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ABSTRACT 

 

ACCELERATING OF LINE OF SIGHT ANALYSIS ALGORITHMS WITH 

PARALLEL PROGRAMMING 

 

Yılmaz, Gökhan 

MSc., Department of Modelling and Simulation 

Supervisor: Assoc. Prof. Dr. Alptekin Temizel 

Co-supervisor: Assist. Prof. Dr. Elif Sürer 

 

 

May 2017, 64 pages 

 

Line of sight (LOS) analysis is a set of methods and algorithms to determine the visible 

points in a terrain with reference to a specific observer point. This analysis is used in 

simulations, Geographic Information System (GIS) applications and games. For this 

reason, it is important to have a capability to get results quickly and facilitate analysis in 

such a way that the interaction with the changing reference points is possible. Van 

Kreveld, R2 and R3 are the most frequently used algorithms in line of sight analysis. The 

purpose of this research is to develop parallel adaptations of these particular algorithms 

by making use of the capabilities of a modern Graphics Processing Unit (GPU) and to 

evaluate these adaptations in terms of performance and memory usage. By analyzing 

which algorithm is more suitable to be implemented on the GPU, the algorithm that will 

provide the most appropriate and quick solution to the probing problem can be determined. 

In this research, Van Kreveld's algorithm, which is basically a sequential algorithm, was 

developed partly in parallel, and the speed-up was 1.5x compared to the sequential version 

of the algorithm. Speed-up rates increase up to 10.5x for R2 and 160x for R3 algorithms, 

respectively. The results can be used to combine CPU / GPU approaches in order to 

perform hybrid or full parallelization of Van Kreveld’s Algorithm on the GPU. The results 

presented in the thesis will serve as a guide for the selection of the appropriate algorithm 

by evaluating the strengths and weaknesses of different algorithms. 

Keywords: geographic information systems, line of sight analysis, GPGPU, parallel 

programming 
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ÖZ 

 

GÖRÜŞ HATTI ANALİZİ ALGORİTMALARININ PARALEL 

PROGRAMLAMA İLE HIZLANDIRILMASI 

 

Yılmaz, Gökhan 

Yüksek Lisans, Modelleme ve Simülasyon Bölümü 

Tez Yöneticisi: Doç. Dr Alptekin Temizel 

Eş Tez Yöneticisi: Yrd. Doç. Dr Elif Sürer 

 

 

Mayıs 2017, 64 sayfa 

 

Görüş hattı analizi, belirli bir nokta referans alınarak bir arazi içerisindeki görülebilir 

noktaların belirlenmesini amaçlayan yöntemler ve algoritmalar bütünüdür. Bu analiz, 

simülasyonlarda, Coğrafi Bilgi Sistemi (CBS) uygulamalarında ve oyunlarda 

kullanılmaktadır. Bu nedenle hızlı bir şekilde sonuç alabilmek, değişen referans 

noktalarına göre etkileşimi mümkün kılabilecek şekilde analiz yapabilmek önem 

taşımaktadır. Görüş hattı analizi algoritmalarından sıklıkla kullanılanlar Van Kreveld, R2 

ve R3 algoritmalarıdır. Bu araştırmanın amacı, modern bir Grafik İşleme Ünitesi’nin 

(GPU) kabiliyetlerini kullanarak belirtilen algoritmaların paralel uyarlamalarını geliştirip, 

bu uyarlamaların performans ve hafıza kullanımları açısından değerlendirilmesini 

yapmaktır. Böylelikle hangi algoritmanın GPU üzerinde gerçeklenmeye daha uygun 

olduğu analiz edilerek, ilgili probleme en uygun ve hızlı çözümü sağlayacak algoritma 

belirlenebilecektir. Bu araştırmada temel olarak sıralı ilerleyişi olan Van Kreveld’in 

Algoritması kısmi şekilde paralel olarak geliştirilmiştir ve yapılan gerçeklemede 

algoritmanın sıralı haline göre 1.5x kata kadar daha hızlı sonuç elde edilmiştir. CPU/GPU 

hız artışı R2 için 5 kata kadar, R3 için ise 160 kata kadar ulaşmıştır. Çalışma sonucu, Van 

Kreveld Algoritması için CPU/GPU yaklaşımlarını birleştirerek karma ya da GPU 

üzerinde tam bir paralelleştirme yapmak için kullanılabilir. Tezde sunulan sonuçlar farklı 

algoritmaların güçlü ve zayıf noktalarını değerlendirerek ihtiyaca uygun algoritmanın 

seçilmesi sırasında yön gösterici olacaktır.  

Anahtar Sözcükler: coğrafi bilgi sistemleri, görüş hattı analizi, GPGPU, paralel 

programlama  
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CHAPTER 1 

CHAPTER 

1 INTRODUCTION 

Line-of-Sight analysis is an analysis method that creates a visibility flag for every point 

on a given DEM (Digital Elevation Model). The visibility flag indicates whether or not 

that particular point can be seen from a certain observation point and in a fixed area. The 

output area is called a viewshed. A sample viewshed visualization is displayed in Figure 

1. 

 

Figure 1: Example viewshed visualization (Green: Visible, Red: Not Visible) 

DEM is a data format that holds elevation values of a terrain with a fixed sampling period. 

Sampling period can be represented as a geographical coordinate unit, a custom Cartesian 

coordinate unit or a distance unit (See Figure 2). 

 

Figure 2: DEM with geographical coordinate unit(Stefanescu et al., 2012) 
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Visibility of a point A means that, the line-of-sight from an observer point to point A is 

not blocked by the terrain, which proves that point A can be clearly seen by the observer. 

Viewshed can be used in many applications such as the following: 

 A Zone of Visual Influence: To determine general visibility effect of a newly 

constructed building at a terrain. For example, while building a wind turbine farm, 

one can determine the visibility of a wind turbine at a specific place. 

 Placement Problems: Mobile phone base station placement, security camera 

placement, light placement and safety spot determination are some examples 

where the placement problems can be solved by viewsheds (Ten Eyck, 2011). 

 Visibility Analysis: To determine and mark points where a moving object can be 

seen by an observer in an area of interest. 

 Path planning: In a game or a simulation, the visibility output can be used by AI 

to find the best path to travel without being seen by a certain object. 

1.1 Motivation 

Viewsheds have many applications; nevertheless, viewshed calculation is a very time-

consuming process especially for large areas. As a result, in most cases it is a pre-

calculated static data due to the infeasible calculation time. Recent advances in the GPUs 

and their programming tools made the online calculation of viewsheds possible by parallel 

programming (Gao et al., 2011), facilitating more interactive applications. 

GPU (Graphical Processor Unit) is a specific hardware that is used for computer graphics 

rendering. It rapidly manipulates and creates image data for frame buffer and sends this 

output to display devices. Because of the characteristics of these operations, GPUs have 

been developed as high-performance many-core processors which are capable of very 

high computation and data throughput (Harris, 2002). At the early stages of GPU 

development, it was not easy to take advantage of the hardware and the available 

processing power because developers needed to go through a tedious development process 

and write assembly code to achieve the desired outcome. The development of C-like 

GLSL and HLSL shading languages allowed easy manipulation of the behavior of 

graphical pipeline. To use GPU for general purpose programming and exploit its high 

performance processing power, higher-level models like CUDA and OpenCL have been 

introduced, which allow programmers to write C code to solve their non-graphical 

problems on GPU (Wu, 2008). This approach is called General Purpose Computing on 

Graphical Processing Unit (GPGPU). 
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With the capability of the modern GPUs, real-time viewshed calculation is now an 

achievable goal, and the output can be used in real-time applications such as games and 

simulations even for large areas.  

Massive terrain rendering is widely used in GIS and simulation applications. It can also 

be used in games with the capabilities of modern hardware. 

By using dynamic rendering techniques, terrains up to 16385x16385 grid size can be used 

in real-time applications (Ying, 2016). There are other studies showing more detailed 

static terrains, having a grid size of 1024x1024 equivalent to 819x1638.5 meters of total 

surface, can be rendered (González, Pérez, & Orduña, 2016). 

Paged or chunk-based streaming techniques can render virtual globes and maintain whole 

earth data (Porwal, 2013). Even when the data is not visualized in 3D, a 2D application 

can use a very large terrain and may operate with this large terrain data.  If a LOS analysis 

needs to be done with this kind of terrain data, parallel approaches can dramatically reduce 

the calculation time by running as a background process. If a real-time calculation is a 

requirement, parallel approaches become more important. 

A viewshed can be calculated with different algorithms and in this thesis three different 

algorithms will be analyzed both for CPU/GPU, and the results will be discussed. These 

algorithms are as follows: 

 R3 (Franklin, Ray, & Mehta, 1994) 

 R2 (Franklin et al., 1994) 

 Van Kreveld’s Algorithm (Kreveld, 1996) 

1.2 Objective of the Study and Contribution 

In this thesis, three different LOS algorithms will be implemented for CPU and GPU and 

their output viewshed will be compared in order to find which method is faster and more 

reliable for problem resolution. 

R2 and R3 are well-studied algorithms and there are several GPU implementations. These 

algorithms are very suitable for GPU parallelization, but there is no detailed comparison 

of parallel version of these algorithms to best of our knowledge. Van Kreveld’s algorithm 

is a sequential algorithm and, to best of our knowledge there is only a CPU parallelization 

attempt for it (Ferreira, Andrade, Magalhes, Franklin, & Pena, 2013). By its nature, it is 

not suitable for a complete GPU parallelization but parts of it can be calculated effectively 

with GPU. A new approach for parallelization of this algorithm will be explained, and the 

results will be compared with the base methods. 
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In this thesis, we evaluate the performance of the algorithms considering their speed-up 

and their memory use. The speed-up is an important criterion for performance evaluation 

of the LOS analysis, albeit it is not the only performance criterion for real-world 

applications. In real world applications, LOS is expected to run together with other 

operations and the memory cannot be exclusively reserved for LOS and needs to be 

shared.  An algorithm using less memory than its counterparts is more useful especially 

when the memory size is limited. 

To compare the reliability of the algorithms, R3 is used as a base algorithm because it is 

a non-approximate method for LOS analysis (Franklin et al., 1994). 

Real-time usage of LOS analysis will also be discussed, especially for graphics 

applications. Update period of analysis (once per each frame or fixed time period) and 

maximum analysis area for optimum rendering are defined. 

A paper has been written as an output of this thesis and submitted to USMOS 2017 

Conference with name “Acceleration of Line of Sight Analysis Algorithms With Parallel 

Programming”, abstract is accepted and full paper is under review1. 

1.3  Outline 

Outline of the thesis document is as follows: 

Chapter 2 describes the previous work, the problem definition, the general algorithm 

overview, and the description of the technology used in the implementation. 

Chapter 3 explains the details of GPU implementation of R2 and R3 and suggests a way 

to implement Van Kreveld’s Algorithm on GPU. 

Chapter 4 presents the results of the implementation, memory usage and output 

viewsheds, and discusses the limitations of each algorithm. 

Chapter 5 provides the concluding remarks and proposes ideas for future researches 

Appendix A includes the data format of the utilized DEM. 

Appendix B includes a guide for source code compilation and briefly explains the code 

structure. 

Appendix C includes GPU Profiler results of the algorithms. 

 

1  Yılmaz, G., Sürer, E., Temizel, A. (2017). Acceleration of Line of Sight Analysis 

Algorithms with Parallel Programming. Submitted to USMOS 2017 Conference 
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CHAPTER 2 

 

2 BACKGROUND AND PREVIOUS WORK 

In this chapter, background information on viewshed calculation is provided and 

alternative computational platforms that can be used for calculation, more particularly 

CPU, multi-core CPU and GPU solutions, are discussed. 

2.1 Terrain Structure 

Terrain is represented as a 2-dimensional flat-surface. This surface has sampling points 

which are intersects with the terrain, and each sampling point has elevation data (elevation 

of the terrain at that exact point). 

The terrain elevation is usually stored as a Triangulated Irregular Network (TIN) or a 

Digital Elevation Model (DEM) (Li, Zhu, & Gold, 2005). A TIN divides a terrain into 

planar triangles. To query elevation of a point p, triangle onto which point p is projected 

is found and then elevations of corner points of the triangle are interpolated. DEM is a 

simple matrix storage structure. Each grid is regularly spaced onto terrain, and each grid 

has an elevation. Spacing can be in fixed coordinate unit, distance or geographical unit 

(See Figure 2). 

In this thesis, DEM is used since it simplifies the calculations and there are many publicly 

available DEM data. The sampling period of the DEM data used is in a Cartesian 

coordinate unit, not in a geographical or distance unit. 

2.2 Line of Sight and Viewshed 

The line of sight (LOS) is the procedure of marking points which are visible to the 

observer on a given DEM, along the sightline originating from the observer point with a 

direction and a radius. 

We can express this problem in terms of angles, or slopes; a target point T is visible if and 

only if the vertical slope of the line from the observer position to target T is higher than 

other vertical slopes of the lines from the observer position to prior points along the LOS 

line (Blelloch, 1990). The problem can be extended to calculate not only visibility of a 

point, but also the minimum height required for a point T to be visible from an observer 

point.  Franklin et al. (1994) used this result to compare different algorithms, but this is 

out of the scope of the this thesis where only binary visibility results are compared. 
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Figure 3 displays the representation of the LOS calculation. Each point represents a cell 

in DEM. The observer point can see P1 as LOS line does not intersect with any prior 

points. The observer can see P2 because α2 is greater than α1 but cannot see P3 because α3 

is lower than α2. Each angle is compared with the prior angles since the order of the points 

is important. Order is decided by following the line starting from observer to target point. 

In Figure 3, the line starting from observer to target point P3 passes over P1 first and after 

than P2 and finally P3, that gives the order of the points. 

 

Figure 3: LOS vertical cross section 

Since we are using grid based elevation data, the line should be rasterized. The 

rasterization process is done with Bresenham’s Line Algorithm (Bresenham, 1965). Since 

the start and end points of the line are known, by checking differences of x and y 

coordinates of these two points, we can mark cells through which the line passes, starting 

from the start point. All the calculations after rasterization are done for grid cells (See 

Figure 4). 

 

Figure 4: Line rasterization (Ferreira et al., 2013) 
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Cells which are the rasterized versions of line O to T are called co, c1, c2, c3 ... ct  and the 

slope of a line which connects O to any ci  is called αi : 

αi =
elev(ci) − (elev(c0) + ho)

dist(c0, ci)
 

where: 

 c0 is the observer cell 

 ho is the height above the terrain of the observer 

 elev(ci) is the elevation of cell ci 

 dist(c0, ci) is the distance between the observer of the cell and cell ci 

 

Figure 5: Top-down view of viewshed (Purple: Observer, Green: Visible, Red: Not Visible). 

We can calculate the slope of a target as follows: 

αt =
elev(ct) + ht − (elev(c0) + ho)

dist(c0, ct)
 

ht is height above the terrain of the target cell. If αt is greater than every αi, i ∈ {0, 1, .., 

t}, then point T is visible from the observer point. 

Viewshed is a map that shows which points are visible by the observer in a given radius. 

To calculate the viewshed, LOS needs to be calculated to mark every point in a given area 

Algorithms use different techniques to cover all of the cells (See Figure 5). 
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2.3 Viewshed Algorithms 

Different algorithms can be used to process different terrain structures. A TIN model can 

be processed with algorithms studied by Cole & Sharir (1989) and De Floriani & Magillo 

(2003). Since this thesis use DEM format, the algorithms that uses DEM will be our focus. 

R3 is a well-known non-approximate method for the DEM format (Shapira, 1990). There 

are also approximate methods for DEM formats called R2 (or RFVS) (Franklin et al., 

1994) and Van Kreveld’s  algorithm (Kreveld, 1996). 

In R3 and Van Kreveld’s algorithm a cell is visible only if the center of the cell is visible, 

while in R2 a cell could be visible if some part of the cell is visible to the observer. If an 

application needs high accuracy rather than efficiency, R3 can be used.  

Each algorithm operates on an area of interest. This area is defined with an observer 

point(center of area) and radius(width and height are equal). Area of interest may cover 

the whole elevation data or only part of it. 

 

2.3.1 R3 Algorithm 
 

The R3 algorithm is a straight forward algorithm which basically operates LOS calculation 

for every DEM cell in the area of interest (See Figure 6) . It has high accuracy since it is 

not an approximate method but runs in θ(n3) for n by n raster DEM (Franklin et al., 1994). 

This algorithm provides high accuracy as it makes full use of the available elevation data 

(Izraelevitz, 2003). 

 

Figure 6: R3 calculation 
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The pseudo code for the algorithm is given in Algorithm 1 (for LOS calculations see 2.2): 

Algorithm 1 : R3 

𝐈𝐧𝐩𝐮𝐭𝐬: 𝒄𝟏, … , 𝒄𝑰, 𝑬𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒅𝒂𝒕𝒂 𝒄𝒆𝒍𝒍𝒔 𝒊𝒏 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕; 
𝒄𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒄𝒆𝒍𝒍;  
𝒉𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 𝒂𝒃𝒐𝒗𝒆 𝒕𝒆𝒓𝒓𝒂𝒊𝒏;  
𝐎𝐮𝐭𝐩𝐮𝐭: 𝒗𝟏, … , 𝒗𝑰, 𝑽𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒍𝒂𝒈 𝒐𝒇𝒄𝒆𝒍𝒍𝒔 𝒊𝒏 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕 
𝒇𝒐𝒓 𝒊 = 𝟏, … , 𝑰 𝒅𝒐 
      𝒊𝒇 𝒄𝒊  𝒏𝒐𝒕 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 𝒄𝑶   
            𝒎𝒂𝒌𝒆 𝒂 𝒍𝒊𝒏𝒆 𝒇𝒓𝒐𝒎 𝒄𝑶 𝒕𝒐 𝒄𝒊  

            𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒕𝒉𝒆 𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝜶𝒊 =
𝐞𝐥𝐞𝐯(𝒄𝒊)−(𝐞𝐥𝐞𝐯(𝒄𝟎)+𝒉𝒐)

𝐝𝐢𝐬𝐭(𝒄𝟎,𝒄𝒊)
 

            𝒓𝒂𝒔𝒕𝒆𝒓𝒊𝒛𝒆 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝒂𝒏𝒅 𝒇𝒊𝒏𝒅 𝒄𝒆𝒍𝒍𝒔 𝒐𝒏 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝒓𝟏, … , 𝒓𝑻 (𝒆𝒙𝒄𝒆𝒑𝒕 𝒄𝑶 𝒂𝒏𝒅 𝒄𝒊 ) 
            𝒂𝒔𝒔𝒊𝒈𝒏 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 𝒂𝒔 𝒂 𝒗𝒆𝒓𝒚 𝒔𝒎𝒂𝒍𝒍 𝒗𝒂𝒍𝒖𝒆 
            𝒇𝒐𝒓 𝒕 = 𝟏, … , 𝑻 𝒅𝒐 
                  𝒎𝒂𝒌𝒆 𝒂 𝒍𝒊𝒏𝒆 𝒇𝒓𝒐𝒎 𝒄𝑶 𝒕𝒐 𝒓𝒕  

                  𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒕𝒉𝒆 𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝜷𝒕 =
𝐞𝐥𝐞𝐯(𝒓𝒕)−(𝐞𝐥𝐞𝐯(𝒄𝟎)+𝒉𝒐)

𝐝𝐢𝐬𝐭(𝒄𝟎,𝒓𝒕)
 

                  𝒊𝒇 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 <  𝜷𝒕  𝒕𝒉𝒆𝒏 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 =  𝜷𝒕 
            𝐞𝐧𝐝 𝐟𝐨𝐫 
            𝐢𝐟 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 <  𝜶𝒊  
                  𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒊 = 𝒕𝒓𝒖𝒆 
            𝒆𝒍𝒔𝒆 
                  𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒏𝒐𝒕 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒊 = 𝒇𝒂𝒍𝒔𝒆 
            𝐞𝐧𝐝 𝐢𝐟 
      𝒆𝒍𝒔𝒆   
            𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒊 = 𝒕𝒓𝒖𝒆  
      𝒆𝐧𝐝 𝐢𝐟   
𝐞𝐧𝐝 𝐟𝐨𝐫 

 

For elevation interpolation, different methods can be used. Since the elevation data is only 

for the center of the cell (or edges of the cell depending on DEM data), either the elevation 

data for the points that are not at the center of a cell can be calculated or only the center 

of the cell data can be used. In this thesis, the latter approach is used for every algorithm 

(no interpolation for elevation). 

2.3.2 R2 Algorithm 
 

The R2 algorithm is very similar to the R3 algorithm. The only difference is that R3 

calculates LOS for every cell separately, while R2 calculates LOS for only the boundary 

cell of area of the interest, and lets the rays from the observer to the boundary cells fill the 

other cells (Franklin et al., 1994) (See Algorithm 2). 
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Algorithm 2 : R2 

𝐈𝐧𝐩𝐮𝐭𝐬: 𝒄𝟏, … , 𝒄𝑰, 𝑬𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒅𝒂𝒕𝒂 𝒄𝒆𝒍𝒍𝒔 𝒐𝒇 𝒃𝒐𝒓𝒅𝒆𝒓𝒔 𝒐𝒇 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕; 
𝒄𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒄𝒆𝒍𝒍;  
𝒉𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 𝒂𝒃𝒐𝒗𝒆 𝒕𝒆𝒓𝒓𝒂𝒊𝒏;  
𝐎𝐮𝐭𝐩𝐮𝐭: 𝒗𝟏, … , 𝒗𝑰, 𝑽𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒍𝒂𝒈 𝒐𝒇𝒄𝒆𝒍𝒍𝒔 𝒊𝒏 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕 
𝒇𝒐𝒓 𝒊 = 𝟏, … , 𝑰 𝒅𝒐 
      𝒊𝒇 𝒄𝒊  𝒏𝒐𝒕 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐 𝒄𝑶   
            𝒎𝒂𝒌𝒆 𝒂 𝒍𝒊𝒏𝒆 𝒇𝒓𝒐𝒎 𝒄𝑶 𝒕𝒐 𝒄𝒊      
            𝒓𝒂𝒔𝒕𝒆𝒓𝒊𝒛𝒆 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝒂𝒏𝒅 𝒇𝒊𝒏𝒅 𝒄𝒆𝒍𝒍𝒔 𝒐𝒏 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝒓𝟏, … , 𝒓𝑻 (𝒆𝒙𝒄𝒆𝒑𝒕 𝒄𝑶) 
            𝒂𝒔𝒔𝒊𝒈𝒏 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 𝒂𝒔 𝒂 𝒗𝒆𝒓𝒚 𝒔𝒎𝒂𝒍𝒍 𝒗𝒂𝒍𝒖𝒆 
            𝒇𝒐𝒓 𝒕 = 𝟏, … , 𝑻 𝒅𝒐 
                  𝒎𝒂𝒌𝒆 𝒂 𝒍𝒊𝒏𝒆 𝒇𝒓𝒐𝒎 𝒄𝑶 𝒕𝒐 𝒓𝒕  

                  𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒕𝒉𝒆 𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆 𝜷𝒕 =
𝐞𝐥𝐞𝐯(𝒓𝒕)−(𝐞𝐥𝐞𝐯(𝒄𝟎)+𝒉𝒐)

𝐝𝐢𝐬𝐭(𝒄𝟎,𝒓𝒕)
 

                  𝒊𝒇 𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 <  𝜷𝒕 
                        𝒎𝒂𝒙𝑺𝒍𝒐𝒑𝒆 =  𝜷𝒕 
                        𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒓𝒕 

= 𝒕𝒓𝒖𝒆 

                  𝒆𝒍𝒔𝒆 
                        𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒏𝒐𝒕 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒓𝒕 

= 𝒇𝒂𝒍𝒔𝒆 

                  𝐞𝐧𝐝 𝐢𝐟 
            𝐞𝐧𝐝 𝐟𝐨𝐫 
      𝒆𝒍𝒔𝒆   
            𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒊 = 𝒕𝒓𝒖𝒆  
      𝒆𝐧𝐝 𝐢𝐟   
𝐞𝐧𝐝 𝐟𝐨𝐫 

 

 

Figure 7: R2 calculation 
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This leads to another problem; several lines can be passed from the same cell and we need 

a decision mechanism to decide which line should update the visibility of that cell. Some 

solutions let every line write to the cell visibility since it will not change from line to line 

very much and the error is negligible.  Franklin et al.(1994) suggest that only the line that 

passes closest to the center of the cell should write the visibility of that particular cell. In 

this thesis, we just let every line update the visibility of the cell, and the decision of the 

last line that updates the cell visibility is assigned as a final value. 

The R2 algorithm has the complexity θ(n2) and has relatively low approximation error 

(Franklin et al., 1994). This algorithm can be used if the application needs only an 

overview of the visibility area but not the exact result (See Figure 7). 

2.3.3 Van Kreveld’s Algorithm 
 

Van Kreveld’s Algorithm is a sweep line algorithm that runs in θ(n2log n) (Kreveld, 1996). 

It is also an approximate method, but has virtually the same accuracy as R3 and is faster. 

(Zhao, Padmanabhan, & Wang, 2013).  

The algorithm basically rotates a sweep line over the area of interests and calculates the 

viewshed according to this. It defines three events for each cell (See Figure 8): 

 Enter Event: When the line enters the cell 

 Center Event: When the line passes over to the center of the cell 

 Exit Event: When the line exists from the cell 

 

Figure 8: Event types (Enter, Center and Exit Events and Rotate Angle θ) 

It calculates the event list for each cell for three different events and sorts these events 

according to their rotate angle (θ) from the lowest to the highest. Then it operates on the 

event list and keeps track of events with a balanced tree (agenda or active tree). As seen 

in Figure 9, the balanced tree sorts the cells according to their distances to the observer. 

The child to the right of the tree of the yellow cell is purple, which is more distant than 
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the yellow while the child to the left (red cell) is closer than the yellow cell. The same 

relationship applies to the blue and green cells. 

Algorithm decides what to do with the event according to the event type while iterating 

over the event list. 

 If the event is a/an: 

 Enter event: Calculate the slope of the cell (See 2.2) and insert it into the active 

tree 

 Center event: Traverse active tree to find if there is a cell which is nearer than this 

cell with a higher slope angle. If there is, mark this cell as not visible and if not 

mark as visible 

 Exit event: Remove the cell from the active tree 

 

 

Figure 9: The active tree 

To find the event (rotate) angle we need to calculate the enter and exit offsets of the cell. 

These offsets are calculated according to the slope of the line which connects the observer 

cell to the current cell. By looking at the slope, we can determine which quadrant contains 

the cell. We can make these calculations as follows: 

Δx = cix − cox  

Δy = ciy − coy 
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Where: 

 cix : x coordinate of the current cell 

 cox : x coordinate of the observer cell 

 ciy : y coordinate of the current cell 

 c0y : y coordinate of the observer cell 

 

 If Δx > 0 and Δy < 0, it means that the cell is in the first quadrant: 

o offsetenter(x, y) = (+0.5, +0.5) 

o offsetexit(x, y) = (−0.5, −0.5) 

 If Δx < 0 and Δy < 0, it means that the cell is in the second quadrant: 

o offsetenter(x, y) = (+0.5, − 0.5) 

o offsetexit(x, y) = (−0.5, +0.5) 

 If Δx < 0 and Δy > 0, it means that the cell is in the third quadrant: 

o offsetenter(x, y) = (−0.5, − 0.5) 

o offsetexit(x, y) = (+0.5, +0.5) 

 If Δx > 0 and Δy > 0, it means that the cell is in the fourth quadrant: 

o offsetenter(x, y) = (−0.5, + 0.5) 

o offsetexit(x, y) = (+0.5, −0.5) 

 If Δx = 0 and Δy < 0, it means that the cell is on the Y- axis: 

o offsetenter(x, y) = (+0.5, + 0.5) 

o offsetexit(x, y) = (−0.5, +0.5) 

 If Δx < 0 and Δy = 0, it means that the cell is on the X- axis: 

o offsetenter(x, y) = (+0.5, − 0.5) 

o offsetexit(x, y) = (+0.5, +0.5) 
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 If Δx = 0 and Δy > 0, it means that cell is on the Y+ axis: 

o offsetenter(x, y) = (−0.5, − 0.5) 

o offsetexit(x, y) = (+0.5, −0.5) 

 If Δx > 0 and Δy = 0, it means that cell is on the X+ axis: 

o offsetenter(x, y) = (−0.5, + 0.5) 

o offsetexit(x, y) = (−0.5, −0.5) 

In the above calculations, the top is considered as Y-, while the bottom is considered as 

Y+, the left is considered as X- and the right is considered as X+ axis. The width and 

height of the cells are equal to 1. All the center event offsets are equal to 0 (See Figure 

10). 

 

Figure 10: Event angles 

After finding the correct offsets of the cells, we can calculate the event angle 𝜃ei as 

follows: 

𝜃ei = atan2(coy − (ciy + offseteiy),  cox − (cix + offseteix)) 

After the iteration over the event list is completed all the cells are marked as either visible 

or not visible (See Algorithm 3).  



27 

 

Algorithm 3 : Van Kreveld’s 

𝐈𝐧𝐩𝐮𝐭𝐬: 𝒄𝟏, … , 𝒄𝑰, 𝑬𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒅𝒂𝒕𝒂 𝒄𝒆𝒍𝒍𝒔 𝒐𝒇 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕; 
𝒄𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒄𝒆𝒍𝒍;  
𝒉𝑶, 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒓 𝒉𝒆𝒊𝒈𝒉𝒕 𝒂𝒃𝒐𝒗𝒆 𝒕𝒆𝒓𝒓𝒂𝒊𝒏;  
𝐎𝐮𝐭𝐩𝐮𝐭: 𝒗𝟏, … , 𝒗𝑰, 𝑽𝒊𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 𝒇𝒍𝒂𝒈 𝒐𝒇𝒄𝒆𝒍𝒍𝒔 𝒊𝒏 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕 
𝒇𝒐𝒓 𝒊 = 𝟏, … , 𝑰 𝒅𝒐 
      𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒕𝒉𝒓𝒆𝒆 𝒆𝒗𝒆𝒏𝒕 𝒐𝒇𝒇𝒔𝒆𝒕𝒔  𝒐𝒇𝒇𝒔𝒆𝒕𝒆𝒗𝒆𝒏𝒕     
      𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒆𝒗𝒆𝒏𝒕 𝒂𝒏𝒈𝒍𝒆:   
      𝜃𝒆𝒊 = 𝒂𝒕𝒂𝒏𝟐(𝒄𝒐𝒚 − (𝒄𝒊𝒚 + 𝒐𝒇𝒇𝒔𝒆𝒕𝒆𝒊𝒚),  𝒄𝒐𝒙 − (𝒄𝒊𝒙 + 𝒐𝒇𝒇𝒔𝒆𝒕𝒆𝒊𝒙))    
      𝒂𝒅𝒅 𝒆𝒗𝒆𝒏𝒕𝒔 𝒕𝒐 𝒆𝒗𝒆𝒏𝒕𝒍𝒊𝒔𝒕     
𝐞𝐧𝐝𝐟𝐨𝐫 
𝑶𝒓𝒅𝒆𝒓 𝒆𝒗𝒆𝒏𝒕𝒍𝒊𝒔𝒕 𝒃𝒚 𝒆𝒗𝒆𝒏𝒕 𝒂𝒏𝒈𝒍𝒆 (𝒍𝒐𝒘𝒆𝒔𝒕 𝒕𝒐 𝒉𝒊𝒈𝒉𝒆𝒔𝒕 
𝒇𝒐𝒓 𝒊 = 𝟏, … , 𝒔𝒊𝒛𝒆(𝒆𝒗𝒆𝒍𝒊𝒔𝒕)𝒅𝒐 
      𝒊𝒇 𝒆𝒊 . 𝒕𝒚𝒑𝒆 𝒆𝒒𝒖𝒂𝒍𝒔 𝒆𝒏𝒕𝒆𝒓   

            𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆 𝒔𝒍𝒐𝒑𝒆   𝜷𝒆𝒊.𝒄 =
𝐞𝐥𝐞𝐯(𝒆𝒊.𝒄)−(𝐞𝐥𝐞𝐯(𝒄𝟎)+𝒉𝒐)

𝐝𝐢𝐬𝐭(𝒄𝟎,𝒆𝒊.𝒄)
   

            𝒂𝒅𝒅  𝒆𝒊. 𝒄 𝒘𝒊𝒕𝒉 𝒔𝒍𝒐𝒑𝒆 𝜷𝒆𝒊.𝒄 𝒕𝒐 𝒕𝒉𝒆 𝒂𝒄𝒕𝒊𝒗𝒆 𝒕𝒓𝒆𝒆    

      𝒆𝒍𝒔𝒆 𝒊𝒇 𝒆𝒊 . 𝒕𝒚𝒑𝒆 𝒆𝒒𝒖𝒂𝒍𝒔 𝒄𝒆𝒏𝒕𝒆𝒓   
            𝒕𝒓𝒂𝒗𝒆𝒓𝒔𝒆 𝒕𝒉𝒆 𝒂𝒄𝒕𝒊𝒗𝒆 𝒕𝒓𝒆𝒆 𝒂𝒏𝒅 𝒇𝒊𝒏𝒅 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒆𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 𝒎𝒂𝒙𝑬𝒍𝒆𝒗 
            𝒊𝒇 𝜷𝒆𝒊.𝒄 >  𝒎𝒂𝒙𝑬𝒍𝒆𝒗  

                  𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒆𝒊.𝒄 = 𝒕𝒓𝒖𝒆 

            𝒆𝒍𝒔𝒆 
                  𝒎𝒂𝒓𝒌 𝒄𝒆𝒍𝒍 𝒂𝒔 𝒏𝒐𝒕 𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒗𝒆𝒊.𝒄 = 𝒇𝒂𝒍𝒔𝒆 

            𝐞𝐧𝐝𝐢𝐟 
      𝒆𝒍𝒔𝒆 𝒊𝒇 𝒆𝒊 . 𝒕𝒚𝒑𝒆 𝒆𝒒𝒖𝒂𝒍𝒔 𝒆𝒙𝒊𝒕   
            𝒓𝒆𝒎𝒐𝒗𝒆 𝒆𝒊. 𝒄 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒂𝒄𝒕𝒊𝒗𝒆 𝒕𝒓𝒆𝒆  
      𝐞𝐧𝐝 𝐢𝐟 
𝐞𝐧𝐝 𝐟𝐨𝐫 

2.3.4 Parallel Algorithms for Viewshed Calculation 
 

The popularity of parallel programing has increased over the years with the availability of 

frameworks such as CUDA and OpenCL. GIS applications also used these techniques to 

increase their performance. LOS and viewshed calculations are important parts of these 

applications, and several research studies have focused on implementing traditional 

sequential algorithms by means of parallel programming techniques. 

Zhao et al. (2013) proposed a parallel implementation of R3 algorithm using GPU. They 

implemented R3 algorithm with a different spatial indexing mechanism, and compared 

the algorithms with each other and also with the CPU version of the algorithm. Osterman 

(2012) adapted R2 algorithm to GPU and compared the results with the CPU version. 

Chao et al. (2011) proposed a different technique to  render 3D terrains with invisible 

areas which are rendered as shadows. As opposed to using an LOS based calculation, they 
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made use of the programmable graphic pipeline to achieve this goal. They passed 

elevation data to vertex and pixel shaders and calculated the visibility of each pixel. 

Cauchi-Saunders & Lewis (2015) used another non-LOS based parallelization technique 

which is using a wave front algorithm, XDraw (Franklin et al., 1994). 

Axell & Fridén, (2015) implemented both R2 and R3 with GPU, and compared the results 

for GPU and CPU. They mainly focused on optimization for R2, and used R3 as a 

comparison algorithm. 

Ferreira et al. (2013) implemented a parallel version of Van Kreveld’s Algorithm on CPU. 

They used a version of algorithm adapted from Fishman, Haverkort, & Toma (2009). They 

basically divided the area of interest into eight sectors, and calculated the viewshed of 

each sector with a separate thread on CPU. 

For rendering, programmable graphic pipeline can be used, for example while generating 

a shadow map, shadows are calculated just like viewshed. However, with GPGPU the 

output viewshed data can be used for further analyses as the output is written directly to 

the global memory. In addition, the size of the analysis area can be much bigger than the 

shader-based approaches because of the limitations of the render buffer size (Khronos 

Group, 2017a). With a GPGPU, based approach, a graphics pipeline is not needed; this 

eliminates the need for using graphics APIs such as OpenGL and specific data types such 

as vertices and pixels. 

2.4 GPGPU 

GPU is a special hardware for processing graphics related data. Due to the nature of 

graphics operations, calculations are suitable to be done in parallel, thus graphics hardware 

architectures are inherently developed to handle massively parallel instructions. OpenCL 

and CUDA are the two main frameworks to make use of the capabilities of GPU hardware 

other things than rendering operations. This is widely known as the general purpose 

programming on graphical processing units (GPGPU). 

OpenCL is the open standard for parallel programming. It is supported by several vendors 

including NVIDIA, AMD and Intel. A code written in OpenCL can also be run on CPU 

(Khronos Group, 2017b). CUDA is a framework developed by NVIDIA and it is a 

proprietary framework specific to NVIDIA GPUs (NVIDIA Corporation, 2017b). 

These two frameworks share similar programming paradigms and essentially provide 

similar functionalities. There is performance comparison research which reports that 

CUDA has better performance for calculations but data copy operation performance has 

no significant difference in a Monte Carlo simulation variation called Adiabatic Quantum 

Algorithm (AQUA) (Karimi, Dickson, & Hamze, 2010). Benchmarks on image and video 

processing also revealed that while CUDA provides better performance for these specific 

applications, data copy operations could become the determining factor in performance 

by causing a bottleneck regardless of the choice of the framework (Temizel et al., 2011). 
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On the other hand, the authors note the evolving nature of these frameworks and suggest 

up-to-date comparisons of the latest versions. Another research indicates that there is no 

significant difference between OpenCL and CUDA (Fang, Varbanescu, & Sips, 2011). 

They used the benchmark suites RODINIA (Che et al., 2009) and SHOC (Danalis et al., 

2010). Performance is not the only reason to choose a framework. OpenCL could be 

chosen for portability reasons, since CUDA only works for NVDIA GPUs. CUDA has a 

more easy development and shipment process than OpenCL with the available tools and 

sources (Klöckner, 2017). 

In this thesis, we used CUDA as the GPGPU framework. Thus, the details of the CUDA 

framework is explained in the following section. Reasons underlying the choice of CUDA 

rather than OpenCL are maturity of available tools, and mobility is not an aim of this 

research. We also used a library called Thrust which is built on CUDA in this thesis. 

2.4.1 CUDA 
 

GPUs have a number of processing units called Streaming Multiprocessor (SM), which 

contains several processing cores. CUDA is a single program multiple data programming 

framework designed utilize this massively parallel architecture (NVIDIA Corporation, 

2009). A thread is a set of execution instructions which can be run on CUDA Core. Each 

SM has its own L1 cache and Shared Memory space and registers. Each SM can access 

global memory and L2 cache. Figure 11 displays a brief overview of CUDA Architecture. 

 

Figure 11: CUDA architecture (NVIDIA Corporation, 2017a) 
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L1 and L2 caches are hardware managed caches, L1 can be disabled with the API calls. 

They cache data when global memory is accessed, which means all the data accessed from 

global memory are cached to L2 and L1 (if enabled) then used by CUDA core. Registers 

are memory spaces for local variables of a thread. Each variable declared in the thread 

resides on registers. The global memory is the largest memory space that can be accessed 

from any thread in any SM, on the other hand, it is the slowest one (NVIDIA Corporation, 

2009). 

Parallel tasks are run on GPU in the form of code segments called “kernels”. Many threads 

execute each kernel on different data in parallel. Threads are grouped into blocks and grids 

(See Figure 12). Grids and blocks are programming abstraction for thread grouping. 

Indeed, threads are assigned to SMs as blocks, and blocks are executed as thread groups 

called “warps”. The size of the warp depends on the target architecture and the compute 

capability of the hardware (NVIDIA Corporation, 2017b). 

 

Figure 12: Thread grouping (NVIDIA Corporation, 2017a) 

There are three types of memory which can be accessed from any thread (See Figure 12). 

Global memory can be used for reading and writing data and is slower than Constant and 

Texture Memory. Constant memory is a special place for constants, and it is read-only. 

Texture memory is like a constant memory, but provides hardware accelerated texture 
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fetching. If data are a set of values that need to be accessed with float values (like series 

of color), then texture memory can be used (NVIDIA Corporation, 2007).  

Each thread has a unique id, which is calculated via block and thread indices, and has its 

own register space (Kirk, 2007). Indices could be in one, two or three dimensions to fit 

the needs of the problem. If two threads want to share data, they can use the shared 

memory as cache if they are on the same block, or could use the global memory, but 

sharing data with the global memory is slower than sharing the data on shared memory.  

The general flow a kernel call is explained below: 

 Copy data from the host (CPU) to the device (GPU) 

 Call the kernel with the desired parameters 

 After the kernel execution is completed, copy the data from the device to the host 

 Use the data in the main program 

To get high performance via GPGPU, threads that execute kernel should occupy the 

device as much as they can.  To achieve this, programmers should carefully adjust their 

algorithms to operate on massive data with light-weight calculations in each thread and 

threads should execute without blocking each other. More independent threads result in 

higher occupancy and  higher performance (NVIDIA Corporation, 2007). If the copy 

operation is time consuming, CPU implementation may yield higher performance than the 

GPU one even when the calculation is faster on GPU. Hence, data transfers need to be 

handled effectively and they need to be optimized and run asynchronously to the 

calculation whenever possible. 

2.4.2 Thrust 
 

Thrust is a C++ library for CUDA based on the Standard Template Library(STL) 

(NVIDIA Corporation, 2011). It uses STL like structures which are natively used in C++ 

programs, and provides powerful abstraction. Programmers could use Thrust, with a 

minimal programming effort, to benefit from CUDA in common problems, such as 

sorting, transformation, reductions, prefix-sums, reordering. It hides CUDA calls and 

operations, and can be used just like a normal C++ library. With this perspective any 

programmer that has no specific CUDA knowledge can benefit from GPGPU. Thrust is a 

highly-optimized library and generally yields a better performance than custom kernel 

calls. Thrust fill operation is reported to be 34 times faster than an un-optimized fill 

operation written in CUDA (Bell & Hoberock, 2012).   

Thrust provides device abstraction, but it can also be used with other kernel calls, as input 

and output with device/host pointer transformations. 
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CHAPTER 3 

3 GPU IMPLEMENTATIONS OF THE ALGORITHMS 

In this chapter, GPU implementations of the algorithms are explained in detail. Thread 

organization, memory layout and copy operations are discussed. 

3.1 GPU Implementation of R3 

In R3 algorithm every LOS calculation can be done independently. For this reason, the 

algorithm is very suitable for parallel execution. Basically, each GPU thread is responsible 

for the LOS calculation of a single cell. This means we have to calculate the correct grid 

and block dimensions to have sufficient number of threads for each cell.  

Elevation data are copied into the global memory of GPU as a one-dimensional array in 

row major order (See Figure 13). 

 

Figure 13: Elevation data on global memory 

The observer index and the area of interest size can be changed; therefore, we may not use 

the whole elevation data for the problem (See Figure 14). The transformation of the area 

of interest (local) index to the global index (elevation data index) must be done for correct 

calculations. Below are the parameter definitions of a problem. The area of interests is a 

rectangular shape, width and height can be changed due to elevation data overflow. That 

is why initial width and height is called as r. 

 𝑜x ,𝑜y: Global coordinates of the observer 

 r: Radius of the area of interest 

 nc , 𝑛r: The size of elevation data (width/height) 

With the given parameters, we can calculate the borders of the area of interests: 
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minx = max (0, 𝑜x  − r) 

maxx = max (nc  − 1, 𝑜x + r) 

miny = min(0, 𝑜y − r) 

maxy = max (nr − 1, 𝑜y + r) 

width = (maxx − minx) + 1 

height = (maxy − miny) + 1 

 

Figure 14: Area of interest in elevation data.  

 

As mentioned above, in order to get the correct results, we need to calculate the grid and 

block dimensions. There are built-in parameters for thread indexing in CUDA: 

 threadIdx.x/y/z : The local index of a thread in a block, can be 3D/2D/1D . 

 blockDim.x/y/z :  The size of a block, can be 3D/2D/1D 

 blockIdx.x/y/z :  The index of a block in a grid, can be 3D/2D/1D 

Since the kernel will operate on 2D data, indexing will be done in 2D.  Figure 15 illustrates 

cell to thread mapping. It should be noted that block dimension is fixed to 32x32. 
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Figure 15: R3 cell to thread mapping  

 Formulas to calculate indices are given below: 

gridDimx = ceil(
width

blockDim. x
) 

gridDimy = ceil(
height

blockDim. y
) 

gTx = blockIdxx x blockDimx + threadIdxx  

gTy = blockIdxy x blockDimy + threadIdxy  

Where: 

 gridDimx and gridDimy are the grid dimensions 

 gTx and gTy are global thread indices 

There could be more threads assigned to a kernel if the area of interest size is not divisible 

by 32. Each thread needs to compare its global indices with the width and height and if 

those values are higher than the area of interest size, they need to remain idle. 
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Since we know the global indices of threads, now we can calculate the global indices of 

cells, gx and gy and the elevation index ei : 

gx = gTx + minx 

gy = gTy + miny 

ei = gx + gy x nc 

With the calculated values, threads can read their elevation data from global memory and 

make the LOS calculations for their respective cell. Output viewshed is also a one-

dimensional array that has an equal size with elevation data and the same indexing 

mechanism. Threads can write output to viewshed array with the elevation index. 

The slope angles of the cells could be calculated separately and these values could be 

inserted to a look up table. After this process, LOS slope angles of each cell could be 

gathered from that map. However, with this approach, extra global memory space for look 

up table needs to be allocated and global memory will be accessed for three time, for 

reading elevation data while calculating slopes, for writing calculated slope to the look up 

table, and reading slope while calculating LOS. For this reason, in each thread, slope 

angles are calculated after rasterization process. The calculated slope values are saved into 

registers. With this approach only one global access is required which is reading elevation 

data. In summary, following are the steps of the GPU implementation of R3 (See 

Algorithm 1 for calculations): 

 Allocate global memory on GPU for elevation data with the size of nc x nr 

 Copy the elevation data from CPU to GPU 

 Allocate global memory on GPU for output viewshed with the size of nc x nr 

 Calculate the borders of the area of interest 

 Call kernel with the parameters  

 Calculate the global indices of cells and the elevation indices with each thread 

 Make LOS calculations for each cell and write the output viewshed data with the 

calculated elevation index 

 Copy the output viewshed data from GPU to CPU 
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3.2 GPU Implementation of R2 

GPU implementation of R2 is very similar to R3 implementation. The only difference is 

that threads do not calculate LOS for each cell. Instead, they only calculate LOS for border 

cells of the area of interest. This leads different cell-to-thread mapping calculations for the 

algorithm. 

The elevation data structure and the output viewshed data on GPU are the same with those 

in the R3 algorithm (See Figure 13). The calculation of borders and the width, height of 

the area of interest are also similar (See Figure 14). In the R3 algorithm, thread count 

needs to be equal to the total count of cells in the area of interest, however, now algorithm 

only needs threads for borders. To achieve this, threads need to be sorted along the borders 

of the area of interest, so one-dimensional grids are needed which entail one dimensional 

threads. 

Since the maximum number of the threads that can be used in each block is 1024 in the 

target hardware, this value is chosen as the block dimension (NVIDIA Corporation, 2014). 

This maximum value can show variation for different hardware. Because of this, it should 

be queried and assigned as a block dimension. Figure 16 exhibits the block structure, local 

and global indices of threads. 

 

Figure 16: Local and global indices  

Figure 17 displays the threads with global indices around the border of the example area 

of interest which has size of 7x5 cells. 

To calculate the thread count we use the following formulas: 

cc = ((width + height) x 2) − 4 

     

gridDim = ceil(
cc

1024
) 

Where: 
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 cc is the total cell count that we need to calculate LOS 

 gridDim is the number of blocks we need, so we will call our kernel with a total 

thread of gridDim  x 1024 

If cc is not divisible by 1024 we will call our kernel with idle threads, those threads need 

to check their indices and they need to remain idle if it is higher than cc. 

 

Figure 17: R2 cell to thread mapping  

Now we need to calculate the cell indices of each thread from their global indices. The 

global index of thread gTi was calculated as follows (See Figure 16): 

gTi = blockIdxx x blockDimx x threadIdxx  

By checking gTi we can now determine the global index of cells, gx and gy (See Figure 

17):  

 If gTi < width then this means thread is at the top side of border: 

gx = minx + gTi 

gy = miny 

 If gTi ≥ width AND gTi < width + height − 1  then this means thread is at the 

right side of border: 

gx = maxx 

gy = miny + (gTi + 1) − width 
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 If gTi ≥ width + height − 1 AND gTi < (2 x width) + height − 2  then this 

means thread is at the bottom side of border: 

gx = maxx − ((gTi  +  1)  −  (width +  height −  1)) 

gy = maxy 

 If gTi ≥ (width x 2) + height − 2 then this means thread is at the left side of 

border: 

gx = minx 

gy =  maxy − ((gTi  +  1)  −  ((width x 2) +  height −  2)); 

Since we know the global index of the cell in the elevation data we can read the elevation 

data of the cell with the elevation index ei and calculate LOS and write the output to the 

viewshed data: 

ei = gx + gx x  nc 

Each thread will calculate the LOS for the border cells separately with the calculated 

indices, and will write the viewshed results of all the cells intersected with their LOS line. 

The last value of the thread that writes the output will be used as the final result. 

Following is the summary of the steps of the GPU implementation of R2 (See Algorithm 

2 for calculations): 

 Allocate a global memory on GPU for the elevation data with the size of nc x nr 

 Copy the elevation data from CPU to GPU 

 Allocate a global memory on GPU for the output viewshed with the size of nc x 

nr 

 Calculate the borders of the area of interest 

 Call kernel with the parameters  

 Calculate the global indices of the cells and the elevation indices with each thread 

 Make LOS calculations for each border cell and write the output viewshed data 

with the calculated elevation index and write the output for each intersected cell 

as well 

 Copy the output viewshed data from GPU to CPU 
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3.3 GPU Implementation of Van Kreveld’s Algorithm 

R3 and R2 algorithms are more suitable for parallel execution because they have 

independent tasks (LOS calculations for a cell), and their outputs do not need a merge 

operation. Each thread executes and writes without sharing data or blocking each other. 

On the other hand, Van Kreveld’s Algorithm heavily depends on serial execution, but we 

can still gain benefit from parallel execution by dividing it into sub-steps. 

Van Kreveld’s Algorithm has three main steps (See Section 2.3.3 for details): 

1. Calculating event angles for three event types for each cell 

2. Sorting events according to their event angles from lower to higher 

3. Iterating over the event list and calculating visibility for each cell 

Step 1 has independent calculations for each cell. We need to calculate event angles for 

three event types, which means we can assign this task for one thread for one cell. 

Mapping of threads to cells can be done with the same method used in R3 algorithm (See 

Figure 15 for a visual representation and Section 3.1 for index calculations). Grid and 

block dimension calculations will be the same as well. 

Step 1 does not need elevation data for event calculations, but it requires a memory block 

for the writing of the event calculations. We need the following fields and field types for 

each event in our event list: 

 Event type (Enter, Exit or Center) (char – 1 Byte) 

 Distance to the observer (float – 4 Byte) 

 Event angle (float – 4 Byte) 

 Index of cell, x y (unsigned short int – 2 Byte) (For x and y total 4 Byte) 

This means that the event structure needs a total of 16 bytes of memory with padding. For 

each cell, we need three events. Therefore each cell needs a total 48 bytes of memory 

space. For an area of interest with size width x height the total event size es is calculated 

as follows: 

es = width x height x 3 

This means that the algorithm needs approximately 1 GB of memory space for an area of 

interest with size 5000x5000 for Step 1 calculations, which is relatively high compared to 

other algorithms. 
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The event list is allocated as a one dimensional array on the global memory, similar to the 

elevation data (See Figure 13) Thread-to-cell mapping and global index calculations are 

the same with those in R3 algorithm. Threads can access their event data just like they 

reach their global elevation indices ei (See Section 3.1 for ei calculations), but since each 

cell has three event types and event list works with local cell index (index of cell in area 

of interest), the calculation of the event index evi differs from the elevation index ei 

evi  = (gTx  + gTy x width) x 3 

 Figure 18 exhibits the event list on global memory, the grid shows the local cell 

indices gTxand gTy , the bottom array shows event types, the cell and event indices. 

 

Figure 18: Event list in global memory.  

Each thread needs to add an offset to write their respective event type into memory: 

 EnterEvent = evi 

 CenterEvent = evi + 1 

 ExitEvent = evi + 2 

All the parameters are then known for the calculation and writing events. Each thread 

calculates the needed values and writes them into the global memory (See 2.3.3 for event 

calculations) 

After Step 1 we need to sort the events according to their event angles. Since the event 

data is not copied back to the CPU yet, Thrust can be used to sort events, with the usage 

of device pointer wrapper. 
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Step 3 is the sequential part of the algorithm, because this part iterates over the event list, 

and all the calculations depend on the calculations made previously. An alternative 

approach to parallelize this part would be to use the Thrust device vector to hold the active 

list. While iterating over the event list, events are inserted, searched and removed with 

Thrust calls. However, every step in iteration over the event list, makes this call highly 

time consuming and inefficient because at each iteration, the event list should be updated 

according to the event type, which needs a CPU-GPU memory transfer, and at each 

iteration only one event is searched, removed or added. The second approach entailed 

using methods like that used by Ferreira et al., 2013 and dividing the area into sectors. 

However, in that case, the event list needs to be calculated separately for each sector, and 

iterating over these event lists on GPU is not effective; indeed, it could be even slower, 

because of the need for a dynamic allocation while inserting events to the active tree. 

Moreover, calculations are too complex for lightweight GPU threads, because each thread 

will be iterated sequentially over its own event list. CPU parallelism is better for this 

algorithm, because iteration over eight divisions of a sector is more suitable for CPU 

threads; to gain advantage over CPU, dozens of GPU threads need to be executed at the 

same time. As a result, this part of algorithm remained the same with the original 

algorithm. 

Below is a summary of the steps of the GPU implementation of Van Kreveld’s Algorithm 

(See Algorithm 3 for calculations): 

 Allocate a global memory on GPU for the event list data with the size of es 

 Calculate borders of the area of interest 

 Call kernel with the parameters  

 Sort the event list with Thrust 

 Copy the event list data from GPU to CPU 

 Iterate over the event list and calculate the viewshed on CPU 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

In this chapter, the results of the algorithms are presented and discussed, the algorithms 

are compared to each other, based on their execution time and memory usage. 

4.1 Specifications of the Hardware and Software 

CPU: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz 8 Core 

GPU: NVIDIA Tesla K40c Compute Capability 3.5 

RAM: 32 GB 

OS: Windows 7 

IDE: Visual Studio 2013 / C++ 

CUDA Version: v7.5 

Architecture: x64 

*All CPU tests run with single-thread 

4.2 Results And Disccusion 

Each algorithm was tested with CPU and GPU, and execution time results were calculated 

as average of 10 iterations. There are 5 different elevation data with size of 5000x5000, 

10000x10000, 15000x15000, 20000x 20000, 25000 x 25000. 

Because of the high memory usage of Van Kreveld’s Algorithm, tests with large elevation 

data cannot be run; the upper limit of the algorithm is 10000x10000 elevation data with 

and area of interest radius of 3127. 

The output viewshed is saved as a bitmap file that has an equal size with the elevation 

data. The visible pixels are painted green, not visible pixels are painted red. Outputs are 

compared with the comparison of bitmap files pixel by pixel. 

All execution times were measured with the QueryPerformanceCounter function provided 

by Windows API. It is the highest precision timer of the Windows platform which has 

high resolution (<1 microsecond) (Microsoft, 2010). In timing tables, CPU and GPU 
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timings are given in milliseconds, and the Speed Up column shows the performance 

comparisons of CPU and GPU implementations of the respective algorithm. 

Timing results were discussed according to usage of the algorithm in different 

applications. There are two kind of applications defined in the discussions: 

 Real-time applications: Applications that use analysis results to provide on-the-

fly information, such as games, simulations and moving map applications. The 

analysis time results should be as low as possible to achieve the desired frame 

rates, because the observer point is not fixed, and analysis results should be 

updated for every couple of frames. These update period and target frames rate 

depend on the needs of application. 

 Offline applications: Applications that use analysis results to provide an 

information about a fixed-point observer. While it is desirable to get the results as 

fast as possible, the user of the application could wait for a couple of minutes to 

get the analysis results. GIS applications are examples of offline applications. The 

result of the algorithm could be used for a placement of an object. 

4.2.1 Time Results 
 

Table 1 presents the results of R3. As expected R3 gains significant benefit from GPU 

implementation; speed up reaches up to 168x. The speed up value increases when the 

output grows because GPU occupancy can still not reach its limits.   

Table 1 : Results of R3 algorithm 

Area Size CPU Execution 

Time (ms) 

GPU Execution 

Time (ms) 

Speed Up 

5000x5000 254128 2433 104 

10000x10000 3034460 22111 137 

15000x15000 10619550 75319 141 

20000x20000 27337700 178960 153 

25000x25000 59090500 350539 168 

 

The timings show us that algorithm can be used in real time for area of 5000x5000; it lasts 

about 2.4 seconds, but the viewshed should not be updated for each frame. For offline 

calculations GPU implementation greatly reduces the calculation time. At an area of 

25000x25000, the CPU version lasts for 16 hours, which is unacceptable for most 

applications. On the other hand, the GPU version lasts for only 6 minutes. Even if the 
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algorithm is not usable for real time usage, the offered algorithm can be used for offline 

calculations with workable time using the GPU version. 

For an area size of 20000 x 20000, Zhao et al. (2013) gained a speed up value of 95 with 

GPU implementation of R3 compared to CPU implementation of R2. Their CPU version 

lasts 16917 seconds, while our implementation lasts 27337 seconds, and their GPU 

version lasts 203 seconds, while ours lasts 178 seconds.  In addition to being a different 

implementation, the execution times also differ due to use of different test hardware. In 

addition, they use real geographical elevation data for their algorithms. 

Table 2 : Results of R2 algorithm 

Area Size CPU Execution 

Time (ms) 

GPU Execution 

Time (ms) 

Speed Up 

5000x5000 696 192 3.6   

10000x10000 3429 398 8.5 

15000x15000 8145 923 8.8 

20000x20000 15832 1677 9.4 

25000x25000 27333 2620 10.5 

 

Table 2 presents the results of R2 which shows that the speed up reaches up to 10.5x. R2 

speed up rates are significantly less than R3 because it does not make use of GPU threads 

as much as R3 does. On the other hand, its CPU and GPU execution times are significantly 

less than their R3 counterparts. Due to lower execution times, R2 algorithm can be used 

in real-time applications, and it can be updated per couple of frames without affecting 

application performance for areas 5000x5000 (which lasts 192 milliseconds) and 

10000x10000 (which lasts 399 milliseconds).  It is also reducing the analysis wait time 

for offline applications for area of 25000x25000; CPU version lasts about 27 seconds 

while GPU version lasts 2.6 seconds. 

Figure 19 exhibits the speed up of GPU R2 compared to GPU R3. It gains a speed up to 

153x. 

 

For an area size 16001 x 16001 Axell & Fridén (2015) gained speed up value 29.4x with 

GPU implementation of their variant of R2 algorithm compared to CPU implementation 

of R2. They highly focused and optimized R2 algorithm, while our implementation only 

distributes LOS calculations to threads, which is why our speed up value is 10.5x for area 

size 25000x25000. 
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Figure 19: R2 GPU speed up compared to R3 GPU  

 

Figure 20: R2 CPU speed up compared to R3 CPU  
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Figure 21: Van Kreveld’s CPU speed up compared to R3 CPU  

Table 3 : Results of Van Kreveld’s algorithm 

Area Size CPU Execution 

Time (ms) 

GPU Execution 

Time (ms) 

Speed Up 

5000x5000 29306 20208 1.5   

6254x6254 59275 43600 1.4 

10000x10000 160899 N/A N/A 

15000x15000 551290 N/A N/A 

20000x20000 1169660 N/A N/A 

25000x25000 2841270 N/A N/A 

 

Table 3 shows the results of Van Kreveld’s Algorithm. As expected, the CPU version of 

the algorithm performance is between R3 and R2 algorithms (See Figure 20). However, 

the GPU version does not get benefit from GPU implementation very much and the speed 

up is only 1.5x. This proves that event calculations and sorting are not the time-consuming 

part of the algorithm but the event list iteration is. 
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Ferreira et al. (2013) gained 12x speed up with their parallel CPU Van Kreveld’s 

algorithm compared to the original algorithm. This shows that Van Kreveld’s Algorithm 

is much more suitable to CPU parallelism than GPU. 

Appendix C shows the profiler results of algorithms R3 and R2. R2 threads have more 

distributed workload while R3 threads have more unorganized workload. This is expected 

because at R2 each thread calculates nearly same LOS, while at R3 threads that map to 

closer cells to observer have lower calculations. On the other hand, R3 has a lot more 

warps and threads to cover whole area that is shown while R3 uses more calculation power 

and its overall occupancy for each thread is lower. The speed up increase of R3 is higher 

than R2 because of thread count that R3 uses. Instruction per warp and instruction per 

clock shows R2 and R3 work distribution. R2: issued/executed ratio is high- meaning 

serialization, issue stall reasons are mostly "memory dependency" and "constant miss". 

Further optimizations of this algorithm could first focus on memory optimizations.R3: 

Issue stall is mostly due to "pipe busy". This algorithm is mostly arithmetically bound and 

further optimizations could first focus on instruction level parallelism and using higher 

throughput arithmetic operations. 

4.2.2 Memory Usage 
 

All the memory sizes in the tables are in megabytes. The CPU Memory column shows the 

total memory needed by the algorithm on CPU. The GPU Memory Column shows the 

total memory needed by the algorithm on GPU. 

Table 4 : Memory usage of R3 algorithm 

Area Size Elevation 

Data (MB) 

Viewshed 

Data (MB) 

CPU Memory 

Usage (MB) 

GPU Memory 

Usage (MB) 

5000x5000 95 23 118 118 

10000x10000 381 95 476 476 

15000x15000 858 214 1072 1072 

20000x20000 1525 381 1906 1906 

25000x25000 2384 596 2980 2980 

 

Table 4 shows the memory usage of the R3 algorithm; its memory usage depends on the 

size of the elevation data. It increases exponentially. Applications must be compiled as 

64bit for bigger area sizes like 2000x2000 and 2500x2500 because the usage of memory 

exceeds 32bit limits (2 GB). Most of the modern computer setups has more than 4 GB 

RAM, and the CPU memory usage of the algorithm is enough for these setups. For 

5000x5000 and 10000x10000 algorithm can be run on a normal CUDA enabled GPU but 
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for bigger area sizes it needs a separate CUDA enabled hardware that is not used for 

graphical output.  

Table 5 : Memory usage of R2 algorithm. 

Area Size Elevation 

Data (MB) 

Viewshed 

Data (MB) 

CPU Memory 

Usage (MB) 

GPU Memory 

Usage (MB) 

5000x5000 95 23 118 118 

10000x10000 381 95 476 476 

15000x15000 858 214 1072 1072 

20000x20000 1525 381 1906 1906 

25000x25000 2384 596 2980 2980 

 

Table 5 shows the memory usage of the R2 algorithm. It has a similar character with R3 

algorithm. This is expected since two algorithms has different calculation methods for the 

same data. They do not need any different temporary memory space. They operate on 

elevation data and write the output to the allocated viewshed data. 

Table 6 : Memory usage of Van Kreveld’s algorithm. 

Area Size Elevation 

Data (MB) 

Viewshed 

Data (MB) 

Event List 

Data (MB) 

CPU 

Memory 

Usage 

(MB) 

GPU 

Memory 

Usage 

(MB) 

5000x5000 95 23 1011 118 118 

6254x6254 381  95 1791 2267 1791 

10000x10000 381 95 4487 4963 4487 

15000x15000 858 214 10164 11236 10164 

20000x20000 1525 381 18129 20035 18129 

25000x25000 2384 596 28384 31364 28384 

 

Table 6 presents the memory usage of Van Kreveld’s Algorithm. As previously 

mentioned, this algorithm cannot run with an area larger than 6254x6254 in GPU because 

of the memory needed by the event list data. Furthermore, Thrust sort algorithm uses 

merge sort for the non-primitive type, which means, that it needs a temporary storage for 

sorting (Bell & Hoberock, 2012). The implication of this is that the algorithm cannot run 
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even if the allocated memory does not overflow; it cannot sort larger event list data. An 

area of 6254x6254 uses 10000x10000 elevation data, but since the implemented GPU 

version does not use elevation data on GPU, it is not a waste of memory on GPU. 

Van Kreveld’s Algorithm uses much more memory compared to the other algorithms, and 

only an area size up to 6254x6254 can be run on our target GPU. There is sufficient 

memory for greater area size, but as mentioned Thrust needs temporary memory for 

sorting. If we change the sorting method to some in-place sorting algorithm the overall 

speed up will be lower because Thrust uses a highly-optimized sorting technique. Even 

with this technique, the GPU benefit is not worth the effort. Changing the sorting 

mechanism for lower memory usage will make it worse. This algorithm needs a separate 

CUDA enabled hardware that is not used for graphical output for area sizes bigger than 

5000x5000. The CPU memory usage is also very high; the target hardware needs to have 

more than 32GB RAM for area size 25000x25000. Hardware cost increases for this 

algorithm compared to the other algorithms, and performance gain is not satisfying 

enough to choose this algorithm. 

4.2.3 Viewshed Comparison 
 

Figure 22 shows the outputs of three algorithms for area size 10000x10000. Visible cells 

are painted green and not visible cells are painted red. 

Each GPU implementations produced the same viewshed output with their CPU 

counterpart. In Table 7 and Table 8 outputs of R2 and Van Kreveld’s Algorithm are 

compared with that of R3. R3 is used as the base algorithm since R3 is the most accurate 

method within these three algorithms and we do not have ground truth about visibility 

results of these height maps. These are generated data, even if these were real elevation 

data of a terrain, it is a very time-consuming process to mark each DEM point visibility 

by checking the real terrain. 

   

Van Kreveld’s R3 R2 

Figure 22: Sample viewshed outputs of different algorithms (10000x10000) 
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Table 7 : Different pixels of R2 

Area Size Different 

Pixel Count 

Different 

Pixel Ratio 

False 

Negative Pixel 

Count 

False Positive 

Pixel Count 

5000x5000 27760 %0.11 15566 12194 

10000x10000 221477 %0.22 121924 99543 

 

 

 

Table 8 : Different pixels of Van Kreveld’s algorithm 

Area Size Different 

Pixel Count 

Different 

Pixel Ratio 

False 

Negative Pixel 

Count 

False Positive 

Pixel Count 

5000x5000 56559 %0.22 54701 1858 

10000x10000 343942 %0.34 334571 9371 

 

Table 7 and Table 8 show the different pixel count and ratio of R2 and Van Kreveld’s 

Algorithm compared with R3 output. Results of R2 are more similar to R3 than Van 

Kreveld’s Algorithm. The reason is that our R2 implementation uses the same mechanics 

with R3. On the other hand, Van Kreveld’s Algorithm includes a tree, an event list 

mechanism. False negative means that algorithm marks cell as not visible while it is 

visible, and false positive means that algorithm marks cell as visible while it is not visible. 

R2 false negative-positive values are closer to each other while Van Kreveld’s Algorithm 

is more inclined to mark cell as not visible.  Both algorithms mark more cells as not visible 

than R3. 
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CHAPTER 5 

 

5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

We have parallelized and implemented three different algorithms on GPU: R3, R2 and 

Van Kreveld’s Algorithm. R3 is the most time-consuming algorithm, while Van Kreveld’s 

is the second and finally R2 is the least time-consuming, the fastest algorithm. The results 

show that R3 benefits from the GPU implementation more than the others. With the help 

of GPU parallelism, R3 can be used for very large terrains in offline applications; it gains 

up to 168x speed up with the GPU implementation. 

R2 can be used for real-time applications for an area of 10000x10000. It only lasts about 

400ms. It also has a very similar output and needs exactly the same memory as that of R3.  

If the performance is more important than accuracy, R2 should be chosen. R2 gains up to 

10.5x speed up with our GPU implementation. On the other hand, there is no reason to 

choose Van Kreveld’s Algorithm over R2 for GPU implementation because of high 

memory usage, worse performance and high error rate. The proposed method for Van 

Kreveld’s Algorithm is not sufficient to gain benefit from GPU parallelism; it only gets 

1.5x speed up. 

5.2 Future Work 

In this thesis, all algorithms use height map in Cartesian coordinate system. These 

algorithms can be compared with the geographical coordinate system and distances can 

be calculated with geodetic curves. R2 accuracy can be improved with the addition of a 

decision mechanism for which thread should write the final visibility of a cell. 

R3 work distribution could be increased by combining closer cells’ LOS calculation to 

one thread, but this requires different cell-to-thread mapping calculations, and calculation 

cost for each cell needs to be determined. R2 could be modified to use higher number of 

threads in order to benefit from the massively parallel architecture of the GPU.Our 

proposed Van Kreveld’s Algorithm method can be combined with the method of Ferreira 

et al. (2013). In their method, the area is divided in sectors and each sector viewshed is 

calculated separately in CPU threads. Event lists and sorting of each sector can be 

calculated at GPU and then CPU threads can iterate over those separate lists. In order to 

make this method work with greater terrains, the memory usage of the algorithm should 

be decreased. This can be done with the usage of a different sorting technique that does 

not need temporary memory space. 
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APPENDICES 

 

APPENDIX A 

 

ELEVATION FORMAT 

 

Elevation data format used in this thesis is a basic height map. The file contains integer 

values for elevation of each cell, using binary format. Elevation matrix stored in the file 

in column-major order. The file does not contain the size of the area stored, so user 

needs to access data with the correct column and row count. Here is the example code 

for reading elevation data as 1D and 2D: 

 
typedef int elev_t; 
int column = 5000; 
int row = 5000; 
elev_t** elev; 
//Read elevation 2D 
FILE* f = fopen(elevPaths[i], "rb"); 
elev = new elev_t*[row]; 
for (int k = 0; k < row; k++) { 
 elev[k] = new elev_t[column]; 
 fread(reinterpret_cast<char*>(elev[k]), sizeof(elev_t),column, f); 
} 
fclose(f); 
 
elev_t* elev1D = new elev_t[nrowCounts[i] * nColumnCounts[i]]; 
//Read elevation 1D 
f = fopen(elevPaths[i], "rb"); 
int readCount = 0; 
for (int k = 0; k < row; k++) { 
 fread(reinterpret_cast<char*>(elev1D + readCount), sizeof(elev_t), column, 
f); 
 readCount += column; 
} 
fclose(f); 
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APPENDIX B 

 

CODE STRUCTURE 

You can download the source code used in this thesis from:  

https://github.com/dcfu/gpuviewshed/ 

Link includes .sln file for Visual Studio 2013. CUDA v7.5 needed to compile the source 

code. 

Simply open “CUDAParallelViewshed.sln” file with Visual Studio and compile. No linux 

support is provided. 

Here is the list of the files and libraries: 

EasyBMP: Includes BMP image format manipulation codes, downloaded from: 

http://easybmp.sourceforge.net   

helper_cuda.h , helper_string.h: CUDA error checking, provided by NVDIA 

kernel.h: Contains signatures of kernel call wrapper functions 

kernel.cu: Contains actual CUDA implementation of kernels 

thrustOperations.cu: Contains methods that use Thrust 

rbbst.h, rbbst.cc: Contains tree implementation used for active tree in Van Kreveld’s 

Algorithm, provided by Laura Toma, Bowdoin College - ltoma@bowdoin.edu, Yi Zhuang 

- yzhuang@bowdoin.edu 

main.cpp: Contains actual test codes and methods 

Note: Van Kreveld's Algorithm is based on code provided by : 

Ferreira, C.R., et al., 2013. A Parallel Sweep Line Algorithm for Visibility Computation. 

In: Proceedings of the XIV Brazilian  Symposium on GeoInformatics (GeoInfo 2013), 

Campos do Jordão, SP Brazil: 85-96. 

 

 

https://github.com/dcfu/gpuviewshed/
mailto:yzhuang@bowdoin.edu
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APPENDIX C 

PROFILER RESULTS 

R2 
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