous

available bandwidth by dividing video segment size Ss(m)to the downloading time

tdown(m) which is the sum of propagation delay, processing delay, queuing delay and

transmission delay. Since propagation, processing and queuing delay are negligible

compared to the transmission delay, the downloading time is:

tdown(m) =
Ss(m)

C
(4.3)

Estimated bandwidth 4.1 becomes bes(m) = C. Then we state bandwidth capacity

as :

bc(m) = C − r(m) (4.4)

Since client plays a segment while downloading a segment, buffer level bl(m) (amount

of data in receiver buffer in seconds) continuously changes. When a segment is down-

loaded, buffer level increases segment duration Sd. However, buffer level reduces by

the time client sends HTTP GET request and downloads video segment. Since HTTP

request message is negligible small compare to video segment size, we ignore time

delay due to the sending HTTP request message. Moreover, propagation, process

and queuing delay are also negligible compared to transmission delay of video seg-

ment. We calculate buffer level bl(m) when each segment is downloaded as following

equation:

bl(m) = bl(m− 1) + Sd − tdown(m) (4.5)

Downloading time of segment is stated as equation in 4.3 when segment size is cal-

culated:

Ss(m) = Sd · rk (4.6)

32

Figure 4.5: Transition Diagram of Cases

Consider equations 4.3, 4.5 and 4.6 to calculate buffer level as following equation:

bl(m) = bl(m− 1) + Sd · (1−
rk
C

) (4.7)

4.7 implies that if r(m) = rk > C, buffer level bl decreases. Constantly, if current

video bit rate r(m) = rk < C , buffer level bl increases. Since 0 < ri < 2C where

1 ≤ i ≤ n, the magnitude of buffer change is less than segment duration Sd for each

segment downloaded.

In order to prove that the video bit rate converges to rm = C, we need to analyze all

the input combinations. We identify 6 different cases according to the buffer level:

where t1, t2, t3, t4, t5 and t6 are 50%, 60%,70%,80%,90% and 100% of tmax respec-

tively. Figure 4.5 shows transition diagram of cases.

Case1: 0 ≤ bl < t1

33

In this case, buffer is always "empty". When bandwidth capacity is "negative large",

"negative small", "zero" or "positive small", the change ratio q(m) < 0 which in-

dicates that video bit rate continuously decreases (see Table 4.1). Since video bit

rate rk decreases, bandwidth capacity converges to "positive large". When bandwidth

capacity is "positive large", video bit rate becomes stable at ri where i > (k + 2)

since since change ratio q(m) is "no change" . However, since bandwidth capacity

is "positive large" bc(m) > 0 which indicates C > r(m). Thus, from equation 4.7

amount of data in receiver buffer increases whenever new segment is downloaded.

Buffer level becomes t1 ≤ bl < t2 (goes to case 2) . Although video bit rate is not

changed, the amount of data in receiver buffer increases. Therefore, there is no stable

state with respect to both video bit rate and buffer size. Note that before bandwidth

capacity converges to "positive large", buffer level goes to case 2. In any case, case 1

always goes to case 2.

Case2: t1 ≤ bl < t2

In this case, buffer level is either "empty" or "low". When bandwidth capacity is

either "negative large", "negative small" or "zero", change ratio q(m) < 0 which in-

dicates that video bit rate continuously decreases (see Table 4.1) similar to case 1.

In this case, since video bit rate decreases, bandwidth capacity shifts to either "pos-

itive small" or "positive large" according to buffer level. When amount of data in

receiver buffer is close to point t1, bandwidth capacity converges to "positive large"

since dominated buffer level is "empty". Although video bit rate does not change,

amount of data in the buffer increases since r(m) < C bps (see equation 4.7) There-

fore, buffer level shifts from t1 to t2. When buffer level is close to t2, the buffer level

whose linguistic dominated buffer level has a larger membership value becomes low.

Bandwidth capacity goes from "positive large" to "positive small". Once bandwidth

capacity converges to "positive small", video bit rate becomes stable since change ra-

tio q(m) is "no change". However, since amount of buffer are continuously decreases,

buffer level shifts to case 3 which is in interval t2 ≤ bl < t3. In addition, there is a

possibility that before bandwidth capacity converges to "positive small", buffer level

shifts to case 3.

Case3: t2 ≤ bl < t3

34

In this case, buffer level is either "low" or "medium". When bandwidth capacity is ei-

ther "negative large" or "negative small", change ratio q(m) < 0 which indicates that

video bit rate continuously decreases (see Table 4.1). In this case, since video bit

rate decreases, bandwidth capacity shift to either "zero" or "positive small" according

to buffer level. When amount of data in buffer gets closer to point t2, bandwidth ca-

pacity converges to "positive small" since dominated buffer level is "low". Although

video bit rate does not change, amount of data in buffer increases since r(m) < C

(see equation 4.7). Therefore, buffer level shifts to point t3 from t2. When buffer

level gets closer to t3, dominated buffer level becomes "Medium". Bandwidth capac-

ity goes to zero from "positive small". When bandwidth capacity is zero, following

inequality should be satisfied from figure 4.3:

n1 < bc < p1 (4.8)

We know that n1, p1 and bc from equation 4.5:

(rk−1 − rk) < C − rk < (rk+1 − rk) (4.9)

Then we get:

rk−1 < C < rk+1 (4.10)

This condition is satisfied only when rk = rm since we assume that there exists a

video bit rate rm such that rm = C.

From equation 4.5, when current video bit rate equal to C bps, amount of data in

receiver buffer does not change. Buffer level is medium indicates that t2 < bl < t4

Since video bit rate and amount of data does not changed, the system becomes stable

which is video bit rate converges to rm and buffer level converges to interval between

60% and 80%of the maximum buffer level.

Case4: t5 < bl ≤ t6

In this case, buffer level is always full. When bandwidth capacity is, "negative small",

35

"zero", "positive small" or "positive large", the change ratio q(m) > 0 which indi-

cates that video bit rate continuously increases (see Table 4.1). Since video bit

rate r(m) increases, bandwidth capacity converges to "negative large". When band-

width capacity is "negative large", video bit rate becomes stable which is not changed

since change ratio q(m) is "no change" . However, since bc(m) < 0 which indicates

C < r(m). Thus, from equation 4.7 amount of data in receiver buffer decreases

whenever new segment is downloaded. Buffer level goes to case 5 which is in inter-

val t4 ≤ bl < t5 . Although video bit rate is not changed, amount of data in receiver

buffer decreases. Therefore, there is no stable state with respect to both video bit rate

and buffer size. Note that before bandwidth capacity converges to "negative large",

buffer level goes to case 5. In any case, case 4 always goes to case 5.

Case5: t4 < bl ≤ t5

In this case, buffer level is either "high" or full. When bandwidth capacity is ei-

ther "positive large", "positive small" or "zero", change ratio q(m) > 0 which in-

dicates that video bit rate continuously increases (see Table 4.1) similar to case 4.

In this case, since video bit rate increases, bandwidth capacity shifts to either "neg-

ative small" or "negative large" according to buffer level. When amount of data in

receiver buffer is close to t5, bandwidth capacity converges to "negative large" since

dominated buffer level is full. Although video bit rate does not change, amount of

data in buffer increases since r(m) > C bps (see equation 4.7). Therefore, buffer

level shifts from t5 to t4. When buffer level is close to t4, dominated buffer level be-

comes "high". Bandwidth capacity goes to from "negative large" to "negative small".

Once bandwidth capacity converges to "negative small", video bit rate becomes sta-

ble. However, since amount of buffer are continuously increases, buffer level shifts

to case 4 which is in interval t3 ≤ bl < t4. In addition, it is possible that before

bandwidth capacity converges to "negative small", buffer level shift to case 4.

Case6: t3 < bl ≤ t4

In this case, buffer level is either "high" or "medium". When bandwidth capacity is

either "positive large" or "positive small", change ratio q(m) > 0 which indicates that

video bit rate continuously increases (see Table 4.1). In this case, since video bit rate

increases, bandwidth capacity shifts to either "zero" or "negative small" according

36

Figure 4.6: Buffer Size of Client

to buffer level. When amount of data in buffer is close to t4, bandwidth capacity

converges to "negative small" since dominated buffer level is "high". Although video

bit rate does not change, amount of data in buffer decreases since r(m) > C bps (

see equation 4.7). Therefore, buffer level shifts from t4 to t3. When buffer level

is close to t3, dominated buffer level becomes Medium. Bandwidth capacity goes

from negative small to zero. When bc = 0, the system becomes stable which video

bit rate converge to rm and buffer level converges to interval between t3 = 60% and

t4 = 80% of maximum buffer level like case 3

We demonstrate the convergence of EFAST with an example simulation experiment

in NS2 [23]. In this setup, there is one video streaming server and one client that is

connected directly over a bottleneck link with a constant C = 900 Kbps. The receiver

buffer size is 40 seconds, segment duration is 2 seconds and encoded video bit rate

r1 to r21 are 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200,

1300, 1400, 1500, 1600, 1700, 1800, 1900 and 2000 kbps. Client starts downloading

the video at t = 1 second. We investigate buffer size and video bit rate. Figure

4.6 and Figure 4.7 show that buffer size and video bit rate of client respectively.

Initially, client starts downloading the video segment with the lowest video bit rate.

Since buffer level is empty and bandwidth capacity is positive large, video bit rate

stays constant (case1). During this interval, buffer level increases since video bit rate

37

Figure 4.7: Video Bit rate of Client

rk < 900kps. When buffer level goes to low, video bit rate starts to increase (case2).

Since there exists video bit rate as equal to bottleneck link and receiver buffer size is

larger than 20 ·Sd, the video bit rate converges to 900 kbps and buffer level converges

to 28 seconds which is a value between 60% and 80% of the maximum size of receiver

buffer (case 3). Although, video bit rate and buffer level converge to the point that we

expected, we know that it does not converge to stable state in real life. Therefore in

Chapter 5, we will analyze performance of EFAST in detail.

38

CHAPTER 5

EVALUATION OF EFAST ARCHITECTURE

5.1 Experiments and Results

In this chapter, we evaluate the performance of EFAST in various scenarios which

includes both simulation and real network environment. Firstly EFAST will be ana-

lyzed with a constant bottleneck bandwidth C and a constant number of clients N .

Note that because of TCP fairness, each client that shares the bottleneck link gets

C/N bandwidth which is a main factor in the performance of EFAST. After that, N

EFAST clients will be simulated in different C/N ratios. We will investigate how

C/N ratio affects performance such as fairness, efficiency and rate switch frequency.

Thirdly, EFAST will be evaluated in real network environment with constant bottle-

neck link. Fourthly, we will evaluate varying bottleneck link scenario in simulation

environment. We will investigate how EFAST adjusts video bit rate under dynamic

network conditions and how it affects performance in detail. Finally, we will compare

performances of EFAST to other HAS solutions such as, ELASTIC, FESTIVE and

PANDA in constant bottleneck scenario, in different number of client scenario, and

in TCP backgrounds flow scenario.

5.1.1 Experiment 1: Performance of FEAST Under Constant Bottleneck with

2 Clients

In this experiment, we will investigate 2 clients which are sharing constant bottle-

neck link C = 2Mbps scenario in NS2 [23] network simulator. Each client has

40 seconds of receiver buffer. Encoded video bit rates are selected in real MPEG

39

Figure 5.1: Video bit rate of client 1 and client 2

Figure 5.2: Buffer size of client 1 and client 2

40

Figure 5.3: Number of switches of client 1 and client 2

Figure 5.4: Unfairness Index of two clients

41

Figure 5.5: Network topology of simulation

DASH server. The site[6] provides several videos with different segment duration

in MPEG-DASH standard. We choose segment duration is 2 seconds and encoded

video bit rates are 45652, 89283, 131087, 178351, 221600, 262537, 334349, 396126,

522286, 595491, 791182, 1032682, 1244778, 1546902, 2133691, 2484135, 3078587,

3526922, 3840360, 4219897 bps. Network topology which is used in simulation is

given Figure 5.5.

We simulate two clients for 300 seconds. In this experiment, we will compare two

clients under same conditions. Both client 1 and client 2 start downloading segment

from server at t = 0. When time interval between t = 0 and t = 10, both clients

increase buffer level and video bit rate (see Figures 5.1 and 5.2). When time between

t = 10 and t = 40, although video bit rate of client 1 and client 2 converge to about

1100 kbps, buffer level decreases slowly since total download rate exceed bottleneck

link capacity. In this interval, behavior of clients is exactly same so unfairness index

is zero (see Figure 5.4). After t > 40, when video bit rate oscillates between 791

kbps and 1032 kbps, buffer level keeps around between 26 and 28 seconds. Figure

5.3 shows number of video quality switches. Since video bit rates oscillate, number

of video quality switches also increases. However, magnitude of quality switches is

small. We summarize average performance over session (300sec) such as average

bottleneck efficiency as 0.974, average buffer level is 27.09, average unfairness index

is 0.0034412 and average video quality switches is 0.11. We expect these results since

EFAST try to maximize bottleneck efficiency and minimize unfairness index with no

42

Figure 5.6: Video bit rate of different C/N ratios

buffer depletion.

5.1.2 Experiment 2: Performance of FEAST Under Different C/N Ratios

In this experiment, we investigate howR = C/N ratio affects performance of EFAST

when C represents bottleneck link capacity and N denotes number of clients which

share same bottleneck link. In this setup, bottleneck link capacity C is constant which

capacity is 8Mbps and number of clients are N1 = 2, N2 = 4 and N3 = 8. We

simulate 300 second in NS2 [23] with three different C/N ratios; R1 = 8/2 Mbps,

R2 = 8/4 Mbps and R3 = 8/8 Mbps. Other simulation parameters such as segment

duration, receiver buffer size, network topology and encoded video bit rates are same

as Experiment 5.1.1.

Let us analyze performance of EFAST such as buffer size, video bit rate, bottleneck

efficiency, unfairness and switch change respectively with different C/N ratio. In

Figure 5.6, it shows that average video bit rate over clients for different R1, R2 and

R3. In three cases, average video bit rate increases initially. Video bit rates of R1, R2

and R3 converge to around 4Mbps, 2Mbps and 1Mbps respectively since number of

clients N (N1 = 2, N2 = 4, N3 = 8) share bottleneck link 8 Mbps respectively. In

Figure 5.7, it shows the average buffer level over clients. Initially, buffer increases

43

Figure 5.7: Buffer size of different C/N ratios

Figure 5.8: Unfairness Index of different C/N ratios

44

Figure 5.9: Bandwidth efficiency of different C/N ratios

Figure 5.10: Number of switches of different C/N ratios

45

Table5.1: Performance comparison of different ratios

Efficiency Unfairness Buffer Size Video Switches
R1 0,954 0,0039 29,37 0,083
R2 0,978 0,0967 27,18 0,26
R3 0,996 0,104 26,52 0,28

very fast since sum of video bit rates is less than bottleneck link C bps. Maximum

point of buffer level are different for three different cases since case of R1 has more

step to reach average video bit rate compare to cases of R2 and R3. In any case,

buffer levels converge to between 26 and 28 seconds. In Figure 5.8, it shows that

Unfairness index of case R1, R2 and R3. When number of clients increases, average

video bit rate decreases. In general, differences between two consecutive video bit

rates are not equal to each other. When video bit rates are low, difference between

the current video bit rate and consecutive video bit rates are also small. Thus, clients

change video bit rate more frequently when current video bit rate is small. Therefore,

number of video quality switches of case R3 and R2 are higher than case of R1 (see

Figure 5.10). In addition, unfairness of case R3 is worse than cases of R1 and R2.

Although case of R3 provides lower performance according to video quality switches

and unfairness, efficiency is higher compare to other cases. (See Figure 5.9)

Now, we compare average efficiency, unfairness, buffer level and video quality switches

over each session (300 seconds). For case of R1, average efficiency is 0.954, average

unfairness is 0.0039, average buffer is 29.37 and average video switches is 0.083. For

case R2, average efficiency is 0.978, average unfairness is 0.0967, average buffer is

27.18 and average video switches is 0.26. For case R3, average efficiency is 0.996,

average unfairness is 0.104, average buffer is 26.52 and average video switches is

0.28 (see table 5.1). In all three cases, video bit rate converges around C/N and

buffer level becomes stable at level 26 seconds. In addition, there is no buffer de-

pletion in all three cases. As a result, simulation results show that when C/N ratio

decreases, bottleneck bandwidth efficiency becomes better. However unfairness and

video switches become worse.

46

Figure 5.11: Network topology of real-network

5.1.3 Experiment 3: Performance Comparison Between Simulation and Real-

Network

In this experiment, we investigate EFAST in real network environment. We show that

EFAST gets high performance in constant bottleneck link scenario in Experiments

5.1.1 and 5.1.2. We analyze how performances of EFAST change in real network

environment. Therefore, we implement EFAST by using libdash library [17]. After

we evaluate EFAST, we compare simulation results to real network results. network

topology is given in Figure 5.11. In this setup, clients connect to real MPEG DASH

server [6]. Dummynet [3] is a link emulator which is used in user-configrable net-

work environments. Configration of Dummynet is done running ipfw programs. By

help of ipfw command, bandwidth of communication link is fixed and propagation

delay is adjustable easly. Previous works [26], [20] and [13] use Dummynet in per-

formance evaluations. We use Dummynet for limiting the bandwidth so that we an-

alyzed EFAST in constant bottleneck link. Video segment duration is 2 seconds and

receiver buffer size is 40 seconds. Encoded video bit rates are the same as Experiment

5.1.1.

In order to compare performances such as buffer level, video bit rate, unfairness index,

video switches between simulation and real network environment, we show normal-

47

Figure 5.12: Video bit rate of real-network and simulation

Figure 5.13: Buffer size of real-network and simulation

48

Figure 5.14: Number of switches of real-network and simulation

Figure 5.15: Unfairness Index of real-network and simulation

49

ized cross correlation and session average yn within +∆% of the true mean µ with a

probability of P%. Let’s show how we calculate yn, ∆ and µ:

We calculate session average yn when di denotes sample and n represents total num-

ber of samples.

yn =

∑n
i=1 di
n

(5.1)

Now we calculate the standard deviation sn as:

sn =

√∑n
i=1 (di − yn)2

n
(5.2)

We define ∆ = Sn ∗ tg/
√
n where tg = 1.96 if P = 95 and/or tg = 2.58 if P = 99

Therefore, we compare two performances with average value over session within ∆%

of the true mean µ with probability of 95% or 99%.

When session average values of two series are similar, it indicates that they are on

the same horizontal axis. However, average value is not enough to show similarity of

two series. Thus, we also compare normalized cross correlation of two series to show

similarity of experimental results between simulation and real network environment.

One-dimensional normalized cross correlation [19] between two discrete series with

delay d is calculate following equation where mx and my are means values of the

corresponding series:

NCC(x, y, d) =

∑
i=1 (x[i]−mx)(y[i− d]−my)√∑

i=1 (x[i]−mx)2
√∑

i=1 (y[i− d]−my)2
(5.3)

Normalized cross correlation is used to show similarity of two series, signals, images

etc. [31] states that normalized cross correlation is the simplest but effective method

as a similarity measure. The result of normalized cross correlation varies between

-1 to 1. [4] states that value of normalized cross correlation is larger than 0.7 or 0.8

indicates a pretty good match.

Figures 5.12, 5.13, 5.14 and 5.15 show video bit rate, buffer level, number of video

50

Table5.2: Results of comparison between real-network and simulation

Simulation Real-Network

Video Bit rate

Average over Session(Mbps) 1,976 1,962
∆% with P=95% 2,546 2,63
∆% with P=99% 3,352 3,561
Cross-Correlation 0,851

Buffer Size

Average over Session(Mbps) 28,53 28,62
∆% with P=95% 0,91 1,13
∆% with P=99% 1,21 1,35
Cross-Correlation 0,889

Unfairness

Average over Session(Mbps) 0,034 0,032
∆% with P=95% 10,05 11,50
∆% with P=99% 14,75 15,14
Cross-Correlation 0,962

switches, unfairness index respectively. Although fluctuation of video bit rate and

buffer size are larger in real network environment compare to in simulation, the results

of simulation and real network are almost same. Cross correlation of video bit rates,

buffer level, unfairness index and video changes are 0.851, 0.889, 0.962 and 0.9962

respectively. We summarize average values over session with ∆ in table 5.2. The

values indicated in table 5.2 are the results in simulation and in real network is close

thus our simulation is reliable.

5.1.4 Experiment 4: Performance of EFAST Under Variable Bottleneck Link

In this experiment, we investigate EFAST in variable bottleneck link condition. We

show high performance of EFAST under constant bottleneck link in Experiments

5.1.1 and 5.1.2. We analyze how performance of EFAST is affected when bottle-

neck link capacity is changed. During simulation, we change the number of clients

N and we apply background UDP traffic. Network topology is given in Figure 5.16.

In this scenario, the client 1 starts downloading segment with bottleneck link C = 4

Mbps. When t = 100, client 2 starts to download segment which shares bottleneck

link with first client. After time t = 200, we apply UDP background traffic from

node Us to node Ud. Size of UDP packets are 100 bytes with generation rate is 20

Kbps. Other parameters such as segment size, receiver buffer size and encoded video

bit rates are same as Experiment 5.1.1.

51

Figure 5.16: Network topology of Experiment 4

Figure 5.17: Video bit rate of clients under variable bottleneck link

52

Figure 5.18: Buffer size of clients under variable bottleneck link

Figure 5.19: Unfairness Index of clients under variable bottleneck link

53

Figure 5.20: Number of switches of clients under variable bottleneck link

In Figure 5.17, it shows that video bit rate of client 1 and client 2 with respect to time.

When time between t = 0 and t = 100, client 1 increases its video bit rate around 4

Mbps. When time between t = 100, client 2 starts to download video bit rate. Client

1 and client 2 immediately adjust their video bit rate around 2 Mbps. When time

t = 200, UDP traffic is applied. Since UDP traffic occupies half of bottleneck link

capacity, average video bit rates of client 1 and client 2 decrease to 1 Mbps. Although

bottleneck link capacity is changed during simulation, clients adjust their video bit

rate to available bandwidth level.

In Figure 5.18, it shows the buffer size of client 1 and client 2 with respect to time.

Clients succeed to keep buffer level between 24 and 38 seconds despite of variable

bottleneck link. There is no buffer depletion and overflow during simulation. Vibra-

tion of buffer level increases after t = 200 because of UDP background traffic. Figure

5.19 shows unfairness index of clients. During simulation, unfairness is less than 0.12

expect to time when client 2 starts downloading. Number of video quality switch in-

creases after t = 100 because small UDP packets make it more difficult to estimate

bandwidth calculation. Although number of video quality switches increases, magni-

tude of switches is small. (See Figure 5.17)

54

5.2 Discussion and Comparison with ELASTIC, PANDA and FESTIVE

In Experiments 5.1.1, 5.1.2, 5.1.3 and 5.1.4, we observe performance of EFAST itself

in various scenarios. In this part, we investigate EFAST with different solutions of

HAS. We chose three popular and well-known HTTP adaptive streaming solutions

such as ELASTIC, PANDA and FESTIVE. We show advantages and disadvantages

of EFAST compared to other solutions. Firstly, we analyze video level and instanta-

neous download rate of two clients which share 4 Mbps bottleneck link. Secondly,

we investigate how fairness and channel utilization changes when number of client in-

creases. Thirdly, we show average video bit rate and number of switches with respect

to varying number of video clients and TCP connections. We change various Ntcp/N

ratio from 0 to 0.75 when Ndenotes total number of connections and Ntcp represents

number of TCP connections. Experiment environment is determined in article [7].

We use tomcat server instead of Debian Linux server. We implement EFAST algo-

rithm using libdash library in Windows 7. We use dummynet as the network shaper.

At server, “Elephant’s Dream” video is encoded with five different quality such as

300, 700, 1500, 2500 and 3500 kbps.

5.2.1 Experiment 5: Performance Comparison Under Constant Bottleneck

Link

In this experiment, we compare the performance of two clients sharing a 4Mbps con-

stant bottleneck link. We investigate instantaneous downloading rate and correspond-

ing video bit rate of each client. In Figure 5.21, results of 4 algorithms, EFAST,

PANDA, FESTIVE and ELASTIC, can be seen. Instantaneous download rate can be

seen at the top, and instantaneous video quality is shown at bottom. Resolutions of the

video levels are in Table 5.3. Since 4Mbps channel is shared by 2 clients, each of the

clients has 2 Mbps bandwidth capacity under ideal conditions. Firstly when the fair-

ness among clients is compared, PANDA gave the best performance. It generated the

same video quality with the least amount of video switches. ELASTIC and EFAST

algorithms showed similar results when they were considered for fairness. FESTIVE

was the worst one. Even if the ELASTIC had less video switches, it jumped from

video quality 2 to video quality 4 directly, moreover this direct jumps affects quality

55

Figure 5.21: Video bit rate of EFAST, PANDA, FESTIVE and ELASTIC

56

Table5.3: Video level of Elephant‘s Dream

Video level Resolution Bit rate (bps)
L0 320x180 300000
L1 640x360 700000
L2 640x360 1500000
L3 1280x720 2500000
L4 1280x720 3500000

Figure 5.22: Bottleneck efficiency

of experience drastically. PANDA was the best one when considered about fairness

and video quality. However, average download rate is below 2 Mbps, which results in

75% bottleneck efficiency. All the other algorithms except PANDA kept the average

download rate at 2 Mbps with the channel efficiency of 90%.

5.2.2 Experiment 6: Performance Comparison with Various Numbers of Clients

In the experiment, we have analyzed the bottleneck efficiency and fairness with re-

spect to number of clients. We increased the bottleneck bandwidth capacity to 40

Mbps, and changed number of clients from 11, 15, 25, and 50 respectively. We have

seen the bottleneck efficiency, and number of client relation at Figure 5.23. ELASTIC

and EFAST is better at efficiency, then the other 2 algorithms. They kept the bottle-

57

Figure 5.23: Jain Fairness Index

neck efficiency above 0.95 meanwhile number of clients (N) kept between 11 and 50.

Reason of that is removing the idle waiting time, and requesting for video segment

immediately after video segment download finishes. Efficiency is increasing for all

algorithms if number of client increases. Jin fairness index is shown at Figure 5.23.

Even if number of clients increase, it stayed above 0.96. When EFAST, ELASTIC

and PANDA are not affected by number of client changes, Performance of FESTIVE

is affected negatively.

5.2.3 Experiment 7: Performance Comparison with Different Ntcp/N Ratios

In this experiment, we compare the performance of the video client with background

TCP connections. Constant bottleneck will be kept at 40 Mbps again. Total number of

video clients are Nc, total number of background TCP connections are Ntcp and, total

number of flow of N are Nc + Ntcp. In this experiment, we observe the performance

dependency on the different values of N and Ntcp/N . In Table 5.4, Nc and Ntcp can

be seen when total number of flow are 11 15 25 and 50.

In figure 5.24, average video bit rate change depending on the Ntcp/N can be seen

when total number of flow N kept 11, 15, 25, 50. Independent from the number

of clients, EFAST always gave the highest average video rate. Also average video

rate stayed at ideal fair (40Mbps/N) not affected by changes in N . After EFAST,

58

Figure 5.24: Average video bit rate of EFAST, PANDA, FESTIVE and ELASTIC

59

Figure 5.25: Number of switches of EFAST, PANDA, FESTIVE and ELASTIC

60

Table5.4: Number of Nc and Ntcp with different Ntcp/N

Ntcp/N = 0 Ntcp/N = 0,25 Ntcp/N = 0,5 Ntcp/N = 0,75

N=11 Nc 11 8 5 3
Ntcp 0 3 6 8

N=15 Nc 15 11 7 4
Ntcp 0 4 8 11

N=25 Nc 25 18 12 6
Ntcp 0 7 13 9

N=50 Nc 50 38 25 12
Ntcp 0 12 25 38

ELASTIC FESTIVE and PANDA followed performance wise. Increase in Ntcp/N

affected PANDA negatively, meanwhile EFAST and ELASTIC is not affected dras-

tically. Reason is that EFAST and ELASTIC algorithms don’t wait between two

consecutive segment requests. Therefore they shared the bandwidth fairly with the

other TCP connections.

Figure 5.25, shows the switch rate with respect to Ntcp/N meanwhile total number of

flows N is kept 11, 15, 25, and 50. PANDA had the least video switches. PANDA

managed to keep the average video rate between 0 and 2, which is not dependent

upon number of flows. Main reason of that is rate adaptation algorithm of PANDA

is very similar to TCP congestion control. Performance wise ELASTIC followed the

PANDA. ELASTIC is not affected by Ntcp/N that much, but average video switches

stayed between 3 and 7. FESTIVE had very good performance at N = 11, however,

performance decreased as N increased. Average video rate switches stayed between

10 and 20 in EFAST. The worst performance when compared with the numerical

value seems to be EFAST, but it is due to the narrowness of the encoded video bit

rate range. For this scenario, the encoded video rate has only 5 levels and the bit

rate difference between them is quite high. EFAST constantly changes the video rate

in such a case to increase the average video bit rate and keep the channel utilization

high.

In Experiments 5.1.1, 5.1.2, 5.1.3 and 5.1.4 we examined the EFAST algorithm through

various scenarios. If we evaluate the test results in general, EFAST responds rapidly

to changing network conditions and brings video bit rate to the available bandwidth

level. This allows the channel to keep the utilization at a high level and provide the

61

best quality video viewing. While trying to keep video quality at its highest level,

it tries to keep the buffer level between 60 and 80 percent. This prevents buffer de-

pletion and at the same time prevents the buffer level from rising continuously with

time. When there are multiple video clients, it is observed that they share a fair chan-

nel among themselves.

In Experiment 5.2.1, 5.2.2, and 5.2.3, performance comparison with ELASTIC, PANDA

and FESTIVE was made with EFAST algorithm. Although the number of video bit

rate switches seems to be more than the other algorithms, the average video rate is

higher than the other algorithms. EFAST has made it even more successful than other

3 algorithms such as ELASTIC, PANDA and FESTIVE to share a channel fairly even

among other TCP connections, not just between their clients. EFAST can show high

performance on various network conditions without being affected by the number of

clients.

62

CHAPTER 6

CONCLUSION

In this thesis, we focus on HTTP based adaptive streaming (HAS) and propose a fuzzy

control based rate adaptation algorithm for the HAS client. Our proposed client side

HAS rate adaptation method that we call EFAST (Effcient and Fair HTTP Adaptive

STreaming) only requires implementation on the client side without any modification

on the server. EFAST conforms to the all MPEG-DASH standards. EFAST aims for

downloading at the segments at the highest possible rate avoiding the buffer deple-

tions. Furthermore the bit rates of the downloaded videos infrequently switch and the

clients that share a bottleneck bandwidth fairly.

Different than previous heuristic rate adaptation algorithms EFAST utilizes a system-

atic approach. To this end a fuzzy logic controller is designed which selects next

video bit rate by using the amount of data in receiver buffer and calculation of avail-

able bandwidth.

The fuzzy logic control of EFAST allows showing that EFAST achieves the target

video bit rate. The work in this thesis shows the design of the fuzzy logic controller.

We show that for a single client EFAST rate adaptation converges to the bottleneck

link bandwidth as the video rate together with the possible state transitions. As the

system with more clients is very complex to enumerate the state space, we perform a

detailed evaluation of EFAST using NS2 simulator and emulated experiments under

different network parameters. To this end, we evaluate EFAST under constant and

variable bottleneck link conditions. We investigate how number of the clients and

bottleneck link capacity affects performance of EFAST in detail. In addition, we

simulate and analyze EFAST with background UDP traffic. EFAST is evaluated in

63

real network by using dummynet tool for bandwidth limiting. Simulation results

show that EFAST improved QoE such as efficiency, fairness and stability without

buffer depletion. Finally, we compare the performance of EFAST with other well

known MPEG-DASH solutions such as Elastic, Festive and Panda by implementing

all these works as described in the respective publications. Experimental results show

that EFAST performs more efficiently and has more fair bandwidth share among the

connections compared to other solutions.

In the current work, we observe that performance of EFAST depends on available

bandwidth calculation. When clients estimate available bandwidth more correctly,

the performance metrics improve more. Therefore, we will develop a more specific

and reliable bandwidth calculation method. In addition, although simulation results

show that EFAST performs with high efficiency and fair bandwidth allocation among

clients which share same bottleneck link, number of video bit rate switches increases

in some scenarios. Thus, we will work on the optimization of video bit rate switches.

64

REFERENCES

[1] Adobe HTTP Dynamic Streaming (HDS) Technology Center. http://www.
adobe.com/devnet/hds.html.

[2] HTTP Live Streaming. https://developer.apple.com/
streaming/.

[3] M. Carbone and L. Rizzo. Dummynet revisited. ACM SIGCOMM Computer
Communication Review, 40(2):12–20, 2010.

[4] Cross-Correlation. https://www.ocean.washington.edu/
courses/ess522/lectures/08_xcorr.pdf.

[5] The Zettabyte Era — Trends and Analysis – Cisco. http:
//www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.html.

[6] Dynamic Adaptive Streaming over HTTP. http://www-itec.uni-klu.
ac.at/dash/?page_id=207.

[7] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. Elastic: a client-
side controller for dynamic adaptive streaming over http (dash). In Packet Video
Workshop (PV), 2013 20th International, pages 1–8. IEEE, 2013.

[8] L. De Cicco and S. Mascolo. An adaptive video streaming control system:
Modeling, validation, and performance evaluation. IEEE/ACM Transactions on
Networking (TON), 22(2):526–539, 2014.

[9] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-
based approach to rate adaptation: Evidence from a large video streaming
service. ACM SIGCOMM Computer Communication Review, 44(4):187–198,
2015.

[10] C. Huitema. Real time control protocol (rtcp) attribute in session description
protocol (sdp). 2003.

[11] V. Jacobson, R. Frederick, S. Casner, and H. Schulzrinne. Rtp: A transport
protocol for real-time applications. 2003.

[12] R. Jain, A. Durresi, and G. Babic. Throughput fairness index: An explanation.
Technical report, Tech. rep., Department of CIS, The Ohio State University,
1999.

[13] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive. In Proceedings of the 8th in-
ternational conference on Emerging networking experiments and technologies,
pages 97–108. ACM, 2012.

65

http://www.adobe.com/devnet/hds.html
http://www.adobe.com/devnet/hds.html
https://developer.apple.com/streaming/
https://developer.apple.com/streaming/
https://www.ocean.washington.edu/courses/ess522/lectures/08_xcorr.pdf
https://www.ocean.washington.edu/courses/ess522/lectures/08_xcorr.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www-itec.uni-klu.ac.at/dash/?page_id=207
http://www-itec.uni-klu.ac.at/dash/?page_id=207

[14] A. Kostuch, K. Gierłowski, and J. Wozniak. Performance analysis of multi-
cast video streaming in ieee 802.11 b/g/n testbed environment. In Wireless and
Mobile Networking, pages 92–105. Springer, 2009.

[15] C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller. i. IEEE
Transactions on systems, man, and cybernetics, 20(2):404–418, 1990.

[16] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe
and adapt: Rate adaptation for http video streaming at scale. IEEE Journal on
Selected Areas in Communications, 32(4):719–733, 2014.

[17] bitmovin/libdash. https://github.com/bitmovin/libdash.

[18] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for adaptive http stream-
ing. In Proceedings of the second annual ACM conference on Multimedia sys-
tems, pages 169–174. ACM, 2011.

[19] D. Lyon. The discrete fourier transform, part 6: Cross-correlation. Journal of
object technology, 9(2):17–22, 2010.

[20] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adaptation algorithm for
adaptive streaming over http. In Packet Video Workshop (PV), 2012 19th Inter-
national, pages 173–178. IEEE, 2012.

[21] Smooth Streaming. https://www.iis.net/downloads/
microsoft/smooth-streamingl.

[22] Dynamic Adaptive Streaming over HTTP (DASH): Past, Present,
and Future. http://www.streamingmediaglobal.
com/Articles/Editorial/Featured-Articles/
Dynamic-Adaptive-Streaming-over-HTTP-(DASH)
-Past-Present-and-Future-93275.aspx.

[23] The Network Simulator-ns-2. https://www.isi.edu/nsnam/ns/l.

[24] Y. OZCAN. HTTP ADAPTIVE STREAMING ARCHITECTURES FOR VIDEO
ON DEMAND AND LIVE TV SERVICES. PhD thesis, MIDDLE EAST TECH-
NICAL UNIVERSITY, 2013.

[25] K. M. Passino, S. Yurkovich, and M. Reinfrank. Fuzzy control, volume 2725.
Addison-wesley Reading, MA, 1998.

[26] A. Sobhani, A. Yassine, and S. Shirmohammadi. A fuzzy-based rate adaptation
controller for dash. In Proceedings of the 25th ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, pages 31–36. ACM,
2015.

[27] I. Sodagar. The mpeg-dash standard for multimedia streaming over the internet.
IEEE MultiMedia, 18(4):62–67, 2011.

[28] T. Stockhammer. Dynamic adaptive streaming over http–: standards and design
principles. In Proceedings of the second annual ACM conference on Multimedia
systems, pages 133–144. ACM, 2011.

66

https://github.com/bitmovin/libdash
https://www.iis.net/downloads/microsoft/smooth-streamingl
https://www.iis.net/downloads/microsoft/smooth-streamingl
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/Dynamic-Adaptive-Streaming-over-HTTP-(DASH)-Past-Present-and-Future-93275.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/Dynamic-Adaptive-Streaming-over-HTTP-(DASH)-Past-Present-and-Future-93275.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/Dynamic-Adaptive-Streaming-over-HTTP-(DASH)-Past-Present-and-Future-93275.aspx
http://www.streamingmediaglobal.com/Articles/Editorial/Featured-Articles/Dynamic-Adaptive-Streaming-over-HTTP-(DASH)-Past-Present-and-Future-93275.aspx
https://www.isi.edu/nsnam/ns/l

[29] D. J. Vergados, A. Michalas, A. Sgora, and D. D. Vergados. A fuzzy controller
for rate adaptation in mpeg-dash clients. In Personal, Indoor, and Mobile Radio
Communication (PIMRC), 2014 IEEE 25th Annual International Symposium
on, pages 2008–2012. IEEE, 2014.

[30] L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[31] F. Zhao, Q. Huang, and W. Gao. Image matching by normalized cross-
correlation. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, volume 2, pages II–II.
IEEE, 2006.

67

68

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background
	HTTP Adaptive Streaming
	HTTP Adaptive Streaming Issues
	Constraints and Performance Metrics for HAS

	Fuzzy Logic Basics
	Fuzzy Logic
	Fuzzy Logic Controller

	Previous Work on HAS
	Proposed EFAST (Efficient and Fair Adaptive STreaming) Algorithm
	Model and Operation
	Convergence of EFAST

	Evaluation of EFAST Architecture
	Experiments and Results
	 Experiment 1: Performance of FEAST Under Constant Bottleneck with 2 Clients
	 Experiment 2: Performance of FEAST Under Different TEXT Ratios
	 Experiment 3: Performance Comparison Between Simulation and Real-Network
	 Experiment 4: Performance of EFAST Under Variable Bottleneck Link

	Discussion and Comparison with ELASTIC, PANDA and FESTIVE
	 Experiment 5: Performance Comparison Under Constant Bottleneck Link
	 Experiment 6: Performance Comparison with Various Numbers of Clients
	 Experiment 7: Performance Comparison with Different TEXT Ratios

	Conclusion
	REFERENCES

