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ABSTRACT

DIFFERENT TYPES OF MODELLINGS AND THE INFERENCE OF MODEL
PARAMETERS FOR COMPLEX BIOLOGICAL SYSTEMS

AĞRAZ, MELİH
Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Vilda Purutçuoğlu

May 2017, 105 pages

A reaction set that form a system can be modeled mathematically in different ways
such as boolean, ordinary differential equations and stochastic modellings. Among
them the random system is merely taken into account by the stochastic approach that
is based on the known number of molecules in the reactions and if we consider the
behaviour of the system under steady state condition, the modelling can be done via
deterministic methods such as the ordinary differential equation. In this thesis, firstly,
we aim to estimate the model parameters of a realistically complex biochemical sys-
tem that is modelled to describe the steady state behaviour of the system. Among
alternatives, we implement the Gaussian graphical models (GGM) which is one of
the well known probabilistic model in this class. Here initially we develope an alter-
native approach of GGM in nonparametric distribution. For this purpose, we suggest
LMARS (lasso-type multivariate adaptive regression spline) method. Then, we pro-
pose a normalization step called Bernstein polynomials for raw data to improve the
performance of these models. Finally we suggest another alternative of GGM in
parametric class and infer the model parameter via a novel estimation method, called
the MMLE (modified maximum likelihood estimator). We evaluate all over findings
with simulated and real data compute their accuracies as well as computational time
behaviour of the system.

v



Keywords: Gaussian graphical model, Bernstein polynomials, multivariate adaptive
regression spline (MARS), modified maximum likelihood estimator (MMLE)
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ÖZ

KARMAŞIK BİYOLOJİK SİSTEMLER İÇİN FARKLI TÜRLERDE
MODELLEMELER VE MODEL PARAMETRELERLERİNİN ÇIKARIMI

AĞRAZ, MELİH

Doktora, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Vilda Purutçuoğlu

Mayıs 2017 , 105 sayfa

Bir sistem oluşturan boolean, adi diferansiyel denklemler ve stokastik modellemeler
gibi bir dizi reaksiyon matematiksel olarak farklı yollarla modellenebilir. Bunların
arasında rasgele sistemde, reaksiyonlardaki bilinen molekül sayısına dayanan stokas-
tik yaklaşımla dikkate alınır ve sistemin kararlı durum koşulu altında davranışını göz
önüne alırsak, modelleme adi diferansiyel denklem gibi deterministik yöntemlerle
yapılabilir. Bu tezde, sistemin kararlı durum davranışını tanımlamak için modellenen
gerçekçi karmaşık bir biyokimyasal sistemin model parametrelerini tahmin etmeyi
amaçlıyoruz. Alternatifler arasında, bu sınıfta iyi bilinen olasılık modellerinden biri
olan Gauss grafiksel modellerini (GGM) uygulamaktayız. Burada başlangıçta, para-
metrik olmayan dağılımda GGM’e alternatif bir yaklaşım geliştiriyoruz ve bu amaçla
LMARS yöntemini öneriyoruz. Ardından, bu modellerin performansını artırmak için
ham veriler için Bernstein polinomları adı verilen bir normalizasyon adımını öneri-
yoruz. Son olarak, parametrik sınıfta başka bir GGM alternatifi öneriyoruz ve model
parametresini MMLE olarak adlandırılan yeni bir tahmin yöntemi ile tahminliyoruz.
Tüm bulguları simüle edilmiş ve gerçek verilerle değerlendirip, sistemin hesaplama
zamanı yanısıra doğruluklarınıda hesaplıyoruz.

Anahtar Kelimeler: Gauss grafiksel modelleme, Bernstein polinomları, çok değişkenli
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uyarlamalı regresyon splineları (MARS), modifiye edilmiş ençok olabilirlik yakla-
şımı (MMLE)
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CHAPTER 1

INTRODUCTION

In systems biology, the complex structure of an organism can be understood by means

of the interaction of its components. The network is preferred to represent the system

of the underlying interactions. In order to construct the network, the mathematical

modeling is applied as it enables us to predict the future behavior of the structure

and to describe the current relation between their components. The description of the

biochemical activations via networks and the mathematical modelling are very pow-

erful approaches to know the actual manner of the biological procedure and to present

the structure of the complex systems. There are different levels to present biochemi-

cal events. The protein-protein interaction networks and metabolic networks are the

two well-known representations. Here, we deal with the former type of networks

which aims to explain the functional/physical interactions between proteins. This

biological network can be modelled by different techniques under distinct assump-

tions. As examples of such models, we can list Boolean models [68, 120], Gaussian

graphical models (GGM) [77] and stochastic models [59, 149]. In addition, there

are various linear and nonlinear modelling approaches to present the biological sys-

tems. For instance, the modelling via the kinetic logic implements partial, possibly,

linear functions in the representation [25] or the diffusion approximation in stochastic

models performs a nonlinear expression to describe the biological events. All these

approaches that are based on distinct regression functions can be mainly divided into

two parts. These are parametric and nonparametric methods. In this study, we mainly

deal with a parametric model GGM and suggest certain parametric pre-processing

approaches to the raw data of GGM. Then, we propose another parametric inference

method for this model. Later, we develop nonparametric alternatives for GGM too.

1



In the graph theory, the network structure is modelled by the nodes and edges. The

former denotes the elements of the systems which can be proteins, genes or other

species of the system in the protein-protein interaction networks and the latter repre-

sents the interactions between the system’s elements. Hereby, the graphical models

explain such structures under the concept of the conditional independency [148].

The GGM, which is related with the graph theory, is one of the well-known methods

to construct the structure of the network which is a deterministic and undirected statis-

tical model in explaining complex biolochemical networks [148, 130] under the mul-

tivariate normally distributed random variables whose dependency structure is repre-

sented by a graph [34]. GGM assumes that the dataset comes from the p-dimensional

multivariate normal distribution with a mean vector µ and a covariance matrix Σ, and

the interactions in the systems are described by the precision matrix Θ, which is the

inverse of the covariance matrix, i.e., Θ = Σ−1. Hereby, as long as Σ is nonsingular,

a set of nodes and edges that is conditionally independent can be combined to con-

struct a graphical model. This sort of independence is shown via a zero entry in the

precision.

In the estimation of such sparse and undirected graphical models, Meinshaussen and

Bühlmann [93] propose a lasso idea for every variable in the system by using the

others as explanatory variables. In the estimation of the lasso model, an optimization

procedure based on a convex function is performed consecutively for each node in

the graph. On the other hand, the penalty constant which adjusts the sparsity of the

system is chosen via a probability of falsely connecting two or more different con-

nectivity components at very low levels. Accordingly, the zero coefficient indicates

the conditional independence between corresponding genes. From the application of

this model in different dimensional systems, it has been shown that it overperforms

both in terms of the accuracy and the computationally demand regarding the forward

selection of the maximum likelihood estimation (MLE) approach in GGM. Whereas,

while the dimension of the graph increases, there may be the problem of the non-

symmetric estimated precision. Hereby, Friedman et al. [50] suggest a blockwise

coordinate descent method in solving the lasso regression. Additionally, Witten et

al. [150] propose the block update of the precision elements into the lasso model to

get a symmetric precision, and Li and Gui [85] consider the threshold gradient de-
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scent approach (TGDA) to find the entries of the precision by decreasing the time of

calculation and by getting a symmetric matrix in this model. Among these alterna-

tives, TGDA is also implemented in different dimensional networks by comparing the

central processing time (CPU) of the estimation [111]. From the analyses, although

certain promising results are obtained regarding the accuracy and the computational

cost, the calculation is still demanding, in particular, for large systems.

On the other hand, the multivariate adaptive regression splines (MARS) approach is a

well-known statistically nonparametric regression methods that enables us to model

the high dimensional data under nonlinearity [46]. Also, it is a particular type of

optimization techniques [16, 17, 18] in the sense that MARS aims to transform a

non-differentiable problem into a smooth problem [16] by putting binary constrains

for the approximation of the optimal value [18]. Hereby, it uses the gradient based

schemes to solve the smooth and nonsmooth optimization problems [17]. In order to

estimate the model. The forward stage constructs the possibly large model with basis

functions (BFs) and the backward elimination reduces the model complexity to get

the optimal model.

The approximation theory is concerned with the study of how well given functions

can be aproximated by basis functions. In this theory, it is usual to apply the approxi-

mating functions in the form of linear positive operators, such as the Bernstein, Szasz-

Mirakyan polynomials, the Bleiman-Butzer-Hahn (BBH) operator, Meyer-König and

Zeller (MKZ) operator. In biological networks, the complexity implies the large num-

ber of genes in a network whose interactions can be described by the scale-free feature

[14]. Hence, linear positive operators enable us to transform the data in a new range

[19, 89] by using the binomial and poisson distributions. The binomial distribution

is the main distribution to describe the biological activation of any gene by means

of the chemical master equation [151, 59] and the poisson distribution is just a lim-

iting distribution of the binomial density which can be applicable for large systems

[149]. Accordingly, the original data do not loose their biological interpretation when

they are transformed by these polynomials since the suggested transformations are

dependent on the underlying distributions. Hence, suggested transformations of the

data are different from an ordinary standardization of the raw measurements in the

range [0, 1]. Therefore, we propose to perform these two polynomials as a prepro-
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cessing step before any modelling and inference to eliminate batch effects. Because

it is known that observations dependent on chemical master equations (CME) are de-

scribed via the binomial distribution and any variation from these distributions can be

caused by the nuisance effect, rather than the biological sources. On the other hand,

in order to control whether other Bernstein type of operators such as BBH and MKZ

operators [95] show the same advantages, we compare their precisions under GGM

and MARS and we find that the Bernstein polynomials have the highest precision.

In the literature, Bernstein polynomials have been already applied in different ar-

eas. Voronovskaja [137] proves that the convergence of Bernstein polynomial to f(x)

function is bounded on [0, 1] under the large sample size, i.e., n → ∞. Stadtmuller

[123] performs them to approximate the unknown regression functions. Vitale [136]

uses them to produce the smooth density estimates, Tenbusch [129] developes its ap-

plication in nonparametric regression functions, Petrone [109] implements it in a fully

Bayesian setting, and Babu et al. [10] apply this method to approximate bounded and

continuous density functions via its asymptotic properties. These properties are fur-

ther investigated by Ghosal [58], Petrone and Wasserman [109] and Barrientos et al.

[15]. Petrone [108] implements it in a fully Bayesian setting. Besides its implemen-

tation in mathematics, this method is also performed in various types of smoothing

problems in statistics [10], the numerical analyses and the construction of the Bezier

curve in mechanical engineering [20, 21]. Furthermore, Hoshek and Lasser [65] ap-

ply them in computer graphics.

On the other hand, the modified maximum likelihood estimation is first introduced

by Tiku [131, 132] and Tiku and Suresh [133] to overcome the difficulties in the esti-

mation of the maximum likelihood method when the normal equations derived from

the likelihood function have multiple roots and nonlinearity. In this approach, the

likelihood equations are obtained by ordering the variates and then linearized them

by using the first-order Taylor series expansion. Hence, in this study, we propose the

MMLE approach as an alternative of glasso when the states of the systems have the

multivariate student-t distribution. Here, the selection of the student-t, in place of nor-

mality, also gives us the flexibility for non-normal states while its limiting distribution

already covers the normal density.
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There are many ways to explain dependency structure of the random variables. Cop-

ula is one of the efficient method in this field. Mathematically, the copula is a kind of

function which connects the marginals into their multivariate distributions. Statisti-

cally, the copula is used to describe the dependency of the random variables. Copula

first begins with the question of Frechret [44] whose elements is the set of common

distribution functions of two random variables when the marginal distributions are

known. Sklar [122] first describes the copula as the relationship between multivariate

distribution functions and one dimensional margins of this distribution. According to

Fisher (1997), copulas are useful for two reasons. Firstly, they are good functions to

study scale-free measures of dependency and secondly, they can be a starting point

for constructing bivariate distribution families. There are many copula families for

the dependency structure.

In this study, we particularly use the Gaussian copula very often to generate measure-

ments from different joint distribution functions in our analysis. These measurements

are applied to evaluate the performance of suggested models based on MARS, pro-

cessing step dependent on the Bernstein and Bernstein-types of operator and finally

inference of the graphical model via the MMLE approach.

Accordingly, in the organization of the thesis, we present the general idea of the

graphical model, GGM, MARS, our proposed model LMARS, Bernstein operators

and the copulas, which we intensively implement in simulation studies in Section 2.

In Section 3, we present our applications under a wide range of Monte Carlo scenarios

and real biological datasets. Finally, we summarize our outputs and discuss the future

work in Section 4.
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CHAPTER 2

PROPOSED METHOD AND BACKGROUND

This chapter mainly presents the methods which we propose in this thesis and the top-

ics associated with our propose methods. We organize this chapter with six sections.

In Section 2.1, graphical models, Gaussian graphical models (GGM) and the estima-

tion technique of GGM are defined in detail. The proposed methods, i.e., LMARS

method and the development of the modified maximum likelihood estimation, are in-

troduced in Section 2.2 and 2.3, respectively. The bernstein operators, which are used

to smooth the data and are introduced as pre-procesing step in this study, is explained

in Section 2.4. In Section 2.5, we define the copula method and the network structure,

which are used in the data generation of the simulation studies in the application. Fi-

nally, the model selection criteria are explained in Section 2.6 since these values are

used to check the accuracy of all our analyses.

2.1 Graphical Models

Graphical models are the most important part of our thesis study since all proposed

methods are presented as a suggestion to the Gaussian graphical model (GGM) and

improvements in its parameter estimation.

In general, the graph is the mathematical structure of the networks whose graphical

points connect with the lines. In general, the graph (G) can be expressed in pair V

and E, i.e., G = (V,E), in which E represents the elements, known as edge, and

V shows the link between pairs of two elements, known as vertices or nodes. When

(x, y) shows an edge between two nodes, it means that x is adjacent to y and y is

adjacent to x. Therefore, the adjacency matrix becomes important to describe the
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Figure 2.1: Simple representation of a network with 28 nodes via an undirected graph.

graph. The adjacency matrix is and (n× n) square and binary matrix which includes

0 and 1, and if (i, j) entry is 1, it implies that there is a connection between the ith

and the jth nodes, and if there is 0, it refers that there is no connection between two

nodes.

The graphical models [82] as shown in Figure 2.1 for illustration is a popular tool for

the sparse structure and supplies a graphical representation of random variables under

their conditional independencies.

There are two kinds of graph which are mostly used in graphical models. These

graphs are directed and undirected graphes. The directed graph is a graph whose

nodes are oriented with edges and the undirected graph is a set of objects whose

edges are non-directional. These two types of graphes are represented in Figure2.2

and 2.3, respectively.

As stated before, lack of links in the undirected graph leads us to apply the rule of the

conditional independence. Accordingly, when C is given, A and B are conditionally

independent, and that can be represented as A ⊥ B \ C and it means that for each

value of C, A and B are conditionally independent on the distribution of C. In an

example for three nodes A, B and C, it is obvious that A and B are conditionally

independent on C when the structure of A and B is separated by C as seen in Figure

2.4. In gene networks, if two nodes, i.e., genes, are conditionally independent, there

is no edge between two nodes and if is represented with a zero entry in the precision

matrix.
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(a) (b)

Figure 2.2: Representation of (a) an undirected graph and (b) the adjacency matrix of
this graph.

(a) (b)

Figure 2.3: Representation of (a) a directed graph and (b) the adjacency matrix of this
graph.

Figure 2.4: Representation of the conditional independence between A, B and C
nodes for (a) directed and (b) undirected graphs and (c) the independence between
A and B once C is known.

9



2.1.1 Gaussian Graphical Model

The Gaussian graphical model (GGM) is one of the famous undirected modelling

approaches, which shows the graphical interactions over a set of random variables

that represents conditional independencies under the multivariate normal distribution.

GGM is firstly used in the literature under the name of the covariance selection models

by Dempster [34]. But the graphical representation of these models is firstly intro-

duced by Whittaker [148]. Briefly, this modelling is a parametric method in the sense

that the states of the system in every time point are thought as the multivariate normal

distribution. Moreover, it uses the inverse of the covariance matrix, i.e., precision ma-

trix Θ, to explain the relations between genes. In this method, each node, i.e., protein

or species, of the system is regressed by other remaining nodes in such a way that the

coefficients of the regression function indicate the conditionally dependent structure

between the species [85, 125]. Wermuth [147] also shows that the conditional inde-

pendence corresponds to nonzero entries in the precision matrix and the zero entries

in the inverse of the variance-covariance matrix stand for no interaction between the

associated genes. On conclusion from the analyses, it is shown that GGM is suc-

cessful in modelling the genomic interactions and the estimation of these systems can

be applicable by several methods. Yuan and Lin [153] propose a penalized likelihood

method to estimate Θ, Banerjee et al. [12] suggest two new algorithms, namely, block

coordinate descent algorithm and the Nesterov’s first order method. Then, Drton et al.

[39] provide a model selection approach, called SINful, to control the overall error

rate for incorrect edges in the estimated system, Ravikumar et al. [113] describe a

novel method in which the neighborhood of any given node is estimated by a logistic

regression based on the L1-norm, and Augugliaro et al. [7] consider the generalized

linear model to increase the accuracy with a low computational cost when the system

is sparse. Besides these methods, most familiar approaches can be represented as the

methods suggested by Meinshausen and Bühlmann [93] and Friedman et al. [50].

Meinshausen and Bühlmann [93] introduce the NS method within the lasso regres-

sion and Friedman et al. [50] suggest the graphical lasso, shortly glasso, approach

which is based on the penalized likelihood idea with a penalty term λ to conduct the

L1-norm of the regression coefficients β as shown in Equation 2.14.
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The former is simply based on an optimization procedure whose optimality is found

via a probability of falsely connecting two or more different connectivity components

at very low levels. Whereas, it can produce the non-symmetric precision matrix in

the estimation of high dimensional systems. In order to solve the challenge, Witten et

al. [150] suggest the block updating of the system, and Li and Gui [85] propose the

threshold gradient descending method for the estimates of the precision. On the other

hand, the latter applies a block-wise coordinate descent method for solving the lasso

regression fitted to GGM.

GGM is used in variety of fields such as modelling the uncertainty in the macroe-

conomic growth [37], efficiently sampling from the Gaussian-Markov random field

[86], and constructing the gene regulatory network [146].

GGM assumes that the dataset has the multivariate normal distribution and the in-

teractions in the systems are described by the precision matrix, Θ, i.e., Θ = Σ−1.

Therefore in GGM, the multivariate normally distributed nodes can be formulated as

Y = (Y 1, Y 2, ..., Y p) via

Y ∼ N(µ,Σ), (2.1)

where µ is a p-dimensional vector with µ = (µ1, µ2, ..., µp) and Σ is a (p × p)-

dimensional covariance matrix. So the probability distribution function of Y can be

presented by

f(Y ) =
1

(2π)n/2|Σ|1/2
e−

1
2

(Y−µ)
′
Σ−1(Y−µ) (2.2)

in which Y describes a multivariate normally distributed variable, µ refers to a mean

vector and Σ is the variance-covariance matrix as stated beforehand. Finally, |.| de-

notes the determinant of the given matrix. On the other hand, as stated beforehand,

the precision is the inverse of the covariance matrix Σ, denoted by Θ with a (p× p)-

dimensional matrix. Thus, the pairwise dependency between two nodes i and j can

be shown by θi,j as follows.
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Θ = Σ−1 = θij. (2.3)

As the precision matrix consists of partial covariances, its diagonal entries are ob-

tained from θii = 1/var(Y (i)|Y 1, Y 2, . . . , Y i−1, Y i, . . . , Y p) and the partial correla-

tion between j and k, denoted by ρij is defined as

ρij =
−θij√
θiiθij

∀i 6= j, (2.4)

where θij shows the partial correlation between Y i and Y j and var(.) denotes the

variance term in the given random variable. Equation 2.4 means that

(i, j) and (j, i) /∈ E ⇐⇒ Σ−1
i,j = 0 ⇐⇒ ρij = 0.

In gene networks, the number of nodes p is greater than the number of observations

n, i.e., p >> n, that leads to the singularity problem. In other words, the estimated

sample covariance matrix S is not invertible. There are some approaches to estimate

the model parameters of GGM. When the dimension number is less then the number

of observation i.e., p < n, one can estimate θ by the maximum likelihood estimation

(MLE) easily. On the other hand, if n < p, then the singularity problem can occur.

In order to overcome this challenge, the L1-penalized method and the NS with the

lasso approach are the two well-known approaches. The mathematical details of these

techniques are presented as below.

2.1.2 Estimation

2.1.2.1 Maximum Likelihood Estimation

Y = (Y 1, Y 2, ..., Y p) is the multivaraite Gaussian distributed node vector and the

distribuion of f(Y ) is denoted in Equation 2.1. So the likelihood function of this

distribution can be written as,

12



L(Σ|Y1, Y2, . . . , Yn) = f(Y1; Σ)f(Y2; Σ) . . . f(Y p; Σ)

= (2π)−np/2|Σ|−
n
2 exp(−1

2

n∑
i=1

Y
′

i Σ−1Yi).

We can take the logarithm for maximizing the likelihood function by

L(Σ|Yi) = l(Σ|Y ) = −np
2

log(2π)− n

2
log(|Σ|)− 1

2

n∑
i=1

Y
′

i Σ−1Yi.

In the above expression, Y ′i Σ−1Yi is scalar, so we can write Y ′i Σ−1Yi = tr(Y ′i Σ−1Yi)

and we can use properties of the trace matrix via

n∑
i=1

tr(Y
′

i Σ−1Yi) =
n

2
tr(

n∑
i=1

YiY
′
i

n
Σ−1)

=
n

2
tr(SΣ−1),

where S =
∑n

i=1
YiY

′
i

n
and tr(.) is a trace matrix. This equation is written as the

loglikelihood equation by

l(Σ|Y ) = −np
2

log(2π)− n

2
log(|Σ|)− n

2
tr(SΣ−1)

l(Σ|Y ) = −np
2

log(2π)− n

2

[
log(|Σ|) + tr(SΣ−1)

]
.

In these expressions, −np
2

log(2π) and n
2

are constant. Therefore, we maximize the

remaining part on the right hand side via

max
Σ

[
− log(|Σ|)− tr(SΣ−1)

]
. (2.5)

If we use Θ = Σ−1 and the properties of the logarithm in Equation 2.5, then the

function becomes

max
Θ

[
log(|Θ|)− tr(SΘ)

]
. (2.6)
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Harville [62] shows the partial derivation of Equation 2.5 as follows.

∂

∂Θ

[
log(|Θ|)− tr(SΘ)

]
= 0,

(Θ−1)
′ − S ′ = 0,

Θ−1 = S.

Therefore, the maximum likelihood estimation of the precision matrix is calculated

as Θ−1 = S.

2.1.2.2 Shrinkage Method

The ordinary least squares (OLS) method is the basic method of estimation in linear

regression models. For estimating unknown parameters of the model, it uses the

minimization of the residual sum of squares
∑n

i=1(Y −Xβ)2. This equation can be

derived by

β̂ = arg min
β
‖Y −Xβ‖2

2 = arg min
β

(Y −Xβ)
′
(Y −Xβ) (2.7)

and the general β parameter estimation can be derived by β̂ = (X
′
X)−1X

′
Y . Finding

the parameters by the OLS method is easy. But when there is a singularity problem,

OLS can not be applicable. The shrinkage method is suggested to solve this problem.

Hence, the OLS estimates can be replaced with a fairly smaller equality β̃ by

β̃ =
1

1 + λ
β̂ (2.8)

and the minimized penalized sum of square (MPSS) can be presented via

β̃ = ‖Y −Xβ‖2
2 + λ‖β‖2

2. (2.9)

The solution of this MPSS equation can be described written as

β̃ = (X
′
X + λIp)

−1X
′
Y, (2.10)
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where the parameter (0 ≥ λ) controls the shrinkage. If λ = 0, MPSS turns to OLS

and if λ is very big, MPSS can lead to an empty or a null model. The underlying

regression, called the ridge regression, does not perform properly when the system

is sparse. To handle this problem, some approaches are developed such as the least

absolute shrinkage and the selection operator (LASSO) [130], the smoothly clipped

absolute deviation (SCAD) [42], elastic net [159] and the NS method [93].

2.1.2.3 The Least Absolute Shrinkage Approach (LASSO)

Let us assume that Y is a vector and all the observed measurements are contained in

Y . So a regression model can be constructed between a response variable Y p and the

explanatory variables Y −p. Hereby, the model is described as

Y p = Y −pβ + ε. (2.11)

In this expression, ε is the error term which has a normal distribution with zero

mean and β is the regression coefficient. Thus, the mean vector µ and the variance-

covariance matrix Σ of the model in Equation 2.11 can be shown by

µ =

 µ−p

µp

 and Σ =

 Σ−p,p σ−p,p

σ−p,p σp,p

 , (2.12)

respectively. Here, µ−p represent the mean vector of all nodes except the pth node,

Σ−p,p is the (p − 1) × (p − 1)-dimensional variance-covariance matrix of all nodes

except the pth node, σ−p,p refers to a (p − 1)-dimensional vector, and σp,p is the

covariance value of the pth node. Interestingly, in Equation 2.11, there is a relation

between β and the precision matrix Θ which is formalized by

β = −Θ−p,p/Θp,p. (2.13)

In Equation2.13, the estimated interaction between two nodes in a system is explained

by the associated entries of the precision matrix. In this expression, Y p and Y j (j =
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1, . . . , p) are conditionally independent when β = 0 and the optimal estimate of β is

defined via

β̂(λ) = arg min
β

{‖Y − Y −pβ‖2
2

n
+ λ‖β‖1

}
. (2.14)

In Equation 2.14, || · ||11 and || · ||22 stand for the L1-norm and the L2-norm of the given

values, respectively. As seen in the objective function of β, the estimated parame-

ters can be found by different optimization methods under the high dimensional and

sparse θ.

2.1.2.4 Graphical Lasso (L1-penalized Method)

One of the efficient ways to estimate a sparse and symmetric matrix Θ is the graphical

lasso approach (glasso) which is introduced by Friedman et al. [50]. With respect

to the Lagrangian dual form, the problem is the maximization of the loglikelihood

function with respect to the nonnegative matrix as follows.

max
Θ

(
log(|Θ|)− tr(SΘ)

)
, (2.15)

where S = XX
′
/n is an estimated var-covariance matrix. Yuan and Lin [153] show

that instead of maximizing Equation 2.15, the penalized loglikelihood function can

be maximized via

max
Θ

{
log(|Θ|)− tr(SΘ)− λ||Θ||1

}
(2.16)

in which tr(.) denotes the trace matrix as used before. ||Θ||1 is the L1-norm that is the

summation of the absolute values of the entries in the precision matrix. According to

the Karush-Kuhn-Tucker condition [150] to maximize Θ, Equation 2.16 must provide

the following equation.

Θ−1 − S − λΓ(Θ) = 0, (2.17)
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where Γ(Θ) shows the subgradient of |Θ| which means if Θij > 0, Γ(Θi,j) equivalent

to 1. If Θij < 0, Γ(Θi,j) sets to −1 and Θij = 0.

A sufficient condition for solving the graphical lasso is to block the diagonal matrix

with blocks if the inequality Sii′ < λ is accomplished for all i ∈ Ck, i′ ∈ Ck′ and

k 6= k
′ , in which C1, C2, ..., Ck satisfies a partition of p. Furthermore, Θ̂ is a block

diagonal matrix with k blocks by

Θ̂ =


Θ1

Θ2

. . .

Θk

 .

Here, the kth block of Θ̂ satisfies Equation 2.15 and Θ̃ is estimated. From the findings,

it is seen that the blocking idea is computationally efficient in inference.

2.1.2.5 Neighborhood Selection with the Lasso Approach

A popular alternative way to overcome the underlying singularity of the variance-

covariance matrix is to apply the neighborhood selection (NS) with the lasso ap-

proach [93]. This method is computationally attractive for sparse and high dimen-

sional graphes.

The NS method is a sub-problem of the covariance selection. If Φ is a set of nodes, the

neighborhood of nep of the node p ∈ Φ is the smallest subset of Φ\{p}, which denotes

the set of nodes except the pth node. So all variables Y nep in the neighborhood, Y p is

conditionally independent on all remaining variables. The neighborhoods of the node

p consist of the node b ∈ Φ \ {p} so that (p, b) ∈ E when E defines the set of edges.

By this way, this method is transformed to the standard regression problem and it is

efficiently solved by LASSO approach [130]. Hereby, the lasso estimate of Θ, i.e., Θ̂,

for the pth node and under the penalty constant λ is given by
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Θ̂p,λ = argmin

(
||Y p − YΘ||22 + λp||Θ||1

)
, (2.18)

where ||Θ||1 =
∑

b∈Φ(n)

|Θb| is the L1-norm of the coefficient vector and ||.||22 shows the

L2-norm . But the solution of Equation 2.18 is not unique. Because each selection of

the λ penalty determines the neighborhood nep of node p ∈ Φ(n).

2.2 Multivariate Adaptive Regression Splines and Proposed Method LMARS

Multivariate adaptive regression splines (MARS) is used to estimate the elements of

the precision matrix in the proposed method, which we call as LMARS. Before de-

scribing the method which we suggest, let us explain the spline functions and MARS.

2.2.0.1 Spline Functions

The function obtained by combining polynomial piecewise linear or non-linear func-

tions that satisfy certain smoothness conditions is called as the spline functions. If

the smoothness is based on a constant entry, it is called as the spline of degree “0".

But if it is generated by a linear equation, then it is named as the spline of degree “1".

A simple example of the spline function for 0 and 1 is seen in Figures 2.5 and 2.6,

respectively.

Figure 2.5: A 0-degree spline of 5 knots.
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Figure 2.6: A 1-degree spline of 6 knots.

In Figures 2.5-2.6, we represent those two most common splines types for 5 and 6

knots, in order. Hereby, if ti (t1, t2, . . . , tn) is the knot and Si (S1, S2, . . . , Sn) refers

to the spline functions, the piecewise functions based on splines can be written as

f(n) =



S0(x) = a0x+ b, if x ∈ [t0, t1)

S1(x) = a1x+ b, if x ∈ [t1, t2)

S2(x) = a2x+ b, if x ∈ [t2, t3)

...

Sn(x) = anx+ b, if x ∈ [tn−1, tn)

in which S(x) is called as the piecewise linear knot.

2.2.1 Multivariate Adaptive Regression Splines

The multivariate adaptive regression splines (MARS) [47], which explains the re-

lation between dependent and independent variables without any assumption have

growing applications in many areas of the science over the last few years. As a de-

velopment of the statistical methodology in this area, the projection pursuit method

[46, 48] and the univariate additive version of MARS [49] are intensively studied by

Friedman [49]. After the development of MARS, it is studied by many researchers

since it creates an adaptable model for the high-dimensional, non-linear and highly-

correlated data by introducing piecewise linear regressions. Psichogios et al. [110],

Kuhnert and McClure [79] apply MARS as a nonparametric method, Chen [27] sug-
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gests quintic function to smooth truncated linear functions, Bakin et al. [11] use

second order B-splines except the truncated functions. Munoz and Felicisimo [99]

show that MARS combines the linear regression, truncated basis function and binary

partitioning to construct the model. Lethwick et al. [84] explain that the predictor

variable is divided into piecewise linear functions to describe the relation between

dependent and independent variable. Tsai and Chan [135] present a more robust im-

plementation of MARS to develop the stopping rule for the automatic detection of the

spline functions in the optimal model. Then, Shih [119] proposes a convex version of

MARS to reconstruct the basis functions, Hastie et al. [63] show that MARS is a very

convenient modelling technique for high dimensional data. Recently, Weber et al.

[144] propose a new method, namely CMARS, which performs a penalized residual

sum of squares for the MARS backward algorithm.

The regression method is a statistical modelling technique which defines the relation

between dependent (y) and independent (x) variables. Here, the linear regression

method is applied to the dataset if the interrelationships between parameters are lin-

ear. On the other hand, the nonlinear regression method is implemented to explain

nonlinear parametric relations between dependent and independent variables. Thus,

the classical nonparametric model can be described as the following structure.

yi = f(β, x
′

i) + ε, (2.19)

where β is the unknown model parameter and x stands for the independent variable.

Moreover, f denotes an unknown functional form, and ε denotes the error terms.

Accordingly, the MARS method affords to proximate the nonlinear functions of f by

using piecewise linear basis elements, known as basis functions (BFs) [46]. BFs are

used to build the model for each variable (xij) by the possible t value as a univariate

knot and take a constant or a hinge function. Thus, the form of BFs can be shown as

(x− t)+ and (t− x)+ in which x is an input variable on the positive side “ + ”. So

(x− t)+ =

 x− t if x > t

0 otherwise
, (t− x)+ =

 t− x if x < t

0 otherwise
. (2.20)
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Figure 2.7: Simple representation of the smoothing method for the curvature structure
via BFs of MARS with t knots.

In Equation 2.20, t is a single knot taken from the dataset simply shown in Figure 2.7.

MARS can produce two-piece linear models as shown in Figure 2.7 and 2.8 with such

BFs. Figure 2.7 shows a mirrored pair, where each function is created piecewisely

linear for the knot at the value 4 on the t-axis. These two functions are called the

reflected pairs. Then this dataset can be modelled as Equation 2.21 below.

Y = c0 + c1 ×max(0, X − 4) + c2 ×max(X − 4, 0) (2.21)

In general, MARS can model the nonlinearity better than the linear regression model.

The difference can be seen in Figure 2.8. In this figure, the dashed red dots show the

linear regression and the black line shows the MARS method fitted on the same data.

Here, MARS explains the data via two lines and the linear model describes them by

only one linear line. As seen from Figure 2.8, the MARS model fits the nonlinearity

better by using piecewise linear BFs than the linear regression model. The purpose of

these piecewise linearities is to construct the reflected pairs for every observed value

xij . Therefore, BFs under (i = 1, 2, . . . , N ; j = 1, 2, . . . , p) is defined as
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Figure 2.8: Comparison of the linear regression method and MARS on the same data.

C =

{
(Xj − t)+, (t−Xj)+}|t ∈ {x1,j, x2,j, . . . , xN,j, j ∈ {1, 2, . . . , p}

}
, (2.22)

where N denotes the number of observations and p shows the dimension of the input

variables. If all of the input values are well-defined, we can construct 2Np basis

functions.

The general method to produce the spline fitting in high dimensional systems is to

use basis functions as tensor products of univariate spline functions. Hence, the mul-

tivariate spline BFs which can be seen in Equation 2.23 are performed as themth BFs

that are tensor products of the univariate spline functions.

Bm(x) =
Km∏
k=1

(skm(xv(km) − tkm))q+, (2.23)

in which Km denotes the complete number of truncated linear functions in BF, skm

takes the value ∓1, xv(km) describes the input variables, and q is the order of splines.

Moreover, tkm refers to the corresponding knot value and indicates the (right/left)

sense of the combined step function. Furthermore, v(km) identifies the predictor

variable and tkm substitutes for values on the corresponding variable. Finally, (.)+
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indicates the partial function as described in Equation 2.20. If we adapt the MARS

example in Figure 2.7 to Equation 2.23, t can take the value 4 and q can take 1. Ac-

cordingly, the construction of the modelling strategy is same as the forward stepwise

linear regression. But different from this model, the functions in the C set are admit-

ted to be used in MARS, instead of the original inputs. Therefore, the MARS model

is represented by

f(x) = c0 +
M∑
m=1

cmBm(X) + ε, (2.24)

where Bm(x) is a function of C as shown in Equation 2.22, X = (X1, X2, ..., Xp)
′ ,

c0 presents the intercepts, cms are the regression coefficient for each basis function,

and it is estimated by minimizing the residual sum of squares in the linear regression

model. Moreover,M denotes the number of basis functions and finally, ε corresponds

to the uncorrelated random error term with a zero mean and an unknown constant

variance. BFs can be described as the following forms:

1. The constant function, B1 = 1.

2. BFs with the form B2 = X , B3 = (x− t1)+, B4 = (x− t2)+.

3. BFs with the interaction effect B5 = (x− t3)+ × (x− t4)+.

The ultimate goal to construct the model produces a minimum number of BFs. To

accomplish this, MARS performs both the forward selection and the backward elim-

ination approach [46]:

1. In the forward selection, BFs are attached to the model and the largest model

is obtained. Here, the system starts with a constant BF. Then, all possible BFs

are attached to the model. Later, a possible large model that overfits the data

is build. The model becomes full when M is maximum (Mmax). At the end of

this procedure, the model is overfitted and the backward elimination procedure

is applied.

2. In the backward elimination, the method is reversed and the model is refined

by reducing BFs that have no effects in the accuracy of the model. Here, the

generalized cross validation (GCV) is actual backward fitting criterion for the
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model selection [30] and the modified generalized cross validation (GCV∗) is

used in the MARS method.

Friedman [47] suggests to perform the underlying modified version of the form of the

generalized cross validation criterion (GCV∗) as denoted in Equation 2.25 in order to

choose the best model. GCV∗ produces the best fitted model f̂λ of each size and λ is

generated as the final step of the backward method.

GCV∗(λ) =

∑N
i=1(yi − f̂λ(xi))2

(1−M(λ)/N)2
, (2.25)

where N represents the number of observations and M(λ) is the effective number of

parameters. In this equation, M(λ) is found via M(λ) = r + cK in which r refers

to the number of linear independent basis functions, and K describes the number of

selected knots during the forward stage. Additionally, c is the cost in the optimization

of BF and the smoothing parameter of the model is generally taken as c = 3. How-

ever, the model is restricted to be additive on c = 2 [63]. Finally, y and f̂λ show the

response variable and the estimated f with the data y, respectively.

2.2.2 Development of LMARS

We can explain this system with an example. Assume that we have a system with

4 nodes and each node in this system is estimated by the following sets of lasso

equations without interactions in Table 2.1.

Table 2.1: Representation of a system with 4 nodes without interactions by LMARS.

Description of System Lasso Equations
LMARS y1 = 2y2

without interactions y2 = y1 + 5.6y4

y3 = 4.1 + 5y2

In the LMARS model without interactions, as the alternative of GGM, we construct

a regression model for each node against all remaining nodes similar to the lasso re-

gression as shown in Equation 2.11 and main effects are selected to show the relation

between two genes. In Table 2.1 first row, y1 is used as a response and the others
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(y2, y3, y4) as explanatory variables, and then, the model is constructed and the sig-

nificant coefficient is taken, which is only y2 in or toy example in Table 2.1. In this

example, it means that y1 has a relation with y2. Finally, the binary adjacency matrix

is obtained as seen below.

Θwoi =


1 1 0 0

1 1 1 1

0 1 1 0

0 1 0 1

 .

Then, the graphical representation of this matrix, Θwoi, can be drawn as in Figure 2.9.

Figure 2.9: Estimated network for a system with 4 genes represented in Table 2.1 by
the LMARS without interaction model.

In the development of LMARS, when we compare the performance of LMARS and

GGM, we construct the MARS model similar to the lasso regression as shown in

Equation 2.11. Therefore, we call this model as the lasso-based MARS, shortly

LMARS, model. Accordingly, in order to detect links of a selected gene, we con-

sider that this gene behaves as the predictor and the remainings are accepted as the

explanatory variables. On the other side, the mean and the variance of the predicted

gene given the rest can be written as the conditional mean and the variance, respec-

tively [52].

Moreover, the mean vector and the covariance matrix of the system can be partitioned

as presented in Equation 2.12, resulting in the same expression in Equation 2.13 for

the regression coefficients of the MARS model. The calculation steps of the LMARS
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method used in this study can be also listed as below:

1. Construct the MARS model which contains only the main effects for each node

against all remaining nodes as in Equation 2.11.

2. Apply the forward and backward steps of MARS, respectively.

3. Choose the best model which has the highest GCV.

4. Take significant regression coefficients and consider that there is a relation be-

tween genes as the predictor and significant covariates.

5. Construct the adjacency matrix where 1 refers to a relationship and 0 describes

no interaction between the pairs of genes.

6. Repeat the steps 1 - 5 for all nodes.

7. Construct the adjacency matrix, separately.

8. Compare the estimated adjacency matrix with the true binary precision matrix

for every cell.

9. Compute the accuracy measures.

2.2.3 LMARS with Interaction Effect

In this work, we enlarge the underlying LMARS model by adding the interaction ef-

fects of the systems’ elements. In LMARS, as the alternative of GGM, we construct a

regression model for every node against all other nodes similar to the lasso regression

as explained in Subsection 2.2.2. But, we also include the second-order interaction

terms in this model due to the fact that its physical structure can be thought as the

feed-forward loop in the biological networks [4]. For example, assume that we have

a system with 4 nodes and each node in this system is estimated by the following sets

of lasso equations without interactions and with interactions by LMARS in Table 2.2.

Then, if we describe these sets of equations via the estimated edges in the system, we

can report that the first node y1 has connections with node 2, y2 has edges with nodes

1 and 4, y3 is autoregulated and y4 is bounded with nodes 1 and 2 when the interaction
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Table 2.2: Representation of a system with 4 nodes without and with interactions by
LMARS.

Description of System Lasso Equations
LMARS y1 = 2y2

without interactions y2 = y1 + y4

y3 = 4.5y2

LMARS y1 = y2 + 2y3

with interactions y2 = 3y3 + y4

y3 = y2 × y4

y4 = y1 × 2y3

effect is not added into the model. Whereas, if it is included to the model, then, y1 has

connections with y2, y3 and y4, y2 is connected with y3 and y4, y3 has edges with y2

and y4, and finally, y4 is bounded with y1 and y3. Thereby, the associated adjacency

matrix of LMARS without interactions (Θwoi) and LMARS with interactions (Θwi)

can be stated as below:

Θwoi =


1 1 0 0

1 1 1 1

0 1 1 0

0 1 0 1

 and Θwi =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

where the columns and the rows show the name of the genes from 1 to 4, sequentially.

In other words, we consider that the elements of interactions also imply the pairwise

relations between each other and between the response, separately. We also represent

the graphical view of these matrices in Figure 2.10.
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(a) (b)

Figure 2.10: Estimated network for a system with 4 genes represented in Table 2.2 by
LMARS (a) without interaction and (b) with interaction effects.

2.3 Modified Maximum-Likelihood Estimation

Maximum-likelihood estimation (MLE) is the most commonly used method in the

parameter estimation. The modified maximum-likelihood estimation (MMLE), is

another parameter estimation method which is asymptotically equivalent to MLE

[131, 132, 133]. In this thesis, after obtaining successful results from the LMARS

method, we focus on the MMLE method, where we can estimate the open form of the

precision matrix by a likelihood–based approach.

Let consider a likelihood equation to estimate an unknown location parameter θ and

think that we already compute its partial derivative with respect to each model param-

eter. Then we can get the following expression in general.

dylnL
dθ

=
1

σ

n∑
i=1

g(zi) = 0, for zi =
yi − θ
σ

, (2.26)

where InL denotes the log-likelihood and σ represents the scale parameter for the

random sample yi (i = 1, 2, . . . , n). Accordingly, zi implies the standardized form of

yi . Thus, if we assume that σ is known, we can arrange yi (1 < i < n) as the order

statistics. Accepting that t(i) = E(z(i)) is the expected value of the ith standardized
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order variate zi (1 < i < n), we can expand g(zi) as a first-order Taylor series around

t(i) and realize that g(z) in the interval a < z < b is approximately linear [131].

Then, we can obtain a linear approximation of Equation 2.26 from the Taylor series

expansion via

g(zi) = g(ti) + (zi − ti)
dg(z)

dz

' αi + βizi for 1 < i < n

(2.27)

where βi = d
dzi
g(z) and αi = g(t(i))− βit(i).

If g(z) in Equation 2.27 is bounded and z(i) (1 < i < n) tends to its expected value

t(i), then

g(zi)− (αi + βizi) (2.28)

tends to zero as n approaches to infinity. Hence, the incooperation of Equation 2.26

and 2.27 gives the modified maximum-likelihood equation whose new partial deriva-

tive can be defined as belows:

dylnL
dθ

=
1

σ

n∑
i=1

(αi + βizi) = 0. (2.29)

Since Equation 2.29 is linear in θ, it has an explicit and unique solution, called the

modified maximum-likelihood estimator (MML) as presented in Equation 2.30.

θ̂ =

σ
n∑
i=1

αi +
n∑
i=1

βiyi

n
for m =

n∑
i=1

βi. (2.30)

In Equation 2.30, αi and βi stand for the nonlinear functions repeated in the original

partial derivation of the log-likelihood function and is described by the order statistics.

Common benefit of this estimation method is seen when the random variable has a

non-normal density such as long-tailed symmetric or skewed distributions. In this

study, we describe it under the long-tailed symmetric (LTS) distribution since LTS is
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subset of the heavy-tailed distributions whose tails decrease slower than exponential

distributions and the exponential distributional families are generally known as the

tails decrease suddenly because of the e−x function. Moreover, these distributions

cover the normal or Gaussian distribution, which is the most applicable distribution

in systems biology as in GGM, apart from Cauchy and student-t distributions. On the

other side, short-tailed distributions (STD) are other sorts of distributions whose tails

decrease fast, but they are not cover the normal density. Accordingly, the LTS den-

sity can be presented as a scaled form via the student-t distribution at the degrees of

freedom (2p− 1)as shown in Equation2.32 . Hereby, considering that our parametric

model for the biological systems has the following structure,

Yi = β0 +

q∑
i=1

βiY(−i) + εi, (2.31)

where β0 is the intercept, βi shows the slope of the ith state, Yi denotes the state

of the ith node which represents the response in the system, and Y(−i) describes the

remaining nodes demonstrating the explanatory variable in the equation. Finally, εi

stands for the error terms that come from the independent and identically distributed

long-tailed symmetric distribution having the following expression for the univariate

dimension:

f(x) =
1

σ
√
kβ(1

2
, p− 1

2
)
(1 +

x2

kσ2
)−p (2.32)

in which k = 2p − 3 (p ≥ 2) and for p = ∞, f(x) reduces to the standard normal

distribution, i.e., N(0, 1) while p represents the shape parameter which adjusts the

distribution from Cauchy to normal. Moreover, β(a, b) = Γ(a)Γ(b)/Γ(a + b) when

E(x) = 0 and V (x) = σ2 as the zero mean and constant variance. But, in the

application of MMLE we construct the model as, Yi = βYl+εi (l = i+1, i+2, . . . , n

and i = 1, 2, . . . , n also i < l) . Thus, for a random sample yi, the likelihood function

can be proportionally written as

L =∝
( 1

σ

)N a∏
i=1

n∏
j=1

{
1 +

zi,j
k

}−p
, (2.33)
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where N is the total sample size, i.e., N = a.n in our equation, zij = εi/σ (i =

1, 2, . . . , a) as the indicator of the number of random variable in which ei is the error

term, and denotes ε = Yi − βYl and finally, j = 1, 2, . . . , n as the indicator of the

number of the observation for each random variable. Then, if we take the logarithm

of this likelihood function, we can obtain

lnL =∝ −N log(−σ)− p
N∑
i=1

ln(1 +
z2

k
) (2.34)

as the equivalent of Equation 2.33. Later, if the derivative is taken for the unknown

parameter, let’s say σ, then the partial derivative of Equation 2.34 with respect to σ

can be presented by

∂lnL

∂σ
=
−n
σ

+
2p

kσ

N∑
i=1

zig(zi) = 0 (2.35)

in which g(zi) = z/(1+z2/k). Here, Equation 2.35 can be computationally challeng-

ing as it has multiple roots due to its nonlinearity. In order to unravel this problem,

MMLE proposes to use the order statistics and the first order Taylor series expan-

sion. Accordingly, in the calculation, firstly, the random variables are ordered as

yi(1) ≤ yi(2)≤ . . . ≤ yi(n) (1 ≤ i ≤ a). Then, zi is replaced with zi(j) by applying the

following linear approximation:

g(zi(j)) ' g(t(i)) + [zi(j)−t(i) ]
{∂g(z)

∂z

}
= α + βzi(j),

(2.36)

where E(zi) = ti. In Equation 2.36, the first two terms of the Taylor series expan-

sion are performed to linearize the nonlinearity in Equation 2.35 and to obtain the

following expressions of MMLE.

∂lnL
∂βj

' 2p

nσ

∑
yi(αi + βi)zi(j),

1

n

∂ lnL
∂σ

' − 1

σ
+

2p

nkσ

∑
zi(αi + βizi(j)),

(2.37)
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in which αi = (2/k)t2i /(1 + (1/k)t2i ) and βi = 1/(1 + (1/k)t2i ) . Hereby, the explicit

solution of Equation 2.37, as the MMLE estimator of σ is found as

σ̂ =
B +

√
B2 + 4NC

2N
, (2.38)

where

B =
a∑
i=1

Bi,

C =
a∑
i=1

Ci, Bi =
2p

k
αi(yi − ȳ[.]iK(y[i] − ȳ[.])),

C =
2p

k

∑
βi(y(i) − ȳ[.] −Kyi − ȳ[.])

2.

2.3.1 Development of Modified Maximum-Likelihood Estimation

In MMLE, similar to the lasso-based idea in the estimation of GGM, regression model

is constructed. Y is assumed as the location-scale type multivariate distribution in

this model. Also, for any pair of (Yj, Yl) (2 ≤ j ≤ q, j + 1 ≤ l ≤ n and j < l),

the random variables of Y, have the bivariate student-t distribution with v degrees of

freedom [70]. Islam [70] proves that the q-variate location-scale type multivariate

distribution with Γ location vector and Ω scale matrix can be pairwisely written as

the bivariate t distribution. In that case, we biologically examine the relation of the

network pairwisely. This structure is also the most common relation type in biological

network. By this way, we divide the matrix Θ as a binary form by selecting as the

response variable and Yl as the explanatory variable according to Equation 2.39 as

reduced model of Equation 2.11. Hence, the model is constructed as the following

formula for all pairwise interactions.

Yj = βYl + εj. (2.39)

In Equation 2.39, similar to Equation 2.11, β is the regression coefficient and εj

presents the error term of the jth node. After the model construction, the variance of
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the model, σ(j,k), is calculated. Then, this process is repeated sequentially until all

genes are regressed on all the corresponding genes as the lasso regression. Later, we

take the symmetry of these estimated entries to get the symmetric covariance-variance

matrix Σ. Finally, in order to infer the precision matrix Θ, we compute the inverse

of this estimated Σ. On the other hand, in the construction of the adjacency matrix

from the estimated Θ, we take different threshold values q which means that if the

coefficients are less than q, the elements are set to 0, otherwise, they are taken as 1.

In this study, we fix q to a small entry in order to not loose any interaction in such

sparse scale-free networks. Therefore, we arbitrarily set q to q = 0.01 for both GGM

and LTS graphical model obtained by MMLE.

2.4 Bernstein Operators

The biological networks are complex and this complexity causes lack of the effective

solution on the estimation of parameters in the network structure. Therefore, we

propose the Bernstein operators as a preprocessing step before any modelling and

inference to eliminate batch effect. The mathematical details of these operators are

presented in the following subsections.

2.4.1 Bernstein Polynomials

The Bernstein polynomials [19] are simply the algebraic expressions which can define

a continuous function on the closed interval by performing the Weierstrass approxi-

mation theorem [60].

Weierstrass Theorem[145] Let f(x) be a real valued continuous function for [a, b],

i.e., f ∈ C[a, b]. Then, there exists a sequence of the nth degree polynomial, Pn(x),

which converges to f(x) for every δ > 0 such that the norm between f(x) and Pn(x)

is bounded via δ as the following inequality.

|f(x)− Pn(x)| < δ, (2.40)

when n goes to infinity.
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There are many proofs about the Weierstrass theorem, but one of the most famous

proofs is demonstrated by Sergei Natanovich Bernstein[19] by introducing the Bern-

stein polynomials.

Accordingly, the Bernstein polynomials have three major features, namely, the prop-

erty of symmetry, positivity and the probability of the kernel. The first characteristic,

i.e., the feature of symmetry, presents that Bi,n(x) = Bn−i,n while i = 1, . . . , n.

On the other hand, the second feature, i.e., positivity, means that Bi,n(x) ≥ 0 and

finally, the third one, i.e., the probability of kernel, implies
∑n

i=0Bi,n(x) = 1 when

0 ≤ x ≤ 1. In all these expressions, Bi,n indicates the expression below.

Bi,n(x) =

(
n

i

)
xi(1− x)n−i (2.41)

and is called as the Bernstein kernel for a random variable x having n observations .

Hence assuming that f is a function over the range C[a, b], f can be uniformly ap-

proximated by polynomials. Hereby, the Bernstein polynomials are one of the most

well-known polynomials with a real-valued function f bounded on the interval [0, 1]

by the following equation.

Bk:n(f ; 0) =
n∑
k=0

f

(
n

k

)
bk,n(t) (2.42)

in which n is the degree of the Bernstein polynomials. f
(
n
k

)
is equivalent to the

approximation of the values for the function f at points k (k = 0, . . . , n) in the

domain of f implying that any interval [a, b] can be transformed into the interval [0, 1].

Finally, bk,n(t) is the Bernstein basis with the degree n on the parameter t ∈ [0, 1] via

bk,n(t) =

(
n

k

)
(1− t)n−ktk. (2.43)

In Equation 2.43,
(
n
k

)
is a binomial coefficient that can be obtained from the Pascals

triangle. For n ≥ 0, there are (n + 1) amounts of basis polynomials. For example,
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there are 4 basis functions for n = 3 which can be listed as:

b0,3 = (1− x)3, b1,3 = 3x(1− x)3, b2,3 = 3x2(1− x)3 and b0,3 = x3.

Thus, the Bernstein basis polynomials of the first degree can be seen as

b0,0 = 1, b0,1 = 1− x and b1,1 = 1− x.

Accordingly, the Bernstein basis polynomials of the second degree can be presented

as below

b0,2 = (1− x)2, b1,2 = 2x(1− x) and b2,2 = x2.

Hence, the first ordered Bernstein polynomial basis function can be mapped by Figure

2.11.

Figure 2.11: Bernstein basis function for the first order.

The second ordered Bernstein polynomial basis function can be mapped by Figure

2.12.
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Figure 2.12: Bernstein basis function for the second order.

Furthermore, the Bernstein polynomial approximates to a given function f(t) in such

a way that f(t) is always at least as smooth as f(t) is allocated uniformly in [0, 1] for

a continuous f(x) on the range [0, 1] as shown in Equation 2.44.

lim
n→∞

Bn(x) = f(x). (2.44)

2.4.2 Szász-Mirakyan Operator

The Szász-Mirakyan operator [127], as the generalization of the Bernstein opera-

tor for the function on the infinite interval [0,∞), is studied comprehensively by

Cheney and Sharma [29] who show that if f is convex, the sequence of classical

Szász-Mirakyan operators decreases as n. Rempulska and Graczyk [114] introduce

the generalized Szász-Mirakyan operator on two varibles, Mahmudov [91] proves

that the rate of aprroximation by the q-Szász operator, Walczak [139] introduces that

specific modification of the Szász-Mirakyan operator, Aral and Gupta [5] show that

Szász-Mirakyan operators are convex if the function is convex, and finally, Butzer

and Karsli [26] estimates the rate of convergence on the function of Szász-Mirakyan

operator.

The Szász-Mirakyan operator is defined by
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Sn(f ;x) = e−nx
∞∑
k=0

f

(
N

k

)
(nx)k

k!
, (2.45)

where x ∈ [0,∞) and the function f is presented in an infinite interval R+ = [0,∞).

These operators are the generalization of the Bernstein polynomials since the Szász-

Mirakyan operators show the properties of the Bernstein Operators. Szász-Mirakyan

operators converges to the function f which is continuous in the closed range of [0, A]

(A ∈ R+) and which is also limited to all positive half-axes via

lim
n→∞

Sn(x) = f(x), (2.46)

in which x ∈ [0, A]. Then, the basis of the Szász-Mirakyan operator is defined as in

Equation 2.47 by

Pi,n(x) = e−nx
(nx)i

i!
, (2.47)

in which Pi,n is known as the probability of the Poisson distribution with a mean nx.

2.4.3 Bleiman-Butzer-Hahn Operator

The Bleiman-Butzer-Hahn (BBH) operator [23] which is defined by the Bernstein-

type can be represented as below for the nth degree with the k basis polynomials for

the value x.

Ln(f ;x) =
1

(1 + x)n

n∑
k=0

(
n

k

)
xkf

(
k

n+ 1− k

)
. (2.48)

For Equation 2.48, the following inequality is also satisfied.

|Ln(f ;x)| ≤ ||f ||CB
(f ∈ CB[0,∞)). (2.49)

Equation 2.49 implies that the BBH operator is linear and bounded for x ∈ [0,∞)

when (1 + x)−n
n∑
k=0

(
n
k

)
xk = 1. Here, CB[0,∞) is the class of the real-valued func-

tion f defined within the interval [0,∞) and for all functions of f in this interval,

limLn(f ;x) = f(x) for each x ∈ [0,∞) when n→∞.
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Additionally, the property of the uniform approximation of the BBH operator is stud-

ied when f belongs to C[0,∞] for the continuous function on [0,∞) [134]. Also,

Mercer [94] independently derives the Voronovskaya-type theorem which gives an

asymptotic error term for the Bernstein polynomials for the functions which are twice

differentiable as follows.

lim
n→∞

n((Ln(f ;x)− f(x)) =
x(1 + x)2

2
f
′′
(x) (2.50)

for all f ∈ C2[0,∞) with f(x) = O(x) when x → ∞, and f ′′(x) is the second

derivative of the function.

Abel [1] extends this study by giving the complete asymptotic expansion for the BBH

operator as the following form.

Ln(f ;x) = f(x) +
∞∑
k=1

ck(f ;x)(n+ 1)−k for n→∞. (2.51)

Here, ck represents all the coefficients from k = 0 to k = n.

The Szasz operator is the limiting operator of BBH [75] andLn(f ;x) ≥ Ln+1(f ;x) ≥
. . . ≥ f(x) if f is convex [76] . Ln(f ;x) is convex itself if f is a non-increasing

convex function.

Jayasri and Sitaraman [71] determine that Ln is a pointwise approximation proce-

dure in the largest subclass of C[0,∞) for the Bernstein-type of operator. Then, the

following functional class is introduced in the study of Hermann [64] via

H = {f ∈ C[0,∞) : log(|f(x)|+ 1) = o(x)}. (2.52)

He proves that if f belongs to H, then for each x > 0 and x → ∞, the pointwise

convergence is limn→∞ Lnf = f on [0,∞). Moreover, for some a > 0, f(x) = eax,

then limx→∞ Ln(f ;x) =∞. Also, the operator Ln is arisen from the random variable

with n observations, Xn, which has the Bernoulli distribution as below:

P ({Xn = k/(n− k + 1)}) =

(
n

k

)
pkqn−k (2.53)

for the parameters p = x/(1 + x), q = 1/(1 + x) and k = 0, 1, . . . , n.
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2.4.4 Meyer-König and Zeller Operator

The Meyer-König and Zeller Operator (MKZ) [95] is given by the equation

Mn(f ;x) =
∞∑
k=0

f

(
k

n+ k + 1

)
mn+1,k(x) (2.54)

in which m is formulated as,

mn,k(x) =

(
n+ k

k

)
xk(1− x)n+1, (2.55)

for the nth degree and the kth basis polynomial for the value of x as stated previously.

These operators are known as the Bernstein-type of operators. Cheney and Sharma

[29] define this operator as a power series of the Bernstein operators.

The MKZ operator can be also obtained from the negative binomial distribution via

Mn(f ;x) = (1− x)n+1

∞∑
k=0

(
n+ k

k

)
f

(
k

n+ k

)
xk. (2.56)

2.5 Copula Method and Network Structure

The copulas are perfect tools for modeling and simulating dependent random vari-

ables. In this study, the copulas are preferred to generate the datasets for simulation

studies so that we can obtain various high dimensional joint distributions under dis-

tinct marginals. In our analyses, we apply these data to evaluate the performance of

all our suggested approaches under non-normality.

2.5.1 Copula Method

A copula is a multivariate distribution function that separates univariate marginals

with a dependency structure. Rényi [115] propose some axioms related with the

measure of dependency between two random variables. But the idea of copula was

first introduced by Sklar [122] at the same year in the theorem known by his name.
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Then, the earliest paper related with Copula was published by Schweizer and Wolff

[118]. They showed that the copula of a pair of random variables is invariant when the

transformation is increasing. Growing interests in copulas is afforded after 90’s. The

copula families were generated and extensive surveys by Hutchinson and Lai [69],

Joe [73] and Nelsen [100].

Hereby, mathematically, the copula can be defined as

H(x, y) = C(F (x), G(y)), (2.57)

where X and Y are the continuous random variables, F (x) and G(y) are marginal

distributions, and mapping from C[0, 1]2 → C[0, 1] is known as the copula.

Accordingly, by following the description in the study of Nelsen [100], a function

C : [0, 1]2 → [0, 1] (u, v)→ C(u, v) (2.58)

with the properties

1. ∀u, v ∈ [0, 1]

C(u, 0) = C(0, v) = 0,

2. C(u, 1) = u and C(1, v) = v,

3. ∀u1, u2, v1, u2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2, it holdsC(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0,

is called the (bivariate) copula function for two dimensions.

2.5.1.1 Sklar’s Theorem

The definition of the copula is also connected by the Sklar’s theorem, which explains

the copulas in the statistical modelling. The Sklar’s theorem says that [122] any joint

distribution function F with the marginal distribution Fj (j = 1, . . . , n) can be written

as
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F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) . (2.59)

In Equation 2.59, C is called as the copula of F for all random variables xi when

∀x ∈ R. Here, if the marginals are continuous, then C is unique. The expression

of copulas can be also presented as below for marginals Fj and uniform random

variables ui (i = 1, . . . , n) in [0, 1]n.

C(u1, u2, . . . , un) = F (F−1
1 (u1), F−1

2 (u2), . . . , F−1
n (un)). (2.60)

This allows that the copula density function can be derived from the differentiation of

F where F denotes the multivarite distribution function.

We can give the following example to explain its application. Let

H(x, y) =

4xy if 0 < x < 1, 0 < y < 1,

0 if otherwise,

while H(x) is a joint distribution function. To obtain the copula function, it is neces-

sary to first calculate marginals (F and G) because of the Sklar’s Theorem. Thus,

F (x) =
∫ 1

0
4xydy = 2x,

G(y) =
∫ 1

0
4xydy = 2y,

resulting in the inverse of these marginals as below:

u = F (x), u = 2x⇒ x = u/2, 0 < u < 1,
v = G(y), v = 2y ⇒ y = v/2, 0 < v < 1.

We can now calculate the copula C(u, v) as u/2 and v/2 by replacing with x and y,

respectively.

C(u, v) = 4
u

2

v

2
= uv. (2.61)
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We can also check Equation 2.61 whether it can provide the properties of the copula

function defined in Section 2.5.1.

Accordingly,

C(u1, v1) = u1.v1 = x,
C(u2, v2) = u2.v2 = y,
C(u1, v2) = u1.v2 = z,
C(u2, v1) = u2.v1 = t,

maintains x+ y − z − t ≥ 0 by the values u1, v1, u2, v2 in between [0, 1]. So, we can

say that C(u, v) is a copula function.

There are different types of copula functions in the literature such as the Gaussian

copula, student-t copula, Gumbel copula, Clayton copula, Frank copula and the prod-

uct copula. In this study we only explain the Gaussian and student-t copulas due to

the fact that they are close alternatives of each other. Whereas in practical purpose,

the student-t is not commonly preferred for its computational complexity. On the

other hand, the other copula types cannot be implemented in biological networks as

they do not have explicit functional form for the high dimension which is one of the

fundamental structures of the biological systems.

2.5.1.2 Copula Families

2.5.1.3 Gaussian Copula

The Gaussian copula can be formulazed as Equation 2.62 as below.

C(u, v) = Φρ(Φ
−1(u),Φ−1(v)). (2.62)

where Φρ denotes the bivariate standard normal distribution with a correlation ρ on

the range between −1 and 1, i.e., ρ ∈ (−1, 1), and Φ−1 is the inverse univariate

standard Gaussian distribution function.

The Gaussian copula density function is obtained by applying the inverse method to

the standard multivariate Gaussian via
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C(U, V ) =
1

|R|1/2
exp{−1

2
U
′
(R−1 − I)U}, (2.63)

where R is the correlation matrix defined by R = cov(xi, xj)/
√
var(xi), var(xj).

While Cov(.) and V ar(.) denote the covariance and variance of the given random

variables, respectively. Finally, U and V show the transformed form of Xi and Xj , in

order.

2.5.1.4 Students-t Copula

A student’s-t copula is created by the bivariate student-t distribution. Closely related

with the Gaussian copula, the student-t copula can be represented as

C(u, v) = tv,ρ(t
−1
v (u), t−1

v (v)), (2.64)

where v is the degree of freedom parameter, ρ is the correlation coefficient, t−1
v

presents the inverse of the univariate standard student-t distribution function

2.5.2 Network Structure

There are different undirected biological network structures to describe the interac-

tion between the nodes, such as the scale-free network, hub network, cluster network

and the random network. In the simulation study, different graphical structures are

utilized while generating the datasets. These network structures are explained with

the graphical representation as described below. In our analyses, we solely implement

the scale-free structure as it is the most common topological feature of the biological

networks.

2.5.2.1 Scalee-Free Network

Barabasi and Albert propose the scale-free network [13] based on the following two

properties. (i) real networks are not constant and they are growing constantly; and

probability of connection of two nodes are not uniformly distributed, (ii) in a real
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Figure 2.13: An example of a scale-free network with 50 nodes.

network, the new node is connected to a node that has a higher number of connections

than the others. In this network model, the network initially starts with a small number

of nodes, and a new node is added at every time step via the preferential attachment.

They also show that P (k) has an interaction with k as a power law distribution as

seen in Equation 2.65 [13]:

P (k) ∼ k−γ (2.65)

in which P (k) is the fraction of nodes of the degree k and γ is the exponent of the

distribution. A simple example of the scale-free network with 50 nodes can be found

in Figure 2.13.

2.5.2.2 Random Network

The random networks were first studied by Erdös and Rényi in 1959 [41]. There are

many procedures to obtain a random network and one of the method to construct a

random network can be represented by the steps below.

1. In a random network with N nodes, each pair of nodes is connected with a

probability p and generated by a random structure with N disjoint nodes. Here,

two nodes are randomly choosen and generate a number from a uniform distri-

bution on the interval [0,1]. The choice is greater than p, two nodes with a link
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Figure 2.14: An example of random network with 50 nodes.

are connected. Otherwise, the nodes are disconnected.

2. Step is repeated for each N(N − 1)/2 node pair.

After following these steps, the random network can be obtained as represented in

Figure 2.14.

2.5.2.3 Hubs Network

A few nodes with a higher clustering coefficient connected with many links are known

as hubs [14]. The hubs are in a central position within the clusters and it can be said

that the large number of hubs creates the scale-free network. An example of a network

which contain nodes with 3 hubs is shown in Figure 2.15.

2.5.2.4 Cluster Network

The clustering networks as shown in Figure 2.16 for illustration, consist of highly

connected subgraphs and if there are separated networks in the system, the clustering

method can identify them [14].
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Figure 2.15: An example of a hub network with 50 nodes.

Figure 2.16: An example of a cluster network with 50 nodes.
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Table 2.3: Confusion matrix of the accuracy measures.

Actual Structure
Positive Negative Row Total

Predicted
Structure

Positive
True Positive

(TP)
False Positive

(FP)
TP+FP

Negative
False Negative

(FN)
True Negative

(TN)
FN+TN

Column Total TP+FN FP+TN

2.6 Model Selection Criteria

In this section, we describe the model selection criteria that are used to check the

validity of our proposed model.

The model selection is the process for choosing the best performing model. In the lit-

erature, adjusted R2, Mallow’s Cp, Mean-Squared Error (MSE), Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) are the most commonly

used methods. But distinct methods are implemented for the binary classification

methods and the accuracy measures are the most common binary classification model

selection methods.

2.6.1 Accuracy Measures

In order to compare the performance of actual and predicted classes, specificity, pre-

cision, F-measure and Matthews correlation coefficient (MCC) values are used. In

the calculation of these values, true positive (TP), true negative (TN), false positve

(FP) and false negative (FN) are applied as listed in Table 2.3.

Here, the true positive implies the number of correctly classified objects that have

links denoted by 1 and the true negative defines the number of correctly categorized

objects that have no link denoted by 0. On the contrary, the false positive shows the

number of misclassified objects that have no links, i.e., 0 entries, and false negative

shows the incorrectly classified objects that is correct in actual.

Using these classified objects, precision, specifity, F-measure and MCC are computed
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as in Equations 2.66 - 2.70.

Precision =
TP

TP+FP
. (2.66)

The precision is a measure of how close the value which we estimate to the real value.

It is also called the positive predictive value (PPV).

Specificity =
TN

TN+FP
. (2.67)

The specifity measures how much the test can capture the negative cases. It is also

known as the true negative rate (TNR).

F = 2
Precision× Recall
Precision + Recall

. (2.68)

The F-measure is the balance of the recall and precision values since F-measure is

the harmonic mean of the precision and the recall where the recall describes the ratio

of correctly classified objects with positive labels to the total positive classes in the

actual case as shown in Equation 2.69.

Recall =
TP

TP+FN
. (2.69)

The recall is also named as the sensitivity or the true positive rate (TPR).

Finally, the Matthew’s correlation coefficients (MCC) is calculated as in Equation

2.70.

MCC = 2
(TP + TN)− (FP× FN)√

(TP + FP)× (FN + TN)× (TP + FN)× (FP + TN)
. (2.70)

and takes the values between −1 and 1, where −1 indicates a totally wrong classifier

and 1 shows the completely true classification.
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CHAPTER 3

APPLICATION

This chapter contains the application and the validity of the proposed methods which

are described in Chapter 2. In Section 3.1, we check the validation of our proposed

method, LMARS, under different dimensional simulation studies and real data ap-

plications. In Section 3.2, we evaluate LMARS with interaction effect. Section 3.3

includes the application of the MMLE method which is proposed in the estimation of

the precision matrix. The applcations of the Bernstein operators which are proposed

for smoothing the biological networks on simulated and real datasets are represented

in Subsection 3.4.1, 3.4.2 and 3.4.3.

3.1 LMARS Application

In the application of LMARS, we estimate the precision matrices, Θ, of simulated

datasets and calculate the accuracy measures. The true precision matrix of the gen-

erated matrices is created under the two different choices which come from normal

and nonnormal distributions. For the normal data, we consider two scenarios. In

the first scenario, Θ has positive entries which represent positive relations between

genes and in the second scenario, the matrix includes negative entries corresponding

to inhibitory relations between genes. Under both cases, we perform matrices having

different sizes, namely, (100× 100), (500× 500) and (1000× 1000) dimensions. Fur-

thermore, the underlying matrices have distinct sparsity percentages. Because we use

a special matrix form similar to the tridiagonal matrix containing a nonzero main di-

agonal and nonzero parallel diagonals in each side. Our matrix, as given in Equation
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3.1, also possesses nonzero entries in the right upper corner and the left lower corner.

B =



γ γ 0 0 γ

γ γ γ 0 0

0 γ γ γ 0

0 0 γ γ γ

γ 0 0 γ γ


. (3.1)

In Equation 3.1, γ denotes the nonzero entries. Due to this special structure for all

matrices, our precisions own different sparsity percentages in each dimension such

that (100 × 100), (500 × 500) and (1000 × 1000) matrices have 97%, 99.4% and

99.7% sparsity, respectively. Finally, in our data generation, we consider that each

gene is composed of 20 observations.

For the non-normal datasets, we also have two scenarios. In the first case, the ma-

trix generated from the student-t distribution under the degrees of freedom 7 and in

the second case, the matrix is generated from the student-t distribution under the de-

grees of freedom 15. For both conditions, the matrices are simulated under (40× 40),

(100 × 100) and (200 × 200) dimensions. Moreover, as stated beforehand, the infer-

ence of all precisions is conducted via LMARS accepting that every gene is assigned

as a response and the remaining genes are used as covariates. Furthermore, in the

model fitting, we merely take the main effects of all genes and discard all interac-

tion terms, as presented previously. The reason is that we aim to convert the MARS

regression into the lasso regression used in GGM so that both models can be com-

parable. Additionally, similar to the simple linear regression models, it is expected

that the main effects explain the major parts of the model [98]. Hence, this process

is repeated sequentially until all genes are regressed on all the corresponding genes.

Then, according to the estimated regression coefficients, we solely take significant

ones without computing the estimated precision matrix and consider that there is a

relation between those components. Finally, in the generation of the adjacency ma-

trix, while 1 refers to a relationship and 0 describes no interaction between the pairs

of genes, we apply both the AND and OR rules. By using the AND rule, we obtain

an entry 1 when both (i, j) and (j, i) entries of the estimated adjacency matrix are

one. On the other hand, we apply the OR rule while either (i, j) or (j, i) entry of Θ

has value 1, and we accept that it is a sufficient condition to assign the correspond-
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Table 3.1: Comparison of the specificity, precision and F-measure computed via
LMARS under both AND and OR rules, and GGM and 1000 Monte-Carlo runs based
on different dimensional Θ matrices pwith normally distributed data with sample size
20 and plans (S1: scenario 1, S2: scenario 2).

Plan p Specificity Precision F-measure
LMARS GGM LMARS GGM LMARS GGM

AND OR AND OR AND OR

S1 100 0.9918 0.9092 0.9907 0.5638 0.1170 0.6867 0.4240 0.1799 0.4273
500 0.9989 0.9683 0.9871 0.6004 0.0631 0.1395 0.4304 0.1070 0.1978
1000 0.9989 0.9819 0.9577 0.6125 0.0541 0.0241 0.4327 0.0933 0.0462

S2 100 0.9918 0.9091 0.9913 0.5630 0.1170 0.7064 0.4241 0.1798 0.4319
500 0.9980 0.9684 0.9871 0.5995 0.0631 0.1393 0.4302 0.1070 0.1976
1000 0.9990 0.9820 0.9565 0.6166 0.0541 0.0225 0.4335 0.0933 0.0440

ing entry and its symmetry to one. From both analyses, it is seen that the AND rule

generates more sparse and accurate matrices, i.e., networks with less computational

demand as the results of one scenario is presented in Table 3.1 and 3.6. Therefore,

for the remaining tabulated values apart from Table 3.1 and 3.6, we only represent the

findings of the AND rule as the outputs of hte LMARS estimates. In the construction

of the adjacency matrix from the estimated regression coefficients, we take significant

main effects of the coefficients and assigned it as 1 and others as 0. Finally, in the

modelling, we both check backward and forward selection representing that by start-

ing the full model and reducing this model via the one-by-one strategy, we choose

the model having the highest GCV. By this way, we get a set of 100, 500 and 1000

regression models for each 100, 500 and 1000-dimensional systems, respectively. On

the other hand, in order to compare the performance of both GGM and LMARS, we

compute their specificity, precision and F-measure values as shown in Section 2.6.

The findings are presented in Table 3.1. From the results, it is observed that there

is no difference in specificity values of LMARS between two scenarios of the true

precision matrix. On the other side, when the dimension of the matrix increases, this

value is closer to 1 indicating its perfection level. In addition, we observe higher

specificity values when we use the AND rule since it generates more sparse matrices.

Moreover, F-measure and precision values decrease when the dimension increases

under both scenarios [8].
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Table 3.2: Comparison of the specificity, precision and F-measure computed via
LMARS under AND rule, and GGM and 1000 Monte-Carlo runs based on different
dimensional Θ matrices p with student-t distributed data at the degrees of freedom 3
with sample size 20 and plans (S1: scenario 1, S2: scenario 2).

Plan p Specifity Precision F-measure
LMARS GGM LMARS GGM LMARS GGM

S1

40 0.9270 0.9399 0.2605 0.3022 0.4131 0.4634
100 0.9718 0.9655 0.2633 0.2381 0.4166 0.3818
200 0.9862 0.9777 0.2681 0.2031 0.4227 0.3334

S2

40 0.9263 0.9405 0.2584 0.3055 0.4105 0.4670
100 0.9715 0.9653 0.2615 0.2370 0.4144 0.3803
200 0.9863 0.9783 0.2680 0.2049 0.4228 0.3363

On the other hand, the selected accuracy measures of GGM are computed under the

optimal penalty constant based on the StARS (stability approach to egularization se-

lection) criterion and the glasso method in the inference of model parameters. As

seen in Table 3.1, GGM has higher specificity, F-measure and precision values for

small dimensions. Whereas, when the dimension increases, these values decrease.

But LMARS under the AND rule gets higher specificity, precision and F-measure

values with respect to the GGM outputs for both scenarios and under all dimensions

based on the multivariate normally distributed data.

Additionally, since LMARS is a nonparametric approach, we calculate the perfor-

mance of this method for nonnormal datasets. For this purpose, we generate data

from the student-t distributions with the degrees of freedom 3, 4, 7 and 15 as shown

in Tables Table 3.2-3.5, respectively. On the contrary, as found in Table 3.5, GGM

becomes better for all measures while the data are closer to normal like the student-t

with 15 degrees of freedom in all measures. As a result, we observe that when the

dimensions of the systems increase and the measurements are far from the normal

density, LMARS outperforms GGM as it is expected. On the other side, when de-

grees of freedom decrease, i.e., dataset is far from the normal distribution, LMARS

and GGM give lower accurate results for all dimension as represented in Table 3.2.

On the other side, as we denote in Table 3.1–3.5, we estimate different size of net-

works and it is seen that the estimation of the parameters in networks, under distinct
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Table 3.3: Comparison of the specificity, precision and F-measure computed via
LMARS under AND rule, and GGM and 1000 Monte-Carlo runs based on different
dimensional Θ matrices p with student-t distributed data at the degrees of freedom 4
with sample size 20 and plans (S1: scenario 1, S2: scenario 2).

Plan p Specifity Precision F-measure
LMARS GGM LMARS GGM LMARS GGM

S1

40 0.9286 0.9386 0.2649 0.2972 0.4186 0.4576
100 0.9717 0.9686 0.2628 0.2508 0.4161 0.3992
200 0.9862 0.9802 0.2672 0.2171 0.4216 0.3538

S2

40 0.9280 0.9376 0.2634 0.2938 0.4167 0.4534
100 0.9714 0.9690 0.2612 0.2530 0.4140 0.4021
200 0.9863 0.9781 0.2679 0.2032 0.4225 0.3340

Table 3.4: Comparison of the specificity, precision and F-measure computed via
LMARS under AND rule, and GGM and 1000 Monte-Carlo runs based on different
dimensional Θ matrices p with student-t distributed data at the degrees of freedom 7
with sample size 20 and plans (S1: scenario 1, S2: scenario 2).

Plan p Specifity Precision F-measure
LMARS GGM LMARS GGM LMARS GGM

S1

40 0.9787 0.9979 0.5748 0.9607 0.4340 0.4930
100 0.9918 0.9907 0.5627 0.6835 0.4242 0.4272
200 0.9960 0.9838 0.5756 0.2654 0.4248 0.2898

S2

40 0.9787 0.9976 0.5738 0.9549 0.4328 0.4919
100 0.9918 0.9909 0.5635 0.6956 0.4241 0.4294
200 0.9960 0.9840 0.5760 0.2686 0.4249 0.2912
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Table 3.5: Comparison of the specificity, precision and F-measure computed via
LMARS under AND rule, and GGM and 1000 Monte-Carlo runs based on different
dimensional Θ matrices p with student-t distributed data at the degrees of freedom 15
with sample size 20 and plans (S1: scenario 1, S2: scenario 2).

Plan p Specifity Precision F-measure
LMARS GGM LMARS GGM LMARS GGM

S1

40 0.9787 0.9979 0.5738 0.9598 0.4328 0.4930
100 0.9091 0.9911 0.1172 0.6998 0.1803 0.4305
200 0.9961 0.9839 0.5748 0.2667 0.4247 0.2906

S2

40 0.9788 0.9979 0.5756 0.9549 0.4343 0.4919
100 0.9918 0.9909 0.5630 0.6947 0.4242 0.4298
200 0.9961 0.9840 0.5748 0.2738 0.4246 0.2921

Table 3.6: Comparison of the real computational time per second calculated via
LMARS and GGM under 1000 Monte-Carlo runs based on different dimensional
matrices and normally distributed data in scenario 1.

Dimensions of Θ LMARS with LMARS with GGM
AND Rule OR Rule

(100× 100) 18469.3 21039.0 20713.7
(500× 500) 36670.5 38118.9 113460.1

(1000× 1000) 131857.0 154143.0 1082029.3
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dimensions occurs at different times. When the dimension of the system increases,

the parameter estimation becomes difficult and the estimation becomes computation-

ally demanding for large networks. For this reason, the timing turns to be essential

for researchers, especially for the high-dimensional datasets. So we consider that

the computational efficiency can be another performance criterion to choose the best

model for the biological systems.

Accordingly, while assessing the computational time as presented in Table 3.6, we

observe that LMARS is significantly speedy with respect to GGM. The calculations

of LMARS for (100 × 100), (500 × 500) and (1000 × 1000)-dimensional matrices

under 1000 Monte-Carlo iterations are completed in 18469.3, 36670.5 and 131857,

minutes, respectively, in LMARS with the AND rule. Whereas, GGM does only 1000

iterations for (100×100)-dimensional matrix in 20713.7 minutes. Also as reported in

Table 3.6, LMARS is faster than GGM under large systems such that GGM completes

the calculations in 1082029.3 seconds for 1000 iterations while LMARS with the OR

rule does it in 154143 seconds. Therefore, we conclude that the LMARS method is

computationally more efficient than GGM.

We also apply this method in a realistically large system, called the JAK-STAT (Janus

kinase/signal transducer and activator of transcription) pathway (Figure 3.1), by using

a simulated dataset. This transaction pathway is an important signalling pathway

which is activated by Type I interferons (IFN). IFNs control the immune system of

living organisms and are used to treat the hepatitis B and C virus infections [92].

In the data generation for the JAK-STAT pathway, we describe the system with 38

proteins and consider that each protein has 10 observations. Here, the list of the

proteins, their initial numbers of molecules and their reaction rate constants in the

reaction list of the system are used as described in Maiwald et al. [92]. Then, we run

the Gillespie algorithm [56] until the total simulation time T sets to 200 and we take

the last 10 integer time points from 190 to 199 due to the fact that all the proteins in

the system can reach in their steady-state conditions under a long simulation time and

the selected time points belong to this phase of the system. The generated time-course

data for each protein are shown in the plots presented in Figure A.1, A.2, A.3 and A.4

in Appendix A and the very brief description of the system by using the relations of
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Figure 3.1: Simple illustration of the elements for the JAK-STAT pathway.

the major components can be found in Figure 3.1.

Once the dataset is obtained, we implement LMARS and GGM to estimate the preci-

sion matrix Θ, i.e., Θ̂. Then, we convert both Θ̂’s into their corresponding adjacency

matrices and compare our results with the quasi true adjacency matrix based on the

reaction list in Maiwald et al. [92]. Hereby, the specificity measures of LMARS and

GGM are found as 0.89 and 0.98, respectively, and the calculations are completed

in 3.52 and 328.35 seconds for LMARS and GGM, in order. From these findings,

it is seen that similar to the Monte-Carlo studies, although LMARS looses from the

accuracy, it is computationally less demanding then GGM. On the other hand, as the

system is very sparse, both models are more successful in capturing zero entries in the

true Θ, whereas, cannot be effective to estimate the present links. Accordingly, the

calculated TN (true negative) values which count the ratio of the zeros are very high

and the computed TN (true negative) values which consider the available links are

low. Because of this fact, the estimated links of the main components in Figure 3.1

cannot be captured under both GGM and LMARS approaches. In Figure 3.2, we plot

the systems based on the quasi true precision and estimated precisions via LMARS

and GGM for the visual comparison.

Finally, in order to evaluate the performance of LMARS in the real dataset, we use

the data of the protein-protein interactions in the study of Jenner et al. [72]. This

56



(a) (b)

(c)

Figure 3.2: Structure of the JAK-STAT pathway via (a) true quasi precision, (b) esti-
mated precision via LMARS and (c) estimated precision via GGM under the glasso
approach.
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dataset consists of 106 genes for 22 time points to describe the pathway of Kaposi’s

Sarcoma Associated Herpesvirus (KSHV). This pathway is one of the most recently

identified human herpesvirus that presents the etiological infectious agent of Kaposi’s

sarcoma, primary effusion lymphoma and multicentric Castleman’s disease [154]. In

inference of this pathway via LMARS and GGM, we observe that LMARS gives

more biologically validated structure with respect to the GGM results. Because as

seen in Figure 3.3, although GGM can merely capture auto-regulated interactions,

LMARS can also estimate both auto-regulated links and other interactions. For in-

stance, LMARS estimates the links of Orf45-K8 [154] and K14-K7-K2 [24] which

are biologically validated in the related literature besides the auto-regulated links of

Orf57-Orf57 [154].

(a) (b)

Figure 3.3: Estimated links of the KSHV pathway via (a) LMARS and (b) GGM
under the glasso approach.

3.2 LMARS with Interaction

Comparing the performances of LMARS versus GGM, it is found that LMARS is a

fairly well approach as the alternative of GGM. In the application, we perform this

model with the interaction effects and compare the results with GGM and LMARS

without interaction terms in order to calculate the gain in the extended model. In
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this part, we implement this model with the interaction effects and make compara-

tive analyses with GGM and LMARS without interaction terms in order to assess the

gain in this extended model. In the application of LMARS with/without interaction

effects, the same steps are followed as done for LMARS without interaction effect.

Thereby, the inferences of precisions are constructed in such a way that every gene is

sequentially assigned as a response and the remaining genes are used as covariates.

Then, under the estimated regression coefficients, we take significant covariates from

each gene-specific model. Here, we accept that these entries imply the significant re-

lations between the response gene and the associated predictor gene, resulting in the

entry 1 in the adjacency matrix. Otherwise, we put the zero value in that entry. We

compare the underlying calculation for 50, 100 and 500-dimensional systems. The

associated datasets are generated by the Gaussian copula function. In the assessment,

we particularly choose this copula among alternatives such as Gumbel, Frank and

other Archimedean copula types as well as student-t copula. Because as shortly de-

scribed in Chapter 2, Section 2.5, the Archimedean copulas have explicit forms upto

4 or 5 dimensions [55] and the student-t copula which belongs to the family of ellipti-

cal copula like the Gaussian copula [45] is more computationally demanding and less

mathematically tractable than the Gaussian copula. Accordingly, in our study, we use

three different datasets. In the first dataset, we compare both types of LMARS with

GGM under the multivariate normal distribution. Then, in the second dataset, we use

the exponential distribution as the marginals and bind them via the Gaussian copula.

Finally, in the third part of the simulation, we generate the mixed-distribution dataset

where the marginals come from both exponential and normal distributions and the

link between them is constructed by the Gaussian copula function. Therefore, we fol-

low the steps that produce our copula bounded marginals whose each random variable

has 20 observations and a Σ variance-covariance structure. In order to compare the

performance of results from both GGM and LMARS, we compute their specificities,

precisions and F-measure values as shown in Section 2.6.

In the calculation of GGM, we infer the model parameters via the glasso method

as used in previous analysis. The findings are presented in Tables 3.7 and 3.9. In

Table 3.7, marginals come from the exponential distribution with rate 3. From the

performance of LMARS without the interaction rule, it is seen that LMARS with
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Table 3.7: Monte-Carlo comparison of the specificity, precision and F-measure of
different dimensional biologically systems computed via GGM and LMARS models
under exponential and normal marginals bounded by the Gaussian copula with sample
size 20.

Total number Models Specificity Precision F-measure
of nodes

50 GGM 0.9999 Not Computable Not Computable
LMARS without interaction 0.9590 0.3300 0.3400

LMARS with interaction 1.0000 1.0000 0.6400

100 GGM 0.9799 0 Not Computable
LMARS without interaction 0.9800 0.3300 0.5000

LMARS with interaction 1.0000 1.0000 0.5127

500 GGM 0.9980 0.0000 Not Computable
LMARS without interaction 0.9960 0.3300 0.5000

LMARS with interaction 1.0000 1.0000 0.4779

interaction is better than LMARS without the interaction model. Furthermore, it is

observed that the specifity increases while the dimension increases. But F - measure

and precision decrease when we raise the dimension of the system.

In Table 3.7, the marginals are distributed as normal. From the tabulated terms, it

is seen that LMARS with interaction effects gives more accurate results than others

for all dimensions. But, the accuracy measures of GGM are higher than the LMARS

results for low dimensions and GGM cannot calculate the precision and F-measure

for 50-dimensional system.

Additionally as seen from Table 3.8 that both LMARS with/without interaction effects

have higher accuracies than GGM in all dimensions when the data are extremely far

from normality.

On the other hand, in Table 3.8, the marginals are taken as half exponential and half

normal distributions, and all the nodes are bounded by the Gaussian copula. By this

way, we consider to evaluate the performance of all suggested models under the mix-

ture of two different types of distributions simultaneously. From the results, we detect

that LMARS with the interaction effect is more accurate than others for all dimen-

sions.

On the other hand in the GGM analyses, the best penalty constant is chosen by the
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Table 3.8: Monte-Carlo comparison of the specificity, precision and F-measures of
different dimensional biological systems computed via GGM and LMARS models
under exponentials marginals bounded by the Gaussian copula with sample size 20.

Total number Models Specificity Precision F-measure
of nodes

50 GGM 0.9284 0.0000 Not Computable
LMARS without interaction 0.9590 0.3330 0.5000

LMARS with interaction 0.9997 0.9956 0.9967

100 GGM 0.9800 0.0000 NaN
LMARS without interaction 0.9800 0.3330 0.5000

LMARS with interaction 1.0000 0.9986 0.9986

500 GGM 0.9960 0.0000 Not Computable
LMARS without interaction 0.9960 0.3330 0.5000

LMARS with interaction 1.0000 0.9946 0.9946

Table 3.9: Monte-Carlo comparison of the specificity, precision and F-measures of
different dimensional biological systems computed via GGM and LMARS under
multivariate normal distribution with sample size 20.

Total number Models Specificity Precision F-measure
of nodes

50 GGM 0.9994 Not Computable Not Computable
LMARS without interaction 0.9123 0.2637 0.3129

LMARS with interaction 0.9634 0.6562 0.7923

100 GGM 0.9865 0.4129 0.3972
LMARS without interaction 0.9092 0.1799 0.1799

LMARS with interaction 0.9554 0.6043 0.7534

500 GGM 0.9760 0.1210 0.1878
LMARS without interaction 0.9683 0.0631 0.1070

LMARS with interaction 0.9870 0.5627 0.7202
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rotation information criterion (RIC) [158] as this is the most common measure for

the glasso-estimated models. Furthermore, the glasso package is used to estimate the

precision matrix [51]. Hereby, in application, two real datasets are used to check the

validaty of the new model. The first data [117] is called the cell signalling data and

show a small network having 11 phosphoproteins and phospholipids under various

experimental conditions in human primary naive CD4+T cells that are measured on

11672 red blood cells. These data are collected after a series of stimulatory cues and

then, the inhibitory interventions with cell reactions are stopped at 15 minutes after

the stimulation by a fixation in order to profile the effects of each condition on the

intracellular signalling networks. In Figure 3.4, the graphical illustration of the ac-

cepted signalling molecular interactions is presented and the estimated systems via all

alternative models are shown in Figure 3.5. In this figure, it is seen that the LMARS

model with interaction effects estimates biologically validated links and already in-

fers the links found via LMARS without interaction effects and GGM. For instance,

the link between PKA and PKC proteins (protein numbers 8 and 9 in Figure 3.4),

which is biologically validated in the study of Sim and Scott [121], is merely found

via LMARS with the interaction effect. Furthermore, the edge between PRAF and

PMEK proteins (protein numbers 1 and 2 in Figure 3.4) is correctly inferred [31] in

GGM and LMARS with interaction effects. The link between PIP2-PKC proteins

(protein numbers 4 and 9 in Figure 3.4) is not estimated via LMARS without inter-

action model, whereas, it is inferred under the interaction as biologically declared in

the study of Kuo [80]. In addition, it is seen that the relation between PRAF and PKC

proteins (protein numbers 1 and 9 in Figure 3.5) is validated by LMARS with inter-

action effects. This interaction can be verified by Figure 3.4 taken from Sachs et al.

[117]. In addition, LMARS with interactions can catch the relation between PLCG

and PKC proteins (protein numbers 3 and 9 in Figure 3.5). This relation can be also

validated by Figure 3.4.

In the second application with a real dataset, we use the large-scale human gene

expression data which are gathered by Stranger et al. [124] and are described by

Bhadra and Mallick [22] and Chen et al. [28]. This dataset is collected to measure the

gene expression in the B-lymphocyte cells from the Northern and Western European

ancestry from Utah (CEU). The data are composed of 60 unrelated individuals for

62



Figure 3.4: True graphical representation of the cell signalling network (Dataset 1)
from Sachs et al. [117].

100 probes. Here, the focus is on the 3125 Single Nucleotide Polymorphisms (SNPs)

that are found in the 5 UTR (untranslated region) of mRNA (messenger RNA) with

a minor allele frequency 0.1. Since UTR of mRNA has an important role in the

regulation of the gene expression, the inference of this system has been performed

in the previous study [97] via the copula GGM. In this work, we estimate it via both

alternatives of MARS and GGM as presented in Figures 3.6-3.8.

From comparative analyses, it is found that both MARS models can capture biologi-

cally validated links and GGM cannot detect any interaction. Then, due to the failure

of the estimation via GGM, under this high dimension, we also perform an approx-

imate version of the glasso approach, which is particularly designed for such high

dimensional systems. Hereby, we infer the parameters of GGM as in the study of

Zhao et al. [155] via the huge package in R. This method and its associated package

basically estimate the structure of the graph for the multivariate Gaussian distribution

by using a multi-step idea. This specific calculation is called as GELATO (graph es-

timation with LASSO thresholding). GELATO infers the structure of the systems by

two stages. In the first stage, an undirected graph is estimated via a threshold among

the L1-norm penalized regression functions, and in the second stage, the variance-

covariance matrix and its inverse are estimated via their maximum likelihood esti-

mators. In inference of the interactions, i.e., the edges of the graph, is performed as
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Figure 3.5: Estimated structure of the real biological network from Dataset 1 via (a)
LMARS without interactions, (b) LMARS with interactions and (c) GGM.
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Figure 3.6: Estimated structure of the human gene interaction network from Dataset
2 by LMARS without interaction effects.

in the study of Meinshaussen and Bühlman [93] which implements the NS method

within the LASSO regression to estimate the entries of the precision matrix.

Hereby, we list the biologically validated interactions of this dataset via both MARS

models and GGM whose inference is conducted by the approximate glasso approach.

From this assesment, we see that all three methods can detect 26 interactions which

are biologically supported by the study of Bhadra and Mallick [22]. But LMARS

with interactions can also find 6 more edges with respect to the findings via LMARS

without the interaction model. Finally, GGM under approximate glasso can further

observe 2 more links regarding LMARS with the interaction model. Therefore, simi-

lar to previous analyses, we see that the application of GGM can be limited for small

and moderate dimensional systems since the estimation of the model prameters can

be better performed via approximate methods for high dimensional networks.

In the analyses of LMARS with/without interactions and GGM, the R programme lan-

guage is used. For the exact glasso estimate, we apply the glasso package. Whereas

for the approximate glasso estimate, we perform the huge package. In the GGM anal-

yses, the best penalty constant is choosen by the RIC criterion and glasso package is

used to estimate the covariance matrix [51]. This matrix is transformed to the binary

adjacency matrix and 0.5 is accepted as the cut-off value to convert the estimates into

the binary 0-1 entries. Here, since GGM is used based on the pearson correlation

coefficients ρ, the estimated ρ’s which are greater than 0.5 are accepted as significant
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Figure 3.7: Estimated structure of the human gene interaction network from Dataset
2 by LMARS with interaction effects.

Figure 3.8: Estimated structure of the human gene interaction network from Dataset
2 by GGM.
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edge, resulting in the entry 1 in the adjacency matrix. From comparative analyses,

apart from the common 26 estimated links via LMARS without interactions, it is ob-

served that the new links in the estimated graphs via LMARS with interactions have

the same biologically validated link as in the study of Bhadra and Mallick [22]. In

Table 3.10, we list the controlled interactions of this dataset via three methods and

also give distinct outputs from each method, which are also validated biologically.

From this assessment, we see that GGM failes to catch the links. On the other hand,

LMARS with interactions is more successful in the estimation of the true links than

LMARS without the interaction model.

Table 3.10: Comparison of the estimated links via LMARS with/without interaction
effects and GGM with approximate glasso. The true links are taken from the study of
Bhadra and Mallick [22].

Interactions LMARS with interactions LMARS without interactions GGM

Common interactions
between the given genes

GI.7019408.S −GI.4504436.S GI.7019408.S −GI.4504436.S GI.7019408.S −GI.4504436.S

GI.28610153.S −GI.4504436.S GI.28610153.S −GI.4504436.S GI.28610153.S −GI.4504436.S

GI.20070269.S −GI.28610153.S GI.20070269.S −GI.28610153.S GI.20070269.S −GI.28610153.S

GI.18379361.A−GI.20070269.S GI.18379361.A−GI.20070269.S GI.18379361.A−GI.20070269.S

GI.17981706.S −GI.13514808.S GI.17981706.S −GI.13514808.S GI.17981706.S −GI.13514808.S

GI.20302136.S −GI.7661757.S GI.20302136.S −GI.7661757.S GI.20302136.S −GI.7661757.S

GI.4505888.A−GI.41350202.S GI.4505888.A−GI.41350202.S GI.4505888.A−GI.41350202.S

GI.27754767.I −GI.16554578.S GI.27754767.I −GI.16554578.S GI.27754767.I −GI.16554578.S

GI.9961355.S −GI.27754767.I GI.9961355.S −GI.27754767.I GI.9961355.S −GI.27754767.I

GI.27754767.I −GI.27754767.A GI.27754767.I −GI.27754767.A GI.27754767.I −GI.27754767.A

GI.22027487.S −GI.27754767.I GI.22027487.S −GI.27754767.I GI.22027487.S −GI.27754767.I

GI.38569448.S −GI.22027487.S GI.38569448.S −GI.22027487.S GI.38569448.S −GI.22027487.S

GI.34222299.S −GI.22027487.S GI.34222299.S −GI.22027487.S GI.34222299.S −GI.22027487.S

GI.21614524.S −GI.34222299.S GI.21614524.S −GI.34222299.S GI.21614524.S −GI.34222299.S

GI.37537705.I −GI.31652245.I GI.37537705.I −GI.31652245.I GI.37537705.I −GI.31652245.I

GI.18641371.S −GI.41197088.S GI.18641371.S −GI.41197088.S GI.18641371.S −GI.41197088.S

GI.16159362.S −GI.31652245.I GI.16159362.S −GI.31652245.I GI.16159362.S −GI.31652245.I

GI.21389558.S −GI.16159362.S GI.21389558.S −GI.16159362.S GI.21389558.S −GI.16159362.S

GI.28557780.S −GI.16159362.S GI.28557780.S −GI.16159362.S GI.28557780.S −GI.16159362.S

GI.27477086.S −GI.16159362.S GI.27477086.S −GI.16159362.S GI.27477086.S −GI.16159362.S

GI.23510363.A−GI.28557780.S GI.23510363.A−GI.28557780.S GI.23510363.A−GI.28557780.S

GI.27482629.S −GI.23510363.A GI.27482629.S −GI.23510363.A GI.27482629.S −GI.23510363.A

GI.28416938.S −GI.27482629.S GI.28416938.S −GI.27482629.S GI.28416938.S −GI.27482629.S

GI.30795192.A−GI.27482629.S GI.30795192.A−GI.27482629.S GI.30795192.A−GI.27482629.S

GI.24308084.S −GI.27477086.S GI.24308084.S −GI.27477086.S GI.24308084.S −GI.27477086.S

GI.4504700.S −GI.19224662.S GI.4504700.S −GI.19224662.S GI.4504700.S −GI.19224662.S

Different interactions
between the given genes

GI.33356162.S −GI.17981706.S GI.33356162.S −GI.17981706.S

GI.20373176.S −GI.14211892.S GI.20373176.S −GI.14211892.S

GI.17981706.S −GI.14211892.S GI.17981706.S −GI.14211892.S

GI.14211892.S −GI.20373176.S GI.14211892.S −GI.20373176.S

GI.5454143.S −GI.4504410.S

GI.27894333.A−GI.27477086.S

GI.19224662.S −GI.27477086.S

GI.13027804.S −GI.34222299.S

GI.22027487.S −−hmm9615.S

GI.37537697.S −−GI.22027487.S

Total number
of interactions:

32 26 34
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Table 3.11: Comparison of the specificity, precision and F-measure computed via
MMLE and GGM under 1000 Monte-Carlo runs based on different dimensional sys-
tem (Θ) with normally distributed data with sample size 20.

precision specifity F MCC
Θ GGM MMLE GGM MMLE GGM MMLE GGM MMLE
50 0.7510 1 0.9910 1 0.5110 0.5040 0.5210 0.5690
100 0.6480 1 0.9930 1 0.4630 0.5030 0.4720 0.5730
500 0.1120 1 0.9980 1 0.1630 0.5010 0.1880 0.5770

3.3 Modified Maximum-Likelihood Estimation Application

In the application of MMLE, we estimate the precision matrix Θ under the simu-

lated dataset and calculate the accuracy measures for this high-dimensional matrix.

Here, the true precision matrix is created from the multivariate normal distribution

when the total number of nodes in the systems, i.e., the dimension of Θ is taken

as 50, 100 and 500, respectively, so that the performance of both approaches un-

der small, moderate and large systems can be comparable. Furthermore, we set

the number of observations for each node as 20 throughout the study and then, we

construct the model as explained in Subsection 2.3.1 entitled as “Development of

Modified Maximum-Likelihood Estimation”. Accordingly, to compare the results of

both MMLE and GGM, we calculate the same accuracy measures, namely precision,

specifity, F-measure and also add the Matthew’s Correlation Coefficient (MCC).

In the comparison of these measures, the mean values of the accuracy measures

are calculated from 1000 Monte-Carlo run and the sample size 20 per each gene

as performed before and finally, the shape parameter in Equation 2.32 under the

high-dimensional density is taken as 50 to get MMLE under the multivariate nor-

mal distribution. Finally, the originally developed codes are written and run in the R

programme language for both MMLE and GGM as used previously.

On the other side, in the application of GGM, the selected accuracy measures of GGM

are computed under the optimal penalty constant based on the RIC criterion and the

precision matrix is estimated based on the glasso method as applied before. Then,

the estimated precision matrix is compared with the true adjacency matrix and we

calculate the accuracy measures to calculate the power of the method.
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Table 3.12: Comparison of the real computational time calculated via MMLE and
GGM under 1000 Monte-Carlo runs based on different dimensional systems (p) and
normally distributed data.

User Time System Time Real Time
p GGM MMLE GGM MMLE GGM MMLE

50 1055.53 1064.28 32.35 32.43 2 hours 13 minutes
100 2197.24 2216.05 45.92 46.02 3 hours 58 minutes
500 90512.88 209620.2 379.86 470.9 89.88hours 24.4 hours

Table 3.13: Comparison of the specificity, precision, F-measure and MCC computed
via MMLE and GGM under 1000 Monte-Carlo runs based on different dimensional
system (p) with lognormal distributed data with sample size 20.

precision specifity F MCC
p GGM MMLE GGM MMLE GGM MMLE GGM MMLE

50 0.0060 1 0.9600 1 0.0200 0.5050 -0.0440 0.5690
100 0.0060 1 0.9620 1 0.0100 0.5030 -0.0270 0.5730
500 0.0020 1 0.9610 1 0.0030 0.5010 -0.0110 0.5770

From the Monte-Carlo runs seen in Table 3.11, we find that when the dimension of

the matrix increases, the F-measure, MCC and the precision decrease for the GGM

method. On the other hand, MCC increases under MMLE. But MMLE gives the

perfect results based on the precision and the specificity which means that the pro-

posed MMLE method can catch the links truely for all dimensions. Moreover, it is

observed that MMLE overperforms under all dimesions too. On the other side, when

assessing the computational time as presented in Tables 3.12, we observe that GGM

is slighly faster than MMLE even though GGM spends more time in the real time

which represents the calender date-time.

Table 3.14: Comparison of the specificity, precision, F-measure and MCC computed
via MMLE and GGM under 1000 Monte-Carlo runs based on different dimensional
system (p) with student-t distributed data with sample size 20.

precision specifity F MCC
p GGM MMLE GGM MMLE GGM MMLE GGM MMLE

50 0.0400 1 0.9630 1 0.0360 0.5050 -0.0160 0.5690
100 0.1330 0.9970 0.9920 0.9980 0.053 0.4960 0.0510 0.5640
500 0.0110 0.9450 0.9790 0.9890 0.0180 0.4760 0.0100 0.5490
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In Tables 3.13 and 3.14, it is seen that MMLE still gives better results for all di-

mensions and different distributions. In other words, MMLE under the long-tailed

distribution fit the data better than GGM.

3.4 Bernstein Operators

After proposing new methods for the prediction of the precision matrix, we also sug-

gest preliminary methods, such as Bernstein polynomials, Szász-Mirakyan Operator,

BBH operator and MKZ operator based on the transformation to eliminate the batch

effects in the original raw data so that the precision matrix can be estimated more

accurately.

3.4.1 Application via Bernstein Polynomial Application

In generating simulated data we still consider 50, 100, and 500-dimensional systems

where each gene has again 20 observations. We then generate scale-free, hubs, clus-

ter, and random networks from the multivariate normal distribution by using the huge

package under the R programme language [155]. In the calculation, we initially sim-

ulate a dataset for the true network and keep its true path for the best model selection

in further steps. We later transform this actual dataset via the Bernstein and Szasz

polynomials with respect to Equations 2.41 and 2.45, respectively. In these equa-

tions, each observation i (i = 1, . . . , n) is reallocated on the range [0, 1] by using the

f(i/n) formula. Finally, these transformed datasets are applied in the glasso approach

for the inference of Θ in GGM. In the estimation of Θ, we select the optimal penalty

constant, resulting in the optimal model,via the RIC criterion as before. For the as-

sessment, we repeat the underlying process 1000 Monte Carlo runs as before and

compute precision, specificity and F-measure values for each run as stated previously

and finally, present their means which are defined in Section 2.6 [112].

Moreover, as seen in Tables 3.16, we find that when the dimension of the matrix in-

creases, the F-measure and the precision decrease, whereas, the results of both poly-

nomials, particularly, the Szasz operator, give higher accuracies than the findings of

the solely GGM approach under every dimension and most network types. Indeed the
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Table 3.15: Comparison of the CPU times per second for the simulated datasets gen-
erated by 1000 Monte-Carlo runs and scale-free network types.

Dimension of Θ Only GGM Bernstein with GGM Szasz with GGM
(50× 50) 68.53 68.57 68.60
(100× 100) 91.55 91.5800 91.61
(500× 500) 222.84 222.88 222.92

advantage of the Szasz operator over Bernstein is an expected result as the Poisson

distribution applied in Szasz can be seen as the limiting case of the binomial distribu-

tion when the dimension of the systems p becomes much higher than the number of

observations per gene n, that is n, i.e., p >> n.

On the other side, from the comparison of the computational burden based on the

central processing unit (CPU) as shown in Table 3.15, we observe that all three meth-

ods have the same computational demand. This result indicates that the suggested

transformation does not cause any additional computational demand even for large

systems.

Later, we apply our method to the real biologically networks and use namely the cell

signalling in Figure 3.4 and the large-scale human gene expression data, as used in

Section 3.2 entitled as the application by LMARS with the interaction effect. For the

first dataset, the graphical illustration of the accepted signalling molecular interac-

tions is presented and the estimated systems via all alternative models are shown in

Figure 3.9 with the quasi true structure of the network.

From the analyses of the first dataset, as seen in Figure 3.9, glasso approach can catch

only 4 links and only the edge between PRAF-PMEK proteins (protein numbers 1

and 2 in Figure 3.9) and PKC-P38 (protein number 9 and 10 in Figure 3.9) are in-

ferred [22] and the rest of the links cannot be proved by literature. On the other side,

transformed data with Bernstein polynomial can catch 6 links and the edge between

PKC-P38 (protein number 9 and 10 in Figure 3.9) and P44.42-Pakts473 (protein num-

ber 6 and 7 in Figure 3.9).

On the other hand, from comparative analyses via the human gene expression data

(Dataset 2), as no links detected under the RIC criterion, we change it via StARS.

71



(a) (b)

(c) (d)

Figure 3.9: (a) Quasi true network of the cell signalling data (Dataset 1), (b) estimated
cell signalling data by only the GGM appraoch, (c) estimated network by Bernstein
polynomial with the GGM approach and (d)estimated network by Szasz polynomial
with the GGM approach.
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Table 3.16: Comparison of the specificity (Spec), precision (Prec) and F-measure (F)
computed via only GGM, Bernstein with GGM and Szasz with GGM under scale-
free, hubs, cluster and random networks based on 1000 Monte-Carlo runs for the
sample size 20 per gene.

Scale-free

Dimension of Θ
GGM Bernstein Szasz

Spec Prec F Spec Prec F Spec Prec F
(50× 50) 0.9991 0.5942 0.0378 0.7384 0.0403 0.0701 0.7004 0.0398 0.0705
(100× 100) 1.0000 0.4790 0.0192 0.8205 0.0203 0.0365 0.7866 0.0200 0.0366
(500× 500) 0.9793 0.0040 0.0066 0.9925 0.0038 0.0070 0.9997 0.0040 0.0080

Hubs

Dimension of Θ
GGM Bernstein Szasz

Spec Prec F Spec Prec F Spec Prec F
(50× 50) 0.9991 0.4626 0.0411 0.7455 0.0387 0.0673 0.7026 0.0388 0.0689
(100× 100) 1.0000 0.8333 0.0220 0.8391 0.0198 0.0353 0.7894 0.0202 0.0370
(500× 500) 0.9784 0.0038 0.0063 0.9910 0.0038 0.0070 0.9980 0.0040 0.0080

Cluster

Dimension of Θ
GGM Bernstein Szasz

Spec Prec F Spec Prec F Spec Prec F
(50× 50) 0.9991 0.1157 0.1681 0.7334 0.1155 0.1620 0.6994 0.1157 0.1681
(100× 100) 1.0000 1.0000 0.0069 0.8164 0.0585 0.0892 0.7864 0.0586 0.0925
(500× 500) 0.9791 0.0112 0.0141 0.9913 0.0118 0.0187 0.9997 0.011 0.0190

Random

Dimension of Θ
GGM Bernstein Szasz

Spec Prec F Spec Prec F Spec Prec F
(50× 50) 0.9991 0.4184 0.0273 0.7342 0.0602 0.0983 0.7001 0.0602 0.1040
(100× 100) 1.0000 0.333 0.012 0.8181 0.0300 0.0514 0.7858 0.0302 0.0529
(500× 500) 0.9796 0.0061 0.0091 0.9912 0.0060 0.0106 0.9977 0.0057 0.0104

As seen in Table 3.17, we detect 174 links commonly from all the three approaches.

But Bernstein with GGM approach further estimates 19 different links which are

biologically validated by the study of Bhadra and Mallick [22] and Szasz with GGM

cannot estimate any link. Thereby, the findings present that the transformed date are

useful to infer the true structure of the large networks.

3.4.2 Application via Bernstein and LMARS Approaches

In the application, we show the comparison of the LMARS and GGM approaches via

different estimation techniques together with the Bernstein and Szasz polynomials.

For the analyses of both models, we generate 500, 900 and 1000 dimensional datasets

in which each gene has 20 observations as usual. In the data generation, we arbitrarily

set the off-diagonal of the precision matrix Θ to 0.9 so that the interactions between

genes can be clearly observed and we generate scale-free networks [14] under the

given Θ by running the huge package in the R programming language. Accordingly,
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(a) (b)

Figure 3.10: (a) Estimated human gene expression data by only GGM appraoch
(Dataset 2) and (b) Bernstein polynomial with the GGM approach and under the
StARS criterion.

in the calculation based on the 1000 Monte-Carlo simulations, we initially produce

a network structure for the true network and generate sample datasets from this true

network. Then, we transform these data by the Bernstein and Szasz operators and

finally, use them for modelling and inferring Θ [3].

In modelling via LMARS, every single node is implemented as a response and the

remaining nodes are taken as co-variates as explained in Subsection 2.2.2. Hereby,

we consider only main effects and eliminate all interaction terms. Then, we take into

account the significant β parameters in Equation 2.11 to estimate Θ. These steps are

repeated until every gene i is explained by the remaining other genes as the lasso

regression applies. Furthermore, the forward and backward steps are performed for

constructing the optimal model and the GCV criterion is calculated to eliminate over-

fitted coefficients. Finally we convert the estimated Θ to the binary form. To obtain

a symmetric Θ, the AND rule is performed. Hereby, if the co-variate j for the lasso

model with the response i is significant as well as the co-variate j for the lasso model

with the response i is significant (i, j = 1, . . . , p), the entries of (i, j) and (j, i) pairs

in the estimated Θ can be assigned as 1 in the binary form. Otherwise, both entries,

74



Table 3.17: Comparison of the estimated links via transformed and non-transformed
human gene expression dataset (Dataset 2). The biologically validated links and the
complete name of genes can be found in the study of Bhadra and Mallick [22]. The
complete list of genes is given in Appendix.

Interactions GGM GGM with Bernstein GGM with Szasz

Common interactions
between the given genes

5 -3, 6 -4, 8 -4, 8 -6, 9 -6, 14 -11, 18 -4 5 -3, 6 -4, 8 -4, 8 -6, 9 -6, 14 -11, 18 -4
18 -8, 18 -13, 23 -3, 23 -5, 24 -22, 25 -1, 27 -3 18 -8, 18 -13, 23 -3, 23 -5, 24 -22, 25 -1, 27 -3

27 -5, 27 -23, 31 -22, 41 -33, 41 -39, 42 -22, 42 -28 27 -5, 27 -23, 31 -22, 41 -33, 41 -39, 42 -22, 42 -28
42 -31, 43 -11, 43 -22, 43 -24, 43 -31, 43 -42, 44 -11 42 -31, 43 -11, 43 -22, 43 -24, 43 -31, 43 -42, 44 -11
44 -22, 44 -31, 44 -42, 44 -43, 45 -22, 45 -24, 45 -31 44 -22, 44 -31, 44 -42, 44 -43, 45 -22, 45 -24, 45 -31
45 -42, 45 -43, 45 -44, 47 -24, 48 -41, 50 -32, 50 -41 45 -42, 45 -43, 45 -44, 47 -24, 48 -41, 50 -32, 50 -41
52 -32, 52 -50, 53 -47, 54 -22, 54 -44, 54 -45, 56 -22 52 -32, 52 -50, 53 -47, 54 -22, 54 -44, 54 -45, 56 -22

56 -28, 56 -42, 56 -43, 56 -44, 56 -45, 57 -3, 57 -5 56 -28, 56 -42, 56 -43, 56 -44, 56 -45, 57 -3, 57 -5
57 -23, 57 -27, 59 -22, 59 -24, 59 -45, 59 -54, 60 -43 57 -23, 57 -27 59 -22, 59 -24, 59 -45, 59 -54, 60 -43
62 -44, 62 -50, 62 -52, 64 -22, 64 -31, 64 -42, 64 -43 62 -44, 62 -50, 62 -52, 64 -22, 64 -31, 64 -42, 64 -43
64 -44, 64 -45, 64 -47, 64 -54, 64 -56, 66 -50, 66 -62 64 -44, 64 -45, 64 -47, 64 -54, 64 -56, 66 -50, 66 -62
67 -11, 67 -22, 67 -24, 67 -28, 67 -43, 67 -45, 67 -56 67 -11, 67 -22, 67 -24, 67 -28, 67 -43, 67 -45, 67 -56
67 -60, 67 -64, 68 -22, 68 -45, 68 -56, 69 -51, 69 -67 67 -60, 67 -64, 68 -22, 68 -45, 68 -56, 69 -51, 69 -67
68 -59, 68 -63, 68 -67, 69 -11, 69 -14, 71 -11, 71 -43 68 -59, 68 -63, 68 -67, 69 -11, 69 -14, 71 -11, 71 -43
71 -47, 71 -60, 71 -67, 72 -42, 72 -50, 72 -62, 73 -40 71 -47, 71 -60, 71 -67, 72 -42, 72 -50, 72 -62, 73 -40
74 -42, 74 -44, 74 -50, 74 -51, 74 -54, 74 -62, 74 -65 74 -42, 74 -44, 74 -50, 74 -51, 74 -54, 74 -62, 74 -65
74 -66, 74 -69, 74 -72, 75 -44, 75 -51, 75 -64, 75 -66 74 -66, 74 -69, 74 -72, 75 -44, 75 -51, 75 -64, 75 -66
75 -67, 75 -68, 75 -74, 77 -50, 77 -52, 77 -62, 78 -51 75 -67, 75 -68, 75 -74, 77 -50, 77 -52, 77 -62, 78 -51
78 -66, 80 -73, 83 -50, 83 -66, 83 -69, 83 -74, 83 -75 78 -66, 80 -73, 83 -50, 83 -66, 83 -69, 83 -74, 83 -75
85 -22, 85 -45, 85 -56, 85 -59, 85 -60, 85 -67, 85 -71 85 -22, 85 -45, 85 -56, 85 -59, 85 -60, 85 -67, 85 -71

86 -3, 86 -5, 86 -23, 86 -27, 86 -57, 87 -22, 87 -31 86 -3, 86 -5, 86 -23, 86 -27, 86 -57, 87 -22, 87 -31
87 -43, 87 -45, 87 -56, 87 -59, 87 -64, 87 -67, 87 -85 87 -43, 87 -45, 87 -56, 87 -59, 87 -64, 87 -67, 87 -85
90 -24, 91 -44, 91 -87, 93 -1, 95 -50, 95 -52, 96 -22 90 -24, 91 -44, 91 -87, 93 -1, 95 -50, 95 -52, 96 -22

96 -24, 96 -45, 96 -54, 96 -59, 96 -68, 96 -85, 96 -87 96 -24, 96 -45, 96 -54, 96 -59, 96 -68, 96 -85, 96 -87
97 -4, 97 -24, 97 -47, 97 -53, 97 -56, 99 -86 97 -4, 97 -24, 97 -47, 97 -53, 97 -56, 99 -86

Biologically validated different
interactions between the given genes

9-63 , 63-53, 96-67, 12-2,72-39,62-51, 78-62 90-63,63-53,97-47,86-57,86-2,85-60,96-85,96-67,91-44,74-44
74-69,74-72,72-39,74-62,78-62,62-51, 95-50,77-50,93-25

Total number of estimated interactions : 290 483 0

i.e., (i, j) and (j, i), are set to 0. In biological speaking, it means that there is a relation

between genes when the associated entry of Θ is 1, and there is no relation between

genes when this entry equals to 0.

On the other side, we apply GGM and estimate its model parameters via the NS

[93] and glasso methods to extend the performance evaluation of the GGM approach.

Hereby, in GGM with the NS method, the inference is performed by fitting the lasso

regression. Whereas in modelling via GGM with the glasso method, we implement

the lasso regression under the penalized likelihood function. In the application of

GGM, firstly, the true precision matrix Θ is estimated and then the estimated Θ un-

der the transformed data via the Bernstein operators’ results are compared with the

findings under the non-transformed datasets.

In the evaluation of the outcomes based on the underlying dimensional systems, we

calculate the F-measure and the precision values for the measures of accuracy by

using the formulas as expressed in Section 2.6.

From the outcomes in Tables 3.18 and 3.19, it is observed that F-measure via LMARS
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Table 3.18: Comparison of the precision and F-measure value via LMARS under
1000 Monte-Carlo runs based on systems with 500, 900 and 1000 dimensional net-
works for the sample size 20 per each gene.

Accuracy Dimension of Only LMARS LMARS with LMARS with
measure Θ Bernstein Szasz

Precision
500 0.0017 0.0012 0.0013
900 0.0000 0.0005 0.0007

1000 0.0000 0.0004 0.0005

F-measure
500 0.0029 0.0025 0.0026
900 Not Computable 0.0013 0.0013

1000 Not Computable 0.0011 0.0012

Table 3.19: Comparison of the precision and F-measure values via GGM estimated by
the neighborhood selection (NS) and glasso methods under 1000 Monte-Carlo runs
based on 500, 900 and 1000 dimensional Θ with sample size 20.

Inference Accuracy Dimension of Only GGM GGM with GGM with
Method measure Θ Bernstein Szasz

NS
Precision

500 Not Computable 0.4768 0.4731
900 Not Computable 0.4679 0.4702

1000 Not Computable 0.4729 0.4700
NS

F-measure
500 0.0000 0.0179 0.0173
900 0.0000 0.0092 0.0091

1000 0.0000 0.0227 0.0289

glasso
Precision

500 Not Computable 0.5002 0.4995
900 Not Computable 0.4968 0.4972

1000 Not Computable 0.4951 0.5342
glasso

F-measure
500 0.0000 0.1201 0.1531
900 0.0000 0.1126 0.0830

1000 0.0000 0.0775 0.1062

is not computable since the recalls are indefinite, resulting in indefinite F-measure.

Whereas GGM with the NS and the glasso methods can calculate F-measure success-

fully. Moreover, it is seen that GGM overperforms LMARS under the transformed

datasets. If we compare the findings of both Bernstein operators, it is seen that the

Szasz polynomials are more accurate for all cases. Furthermore, F-measure and pre-

cision values decrease when the dimension increases under all conditions. Addition-

ally, we find that the accuracy of the estimates under LMARS is higher when the data
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are not transformed via the Bernstein operators under relatively low dimensions. But

when the dimension of the system raises, the transformed data have higher F-measure

for both LMARS and GGM models. On the contrary, when the dimension increases,

the precision value decreases too.

3.4.3 Application via Bernstein-Types of Operators

In the assessment of the polynomials’ results, we consider four different scenarios.

In the first scenario, we estimate the precision matrix Θ from the simulated datasets

under different kinds of the Bernstein polynomials and the Bernstein-type of oper-

ators, which are the MKZ operator and the BBH operator. For the analyses of the

model as used in other analyses, we generate 50, 100 and 500 dimensional datasets

in which each gene has 20 observations. Then, we set all the off-diagonal entries

of Θ to 0.9 arbitrarily and generate scale-free networks by using the huge package

in the R programming language as performed previously. Then, in order to evaluate

whether the entry of the off-diagonal terms has any effect in inference, we change it

via moderately small and small values too. Hereby, in the second and the third scenar-

ios, the off-diagonal elements of the precision matrix set to 0.7 and 0.5, respectively,

when the networks are scale-free. Finally, as the fourth plan, we change the sparsity

of the system from the scale-freeness to the hubs property since the former typically

indicates a high sparsity level around 90% or above and the latter implies relatively a

lower sparsity level at around 80− 90% [2].

Accordingly, in all scenarios, we initially generate a dataset for the true network and

keep its true path for the best model selection in further steps. Later, we transform this

actual dataset via the Berstein polynomial, the Szasz polynomial, the MKZ operator

and the BBH operator. Finally, all these non-transformed and transformed data are

used to estimate the precision matrices by using the NS method. In the application,

we choose NS among alternatives due to its computational gain. For the assessment,

we calculate the F-measure and the precision for each run as shown in Section 2.6.

Then, we repeat the calculation of the underlying statistics for 1000 Monte-Carlo runs

and their means are computed. The results are presented in Table 3.20.
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Table 3.20: Comparison of the F-measure and the precision values computed with-
/without operators in inference of Θ via GGM with 0.9 off-diagonal entries under
scale-free networks via sample size 20.

Accuracy Dimension Only GGM GGM with GGM with GGM with GGM with
Measure of Θ Bernstein Szasz BBH MKZ

F-measure 50 0.0014 0.1714 0.1590 0.1132 0.1492
100 0.0001 0.0904 0.0863 0.0594 0.0812
500 0.0000 0.0171 0.0171 0.0094 0.0163

Precision 50 Not Computable 0.4852 0.4789 0.3794 0.4729
100 Not Computable 0.4769 0.4749 0.4601 0.4699
500 Not Computable 0.4663 0.4682 0.4466 0.4624

Table 3.21: Comparison of the F-measure and the precision values computed with-
/without operators in inference of Θ via GGM with 0.7 off-diagonal entries under
scale-free networks via sample size 20.

Accuracy Dimension GGM GGM with GGM with GGM with GGM with
Measure of Θ Bernstein Szasz BBH MKZ

F-measure 50 Not Computable 0.0699 0.0711 0.0704 0.0712
100 Not Computable 0.0361 0.0366 0.0362 0.0368
500 Not Computable 0.0077 0.0083 0.0078 0.0080

Precision 50 Not Computable 0.0403 0.0403 0.0404 0.0401
100 Not Computable 0.0201 0.0200 0.0200 0.0200
500 Not Computable 0.0040 0.0040 0.0040 0.0040

Table 3.22: Comparison of the F-measure and the precision values computed with-
/without operators in inference of Θ via GGM with 0.5 off-diagonal entries under
scale-free networks via sample size 20.

Accuracy Dimension GGM GGM with GGM with GGM with GGM with
Measure of Θ Bernstein Szasz BBH MKZ

F-measure 50 Not Computable 0.0703 0.0710 0.0702 0.0716
100 Not Computable 0.0356 0.0365 0.0362 0.0367
500 Not Computable 0.0077 0.0080 0.0077 0.0080

Precision 50 Not Computable 0.0404 0.0402 0.0402 0.0403
100 Not Computable 0.0198 0.0199 0.0200 0.0199
500 Not Computable 0.0040 0.0040 0.0039 0.0040
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Table 3.23: Comparison of the F-measure and the precision values computed with-
/without operators in inference of Θ via GGM with 0.9 off-diagonal entries under
hubs networks via sample size 20.

Accuracy Dimension GGM GGM with GGM with GGM with GGM with
Measure of Θ Bernstein Szasz BBH MKZ

F-measure 50 Not Computable 0.0668 0.0687 0.0677 0.0691
100 Not Computable 0.0352 0.0365 0.0358 0.0366
500 Not Computable 0.0074 0.0076 0.0075 0.0076

Precision 50 Not Computable 0.0383 0.0387 0.0386 0.0387
100 Not Computable 0.0196 0.0198 0.0198 0.0198
500 Not Computable 0.0038 0.0038 0.0038 0.0038

From Table 3.20, it is seen that for low dimensions, the Bernstein polynomials give

better results than others, in particular, the Szasz polynomials have the highest F-

measure. We obtain the same results for the precision values as well. Moreover,

we detect that when the dimension of the matrix increases, the F-measure and the

precision value decrease. Furthermore, as shown in Tables 3.21-3.22, we observe

similar findings in the sense that the Szasz polynomials typically produce better F-

measure and precision even though we decrease the correlation between genes (by

off-diagonal entries 0.7 and 0.5). Whereas under these scenarios, it is found that

the MKZ operator is as good as the Szasz operator in terms of the accuracy of the

estimates under certain conditions. Finally, when we evaluate the outputs of Tables

3.21-3.23, we see that the results of both the Szasz polynomial and the MKZ operator

are very close to each other and overperfom with respect to the remaining operators.

On conclusion, all these outputs imply that when the sparsity of networks decreases,

all Bernstein-type of operators compute similar results and the Szasz polynomial as

well as the MKZ operator are slightly better than others. On the contrary, if the spar-

sity level raises as mostly observed in biological networks, the operators have differ-

ent accuracy values and the performance of the Bernstein polynomials, especially, the

Szasz polynomial, becomes better.
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CHAPTER 4

CONCLUSION

In this thesis, we have proposed the LMARS nonparametric regression method, as

an alternative of the GGM modelling, to construct the networks and to describe the

nonlinearity in the systems. In the comparison of both approaches, we have imple-

mented simulation studies under different scenarios, systems dimensions and sparsi-

ties. From the Monte-Carlo results, we have evaluated the specificity, F-measure and

the precision values and have concluded that when the dimension and the sparsity of

the systems increase, the underlying criteria become higher. Moreover, the compu-

tational time of LMARS is less demanding than GGM for all dimensions. We have

found similar outputs in the application of both methods in real systems’ analyses too.

On the other hand, from the comparison of both approaches in nonnormal data, we

have observed that LMARS mostly performs better than GGM. Thereby, we consider

that LMARS can be seen as a promising alternative approach regarding GGM both

in terms of accuracy and computational cost, especially, for the construction of large

networks.

On the other side, as the future studies, we think to apply other alternative approaches

of GGM within their parametric alternatives in order to relax the strick normality as-

sumption. We consider to apply copula models for this purpose as these approaches

can deal with the challenge of the normality by suggesting different distributions to

describe the measurement of genes [57, 38]. In order to eliminate the normality as-

sumption, Liu et al. [88] also suggest the nonparanormal SKEPTIC algorithm which

is based on the nonparametric optimization method in which the joint function of

states is defined as the univariate normal by using the transformed data. But it has

been shown that for the continuous distributions, the nonparanormal family is taken
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as the equivalent to the Gaussian copula family [87]. On the other hand, Voorman et

al. [138] propose to fit a generalized additive model by using a penalty value that esti-

mates the optimal basis function in an additive model. The estimation is implemented

via the block coordinate descent algorithm. Regarding other suggested approaches,

it has been found that this method is successful in modelling the nonlinearity and

competitive in the description of the linear interactions in the systems.

As an another extension of this study, we consider to apply extended modelling ap-

proaches of MARS. One of these alternatives is the Conic MARS (CMARS) approach

[144] which is enhanced as an alternative of the MARS backward step. This method

simply suggests to implement a penalized residual sum of squares (PRSS) shown in

Equation 4.1 for MARS as a ridge regression, also known as the Tikhonov regular-

ization [6, 61], by eliminating the backward stepwise algorithm of MARS. Moreover,

CMARS chooses knots t more far from the input variables xij for all i and j. These

calculations improve the data fitting and produce a better R2 measure than MARS

obtains.

PRSS(α, f1, f2, . . . , fp) =
N∑
i=1

(yi − α−
p∑
j=1

fjxij)
2 +

p∑
j=1

λj

∫
f
′′

j (tj)
2dtj, (4.1)

in which λj > 0 is the tuning parameter [63]. Furthermore, α refers to the coeffi-

cient of the mth basis function and f ′′ indicates the second derivative of the basis

function. Hence, PRSS can control the complexity and the accuracy of the model

and can transform MARS to the Tikhonov regularization problem, resulting in the

conic quadratic programming (CQP) in the parameter estimation. The boundaries of

this programming is determined by different types of the multi-objective optimiza-

tion approaches. On the other hand, robust conic MARS (RCMARS) [102] extends

CMARS by adding the first and the second-order partial derivatives of the multivariate

basis functions, which come from the discretization of the integral while computing

the optimal model. Such penalized curvature structure, which can be considered as

the generalization of CMARS [103], is called the robustification of MARS and the

parameter estimation of this model can be performed by the CQP [128]. From sen-

sitivity analyses in different datasets, it has been found that RCMARS improves the
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accuracy of MARS with a loss in the computational demand. But this demand can

be decreased via the Robust MARS(RMARS) approach [106] which also finds less

variance in the estimates of parameters although it has slightly lower accuracy than

MARS.

On the other side, it is possible to partition the function used in the knot selection via

linear and nonlinear components. The conic generalized partial linear (CGPL) model

[32, 105] is a semiparametric approach which uses CMARS for nonlinear variables

and the logistic regression (LR) in linear variables [143]. We can also perform the

robust conic generalized partial linear (RCGPL) model which implements RCMARS

and LR approaches to present nonlinear and linear variables, respectively, in a par-

tially linear model [104, 107]. Finally, the dynamic structure of the networks can be

also inferred via the numerical solutions whose model is based on the ordinary dif-

ferential equations (ODE) [54, 140, 141]. In the parameter estimation of this model,

various techniques such as the Euler approximation [53], higher ordered-Heun and

Runge-Kutta approximations [40, 152, 142] as well as optimization methods based

on the ellipsoidal calculus [78] can be performed. Because from the study of Defterli

et al. [33], it has been shown that the results of GGM can be comparable with the

ODE approach in order to estimate the gene-environment networks which describe

the relations of environmental conditions on the individual genotypes. Whereas, in

that study, the results are assessed based on a small system. Hence, their applications

can be extended by performing them in large systems as used in this work.

On conclusion, we see that there are lots of probabilistic and deterministic techniques

that can be performed to get optimal results in high-dimensional analyses and these

studies can be adapted to the problems in computational biology, bioinformatics and

medicine, in particular, when the question of interest is based on the penalized type

of models. Because it is known that this sort of problems can be solved via both nu-

merical solutions and iterative approaches where various types of statistical inference

methods can be also applicable such as the iterative maximum likelihood approach or

Bayesian algorithms.

On the other hand, in the extension of LMARS method, we have implemented the

LMARS method with interaction terms as an alternative of GGM. The performance
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of this new model has been evaluated via simulated datasets and two real datasets

with biological interpretations of the results. From the outcomes, we have concluded

that if the interaction terms are included into the model, it can detect new links which

have not been mostly estimated by other methods even though their findings are bio-

logically declared. Thereby, we believe that this extended version of LMARS can be

a promising alternative of GGM and estimates the true structure of the system better

than the LMARS without interaction effects. Furthermore, we have seen that the ap-

plication of GGM can be limited for high dimensional systems due to its calculation

of the inference. We can perform some approximate methods under this condition.

Whereas, both LMARS models do not have such a limitation and can be applicable

for realistically complex biological networks.

As a future study of LMARS with interaction effect, precise structural contact predic-

tion using sparse inverse covariance estimation (PSICOV) which use sparse inverse

covariance estimation to the problem of protein contact prediction, can used to esti-

mate the precision matrix[74]. We would hope to apply BIG and QUIC method which

include a block-coordinate descent method with the blocks via clustering [66]. We

consider to use other alternative methods of MARS, known as POLYMARS [126],

hybrid adaptive splines (HAS) [90], Bayesian MARS [35, 36], and SARS [158], be-

sides conic-multivariate adaptive regression splines (CMARS) [144] and RCMARS

as stated before [102] by converting them as a lasso regression in order to accelerate

the speed of calculations and to increase the accuracies of the estimated systems since

their advantages over the full description of MARS have been indicated. Moreover,

we aim to compare their results with the findings of QUIC [67] and BIGQUIC [66]

approaches since these methods are specifically designed for very high dimensional

data under high dependency and sparsity.

On the other side, in the Bernstein polynomial application and Bernstein-LMARS,

we have proposed an approximation method, called the Bernstein polynomials, in

advance of the inference via the GGM and LMARS by transforming the measure-

ments into the [0, 1] interval. In our calculation, we have implemented the Bernstein

and Szasz operators, and compared their performances. In the comparative assess-

ment, we have generated different dimensional networks under distinct sparsities.

Then, we have computed their precisions, specificities and F-measure values based
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on 1000 Monte-Carlo runs. From the results, we have observed that the polynomial

approaches, specifically, the Szasz method, increase the accuracies of the estimates

under most of these cases and it can be used to eliminate batch effect in the data if the

modelling is based on the description of the steady-state behaviour of the biochemical

systems. Furthermore, from the application with real datasets, we have seen that the

polynomial approach is promising to support the known biological findings about the

selected systems.

Hereby as the future study, we think to compare these results with other types of de-

terministic modelling approaches such as the ordinary differential equations approach

and check whether these polynomials are still successful in improving the accuracy

of the estimates. Moreover, we also consider to perform the extended version of the

Bernstein polynomial, called the q-Bernstein approximation [101] which has a higher

convergence rate and is asymptotically more efficient. Additionally, the application of

the multivariate Bernstein Polynomials [81] can be implemented in order to evaluate

the outcomes under univariate and multivariate dimensional observations. Finally, we

consider to compare the performance of Bernstein polynomials with spline methods

that are performed under penalized regression [116]. Because from the previous stud-

ies, it has been reported that these methods are successful in data which indicate dis-

tributional feature and our analyses of the MARS (multivariate adaptive regression)

approach [46] that is based on the spline functions, support this finding by computing

promisingly accurate results when it is compared with the glasso approach in GGM

[8].

Finally, in the study of the Bernstein-types of operators’ application, we have com-

pared all well-known Bernstein-type of operators to detect which alternative produces

the highest accuracy if it is applied with GGM. For this purpose, we have analyzed

the Monte-Carlo results of the Bernstein polynomials, BBH and MKZ operators. The

results have indicated that the Bernstein polynomials have the highest accuracies if

they are performed in advance of the inference of the model parameters of GGM and

the MKZ operator can be another good alternative if the sparsity level of the system

decreases. But for all choices of operators, we have found that these operators can

improve the accuracies of estimates for different dimensional biochemical systems if

they are implemented as the pre-processing step before the inference of the precision
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matrix. As the future work of this study, we consider other approximation methods

such as the empirical copula or Fourier transformations in such a way that the dis-

tributional feature of the observations can be embedded to the new transformed data

in order to smooth the original dataset smartly and get estimates with higher accu-

racy. Indeed from our preliminary studies via the empirical copula, which is based

on the transformation of the original data to the normal distribution, we have already

found that it improves the accuracy of the estimates under both normal and nonnormal

datasets and can be a good pre-processing step for the biological systems particularly

if the dimension of the network is very large such as least higher than 500 genes.
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APPENDIX A

APPENDICES

This Appendix section includes the graphes of the generated time-course data which

are used for the JAK-STAT application in the LMARS method.

Figure A.1: Changes in the number of molecules for proteins P1, P4, P16, P17, P18,
P23, P25, P28, P29 and P38.

Figure A.2: Changes in the number of molecules for proteins P2, P5, P7, P10, P11,
P12, P15, P20, P21 and P35.
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Figure A.3: Changes in the number of molecules for proteins P3, P6, P13, P19, P31,
P32 and P34.

Figure A.4: Changes in the number of molecules for proteins P8, P9, P14, P22, P24,
P26, P27, P30, P33 and P36.
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Table A.1: Protein list of the generated dataset of JAK/STAT pathway [92].

Protein Name of the Proteins Protein Name of the Proteins
P1 Receptor IFNAR1 P20 IRF9n
P2 TYK P21 Free TFBS
P3 Receptor Tyk Complex P22 Occupied TFBS
P4 Receptor IFNAR2 P23 mRNAn
P5 JAK P24 mRNAc
P6 Receptor Jak Complex P25 SOCS
P7 IFN_free P26 Stat2n_IRF9
P8 IFNAR dimer P27 STAT2n
P9 Active Receptor Complex_Stat2c P28 CP

P10 STAT2c_IRF9 P29 ISGF-3c_CP
P11 Active Receptor Complex_STAT2c P30 Stat1c*_Stat2c*_CP
P12 IRF9c P31 NP
P13 STAT2c P32 Stat1n*_Stat2n*_NP
P14 STAT1c P33 ISGF-3n_NP
P15 Active Receptor Complex_STAT2c_STAT1C P34 Occupied TFBS_NP
P16 STAT1c*_STAT2c* P35 PIAS
P17 ISGF-3c P36 PIAS_ISGF-3n
P18 ISGF-3n P37 STAT1n
P19 STAT1n*_STAT2n* P38 IFN_influx
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• Ağraz M. and Purutçuoğlu V. (2017). Empirical copula in detection of batch ef-

fects, International Workshop on Mathematical Methods in Engineering, Ankara,

Turkey.

• Ağraz M. and Purutçuoğlu V. (2017). Modeling of biochemical networks via

a new Graphical approach, 9th EMR-Italian Region of IBS Conference, The-

lesssa, Greece.

104



BOOK CHAPTER
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