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ABSTRACT 
 

 

 

ASSESSMENT OF DIFFERENT RAINFALL PRODUCTS  

IN FLOOD SIMULATIONS 

 

 

 

Özkaya, Arzu 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Zuhal Akyürek 

June 2017, 180 pages 

 

Floods happening due to heavy rainfall are one of the most widespread natural hazards. 

To predict such events, accurate rainfall products and well calibrated hydrologic 

models are essential especially in urban settlements for life savings. With the objective 

of assessing the rain detection potential of rainfall data products, several hourly rainfall 

datasets are used as forcing inputs in two hydrologic models. Physic-based distributed 

model, WRF-Hydro, and conceptual based lumped model, HEC-HMS, are used to 

simulate the three catastrophic flood events those occurred in Terme Basin in Samsun. 

For the calibration of both models, gauge data belonging to 22nd November 2014 flood 

event are used. Furthermore, stream network density effect in rainfall-runoff modeling 

is investigated in WRF-Hydro model. In model evaluations, two different flood events 

with different rainfall datasets are used. The datasets contain weather radar data and 

satellite rainfall estimates from Hydro-Estimator (HE) as nowcasting products; 

Weather Research and Forecasting Model (WRF) precipitation data as a forecasting 

product and gauge-based data. Among these datasets bias correction is applied to the 

weather radar data by using Kalman Filtering and their use in flood modeling is also 

evaluated in the simulations. Results show that all products have different limitations 
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and potentials depending on the rainfall type. Among them, the HE product generally 

indicates poor performance in the simulations in this basin. Whereas, gauge data 

located in close proximity to the study area is good at representing the flood peak 

occurrence time but has a weakness in the flood magnitude estimation. WRF 

precipitation data are superior in detecting the rain with some time inaccuracy but as a 

forecasted product it can be useful as an early warning system to take initial 

precautions. Bias corrected radar data using the gauging stations in close proximity to 

the studied one has an affirmative effect on results especially in frontal rainfall type. 

Results of the models show that both models are generally close to each other in 

representing hydrograph shape and peak time. The average value of correlation (r) and 

root mean square error (RMSE) for all events and rainfall products indicate that WRF 

Hydro (0.61 for r, 62.6 m3/s for RMSE) showed a slightly better success compared to 

the HEC HMS (0.59 for r, 67.6 m3/s for RMSE). However, one of the flood event that 

has mainly convective origin makes the difference between the models. In this event, 

WRF-Hydro model presents the physical-based model’s ability in showing hydrograph 

peak discharge and time to peak accurately. The overall results indicate that the use of 

well calibrated hydrologic model with rainfall data that compound of calibrated radar, 

WRF precipitation forecast and observations in ungauged or poorly gauged areas can 

help to take necessary precautions against flooding and provide benefit in saving life 

and property. 

Keywords: WRF-Hydro, HEC-HMS, bias correction, Kalman Filter, satellite based 

rainfall 
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ÖZ 
 

 

 

FARKLI YAĞIŞ ÜRÜNLERİNİN TAŞKIN SİMÜLASYONLARINDA 

DEĞERLENDİRİLMESİ 

 

 

 

Özkaya, Arzu 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Zuhal Akyürek 

Haziran 2017, 180 sayfa 

 

Şiddetli yağışların neden olduğu seller, en yaygın doğal afetlerden biridir. Güvenilir 

yağış ürünleri ve iyi kalibre edilmiş hidrolojik modeller bu tür olayları öngörmede, 

özellikle kentsel yerleşim yerlerinde hayat kurtarma için önemlidir. Yağış veri 

kaynaklarının yağış algılama potansiyelini değerlendirmek amacıyla, birçok yağış 

verisi iki hidrolojik modelde saatlik olarak kullanılmıştır. Samsun'daki Terme 

Havzasında meydana gelen üç sel olayını simüle etmek için, fizik temelli dağıtılmış 

model WRF-Hydro ve deneysel tabanlı model HEC-HMS modeli kullanılmıştır. Her 

iki model kalibrasyonu için 22 Kasım 2014 sel olayına ait ölçüm verileri kullanılmıştır. 

Ayrıca, WRF-Hydro modelinde akarsu ağ yoğunluğunun yağış-akış modellemesine 

etkisi araştırılmıştır. Model değerlendirmelerinde, farklı yağış verilerine sahip iki 

farklı sel olayı kullanılmıştır. Yağış verileri, anlık veri olarak radar verisi ve uydu yağış 

tahmini olan Hydro-Estimator (HE) ürünü; tahmin verisi olarak Weather Research and 

Forecasting Model (WRF) yağış ürünü; ve yer verisinden oluşmaktadır. Bu veri setleri 

arasından, radar yağış verilerine Kalman Filtrelemesi uygulanarak yanlılık düzeltmesi 

yapılmış ve bunların taşkın modellemesinde kullanımı da simülasyonlarda 

değerlendirilmiştir. Sonuçlar, tüm ürünlerin yağış türüne bağlı olarak farklı 

sınırlamaları ve potansiyelleri olduğunu göstermektedir. Bunların arasında, HE ürünü 
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genel olarak bu havzadaki simülasyonlarda zayıf performans göstermiştir. Çalışma 

alanının yakınında bulunan yer yağış verileri, taşkın pik oluşum zamanını temsil 

etmede iyi olmasına karşın, taşkın büyüklüğü tahmini açısından zayıflık göstermiştir. 

WRF yağış verileri sel olayını tespit etmede bir miktar zaman yanlışlığı ile üstündür; 

bu sebeple, tahmin ürünü olarak, erken uyarı sistemlerinde ilk önlemleri almak için 

yararlı olabilir. Yanlılık düzeltmesi çalışma alanına yakın istasyonlar kullanarak 

yapılan radar verilerinin özellikle cephesel yağış tipinde başarılı sonuçlar verdiği 

görülmüştür. Modellerin sonuçları, her iki modelin de hidrograf şekli ve pik süresini 

temsil etmede birbirine genellikle yakın olduğunu göstermiştir. Tüm olaylar ve yağış 

ürünleri için ortalama korelasyon (r) ve ortalama karekök hata (RMSE) değeri, WRF 

Hydro modelinin (r için 0.61, RMSE için 62.6 m3/s), HEC-HMS modeline (r için 0.59, 

RMSE için 67.6 m3/s) kıyasla daha iyi bir başarı gösterdiğini ortaya koymaktadır. 

Ancak, konvektif kökenli sel olayında modeller arasında fark görülmektedir. Bu 

olayda, WRF-Hydro modeli fiziksel tabanlı model özelliğini kullanarak, hidrograf pik 

ve zamanını doğru bir şekilde ortaya çıkarmıştır. Sonuçların geneli, iyi kalibre edilmiş 

hidrolojik model ile yanlılığı düzelmiş radar, WRF yağış tahminleri ve gözlemlerden 

oluşan yağış verisinin ölçüm istasyonları olmayan veya yetersiz olan alanlarda 

taşkınlara karşı gerekli önlemleri almaya ve hayat ve varlık korunumunda fayda 

sağlamaya yardımcı olabileceğini göstermektedir. 

Anahtar Kelimeler: WRF-Hydro, HEC-HMS, sapma düzeltme, Kalman Filtresi, uydu 

tabanlı yağış verileri. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General 

Flood is one of the most damaging natural disasters and results in life and property 

losses. With global climate change, deforestation and rapid urbanization, extreme 

weather events are expected to occur with increasing frequencies with greater 

intensities (Lau et al., 2010). In Turkey, 52% of floods take place in the Black Sea 

Region and they most frequently occur during winter, spring and summer months 

(Özcan, 2006). The reasons for floods in the Black Sea region can be listed as rapid 

saturation of impermeable clay soil with rainfall, high slope gradient, low water 

carrying capacity of streams and destruction of forests into agricultural land. In 

addition to the physical characteristics of the region, orographic rainfall with snow 

melting in spring and early summer seasons leads an increase in flood effect. Hence, 

it is important to accurately estimate the spatial and temporal distribution of a flood 

event ahead of the decision making. Thus, threats to life and property can be reduced 

by early warnings and by implementing planned responses. Flooding may be more 

devastating in data sparse regions due to not only the absence of flood warning systems 

but also the lack of rainfall estimates. Rainfall output gathered from spatially 

distributed rainfall data like weather radar, satellite and numerical weather prediction 

model precipitation products can be a remedy to the difficulties in representing the 

driving force in hydrologic models for ungauged or poorly gauged regions. However, 

the accuracy assessment of these products especially over the mountainous regions is 

a necessity. 
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Rainfall-runoff models are tools to formalize knowledge about hydrological systems 

(Beven, 2011). Since the early 1960s, various model structures have been developed 

and implemented into software (Todini, 1988). These structures can be narrowed down 

into three distinct classes; metric (empirical or black box), parametric (conceptual or 

gray box) and mechanistic (physic-based or white box) (Wagener et al., 2004). In 

addition to physical process description, hydrologic model can also be classified 

according to the spatial description of catchment process as lumped, semi-distributed 

and distributed. However, hydrological model categorization can be hampered by 

overlapping characteristics of model classes; therefore, classification of model may 

change depending on justification (Jajarmizadeh et al., 2012). For example, HEC-

HMS model can range from empirical to conceptual and lumped to distributed (US 

Army Corps of Engineers, 2000). Regardless of the category description, each 

hydrologic model, used for flood management, has different levels of complexity. 

With rapid development of sophisticated computer programs throughout the past 

decades, various hydrologic models capable of using the rich information content of 

remotely sensed geospatial data have been developed for flood simulations. Among 

these models, physics-based distributed hydrologic models have an emerging trend 

due to their better representation of watershed spatio-temporal characteristics that 

transform rainfall into runoff (Vieux et al, 2004). However, hydrological models are 

expected to have different success rates depending on the basin characteristics, initial 

conditions and calibration stages. For instance, in moist areas, variable infiltration 

capacity model (VIC) performs well and it can be used for agricultural purposes 

efficiently. Another model, MIKE SHE, a deterministic, fully-distributed and 

physically-based hydrological and water quality modeling system, is limited to smaller 

catchments due to the requirement of large data. Moreover, SWAT model can obtain 

good hydrologic predictions with little direct calibration, whereas TOPMODEL can 

be used in areas with shallow soil and moderate topography (Devia et al., 2015). 

1.2 Problem Statement and Methodology 

Flooding has the potential to cause significant impacts to economic activities as well 

as to disrupt or displace populations. Changing climate regimes such as extreme 
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rainfall events increases flood vulnerability and put additional stresses on 

infrastructure. The flood problem is not a recent issue neither for Turkey nor for other 

countries. Therefore, the need for the flood protection and flood management are not 

new too. There are many studies about flood management around the world. Recent 

researches suggest a risk-based approach in flood management (Hooijer et al., 2004; 

Petrow et al., 2006; van Alphen and van Beek, 2006). The necessity to move towards 

a risk based approach has also been recognized by the European Parliament (de Moel 

et al., 2009), which adopted a new Flood Directive 19 (2007/60/EC) on 23 October 

2007. According to the EU Flood Directive, the member states must prepare the flood 

hazard and risk maps for their territory and then use these maps for flood risk 

management plans. Structural management measures play also important role among 

various mitigation facilities and flood management strategies.  

Studies on floods require hydrological, hydraulic and topographical inputs to be 

analyzed at temporal and spatial scales. In Turkey, authorities use traditional methods 

in flood hydrograph calculations such as point flood frequency analysis (PFFA), 

regional flood frequency analysis, DSI synthetic unit hydrograph and Mockus method. 

However, the use of hydrological models can greatly evolve the work done in this 

regard. Recently, computer-based rainfall-runoff models, as previously mentioned, 

can provide effective tools for decision-making and flood control management 

measures.  

Following the above considerations, in this study, a methodology is presented for 

sparsely gauged or ungauged areas to investigate the flooding problem with the use of 

different rainfall products in hydrologic models. In the first step of the methodology, 

to find convenient rainfall product, considering their sources, three different spatially 

distributed rainfall data are used; radar, satellite and numerical weather prediction 

model precipitation products. Samsun weather radar station is the closest station 

(nearly 75 km) to the study area that can provide radar-based quantitative precipitation 

estimates (QPE) with high spatial scale. Unlike selection of radar-based QPE, selection 

of satellite-derived rainfall product that is optimal for the study area is complicated. 

The reason for this can be explained as the sheer number of satellite derived rainfall 
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products currently available at high spatial and temporal resolutions suitable for 

hydrologic models. Among the satellite derived rainfall products used in the literature, 

given in detail in the second chapter, the Hydro-Estimator (HE) product is considered 

to be appropriate for the study area. As a forecasting product, Weather Research and 

Forecasting (WRF) Model precipitation data are selected to investigate its capacity in 

flood warning for the study area. In the following steps of the methodology, the 

emphasis is given to radar-based QPE due to its high spatial resolution by applying 

matching techniques that are used in the literature; direct matching method, probability 

matching method and window correlation matching method. The aim of applying these 

methods is to improve the accuracy of radar-based QPE that may have errors related 

to collocation and timing problems. In the next step, all rainfall products are 

investigated in point and areal based manner to evaluate their performances before the 

hydrologic model application. Among the rainfall products, radar-based QPE, which 

has the best spatial resolution, captures the trend of the rainfall more accurately. 

Therefore, in the second step of the methodology, bias correction is applied to 

radar-based QPE. The correction of radar-based QPE with gauge observations has 

been an important research topic. In the literature, there are numerous proposed 

methods used to reduce the error of radar estimation. Meteorological services such as 

Meteo France, UK MetOffice and MeteoSwiss use gauge adjustment methods and 

describe adjusting radar-based QPE so that it corresponds with the quantity given by 

gauge observations. The detail and operational use of the mentioned methods can be 

found in the COST 717 report (Gjertsen et al., 2004). More complex methods such as 

co-kriging (Sun et al., 2000), kriging with external drift (Verworn and Haberlandt, 

2011), statistical objective analysis (Pereira at al., 1998) and use of the Kalman Filter 

(Todini, 2001) are also employed in the processing of radar-based QPE. Kriging or 

kriging with external drifts are methods that interpolate gauge observations before bias 

computations. Statistical objective analysis adjusts the radar data pixel by pixel using 

gauge observations (Gerstner and Heinemann, 2008). In real-time applications of radar 

rainfall estimates, the mean field bias adjustment method is used (Seo et al., 1999; 

Chumchean et al., 2006 and Habib et al., 2012). Electrical calibration errors, radar 

reflectivity measurement errors and systematic errors in space; such as height sampling 
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errors in range, are the sources of radar rainfall bias (Yoo et al., 2014). For the purpose 

of bias correction, Kalman Filtering (KF) algorithm is used in this study due to its 

appropriateness in continuously changing system and efficiency in data memory 

usage. The KF algorithm is applied to the dataset with two different approaches using 

appropriate system equation, correlation coefficient and empirical variance. In the first 

approach, all rain gauges except for the studied one located in the radar range are used 

for the computation. In the second approach, gauges that have better correlations with 

the studied gauge are taken into consideration. Upon completion of these approaches, 

two different bias corrected radar (BCR) datasets are obtained; namely, BCR (I) and 

BCR (II). The primary goal of the second approach is to localize the bias computation. 

In the third and final step of the methodology, two different hydrologic models are 

used. As an empirical based model, the Hydrologic Engineering Center’s Hydrologic 

Modeling System (HEC-HMS) is used due to its wide usage in the literature and easy 

access. As a physic-based distributed model, the Weather Research and Forecasting 

model hydrological extension package (WRF-Hydro), is used due to its prediction skill 

of hydrometeorological forecasts using physics-based numerical prediction tools. The 

methodological steps are provided in Figure 1.1. 

To summarize, as the physic-based model, the WRF-Hydro model in uncoupled mode 

and as the empirical-based model, HEC-HMS model are used to simulate heavy 

rainfall of 3 different events those have different rainfall types observed on 

22nd November 2014, 2nd August 2015 and 28th May 2016. For each event and model, 

a total of six rainfall products are used in the simulations. Among the datasets, four of 

them have different sources that are weather radar, the Hydro-Estimator (HE) product, 

gauge and rainfall output obtained from WRF model and two of them are derived from 

radar-based QPE in which bias corrections are applied using the information provided 

by rain gauges. Conforming to the available data, the detailed calibration is only 

performed for 2014 flood event using flow data at stream gauge station for both 

models. Then, the rest of the rainfall products’ performances are evaluated in both 

models with the calibrated parameters. 
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Figure 1.1 Conceptual Framework of the Research (Rainfall Comparisons (a), 

Kalman Filtering of Radar QPE (b) and Hydrological Modeling Studies (c)) 
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1.3 Objectives 

The main purpose of this study is to assess the rainfall products in a sparsely gauged 

catchment for different rainfall types; namely convective, non-convective and both. 

For this purpose, Samsun-Terme basin is selected for the study area due to data 

availability. Hourly based intervals are used throughout the analyses due to the small 

size of the catchment and rapid response of catchment to the rainfall. Furthermore, 

main objectives of this study are listed below: 

 To evaluate the rainfall products, which are mentioned in the methodology, 

using rain gauge data in point and areal based analyses with statistical 

measures. 

 To apply Kalman Filtering (KF) algorithm to radar-based QPE for improving 

the accuracy by considering the gauge correlations among each other. 

 To calibrate two hydrological models using gauge data and successfully model 

the hydrologic behavior of the basin.  

 To assess the performance of rainfall products on simulations of hydrologic 

models using calibrated model parameters. 

1.4 Thesis Outline 

The subjects described in the following chapters are given below: 

In Chapter 2, the study area and the data used in the research are presented. The 

characteristics of different rainfall products and the studies performed in the literature 

are summarized. 

In Chapter 3, the rainfall products and their evaluations are presented. Matching 

techniques are applied to radar-based QPE and their results are analyzed by statistical 

measures. Comparison of rainfall datasets are performed in point and areal based 

manner. 

In Chapter 4, description of the KF and two different applications of KF methodology 

are presented.  

http://tureng.com/en/turkish-english/analyzes


  8 

In Chapter 5 the calibration of two models using the statistical measures and then the 

verification using the calibrated parameters are presented. This section includes the 

main results of the study and discusses the use of other rainfall products in the study 

area.  

Finally, Chapter 6 presents the conclusions of the study and gives recommendations 

for further studies. 

  



  9 

 

CHAPTER 2 

 

STUDY AREA AND DATASETS 

 

2.1 Description of the Study Area 

The Terme River basin is located in the eastern Black Sea region of Turkey at about 

40°84′-41°12′ North and 36°71′-36°98′ East. The Terme River has a catchment area 

of 436.4 km2. The sub-basins, represented with the stream flow station, have an area 

of 231.8 km2 and a mean elevation of 681.5 m (Figure 2.1). The Black Sea region is 

impacted by continental polar and tropical air masses originated from Russia and 

Siberia, and Azores Islands respectively (Sensoy, 2004). The topography of the study 

area emphasizes sudden flooding events and the surrounding urbanized areas may 

suffer serious consequences. The intense convective rainfall (especially in summer) 

falls on the upper parts of the basin. Due to the basin characteristics, areas close to the 

Terme River can be flooded in summer, even if no rainfall occurs in the Terme City 

center. 

On 11th July 2012, Terme city center was exposed to a flood with 510 m³/s peak flood 

discharge passed through the city. The hydrological report of the General Directorate 

of State Hydraulic Works (DSI) stated that the peak flood discharge in 2012 almost 

equals to a 6-year return period of flood discharge. Then, the DSI 7th Regional 

Directorate initiated a tender, namely, Samsun Terme District, Terme River Flood 

Hazard Map Designation. The result of the tender showed that virtually the entire city 

was flooded with 500-years return period of discharge. In order to mitigate this 

problem, the Salıpazarı Dam tender that costs 125 million TL was made in December 

2016. With the completion of the construction, this dam will serve the purpose of water 
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supply, irrigation and flood prevention. However, in 2015, a hydraulic modeling with 

unsteady flow calculations was applied in the Terme urbanized area and its upstream 

to propose applicable solutions to the flood problem. The studies were carried out with 

different discharges for different scenarios. The primary conclusions were that; the 

river meanders had a major effect on flood discharge and the Salıpazarı Dam flood 

capacity was not sufficient individually to protect Terme City against flooding. 

(Bozoğlu, 2015). For this reason, additional structures would be needed. Providing 

early flood warnings would be another remedy for the study area. In the development 

and implementation of a flood warning system for the area, well calibrated 

hydrological model and continuous meteorological forcing data are essential. 

 

 

Figure 2.1 The sub-basins of the Study Area, the Location of the Weather Radar, 

Rain Gauge Stations and the Stream Flow Station 
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2.2 Data 

2.2.1 Rainfall Datasets 

2.2.1.1 Rain Gauge Data 

There are 13 rain gauges located around the study region (Figure 2.1). In the selection 

of rain gauges, the topography of the radar umbrella and the region is considered; 

however, the stations located on the south part of the study area are not taken due to 

mountain blockage. The continuous gauge rainfall record during flood events at each 

of the 13 rain gauges is used to calculate the rainfall amount with a 1-hour duration. 

These data are paired with the corresponding rainfall datasets. For the Kalman 

Filtering application, apart from the three flood datasets, events having a cumulative 

rainfall amount greater than 20 mm are selected and these are used only in bias-

correction methodology. 

2.2.1.2 Satellite Data 

Satellite based precipitation (SBP) products can be a remedy for ungauged and 

sparsely gauged regions. The utility of SBP estimates with recent algorithms for 

hydrologic forecasting and hazard monitoring have been studied by various 

researchers (Creutin and Borga, 2003, Hong et al., 2007, Hong and Adler, 2007 and 

Li et al., 2013). However, hydro climatic features of the region especially over the 

complex terrain influence the performance of the SPB products (Yilmaz et al., 2005). 

In the literature, SPB products’ performance evaluation over the complex terrain is 

still limited (Derin and Yilmaz, 2014, Derin et al., 2016). Not only the performance of 

SBP product, but also the latency of product access and resolution of product in spatial 

and temporal manner are other significant components. Available multi-satellite 

precipitation estimates with information about their input data, resolution, latency and 

producer are given in Table 2.1.  
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Among the products it is seen that Multisensor Precipitation Estimation (MPE) 

algorithm has the best space time grid combination. It has 4 km spatial and 15 min. 

temporal resolution. The product is derived from the infrared (IR) data (10.8 µm) of 

geostationary European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT) by recalibration of algorithm with polar orbiting microwave sensors. 

The product has a monotonic function which means highest rain rate is associated with 

coldest temperature and lowest rain rate is related with warmest temperature. Thus, it 

is suitable for convective weather situations (Heinemann et al., 2002). However, Derin 

(2014) stated that MPE shows lowest performance among SBP products, TMPA 7A, 

TMPA 7RT, CMORPH and MPE in the study area located in Western Black Sea 

Region of Turkey. Also it is emphasized that with a wide range of scatter between 

studied years, MPE underestimates the rainfall amounts. Yucel and Onen (2014) 

studied MPE product and Weather Research and Forecasting (WRF) model over the 

Western Black Sea region. They concluded that in heavy rainfall events WRF captured 

the time of rainfall extremes and spatial distribution and magnitude of rainfall to some 

extent whereas MPE showed poor results in these aspects. Studies performed by the 

researches show that MPE product has a weakness in frontal rainfall and it is more 

suitable in convective systems. Therefore, as a satellite rainfall data another product 

which has the same spatial resolution like MPE, the Hydro-Estimator is used to assess 

the potential use in hydrologic modeling. 

2.2.1.2.1 General Information about the HE Product 

The Hydro-Estimator (HE) is an algorithm (Scofield and Kuligowski, 2003) that 

derives rain rate from convective and non-convective clouds separately by use of 

Geostationary Operational Environmental Satellite (GOES) brightness temperature 

(10.7-µm). For regions where GOES does not cover other geostationary satellites like 

METEOSAT (for Europe, Africa and western Asia) and MTSAT (for eastern Asia) 

products are used (Vicente et al., 1998). 

Geostationary satellite is a satellite directly over the equator orbiting the earth at the 

same speed as the earth rotates. It monitors the region every 15 to 60 minutes. There 
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are two GOES that provide data to Western Hemisphere; GOES West and GOES East 

(Figure 2.2). They are centered at 135° W and 75° W respectively. Meteosat is located 

at 0° E and covers mainly Europe and Africa. Feng Yun 2 (FY-2), is located at 105° E 

and covers China. Last, the Japan Meteorological Agency's (JMA) Satellite called MT-

SAT is located at 135° E and serves eastern Asia. 

 

 

The HE product is a fully automatic method that calculates rainfall rate as a function 

of IR window brightness temperature and numerical weather prediction model fields 

from the NOAA /National Weather Service (NWS) National Service for 

Environmental Prediction (NCEP) North American Model or global forecast system. 

These fields are atmospheric moisture (the product of precipitable water (PW) and 

relative humidity (RH)), orography and convective equilibrium level (Kuligowski, 

2014). The HE product was developed as an enhancement of original Auto-Estimator 

(AE) planned for moist convective systems (Vicente et al., 1998). The HE algorithm 

uses pixel brightness temperatures in GOES and its value relative to surrounding 

pixels. Pixels that are warmer than surroundings are denoted as lower clouds and no 

rain, while pixels colder than surroundings are associated with updraft regions.  

Figure 2.2 Operational Geostationary Satellites that Cover Areas of the Earth 
(Source: http://www.automatedsciences.com/intro/intro.shtml) 
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The HE product has been operational since 2002 and available in ASCII format for 

global scale via this address ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/f_f/hydroest 

/world/world/. Files contain 1 hour rainfall accumulation data. The specification of 

product is given in Table 2.2. 

 

Table 2.2 Specification of the HE Product 

Temporal Resolution 15 min to 1 hr 

Spatial Resolution 
4-km in GOES coverage region; 

Global file is 0.045 degrees (lat/lon). 

Spatial Coverage Global between 60°S and 60°N. 

Product webpage http://www.star.nesdis.noaa.gov/smcd/emb/ff/auto.html 

Latency (Operational 

Availability) 
60 minutes 

Satellites GOES (15 min), METEOSAT (30 min), MTSAT (60 min) 

 

The HE product is powerful in convective rainfall mesoscale systems. Also, moisture 

corrections perform well in highly arid regions where evaporation takes place rapidly 

after rainfall reaches to the ground. However, in stratiform rainfall type, rainfall 

relationship between cloud top brightness temperature and surface rainfall rates is 

weak so algorithm is insufficient for cool season. Moreover, on tropical islands, 

algorithm does not perform well in extremely warm top convection systems 

(Kuligowski, 2014).  

Vicente et al. (2002) implemented two approaches to correct the HE product for 

orographic effects and parallax dislocation. These factors mainly influence the 

distribution of rainfall and position of the cloud tops as viewed by the satellite 

respectively. For orographic correction wind data taken from ETA model with 48 km 

resolution grid and local terrain height data taken from a composite map of North 

America with 20 m vertical resolution are used. This approach is only applied over 

North America. For parallax correction three parameters are used; the height of the 

cloud, the apparent position of the cloud on Earth and the position of the satellite. The 

purpose of parallax correction is to get better location of the rainfall cores. The effect 

of this correction on the result is little on synoptic scale studies but it has a major role 

on the mesoscale and the storm scale rain systems. Due to the insufficient number of 
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rainfall stations, comprehensive validation was not applied for orographic correction. 

The mentioned parallax adjustments have been incorporated into the HE algorithm 

globally (Kuligowski, 2014). 

Yucel et al. (2011) studied the HE product algorithm over mountainous region in North 

West Mexico during two summer monsoon periods. The research showed that HE 

estimates generally captured the rainfall characteristics in spatial and temporal manner. 

However, the HE product overestimates the rainfall at lower elevation while 

underestimates the light rainfall in high elevation. Results showed that orographic 

correction has a positive impact on rainfall but it is not sufficient to eliminate elevation 

dependent bias in magnitude. For this reason, the improved orographic correction was 

needed by the HE algorithm to reduce elevation - dependent bias. Akcelik (2013) 

applied orographic and temperature correction methods to enhance the Self-

Calibrating Multivariate Precipitation Retrieval (SCaMPR) rainfall algorithm over 

North West Mexico. The results are compared with the operational HE orographic 

correction results over North American Manson Experiment (NAME) region. It is 

found out that proposed formulation improves the correlation between SCaMPR 

estimates and gauge measurements by 9% in 1 hour data and 8% in 6 hour data, 

whereas this improvement in operational HE algorithms is limited to 3.8% and 5.8 % 

for 1 hour and 6 hour temporal resolution respectively. In 2015, Yucel assessed the 

flash flood event in İstanbul, Ayamama basin using different rainfall datasets (Yucel, 

2015). In his study as nowcasting products the HE product and radar-based QPE, as a 

forecasting product Weather Research and Forecasting (WRF) dataset were used. 

Among these products, the HE product showed least negative bias and lowest mean 

RMSE for all time intervals. However, the HE product algorithm underestimated the 

peaks and it could not capture the light rainfall in stratiform systems. 

2.2.1.2.2 Format of the HE Product 

Files are stored in ASCII and named in Julian day format. The first line of the file 

contains date and time, remaining lines contain values between 0 and 256 that related 

to rainfall accumulation. Using the equation below rainfall amount, R can be found; 
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𝑅 = (𝑣𝑎𝑙𝑢𝑒 − 2) ∗ 0.3048                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.1)  

Value of 0 and 2 mean missing value and no rainfall respectively. 

For the study area, data are extracted from file with generic name “world”. This file 

“world1hr” contains (8001x3111) 24891111 number of data stored in one row. 

Location data procured, there is a file named “zworld” contains lat/long information 

which corresponds to point in “world1hr” files. GrADS software can be used to 

visualize data and to split data Hex editor can be used. Further information can be 

obtained from: ftp://ftp.star.nesdis.noaa.gov/pub/smcd/emb/f_f/hydroest/world/world 

/README  

2.2.1.2.3 Use of the HE Product in the Study Area 

Satellite data covering entire world is downloaded for the flood events. Next, data are 

split and relevant data are extracted for the boundary of the study region. The product 

has a 4X4 km spatial resolution. Due to the way of acquiring data (point wise) the 

centers of pixels are represented as points (Figure 2.3). Unlike radar-based QPE, there 

are fewer HE points that represent the rainfall distribution of the study area. 

 

 

Figure 2.3 Pixel Centers of the HE Data 
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2.2.1.3 Weather Research and Forecasting (WRF) Model Precipitation Data 

In cases of extreme events, numerical weather prediction models play a major role in 

weather forecasting (Nasrollahi et al., 2012). The Weather Research and Forecasting 

Model (WRF) is developed in a collaborative effort by the National Center for 

Atmospheric Research (NCAR), the National Centers for Environmental Prediction 

(NCEP), the Forecast Systems Laboratory (FSL), the Air Force Weather Agency 

(AFWA) and Oklahoma University (OU) (Skamarock et al., 2001). WRF is a regional 

atmospheric model in mesoscale weather research and shows skillful performance in 

representing a wide variety of precipitation processes over different geographical 

regions (Chen et al., 2010; Liu et al., 2013; Yucel and Onen, 2014). 

The use of different sources of rainfall datasets may increase the potential to find the 

best dataset for the study area considering the event type. For this purpose, in addition 

to radar, gauge and satellite rainfall datasets, numerical weather prediction model 

precipitation forecasts are used for the flood events. For the study area, the data are 

requested from the Turkish State Meteorological Service (TSMS) in netcdf format. 

The distribution of WRF pixel centers can be seen in Figure 2.4. The spatial resolution 

of the WRF precipitation dataset is the same as the HE product, 0.045° nearly 4 km. 

 

 

Figure 2.4 Distribution of WRF Points (pixel centers) 
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The WRF precipitation data are output of WRF model. The lead time of this data can 

be 24, 48 and 72 hrs. With the increasing of lead time the accuracy of WRF 

precipitation data decreases as does the capability of flood forecasting (Li et al., 2017). 

In this study, WRF precipitation data with 72 hrs duration are obtained from the TSMS 

that runs WRF model once a day at time 00:00 AM. In order to detect accurate rain 

and catch the hydrograph peak time and hydrograph shape in the hydrological models 

properly, the data is selected one day ahead of the observed hydrograph peak time. The 

selected WRF precipitation data are the WRF model products of 21st November 2014, 

1st August 2015 and 27th May 2016 those are used for the floods observed on 22nd 

November 2014, 2nd August 2015 and 28th May 2016 respectively. 

In production of the meteorological data, WRF model offers multiple physics options 

that can range from simple to complex. The supplied data are constructed by TSMS 

using WRF Single-Moment 5-class Scheme in microphysics option, Rapid Radiative 

Transfer Model in longwave radiation option, Dudhia Scheme in shortwave radiation 

option, Noah Land Surface Model in surface physics option and Kain-Fritsch Scheme 

in cumulus parameterization physics.  

2.2.1.4 Radar-Based QPE  

In the fields of meteorology and hydrology, weather radars have been used for decades 

(Maynard, 1945; Battan, 1973). Although, rainfall estimates from weather radars serve 

as an important feature in hydrology and water resource applications, their precision 

is affected by factors such as the reflectivity measurement operation and the Z-R 

conversion process (Joss and Waldvogel, 1970). Weather radar systems do not 

measure rainfall depth directly. The Z-R relationship, an empirical equation between 

radar reflectivity (Z) and rainfall rate (R), is generally used to calculate rainfall depth. 

The procedure to estimate reflectivity (Z), which is the amount of power returned to 

the radar, is subject to various independent sources of error such as ground and sea 

clutter (Collier, 1996), refraction and anomalous propagation (Battan, 1973), bright 

bands (Kitchen et al., 1994), beam blockage (Bech et al., 2003), attenuation 

(Hildebrand, 1978), temporal and spatial sampling errors (Harrold et al., 1974), and 

non-meteorological targets. These error sources demonstrate complex 
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interdependencies; therefore, their impact on measurement accuracy is difficult to 

evaluate. Each error type in reflectivity measurement operation has been studied and 

has given rise to correction methods (Andrieu et al., 1997).  

The Z-R conversion process, frequently used in the literature, is not unique. 

Considering the study region, researchers attempted to determine the most appropriate 

Z-R relationship from a large number of empirical Z-R relationships available in the 

literature (Z=aRb). Z-R parameters (a and b) show high variability according to the 

geographic location and season, the rainfall phase and intensity (storm type and drop 

size distribution), as well as the variability within the same storm and from storm to 

storm. For this reason, the selection of the individual Z-R type changes the precision 

of rainfall rates or accumulations (Vieux and Bedient, 1998). To obtain an accurate 

radar rainfall estimation, it is important to determine and express the errors derived 

from the reflectivity measurement and the Z-R conversion process. When establishing 

the Z-R relationship, the availability of the drop size distribution (DSD) instrument, 

the disdrometer, is of great importance. The disdrometer data consist of the number of 

raindrops n of diameter D. This instrument provides data for the number and size of 

rainfall droplets within the sampling volume. Marshall and Palmer (1948) published a 

Z-R relationship using the exponential DSD data with general parameters of a=200 

and b=1.6. Battan (1973) published a list with 69 different Z-R relationships for varied 

climatic conditions. However, lack of DSD data restrain the detection of the accurate 

Z-R relation. 

Calheiros and Zawadzki (1987) and Rosenfeld et al. (1993) revealed an approach to 

determine the relationship of datasets between recorded rainfall intensity by rain gauge 

and measured reflectivity by weather radar (Z) at the pixel over the rain gauge. 

However, the lack of synchronizations like incompatibility of volume of rain gauge 

and radar reflectivity and timing mismatches, reduce the accuracy of Z−R conversion 

for radar rainfall estimates. To overcome this problem, Calheiros and Zawadzki (1987) 

proposed a technique, called probability matching, to derive Z-R relation from radar 

and rain-gauge measurements. In this method equal percentiles of the probability 

density functions of two datasets are matched. Probability matching method (PMM) 
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ensures better results in estimating Z−R relationships for non-synchronous datasets as 

compared to previous method (Atlas et al., 1997). This method seems to be more useful 

but it requires large and homogeneous sample of simultaneous radar and gauge data 

(Krajewski and Smith, 1991). In PMM, nature of probability density function of R 

varies with storm structure and drop size distribution so stratification by rain type is 

essential (Rosenfeld et al., 1993). Rosenfeld et al. (1994) developed the window 

probability matching method (WPMM) to improve the deficiency of PMM. WPMM 

is performed by matching the two datasets taken from small windows centered at the 

gauges. This radar field window must be small enough to represent rainfall area and 

large enough to represent rainfall depth. In this method, errors related to displacement 

of the rain from the center of the radar window may be diminished. Piman et al. (2007) 

developed a new method, called the window correlation matching method (WCMM) 

to correct collocation and timing errors in Z-R pairs. These errors are caused by wind 

and height of the radar. According to the study performed by Piman et al. (2007), errors 

caused by wind (geometric mismatch) are reduced with the growing space window 

and errors caused by height of the radar measurement (time mismatch) are decreased 

with the growing time window. 

In the study region, the closest weather radar is located at 1303 m, which is 40 km 

away from Samsun City (Figure 2.1). This radar is a C-band Doppler weather radar, 

and it has been serving the Central Black Sea region since July 2012, providing short-

term weather forecasts over a 120-km range with 333.33-m spatial resolution. The 

radar rainfall estimates are obtained from the TSMS, where the Interactive Radar 

Information System (IRIS) radar software is used to process the radar-based QPE. IRIS 

was developed by the SIGMET Company, and it uses the Fourier Transform technique 

to eliminate clutter. The rain product is obtained from the surface rain intensity (SRI) 

product that uses the Marshall-Palmer (1948) relationship (a=200 and b=1.6).  

Figure 2.5 shows the distribution of gauge stations, location of radar and study area on 

Digital Elevation Model (DEM). Arrows are drawn on this figure to show radar signal 

direction on the DEM. Topography between Samsun radar location and gauge stations 

are demonstrated in Figure 2.6. This figure indicates that there is no blockage of the 
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radar beam between radar and gauge stations. For the study area, 5 arrows in red color 

are drawn on the DEM (Figure 2.5). Change in topography through the selected arrows 

are depicted in Figure 2.7. In this figure, black dots show the boundary of sub-basins 

in the study area. In all topographic figures, it is seen that there is not any obstruction 

throughout the radar signal path. Thus, working of weather radar with minimum 

elevation angle (0.2°) is suitable for the study area and gauge locations.  
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Figure 2.7 Topography Between Radar Location and the Study Area (Grey boxes 

show the study area) 

Samsun weather radar is in operation since July 2012. From this time, events in which 

cumulative rainfall amounts above 20 mm are inquired and selected. According to 

these events, data requested from TSMS is presented in the Table 2.3. In this table, 

stations measuring rainfall over 20 mm are listed with event duration, date and time. 

Stations in boldface are the closer ones to the study area. 
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The Salıpazarı Station is located on the boundary and the Kozluk Station is 24 km far 

away from the Salıpazarı Station. According to this request, it is informed that events 

observed before the year 2014 have 240 km radar range format. However, the 

coordinate information about the data taken from the TSMS is in 120 km radar range 

format and there is not any information about the coordinate transformation between 

240 km range of radar and gauge data. For this reason, workable number of events is 

restricted from 20 to 8. Workable radar-based QPE received from TSMS are given in 

Table 2.4. Since event 13 includes 2014 flood event, it is excluded from the dataset in 

Table 2.4. In this table number of missing values and their dates and times are also 

listed.  

 

Table 2.4 Available Radar-based QPE with Their Time Spans and Missing Data 

Event 

Start End 
Dur. 

(hr) 

Number 

of 

missing 

data 

Missing Data (Date, 

Time) 
Date Time Date Time 

12 18.10.2014 03:00 19.10.2014 08:00 30 1 18.10.2014,03:00 

14 29.12.2014 22:00 01.01.2015 18:00 69 7 
between 31.12.2014,01:00  

and 31.12.2014,07:00 

15 29.03.2014 10:00 30.03.2014 10:00 25 0 - 

16 05.05.2014 15:00 07.05.2014 02:00 36 0 - 

17 25.05.2014 15:00 26.05.2014 09:00 19 1 26.05.2014,09:00 

18 21.07.2014 11:00 21.07.2014 22:00 12 0 - 

19 06.01.2015 00:00 06.01.2015 22:00 23 1 06.01.2015,21:00 

20 08.04.2015 21:00 11.04.2015 09:00 61 4 

10.04.2015,10:00,  

between 08.04.2015, 11:00  

and 08.04.2015, 13:00 

 

 

2.2.2 Soil Data 

The geology map needed for the study area is obtained from General Directorate of 

Mineral Research and Exploration and the soil data pertaining to land cover and land 

use are provided by CORINE (Coordinate Information on the Environment) land data 

base and the Ministry of Agriculture respectively, both of which indicating that the 

study area has uniform soil type and land cover. From soil data, it is seen that majority 

of the study area has basalt-andesite agglomerate soil type (Figure 2.8 (a)) and forest 

and podzolic soil (grey and brown) take part in almost all area (Figure 2.8 (b) and (c)). 
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Figure 2.8 Soil Data Taken from Directorate of Mineral Research and Exploration 

(a), Land Cover (b) and Land Use Data (c) 

(a) 

(c) (b) 
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2.2.3 Runoff Data 

For the runoff data, hourly discharge values, obtained from State Water Works (DSI), 

which are observed at the Gökçeli Station during the flood events are used (Figure 

2.1). 
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CHAPTER 3 

 

COMPARISON OF THE RAINFALL PRODUCTS 

 

3.1 General 

Accurate rainfall observations with high spatial and temporal resolutions are required 

for hydrological modeling and flood studies. Rain gauges, satellite products, numerical 

model forecasts and weather radar rainfall estimates are generally used for this 

purpose. In this section, first, radar-based QPE is analyzed using the matching 

techniques that are used in the literature and evaluations are done using the statistical 

measures. Second, flood events are evaluated by the information provided from WRF 

model. Third, comparison of rainfall products is performed in point and areal based 

manner. Last, summary of the processes and discussion of results are presented. 

3.2 Radar-based QPE Matching Techniques 

In this study, to find appropriate matching technique and similarity between radar and 

gauge data, three methods namely; direct matching method, probability matching 

method and window correlation matching method are studied.  

3.2.1 Direct Matching Method (DMM) 

In the literature this approach is called traditional matching method (Piman et al., 

2007). In this method (Figure 3.1) it is assumed that rainfall drops from the atmosphere 

to the rain gauge vertically and radar rain intensity at the measured altitude is the same 

as at the surface of rain gauge (Calheiros and Zawadzki, 1987). 
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Figure 3.1 Direct Matching Method 

 

3.2.2 Probability Matching Method (PMM) 

This method was proposed by Calheiros and Zawadzki (1987) to eliminate errors 

coming from timing and collocation problems. The idea behind this method is 

assumption of reflectivity observed from radar and rain intensity measured from the 

rain gauge has the same probability of occurrence. Therefore, this method is based on 

matching the CDFs of radar and gauge datasets as described in Equation 3.1 and Figure 

3.2.  

∫ 𝑃(𝑅)𝑑𝑅
∞

𝑅𝑖

= ∫ 𝑃(𝑍)𝑑𝑍
∞

𝑍𝑖

                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.1)  

P(R) and P (Z) are the probability density function of gauge rainfall intensity and radar 

reflectivity respectively.  

 

 

Figure 3.2 The Probability Matching Method (Source Piman et al, 2007) 
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3.2.3 Window Correlation Matching Method (WCMM) 

This method was proposed by Piman et al. (2007) to reduce timing and collocation 

errors caused by wind and height of the radar measurement, respectively. The possible 

matching areas in this method consist space and time window (Figure 3.3). Space 

window is used to reduce geometric mismatch caused by wind, time window is used 

to reduce time error caused by the height of the radar measurement. The process of 

this method consists of matching two datasets searching for the value that gives 

maximum correlation coefficient. 

 

 

Figure 3.3 Window Correlation Matching Method  

(5x5 space window and 3 time window) 
 

 

3.2.4 Evaluation of the Methods 

Output data with 333.33 m. spatial resolution obtained from IRIS software are 

processed with Matlab to extract radar-based QPE in 5x5 window with correct 

coordinates (Figure 3.4). 
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Figure 3.4 Data Extraction in 5x5 Space Window 

Before starting the study, datasets which are rainfall estimation from radar and rainfall 

measurement from rain gauge are analyzed in a time series. It is seen that for all 

stations, there is a one hour synchronization error. This means that, there is a timing 

mismatch between two datasets. For Alaçam Station, time mismatch can be seen in 

Figure 3.5. Although, histogram is more appropriate to demonstrate the distribution of 

rainfall, time series graph can be useful to detect timing mismatch (Figure 3.5). In 

Figure 3.5, it is seen that radar captures the start of rainfall at time 12, but gauge records 

at time 11. Also the second peak of the flood event is captured by radar at time 29 and 

recorded by gauge at time 28. The label “radar_average” means the average of 25 radar 

cell rainfall amount in a 5x5 space window. 

 

 

 

Figure 3.5 Gauge and Radar Rainfall Distribution in a Time Series for Alaçam 

Station from 21/11/2014 (00:00 AM) to 22/11/2014 (15:00 PM) 
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This error is confirmed by TSMS. For the same time zone, radar-based QPE is initiated 

with the start of the hour, whereas ground data are referenced to the end of the hour, 

which is the reason of the time shift between two datasets. As TSMS is mostly 

interested in cumulative rain amount, this error was unnoticed. 

After time correction, mentioned techniques are applied to the dataset. Direct matching 

method is the same as 1X1 space window in window correlation matching method. In 

order to see space effect (Figure 3.6) on results, r values computed for all stations 

regarding space window. 1x1, 3x3 and 5x5 space window results and can be seen in 

Table 3.1. 

 

Figure 3.6 Space Window Types 

Table 3.1 Correlation Coefficient Results with Different Space Windows and PMM 

Station  

Name 

2014 2015 2016 

Space Window 
PMM 

Space Window 
PMM 

Space Window 
PMM 

1X1 3X3 5X5 1X1 3X3 5X5 1X1 3X3 5X5 

Bafra 0.78 0.78 0.79 0.81 - - - - 0.93 0.94 0.94 0.56 

Alaçam 0.67 0.67 0.67 0.55 - - - - 0.94 0.94 0.93 0.76 

Karadeniz A. 0.9 0.91 0.91 0.88 0.98 0.98 0.99 0.19 0.85 0.85 0.85 0.84 

Topraksu A. 0.91 0.91 0.92 0.91 0.83 0.84 0.85 0.82 0.79 0.80 0.80 0.89 

Vezirköprü 0.9 0.90 0.89 0.86 - - - - 0.87 0.87 0.88 0.73 

Ayvacık 0.45 0.45 0.43 0.18 0.83 0.82 0.81 0.76 0.52 0.53 0.54 0.53 

Çarşamba 0.87 0.87 0.87 0.85 0.58 0.67 0.78 0.77 0.58 0.61 0.63 0.64 

Havza 0.71 0.70 0.70 0.71 - - - - 0.40 0.40 0.40 0.53 

Kavak 0.91 0.91 0.91 0.93 0.47 0.49 0.52 0.47 0.85 0.85 0.85 0.81 

Ondokuz M. 0.83 0.84 0.85 0.77 0.51 0.50 0.51 0.50 0.41 0.41 0.42 0.43 

Salıpazarı 0.85 0.86 0.85 0.73 - - - - 0.61 0.61 0.61 0.66 

Kozluk 0.61 0.62 0.63 0.63 0.96 0.96 0.96 0.07 0.55 0.55 0.55 0.52 

Yakakent 0.82 0.82 0.82 0.72 -0.01 -0.01 -0.01 -0.02 0.88 0.88 0.88 0.32 
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The results of space windows (Table 3.1) show that change of space window 1x1 type 

to 5x5 type does not improve the results dramatically. However, studying with 5x5 

window type seems to be more appropriate because majority of the stations give best 

result in 5X5 window space. 

Using received data (Table 2.4, 8 events), first, probability matching method is applied 

for each station. In this method, flood events data are excluded from the general dataset 

for verification. Using remaining dataset, rainfall magnitudes are ranked and according 

to this, cumulative probability curves are constructed for each station. Figure 3.7 (a) 

shows the cumulative distribution function (CDF) of two datasets where 261 rainfall 

data pairs are used. 

 

  

Figure 3.7 CDF Curve of the Kavak Station (a) and Rainfall Distribution with three 

Datasets for 2014 Flood Event Day (b) 

Using radar-based QPE that corresponds to Kavak Station for the flood event day, new 

gauge values are read from CDF curve of Kavak Station (Figure 3.7 (a)). For the 2014 

flood event day, rainfall values of observed gauge, radar and estimated gauge values 

(pmm_gauge) from CDF curve are drawn in time series graph (Figure 3.7 (b)). From 

Figure 3.7 (b), it is seen that estimated gauge values (pmm_gauge) seem not to be 

closer to the observed gauge values. The first peak of the rainfall is captured well from 

CDF curve reading. However, it is noticed that the bottom and the peak values rather 

than the first one (pmm_gauge) do not approach the observed ones; values are 

overestimated and become distant. In overall, all estimated values are shifted by some 

proportion. This method is applied to all stations for three flood events and their CDF 
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curves and time series rainfall graphs of the 2014 flood event are given in Appendix 

A. The correlation coefficients between estimated gauge values and observed gauge 

ones for PMM are given in Table 3.1. Table 3.1 shows that, only 2 stations for the 

2014 flood event and 5 stations for the 2016 flood event give better correlation results 

in PMM compared to WCMM. For the 2015 flood event, all stations show better 

correlation results in WCMM. Therefore, it can be said that for these events 

remarkable enhancement is not achieved in PMM computation. For this reason, in the 

next stages of this study WCMM (5X5 data window) will be used for point based 

comparisons. 

For the events, excluding flood data, correlation coefficients between two datasets and 

their assessment factors, AF, (cumulative radar rainfall/ cumulative gauge rainfall) are 

calculated and results are presented in Table 3.2 and Table 3.3 respectively.  
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In Table 3.2, for each event and station, r computation results are given. In order to see 

season and event duration effects on r results, color coding with respect to r values is 

applied on the table. Evans (1996) separated absolute r values between 0 and 1 into 5 

categories with 0.20 unit interval. And these intervals are defined as very weak (0-

0.20), weak (0.20-0.40), moderate (0.40-0.60), strong (0.60-0.80) and very strong 

(0.80-1). For season effect to get easier representation, months are clustered into 4 

categories. Clustering and color coding of r indicate that r values are not related to 

specific season or length of the event duration. Although, Marshall-Palmer relation 

generally behaves well on stratiform type of rainfall in cold season, which corresponds 

to cluster 3 in our case, results do not show significant increase with respect to the 

other clusters. Moreover, events that take long time like event 14 and event 20 do not 

affect the correlation results positively. In Table 3.2, abbreviation of “#DIV” and 

“#N/A” show that station does not measure rainfall which means sum of the rainfall 

amount during event is zero and station is not in operation respectively. In order to get 

more significant expression and generalize the situation, there should be more data to 

study on each season. 

The assessment factors (AF) (cumulative rainfall amount of radar to cumulative 

rainfall amount of gauge) are divided into 4 categories with color coding and listed in 

Table 3.3. The results demonstrate that the majority of the AF values (98/117) are 

smaller than 1.05. This means radar rainfall estimates with Marshall-Palmer relation 

for this study area underestimate the rainfall amounts regardless of the season type. 

The rational assessment of very strong values (in dark green) in Table 3.3 has a 

significant point. For instance, comparing to the other events, in event 18 (21.07.2014) 

less or no rainfall is observed by stations Karadeniz Araş, Alaçam, Havza, Vezirköprü 

and Yakakent. Among these stations Vezirköprü has high r results due to the short 

rainfall duration, small cumulative rainfall amount and being a number of zeros (no 

rainfall observation) during the event. However, excluding zero pairs from both 

datasets for r computation may change the data continuity in time. That means, after 

the event starts, in some hours rain may take a pause, in this time exclusion may 

decrease the performance of the study. Because of this reason, especially in point 
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comparison study, start and end of the event time are selected carefully and time 

extending is not carried out in events. 

3.5 Evaluation of the Flood Events 

Since the operational use of Samsun weather radar, three flood events observed in the 

study area. Information about the rainfall types related to these events are obtained 

from the WRF precipitation estimates (Figure 3.8). According to the rainfall forecast 

results of the WRF Numerical Model, 22nd November 2014, only 2% of the total 

rainfall is identified as convective rainfall in the grid where the Salıpazarı Station is 

located (Figure 3.8 (a)). In the same grid, the WRF model forecasts a total rainfall 

amount of 111 mm for the flood event day and roughly that amount of rain mainly 

distributed over the study area (Figure 3.8 (c)). In terms of gauge, radar and the HE 

product, cumulative rainfall amount is calculated as 107.7 mm, 73.5 mm and 21.9 mm 

respectively. Gauge and radar-based QPE show similar distribution pattern like WRF 

data but the HE product shows underestimation, nearly value of between 30 – 40 mm 

(Figure 3.9 (a), (b) and (c)). 

According to Figure 3.8 (d), the forecasted rainfall on 2nd August 2015 is mainly 

convective and that takes place along the river direction. In the Salıpazarı Station, the 

total forecasted rainfall in 72 hours is calculated as 139.2 mm and 91% of this amount 

(127.20 mm) is defined as cumulative type of rainfall and the rest (12.02 mm) is 

defined as non-cumulative type of rainfall by WRF data (Figure 3.8 (e) and (f)). The 

cumulative rainfall amount observed by the rain gauge stations is given in 

Figure 3.9 (d). According to this figure, it is seen that the flow monitoring station is 

represented by three rain gauge stations, Ayvacık (75.25%), Çarşamba (23.0 %) and 

Kozluk Beldesi (1.75 %). The closest station to the study area, the Salıpazarı Station, 

was not in operation during the flood event. Hence, using Thiessen Polygon method, 

rainfall amount is calculated as 45.8 mm for the location of Salıpazarı Station. The 

cumulative rainfall amounts of other datasets, radar and the HE product, are depicted 

in Figure 3.9 (f) and (e) respectively. 
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From these figures, it is seen that the spatial distribution of radar rainfall data 

resembles to WRF precipitation but the cumulative amounts of rain are quite different. 

At Salıpazarı Station, radar-based QPE is 56.43 mm which is 2/5 of the WRF result. 

Comparison with the observed rain shows that cumulative of radar rainfall amount is 

1.23 times of cumulative of rain gauge amount. On the other hand, the lowest amount 

of rain is estimated by the HE product. According to Figure 3.9 (e), the HE product 

estimates almost no rain in near location to the Salıpazarı Station. In upstream part of 

the sub basins 3 and 4, the HE product estimates cumulative rainfall approximately 8 

mm. 

Unlike the flood event occurred on 2nd August 2015, the forecasted rainfall on 28th 

May 2016 is partly convective. According to WRF precipitation dataset, the total 

forecasted rainfall in 72 hours is calculated as 107.85 mm and 21% of this amount 

(22.58 mm) is defined as convective type of rainfall and the rest (85.27 mm) is defined 

as non-cumulative type of rainfall at the location of the Salıpazarı Station (Figure 3.8 

(g), (h) and (i)). The cumulative rainfall distribution of the rain gauge stations (Figure 

3.9 (g)) shows that the Salıpazarı Station represents the study area best and the 

cumulative rainfall amount is calculated as 95.2 mm. The distributions of cumulative 

rainfall amounts of other datasets show that radar-based QPE and the HE product 

resemble to WRF precipitation data. However, the cumulative rainfall amounts are 

different. At Salıpazarı Station, radar-based QPE and the HE product estimate rainfall 

value as 43.66 mm and 75.6 mm respectively (Figure 3.9 (i) and (h)).  

3.6 Comparison of the Rainfall Products 

3.6.1 Comparison of the Rainfall Products in Point Based Manner 

The performance of radar, WRF and the HE product in estimating heavy rainfall events 

are summarized in Figure 3.10 and Figure 3.11 respectively. Box plots show the root 

mean squared errors (rmse) (Figure 3.10 (a)) and correlation coefficients (Figure 3.10 

(b)) obtained from the average of 13 stations’ results for each rainfall sources and 

events. The necessary data for box plots can be seen in appendix B. The mean statistic 

equations for bias (mm), RMSE (mm) and r are demonstrated below. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑒𝑠𝑡,𝑖)2𝑛

𝑖=1

𝑛
                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.2) 

𝐵𝐼𝐴𝑆 =
1

𝑛
 ∑(𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑒𝑠𝑡,𝑖)

𝑛

𝑖=1

                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.3) 

𝑟 =
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑜𝑏𝑠)(𝑋𝑒𝑠𝑡,𝑖 − 𝑋𝑒𝑠𝑡)𝑛

𝑖=1

√∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑜𝑏𝑠)
2

∑ (𝑋𝑒𝑠𝑡,𝑖 − 𝑋𝑒𝑠𝑡)
2

𝑛
𝑖=1

𝑛
𝑖=1

                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.4) 

where Xobs is the observed rainfall value (gauge) and Xest is the estimated rainfall value 

at time i. As evidenced by higher median correlation coefficient value and lower 

median of RMSE value, radar-based QPE shows the most accurate estimate with 

respect to other two rainfall sources for all events. Considering the events, on 22nd 

November 2014, radar-based QPE shows the best results, which is most probably due 

to the stratiform rainfall type. As mentioned earlier, the radar-based QPE is achieved 

by using Marshall Palmer relationship (a=200 and b=1.6) that is optimum for general 

stratiform rainfall. With this relation, general trend of the rainfall in 2014 is well 

captured by the radar rainfall estimation, but within that sequence, the radar data 

underestimates the rainfall amounts, especially at peak values. Considering the rainfall 

types, WRF and the HE product show their best results in 2014 because the results of 

RMSE are lower and correlation coefficients are higher for both datasets. However, 

interquartile range of the box plots show an increase in flood events observed on 2nd 

August 2015 and 28th May 2016 for all rainfall sources due to the spatio-temporal 

dynamic range of the convective rainfall. Among the rainfall sources, the HE product 

shows an exception for the box plot range in 2015 due to failing to estimate rainfall in 

72 hrs. time span. Bias results based on stations’ averages for radar, WRF and the HE 

product are shown for hourly rainfall and for each event in Figure 3.11. Generally, 

radar-based QPE and the HE product have negative biases, regardless of the rainfall 

type. Also, WRF precipitation data shows negative biases except the flood event 

observed in 2015, which is mainly convective rainfall type. Although the performance 

of the HE product is expected to be better in convective rain, neither distribution of 
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the product (Figure 3.9 (e)) nor statistical measures (Figure 3.10 and Figure 3.11) 

shows sensible results for the flood observed on 2nd August 2015. However, 

considering all flood events, the HE product shows similar bias like other datasets in 

2016 flood event, which is partly convective rainfall. Box plots related to 2016 flood 

event show that estimated rainfall amounts of WRF and the HE product have time 

inconsistencies with the rain gauge data. Therefore, hydrologic model application 

including these rainfall sources may reveal valuable insight about the rainfall 

assessment. 

 

 

 

Figure 3.10 Box Plots of 3 Flood Events for Radar, WRF and the HE Product, Root 

Mean Squared Error (rmse) (a) and Correlation Coefficient (b) (Averaged for 13 

Rain Gauge Stations) 

(a) 

(b) 
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Figure 3.11 Averaged Bias (mm) of Radar, WRF and the HE Product at Hourly 

Interval for each Station and Flood Event Year 

3.6.2 Comparison of the Rainfall Products in Areal Based Manner 

In areal comparisons, Thiessen Polygon method is applied to rain gauge data to 

determine the mean rainfall of the basin. Figure 3.9 (a), (d) and (g) show the Thiessen 

polygons for flood events. It is seen that for 2014 and 2016 flood events, areal mean 

rainfall of the study area is calculated using two stations, Salıpazarı and Ayvacık 

whereas, for the flood event observed on 2nd August 2015, due to the breakdown of 

Salıpazarı Station, calculations are done using Çarşamba, Ayvacık and Kozluk Beldesi 

Stations. 



 

48 

For radar-based QPE, areal rainfall in the subbasins is calculated using arithmetic 

mean method due to the excess number of data. The number of radar points in the 

subbasins and their locations are given in Table 3.4 and Figure 3.12 (a) respectively. 

It should be stated that the radar point depicted in Figure 3.12 (a) represents the center 

of radar pixel. The spatial resolution of radar data is 333.33 m.  

 

Table 3.4 Number of Radar Point Data in Sub-basins 

basin  basin1 basin2 basin3 basin4 total 

number of data 669 422 983 1214 3288 
 

 

 

   

Figure 3.12 Radar Point Locations (a) and the distribution of the HE Product (b) and 

WRF data (c) 

The rainfall amounts related to the HE product and WRF data are calculated for each 

sub-basin proportional to areas of the products over the sub-basins (Figure 3.12 (b) 

and (c)).  

For the three flood events, the rainfall distribution in time is represented by 

Figure 3.13. Rainfall products in the figure show the average of sub-basins that have 

contributions to the flow monitoring station, these are sub-basin 1, sub-basin 2 and 

sub-basin 3. Other individual graphs for the sub-basins are given in Appendix C. 

 

(b) (a) (c) 
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Figure 3.13 Rainfall Distribution with Time for all Rainfall Products: 2014 (a), 2015 

(b) and 2016 (c) 

Geometry of sub-basins are given in Table 3.5 Statistical measures and cumulative 

rainfall amounts for flood events considering the sub-basins are presented in Table 3.6 

and Table 3.7 respectively. 

 

 

Table 3.5 Geometry of Sub-basins 

Basin Area (km2) Average Elevation (m) Surface Area (3D) (km2) 

basin1 75.14 616.35 80.71 

basin2 46.66 720.52 50.19 

basin3 109.97 707.69 118.23 

basin4 134.88 635.32 142.9 

basin 123 231.77 681.52 249.13 
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Table 3.6 Mean Statistics of Datasets for Sub-basins 

Basin 
BIAS (1 hr) RMSE (mm) r 

Radar WRF HE Radar WRF HE Radar WRF HE 

22nd November 2014 

Basin 1 -0.18 0.63 -1.65 1.63 2.78 2.67 0.70 0.64 0.18 

Basin 2 -0.57 0.44 -1.98 2.46 3.16 3.50 0.60 0.64 0.24 

Basin 3 -1.03 0.22 -1.94 2.75 3.15 3.42 0.50 0.62 0.33 

Basin 4 -1.14 0.33 -2.01 2.83 3.21 3.42 0.47 0.64 0.39 

Basin 123 -0.59 0.43 -1.85 2.28 3.03 3.20 0.60 0.63 0.25 

2nd August 2015 

Basin 1 0.02 1.30 -0.17 1.00 2.81 0.84 0.07 0.03 -0.03 

Basin 2 -0.05 0.94 -0.18 0.97 2.41 0.95 0.12 0.05 -0.03 

Basin 3 -0.13 0.68 -0.22 0.98 2.06 1.01 0.16 0.04 -0.02 

Basin 4 -0.67 0.18 -0.82 3.27 3.95 3.87 0.83 0.14 0.21 

Basin 123 -0.05 0.97 -0.19 0.99 2.43 0.93 0.12 0.04 -0.03 

28th May 2016 

Basin 1 -0.69 0.36 0.32 1.53 2.94 3.37 0.68 0.04 0.06 

Basin 2 -0.81 0.06 0.06 2.20 3.07 3.47 0.47 0.03 0.07 

Basin 3 -0.83 -0.07 -0.11 2.27 3.02 3.38 0.41 0.01 0.07 

Basin 4 -0.77 0.09 -0.23 2.26 3.28 3.24 0.38 -0.01 0.09 

Basin 123 -0.78 0.12 0.09 2.00 3.01 3.41 0.52 0.03 0.06 

 

 

Table 3.7 Cumulative Rainfall Amounts for Four Products and Sub-basins 

Basin Gauge Radar WRF HE 

22nd November 2014 

Basin 1 93.5 86.3 119.6 29.5 

Basin 2 107.7 85.1 127.6 30.7 

Basin 3 107.7 66.5 119.2 32.1 

Basin 4 107.7 62.1 123.5 29.6 

Basin 123 103.0 79.3 122.1 30.8 

2nd August 2015 

Basin 1 12.3 14.0 105.7 0.1 

Basin 2 13.5 9.9 80.9 0.3 

Basin 3 17.5 8.4 66.2 2.0 

Basin 4 61.1 13.2 74.1 2.2 

Basin 123 14.4 10.8 84.3 0.8 

28th May 2016 

Basin 1 84.8 35.0 110.8 107.6 

Basin 2 95.2 36.7 99.3 99.6 

Basin 3 95.2 35.2 90.1 87.6 

Basin 4 95.2 40.0 101.5 78.5 

Basin 123 91.7 35.6 100.0 98.3 
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3.7 Summary and Discussion of the Results 

In this chapter, rainfall products used in the study are presented. Among the datasets, 

relation between gauge and radar-based QPE rather than the radar reflectivity 

measurement is investigated. Radar-based QPE is obtained from IRIS software using 

Marshall and Palmer relation with parameters, a=200 and b=1.6 (Z=200R1.6). Three 

matching methods are used to do comparison for the flood events. Then, it is found 

that WCMM with 5x5 space window is the most suitable technique to represent 

radar-based QPE. Based on this result, radar data extraction is done using WCMM 

(5X5 space window) for other flood events. Then, flood events are categorized using 

the information provided from WRF precipitation data. The rainfall datasets of flood 

events which were observed on 22nd November 2014, 2nd August 2015 and 28th May 

2016 are analyzed. Among all rainfall datasets, only the WRF dataset has accumulated 

rainfall fields; namely, convective (RAINC), shallow convective (RAINSH) and 

non-convective (RAINNC). RAINC contains the total accumulated rainfall from the 

convective, shallow convective, and microphysics schemes respectively (Lighezzolo, 

2014). By the help of this data, the rainfall type of flood events (convective or non-

convective) is categorized. After then, comparisons of all products in point and areal 

based manner are performed. The key results of this chapter can be listed as follow: 

 All stations have timing mismatch error of 1 hour so applications are done after 

time adjustments. 

 In rainfall-time graphics, it is seen that, general trend of the rainfall is captured 

by the radar-derived QPE well but radar underestimates the peaks. 

 The assessment factor (gauge rainfall/ radar rainfall estimation) does not 

depend on the distance between radar and gauge station. 

 Change of space window 1x1 type to 5x5 type does not improve the results 

dramatically. Therefore, the increase of window such as 7x7 or 9x9 are not 

taken into consideration. 

 Dataset’s time resolution is one hour, so time window study is not performed. 

 Radar rainfall estimation, performed with Marshall-Palmer parameters, 

underestimate the rainfall peaks. Therefore, Z-R relation with other parameters 

may change the results. 
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 CDF curves do not represent the homogeneity due to the less number of data. 

However, rain type stratification using reflectivity data may improve the PMM. 

In point based comparisons, it is inferred that; 

 For the 2014 flood event day, using CDF curves and radar-based QPE, gauge 

data are estimated. The correlation between the estimated gauge data and the 

observed gauge data shows that PMM does not reveal remarkable outcome.  

 r computations for each event and station demonstrate that event duration and 

season do not affect the results. However, to get more significant insight and 

generalize the situation, there should be more data to study on each season.  

 AF calculation shows that the radar rainfall estimates carried out with 

Marshall-Palmer relation underestimate the rainfall amounts regardless of the 

season type. 

 Topography change between Samsun radar location and gauge location 

together with study area indicate that there is no blockage in the direction of 

radar beam (Figure 2.7 and Figure 2.8).  

 The HE product generally underestimates the cumulative rainfall amount in all 

stations and flood events. 

 Radar data underestimates the results in cumulative sense but keeps the 

consistency in the results. On the other hand, almost all stations in WRF mean 

statistics computations have better results than the HE product but worse than 

the radar-based QPE. 

In areal based comparisons, it is deduced that; 

 The distribution of the HE product in time series does not show similarity with 

other datasets.  

 It is seen that geometry of the sub-basins, size of the area in 2D and 3D and 

average elevation do not have an impact on the mean statistics, RMSE, r and 

bias calculation for three products.  

 Poor results in mean statistics are observed in the HE product and gauge 

datasets with respect to Radar and Gauge datasets.  
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 Closeness of the sub-basin to the radar location gives better results in frontal 

rainfall types (2014 and 2016). In other words, the closest sub-basin (basin1) 

has the best results whereas, the furthermost sub-basin (basin4) has the poorest. 

 The HE product rainfall distribution does not resemble any dataset. WRF and 

radar-based QPE have similar spatial distribution but the location of the core 

of rainfall seems different. 

 Contrary to other datasets, the bias of WRF is positive due to the 

overestimation of rainfall forecasts. 
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CHAPTER 4 

 

RADAR-BASED QPE BIAS CORRECTION 

 

4.1 Introduction 

In 1960, R. E. Kalman published his famous paper to formulate and solve the Wiener 

problem from the state point of view (Kalman, 1960). Kalman defined the discrete-

data linear filtering problem using a set of mathematical equations that provides 

computational means to estimate the state of a process, in a way that minimizes the 

mean of the squared error (Welch and Bishop, 2006). Kalman Filter (KF) is an optimal 

and recursive data processing algorithm (Grewal and Andrew, 1993) that estimates the 

state of a noisy linear dynamic system. KF is optimal with respect to selected criterion 

(e.g. mean square error) that makes sense. KF is recursive that means knowledge 

gained in previous step is incorporated into the latest result so not all data needs to be 

kept. 

The state of a system is a vector x consisting of n variables that define the system 

properties. Location of an aircraft with x, y and z coordinates and orientation of aircraft 

can be a state. However, the variables of the state might be noisy. In order to estimate 

the state of aircraft, KF uses the measurements. The measurements are related to state 

and contain noise. If noise sources are Gaussian distributed, then KF is statistically 

optimal (Grewal and Andrew, 1993). KF uses the probabilistic descriptions of the 

system, measurement noises, and available data about the initial values of the state 

(Negenborn, 2003). 

 



 

56 

4.2 Description of the Kalman Filter  

In this section, the principle of the Kalman Filter procedure is described using the 

notation proposed by Ide et al (1997). The KF procedure involves two steps: the time 

update (predicted) step and the measurement update (corrected) step (Figure 4.1).  

The change in the discrete model from 𝑡 𝑖 to 𝑡 𝑖+1 is defined by Equation 4.1: 

𝑥(𝑡𝑖+1)
𝑡 = 𝑀𝑖[𝑥(𝑡𝑖)

𝑡 ] + 𝜂(𝑡𝑖);             𝜂~𝑁(0, 𝜎𝜂)                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(4.1) 

where 𝑥𝑡 is the true value of the state vector, 𝑀 is the system operator and 𝜂 is the 

independent normally distributed system noise with zero mean and standard deviation 

𝜎𝜂. 

 

Figure 4.1 Flowchart of the Kalman Filter Procedure 

 

4.2.1 The Time Update Step 

In the forecast step, the priori estimate of the state (𝑥𝑓) and process covariances (𝑃𝑓) 

can be estimated as follows:  
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𝑥(𝑡𝑖)
𝑓

= 𝑀𝑖−1[𝑥(𝑡𝑖−1)
𝑎 ]                                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.2) 

𝑃(𝑡𝑖)
𝑓

= 𝑀𝑖−1𝑃(𝑡𝑖−1)
𝑎 𝑀𝑖−1

𝑇 + 𝑄(𝑡𝑖−1)                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.3) 

where 𝑄 is the estimated process error covariance. 

4.2.2 The Measurement Update Step 

In the second step of KF, the priori estimate of the state and process covariances is 

updated based on the actual measurements.  

The relationship between the observation (𝑦𝑂) and the state at time 𝑡 𝑖 is defined by 

Equation 4.4. 

𝑦𝑖
𝑂 = 𝐻𝑖[𝑥(𝑡𝑖)

𝑡 ] + 𝜀𝑖;                         𝜀~𝑁(0, 𝜎𝜀)                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.4) 

where 𝐻 is the observation operator and 𝜀 is the independent normally distributed 

observation error with zero mean and standard deviation 𝜎 𝜀. In the following 

equations, the state and process covariances and the Kalman gain are estimated: 

𝑥(𝑡𝑖)
𝑎 = 𝑥(𝑡𝑖)

𝑓
+ 𝐾𝑖 (𝑦𝑖

𝑂 − 𝐻𝑖 [𝑥(𝑡𝑖)
𝑓

])                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.5) 

𝑃(𝑡𝑖)
𝑎 = (𝐼 − 𝐾𝑖𝐻𝑖)𝑃(𝑡𝑖)

𝑓
                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.6) 

𝐾𝑖 = 𝑃(𝑡𝑖)
𝑓

𝐻𝑖
𝑇[𝐻𝑖𝑃(𝑡𝑖)

𝑓
𝐻𝑖

𝑇 + 𝑅𝑖]
−1                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.7) 

where 𝑅 is the estimated measurement error covariance. 

4.3 Methodology 

Ideally, it is expected that the ratio of the rainfall amount observed from the gauge and 

that estimated from the weather radar is 1.0. However, the errors arising from the 

reflectivity measurement operation and the Z-R conversion process affect the precision 

of the radar estimates. For this reason, before applying the statistical analyses, 



 

58 

implementation of physical methods to eliminate the inaccuracies related to the 

mentioned errors is significant (Chumchean et al., 2006). In our case, radar rainfall 

data obtained from IRIS software are in the rainfall depth form, which is the output of 

the predetermined Z-R conversion process. Therefore, foreground processing to 

eliminate the errors cannot be implemented; instead, statistical analyses are carried out 

directly to reduce the systematic errors.  

The mean field bias correction is the approach used to correct the mean difference 

between the amount of rainfall observed from the gauge and that estimated from the 

weather radar. For this purpose, in the bias-correction approach, the mean of the ratio 

of gauged rainfall amount and radar rainfall amount (G/R) is generally used (Smith 

and Krajewski, 1991; Chumchean et al., 2003). The mean field radar rainfall 

logarithmic bias, 𝑥, is defined as follows: 

𝑥𝑡𝑖
=

1

𝑛
∑ 𝑙𝑜𝑔10 (

𝐺𝑗,𝑖

𝑅𝑗,𝑖
)

𝑛

𝑗=1

                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.8) 

where 𝑅𝑗,𝑖 is the hourly radar rainfall amount (mm) retrieved from the location of gauge 

𝑗 for hour 𝑖, 𝐺𝑗,𝑖 is the hourly rainfall amount (mm) observed from gauge 𝑗 for hour 𝑖 

and 𝑛 is the number of radar-gauge pairs. 

When estimating the G/R ratio, a problem may be encountered, such as the presence 

of abnormally high or low G/R ratios in the computations. Apart from the errors related 

to radar reflectivity or Z-R conversion, rainfall intermittency may be the main reason 

for this problem (Kim and Yoo, 2014). Within the selected time span, increasing the 

data pairs considering the time range can help alleviate the problem. Moreover, 

applying a certain threshold to the data pairs can also alleviate the problem 

(Chumchean et al., 2006).  

Describing the rainfall pattern both spatially and temporally can be imprecise, 

especially in complex terrain. Mountainous regions can experience an increase in 

rainfall in high altitudes or a mixture of storm types. The variability in the DSD may 

cause the G/R ratio to fluctuate, particularly when using constant Z-R parameters in 
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radar rainfall estimates. Using various stochastic process models, Ahnert et al. (1986) 

used the Kalman Filtering approach for the first time to simulate the bias in the radar 

field. To address the uncertainty of the time-varying behaviour of the mean field bias, 

the autoregressive model of order 1, the 𝐴𝑅(1) model, is selected due to its wide usage 

in the literature (Smith and Krajewski, 1991; Anagnostou et al., 1998; Seo et al., 1999; 

Chumchean et al., 2006). The autoregressive model is a stochastic process that 

specifies the output variable based on a weighted sum of past values. 𝐴𝑅(1) is a first 

order process, meaning that the current value is linearly based on the preceding value. 

The 𝐴𝑅(𝑛) model can be defined as follows: 

𝑥𝑡 = 𝑐 + ∑ 𝛷𝑖𝑥𝑡−𝑖 + ɛ𝑡

𝑛

𝑖=1

                                                                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.9) 

where 𝛷 is the parameter, 𝑐 is the constant and ɛ is the white noise. 

The estimation of logarithmic mean field bias ‘𝑥’ is carried out with the Kalman Filter 

using the AR (1) process system equation. Using the previous equations, the Kalman 

Filter algorithm has the following form: 

The system equation or state is assumed to follow the 𝐴𝑅(1) process: 

𝑥(𝑡𝑖+1)
𝑡 = 𝜌𝑥  𝑥(𝑡𝑖)

𝑡 + 𝜂(𝑡𝑖);             𝜂~𝑁(0, 𝜎𝜂)                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.10) 

where 𝜌𝑥  is the correlation coefficient of the logarithmic mean field bias and 𝜂 is the 

system error with zero mean and constant standard deviation 𝜎𝜂. 

Observation (measurement) equation: 

𝑦𝑖
𝑂 = 𝑥(𝑡𝑖)

𝑡 + 𝜀𝑖;                            𝜀~𝑁(0, 𝜎𝜀𝑖
)                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.11)  

where 𝜀 is the independent normally distributed observation error with mean zero and 

standard deviation 𝜎𝜀𝑖
. 

Prediction equations: 
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𝑥(𝑡𝑖)
𝑓

= 𝜌𝑥 𝑥(𝑡𝑖−1)
𝑎                                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.12) 

𝑃(𝑡𝑖)
𝑓

= 𝜌𝑥
2𝑃(𝑡𝑖−1)

𝑎 + 𝜎𝜂
2                                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.13) 

Updating equations (in these equations, the observation operator 𝐻 is taken as unity): 

𝑥(𝑡𝑖)
𝑎 = 𝑥(𝑡𝑖)

𝑓
+ 𝐾𝑖 (𝑦𝑖

𝑂 − 𝑥(𝑡𝑖)
𝑓

)                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.14) 

𝑃(𝑡𝑖)
𝑎 = (𝐼 − 𝐾𝑖)𝑃(𝑡𝑖)

𝑓
                                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.15) 

𝐾𝑖 = 𝑃(𝑡𝑖)
𝑓

[𝑃(𝑡𝑖)
𝑓

+ 𝜎𝜀𝑖

2 ]−1                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.16) 

One of the most serious difficulties in the KF procedure is determining the error 

variances 𝜎𝜂
2 and 𝜎𝜀𝑖

2 : 

𝜎𝜂
2 = (1 − 𝜌𝑥

2)𝜎𝑥
2                                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.17) 

where 𝜎𝑥
2 is the empirical variance of the logarithmic bias  

𝜎𝜀𝑖

2 = 𝜎𝑦𝑖

2 − 𝜎𝑥
2                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.18) 

To estimate the empirical variance, 𝜎𝑦𝑖

2 , Chumchean et al. (2003) proposed a model 

based on the 1.5-km CAPPI, 1-km2 grid resolution reflectivity data. The proposed 

model can be expressed as follows: 

𝜎𝑦𝑖,𝑡

2 = −0.015 �̅�𝑡 + 0.14;                                     𝑟𝑖 ≤ 55 𝑘𝑚               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.19) 

𝜎𝑦𝑖,𝑡

2 = −0.015 �̅�𝑡 + 0.13
(𝑟𝑖 − 55)

𝑃
+ 0.14;       𝑟𝑖 > 55 𝑘𝑚              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.20) 

where �̅�𝑡 is the conditional mean of the rainfall amount observed from the gauge at 

hour 𝑡, 𝑟𝑖 is the distance of the 𝑖𝑡ℎ gauge from the radar location and 𝑃 is the number 

of pulses used in the reflectivity measurement over each range. 
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The empirical variance, the sample variance of the 𝑙𝑜𝑔𝐺 - 𝑙𝑜𝑔𝑅 difference, is 

evaluated for each gauge location and was defined by Anagnostou et al. (1998) as 

follows:  

𝜎𝑦𝑖

2 =
1

𝑛
∑{[𝑙𝑜𝑔𝐺 − 𝑙𝑜𝑔𝑅 ]2 | 𝐺 >  𝑟}

𝑛

𝑖=1

                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.21) 

where 𝜎𝑦𝑖

2  is the variance at the gauge, 𝑛 is the number of the gauge, 𝐺 is the rainfall 

amount at gauge 𝑖 (mm), 𝑅 is the rainfall estimate by the radar (mm) and 𝑟 is the 

minimum rainfall amount. Anagnostou et al. (1998) stated that a rainfall amount below 

the value of 0.5 mm/h causes the variability of the 𝑙𝑜𝑔𝐺 − 𝑙𝑜𝑔𝑅 difference to be 

significant. The authors selected the value of 0.5 mm/h as a threshold using more than 

4500 wet data pairs. 

It is well known that factors such as study area location, storm type and season greatly 

affect the variance of the rainfall dataset. The proposed model equations formulated 

by Chumchean et al. (2003) to determine the empirical variance and the threshold 

value defined by Anagnostou et al. (1998) to avoid significance of log transformations 

are crucial components of the approaches used in the bias computation.  

4.4 Modeling the Empirical Variance 

In modeling the empirical variance, past records from the gauging stations, namely, 

Salıpazarı and Ayvacık, which are the closest stations to the study area, are used. 

Stations that measure cumulative rainfall amounts greater than the threshold value of 

20 mm are listed in Table 4.1. The reasons for selecting this threshold are the 

successful results in radar studies at high rainfall amounts and the avoidance of 

measurement error of low rainfall amounts (Chumchean et al., 2003). In Table 4.1, 

stations depicted in bold are closest to the study area and are used in the Thiessen 

Polygon method to calculate the mean areal rainfall for the study area. The gaps in the 

table show that data for the station are unavailable for this event. The number of paired 

data for a station (wet and non-wet) has a maximum value of 304. A breakdown in the 

stations or installation time of the gauge reduces the number of data pairs. Therefore, 
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the threshold (0.5 mm/h) defined by Anagnostou et al. (1998) is not applied to the 

dataset. Under normal conditions, the value of variance increases as the radar range 

increases due to the decrease in reflectivity measurement sensitivity. Figure 4.2 shows 

the change in variance with distance between the stations and the radar. Remoteness 

does not influence the variance computation for the study area. Taking small rainfall 

values (0 < 𝑟 (𝑚𝑚) < 0.5) and having few rain gauges in regions of remote distance, 

particularly more than 60 km, may cause this result. The increase in the number of 

stations in the radar range can result in a rigid conclusion about the variance changes.  

 



  

63 

T
ab

le
 4

.1
 C

u
m

u
la

ti
v
e 

R
ai

n
fa

ll
 A

m
o
u
n
ts

 f
o
r 

ea
ch

 E
v
en

t 
(m

m
) 



 

64 

 

Figure 4.2 Empirical Variance of Stations with the Distance between Stations and 

Radar 

While establishing the empirical variance model, the datasets of all rain gauges are 

used because of the insignificant influence of the distance on variance. Thus, the same 

equation (Equation (4.21)) is used for all G/R pairs. The distribution of empirical 

variance with respect to rainfall amounts is depicted in Figure 4.3 (a). At a low rainfall 

rate, the uncertainty related to the Z-R parameters (Austin, 1987) and the quantization 

error in gauges (Chumchen et al., 2003) are high. These assessments support the data 

shown in Figure 4.3 (a). It is seen that the empirical variance decreases when the 

rainfall amount increases. To obtain a proper model for empirical variance estimation, 

an outlier detection study is performed using a common method, the modified 

Thompson outlier detection method (Thompson, 1935). This technique is a statistical 

method for deciding whether to keep or remove suspected outliers in the sample. The 

modified Thompson (𝜏) value is obtained from the following equation: 

𝜏 =
𝑡𝛼/2(𝑛 − 1)

√𝑛√𝑛 − 2 + 𝑡𝛼/2
2

                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.22) 

where 𝑡𝛼/2 is the critical value of Student’s t test based on 𝛼 =  0.05 and 𝑛 is the 

number of data points. In this case, the number of data points, 𝑛, is 1886. Using the 
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modified Thompson table, 𝜏 is calculated as 1.9589. After removing the outliers, the 

best fit model (Figure 4.3 (b)) that describes the variance with respect to the rainfall 

amount observed in the gauge is as follows: 

𝜎𝑦𝑖,𝑡

2  =  −0.061𝑙𝑛(𝐺𝑡) +  0.4562                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.23) 

where 𝐺 is the mean of the rainfall amount observed from the gauges at hour 𝑡.  

 

 

 

Figure 4.3 Empirical Variance of all Datasets (a) and Empirical variance model after 

outlier detection (b) 

4.5 Computation of the Correlation Coefficient (𝝆𝒙) and the Empirical Variance 

(𝝈𝒙
𝟐) 

Using all gauges, the mean field radar rainfall logarithmic bias (𝑥𝑡𝑖
) is calculated, and 

then, by applying the 𝐴𝑅(1) process, correlation coefficients (𝜌𝑥) are computed for 

each event. In a similar manner, using calculated logarithmic biases( 𝑥𝑡𝑖
), empirical 

variances of the logarithmic biases (𝜎𝑥
2) are calculated. The obtained parameters are 

given in Table 4.2. 
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Table 4.2 Correlation Coefficients and Empirical Variances for each Event with the 

Duration and Average of Cumulative Radar and Gauge Rainfall Amounts 

Event # Date 

(yyyy mm dd) 

𝝆𝒙 𝝈𝒙
𝟐 

 

Duration 

(hr) 

Ave. of Cum. 

Radar 

Rainfall (mm) 

Ave. of Cum. 

Gauge Rainfall 

(mm) 

1 2014 03 29 0.48 0.22 24 5.55 12.99 

2 2014 05 05 0.57 0.25 35 6.16 16.62 

3 2014 05 25 0.36 0.17 17 5.48 10.07 

4 2014 07 21 0.32 0.12 11 6.74 14.39 

5 2014 10 18 0.74 0.22 28 13.33 35.52 

6 2014 12 29 0.52 0.30 60 25.07 41.29 

7 2015 01 06 -0.20 0.05 20 24.67 43.25 

8 2015 04 08 0.87 0.73 58 23.69 38.78 

Average 0.46 0.26 31 13.83 26.61 
 

The 𝜌𝑥 and 𝜎𝑥
2 calculations depend on continuity in time. Missing data may suppress 

the computation. Therefore, the computations are performed by splitting the data 

regarding the event time. Parameter 𝜌𝑥 shows the relationship of the spatial 

distribution of rainfall amounts at sequential time intervals. Among the results, the 7th 

event has the lowest ρx value, which may be explained by the rainfall type. Hand et al. 

(2004) classified and analyzed the extreme rainfall events in the United Kingdom (UK) 

regarding the rainfall amounts and durations. The authors grouped the events into five 

categories: convective, convective with frontal forcing, orographic, frontal with 

instability and frontal. The events having a rainfall duration equal to or less than 20 

hours are classified into the convective and convective with frontal forcing categories. 

In Table 4.2, the average cumulative rainfall amounts are obtained by averaging the 

cumulative rainfall amounts observed at the gauges for each event. The results show 

that the cumulative rainfall distribution over the gauges is not uniform. Events with a 

long duration have a high average for the cumulative radar and gauge rainfall amounts 

and generally have high correlation coefficients. The 7th event has a 20-hour rainfall 

duration that may be classified into the convective type of rainfall. The convective type 

of rainfall is a dynamic concept because of its rapid response to neutralize an unstable 

vertical distribution of moist static energy (Houze, 1997). Due to this rapid response, 

the spatial distribution of rainfall may not be uniform. At this stage, sufficient and 

exact information about the rainfall types for the events is unavailable. Therefore, in 
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the flood day KF application, the average values of 𝜌𝑥 and 𝜎𝑥
2, given in Table 4.2, are 

used. 

4.6 Kalman Filter Application 

The aim of applying the KF to radar rainfall estimates is to correct the radar rainfall 

estimates. The KF algorithm is applied to the dataset in two different ways. First, all 

rain gauges except for the studied one located in the radar range are used for the 

computation. Second, gauges that have better correlations with the studied gauge are 

taken into consideration. The primary goal of the second application is to localize the 

bias computation. In the first approach, the mean field bias correction is constant over 

the space within the time sequence. In addition, in the empirical variance modeling 

study, the distance between stations and radar has no influence on the empirical 

variance results. For this reason, rather than considering the radar distance effect, the 

correlations among the rain gauge stations are considered to localize the bias 

computation.  

For both studies, at 𝑡 = 0, the initial estimators 𝑥(𝑡0)
𝑓

 and 𝑃(𝑡0)
𝑓

 are taken as 0. 

4.6.1 The KF Application Type I 

As previously mentioned, all gauges in the radar umbrella (Figure 2.1) except for the 

flood events data are used in this application. The KF process is applied for the flood 

events using the average values of 𝜌𝑥  and  𝜎𝑥
2 (Table 4.2) and the empirical variance 

model (Equation (4.23)).  

4.6.2 The KF Application Type II 

In the KF application type II, gauges that have better correlations with the studied 

gauge are taken into consideration. To determine the correlation coefficients among 

the gauges, the entire dataset except for the flood events is used. The aim of this 

process is to obtain the most probable gauge(s) to represent the studied gauge. The 

computation results for correlation coefficient (r) are given in Table 4.3 with color 

coding.  
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In this approach, the same values for the correlation coefficient and the same empirical 

variance model are used. The purpose of selecting the same values and model is to 

examine the effect of gauge selection. Stations having correlation coefficients greater 

than 0.5 are selected. Then, for the flood events, using the same 𝜌𝑥 , and 𝜎𝑥
2 and the 

empirical variance model, the KF is applied. Table 4.4 is the summary of Table 4.3 

and shows stations that have better correlation coefficient results with the main gauge. 

Among these stations (r>0.5), some of them have long distance to the main gauge. Due 

to spatial variability of rainfall, some of the stations are subtracted to get reasonable 

outcome in the KF calculation. 

 

Table 4.4 Summary of the Table 4.3 

Main Gauge Gauge that has r>0.5 

Gauge that has r>0.5 

and close the Main 

Gauge 

Vezirköprü     

Yakakent Bafra Bafra 

Alaçam Topraksu A., Bafra  Topraksu A., Bafra 

Havza Kavak Kavak 

Topraksu Araş. Bafra, Ondokuz Mayıs and Alaçam Bafra 

Bafra  Topraksu A., Alaçam and Yakakent Topraksu A 

Kavak  Havza Havza 

Ondokuz Mayıs  Topraksu A. Topraksu A. 

Karadeniz Araş.     

Ayvacik     

Çarşamba Salıpazarı Salıpazarı 

Salıpazarı Kozluk, Çarşamba Kozluk, Çarşamba 

Kozluk Salıpazarı Salıpazarı 

 

 

4.7 Results 

For the Salıpazarı Station that is the closest one to the study area, BCR (I) and BCR (II) 

data with respect to time are given in Figure 4.4 for all flood events. In 2014 flood 

event, the BCR (I) data underestimate the rainfall rate, but after 12 hours, these data 

overestimate the rate considering the radar estimates. From 22 to 30 hours, the BCR 

(I) data approach the gauge observation, and at the peak rain rate of the event (at 29 

hours), the BCR (I) data exceed the gauge by 1.5 mm. The KF application results for 
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the remaining gauges are given in Appendix D. For the majority of the gauges at the 

beginning of the event, which is generally the first 15 hours, low rain rates are 

observed, and at the last part of the event, which is after 20 hours, high rain rates are 

recorded (Figure D.1, Figure D.2 and Figure D.3). Thus, the KF application adapts the 

Salıpazarı radar rainfall estimates to the rainfall trend observed by the majority of the 

gauges. In flood studies, having a value close to the peak rain rate may be significant 

for obtaining the actual peak flow that intensifies the hazard. Unlike the type (I), the 

BCR (II) overestimates the radar throughout the event period. The peak rain rate of the 

BCR (II) data is nearly 18 mm, which exceeds the gauge rain rate by 5 mm. In 2015 

flood event, the Salıpazarı Station was not in operation (Figure 4.4 (b)). The abilities 

of radar-based QPE, such as gathering data in wide swath and revisiting the same place 

repeatedly with high spatio-temporal scale regardless of whether condition during day 

and night, are the unique properties for flood monitoring. These features make the 

radar-based QPE valuable for sparsely gauged or ungauged basins. As mentioned 

before, bias corrections are done using all stations except the Salıpazarı Station so 

application is not affected by the excluding. However, consistency of the BCR data 

cannot be evaluated by using gauge data. Hence, assessment of the BCR data is carried 

out in hydrological modeling. Regarding to rainfall amounts, it is seen that the radar 

data estimate rainfall as 23 and 29 mm at 16 and 17 hours respectively. Due to the 

convective rainfall type, the amount of the BCR (I) data is smaller than the radar-based 

QPE. However, the BCR (II) data show overestimation with respect to radar-based 

QPE because station that has better correlation with the Salıpazarı Station, the Kozluk 

Station observe rainfall at the same time (Figure 3.15 (f) and Figure D.6 (c)). In 2016 

flood event, majority of the stations observe less rainfall amount than the Salıpazarı 

Station (Figure D.7, Figure D.8 and Figure D.9). Therefore, the BCR (I) data 

underestimate the rainfall amount with respect to the radar and the gauge data. On the 

contrary, the BCR (II) data overestimate the rainfall amount with respect to radar-

based QPE especially in time between 20 and 35 hours because of the observed high 

rainfall amounts in the Çarşamba and the Kozluk Stations (Figure D.9 (a) and (c)). The 

Çarşamba and the Kozluk Stations give best correlation results among all stations in 

Table 4.3; consequently, they are used in the BCR (II) calculations.  
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Figure 4.4 The Results for the Salıpazarı Station (2014 (a), 2015 (b) and 2016 (c)) 

A summary of the mean statistical values of the gauges using KF is presented in 

Table 4.5. In this table, there is no calculation for the Karadeniz Araş., Vezirköprü and 

Ayvacık Stations due to the low (r<0.5) correlation coefficients. The results indicate 

that the weather radar underestimates the cumulative rainfall amount at generally all 

stations and for all flood events. After applying the KF, the general dataset maintains 

the underestimated values. However, for the cumulative rainfall amounts, the majority 

of the BCR (I) and BCR (II) datasets converges to the observed data. For the 

cumulative rainfall amounts, the BCR (II) data generally show appreciable progress 

compared with the BCR (I) data. 

  

(b) 

(a) 

(c) 
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Table 4.5 Summary of Statistics for all Stations and Flood Events 

Station 

Name 

r BIAS (1 hr) Cum. rainfall (mm) 

R BCR-I BCR-II R BCR-I BCR-II G R BCR-I BCR-II 

22nd November 2014 

Vezirköprü 0.89 0.89 - 0.20 0.19 - 33.5 48.0 47.5 - 

Yakakent 0.82 0.81 0.79 -0.02 0.04 0.06 26.6 25.1 29.8 31.2 

Alaçam 0.67 0.65 0.69 -0.11 -0.03 0.00 33.8 25.7 31.7 33.7 

Havza 0.7 0.59 0.71 -0.15 -0.14 -0.10 45.4 34.5 35.2 37.9 

Topraksu A. 0.92 0.92 0.94 -0.30 -0.22 -0.22 43.5 22.1 28.0 27.4 

Bafra 0.79 0.79 0.84 -0.18 -0.09 -0.04 39.4 26.6 33.0 36.5 

Kavak 0.91 0.9 0.89 0.24 0.38 0.60 37.6 55.0 64.8 80.7 

Ondokuz M. 0.85 0.86 0.86 -0.17 -0.12 -0.08 33.4 20.9 25.0 27.3 

Karadeniz A. 0.91 0.89 - -0.05 0.05 - 49.2 45.5 52.9 - 

Ayvacık 0.21 0.29 - -0.15 -0.07 - 67.4 56.4 62.6 - 

Çarsamba 0.86 0.9 0.87 -0.17 -0.10 0.05 59.8 47.4 52.7 63.5 

Salıpazarı 0.85 0.83 0.85 -0.48 -0.34 -0.13 107.7 73.5 83.0 98.7 

Kozluk 0.62 0.62 0.68 -0.43 -0.37 -0.26 66.0 34.9 39.3 47.6 

2nd August 2015 

Vezirköprü 0.00 0.00 - 0.02 0.01 - 0.0 1.2 0.9 - 

Yakakent -0.01 0.00 -0.01 -0.01 -0.02 -0.02 2.2 1.6 0.9 0.9 

Alaçam 0.00 0.00 0.00 0.01 0.01 0.00 0.0 0.7 0.4 0.3 

Havza 0.00 0.00 0.00 0.01 0.01 0.01 0.0 0.8 0.6 0.6 

Topraksu A. 0.85 0.80 0.81 0.04 0.03 0.03 1.2 4.0 3.3 3.3 

Bafra 0.00 0.00 0.00 0.01 0.01 0.01 0.0 0.7 0.5 0.5 

Kavak 0.52 0.51 0.55 0.02 0.01 0.02 0.3 1.6 1.4 1.6 

Ondokuz M. 0.51 0.43 0.37 0.02 0.01 0.02 0.2 1.3 1.0 1.4 

Karadeniz A. 0.99 0.97 - -0.25 -0.29 - 30.9 13.0 10.1 - 

Ayvacık 0.81 0.87 - 0.00 -0.01 - 3.4 3.4 2.6 - 

Çarsamba 0.78 0.68 0.84 -0.52 -0.53 -0.55 45.8 8.4 7.3 6.5 

Salıpazarı - - - - - - - 56.4 44.7 72.0 

Kozluk 0.96 0.97 0.96 -1.08 -1.11 -1.30 109.3 31.7 29.7 15.7 

28th May 2016 

Vezirköprü 0.88 0.92 - -0.35 -0.36 - 42.7 17.8 17.1 - 

Yakakent 0.88 0.77 0.88 -0.63 -0.63 -0.50 76.7 31.6 31.5 40.9 

Alaçam 0.93 0.93 0.90 -0.47 -0.45 -0.29 68.8 34.8 36.1 47.6 

Havza 0.40 0.43 0.53 -0.21 -0.23 -0.25 37.3 22.4 20.8 19.4 

Topraksu A. 0.80 0.81 0.83 -0.78 -0.73 -0.60 87.1 30.6 34.9 43.9 

Bafra 0.94 0.96 0.90 -0.60 -0.52 -0.38 77.8 34.9 40.1 50.3 

Kavak 0.85 0.89 0.90 -0.20 -0.17 -0.06 35.1 20.7 22.7 30.6 

Ondokuz M. 0.42 0.41 0.44 -0.40 -0.39 -0.34 44.1 15.2 15.9 19.5 

Karadeniz A. 0.85 0.81 - -0.78 -0.76 - 90.4 34.5 35.7 - 

Ayvacık 0.54 0.51 - -0.48 -0.49 - 65.8 31.5 30.3 - 

Çarsamba 0.63 0.67 0.40 -1.87 -1.90 -1.73 189.7 55.1 52.7 65.0 

Salıpazarı 0.61 0.65 0.74 -0.72 -0.79 -0.43 95.2 43.7 38.2 64.0 

Kozluk 0.55 0.53 0.63 -1.62 -1.67 -1.33 173.1 56.1 53.2 77.5 
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4.8 The Effect of Correlation Coefficient (𝝆𝒙) and Empirical Variance (𝝈𝒙
𝟐) on 

Results 

So far, the parameters 𝜌𝑥 and 𝜎𝑥
2 have been calculated for each event reported in the 

previous sections. However, to observe the direct effects of these parameters on the 

Salıpazarı Station on the 2014 flood event day, the parameter values are changed 

gradually. The effects of changing 𝜌𝑥 (rho) between 0 and 1 and changing 𝜎𝑥
2 (sigma) 

between 0 and 0.35 are shown in Figure 4.5.  

 

 

 

 

Figure 4.5 Effect of 𝛒𝐱 (a) and 𝛔𝐱
𝟐 (b) on r, Cumulative Rainfall Amounts and 

Maximum Rainfall Amount 

(a) 

(b) 
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In Figure 4.5, the stability and magnitude of r show a decreasing pattern as 𝜌𝑥 and 𝜎𝑥
2 

increase. However, the sensitivity is observed in the second digit of r; therefore, in 

general, the r results donot strictly depend on the parameters. In contrast, the 

cumulative and maximum rainfall amounts show an increasing trend as 𝜌𝑥 and 𝜎𝑥
2 

increase. Instead of the correlation coefficient, the values of cumulative and maximum 

rainfall are good indicators for the changes in the parameters. In flood studies, the 

maximum rainfall amount observed in the measurements is significant because it may 

be a driving force for discharge formation, which has a devastating power at the 

downstream site of urbanized areas. Therefore, the maximum rainfall amount is 

depicted in red dotted lines in the figures. For the Salıpazarı Station, suitable 𝜌𝑥 and 

𝜎𝑥
2 values are determined as 0.36 and nearly 0.15, respectively. 

4.9 Discussion of the Results 

The aim of applying the Kalman Filter to radar-based QPE is to correct mean field bias 

in the data. The KF algorithm is applied to the datasets in two different ways. First, all 

rain gauges except for the studied one located in the radar range are considered for 

computation. Second, gauges with better correlations with the studied gauge are 

considered. The major outcomes of this study are as follows: 

 The radar-based QPE are retrieved from IRIS outputs that are generated from 

the Marshall-Palmer relationship. The state of this product with the rain gauge 

data in the time sequence shows that the general trend of the rainfall is well 

captured by the radar rainfall estimation, but within that sequence, the radar 

data underestimate the rainfall amounts, especially at peak values.  

 In the study of the empirical variance model, it is found that contrary to the 

literature, empirical variance does not increase when the distance between 

radar and station increases. The scarcity of rain gauge stations, particularly 

after 60 km, and the presence of fewer observed events are likely the reason 

for this outcome.  

 In the BCR (I) dataset, the majority of the results converge to the observed ones 

in cumulative rainfall amounts. However, the application of KF (first step) does 
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not yield remarkable improvement in r computations, although the correlations 

between the radar and the gauge datasets are acceptable.  

 In the BCR (II) dataset, the majority of the stations have similar cumulative 

rainfall amounts and higher r results concerning the gauge statistics, similar to 

the previous case. Moreover, an improvement in the bias computation is 

observed.  

 The sensitivity of the 𝜌𝑥 and 𝜎𝑥
2 parameters shows that the stability and 

magnitude of r have a decreasing pattern as the parameters increase. However, 

the parameters are more sensitive in the results of cumulative and maximum 

rainfall amounts.  

 The success of the filter in spatial sense has not been investigated due to the 

inadequate number of events. However, correlation results of the stations in 

Table 4.5 show that the filter is successful in temporal sense. 
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CHAPTER 5 

 

HYDROLOGIC MODELING 

 

5.1 General 

Hydrologic system covers complex movement of water through the Earth. Hydrologic 

models try to conceive and represent these complex behaviors using relatively simple 

mathematical equations. Hydrologic model, from the simplest to the most complex, is 

essentially needed for forecasting, simulating and quantifying the effects of different 

inputs for a watershed. Models are in general designed to meet two primary objectives; 

to understand the hydrologic phenomena operating in a catchment and to generate 

synthetic sequences of hydrologic data for use in forecasting or facility design (Xu, 

2002). In flood studies, there are several hydrologic rainfall-runoff models with 

different levels of uncertainty (Bartholmes and Todini, 2005). In this chapter, two 

hydrologic models are used for the flood simulations; the Hydrologic Engineering 

Center’s Hydrologic Modeling System (HEC-HMS) and the Weather Research and 

Forecasting model hydrological extension package (WRF-Hydro). The reasons these 

specific models are selected can be listed as follows: HEC-HMS is easily accessible, 

has wide usage in the literature and is used as an empirical based lumped model; 

whereas WRF-Hydro has open source code, is expected to be used in the near future 

at the continental level and is used as a physic-based distributed model. 

5.2 HEC Hydrologic Modeling System 

The Hydrologic Modeling System (HEC-HMS) is a product of the Hydrologic 

Engineering Center within the United States Army Corps of Engineers (USACE). 
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Under different soil and climatic conditions with different datasets, HEC-HMS has 

proved its ability to forecast and simulate the streamflow (Anderson et al., 2002; 

Yusop et al., 2007; Chu and Steinmann 2009; Soytekin, 2010; Choudhari et al., 2014). 

HEC-HMS is a lumped and uncoupled surface water model. HEC-HMS contains four 

components: Data Manager, Control Specification, Basin Model and Meteorologic 

Model. All components have different subcomponents. Depending on the 

characteristics of the study area, necessary subcomponents can be selected. Before the 

application of HEC-HMS, it is necessary to define the basin area, sub-basins, stream 

network, diversions and junctions. The Geospatial Hydrologic Modeling Extension 

(HEC-GeoHMS) and ArcHydro extension can be used to delineate the watersheds and 

generate the stream network. This process is commonly referred as terrain 

preprocessing based on digital elevation model (DEM). In the form of sub-basin 

boundaries, HEC GeoHMS is used to create input files. To determine physical 

characteristics of the sub-basins, 25 m spatial resolution DEM data retrieved from 

1/25000 scaled topographic maps are used. Figure 5.1 shows the preprocessing steps. 

The steps can be listed in the order given below; 

1. Dem Reconditioning (grid) 

2. Fill Sinks (grid) 

3. Flow Direction (grid) 

4. Flow Accumulation (grid) 

5. Stream Definition (grid) 

6. Stream Segmentation (grid) 

7. Catchment Grid Delineation 

8. Catchment Polygon 

9. Drainage Line 

10. Adjoint Catchment  

11. Drainage Point 

After the completion of the terrain preprocessing, a project point which is the outlet of 

the study area is defined (Figure 5.2). Based on the project point location on the 

drainage line, HEC-GeoHMS extension defines the project area. 



  79 

F
ig

u
re

 5
.1

 P
re

p
ro

ce
ss

in
g
 S

te
p
s 

(D
em

 R
ec

o
n
d
it

io
n
in

g
 (

a)
, 

F
il

l 
S

in
k
s 

(b
),

 F
lo

w
 D

ir
ec

ti
o
n
 (

c)
, 

F
lo

w
 A

cc
u
m

u
la

ti
o
n
 (

d
),

  

S
tr

ea
m

 D
ef

in
it

io
n
 (

e)
, 

S
tr

ea
m

 S
eg

m
en

ta
ti

o
n
 (

f)
, 
C

at
ch

m
en

t 
D

el
in

ea
ti

o
n
 (

g
) 

an
d
 D

ra
in

ag
e 

L
in

e 
(h

) 
)



 

80 

 

Figure 5.2 Project Area with Project Point and Drainage Line 

The resulting project area has a total area of 383 km2 including 39 sub-basins. For 

stream segments and the sub-basins, physical characteristics like the lengths and the 

slopes of each river segment, the average basin slope and the longest flow path of each 

sub-basin are computed using DEM data and HEC-GeoHMS extension. 

In order to perform rainfall-runoff modeling, NRCS Curve Number model, NRCS Unit 

Hydrograph model and Muskingum flow routing model are selected for loss, transform 

and routing computations respectively. 

5.2.1 Parameters Defined in the Model 

Parameters in loss and routing computations are determined in the model calibration 

procedure. In this procedure, firstly, curve number is specified considering the soil 

data and observed runoff volume, then routing parameters are defined considering the 

reach properties, observed hydrograph shape and peak discharge time. In the model, 

only rainfall data are used as a forcing input in meteorological model component. 
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5.2.1.1 Curve Number (CN) Determination 

The runoff curve number (CN) is an empirical parameter and used to predict direct 

runoff from excess rainfall. It was developed by the USDA Natural Resources 

Conservation Service, formerly called the Soil Conservation Service (SCS). CN is 

based on soil group, land use, treatment and hydrologic condition. CNs were 

developed for many soil-covers and published in the NRCS National Engineering 

Handbook (NEH-4). (1986). CN may also be defined as Antecedent Moisture 

Condition (AMC II) or CN (II). It describes the average soil moisture. The other 

conditions CN I and CN III describe the dry and wet soil condition respectively. 

In environmental impact assessment report of Salıpazarı Dam, planned to construct on 

the outlet of the sub-basin 1 (sub-basin located on the far left), the CN (II) and CN (III) 

of upstream part of the dam are defined as 86 and 94 respectively (DSI, 2014). The 

geology map and existing soil materials; land use and land cover indicate that the study 

area has uniform soil type and land cover. In Figure 2.8 (a), it is seen that majority of 

the study area has basalt-andesite agglomerate soil type. In Figure 2.8 (b) and (c), it 

can be inferred that forest and podzolic soil (grey and brown) take part in almost all 

area. The podzolic soil is the typical soil of the coniferous or boreal forests (Chesworth, 

2008). This information confirms the relevance of the soil materials; land cover and 

land use. Assignment of CN for a certain soil type is directly related to infiltration rate 

of the soil. Pratama et al. (2016) classify the average infiltration rate measurements 

into 5 groups considering the origin of the soil (Figure 5.3). According to their study, 

basalt and andesit soil type have low porosity that cause low infiltration capacity.  

https://en.wikipedia.org/wiki/USDA
https://en.wikipedia.org/wiki/Natural_Resources_Conservation_Service
https://en.wikipedia.org/wiki/Natural_Resources_Conservation_Service
https://en.wikipedia.org/wiki/Land_use
https://en.wikipedia.org/wiki/Coniferous
https://en.wikipedia.org/wiki/Taiga
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Figure 5.3 Average Infiltration Rate vs. Lithology (Source: Pratama et al., 2016) 

Information about the soil data and literature review support the high curve numbers 

defined in environmental impact assessment report of Salıpazarı Dam. In modeling, 

average curve number that corresponds to CN (II) is generally used in the loss 

calculation. However, to see the effect on the discharge and to find the appropriate 

curve number for the study area, more than one specific value is used. The optimum 

curve number is defined with calibration procedure using observed discharge values. 

As defined in the assessment report, the curve number is started with a value of 86 and 

incremented by 2 at each iteration until it reaches 94. 

5.2.2.2 Parameters in Routing Procedure 

Routing is a mathematical procedure that predicts the flood magnitude, speed and 

shape as a function of time along the stream bed (Maidment, 1993). Flood routing 

methods can be classified into two categories; hydraulic routing (distributed system 

method) and hydrologic routing (lumped system method). In hydraulic routing 

procedure, conservation of mass and conservation of momentum equations are used. 

Whereas, in hydrologic routing procedure, conservation of mass and storage-discharge 

relation equations are used.  

In HEC-HMS model, there are five available hydrologic routing methods: the 

Kinematic Wave Routing, Lag Routing, Modified Puls Routing, Muskingum Routing, 

and Muskingum-Cunge Routing methods. Muskingum method is selected for routing 

procedure because of its common use and reasonable results for floods propagating 
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through mild to steep sloping stream beds (Maidment, 1993). The expression of the 

continuity equation in Muskingum method is given as follows, 

𝐼 − 𝑄 =
𝑑𝑆

𝑑𝑇
                                                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.1) 

(𝐼1 + 𝐼2)

2
∆𝑡 −

(𝑄1 + 𝑄2)

2
∆𝑡 = 𝑆2 − 𝑆1                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.2) 

Where 𝐼 is the inflow rate, 𝑄 is the outflow rate and 𝑆 is the storage. This method 

assumes that the amount of storage is related to inflow and outflow discharge. The 

total storage in the reach can be expressed as follows: 

𝑆 = 𝐾𝑄 + 𝐾𝑋(𝐼 − 𝑄)                                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.3) 

Where 𝐾 is the storage constant and 𝑋 is the weighting factor (dimensionless). 𝐾 value 

is close to flow travel time through the stream. It is sensitive to the channel length. The 

value of 𝑋 ranges from 0 to 0.5 which gives the maximum and the minimum 

attenuation respectively.  

In ungauged basins, the Muskingum parameters (𝐾 and 𝑋) can be estimated using 

inflow hydrographs and channel dimensions estimated from empirical equations 

(Tewolde and Smithers, 2006). In our case, input data about the channel characteristics 

and inflow hydrographs are not available. To get proper outflow hydrograph, 𝐾 and 𝑋 

parameters are described using basic channel properties and empirical equations. Slope 

and length of the reaches are calculated using DEM data in terrain preprocessing step.  

Muskingum 𝐾 parameter can be estimated using the equation (Fread, 1983),  

𝐾 =
∆𝐿

𝑉𝑊
                                                                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.4) 

Where 𝐾 is the wave travel time (s), 𝛥𝐿 is the reach length (m) and 𝑉𝑊 is the celerity 

(m/s). The celerity (𝑉𝑊) may be estimated from the equation constituted by Viessman 

et al. (1989), 
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𝑉𝑤 =
11

9
𝑉𝑎𝑣                                                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.5) 

where 𝑉𝑎𝑣 is the average velocity and can be calculated from Manning Equation (Te 

Chow, 1959), 

𝑉𝑎𝑣 =
1

𝑛
𝑅2/3√𝑆                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.6) 

where 𝑛 is the manning roughness coefficient (dimensionless), 𝑅 is the hydraulic 

radius (m) and 𝑆 is the slope of the reach. Substituting Equation 5.5 and Equation 5.6 

into Equation 5.4, this can be obtained, 

𝐾 =
9(∆𝐿𝑛)

11𝑅2/3√𝑆 
                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.7) 

From Equation 5.7, it can be inferred that increasing the channel length or decreasing 

the slope reach increase the 𝐾 parameter. 

Another routing parameter, the weighting factor (𝑋), is a physical parameter and 

defines the attenuation and shape of the hydrograph. In 1969, Cunge defined 𝑋 as, 

𝑋 =
1

2
−

𝑄0

2𝑆𝑃𝑉𝑤∆𝐿
                                                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.8) 

where 𝑄𝑜 is the reference discharge and 𝑃 is the wetted perimeter. 

In order to start the calibration procedure, 𝐾 and 𝑋 parameters are defined roughly 

using only the reach properties (length and slope). Then, for all reach segments in the 

model, routing parameters are changed by putting additive or subtractive factors. 

Calibration is continued until the simulated hydrograph shape and peak discharge time 

approach to the observed one. 
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5.2.2 Calibration of the Model 

As defined in the previous section, calibration procedure starts with CN application. 

Model is run for each numbers defined in the range. Visual and statistical results for 

this procedure are given in Figure 5.4 and Table 5.1. The rainfall values over the study 

area obtained using Thiessen Polygon method (Figure 3.9 (a)).  

 

 

Figure 5.4 Simulated hydrographs obtained from CN calibration 

Table 5.1 Amount of Runoff Volume for Observed and  

Simulated Discharges (106 m3) 

Observed CN=99 CN=94 CN=92 CN=90 CN=88 CN=86 

24.9 24.3 21.0 19.7 18.5 17.3 16.2 
 

 

In Figure 5.4, it is seen that, as expected, the increase in curve number value rises the 

simulated discharge values in the rising limp of the hydrographs noticeably. In the 

falling limp of the hydrograph (especially time after 12:00, Nov 22), regardless of the 

CN value, all simulated hydrographs converge to each other. The main effect of the 

CN value is seen in the rising limp and peak of the hydrographs. Apart from the defined 

range of the CN, as an upper bound, CN value is selected as 99 for a specific run to 

see the effect on discharge and runoff volume At this point, it is observed that model 

gives very quick response and almost whole rainfall received in studied time returns 
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to discharge with very few infiltration. The runoff volume results show that even an 

upper bound of CN value does not catch the observed runoff volume value, which is 

24.9 m6 (Table 5.1). Therefore, it can be inferred that, rainfall data prepared with 

Thiessen polygon cannot represent the spatial distribution of the rainfall very well. At 

this stage, statistical computations like correlation coefficient (r), root mean square 

error (RMSE) and Nash and Sutcliffe efficiency (NSE) are not carried on. Because, 

the main aim is to simulate the discharge that has similar runoff volume to the observed 

one. From Table 5.1, it is seen that none of the CN values catches the observed runoff 

volume completely. Among these results, to provide proper runoff volume and to be 

consistent with the environmental report, CN is selected as 94. This CN value implies 

that soil condition is wet. 

In the second stage, routing parameters are calibrated. In the studied area, there is only 

one discharge observation station (2245-Gökçeli AGI) located in the outlet of 

sub - basin 3. Discharge data represents the sub-basin 1, sub-basin 2 and sub-basin 3. 

In previous section, formulation of K and X parameters are defined. In these equations, 

to find the necessary parameters which are slope, channel length, manning’s roughness 

coefficient, hydraulic radius, reference discharge and wetted perimeter are required. 

However, apart from the stationary physical characteristics of the streams supplied 

from the DEM data, there is no further available data to compute the routing 

parameters precisely. In the upstream part of the gauging station, depicted with blue 

identifier in Figure 5.5, there are 11 reaches convey flow through the outlet.  
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Figure 5.5 Location of the Sub-basins, Reaches and Gauging Station 

In K and X computations, values like reference discharge, hydraulic radius, wetted 

parameter and manning’s roughness coefficient are considered to be uniform for each 

reach. Routing parameters are estimated roughly, using only reach length (ΔL) and 

slope information. Then, calibration is applied by putting additive or subtractive 

factors to the routing parameters. In calibration procedure, stepwise technique is 

applied. Firstly, storage constant, K parameter is calibrated by additive factor ± 0.1. 

Then, weighting factor, X parameter is calibrated by additive factor ± 0.05. Figure 5.6 

shows the effect of K and X parameter on discharge. 

Figure 5.6 (a) shows that the increase in K parameter causes decrease in peak discharge 

and also runoff volume due to the increase in infiltration. However, this situation 

causes increase in lag time and postponing the time of peak discharge. The increase in 

X parameter decreases the attenuation slightly (Figure 5.6 (b)). Generally, it can be 

stated that X parameter changes the hydrograph shape with a minor effect. The 
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optimum simulated flow is obtained with the values given in Table 5.2 for each reach. 

Computations like correlation coefficient (r) and root mean square error (RMSE) are 

the objective functions in the calibration study. According to the objective functions, 

the optimal simulated flow is depicted in Figure 5.7. 

 

 

 

Figure 5.6 The Effect of K (a) and X (b) Parameters on Discharge 

 

 

 

(a) 

(b) 



 

89 

Table 5.2 Calibrated Routing Parameters for each Reach 

Reach 
ΔL 

(km) 

Slope 

(%) 
K (hr) X 

R50 2.97 0.040 1.57 0.496 

R120 3.49 0.037 1.67 0.496 

R100 2.46 0.008 2.11 0.475 

R80 4.57 0.018 2.13 0.494 

R260 8.21 0.080 1.81 0.499 

R160 7.77 0.019 2.46 0.497 

R30 1.16 0.002 2.20 0.326 

R360 3.97 0.041 1.69 0.497 

R350 10.75 0.028 2.49 0.498 

R240 15.33 0.016 3.21 0.498 

R40 2.29 0.010 1.97 0.478 

 

 

 

Figure 5.7 The Optimal Simulated Flow 

Figure 5.7 shows the optimal simulated flow along with the observed one. It is seen 

that model overestimates the discharge at the beginning and then underestimates the 

discharge after Nov. 22 at 06:00 AM. RMSE and r values for the simulated flow are 

60.91 m3/s and 0.95 respectively. To assess the power of hydrological model, the 

Nash–Sutcliffe model efficiency (NSE) coefficient can be used,  

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜

𝑡 − 𝑄𝑚
𝑡 )2𝑇

𝑡=1

∑ (𝑄𝑜
𝑡 − 𝑄𝑜

̅̅̅̅ )2𝑇
𝑡=1

                                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.9) 
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where, 𝑄𝑚
̅̅ ̅̅  is the mean of observed discharge, 𝑄𝑚 is the modeled discharge and 𝑄𝑜 is 

the observed discharge at time t. Using this equation, the NSE coefficient is calculated 

as 0.82 for rain gauge data that belongs to 2014 flood event in HEC-HMS. For other 

rainfall products, events and hydrologic model, the NSE results will be given in section 

5.4  

5.3 WRF-Hydro Modeling System 

WRF-Hydro has been developed by the National Center for Atmospheric Research 

and its research partners. It is originally designed to facilitate easier coupling between 

the WRF mesoscale meteorological model and components of terrestrial hydrological 

models. Currently, WRF-Hydro is both a stand-alone hydrological modeling 

architecture and a coupling architecture with atmospheric models. It has been 

developed to represent hydrologic processes with spatial redistribution of surface, 

subsurface and channel waters across the land surface and to couple hydrologic models 

with atmospheric models (Gochis et al., 2015). System contains baseflow, lake and 

reservoir routing options. Model has an ability to simulate soil moisture (liquid and 

frozen), soil temperature, skin temperature, snowpack water equivalent (snowpack 

density), canopy water content and the energy flux and the water flux terms of the 

surface energy (Senatore et al., 2015).  

The structure of WRF-Hydro is illustrated in Figure 5.8. The process starts with 

reading the static land surface physiographic data into the WRF-Hydro system. In this 

stage, computational arrays are constructed. After that, in stand-alone system 

(uncoupled), the forcing data are read and 1-D gridded land surface model (LSM) is 

executed. In the next stage, land surface states are disaggregated to high resolution 

terrain routing grids using spatial weighting method. After that, if activated, physics 

options are executed in this order: subsurface routing physics, surface routing physics, 

the conceptual base flow model and channel and reservoir routing components. In the 

last stage, updated land surface states are aggregated from the terrain routing grid to 

the LSM grid and model simulation results are written to the model output files 

(Gochis et al., 2015). 
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Figure 5.8 WRF-Hydro Architecture with Model Components (from Gochis et al., 

2015) 

5.3.1 WRF Model Physics Description 

Version 3.0 of WRF-Hydro includes the 1-Dimensional land surface model, the 

subsurface routing routines, the overland routing routines, the channel routing 

routines, the lake/reservoir routing and the base flow model routine. In this study, the 

WRF-Hydro is used in an uncoupled manner with activated options of surface flow, 

subsurface flow and channel routing.  

5.3.1.1 Land Surface Model (LSM) Description 

LSM is a 1-D model that simulates soil moisture (liquid and frozen), soil temperature, 

skin temperature, snowpack depth, snowpack water equivalent canopy water content, 

and the energy flux and water flux terms of the surface energy balance and surface 

water balance (Figure 5.9). As an input data, near-surface atmospheric forcing data are 

required. Model has a long heritage starting from the mid-1980’s. The earliest 

predecessor of NOAH LSM calculated latent and heat flux using two-layer soil model 

and simplified plant canopy model. With recent development and community 

participation, numerous changes in LSM has been evolved. Advancements like 

representation of soil with four layer (Ek et al., 2003), formulation of the canopy 
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conductance (Chen et al., 1996), bare soil evaporation and vegetation phenology (Betts 

et al., 1997), surface runoff and infiltration (Schaake et al., 1996), thermal roughness 

length treatment in the surface layer exchange coefficients (Chen et al., 1997), frozen 

soil processes (Koren et al., 1999), the snow-surface energy budget calculation (Ek et 

al., 2003) and seasonal variability of the surface emissivity (Tewari et al., 2005) have 

been implemented. The reliability and sensitivity of this model has been assessed 

various researchers in coupled modes (Gochis et al., 2015). 

 

 

Figure 5.9 NOAH Land Surface Model Structure (source form: 

http://ldas.gsfc.nasa.gov/nldas/NLDAS2model.php) 

5.3.1.2 Subsurface Routing Description 

Prior to the routing of overland flow, subsurface lateral flow is calculated. Lateral flux 

and exfiltration process is shown in Figure 5.10. Lateral flow in saturated soil employs 

a quasi-three-dimensional flow representation. Topography, saturated soil depth and 

saturated hydraulic conductivity affect the calculation.  
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Figure 5.10 Saturated Subsurface Flow Components (from Gochis et al., 2015) 

The rate of saturated subsurface flow can be calculated using Dupuit-Forcheimer 

assumptions.  

𝑞𝑖,𝑗 = {
−𝑇𝑖,𝑗𝑡𝑎𝑛𝛽𝑖,𝑗𝑤𝑖,𝑗               𝛽𝑖,𝑗 < 0 

0
                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.10) 

where, 

𝑞𝑖,𝑗 is the flow rate from cell 𝑖, 𝑗, 

𝑇𝑖,𝑗 is the transmissivity of cell 𝑖, 𝑗, 

𝛽𝑖,𝑗 is the water table slope of cell 𝑖, 𝑗 and 

𝑤𝑖,𝑗 is the width of the cell  

The transmissivity is given by: 

𝑇𝑖,𝑗 = {

𝐾𝑠𝑎𝑡𝑖,𝑗𝐷𝑖,𝑗

𝑛𝑖,𝑗
(1 −

𝑧𝑖,𝑗

𝐷𝑖,𝑗
)           𝑧𝑖,𝑗 ≤ 𝐷𝑖,𝑗

                    0                               𝑧𝑖,𝑗 > 𝐷𝑖,𝑗

                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.11) 

where, 

𝐷𝑖,𝑗 is the soil thickness, 

𝑧𝑖,𝑗 is the depth of the water table and 
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𝑛𝑖,𝑗 power law exponent (governs the decay rate of 𝐾𝑠𝑎𝑡𝑖,𝑗). 

When both equations combined in x direction, the flow rate can be expressed like this: 

𝑞𝑥(𝑖,𝑗) = 𝛾𝑥(𝑖,𝑗)ℎ(𝑖,𝑗)   𝛽𝑥(𝑖,𝑗) < 0                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.12)  

where, 

𝛾𝑥(𝑖,𝑗) = − (
𝑤𝑖,𝑗 𝐾𝑠𝑎𝑡𝑖,𝑗𝐷𝑖,𝑗

𝑛𝑖,𝑗
)  𝑡𝑎𝑛𝛽𝑥(𝑖,𝑗)                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.13) 

ℎ(𝑖,𝑗) = (1 −
𝑧𝑖,𝑗

𝐷𝑖,𝑗
)

𝑛𝑖,𝑗

                                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.14) 

Using two dimensional routing method, same calculation is repeated for y-direction. 

The total saturated subsurface moisture becomes: 

𝑄𝑛𝑒𝑡(𝑖,𝑗) = ℎ(𝑖,𝑗) ∑ 𝛾𝑥(𝑖,𝑗)

𝑥

+ ℎ(𝑖,𝑗) ∑ 𝛾𝑦(𝑖,𝑗)

𝑦

                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.15) 

Then, the change in water table depth can be calculated as: 

∆𝑧 =
1

∅(𝑖,𝑗)
[
𝑄𝑛𝑒𝑡(𝑖,𝑗)

𝐴
− 𝑅𝑖,𝑗] ∆𝑡                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.16) 

where, 

∅ is the soil porosity, 

𝑅 is the soil column recharge rate from infiltration and 

𝐴 is the grid cell area. 

5.3.1.3 Surface Overland Flow Routing Description 

WRF-Hydro uses a fully-unsteady, explicit, finite difference, diffusive wave 

formulation for surface overland flow routing (Figure 5.11). Diffusive wave 

formulation is superior to the kinematic wave equation and the simplification of the 
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more general St. Venant equations of continuity and momentum for a shallow water 

wave.  

 

Figure 5.11 Overland Flow Routing (from Gochis et al., 2015) 

The two-dimensional continuity equation for a flood wave can be described as: 

𝜕ℎ

𝜕𝑡
=

𝜕𝑞𝑥

𝜕𝑡
+

𝜕𝑞𝑦

𝜕𝑡
= 𝑖𝑒                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.17) 

where 

ℎ is the surface flow depth, 

𝑞𝑥 and 𝑞𝑦 are the unit discharges in the x and y directions and 

𝑖𝑒 is the infiltration excess. 

In WRF-Hydro, to find unit discharge, Manning’s equation is implemented, 

𝑞𝑥 = 𝑎𝑥 + ℎ𝛽                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.18) 

where, 

𝑎𝑥 =
𝑆𝑓𝑥

0.5

𝑛𝑂𝑉
 ;       𝛽 =

5

3
                                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.19) 
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where, 

𝑛𝑂𝑉 is the land surface roughness coefficient and 

𝛽 is the unit dependent coefficient. 

In the diffusive wave calculation, the momentum equation for the x-dimension can be 

described as: 

𝑆𝑓𝑥 = 𝑆𝑜𝑥 −
𝜕ℎ

𝜕𝑥
                                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.20) 

where, 

𝑆𝑓𝑥 is the friction slope (slope of energy grade line), 

𝑆𝑜𝑥 is the terrain slope and 

𝜕ℎ

𝜕𝑥
 is the depth of surface water change in x direction. 

5.3.1.4 Channel Routing Description 

When the ponded water depth of stream channel exceeds the retention depth, stream 

channel starts. The ponded water depth is a combination of local infiltration excess, 

water from overland flow and exfiltration from groundwater flow. Channel routing 

module in WRF-Hydro allows for one-dimensional distributed stream flow routing. 

Module uses explicit, 1D, variable time stepping diffusive wave formulation. This 

formulation is a simplified form of St. Venant equations. The continuity equation is 

given as: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 𝑞𝑙𝑎𝑡                                                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.21) 

where, 

𝐴 is the flow area of the cross section, 
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𝑡 is the time, 

𝑄 is the flow rate, 

𝑥 is the stream wise coordinate and 

𝑞𝑙𝑎𝑡 is the lateral inflow rate into the channel. 

The momentum equation is: 

𝜕𝑄

𝜕𝑡
+

𝜕(𝛽𝑄2/𝐴)

𝜕𝑥
+ 𝑔𝐴

𝜕𝑍

𝜕𝑥
= −𝑔𝐴𝑆𝑓                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.22) 

where, 

𝛽 is the momentum correction coefficient, 

𝑔 is the gravity, 

𝑍 is the water surface elevation and 

𝑆𝑓 is the friction slope. 

𝑆𝑓 = (
𝑄

𝐾
)

2

                                                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.23) 

where, 𝐾 is the conveyance and computed from the Manning’s equation: 

𝐾 =
𝐶𝑚

𝑛
𝐴𝑅2/3                                                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.24) 

where, 

𝐶𝑚 is the dimensional constant (1.0 for metric units), 

𝑛 is the Manning’s roughness coefficient and 

𝑅 is the hydraulic radius. 
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The simplified momentum equation (ignoring convective term): 

𝑄 = −𝑆𝐼𝐺𝑁 (
𝜕𝑍

𝜕𝑥
) 𝐾√|

𝜕𝑍

𝜕𝑥
|       𝑎𝑛𝑑     {

𝑆𝐼𝐺𝑁 = 1           
𝜕𝑍

𝜕𝑥
> 0

𝑆𝐼𝐺𝑁 = 0           
𝜕𝑍

𝜕𝑥
< 0

    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.25) 

Continuity equation over raster cell is defined as: 

𝐴𝑛+1 − 𝐴𝑛 =
∆𝑡

∆𝑥
(𝑄𝑛

𝑖+
1
2

− 𝑄𝑛
𝑖−

1
2

) + ∆𝑡𝑞𝑙𝑎𝑡
𝑛                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.26) 

where, 𝑄𝑛
𝑖+

1

2

 is the flux between point 𝑖 and 𝑖 + 1 and computed from: 

𝑄𝑛
𝑖+

1
2

= −𝑆𝐼𝐺𝑁(∆𝑍𝑖+1
𝑛 )𝐾

𝑖+
1
2

√
|∆𝑍𝑖+1

𝑛 |

∆𝑥
                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.27) 

where, 

∆𝑍𝑖+1
𝑛 = 𝑍𝑖+1

𝑛 − 𝑍𝑖
𝑛                                                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.28)  

𝐾
𝑖+

1
2

= 0.5[(1 + 𝑆𝐼𝐺𝑁(∆𝑍𝑖+1
𝑛 ))𝐾𝑖 + (1 − 𝑆𝐼𝐺𝑁(∆𝑍𝑖+1

𝑛 ))𝐾𝑖+1]      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.29) 

5.3.2 Description of Input Data Files 

WRF-Hydro requires two individual input data files in model domain for running 

process. These are land surface model grid and terrain routing grid. Land surface 

model grid or coarse grid contains information about topography, green vegetation 

fraction, latitude, longitude, land use, albedo and etc. It can be created in WRF 

Preprocessing system (WPS). It can also be custom created by user using software like 

ArcGIS and Matlab. In this study, using WPS tool, the coarse grid data are prepared. 

For this process, from NCAR Research Data Archive (NCAR RDA) the WPS 

geographical input data are obtained. Terrain routing grid or high resolution grid data 

are necessary for routing procedure across the landscape and through the stream 

channels. Terrain routing grid is in Network Common Data Form (NetCDF) grid 

format and contains the information like latitude, longitude, topography, flow 
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direction, channel grid, stream order, lake grid and etc. Terrain routing grid file has a 

higher spatial resolution than the land surface model grid file. However, the spatial 

extent of the files should be the same for disaggregation/aggregation procedure defined 

in running process. Apart from the model domain input files, WRF-Hydro requires 

meteorological forcing data for simulation and forecasting. Forcing data includes the 

variables of incoming short wave radiation (W/m2), incoming longwave radiation 

(W/m2), specific humidity (kg/kg), air temperature (K), surface pressure (pa) near 

surface wind (m/s) and liquid water precipitation rate (mm/s). For testing purposes, 

idealized forcing data can be selected.  

5.3.2.1 The WRF Preprocessing System (WPS) 

The WRF Preprocessing System (WPS) is a set of programs whose main aim is to 

prepare input for the simulation. The system, depicted in Figure 5.12, contains three 

independent programs: ungrib, metgrid and geogrid. The geogrid program defines the 

simulation domains and interpolates datasets to model domains. The ungrib program 

reads GRIB files (GRIdded Binary or General Regularly-distributed Information in 

Binary form), data format used in meteorology to store weather data, and writes in a 

simple format. The metgrid program interpolates the data created by ungrib program 

onto the simulation domain defined by geogrid program. 

 

 

Figure 5.12  The WRF Preprocessing System Flowchart  
(source: http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm) 
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The namelist.wps is a file that contains information about domain (parent id, grid ratio, 

coordinates, and reference lat/lon), simulation start and end times, intervals, path 

names and etc. Data specified in this file forms the model inputs. For this reason, to 

compose compatible data extent and resolution, conscious decisions should be made 

by the user.  

The programs, ungrib and metgrid, are not used in the study because the gridded data, 

wrfout, required for forcing files are recognized by the WRF-Hydro. Thus, ungrib 

procedure performed by geogrid program and data transformation carried by metgrid 

program are not conducted.  

The geogrid program is utilized in linux environment with required dataset. The 

dataset is downloaded from the WRF WPS geographical input data downloads page 

(http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html). It 

includes data about terrestrial information like albedo, land use, soil type and green 

fraction. For Turkey and surroundings, some of the terrestrial data like soil categories 

in bottom and top layer, land use index, land mask, topography and surface albedo are 

visualized in visual browser for netCDF files (ncview program) and these are depicted 

in Figure 5.13. The resolution of terrestrial dataset is 4500 meters which is the same 

resolution as wrfout dataset acquired from TSMS. The explanation for class numbers 

or indexes defined in the soil categories and textures, land use, surface albedo and 

vegetation fraction datasets are given in the Appendix E. In albedo calculation, WRF 

uses vegetation fraction bounded by the maximum and minimum values of the 

vegetation parameter table (Table E.2). 

 

 

 

 

 

http://tureng.com/en/turkish-english/make%20conscious%20decisions
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Figure 5.13 Terrestrial Information for Turkey and Surroundings (Dominant Soil 

Categories in the Bottom Layer (a) (numbered) and the Top Layer (b) (numbered), 

Land Use Index (Dominant Vegetation Types) (c) (numbered), Land Mask (d), 

Topographic Elevation (units of m)(e) and Surface Albedo (units of %) (e))  

(The explanations for class numbers are given in Appendix E) 

For the model domain, the necessary coarse grid data are clipped from the general 

terrestrial dataset. Figure 5.14 (a) and (b) show the elevation and land use index of the 

model domain. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 5.14 (a) Elevation Data (on the left), (b) land use index (on the right) 

5.3.2.2 Terrain Routing Grid Data (High Resolution Grid Data) 

In this step, the necessary data used in the routing procedure is constructed in ArcGIS 

environment. For this purpose, DEM data are downloaded from USGS HydroSHEDS 

(Hydrological data and maps based on Shuttle Elevation Derivatives at multiple 

Scales) mapping product. It offers georeferenced vector or raster datasets at various 

scales. It is a high resolution elevation data obtained from Space Shuttle flight for 

NASA's Shuttle Radar Topography Mission (SRTM). The used HydroSHED data are 

hydrologically processed elevation data at 3 arc-second (~90m) resolution.   

In model runtime, defined variables are passed from coarse grid to the fine grid via 

disaggregation/aggregation procedure. In this procedure, there are two significant 

points that should be satisfied before the model run: coarse grid should exactly match 

the extent of fine grid and the dimension of coarse grid (spatial resolution) must be an 

integer multiple of fine grid dimension. The multiplication constant is called 

aggregation factor in the model and varies from 1 to n. In two separate special loops, 

disaggregation/aggregation steps are implemented after the land surface model loop. 

The reason behind disaggregation loop is to divide hydrologic variables coarse grid 
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square into integer number specified in by AGGFACTR (Figure 5.15). After 

disaggregation process, the routing procedure is carried out using fine grid values. 

Next, the aggregation procedure is achieved after the completion of computations in 

fine grid. Values calculated in routing are then used on the next iteration of the coarse 

grid. 

 

Figure 5.15 Implementation of Routing Sub-grid within Coarse Grid 

As stated before, the resolution of the course grid data, namely wrfout data, is 4500 m. 

For model run operation, the AGGFACTR is selected as 30. This means one coarse 

grid square is disaggregated into 900 squares. In this way the resolution of the fine grid 

data is built as 150 m. In ArcGIS program, layers which are latitude, longitude, 

topography, flow direction, channel grid, stream order, basin mask, overland flow 

roughness scaling factor (OVROUGHRTFAC) and surface retention depth factor 

(RETDEPRTFAC) are created. For land use layer creation, the geogrid layer, 

mentioned in the previous section, is used. Then, the created layers are exported to 

netcdf format in ArcGIS program. The view of topography, flow accumulation, 

channel grid, flow direction, basin mask and land use are depicted in Figure 5.16 using 

ncview program. According to land use data downloaded from WRF WPS 

geographical input data web page, the majority of studied area has a silty clay soil type 

(soil number 11 in Figure 5.16 (f), marked as bright green). The soil texture 

information in the downloaded data is defined by the State Soil Geographic soil 

database (STATSGO) that is generated from United States Department of Agriculture, 

Natural Resources Conservation Service (USDA- NRCS). The dataset was generated 

by detailed soil survey maps. In region where detailed soil maps are unavailable, Land 
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Remote Sensing Satellite (LANDSAT) images are assembled. In order to work with 

fine grid in the WRF-Hydro, the defined layers in the netcdf format must be in the 

concatenated form. The merging process can be done any netcdf operators that make 

netcdf files into a single netcdf file. The extent and the resolution of coarse and fine 

grids can be seen in Figure 5.17. The extent of the datasets is verified by Matlab. 

 

   

  

 

Figure 5.16 Topography (a), Flow Accumulation (b), Channel Grid (c), Flow 

Direction (d), Basin Mask (e) and Land Use (f) 

(b) (a) (c) 

(e) (d) (f) 
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Figure 5.17 The Topography of Coarse Grid (on the left) and Fine Grid (on the right) 

in the Model Domain 

5.3.2.3 Forcing Data Input Files 

Unlike the HEC-HMS model that uses only rainfall data as a forcing input, the 

WRF-Hydro model uses 7 different variables. The mandatory meteorological forcing 

variables required by the model can be listed as below; 

1. Incoming shortwave radiation (W/m2), 

2. Incoming longwave radiation (W/m2), 

3. Specific humidity (kg/kg), 

4. Air temperature (K), 

5. Surface pressure (Pa), 

6. Near surface wind components (m/s) and 

7. Liquid water precipitation rate (mm/s). 

In the model, meteorological forcing data can be provided in one of the options; 

1) HRLDAS (High Resolution Land Data Assimilation System) hourly input files, 

2) HRLDAS minute format input files, 3) wrfout file (from WRF program), 

4) Idealized HRLDAS, 5) Idealized HRLDAS with specific precipitation, 6) hourly 

HRLDAS input file with specified precipitation and 7) WRF output file with specified 

precipitation. The third option, wrfout, is selected for the forcing data input option in 

the model namelist file as this option is used to read a WRF model output file and 
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extract appropriate fields. “wrfout_d01_2014-11-22_17:00:00” is an example of 

forcing data format. The filename formats for each hour are turned into to the required 

form in linux environment. Because, the punctuation mark, colon (:), cannot be used 

in the filenames in windows.  

In the calibration procedure, the gauge values, distributed over the study area by 

Thiessen polygon method are used. The extent of the Thiessen polygon does not cover 

the model domain defined in the WRF-Hydro. For this reason, the edge of the polygons 

are stretched out through the model domain and the area of polygons are split over the 

coarse grid. The steps are demonstrated in Figure 5.18. The rainfall values for each 

grid are computed considering the area ratio of the pixel. The wrfout template with 

mandatory variables except the rainfall data is used for forcing data. The writing 

process of the gauge data is achieved in Matlab. After this step, the calibration study 

is implemented. 

 

 
 

  
 

Figure 5.18 Model Domain over the Thiessen Polygon (a), Stretching the Edge of the 

Polygons (b), Splitting the Polygons over the Coarse Grid (c) 
 

5.3.3 WRF-Hydro Model Calibration Approach 

Using predefined parameter sets and forcing data containing gauge rainfall data, 

WRF-Hydro model is calibrated. In this process, manual calibration is performed with 

the aim of reproducing observed hydrograph of Gökçeli (2244) gauging station and is 

applied in two steps: 

 In the first step, relevant parameters that control the total water volume are 

calibrated. These parameters are infiltration scaling factor (REFKDT), surface 

(b) (a) (c) 
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runoff parameter (REFDK) and surface retention depth (RETDEPRTFAC). 

REFDK and REFKDT are scaling parameters for surface runoff within the 

WRF model. These are interlocking parameters which means, If REFKDT is 

changed, then REFDK must be adapted to that new value (Mitchell, 2001). For 

this reason, the effects of both parameter on water volume are analyzed 

simultaneously. When the optimum pair acquired with respect to observed 

water volume, the other parameter, RETDEPRTFAC, is examined. The reason 

behind taking some parameters as a set is to see the parameter interaction and 

its influence on the results that is stated in detail in the study of Yucel et al 

(2015). 

 In the second step, parameters that control hydrograph shape are calibrated 

simultaneously like in the previous step. These are surface roughness 

(OVROUGHRT) and channel Manning roughness (MANN).  

In the model, REFDK, REFKDT and MANN parameters are in tabulated form for 

model domain, whereas RETDEPRTFAC and OVROUGHRT are in pixel format 

which means they can be distinct for each sub-basin or specific area. Optimum 

parameter or parameter sets in calibration procedure are defined by using statistical 

measures. Since the implementation of WRF-Hydro in the research is very recent, the 

studies on modeling are not abundant. As for uncoupled mode, Yucel et al (2015) 

calibrated the parameters: REFKDT, RETDEPRTFAC, OVROUGHRT and MANN 

in step-wise manner and recently Silver et al (2017) calibrated the parameters: 

topographic slope (SLOPECAT), REFDK and REFKDT whereas, for coupled mode, 

Givati et al (2016) calibrated the parameters: REFKDT and REFDK  

5.3.3.1 Model Calibration Part I 

As mentioned before, calibration study is started by changing the parameters, 

REFKDT and REFDK. Initially, model default values are used. The calibration range 

for REFDK is selected between 2x10-6 and 2x10-3. Due to the wide range, the 

increment is selected as 10-1 and the effect of results are analyzed visually in 

logarithmic scale (Figure 5.19 (a)). The nominal range for REFDK mentioned by 

Mendoza et al. (2015) is between 2x10-8 and 2x10-4. The chosen values exceed the 
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nominal range but the purpose is to realize the influence of parameters on the results. 

For REFKDT, the selected calibration range is between 0.1 and 1.0. The feasible 

ranges of REFKDT, mentioned in the Rosero et al. (2009), is between 0.1 and 10. This 

span contains the chosen values in the calibration. Model is executed for the selected 

ranges of the parameters. In calibration, simulation time interval starts with 

20.11.2014-00:00 and ends with 24.11.2014-00:00, which takes 120 hrs. However, 

statistical measures are done with considering the time span interval of the gauging 

station, 64 hrs. The main aim of enlarging the time interval is to reduce the model spin 

up effect. However, in validation stages of WRF-Hydro, due to the time span of WRF 

model precipitation forecasts, 72 hours of simulations are performed. At this stage, the 

main purpose is to calibrate the aforementioned parameters and get proper runoff 

volume in simulation outputs. Therefore, the statistical evaluations like correlation 

coefficient (r), root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) 

are not calculated. Instead of this, the ratio of simulated and observed runoff volume 

is calculated for each run. Runoff volume is the amount of total water volume that is 

beneath the hydrograph plot. For the flood observed on 22nd November 2014, 

24.92 hm3 volume of runoff in total passed through the Gökçeli AGI in 64 hours. 

Figure 5.19 shows the simulation results for the runoff volume ratios. To prepare 

surface data, linear interpolation technique is used between the points shown as blue 

dots in the figure. It is seen that model ratio results do not change extremely in the line 

where the value of REFDK is greater than 10-4 (Figure 5.19 (a)). Besides, the nominal 

range, mentioned at the beginning, does not enclose this range. On the other hand, the 

line where the value of REFDK is lower than 2x10-5, model gives unsuccessful results. 

Thus, to examine REFDK parameter in detail, model run is performed for the range 

between 2x10-5 and 2x10-4 with an increment of 2x10-5. The runoff volume ratios of 

this range are given in Figure 5.19 (b). It is noticed that the use of lower REFKDT 

values and higher REFDK values in the model increases the efficiency. In other words, 

the ratio results in these conditions approach the appropriate values. The optimum 

point that has the highest ratio in the computation is seen in the bottom right corner 

(0.1 for REFKDT and 2x10-4 for REFDK). 
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Figure 5.19 Simulation Results for the Runoff Volume Ratios 

In the model, REFDK is defined as reference saturated hydraulic conductivity of the 

silty–clay–loam soil texture and has a default value of 2 × 10-6 m/s. The land use 

datasets show that the study area has a similar soil texture, silty clayey soil. In order to 

remain close to the reference REFDK value, REFKDT is taken as 0.1 which is the 

minimum value in calibration process and feasible ranges. Later, improvement in 

runoff volume ratios with increasing the REFDK values is taken into consideration 

(Table 5.3). When REFDK is 4x10- 5, the runoff volume ratio is calculated as 0.89. 

Beyond this value, the improvement of the results decreases. As a result, the optimum 

values for REFDK and RERKDT are determined as 4x10-5 and 0.1 respectively. 

 

 

 

 

 

 

(a) 

(b) 
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Table 5.3 Runoff Volume Ratios and Improvements for REFDK Values 

REFDK (m/s) Ratio Improvement 

2.0E-06 0.38 - 

2.0E-05 0.83 54.3 

4.0E-05 0.89 6.0 

6.0E-05 0.90 1.4 

8.0E-05 0.91 0.9 

1.0E-04 0.91 0.4 

1.2E-04 0.91 0.4 

1.4E-04 0.92 0.4 

1.6E-04 0.92 0.1 

1.8E-04 0.92 0.2 

2.0E-04 0.92 0.1 
 

 

In the second stage of the part I, RETDEPRTFAC parameter (surface detention depth) 

is calibrated. Surface detention depth is a threshold value in millimeters and below this 

value, overland flow does not start. The selected range of this parameter in the model 

is between 0 and 1 mm. At first, the selected boundary values are studied to discern 

the effect in the model. For maximum and minimum values of RETDEPRTFAC 

parameter, the runoff volume ratios are calculated as 0.89 and 0.90 respectively. The 

results are similar to each other. As mentioned in the study of Yucel et al. (2015), steep 

slopes in Western Black Sea Region of Turkey dominate the domain and this value 

can be 0. With this value, it is assumed that water moves across the terrain without 

infiltration. 

5.3.3.2 Model Calibration Part II 

In the second part of the calibration study; surface roughness parameter 

(OVROUGHRT) and Manning roughness parameter (MANN), together which control 

the hydrograph shape, are analyzed as a couple. WRF-Hydro defines OVROUGHRT 

parameter in the distributed form in terrain routing grid input files. The feasible range 

of OVROUGHRT is between 0.1 and 1. In this range, OVROUGHRT parameter is 

analyzed with 0.1 increment. The Model defines MANN parameter in table form that 

is related with Strahler stream order method. For each stream order, Manning 

roughness coefficient changes. With a scaling factor (MANN) ranging between 0.2 
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and 1.8 with 0.2 increments, parameter is tested for all sections of the river network. 

The default channel parameter values are given in Table 5.4. 

 
 

Table 5.4 Channel Parameter Values 

Stream 

Order 

Base Width 

(Bw) 

Initial Water 

Depth (HLINK) 

Channel Slope 

(Ch SSlp) 

Manning Coeff. 

(MannN) 

1 1.5 0.02 3 0.55 

2 3 0.02 1 0.35 

3 5 0.02 0.5 0.15 

4 10 0.03 0.18 0.1 

5 20 0.03 0.05 0.07 

6 40 0.03 0.05 0.05 

7 60 0.03 0.05 0.04 

8 70 0.1 0.05 0.03 

9 80 0.3 0.05 0.02 

10 100 0.3 0.05 0.01 

 
 

Model is executed 90 times for the selected ranges of the parameters. Then, model 

evaluation that is necessary to provide a quantitative estimate of model capability and 

to compare model performance with previous results is done by using statistical 

measures. In the past decades, various statistical methods have been developed to 

calibrate and evaluate hydrologic model parameters (Wöhling et al., 2013). In the 

literature, the most widely used criteria are the mean squared error (MSE, given in Eqn 

(5.30)) and the Nash-Sutcliffe efficiency (NSE, given in Eqn (5.31)) used for the 

evaluation of hydrologic models (Wöhling et al., 2013).  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑄𝑚,𝑡 − 𝑄𝑜,𝑡)2

𝑛

𝑡=1

                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.30) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚,𝑡 − 𝑄𝑜,𝑡)

2𝑛
𝑡=1

∑ (𝑄𝑜,𝑡 − µ𝑜)
2𝑛

𝑡=1

= 1 −
𝑀𝑆𝐸

𝜎𝑜
2

                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.31) 

where 𝑛 is the time step, 𝑄𝑚,𝑡 and 𝑄𝑜,𝑡 is the modelled and observed values at time 

step 𝑡, µ𝑜 is the mean of the observed values and 𝜎𝑜 is the standard deviation of the 

observed values. The first criterion, MSE, is an error index that indicates error in the 
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units of the constituent. A value of 0 shows perfect fit. The second criterion, NSE, is a 

normalized statistic that detects relative magnitude of the residual variance compared 

to the measured variance (Nash and Sutcliffe, 1970). NSE ranges between -∞ and 1.0. 

A value between 0-1.0 shows acceptable level of performance whereas a value lower 

than 0 shows unacceptable performance, because observed data are a better predictor 

than the simulated one. In mathematical view, these criteria are related to each other 

(Eqn (5.31)). Gupta et al (2009) decomposed the NSE criterion which consists of three 

different components, the correlation, the bias and the relative variability measure in 

the simulated and observed values (Eqn (5.32)).  

𝑁𝑆𝐸 = 2𝛼𝑟 − 𝛼2 − 𝛽𝑛
2                                                                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.32) 

with  

𝛼 = 𝜎𝑚/𝜎𝑜                                                                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.33) 

𝛽𝑛 = (µ𝑚 − µ𝑜)/𝜎𝑜                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.34) 

where 𝛼 is the relative variability in the modelled and observed values, 𝑟 is the 

correlation coefficient and 𝛽𝑛 is the bias normalized by the standard deviation in the 

observed values. The best values for these three components are 𝑟 = 1, 𝛼 = 1 and 

𝛽𝑛 = 0. To find optimum values for the parameters, not only the NSE criterion but 

also its decomposition are analyzed (Figure 5.20 and Figure 5.21). In addition to this, 

the bias of observed and modelled flow means are also assessed (Figure 5.21 (d)). The 

bias of means is calculated as: 

𝛽 =  µ𝑚/µ𝑜                                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5.35) 
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Figure 5.20 NSE Results for MANN and OVROUGHRT Parameters 

Figure 5.21  r2 (a), α (b), βn(c) and β (d) Results for MANN and OVROUGHRT  

When the results shown in Figure 5.20 and Figure 5.21 (a) are analyzed visually, it is 

seen that the NSE and r2 criterion support each other. The favored results take part 

(a) 

(b) 
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where the MANN is greater than the value of 0.8. On the other hand, there are some 

parameter sets at which components of the NSE criterion, 𝛼, 𝛽𝑛 and 𝛽, have better 

results (Figure 5.21 (b), (c) and (d)). These sets are obtained when MANN has a value 

of 0.6 and OVROUGHRT has values of 0.6, 0.9 and 1.0. The hydrograph results of 

these sets show a spike at time after 34 hrs (Figure 5.22). This leads to increase in the 

variance and mean of the simulated flows, therefore NSE components’ results (𝛼, 𝛽𝑛 

and 𝛽) enhance. However, degree of collinearity between observed and modelled 

flows, r2, is lower than the value of 0.6. In hydrologic point of view, such spikes cannot 

be acceptable. Because rainfall pattern shows continuity in time and space and is 

smoothly distributed. For this reason, it can be said that WRF-Hydro model results that 

is obtained when MANN parameter has a value of 0.6, are not stable. Considering this 

outcome, the usage of optimum result of the NSE criterion seems to be more rational. 

Using this criterion, optimal result is obtained when MANN and OVROUGHRT 

parameters are equal to 1.8 and 1 respectively (Figure 5.22).  

 

 

Figure 5.22 Hydrograph Results for Selected Parameters (22nd November 2014) 

In conclusion, more than 210 runs are performed in model calibration stage I and II. 

As a result of these, 5 parameters are calibrated and findings are given in Table 5.5. In 

this table, nominal ranges, default values and calibrated results of the parameters can 

be seen. 
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Table 5.5 Parameters Calibrated in the Model with their Nominal Ranges, Default 

Values and Final Values 

Parameters Nominal Range Default Value Calibrated Value 

REFDK 2x10-8 - 2x10-4 2x10-6 4x10-5 

REFKDT 0.1 - 10 1 0.1 

RETDEPRTFAC  0 - 10 1 0 

OVROUGHRT  0.1 - 1 1 1 

MANN 0.01 - 1.8 1 1.8 

 

 

5.3.4 The Effect of Stream Network Density on Simulation 

Before starting the validation process, to enhance the results, the effect of stream 

network density on hydrograph is analyzed. For this manner, the number of pixel that 

defines the stream order is altered by keeping the other parameters, found in calibration 

stage I and II, constant. In former stages, stream segment was initiated by using 800 

pixels. Therefore, stream order grid which is a part of terrain routing grid data (high 

resolution grid data) was constructed by adopting this threshold. In this stage, stream 

order grid is analyzed by different thresholds given in Table 5.6. For each threshold, 

terrain routing grid is regenerated. In Table 5.6, the minimum contributing area to 

define the stream network is calculated using the fine grid resolution, 150 m. A fine 

pixel has an area of 0.0225 km2. Stream network density for each threshold can be 

seen in Figure 5.23. 

 

 

Table 5.6 Stream Definition Based on Number of Pixel and Contributing Area 

Number of pixel 800 400 200 150 100 50 

km2 18 9 4.5 3.38 2.25 1.13 
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Figure 5.23 Strahler Stream Density Network for Different Thresholds 

Model is executed for each regenerated fine grid data and hydrograph results are 

depicted in Figure 5.24. In this figure, it is seen that increase in stream density causes 

a rise in the peak flow and the slopes of rising and falling limb of the hydrograph. In 

terms of peak flows with respect to the average rainfall intensity over the entire 
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catchment and the point stationary rainfall intensity, efficient network density is more 

sensitive to storm kinematics (Seo and Schmidt, 2014). However, a stream definition 

with 50 pixels, which is the most detailed network, shows that the peak of the 

hydrograph is lower than the stream definition with 100 pixels. The main reason of 

this condition is the rapid contribution of sub-basin 1 and sub-basin 2 to the location 

of flow monitoring station since the manning roughness decreases as stream order 

increases. This causes rapidness in flow movement. When the results are analyzed 

statistically (Table 5.7), it is noticed that the stream definition with 800 pixels has the 

best NSE and B results. Moreover, the components of NSE, r and β, have their bests 

also but α has one of the lowest values.  

 

 

Figure 5.24 Hydrograph Simulation Results for each Stream Network Definition 

Table 5.7 Statistical Results (NSE and components) for Different Stream Network 

Thresholds (22nd November 2014) 

Criterion 800 400 200 150 100 50 

r 0.95 0.90 0.91 0.89 0.82 0.72 

α 0.64 0.65 0.63 0.65 0.70 0.70 

B 0.87 0.84 0.82 0.84 0.85 0.85 

β -0.10 -0.12 -0.13 -0.12 -0.11 -0.11 

NSE 0.79 0.73 0.73 0.71 0.65 0.51 

Best results are underlined 
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Modeling Flood events of 2015 and 2016 with Gauge Data 

In this section, WRF-Hydro model is executed with calibrated parameters and various 

stream order network definitions for the floods observed on 2nd August 2015 and 28th 

May 2016 with rain gauge data. Due to the limited number of flood events, calibration 

is carried with one event (22nd November 2014). Flood simulation with gauge data that 

belongs to 2nd August 2015 indicates that none of the stream network thresholds can 

catch the observed flow due to the convective type of rainfall and absence of data for 

the Salıpazarı Station. Therefore, statistical measures between observed and simulated 

hydrographs are not carried. Non-existence of the Salıpazarı Station rain data are 

compensated with three nearby rain gauges: Ayvacık, Çarşamba and Kozluk that are 

located at 19 km, 16 km and 24 km from the Salıpazarı Station (Figure 3.9 (d)). 

According to Thiessen polygon method, the stations Ayvacık, Çarşamba and Kozluk 

represent the study area by a percentage of 75.2, 23.0 and 1.8 respectively. The visual 

interpretation of the flow simulations shows that stream density is sensitive to the 

hydrograph shape and time (Figure 5.25). To get a clearer decision about the stream 

order, flood simulation with gauge data that belongs to 28th May 2016 is performed. 

For gauge data, the stations, Salıpazarı and Ayvacık are used to represent the study 

area by a percentage of 88.6 and 11.4 respectively. Unlike the previous case, observed 

flow data (28th May 2016) shows that it has a base flow probably coming from snow 

melting. The research about the snow melting and floods in Turkey that was conducted 

by Ozcan (2006) stated that the highest flow in Black Sea region is generally seen in 

May when the temperature rises and snow melts. The data acquired from TSMS 

verifies the snow existence. In 2016, at the station 18708, the average and maximum 

snow depth were observed as 7.5 cm and 163 cm respectively. The station 18708 is 

the closest station to the study area and located at 663 m of elevation. In order to make 

an accurate computation, simple base flow separation technique is applied to the 

hydrograph data. Then, flood modeling with gauge data is performed for different 

stream definitions (Figure 5.25 (b), Table 5.8).  
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Figure 5.25 Simulated Flow for Different Stream Densities  

(2nd August 2015 (a), 28th May 2016 (b)) 

Table 5.8 Statistical Results (NSE and components) for Different Stream Network 

Thresholds (28th May 2016) 

Criterion 800 400 200 150 100 50 

r 0.53 0.71 0.69 0.73 0.79 0.76 

α 0.64 0.64 0.63 0.65 0.69 0.71 

B 1.10 1.09 1.10 1.12 1.17 1.18 

β 0.070 0.065 0.068 0.08 0.12 0.13 

NSE 0.26 0.50 0.47 0.52 0.60 0.56 

Best results are underlined 

 

So far, comparisons have been done with the observed and the simulated hydrographs. 

In addition to these comparisons, model results are analyzed between each other and 

(a) 

(b) 
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these are depicted in Figure 5.26. In HEC-HMS modeling, streams were defined with 

an area threshold, 3.75 km2.  

 
 

 

 
Figure 5.26 NSE Results for Models 

A value of NSE lower than 0.0 shows that the mean observed value is a better predictor 

than the simulated value which indicates unacceptable performance (Moriasi et al., 

2007). The NSE results of 2015 (WRF-OBS) shows unacceptable performance for all 

stream definitions (Figure 5.26 (a)). Moreover, all datasets have poor results in stream 

definition with 50 pixels although that is the most detailed stream network. 

Furthermore, generally datasets have poorer performance also in stream definition 

with 800 pixels that is the coarsest stream network. Besides, notable performance 

change between stream definition 150 pixels and 400 pixels are not observed for 

general dataset (Figure 5.26 (b)). Apart from the datasets, 2016 (WRF-OBS) and 2015 

(WRF-HEC), nearly best NSE results are obtained stream definition with 150 pixels 

(3.4 km2) in all datasets and that number of pixel is nearly the same threshold selected 

for HEC model. However, the comparison results of WRF model and observed 

hydrographs for the flood events observed in 2014 and 2016 show that the stream 

definition greater than 100 pixels, performance of WRF model in 2014 increases but 

performance of WRF model in 2016 decreases. In summary, the average of the datasets 
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give better performance in stream definition with 150 pixels. Therefore, to enhance the 

simulations and to be compatible with the HEC model, stream definition with 150 

pixels (3.4 km2) is selected for WRF-Hydro model.  

Another outcome concerning the stream order definition is that as the stream order 

becomes finer, soil moisture content (SMC) shows a reduction (Figure 5.27). For 

example, at the stream flow station, the soil moisture differences between finest and 

the coarsest stream network are 0.43 mm, 0.45 mm and 0.13 mm for the events 

observed on 2014, 2015 and 2016 respectively (Figure 5.27 (d), (h) and (l)). The 

mentioned values express the reduction in soil moisture amounts. 

5.4 Evaluation of Calibration with Other Rainfall Datasets 

In previous sections, both WRH-Hydro and HEC-HMS model parameters are 

calibrated for 22nd Nov 2014 event using the gauge data. Also WRH-Hydro model 

stream definition are re-adjusted using 150 pixels. In here, both calibrated models 

(WRH-Hydro and HEC-HMS) are run for using other rainfall products namely, radar, 

BCR (I), BCR (II), the HE product and WRF precipitation data. In order to test the 

reliability of the calibrated parameters and to compare the model outputs between each 

other, results are evaluated using observed data. Figure 5.28, Figure 5.29 and Figure 

5.30 show both model simulation results for each rainfall data related to 2014, 2015 

and 2016 flood events respectively. The statistical measures for the whole study are 

given in Table 5.9. 
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Figure 5.27 The SMC change (mm) with Stream Order (Columns (1), (2) and (3) 

show flood events on 22nd November 2014, 2nd August 2015 and 28th May 2016 

respectively. Rows (1), (2) and (3) show threshold defining stream density 800, 150 

and 50 pixels respectively. Row (4) shows SMC change in Gökçeli Station) 
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Figure 5.28 Model Simulation Results with 2014 flood data (gauge (a), WRF (b) the 

HE product (c), radar (d), BCR (I) (e) and BCR (II) (f)) 

(b) 

(a) 

(c) 

(e) 

(d) 

(f) 



 

124 

 

 

 

 

 

 

Figure 5.29 Model Simulation Results with 2015 flood data (gauge (a), WRF (b) the 

HE product (c), radar (d), BCR (I) (e) and BCR (II) (f)) 

(b) 

(a) 

(c) 

(e) 

(d) 

(f) 
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Figure 5.30 Model Simulation Results with 2016 flood data (gauge (a), WRF (b) the 

HE product (c), radar (d), BCR (I) (e) and BCR (II) (f)) 

(b) 

(a) 

(c) 

(e) 

(d) 

(f) 
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Table 5.9 Statistical Measures for Observed and Simulated Hydrographs 

Model - Rainfall Data 
Peak 

Flow (m3/s) 
Run. Vol. 
(hm3) 

Correlation NSE NRMSE 

22nd November 2014 

Observed Flow 541.0 24.9       

HEC - Gauge 341.0 20.8 0.95 0.83 58.93 

HEC - the HE Product 78.5 4.4 0.80 -0.15 153.87 

HEC - WRF Precip. 496.5 25.5 0.99 0.97 25.32 

HEC - Radar 226.0 14.8 0.89 0.54 96.66 

HEC - BCR (I) 271.0 16.7 0.92 0.67 81.80 

HEC - BCR (II) 287.3 19.1 0.91 0.71 76.84 

WRF - Gauge 329.6 20.8 0.94 0.78 67.19 

WRF - the HE Product 71.4 5.5 0.94 -0.07 148.16 

WRF - WRF Precip. 441.6 25.8 0.98 0.97 26.55 

WRF - Radar 213.4 14.6 0.94 0.56 95.51 

WRF - BCR (I) 263.7 16.5 0.97 0.70 77.80 

WRF - BCR (II) 278.5 19.1 0.95 0.75 71.60 

2nd August 2015 

Observed Flow 88.1 2.4       

HEC - Gauge 87.1 4.5 0.02 -3.46 2.14 

HEC - the HE Product 0.0 0.0 - - - 

HEC - WRF Precip. 303.8 32.0 -0.05 -108.00 140.39 

HEC - Radar 14.8 1.7 0.67 0.37 0.71 

HEC - BCR (I) 6.8 0.9 0.59 0.13 1.38 

HEC - BCR (II) 12.7 1.3 0.71 0.33 0.96 

WRF - Gauge 68.5 3.7 -0.02 -2.28 1.61 

WRF - the HE Product 1.6 0.1 -0.15 -0.20 1.66 

WRF - WRF Precip. 242.2 29.9 -0.05 -77.93 110.48 

WRF - Radar 88.8 4.1 0.93 0.57 2.36 

WRF - BCR (I) 42.7 2.7 0.87 0.74 1.00 

WRF - BCR (II) 77.2 3.9 0.91 0.62 1.56 

28th May 2016  

Observed Flow 330.8 15.9       

HEC - Gauge 170.0 16.8 0.72 0.51 60.53 

HEC - the HE Product 324.3 18.4 0.09 -0.85 117.32 

HEC - WRF Precip. 283.2 19.0 0.27 -0.65 110.82 

HEC - Radar 62.9 4.4 0.47 -0.10 90.41 

HEC - BCR (I) 48.6 3.7 0.61 -0.10 90.47 

HEC - BCR (II) 91.6 6.9 0.64 0.17 78.76 

WRF - Gauge 182.5 17.8 0.74 0.54 58.77 

WRF - the HE Product 248.4 17.2 0.14 -0.40 102.32 

WRF - WRF Precip. 265.2 18.5 0.31 -0.38 101.42 

WRF - Radar 77.2 4.8 0.33 -0.14 92.32 

WRF - BCR (I) 68.9 4.5 0.50 -0.09 89.95 

WRF - BCR (II) 97.1 7.5 0.66 0.19 77.48 
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5.5 The Physical Assessment of the Channel Parameters (WRF-Hydro) 

Parameters characterizing the channel network must be defined to perform channel 

routing. These parameters are defined in a parameter file (Table 5.4). In this table, it is 

seen that the physical channel parameters, base width and channel slope are related to 

the channel network via Strahler stream order values. In the present version of the 

model, stream pixel values of the same stream order have the same channel parameter 

values. It is known that this assumption may not be valid in many regions and future 

versions of the model will include parameters that are assigned to terrain grids (Gochis 

et al., 2015). In WRF-Hydro model, the channel routing module is performed on a 

pixel-by-pixel basis using predefined channel network grid in terrain routing grid file. 

Each channel grid cell has an assumed channel reach of trapezoidal geometry as a 

function of Strahler stream order. In calibration process of the MANN parameter, the 

physical channel parameters are kept as default. 

As mentioned before, a detailed elevation model that covers the entire study area is 

not available, DEM data, downloaded from USGS HydroSHEDS (Hydrological data 

and maps based on Shuttle Elevation Derivatives at multiple Scales) mapping product 

with nearly 90 m (3 arc-second) resolution, is used in the model. In addition to that, 

there is a limited but detailed river cross section data obtained in the field survey 

pertaining to a downstream region of the study area. Using three different locations 

within this field, depicted with red line in Figure 5.23 (stream order with 150 pixels), 

cross section definitions in the model has been reconfigured to see the effect of 

physical channel parameters on routing process. For this study, channel parameters are 

roughly adjusted using field survey data (Figure 5.31 (1), (2) and (3)) and the numeric 

values of base widths and channel slopes for these three stream orders are calculated 

and these are given in Table 5.10. 



 

128 

  

  

  

Figure 5.31 Model Simulation Results for Gauge Rainfall Data with Adjusted Cross 

Sections (2014 (a), 2015 (b) and 2016 (c); Stream Order 1 (1), Stream Order 2 (2), 

Stream Order 3 (3)) (c.s. is the abbreviation for cross section) 

Table 5.10 Adjusted and Original Channel Parameters with Stream Orders 

Stream  

Order 

Parameters 

Adjusted Original 

Bw (m) Ch Slp Bw (m) Ch Slp 

1 5 0.53 1.5 3 

2 24.7 0.42 3 1 

3 34.8 0.22 5 0.5 
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Using adjusted cross sections, model simulations for gauge rainfall datasets are 

performed and results are depicted with original cross sectional data in Figure 5.31 (a), 

(b) and (c). It is known that the effect of cross section can clearly be comprehended 

with discharge hydrographs taken from upstream and downstream ends of a river 

reach, therefore the deformation of discharge hydrographs in river channels can be 

evaluated using positive and negative retarding storage volumes. The results without 

inflow hydrographs show that the arrival time of peak water amounts shifts and peak 

discharges decrease. This can be explained by the fact that, the mean velocity 

decreases and cross sectional area increases in the rising period of the hydrograph. 

5.6 Summary and Discussion of the Results 

In simulations, three events are studied with six different rainfall datasets and two 

hydrologic models. Lumped hydrologic model and physically based distributed 

rainfall-runoff model are used for assessing the effect of different rainfall datasets on 

runoff prediction. WRF-Hydro uses rainfall data in a finer spatial resolution with 

respect to lump model, namely HEC-HMS. Both models are calibrated to reproduce 

observed hydrograph of Gökçeli gauging station with an input of observed rain gauge 

values obtained from averaging the rainfall values over the study area using Thiessen 

Polygon method. Then, using different sources of rainfall data, performance of both 

models are analyzed visually and statistically. The discussion of results are listed 

below: 

 In the results of 22nd November 2014 flood data, it is seen that except the rain 

gauge data which is used in calibration procedure in both models, WRF 

precipitation data gives the best results in all aspects in both models. Among 

the datasets, the HE product has the poorest results. The statistical results in 

bias corrected radar rainfall datasets (BCR I and BCR II) show that bias 

correction with KF algorithm has favorable effect on results. The algorithm 

improves the NSE from 0.54 and 0.56 to 0.71 and 0.75 in HEC-HMS and 

WRF-Hydro respectively (Table 5.9). However, increasing complexity in a 

model that means complex interaction of water cycle on spatial and temporal 

scales does not increase the results of objective functions substantially. The 
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results in calibration part show that both models capture the similar outputs in 

statistical measures, r and NSE. Moreover, both model underestimate the peak 

flow but the result of HEC-HMS, 341.0 m3/s, is better than the result of WRF 

model, 329.6 m3/s. The difference between RMSE results is nearly 8 m3/s and 

HEC-HMS shows little increment in this aspect. In simulation, performed with 

the HE product, it is seen that all statistical measures except the peak flow 

results, WRF model is superior to the HEC-HMS. However, the results of 

simulation carried out with WRF precipitation dataset indicate that HEC-HMS 

gives better performance. In radar related dataset; radar, BCR (I) and BCR (II), 

WRF model gives better results in r computations. Moreover, WRF results of 

BCR (I) and BCR (II) in NSE and RMSE statistical measures are more 

favorable than the HEC-HMS results. In peak flow estimation, HEC-HMS is 

more successful. However, both models have good results compared to each 

other in statistical measures; r, NSE, RMSE and runoff volume ratios.  

 According to WRF precipitation data, flood that was occurred on 

2nd August 2015 is almost convective. 91% of the rainfall data estimated in 

Salıpazarı location is described as convective. It is known that the storm 

dynamic of convective rain is spatially unstable. In such circumstances, high 

number of rain gauge data that defines the spatial distribution of rainfall pattern 

is desired. However, even Salıpazarı Station was not in operation during the 

2015 flood event. Therefore, stations that are located in remote distances are 

used to obtain rain data. Using acquired rain gauge data with Thiessen polygon 

method, simulations are performed and results are compared with flow 

monitoring station data. The comparison results show that (Figure 5.29 (a)) 

both models are unsuccessful in gauge simulations. Because, NSE values of 

both models are lower than 0 and correlations are nearly 0. Among the datasets, 

the statistical inference cannot be done for the HE product because the HE 

product did not estimate any rain for the study area. Indeed, the HE product is 

powerful in convective rainfall mesoscale systems (Kuligowski, 2014), such 

success is not observed for 2015 flood case in this study area. When 

simulations are examined with wrfout data, it is seen that there are two peaks 
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in the hydrographs. In the first one, the peaks in HEC and WRF models are 

nearly a value of 40 m3/s and in the second one, peaks are greater than 200 m3/s 

for both models. Among these peaks, the first ones nearly place at the right 

time with respect to observed hydrograph. Apart from these datasets, radar, 

BCR (I) and BCR (II) datasets show good performance in the simulations. 

Without correction, radar-based QPE has the best hydrograph shape, timing in 

peak and peak amount. As it is analyzed earlier in 2014 dataset, BCR (II) is 

superior to BCR (I). The success of bias correction in radar-based QPE 

diminishes in convective system. However, if the Salipazarı station was in 

operation, the BCR (II) data would have probably been superior to the radar-

based QPE itself. Because, radar data estimated rainfall in a region that is 

specifically close to the station. In radar related datasets, the outcome of WRF 

model is better than the outcome of HEC model. The reason behind this state 

is the difference in maximum retention calculation that is a measure of the 

ability to abstract and retain storm precipitation. In WRF model; it is defined 

as 0 whereas in HEC model it is calculated by using the CN value. Even if for 

the maximum CN value, which is 99, HEC model calculates retention depth.  

 According to WRF precipitation data, 21% of the rainfall amount estimated in 

the Salıpazarı Station location is convective for the flood observed on 

28th May 2016. In the upstream part of the study area, the effect of convective 

rain diminishes (Figure 3.18 (g)). The statistical results and visual 

interpretations show that in terms of peak value and peak time, gauge data are 

superior to the other rainfall sources. However, the amount of peak is better 

represented by wrf data with 12 hours delay. The HE product is better than the 

2015 year simulation because of rain estimation but accuracy and timing of the 

peak value show unsuccessful results for both models. On the other hand, radar 

related datasets have flow trends that follow the observed flow but the amount 

of these datasets have poor results. However, like in the previous cases, bias 

corrected radar data using the gauging station in close proximity to the studied 

one has an affirmative effect on the results.  
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 The models are prepared with minimum required data. Although the same 

forcing input data (rainfall) are used in the two models, additional effort is 

needed to build WRF-Hydro model. Furthermore, to calibrate parameters 

manually in WRF-Hydro model takes more effort. Hourly runoff computations 

in WRF-Hydro requires more time compared to runoff computations in HEC-

HMS.  

 A major advantage of physical based model over empirical based model is that 

it has distributed outputs of major hydrologic states; such as infiltration, and 

surface runoff, at high spatial resolutions. 

 It is seen that the assigned threshold for stream network density significantly 

affects the model response. The increase in stream network density accelerates 

the flow and therefore raises the water volume under the simulated 

hydrographs. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary 

One of the major problems in mountainous regions is damages caused by floods that 

are related to intense rainfall. These events in the Black Sea region have been 

responsible for loss of life and property. On 22nd November 2014, 2nd August 2015 

and 28th May 2016, catastrophic flood events occurred in the Terme River basin, which 

is located in the eastern Black Sea region. As a consequence of the river overflows; 

many people were affected, homes and workplaces were flooded, roads collapsed and 

electricity could not be supplied to the region due to damage in energy transmission 

lines. These consequences all point to the importance of flood discharge estimation in 

such regions for property and life savings. However, flood estimation in developing 

countries has difficulties due to lack of data. Radar-based QPE, numerical forecast 

rainfall data and satellite products are valuable data sources for hydrologic studies in 

ungauged or poorly gauged regions. The aim of this study is to evaluate the rainfall 

datasets at hourly time intervals in a small catchment with different rainfall types that 

caused severe consequences in Samsun – Terme. In developing and managing water 

resources on a commensurate scale, WMO defined the minimum densities of stations 

(area in km2 per station) to avoid serious deficiencies (1994). According to this guide, 

the minimum area per recording rain gauge station is defined as 2500 km2 to satisfy 

specific needs for mountainous areas. Although the study region fulfills the condition, 

in some cases rainfall cannot be detected by rain gauges as a result of station 

malfunction or convective rain. 



 

134 

In the evaluation, a total of six rainfall products, which are weather radar, the Hydro-

Estimator (HE) product, gauge data, rainfall data obtained from Weather Research and 

Forecasting (WRF) model, and two different bias corrected radar-based QPE obtained 

by Kalman Filtering (KF) algorithm, were used in two different hydrological models; 

Weather Research and Forecasting model hydrological extension package (WRF 

Hydro) and Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-

HMS).  

Before the hydrological model simulations, rainfall products were evaluated by using 

statistical measures. For this, first, radar-based QPE was analyzed using the matching 

techniques mentioned in the literature. Then, based on the technique giving best results 

(WCMM with 5X5 space window), radar data extraction was done for all flood events. 

Second, comparison of rainfall products was performed in point and areal based 

manner. Among the products, radar-based QPE, having better spatial resolution, 

proved to be successful in point and areal based analyses in this research. The reason 

for this can be explained by the general trend of the rainfall being captured best by the 

radar rainfall estimation in rainfall-time graphics. Although rainfall types affected the 

success of the radar-based QPE; radar and rain gauge data generally followed the same 

pattern in hourly time series. Third, the success of radar-based QPE that shows the best 

spatio-temporal variation in the duration of flooding was improved using the KF 

algorithm in frontal rainfall type that had less dynamics throughout the event duration. 

Then, it was found that the application of KF with gauges that had high correlation 

between each other could improve the radar-based QPE better in mixed rainfall types. 

However, another rainfall source, the HE product generally showed poor performance 

in rain detection in point and areal based comparisons. Apart from the nowcast 

products, the forecast product, WRF data, demonstrated success in cumulative rainfall 

amounts in the study area. Although WRF data was less accurate at following the rain 

gauge data in time series manner, this data could still give information about the 

probability of high rainfall before the flood occurrence. In the fourth and final step, 

hydrologic models were calibrated and rainfall products were evaluated. 
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In model calibration procedure, three parameters; wave travel time (K), weighting 

factor (X) and curve number (CN) for HEC-HMS and five parameters; infiltration 

scaling factor (REFKDT), surface runoff parameter (REFDK), surface retention depth 

(RETDEPRTFAC), surface roughness (OVROUGHRT) and channel Manning 

roughness (MANN) for WRF Hydro were calibrated to reproduce the observed 

hydrograph of Gökçeli gauging station with an input of observed rain gauge values 

obtained from averaging the rainfall values over the study area using Thiessen Polygon 

method for 2014 flood event. It was found that the parameters; MANN and REFKDT 

for WRF Hydro and the parameters; CN and K for HEC HMS were sensitive in 

defining the hydrograph shape and total water volume respectively. With the 

calibration of both models’ parameters, runoff volume in stream flow and slope of 

rising and falling limb of the simulated hydrographs were improved. In terms of model 

evaluation, the most obvious difference was observed in radar based model simulations 

in 2015 flood event that is mainly convective rain. In mentioned event, WRF-Hydro 

showed distinct success with respect to HEC HMS. The average value of correlation 

(r) and root mean square error (RMSE) for all events and rainfall products indicated 

that WRF Hydro (0.61 for r, 62.6 m3/s for RMSE) showed a slight success compared 

to the HEC HMS (0.59 for r, 67.6 m3/s for RMSE). 

6.2 Conclusions 

It is known that in radar-based QPE simulations, a large amount of peak 

underestimation is common due to the problems in mixture of raindrop distribution, 

orographic enhancement and attenuation (Zhu et al., 2014). However, timing of the 

flow peaks with precision is an advantage of radar-based QPE in ungauged basins 

where the radar rainfall is only available sources of rainfall. Simulation done for the 

convective flood (2nd August 2015) supported the utility of radar-based QPE in 

ungauged basins and showed the limited-spatial extent of the rain gauge data that 

represent the basin.  

The approach in KF algorithm was in contrast to study of Chumchean (2006) that 

defined the empirical variance considering the distance between radar location and the 

rain gauges. The proposed approach implemented a different way to define the 
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empirical variance for sparsely gauged areas. Using the gauges that had better 

correlations with the studied gauge made a contribution to the study. The simulation 

results of the hydrologic models showed that bias corrected radar (BCR) data had an 

affirmative effect in statistical measures. 

As a now-casting product, the HE algorithm had poor performance in the events by 

exhibiting inaccurate rainfall detection in the study area; whereas, as a forecasting 

product, WRF precipitation data, which has the same spatial resolution with the HE 

product, generally performed well at predicting rainfall amount but not necessarily 

timing. The capabilities of the NWP model precipitation estimates vary considerably 

with forecast lead time. Generally, forecast skill decreases with the lead time and 

increases with rising rainfall accumulation periods due to the compensation of timing 

errors in individual periods (Shrestha et al., 2013). The cumulative rainfall amounts in 

sub-basins and averaged bias results in stations supported the WRF precipitation data 

forecast skill in rainfall accumulation periods in the study.  

Distributed models need vast amount of data, knowledge about the initial conditions, 

effort and time; but guidelines, available input datasets and GIS based preprocessing 

tools make them usable. Among the physics-based distributed hydrologic models, 

WRF-Hydro, has several advantages such as having open source and community 

maintained code, integrating multiple physics options, being adjustable for 

multi-spatial scale and multi-temporal resolution and lastly supporting multiple 

computing platforms. However, there are difficulties in the model setup procedure and 

model runs take considerable time. On the other hand, lumped models average spatial 

characteristics but they are incapable of incorporating the spatial heterogeneity. 

HEC-HMS has advantages like easy basin model development and calibration process 

and less time requirement in model runs; whereas, HEC-HMS model uses fewer 

parameters and represents spatial variation of the catchment characteristics 

inefficiently. Lumped or distributed models have relative strengths and weaknesses. 

Depending on the problem type, either of them can be the best choice. In addition to 

problem type, user knowledge and the data availability should be considered carefully 

in model selection. However, the lumped models should be used with caution because 
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of their limited capability in expressing the spatial change in complex topography. In 

the light of information provided, it was seen that the study area has uniform soil 

characteristics, so the results of model simulations were close to each other except the 

flood event that was observed on 2nd August 2015, which was mainly in convective 

origin. Radar-based QPE data showed better performance in WRF-Hydro model 

compared to HEC-HMS model. In HEC-HMS model, initial abstraction in the loss 

computation is defined by an empirical relationship, which is 20% of the potential 

storage (Ia= 0.2S). The amount of water storage must be compensated by the rainfall 

for the flow to start. However, loss method defined in the model (SCS CN) held the 

water and slowed down the flow speed. This situation proves that although HEC-HMS 

model is easy in calibration phase; it does not work well with other storms due to 

parameters not always fitting the catchment physics and complex topography. 

Another part of the research placed importance on the calibration of WRF-Hydro 

model. Unlike the WRF-Hydro model calibration steps defined in the literature, 

calibration was performed using the parameters as a couple to indicate the parameter 

interaction on simulated hydrograph. The results showed that the channel parameter 

(MANN) is more sensitive than the surface roughness parameter (OVROUGHRT) in 

defining the hydrograph shape and the infiltration scaling factor (REFKDT) is more 

sensitive than the surface runoff parameter (REFDK) and the surface detention depth 

(RETDEPRTFAC) in calculating the total water volume.  

High drainage density may indicate that surface runoff moves rapidly from the 

catchment and the soil has low infiltration capacity. It depends on climate and physical 

characteristics of the catchment (Subramanya, 2005). In the model, the increase in 

stream network density accelerated the flow depending on the increase of the MANN 

coefficient, reduced the time water stayed in the catchment and therefore raised the 

water volume under the simulated hydrographs. The effect of network density was 

clearly seen in the 2015 flood due to the rainfall pattern that was observed close to the 

outlet. The increase in MANN coefficient in sub basin 3 made rapid flow contribution 

to the outlet and changed the time of peak flow. In terms of changes in total soil 

moisture content, it was seen that the increase in stream density caused a moisture 
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reduction in the soil. The decrease in number of pixels from 800 to 50 causes a 

reduction in soil moisture.  

With this study, it is shown that the WRF precipitation forecast data allows to obtain 

hydrographs with peak values close to observed hydrograph, 36 hrs. prior to the flood 

occurrence. This information might be worth to be used in a possible early warning 

system and help to take initial precautions in the study area and in similar catchments 

that are prone to flood. The usage of radar-based QPE in simulations can correct the 

peak time of the hydrograph forecasted by the WRF data. In addition to that, BCR data 

can improve the results. Therefore, it can be concluded that the use of hourly WRF, 

radar and gauge data in combination through a data assimilation schema may help to 

take necessary precautions against flooding in settlement areas in advance and provide 

benefit in saving life and property. 

6.3 Recommendations 

It is known that the success of the proposed approach in the KF application and the 

reliability of the hydrologic models increase with data availability. It would be 

interesting in future studies to improve the application of KF algorithm for similar 

scenarios by defining more stable parameters; correlation coefficient and empirical 

variance with more data. However, this statement may reveal contradiction in poorly 

gauged regions. It is considered that the increase in the weather radar stations and 

gauge data will benefit the studies in the forthcoming years. Yet, for now, to the best 

of our knowledge, the use of BCR data in this study in a hydrologic application is the 

first in Turkey.  

In pre-processing stages of the models’ setup, DEM data with same spatial resolution 

could not be used due to technical reasons. For HEC-HMS model, DEM data with 25 

m.; whereas, for WRF-Hydro model, DEM data with 90 m. spatial resolution were 

used. Although the algorithm of these models to produce routing structure are 

completely different, the use of the same DEM data in both models would increase the 

similarity of the physical basin configuration in stream definition process. 
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In Turkish State Meteorological Service (TSMS), WRF model is operated daily; 

meaning 72 hours of forecasted rainfall data are provided by the WRF model at the 

end of each day. However, in this study the lead time is selected as nearly one and a 

half day before the flood occurrence. The use of different forecast lead times in WRF 

precipitation data may reveal the effect of sensitivity on forecast skill in the study area. 

Furthermore, use of more than one flood event data in model calibration stage may 

enhance the model parameters that were suppressed in the boundaries of the feasible 

region. Regardless of the poor data, usage of various rainfall forecasts obtained from 

different WRF microphysical schemes may reveal the effect of physical mechanisms 

on the rainfall pattern. Although this is more related to WRF coupled model, such 

study will increase the performance of WRF data on complex topography.  

Knowing that the annual economic loss is around 160 million $, whereas the 

investment for flood prevention is around 30 million $, developing flood warning 

systems in flood prone areas of Turkey is essential. Recently, 12 meteorological 

satellites are working. These satellites and radars must be used in flood warning 

systems. The calibration of radar rainfall estimates must be done. With well calibrated 

hydrologic models, radar rainfall estimates can be helpful to establish flood warning 

systems wherever they are needed. Moreover, data assimilation which combines radar, 

satellite, WRF model precipitation data and other observations can improve the 

precipitation forecast that is essential to make accurate hydrological forecast.   
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APPENDICES 

Appendix A: CDF Curves 

 
Figure A. 1 Columns (1) and (2) show CDF Curve of Stations and Rainfall 

Distribution with three Datasets for 2014 Flood Event Day respectively; Rows (1), 

(2), (3) and (4) show stations: Bafra, Ondokuz M., Karadeniz A. and Havza 

respectively. 
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Figure A.2 Columns (1) and (2) show CDF Curve of Stations and Rainfall 

Distribution with three Datasets for 2014 Flood Event Day respectively; 

Rows (1), (2), (3) and (4) show stations: Alaçam, Vezirköprü, Yakakent and 

Çarşamba respectively. 
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Figure A.3 Columns (1) and (2) show CDF Curve of Stations and Rainfall 

Distribution with three Datasets for 2014 Flood Event Day respectively; 

Rows (1), (2), (3) and (4) show stations: Ayvacık, Salıpazarı, Kozluk Beldesi and 

Topraksu Araş. respectively. 
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Appendix B: Statistical Measures for Stations 

 

 

 

 

 

Table B. 1 
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Appendix C: Rainfall Distributions for Sub-basins 

 

 

 

 

 

Figure C.1 2014 Flood Event Rainfall Distribution with Time for Four Sub-basins  

(Sub-basin 1 (a), Sub-basin 2 (b), Sub-basin 3 (c) and Sub-basin 4 (d)) 
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Figure C.2 2015 Flood Event Rainfall Distribution with Time for Four Sub-basins  

(Sub-basin 1 (a), Sub-basin 2 (b), Sub-basin 3 (c) and Sub-basin 4 (d)) 
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Figure C.3 2016 Flood Event Rainfall Distribution with Time for Four Sub-basins  

(Sub-basin 1 (a), Sub-basin 2 (b), Sub-basin 3 (c) and Sub-basin 4 (d)) 
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Appendix D: KF Application Results for Stations 

 

 

 

 

 

Figure D.1 KF Application Results in 2014 Flood Event for Stations: Vezirköprü (a), 

Yakakent (b), Alaçam (c), Havza (d) and Topraksu Araştırma (e) 

(b) 

(a) 

(c) 

(e) 

(d) 
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Figure D.2 KF Application Results in 2014 Flood Event for Stations: Bafra (a), 

Kavak (b), Ondokuz Mayıs (c), Karadeniz Araştırma (d) and Ayvacık (e) 

(b) 

(a) 

(c) 

(e) 

(d) 
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Figure D.3 KF Application Results in 2014 Flood Event for Stations: Çarşamba (a), 

Salıpazarı (b) and Kozluk (c) 
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Figure D.4 KF Application Results in 2015 Flood Event for Stations: Vezirköprü (a), 

Yakakent (b), Alaçam (c), Havza (d) and Topraksu Araştırma (e) 

(b) 

(a) 

(c) 

(e) 

(d) 
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Figure D.5 KF Application Results in 2015 Flood Event for Stations: Bafra (a), 

Kavak (b), Ondokuz Mayıs (c), Karadeniz Araştırma (d) and Ayvacık (e) 

(b) 

(a) 

(c) 

(e) 

(d) 
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Figure D.6 KF Application Results in 2015 Flood Event for Stations: Çarşamba (a), 

Salıpazarı (b) and Kozluk (c) 
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Figure D.7 KF Application Results in 2016 Flood Event for Stations: Vezirköprü (a), 

Yakakent (b), Alaçam (c), Havza (d) and Topraksu Araştırma (e) 

(b) 

(a) 

(c) 

(e) 

(d) 
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Figure D.8 KF Application Results in 2016 Flood Event for Stations: Bafra (a), 

Kavak (b), Ondokuz Mayıs (c), Karadeniz Araştırma (d) and Ayvacık (e) 

(b) 

(a) 

(c) 
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Figure D.9 KF Application Results in 2016 Flood Event for Stations: Çarşamba (a), 

Salıpazarı (b) and Kozluk (c) 
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Appendix E: Soil Categories and Vegetation Type Tables 

Table E.1 Soil Categories and Textures 

Class 

No. 

Soil texture 

class 
% Sand % Silt % Clay 

Quartz 

Content 

Estimated 

Quartz 

content 

(Peters-Lidard et 

al, 1998, JAS) 

(F. Chen 

subjective 

method) 

1 Sand 92 5 3 0.92   

2 Loamy Sand 82 12 6 0.82   

3 Sandy Loam 58 32 10 0.6   

4 Silt Loam 17 70 13 0.25   

5 Silt 10 85 5 0.1   

6 Loam 43 39 18 0.4   

7 
Sandy Clay 

Loam 
58 15 27 0.6   

8 
Silty Clay 

Loam 
10 56 34 0.1   

9 Clay Loam 32 34 34 0.35   

10 Sandy Clay 52 6 42 0.52   

11 Silty Clay 6 47 47 0.1   

12 Clay 22 20 58 0.25   

13 
Organic 

Material 
0 0 0   

0.05 (mostly 

peat, muck, 

mineral soils 

are not 

dominant) 

14 Water 0 0 0     

15 Bedrock 0 0 0     

16 Other 0 0 0     

17* Playa         
0.60 (as 

sandy loam) 

18* Lava           

19* White sand         
0.92 (as 

sand) 

Note: *: Not originally in STATSGO data base 
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Table E.2 Vegetation Type (Class), LAI and Albedo Parameters with Explanations 

class 
LAI 

MIN 

LAI 

MAX 

ALBEDO 

MIN 

ALBEDO 

MAX 
Explanation 

1 5 6.4 0.12 0.12 Evergreen Needleleaf Forest 

2 3.08 6.48 0.12 0.12 Evergreen Broadleaf Forest 

3 1 5.16 0.14 0.15 Deciduous Needleleaf Forest 

4 1.85 3.31 0.16 0.17 Deciduous Broadleaf Forest 

5 2.8 5.5 0.17 0.25 Mixed Forests 

6 0.5 3.66 0.25 0.3 Closed Shrublands 

7 0.6 2.6 0.22 0.3 Open Shrublands 

8 0.5 3.66 0.25 0.3 Woody Savannas 

9 0.5 3.66 0.2 0.2 Savannas 

10 0.52 2.9 0.19 0.23 Grasslands 

11 1.75 5.72 0.14 0.14 Permanent wetlands 

12 1.56 5.68 0.17 0.23 Croplands 

13 1 1 0.15 0.15 Urban and Built-Up 

14 
2.29 4.29 0.18 0.23 

cropland/natural vegetation 

mosaic 

15 0.01 0.01 0.55 0.7 Snow and Ice 

16 0.1 0.75 0.38 0.38 Barren or Sparsely Vegetated 

17 0.01 0.01 0.08 0.08 Water 

18 0.41 3.35 0.15 0.2 Wooded Tundra 

19 0.41 3.35 0.15 0.2 Mixed Tundra 

20 0.41 3.35 0.25 0.25 Barren Tundra 

source: modified MODIS NOAH    
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