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ABSTRACT 

ADVANCED TWO- AND THREE-DIMENSIONAL TSUNAMI MODELS: 

BENCHMARKING AND VALIDATION 

 

VELİOĞLU, Deniz 

Ph. D., Department of Civil Engineering 

Supervisor: Prof. Dr. Ahmet Cevdet Yalçıner 

 

June 2017, 380 pages 

 

Field observations provide valuable data regarding the nearshore tsunami impact, yet 

only in inundation areas where tsunami waves have already flooded. Therefore, 

tsunami modeling is essential in order to understand tsunami behavior and prepare 

for tsunami inundation. Analytical and numerical methods are widely applied to 

predict tsunami motion and inundation characteristics. On the other hand, the data 

obtained from field surveys and laboratory experiments are generally used for 

validation and performance assessment of numerical models. Nonlinear forms of 

two-dimensional depth-averaged shallow water equations are the most common tools 

that are used to estimate tsunami wave transformation and inundation. However, they 

may not suffice when three-dimensional flow characteristics, such as strong turbulent 

motion, develop in shallow water zones due to various nearshore conditions. In this 

respect, the performance of numerical codes that are capable of predicting tsunami 

motion in shallow water zones gains more importance. There are numerous 

numerical codes to be used for simulating tsunami motion and inundation. In this 

study, two numerical codes, NAMI DANCE and FLOW-3D
®
, are selected for 

validation and performance comparison. NAMI DANCE solves nonlinear forms of 

two-dimensional depth-averaged shallow water (2D-NSW) equations in long wave 

problems, specifically tsunamis. FLOW-3D
®

 simulates linear and nonlinear 

propagating surface waves as well as long waves by solving three-dimensional 

Reynolds-averaged Navier-Stokes (3D-RANS) equations. The codes are validated 
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and their performances are compared via analytical benchmarking, experimental 

benchmarking and field benchmarking. The results are assessed according to the 

accuracy and run time of the solutions. The variations between the numerical 

solutions of two- and three-dimensional models are evaluated through statistical error 

analysis. By referring to the validity range determined by these comparisons, 

recommendations pertinent to applying relevant models to various tsunami problems 

are made. 

 

Keywords: Tsunami, inundation, solitary wave, long wave, shallow water, 

benchmarking, 2D-NSW, 3D-RANS, NAMI DANCE, FLOW-3D
®
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ÖZ 

GELİŞMİŞ İKİ VE ÜÇ BOYUTLU TSUNAMİ MODELLERİ: KIYASLAMA 

VE DOĞRULAMA 

 

VELİOĞLU, Deniz 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Ahmet Cevdet Yalçıner 

 

Haziran 2017, 380 sayfa 

 

Saha gözlemleri, tsunaminin yakın kıyıdaki etkisine dair değerli verilerin 

toplanmasına olanak sunmaktadır ancak bu bilgiler sadece daha önce tsunami su 

baskını yaşanan alanlarda elde edilebilmektedir. Bu nedenle tsunami davranışını 

anlamak ve tsunami su baskınına karşı önlem alabilmek için tsunami modellemesi 

yapmak gereklidir. Analitik ve sayısal metotlar, tsunami hareketi ve tsunami su 

baskın karakterlerini tahmin edebilmek için yaygın olarak uygulanmaktadır. Öte 

yandan, arazi çalışmaları ve laboratuvar deneylerinden elde edilen veriler genellikle 

sayısal modellerin doğrulanması ve performans değerlendirmesi için 

kullanılmaktadır. İki boyutlu derinliğe göre ortalaması alınmış sığ su denklemlerinin 

doğrusal olmayan formları, tsunami dalga dönüşümünü ve su baskınını tahmin etmek 

için kullanılan en yaygın araçlardır. Ancak, bu araçlar güçlü türbülans hareketleri 

gibi üç boyutlu akım özelliklerinin oluştuğu sığ su bölgelerinde yeterli olmayabilir. 

Bu bakımdan sığ sulardaki tsunami hareketini tahmin edebilen sayısal modellerin 

performansı daha da önem kazanmaktadır. Tsunami hareketinin ve tsunami su 

baskınının benzetimi yapan bir çok sayısal model vardır. Bu çalışmada, doğrulama 

ve performans karşılaştırması için iki sayısal kod, NAMI DANCE ve FLOW-3D
®
, 

seçilmiştir. NAMI DANCE, uzun dalga – özellikle tsunami – problemlerinin 

benzetiminde, iki boyutlu derinliğe göre ortalaması alınmış doğrusal olmayan sığ su 

(2D-NSW) denklemlerini kullanmaktadır. FLOW-3D
®
 ise doğrusal ve doğrusal 

olmayan yüzey dalgaları ile uzun dalga ilerlemesini, üç boyutlu Reynolds ortalamalı 
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Navier-Stokes (3D-RANS) denklemlerini çözerek benzetimlemektedir. Kodlar 

analitik kıstas problemler, deneysel kıstas problemler ve alansal kıstas problemlere 

uygulanarak doğrulanmış ve performansları karşılaştırılmıştır. Sonuçlar, çözümlerin 

hassasiyeti ve benzetimlerin tamamlanma zamanına göre incelenmiştir. İki ve üç 

boyutlu modellerin sayısal çözümleri arasındaki farklılıklar istatistiksel hata analizi 

uygulanarak değerlendirilmiştir. Bütün bu karşılaştırmaların sonunda saptanan 

geçerlilik sınırları göz önüne alınarak, çeşitli tsunami problemlerine uygulanacak 

ilgili modeller hakkında önerilerde bulunulmuştur. 

 

Anahtar Kelimeler: Tsunami, baskın, soliter dalga, uzun dalga, sığ su, kıyaslama, 

2D-NSW, 3D-RANS, NAMI DANCE, FLOW-3D
®
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CHAPTER 1  
 

 

INTRODUCTION 

 

1. INTRODUCTION 

 

“The fishermen know that the sea is dangerous and the storm terrible,  

but they have never found these dangers sufficient reason for remaining ashore.” 

Vincent Van Gogh 

 

 

 

1.1. General Description 

 

Coastal regions have always been attractive settling grounds for human populations 

since they have provided a great deal of marine resources and opportunities for 

transportation and trade. This has led to high population densities and high levels of 

development in many coastal regions. Today, a large part of the world’s population 

inhabits coastal areas and the population density on these regions is still growing 

rapidly. However, coastal environments are dynamic natural systems and they pose a 

great challenge to human habitation since they are prone to water related hazards 

such as floods, storms and tsunamis, tsunamis being one of the most devastating 

hazards related to these dynamics.  

 

The term tsunami originates from Japanese and it stands for harbor wave. Tsunamis 

were referred to as harbor waves before the Great Sanriku earthquake, which occured 

in Japan in 1896. Nearly 27,000 people were killed and over 10,000 buildings were 

destroyed after the tsunami triggered by the earthquake. It was then that the term 

tsunami came into use in other languages with its new definiton as seismic sea 

waves. 

 

A tsunami is an extremely long wave or a series of waves that are generated by the 

displacement of a substantial volume of water or perturbation of the sea. There are a 

number of factors that lead to the generation of large displacements in a body of 
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water, namely disturbances which are known to be primarily triggered by 

earthquakes that occur below or near the ocean floor, landslides, volcanic eruptions, 

atmospheric pressure changes, underwater explosions, glacier calvings or more rarely 

meteorite strikes and nuclear tests. Figure 1.1 shows several generation mechanisms 

of a tsunami. Any large body of water can lead to the occurrence of a tsunami. Even 

in inland lakes, a tsunami may take place due to landslides or glacier calving. Very 

small tsunamis occur frequently as a result of minor earthquakes and other events. 

These are not considered to be destructive and they can not be detected without 

specialized equipment. 

 

 

 
Figure 1.1. Tsunami wave generation mechanisms: (a) earthquakes; (b) volcanic eruptions; 

(c) landslides; (d) meteorite strikes (Switzer, 2005) 

 

Since 1850s, 440,000 lives have been lost and the damage to coastal structures and 

habitats amounts to billions of dollars as a consequence of tsunamis. The most recent 

and destructive tsunamis occurred as a result of 2004 Indian Ocean earthquake and 

2011 Great East Japan earthquake. The devastating impact was created by the 

occurrence of strong tsunami-induced currents and massive flow depths in inundation 

zones. Figure 1.2 portrays the effects of 2004 Indian Ocean Tsunami on Sumatra Island 

and the effects of 2011 Great East Japan Tsunami along the east coasts of Japan. 

(a) 

(d) (c) 

(b) 
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Figure 1.2. (a) A devastated city, Banda Aceh, located on the island of Sumatra after the 

2004 Indian Ocean tsunami (Credit: DigitalGlobe); (b) another view of Banda Aceh, the 

most devastated region in Indonesia, struck by the 2004 Indian Ocean tsunami (Credit: U.S. 

Navy); (c) a yacht washed ashore by the 2011 Great East Japan tsunami sits on top of a 

building in Otsuchi, Japan (Credit: Yomiuri Shimbun); (d) soil-liquefaction at Shinkiba after 

the 2011 Great East Japan tsunami (Credit: Morio); (e) tsunami wave hitting Miyako City 

located in Iwate Prefecture after the 2011 Great East Japan earthquake (Credit: 

REUTERS/Mainichi Shimbun); (f) Sendai Airport  swept by the 2011 Great East Japan 

tsunami (Credit: REUTERS/Kyodo) 

 
  

(a) (b) 

(c) (d) 

(f) (e) 
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Tsunami waves have small wave heights and long wavelengths – up to hundreds of 

kilometers long – offshore. As the waves move towards nearshore, they undergo 

changes depending on the nearshore bathymetry; their celerity is reduced 

considerably and they become significantly higher. When they reach the shoreline, 

the waves generated climb up the shore and travel relatively large distances inland. 

Thus, it is inevitable that tsunamis are a source of extensive damage to coastal and 

marine structures, as well as causing loss of many lives and creating a substantial 

financial burden. The damage caused by tsunamis even leads to the destruction of 

whole settlements because they can drag huge objects and carry them into buildings, 

scour the foundations of buildings, collapse the shoreline due to liquefaction and 

overflow tsunami defense structures (Borrero et al., 2003). 

 

With the exception of the largest tsunamis, the approaching wave gets onshore as a 

rapidly rising turbulent surge of water carrying debris, without breaking. Tsunami 

wave height, runup height and inundation distance are the hydrodynamic parameters 

that are effective in the determination of the damage level inland (Figure 1.3). 

Tsunami wave height is the maximum height of the wave above the mean sea level. 

Runup is a measurement of the maximum vertical height onshore above the sea level 

that is reached by a tsunami. Inundation distance is a horizontal measurement of the 

path of the tsunami and is the maximum distance from the shoreline at the time of a 

tsunami. 

 

 
 

Figure 1.3. A descriptive scheme for the tsunami parameters  
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All waves have a positive and negative peak, called the ridge and the trough, 

respectively. During a tsunami, if the ridge is the first part to arrive, there will be a 

massive breaking wave or sudden flooding on land. However, if the first part to 

arrive is the trough, the shoreline will recede dramatically and expose areas that are 

normally submerged (Figure 1.4). In other words, a drawback will occur, giving a 

brief warning of the approaching tsunami. 

 

The frequency of occurrence of tsunamis varies greatly from region to region. The 

highest frequency of tsunamis is observed in the Pacific Ocean with the rate of 

25.4% due to the seismic and volcanic activity taking place along the Pacific Ring of 

Fire. Next is the East Indian Ocean with 20.3%. The frequency of tsunami events on 

the coasts of Japan-Russia is 18.6%, it is 13.8% in the Caribbean, 10.1% in the 

Mediterranean, 8.9% in the Pacific East Coast, 1.6% in the Atlantic East coast, 0.8% 

in the Bay of Bengal and 0.4% in the Atlantic West Coast (Bryant, 2008). 

  

https://en.wikipedia.org/wiki/Pacific_Ocean
https://en.wikipedia.org/wiki/Seismic
https://en.wikipedia.org/wiki/Volcanic
https://en.wikipedia.org/wiki/Pacific_Ring_of_Fire
https://en.wikipedia.org/wiki/Pacific_Ring_of_Fire
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Figure 1.4. Kalutara Beach, Sri Lanka – 2004 Indian Ocean earthquake: (a) before tsunami, 

January 1, 2004; (b) drawback occurring few minutes before tsunami, December 26, 2004; 

(c) during tsunami, December 26, 2004 (Credit: Satellite Imaging Corporation) 

 

 

(a) 

(b) 

(c) 
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1.2. Base of the Study 

 

Tsunami generation and the parameters that may play a role in its properties need to 

be researched more carefully and quantitatively so that the devastating impact of 

tsunamis on coastal areas can be fully understood. To achieve this, the collaborative 

work of different scientific and engineering disciplines is required, whereby existing 

earthquake and tsunami data can be enhanced and exchanged, topographic and 

bathymetric data developed in sufficient resolution, potential or credible tsunami 

scenarios selected, and available computational tools utilized (Pamuk, 2014).  

 

The mechanisms which are involved in tsunami evolution and propagation are 

generally understood. The shallow water theory is regarded as a key instrument in 

analytical modeling of evolution and propagation of long waves such as tsunamis 

(Aydin and Kanoglu, 2012). However, the effective prediction of the tsunami motion 

at coastlines still represents a formidable challenge due to the complexities of 

coastline formations and the presence of numerous coastal structures that interact and 

alter the flow. Theoretical approaches taken towards the nearshore tsunami motion 

are difficult to apply due to strong nonlinearities of equations that govern tsunami 

behaviors, the three-dimensionality of the flow, and the turbulence that develops due 

to shoaling effects. Thus, the theoretical analysis of nearshore hydrodynamics 

presents considerable difficulties. 

 

The main part of tsunami research comprises physical models and laboratory 

experiments since they have the qualities of observability, measurability, 

repeatability, input control, process control, reasonable cost and robustness. In fact, 

physical modeling of long waves in laboratories is still a valuable and trustworthy 

option to study long wave propagation and runup, nearshore dynamics and complex 

nonlinear interactions of approaching wave and macro-roughness elements on the 

shore (Goseberg et al., 2013). 
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On the other hand, with the rapid development of computing technology, a large 

number of models that can be employed in coastal hydrodynamic problems have 

become avaliable. The numerical techniques can be based on the finite element 

method, finite difference method, boundary element method, finite volume method 

or Eulerian-Lagrangian method. The time stepping algorithm can be implicit, semi-

implicit, explicit or characteristic-based. The shape function can be of the first order, 

second order or a higher order. The modeling can be simplified into different spatial 

dimensions; a one-dimensional model, a two-dimensional depth-averaged model, a 

two-dimensional lateral-integrated model, a two-dimensional layered model or a 

three-dimensional model (Chau, 2010). Open boundary conditions, model parameters 

and numerical scheme determine the accuracy of the prediction. 

 

Numerical modeling has proved to be an accurate and useful method of modeling 

tsunami inundations on a coastline. However, it is necessary that all numerical 

models used in tsunami emergency planning be validated and verified. 

Validation/verification of a numerical code must never cease; even proven models 

must be tested continuously as new knowledge and data are acquired (Synolakis et 

al., 2008). Careful and explicit validation/verification of tsunami models through the 

comparison of their predictions with benchmark analytical solutions, laboratory 

experiments and field measurements has helped them evolve in the last two decades. 

A numerical code that has performed well in all benchmark tests will not necessarily 

make realistic inundation predictions in every instance. However, in the results of 

validated/verified codes, the level of uncertainty is largely reduced to the uncertainty 

in the geophysical initial conditions. Furthermore, when validated/verified codes and 

real-time free-field tsunami measurements from tsunameters are employed together, 

they are the only option to be able to realistically forecast tsunami inundation 

(Synolakis et al., 2008). 

 

According to the theory of long waves, the pressure distribution is not affected by the 

vertical motion of water particles. The equations of mass conservation and 

momentum are reduced to two-dimensional depth-averaged equations on the basis of 
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this approximation and by neglecting vertical acceleration. Until recently, two-

dimensional depth-averaged numerical models solving linear/nonlinear shallow 

water or Boussinesq equations were employed to predict wave transformation over 

complex bathymetries and interaction with coastal structures, while the use of three-

dimensional Navier-Stokes models was restricted to research studies (Watanabe et 

al., 2005; Christensen, 2006). Although two-dimensional depth-averaged models 

have been developed enough to be fast, relatively accurate and reliable, they have 

limited accuracy in the prediction of wave breaking, runup and wave loading because 

they use simplified assumptions to describe the variation of flow along depth in the 

surf and swash zone. Therefore, nearshore tsunami behavior can not be predicted 

accurately by means of depth-averaged techniques, including Boussinesq models 

(Lynett et al., 2002). With the progress of computer technology, the computational 

cost associated with performing and post-processing three-dimensional simulations 

has become affordable for engineering related problems. Moreover, recent advances 

in computational fluid dynamics (CFD) have made it possible to use CFD techniques 

for the investigation of nearshore tsunami motion. The development of open source 

computational fluid dynamics software with advanced meshing and computational 

capabilities has also promoted the use of fully three-dimensional CFD models for 

engineering applications (Dimakopoulos et al., 2014). 
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1.3. Objective of the Study 

 

This study aims to investigate the sufficiency of nonlinear forms of two-dimensional 

depth-averaged shallow water equations in tsunami wave evolution, propagation, 

amplification and inundation. Moreover, the variations between the numerical 

solutions of two- and three-dimensional models are determined. The study focuses 

on two numerical tools; NAMI DANCE and FLOW-3D
®
. NAMI DANCE solves 

nonlinear forms of two-dimensional depth-averaged shallow water (2D-NSW) 

equations in long wave problems, specifically tsunamis. FLOW-3D
®
 simulates linear 

and nonlinear propagating surface waves as well as long waves by solving three-

dimensional Reynolds-averaged Navier-Stokes (3D-RANS) equations. The codes are 

applied to analytical, experimental and field benchmark problems for validation and 

performance comparison.  

 

The benchmark problems are selected with great care. Each problem is capable of 

identifying the shortcomings of numerical models in terms of tsunami motion and 

inundation parameters such as water surface elevation, current velocity and runup. A 

total of six benchmark problems are considered in this study.  

 

The first benchmark problem (BMP 1) covers both analytical and experimental 

investigations. The problem analyzes the evolution, propagation and runup of a 

single solitary wave climbing up a plane beach having a slope of 1:19.85. BMP 1 has 

been widely used for validation of many numerical codes. 

 

After the 1992 Flores tsunami, an unexpectedly large tsunami runup height was 

observed in the lee side of conical Babi Island. Benchmark problem 2 (BMP 2) is 

composed of physical model studies which were carried out in the coastal hydraulic 

laboratory of Engineering Research and Development Center, U.S. Army Corps of 

Engineers so that a better understanding of the physical phenomena could be 

provided.  
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Benchmark problem 3 (BMP 3) describes a series of experiments that analyze the 

transformation of a single solitary wave as it propagates up a triangular shaped shelf 

with an island feature located at the offshore point of the shelf. The currents that are 

formed in the vicinity of the island are also investigated in the experiments. This 

problem is Benchmark Problem 5 of the 2015 National Tsunami Hazard Mitigation 

Program (NTHMP) workshop, which was held in Portland, U.S.  

 

An extreme runup height of 31.7 m was measured near the village of Monai, in 

Okushiri Island after the 1993 Okushiri tsunami. Benchmark problem 4 (BMP 4) 

provides the data of a 1:400 scale laboratory experiment of the Monai runup, 

conducted at Central Research Institute for Electric Power Industry (CRIEPI) in 

Abiko, Japan.  

 

Benchmark problem 5 (BMP 5) covers a series of experiments having a single long 

period wave that propagates up a piecewise linear slope and onto a small-scale model 

of the town of Seaside, Oregon. This problem is Benchmark Problem 4 of the 2015 

National Tsunami Hazard Mitigation Program (NTHMP) workshop held in Portland, 

U.S.  

 

The last benchmark problem, Benchmark problem 6 (BMP 6), is a field data set of 

the Japan 2011 tsunami recorded in Hilo Harbor, Hawaii. This problem is 

Benchmark Problem 2 of the 2015 National Tsunami Hazard Mitigation Program 

(NTHMP) workshop, which was held in Portland, U.S.  

 

1.4. Contents of Chapters 

 

Chapter 2 covers a review of the literature pertinent to this study. It gives the details 

of different approaches to the calculation of the parameters related to tsunami motion 

and inundation. It also gives information about previous numerical applications that 

use two- or three-dimensional tsunami models.  
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In Chapter 3, the numerical backgrounds of the codes solving two-dimensional 

depth-averaged shallow water equations (NAMI DANCE) and three-dimensional 

Reynolds-averaged Navier-Stokes equations (FLOW-3D
®
) are explained in detail.  

 

In Chapter 4, all the benchmark problems discussed in this study and the results of 

the two- and three-dimensional numerical simulations based on them are explained in 

detail. The codes are validated and the numerical results are compared through the 

application of these benchmark problems. The statistical evaluations of the results 

are also given in this chapter for each benchmark problem. 

 

Chapter 5 provides a summary and general evaluation and discussion of the results. 

Moreover, suggestions for further studies are given in the light of the conclusions 

and discussions.  

 

To summarize, this dissertation questions the sufficiency of 2D-NSW equations in 

determining tsunami behavior in shallow water zones where fully three-dimensional 

flow characteristics develop, and emphasizes the variations between the 2D-NSW 

and 3D-RANS equations. In addition, based on the results of the analyses, a validity 

range is determined regarding the use of two- and three-dimensional numerical 

models and recommendations related to applying relevant models to various tsunami 

problems are made. As a result, the study is expected to contribute to the available 

knowledge concerning the two- and three-dimensional numerical modeling of 

tsunami motion and inundation as well as tsunami currents and to support the 

findings of the previous investigations.  
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CHAPTER 2  
 

 

LITERATURE REVIEW 

2. LITERATURE REVIEW 

 

 

In Section 2.1, theoretical approaches that analyze the offshore and nearshore long 

wave behavior (i.e. evolution, propagation, amplification and runup) are 

summarized. The improvements in analytical techniques employed to solve shallow 

water equations are given. Several analytical and experimental studies which 

establish the milestone of benchmark problems used for the validation/verification of 

tsunami numerical models are also presented.  

 

There are numerous studies on the application of tsunami numerical models using 

different processing and computational techniques, which makes it impossible to 

summarize all of them in this dissertation. A great deal of information about the most 

recent studies regarding the development, validation/verification and application of 

two- and three-dimensional tsunami numerical models is presented in Section 2.2. 

 

NAMI DANCE is a well-known tsunami simulation model applied in many studies. 

Section 2.3 presents an overview of the most prominent and recent studies which are 

conducted using NAMI DANCE. 

 

FLOW-3D
®
 specializes in the solutions of time-dependent free surface problems in 

one, two and three dimensions. FLOW-3D
®
 is a common modeling tool among 

hydraulic engineers as well as environmental engineers, while it is not employed 

widely to coastal engineering problems. There are a handful of studies in literature 

that utilizes FLOW-3D
®

 to solve three-dimensional long wave motion. Section 2.4 

summarizes the most remarkable ones. 
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2.1. Analytical and Experimental Approaches 

 

There is a significant amount of research on analytical solutions to explain nearshore 

tsunami behavior and runup, and thus, on the use of nonlinear shallow water 

equations or Boussinesq approximations. Most of these solutions are tested and 

compared with the results of laboratory experiments. Some of the resulting studies 

are summarized in this section. 

 

Airy (1845) gave a linearized description of the propagating gravity waves on the 

surface of a homogeneous fluid layer with a uniform mean depth and an inviscid, 

incompressible and irrotational flow in his theory known as Airy Wave Theory or 

Linear Wave Theory. He also found out that the fluid particle orbits were circular in 

deep water and ellipsoidal in finite depth. Equation [2.1] represents the well-known 

linear wave theory: 

 

𝜂(𝑥, 𝑡) = 𝑎𝑐𝑜𝑠(𝑘𝑥 − w𝑡)                                                                                                   [2.1] 

 

where 𝜂 is the free surface elevation, 𝑎 is the wave amplitude, 𝑘 is the angular wave 

number in radian/m and given by 𝑘 = 2𝜋/𝜆, w is the angular wave frequency in 

radian/sec and given by w = 2𝜋/𝑇 , 𝜆  is wavelength, 𝑇  is wave period, 𝑥  is the 

horizontal 𝑥 axis in the Cartesian coordinate system and 𝑡 is time. 

 

Stokes (1847) developed Airy’s (1845) linear theory further and extended it to cover 

nonlinear wave motion using a perturbation series approach, called Stokes' Wave 

Theory. This theory is used for waves on intermediate and deep water and its 

applicability is limited to small amplitude long waves. 

 

Saint-Venant’s (1871) equations, also known as shallow water flow equations, were 

derived from Reynolds depth-averaged forms of the Navier-Stokes equations. Saint-

Venant maintained that if the horizontal length scale was much greater than the 

vertical length scale, then the vertical velocity of the fluid was small according to the 
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law of conservation of mass. He also employed the momentum equation to prove that 

vertical pressure gradients were nearly hydrostatic, and thus the horizontal velocity 

field was constant throughout the depth of the fluid. After these evaluations, he 

vertically integrated the Navier-Stokes equations, deriving the shallow water 

equations. One-dimensional (1D) Saint-Venant equations describing the 

incompressible flow in an open channel of arbitrary cross-section in 𝑥 direction are 

given by Equations [2.2] and [2.3]:  

 

𝜕𝐴

𝜕𝑡
+
𝜕(𝐴𝑢)

𝜕𝑥
= 0                                                                                                                   [2.2] 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑔

𝜕𝜂

𝜕𝑥
= −

𝑃̅

𝐴

𝜏

𝜌
                                                                                               [2.3] 

 

where 𝐴 (𝑥, 𝑡) is the cross-sectional area of the flow at location 𝑥, 𝑢 is the velocity of 

water particles in 𝑥  direction, 𝜏(𝑥, 𝑡)  is the wall shear stress along the wetted 

perimeter, 𝑃̅(𝑥, 𝑡) , of the cross section, 𝜌  is fluid density and 𝑔  is gravitational 

acceleration. 

 

Boussinesq (1872) derived a set of equations for finite amplitude long waves. They 

were valid for one-dimensional and constant water depth problems. The terms weak 

dispersion and weak nonlinearity were accounted for in these equations. The total 

pressure under the wave had both a hydrostatic and a dynamic component. Equations 

[2.4] and [2.5] are reduced to shallow water equations when the right-hand sides are 

set to zero.  

 

𝜕𝜂

𝜕𝑡
+
𝜕

𝜕𝑥
[(𝑑 + 𝜂)𝑢𝑏] =

1

6
𝑑3
𝜕3𝑢𝑏
𝜕𝑥3

                                                                                  [2.4] 

 

𝜕𝑢𝑏
𝜕𝑡

+ 𝑢𝑏
𝜕𝑢𝑏
𝜕𝑥

+ 𝑔
𝜕𝜂

𝜕𝑡
=
1

2
𝑑2

𝜕3𝑢𝑏
𝜕𝑡𝜕𝑥2

                                                                               [2.5] 
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Equations [2.4] and [2.5] can be also reduced to Equation [2.6]; a single partial 

differential equation for the free surface elevation, 𝜂: 

 

𝜕𝜂

𝜕𝑡
− 𝑔𝑑

𝜕2𝜂

𝜕𝑥2
− 𝑔𝑑

𝜕2

𝜕𝑥2
(
3

2

𝜂2

𝑑
+
1

3
𝑑2
𝜕2𝜂

𝜕𝑥2
) = 0                                                           [2.6] 

 

where 𝑑 is the undisturbed flow depth, 𝑢𝑏  is the horizontal velocity component in 𝑥 

direction at 𝑧 = −𝑑. 

 

McCowan (1891) presented a higher degree of approximation of Boussinesq 

solution, in which he represented the structure of solitary waves by a series 

expansion. However, he estimated only first term of the expansion. The free surface 

profile according to McCowan’s (1891) expansion is given in Equation [2.7] 

 

𝜂

𝑑
=
 𝒩

ℳ

𝑠𝑖𝑛 [ℳ (1 +
𝜂
𝑑
)]

𝑐𝑜𝑠 [ℳ (1 +
𝜂
𝑑
)] + 𝑐𝑜𝑠ℎ (ℳ

𝑥
𝑑
)
                                                                      [2.7] 

 

𝒩 and ℳ are parameters depending on 𝜂/𝑑 and given by Equations [2.8] and [2.9]: 

 

𝐻

𝑑
=
 𝒩

ℳ
𝑡𝑎𝑛

1
2⁄ [ℳ (1 +

𝐻

𝑑
)]                                                                                           [2.8] 

 

𝒩 =
2

3
𝑠𝑖𝑛2 [ℳ (1 +

2

3

𝐻

𝑑
)]                                                                                              [2.9] 

 

where 𝐻 is wave height. 

 

McCowan (1891) accepted ℳ = √3𝐻/𝑑 and 𝒩 = 2𝐻/𝑑 as a first approximation. 
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Korteweg and deVries’ (1895) proposal was a nonlinear partial differential equation 

whose solutions could be exactly and precisely specified. The KdV equation is a 

nonlinear, dispersive partial differential equation and is given by Equation [2.10]: 

 

𝜕𝑡∅ + 𝜕𝑥
3∅ + 6∅𝜕𝑥∅ = 0                                                                                                 [2.10] 

 

where 𝜕𝑥  and 𝜕𝑡  are partial derivatives with respect to 𝑥 and 𝑡 and ∅ is a function 

with two variables, space 𝑥 and time 𝑡. 

 

Munk (1949) published a study which was a part of a project carried out during 

World War II to extend wave forecasting into the surf zone. In his study, he gave a 

summary of useful relationships derived by means of solitary wave theory and 

reviewed various studies, field and laboratory observations and theoretical studies. 

He recommended the expansions given by McCowan (1891) and stated that for most 

applications, McCowan’s (1981) first approximation was adequate.  

 

Ursell (1953) developed a dimensionless parameter which indicated the nonlinearity 

of long surface gravity waves on a fluid layer. The parameter, called Ursell number, 

was given by 𝑈𝑟 = 𝐻𝜆2/𝑑3  where 𝐻  is wave height, 𝜆  is wavelength and 𝑑  is 

undisturbed water depth. Ursell (1953) emphasized the importance of wave height, 

wavelength and water depth relation in the determination of the mathematical 

treatment of wave motion. Ursell (1953) stated that for small 𝐻𝜆2/𝑑3 values, linear 

wave theory was valid; however, a nonlinear wave theory such as Boussinesq 

equations should be used for waves with large 𝐻𝜆2/𝑑3 values (i.e. solitary waves). 

 

Stoker (1957) is believed to have presented the first numerical solution of the 

shallow water equations using the method of characteristics for a sloping beach. The 

path of the shoreline during runup and rundown was a characteristic line and this led 

to efficient and direct computation of the shoreline path. Very accurate results were 

obtained for simple cases with this method. The method of characteristics is now 

practically out of use. 
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Carrier and Greenspan (1958) proposed a method to transform the nonlinear shallow 

water equations into a set of linear equations. They used this theory to investigate the 

runup of periodic waves with several different initial shapes on a plane slope. 

 

Carrier (1966) hypothesized that nonlinear effects became considerably small far 

from the shoreline; therefore, the linear form of the transformation equations were 

applicable there. He conducted a theoretical study of tsunami runup. He considered 

long slightly dispersive plane waves of height, 𝐻 propagating in water depth of 𝑑 and 

having a runup 𝑅 on a gentle slope 𝛼, after travelling a dimensionless distance 𝑥/𝑑. 

 

𝑅

𝐻
≈ 2.1𝛼−

1
2⁄ (
𝑥

𝑑
)
−1 6⁄

                                                                                                     [2.11] 

 

Van Dorn (1966) described a theoretical and experimental investigation of wave 

mechanism in shoaling water up to the point of maximum runup on beaches of 

arbitrary slope, considering only the case of wave propagation normal to the shore. 

He regarded the study as an attempt to bridge the gap between the small amplitude 

runup theory and the results of numerous experiments with waves of finite 

amplitude. He first carried out a series of experiments with small amplitude waves 

and then reinterpreted the previous large amplitude experimental results in terms of 

small amplitude theory with appropriate corrections. His runup formula for a wave 

propagating from deep water to a region of constant depth is given by Equation 

[2.12]: 
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                                                            [2.12] 

 

where 𝑅 is the maximum runup, 𝛼 is the beach slope, 𝛾 is the dimensionless wave 

frequency given by 2𝜋√(𝑔/𝑑)/𝑇 and 𝜎 is the dimensionless wave number given by 

2𝜋𝑑/𝜆. 



 19 

Peregrine (1967) numerically calculated solutions to the Boussinesq equation for a 

wave approaching a straight beach of constant slope. In addition, Peregrine (1967) 

obtained analytical solutions for a wave reflected off the slope by using linear theory.  

 

Madsen and Mei (1969) solved the Boussinesq equations numerically for the case of 

a solitary wave ascending a straight ramp. They were able to experimentally confirm 

the disintegration of the solitary wave on the shelf into two or more solitary waves. 

 

Fenton (1972) formulated an exact operator equation in order to determine numerical 

coefficients for an assumed form of solution to the solitary wave, which were 

calculated to the ninth order. He used the ninth-order solution to obtain a solitary 

wave with amplitude of 0.85 m and to obtain approximations to physical quantities 

associated with the solitary wave, such as the surface profile and wave speed. 

 

Tuck and Hwang (1972) worked on the Carrier and Greenspan (1958) transformation 

and further used it to solve long wave runup also under prescribed initial water-

surface configurations. Tuck and Hwang (1972) investigated the problem of the 

generation of waves on a slope created by a bottom disturbance. 

 

Spielvogel (1976) also extended the Carrier and Greenspan (1958) transformation 

and used it inversely to determine the long wave runup assuming a logarithmic initial 

surface profile on the slope at the maximum runup position. 

 

Goring’s (1978) theory for the laboratory generation of long waves of permanent 

form such as solitary and cnoidal waves was applied to the wave generators which 

had a vertical plate moving horizontally. The results of his experiments corresponded 

to the generation theory. Even though accurate results are obtained from Goring’s 

method only for small amplitude solitary waves, it has remained the most commonly 

employed method for decades. 
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Hibbert and Peregrine (1979) suggested solving the shallow water equations by using 

the Lax-Wendroff scheme (Richtmyer and Morton, 1967) in order to make a possible 

calculation of wave breaking. The researchers managed to calculate the evolution of 

a uniform bore up a sloping beach. 

 

Thacker (1981) introduced a number of exact solutions to the nonlinear shallow 

water equations. The exact solutions corresponded to time dependent motions in 

parabolic basins and it was assumed that the shoreline moved freely. He viewed the 

exact solutions as a valuable comparison test and a more practical way for numerical 

models since the numerical integration of nonlinear shallow water equations and the 

other assumptions required were not easy. 

 

Pedersen and Gjevik (1983) used a Lagrangian description to develop a finite 

difference scheme for the Boussinesq equations that could predict the runup process 

and also the possibility of wave breaking during rundown. 

 

Freilich and Guza (1984) designed two one-dimensional nonlinear models for the 

evolution of wind waves advancing shoreward over impermeable, slowly changing 

topography. Afterwards, they conducted a field experiment to measure wave 

parameters of sea surface elevation, pressure and horizontal velocity in Torrey Pines 

Beach, California in 1980. They primarily aimed to determine the operational 

validity of the two nonlinear shoaling models they had developed. They discovered 

that both nonlinear models were good predictors of the wave field in the shoaling 

region for all data sets. 

 

Synolakis (1986, 1987) simplified the Carrier and Greenspan (1958) transformation 

and applied it to the problem of a solitary wave propagating in a fixed water depth 

and climbing up a simple plane beach. Having introduced an approximate theory for 

non-breaking waves, he derived an asymptotic result for the maximum runup of 

solitary waves. He conducted a series of laboratory experiments to support the 

theory. He concluded that the linear theory predicted the maximum runup 
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satisfactorily, and also described the runup of solitary waves equally well. He also 

discovered different runup regimes for the runup of breaking and non-breaking 

solitary waves. His study is currently being used to explain some of the existing 

empirical runup relationships and functions as a benchmark problem for 

validation/verification of tsunami numerical models. 

 

Shuto (1991) discussed the effects of dispersion on tsunami propagation after 

comparing the numerical results of linear Boussinesq, Boussinesq and linear long 

wave theories in deep water. He concluded that the linear Boussinesq and Boussinesq 

equations were nearly the same as the true solution that was given by linear surface 

wave theory and suggested that the nonlinear term was not important in deep water 

propagation of tsunamis. 

 

Madsen et al. (1991) extended the standard Boussinesq equations to obtain improved 

linear dispersive properties in deep water. They added higher order terms to these 

equations and stated that this addition increased the accuracy of the computed phase 

speed in deeper water, enabling the application of the model in deeper water without 

significant loss of accuracy.  

 

Madsen and Sorensen (1992) extended the equations of Madsen et al. (1991) to 

include the effects of bottom slope. Based on the assumption of a slowly varying 

bottom slope, they neglected higher order spatial derivative of the water depth, and 

obtained a new set of Boussinesq equations. The equations served to provide an 

improved accuracy of both linear dispersion and shoaling properties. 

 

Tadepalli and Synolakis (1994) used a first-order theory and derived asymptotic 

results for the maximum runup. They observed a class of N-shaped waves with very 

interesting behavior, which was regarded as a new phenomenon for tsunami runup 

studies. Similar trends emerged in the maximum runup results. 
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Liu (1994) and Wei et al. (1995) offered a set of highly nonlinear Boussinesq-type 

equations that could be applied to intermediate water depth and were capable of 

simulating wave propagation with strong nonlinear interaction. They also developed 

a high-order numerical scheme to solve these equations. They successfully improved 

the usage of Boussinesq-type equation model so that long wave evolution from 

relatively deep water to the breaking point could be accurately estimated. 

 

Briggs et al. (1995) and Liu et al. (1995) investigated runup of solitary waves on a 

circular island in a series of laboratory experiments. Maximum vertical runup 

measurements were made around the perimeter of the island. They observed that 

runup on the back side of the island was higher than that on the front side. Their data 

are still in use for the benchmarking of tsunami numerical models. 

 

Zhang (1996) investigated the runup associated with a solitary wave moving to a 

plane beach at an angle and found a linear solution for the three-dimensional runup 

using Fourier synthesis.  

 

Tadepalli and Synolakis (1995, 1996) demonstrated that a coastal tidal wave was N-

wave like and proved that the runup of a leading-depression (LDN) wave was higher 

than that of a leading-elevation (LEN) wave. Their formulations were based on the 

depth-averaged linear and nonlinear shallow water equations. 

 

Kanoglu and Synolakis (1998), who investigated long wave runup on piecewise 

linear topographies, developed a general solution method to determine amplification 

factors for different ocean topographies that consisted of linearly varying and 

constant-depth segments. They studied the evolution of solitary waves by using their 

results. 

 

Li and Raichlen (2001) conducted experiments on the runup of solitary waves on a 

uniform plane beach. They presented a nonlinear solution to the classical shallow 

water equation analytically, for which they used a hodograph transformation. They 
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compared the water surface elevation results with the results of the approximate 

nonlinear theory presented by Synolakis (1987) and with the experimental data. They 

came to the conclusion that the vertical velocity was smaller than 20% of horizontal 

velocity for all locations, which supported the assumption that the effects of 

nonlinearities could be neglected near and offshore of the toe of the slope. The 

results showed that the assumptions made by Synolakis (1987) could be satisfactorily 

applied to especially gentle slopes where the breaking wave height was significantly 

smaller than that of the steep slopes. 

 

Carrier et al. (2003) analyzed tsunami runup and drawdown motions on a uniformly 

sloping beach based on fully nonlinear shallow water theory. Having transformed the 

nonlinear equations of mass conservation and linear momentum to a single linear 

hyperbolic equation, they applied the Fourier–Bessel transform to solve the equation 

with arbitrary initial conditions. They discovered that the direction of both the 

maximum flow velocity and the maximum momentum flux depended on the initial 

waveform. 

 

Kanoglu (2004) analytically solved the initial value problem of the nonlinear 

evolution and shoreline motion of long waves that climbed up sloping beaches for 

different initial wave forms. He introduced a simplified equation for the calculation 

of runup/rundown motion of the shoreline and then applied this approach to Gaussian 

and leading depression N-wave initial forms presented by Carrier et al. (2003). When 

the results were compared, Kanoglu (2004) concluded that his solution was simpler 

and produced identical results. He also suggested that the method he proposed could 

be efficient in the assessment of the impact of long waves generated by seafloor 

displacements and in the validation of tsunami numerical models. 

 

Liu et al. (2005) conducted a series of three-dimensional laboratory experiments at 

Oregon State University, in which a solid wedge was used in a large wave tank to 

represent underwater landslide induced tsunami waves. The data obtained from the 

experiments are still being used for the benchmarking of tsunami numerical models. 
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Synolakis et al. (2008) discussed analytical, experimental and field benchmark tests 

that could be employed to validate and verify tsunami numerical models. The 

benchmark tests and their expected solutions were described in detail. A scientific 

and operational evaluation of numerical models was offered and the necessity of 

continuous validation and verification processes was stresssed. 

 

2.2. Numerical Modeling 

 

Numerical computation techniques that are employed to solve various problems 

regarding water waves have gained popularity since the 1960s (Goda, 2010). Many 

different tsunami generation and propagation models have been developed over the 

past few decades, based on different classes of governing equations, numerical 

methods, spatial and temporal discretization techniques and wetting-drying 

algorithms. Depth-averaged, hydrostatic or non-hydrostatic long wave equations act 

as the basis of the majority of the current tsunami models (Horrillo et al., 2015). The 

development and description of several tsunami models are given in this section.  

 

Hansen (1956) formulated an approach to hydrodynamic modeling. He used a 

suitably stable finite difference approximation for the time derivative and the 

dependent fields were stepped forward in time. He carried out numerical 

computations of a heavy storm surge that struck the coasts of Holland, in the North 

Sea in 1953. He also presented numerical solutions of nonlinear tidal propagation for 

the Ems River, Germany. 

 

Fischer (1959) developed a finite difference method to determine water heights and 

movements in adjacent seas and transformed the vertically integrated equations of 

motion and the continuity equation into an explicit system of equations. These 

equations were solved stepwise in time with an electronic computer. He also 

examined the effects of a smoothing technique and the mesh size of the grid on the 

results. Moreover, he studied storm surges and tides in the North Sea and compared 

the results in selected cases with the results of other methods or with observations.  
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Leendertse (1967) utilized the finite difference method to develop a two-dimensional 

vertically-averaged hydrodynamic model, in which the effects of the earth’s rotation 

and bottom roughness were included, in order to solve the differential equations of 

long wave propagation. The input to the numerical scheme was water depths at 

certain points. Leendertse (1967) is also known for his significant contributions in 

the area of numerical stability and accuracy. He and subsequently Liu built a three-

dimensional model (Leendertse et al., 1973, Leendertse and Liu, 1975) and 

afterwards included realistic turbulent exchange processes (Leendertse and Liu, 

1978). The model was tested and applied to tides, wind and density driven motion 

and transport of pollutants. 

 

Abbott and Ionescu (1967) constructed an implicit finite difference scheme in order 

to solve the continuity and momentum equations and, in particular, to solve any form 

of the Saint Venant equations (i.e. kinematic, diffusive, or dynamic). This scheme 

has become the basis of the widely-known MIKE modeling systems. The Danish 

Hydraulic Institute (DHI) modeling team that Abbott initiated in 1962 has been 

improving MIKE software. MIKE 21 and MIKE 3 are general hydrodynamic flow 

modeling systems which are aimed at applications within oceanographic, coastal and 

estuarine environments. MIKE 21 solves two-dimensional depth-averaged equations 

whereas MIKE 3 deals with three-dimensional hydrostatic equations. These model 

systems can be used while working with single grids, multiple grids and flexible 

mesh. 

 

Hwang et al. (1972) developed a numerical model through which they analyzed the 

generation and propagation of tsunami waves. The model was based on 

hydrodynamic equations in a spherical coordinate system to account for the spherical 

nature of the Earth. They employed a multi-step finite difference procedure to solve 

the equations of motion and continuity equation. The model was verified by 

hindcasting the wave behavior following the Alaskan earthquake of 1964. When 

compared with a runup record at Cape Yakatage and transoceanic propagation of the 

tsunami wave, it was found that the model was consistent with the wave behavior. 
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Arakawa and Lamb (1977), who developed a 12-layer UCLA general circulation 

model, discussed the selection of the finite difference schemes for homogeneous 

incompressible flow and nonlinear two-dimensional nondivergent flow. They also 

introduced the Arakawa Grid System, which serves to represent and compute 

orthogonal velocity and mass related quantities on rectangular grids. 

 

Longuet-Higgins and Cokelet (1976) asserted that the existing theories were only 

valid for symmetric progressive waves; therefore, they developed a numerical 

technique to solve periodic, two-dimensional, deep water breaking wave problems. 

In their method, the only independent variables were the coordinates and velocity 

potential of marked particles at the free surface. The researchers tested the method on 

a free, steady finite amplitude wave and found that it was in excellent agreement with 

the independent calculations based on Stokes's series. 

 

Vinje and Brevick (1981) offered a method similar to the Longuet-Higgins and 

Cokelet’s (1976) numerial one, claiming that the latter was based on potential theory. 

The exceptions were that the problem was solved in the physical plane and finite 

depth was introduced.  

 

Hirt and Nichols (1981) developed a simple method based on the concept of a 

fractional volume of fluid, and they approximated free boundaries via the finite 

difference scheme. They used an incompressible hydrodynamics code that used the 

Volume-of-Fluid (VOF) technique to track free fluid surfaces. The new code 

demonstrated the flexibility and efficiency of the method and proved to be efficient 

for a wide range of complex problems. 

 

Kim et al. (1983) developed the Boundary Integral Equation Method (BIEM) as a 

tool to analyze two-dimensional, nonlinear water wave problems such as wave 

generation, wave propagation and wave runup on steep slopes. Nonlinear free surface 

boundary conditions were included in the numerical formulation. Examples for either 

a solitary wave or two successive solitary waves were provided. 
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Dold and Peregrine (1986) dealt with the numerical computations of the evolution of 

small amplitude modulations on a uniform wave train. They based their method of 

computation on Boundary Element Method (BEM) solutions of the two-dimensional 

potential flow approximation of the canonical problem. They concluded that the 

computations were able to clearly indicate when breaking occured. 

 

Kobayashi et al. (1987) designed a numerical flow model to predict the flow 

characteristics of a normally incident wave train during the uprush and downrush on 

a rough slope. They used an explicit dissipative Lax-Wendroff finite difference 

method to solve the finite-amplitude shallow water equations including the effects of 

bottom friction numerically in the time domain. They observed that the computed 

results were in agreement with the available data on wave runup, reflection, and 

rundown. They concluded that more detailed flow measurements needed to be made 

to improve and calibrate the numerical model. 

 

Grilli and Svendsen (1989a) presented a computational model for highly nonlinear 

two-dimensional water waves, by means of which they investigated the problems of 

wave generation and absorption. In this model, a high order Boundary Element 

Method (BEM) was coupled with a high order explicit time stepping technique for 

the temporal evolution of the waves. Grilli and Svendsen (1990) further investigated 

BEM by analyzing the transformation of solitary waves above a mild slope, from 

intermediate to shallow water and the interaction of these waves with coastal 

structures located in the shallow area. Computations included wave runup, 

overturning and reflection from steep slopes or a vertical wall, and from a 

combination of a slope and a submerged breakwater. Upon comparison of the results 

with other numerical, analytical and experimental data, it was found that when 

solitary waves having steepness up to 0.50 climbed up on a relatively steep slope, 

there would be significant differences between the velocity profiles and the depth 

uniform velocity. 
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Zelt and Raichlen (1990) developed a Lagrangian finite-element Boussinesq wave 

model and studied non-breaking solitary wave runup on two- and three-dimensional 

bathymetries. Zelt (1991) further investigated the runup of non-breaking and 

breaking solitary waves on plane impermeable beaches by using this model. The 

comparisons with the laboratory data indicated that, for the steep slope, excellent 

agreement was obtained with the laboratory data. For the gradual slope, wave 

shoaling, breaking, and subsequent collapse at the shoreline were successfully 

predicted, although the breaking algorithm did not attempt to model the details of the 

turbulent flow in the breaking region. In addition, Zelt (1991) analysed the landward 

inundation of non-breaking solitary waves which climb up a nonplanar slope. 

 

Grilli et al. (1989, 1994) and Subramanya and Grilli (1994) proposed a very efficient 

method for the calculation of the runup of solitary waves whose initial height was 

close to the limiting wave height. Their findings were in good agreement with 

laboratory data and no calibration was needed. However, although they took 

breaking waves into consideration, they only calculated their evolution up to the 

breaking point. 

 

LeVeque (1994) released the first version of CLAWPACK, a software package 

designed to solve nonlinear hyperbolic partial differential equations using high-

resolution finite volume methods based on Riemann solvers and limiters. A Fortran 

code was used for solving problems on a single, uniform Cartesian grid in one or two 

space dimensions, together with some Matlab scripts for plotting solutions. Berger 

and LeVeque (1998) extended the code to employ the high-resolution wave 

propagation algorithms in a more general framework. Langseth and LeVeque (2000) 

implemented three-dimensional versions of the wave propagation algorithm. 

CLAWPACK has been developed further as an open source project and many 

CLAWPACK software repositories have been put into use; GeoClaw is among them. 

GeoClaw is widely used to solve two-dimensional depth-averaged shallow water 

equations over topography for modeling tsunami generation, propagation, and 

inundation at present (Mandli et al., 2016). 
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Liu et al. (1994, 1998) aimed to simulate tsunami wave propagation and runup, and 

developed a nested multi-grid finite difference model in Fortran, called COMCOT 

(Cornell Multi-grid Coupled Tsunami model), which could use either linear or 

nonlinear forms of shallow water equations with different types of coordinate 

systems (i.e. Cartesian or spherical). The linear and nonlinear shallow water 

equations were both discretized with the explicit leapfrog finite difference scheme. 

The model was applied to several numerical examples and analytical solutions and 

good agreements were observed. 

 

Imamura et al. (1995) developed TUNAMI, a tsunami propagation model, in the 

framework of Tsunami Inundation Modeling Exchange (TIME) program taking place 

in Disaster Control Research Center (DCRC) of Sendai, Japan. Developed in Fortran 

and based on nonlinear shallow water equations, the model used the second-order 

explicit leapfrog finite difference scheme for computations. TUNAMI code is widely 

used at present. TUNAMI-N1 (Tōhoku University’s Numerical Analysis Model for 

Investigation of Near field tsunamis, No.1) uses linear theory with constant grids; 

TUNAMI-N2 (Tōhoku University’s Numerical Analysis Model for Investigation of 

Near field tsunamis, No.2) employs linear theory in deep water, shallow water theory 

in shallow water and runup on land with constant grids; TUNAMI-N3 (Tōhoku 

University’s Numerical Analysis Model for Investigation of Near field tsunamis, 

No.3) solves linear theory with varying grids; TUNAMI-F1 (Tōhoku University’s 

Numerical Analysis Model for Investigation of Far field tsunamis, No.1) employs 

linear theory for propagation of long waves in deep ocean in spherical coordinates 

and TUNAMI-F2 (Tōhoku University’s Numerical Analysis Model for Investigation 

of Far field tsunamis, No.2) employs linear theory for the propagation of long waves 

in deep ocean and coastal waters.  

 

Imamura and Imteaz (1995) developed a linear numerical model called TWO 

LAYER, using the staggered leapfrog scheme for computation of water level and 

discharge in one-dimensional propagation. They used the Fourier transform to solve 

the linearized equations for two-layers analytically. They validated the numerical 
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model by comparing the results with the analytical solutions for different boundary 

conditions. Imteaz and Imamura (2001) extended the linear model to a nonlinear 

model to predict the propagation of a unidirectional two-layered tsunami wave. Four 

governing equations, two for each layer, were derived from Euler’s equations of 

motion and continuity, assuming a long wave approximation, negligible friction and 

no interfacial mixing. The developed nonlinear model was compared with the 

existing validated linear model for different non-dimensional wave amplitudes. 

 

Titov and Synolakis (1995) presented a model called VTCS-2, which is a variable 

grid finite difference formulation of the shallow water equations that allows the 

calculation of breaking and non-breaking wave evolution on sloping beaches. Upon 

comparing the computational results with analytical solutions, other numerical 

computations and laboratory data for breaking and non-breaking solitary waves, the 

researchers found that the model accurately predicted the evolution and runup of 

non-breaking waves. Titov and Synolakis (1998) implemented a shoreline algorithm 

which was the generalization of the earlier algorithm employed in the code VTCS-2. 

Large-scale laboratory data from solitary wave experiments attacking a conical 

island were used in the validation process. The modeling of the 1993 Okushiri, 

Japan, the 1994 Kuril Islands, Russia, and the 1996 Chimbote, Peru tsunamis was 

done by applying this method. It was concluded that the model served well in the 

prediction of overland flow and extreme events such as the 30-m runup and the 20-

m/s inundation velocities measured during field surveys.  

 

Sato (1996) modeled the energy dissipation occuring at the tsunami wave front due 

to breaking by using a numerical model based on the Boussinesq equation, which 

included the effects of frequency dispersion. After the validity of the model was 

tested with the existing laboratory data of dispersive wave trains breaking on a slope, 

the model was applied to the simulation of the 1993 Southwest Hokkaidō earthquake 

tsunami around the southern part of Okushiri Island. 
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Zhang (1996) designed a finite difference scheme for the shallow water equations 

and the Boussinesq equations, which is used to model the runup by remapping the 

grid points at the surface according to the instant shoreline position. 

 

Grilli and Subramanya (1996) aimed to study wave breaking caused by shoaling over 

a gentle plane slope and wave breaking induced by a moving lateral boundary. For 

this, they improved and validated several numerical aspects of an existing model for 

fully nonlinear waves. The model was based on the fully nonlinear potential flow 

theory and combined a higher order Boundary Element Method (BEM) to solve 

Laplace’s equation at a given time and Lagrangian Taylor expansions to update the 

time of the free surface position and potential. Both the resolution and extent of 

computations were greatly improved through the use of the new methods. 

 

Grilli et al. (1997) developed a fully nonlinear potential flow scheme by employing 

boundary element techniques and used it to calculate various characteristics of 

solitary wave propagation and breaking. The scheme provided detailed information 

about wave breaking including the shape of the plunging jet generated by the 

breaking process. However, it was not able to predict maximum runup because the 

computation terminated when the plunging jet struck the free surface. 

 

Titov and Gonzalez (1997) implemented and tested a set of numerical simulation 

codes, known as the MOST (Method of Splitting Tsunami) model. Introduced as a 

part of the Early Detection and Forecast of Tsunami (EDFT) project, the model was 

capable of simulating the processes of tsunami evolution such as generation by an 

earthquake, transoceanic propagation, and inundation of dry land. Simulation of the 

generation process in the MOST model was based on elastic deformation theory 

(Gusiakov, 1978; Okada, 1985) and the method of computing inundation was a 

derivative of the VTCS-2 model (Titov, 1997; Titov and Synolakis, 1995, 1996, 

1997). Generation and propagation capabilities were tested against the deep ocean 

bottom pressure recorder data recorded during the 1996 Andreanov tsunami. The 

inundation computations were compared with the field measurements of maximum 
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runup on Okushiri Island, which were gathered shortly after the 1993 Hokkaidō 

Nansei-Oki tsunami. The results of the simulations were consistent with the 

observations. The MOST model is widely used at present. 

 

Kirby et al. (1998) designed a finite difference model called FUNWAVE that can be 

used to solve a free surface wave problem using the fully nonlinear, extended or 

standard Boussinesq equations or the nonlinear shallow water equations. Given the 

inital conditions and bathymetry, the program dealt with free surface elevations and 

horizontal velocities on a rectilinear non-staggered grid. 

 

Lin et al. (1999) developed a numerical model to solve the Reynolds equations for 

the mean flow field and the ḱ-ε equations for the turbulent kinetic energy, ḱ, and the 

turbulence dissipation rate, ε. Then they applied the model to wave breaking and 

runup. The free surface locations and movement were tracked by the Volume-of-

Fluid (VOF) technique. The researchers observed that the numerical results agreed 

fairly well with the experimental results in terms of the wave profile and velocities, 

but were unable to provide jet and splash up information. 

 

Yoon (2002) proposed a two-dimensional finite difference numerical scheme in 

order to simulate transoceanic propagation of tsunamis over gradually varying 

topography. This scheme solved the shallow water equations on a uniform grid 

system. The dispersion effect of waves was considered in the computation by 

utilizing the numerical dispersion error arising from the leapfrog scheme. Having 

tested the model for several cases, Yoon (2002) concluded that the numerical model 

was less accurate for short waves than the original Boussinesq equation model; 

however, it was computationally more efficient. Thus, the model was regarded as 

superior to that of the conventional finite difference models.  

 

Lynett et al. (2002) developed a Boussinesq-type wave model, COULWAVE 

(Cornell University Long and Intermediate Wave Modeling Package), which was 

used for coastal and ocean wave propagation. They used a high-order finite 
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difference scheme in order to solve highly nonlinear and weakly dispersive 

equations, in addition to an eddy viscosity model which they used to investigate 

breaking wave runup. They were able to validate both the wave breaking 

parameterization and the moving boundary technique since they accurately predicted 

non-breaking and breaking solitary wave runup. The results of their investigation 

into two-dimensional wave runup in a parabolic basin and around a conical island 

were in excellent agreement with the published data. 

  

Stelling and Zijlema (2003) introduced a numerical technique for the approximation 

of vertical gradient of the non-hydrostatic pressure arising in the Reynolds-averaged 

Navier–Stokes equations for simulating non-hydrostatic freesurface flows. The 

proposed technique was stated to be capable of simulating relatively short wave 

propagation, in which both frequency dispersion and nonlinear effects played an 

important role. The results indicated that the technique was able to capture the 

essential wave phenomena, such as shoaling, dispersion, refraction and diffraction 

and was expected to be computationally competitive with the extended Boussinesq-

type wave models. 

 

Biausser et al. (2003) referred to the study of Guignard et al. (1999, 2001), who 

efficiently and accurately computed wave breaking on sloping beaches combining 

the segment Lagrangian Volume-of-Fluid (SL-VOF) and Boundary Element Method 

(BEM) for two-dimensional flows. Biausser et al. (2003) extended this methodology 

to three-dimensional flows and verified it on two simple applications. The three-

dimensional Boundary Element Method (3D BEM) produced similar results for the 

case of a solitary wave shoaling and breaking on a sloping beach. 

 

Watts et al. (2005) developed four separate sources for the December 26, 2004 

tsunami, which were based on differences in seafloor morphology along a 1200 km 

long rupture zone. A numerical simulation of the tsunami performed with a higher-

order Boussinesq model led them to conclude that the numerical results and a few 

observed runup values were in reasonable agreement. 
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Koh et al. (2005) from University of Malaysia developed an in-house tsunami model, 

TUNA, which was made up of two parts: TUNA-M2 which predicted tsunami 

generation and propagation and TUNA-RP which estimated tsunami runup and 

inundation. TUNA model used the Okada equation for tsunami sources generation 

due to an earthquake. The explicit finite difference method and staggered scheme 

were employed so that linear shallow water equations were discretized and tsunami 

propagation could be predicted. However, nonlinear shallow water equations were 

applied for the cases of tsunami runup and inundation. 

 

Synolakis and Bernard (2006) collected and summarized the approaches towards 

tsunami numerical calculations in their extensive study on tsunami numerical 

modeling. They focused on the improvements in tsunami simulations by numerical 

modeling after the destructive 2004 Sumatra tsunami. The developments in tsunami 

inundation modeling tools were explained in detail in terms of hydrodynamics. 

 

Dao and Tkalich (2007) carried out research into the sensitivity of the modified 

version of the numerical model TUNAMI-N2 in terms of astronomic tide, sea bottom 

friction, dispersion, coriolis force, and spherical curvature by modeling the 2004 

Sumatra event as the tsunami scenario. A modified version of the code, TUNAMI-

N2-NUS, was introduced later. The code used nonlinear shallow water equations; 

however, it solved Boussinesq Equations when the dispersion effect was considered. 

 

Zhang and Baptista (2008) developed a new finite-element model, SELFE, for cross-

scale ocean modeling. It was a semi implicit Eulerian–Lagrangian finite element 

model based on the three-dimensional Navier Stokes equations. It employed an 

unstructured grid in horizontal dimension for the adjustment of complex coastal 

topographic features and coastal structures. The researchers conducted a field 

application to the Columbia River estuary and plume to assess the performance of 

SELFE. 
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Harig et al. (2008) designed a tsunami simulation model, TsunAWI, as part of the 

German aid contribution in the framework of the German–Indonesian Tsunami Early 

Warning System (GITEWS) at Alfred Wegener Institute for Polar and Marine 

Research (AWI). Based on an unstructured grid approach, the model used the finite 

element method to solve the governing shallow water equations, as this allowed a 

flexible discretization of the model domain. 

 

Franchello and Krausmann (2008) developed HyFlux2 in order to solve the shallow 

water equations within the framework of European Commission Joint Research 

Center’s (JRC) MAHB-NEDIES project. The model was used to predict both 

tsunami surges on coastal plains and dam-break waves in flood plains. HyFlux2 was 

capable of capturing local discontinuities (i.e. shock waves) and reducing numerical 

diffusion and unphysical viscosity effects dominating in all finite difference methods 

with the help of its basic ingredient, which was a 2D finite volume Approximate 

Riemann Solver, with a high-resolution Flux Vector Splitting technique and implicit 

treatment of the source terms. 

 

Yamazaki et al. (2009) formulated, verified and validated a numerical model, 

NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). This depth-integrated, 

non-hydrostatic model had a semi-implicit, finite difference scheme, whose 

formulation built on the nonlinear shallow water equations and utilized a non-

hydrostatic pressure term in order to describe weakly dispersive waves. Good 

agreement with the available laboratory data for wave propagation, transformation, 

breaking, and runup was observed. Yamazaki et al. (2011a) managed to apply 

NEOWAVE to recent tsunami case studies. 

 

Abadie et al. (2010) designed a multiple fluid Navier Stokes model, THETIS, for 

waves generated by idealized slide geometries or deforming slides. Analytical 

solutions and several laboratory experiments from previous studies, including the 

three-dimensional landslide experiment described in Liu et al. (2005) and Synolakis 
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et al. (2007), were used to validate this model, which accepted all computational 

domain regions as Newtonian fluids. 

 

Horrillo et al. (2010, 2013) developed and validated a simplified three-dimensional 

Navier-Stokes model, TSUNAMI3D (Tsunami Solution Using Navier-Stokes 

Algorithm with Multiple Interfaces). The model employed the Volume of Fluid 

(VOF) method to track the fluid interface and the surfaces were obtained by 

integrating the fluxes of each individual fluid cell along the water column. In the 

momentum equation, the pressure term was divided into hydrostatic and non-

hydrostatic components. The viscosity coefficient was adjusted to solve the internal 

friction in a simplified manner. 

 

Dutykh et al. (2011) develepod a tsunami numerical model, VOLNA, aiming to 

introduce a tool for tsunami wave modeling which covered the whole spectrum from 

generation to inundation. Because the model algorithm worked on unstructured 

triangular meshes, it could be run in arbitrary complex domains. It solved nonlinear 

shallow water equations with the finite volume scheme. The researchers partially 

validated their algorithm through several realistic test cases that they presented. 

 

Titov et al. (2011) described a web-based community tsunami model for inundation 

modeling called Community Modeling Interface for Tsunamis (ComMIT), which 

was initially developed for Indian Ocean countries and supported by the United 

Nations Educational, Scientific and Cultural Organization (UNESCO), the United 

States Agency for International Development (USAID), and the National Oceanic 

and Atmospheric Administration (NOAA). ComMIT, which is currently being 

widely used, uses initial conditions taken from a precomputed propagation database 

and also allows incorporation of other tsunami models such as TsunAWI (Harig et 

al., 2008) or TUNAMI (Imamura, 1995). ComMIT supplies an interface which 

makes the selection of model input data (initial condition, bathymetry grids, etc.) 

possible. In addition, a platform to display model output through a graphical user 

interface (GUI) is available. 
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Kaiser et al. (2011) carried out detailed inundation simulations which aimed to 

support damage analysis and risk assessment regarding the 2004 tsunami in Phang 

Nga and Phuket, Thailand. The numerical models ComMIT, developed by the 

National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami 

Research, and Mike 21 FM, a depth-averaged and hydrostatic wave evolution model 

designed by the Danish Hydrological Institute (DHI), were employed to gain an 

understanding of the observed tsunami inundation and to draw conclusions on the 

effect of land cover on inundation patterns. 

 

Roeber and Cheung (2012) developed a Boussinesq Model for Ocean and Surf Zones 

(BOSZ). The model combined the weakly dispersive properties of the Boussinesq 

approximation with the conservative form of the nonlinear shallow water equations 

up to fifth-order in Cartesian coordinates. 

 

2.3. NAMI DANCE Applications 

 

NAMI DANCE is a tsunami numerical model developed by Middle East Technical 

University (METU), Turkey and Laboratory of Special Research Bureau for 

Automation of Marine Research, Far Eastern Branch of Russian Academy of 

Sciences, Russia. NAMI DANCE gained importance and popularity in a short span 

of time in the area of coastal modeling and was recommended by the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) to be used in the 

simulations of possible tsunami scenarios. 

 

Yalciner et al. (2005) issued a report about the field survey results concerning runup, 

arrival time and damages of the 2004 Indian Ocean tsunami. They carried out the 

field survey between January 21-31, 2005 at the north coasts of Sumatra Island in 

Medan and Meulaboh cities and in Simeulue Island. In addition, they simulated the 

2004 Indian Ocean tsunami using NAMI DANCE and compared the numerical 

results with the observed field data of other tsunami survey teams at Sumatra, 

Thailand, Sri Lanka, India and Maldives. 
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Yalciner et al. (2007a) applied NAMI DANCE to five different tsunami scenarios 

which were likely to be generated in the Eastern Mediterranean. The available data 

of earthquake epicenters and magnitudes measured in the last century and subduction 

zone properties of Hellenic Arc were used in their simulations, whose results showed 

that the south of Crete and Peloponnesus, the north of Libya and Egypt were all 

vulnerable to tsunami waves. 

 

Zaitsev et al. (2009) presented the data of the instrumental registration of the tsunami 

on Sakhalin and Hokkaidō islands as well as performing numerical simulations of the 

tsunami propagation in the Tatar Strait using NAMI DANCE software. They found 

that the numerical results were in satisfactory agreement with the observed data. 

 

Dilmen (2009) employed NAMI DANCE to study the possible tsunami scenarios for 

the Gulf of Fethiye in Turkey and for the coasts Kyparissia, Zakynthos and Pylos in 

Greece. GIS based tsunami inundation maps were prepared and it was found that 

when the superstructure was taken into account in the formation of the topographical 

data, there was a reduction in the tsunami inundation. 

 

Insel (2009) studied the effects of landslide parameters, density and thickness of the 

slid material on tsunami wave generation in Yalova in the Sea of Marmara. The 

generation of the landslide generated tsunamis were modeled using TWO-LAYER 

and the propagation and coastal amplification of the landslide generated waves were 

simulated via NAMI DANCE. In the study, it was concluded that higher densities 

and thicknesses of slide material caused higher water surface elevations. 

 

Yalciner et al. (2010) performed numerical simulations for a selected tsunami 

scenario in Caribbean Sea using the numerical models TUNAMI N3 and NAMI 

DANCE and presented the numerical results of potential tsunamis generated in the 

region. 
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Zaitsev and Pelinovsky (2011) discussed forecasting of tsunami wave heights at the 

Russian coast of the Black Sea. The calculations of the tsunami wave characteristics 

were made using NAMI DANCE. The results of the numerical modeling of the 

historical events (in 1939 and 1966) were compared with the available observed data. 

 

Onat (2011) generated a database of various seismic soruces and applied it to Eastern 

Mediterranean by using NAMI DANCE. The difficulties in defining seismic source 

parameters and the effects of dip and rake (slip) angle on seismic generated tsunamis 

were also evaluated. Simulations were performed in nested domains for Bodrum, Kas 

and Iskenderun, which were presented as case studies. It was evident that the north-

west and the south-west of Turkey were more vulnerable to tsunami than the other 

regions. 

 

Ozer and Yalciner (2011) described the term hydrodynamic demand as a parameter 

used to represent the potential for tsunami drag force related damage to structures 

along coastlines. While performing analyses using NAMI DANCE in two altered 

regular-shaped basins with different bottom slopes, they implemented the 

simulations using a single sinusoidal wave with particular initial conditions, such as 

leading elevation wave and leading depression wave profiles with different wave 

periods. 

 

Ozel et al. (2011) aimed at having a better understanding of the tsunami potential of 

the coasts of Turkey; therefore, they investigated the historically and instrumentally 

recorded tsunamis in the region. The modeling results of NAMI DANCE from 

selected tsunamigenic regions, Rhodes and the southwest of Turkey were included in 

the study. It was also stated that Kandilli Observatory and Earthquake Research 

Institute (KOERI) had started to install 5 sea floor observation systems in the Sea of 

Marmara to increase the observational capabilities and reduce the early warning time 

in case of a tsunami. The researchers emphasized the short arrival times in the 

Marmara and Aegean Seas and explained why it is utmost importance to establish a 

tsunami warning center in Turkey. 
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Ayca (2012) developed a Web based Geographic Information System (GIS) to serve 

tsunami inundation maps through the web. The four main stages of the research 

methodology were: (i) simulating tsunamis based on six different scenarios using 

NAMI DANCE; (ii) processing simulation data by means of a GIS application; (iii) 

development of web interfaces and implementation of the developed model for Web-

GIS application; (iv) validation of the created model for Marmara Sea Region. 

 

Onat and Yalciner (2013), upon creating 38 possible scenarios in the Eastern 

Mediterranean by employing NAMI DANCE, carried out simulations in nested 

domains for the towns of Iskenderun and Kas as case studies. They also analysed the 

uncertainties in defining seismic source parameters. The north-west and the south-

west coasts of Turkey were found to be more vulnerable to tsunami waves than the 

other coasts. 

 

Dilmen et al. (2014) prepared a tsunami inundation map for the Gulf of Fethiye by 

using NAMI DANCE based on their tsunami simulation and inundation assessment 

for the region. They used a high resolution bathymetry and topography data set for 

14 probable tsunami scenarios and found that lowland nearshore regions with 

lowland topography were prone to a considerable level of inundation. Dilmen et al. 

(2014) also claimed that, although the presence of Sovalye Island located in front of 

the bay partly prevented the entrance of the tsunami waves, it created more agitation 

in the area. 

 

Yalciner et al. (2014a) modeled a hypothetical landslide tsunami at Nile Delta in the 

Eastern Mediterranean Sea in order to study the risks it would pose to the region. The 

generation and propagation of a realistic landslide scenario was simulated 

numerically, which was the basis of the methodology used, and two different models, 

TWO LAYER and NAMI DANCE were selected for the simulations. The 

researchers discovered that there were wave reflections because of the semi-enclosed 

nature of the eastern Mediterranean, which resulted in several wave trains arriving at 

every coastal site. They recommended that deepwater pressure gauges be used so that 
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any landslide-generated tsunamis in the Eastern Mediterranean could be detected and 

early warning would be possible. 

 

Yalciner et al. (2014b) conducted a numerical modeling study, whose main focus 

was the western part of Peloponnese in Greece, in the framework of European Union 

funded project, SEAHELLARC. In the study, simulations of possible tsunami source 

scenarios for the Pylos, Kyparissia, Filiatra and Zakynthos regions, located at the 

western part of Greece, were carried out by using NAMI DANCE to estimate 

extreme but possible tsunami wave effects in these regions. Finally, the tsunami 

arrival times and maximum positive and negative amplitudes were computed, plotted 

and compared. 

 

Necmioglu and Ozel (2014) studied the sensitivity of earthquake source parameters 

in tsunami generation and propagation, focusing on the Eastern Mediterranean, using 

NAMI DANCE. They concluded that tsunami hazard studies should analyse a range 

of parameters, and that the maximum generated tsunami should be taken into 

consideration. Where this was not possible owing to computational limitations, at 

least sensitivity studies should be carried out and, in the selection of parameters, it 

was important that those that would result in maximum tsunami generation be 

favoured. 

 

Ozdemir (2014) performed a series of simulations via NAMI DANCE by inputting 

previously determined seismic sources in the Sea of Marmara in order to develop a 

simple high-speed informative tsunami warning system for Marmara coasts. The 

results indicated that the maximum expected tsunami wave height at a gauge selected 

near Haydarpasa Port in the Sea of Marmara was around 1 to 2 m. 

 

Pamuk’s (2014) research into the influence of buildings and roughness coefficient on 

tsunami motion in an inundation zone was based on the comparison of 5 different 

simulations performed for the Belek region in Antalya using NAMI DANCE. In the 

study, the results showed that high resolution bathymetry and topography were 
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necessary for tsunami analysis for residential areas in order to obtain accurate 

velocities and inundation depths. It was stated that when friction was included, the 

inundation distances and discharge fluxes observed in the selected region were 

reduced. To identify possible morphological changes caused by a tsunami attack, the 

use of a non-dimensional parameter, the Rouse number, was also highlighted in the 

study. 

 

Sozdinler et al. (2014) employed NAMI DANCE to analyse a tsunami parameter, 

namely hydrodynamic demand, which expressed the relative value of the drag force 

(i.e. damage level) of tsunami waves in inundation zones. The maximum values of 

inundation depth and current velocity are investigated as well as those of the water 

elevation and discharge flux that took place during several tsunami inundation 

scenarios. The simulations were conducted considering various orientations of 

regular shaped basins. The results of the analyses provided information about the 

damage levels in residential areas and the efficiency of coastal protection structures. 

 

Aytore (2015) assessed the tsunami resilience of Haydarpasa Port in Istanbul 

according to the most effective submarine earthquake by carrying out numerical 

simulations with NAMI DANCE. Having analysed the possible effects of increasing 

data and model resolution to a higher level and including existing structures as 

elevation data, Aytore (2015) concluded that the highest model and data resolution 

produced more accurate results in tsunami modeling studies. 

 

Sozdinler et al. (2015) calculated the damage inflicted by tsunami waves on 

structures and coastlines in Kamaishi Bay in terms of the square of the Froude 

number, Fr
2
, by conducting a numerical modeling study. The analyses were 

performed via NAMI DANCE with nested domains at a higher resolution and the 

effect of the Kamaishi breakwater on the tsunami inundation distance was tested. 

Also, the coastal damage was evaluated using the conditions with breakwater, 

without breakwater and damaged breakwater. 
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Kian et al. (2015a) used NAMI DANCE to investigate the resonance oscillations, 

periods of free oscillations and flow patterns of long waves in Haydarpasa Port, 

Istanbul. The possible effects of long wave amplification and resonance oscillations 

on Haydarpasa Port were discussed. 

 

Kian et al. (2015b) investigated the response and behavior of water motions inside 

the enclosed basins under long wave conditions by using NAMI DANCE. The spatial 

and temporal changes of main tsunami parameters and their adverse effects on harbor 

performance were analysed by monitoring the wave and current amplifications and 

consequent variation of sediment motion in terms of the Rouse number. Several case 

studies for the possible effects of tsunamis or long waves on Belek, Antalya and on 

Haydarpasa Port, Istanbul were conducted. 

 

Patel et al. (2016) modeled the Makran 1945 tsunami using NAMI DANCE for the 

coasts of Pakistan, Iran, India and Oman. The epicenter was 25.15N - 63.48E, the 

fault line was 200 km long and 100 km wide, focal depth was 15 km and strike, dip 

and rake angles were 2460, 70 and 900, respectively. The bathymetry data were 

obtained from General Bathymetric Chart of the Oceans (GEBCO) and land 

topography data from Shuttle Radar Topography Mission (SRTM) The results were 

consistent with the available reports and published data. 

 

Cankaya et al. (2016) worked on a new methodology for tsunami vulnerability 

assessment for areas prone to tsunami. In their proposal, the Yenikapı region was 

selected as a case study and available data sets from the Istanbul Metropolitan 

Municipality and Turkish Navy were used as inputs for high-resolution GIS-based 

multi-criteria decision analysis (MCDA) evaluation of tsunami risk in that region. 

Earthquake worst case scenarios were considered in the deterministic computation of 

the tsunami hazard using NAMI DANCE. 
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2.4. FLOW-3D
®
 Applications 

 

FLOW-3D
®
 is a general purpose computational fluid dynamics model (CFD), which 

is a direct descendant of the work on the volume of fluid method (VOF) carried out 

at the Los Alamos National Laboratory (Hirt and Nichols, 1981). FLOW-3D
®

 solves 

Navier–Stokes equations via the finite difference method (FDM) and utilizes the 

VOF method for computing free surface motion. 

 

Choi et al. (2007) employed FLOW-3D
®
 to simulate wave runup on a conical island, 

based on the unexpectedly large tsunami runup elevations which had been observed 

in the circular Babi Island in the 1992 Flores tsunami and in the pear shaped Okushiri 

Island in the 1993 Okushiri tsunami. They maintained that the results obtained using 

two- and three-dimensional models were in good agreement with each other as well 

as the laboratory data of the physical model studies conducted earlier in the Coastal 

Hydraulic Laboratory, Engineering Research and Development Center, U.S. Army 

Corps of Engineers by Briggs et al. in 1994. They also closely examined the three‐

dimensional velocity distribution around the conical island and found that the 

velocity distribution along the vertical coordinate was not uniform. 

 

Choi et al. (2008) conducted an analytical and numerical analysis of the runup of a 

solitary wave on a non-plane beach. Before carrying out the numerical analyses using 

FLOW-3D
®
, they applied nonlinear shallow water theory to obtain an analytical 

solution for a simplified bottom geometry, such as an inclined channel with a 

parabolic cross-slope shape. After parameters such as water displacement, velocity 

field and energy dissipation were analysed, it was proven that the existence of a 

parabolic cross-slope channel on the plane beach led to runup intensification, a 

phenomenon commonly observed in post-tsunami field surveys.  
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Bhinder et al. (2009) studied experimental and numerical modeling of a surging point 

absorber wave energy converter (WEC). After simulating single degree-of-freedom 

motion of the WEC using FLOW-3D
®
, they compared the numerical results with the 

experimental data. They also tested the ability of the code to simulate free surface 

linear waves and wave-structure interaction. They concluded that the solver of 

FLOW-3D
®
 was quite sound and efficient in wave modeling. 

 

Basu et al. (2009) assessed the impulse waves generated by the subaerial landslide at 

Lituya Bay, Alaska by conducting numerical simulations. FLOW-3D
®

 software was 

used in order to track the free surface and shoreline movements. The simulation 

results were compared with the experimental ones obtained in a physical model of a 

real case and they were found to be in good agreement with the measured data. It was 

concluded that the model captured the basic flow properties which were associated 

with the time-dependent evolution of the flowfield as the landslide interacts with the 

bay. 

 

Das et al. (2009) studied the tsunami wave generation by submarine and aerial 

landslides. They used two different numerical tools to simulate the time histories of 

fluid motion, free surface deformation, shoreline movement and wave runup: 

FLOW-3D
®
 and SPH (Smoothed Particle Hydrodynamics), the latter employing a 

fully Lagrangian approach. The landslide and subsequent wave generations were 

modeled with a freely falling wedge in the simulations. The numerical results 

obtained from both models were compared with the experimental data and good 

agreement was observed. 

 

Parambath (2010) employed FLOW-3D
®
 to quantify the forces acting on an existing 

wind power unit due to a tsunami bore impact. The applicability of FLOW-3D
®
 to 

these types of problems was evaluated by comparing the results obtained from the 

numerical simulations with those determined by the small scale laboratory 

experiments. 
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Lai et al. (2010) conducted experimental and numerical analyses of wave 

propagation over a coarse grained sloping beach, in which the wave profile and 

velocity field were simulated via FLOW-3D
®
. When the numerical results were 

compared with the experimental ones to examine the validity of the model, it was 

discovered that wave propagation over a coarse grained sloping beach affected the 

breaker types in shallow water. 

 

Kim (2012) carried out laboratory scale experiments of tsunami generation by 

subaerial landslide and integrated them with the numerical simulations. His work 

focused on the numerical validation of two three-dimensional Navier-Stokes models, 

namely FLOW-3D
®
 and TSUNAMI3D. Three large-scale landslide scenarios were 

selected from a set of laboratory experiments done by a tsunami research team in 

Georgia Institute of Technology. The numerical results obtained by both models 

were found to be reliable, as they had lower error than the allowable errors indicated 

by the National Tsunami Hazard Mitigation Program. 

 

Chen (2012) employed FLOW-3D
®
 to simulate internal solitary wave motion in a 

density stratified fluid, in which the upper layer is fresh water whereas the lower 

layer is brine water. Chen (2012) concluded that if FLOW-3D
®
 was applied using a 

very fine grid, the results would provide a better understanding of the internal wave 

characteristics compared to those of the physical laboratory experiments. 

 

Choi et al. (2012) aimed at quantifying an equivalent resistance coefficient that 

included the effect of drag caused by buildings and the bottom friction by means of a 

series of laboratory experiments and three-dimensional numerical simulations with 

FLOW-3D
®
. A semi-analytical formula for the equivalent resistance coefficient was 

also developed via momentum analysis. The equivalent resistance coefficient values 

resulting from the experimental data, the numerical data, and the semi-analytical 

formula were in good agreement with each other. 
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Ko et al. (2011) devised the internal wave generation method by applying a mass 

source, which was proposed by Lin and Liu (1999), into FLOW-3D
®
 code. They 

found that, in comparison to the existing wave-maker scheme, the generated wave 

profiles of the internal wave-maker were in better agreement with the analytical 

solutions even though the nonlinearity of wave was increased. 

 

Pelinovsky et al. (2013) cited both the highest wave runup which was recorded at 

Lhok Nga Twin Peaks after the 2004 Sumatra-Andaman earthquake and the 2011 

earthquake, which generated extremely destructive tsunami waves up to 37.9 m in 

height at the tiny fishery port Koborinai situated north of Miyako City in the Iwate 

Prefecture. Upon successfully reproducing these extremely large runups of tsunami 

waves in both cases via FLOW-3D
®
, the researchers discovered that the water flow 

that climbed the coast featured a strong vertical velocity component. 

 

Kim et al. (2013) analysed the coastal behavior of the tsunami at the Lhok Nga Twin 

Peaks within the framework of fully nonlinear dispersive Reynolds-averaged Navier–

Stokes equations via FLOW-3D
®
. The extreme characteristics of the tsunami in the 

studied coastal area, including the observed overflow through the saddleback 

between the twin peaks, were reproduced successfully. Thus, it was recommended 

that three-dimensional non-hydrostatic numerical models be used in order to predict 

tsunami characteristics on steep coasts and to estimate tsunami risk for such areas. 

 

Kim et al. (2013) worked on the simulation of the extreme runup height of 37.49 m 

which was observed at the Koborinai Port due to the 2011 East Japan earthquake 

tsunami. The Princeton Ocean Model was used in the first stage of tsunami 

propagation (i.e. from the source to the coast) and the wave runup at the Koborinai 

Port was modeled via FLOW-3D
®
. The researchers recommended that non-

hydrostatic numerical models be used in the prediction of tsunami characteristics on 

steep coasts. 
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Kim et al. (2015) reproduced the dynamics of extreme runup height, which was 

measured as 31.7 m at Monai Valley as a result of the 1993 Hokkaidō Nansei-Oki 

tsunami. They used FLOW-3D
®
 in order to investigate the role of diffraction in the 

extreme runup. The results revealed that the shape and layout of the coast line as well 

as the diffraction of tsunami waves by the two islands located in front of the valley 

had led tsunami waves to converge, leading to the extreme runup height. 

 

Wu et al. (2016) focused on the generation of solitary waves in a wave flume using a 

piston-type wavemaker. They made experimental observations in order to evaluate 

the stability of the generated solitary waves, defining stability as the generated 

solitary wave travelling a longer distance without an apparent decay. They 

discovered that the solitary wave heights were greatly detoriated owing to the 

imperfect fitness of wave paddle to the flume. They carried out numerical 

simulations using FLOW-3D
®
 to support their experimental results. 

 

In the light of these studies in the literature, the benchmarking and validation of two- 

and three-dimensional numerical modeling tools, namely NAMI DANCE and 

FLOW-3D
®
, are carried out and the strengths and weaknesses of these numerical 

models in the prediction of nearshore long wave behavior are determined. The details 

are given in the following sections.  
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CHAPTER 3  
 

 

THEORETICAL FRAMEWORK OF THE NUMERICAL MODELS 

3. THEORETICAL FRAMEWORK OF THE NUMERICAL MODELS 

 

 

The shallow water equations describe the evolution of incompressible flow, 

neglecting density change along depth. They can be applied to cases where the 

horizontal scale of the flow is much bigger than the depth of the fluid. Tsunami 

waves, which have long wave periods and wavelengths, are categorized as shallow 

water waves, with wavelengths much larger than the water depth. Therefore, tsunami 

wave motion can be estimated by shallow water models. 

 

The propagation of tsunami waves offshore can be adequately described by linear 

long wave theory as: 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑀

𝜕𝑥
+
𝜕𝑁

𝜕𝑦
= 0                                                                                                             [3.1] 

 

𝜕𝑀

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑥
= 0                                                                                                                  [3.2] 

 

𝜕𝑁

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑦
= 0                                                                                                                  [3.3] 

 

where 𝑥 and 𝑦 are the horizontal 𝑥 and 𝑦 axes in the Cartesian coordinate system, 

respectively, 𝑡 is time, 𝜂 is the free surface elevation, 𝑔 is gravitational acceleration, 

𝑀  and 𝑁  are the discharge fluxes on horizontal plane along 𝑥  and 𝑦  axes, 

respectively and 𝐷 is the total water depth given by 𝐷 = 𝑑 + 𝜂. 

 

Linear shallow water equations, which are the simplest form of equations used in 

tsunami motion prediction, do not contain the nonlinear convective terms. As 

numerical simulations based on linear theory necessitate a relatively small amount of 
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computation, they are preferred for the prediction of tsunami wave propagation in 

deep water. On the other hand, the linear long wave theory is no longer dependable 

due to the nonlinear conditions in shallower regions because, as tsunami waves 

approach shallower regions (i.e. to the shoreline), nonlinear effects gain significance. 

Thus, nonlinear shallow water equations, which include the effects of bottom friction 

on tsunami wave propagation, are employed to describe tsunami motion in shallow 

water zones inspite of the difficulties inherent in them. There is ample evidence that 

the bottom friction term exerts considerable influence on the propagation of tsunami 

waves in shallow water (Liu et al., 2008) and therefore the nonlinear shallow water 

theory is regarded as the proper tool to predict nearshore motion of tsunami waves. 

 

3.1. NAMI DANCE 

 

The numerical scheme of NAMI DANCE is given and its capabilities and limitations 

are explained in detail in the following subsections. 

 

3.1.1. Model Background 

 

Among the many numerical models that have been developed to predict tsunami 

motion both offshore and nearshore either for academic or operational purposes, one 

of the TUNAMI models, the tsunami propagation model known as TUNAMI-N2 

(Tōhoku University’s Numerical Analysis Model for Investigation of Near field 

tsunamis, No.2) has become prominent. Its source code was developed in the 

framework of UNESCO Tsunami Inundation Modeling Exchange (TIME) program 

which has been held in Disaster Control Research Center (DCRC) of Sendai, Japan 

since 1995. TUNAMI-N2 employs linear theory in deep water, long wave theory in 

shallow water and runup on land with constant grids (Imamura, 1995). To solve 

nearshore tsunami motion, TUNAMI-N2 uses the second-order explicit leapfrog 

finite difference scheme, which supplies a stable solution and shorter computation 

time in reasonable error limits. In this model, the initial wave development is based 

on the Okada (1985) calculations for co-seismic tsunamis. The shape of the initial 

wave and the dynamic inputs of the wave at a specified location in the study domain 
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can be controlled by the user. The model is developed in Fortran and is used in 

Windows operating system with Visual Studio interface. TUNAMI-N2 was later 

modified, improved and registered in U.S., and copyright was granted to Professors 

Imamura, Yalciner and Synolakis in 2000 (Yalciner et al., 2001; Yalciner et al., 

2002; Zaitsev et al., 2002; Yalciner et al., 2003; Kurkin et al., 2003; Zahibo et al., 

2003; Yalciner et al., 2004; Yalciner and Pelinovsky, 2007). 

 

NAMI DANCE is a numerical model which serves to simulate tsunami evolution, 

propagation and inundation. It has been developed by the collaboration of Ocean 

Engineering Research Center, Middle East Technical University, Turkey, and 

Special Research Bureau for Automation of Marine Researches, Russia, by scientists 

Andrey Zaytsev, Ahmet Cevdet Yalciner, Anton Chernov, Efim Pelinovsky and 

Andrey Kurkin. NAMI DANCE uses C++ programming language and is based on 

the computational procedures of TUNAMI-N2. The nonlinear forms of long wave 

equations are solved based on a rectangular structured mesh via NAMI DANCE with 

respect to related initial and boundary conditions. The solution procedure is a 

staggered leapfrog scheme. In general, the explicit numerical solution of nonlinear 

shallow water equations is favoured since the amount of computer time and memory 

it consumes is reasonable and the results are in acceptable error limits (Velioglu et 

al., 2016). 

 

NAMI DANCE, which is an improved form of TUNAMI-N2, provides direct 

simulations in nested domains, allowing the user to select from two coordinate 

systems (i.e. Cartesian or spherical) and two equation types (i.e. linear or nonlinear 

shallow water equations) in multiprocessor environments. NAMI DANCE computes 

maximum and minimum water surface elevations, velocities and directions of wave 

currents, momentum fluxes and their directions, flow depths, the Froude number and 

the Rouse number in the study domain. As opposed to TUNAMI-N2, NAMI 

DANCE has the capability to create the initial wave by using both tsunamigenic 

rupture parameters of an earthquake and user defined shapes of the initial water 

surface disturbance. The calculations can be made by using either a static source 
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inputted as an initial wave or a dynamic source (time history of water surface 

fluctuation) inputted from an arbitrary location. The model also has the capacity of 

preparing three-dimensional plots of sea state at selected time intervals by arranging 

different camera and light positions monitored by the user, and animating the 

tsunami propagation and inundation in the study domain. The code was modified in 

order to make the calculations in a multi-processor pattern. In other words, NAMI 

DANCE performs the numerical calculations by using all the processors of the 

executed computer in order to increase the simulation speed while reducing the 

process time. 

 

NAMI DANCE has been subjected to testing via specific benchmark problems 

commonly used by coastal scientists and it has proved to be reliable and functional. 

Some of these benchmark problems were introduced in International Workshops on 

Long-Wave Runup Models, which were held on Catalina Island, U.S. in 1991, 1995 

and 2004 and funded by National Science Foundation (NSF) (Synolakis, 1991, 

Synolakis et al., 1995, 2004; Liu et al., 2008). Several tsunami events have been 

modeled by applying NAMI DANCE in more than 10 institutes worldwide (Zaitsev 

et al., 2008; Yalciner et al., 2010, 2012). 

 

3.1.2. Numerical Scheme 

 

Navier-Stokes Equations, which are the governing equations in the prediction of 

fluid motion, form the basis of long wave/shallow water theory (Vreugdenhil, 1994). 

The tsunami motion computations are mainly based on the shallow water theory 

(Shuto 1991), in which the vertical motion of water particles is not taken into 

consideration because of its negligible effect on the pressure distribution. Therefore, 

the pressure distribution is accepted to be hydrostatic. Given this approximation, 

necessary dynamic and kinematic conditions are used and the bottom friction terms 

(for nonlinearity) are included so that the fundamental equations of NAMI DANCE 

are obtained and are discretized by means of the staggered leapfrog scheme 

(Velioglu et al., 2016). 
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Neglecting the vertical motion of water particles, the equations of continuity 

(conservation of mass) and momentum are given by the following set of equations 

(Imamura et al., 2006): 

 

The Continuity Equation: 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                                                                                                    [3.4] 

 

The Momentum Equations in 𝑥, 𝑦 and 𝑧 directions: 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ w

𝜕𝑢

𝜕𝑧
+
1

𝜌

𝜕𝛲

𝜕𝑥
+
1

𝜌
(
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

) = 0                        [3.5] 

 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+
1

𝜌

𝜕𝛲

𝜕𝑦
+
1

𝜌
(
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑦𝑧

𝜕𝑧
) = 0                        [3.6] 

 

𝑔 +
1

𝜌

𝜕𝛲

𝜕𝑧
= 0                                                                                                                        [3.7] 

 

where 𝑧 is the vertical axis in the Cartesian coordinate system, 𝜌 is the fluid density, 

𝛲 is the pressure, 𝑢, 𝑣 and 𝑤 are the water particle velocities in 𝑥, 𝑦 and 𝑧 directions, 

𝜏ij is the normal or tangential shear stress in i direction on the j normal plane. 

 

The surface tension force between air-water interface is neglected, which leads to the 

dynamic boundary condition at the free surface given by Equation [3.8]: 

 

𝛲 = 0          at          𝑧 = 𝜂                                                                                                    [3.8] 

 

It is accepted that a water particle which is once at the free surface remains at the free 

surface throughout the motion. This gives the kinematic boundary condition at the 

free surface which is given by Equation [3.9]: 
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𝑤 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
           at          𝑧 = 𝜂                                                                    [3.9] 

 

The kinematic boundary condition at the impermeable sea bottom is given by 

Equation [3.10]: 

 

𝑤 = −𝑢
𝜕𝑑

𝜕𝑥
− 𝑣

𝜕𝑑

𝜕𝑦
                  at          𝑧 = −𝑑(𝑥, 𝑦)                                                   [3.10] 

 

where 𝑑 is water depth. Equation [3.10] equals to zero in case of a flat sea bottom. 

 

When the dynamic boundary condition at the free surface is applied to the equation 

of momentum in 𝑧 direction, the hydrostatic pressure distribution is obtained: 

 

𝛲 = 𝜌𝑔(𝜂 − 𝑧)                                                                                                                   [3.11] 

 

After integrating Equations [3.4] – [3.7] from sea bed, −𝑑, to the free surface, 𝜂, 

using the Leibniz integral rule and applying boundary conditions at the free surface 

and at the sea bottom, the two-dimensional depth-averaged nonlinear shallow water 

equations including the discharge fluxes are obtained (Imamura et al., 2006): 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑀

𝜕𝑥
+
𝜕𝑁

𝜕𝑦
= 0                                                                                                           [3.12] 

 

𝜕𝑀

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀2

𝐷
) +

𝜕

𝜕𝑦
(
𝑀𝑁

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑥
+
𝜏𝑥
𝜌
= Ά (

𝜕2𝑀

𝜕𝑥2
+
𝜕2𝑀

𝜕𝑦2
)                          [3.13] 

 

𝜕𝑁

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀𝑁

𝐷
) +

𝜕

𝜕𝑦
(
𝑁2

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑦
+
𝜏𝑦

𝜌
= Ά (

𝜕2𝑁

𝜕𝑥2
+
𝜕2𝑁

𝜕𝑦2
)                            [3.14] 

 

where 𝜏𝑥  and 𝜏𝑦   are the shear stresses in 𝑥 and 𝑦 directions, respectively and Ά is the 

eddy viscosity which is assumed to be constant in space. 
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In the case of long waves, the horizontal eddy viscosity, Ά, is neglected since its 

effect is negligible compared to the effect of bottom friction.  

 

The discharge fluxes 𝑀 and 𝑁 are defined by: 

 

𝑀 = ∫ 𝑢𝑑𝑧
𝜂

−𝑑

= 𝑢(𝑑 + 𝜂) = 𝑢𝐷                                                                                     [3.15] 

 

𝑁 = ∫ 𝑣𝑑𝑧
𝜂

−𝑑

= 𝑣(𝑑 + 𝜂) = 𝑣𝐷                                                                                      [3.16] 

 

The shear stresses in 𝑥 and 𝑦 directions, 𝜏𝑥  and 𝜏𝑦, for the uniform flow with bottom 

friction are defined as: 

 

𝜏𝑥
𝜌
=
1

2𝑔

𝑓

𝐷2
𝑀√𝑀2 + 𝑁2                                                                                                 [3.17] 

 

𝜏𝑦

𝜌
=
1

2𝑔

𝑓

𝐷2
𝑁√𝑀2 + 𝑁2                                                                                                 [3.18] 

 

where 𝑓 is the friction coefficient. 

 

For the bed resistance to flow in open channels, the Manning’s roughness coefficient, 

𝑛, is preferred to be used rather than the friction coefficient, 𝑓, in most engineering 

problems. The use of 𝑛 has also been adapted to shallow water models. The formula 

for the relationship between the Manning’s roughness coefficient and the friction 

coefficient is given as: 

 

𝑛 = √
𝑓𝐷

1
3⁄

2𝑔
                                                                                                                       [3.19] 
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By substituting Equation [3.19] in Equations [3.17] and [3.18], the shear stress terms 

are redefined as: 

 

𝜏𝑥
𝜌
=

𝑛2

𝐷
7
3⁄
𝑀√𝑀2 + 𝑁2                                                                                                    [3.20] 

 

𝜏𝑦

𝜌
=

𝑛2

𝐷
7
3⁄
𝑁√𝑀2 + 𝑁2                                                                                                    [3.21] 

 

Equations [3.20] and [3.21] suggest that the bottom friction increases with the fluxes, 

and is inversely proportional to total depth, causing wave energy to dissipate faster as 

the wave propagates in shallow water areas. 

 

The values of Manning’s roughness coefficient are categorized in Arcement and 

Schneider (1989) and Chow (1959). Imamura et al. (2006) also propose values for 𝑛, 

given in Table 3.1, for certain types of sea bottom. 

 
Table 3.1 Values of Manning’s roughness coefficient, 𝑛, for certain types of sea bottom 

(Imamura et al., 2006) 

 

Bed Material 𝒏 

Neat cement, smooth metal 0.010 

Rubble masonry 0.017 

Smooth earth 0.018 

Natural channels in good condition 0.025 

Natural channels with stones/weeds/etc. 0.035 

Natural channels in poor condition 0.060 

 

However, according to Ven Te Chow (1959), selecting an appropriate 𝑛 value from 

those tables is not something tangible: “To veteran engineers, this means the exercise 

of sound engineering judgment and experience; for beginners, it can be no more than 

a guess, and different individuals will obtain different results”. 
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The alternative is to determine the value of 𝑛 from in-situ measurements as explained 

in French (1985). It must be remembered that either of these methods can pose 

problems. 

 

Manning’s roughness coefficient is entered manually in NAMI DANCE and is 

chosen as constant for a given condition of sea bottom. 

 

After all the assumptions and substitutions are employed, the nonlinear shallow 

water equations, which are the fundamental equations of NAMI DANCE, are 

obtained and given in Equations [3.22] – [3.34] (Imamura et al., 2006): 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑀

𝜕𝑥
+
𝜕𝑁

𝜕𝑦
= 0                                                                                                           [3.22] 

 

𝜕𝑀

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀2

𝐷
) +

𝜕

𝜕𝑦
(
𝑀𝑁

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑥
+

𝑛2

𝐷
7
3⁄
𝑀√𝑀2 +𝑁2 = 0                           [3.23] 

 

𝜕𝑁

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀𝑁

𝐷
) +

𝜕

𝜕𝑦
(
𝑁2

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑦
+

𝑛2

𝐷
7
3⁄
𝑁√𝑀2 + 𝑁2 = 0                            [3.24] 

 

NAMI DANCE predicts tsunami wave motion by solving Equations [3.22] – [3.24] 

simultaneously and by applying proper boundary conditions. Here, it is important to 

note that Equations [3.22] – [3.24] are non-dispersive and valid only in the Cartesian 

coordinate system (i.e. 𝑥, 𝑦, 𝑧). 

 

Equations [3.22] – [3.24] are not the only governing equations of NAMI DANCE. 

NAMI DANCE also solves linear shallow water equations, Equations [3.1] – [3.3], 

offshore up to 50 meters depth when the simulation area is considerably large, i.e. an 

entire ocean basin. 
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NAMI DANCE solves the non-dispersive linear and nonlinear shallow water 

equations. With the dispersion term included in Equations [3.22] – [3.24], the 

nonlinear dispersive shallow water equations – known as the Boussinesq Model – are 

obtained (Peregrine, 1972). The nonlinear dispersive shallow water equations are 

given in Equations [3.25] – [3.27]: 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑀

𝜕𝑥
+
𝜕𝑁

𝜕𝑦
= 0                                                                                                           [3.25] 

 

𝜕𝑀

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀2

𝐷
) +

𝜕

𝜕𝑦
(
𝑀𝑁

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑥
+
𝜏𝑥
𝜌
=
𝜕𝜓

𝜕𝑥
                                                    [3.26] 

 

𝜕𝑁

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑀𝑁

𝐷
) +

𝜕

𝜕𝑦
(
𝑁2

𝐷
) + 𝑔𝐷

𝜕𝜂

𝜕𝑦
+
𝜏𝑦

𝜌
=
𝜕𝜓

𝜕𝑦
                                                     [3.27] 

 

where 𝜓 is the dispersion potential function defined by (Horrillo et al., 2006): 

 

𝜓 =
𝑑2

3
(
𝜕2𝑢

𝜕𝑥𝜕𝑡
+
𝜕2𝑣

𝜕𝑦𝜕𝑡
)                                                                                                  [3.28] 

 

Dispersion (i.e. frequency dispersion) is the spreading of energy in the direction of 

wave advance owing to different wave celerities for wave modes of different lengths. 

Dispersion tends to be considered negligible for tsunamis, especially if they are 

earthquake-induced. However, when the tsunami source is narrow or non-seismic, 

the generated tsunami waves may be short and the dispersion effect can play an 

important role in the transformation of tsunami waves (Løvholt et al., 2012b). The 

dispersion of the 2004 Indian Ocean tsunami was significant in the Bengal Bay and 

Andaman Sea (Ioualalen et al., 2007; Horrillo et al., 2006) and it became more 

distinct at the transoceanic distances (Glimsdal et al., 2006). Similarly, the dispersion 

for the long-distance propagation of the 2011 Tōhoku tsunami was apparent (Løvholt 

et al., 2012b; Grilli et al., 2012). For smaller earthquakes involving shorter length 



 59 

scales, dispersion is expected to be prominent at shorter wave propagation distances, 

of which the 2009 Samoa tsunami is a case in point (Zhou et al., 2012). 

 

For transoceanic propagation of tsunamis, the nonlinearity of waves can be neglected 

because the free surface displacement is much smaller compared to the water depth. 

However, the dispersion effect should be definitely taken into account (Kim, 2010) 

since, rather than nonlinear or bottom friction effects, the dispersion effect dominates 

the transformation of teletsunamis (also called far-field tsunami, trans-ocean tsunami, 

distant-source tsunami or ocean-wide tsunami). For teletsunamis, the linear 

Boussinesq equations, which neglect nonlinear effects but include the dispersion 

effect, can be used as a governing equation. On the other hand, nonlinear and bottom 

friction effects become more important for the transformation of tsunamis in the 

near-field (i.e. shallow water) and near coastal areas. In shoaling water, the length-to-

depth ratio of a tsunami wave increases and the dispersive effect decreases; 

meanwhile the amplitude of the wave grows and nonlinear effects dominate. 

However, nonlinearity leads to the front of the tsunami wave to steepen and, as a 

result, breaking may occur or dispersive effects may reappear (i.e. development of 

undular bores) (Glimsdal et al., 2013). 

 

The shallow water theory can be considered as the best option for most aspects of 

tsunami modeling because of its efficiency, software implementation and good 

performance. Yet, sometimes a dispersive wave model may be needed. Tsunamis 

generated by non-seismic sources are often too short to be adequately described by 

the shallow water theory. Also, a global propagation analysis may require dispersive 

models even for earthquake generated tsunamis (Løvholt et al., 2010). 

 

In short, the dispersion term gains importance when a wave amplifies near the shore 

or when waves propagate considerably long distances on the water body. 
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NAMI DANCE is also capable of predicting tsunami motion in the spherical 

coordinate system (i.e. λ, ϕ, 𝑧) by taking into account Earth’s curvature and Coriolis 

force that stems from Earth’s rotation. Coriolis force affects the wave amplitude and 

the arrival time of the first wave in the case of considerably long propagation 

distances. Therefore, it is more convenient to formulate the nonlinear shallow water 

equations in the spherical coordinate system for teletsunamis. The nonlinear 

dispersive shallow water equations in the spherical coordinate system are: 

 

𝜕𝜂

𝜕𝑡
+

1

R𝑐𝑜𝑠ϕ
[
𝜕𝑀

𝜕λ
+
𝜕(𝑁𝑐𝑜𝑠ϕ)

𝜕ϕ
] = 0                                                                            [3.29] 
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1
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𝜕
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𝐷
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𝜕

𝜕ϕ
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𝐷
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1
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                                                                  [3.30] 
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𝜕
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𝑀𝑁

𝐷
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1

R

𝜕

𝜕ϕ
(
𝑁2

𝐷
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𝑔𝐷

R

𝜕𝜂
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+
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𝜌
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−(2𝜔𝑠𝑖𝑛ϕ)𝑀 +
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R
  
𝜕𝑑

𝜕ϕ
+
1

R

𝜕𝐷𝜓

𝜕ϕ
                                                                              [3.31] 

 

where λ is longitude, ϕ is latitude, 𝑧 is the vertical axis, R is the Earth radius taken as 

6378 km and ω is the angular speed of Earth's rotation taken as 7.27x10
-5

 rad/s.  
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3.1.3. Solution Technique 

 

The differential equations must be transformed into algebraic form in order to solve 

them numerically. This transformation is most commonly achieved via the finite 

difference method. The continuous variables are represented by their values at a 

finite set of points, and derivatives are approximated by the differences between their 

values at adjacent points. The study domain is partitioned into several discrete 

horizontal layers, each of which is divided up into grid cells. Then the variables are 

evaluated at the center of each cell. In the same way, the time interval under 

consideration is divided into a finite number of discrete time steps. 

 

NAMI DANCE employs the explicit leapfrog finite difference scheme to solve the 

nonlinear shallow water equations. Imamura and Goto (1988), in their investigation 

of different schemes for long wave simulations, showed that the staggered leapfrog 

scheme is better in terms of numerical accuracy. For the sake of clarity, the 

numerical scheme is applied to the linear one-dimensional shallow water equations, 

where dispersion and bottom friction effects are excluded: 

 

𝜕𝜂

𝜕𝑡
+
𝜕𝑀

𝜕𝑥
= 0                                                                                                                      [3.32] 

 

𝜕𝑀

𝜕𝑡
+ 𝑔𝐷

𝜕𝜂

𝜕𝑥
= 0                                                                                                               [3.33] 

 

The finite difference method based on the Taylor expansion series is as follows: 

 

𝜂(𝑥, 𝑡 + Δ𝑡) = 𝜂(𝑥, 𝑡) + Δ𝑡
𝜕𝜂(𝑥, 𝑡)

𝜕𝑡
+
Δ𝑡2

2
   
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
+
Δ𝑡3

3!
   
𝜕3𝜂(𝑥, 𝑡)

𝜕𝑡3
+ ...  [3.34] 

 

where Δ𝑡 is the temporal grid interval (or time step).  

 

The forward difference scheme is obtained by rearranging Equation [3.34]: 
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𝜕𝜂(𝑥, 𝑡)

𝜕𝑡
=
𝜂(𝑥, 𝑡 + Δ𝑡) − 𝜂(𝑥, 𝑡)

Δ𝑡
+ 𝑂(Δ𝑡)                                                                 [3.35] 

 

where 𝑂(Δ𝑡) is the truncation error in the order of Δ𝑡. The truncation error is the 

difference between the partial derivative and its finite difference representation.  

 

If Δ𝑡 is replaced by Δ𝑡/2 and −Δ𝑡/2, then the central difference scheme with the 

second order of truncation error is obtained: 

 

𝜕𝜂(𝑥, 𝑡)

𝜕𝑡
=
𝜂 (𝑥, 𝑡 +

Δ𝑡
2 ) − 𝜂 (𝑥, 𝑡 −

Δ𝑡
2 )

Δ𝑡
+ 𝑂(Δ𝑡2)                                                  [3.36] 

 

The central difference approximation is superior to the forward difference 

approximation in terms of truncation error; therefore, the staggered leapfrog scheme 

is applied using the central difference method. The leapfrog scheme provides more 

accurate results because it increases the calculation points and decreases the 

truncation error. By applying the staggered leapfrog scheme, Equations [3.32] and 

[3.33] are discretized as: 

 

1

Δ𝑡
(𝜂i

k+1 − 𝜂i
k) +

1

Δ𝑥
(𝑀

i+
1
2

k+
1
2 −𝑀

i−
1
2

k+
1
2) + 𝑂(Δ𝑥2) = 0                                            [3.37] 

 

1

Δ𝑡
(𝑀

i+
1
2

k+
1
2 −𝑀

i+
1
2

k−
1
2) + 𝑔

(𝐷i+1
k − 𝐷i

k)

2

1

Δ𝑥
(𝜂i+1

k − 𝜂i
k) + 𝑂(Δ𝑥2) = 0                  [3.38] 

 

where Δ𝑥  is grid size in 𝑥direction, Δ𝑡  is the time step, i  is the increment in 𝑥 

direction, and k is the increment in time. The notation 𝜂(𝑥, 𝑡) indicates 𝜂i
k and the 

notation 𝑀(𝑥, 𝑡) represents 𝑀
i+
1

2

k+
1

2 in the staggered leapfrog scheme, which is applied 

using the central difference method. Moreover, the numerical scheme of the total 

water depth, 𝐷, is given as 𝐷i
k = 𝜂i

k + 𝑑i
k. 
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Figure 3.1 Point schematics of staggered leapfrog scheme in (a) space and (b) time 

(Imamura et al., 2006)  
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The water elevation, 𝜂, is calculated at different grids than the fluxes, 𝑀 and 𝑁, in 

space and time. For more accurate results, NAMI DANCE calculates the fluxes, 𝑀 

and 𝑁, in the half-time and half-space whereas 𝜂 is computed in one-time and one-

space (Figure 3.1).  

 

3.1.4. Initial Conditions 

 

An initial condition is a requirement for the initiation of the iterations in the 

numerical sheme. NAMI DANCE assumes no motion up to time k − 1 as an initial 

condition in the sea: 

 

𝜂i,j
k−1 = 𝑀

i+
1
2
,j

k−
1
2 = 𝑁

i,j+
1
2

k−
1
2 = 0                                                                                              [3.39] 

 

NAMI DANCE accepts the initial water level, 𝜂, as equal to the elevation of the 

ground, ℎ, up to time k − 1 as an initial condition for runup computations on land: 

 

𝜂i,j
k−1 = − ℎi,j                                                                                                                       [3.40] 

 

The ground elevation values take a negative sign on land. 

 

3.1.5. Boundary Conditions 

 

The pure sinusoidal motion at the offshore boundary leads to a forced oscillation and 

reflected waves are not allowed to pass, causing additional water elevations and 

unreliable predictions. Therefore, the open boundary conditions are used in order to 

allow reflected waves to pass freely through the boundary.  

 

The total derivative of water surface elevation is constant and given as: 

 

D𝜂

D𝑡
=
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
                                                                                                  [3.41] 
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When Equation [3.41] is equal to 0 (zero), the boundary is outgoing (open) boundary 

and when Equation [3.41] is equal to 1.0 (one), it is reflective boundary. For the sake 

of simplicity, the values of 𝑢 and 𝑣 are both accepted as √𝑔𝑑 at the boundary. The 

numerical scheme for the open boundaries is defined as: 

 

𝜂i,j
k+1 − 𝜂i,j

k

∆𝑡
+ √𝑔𝑑i,j

k
𝜂i+1,j
k − 𝜂i,j

k

∆𝑥
+ √𝑔𝑑i,j

k
𝜂i,j+1
k − 𝜂i,j

k

∆𝑦
= 0                                      [3.42] 

 

𝜂i,j
k+1 = 𝜂i,j

k −√𝑔𝑑i,j
k (𝜂i+1,j

k − 𝜂i,j
k )
∆𝑡

∆𝑥
− √𝑔𝑑i,j

k (𝜂i,j+1
k − 𝜂i,j

k )
∆𝑡

∆𝑦
                            [3.43] 

 

The velocity in 𝑥 direction, 𝑢, is omitted at the top and bottom boundaries of the 

computational domain: 

 

𝜂i,j=1
k+1 = 𝜂i,j=jn

k+1 = 𝜂i,j
k −√𝑔𝑑i,j

k (𝜂i,j+1
k − 𝜂i,j

k )
∆𝑡

∆𝑦
                                                          [3.44] 

 

where jn is the number of grids in 𝑦 direction. 

 

The velocity in 𝑦 direction, 𝑣, is omitted at the top and bottom boundaries of the 

computational domain: 

 

𝜂i=1,j
k+1 = 𝜂i=in,j

k+1 = 𝜂i,j
k −√𝑔𝑑i,j

k (𝜂i+1,j
k − 𝜂i,j

k )
∆𝑡

∆𝑥
                                                          [3.45] 

 

where in is the number of grids in 𝑥 direction. 

 

Wave runup calculations are carried out by using nonlinear shallow water equations 

since linearity is not allowed in shallow water zones. The wave front condition is 

kept under control by defining the condition of each cell in each time step; i.e. the 

cell is submerged or dry. The flow depth at an arbitrary cell is evaluated as: 
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If            𝐷 = 𝑑 + 𝜂 > 0          : the cell is submerged                                                              

If            𝐷 = 𝑑 + 𝜂 ≤ 0          : the cell is dry                                                               [3.46] 

 

NAMI DANCE places the wave front between submerged and dry cells. The 

condition of each cell is determined at half-grids, i.e. at j + 1/2 in the staggered 

leapfrog scheme. Defining the moving boundary conditions on land is difficult. In 

inundation calculations, when the water level of a cell is higher than the following 

one, the water moves into the next cell. Otherwise, the discharge is accepted as zero. 

 

3.1.6. Stability 

 

An unexpected divergence in the numerical solution may occur because the selected 

grid size and/or time step may lead to an instability in numerical simulations. To 

achieve a stable numerical scheme, errors from various sources (round-off, 

truncation, etc.) must be prevented from increasing in the sequence of numerical 

procedures as the calculation proceeds from one marching step to the next. The 

stability is ensured by employing the Courant-Friedrichs-Lewy (CFL) condition in 

NAMI DANCE. The numerical speed of the wave, ∆𝑥/∆𝑡, has to be equal to or 

greater than the actual speed passing through each grid at each time step. CFL 

condition is given as:  

 

∆𝑥

∆𝑡
 ≥ 𝑐                                                                                                                                 [3.47] 

 

where 𝑐 is the wave celerity and 𝑐 = √𝑔𝐷. 

 

NAMI DANCE calculates the largest time step that satisfies the stability condition, 

Equation [3.47], provided that the bathymetry data of the study domain is inputted. 

This guarantees stable calculations because it allows the user to select smaller time 

step values than the suggested one. 
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3.1.7. Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Methodology of modeling via NAMI DANCE  

Study Area 

 The study area is determined according to: 

 earthquake and tsunami potential  

 social and economic importance  

 superstructure and infrastructure  

Data Acqusition and Processing 

 The raw satellite data of the study area is collected from the available sources 

 The collected data is analysed and eliminated 

 The data is processed and digitized 

Bathymetry and Gauge Files 

 The required resolution of the study area is determined 

 Bathymetric and topographic maps are created in *.xyz format and are 

converted to *.grd format via available tools 

 Gauge file is created in *.txt format 

Source File 

 Possible tsunami sources are determined based on historical earthquakes 

 The most effective source is determined 

 The source file is created by implementing: 

 Rupture source input (fault length, fault width, dip angle, etc.) 

 Border source input (time series of water surface fluctuation in *.grd) 

Simulation 

 Simulation duration, output file time interval and friction coefficient are all 

inputted in this step 

 Initial and boundary conditions are applied; discharge fluxes, wave arrival 

times and max./min. free surface levels are computed 

Post-processing 

 Results are visualized: Summary of results, 1D, 2D graphs, inundation 

mapping, 3D animations, etc. 
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3.2. FLOW-3D
®

 

 

The following subsections discuss the numerical scheme of FLOW-3D
®
 in detail and 

explain its capabilities and limitations. 

 

3.2.1. Model Background 

 

FLOW-3D
®
, which was developed and commercialized by Flow Sciences, Inc., is a 

general purpose computational fluid dynamics (CFD) software. Flow Sciences, Inc. 

was founded in Santa Fe, New Mexico U.S. in 1980 by Dr. C. W. (Tony) Hirt.        

Dr. Hirt was one of the scientists who pioneered in the design of the Volume-of-

Fluid (VOF) technique, which was first reported in Nichols and Hirt (1975), and 

more completely in Hirt and Nichols (1981), during their work at the Los Alamos 

National Laboratory. FLOW-3D
®
 is a direct descendant of this work. 

 

In the marine environment, the free surface, which represents the interface between 

the water and the air, particulary interests engineers using CFD to analyse 

hydrodynamic flows. Simply defined, the free surface is where there is a sharp 

change at the interface, such as still water. A more complex definition can be made if 

breaking waves with air entrainment are considered. The fact that the shape and 

position of the free surface is only known at the initial time, and that its location at 

later times has to be determined as part of the solution presents the main difficulty in 

dealing with free surfaces. The methods employed in CFD to resolve the free surface 

are mostly categorized into two groups: (i) interface tracking and (ii) interface 

capturing (Maguire, 2011). In the first method, a sharp interface is maintained by 

following its motion. As the mesh is adapted to the position of the free surface at 

each time step, one of the boundaries is, by default, the free surface where the 

boundary conditions are applied. The second method is implemented on a 

predetermined fixed grid. The three main techniques in this category are Marker-and-

Cell (MAC) technique, Level set technique and VOF technique. There are other 

methods used for tracking the free surface, some of which are Lattice Boltzmann 

(LBM) method, simple Front tracking and Shock capturing methods. 
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Harlow and Welch (1965) proposed the Marker-and-Cell (MAC) technique, in which 

there are massless tracer particles at the free surface and these are tracked throughout 

the calculation. This technique can resolve nonlinearities. However, especially in 

three-dimensions, computational high cost is a downside. The level set technique, 

which is presented by Osher and Sethian (1988), is conceptually simple. The level set 

function is initially defined in each cell as the distance from the free surface, positive 

in one direction, negative in the other and zero at the free surface (Figure 3.3). The 

level set function is easily tracked due to its smooth change across the interface. The 

implementation of level set technique is relatively easy and accurate under certain 

conditions. However, in the flow regimes that have high vorticity or significantly 

deformed interface, it is possible to encounter problems such as loss of mass and/or 

volume. The third interface tracking technique, which is more efficient than the 

MAC and level set schemes, is the Volume-of-Fluid (VOF) approach. The VOF 

technique is implemented in FLOW-3D
®
 and can be applied to complex free surfaces 

and breaking waves (Ferziger and Peric, 1999). 

 

 

 

Figure 3.3 The level set function: red line represents the zero level set which is the 

collection of points that are at height zero (Maguire, 2011). 

 

The VOF technique is made up of three ingredients: a scheme to locate the surface, 

an algorithm to track the surface, and a means of applying boundary conditions at the 

surface. This technique works on the principle of recording the fractional portion of 

the cell volume that is occupied by liquid in each grid cell. The fractional volume is 

typically represented by a VOF function, ℱ(𝑥, 𝑦, 𝑧, 𝑡), which has a value between 0 

and 1 and satisfies Equation [3.48] in the Cartesian coordinate system: 
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𝜕ℱ

𝜕𝑡
+
1

𝑉𝐹
 [
𝜕

𝜕𝑥
(ℱ𝐴𝑥𝑢) +

𝜕

𝜕𝑦
(ℱ𝐴𝑦𝑣) +

𝜕

𝜕𝑧
(ℱ𝐴𝑧𝑤)] = 0                                        [3.48] 

 

where 𝑉𝐹 is the fractional volume open to flow, 𝐴𝑥, 𝐴𝑦and 𝐴𝑧 are the fractional areas 

open to flow in 𝑥, 𝑦 and 𝑧 directions, respectively. 

 

ℱ = 1 represents the regions full of liquid whereas ℱ = 0 indicates the liquid-free 

regions (Figure 3.4). There is a free surface where ℱ changes from 0 to 1, implying 

that any element with an ℱ value lying between 0 and 1 has a surface. The VOF 

method does not directly define a free surface, but rather defines the location of bulk 

fluid. Therefore, when fluid regions merge or break up, they do not cause 

computational difficulties.  

 

 

 

Figure 3.4 Details of the VOF technique: (a) surface in one-dimensional column of 

elements; (b) surface in two-dimensional grid of elements (Flow Science, 2002) 

 

In recent years, such major improvements beyond the original VOF method have 

been made in FLOW-3D
®
 that the dynamics in void or air regions are not computed, 

and thus the speed and accuracy of tracking distinct liquid or gas interfaces are 

increased. The improved form of the original VOF implementation is known as 

TruVOF
®
 method. 

(a) 

ℱ=1 ℱ=1 

(b) 

ℱ=0 ℱ=0 

ℱ∆𝑧 

∆
𝑧 

Surface Element 
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FLOW-3D
®
 serves to compute free surface motion by means of TruVOF

®
 method 

whereas Fractional Area/Volume Obstacle Representation (FAVOR™) technique is 

used to model complex geometric regions (Hirt and Sicilian, 1985). FAVOR™ is a 

unique technique which is used to describe geometric objects in a computational 

domain within the rectangular grid. It works well with complex geometries since it 

is based on the concept of Area Fraction (AF) and Volume Fraction (VF) methods 

(Hirt and Sicilian, 1985). Despite being a powerful method, FAVOR™ is affected by 

the resolution of the computational grid, like all discrete methods. The geometrical 

representation is improved with increasing mesh resolution (i.e. decreasing cell size). 

 

FAVOR™ technique has contributed to the development of the general moving 

object (GMO) model. In FLOW-3D
®
, the GMO model is perceived as a rigid body 

with any kind of motion that is either user-prescribed or dynamically coupled with 

fluid flow. It can have six-degrees-of-freedom or be subject to motion constraints 

such as a fixed axis or fixed point. The GMO model involves multiple rigid bodies 

under independent motion types as well as rigid body interactions including 

collisions and continuous contact. 

 

In FLOW-3D
®
, the STereoLithography (STL) format is used to represent complex 

geometries, regardless of the application area – micro fluids, metal casting, water and 

environmental, aerospace, etc. The STL files are produced using various types of 

Computer-aided Design (CAD) software. It is also possible to convert small scale 

bathymetry and/or topography data to STL via online converter tools. The STL 

format is commonly used by many industries to represent and share 3D; however, in 

the water and environmental industries surface-driven representations of the 

environment are favoured. The raster file format known as ESRI ASCII is employed 

to import the terrain data directly to FLOW-3D
®
. All GIS software packages are able 

to export the *.asc format. 

 

Surface roughness is a crucial parameter in modeling of flood waves, tsunami 

inundation, etc. In FLOW-3D
®
, with a uniformly rough surface, it is possible to 
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adopt a constant roughness value; however, with a non-uniform surface, an 

equivalent roughness value that will supply accurate results must be selected. A 

local, spatially-varying surface roughness is another choice for modeling surface 

roughness. This is done by transferring the surface roughness coefficients into 

FLOW-3D
®
 in ESRI ASCII raster format. 

 

When an equivalent roughness value is required, the Manning’s roughness 

coefficient, n, can be converted to the friction coefficient of FLOW-3D
®
, f, by: 

 

𝑓 ≅ 3.72067𝐷ℎ𝑒𝑥𝑝 (
−0.103252𝐷ℎ

1
6⁄

𝑛
)                                                                   [3.49] 

 

where 𝐷ℎ = 4𝑅ℎ is the hydraulic diameter and 𝑅ℎ is the hydraulic radius and: 

 

𝑅ℎ =
𝐴

𝑃̅
                                                                                                                                 [3.50] 

 

where 𝐴 is the cross-sectional area of the fluid and 𝑃̅ is the wetted perimeter. 

 

FLOW-3D
®
 defines surface roughness as the average height of uniformly distributed 

roughness elements and uses Nikuradse equivalent surface roughness, 𝑘𝑠. Nikuradse 

(1933) measured the velocity profile and pressure drop in smooth and rough pipes 

and related the friction factor to mean flow velocity and the Reynolds number. It is 

possible to convert the Nikuradse equivalent surface roughness, 𝑘𝑠, to n using the 

relation derived by Yen (1991) for wide open channels of impervious rigid boundary: 

 

𝑘𝑠 = (
𝑛

0.0389
)
6

                                                                                                                [3.51] 

 

The relation given in Equation [3.51] is a practical tool and used in this dissertation 

in order to convert the Manning’s roughness coefficient values to 𝑘𝑠. 
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FLOW-3D
®
 has a variety of meshing techniques. The simplicity of meshing is 

attributed to the structured mesh that is used by FLOW-3D
®
, whereas various 

features enabled by multi-block meshing provide the efficiency and robustness. 

Owing to the use of multiple mesh blocks, local refinement in the areas of interest is 

possible and there is significant reduction in computational resources required for a 

given simulation. There are several multi-block meshing capabilities such as linked, 

conforming, nested and/or partially overlapping mesh blocks (Figure 3.5). These can 

be used to accurately resolve small obstacles, complex geometries and thin channels 

that are smaller than the overall domain size. Linked mesh blocks serve only to mesh 

the areas of interest and limit the total number of computational cells. Nested mesh 

blocks enhance the resolution around an area of interest. Conforming and partially 

overlapping mesh blocks are employed to resolve irregularly shaped features with 

sharp changes in scale. These meshing techniques provide users with the flexibility 

to create simple yet efficient meshes. In this way, solver performance is improved 

and process time is reduced. 

 

  

  

 

Figure 3.5 FLOW-3D
® 

meshing techniques: (a) linked mesh; (b) conforming mesh, (c) 

nested mesh; (d) partially overlapping mesh (Flow Science, 2002) 

(a) 

(c) (d) 

(b) 
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FLOW-3D
®
 offers a unique hybrid shallow water/3D flow model through which 

standard shallow water or 3D equations are selected and employed in the 

computational domain. In other words, FLOW-3D
®

 is capable of simulating both 2D 

shallow water models and 3D models. 

 

With the capacity to simulate multiphysics including fluid-structure interaction, 6-

DoF moving objects, and multiphase flow, the FLOW-3D
®
 software also simulates 

incompressible and compressible flows as well as laminar and turbulent flows. A 

variety of physics models are offered for sediment scour and transport, density 

stratification and mixing, bubbles and cavitation (i.e. air entrainment), evaporation 

and phase change, chemical fate and transport and porous media. Municipal 

hydraulics, river planning and restoration, dam safety, hydroelectric and spillway 

operations, design, and optimization, reservoir maintenance and planning, and 

coastal and estuary engineering are among the many applications of FLOW-3D
®
, 

which is currently used in commercial, academic, and government fields. 

 

FlowSight™ is an advanced visualization tool based on the EnSight
®
 post-processor, 

which is used to post-process and visualize FLOW-3D
®
 output data. The tool has 

capabilities such as analyzing and comparing multiple simulation results 

simultaneously, volume rendering, defining new variables such as time averages, 

integrated values, dimensionless parameters, etc., creating multiple, time-varying 2D 

and 3D animated plots and visualizing the streamlines with moving arrows or cones. 

Moreover, FlowSight™ offers an integrated graphing tool which brings an advanced 

level of analytical ability to general history, diagnostics, and mesh dependent data, as 

it shows different simulation data comparatively. 

 

FLOW-3D
®
, being a CFD model, should be approached cautiously since, like any 

numerical analysis, CFD is liable to error and uncertainty. The majority of fluid flow 

processes are satisfactorily described by the Navier-Stokes equations. To obtain a 

solution in CFD, the governing continuous equations must be replaced with a 

discrete representation and numerical solutions to these approximate equations will 
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be available through the use of a computer. Errors are likely to arise in this 

discretisation process. There will also be errors if the chosen governing equations do 

not adequately represent the fluid flow of interest. Moreover, the user is bound to 

make mistakes in the definition of the problem or the analysis and interpretation of 

the results.  

 

According to the European Research Community on Flow, Turbulence and 

Combustion (ERCOFTAC, 2002), errors and uncertainty can be caused by seven 

different sources (Maguire, 2011): 

 

(i) Model error and uncertainty: Defined as being the difference between the real 

flow and the exact solution of the model equations, modeling errors and 

uncertainty are caused by solving the wrong equations. 

(ii) Discretisation or numerical error: This type of error is defined as the difference 

between the exact solution of the modeled equations and the numerical solution 

on a mesh of finite grid points, owing to the use of finite differences to represent 

exact derivatives. As the number of grid points is increased, the likelihood of 

this error will decrease and will tend to zero at a rate determined by the order of 

the numerical method employed. 

(iii) Iteration or convergence error: The difference between a fully converged 

solution on a finite number grid points and a solution that is not fully converged 

leads to this type of error (MARNET, 2002). These errors could only be avoided 

if the iterative process was allowed to continue indefinitely, which is not 

possible since modelers have time constraints and convergence limits are set to 

tolerances on accuracies. 

(iv) Round-off error: This type of error is the difference between the calculated 

approximation of a number and its exact mathematical value. It is caused by the 

fact that computers can store a given value only through a limited number of 

digits, namely 16, 32 and 64 bits. 
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(v) Application uncertainties: When the problem is complex and can not be defined 

accurately, these errors may arise. These uncertainties include, but are not 

limited to, geometry definition, boundary conditions or whether the flow is 

steady or unsteady. 

(vi) User errors: At any stage of the user’s interaction with the code (i.e. geometry 

generation, meshing, pre-processing or post-processing) errors can be made. The 

more experienced the user, the fewer errors there will be. 

(vii) Code errors: Often known as programming errors or bugs, these are 

unintentional programming errors in the implementation of models or compiler 

errors on the computer hardware. They can primarily be detected through 

verification and validation of the code, which often proves to be difficult. 

 

It is obvious that any numerical analysis, particularly CFD, will always be subject to 

error and uncertainty. Therefore, it is necessary that errors and uncertainty be 

quantified and error bounds be placed upon the results so as to make sure that the 

results presented using a numerical model can be trusted.  
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3.2.2. Numerical Scheme 

 

FLOW-3D
®
 solves the fully three-dimensional mass continuity and momentum 

(Navier–Stokes) equations via the finite difference or finite volume method in the 

Cartesian coordinate system (𝑥, 𝑦, 𝑧)  to describe fluid motion. For cylindrical 

coordinates, (𝑟, 𝜃, 𝑧) , 𝑥 -coordinate is interpreted as the radial direction, 𝑟 , 𝑦 -

coordinate is transformed to the azimuthal coordinate, 𝜃 , and 𝑧  is the axial 

coordinate. FLOW-3D
®
 adds additional terms to Cartesian equations of motion for 

cylindrical geometry. These terms are included with a coefficient, 𝜉, such that 𝜉 = 0 

corresponds to Cartesian geometry, while 𝜉 = 1 corresponds to cylindrical geometry. 

 

All equations are formulated with area and volume porosity functions, FAVOR™ 

(i.e. obstacles are defined by zero-volume porosity regions). Area and volume 

fractions are time independent in FLOW-3D
®
. However, these quantities vary with 

time when the GMO is employed. 

 

The general mass continuity equation is given by (Flow Science, 2002): 

 

𝑉𝐹
𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢𝐴𝑥) + ℛ

𝜕

𝜕𝑦
(𝜌𝑣𝐴𝑦) +

𝜕

𝜕𝑧
(𝜌𝑤𝐴𝑧) + 𝜉

𝜌𝑢𝐴𝑥
𝑥

= 𝑅𝐷𝐼𝐹 + 𝑅𝑆𝑂𝑅    [3.52] 

 

where 𝑅𝐷𝐼𝐹 is a turbulent diffusion term and 𝑅𝑆𝑂𝑅 is a mass source. 

 

The velocity components (𝑢, 𝑣, 𝑤)  are defined in (𝑥, 𝑦, 𝑧)  or (𝑟, 𝜃, 𝑧)  coordinate 

systems. The coefficient ℛ  depends on the coordinate system such that when 

cylindrical coordinates are used, 𝑦 derivatives are converted to azimuthal derivatives: 

 

ℛ
𝜕

𝜕𝑦
=
1

𝑟

𝜕

𝜕𝜃
                                                                                                                       [3.53] 

 

where ℛ =
𝑟𝑚

𝑟⁄ , 𝑦 = 𝑟𝑚𝜃  and 𝑟𝑚  is a fixed reference radius. In the Cartesian 

coordinate system, ℛ is unity and 𝜉 = 0. 



 78 

The turbulent diffusion term, 𝑅𝐷𝐼𝐹 , is effective for turbulent mixing processes in 

fluids that have a non-uniform density and is defined as: 

 

𝑅𝐷𝐼𝐹 =
𝜕

𝜕𝑥
(𝜗𝜌𝐴𝑥

𝜕𝜌

𝜕𝑥
) + ℛ

𝜕

𝜕𝑦
(𝜗𝜌𝐴𝑦ℛ

𝜕𝜌

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜗𝜌𝐴𝑧

𝜕𝜌

𝜕𝑧
) + 𝜉

𝜗𝜌𝐴𝑥

𝑥

𝜕𝜌

𝜕𝑥
        [3.54] 

 

where 𝜗𝜌 is a coefficient and 𝜗𝜌 = 𝑆𝑐
𝜇
𝜌⁄ , in which 𝜇 is dynamic viscosity and 𝑆𝑐 is 

referred to as the turbulent Schmidt number. 

 

The density source term, 𝑅𝑆𝑂𝑅 , is commonly employed to model mass injection 

through porous obstacle surfaces. 

 

Compressible flow problems necessitate the solution of the full density transport 

equation as stated in Equation [3.52]. For incompressible fluids, 𝜌 is constant and 

Equation [3.52] reduces to: 

 

𝜕

𝜕𝑥
(𝑢𝐴𝑥) + ℛ

𝜕

𝜕𝑦
(𝑣𝐴𝑦) +

𝜕

𝜕𝑧
(𝑤𝐴𝑧) + 𝜉

𝑢𝐴𝑥
𝑥

=
𝑅𝑆𝑂𝑅
𝜌

                                           [3.55] 

 

The equations of motion for the fluid velocity components (𝑢, 𝑣, 𝑤) in 𝑥, 𝑦 and 𝑧 

directions are the Navier-Stokes equations with some additional terms (Flow 

Science, 2002): 

 

𝜕𝑢

𝜕𝑡
+
1

𝑉𝐹
{𝑢𝐴𝑥

𝜕𝑢

𝜕𝑥
+ 𝑣𝐴𝑦ℛ

𝜕𝑢

𝜕𝑦
+ 𝑤𝐴𝑧

𝜕𝑢

𝜕𝑧
} − 𝜉

𝐴𝑦𝑣
2

𝑥𝑉𝐹

= −
1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝐺𝑥 + f𝑥 − 𝑏𝑥 −

𝑅𝑆𝑂𝑅
𝜌𝑉𝐹

(𝑢 − 𝑢𝑤 − ∆𝑢𝑠)                        [3.56] 

 

𝜕𝑣

𝜕𝑡
+
1

𝑉𝐹
{𝑢𝐴𝑥

𝜕𝑣

𝜕𝑥
+ 𝑣𝐴𝑦ℛ

𝜕𝑣

𝜕𝑦
+ 𝑤𝐴𝑧

𝜕𝑣

𝜕𝑧
} + 𝜉

𝐴𝑦𝑢𝑣

𝑥𝑉𝐹

= −
1

𝜌
(ℛ

𝜕𝑃

𝜕𝑦
) + 𝐺𝑦 + f𝑦 − 𝑏𝑦 −

𝑅𝑆𝑂𝑅
𝜌𝑉𝐹

(𝑣 − 𝑣𝑤 − ∆𝑣𝑠)                [3.57] 
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𝜕𝑤

𝜕𝑡
+
1

𝑉𝐹
{𝑢𝐴𝑥

𝜕𝑤

𝜕𝑥
+ 𝑣𝐴𝑦ℛ

𝜕𝑤

𝜕𝑦
+ 𝑤𝐴𝑧

𝜕𝑤

𝜕𝑧
}

= −
1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝐺𝑧 + f𝑧 − 𝑏𝑧 −

𝑅𝑆𝑂𝑅
𝜌𝑉𝐹

(𝑤 − 𝑤𝑤 − ∆𝑤𝑠)                       [3.58] 

 

where 𝐺𝑥 , 𝐺𝑦  and 𝐺𝑧  are body accelerations, f𝑥 , f𝑦  and f𝑧  are viscous accelerations 

and 𝑏𝑥, 𝑏𝑦 and 𝑏𝑧 are the flow losses across porous media in 𝑥, 𝑦 and 𝑧 directions, 

respectively. The last terms account for the injection of mass at a source. 

 

The viscous accelerations for a variable dynamic viscosity, 𝜇, are given as: 

 

𝜌𝑉𝐹f𝑥 = 𝑤𝑠𝑥 − {
𝜕

𝜕𝑥
(𝐴𝑥𝜏𝑥𝑥) + ℛ

𝜕

𝜕𝑦
(𝐴𝑦𝜏𝑥𝑦) +

𝜕

𝜕𝑧
(𝐴𝑧𝜏𝑥𝑧) +

𝜉

𝑥
(𝐴𝑥𝜏𝑥𝑥 − 𝐴𝑦𝜏𝑦𝑦)}     [3.59] 

 

𝜌𝑉𝐹f𝑦 = 𝑤𝑠𝑦 − {
𝜕

𝜕𝑥
(𝐴𝑥𝜏𝑥𝑦) + ℛ

𝜕

𝜕𝑦
(𝐴𝑦𝜏𝑦𝑦) +

𝜕

𝜕𝑧
(𝐴𝑧𝜏𝑦𝑧) +

𝜉

𝑥
(𝐴𝑥 + 𝐴𝑦𝜏𝑥𝑦)}          [3.60] 

 

𝜌𝑉𝐹f𝑧 = 𝑤𝑠𝑧 − {
𝜕

𝜕𝑥
(𝐴𝑥𝜏𝑥𝑧) + ℛ

𝜕

𝜕𝑦
(𝐴𝑦𝜏𝑦𝑧) +

𝜕

𝜕𝑧
(𝐴𝑧𝜏𝑧𝑧) +

𝜉

𝑥
(𝐴𝑥𝜏𝑥𝑧)}                       [3.61] 

 

where 

 

𝜏𝑥𝑥 = −2𝜇 {
𝜕𝑢

𝜕𝑥
−
1

3
(
𝜕𝑢

𝜕𝑥
+ ℛ

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
+
𝜉𝑢

𝑥
)}                                                          [3.62] 

 

𝜏𝑦𝑦 = −2𝜇 {ℛ
𝜕𝑣

𝜕𝑦
−
1

3
(
𝜕𝑢

𝜕𝑥
+ ℛ

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
+
𝜉𝑢

𝑥
)}                                                     [3.63] 

 

𝜏𝑧𝑧 = −2𝜇 {
𝜕𝑤

𝜕𝑧
−
1

3
(
𝜕𝑢

𝜕𝑥
+ ℛ

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
+
𝜉𝑢

𝑥
)}                                                         [3.64] 

 

𝜏𝑥𝑦 = −𝜇 {
𝜕𝑣

𝜕𝑥
+ ℛ

𝜕𝑢

𝜕𝑦
−
𝜉𝑣

𝑥
}                                                                                          [3.65] 
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𝜏𝑥𝑧 = −𝜇 {
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
}                                                                                                        [3.66] 

 

𝜏𝑦𝑧 = −𝜇 {
𝜕𝑣

𝜕𝑧
+ ℛ

𝜕𝑤

𝜕𝑦
}                                                                                                    [3.67] 

 

The parameters 𝑢𝑤 , 𝑣𝑤  and 𝑤𝑤  represent the velocity of the source component, 

which is non-zero for a mass source in the GMO model. 

 

The parameters 𝑢𝑠 , 𝑣𝑠  and 𝑤𝑠  represent the fluid velocities at the surface of the 

source relative to the source itself. 𝑈𝑠 = (𝑢𝑠, 𝑣𝑠, 𝑤𝑠 ) and it is computed in each 

control volume as: 

 

𝑈𝑠 =
𝑑𝑄

𝜌𝑄𝑑𝐴
n⃑⃑                                                                                                                      [3.68] 

 

where 𝑑𝑄 is the mass flow rate, 𝜌𝑄 is the fluid source density, 𝑑𝐴 is the area of the 

source surface in the cell and n⃑⃑ is the outward vector normal to the surface. 

 

At a stagnation pressure source, fluid is assumed to enter the domain at zero 

velocity. A deflating balloon or fluid that emerges at the end of a rocket are some 

examples of the stagnation pressure source. At a static pressure source, fluid velocity 

is computed from the mass flow rate and the surface area of the source, which can be 

illustrated by fluid coming out of a long straight pipe. 

 

Applied to a wide range of fluid flow and heat transfer phenomena, FLOW-3D
®
 

employs highly specialized numerical techniques to solve the equations of motion for 

fluids to obtain transient, three-dimensional solutions to multi-scale, multi-physics 

flow problems. 
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FLOW-3D
®
 is equipped with

 
various types of boundary conditions (i.e. slip/no-slip 

wall boundary conditions, open boundary conditions, moving solid boundary 

conditions, incident wave boundary conditions, etc.). This dissertation focuses solely 

on wave hydrodynamics; thus, in the following sections only the numerical schemes 

of the wave generation module of FLOW-3D
® 

are described.  

 

The wave generation module is used to generate a certain type of wave in the area of 

interest as an incident wave boundary condition. FLOW-3D
® 

is capable of generating 

periodic linear waves and nonlinear waves such as cnoidal wave, Stokes’ wave and 

solitary wave through its wave generation module (Figure 3.6). It is also possible to 

integrate the time history of water surface fluctuation data, which is defined by the 

user, into FLOW-3D
® 

as an initial wave profile at the boundary. 

 

 

 
 

Figure 3.6 Progressive wave types: (a) periodic linear waves; (b) Stokes’ wave; (c) cnoidal 

wave; (d) solitary wave (The vertical dimension is exaggerated.) 

(a) 

(b) 

(c) 

(d) 

Periodic linear waves 

Stokes’ wave 

Cnoidal wave 

Solitary wave 

𝐻 
 

𝐻 
 

𝐻 
 

𝐻 
 

SWL 

SWL 

SWL 

SWL 
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In FLOW-3D
® 

waves are classified as deep water, intermediate water or shallow 

water waves according to the water depth and wavelength ratio, 𝑑/λ, values which 

are given in Table 3.2. The applicability ranges for linear wave, Stokes wave and 

other wave theories are given in Figure 3.7. 

 

Table 3.2 Classification of waves with respect to 𝑑/λ 

 

Region 𝒅/𝝀 

Deep Water 0.50 – ∞ 

Intermediate Water 0.05 – 0.50 

Shallow Water 0.00 – 0.05 

 

 

Figure 3.7 Applicability ranges of various wave theories  

(U.S. Army Corps of Engineers, 2006) 
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Waves in FLOW-3D
®
 are generated at mesh boundaries. Once a wave enters the 

computational domain, it is supposed to transform into any type of wave with or 

without breaking, the bottom does not need to be flat any longer, and flow can be 

inviscid, laminar or turbulent. The wave may also break inside the computational 

domain. 

 

The numerical schemes of FLOW-3D
®
 that are used to generate linear and nonlinear 

waves are given in detail in the following subsections. 
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3.2.2.1. Periodic Linear Waves 

 

The surface profile of a linear wave is sinusoidal, and the amplitude is small 

compared to the wavelength and fluid depth. A linear wave is characterized by the 

parameters: (i) wave amplitude, 𝑎 , (ii) wavelength, 𝜆 , (iii) wave period,  𝑇 , (vi) 

angular wave frequency, w = 2𝜋/𝑇, and (v) wave number, 𝑘 = 2𝜋/𝜆. 

 

The linear wave model of FLOW-3D
® 

is based on Airy’s (1845) linear wave theory:  

 

𝜂(𝑥, 𝑡) = 𝑎𝑠𝑖𝑛(w𝑡 + 𝜙)                                                                                                  [3.69] 

 

where 𝜙 is the phase shift angle in degrees. The default phase shift is zero, which 

means at time 𝑡 = 0 the wave elevation is zero and is on the rise. 

 

It is assumed that the linear wave comes from an infinite reservoir which has a flat 

bottom and assumed to exist outside the computational domain, immediately 

adjacent to the mesh boundary (Figure 3.8). The generation of the wave at the mesh 

boundary is based on this assumption. 

 

 

 
Figure 3.8 Linear waves coming from a flat bottom reservoir into the computational domain 

(Flow Science, 2002) 
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FLOW-3D
® 

makes the existence of a constant net current, U, (inflow or outflow) in 

any horizontal direction possible. However, the linear wave solution is valid as long 

as the current velocity, U, is slower than the wave speed, 𝑐. The current is assumed to 

be uniform across the boundary. 

 

The linear wave theory is based on the following assumptions: 

(i) fluid is incompressible, inviscid and irrotational. 

(ii) flow is two-dimensional. 

(iii) the wave amplitude, 𝑎, is small compared to the undisturbed water depth, 𝑑, 

and wavelength 𝜆. 

 

Accordingly, the velocity potential,𝜑(𝑥, 𝑧, 𝑡), and velocity components in x and z 

directions, 𝑢(𝑥, 𝑧, 𝑡) and 𝑤(𝑥, 𝑧, 𝑡) are obtained as: 

 

𝜑(𝑥, 𝑧, 𝑡) = 𝑥U +
𝑎w 𝑐𝑜𝑠ℎ[𝑘(𝑧 + 𝑑)] 𝑠𝑖𝑛(𝑘𝑥 − w𝑡 + 𝜙)

𝑘𝑠𝑖𝑛ℎ(𝑘𝑑)
                                     [3.70] 

 

𝑢(𝑥, 𝑧, 𝑡) = U +
𝑎𝑤 𝑐𝑜𝑠ℎ[𝑘(𝑧 + 𝑑)] 𝑐𝑜𝑠(𝑘𝑥 − w𝑡 + 𝜙)

𝑠𝑖𝑛ℎ(𝑘𝑑)
                                        [3.71] 

 

𝑤(𝑥, 𝑧, 𝑡) =
𝑎𝑤 𝑐𝑜𝑠ℎ[𝑘(𝑧 + 𝑑)] 𝑠𝑖𝑛(𝑘𝑥 − w𝑡 + 𝜙)

𝑠𝑖𝑛ℎ(𝑘𝑑)
                                                [3.72] 

 

The dispersion equation in FLOW-3D
® 

is given in terms of wave speed, 𝑐 = w/𝑘. 

 

(𝑐 − U)2 =
𝑔

𝑘
𝑡𝑎𝑛ℎ(𝑘𝑑)                                                                                                   [3.73] 

 

Equation [3.73] indicates that the wave frequency and wavelength are 

interdependent; given either the wave frequency or wavelength, the other quantity is 

calculated by the dispersion equation. 
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3.2.2.2. Stokes’ Wave 

 

A Stokes’ wave is a nonlinear wave with sharper crests and flatter troughs than a 

linear wave. FLOW-3D
® 

uses either Fenton’s Fourier series method or the fifth-order 

Stokes’ wave theory developed by Fenton (1985) to generate Stokes’ waves. The 

former is the favoured Stokes’ wave generator due to the higher order accuracy it 

provides. Unlike the linear wave theory (Airy’s theory), the Stokes’ wave theory is a 

nonlinear theory for finite-amplitude progressive surface waves. 

 

Similar to the linear wave, the Stokes’ wave is assumed to come from an infinite 

reservoir with a flat bottom, which is outside the computational domain and 

immediately adjacent to the mesh boundary (Figure 3.9). 

 

 

 
Figure 3.9 Stokes’waves coming from a flat bottom reservoir into the computational domain 

(Flow Science, 2002) 

 

A Stokes’ wave is characterized by: (i) wave height, 𝐻, (ii) wavelength, 𝜆 and (iii) 

wave period, 𝑇. The free surface elevation, 𝜂, is time dependent and measured along 

𝑧 direction from the bottom to the water surface. A constant net current, U, (inflow 

or outflow) in any horizontal direction is allowed. 
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The Stokes’ wave theory assumes potential flow, namely the fluid flow is 

incompressible and irrotational. Therefore, the stream function, 𝛹 , exists and 

satisfies the Laplace equation: 

 

∇2𝛹 = 0                                                                                                                               [3.74] 

 

The fluid velocity components in 𝑥 and 𝑧 directions are given by: 

 

𝑢 =
𝜕𝛹

𝜕𝑥
      and      𝑤 = −

𝜕𝛹

𝜕𝑧
                                                                                        [3.75] 

 

With the further assumption that wave crest occurs at 𝑥 = 0  when 𝑡 = 0 , and 

employing the boundary conditions at the free surface and at the sea bed, the Laplace 

equation for 𝛹 is solved using a perturbation method. The perturbation parameter is 

the wave steepness, 𝜖 = 𝑘𝐻/2. The solution for the water elevation and velocity 

with fifth-order accuracy with respect to 𝜖 is given as: 

 

𝜂(𝑥, 𝑡) = 𝑑 +
𝜖

𝑘
𝑐𝑜𝑠𝑘𝑋 +

𝜖2

𝑘
B22𝑐𝑜𝑠2𝑘𝑋 +

𝜖3

𝑘
B31(𝑐𝑜𝑠𝑘𝑋 − 𝑐𝑜𝑠3𝑘𝑋) 

                + 
𝜖4

𝑘
(B42𝑐𝑜𝑠2𝑘𝑋 + B44𝑐𝑜𝑠4𝑘𝑋) 

                + 
𝜖5

𝑘
[−(B53 + B55)𝑐𝑜𝑠𝑘𝑋 + B53𝑐𝑜𝑠3𝑘𝑋 + B55𝑐𝑜𝑠5𝑘𝑋 ]                     [3.76] 

 

𝑢(𝑥, 𝑧, 𝑡) = U + C0 (
𝑔

𝑘3
)
1
2⁄

∑𝜖i
5

i=1

∑Aijj𝑘 cosh j𝑘𝑧 cos j𝑘𝑋

i

j=1

                                 [3.77] 

 

𝑤(𝑥, 𝑧, 𝑡) = C0 (
𝑔

𝑘3
)
1
2⁄

∑𝜖i
5

i=1

∑Aijj𝑘 sinh j𝑘𝑧 sin j𝑘𝑋

i

j=1

                                          [3.78] 
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where 𝑋 = 𝑥 − 𝑐𝑡 and 𝑘𝑋 = 𝑘𝑥 − w𝑡. The coefficients Aij, Bij, and C0 are nonlinear 

functions of 𝑘𝑑 presented by Fenton (1985). 

 

The wave number and wave frequency are dependent parameters and satisfy the 

nonlinear equation: 

 

(
𝑘

𝑔
)

1
2⁄

U −
w

(𝑔𝑘)
1
2⁄
+ C0 + (

𝑘𝐻

2
)

1
2⁄

C2 + (
𝑘𝐻

2
)
4

C4 = 0                                       [3.79] 

 

where C0, C2 and C4 are nonlinear functions of 𝑘𝑑 presented by Fenton (1985). 

 

It is not possible to input both wavelength and wave period simultaneously when a 

wave is generated at the mesh boundary. If the wavelength is given, then the wave 

period is obtained from Equation [3.79]. If wave period is known, the wavelength is 

calculated from Equation [3.79] iteratively. The first approximation of 𝑘 is: 

 

𝑘 =
α + β2𝑠𝑒𝑐ℎ2β

(𝑡𝑎𝑛ℎβ + β𝑠𝑒𝑐ℎ2β)𝑑
                                                                                              [3.80] 

 

where α = w2𝑑
𝑔⁄  and β = α√𝑐𝑜𝑡ℎα. 

The fifth-order Stokes’ wave theory can be applied to waves in both deep and 

shallow water if: (i) wave steepness is small, (ii) waves do not break, (iii) wavelength 

is short compared to water depth. The upper limit for wavelength is (𝑇 𝑔/𝑑)
1
2⁄ ≈

𝜆/𝑑 ≈ 10 (Fenton, 1985). Beyond this limit, Fenton’s Fourier series method is a 

more reliable way to generate Stokes’ waves. 
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3.2.2.3. Cnoidal Wave 

 

A cnoidal wave is a nonlinear oscillatory wave in shallow water, which has sharper 

crests and flatter troughs than a Stokes’ wave. Fenton’s Fourier series method 

(Fenton, 1999) is employed to generate cnoidal waves in FLOW-3D
®

. 

 

A steady-state wave train is assumed to exist in a flat-bottom reservoir outside the 

computational domain, and it propagates into the computational domain through a 

mesh boundary (Figure 3.10).  

 

 
 

Figure 3.10 Cnoidal waves coming from a flat bottom reservoir into the computational 

domain (Flow Science, 2002) 

 

A Cnoidal wave is characterized by: (i) wave height, 𝐻, (ii) undisturbed water depth, 

𝑑, (iii) wavelength, 𝜆 and (vi) wave period, 𝑇. The wavelength, 𝜆 and wave period, 𝑇 

are dependent parameters and thus are not inputted at the same time. A constant net 

current, U, (inflow or outflow) in any horizontal direction may also exist. 

 

At first, the non-transient solution of a cnoidal wave is obtained in a moving 

reference system (X, Z) that travels with the wave speed, 𝑐. Afterwards, the transient 

solution of the wave in the stationary system (𝑥, 𝑧) is found through a coordinate 

transformation. The transformation equations are given as: 
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Coordinate     𝑥 = X + 𝑐𝑡 𝑎𝑛𝑑 Z = 𝑧                                                                            [3.81] 

 

Water velocity     𝑢 = 𝑈 + 𝑐 𝑎𝑛𝑑 𝑤 = 𝑊                                                                   [3.82] 

 

where 𝑢  and 𝑤  denote the 𝑥  and 𝑧 components of water velocity in the stationary 

system (𝑥, 𝑧), respectively; 𝑈 and 𝑊  denote the particle velocitites in the moving 

reference system (X, Z), respectively. 

 

The transformation of constant net current in 𝑥 direction between the two systems is: 

 

U = U̅ + 𝑐                                                                                                                            [3.83] 

 

where U̅ is the constant net current in (X, Z) system. 

 

It is assumed that the flow is incompressible and irrotational. Therefore, the stream 

function, 𝛹(X, Z), exists in (X, Z) system and satisfies the Laplace equation: 

 

∇2𝛹(X, Z) = 0                                                                                                                    [3.84] 

 

𝑈 and 𝑊 are related to 𝛹(X, Z) as: 

 

𝑈 =
𝜕𝛹

𝜕X
      and      𝑊 = −

𝜕𝛹

𝜕Z
                                                                                       [3.85] 

 

Two kinematic boundary conditions exist for Equation [3.84]: 

 

𝛹(X, 0) = 0                    at the sea bed                                                                          [3.86] 

 

𝛹(X, 𝜂(X)) = 𝑄             at the free surface (Z=𝜂(X))                                                 [3.87] 

 

where 𝑄 is the volume flow rate in X direction per unit length in Y. 



 91 

The Bernoulli equation at the free surface provides the third and last boundary 

condition, which is a dynamic boundary condition: 

 

1

2
[(
𝜕𝛹

𝜕X
)
2

+ (
𝜕𝛹

𝜕Z
)
2

] + |𝑔|𝜂 = 𝒞         at the free surface (Z=𝜂(X))                       [3.88] 

 

where 𝒞 is a constant. 

 

The crest and trough of the wave are assumed to occur at X = 0  and X = 𝜆/2 , 

respectively, and the Fourier series method is applied to represent 𝛹(X, Z): 

 

𝛹(X, Z) = U̅Z + √
𝑔

𝑘3
∑Bj

N

j=1

𝑠𝑖𝑛ℎ j𝑘Z

𝑐𝑜𝑠ℎ j𝑘𝑑
𝑐𝑜𝑠ℎ j𝑘X                                                          [3.89] 

 

where Bj(j = 1,2,3… . , N) is a dimensionless coefficient and N is a finite integer. 

 

Equation [3.89] automatically satisfies the Equations [3.84] and [3.86]. Equations 

[3.87] and [3.88] are solved simultaneously to determine the coefficient Bj . The 

numerical scheme to solve the problem is described below. 

 

The wave is first divided from X = 0  to X = 𝜆/2  into N  equal intervals; having 

j = 1,2,3… . , N + 1  denote the discrete points. The X  coordinate of point n  is 

Xn = (n − 1)𝜆/(2𝜆), which gives 𝑘Xn = (n − 1)𝜋/N. Equation [3.89] is substituted 

into Equations [3.87] and [3.88] at point n, yielding: 

 

𝑈̅√
𝑘

𝑔
𝑘𝜂n +∑Bj

N

j=1

𝑠𝑖𝑛ℎ j𝑘𝜂n
𝑐𝑜𝑠ℎ j𝑘𝑑

𝑐𝑜𝑠ℎ j𝑘Xn − 𝑄√
𝑘3

𝑔
= 0                                              [3.90] 

 

and 
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1

2
(𝑈√

𝑘

𝑔
+∑jBj

N

j=1

𝑐𝑜𝑠ℎ j𝑘𝜂n
𝑐𝑜𝑠ℎ j𝑘𝑑

𝑐𝑜𝑠ℎ j𝑘Xn )

2

                                                                              

+
1

2
(∑jBj

N

j=1

𝑠𝑖𝑛ℎ j𝑘𝜂n
𝑐𝑜𝑠ℎ j𝑘𝑑

𝑠𝑖𝑛ℎ j𝑘Xn )

2

+ 𝑘𝜂n −  𝒞
𝑘

𝑔
= 0                                           [3.91] 

 

Equations [3.90] and [3.91] provide 2N + 2  nonlinear equations with 2N + 5 

dimensionless variables for N + 1 points: (i) 𝑘𝜂n for n = 1,2,3… . , N + 1; (ii) Bj for 

j = 1,2,3… . , N; (iii) U̅√𝑘/𝑔; (iv) 𝑘𝑑 and (v) 𝒞𝑘/𝑔. 

 

Three more equations are required to obtain a closed-form solution. The first one 

employs the trapezoidal rule of integration for the undisturbed water depth, 𝑑: 

 

1

2N
(𝑘𝜂1 + 𝑘𝜂N+1) +

1

N
∑𝑘𝜂n

N

n=2

− 𝑘𝑑 = 0                                                                  [3.92] 

 

The second equation relates the wave height, 𝐻 and free surface elevation, 𝜂: 

 

𝑘𝜂1 − 𝑘𝜂N+1 − 𝑘𝑑
𝐻

𝑑
= 0                                                                                                [3.93] 

 

The third and last equation is applicable if the wavelength, 𝜆, is known: 

 

𝑘𝑑 − 2π
𝑑

𝜆
= 0                                                                                                                   [3.94] 

 

When the wavelength is unknown, but the wave period, 𝑇, is known, Equation [3.94] 

is replaced by Equation [3.95]: 

 

−√𝑘𝑑𝑈̅√𝑘 𝑔⁄ + 𝑘𝑑
U

√𝑔𝑑
−

2𝜋

𝑇√𝑔𝑑
= 0                                                                        [3.95] 
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The known variables are 𝐻 , 𝑑 , U  and either 𝜆  or 𝑇 . There are 2N + 5  unknown 

dimensionless variables for 2N + 5  nonlinear equations, providing a closed-form 

solution. The nonlinear equations are iteratively solved using Newton’s method. The 

transient fluid velocity in the stationary system (𝑥, 𝑧) is calculated via Equations 

[3.96] – [3.99] after the unknown variables are determined. 

 

𝑢(𝑥, 𝑧, 𝑡) = U + √
𝑔

𝑘
∑jBj

N

j=1

𝑐𝑜𝑠ℎ j𝑘z

𝑐𝑜𝑠ℎ j𝑘𝑑
𝑐𝑜𝑠ℎ j𝑘(𝑥 − 𝑐𝑡)                                             [3.96] 

 

𝑤(𝑥, 𝑧, 𝑡) = √
𝑔

𝑘
∑jBj

N

j=1

𝑠𝑖𝑛ℎ j𝑘z

𝑐𝑜𝑠ℎ j𝑘𝑑
𝑠𝑖𝑛ℎ j𝑘(𝑥 − 𝑐𝑡)                                                     [3.97] 

 

𝜂(𝑥, 𝑡) =
E1
2
+∑ Ej

N+1

j=2

𝑐𝑜𝑠[(j − 1)𝑘(𝑥 − 𝑐𝑡)]                                                              [3.98] 

 

Ej is calculated by numerical integration for j = 1,2,3… . , N + 1: 

 

Ej =
2

N
∏𝜂n

N+1

n=1

𝑐𝑜𝑠
(j − 1)(n − 1)𝜋

N
                                                                               [3.99] 

 

where ∏ represents a trapezoidal-type summation. 
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3.2.2.4. Random Wave  

 

FLOW-3D
®
 treats a random wave as the superposition of many linear component 

waves of different amplitudes, periods and initial phases. The wave amplitudes are 

calculated using wave energy spectrum. FLOW-3D
®
 is equipped with two internally 

defined energy spectra: Pierson-Moskowitz (P-M) spectrum (Pierson and Moskowitz, 

1964) and JONSWAP spectrum (Hasselmann et al., 1973). The wind speed 10 m 

above the sea level has to be provided for both spectrums. The fetch length and peak 

enhancement factor are necessary parameters to be defined for JONSWAP spectrum. 

The default value of the peak enhancement factor is 3.3. The wave energy spectrum 

can also be defined using an external data file.  

 

The wave components initially exist in a flat-bottom reservoir and propagate 

simultaneously into the computational domain through the mesh boundary. Their 

water elevations and velocities at the mesh boundary are summed up respectively 

whereby the boundary condition for the random wave simulation is obtained. Water 

elevation of the random wave is expressed as: 

 

𝜂 =∑𝑎j

N

j=1

cos(𝑘j𝑥 − wj𝑡 + 𝜙i)                                                                                  [3.100] 

 

The wave energy spectrum, 𝐸(w) , is used to calculate the parameters of the 

component waves. The range of the angular frequency, w, is divided equally into N 

intervals, each of which represents a linear wave component and wj is the mid-point 

value of w in the j𝑡ℎ interval. aj is calculated as: 

 

𝑎j = 2𝐸(wj)Δw                                                                                                               [3.101] 

 

for j = 1,2,3… . , N where Δw is the w interval. 
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𝑘j is calculated using the dispersion equation for linear waves because it is a function 

of 𝜙i  and 𝑑 and the component waves are linear. 𝜙i  is a real number which is 

randomly selected between 0 and 2/𝜋. 

 

FLOW-3D
®
 automatically generates 1000 linear component waves at the wave 

boundary for a random wave simulation (i.e. N = 1000 ) The wave periods are 

evenly distributed between 0.2 sec. and 2.0 sec. 

 

The Pierson-Moskowitz (P-M) spectrum can be applied in fully developed sea 

conditions with a sufficiently large fetch length and sufficiently long wind duration. 

The only necessary parameter is the wind speed. The P-M spectrum is given by: 

 

𝐸(w) =
𝛿𝑔2

w5
𝑒𝑥𝑝 [−

5

4
(
w𝑝

w
)
4

]                                                                                     [3.102] 

 

where w𝑝 = 0.855𝑔/𝑈10  is the angular frequency at the spectrum peak, 𝑈10  is the 

wind speed 10 m above the sea level and 𝛿 = 0.0081 is the scaling parameter. 

 

The JONSWAP spectrum is applicable for fetch-limited conditions. It is given by: 

 

𝐸(w) =
𝛿𝑔2

w5
𝑒𝑥𝑝 [−

5

4
(
w𝑝

w
)
4

] γ
𝑒𝑥𝑝[−

(w−w𝑝)
2

2Θ2w𝑝2
]

                                                         [3.103] 

 

where w𝑝 = 22[𝑔2/(𝑈10 F)]
1
3⁄ , F is the fetch length, 𝛿 = 0.076[𝑈10

2/( F𝑔)]0.22, γ 

is the peak enhancement factor and 1 ≤ γ ≤ 7, Θ = 0.07 for w ≤ w𝑝 and Θ = 0.09 

for w ≥ w𝑝. 
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3.2.2.5. Solitary Wave 

 

A solitary wave is a nonlinear non-oscillatory wave which has a single crest and no 

trough and is completely above the undisturbed water level. A tsunami wave is often 

defined by a solitary wave in numerical simulations. FLOW-3D
®

 attributes the 

solitary wave solution to McCowan’s theory (McCowan, 1891), which has a higher 

order accuracy than Boussinesq’s theory (Boussinesq, 1871) and is recommended by 

Munk (Munk, 1949). 

 

The solitary wave solution is derived for an infinite reservoir with a flat bottom, 

which is assumed to exist outside the computational domain and immediately 

adjacent to the mesh boundary. The solitary wave is initially located outside the 

computational domain. By default, the initial distance from the crest to the wave 

boundary is one half of the wavelength (Figure 3.11). FLOW-3D
®
 defines the 

wavelength of a solitary wave as the extent of the wave in its propagation direction, 

which is measured between two points at opposite sides of the crest where the 

surface displacement is 1% of the wave height. 

 

 

 
Figure 3.11 Solitary wave coming from a flat bottom reservoir into the computational 

domain (Flow Science, 2002) 
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In the solitary wave model, a constant net current, U, can exist in any horizontal 

direction at the wave boundary if the current is slower than the speed of the solitary 

wave. U is accepted to be uniform across the boundary. 

 

The equations to determine water elevation, 𝜂, 𝑥-velocity, 𝑢, 𝑧-velocity, 𝑤, and wave 

speed, 𝑐 are (Munk ,1949): 

 

𝜂

𝑑
=
𝒩

ℳ

𝑠𝑖𝑛 [ℳ (1 +
𝜂
𝑑
)]

𝑐𝑜𝑠 [ℳ (1 +
𝜂
𝑑
)] + 𝑐𝑜𝑠ℎ (ℳ

𝑋
𝑑
)
                                                                 [3.104] 

 

𝑢(𝑥, 𝑧, 𝑡) − U

𝑐0
= 𝒩

1 + 𝑐𝑜𝑠 (
ℳ𝑧
𝑑
) 𝑐𝑜𝑠ℎ (

ℳ𝑋
𝑑
)

[𝑐𝑜𝑠 (
ℳ𝑧
𝑑
) 𝑐𝑜𝑠ℎ (

ℳ𝑋
𝑑
)]
2                                                       [3.105] 

 

𝑤(𝑥, 𝑧, 𝑡)

𝑐0
= 𝒩

𝑠𝑖𝑛 (
ℳ𝑧
𝑑
) 𝑠𝑖𝑛ℎ (

ℳ𝑋
𝑑
)

[𝑐𝑜𝑠 (
ℳ𝑧
𝑑
) 𝑐𝑜𝑠ℎ (

ℳ𝑋
𝑑
)]
2                                                                 [3.106] 

 

where 𝑐0 = √𝑔(𝑑 + 𝐻) is the wave speed in still water, 𝑐 = 𝑐0 + U and 𝑋 = 𝑥 − 𝑐𝑡. 

 

ℳ and 𝒩 satisfy: 

 

𝜀 =
𝒩

ℳ
𝑡𝑎𝑛 [

1

2
ℳ(1 + 𝜀)]                                                                                            [3.107] 

 

𝒩 =
2

3
𝑠𝑖𝑛2 [ℳ (1 +

2

3
𝜀)]                                                                                          [3.108] 

 

where 𝜀 = 𝐻 𝑑⁄ . 
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Equations [3.104] – [3.108] are nonlinear and are solved via Newton-Raphson 

method. The initial estimates of ℳ and 𝒩  are ℳ = √3𝜀 and 𝒩 = 2𝜀. The initial 

estimate of 𝜂 is the Boussinesq’s solution for solitary waves: 

 

𝜂

𝑑
= 𝜀𝑠𝑒𝑐ℎ2 (√

3𝜀

4

𝑋

𝑑
)                                                                                                   [3.109] 

 

3.2.3. Solution Technique 

 

The fluid flow takes place over a continuous region or continuum, where the fluid 

equations of motion, Navier-Stokes equations, apply. However, continuous 

governing partial differential equations can not be solved by computers. Therefore, 

the continuum has to be discretised into finite spatial and temporal elements. There 

are various techniques used to discretise the governing equations but they all aim to 

turn a calculus problem into an algebraic one. Some of the methods employed to 

discretise the spatial volumes are: (i) finite difference, (ii) finite volume and (iii) 

finite element. The discretisation methods involve a variety of schemes such as: (i) 

central schemes, (ii) flux vector splitting scheme, (iii) flux difference splitting 

scheme, (iv) upwind scheme, (v) Essentially Non-Oscillatory (ENO) scheme and (vi) 

Weighted ENO (WENO) scheme. The equations are discretised upon: (i) a structured 

and/or (ii) an unstructured mesh. 

 

A computational mesh is the numerical space that replaces the physical one and it 

forms the basis of a numerical model. It serves to define the flow parameters at 

discrete locations, set boundary conditions and develop numerical approximations 

for the fluid motion equations. A computational mesh is composed of a number of 

interconnected elements, or cells. The cells subdivide the physical space into small 

volumes with several nodes that are used to store values of the unknowns, such as 

pressure, temperature and/or velocity. 
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In FLOW-3D
®
, the flow domain is divided into a grid of rectangular cells, called 

brick elements. The computational cells are numbered in a consecutive manner using 

three indices: i in 𝑥-direction, j in 𝑦-direction and k in 𝑧-direction. 

 

The finite difference and finite volume methods, which are the core methods of 

FLOW-3D
®
, are used to deal with the numerical approaches. The finite difference 

method (FDM) is based on the properties of the Taylor expansion, which is one of 

the oldest methods used to solve differential equations. Euler (1768) is believed to 

have developed the first application of the Taylor expansion; a first-order numerical 

procedure for solving ordinary differential equations with a given initial value. On 

the other hand, as the finite volume method (FVM) is derived directly from the 

integral form of the conservation laws for fluid motion, it already possesses the 

conservation properties. In brief, in FDM, the partial derivatives of the governing 

equations are replaced with a Taylor expansion representation following each node, 

whereas in FVM, the governing equations are integrated over a volume (i.e. cells). 

 

Fluid velocities and pressures are located at staggered mesh locations: 𝑢 and 𝐴𝑥 are 

located at the centers of cell faces normal to 𝑥-direction, 𝑣 and 𝐴𝑦 are located at the 

centers of cell faces normal to 𝑦-direction and 𝑤 and 𝐴𝑧 are located at the centers of 

cell faces normal to 𝑧-direction. Pressures, 𝑃, fluid fractions, 𝐹, fractional volumes, 

𝑉𝐹, densities, 𝜌, internal energy, 𝐼, turbulence quantities for energy, 𝑞, dissipation, 𝒟, 

and viscosity, 𝜇, are all located at cell centers (Figure 3.12). 

 

 

Figure 3.12 Location of variables in a mesh cell (Flow Science, 2002) 
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A solution is advanced through one increment in time, ∆𝑡, in three steps: 

(i) The initial values of the new time-level velocities are computed via explicit 

approximations of the momentum equations, Equations [3.56] – [3.58]. 

(ii) The pressures are iteratively adjusted in each cell to satisfy the continuity 

equation, Equation [3.52] or Equation [3.55], and the velocity changes induced 

by each pressure change are added to the velocities computed in Step (1). 

(iii) When there is a free-surface or fluid interface, it is updated using the VOF 

function so that the new fluid configuration is determined. For compressible 

fluid problems, density and energy are updated in order to reflect advective, 

diffusive, and source processes. Turbulence quantities and wall temperatures are 

also updated. 

A solution can be advanced through any desired time interval by repeating these 

steps. At each step, of course, suitable boundary conditions have to be imposed at all 

mesh, obstacle, and free-boundary surfaces. 

 

The general forms for the finite difference approximation of momentum equations 

are given below: 

 

𝑢i,j,k
n+1 = 𝑢i,j,k

n + ∆𝑡n+1 [
−
𝑃i+1,j,k
n+1 − 𝑃i,j,k

n+1

(𝜌∆𝑥)
i+
1
2
,j,k

n + 𝐺𝑥 − 𝐹𝑈𝑋 − 𝐹𝑈𝑌 − 𝐹𝑈𝑍

                                        +𝑉𝐼𝑆𝑋 − 𝐵𝑋 −𝑊𝑆𝐻𝑋

]            [3.110] 

 

𝑣i,j,k
n+1 = 𝑣i,j,k

n + ∆𝑡n+1 [
−
𝑃i,j+1,k
n+1 − 𝑃i,j,k

n+1

(𝜌∆𝑦)
i,j+

1
2
,k

n ℛ
i+
1
2
+ 𝐺𝑦 − 𝐹𝑉𝑋 − 𝐹𝑉𝑌 − 𝐹𝑉𝑍

                                                  +𝑉𝐼𝑆𝑌 − 𝐵𝑌 −𝑊𝑆𝐻𝑌

]   [3.111] 

 

𝑤i,j,k
n+1 = 𝑤i,j,k

n + ∆𝑡n+1 [
−
𝑃i,j,k+1
n+1 − 𝑝i,j,k

n+1

(𝜌∆𝑧)
i,j,k+

1
2

n + 𝐺𝑧 − 𝐹𝑊𝑋 − 𝐹𝑊𝑌 − 𝐹𝑊𝑍

                                            +𝑉𝐼𝑆𝑍 − 𝐵𝑍 −𝑊𝑆𝐻𝑍

]        [3.112] 
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where 𝐹𝑈𝑋, 𝐹𝑈𝑌 and 𝐹𝑈𝑍 are the advective fluxes of 𝑢, 𝑣 and 𝑤, 𝑉𝐼𝑆𝑋, 𝑉𝐼𝑆𝑌 and 

𝑉𝐼𝑆𝑍 are the 𝑥, 𝑦 and 𝑧 components of viscous acceleration, 𝐵𝑋, 𝐵𝑌 and 𝐵𝑍 are the 

flow loss for a baffle normal to 𝑥, 𝑦 and 𝑧 directions and 𝑊𝑆𝐻𝑋, 𝑊𝑆𝐻𝑌 and 𝑊𝑆𝐻𝑍 

are the viscous wall accelerations in 𝑥 , 𝑦  and 𝑧  directions. 𝐺𝑋 , 𝐺𝑦  and 𝐺𝑧  terms 

include gravitational, rotational, and general non-inertial accelerations in 𝑥, 𝑦 and 𝑧 

directions, respectively and 

 

(𝜌∆𝑥)
i+
1
2
,j,k

n =
𝜌i,j,k
n ∆𝑥i + 𝜌i+1,j,k

n ∆𝑥i+1

2
 

 

and 

 

ℛ
i+
1
2
=

{
 
 

 
 
                1.0                      Cartesian coordinate system

𝑥𝑚𝑎𝑥
1
2
(𝑥i + 𝑥i+1)

           cylindrical coordinates
 

 

The simplest finite difference approximation that FLOW-3D
®
 uses is the first-order 

centered difference scheme, which is simple and computationally stable. 

 

In some cases; however, the cost of using the mesh resolution necessary for an 

accurate first-order solution can be too high. This can be avoided by employing a 

second-order accurate approximation for the advective and viscous accelerations. 

This algorithm is the most CPU intensive. 

 

The other higher order finite difference scheme is a second-order, monotonicity-

preserving upwind-difference method (Van Leer, 1977). This scheme is derived by 

using second-order polynomial approximations of the advected quantity in each of 

the coordinate directions (Bronisz and Hirt, 1991).  
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To illustrate the higher-order method, the flux passing through a cell-face for a 

variable 𝑄 advected in 𝑥 direction, 𝑄∗, is given: 

 

𝑄∗ = 𝑄i +
1

2
𝒜(1 − 2∁)∆𝑥i                                                                                          [3.113] 

 

where 𝑄i  is the cell-centered value, ∁ is the Courant number and ∆𝑥i  is cell size. 

Coefficient 𝒜  is computed from two neighboring first derivatives using linear 

interpolation, provided the derivatives are second-order accurate. Equation [3.114] is 

the second-order accurate first derivative of 𝑄 at the point between 𝑄i and 𝑄i+1: 

 

𝑑𝑄

𝑑𝑥
i+
1
2

= 2
𝑄i+1 − 𝑄i
∆𝑥i+1 + ∆𝑥i

                                                                                                  [3.114] 

 

To ensure monotonicity (Van Leer, 1977): 

 

𝒜 ≤ 2min (
𝑑𝑄

𝑑𝑥i
,
𝑑𝑄

𝑑𝑥i+1
)                                                                                               [3.115] 

 

If the two centered derivatives appearing in Equation [3.115] are of opposite sign, 

then 𝒜 is set to zero and the first-order finite difference approximation is used. 

 

3.2.4. Initial Conditions 

 

The initial state of the solution (i.e. at time 𝑡 = 0) for transient fluid flow problems 

has to be known in order to obtain a solution. The accuracy of the initial conditions is 

not as important as that of the boundary conditions because their effect is diminished 

as time progresses. Due to this effect, it can be assumed that the pressure and 

velocity fields are uniform. This typically produces good results within a relatively 

short time where the solution is affected by physical initial conditions. Initial 

conditions in FLOW-3D
®

 are defined at a global scale or in more localized regions. 
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Each problem that is modeled using FLOW-3D
®
 has different solution techniques 

and thus various initial conditions. The solitary wave motion is the primary focus 

here, since solitary waves are the numerical representations of tsunami waves. The 

initial conditions used to solve the solitary wave motion, Equations [3.104] – [3.108], 

are given in Section 3.2.2.5. Furthermore, it is also possible to define wave motion as 

an initial condition. The wave is allowed to initially exist throughout the 

computational domain in order to shorten the computation time to reach steady wave 

motion. To achieve this, the initial wave elevation and/or fluid velocity are generated 

by using external data. 

 

3.2.5. Boundary Conditions 
 

The equations that govern the motion of fluid flow are in the category of initial and 

boundary value problems, which meas that the solution at the boundaries has to be 

known at the initial time in order to solve the problem. The solution of the governing 

partial differential equations inside the domain are based on the initial and boundary 

conditions, which implies that the solution of the problem is fundamentally defined 

by what is assumed at the boundaries. 

 

In FLOW-3D
®
, the appropriate boundary condition(s) are automatically applied to 

components depending on the component type and active physical model(s). 

However, the boundary conditions on the faces of the mesh block (i.e. xmin, xmax, 

ymin , ymax ,  zmin  and zmax ) have to be set manually for each mesh block. It is 

possible to set a variety of conditions using the layer of fictitious cells surrounding 

the mesh (i.e. the boundary separating the i=1 and i=2 layer of cells). The i=1 cells 

are regarded as fictitious because variable values are set, not calculated, in these cells 

to satisfy the boundary conditions. FLOW-3D
®
 has ten different boundary 

conditions: 

 

Wall Boundary Condition: When a boundary condition is to reflect the properties of a 

rigid wall, the normal velocity is taken as zero and the tangential velocity is set to 

any value for a no-slip type of wall. The wall boundary conditions are: 
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𝑢1,j,k = 0                                                                                                                                           

𝑃1,j,k = 𝑃2,j,k                                                                                                                                     

𝜌1,j,k = 𝜌2,j,k                                                                                                                      [3.116] 

 

Continuative Boundary Condition: A continuative boundary condition is made up of 

zero normal derivatives at the boundary for all quantities. The zero derivative 

condition represents a smooth continuation of the flow through the boundary. The 

continuative boundary condition does not have a physical basis. It is a mathematical 

statement that may or may not provide the desired flow behavior, especially for low 

speed or incompressible flows. As a general rule, it is essential that a physically 

meaningful boundary condition (i.e. a specified pressure condition) be used at 

outflow boundaries whenever possible. When a continuative condition is used, it 

should be placed as far as possible from the main flow region so that the adverse 

effects on the main flow are reduced. 

 

The continuative boundary conditions used at the i = 1  layer are the vanishing 

normal derivatives of:  

 

𝑢1,j,k = 𝑢2,j,k                                                                                                                                    

𝑣1,j,k = 𝑣2,j,k                                                                                                                                    

𝑤1,j,k = 𝑤2,j,k                                                                                                                                   

𝑃1,j,k = 𝑃2,j,k                                                                                                                                     

𝜌1,j,k = 𝜌2,j,k                                                                                                                      [3.117] 

 

When the direction of the flow is out of the computational domain, the conditions 

given in Equation [3.117] are valid. If the flow direction is into the computational 

domain, then all the conditions given by Equation [3.117] are applied except for the 

normal velocity component, which is set to zero to make the inward flow more 

difficult. 
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Outflow Boundary Condition: A boundary condition that allows outgoing waves to 

smoothly leave the computational mesh with minimum reflection must be employed 

for wave propagation problems. FLOW-3D
®
 uses the radiation boundary condition, 

which was originally proposed by Sommerfeld (1912) for mathematical physics, later 

revised by Orlanski (1976) for hydraulic flow and implemented in FLOW-3D
®
 by 

Hirt (1999). The Sommerfeld radiation boundary conditon is a simple mathematical 

continuation that has the form of outgoing waves (Hirt, 1999): 

 

𝜕𝒬

𝜕𝑡
+ 𝒸

𝜕𝒬

𝜕𝑥
= 0                                                                                                                 [3.118] 

 

where 𝒬 is a dependent physical quantity, +𝑥 points out of the boundary and 𝒸 is the 

local phase speed of the assumed wavelike flow. 

 

Equation [3.118] states that any flow quantity, 𝒬, at the boundary translates across 

the boundary with speed, 𝒸. When there is no time variation, Equation [3.118] is 

reduced to continuative boundary condition of zero normal derivative. 

 

The second-order difference approximation (i.e. in space and time) of Equation 

[3.118] is given below in terms of xmax (maximum 𝑥 boundary) of the computational 

region (Hirt, 1999): 

 

1

2
(𝔮i
n+1 − 𝔮i

n) +
1

2
(𝔮i−1
n+1 − 𝔮i−1

n ) +
𝒸∆𝑡

∆𝑥
[
1

2
(𝔮i
n+1 − 𝔮i−1

n+1) +
1

2
(𝔮i
n − 𝔮i−1

n )] = 0        [3.119] 

 

where i is the index of the spatial location on the boundary where a value of some 

quantity 𝔮  is required. The first two terms of Equation [3.119] are the time 

derivatives centered about n + 1/2. One term is at location i and the other at i − 1, 

so their average is centered about 𝑥 = i − 1/2. The last term contains an average of 

two 𝑥  derivatives centered about i − 1/2  at times n  and n + 1 . This term is also 

centered about i − 1/2  and n + 1/2. It should be noted that the grid spacing, ∆𝑥, 

and time interval, ∆𝑡 are assumed to be constant. Rearranging Equation [3.119]: 
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𝔮i
n+1 = 𝔮i−1

n +
1 − 𝐶

1 + 𝐶
(𝔮i
n − 𝔮i−1

n+1)                                                                               [3.120] 

 

where 𝐶 = 𝒸∆𝑡
∆𝑥⁄  is the non-dimensional phase speed. 

 

The i index is shifted one node to the left to solve for 𝐶: 

 

1 − 𝐶

1 + 𝐶
=
𝔮i−1
n+1 − 𝔮i−2

n

𝔮i−1
n − 𝔮i−2

n+1                                                                                                       [3.121] 

 

Substituting Equation [3.121] into Equation [3.120] gives the needed boundary value 

for 𝔮i
n+1 (Hirt, 1999). 

 

There are two cases that limit the use of Equation [3.121]: (i) the value of 𝐶 has to be 

positive since only the outgoing waves are considered and the incoming flow has to 

be supressed, and (ii) the value of 𝐶 has to be less than or equal to unity to ensure the 

computational stability (i.e. 0 ≤ 𝐶 ≤ 1). 

 

Symmetry Boundary Condition: A symmetry boundary condition imposes free-slip 

conditions by setting all velocity derivatives to zero (zero-gradient condition) at the 

boundary. Moreover, the velocity normal to the boundary is taken as zero. 

 

Specified Pressure Boundary Condition: FLOW-3D
®
 has the capability of specifying 

a pressure condition at one or more boundaries of a computational region. In general, 

a pressure condition does not apply in the case of a boundary where velocities are 

also specified since velocities are influenced by pressure gradients.  

 

The two types of pressure conditions are static or stagnation pressure conditions. 

When the pressure is static, it is continuous across the boundary and the velocity at 

the boundary is assigned a value based on a zero normal-derivative condition. 

However, if a stagnation pressure condition exists outside the boundary, the upstream 
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velocity at the boundary is zero and the pressure drops across the boundary for the 

flow to enter the computational region. The stagnation pressure condition is 

generally more physical and yields more specific results than the static pressure 

condition; therefore, it is recommended for most applications.  

 

The case of the flow of a fluid in a pipe section illustrates the differences between 

these two conditions clearly. If the upstream end of the computational region 

corresponds to the physical entrance to the pipe, it is necessary to use a stagnation 

condition to approximate the conditions of a large reservoir of stationary fluid. On 

the other hand, if the upstream boundary of the computing region is inside the pipe, 

and away from the entrance, then the static pressure condition would be a more 

reasonable representation. 

 

Volume Flow Rate Boundary Condition: At a specified volume flow rate boundary, 

the flow rate at the boundary has to be indicated. 

 

Specified Velocity Boundary Condition: At a fixed velocity boundary, the normal 

velocity and the tangential velocities (i.e. 𝑢, 𝑣 and 𝑤) at the boundary have to be 

specified. It should be noted that scalar quantities are defined at the centers of the 

boundary cells which are half a cell away from the actual mesh boundary location, 

and this affects the gradients of the tangential velocities at all open mesh boundaries. 

The normal boundary velocities are always set at the edge of the boundary. 

 

Periodic Boundary Condition: Periodic boundaries are applied in pairs and, in each 

pair, any fluid that leaves through one boundary is reintroduced through the other 

boundary. That is, the conditions at both i = 1 and i = 𝐼𝑀𝐴𝑋 layers have to be set to 

reflect the periodicity. The conditions for periodic flow in the 𝑥 direction at i = 1 for 

all j, k are: 
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𝑢1,j,k = 𝑢IM2,j,k                                                                                                                                

𝑣1,j,k = 𝑣IM2,j,k                                                                                                                                 

𝑤1,j,k = 𝑤IM2,j,k                                                                                                                               

𝜌1,j,k = 𝜌IM2,j,k                                                                                                                  [3.122] 

 

for all j, k:  

 

𝑢IM1,j,k = 𝑢2,j,k                                                                                                                                

𝑣IM1,j,k = 𝑣2,j,k                                                                                                                                 

𝑤IM1,j,k = 𝑤2,j,k                                                                                                                               

𝑃IM1,j,k = 𝑃2,j,k                                                                                                                                 

𝑣IMAX,j,k = 𝑣3,j,k                                                                                                                              

𝑤IMAX,j,k = 𝑤3,j,k                                                                                                                            

𝜌𝐼𝑀𝐴𝑋,j,k = 𝜌3,j,k                                                                                                               [3.123] 

 

where 𝐼𝑀1 = 𝐼𝑀𝐴𝑋 − 1 and 𝐼𝑀2 = 𝐼𝑀𝐴𝑋 − 2. 

 

Wave Boundary Condition: The wave boundary condition is applied at the boundary 

in order to create the velocity field associated with the requested wave type. It 

collaborates with the wave generator module of FLOW-3D
®
, which is given in detail 

in the subsections of Section 3.2.2. 

 

Grid Overlay Boundary Condition: The function of the Grid Overlay (GO) boundary 

condition is to apply restart data from the source simulation to set flow parameters at 

the boundary. The boundary flow, which is fixed throughout the restart simulation, 

serves to determine the flow parameters.  
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3.2.6. Stability 

 

Numerical stability can be maintained by observing the restrictions on the time step 

size in FLOW-3D
®
. The time step size is automatically adjusted so that it is as large 

as possible without exceeding any of the stability limits, affecting accuracy, or 

unnecessarily increasing the effort required to enforce the continuity condition. The 

time step size is also reduced when pressure and/or temperature iterations are greater 

than the corresponding nominal values depending on the iteration options. The 

automatic time step selection should be favoured whenever possible to achieve 

optimum results. 

 

Time steps can also be specified manually. However, in this case, time steps 

satisfying the basic stability condition given in Equation [3.124] have to be selected. 

 

∆𝑡 < 𝐶𝑂𝑁 ∗ 𝑚𝑖𝑛 (
𝑉𝐹∆𝑥i
𝐴𝑥𝑢

,
𝑉𝐹∆𝑦j

ℛi𝐴𝑦𝑣
,
𝑉𝐹∆𝑧k
𝐴𝑧𝑤

)                                                               [3.124] 

 

where 𝐶𝑂𝑁  is the stability factor. 𝐶𝑂𝑁 = 0.45 is typically used to account for a 

simplified stability analysis. For compressible flow applications, the factor is reduced 

to 𝐶𝑂𝑁 = 0.25. 

 

The time step size stability condition regarding the propagation of surface waves is 

that these waves should not propagate more than one cell in one time step. If 𝑧 is the 

normal direction to the surface and 𝐺𝑧 is the acceleration in 𝑧 direction, then: 

 

∆𝑡 <
√𝑉𝐹

2𝐺𝑧∆𝑧k (
𝐴𝑥
𝑥i
2𝑚𝑎𝑥 (1,

∆𝑥i
∆𝑧k

) +
𝐴𝑦ℛi

2

𝑦j
2 𝑚𝑎𝑥 (1,

∆𝑦j
ℛi∆𝑧k

))

                               [3.125] 
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Similar limits have to be imposed in 𝑥 and 𝑦 directions for each cell that contains a 

free-surface. 

 

In the case of shallow water flows, the time step stability limit is controlled by the 

surface wave speed, which is readily evaluated from the depth of the fluid, 𝐹∆𝑧, 

where 𝐹 is the fluid fraction in the cell. 

 

∆𝑡 < 0.5
𝑚𝑖𝑛 {∆𝑥i,

∆𝑦j
ℛi
}

√𝐹∆𝑧𝑘𝐺𝑧
                                                                                                [3.126] 

 

3.2.7. Methodology 

 

FLOW-3D
® 

is a Computational Fluid Dynamics (CFD) software. The governing 

equations for fluid flows (the conservation of mass, momentum, and energy) that are 

subject to the prescribed initial and boundary conditions in up to three dimensions 

are most commonly solved through CFD modeling. 

 

If a CFD model fails to represent the actual phenomenon accurately, the results will 

be biased and unrealistic. Therefore, it essential that the actual physical situation and 

the capabilities of the CFD model be assessed carefully by taking the following 

issues into consideration (Maguire, 2011): 

 Information/data required from the calculation 

 The scale and the mesh design needed to capture important phenomena 

 The boundary condition(s) that best represent the actual physical situation 

 The kinds of fluids to be used 

 The fluid properties which are important for the problem 

 Important physical phenomena  

 The initial fluid state 

 The system of units to be used 
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Evaluating the strengths and weaknesses of CFD is also crucial. CFD is an excellent 

analysis option when: 

 Standard engineering calculations do not suffice because of the complexity of the 

geometry, physics, or the required level of detail. 

 Physical experiments are costly. 

 Information about the flow that can be gathered from an experiment is 

insufficient. 

 Accurate experimental measurements are difficult to obtain owing to dangerous or 

hostile conditions, processes that do not scale well, etc. 

 

CFD is less effective when: 

 The variations in the scales of interest are unmanagable because solutions require: 

(i) significant computational resources 

(ii) assumptions to reduce the domain size 

(iii) semi-empirical models to account for unresolved physical phenomena. 

 The important physical phenomena are unknown. 

 The physical phenomena are poorly understood or extremely complex because the 

governing equations tend to be semi-empirical or have limited ranges of 

applicability. 
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Figure 3.13 Methodology of modeling via FLOW-3D

®  

Domain Selection and Data Acqusition/Processing 

 The study area is determined according to the purpose of the model 

 The physical features of the study domain are reviewed 

 Satellite data is collected from the available sources 

 The collected data are analysed and eliminated 

 The eliminated data is digitized 

Bathymetric and Topographic Map Preparation  

 Bathymetric and topographic maps in required resolution(s) are created in 

*.xyz format after digitization 

 The map data is converted from *.xyz format to *.STL or *.asc format using 

the available tools 

Post-processing 

 The output data is selected: Restart Data (the default FLOW-3D
® 

output data 

set) or Selected Data (the user-defined output data set) 

 The results are visualized using FlowSight™: 1D, 2D, 3D plots, probe polts, 

animations, text outputs, graphs, etc. 

Model Setup 

 A workspace is created in FLOW-3D
®

 

 The relevant physical mechanisms (i.e. shallow water, turbulence, gravity, 

viscosity, surface tension, etc.) are defined according to the type of the 

problem so that additional terms are substituted into the governing equations 

during the simulation 

 Fluid properties such as density, temperature, etc. are defined 

 The map geometry file (STL and/or ASC) is inputted as a component 

 Component properties are defined if needed; i.e. porosity, surface 

roughness, thermal conductivity, etc. 

 The mesh is created and mesh properties are adjusted 

 Boundary conditions are applied at each face of the mesh block 

 Initial conditions for the fluid are determined, i.e. the initial fluid elevation, 

temperature, velocities, pressure distribution, etc. 
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CHAPTER 4  
 

 

BENCHMARKING 

4. BENCHMARKING 

 

 

According to many researchers, verification and validation are the two phases of 

analysis that a numerical code should be subjected to in assessing the quality of a 

CFD model. (Roache, 1998; AIAA, 1998; Ferziger and Peric, 1999; Freitas, 2002; 

MARNET, 2002; Celik et al., 2008; Oberkampf and Roy, 2010; Maguire, 2011). 

These two terms are synonyms in common use, yet they have quite different 

meanings in the field of numerical modeling. The shorthand reference to these two 

terms is V&V. 

 

Broadly defined (AIAA, 1998): 

Verification is the process of determining that a model implementation accurately 

represents the developer's conceptual description of the model and its solution. 

Validation is the process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended model use. 

 

Blottner (1989) defines the terms as follows: 

Verification is the process of solving the equations right. 

Validation is the process of solving the right equations. 

 

Synolakis et al. (2007) define validation as the process of ensuring that the model 

solves the parent equations of motion accurately, and verification as the process of 

assuring that the model represents geophysical reality appropriately. 

 

The aim of verification is not to endorse the physical or mathematical model, but to 

identify and quantify the errors in the model implementation and the solution as it is 

only concerned with mathematics. Validation, on the other hand, deals with the 

deviations of the numerical model predictions from the physical reality. Its objective 
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is to make sure that the governing mathematical equations represent the physical 

reality accurately. 

 

For the prediction of tsunami currents, forces and runup on coastal structures, and 

inundation of coastlines, the numerical computation of the evolution of a tsunami 

wave from the deep ocean to its target has to be conducted (Synolakis et al., 2007). 

In the development of a numerical model, validation and verification processes are 

the most essential parts. In order to conduct the process of verification and 

validation, the numerical model is subjected to a series of benchmark tests which are 

regarded to be valid by the scientific community. There are three categories of 

benchmarking of numerical models: (i) analytical benchmarking, (ii) experimental 

benchmarking and (iii) field benchmarking. 

 

Analytical benchmarking: Analytical solutions are practical and useful because 

complex numerical models used in realistic applications can be validated via exact 

solutions and, more importantly, the dependence of desired results (i.e. runup) on the 

problem parameters (i.e. deep water wave height, beach slope, depth variation, etc.) 

can be identified efficiently by means of analytical benchmarking. Systematic errors 

can be identified through comparisons of numerical predictions with analytical 

solutions, as when friction factors or dissipative terms are used to supplement the 

idealized equations of motion. 

 

Laboratory benchmarking: Before numerical codes were available, small scale 

physical models were employed to visualize wave phenomena in the laboratory to 

make predictions, which were then scaled to the prototype. Currently, the function of 

scale model tests is to confirm different flow details and validate the numerical 

models used in the analysis. The scale differences are considered to be insignificant 

for the validation of tsunami inundation models. If predictions from a numerical code 

agree well with the measurements from small scale laboratory experiments, it is 

expected that the code will also model geophysical scale tsunamis well. 
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The bottom friction characteristics of scale models are not generally similar to those 

of ocean floors or sandy beaches, but this is not considered as a severe limitation. In 

tsunami modeling, friction gains importance only in cases of extreme inundation; 

however, the predictions may not be sensitive to the first order even with numerical 

codes that use friction factors within reasonable limits (Synolakis et al., 2007). 

 

Field benchmarking: Verification of a model using the real world data is essential for 

model validation, especially for operational models. Analytical and laboratory data 

comparisons can not guarantee robust model performance in the operational 

environment; however, test comparisons with the real world data can, which is an 

important step in the validation process.  

 

Testing a tsunami model against real world events poses a challenge because it is 

difficult to overcome the uncertainties of the tsunami source. In a controlled 

laboratory setup, the source is deterministic and can be reproduced precisely, 

whereas in the numerical computation of a prototype tsunami, the initialization is less 

constrained (Synolakis et al., 2008). A better agreement between the model 

predictions and observations can be obtained by introducing ad hoc amplification 

factors in standard source solutions (Okada, 1985). Yet, at present, as more DART 

(Deep-ocean Assessment and Reporting of Tsunamis) buoys, namely tsunamographs, 

are being deployed, such methods are becoming obsolete. The most accurate 

(unambiguous) data quantifying the source of a tsunami are obtained from deep 

ocean measurements (Bernard et al., 2006). This has been illustrated by Wei et al. 

(2008). 

 

It is not possible to obtain numerical results that exactly match the benchmark data 

owing to the approximations incorporated during the formulation of the numerical 

scheme. Particularly for field benchmarking, additional issues arise due to the 

uncertainties in the tsunami source and in the topography where wave runup and 

inundation are observed. Therefore, relating the numerical results and benchmark 

data within a statistical framework is a reasonable way to assess the capability of 
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numerical models. National Oceanic and Atmospheric Administration (NOAA) 

introduces different types of statistical errors to determine the correlation between 

the calculated values, yi, and observed (analytical/experimental/field) values, 𝑓(xi). 

The most common two statistical errors are: (i) the Normalized Root Mean Square 

Error (NRMSE) and (ii) the error of the maximum value (MAX). 

 

NRMSE is a tool used to assess the overall model performance, which is the 

accuracy of a numerical model in predicting the entire set of observed data. NRMSE 

is valid when applied within a space segment or time period to all observed data 

points. The interval of numerical and observed data sets has to be the same in the 

selected time or space segment. 

 

The NRMSE approach is based on the assumption that the error is normally 

distributed with no bias; therefore, it is not an indicator of under-prediction or over-

prediction. 

 

NRMSE is formulated as: 

 

NRMSE =
1

𝑓(xi)𝑚𝑎𝑥 − 𝑓(xi)𝑚𝑖𝑛
√
∑(𝑓(xi) − yi)2

n
                                                     [4.1] 

 

where 𝑓(xi) and yi represent the observed and predicted data, respectively and the 

difference between the maximum and minimum values of the observed data is used 

for normalization. 

 

The highest wave in a tsunami wave train is usually the first or second one, and n is 

the number of the observed points obtained within an arbitrary space segment or time 

period. Therefore, NRMSE is time or space dependent and sensitive to phase lags in 

the predicted values and it mainly serves to assess the overall model performance. 
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MAX error, which is a relative error based on the maximum magnitude of the 

observed values, is employed to quantify the predictive accuracy of a numerical 

model for the maximum value regardless of time or location: 

 

MAX =
|𝑓(xi)𝑚𝑎𝑥 − yi𝑚𝑎𝑥|

𝑓(xi)𝑚𝑎𝑥
                                                                                              [4.2] 

 

The NOAA Technical Memorandum OAR-PMEL-135 standard introduces the most 

recent allowable error limits (Synolakis et al., 2007) (Table 4.1). The selected 

benchmark problems in this dissertation represent all the categories of the reference 

data used to assess the numerical models: (i) analytical solutions, (ii) laboratory 

experiments and (iii) field measurements. The allowable errors vary according to the 

types of reference data and the tested parameter (i.e. wave amplitude, current 

velocity, runup, etc.). These threshold values may be subject to change and it may be 

necessary to update them according to future studies. 

 
Table 4.1 Allowable error limits for model validation/verification according to 

OAR-PMEL-135 standard (Synolakis et al., 2007) 

 

Category 
Tested Parameter 

OAR PMEL-135 

Allowable Error 

NRMSE MAX % NRMSE % MAX 

Analytical 

Solutions 

Water level time 

history/water level in the 

selected data segment 

Runup or 

max./min. free 

surface elevation 
10 5 

Laboratory 

Experiments 

Water level time 

history/water level in the 

selected data segment 

Runup or 

max./min. free 

surface elevation 
15 10 

Field 

Measurements 

Water level time 

history/water level in the 

selected data segment 

Runup or 

max./min. free 

surface elevation 
25 20 

Analytical 

Solutions 

Velocity time 

history/velocity in the 

selected data segment 

Max./min velocity 10 25
 

Laboratory 

Experiments 

Velocity time 

history/velocity in the 

selected data segment 

Max./min velocity 15 25
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Figure 4.1 The procedure of testing a numerical model via benchmarking  

Definition and analysis of the benchmark problem 

Error < Allowable Error 

Benchmark 

problem output 

data/results 
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and 
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Numerical 
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basic equilibrium laws; i.e. mass/energy 

conservation, convergence 
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Statistical error analysis 

YES 

NO 

Y
E

S
 

NO 



 119 

4.1. BMP 1: Solitary Wave Runup on a Simple Beach 

 

4.1.1. Problem Description 

 

A solitary wave is a localized gravity wave that maintains its integrity through 

nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with 

constant speed and shape. They are commonly used to model tsunamis, especially in 

experimental and mathematical studies (Madsen et al., 2008). They also comprise a 

good model for extreme design waves of coastal structures because they have the 

largest energy, impulse, and runup (Grilli et al., 1994). 

 

John Scott Russell, a Scottish engineer and a naval architect, was the first person to 

observe a solitary wave in shallow water. Russell (1845) saw a form of a large 

solitary elevation, a rounded, smooth and well-defined heap of water, in a narrow 

channel, when a boat rapidly drawn along this channel by a pair of horses was 

abruptly stopped. The solitary elevation did not change its form or speed during its 

course along the channel (Figure 4.2). Russell described this wave, which he called 

Wave of Translation, in the British Association Report in 1845 (Rayleigh, 1876). He 

further studied the properties of this wave by building a water tank to replicate the 

phenomenon (Emmerson, 1977). 

 

 
 

Figure 4.2 Scientists gathered at Heriot-Watt University successfully recreated a solitary 

wave having smaller dimensions than the one observed by Russell (Hereman, 2013). 
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Russell either released an impounded elevation of water or dropped a weight at one 

end of the laboratory channel to produce solitary waves (Figure 4.3). 

 

 

 
Figure 4.3 Russell's (1845) observation of the evolution of a solitary wave in a wave tank 

(reproduced from the original drawing) (Miles, 1980) 

 

Russell’s conclusion from his experiments was that: the volume of the wave is equal 

to that of the initial displacement and a wave of amplitude 𝐻 in water of depth 𝑑 

advances with the speed: 

 

𝑐 = √𝑔(𝑑 + 𝐻)                                                                                                                    [4.3] 

 

Another conclusion was that breaking occurs when 𝐻 ≈ 𝑑 . Equation [4.3] was 

confirmed by Bazin (1865), who repeated Russell's experiments and found that 

breaking occurs for 𝐻 somewhat less than 𝑑 (Miles, 1980). 

 

A conflict arose between Russell’s observations and Airy's (1845) wave theory as 

Russell described the wave as a solitary elevation of finite amplitude and permanent 

form, whereas, according to Airy, a wave of finite amplitude can not propagate 

without change of form. This stimulated considerable scientific interest at the time 

and later in the nineteenth century (Miles, 1980). Boussinesq (1872) and Rayleigh 

(1876) resolved this conflict independently of each other. They showed that 

appropriate allowance for vertical acceleration – which is ultimately responsible for 

dispersion but is neglected in the shallow water theory – leads to the solution of the 

solitary wave. 
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Boussinesq (1872), Rayleigh (1876) and later McCowan (1891) formulated the first 

sound approximate theory that is able to predict the wave phenomena observed by 

Russell. The free surface displacement of a solitary wave is given by (Boussinesq, 

1872; Rayleigh, 1876; Munk, 1949; Laitone, 1960; Wiegel, 1964; Goring, 1978; 

Sorensen, 1993; Dean and Dalrymple, 1984; Dingemans, 1994; Choi et al., 2007; 

Madsen et al., 2008; McCormick, 2010; Goseberg et al., 2013): 

 

𝜂(𝑥, 𝑡) = 𝐻 𝑠𝑒𝑐ℎ2 [√
3𝐻

4𝑑3
 (𝑥 − 𝑐𝑡)]                                                                               [4.4] 

 

where wave celerity, 𝑐, is: 

 

𝑐 = √𝑔𝑑 (1 +
𝐻

2𝑑
) ≈  √𝑔(𝑑 + 𝐻)                                                                                  [4.5] 

 

In theory, there is only a single crest in space and time, (𝑥, 𝑡), in the solitary wave 

solution, corresponding to an infinite wave period and an infinite wavelength. 

However, an effective (i.e. characteristic) length is defined and considered for 

engineering purposes, because an infinitely long wave has no value in practice. The 

effective wavelength of a solitary wave is the distance between the points of the 

wave profile for which the local wave height, 𝒽, is a small fraction of the maximum 

wave height, 𝐻 (i.e. between points with 𝒽 = 𝐻/100 ). In other words, the effective 

wavelength of a solitary wave is the distance between the front and the tail of the 

wave, where the local height is 1% of the maximum (Figure 4.4). The effective 

wavelength of a solitary wave is (Madsen et al., 2008; Chan and Liu, 2012): 

 

𝐿 =
2𝜋

√3𝐻
4𝑑3

                                                                                                                              [4.6] 

 

where 𝐿 is the effective wavelength of a solitary wave. 
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Figure 4.4 Dimensionless solitary wave profile indicating effective wavelength (not to scale) 

 

Synolakis (1986, 1987) conducted analytical and experimental research on the 

problem of a solitary wave propagating in a constant water depth and climbing up a 

simple plane beach. His study depicted Benchmark Problem 1 and Benchmark 

Problem 4 (BMP 1 and BMP 4) of the 2011 National Tsunami Hazard Mitigation 

Program (NTHMP) workshop held in Portland, U.S. (NTHMP, 2011). BMP 1 is an 

analytical benchmark problem whereas BMP 4, which is the laboratory counterpart 

of BMP 1, requires comparison of the model predictions with laboratory 

measurements. 

 

Having established the differences between breaking and non-breaking waves by 

using solitary waves as a long wave model, Synolakis (1986) was able to evaluate the 

relevance of the nonlinear theory in the wave runup process and maintain that this 

theory predicts the maximum runup of solitary waves on sloping bathymetry as 

accurately as the linear theory. He derived an asymptotic result for the calculation of 

non-breaking solitary wave runup on plane beaches. Another discovery Synolakis 

(1986) made was that there were different runup regimes for breaking and non-

breaking solitary waves. Synolakis (1986) introduced an approximate theory for the 

runup of breaking solitary waves on plane beaches, which he verified by conducting 

a series of laboratory experiments. His runup formula was modified and improved by 

Li and Raichlen (2001). This modification provided a maximum 10 % improvement 

in accuracy, which confirmed that Synolakis’s (1986) assumptions in his nonlinear 

theory were satisfactory for most engineering applications (Li and Raichlen, 2001). 

𝐿 ⁄ 2 

√
3𝐻

4𝑑3
𝑥

𝑑
 

𝒽

𝐻
 

0.01 
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Synolakis (1986) states that a solitary wave centered at 𝓍 = 𝑋1 at time 𝑡 = 0 (Figure 

4.5) has the following non-dimensional surface profile, 𝜂∗: 

 

 

 
Figure 4.5 A sketch of the canonical beach, i.e. sloping beach connected to a constant depth 

region (distorted scale) (Horrillo et al., 2015) 

 

𝜂∗(𝓍, 0) =
𝐻

𝑑
𝑠𝑒𝑐ℎ2 [√

3𝐻

4𝑑
 (𝓍 − 𝑋1)]                                                                             [4.7] 

 

where 𝓍  is the dimensionless horizontal coordinate and increases monotonically 

seaward and 𝑋1  is the dimensionless 𝑥  location where the offshore height of a 

solitary wave is defined. Also, 𝑥 = 0 and 𝑥 = 𝑋0 = 𝑑𝑐𝑜𝑡(𝛼) define the positions of 

the initial shoreline and the toe of the beach, respectively. 

 

The non-dimensional effective wavelength, 𝐿∗, is given by (Synolakis ,1986): 

 

𝐿∗ =
2

√3𝐻
4𝑑

cosh  −1 (√
1

0.05
)                                                                                           [4.8] 

 

Synolakis (1986) accepted the effective wavelength as the distance between the front 

and the tail of the wave where the local height is 5% of the maximum so that a 

reasonable scaling in the laboratory conditions could be obtained. 
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Synolakis (1986) derived the following expression, which is normalized by the 

constant offshore depth, for the maximum runup of non-breaking solitary waves on a 

plane beach having a slope of 𝛼: 

 

𝑅

𝑑
= 2.831√𝑐𝑜𝑡𝛼 (

𝐻

𝑑
)

5
4⁄

                                                                                                   [4.9] 

 

Synolakis (1986) stated that the shoreline usually took a parabolic shape at the time 

of maximum runup. After recording the minimum and average positions of the 

shoreline at that time, he discovered that the relation between the 𝐻/𝑑 ratios and the 

runup distances was similar to that defined for the maximum position of the 

shoreline. Synolakis (1986) expressed the dependence of maximum runup on the 

maximum position of the shoreline for breaking solitary waves as: 

 

𝑅

𝑑
= 1.109 (

𝐻

𝑑
)
0.582

                                                                                                          [4.10] 

 

Synolakis (1986) also carried out a series of experiments in the California Institute of 

Technology (Caltech), Pasadena, California in order to support his theories. The 

wave tank used in the experiments was 31.73 m long, 60.96 cm deep and 39.37 cm 

wide, consisting of 12 identical sections. The sidewalls of each section were made of 

1.52 m long, 63.50 cm high and 1.27 cm thick glass panels. The bottom of each 

section consisted of 2.54 cm thick painted stainless steel plates (Figure 4.6). A ramp 

was installed at one end of the wave tank in order to model the bathymetry, which 

consisted of a sloping beach joined to a channel of constant depth. The ramp had a 

slope of 1:19.85 (i.e. 𝛼 = 𝑐𝑜𝑡−1(19.85) = 2.88o) and was constructed out of four 

6.35 mm thick aluminum plates with a width of 38.1 cm. The toe of the ramp was 

14.95 m away from the rest position of the piston that was used to generate waves 

(i.e. wave plate) (Figure 4.6). Detailed information about the hydraulic system used 

in the experiments can be found in Goring (1978) and Synolakis (1986). All wave 

gauges were calibrated before and after the experiments. 



 

 

1
2
5
 

 

 

 
Figure 4.6 Wave tank used in the experiments (not to scale): (a) schematic side view; (b) schematic typical cross section; (c) a photograph before 

an experiment (Synolakis, 1986). 

 

  

(a) 

(b) (c) 
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In laboratory conditions, solitary waves can dissipate. When the wave height is 

measured far offshore and used as an initial condition for non-dissipative numerical 

models, the comparisons will be less meaningful due to the slight change that occurs 

in the solitary wave as it propagates along the wave tank. Meaningful comparisons 

can be obtained by keeping the same relative offshore distance to define the initial 

condition. Synolakis (1986) identified the initial solitary waves at an offshore 

location, which is 𝐿/2 away from the toe of the beach, i.e. 𝑋1 = 𝑋0 + 𝐿/2. In other 

words, the wave height is centered at 𝓍 = 𝑋1 at 𝑡 = 0. 

 

Synolakis (1986) performed more than 40 experiments involving solitary waves of 

varying heights. The water depths ranged from 6.25 cm to 38.32 cm. The wave 

height-to-water depth ratio,  𝐻/𝑑 , ranged from 0.005 to 0.633. Synolakis (1986) 

measured the water level profiles of solitary waves with 𝐻/𝑑 = 0.0185  and           

𝐻/𝑑 = 0.3  at several non-dimensional times,  𝑡∗ = 𝑡√𝑔/𝑑 . He also analytically 

solved the wave dynamics at two locations, 𝑥/𝑑 = 0.25 and 𝑥/𝑑 = 9.95, for the 

case where 𝐻/𝑑 = 0.0185. Synolakis (1986) discovered distinct runup regimes for 

non-breaking and breaking solitary waves, where he defined non-breaking solitary 

waves as waves that did not break during runup process. According to observations 

of Synolakis (1986), solitary waves break when 𝐻/𝑑 ≥ 0.044  for the particular 

beach slope of 1:19.85. Therefore, the experimental wave with 𝐻/𝑑 = 0.0185 is a 

non-breaking solitary wave and it is possible to describe its surface profile 

analytically, whereas the surface profile of the breaking solitary wave with 𝐻/𝑑 =

0.3 is only represented by the experimental data. 

 

By means of this benchmark problem, the predicted water surface profiles are 

compared with the analytical and experimental ones at certain given non-dimensional 

times for the case of non-breaking solitary wave, 𝐻/𝑑 = 0.0185. The differences 

between the numerical model results and laboratory data are also analysed for the 

case of breaking solitary wave, 𝐻/𝑑 = 0.3. Moreover, the maximum runup values 

obtained from Equation [4.9] and the laboratory measurements are compared.  
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4.1.2. NAMI DANCE Model 

 

The same set of physical experiments is reproduced in a 2D domain using NAMI 

DANCE. The fluid is inviscid and the flow is incompressible. Fluid density is taken 

constant throughout the fluid domain. The Cartesian coordinate system is used so 

that positive 𝑥  increases seaward and positive 𝑦  direction is perpendicular to the 

direction of the flow. The gravitational force, 𝑔, is in the downward direction (Figure 

4.7). 

 

 

 
  

  
 

 

 
Figure 4.7 NAMI DANCE model: a typical computational domain and the orientation of the 

coordinate system (top view) 

 

The water surface elevation time series (i.e. solitary wave profile) for each 

experimental run is reproduced using the 𝑑  versus 𝐻/𝑑 data set provided by 

Synolakis (1986) and using Equation [4.4] (Figure 4.8). 

 

 

 
Figure 4.8 Solitary wave profiles of two experimental runs. The blue line represents the 

water surface elevation time series for the first case where 𝐻/𝑑 = 0.0185; the red line 

represents the water surface elevation time series for the second case where 𝐻/𝑑 = 0.3. 
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The gauge points are placed in the middle of the basin (i.e. 𝑦 =  20 cm) and at every 2 

cm along 𝑥  direction. Figure 4.9 illustrates the NAMI DANCE computational 

domain constructed for the case where  𝐻/𝑑 =  0.633, including the dimensions, 

gauge points and wave direction. 

 

 
  

 

 

 

 
 

Figure 4.9 NAMI DANCE computational domain constructed for the case where 

  𝐻/𝑑 = 0.633: (a) 2D top view; (b) 3D view 

 

The water surface elevation time series is inputted at the upstream end of the 

computational domain (i.e. minimum 𝑥  boundary), which is located 𝐿/2  distance 

away from the toe of the slope. This enables the initial wave profile to adjust the 

governing equations before it reaches the slope. The maximum 𝑥 boundary has a 

rigid wall boundary condition, which defines the downstream end of the wave tank. 

The minimum and maximum 𝑦 boundaries are also defined as rigid walls in order to 

prevent outflow from the computational domain.  
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4.1.2.1. Spatial Discretization 

 

The computational domain, represented by a structured mesh (i.e. rectangular cells), 

covers the entire length of the flume with grid sizes, Δ𝑥 and Δ𝑦, which are uniform 

throughout the mesh. 

 

It is important to note that reducing the cell size does not necessarily guarantee a 

better result from a practical perspective since it may lead to unstable results and 

uncessarily abundant computational resources and time. The previous numerical 

model validations that used BMP 1 (NTHMP, 2011) are taken into account in the 

determination of the grid size. It is found that in the recent studies either Δ𝑥 = 𝑑/20 

(Alaska Tsunami Model and Alaska Tsunami Forecast Model), or Δ𝑥 = 1 cm 

(FUNWAVE-TVD, MOST, NEOWAVE and SELFE) is used (NTHMP, 2011). 

After a careful analysis, the grid size is selected as 1 cm; i.e. Δ𝑥 = Δ𝑦 = 1 cm. 

 

It has been suggested in the literature that the convergence of a tsunami modeling 

algorithm be assessed by simulating the extreme positions of the shoreline – the 

maximum runup and rundown. Thus, of the four cases where the effect of Δ𝑥 is 

investigated, in the first two, the minimum and maximum 𝐻/𝑑 values are analysed, 

and the third and the fourth cases are the ones where 𝐻/𝑑 = 0.0185 and 𝐻/𝑑 = 0.3, 

respectively (Table 4.2). 

 

Table 4.2 NAMI DANCE: Maximum runup values for different Δ𝑥 values (𝑛 =0.01) 

 

Grid Size 

𝜟𝒙 (cm) 

Maximum Dimensionless Runup (𝑹/𝒅) 

𝐻/𝑑 = 0.005 𝐻/𝑑 = 0.633 𝐻/𝑑 = 0.0185 𝐻/𝑑 = 0.3 

0.125 0.019 0.626 0.084 0.414 

0.25 0.019 0.626 0.084 0.414 

0.5 0.018 0.625 0.084 0.412 

1.0 0.018 0.623 0.083 0.403 

2.0 0.014 0.612 0.078 0.391 

5.0 0.011 0.588 0.072 0.343 
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The results for the two non-breaking wave cases, where 𝐻/𝑑 =  0.005 and              

𝐻/𝑑 = 0.0185, indicate that the numerical predictions converge to the exact solution 

after the spatial discretization is refined (i.e. finer grids). 

 

The non-dimensional free surface profiles at 𝑡∗ = 60 and 𝑡∗ = 70 are recomputed 

with grid resolutions of ∆𝑥 = 0.125 cm, ∆𝑥 = 0.25 cm, ∆𝑥 = 0.5 cm, ∆𝑥 = 1.0 cm, 

∆𝑥 = 2.0 cm and ∆𝑥 = 5.0 cm in order to test the grid convergence for the case 

where 𝐻/𝑑 = 0.0185 (Figure 4.10). 

 

  
 

 
Figure 4.10 NAMI DANCE convergence test for the case where 𝐻/𝑑 = 0.0185 at:  

(a) 𝑡∗ = 60 – the time of maximum runup; (b) 𝑡∗ = 70 – the time of maximum rundown. The 

circles and dashed black line represent the analytical solution; the purple line: ∆𝑥 = 0.125 

cm; the orange line: ∆𝑥 = 0.25 cm; the green line: ∆𝑥 = 0.5 cm; the red line: ∆𝑥 = 1.0 cm; 

the blue line: ∆𝑥 = 2.0 cm; the pink line: ∆𝑥 = 5.0 cm 

 

The analyses are conducted for a frictionless bottom in order to be consistent with 

the assumptions made in the derivation of the analytical solutions of the maximum 

runup and free surface profiles. It is seen that the finer the grid size, the closer are the 

predicted results to the exact solutions. In fact, no considerable change is observed 

after ∆𝑥 =  1.0 cm. The analytically and numerically computed maximum runup 

values and free surface profiles differ by less than 1% for ∆𝑥 ≤ 1.0 cm. 
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The maximum time step size that fulfills the CFL stability criteria is calculated 

automatically by NAMI DANCE for each run, depending on the bathymetry. 

According to this limitation, time step, Δ𝑡, is selected as 0.02 second for all runs. 

 

4.1.2.2. Friction 

 

Manning’s roughness coefficients used to assess the effect of friction on the 

maximum runup values are: 

(i) 𝑛 = 0 (i.e. frictionless bottom) 

(ii) 𝑛 = 0.01 (i.e. neat cement/concrete/smooth glass beach) 

(iii) 𝑛 = 0.03 (i.e. fine particles along the channel bottom) 

 

In order to be consistent with the assumptions made by Synolakis (1986) in the 

analytical solution of the 1D solitary wave runup, the results of the analyses for a 

frictionless bottom are regarded as the basis of the comparison of the predicted 

solitary wave profiles with the analytical ones. On the other hand, 𝑛 is taken as 0.01 

in order to reflect real laboratory conditions while comparing the predicted maximum 

runup data and the extreme wave profiles (i.e. 𝐻/𝑑 =  0.3) with the laboratory 

measurements. 

 

The results reveal that the predicted maximum runup values do not depend on 𝑛 for 

small non-breaking waves, 𝐻/𝑑 ≤ 0.01. The computed runup heights are found to 

be slightly affected by the bottom friction when 0.01 < 𝐻/𝑑 < 0.044. In the case of 

breaking solitary waves, 𝐻/𝑑 ≥ 0.044, the maximum runup strongly depends on 𝑛. 

It is expected that the predicted maximum runup values for a frictionless bottom will 

be larger than those measured and that the predicted and measured data will be in 

good agreement when 𝑛 = 0.01. However, the maximum runup values of breaking 

solitary waves are found to be approximately 9 %, 17 % and 30 % less than the 

laboratory measurements for 𝑛 = 0 , 𝑛 = 0.01  and 𝑛 = 0.03 , respectively (Figure 

4.11). This shows that the solutions of depth-averaged NSW equations can not fully 

reflect the real life situation due to the existence of the strong wave breaking process.  
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Figure 4.11 NAMI DANCE model results for different Manning’s roughness coefficients. 

The dashed black line and circles represent the runup law and experimental data of Synolakis 

(1986), respectively, the red diamonds represent the results when 𝑛 = 0; the blue triangles 

represent the results when 𝑛 = 0.01; the green squares represent the results when 𝑛 = 0.03. 
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4.1.3. FLOW-3D
® 

Model 

 

The same set of physical experiments is reproduced using FLOW-3D
® 

in a 3D 

domain, throughout which the fluid is inviscid, the flow is incompressible and the 

fluid density is constant. The effects of surface tension and air entrainment at the 

surface of the flow are neglected. 

 

The numerical model is constructed using the Cartesian coordinate system, where the 

positive 𝑥 direction is oriented along the fluid flow into the domain and the positive 

𝑦  direction is perpendicular to the direction of the flow. The gravitational 

acceleration, 𝑔 , is in the downward direction (i.e. – 𝑧  direction). Figure 4.12 

illustrates the FLOW-3D
®
 computational domain constructed for the case where 

𝐻/𝑑 = 0.005. 

 

 
 

 

 

Figure 4.12 FLOW-3D
® 

computational domain constructed for the case where 

𝐻/𝑑 = 0.005: (a) meshing; (b) boundary conditions; (c) after using FAVOR™ 

(a) 

(b) 

(c) 
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For the water surface elevation time series (i.e. the solitary wave profile) in each 

experimental run to be reproduced by the solitary wave generator module of FLOW-

3D
®
,
 
the 𝑑 and 𝐻 values provided by Synolakis (1986) are used. 

 

The minimum 𝑥 boundary is defined as the wave boundary where solitary waves are 

reproduced. It is important to note that FLOW-3D
®
 initiates the motion of solitary 

waves at a distance, expressed as 𝐿/2, from the mesh boundary as default. Therefore, 

the FLOW-3D
®
 computational domain is only composed of a ramp. The wall 

boundary condition is applied at the maximum 𝑥 boundary in order to define the 

downstream end of the wave tank. The minimum and maximum 𝑦 boundaries as well 

as the maximum 𝑧 boundary feature the symmetrical boundary condition where all 

the velocity derivatives and velocity components normal to the boundaries are set to 

zero. The wall boundary condition is also valid for the minimum 𝑧 boundary where 

the bottom of the wave flume is defined. 

 

4.1.3.1. Spatial Discretization 

 

The computational domain is represented by an isotropic grid with Δ𝑥 = Δ𝑦 = Δ𝑧 

where the grid size is selected as 1 cm (Please refer to the explanations in Section 

4.1.2.1). BMP 1 is modeled via FLOW-3D
®
 for different Δ𝑥 values in order to test 

the grid dependency. 

 

Table 4.3 FLOW-3D
®
: Maximum runup values for different Δ𝑥 values (𝑛 =0.01) 

 

Grid Size 

𝜟𝒙 (cm) 

Maximum Dimensionless Runup (𝑹/𝒅) 

𝐻/𝑑 = 0.005 𝐻/𝑑 = 0.633 𝐻/𝑑 = 0.0185 𝐻/𝑑 = 0.3 

0.125 0.019 0.839 0.084 0.511 

0.25 0.019 0.839 0.084 0.511 

0.5 0.018 0.839 0.084 0.511 

1.0 0.018 0.839 0.084 0.510 

2.0 0.017 0.831 0.081 0.507 

5.0 0.013 0.813 0.078 0.498 
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The results for the two non-breaking wave cases, where 𝐻/𝑑 =  0.005 and              

𝐻/𝑑 = 0.0185, indicate that the numerical predictions converge to the exact solution 

at finer resolutions. 

 

The non-dimensional free surface profiles at 𝑡∗ = 60  and 𝑡∗ = 70 are recomputed 

with grid resolutions of ∆𝑥 = 0.125 cm, ∆𝑥 = 0.25 cm, ∆𝑥 = 0.5 cm, ∆𝑥 = 1.0 cm, 

∆𝑥 = 2.0 cm and ∆𝑥 = 5.0 cm in order to test the grid convergence for the case 

where 𝐻/𝑑 = 0.0185 (Figure 4.13). 

 

  
 

 
Figure 4.13 FLOW-3D

®
 convergence test for the case where 𝐻/𝑑 = 0.0185 at:  

(a) 𝑡∗ = 60 – the time of maximum runup; (b) 𝑡∗ = 70 – the time of maximum rundown. The 

circles and dashed black line represent the analytical solution; the purple line: ∆𝑥 = 0.125 

cm; the orange line: ∆𝑥 = 0.25 cm; the green line: ∆𝑥 = 0.5 cm; the red line: ∆𝑥 = 1.0 cm; 

the blue line: ∆𝑥 = 2.0 cm; the pink line: ∆𝑥 = 5.0 cm 

 

The analyses are conducted for a frictionless bottom in order to be consistent with 

the assumptions made in the derivation of the analytical solutions of the maximum 

runup and free surface profiles. It is seen that the finer the grid size, the closer are the 

predicted results to the exact solutions. In fact, no considerable change is observed 

after ∆𝑥 = 1.0  cm. The analytically and numerically computed maximum runup 

values and free surface profiles differ by less than 0.8% for ∆𝑥 ≤ 1.0 cm. 
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It is also necessary to analyse the effect of the vertical grid size, Δ𝑧, on the runup 

values and free surface profiles in a three-dimensional model. The predictions get 

close to the analytical solution for the non-breaking solitary wave case when a fine 

vertical grid size (i.e. ∆𝑧 ≤ 1.0 cm) is used, with Δ𝑥 kept constant. No considerable 

change is observed after ∆𝑧 = 1.0 cm. 

 

The time step, 𝛥𝑡, is selected as 0.02 second to be consistent with the simulations 

conducted using NAMI DANCE. When variable time stepping is employed in order 

to assess the effect of the time step size, no significant effect is observed. 

 

4.1.3.2. Friction 

 

In order to assess the effect of friction on the maximum runup values, different 

Manning’s roughness coefficients are considered: 𝑛 = 0 (i.e. frictionless bottom), 

𝑛 = 0.01  (i.e. neat cement/concrete/smooth glass beach) and 𝑛 = 0.03  (i.e. fine 

particles along the channel bottom). Please refer to Section 4.1.2.2 for the 

comparison criteria. 

 

The results indicate that the predicted maximum runup values are not dependent on 𝑛 

for small non-breaking waves, 𝐻/𝑑 ≤ 0.01. The computed runup heights are slightly 

affected by the bottom friction when 0.01 < 𝐻/𝑑 < 0.044. In the case of breaking 

solitary waves, 𝐻/𝑑 ≥ 0.044 , the maximum runup strongly depends on 𝑛 . It is 

expected that the predicted maximum runup values for a frictionless bottom will be 

larger than those measured and that the predicted and measured data will be in good 

agreement when 𝑛 = 0.01 . The predicted maximum runup values of breaking 

solitary waves are found to be approximately 8% larger than the measured ones for a 

frictionless bottom. The results are in fairly good agreement, with a 4% difference, 

for steep solitary waves when 𝑛 = 0.01. The predicted maximum runup values are 

found to be approximately 20% less than the measured ones when 𝑛 = 0.03. It is 

seen that the results are in good agreement with the expectations, implying that the 

three-dimensional model reflects real life situations satisfactorily (Figure 4.14). 
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Figure 4.14 FLOW-3D

®
 model results for different Manning’s roughness coefficients. The 

dashed black line and circles represent the runup law and experimental data of Synolakis 

(1986), respectively, the red diamonds represent the results when 𝑛 = 0; the blue triangles 

represent the results when 𝑛 = 0.01; the green squares represent the results when 𝑛 = 0.03. 
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4.1.4. Simulation Results 

 

The solitary wave runup on a plane slope is an intensively studied benchmark 

problem in long wave modeling. Synolakis’s (1986) laboratory experiments have 

supplied frequently used data for validation of wave breaking and runup models. 

 

Synolakis’s (1986) theoretical study is based on the analytical solution of the non-

dispersive nonlinear shallow water (NSW) equations. BMP 1 poses a challenging 

case for non-dispersive NSW models. Due to the existence of strong wave breaking, 

the solutions of the NSW equations do not fully agree with the laboratory 

measurements. For instance, hydrostatic numerical models predict that the leading 

front of the solitary wave will steepen and become singular shortly after the initiation 

of the computations. The numerical singularity moves towards the beach until it 

meets the shoreline where it dissipates. As the numerical dispersion can compensate 

for the absence of physical dispersion in hydrostatic numerical models, a better 

agreement with the reference data is possible. This topic is still being actively 

researched in the field of shallow water modeling (Horrillo et al., 2015). 

 

The simulation time, the time required for the simulation of the complete real case, is 

60 seconds for BMP 1. The process time indicates the time taken by the processors in 

order to simulate the case, read the input files and generate the output files. The 

process time of the simulations that are performed via NAMI DANCE is 

approximately 10 minutes whereas it takes 4 hours to complete the simulations using 

FLOW-3D
®
. 

 

Figure 4.15 illustrates the evolution and propagation of the non-breaking (i. e. small 

amplitude) solitary wave over the ramp. NAMI DANCE and FLOW-3D
®
 compute 

the wave motion with considerable accuracy. Figure 4.16 illustrates the evolution and 

propagation of the large amplitude solitary wave for non-dimensional times, 𝑡∗ =

15 , 𝑡∗ = 20 , 𝑡∗ = 25  and 𝑡∗ = 30 . The results reveal that FLOW-3D
®
 provides 

better results for this extreme wave case.  
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Figure 4.15 Non-dimensional free surface profiles for the case where 𝐻/𝑑 = 0.0185:        

(a) 𝑡∗ = 30; (b) 𝑡∗ = 40; (c) 𝑡∗ = 50; (d) 𝑡∗ = 60; (e) 𝑡∗ = 70. The black line and the circles 

represent the analytical solution and experimental results of Synolakis (1986), respectively; 

the red line represents NAMI DANCE results; the green line represents FLOW-3D
® 

results. 
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Figure 4.16 Non-dimensional free surface profiles for the case where 𝐻/𝑑 = 0.3:  

(a) 𝑡∗ = 15; (b) 𝑡∗ = 20; (c) 𝑡∗ = 25; (d) 𝑡∗ = 30. The circles represent the experimental 

results of Synolakis (1986); the red line represents the NAMI DANCE results; the green line 

represents the FLOW-3D
® 

results.  
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The existence of strong wave breaking hinders the agreement of the predicted values 

with the laboratory measurements for the two-dimensional depth-averaged model, 

NAMI DANCE. Due to the fact that the experimental parameters violate the shallow 

water wave assumption, the predicted wave amplitude is smaller and steeper than 

that of the measured wave amplitude. Consequently, when wave amplitudes are 

large, the predicted and observed wave height and runup values do not agree as well 

as those in cases with amplitudes for which shallow water wave assumptions are 

valid. On the other hand, the predicted wave profiles obtained via the three-

dimensional model, FLOW-3D
®
, are in astoundingly good agreement with the 

laboratory data, indicating that the strong nonlinearities and wave energy transfers 

can be simulated efficiently via the three-dimensional model. This exemplifies the 

effect of the vertical velocity component, which is a crucial parameter and should not 

be ignored in cases where strong wave breaking is dominant. 

 

Additional plots of the predicted and analytically computed sea surface elevation 

during propagation and reflection of the solitary wave are displayed in Figure 4.17 

for the case where 𝐻/𝑑 = 0.0185, at two positions: 

(i) 𝑥 ⁄ 𝑑 = 0.25 – near the initial shoreline 

(ii)  𝑥 ⁄ 𝑑 = 9.95 – between the beach toe and the initial wave crest. 

 

During rundown, both the numerical and analytical solutions show that the water 

retreats between t∗ = 67  and t∗ = 82 , and the point 𝑥 ⁄ 𝑑 = 0.25  temprorarily 

becomes dry – hence the data gap occurring between 67 < t∗ < 82. On the other 

hand, point 𝑥 ⁄ 𝑑 = 9.95 remains wet throughout the entire experiment. 

 

When the analytical and numerical solutions at these two points are compared, it is 

found that there is good agreement between the two solutions at 𝑥 ⁄ 𝑑 = 0.25 and 

𝑥 ⁄ 𝑑 = 9.95 during the propagation and reflection of the wave. 
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Figure 4.17 The water level dynamics at two locations: (a) 𝑥 ⁄ 𝑑 = 0.25; (b) 𝑥 ⁄ 𝑑 = 9.95. 

The dashed black line represents the analytical solution of Synolakis (1986); the red line 

represents the NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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The inundation of the 1:19.85 sloped beach by solitary waves with different 𝐻 ⁄ 𝑑 

ratios is simulated in several series of numerical model runs. In each series, the 

bottom friction is parameterized by Manning’s roughness coefficient, 𝑛 = 0.01. 

 

 

 

 
Figure 4.18 Maximum runup values on 1:19.85 slope when 𝑛 = 0.01: The dashed black line 

represents the runup law (Synolakis, 1986); the circles represent the experimental results of 

non-breaking and breaking solitary waves (Synolakis, 1986); the red diamonds and crosses 

represent the NAMI DANCE results for non-breaking and breaking solitary waves, 

respectively; green squares and triangles represent the FLOW-3D
®
 results for non-breaking 

and breaking solitary waves, respectively.  
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The maximum runup of solitary waves climbing up different slopes is analysed in 

order to test the validity of the runup law derived by Synolakis (1986) (Figure 4.19). 

 

 

 

 
Figure 4.19 Maximum runup values on different slopes when 𝑛 = 0.01: The black line 

represents the runup law (Synolakis, 1986); the red circles, diamonds, dashes, triangles and 

squares represent the NAMI DANCE results for 1:20, 1:15, 1:10, 1:6 and 1:4 slopes, 

respectively; the green circles, diamonds, dashes, triangles and squares represent the FLOW-

3D
®
 results for 1:20, 1:15, 1:10, 1:6 and 1:4 slopes, respectively.  
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The evolution of vertical velocity component, 𝑤, along the ramp is also analysed via 

FLOW-3D
®
 for the extreme case where 𝐻/𝑑 = 0.3. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 
Figure 4.20 Evolution of vertical velocity component, 𝑤, for the case where 𝐻/𝑑 = 0.3 

(not to scale) 
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NAMI DANCE is a depth-averaged model; therefore, the vertical velocity 

component is neglected in the simulations. On the other hand, FLOW-3D
® 

accounts 

for the effects of 𝑤. The velocity time histories at the free surface for the constant 

depth region (i.e. 𝑑 = 30.97 cm for 𝐻/𝑑 = 0.0185 and 𝑑 = 19.62 cm for 𝐻/𝑑 = 0.3) 

and the shallower region (i.e. nearshore) are given in Figure 4.20 in terms of non-

dimensional horizontal and vertical velocity components, 𝑢∗ = 𝑢/√𝑔𝑑(1 + 𝐻 ⁄ 𝑑) 

and 𝑤∗ = 𝑤/√𝑔𝑑(1 + 𝐻 ⁄ 𝑑) for both cases where 𝐻/𝑑 = 0.0185 and 𝐻/𝑑 = 0.3. 

 

   
 

 

Figure 4.21 Velocity time histories for: (a) 𝐻/𝑑 = 0.0185; (b) 𝐻/𝑑 = 0.3. The solid and 

dashed green lines represent the predicted horizontal and vertical velocity components at the 

constant depth region, respectively; the solid and dashed purple lines represent the predicted 

horizontal and vertical velocity components near the shoreline (i. e. 𝑑 = 4.5 cm), 

respectively. 

 

The results reveal that, for the non-breaking wave case, there is negligible change in 

the vertical velocity component as the wave propagates towards the shoreline. In 

fact, the vertical velocity component is considerably small compared to the 

horizontal one throughout the simulation. On the other hand, in the extreme case, the 

vertical velocity component rapidly increases just before breaking and it becomes as 

large as the half of the horizontal velocity component (i.e. 𝑑 = 4.5 cm).  
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Tables 4.4 and 4.5 summarize the predicted maximum values of the horizontal and 

vertical velocity components of a fluid particle for several water depths. Since NAMI 

DANCE is a depth-averaged model, it does not provide vertical velocity components 

and horizontal velocity components are constant along depth. On the other hand, 

being a three-dimensional model, FLOW-3D
® 

calculates vertical velocity 

components, which change along depth, having the maximum values at the free 

surface. 

 

Table 4.4 The predicted maximum horizontal and vertical velocity components of a fluid 

particle at the free surface for the case where 𝐻/𝑑 = 0.0185 

 

𝒅 (cm) 
NAMI DANCE FLOW-3D

®
 

𝒖 (cm/sec) 𝒖 (cm/sec) 𝒘 (cm/sec) 

30.97 3.75 3.20 0.20 

15.00 5.00 4.90 0.30 

10.00 6.30 6.00 0.35 

4.50 9.90 9.60 0.40 

 
Table 4.5 The predicted maximum horizontal and vertical velocity components of a fluid 

particle at the free surface for the case where 𝐻/𝑑 = 0.3 

 

𝒅 (cm) 
NAMI DANCE FLOW-3D

®
 

𝒖 (cm/sec) 𝒖 (cm/sec) 𝒘 (cm/sec) 

19.62 38.90 38.30 10.65 

15.00 44.00 43.70 11.10 

10.00 55.00 53.30 13.70 

4.50 61.50 60.90 28.30 

 

NAMI DANCE displays a uniform distribution of 𝑢  along the vertical direction, 

without any significant deviation, as expected. The FLOW-3D
®

 model produces 

similar results. In both models, the horizontal velocity component decays to zero at 

the sea bottom. On the other hand, the vertical velocity component, 𝑤, changes along 

the vertical direction, having the largest value at the free surface and reaching zero at 

the sea bottom. The results indicate that the maximum 𝑤  increases by 30% just 
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before reaching the shoreline in the non-breaking wave case. The maximum 𝑤 is 6%, 

6%, 6% and 4% of the maximum 𝑢 at the constant depth region and at water depths 

of 15 cm, 10 cm and 4.5 cm, respectively. In the case of the large amplitude solitary 

wave, the value of 𝑤 increases as the wave propagates towards the shallower regions 

and reaches its peak before breaking. In fact, the value of maximum 𝑤 increases by 

130% just before the wave breaks; getting as large as approximately half of the 

maximum 𝑢. For this extreme case, maximum 𝑤 is 28%, 25%, 25% and 50% of 

maximum 𝑢 at the constant depth region and at water depths of 15 cm, 10 cm and 4.5 

cm, respectively. All these results imply that, for the evolution of large amplitude 

waves and/or for very shallow regions, 𝑤 should not be neglected. It is obvious that 

3D numerical modeling should be used in cases where extreme wave heights and/or 

nonlinearities (i.e. wave breaking) are involved. 

 

Before elaborating on the results of the error analyses of BMP 1, it is crucial to 

emphasize the method proposed for the calculation of statistical errors, NRMSE and 

MAX. A segment of time or space, in which the maximum and, on a number of 

occasions, minimum water level/velocity values are included, is determined 

beforehand in order to provide consistency in the statistical error analyses of all 

BMPs in this dissertation. In addition, this method helps eliminate potential 

disturbances in the data, which may cause the value of NMRSE to increase 

unnecessarily. Each segment starts when 0.01% of the maximum amplitude/velocity 

of the first/leading wave occurs. If there is a minimum wave, upon its completion, 

the end point of the segment is taken as 0.01% of its amplitude/velocity. Moreover, if 

there is a time shift, it is neglected while calculating the MAX error. 

 

The allowable error thresholds vary according to the reference data types. The data 

types that BMP 1 provides are analytical solutions and laboratory measurements, for 

which the allowable NRMSE limits are 10% and 15%, respectively. Moreover, 

Synolakis et al. (2007) maintain that any well-benchmarked code should produce 

results within 5% and 10% of the maximum value obtained from analytical solutions 

and laboratory measurements, respectively.  
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The NRMSE and MAX errors for the non-breaking solitary wave solution are given 

in Table 4.6 and Figure 4.22. 

 
Table 4.6 NRMSE and MAX errors for the case where 𝐻/𝑑 = 0.0185 

 

𝒕∗ 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

30 0.3 0.2 2.3 0.3 

40 1.2 0.8 1.7 0.5 

50 0.8 5.0 1.5 4.0 

60 0.8 1.7 1.7 0.1 

70 2.0 4.2 6.5 2.3 

 

   
 

Figure 4.22 Error bars for the case where 𝐻/𝑑 = 0.0185: (a) % NRMSE; (b) % MAX error. 

The red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

 

The NRMSE of the NAMI DANCE results is between 0.3% and 2% while the MAX 

error ranges from 0.2% to 5%. FLOW-3D
®
 results have an NRMSE range between 

1.5% and 6.5% and a MAX error range between 0.1% and 4%. The errors are within 

the OAR PMEL-135 standard analytical error range. Both models predict the 

evolution and propagation of the non-breaking solitary wave considerably well.  
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The NRMSE and MAX errors for the large amplitude solitary wave case are given in 

Table 4.7 and Figure 4.23. 

 
Table 4.7 NRMSE and MAX errors for the case where 𝐻/𝑑 = 0.3 

 

𝒕∗ 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

15 11.0 19.9 1.5 5.0 

20 9.5 20.0 5.0 3.5 

25 6.3 4.5 3.5 1.0 

30 4.0 17.0 4.4 4.2 

 

   
 

Figure 4.23 Error bars for the case where 𝐻/𝑑 = 0.3: (a) % NRMSE; (b) % MAX error. 

The red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

 

NAMI DANCE results have an NRMSE range between 4% and 11% and a MAX 

error range between 4.5% and 20%. The NRMSE of FLOW-3D
®
 results; however, is 

between 1.5% and 5% while the MAX error ranges from 1% to 5%. Although the 

MAX error of NAMI DANCE results is larger than the OAR PMEL-135 standard 

error for laboratory measurements, it is concluded that these errors are more than 

acceptable, considering the difficulty in reproducing this benchmark test, which 

features breaking waves. In fact, the allowable error limit is raised from 10% to 20% 
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when conducting challenging laboratory experiments, such as those involving 

breaking waves (Horrillo et al., 2015). 

 

The NRMSE and MAX error for the water level dynamics at two locations              

𝑥/𝑑 = 0.25 and 𝑥/𝑑 = 9.95 are given in Table 4.8 for the case where 𝐻/𝑑 = 0.0185 

 
Table 4.8 NRMSE and MAX errors for the water level dynamics at two locations,                   

𝑥 ⁄ 𝑑 = 0.25 and 𝑥 ⁄ 𝑑 = 9.95, for the case where 𝐻/𝑑 = 0.0185 

 

𝒙 ⁄ 𝒅 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

0.25 0.4 1.2 0.5 1.1 

9.95 3.3 5.4 1.1 0.6 

 

To sum up, the two- and three-dimensional models, NAMI DANCE and FLOW-

3D
®
, are first tested against the analytical solutions of one-dimensional (1D), 

hydrostatic shallow water equations defining the runup of solitary waves on plane 

beaches where the bottom friction is neglected. 1D models are the first step in the 

testing and validation of tsunami models despite the fact that they are not completely 

reliable for tasks such as tsunami inundation mapping. In addition to the analytical 

solution, the numerical predictions are compared by a set of laboratory 

measurements that has been widely used for many code validations. The data sets for 

the non-breaking and breaking solitary waves, which feature 𝐻/𝑑 =  0.0185 and 

𝐻/𝑑 =  0.3 respectively, are the most frequently used and appropriate ones for 

tsunami code validation. 

 

When all the results are assessed, it is seen that the bottom friction is an important 

parameter in tsunami inundation and should be included in the simulations in order to 

reach reliable results. It is discovered that smaller friction leads to larger runup 

values. Furthermore, the runup distance of large amplitude solitary waves is found to 

be more friction sensitive as a wave becomes a thin layer of liquid traveling up the 

slope after breaking and the friction is inversely proportional to the water depth. On 
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the other hand, for non-breaking solitary waves with 𝐻/𝑑 ≤ 0.01 , the predicted 

maximum runup values are independent of 𝑛. The reason for this may be that small 

amplitude waves do not travel very large distances on land and thus are slightly 

affected by the surface roughness. Similar results were reported by Lynett et al. 

(2002). When Manning’s roughness coefficient, 𝑛, is 0.01, NAMI DANCE predicted 

the maximum runup values with an NRMSE of 13%, whereas FLOW-3D
®

 results 

have an NRMSE of 4% (Figure 4.18). 

 

NAMI DANCE, which is a 2D depth-averaged model, can not accurately describe 

the nonlinearity of large amplitude solitary waves. As seen in the model results, the 

wave crest steepens, which is typical of any hydrostatic model, owing to lack of 

energy dissipation. Since NAMI DANCE fails to capture the strong nonlinearities 

existing in the wave breaking process, the predicted wave heights are smaller than 

the laboratory measurements. This leads to the underestimation of the runup 

distances of large amplitude solitary waves, by approximately 20%. However, the 

model is able to reasonably simulate the runup process following the occurrence of 

wave breaking. Both models reproduce the overall pattern of wave arrival quite well 

without any shift in the wave arrival times. Local disagreements observed in the 

wave profiles might be caused by a combination of instrumentation and model errors 

since the computed results agree with the measured data toward the end. 

 

The effect of the vertical velocity component, 𝑤, is negligible both at the constant 

depth region and in the shallower regions in the case of small amplitude solitary 

waves since the value of 𝑤  is very small compared to the horizontal velocity 

component, 𝑢, when it reaches the shoreline. On the other hand, in the case of large 

amplitude solitary waves, the vertical velocity component rapidly increases and its 

maximum becomes as large as the half of the maximum horizontal velocity 

component just before the wave reaches the shoreline and breaks. 
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Thus, it is concluded that, both models give satisfactory results and can be used for 

plane beaches where there is no complex topographical element and the turbulence 

effect is negligible. However, three-dimensional models should be preferred when 

large amplitude waves and/or shallower regions are studied. 

 

It is important to note that the trend towards modeling of tsunamis using solitary 

waves has lost popularity in recent years. Synolakis et al. (2007) stated that, even 

though some of the basic physics of tsunamis can be captured through the use of 

solitary waves in numerical models, the physical manifestation of tsunamis in nature 

can not be sufficiently modeled owing to the fact that tsunamis are always N-wave 

like with a leading-depression wave followed by an elevation wave.  
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4.2. BMP 2: Solitary Wave on a Conical Island 

 

4.2.1. Problem Description 

 

The eastern region of Flores Island, a volcanic island located at the transition 

between the Sunda and Banda Island arc systems in Indonesia was struck by an 

earthquake with a magnitude of 7.8 Mw on December 12, 1992 (Figures 4.24 and 

4.25). The earthquake was followed by 25-meter-high tsunami waves that hit the 

town of Maumere, resulting in substantial casualties and property damage. Four days 

after the incident, Japanese television channels reported that 1000 people had been 

killed in Maumere and two-thirds of the population of Babi Island had been 

annihilated by the tsunamis. In the end, the number of deaths was reported as 2080, 

and there were 2144 injured people. Approximately 50% of the total toll was caused 

by the tsunami waves. 

 

 
 

Figure 4.24 Tsunami attack site in Riangkroko (Credit: Harry Yeh) (Yeh et al., 1994)  
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Figure 4.25 (a) Map of the Indonesian region; (b) Map of Flores Island. The star represents 

the epicenter of the main shock; the triangles show the aftershock locations; the dashed 

contour lines indicate the predicted vertical seafloor displacement in meters, which is 

directly translated to the initial tsunami condition (Yeh et al., 1994).  

(a) 

(b) 
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The tsunami survey plan, which was started 3 days after the catastrophe, consisted of 

a ground survey including measurements of maximum tsunami runup heights and 

distances, average runup heights and areas of inundation, flow patterns of runup and 

rundown, eyewitness accounts, observations of subsidence, uplift and landslides, and 

a helicopter aerial survey (Yeh et al., 1994). The water marks on the structures and/or 

ground, breakage of tree limbs, scratch marks on the trees or structures caused by 

water borne objects, and/or the location of water borne debris were analysed to 

determine the maximum tsunami runup height (Yeh et al., 1994).  

 

At Riangkroko, an extremely large tsunami runup was measured to be approximately 

26 meters. Based on four different tsunami marks, the average height was found to 

be 19.8 m (Figure 4.26) and the runup inundation distance from the shoreline to be 

approximately 600 m. 

 

 

 
Figure 4.26 Tsunami runup heights from sea level at the time of the tsunami attack. The 

values were measured at each location and averaged from multiple measurements by the 

tsunami survey team (Yeh et al., 1994). 
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Babi Island, which is about 5 km offshore from Flores, was also severely affected by 

the tsunamis. Out of a population of 1093, 263 people were killed due to the strong 

earthquake motions and tsunamis. Babi Island has a conical shape, with a summit 

elevation of 351 m and a diameter of approximately 2 km. The water around Babi 

Island is quite deep despite its proximity to the main island. There is a wide coral 

reef on the north shore, which faces the Flores Sea. On the south shore, where the 

villages were located, there is a much narrower coral reef. There was a Moslem 

village, Kampungbaru, on the west-side and a Christian village, Pagaraman, on the 

east side, separated by a small tidal flat near the middle of the south shore. These two 

villages were totally devastated by the tsunamis and nothing was left of the Christian 

village (Yeh et al., 1994) (Figure 4.27).  

 

 

 
Figure 4.27 (a) Babi Island; (b) catastrophe on the back side of Babi Island (Yeh et al., 

1994) 

 

The wave conditions on the south side of Babi Island are usually calm even when 

there are strong wind waves and swells of the Flores Sea attacking from the north. 

The reason for this is that most of the incoming wave energy is dissipated on the 

wide coral reef on the north side. However, the south shore was prone to the 1992 

tsunami attack, although it was usually protected from wind waves and swells. 

According to Yeh et al. (1994) the tsunami disaster at the south side can be attributed 

to the shape of the island and wave reflection. The reflection of tsunamis in the deep 

sea between Babi Island and the opposite shore of Flores Island could potentially 

create a wave resonance phenomenon. If this was the case, this phenomenon may 

have been partially responsible for the catastrophe on Babi Island (Yeh et al., 1994). 

The maximum tsunami runup heights were 5.6 m in the Christian village and 4.6 m 

(a) (b) 
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in the Moslem village. The maximum runup height, which was measured on the 

steep slope on the west side of the island, was 7.3 m. The directions of tree falls and 

debris accumulations helped estimate the tsunami runup and rundown directions, 

which showed that the villages were attacked by the tsunami generated flow from all 

directions (Yeh et al., 1994). 

 

The fact that the tsunami attacked the conically shaped Babi Island from the north, 

but an extremely high inundation was observed in the south (back or lee side of the 

island), suggests that there is a need for a better understanding of the important 

physical parameters involved in a three-dimensional tsunami runup. 

 

Approaching an island from deep water, a tsunami wave goes through refraction, 

diffraction and breaking, as do short waves. The height and steepness of a tsunami 

wave increase with complicated currents and multiple wave trains. The number of 

tsunami waves and their amplitudes around the perimeter of the island may be 

affected by reflections from adjacent shorelines (Briggs et al., 1995). When the 

tsunami damage on Babi Island was investigated, it was found that there were 

unexpectedly large runup heights, especially on the back or lee side of the island. A 

surprising finding was that the results of the numerical simulations carried out by 

various international teams were substantially different from those of the field 

measurements, often by factors of ten. 

 

A three-year study was initiated in 1992 by the National Science Foundation in order 

to develop large-scale experimental databases for verification and modification of 

numerical models and to analyse the parameters involved in three-dimensional 

tsunami runup. The participants were from Cornell University, Harvard University, 

University of Washington, University of Southern California and the U.S. Army 

Engineer Waterways Experiment Station (WES). The reason why a conical island 

was selected for the study was its mathematical simplicity and realistic geometry 

compared to actual islands (i.e. Babi Island, Okushiri Island, and Hawaiian Islands) 

(Briggs et al., 1995). The large-scale experiments were conducted at WES during 
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1993 and 1994. A 30-m-wide by 25-m-long flat bottom wave tank was installed at 

the US Army Engineer Waterways Experimental Station (WES), Vicksburg, 

Mississippi, in the center of which a model of the conical island was constructed 

(Briggs et al., 1995; Liu et al., 1995) to understand the cause of the observed high 

inundation at the opposite side of the island. The basin wall dimensions were 29.3 m 

x 30 m (Figure 4.28). An absorbing material, 5-cm-thick synthetic horsehair, was 

rolled into cylinders approximately 0.9 m in diameter, and characterized by a 

reflection coefficient that varied slightly with wave frequency (NTHMP, 2011). The 

surface of the basin and the conical island were made of smooth concrete.  

 

 

 
Figure 4.28 Basin geometry, coordinate system and location of gauges. The circles along the 

walls and the dashed lines represent wave absorbing material (not to scale) (Credit: Frank 

Gonzalez) (Horrillo et al., 2015). 
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The island was shaped like a truncated, right circular cone with diameters of 7.2 m at 

the toe and 2.2 m at the crest. The vertical height of the island was approximately 

0.625 m, with 1V:4H beach face (i.e., 𝛽 = 140) (Figure 4.29). The water depth in the 

basin was set at 0.32 m. A Directional Spectral Wave Generator (DSWG), located at 

𝑥 = 12.96  m from the island, generated waves with an initial solitary wave-like 

profile with 𝐻/𝑑 ratios ranging from 0.05 to 0.20. 

 

 

 
Figure 4.29 Definition sketch for the conical island (not to scale) 

 

Figure 4.30 shows refracting waves around the island with the DSWG in the 

background and an overhead view of the wave runup is given in Figure 4.31. The 

electronically controlled DSWG was 27.4 m long and consisted of 60 paddles, which 

were 46 cm wide and 76 cm high. A 3/4 HP closed-loop servomotor was used to 

independently drive each of the 61 paddle joints in piston mode. The maximum 

stroke of the DSWG was 30.5 cm (Briggs et al., 1995). 
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Figure 4.30 A view of the conical island and the directional spectral wave generator from 

the back side of the island (Briggs et al., 1995) 

 

 
 

Figure 4.31 An overhead photograph of the wave runup on the lee side of the island  

(Briggs et al., 1995) 
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In order to measure the free surface elevations, twenty seven capacitance wave 

gauges were used, the first four of which were situated parallel to the wavemaker to 

measure incident wave conditions. Before each run, the distance of these four gauges 

from the toe of the island was calculated as half of the wavelength, 𝐿/2, of the wave 

that would be generated. Thus, it was possible to measure the tsunami wave always 

at the same relative stage of evolution. A circular measurement grid of six concentric 

circles, covering a maximum distance of 2.5 m beyond the toe of the island, was 

defined. The remaining gauges were located at the intersection of these concentric 

circles and the 90
0
 radial lines (i.e. 0

0
, 90

0
, 180

0 
and 270

0
 transects around the 

perimeter of the island) (Figure 4.32). The maximum vertical runup measurements 

were carried out at twenty locations around the perimeter of the island by using rod 

and transit. In addition, in order to record runup time series on the back/lee side of 

the island, a digital runup gauge was used. 

 

The experimental setup is also described in varying detail in Briggs et al. (1994), Liu 

et al. (1994), Briggs et al. (1995), Liu et al. (1995), Briggs et al. (1996), Kanoglu 

(1998), Kanoglu and Synolakis (1998), Fujima et al. (2000), Synolakis et al. (2007). 

 

The locations of the 27 wave gauges are listed in Table 4.9. The first four gauges are 

placed according to the characteristics of the initial wave (i.e. 𝐿/2). In other words, 

they are replaced for each run having different 𝐻/𝑑 ratios. 
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Figure 4.32 Schematic showing the gauge locations around the conical island (not to scale) 
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Table 4.9 BMP 2 wave gauge locations (Briggs et al., 1995) 

 

Gauge ID 𝒙 (m) 𝒚 (m) 𝒛 (m) Comments 

1 𝑓(𝐿/2) 16.05 32.0 Incident Gauge 

2 𝑓(𝐿/2) 14.55 32.0 Incident Gauge 

3 𝑓(𝐿/2) 13.05 32.0 Incident Gauge 

4 𝑓(𝐿/2) 11.55 32.0 Incident Gauge 

5 8.36 13.80 32.0 270
o
 transect 

6 9.36 13.80 31.7 270
o
 transect 

7 9.76 13.80 22.5 270
o
 transect 

8 10.08 13.80 14.7 270
o
 transect 

9 10.36 13.80 8.2 270
o
 transect 

10 12.96 19.93 32.0 180
o
 transect 

11 12.96 18.43 32.0 180
o
 transect 

12 12.96 17.43 31.5 180
o
 transect 

13 12.96 17.00 22.5 180
o
 transect 

14 12.96 16.68 14.6 180
o
 transect 

15 12.96 16.40 7.9 180
o
 transect 

16 12.96 11.22 7.9 0
o
 transect 

17 12.96 10.92 15.2 0
o
 transect 

18 12.96 10.60 21.9 0
o
 transect 

19 12.96 10.25 30.1 0
o
 transect 

20 12.96 9.17 32.0 0
o
 transect 

21 12.96 7.67 32.0 0
o
 transect 

22 15.56 13.80 8.3 90
o
 transect 

23 15.84 13.80 15.7 90
o
 transect 

24 16.16 13.80 22.8 90
o
 transect 

25 16.59 13.80 31.7 90
o
 transect 

26 17.59 13.80 32.0 90
o
 transect 

27 19.09 13.80 32.0 90
o
 transect 
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As some of the coastal effects of tsunamis can be modeled efficiently and in a 

reliable way in the laboratory by using solitary waves, the initial waves that were 

generated had a solitary wave like profile. The surface profile of a solitary wave 

centered at 𝑥 = 𝑋1 at time 𝑡 is given by Equation [4.4] (Synolakis, 1986) and the 

effective wavelength is calculated as: 

 

𝐿 =
2𝑑

√3𝐻
4𝑑

cosh  −1(√
1

0.05
)                                                                                          [4.11] 

 

so that it is equal to the distance between the two end points in the symmetric profile 

where the height is 5 percent of the height at the crest 𝐻 (Briggs et al., 1995). 

 

Three different cases are selected from the laboratory experiments to validate the 

numerical models, namely Case A, Case B and Case C, where the initial 𝐻/𝑑 ratios 

are equal to 0. 045, 0.091 and 0.181 at 32 cm water depth, respectively. 

 

The free surface conditions at the minimum 𝑥  boundary are set according to 

measurements at Gauge 2 (Figure 4.33), which is located offshore, for both models, 

instead of modeling the action of the generator paddles in order to simulate the 

incident waves. In this way, consistency with the analyses is achieved. 

 

The experiments of Briggs et al. (1995) were used as benchmark tests for validating 

2+1 numerical codes in the 1995 Friday Harbor, Seattle, Washington Long-Wave 

Runup Models Workshop (Yeh et al., 1996) and have become a standard for 

validation of runup models (Liu et al., 1995a; Titov and Synolakis, 1998; Chen et al., 

2000; Lynett et al., 2002; Wei et al., 2006 and Yamazaki et al., 2009). The waves are 

generated at one side of the tank and overtake the island as they travel toward the 

opposite side. The tests provide runup observations for validating numerical models 

and supplement comparisons with analytical results (Kanoglu and Synolakis, 1998). 
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Figure 4.33 The free surface elevation time series recorded at Gauge 2 for: (a) Case A; (b) 

Case B; (c) Case C (Briggs et al., 1995). 

 

To perform BMP 2, it is necessary to demonstrate that the modeled wave fronts split 

in front of the island and collide behind it (as edge waves) producing an extreme 

localized runup. Moreover, the computed water levels at the four gauges around the 

island; namely, Gauges 6 – in the front of the island at the toe, 9, 16 and 22 – closest 

to the shoreline located at the 0
0
, 90

0
, and 180

0
 radial lines, are replicated and the 

angular distribution of runup is compared with the laboratory data for the various 

cases of incident waves. These gauges provide sufficient coverage of the wave 

conditions that are crucial to the experiment.  
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4.2.2. NAMI DANCE Model 

 

The same set of experiments is reproduced in a 2D domain using NAMI DANCE. 

The fluid is inviscid and the flow is incompressible. Fluid density is taken constant 

throughout the fluid domain.  

 

The 𝑥 axis of the Cartesian coordinate system is perpendicular to the wavemaker and 

the 𝑦 axis is parallel to the wavemaker (Figure 4.34). The origin is located at the end 

of the wavemaker, in line with the front surface of all paddles at their rest position. 

The center of the island is located at 𝑥 =  12.96 m and 𝑦 =  13.80 m. A local 

coordinate system, where polar convention is used, is located at the center of the 

island (Figure 4.35). Figure 4.35 also illustrates the 3D view of NAMI DANCE 

computational domain and location of gauge points. The gravitational force, 𝑔, is in 

the downward direction. 

 

The water surface elevation time series recorded at Gauge point 2 is inputted at the 

upstream end of the computational domain (i.e. minimum 𝑥  boundary), which is 

located 𝐿/2 distance away from the toe of the slope. The maximum 𝑥 boundary has a 

rigid wall boundary condition, which defines the downstream end of the wave tank. 

The minimum and maximum 𝑦 boundaries are also defined as rigid walls in order to 

prevent outflow from the computational domain.  
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Figure 4.34 NAMI DANCE model: a typical computational domain and the orientation of 

the coordinate system (top view)  
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Figure 4.35 NAMI DANCE computational domain and gauge locations for BMP 2: (a) 3D 

top view; (b) side view 

 

  

(a) 

(b) 
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4.2.2.1. Spatial Discretization 

 

The computational domain, represented by a structured mesh (i.e. rectangular cells), 

covers the entire length of the flume with grid sizes, Δ𝑥 and Δ𝑦, which are uniform 

throughout the mesh. 

 

It is important to note that reducing the cell size does not necessarily guarantee a 

better result from a practical perspective since it may lead to unstable results and 

unnecessarily abundant computational resources and time. The previous numerical 

model validations that used BMP 2 (NTHMP, 2011) are taken into account in the 

determination of the grid size. It is found that in the recent studies the grid size used 

in the vicinity of the island is either Δ𝑥 = 0.01 m (Alaska Tsunami Model, Alaska 

Tsunami Forecast Model and SELFE), or Δ𝑥 = 0.05 m (MOST, NEOWAVE and 

BOSZ) (NTHMP, 2011). After a careful analysis, the grid size is selected as 5 cm; 

i.e. Δ𝑥 = Δ𝑦 = 0.05 m. 

 

It has been suggested in the literature that the convergence of tsunami modeling 

algorithms be assessed by simulating the extreme positions of the shoreline – the 

maximum runup and rundown. The convergence of NAMI DANCE is tested by 

comparing the predicted runup values at Gauge 9, for Cases A, B and C, respectively 

(Table 4.10). 

 
Table 4.10 NAMI DANCE: Predicted runup values at Gauge 9 for different Δ𝑥 values 

(𝑛 =0.01) 

 

Grid Size 

𝜟𝒙 (m) 

Maximum Runup (cm) 

𝐻/𝑑 = 0.045 𝐻/𝑑 = 0.091 𝐻/𝑑 = 0.181 

0.01 2.28 5.44 8.80 

0.05 2.28 5.44 8.80 

0.1 2.25 5.41 8.77 

0.5 2.21 5.40 8.75 

1.0 2.18 5.37 8.67 
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The match between the predicted data and laboratory measurements increases as the 

computational grid resolution is decreased from 1.0 m to 0.01 m. The most obvious 

manifestation of this convergence is the improved form of the first wave. In fact, no 

considerable change is observed after ∆𝑥 = 0.5 m. The predicted runup values differ 

by less than 1% for ∆𝑥 ≤ 0.5 m. 

 

The maximum time step size that fulfills the CFL stability criteria is calculated 

automatically by NAMI DANCE for each run, depending on the bathymetry. 

According to this limitation, time step, Δ𝑡, is selected as 0.02 second for all runs. 

 

4.2.2.2. Friction 

 

Manning’s roughness coefficients used to assess the effect of friction on the 

maximum runup values are: 

(i) 𝑛 = 0 (i.e. frictionless bottom) 

(ii) 𝑛 = 0.01 (i.e. neat cement/concrete/smooth glass beach) 

(iii) 𝑛 = 0.03 (i.e. fine particles along the channel bottom) 

 

The results reveal that the effect of friction varies spatially over the computational 

domain since the friction term is a function of water depth. Introduction of the 

friction coefficient improves the numerical predictions. It is seen that, around the 

perimeter of the conical island, the predicted and measured runup values match when 

𝑛 = 0.01, including the extreme runup behind the conical island. Accordingly, the 

predicted inundation level on the frictionless surface is higher than the measured one, 

whereas the predicted runup values are smaller than the measured ones with 

increased friction coefficients. These situations are most spotted in Cases B and C, 

where 𝐻/𝑑 = 0.091 and 𝐻/𝑑 = 0.181, respectively. The predicted runup values are 

not significantly affected by 𝑛 for Case A, where 𝐻/𝑑 = 0.045 (Figure 4.36).   
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Figure 4.36 NAMI DANCE runup predictions according to different Manning’s roughness 

coefficients for: (a) Case A; (b) Case B; (c) Case C. The dashed blue line represents the 

initial shoreline; the red line represents the results when 𝑛 = 0; the blue line represents the 

results when 𝑛 = 0.01; the green line represents the results when 𝑛 = 0.03. 
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4.2.3. FLOW-3D
® 

Model 

 

The same set of physical experiments is reproduced using FLOW-3D
®
 (Figure 4.37): 

 

  
 

Figure 4.37 FLOW-3D
® 

computational domain constructed for BMP 2: (a) meshing 

(enlarged for clarity); (b) boundary conditions and gauge locations; (c) after using 

FAVOR™ 

 

 

 

 

(a) 

(b) 

(c) 
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The fluid is inviscid, the flow is incompressible and the fluid density is constant. The 

effects of surface tension and air entrainment at the surface of the flow are neglected. 

The numerical model is constructed using the Cartesian coordinate system, where the 

positive 𝑥 direction is oriented along the fluid flow into the domain and the positive 

𝑦  direction is perpendicular to the direction of the flow (Figure 4.37). The 

gravitational acceleration, 𝑔, is in the downward direction (i.e. – 𝑧 direction). 

 

The pressure boundary condition is employed at the minimum 𝑥  boundary. This 

boundary condition allows the user to enter the input data manually, which is the free 

surface elevation time series recorded at Gauge 2 in this case. The maximum 𝑥 

boundary has the outflow boundary condition so that the wave reflection from the 

boundary is minimized as much as possible. The minimum and maximum 𝑦 

boundaries as well as the maximum 𝑧 boundary feature the symmetrical boundary 

condition where all the velocity derivatives and velocity components normal to the 

boundaries are set to zero. The minimum and maximum 𝑦 boundaries are sufficiently 

far away from the conical island so that the wave reflection from those boundaries 

does not have an adverse effect on the simulations. The wall boundary condition is 

applied at the minimum 𝑧 boundary where the bottom of the wave flume is defined. 

 

4.2.3.1. Spatial Discretization 

 

The computational domain is represented by an isotropic grid with Δ𝑥 = Δ𝑦 = Δ𝑧 

where the grid size is selected as 5 cm (Please refer to the explanations in Section 

4.2.2.1). BMP 2 is modeled via FLOW-3D
®
 for different Δ𝑥 values in order to test 

the grid dependency. Table 4.11 summarizes the predicted runup values at Gauge 9 

for different Δ𝑥 values, for Cases A, B and C, respectively. The agreement between 

the predicted data and laboratory measurements improves as the computational grid 

resolution is decreased from 1.0 m to 0.01 m. No considerable change is observed 

after ∆𝑥 = 0.5 m. 

 



 

 175 

Table 4.11 FLOW-3D
®
: Predicted runup values at Gauge 9 for different Δ𝑥 values 

(𝑛 =0.01) 

 

Grid Size 

𝜟𝒙 (m) 

Maximum Runup  

𝐻/𝑑 = 0.045 𝐻/𝑑 = 0.091 𝐻/𝑑 = 0.181 

0.01 2.28 5.64 9.60 

0.05 2.28 5.64 9.60 

0.1 2.27 5.63 9.58 

0.5 2.23 5.60 9.55 

1.0 2.20 5.57 9.47 

 

It is also necessary to analyse the effect of the vertical grid size, Δ𝑧, on runup values 

in a three-dimensional model. Changing the vertical grid size is effective in the 

vicinity of the island. In fact, a fine vertical grid size (i.e. ∆𝑧 ≤ 0.5 m) gives results 

closer to the measured values, with Δ𝑥  kept constant. No considerable change is 

observed after ∆𝑧 = 0.5 m. 

 

The time step, Δ𝑡 , is selected as 0.02 second in order to be consistent with the 

simulations conducted using NAMI DANCE. When variable time stepping is 

employed in order to assess the effect of the time step size, no significant effect is 

observed. 

 

4.2.3.2. Friction 

 

In order to assess the effect of friction on the maximum runup values, different 

Manning’s roughness coefficients are considered: 𝑛 = 0 (i.e. frictionless bottom), 

𝑛 = 0.01  (i.e. neat cement/concrete/smooth glass beach) and 𝑛 = 0.03  (i.e. fine 

particles along the channel bottom). (Please refer to Section 4.2.2.2 for the 

comparison criteria). 

 

The results obtained via FLOW-3D
®
 are similar to those obtained using NAMI 

DANCE. The effect of friction is not felt in Cases A and B, whereas the runup values 

appear to be dependent on 𝑛  in the extreme case, Case C, where 𝐻/𝑑 = 0.181 . 

Lower inundation levels are obtained with a higher friction coefficient (Figure 4.38).   
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Figure 4.38 FLOW-3D

®
 runup predictions according to different Manning’s roughness 

coefficients for: (a) Case A; (b) Case B; (c) Case C. The dashed blue line represents the 

initial shoreline; the red line represents the results when 𝑛 = 0; the blue line represents the 

results when 𝑛 = 0.01; the green line represents the results when 𝑛 = 0.03. 
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4.2.4. Simulation Results 

 

BMP 2 is a challenging test case because it is a difficult task to reproduce the wave 

that splits at the front side of the island, refracts and wraps around both sides, and 

then recombines at the lee side of the island to produce a runup spike. The three test 

cases of BMP 2 illustrate the important fact that the runup and inundation levels on 

the sheltered back side of an island can exceed those on the exposed front side, due 

to trapping of the wave fronts that propagate around the island circumference. 

 

The numerical simulations are conducted using a computer with 16-core central 

processing units (CPUs). The computations are terminated after the first reflection of 

the wave from the island, which is 40 seconds. The simulations that are performed 

via NAMI DANCE are completed in approximately 40 minutes whereas it takes 6 

hours to complete the simulations using FLOW-3D
®
. 

 

The wave evolution around the conical island is assessed by using the free surface 

time series recorded at four gauges; namely Gauges 6, 9, 16 and 22. The comparison 

of NAMI DANCE and FLOW-3D
® 

results with the laboratory measurements are 

given in the following graphs. 

 

NAMI DANCE and FLOW-3D
®
 predict the wave transformation around the conical 

island considerably well for Case A and B, where 𝐻/𝑑 = 0.045 and 𝐻/𝑑 = 0.091, 

respectively (Figures 4.39 and 4.40). NAMI DANCE computes the wave 

transformation around the conical island satisfactorily and FLOW-3D
®
 model 

produces accurate predictions for Case C, where 𝐻/𝑑 = 0.181 (Figure 4.41).  
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Figure 4.39 The wave transformation around the conical island for Case A, where 𝐻/𝑑 = 

0.045 at: (a) Gauge 6; (b) Gauge 9; (c) Gauge 16; (d) Gauge 22. The circles represent the 

laboratory measurements; the red line represents the NAMI DANCE results; the green line 

represents the FLOW-3D
® 

results. 
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Figure 4.40 The wave transformation around the conical island for Case B, where 𝐻/𝑑 = 

0.091 at: (a) Gauge 6; (b) Gauge 9; (c) Gauge 16; (d) Gauge 22. The circles represent the 

laboratory measurements; the red line represents the NAMI DANCE results; the green line 

represents the FLOW-3D
® 

results.  
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Figure 4.41 The wave transformation around the conical island for Case C, where 𝐻/𝑑 = 

0.181 at: (a) Gauge 6; (b) Gauge 9; (c) Gauge 16; (d) Gauge 22. The circles represent the 

laboratory measurements; the red line represents the NAMI DANCE results; the green line 

represents the FLOW-3D
® 

results.  
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The maximum vertical runup is recorded at twenty four locations around the 

perimeter of the island. Sixteen of the gauges are evenly spaced at every 22.5
0
 

around the perimeter. The other eight gauges, which are more narrowly spaced, are 

located at the lee side of the island, so that the resolution at this critical area is 

improved. 

 

Most of the previous studies did not take friction into consideration in this numerical 

experiment (Liu et al., 1995a; Titov and Synolakis, 1998; Chen et al., 2000 and 

Lynett et al., 2002). In this study, in order to reflect the real laboratory conditions as 

much as possible, the runup predictions are made for a Manning’s roughness 

coefficient 𝑛 = 0.01 , which is used for smooth concrete. (For detailed friction 

analysis please refer to Sections 4.2.2.2 and 4.2.3.2). 

 

In order to investigate the changes in the runup shape and magnitude, the initial wave 

height is altered. Figures 4.41 – 4.43 illustrate the polar distribution of maximum 

vertical runup at 32 cm water depth for Cases A, B and C, respectively. The crest and 

toe of the conical island and the initial shoreline are shown for reference. 

 

It is seen from Figure 4.42 that there is a fairly uniform inundation around the 

perimeter of the island for Case A, where 𝐻/𝑑 = 0.045. This ratio corresponds to an 

initial wave with a height of 1.44 cm. The predictions of both models are in good 

agreement with the measured water level dynamics at the given locations. No 

distinctive difference between the model results and the measured data is observed in 

the maximum runup values. The runup is largest on the island quadrant between 180
0
 

and 360
0
, where it is closest to the source. In other words, the runup on the front side 

of the island is larger than that on the back side. Figure 4.43 illustrates the inundation 

predictions for Case B, where 𝐻/𝑑 = 0.091. This ratio corresponds to an initial wave 

with a height of 2.92 cm. The runup is largest on the island quadrant between 67.5
0
 

and 112.5
0
. Figure 4.44 illustrates the inundation predictions for Case C, where 

𝐻/𝑑 = 0.181 – an initial wave with a height of 5.79 cm. Case C is a formidable test 

case because the modeled wave is steeper than most realistic tsunamis. 
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Figure 4.42 Inundation around the perimeter of the conical island for Case A, where 𝐻/𝑑 = 

0.045. The circles represent the laboratory measurements; the dashed blue line represents the 

initial shoreline; the red line represents the NAMI DANCE results; the green line represents 

the FLOW-3D
®
 results. 
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Figure 4.43 Inundation around the perimeter of the conical island for Case B, where 𝐻/𝑑 = 

0.091. The circles represent the laboratory measurements; the dashed blue line represents the 

initial shoreline; the red line represents the NAMI DANCE results; the green line represents 

the FLOW-3D
® 

results. 
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Figure 4.44 Inundation around the perimeter of the conical island for Case C, where 𝐻/𝑑 = 

0.181. The circles represent the laboratory measurements; the dashed blue line represents the 

initial shoreline; the red line represents the NAMI DANCE results; the green line represents 

the FLOW-3D
® 

results. 
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Case C is an extreme case, in which a distinctive pattern of runup emerges because 

of the edge waves that propagate around the island. The runup on the back side of the 

island is almost as large as that on the front side. NAMI DANCE predicts the runup 

on the back of the island approximately 20% less than the measured value. FLOW-

3D
®
, however, satisfactorily predicts the runup around the perimeter of the island. 

 

NAMI DANCE is a depth-averaged model; therefore, the vertical velocity 

component, 𝑤 , is neglected in the simulations. On the other hand, FLOW-3D
® 

accounts for the effects of 𝑤. The vertical velocity component in the vicinity of the 

island needs to be analysed in order to assess its effect in complex extreme cases (i.e. 

turbulence, wave reflection, edge waves). The analysis is conducted via FLOW-3D
®

 

for the extreme case, Case C, where 𝐻/𝑑 = 0.181.  

 

Figure 4.45 illustrates the evolution of the vertical velocity component around the 

conical island and Figure 4.46 shows the velocity time histories for the constant 

depth region and the shallower region (i.e. at Gauges 9 and 22).  
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Figure 4.45 Evolution of vertical velocity component, 𝑤, around the conical island for Case 

C, where 𝐻/𝑑 = 0.181 at: (a) 𝑡 = 10.7 sec; (b) 𝑡 = 13.0 sec; (c) 𝑡 = 13.6 sec; 

(d) 𝑡 = 14.5 sec (not to scale)  
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Figure 4.46 Velocity time histories for Case C at: (a) constant depth region; (b) Gauge 9; (c) 

Gauge 22. The green line represents the predicted horizontal velocity component; the purple 

line represents the predicted vertical velocity component. 
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The results reveal that, in the extreme case, there is a considerable increase in the 

vertical velocity as the wave propagates towards the island. The maximum vertical 

velocity component is only 6% of the maximum horizontal velocity component at the 

constant depth region; however, it gets as large as one third of the maximum 

horizontal velocity component at the front side of the island just before breaking. At 

the back side of the island, the maximum 𝑤 becomes nearly as large as the maximum 

horizontal velocity component the moment the two waves that are splitted earlier 

meet. 

 

Tables 4.12 and 4.13 summarize the maximum values of the horizontal and vertical 

velocity components of a fluid particle computed at the constant depth region and at 

Gauges 6, 9 and 22 for Cases A and C. NAMI DANCE does not provide vertical 

velocity components and horizontal velocity components are constant along depth. 

On the other hand, FLOW-3D
® 

calculates vertical velocity components, which 

change along depth, having the maximum values at the free surface. 

 
Table 4.12 The predicted maximum vertical and horizontal velocity components of a fluid 

particle at the free surface for Case A, where 𝐻/𝑑 = 0.045 

 

Location 
NAMI DANCE FLOW-3D

®
 

𝒖 (cm/sec) 𝒖 (cm/sec) 𝒘 (cm/sec) 

Constant Depth Region 9.00 8.90 0.55 

Gauge 6 7.00 6.80 1.90 

Gauge 9 19.50 19.00 2.10 

Gauge 22 16.00 15.70 1.50 

 
Table 4.13 The predicted maximum vertical and horizontal velocity components of a fluid 

particle at the free surface for Case C, where 𝐻/𝑑 = 0.181 

 

Location 
NAMI DANCE FLOW-3D

®
 

𝒖 (cm/sec) 𝒖 (cm/sec) 𝒘 (cm/sec) 

Constant Depth Region 41.20 40.70 2.70 

Gauge 6 35.00 32.40 9.70 

Gauge 9 52.00 49.90 11.70 

Gauge 22 35.00 32.30 23.80 
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The NAMI DANCE simulation for Case C (Figure 4.47): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.47 NAMI DANCE model: wave transformation around the conical island for  

Case C, where 𝐻/𝑑 = 0.181  
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The initial wave evolution and its split into two wave fronts can be observed in 

Figure 4.47. 

 

NAMI DANCE and FLOW-3D
®
 produce similar values of the predicted horizontal 

velocity components. NAMI DANCE, which solves depth-averaged NSW equations, 

displays a uniform distribution of 𝑢  along the vertical direction, without any 

significant deviation, as expected. In both models, the horizontal velocity component 

decays to zero at the sea bottom. On the other hand, the vertical velocity component, 

𝑤, changes along the vertical direction, having the largest value at the free surface 

and reaching zero at the sea bottom. The results indicate that the vertical velocity 

component gains importance when the initial wave height is considerably large (i.e. 

extreme case). In fact, the maximum 𝑤 is only 10% of the maximum 𝑢 just before 

reaching the shoreline on the front side of the island for Case A, where 𝐻/𝑑 ratio is 

relatively small. Moreover, at the back side of the island, it is found that the effect of 

the vertical velocity component is minimal. On the other hand, for the extreme wave 

case, Case C, the maximum vertical velocity component increases to 25% of the 

maximum horizontal velocity component at Gauge 9, which is located at the front 

side of the island. At the lee side of the island, however, it is surprising to see that the 

maximum 𝑤 is nearly 80% of the maximum 𝑢. All these results imply that, 𝑤 should 

not be neglected when evolution of large amplitude waves are analysed upon 

circular/conical bathymetries. 

 

The allowable error thresholds vary according to the reference data types. The data 

type that BMP 2 provides is laboratory measurements, for which the allowable 

NRMSE and MAX limits are 15% and 10%, respectively. (Please refer to Section 

4.1.4 for the method proposed for the calculation of statistical errors, NRMSE and 

MAX). 
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The NRMSE and MAX errors for Case A are given in Table 4.14 and Figure 4.48. 

 
Table 4.14 NRMSE and MAX errors for Case A, where 𝐻/𝑑 = 0.045 

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

6 7.3 7.1 3.4 7.2 

9 7.9 7.8 4.1 5.8 

16 8.3 10.0 3.5 5.6 

22 7.0 7.3 4.7 7.1 

 

  
 

Figure 4.48 Error bars for Case A, where 𝐻/𝑑 = 0.045: (a) % NRMSE; (b) % MAX error. 

The red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

 

The NRMSE of the NAMI DANCE results is between 7% and 8% while the MAX 

error ranges from 7% to 10%. FLOW-3D
®
 results have an NRMSE range between 

3% and 4% and a MAX error range between 5% and 7%. The errors are within the 

OAR PMEL-135 standard error range. In Case A, the initial wave is a small 

amplitude wave. Both models predict the wave transformation around the island 

equally well. This indicates that for small amplitude waves, 3D-RANS equations 

have no significant advantage over the 2D-NSW equations.  
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The NRMSE and MAX errors for Case B are given in Table 4.15 and Figure 4.49. 

 
Table 4.15 NRMSE and MAX errors for Case B, where 𝐻/𝑑 = 0.091 

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

6 8.2 10.6 3.0 2.2 

9 8.7 7.6 3.8 4.2 

16 11.5 10.7 5.5 3.3 

22 8.7 10.7 6.1 0.9 

 

 

 

 

 

  
 

Figure 4.49 Error bars for Case B, where 𝐻/𝑑 = 0.091: (a) % NRMSE; (b) % MAX error. 

The red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

 

NAMI DANCE results have an NRMSE range between 8% and 11% and a MAX 

error range between 8% and 10%. The NRMSE of FLOW-3D
®
 results, however, is 

between 3% and 6% while the MAX error ranges from 1% to 4%. In Case B, the 

initial wave is fairly high. The results indicate that even though 2D-NSW equations 

predict the wave evolution and transformation around the island satisfactorily, 3D-

RANS equations provide more improved results. It is seen that especially on one side 

and back of the island (i.e. Gauges 16 and 22), there is considerable agreement 

between the three-dimensional model predictions and laboratory measurements. 
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The NRMSE and MAX errors for Case C are given in Table 4.16 and Figure 4.50. 

 
Table 4.16 NRMSE and MAX errors for Case C, where 𝐻/𝑑 = 0.181  

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

6 7.0 19.1 3.9 5.9 

9 9.3 7.8 5.3 9. 8 

16 12.2 14.3 5.3 8.4 

22 10.5 17.9 5.9 6.1 

 

   
 

Figure 4.50 Error bars for Case C, where 𝐻/𝑑 = 0.181: (a) % NRMSE; (b) % MAX error. 

The red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

 

NAMI DANCE results have an NRMSE range between 7% and 12% and a MAX 

error range between 8% and 19%. Although the MAX error of NAMI DANCE 

results exceeds the threshold for laboratory measurements, the results are accepted as 

reliable, considering the difficulty in reproducing Case C, where the initial wave is 

extremely high. The NRMSE of FLOW-3D
®
 results is between 4% and 5% while the 

MAX error ranges from 6% to 10%. The results indicate that 2D-NSW equations can 

not predict the wave evolution and transformation around the island accurately, 
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especially on one side and back of the island (i.e. Gauges 16 and 22), whereas 3D-

RANS equations prouce very close results to the laboratory measurements.  

 

The NRMSE of NAMI DANCE and FLOW-3D
®

 results regarding the maximum 

runup around the perimeter of the island are below the threshold value given by OAR 

PMEL-135 standard. The NRMSE of NAMI DANCE results is 4%, 6% and 8% for 

Cases A, B, and C, respectively. The NRMSE of FLOW-3D
®
 results is 4%, 5% and 

5% for Cases A, B, and C, respectively. 

 

To sum up, the two- and three-dimensional models, NAMI DANCE and FLOW-

3D
®
, are tested against a set of laboratory measurements that include tsunami wave 

transformation, reflection and edge waves forming around a conical island. Three 

data sets with 𝐻/𝑑 = 0.045, 𝐻/𝑑 = 0.091 and 𝐻/𝑑 = 0.181 are used in order to 

assess the effect of initial tsunami wave height on inundation on a conical island. The 

reasons for the extreme runup on the back side of the island are investigated. 

 

The initial wave splits into two wave fronts in front of the island, before it 

superposes and breaks symmetrically behind the island as if it is a standing wave. 

Good agreement is seen overall and, in particular, between predicted and measured 

time series for the first wave. The agreement for the later wave details becomes 

progressively worse, as multiple reflections and refraction occur at the basin 

boundaries, the wavemaker face, and the island. Therefore, only the first maximum 

and minimum waves are considered for all comparisons in the analyses. 

 

The computed results are symmetric about the wave propagation direction despite the 

use of a Cartesian grid to describe curved surfaces. Especially the inundation on the 

lee side of the island is captured satisfactorily by both models. Increasing the grid 

spacing from ∆𝑥 = 0.01 m to ∆𝑥 = 0.5 m hardly affects the quality of the results. 

However, the maximum runup outline appears less detailed due to the coarser grid. 
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Most of the previous studies neglected friction in BMP 2 (Liu et al., 1995a; Titov and 

Synolakis, 1998; Chen et al., 2000 and Lynett et al., 2002). Liu et al. (1995a) pointed 

out that the computed results are not sensitive to the surface roughness coefficient 

due to the steep 1:4 slope of the conical island. When all the results are assessed, it is 

seen that the bottom friction does not play an important role in the runup distances of 

small and/or medium amplitude waves and can be neglected in the simulations for 

this particular benchmark problem. However, for large amplitude waves, the friction 

coefficient is fairly effective on the runup values. In other words, smaller friction 

leads to larger runup distances. Similar results were reported by several researchers 

who took part in the 2011 NTHMP Model Benchmarking Workshop (NTHMP, 

2011). For Case C, when Manning’s roughness coefficient, 𝑛 , is 0.01, NAMI 

DANCE predicted the maximum runup values with an NRMSE of 8%, whereas 

FLOW-3D
®
 results have an NRMSE of 5%. The NRMSE of both model predictions 

are below 10%, which is within the proposed threshold values (Synolakis et al., 

2008). 

 

When NAMI DANCE results for Case C are assessed, it is seen that the simulated 

runup does not exactly match the measured runup on the lee side; in fact, it is 20% 

less than the measured one. The reason for this is that the 2D depth-averaged NSW 

equations that NAMI DANCE solves are hydrostatic and the computed wave height 

is smaller than the one measured in the laboratory. Therefore, with higher 

nonlinearity, the crest of the solitary wave is narrower and the reflection is more 

distinct. This leads to the underestimation of the runup distance of the large 

amplitude wave. In fact, when previous studies are examined, it is seen that for all 

NSW models, such as ALASKA, GEOCLAW and MOST, the simulated waves 

steepen more rapidly than those measured in the laboratory experiments for large 

amplitude waves, which is a well-known effect of the shallow water approximation 

(NTHMP, 2011). Moreover, previous studies reveal that non-hydrostatic models, 

such as BOSZ, FUNWAVE, NEOWAVE and SELFE, capture the water level 

dynamics slightly better than the hydrostatic ones (NTHMP, 2011). In Case C, it is 

obvious that 3D-RANS equations show an appreciable improvement over the 2D 
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depth-averaged NSW equations. This can be deduced from Table 4.14, 4.15 and 

4.16, where the NRMSE of NAMI DANCE results for Cases A, B and C have a wide 

range of variation, i.e., between 7% and 12%, while FLOW-3D
®
 results have a 

narrow NRMSE range, which is between 3% and 5%. For the maximum wave 

amplitude, regardless of the location where the maxima occurred, the errors of 

NAMI DANCE results range between 7% and 19%, whereas the error range is 

between 1% and 6% for FLOW-3D
®
 results. It is seen that the 3D model performs 

slightly better than the 2D model for the extreme case; therefore, 3D-RANS 

equations are required to adequately resolve the initial wavelength and to prevent the 

wave front from steepening prior to the island impact. 

 

The vertical velocity component, 𝑤, is fairly effective on the back side of the island 

for the large amplitude case. It rapidly increases and its maximum becomes nearly as 

large as the maximum horizontal velocity component the moment the two splitting 

waves converge behind the island. The wave bends around the island as edge waves 

due to refraction and diffraction. The island and the source being modeled as 

symmetric, the wave wraps evenly around the island. Therefore, the vertical 

velocities are very high, causing a relatively large runup on the back side. This shows 

that, contrary to what many people think, the back side of an island may not be safer 

than the front side. In fact, for Case C, the results reveal that the runup on the back 

side of the island is almost as high as that on the front side. 

 

It is concluded that both models give satisfactory results regarding the maximum 

runup values since the NRMSE of the numerical predictions is less than 20%. No 

significant time shift is observed at the gauge points. Even though NSW equations 

are capable of estimating the major features of propagation, refraction, and runup 

observed in the laboratory experiments for small and/or medium amplitude waves, 

three-dimensional models should be preferred when large amplitude waves are 

studied in the areas featuring strong nonlinearities.  



 

 197 

4.3. BMP 3: Solitary Wave Propagation over a Complex Shelf 

 

4.3.1. Problem Description 

 

In the summer of 2009, a summer workshop, whose main focus was the 

understanding of nearshore wave dynamics via large-scale laboratory experiments 

and numerical modeling, was co-sponsored by the Inundation Science & Engineering 

Cooperative (ISEC) and the Network for Earthquake Engineering Simulation 

(NEES) Tsunami Research Facility at the O.H. Hinsdale Wave Research Laboratory 

(HWRL), Oregon State University (OSU). Aiming to find out how to expand the 

modeling and experimental capabilities and how to propose and plan an experiment, 

the researchers worked on a variety of topics. In the first stage of the workshop, the 

3D wavemaker in the tsunami wave basin and the 2D wavemaker in the large wave 

flume were introduced and ways of testing structural specimens and validating 

analytical and numerical models were discussed. The second part of the workshop 

concentrated on the development and application of numerical models. 

 

Two nearshore wave benchmark problems were discussed in the workshop. The first 

one involved overtopping of a solitary wave on a complex reef shelf whose empirical 

data had been gathered during large-scale tests at the HWRL one year before the 

workshop. The second problem, which is BMP 3 discussed in this dissertation, was 

more challenging as it included an island feature located at the offshore point of the 

complex shelf (Figures 4.51 and 4.52). The tests of this benchmark were conducted 

just prior to the workshop. 

 

BMP 3 serves to investigate the three-dimensional kinematic properties associated 

with a breaking solitary wave as it propagates, evolves and breaks over an irregular 

shallow water bathymetry. It also deals with currents induced by breaking and 

overtopping of a solitary wave on a circular island and a complex shelf. 
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Figure 4.51 BMP 1 discussed in the ISEC 2009 workshop: (a) schematic sketch of the 

experimental setup; (b) wave gauge and ADV locations - the white and red circles represent 

usWGs and ADVs, respectively; (c) a photograph of the complex shelf (NTHMP, 2011) 

 

 

 

 

 

 
Figure 4.52 BMP 2 discussed in the ISEC 2009 workshop: (a) schematic sketch of the 

experimental setup; (b) wave gauge and ADV locations - the white and red circles represent 

usWGs and ADVs, respectively; (c) a photograph of the experimental setup (NTHMP, 2011) 
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The kinematic properties associated with a breaking wave are of particular 

importance when trying to predict wave forces on structures, nearshore mixing and 

circulations, sediment transport, and ultimately coastal morphology (Swigler, 2009). 

In fact, if the physics behind the evolution of breaking waves and the development of 

currents near the surf zone is understood better, the prediction of the transport of 

sediment can be more accurate. It has been shown that the flow fields associated with 

breaking waves are particularly important since they greatly affect the dynamic 

equilibrium of beaches (Dalrymple, 1992). There have been extensive experimental 

and numerical studies that focused on increasing the knowledge of wave dynamics 

that develops as waves interact with an underlying bathymetry and break. 

 

The physics that governs the evolution of waves as they approach a shoreline has 

been the subject of many extensive experimental studies, which have provided 

insight to specific phenomena that are known to occur such as shoaling, refraction 

and breaking. Beginning offshore where the water depth is sufficiently deep and 

constant, waves are found to be symmetric with respect to the wave crest (Hsiao et 

al., 2008) before they began to deform due to interactions with the bathymetry. Over 

a sloping bottom, waves begin to become more asymmetric resulting in a steeper 

front face and an increase in wave height with a decrease in water depth. This 

phenomenon is known as shoaling and is directly related to bottom slope where on a 

gentler slope shoaling is greater as compared to a sufficiently steep slope (Grilli et 

al., 1994). At a point when the slope becomes sufficiently steep, Grilli et al. (1994) 

found that the amount of reflection experienced by the incident wave increased 

causing the increase in wave height to be less noticeable. Due to shoaling, the 

asymmetry of the wave reaches a point where it becomes unstable and breaking 

occurs. 

 

Models which attempted to predict the flow dynamics resulting from breaking waves 

have been adapted and significantly improved over time. By understanding the 

physics of near shore wave motion, the accuracy and reliability of models have 

evolved, but calibration and verification of models still need to be done via 

laboratory studies. 
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The experiments of BMP 3 were conducted in the large wave basin of Oregon State 

University’s O.H. Hinsdale Wave Research Laboratory in 2009. The wave basin was 

48.8 m long, 26.5 m wide, and 2.1 m deep and was equipped with a piston-type 

wavemaker, which had a waveboard consisting of 29 independently functioning 

paddles capable of producing both linear and nonlinear waves up to 0.8 m in height 

(Swigler, 2009). The walls and underlying bathymetry of the basin were made of 

finished concrete.  

 

In accordance with the Cartesian coordinate system used in the study, 𝑥 = 0 at the 

wavemaker and increased positively in the direction of wave propagation. At the 

centerline of the basin,  𝑦 = 0 and 𝑦-axis was parallel to the wavemaker. Finally,   

𝑧 = 0 at the basin floor in the constant depth portion of the basin near the wavemaker 

and it was positive upwards. 

 

Opposite the wavemaker, a complex shallow water bathymetry was built to force the 

generated wave to break symmetrically about the centerline of the basin. The area 

between 𝑥 = 0 m and 𝑥 = 10.2 m was determined as the flat backshore area. A 1:30 

slope planar beach was constructed which began at 𝑥 = 10.2 m and extended to    

𝑥 = 32.5 m with a height of 0.95 m before becoming level and extending to the back 

wall of the basin. Beginning at the toe of the planar beach, a three dimensional 

triangular shallow water shelf with steep drop-offs was built (Swigler, 2009). The top 

of the shelf was located at an elevation of 𝑧 = 0.71 m with the apex located at       

𝑥 = 12.6 m. The still water shoreline intersected the planar beach at 𝑥 = 27.5 m and 

the water level was maintained at a depth of 0.78 m (𝑧 =0.78 m) measured from the 

constant depth portion of the basin. A 0.45 m high cone with a 3 meter-radius was 

placed on the shelf to enhance vortex formation. The center of the cone was at 

𝑥 = 17.1 m. All these details are illustrated in Figure 4.52. Also, the 3D 

representation of the bathymetry is given in Figure 4.53. 
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Figure 4.53 3D representation of the bathymetry of BMP 3 including the coordinate system 

(Velioglu et al., 2016) 

 

The free surface elevations were measured using two types of wave gauges; the 

resistance-type, wire wave gauges, which were used offshore of the still water 

shoreline, and ultra sonic wave gauges, which were used onshore of the still water 

shoreline. Once the breaking wave reached the still water shoreline, the usWGs were 

used to track the runup on the planar beach. The fluid velocity components, 𝑢, 𝑣 and 

𝑤 , were recorded via three-dimensional Acoustic-Doppler Velocimeters (ADVs). 

The locations of the gauges are listed in Table 4.17. 

 

An initial solitary wave of 0.39 m amplitude propagates over a uniform water depth 

of 0.78 m before transforming over the shelf system and inundating the backshore 

area. Both the incident and receding waves wrap around the cone and the subsequent 

opposing flows provide a vortex generation mechanism. The images in Figures 4.54 

and 4.55 provide a visual explanation of the experiment, which is vital to 

understanding the mechanism of BMP 3. 
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Figure 4.54 Screenshots from the experiment at OSU, available at URL1 (Lynett, 2015)  

 

   
 

   
 

Figure 4.55 Screenshots from the dye study at OSU, available at URL2 

(Lynett, 2015) 
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Table 4.17 BMP 3 gauge locations (NTHMP, 2011) 

 

Gauge ID 𝒙 (m) 𝒚 (m) 𝒛 (m) Comments 

1 7.5 0 – Wave Gauge 

2 13 0 – Wave Gauge 

2
*
 13 0 0.75 

ADV – 3 cm 

below SWL 

3 21 0 – Wave Gauge 

3
*
 21 0 0.77 

ADV – 1 cm 

below SWL 

4 7.5 5 – Wave Gauge 

5 13 5 – Wave Gauge 

6 21 5 – Wave Gauge 

7 25 0 – Wave Gauge 

8 25 5 – Wave Gauge 

9 25 10 – Wave Gauge 

10 21 -5 0.77 
ADV – 1 cm 

below SWL 

 

Even though FLOW-3D
®
 is capable of modeling the action of the generator wave 

paddles via its GMO module, for the sake of consistency between the two models, 

the incident wave is inputted manually. The free surface elevation time series 

recorded at Gauge 1 is defined as the input wave (Figure 4.56). 

 

  

Figure 4.56 The free surface elevation time series recorded at Gauge 1 (NTHMP, 2015) 

 

BMP 3 involves energetic wave breaking; therefore, to perform BMP 3, it is 

necessary to compare the free surface elevations and all velocity components (𝑢, 𝑣 

and 𝑤) recorded throughout the tank. 
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4.3.2. NAMI DANCE Model 

 

The same set of experiments is reproduced in a 2D domain using NAMI DANCE. 

The fluid is inviscid and the flow is incompressible. Fluid density is taken constant 

throughout the fluid domain. The 𝑥  axis of the Cartesian coordinate system is 

perpendicular to the wavemaker and the 𝑦 axis is parallel to the wavemaker (Figure 

4.57). The origin is located at the wavemaker, in line with the front surface of all 

paddles at their rest position. The gravitational force, 𝑔 , is in the downward 

direction. 

 

Figure 4.58 illustrates the 3D view of NAMI DANCE computational domain. 

 

The incident wave, which is the water surface elevation time series recorded at 

Gauge 1, is inputted at the upstream end of the computational domain along 𝑦-

direction (i.e. minimum 𝑥 boundary) where 𝑥 = 7.5 m. The maximum 𝑥 boundary 

has a rigid wall boundary condition, which defines the downstream end of the wave 

tank. The minimum and maximum 𝑦 boundaries are also defined as rigid walls in 

order to prevent outflow from the computational domain. 
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Figure 4.57 NAMI DANCE model: computational domain and the orientation of the 

coordinate system (top view) 

 

 

 
 
 

Figure 4.58 3D top view of NAMI DANCE computational domain for BMP 3  
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4.3.2.1. Spatial Discretization 

 

The computational domain, represented by a structured mesh (i.e. rectangular cells), 

covers the entire length of the flume with grid sizes, Δ𝑥 and Δ𝑦, which are uniform 

throughout the mesh. The previous numerical model validations that used BMP 3 

(ISEC, 2009; NTHMP, 2011) are taken into account in the determination of the grid 

size. It is found that in the recent studies Δ𝑥 = 0.05 m (Alaska Tsunami Model, 

Alaska Tsunami Forecast Model and SELFE) (NTHMP, 2011). After a careful 

analysis, the grid size is selected as 5 cm; i.e. Δ𝑥 = Δ𝑦 = 0.05 m. 

 

The convergence of NAMI DANCE is tested by comparing the free surface profiles 

of the first/leading wave at Gauge 2: (𝑥, 𝑦)= (13 m, 0 m), Gauge 3: (𝑥, 𝑦) = 21 m, 0 

m) and Gauge 7: (𝑥, 𝑦) = (25 m, 0 m) for Δ𝑥 = 0.01 m, Δ𝑥 = 0.05 m, Δ𝑥 = 0.1 m 

and Δ𝑥 = 0.2 m (Figure 4.59). 

 

 

 

 

 

Figure 4.59 NAMI DANCE convergence test at: (a) Gauge 2; (b) Gauge 3; (c) Gauge 7. The 

circles represent the laboratory measurements; the blue, red, orange and green lines represent 

NAMI DANCE results for Δ𝑥 = 0.01 m, Δ𝑥 = 0.05 m, Δ𝑥 = 0.1 m and Δ𝑥 = 0.2 m; 

respectively. 
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The results reveal that the grid size has a minor effect on the predictions for the 

gauges located behind the island, Gauges 3 and 7, where nonlinearity is dominant 

(i.e. there is vorticity). On the other hand, for Gauge 2, which is located in front of 

the island, the effect of spatial resolution is negligible. It can be concluded that since 

most of the hydraulic processes are fairly hydrostatic, simulations with a coarser grid 

of up to Δ𝑥 = 0.2 m still account for the main flow structure and agree reasonably 

with the laboratory data, especially for locations in front of the island. Also, the 

spatial resolution plays a minor role in the flow velocity. 

 

The maximum time step size that fulfills the CFL stability criteria is calculated 

automatically by NAMI DANCE for each run, depending on the bathymetry. 

According to this limitation, time step, Δ𝑡, is selected as 0.001 second for all runs. 

 

4.3.2.2. Friction 

 

Manning’s roughness coefficients that are used to assess the effect of friction are: (i) 

𝑛 = 0 (i.e. frictionless bottom), (ii) 𝑛 = 0.01 (i.e. neat cement/concrete/smooth glass 

beach), (iii)  𝑛 = 0.03 (i.e. fine particles along the channel bottom). 

 

The results reveal that the varying friction is mostly effective at locations behind the 

obstacle. It is felt more at the gauges located farther behind, where smaller friction 

produces results closer to the measured data. The shape and amplitude of the signal is 

well captured and friction has little effect along the line in front of the obstacle (i.e. 

𝑥 = 13 m). Along the lines located behind the obstacle (i.e. 𝑥 = 21 m and 𝑥 = 25 

m), the results show that the value of friction affects the level of agreement of the 

predicted values with the observations. Where the flow depth is small, there are 

significant changes in flow speed due to variations in roughness. It is observed that, 

in general, frictionless bottom or 𝑛 < 0.01 leads to an overestimation of flow speed 

and, in turn, to a small mismatch in the wave amplitude and arrival times at the wave 

gauges. On the other hand, when 𝑛 > 0.03, the flow speed is underestimated (Figure 

4.60). 
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Figure 4.60 NAMI DANCE results according to different Manning’s roughness coefficients: 

(a) leading wave profile at Gauge 2; (b) leading wave profile at Gauge 3; (c) leading wave 

profile at Gauge 7; (d) horizontal velocity component at Gauge 2; (e) horizontal velocity 

component at Gauge 3. The circles represent the laboratory measurements; the red line 

represents the results when 𝑛 = 0; the blue line represents the results when 𝑛 = 0.01; the 

green line represents the results when 𝑛 = 0.03.  

-0,1

0,2

0,5

-0,1

0,2

0,5

-0,1

0,2

0,5

-1,5

0,5

2,5

-1,5

0,5

2,5

4 5 6 7 8 9 10 11 12

𝑡 (sec) 

𝑢
 (

m
/s

ec
) 

𝜂
 (

m
) 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Gauge 2 

Gauge 3 

Gauge 7 

Gauge 2 

Gauge 3 



 

 209 

4.3.3. FLOW-3D
® 

Model 

 

The same set of physical experiments is reproduced using FLOW-3D
®
 (Figure 4.61): 

 

 

 
Figure 4.61 FLOW-3D

® 
computational domain constructed for BMP 3: (a) meshing 

(enlarged for clarity); (b) boundary conditions and gauge locations; (c) after using 

FAVOR™  

(a) 

(b) 

(c) 
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The fluid is inviscid, the flow is incompressible and the fluid density is constant. The 

effects of surface tension and air entrainment at the surface of the flow are neglected. 

The numerical model is constructed using the Cartesian coordinate system, where the 

positive 𝑥 direction is oriented along the fluid flow into the domain and the positive 

𝑦 direction is perpendicular to the direction of the flow, along the wavemaker. The 

gravitational acceleration, 𝑔, is in the downward direction (i.e. – 𝑧 direction). 

 

The pressure boundary condition is used at the minimum 𝑥 boundary. This boundary 

condition allows the user to enter the input data manually, which is the free surface 

elevation time series recorded at Gauge 1, i.e. (𝑥, 𝑦) = (7.5 m, 0 m), in this case. The 

maximum 𝑥 boundary has the wall boundary condition so as to define the end of the 

wave tank. The minimum and maximum 𝑦 boundaries as well as the maximum 𝑧 

boundary feature the symmetrical boundary condition, where all the velocity 

derivatives and velocity components normal to the boundaries are set to zero. The 

wall boundary condition is valid for the minimum 𝑧 boundary, where the bottom of 

the wave flume is defined. 

 

4.3.3.1. Spatial Discretization 

 

The computational domain is represented by an isotropic grid with Δ𝑥 = Δ𝑦 = Δ𝑧 

where the grid size is selected as 0.05 m (Please refer to the explanations in Section 

4.3.2.1). BMP 3 is modeled via FLOW-3D
®
 for different Δ𝑥 values in order to test 

the grid dependency at Gauges 2, 3 and 7 (Figure 4.62). 

 

The numerical resolution has no evident influence on the free surface profiles, even 

in the areas with high vorticity concentration (i.e. Gauges 3 and 7). Still, there is a 

small improvement in the results after ∆𝑥 = 0.1 m. 
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Figure 4.62 FLOW-3D

®
 convergence test at: (a) Gauge 2; (b) Gauge 3; (c) Gauge 7. The 

circles represent the laboratory measurements; the blue, red, orange and green lines represent 

FLOW-3D
®
 results for Δ𝑥 = 0.01 m, Δ𝑥 = 0.05 m, Δ𝑥 = 0.1 m and Δ𝑥 = 0.2 m; 

respectively. 

 

It is also necessary to analyse the effect of the vertical grid size, Δ𝑧, on the free 

surface profiles in a three-dimensional model. Changing the vertical grid size is 

effective in the very shallow zone and in the vicinity of the island. In fact, a fine 

vertical grid size (i.e. ∆𝑧 ≤ 0.1 m) gives results closer to the measured values, with 

Δ𝑥 kept constant. No considerable change is observed after ∆𝑧 = 0.1 m. 

 

The time step, Δ𝑡, is selected as 0.001 second to be consistent with the simulations 

conducted using NAMI DANCE. When variable time stepping is employed in order 

to assess the effect of the time step size, no significant effect is observed. 
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4.3.3.2. Friction 

 

In order to assess the effect of friction on the maximum runup values, different 

Manning’s roughness coefficients are considered: 

(i) 𝑛 = 0 (i.e. frictionless bottom) 

(ii) 𝑛 = 0.01 (i.e. neat cement/concrete/smooth glass beach) 

(iii) 𝑛 = 0.03 (i.e. fine particles along the channel bottom) 

Please refer to Section 4.2.2.2 for the comparison criteria. 

 

The results obtained via FLOW-3D
®

 are similar to those obtained using NAMI 

DANCE. The shape and amplitude of the signal is well captured and friction has 

little effect along the line in front of the obstacle (i.e. 𝑥 = 13 m). Along the lines 

located behind the obstacle (i.e. 𝑥 = 21 m and 𝑥 = 25 m), the results show that the 

value of friction affects the level of agreement of the predicted values with the 

observations (Figure 4.63). 

  



 

 213 

 

 

 

 

 

 

 

 
Figure 4.63 FLOW-3D

®
 results according to different Manning’s roughness coefficients: (a) 

leading wave profile at Gauge 2; (b) leading wave profile at Gauge 3; (c) leading wave 

profile at Gauge 7; (d) horizontal velocity component at Gauge 2; (e) horizontal velocity 

component at Gauge 3. The circles represent the laboratory measurements; the red line 

represents the results when 𝑛 = 0; the blue line represents the results when 𝑛 = 0.01; the 

green line represents the results when 𝑛 = 0.03.  
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4.3.4. Simulation Results 

 

The NAMI DANCE and FLOW-3D
®
 results regarding the wave transformation in 

the shallow zone and in the vicinity of the conical island are given in Figure 4.64. 
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Figure 4.64 The predicted and measured free surface profiles at: (a) Gauge 2; (b) Gauge 3; 

(c) Gauge 7; (d) Gauge 4; (e) Gauge 5; (f) Gauge 6; (g) Gauge 8; (h) Gauge 9. The circles 

represent the laboratory measurements; the red line represents the NAMI DANCE results; 

the green line represents the FLOW-3D
® 

results.  
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The predicted velocity components are given in Figures 4.65 – 4.67.  

 

 

 

 

 

 

Figure 4.65 The predicted and measured velocity components at Gauge 2: (𝑥, 𝑦, 𝑧)=             

(13 m, 0 m, 0.75 m). The circles represent the laboratory measurements; the red line 

represents the NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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Figure 4.66 The predicted and measured velocity components at Gauge 3: (𝑥, 𝑦, 𝑧)=            

(21 m, 0 m, 0.77 m). The circles represent the laboratory measurements; the red line 

represents the NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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Figure 4.67 The predicted and measured velocity components at Gauge 10: (𝑥, 𝑦, 𝑧)=             

(21 m, -5 m, 0.77 m). The circles represent the laboratory measurements; the red line 

represents the NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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Please note that since NAMI DANCE is a depth-averaged model, the vertical 

velocity components are only compared with theFLOW-3D
®
 results. 

 

The computations are terminated after the first reflection of the wave from the island, 

which is 20 seconds. The simulations that are performed via NAMI DANCE are 

completed in approximately 15 hours whereas it takes 2 days to complete the 

simulations using FLOW-3D
®
. 

 

According to the results given in the above figures, it is found that the free surface 

profiles are satisfactorily represented via NAMI DANCE, except for Gauges 3 and 7, 

which are located behind the obstacle. Since NAMI DANCE is a 2D depth-averaged  

model, it fails to capture the strong nonlinearities occuring just behind and a little 

farther behind the island because it predicts steep wave fronts. FLOW-3D
®
, on the 

other hand, accurately describes the evolution and transformation of the wave, as 

well as the complex free surface profiles occuring behind the island. 

 

The maximum cross-shore velocity component, 𝑢, is approximately 5 times larger 

than the maximum longshore velocity component at all three gauges. The reason for 

this may be the focusing of wave energy at the wake of the island. 

 

The results reveal that for the gauges located far behind the obstacle, little time shifts 

are observed for the NAMI DANCE results. At the gauges located at the wake of the 

island, (i.e. 𝑥 =  13.0 m, 𝑦 =  0 m and 𝑥 =  21.0 m, 𝑦 =  0 m), NAMI DANCE 

provides a good fit for the cross-shore velocity component, 𝑢, while the longshore 

velocity component, 𝑣, is not well captured. FLOW-3D
®
 captures the maximum and 

minimum values of all three velocity components. The vertical velocity component is 

also very well predicted for all the gauges. Moreover, no time shift is observed 

between the FLOW-3D
®
 predictions and the laboratory data. 

 

The illustrations of the simulations which are done via NAMI DANCE and FLOW-

3D
®
 are given in Figures 4.68 and 4.69, respectively.  
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Figure 4.68 NAMI DANCE model simulations for BMP 3 (not to scale) 

 

 
 

  

  

 
Figure 4.69 FLOW-3D

®
 model simulations for BMP 3 (not to scale)  
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The NRMSE and MAX errors for the free surface profiles are given in Table 4.18 

and Figure 4.70. 

 
Table 4.18 NRMSE and MAX errors for the free surface profiles 

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

2 8.5 9.7 6.2 6.2 

3 19.2 17.7 7.5 5.0 

4 4.4 7.6 2.8 7.4 

5 10.7 13.2 9.1 5.3 

6 13.8 9.2 9.1 4.7 

7 14.2 9.2 8.6 4.9 

8 15.2 11.9 5.1 3.6 

9 15.9 12.6 9.8 8.4 

 

  
 

Figure 4.70 Error bars for the free surface profiles: (a) % NRMSE; (b) % MAX error. The 

red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 
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The NRMSE and MAX errors for the velocity components are given in Table 4.19 

and Figure 4.71. 

 
Table 4.19 NRMSE and MAX errors for the velocity components 

 

Gauge 
Velocity 

Component 

NAMI DANCE FLOW-3D
®

 

% NRMSE % MAX % NRMSE % MAX 

2 

𝑢 12.0 18.4 9.8 3.3 

𝑣 19.9 34.3 9.7 6.8 

𝑤 NA NA 11.2 9.6 

3 

𝑢 19.5 11.9 9.8 7.6 

𝑣 NA NA 10.7 10.2 

𝑤 NA NA 8.3 10.1 

10 

𝑢 8.5 16.1 11.0 9.3 

𝑣 14.1 23.5 10.7 11.2 

𝑤 NA NA 10.5 9.2 

 

  
 

Figure 4.71 Error bars for the velocity components: (a) % NRMSE; (b) % MAX error. The 

red and green bars represent the errors of NAMI DANCE and FLOW-3D
®
 results, 

respectively. 

9,8 

9,7 

11,2 

9,8 

10,7 

8,3 

11,0 

10,7 

10,5 

12,0 

19,9 

19,5 

8,5 

14,1 

% NRMSE 

3,3 

6,8 

9,6 

7,6 

10,2 

10,1 

9,3 

11,2 

9,2 

18,4 

34,3 

11,9 

16,1 

23,5 

% MAX (a) (b) 

15 25 

G
au

g
es

 

2
:𝑢

  
 2

:𝑣
  
2
:𝑤

  
  
3
:𝑢

  
3
:𝑣

  
3

:𝑤
  
 1

0
:𝑢

 1
0
:𝑣

 1
0
:𝑤

 

2
:𝑢

  
 2

:𝑣
  
2
:𝑤

  
  
3
:𝑢

  
3
:𝑣

  
3
:𝑤

  
 1

0
:𝑢

 1
0
:𝑣

 1
0
:𝑤

 



 

 223 

For the free surface elevation, the NRMSE of the NAMI DANCE results has a wide 

range, which is between 5% and 19%, while the FLOW-3D
®
 results have a much 

narrower NRMSE range, which is between 3% and 9%. The MAX error of the 

NAMI DANCE results ranges from 8% to 18% whereas it is between 4% and 8% for 

the FLOW-3D
®
 results. 

 

It is hard to capture exact solutions of the velocity components due to the uncertainty 

in the nature of the complex flows occuring in shallow shelf zones and in the vicinity 

of obstacles. This is why the standard MAX error threshold for the velocity 

components is increased to 25% for laboratory measurements. 

 

For the cross-shore velocity component, the NAMI DANCE results have an NRMSE 

range between 8% and 12% and a MAX error range between 12% and 18%. The 

NRMSE of the FLOW-3D
®
 results is between 9% and 11% and the MAX error 

ranges from 3% to 9%. For the longshore velocity component, the NAMI DANCE 

results have larger NRMSE and MAX error ranges, which are between 14% and 19% 

and 23% and 34%, respectively. The NRMSE of the FLOW-3D
®
 results is between 

9% and 11% and the MAX error ranges from 6% to 11%. In addition, FLOW-3D
®

 

predicts the vertical velocity component, 𝑤, fairly well, with an NRMSE between 

8% and 11% and a MAX error from 9% to 10%. 

 

The NRMSE and MAX errors of the FLOW-3D
®

 results are within the OAR PMEL-

135 standard error range both for the free surface elevation time series predictions 

and velocity component computations. On the other hand, even though NAMI 

DANCE predicts the evolution of the wave satisfactorily before and immediately 

after it reaches the shallow water zone, especially for the gauges located behind the 

obstacle, the errors exceed the threshold values. Multiple borefronts and reflected 

waves develop on the shelf due to the interaction of flow with the bathymetry; 

therefore, an NRMSE threshold up to 20% is acceptable for this specific case. 
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To sum up, BMP 3 investigates the interactions between a breaking solitary wave 

and a 3D shallow water shelf with a conical island located at the offshore point of the 

shelf. The two- and three-dimensional models, NAMI DANCE and FLOW-3D
®
, are 

tested against a set of laboratory measurements that include tsunami wave 

transformation, wave reflection and edge wave formation. 

 

BMP 3 involves energetic breaking waves with overtopping, vortex formation and 

runup, where the free surface and velocity data measurements are compared with the 

numerical predictions. In the experiment, the solitary wave breaks at the apex of the 

reef flat at 𝑡 =  5.1 sec and the resulting surge completely overtops the cone at       

𝑡 = 6.6 sec. The refracted waves from the two sides of the cone and the diffracted 

waves converge in the back at 𝑡 = 8.6 sec. While the refracted waves continue to 

wrap around as trapped waves, the diffracted waves radiate from the back of the 

cone. Both models satisfactorily reproduce the recorded surface elevations in front of 

the cone and the collapse of the bore behind the cone. 

 

The time segment used for the analyses includes the propagation and transformation 

of the incident wave as well as its overtopping the island. In both models, 

simulations are forced with the free surface elevation time series measured at Gauge 

1 through the left boundary at 𝑥 = 7.5 m for the sake of consistency. For the three-

dimensional model predictions, free surface elevation and velocity data show very 

good agreement at all the gauges with no delay in the arrival times. However, the 

depth-averaged model, NAMI DANCE, shows small time delays at the gauges 

located behind the island with some differences. To illustrate, even though Gauges 7 

and 8 are located at equal distances from the obstacle, the time delay at Gauge 8 is 

less than the one observed at Gauge 7, which is closer to the island. The reason for 

the time delays may be the mislocation of the gauge points in the model due to the 

gridding method or the nonlinearity of the flow. 
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In order to analyse the effect of grid size, computations are performed with grid 

resolutions varying from 0.01 m to 0.2 m, the time increment being 0.001 sec, and 

the roughness coefficient 𝑛 = 0.01. The results reveal that grid spacing has minimal 

effect on the overall free surface elevation and flow velocity time series. Both 

models show little grid sensitivity. 

 

Variations in roughness can lead to significant changes in flow speed over the 

bathymetries where the flow depth is small. It is found that, in general, 𝑛 < 0.01 

leads to a slight overestimation of the flow speed and subsequently to a small 

mismatch in the wave amplitudes and phase at the wave gauges. With 𝑛 ≥ 0.03, the 

flow speed is underestimated and fairly large lags in the wave arival times are 

observed, especially for the gauges located in the wake of and far behind the island. 

 

NAMI DANCE underestimates the propagation speed of the wave and somewhat 

misrepresents the waveform, especially behind the obstacle, on the centerline. It is 

important to note that strong turbulence and nonlinearities occur at the wake of the 

island and the flow condition on the centerline is chaotic. Therefore, no reasonable 

match can be expected with depth-averaged models regarding the velocity 

components at this location. Discrepancies occur at the two gauges immediately 

behind the island because NAMI DANCE can not capture the three-dimensional 

turbulent flow that occurs due to the overtopping of the island. The modeled flow 

components at the off-center location agree well with the observations. 

 

Overall, both model results agree well with the observations for the points located in 

front of the obstacle, including where the process of breaking starts. However, the 

exact arrival time and shape are not well captured by the depth-averaged model, 

getting a much better agreement for the three-dimensional model. FLOW-3D
®

 

predicts the cross-shore velocity components reasonably well with no mismatch in 

the phase as well as the longshore velocity components, which are an order of 

magnitude smaller. 
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The results reveal that the depth-averaged model predicts the wave amplitude nearly 

10% less prior to wave breaking. Moreover, even though the cross-shore velocity 

component, 𝑢, is predicted satisfactorily at the tip of the triangular shelf (i.e. Gauge 

2) and at the gauge point located far away from the island (i.e. Gauge 10), it is 20% 

less than the measured one at the gauge located in the wake of the island (i.e. Gauge 

3). The 2D depth-averaged NSW equations are not capable of reflecting strong 

nonlinearities in the flow. Therefore, 3D-RANS equations are required to adequately 

resolve the initial wavelength and to prevent the wave front from steepening prior to 

island impact. In other words, even though NSW equations are capable of estimating 

the major features of propagation, refraction, and runup observed in the laboratory 

experiments for small and/or medium amplitude waves, three-dimensional models 

should be preferred when large amplitude waves are studied in the areas featuring 

strong nonlinearities. 

 

BMP 3 provides both insight into long wave evolution over shallow bathymetry and 

a unique 3D data set to validate and calibrate numerical models. While extrapolations 

to geophysical-scale events, such as tsunamis, need to be done with great caution, it 

is still possible to draw a few relevant conclusions from this experiment. While it is 

generally accepted that long wave runup is a primary function of the upper beach 

slope (Synolakis, 1987), shallow offshore bathymetry can also play a major, and 

possibly counterintuitive, role in inundation. When considering processes dominated 

by turbulent dynamics, such as mixing and transport, this experiment indicates that 

the turbulence created through borefronts and spatial velocity gradients is massive 

compared to that generated through bottom stress (Lynett et al., 2010).  



 

 227 

4.4. BMP 4: Tsunami Runup onto a Complex 3D Beach: Monai Valley 

 

4.4.1. Problem Description 

 

A 7.7 Mw earthquake occurred west of Hokkaidō, Japan on July 12, 1993 at 13:17 

GMT (Figures 4.72 and 4.73). The massive tsunami it triggered affected Hokkaidō 

and southeastern Russia, as well as the countries that have coasts on the Sea of Japan. 

The death toll was 230 and there was substantial physical damage. 165 of the 

casualties were from the island of Okushiri, which was devastated by the earthquake, 

the tsunami and a large landslide. The damage caused by the earthquake was not very 

severe; yet, the tsunami destroyed an entire coastal community on Okushiri Island 

before it hit the west coast of Hokkaidō. A tsunami warning was issued by the Japan 

Meteorological Agency (JMA) 5 minutes after the earthquake but it was too late 

because the tsunami struck Okushiri Island between 2 – 7 minutes after the quake. 

The total damage became even greater because of the fires in the town of Okushiri. 

The whole town sank lower by 5 – 80 centimeters. 

 

 
 

Figure 4.72 1993 southwest-off Hokkaidō earthquake (Credit: Wikipedia) 
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Figure 4.73 Bathymetry and topography of the region affected by the 1993 Hokkaidō 

Nansei‐ Oki tsunami. The red dot represents the earthquake epicenter (NTHMP, 2011). 

 

The tsunami defences on Okushiri were overhauled by the destructive power of the 

tsunami and large parts of the island were inundated. 

 

A maximum runup exceeding 20 meters (Figure 4.74) was measured in a number of 

locations on the west side of the Okushiri Island, but what made this tsunami 

remarkable was the maximum runup height of 31.7 m measured at the bottom of the 

Monai Valley, which opens onto a small pocket beach. It was reported that a large 

tsunami wave hit the valley after an initial withdrawal of the water, resulting in the 

extreme runup. The scale of the damage is illustrated in Figure 4.75. 
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Figure 4.74 The distribution of runup heights around Monai (Shuto, 1994) 

 

  

  

 
Figure 4.75 (a) Waves overtopped roadway, west coast of Okushiri Island; (b) Monai after 

the tsunami with debris in the foreground, including a broken steel reinforced concrete utility 

pole. This small valley leading to the ocean experienced a spectacular runup of 31.7 m; (c) 

damage at Monai; (d) debris line at Monai (Credit: NOAA/NGDC, Commander Dennis J. 

Sigrist. International Tsunami Information Center) 

(a) (b) 

(c) (d) 
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Shuto and Matsutomi (1995) and Takahashi et al. (1995) conducted a field survey 

and a numerical model study after the event. The Hokkaidō Tsunami Survey Group 

(1993) studied the impacts and characteristics of the earthquake and tsunami, 

including runup, ground deformation, arrival time, and structural damage (Shuto and 

Matsutomi, 1995). The Disaster Control Research Center (DCRC) in Tōhoku 

University investigated the focal mechanism and derived a set of fault parameters 

(DCRC-17a) summarized in Table 4.20 that produces overall good agreement with 

recorded runup and bottom deformation (Takahashi et al., 1995). DCRC provided the 

measured runup, recorded tide gauge data, initial deformation, and digitized 

bathymetry from nautical charts as a field benchmark for tsunami models 

(Takahashi, 1996). 

 

Table 4.20 Fault parameters of DRC-17a (Takahashi et al., 1995) 

 

No 
Length 

(km) 

Width 

(km) 

Strike 

Angle 

(
0
) 

Dip 

Angle 

(
0
) 

Rake 

Angle 

(
0
) 

Slip 

(m) 

Depth 

(km) 

Lat. 

(
0
N) 

Long. 

(
0
E) 

1 90 25 188 35 105
*
 5.71 10 43.13 139.40 

2 30 25 175 60 80
*
 2.50 5 42.34 139.25 

3 24.5 25 163 60 80
*
 12.00 5 42.10 139.30 

 

* 
Modifications based on the initial deformation profile of Takahashi et al. (1995). 

 

The Hokkaidō Nansei-Oki tsunami of 1993 that struck Okushiri Island, Japan, with 

an extreme runup height of 31.7 m and currents of the order of 10-18 m/sec was a 

disaster, but its upside was that it provided high-quality data for tsunami researchers. 

The extreme tsunami runup mark was discovered at the tip of a very narrow gully 

within a small cove at Monai. When the high resolution seafloor bathymetry that 

existed before the event and the bathymetric surveys following the event were 

coupled, it was possible to make meaningful identification of the seafloor 

deformation. Thus, a laboratory benchmark based on the characteristics of the Monai 

Valley and the tsunami wave that struck the region could be designed. The 

benchmark case was used in the 2004 Catalina Island, Los Angeles, California NSF 

Long-Wave Runup Models Workshop (Liu et al., 2008). 
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Matsuyama and Tanaka (2001) carried out a laboratory study at the Central Research 

Institute for Electric Power Industry (CRIEPI) to investigate the 31.7 m runup in 

Monai zone during the 1993 Hokkaidō Nansei-Oki earthquake tsunami. 

 

The CRIEPI wave flume is 3.4 m wide, 205 m long and 6 m deep in the 115 m-long 

generator-side flat section (Figure 4.76). It is equipped with a hydraulic, piston-type 

wavemaker capable of generating N-waves. The driving system is elecro-hydraulic 

servo actuators. 

 

 

 

 

 

 

Figure 4.76 CRIEPI wave flume: (a) photographs taken at site (Credit: Central Research 

Institute for Electric Power Industry); (b) schematic drawing (Matsuyama and Tanaka, 2001) 

 

The area, which was reproduced in the flume, was selected to be a rectangular area 

enclosed by the red line shown in Figure 4.77. 

(a) 

(b) 
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Figure 4.77 Google Earth image of the area around Monai. The region bordered by the red 

line represents the reproduced area in the CRIEPI wave flume (Matsuyama and Tanaka, 

2001). 

 

Based on the high resolution seafloor bathymetry that existed before the event, the 

1:400 scale model of Monai zone was set in the flume with no distortion. The model 

included a small, curved pocket beach, which was 200 m long (Figure 4.78). The two 

valleys behind the pocket beach were also idealized. The maximum runup height was 

recorded in the south (right) valley. 

 

Contour lines were drawn at every 3.6 m ground height on the model. Also, in order 

to check its effect, Muen Island was imitated by a wooden column, which was 

removable. In the flume, there was no land except Muen Island and the pocket beach. 

The maximum water depth in the flume was 4.0 m. 
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Figure 4.78 (a) the bathymetry of the whole model area and the detailed topography of the 

area where the maximum runup was observed; (b) the scaled offshore profile of the model 

(Matsuyama and Tanaka, 2001) 

(a) 

(b) 
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The model was constructed of 9 mm-thick painted plywood and installed 

approximately 140 m from the wavemaker (Figure 4.79). 

 

 
 

Figure 4.79 The partly-shown topographic profile of the 1:400 scale model around Monai 

(Matsuyama and Tanaka, 2001) 

 

The incoming wave in the experiment was created by wave paddles located away 

from the shoreline.  

 

Matsuyama and Tanaka (2001) satisfactorily reproduced the effects of 1993 

Hokkaidō Nansei-Oki tsunami on the Monai zone in the CRIEPI wave flume. They 

succeeded in reproducing the distribution of the tsunami runup heights, including the 

maximum one (31.7 m), around Monai. They found that Muen Island did not have 

much influence on the tsunami propagation and runup in the shallow sea (i.e. less 

than 20 m depth) so it did not serve as a shelter for the waves to diffract. 

 

The induced water level dynamics were measured by capacitance-type wave gauges. 

At the same time, by using normal and high-speed digital video cameras, recordings 

were made from several angles (Figure 4.80). 
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Figure 4.80 General view of the model: (a) before tsunami; (b) just before the wave reaches 

the highest point. The partly-shown topographic profile of the 1:400 scale model around 

Monai: (c) before runup; (d) during the flooding of the pocket beach; (e) during the flooding 

of the south valley; (f) during the highest runup; (g) a closer snapshot of the highest runup 

(Matsuyama and Tanaka, 2001) 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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Figure 4.81 and Table 4.21 show the runup measurements along transects at         

𝑦 = 2.2062 m, 𝑦 = 2.32 m and 𝑦 = 1.88 m – where the maximum runup value was 

measured from a series of tests in the laboratory experiment of Matsuyama and 

Tanaka (2001). 

 

Table 4.21 Recorded runup for the six trials (Matsuyama and Tanaka, 2001) 

 

Trial No. 
𝑹𝒎𝒂𝒙 (cm) 

(Full scale in m) 

𝒚 = 2.2062 m  

𝑹 (cm) (Full scale in m) 

𝒚 = 2.32 m  

𝑹 (cm) (Full scale in m) 

209_105 8.75 (35.0) 5.25 (21.0) 5.25 (21.0) 

209_106 9.00 (36.0) 5.75 (23.0) 5.50 (22.0) 

209_107 8.00 (32.0) 5.50 (22.0) 5.50 (22.0) 

209_101 9.00 (36.0) 6.50 (26.0) 5.75 (23.0) 

209_102 10.00 (40.0) 6.75 (27.0) 5.75 (23.0) 

209_103 9.00 (36.0) 6.50 (26.0) 5.75 (23.0) 

Mean 8.97 (35.8) 6.04 (24.2) 5.58 (22.3) 

 

 

 
Figure 4.81 Recorded runup for the six trials (Matsuyama and Tanaka, 2001) 
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As stated previously, the experiment carried out by Matsuyama and Tanaka (2001) 

has been used as a benchmark problem to validate tsunami models. The features of 

the numerical design of this experiment are given below. 

 

The computational domain represents a 5.488 m by 3.402 m portion of the wave tank 

near the shore and is divided into 0.014 m x 0.014 m grid cells. In other words, the 

recommended grid size for numerical simulations is ∆𝑥 =1.4 cm. Moreover, the 

recommended time step size, ∆𝑡 , is 0.05 sec. The boundary conditions along 

segments 𝑦 = 0 m, 𝑦 = 3.4 m, and 𝑥 = 5.5 m are to be set completely reflective. The 

complete time histories of the free surface elevations are provided at three locations, 

Gauges 5, 7 and 9, i.e., (𝑥, 𝑦) = (4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in 

meters, respectively (Figure 4.82). The measurements are provided with the courtesy 

of the Third International Workshop on Long-Wave Runup Models (Liu et al., 2008). 

 

 

 
 

 
Figure 4.82 The computational domain: (a) top view (Synolakis et al., 2008); (b) 3D view 

(ISEC, 2004). Locations of the gauges, at which the modeled and measured water level 

dynamics are compared, are shown by arrows. 

 

The free surface elevation time series of the incident wave at the water depth 13.5 cm 

is known. The initial wave, which is a LDN wave, has a leading-depression height of 

2.5 mm and a crest of 1.6 cm behind it (Figure 4.83). The input data only covers 22.5 

seconds. 

(a) (b) 
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Figure 4.83 Incident wave profile of BMP 4 

 

The primary theme of this benchmark problem is the temporal and spatial variations 

of the shoreline location, as well as the temporal variations of the free surface at the 

specified nearshore locations. Matsuyama and Tanaka (2001) installed an overhead 

video camera that focused on the narrow gully, where the highest runup was 

observed. The frames obtained from this camera are also used to support the 

comparison of the numerical and laboratory data. Since the video has the frequency 

of 30 frames per second, it is possible to select frames that are 0.5 seconds apart. The 

lateral extent of the video frames approximately correspond to the region           

4.7 ≤ 𝑥 ≤ 5.2  and 1.5 ≤ 𝑦 ≤ 2.2  of the computational domain. Frame 10 

approximately occurs at 15.3 seconds (LeVeque, 2011). 

 

To acomplish BMP 4, the propagation of the incident and reflective wave in the 

laboratory is to be compared with the numerical predictions. The numerical and 

experimental data of the water level dynamics at Gauges 5, 7, and 9 are to be 

compared. The maximum runup in the narrow valley is also to be computed by the 

numerical models. Finally, the snapshots of the numerically computed water level at 

times synchronous with those of the video frames are to be shown. The times of the 

snapshots that best fit the data should be found (LeVeque, 2011). 
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4.4.2. NAMI DANCE Model 

 

The experimental setup of Matsuyama and Tanaka (2001) is reproduced in a 2D 

domain using NAMI DANCE. The fluid is inviscid and the flow is incompressible. 

Fluid density is taken constant throughout the fluid domain. The 𝑥  axis of the 

Cartesian coordinate system is perpendicular to the wavemaker and the 𝑦  axis is 

parallel to the wavemaker (Figure 4.84). The gravitational force, 𝑔 , is in the 

downward direction. Moreover, the 3D view of NAMI DANCE computational 

domain is illustrated in Figure 4.85. 

 

The incident wave, which is recorded at a water depth of 13.5 cm, is inputted at the 

upstream end of the computational domain along 𝑦 -direction (i.e. minimum 𝑥 

boundary) where  𝑥 = 0  m. The maximum 𝑥  boundary has a rigid wall boundary 

condition, which defines the downstream end of the wave tank. The minimum and 

maximum 𝑦 boundaries are also defined as rigid walls in order to prevent outflow 

from the computational domain.  
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Figure 4.84 NAMI DANCE model: computational domain and the coordinate system 

 

 

 
 
 

Figure 4.85 3D top view of NAMI DANCE computational domain for BMP 4  



 

 241 

4.4.2.1. Spatial Discretization 

 

The computations were performed with a grid of 393 x 244 nodes at 1.4 cm spacing 

(i.e. Δ𝑥 = Δ𝑦 = 0.014  m), covering the region of 5.488 m x 3.402 m as 

recommended (NTHMP, 2011). However, the convergence of NAMI DANCE is 

tested in order to see whether there are better resolution options or not. The runup 

measurements along the transects at 𝑦 = 1.88 m – where the maximum runup was 

recorded, 𝑦 =  2.2062 m and 𝑦 =  2.32 m are compared for Δ𝑥 =  0.007 m,           

Δ𝑥 = 0.014 m, Δ𝑥 = 0.028 m and Δ𝑥 = 0.056 m (Table 4.22). 

 

Table 4.22 NAMI DANCE: Predicted runup values on the pocket beach for different Δ𝑥 

values (𝑛 =0.012) 

 

Grid Size 

𝜟𝒙 (m) 

Maximum Runup (cm) 

𝒚 = 1.88 m 𝒚 = 2.2062 m 𝒚 = 2.32 m 

0.007 8.70 5.10 5.00 

0.014 8.70 5.10 5.00 

0.028 8.65 5.00 4.95 

0.056 8.10 4.70 4.60 

 

The results reveal that the grid size has a negligible effect on the runup predictions 

up to Δ𝑥 = 0.028  m. The model predictions are in good agreement with the 

laboratory data. Matsuyama and Tanaka (2001) measured the average runup values 

along the transects 𝑦 = 2.2062  m and 𝑦 = 2.32  m as 6.04 cm and 5.58 cm, 

respectively. Also, the average maximum runup is measured as 8.97 cm. It is found 

that a much coarser grid size (i.e. Δ𝑥 ≥ 0.028 m) may lead to unreasonable runup 

values. 

 

The time step, Δ𝑡, is selected as 0.05 second as recommended for BMP 4. Different 

time steps are also tested; however, no significant change is observed in the 

numerical predictions. 
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4.4.2.2. Friction 

 

The Manning’s coefficient 𝑛 = 0.012 indicates the surface roughness of the painted 

plywood relief model (Chaudhry, 1993). Therefore, in order to reflect real laboratory 

conditions as much as possible, the Manning’s coefficient is selected as 0.012 for the 

numerical simulations. However, it is still necessary to test the effect of friction in 

order to assess its importance in inundation. Manning’s roughness coefficients used 

to assess the effect of friction on the maximum runup values are: (i) 𝑛 = 0 (i.e. 

frictionless bottom), (ii) 𝑛 = 0.012 (i.e. painted plywood), (iii)  𝑛 = 0.03 (i.e. very 

rough surface) (Table 4.23). The results are compared along the transects at 𝑦 = 1.88 

m – where the maximum runup was recorded, 𝑦 = 2.2062 m and 𝑦 = 2.32 m. 

 

Table 4.23 NAMI DANCE: Predicted runup values on the pocket beach for different 

Manning’s roughness coefficients 

 

𝑛 
Maximum Runup (cm) 

𝒚 = 1.88 m 𝒚 = 2.2062 m 𝒚 = 2.32 m 

No Friction 8.75 5.25 5.15 

0.012 8.70 5.10 5.00 

0.030 8.00 4.50 4.45 

 

The results reveal that the effect of varying friction is only felt during the inundation, 

as expected. It is found that the predicted runup values are slightly larger on a 

frictionless bottom, whereas when 𝑛 = 0.03 , lower runup values are computed, 

which are approximately 10 – 15% less than the laboratory measurements. These 

results indicate that friction plays an important role in the predicted runup values and 

𝑛 = 0.012 is a good choice for the simulations.  
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4.4.3. FLOW-3D
® 

Model 

 

The same physical experiment is reproduced using FLOW-3D
® 

in a 3D domain, 

throughout which the fluid is inviscid, the flow is incompressible and the fluid 

density is constant. The effects of surface tension and air entrainment at the surface 

of the flow are neglected. 

 

The numerical model is constructed using the Cartesian coordinate system, where the 

positive 𝑥 direction is oriented along the fluid flow into the domain and the positive 

𝑦 direction is perpendicular to the direction of the flow, along the wavemaker. The 

gravitational acceleration, 𝑔, is in the downward direction (i.e. – 𝑧 direction). 

 

The pressure boundary condition is defined and applied at the minimum 𝑥 boundary. 

This boundary condition allows the user to enter the input data manually, which is 

the free surface elevation time series recorded at 𝑑 = 13.5 cm. The maximum 𝑥 

boundary has the wall boundary condition so as to define the end of the wave tank. 

The minimum and maximum 𝑦 boundaries feature the wall boundary condition since 

reflective boundaries are needed for this benchmark problem. The wall boundary 

condition is also valid for the minimum 𝑧 boundary where the bottom of the wave 

flume is defined. The symmetrical boundary condition, where all the velocity 

derivatives and velocity components normal to the boundaries are set to zero, is 

applied at the maximum 𝑧 boundary (Figure 4.86). 
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Figure 4.86 FLOW-3D
® 

computational domain constructed for BMP 4: (a) meshing 

(enlarged for clarity); (b) boundary conditions and gauge locations; (c) after using 

FAVOR™ 

(a) 

(b) 

(c) 



 

 245 

4.4.3.1. Spatial Discretization 

 

The computational domain is represented by an isotropic grid with Δ𝑥 = Δ𝑦 = Δ𝑧 

where the grid size is selected as 0.014 m (Please refer to the explanations in Section 

4.4.2.1). BMP 4 is modeled via FLOW-3D
®
 for different Δ𝑥 values in order to test 

the grid dependency of the runup values along the transects at 𝑦 = 1.88 m – where 

the maximum runup was recorded, 𝑦 = 2.2062 m and 𝑦 = 2.32 m are compared 

(Table 4.24). 

 
Table 4.24 FLOW-3D

®
: Predicted runup values on the pocket beach for different Δ𝑥 values 

(𝑛 =0.012) 

 

Grid Size 

𝜟𝒙 (m) 

Maximum Runup (cm) 

𝒚 = 1.88 m 𝒚 = 2.2062 m 𝒚 = 2.32 m 

0.007 8.95 5.20 5.10 

0.014 8.95 5.20 5.10 

0.028 8.90 5.00 5.10 

0.056 8.50 4.90 4.85 

 

The numerical resolution is not effective up to Δ𝑥 = 0.028 m. There is considerable 

improvement in the results for Δ𝑥 ≤ 0.028 m. The model predictions are in good 

agreement with the laboratory data. Matsuyama and Tanaka (2001) measured the 

average runup values along the transects 𝑦 = 2.2062 m and 𝑦 = 2.32 m as 6.04 cm 

and 5.58 cm, respectively. Also, the average maximum runup is measured as 8.97 

cm. It is found that unreasonable runup values may be obtained when the grid size is 

increased. 

 

It is also necessary to analyse the effect of the vertical grid size, Δ𝑧, on runup values 

in a three-dimensional model. It is found that changing the vertical grid size does not 

have a significant effect on the predicted runup values for Δ𝑧 ≤ 0.028 m with Δ𝑥 

kept constant. For larger Δ𝑧 values, unreliable runup values are obtained since the 

valley geometry can not be defined very well for very coarse Δ𝑧 values. 
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The time step, Δ𝑡, is selected as 0.05 second as recommended. When variable time 

stepping is employed in order to assess the effect of the time step size, no significant 

effect is observed. 

 

4.4.3.2. Friction 

 

In order to assess the effect of friction on the maximum runup values, different 

Manning’s roughness coefficients are considered: (i) 𝑛 = 0 (i.e. frictionless bottom), 

(ii) 𝑛 = 0.012 (i.e. painted plywood), (iii)  𝑛 = 0.03 (i.e. very rough surface) (Table 

4.25). The results are compared along the transects at 𝑦 =  1.88 m – where the 

maximum runup was recorded, 𝑦 = 2.2062 m and 𝑦 = 2.32 m. 

 

Table 4.25 FLOW-3D
®
: Predicted runup values on the pocket beach for different Manning’s 

roughness coefficients 

 

𝑛 
Maximum Runup (cm) 

𝒚 = 1.88 m 𝒚 = 2.2062 m 𝒚 = 2.32 m 

No Friction 8.95 5.25 5.10 

0.012 8.95 5.20 5.10 

0.030 8.10 4.95 4.85 

 

The results obtained via FLOW-3D
®

 are similar to those obtained using NAMI 

DANCE. The effect of varying friction is only felt during the inundation and the 

predicted runup values are slightly larger on a frictionless bottom. When 𝑛 = 0.03, 

the predicted runup values are ~10% less than the laboratory measurements. 
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4.4.4. Simulation Results 

 

The estimated extreme values of the 10-18 m/sec overland flow velocities and the 

31.7 m-high wave runup generated by the 1993 Hokkaidō Nansei-Oki earthquake 

were the largest recorded in Japan in the 20
th

 century (Shuto and Matsutomi, 1995) 

and are still in the category of the highest values that have ever been documented for 

non-landslide generated tsunamis. 

 

BMP 4 is applied to confirm the estimated overland flow velocities and extreme 

runup measured in the narrow gully in the Monai zone, and it is found that both the 

2D depth-averaged NSW model, NAMI DANCE, and the 3D-RANS model, FLOW-

3D
®
, predict nearshore wave profiles and tsunami inundation levels satisfactorily. 

Both models have the ability to handle runup processes over complex nearshore 

bathymetry and topography. 

 

Numerical simulations are conducted using a computer with 16-core central 

processing units (CPUs). The computations are terminated after the first reflection of 

the wave from the coast, which is 50 seconds. The simulations that are performed via 

NAMI DANCE are completed in approximately 3 hours whereas it takes 3 days to 

complete the simulations using FLOW-3D
®
. 

 

The NAMI DANCE and FLOW-3D
®
 results regarding the wave transformation in 

the shallow zone, i.e. at Gauges 5, 7 and 9, where (𝑥, 𝑦) = (4.521 m, 1.196 m), 

(4.521 m, 1.696 m) and (4.521 m, 2.196 m), are given in Figure 4.87. 

 

The predicted free surface elevations are in good agreement with the laboratory 

measurements at the three gauges located behind the island. The models reproduce 

the small amplitude waves generated by reflection from the coast. The minor phase 

lags in the reflected waves are likely due to errors in the laboratory experiment. 

Similar results are also obtained in the previous applications (ISEC, 2004; NTHMP, 

2011). 



 

 248 

 

 

 

 

 
Figure 4.87 The predicted and measured free surface profiles at: (a) Gauge 5; (b) Gauge 7; 

(c) Gauge 9. The black line represents the laboratory measurements; the red line represents 

the NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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Figure 4.88 compares the movie frames that are extracted from the overhead camera 

used during the laboratory experiments with the results of numerical simulations. 

The frames are 0.5 second apart and focused on the narrow gully where the highest 

runup is observed. The actual shoreline location is ambiguous in the movie. 

Therefore, the dashed yellow lines on the frames are provided as part of the 

benchmark specification and show the approximate shoreline (LeVeque, 2011).  
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Figure 4.88 (a) Frames 10, 25, 40, 55, and 70 from the overhead movie of the laboratory 

experiment (Liu et al., 2008; NTHMP, 2011); (b) snapshots of the NAMI DANCE 

simulation at the time intervals corresponding to the movie frames; (c) snapshots of the 

FLOW-3D
® 

 simulation at the time intervals corresponding to the movie frames  

(c) (b) (a) 
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Twelve isolines are drawn with a 1 cm interval from the original shoreline to a land 

elevation of up to 11 cm. The first snapshot, supposedly corresponding to Frame 10 

of the video recording, occurs at 15.3 sec (LeVeque, 2011). Reasonably good 

agreement is found starting at 15.0 seconds for Frame 1 and then taking 0.5 second 

increments for both models. Side-by-side comparison with the series of frames 

reveals that both models simulate the case satisfactorily throughout the domain, 

especially where the maximum runup occurred. The maximum runup height in the 

narrow gully is computed as 8.70 cm via NAMI DANCE and as 8.95 cm via FLOW-

3D
®
. These values are comparable with the laboratory (8.97 cm) and field data (31.7 

m). 

 

The runup and inundation comparisons of the NAMI DANCE and FLOW-3D
®

 

results are shown in Figure 4.89. 

 

 
 

Figure 4.89 Runup and inundation comparisons: (a) runup; (b) inundation. The circles 

represent the laboratory data of Matsuyama and Tanaka (2001); the red line represents the 

NAMI DANCE results; the green line represents the FLOW-3D
® 

results.  
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While both models were able to simulate the runup values sufficiently, the extreme 

runup prediction made by FLOW-3D
®
 was the closest to the laboratory 

measurements. 

 

The role of the vertical velocity component, 𝑤, in the extreme runup is also analysed 

via FLOW-3D
®
 (Figure 4.90). 

 

 
 

Figure 4.90 Evolution of vertical velocity component, 𝑤, at: (a) 𝑡 = 15.5 sec; 

 (b) 𝑡 = 16.0 sec; (c) 𝑡 = 16.5 sec; (d) 𝑡 = 17.0 sec (not to scale) 

 

Figure 4.90 shows that the vertical velocity component gets extremely large, up to    

15 cm/sec, on the steep slopes of the Monai Valley in comparison to the horizontal 

velocity component. This value corresponds to 3 m/sec in the prototype scale. 

Moreover, previous studies revealed that the vertical velocity of the backwash water 

gets as large as 10 cm/sec in the laboratory scale (2 m/sec in the prototype scale). 

This illustrates the significance of vertical velocity component during runup on very 

steep slopes. In fact, most of the damage is attributed to the large current velocities 

occuring during the inudation process. Therefore, non-hydrostatic effects should be 

considered significant, especially for steep coasts. 
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The NRMSE and MAX errors for the free surface dynamics recorded at three 

gauges, Gauges 5, 7 and 9, are given in Table 4.26 and Figure 4.91. 

 
Table 4.26 NRMSE and MAX errors for BMP 4 

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

5 7.1 4.2 6.5 2.7 

7 7.5 4.3 5.8 1.3 

9 7.7 0.7 6.0 0.5 

 

  
 

Figure 4.91 Error bars for BMP 4: (a) % NRMSE; (b) % MAX error. The red and green bars 

represent the errors of NAMI DANCE and FLOW-3D
®
 results, respectively. 

 

The NRMSE of the NAMI DANCE results is around 7% while the MAX error 

ranges from 1% to 4%. The FLOW-3D
®

 results have an NRMSE around 6% and a 

MAX error range between 0.5% and 3%. The errors are within the OAR PMEL-135 

standard error range. It can be concluded that both models satisfactorily predict the 

evolution and transformation of the initial wave.  

 

The percentage difference between the measured and predicted values of the extreme 

runup is 2% and 0.2% for the NAMI DANCE and FLOW-3D
®
 results, respectively. 

6,5 

5,8 

6,0 

7,1 

7,5 

7,7 

% NRMSE 

2,7 

1,3 

0,5 

4,2 

4,3 

0,7 

% MAX (a) (b) 

15 10 

G
au

g
es

 

5
 

7
 

9
 

5
 

7
 

9
 



 

 254 

To sum up, the calculation of three-dimensional tsunami inundation flow is crucial to 

hazard mitigation planning; however, for giant tsunamis, it is still an extremely 

challenging task. Yet, large-scale laboratory experiments (Titov and Synolakis, 1993; 

Yeh et al., 1994; Liu et al., 1995; Briggs et al., 1995) have provided valuable data 

regarding the validation of tsunami models and understanding the physics behind 

giant tsunamis. The Hokkaidō Nansei-Oki earthquake of July 12, 1993 was also like 

a large-scale experiment because it allowed the measurement of high-quality runup 

data and the inference of fairly unambiguous ground deformation contours. The 

proximity of the earthquake to seismic instrument arrays in a locale where high-

resolution bathymetry and topography data exist made this task possible (Titov and 

Synolakis, 1997). 

 

BMP 4 is employed to investigate the propagation and inundation of a tsunami wave 

over a complex 3D beach. It provides data that are fairly well specified, and is able to 

represent a reasonable physical tsunami problem because it is designed by scaling 

down a physical problem. Thus, BMP 4 is a good test for tsunami models. It has been 

commonly used for the validation of tsunami numerical models and many models 

have been shown to give results that agree quite well with the laboratory 

measurements (NTHMP, 2011). The two- and three-dimensional models, NAMI 

DANCE and FLOW-3D
®
, are tested against the laboratory measurements that 

include tsunami wave transformation over the complex bathymetry and wave 

reflection from the coast. Not only are point-wise comparisons made at the gauges, 

but also the snapshots of the computed and observed water height of the whole 

domain are plotted. 

 

The results reveal that the recommended grid size, Δ𝑥 = 0.014 m, and time step, 

Δ𝑡 = 0.05 sec, are sufficient to simulate BMP 4. Both NAMI DANCE and FLOW-

3D
®
 reproduce the overall flow and inundation patterns in fully hydrostatic and non-

breaking events considerably well and produce similar results to the previous studies. 

Both models are able to capture the rapid sequence of runup and rundown. However, 

NAMI DANCE predicts the amplitude of the waves reflected from the coast 20% - 
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30% less than the values measured in the laboratory. The reason for this may be that 

flow conditions are not fully hydrostatic after the wave is reflected from the coast 

and thus 2D depth-averaged NSW equations are not sufficient to describe all the flow 

conditions after the reflection. Therefore, even though the results are reassuring with 

regard to the validity of NSW equations for real tsunamis, for regions where wave 

characteristics become complex, 3D numerical models seem more reliable. 

 

Both models are able to reproduce the maximum runup in the narrow gully near the 

village of Monai. It is found that local extreme runup is sensitive to the near shore 

interpolation of bathymetry and topography as well as the friction coefficient. In fact, 

Titov and Synolakis (1997) reported that even small local bathymetric structures 

directly affect the runup and that the resolution of the bathymetric data may be more 

important than the grid resolution. 

 

As a result, it is possible to reproduce the extreme characteristics of the tsunami in 

the Monai Valley, including the observed extreme runup value using both models. 

However, it is also found that vertical velocity component gets extremely large on 

steep slopes and thus nonlinear effects should not be neglected. In fact, for this 

specific case, Titov and Synolakis (1997) stated that their results suggest that during 

overland flow, coastal devastation has a stronger correlation with inundation 

velocities than inundation heights. This shows that, due to its considerable 

significance, the vertical velocity component should be correctly predicted. Thus, 3D 

numerical models may be a better choice for the prediction of tsunami characteristics 

on steep coasts and for the estimation of tsunami risk for such areas. 
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4.5. BMP 5: Tsunami Inundation in Constructed Environments 

 

4.5.1. Problem Description 

 

Due to the fact that tsunamis are unpredictable phenomena most commonly resulting 

from large magnitude earthquakes along coastal plate boundaries, they cause 

substantial damage to coastal communities near or far from the epicenter. The first 

tsunami wave often arrives at the shoreline in tens of minutes and can inundate 

several kilometers inland very quickly. This leaves little or no time for preparation or 

evacuation and, as a result, hundreds of thousands of people are killed or injured and 

there is great local and regional devastation (Imamura et al., 2006). 

 

The 2004 Indian Ocean Tsunami field survey emphasized the importance of coastal 

structures in tsunami hazard mitigation (Dalrymple and Kribel, 2005; Tomita et al., 

2006). The field survey which was conducted after the 2011 Great East Japan 

Tsunami also highlighted that tsunami damage is strongly dependent on location and 

environment. Yeh (2006) showed that the hydrodynamic force of the tsunami on 

structures in the inundation zone is proportional to the momentum flux, which is the 

inundation depth multiplied by the squared velocity and it can be related to the 

probability of damage (FEMA, 2008; Koshimura et al., 2009a, 2009b). 

 

It is a fact that, in order to minimize casualties and destruction, further tsunami 

research should be done, particularly into the complex flows associated with tsunami 

inundation and return flow over complex bathymetry and around structures. As 

numerical schemes have more computational power and maturation today, numerical 

modeling of tsunami inundation has gained importance in tsunami mitigation studies 

(Lynett, 2007; Park et al., 2013). To model the tsunami hazard for coastal 

communities accurately, the constructed environment must be incorporated into the 

numerical model as it strongly influences the flow hydrodynamics. During the last 

decade, tsunami inundation modeling methods have evolved into sophisticated 

numerical techniques, capable of simulating tsunami runup for complex, three-

dimensional shoreline topography (Rueben et al., 2011). Since the 2004 Indian 
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Ocean Tsunami, there has been a significant increase in tsunami model research, 

particularly at the ocean-basin scale. But fewer models are capable of handling 

complex overland flows (Lynett, 2007) and the flow around groups of buildings 

(Tomita et al., 2006) remains an active area of research. 

 

It is necessary to test the performance of tsunami inundation models via 

benchmarking in terms of predicting the free surface elevations and flow velocity 

components as well as sensitivity to tuning parameters. Several benchmark tests are 

prevalent as standard verification methods for the numerical modeling of tsunamis 

such as exact solutions and physical model data of solitary waves on simple sloped 

beaches (i.e. BMP 1) (Synolakis, 1987) and on compound sloped beaches (Kanoglu 

and Synolakis, 1998), large scale conical island physical model (i.e. BMP 2) (Briggs 

et al., 1995), and runup on a complex three-dimensional coast (i.e. BMP 4) 

(Hokkaidō Tsunami Survey Group, 1993). Even though most casualties and damage 

from tsunamis are attributed to complex inundation flows, which include wave 

breaking near the shoreline and interaction with coastal structures, the most advanced 

numerical models and benchmark tests only provide the maximum runup heights or a 

time series of free surface elevation. It is difficult to estimate complex flows due to 

the required computing power. Their validation is also difficult owing to the absence 

of proper benchmark tests. As a result, most numerical models focus on the 

estimation of tsunami propagation, and calculation of arrival times and maximum 

runup heights.  

 

Several studies have been conducted into macro-roughness and tsunami velocity 

variation. Cox et al. (2008) carried out physical model tests of Seaside, Oregon, 

which showed that the macro-roughness reduced the tsunami inundation velocity by 

40% (Rueben et al., 2011). The reduction in runup elevations and maximum overland 

velocities due to obstructions have been studied numerically (Lynett, 2007). Other 

studies on the influence of macro-roughness element arrays compared the free 

surface elevation of numerical and physical model results (Goseberg and 

Schlurmann, 2010), and the effect of bed slope and bottom friction on maximum 



 

 258 

tsunami runup height and velocity using numerical models (Apotsos et al., 2011). A 

more recent numerical and field study was carried out by Nandasena et al. (2012), 

which focused on the importance of artificial and natural structures on tsunami 

mitigation. BMP 5 is based on the physical model tests of Cox et al. (2008), which 

investigate the effect of macro-roughness elements on inundation flow depth, cross-

shore velocity and momentum flux. 

 

Cox et al. (2008) designed a hydraulic model to study tsunami flow over and around 

macro-roughness to observe the role of building shape and density on tsunami 

inundation and to develop a new data set for the evaluation of the next generation of 

numerical models for complex flows.  

 

Unlike previous hydraulic model studies that focused on the maximum extent of 

tsunami inundation and were often conducted on a scale of 1:200 or smaller, the 

experiment of Cox et al. (2008) focused on the initial inundation zone along an urban 

waterfront in order that the flow among several individual buildings can be observed. 

The model, constructed at 1:50 scale, was an idealization of the town of Seaside, 

Oregon, located in the Pacific Northwest of the United States (Figure 4.92) and 

featured several of the characteristic structures, including a 2 m high (prototype) 

seawall, large hotels along the water front, and smaller commercial and residential 

structures. 

 

This location was chosen for several reasons. One reason was that the constructed 

environment (i.e. the seawall, hotels, residential and commercial buildings) was 

typical of coastal communities vulnerable to tsunamis with populations concentrated 

within the first 200 m of shoreline. Second, the bathymetry at Seaside was fairly easy 

to construct with uniform, shore-parallel contours. Third, the United States 

Geological Survey (USGS) report (USGS, 2006) provided reasonable guidance for 

an expected tsunami height triggered by a Cascadia Subduction Zone event. 
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Figure 4.92 Seaside, Oregon: 1:50 physical model region (dashed-dotted yellow line), 

macro-roughness region (dashed yellow line) and tsunami inundation line (solid white line). 

Inset map shows regional location of Seaside, location of offshore DART buoys, and 

proximity to the Cascadia subduction zone (solid red line) (Park et al., 2013). 

 

The idealized bathymetry was composed of a 10 m horizontal section near the 

wavemaker with a depth of 0.97 m, an 8 m section at a 1:15 slope, a 15 m section at a 

1:30 slope, on which the SWL intersected, and another horizontal section 11 m in 

length which extended to the back wall (Park et al., 2013). In the real town, the 

hotels along the beach are fronted by an approximately 2 m high seawall in the 

center, which was idealized in the model as 4 cm high and longshore uniform. The 

largest structure in the area is a modern, eight storey, U-shaped condominium with a 

five storey parking garage behind, located in the center of the beachfront. The 

remaining buildings are other light commercial buildings, idealized as a square, and 

residential buildings, idealized as a smaller rectangle with a pitched roof. The 

individual macro-roughness units were color coded with blue for large hotels or 

commercial buildings, red for smaller commercial buildings, and yellow for 

residential structures (Park et al., 2013) (Figures 4.93 and 4.94). 
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Figure 4.93 Photograph of 1:50 scale model of the town of Seaside, Oregon constructed in 

the Tsunami Wave Basin at OSU (Cox et al., 2008; Rueben et al., 2011). 

 

 
 

Figure 4.94 Plan and elevation view of the physical model in the Tsunami Wave Basin. The 

laboratory photo provides the scale of the Seaside, Oregon model (Park et al., 2013). 
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All the elements were fixed in place so that the experiment could be rerun with the 

same macro-roughness conditions, and a LIDAR survey was conducted to quantify 

the location of all the roughness elements (Cox et al., 2008). The Necanicum River, 

which flows through the center of the city approximately parallel to the beach crest, 

and the city streets were not modeled for the experiment but their positions were 

painted on the physical model for reference, the river with a light blue color (𝑥 = 42 

m) and the streets with black (Figure 4.94). The effects of vegetation, small-scale 

roughness, debris or sediments were not included, either. 

 

The tests were conducted in the Tsunami Wave Basin of the Tsunami Research 

Facility at the O.H. Hinsdale Wave Research Laboratory (HWRL), Oregon State 

University (OSU). The basin was a rectangular box, 48.8 m long by 26.5 m wide by 

2.1 m high. The coordinate system for this experiment is shown in Figure 4.94, with 

𝑥 positive onshore and 𝑥 = 0 at the rest position of the wavemaker, 𝑧 is positive up 

with 𝑧 = 0 at the flat bottom of the basin, and 𝑦 is positive to the south with 𝑦 = 0 

along the centerline of the basin. The basin was equipped with a segmented, piston-

type wavemaker with a maximum stroke of 2.1 m and maximum velocity of 2.0 

m/sec (Cox et al., 2008).  

 

The idealized bathymetry for the town of Seaside was constructed of smooth 

concrete with a flat finish and an estimated roughness height of 0.1 – 0.3 mm 

(Rueben et al., 2011). The design tsunami condition produced by the wavemaker 

used an error function to maximize the full 2.0 m stroke, and had a duration of 10.0 

seconds. The wave height measured at WG1, over the horizontal section of the basin, 

was approximately 0.20 m. At prototype scale, this wave height is 10 m, which 

corresponds to the estimated tsunami wave height for the “500-yr” Cascadia 

Subduction Zone tsunami for this region (Tsunami Pilot Study Working Group, 

2006). 
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The white boxes labeled A to D and 1 through 9, shown in Figure 4.95, represented 

the measurement locations of the overland flow depth and cross-shore velocity. The 

measurement locations were divided into 4 lines: A to D. Line A was located on a 

city street parallel to the primary inundation flow direction and numbered from 1 to 

9, as the measurement locations moved inland. Lines B and C were on streets 

inclined approximately 10° to the flow direction, were flanked by hotels or 

commercial buildings, and numbered the same as line A. Line D was located mostly 

behind the buildings and only had 4 measurement locations. In total there were 31 

measurement locations (Park et al., 2013). 

 

 

 

Figure 4.95 Detailed plan view of macro-roughness elements of the physical model, 

annotated with measurement locations (Park et al., 2013).  
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Four surface piercing wire resistance wave gauges (WG1 – WG4) were fixed in the 

basin at the following locations: WG1: (𝑥, 𝑦) = (2.086 m, 0.515 m), WG2: (𝑥, 𝑦) = 

(2.068 m, 4.065 m), WG3: (𝑥, 𝑦) =  (18.618 m, 0.000 m), and WG4: (𝑥, 𝑦) = 

(18.618 m, 2.860 m). Four pairs of co-located ultra-sonic surface wave gauges 

(usWG, Senix Corporation TS-30S1-IV) and Acoustic-Doppler velocimeter (ADV, 

Nortec Vectrino) sensors were used to measure the overlad land flow depth and flow 

velocity along lines A, B, C, and D, simultaneously (Cox et al., 2008). Table 4.27 

lists the coordinates of each measurement location and the total number of trials 

performed and available (Park et al., 2013). 

 
Table 4.27 The coordinates of the measurement locations for BMP 5 (Park et al., 2013) 

 

Number 
Line A Line A Line C Line D 

𝑥 (m) 𝑦 (m) 𝑥 (m) 𝑦 (m) 𝑥 (m) 𝑦 (m) 𝑥 (m) 𝑦 (m) 

1 33.61 -3.19 33.72 -0.59 33.81 1.51 35.12 3.71 

2 34.10 -3.19 34.22 -0.53 34.55 1.60 36.68 3.89 

3 34.53 -3.18 34.68 -0.47 35.05 1.69 38.09 4.07 

4 35.04 -3.18 35.18 -0.41 35.56 1.77 38.14 3.59 

5 35.54 -3.19 35.75 -0.32 36.05 1.85 – – 

6 36.35 -3.20 36.64 -0.23 37.05 1.99 – – 

7 37.76 -3.20 37.77 -0.07 38.24 2.19 – – 

8 39.22 -3.20 39.22 0.14 39.21 2.34 – – 

9 40.67 -3.23 40.67 0.27 40.40 2.58 – – 

 

The need for physical model data raises questions about how to make accurate 

measurements of the free surface and velocity in complex domains, especially 

around macro-roughness. Since the location of the advancing inundation front is 

clearly visible to the human eye, Cox et al. (2008) favoured optical measurement 

methods and installed two Argus cameras directly over the wave basin. In general, 

optical measurements from these cameras were accurate to approximately 1 cm for 

most of the field of view. Cox et al. (2008) converted the frames from RGB color 

images to intensity images in order to isolate the wave edge. They substracted a 
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reference image for which the wave was not present from each video frame, forming 

a difference image (Figure 4.96). 

 

 

 
Figure 4.96 (a) Rectified, merged, and cropped image from the Argus cameras;  

(b) difference image taken at 𝑡 = 24.06 sec during wave breaking; (c) difference image taken 

at 𝑡 = 27.26 sec during inundation (Rueben et al., 2011). 

 

Figure 4.96 clearly shows that the optical system captured complexities of the flow 

field around the macro-roughness elements. The measured velocities at the leading 

edge of the wave were not recorded by the ADV, so the leading velocities were 

obtained from the optical measurements (Rueben et al., 2011) and velocity fitting 

curves were constructed via interpolation to calculate the specific momentum flux. 

 

Figure 4.97 illustrates the mean edge wave positions over 21 trials at 𝑡 = 26.3 sec 

and 𝑡 =  27.8 sec. The macro-roughness along the urban waterfront and in the 

residential and commercial areas reduced bore propagation speed significantly. In the 

narrow spacings of the macro-roughness, large hydraulic jumps were formed on the 

seaward side of the roughness elements with large, turbulent wakes in their lee. 

Unlike on open streets running parallel to the flow direction, in the areas with macro-

roughness the flow was delayed. 
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Figure 4.97 (a) Image taken at  𝑡 = 26.3 sec during inundation; (b) image taken at  𝑡 = 28.7 

sec during inundation. The white lines represent the mean edge wave position determined 

over 21 trials (Rueben et al., 2011). 

 

The results of this study (i.e. BMP 5) indicate that the macro-roughness elements 

have a significant effect on the tsunami inundation process compared to the areas 

without macro-roughness. The macro-roughness elements lead to 40% reduction in 

the inundation speed. Moreover, the characteristics of the macro-roughness elements 

affect the tsunami inundation significantly (Rueben et al., 2011). 

 

As stated previously, the experiment of Cox et al. (2008) provided a great amount of 

data for laboratory benchmarking of numerical models. The recommended 

computational domain for the modelers is given in Figure 4.98. 
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Figure 4.98 Computational domain for BMP 5 (NTHMP, 2015) 

 

In BMP 5, the generated (incident) wave is a long period custom wave, not a solitary 

wave. Unlike a solitary wave, a custom wave is not permanent. 

 

Numerically, the wave can be generated using two different methods (Figure 4.99): 

(i) the wavemaker displacement time series can be used if a moving wall boundary 

condition is available in the numerical model, (ii) a synthetic time series of incident 

wave elevation at 𝑥 = 5 m can be used to force the numerical model at 𝑥 = 5 m. 

Even though the wave elevation time series is based on the simulation of a moving 

wall boundary condition, it is supposed to reproduce the wave very well. 

 

To efficiently run BMP 5, firstly, the free surface elevation comparisons at WG3 

have to be made to ensure that the generated waves in the model are correct in terms 

of amplitude, period, and arrival time. Secondly, the overland flow depth, cross-

shore velocity and cross-shore specific momentum flux at four locations, B1, B4, B6 

and B9 are compared. 
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Figure 4.99 (a) Wavemaker displacement time series – real data, which can be used to drive 

a moving wall boundary condition; (b) incident-only wave time series at 𝑥 = 5 m – 

simulated data, which can be used to drive a stationary input wave boundary condition at 

𝑥 = 5 m (NTHMP, 2015).  
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4.5.2. NAMI DANCE Model 

 

The physical experiment of Cox et al. (2008) is reproduced in a 2D domain using 

NAMI DANCE (Figure 4.100). 

 

 

 
  

Figure 4.100 NAMI DANCE model: computational domain and the coordinate system 

 

Figure 4.101 illustrates the 3D view of NAMI DANCE computational domain. 

 

 
 

 
 

Figure 4.101 3D top view of NAMI DANCE computational domain for BMP 5 
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The fluid is inviscid, the flow is incompressible and the fluid density is constant. The 

𝑥 axis of the Cartesian coordinate system is perpendicular to the wavemaker and the 

𝑦 axis is parallel to the wavemaker. The incident wave, which is a long period wave, 

is a synthetic time series, produced from the simulation of a moving wall boundary 

condition. Since the incident wave signal is recorded at a distance 𝑥 = 5 m in the 

laboratory setting, the bathymetry is cropped to discard the initial section between 

𝑥 = 0 m and 𝑥 = 5 m. This adjustment allows the incoming wave to be introduced 

into the domain exactly at the location where it is recorded (Figure 4.102). 

 

Excellent agreement between the predicted and recorded wave forms are reached at 

the control point – WG3 for both the first wave and the reflected wave train. In fact, 

the predicted maximum incident wave amplitude is only 0.0002 m less than the 

measured one. 

 

 
 

 
Figure 4.102 Comparison of computed and recorded free surface elevation at the control 

point, WG3. The red line representsthe NAMI DANCE prediction; the black line represents 

the recorded free surface elevation at WG3. 

 

The maximum 𝑥 boundary has a rigid wall boundary condition, which defines the 

downstream end of the wave tank. The minimum and maximum 𝑦 boundaries are 

also defined as rigid walls in order to prevent outflow from the computational 

domain. 
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4.5.2.1. Spatial Discretization 

 

In order to simulate BMP 5 correctly, it is necessary to model the macro-roughness 

elements properly. To achieve this, after several trials using different spatial 

resolutions, it is found that the grid size selected has to be smaller than 0.1 m, i.e. 

Δ𝑥 ≤ 0.1 m, since for larger grid resolutions, macro-roughness elements can not be 

modeled sufficiently.  

 

For Δ𝑥 = 0.1 m, the macro-roughness elements can be modeled properly; however, a 

finer grid size provides a better definition of the Seaside model. For grid resolutions 

smaller than 0.05 m, there is no visible change in the inundation distance; thus, it is 

concluded that after Δ𝑥 = 0.05 m, the results are insensitive to grid size. Moreover, 

the effect of grid size is negligible offshore; the free surface elevation comparisons at 

the control point (i.e. WG3) show that the predicted wave profile is not affected by 

the grid resolution.  

 

The previous numerical model validations that used BMP 5 recommend the use of 

adaptive mesh refinement, the coarsest grid having a resolution of approximately 0.1 

m and the finest grid, which only covered the town of Seaside model region, having a 

0.01 m resolution (NTHMP, 2015). However, the application of such a technique is 

not possible in NAMI DANCE; therefore, the computational domain is represented 

by a uniform grid size, Δ𝑥 and Δ𝑦, which is selected as 0.05 m. 

 

The time step, Δ𝑡, is selected as 0.001 second, which satisfies the stability condition 

for NAMI DANCE solutions. Different time steps are also tested; however, no 

significant change is observed in the numerical predictions. 

 

4.5.2.2. Friction 

 

Manning’s roughness coefficients used to assess the effect of friction are:                

(i) 𝑛 = 0 (i.e. frictionless bottom), (ii) 𝑛 = 0.005, (iii)  𝑛 = 0.01, (iv)  𝑛 = 0.02 and 

(v)  𝑛 = 0.03 (Figure 4.103 – 4.105). 
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Figure 4.103 Comparison of predicted and measured overland flow depth for locations B1, 

B4, B6 and B9, respectively. The dashed black line represents the measured data; the red, 

green, purple, blue and orange lines represent the NAMI DANCE predictions when 𝑛 = 0 , 

𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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Figure 4.104 Comparison of predicted and measured cross-shore velocity for locations B1, 

B4, B6 and B9, respectively. The dashed black line represents the measured data; the red, 

green, purple, blue and orange lines represent the NAMI DANCE predictions when 𝑛 = 0 , 

𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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Figure 4.105 Comparison of predicted and measured cross-shore momentum flux for 

locations B1, B4, B6 and B9, respectively. The dashed black line represents the measured 

data; the red, green, purple, blue and orange lines represent the NAMI DANCE predictions 

when  𝑛 = 0 , 𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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The results reveal that the effect of varying friction is stronger in more inland areas. 

The overland flow depth and cross-shore velocity values decrease as friction factor is 

increased. In fact, the overland flow depth remains relatively unchanged for locations 

B1 and B4, after which the friction factor exhibits a greater influence. For more 

inland areas (i.e. locations B6 and B9), as the friction factor is increased by a factor 

of 6 (i.e. from 0.005 to 0.03), the maximum free surface elevation decreases by 

~15%, but the cross-shore velocity and specific momentum flux decrease by 95 and 

208%. This fact reveals that the predicted velocity and momentum flux terms are 

highly sensitive to the bottom friction factor further inland. Moreover, the arrival 

time of the inundation wave is earlier when less friction is applied. The effect of 

bottom friction on arrival times can be clearly seen in location B9. The results of 

friction analysis can not be verified by the physical model data as only one friction 

factor was tested in the experiments. 

 

4.5.3. FLOW-3D
® 

Model 

 

The same physical experiment is reproduced using FLOW-3D
® 

in a 3D domain, 

throughout which the fluid is inviscid, the flow is incompressible and the fluid 

density is constant. The effects of surface tension and air entrainment at the surface 

of the flow are neglected. 

 

The numerical model is constructed using the Cartesian coordinate system, where the 

positive 𝑥 direction is oriented along the fluid flow into the domain and the positive 

𝑦 direction is perpendicular to the direction of the flow, along the wavemaker. The 

gravitational acceleration, 𝑔, is in the downward direction (i.e. – 𝑧 direction) (Figure 

4.106). 
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Figure 4.106 FLOW-3D

® 
computational domain constructed for BMP 5: (a) meshing 

(enlarged for clarity); (b) boundary conditions and gauge locations; (c) after using 

FAVOR™ 

(a) 

(b) 

(c) 
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The incident wave is a synthetic time series recorded at a distance 𝑥 = 5 m in the 

laboratory setting. As in the NAMI DANCE analysis, the initial section of the 

bathymetry up to 𝑥 = 5 m is discarded. As a result, the incoming wave is introduced 

into the domain exactly at the location where it is recorded and consistency with the 

NAMI DANCE analysis is achieved (Figure 4.107). The predicted and recorded 

wave forms are in excellent agreement at the control point – WG3 for the first wave. 

 

  
 

 
Figure 4.107 Comparison of computed and recorded free surface elevation at the control 

point, WG3. The green line represents the FLOW-3D
® 

prediction; the black line represents 

the recorded free surface elevation at WG3. 

 

At the minimum 𝑥 boundary, the pressure boundary condition is applied. Thus, the 

input data, which is the free surface elevation time series recorded at 𝑥 = 5 m, can be 

entered manually. The maximum 𝑥 boundary has the wall boundary condition so as 

to define the end of the wave tank. The minimum and maximum 𝑦 boundaries as 

well as the maximum 𝑧 boundary feature the symmetrical boundary condition, where 

all the velocity derivatives and velocity components normal to the boundaries are set 

to zero. The wall boundary condition is valid for the minimum 𝑧 boundary, where the 

bottom of the wave flume is defined. 
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4.5.3.1. Spatial Discretization 

 

In order to simulate BMP 5 efficiently, it is necessary to model the macro-roughness 

elements properly. To achieve this, the FAVOR™ module of FLOW-3D
®
 is used in 

order to decide whether the elements are modeled accurately enough. It is found that 

the grid size has to be selected smaller than 0.1 m, i.e. Δ𝑥 ≤ 0.1 m, since for larger 

grid resolutions, macro-roughness elements can not be modeled properly. For 

Δ𝑥 = 0.1  m, the macro-roughness elements can be modeled properly but not 

accurately. Therefore, finer grid size of 0.05 m is preferred. For grid resolutions 

smaller than 0.05 m, (i.e. Δ𝑥 = 0.01 m and Δ𝑥 = 0.025 m), there is no visible change 

in the model accuracy of macro-roughness elements. The previous numerical model 

validations that used BMP 5 recommend the use of adaptive mesh refinement, the 

coarsest grid having a resolution of approximately 0.1 m and the finest grid, which 

only covered the town of Seaside model region, having a 0.01 m resolution 

(NTHMP, 2015). Even though it is possible to use adaptive meshing techniques via 

FLOW-3D
®
, uniform gridding, where Δ𝑥 and Δ𝑦 are 0.05 m, is preferred in order to 

attain consistency. 

 

It is also necessary to analyse the effect of the vertical grid size, Δ𝑧, on the three-

dimensional FLOW-3D
®
 model. Coarser Δ𝑧  values prevent accurate modeling of 

macro-roughness elements. Therefore, the use of uniform grids, i.e. Δ𝑥 = Δ𝑦 =

Δ𝑧 =0.05 m, is preferred throughout the whole computational domain. 

 

The time step, Δ𝑡, is selected as 0.001 second to be consistent with the simulations 

conducted using NAMI DANCE. When variable time stepping is employed in order 

to assess the effect of the time step size, no significant effect is observed. 

 

4.5.3.2. Friction 

 

In order to assess the effect of friction, different Manning’s roughness coefficients 

are considered: (i) 𝑛 = 0 (i.e. frictionless bottom), (ii) 𝑛 = 0.005, (iii)  𝑛 = 0.01, 

(iv)  𝑛 = 0.02 and (v)  𝑛 = 0.03 (Figure 4.107 – 4.109). 
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Figure 4.108 Comparison of predicted and measured overland flow depth for locations B1, 

B4, B6 and B9, respectively. The dashed black line represents the measured data; the red, 

green, purple, blue and orange lines represent the FLOW-3D
® 

predictions when 𝑛 = 0 , 

𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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Figure 4.109 Comparison of predicted and measured cross-shore velocity for locations B1, 

B4, B6 and B9, respectively. The dashed black line represents the measured data; the red, 

green, purple, blue and orange lines represent the FLOW-3D
® 

predictions when 𝑛 = 0 , 

𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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Figure 4.110 Comparison of predicted and measured cross-shore momentum flux for 

locations B1, B4, B6 and B9, respectively. The dashed black line represents the measured 

data; the red, green, purple, blue and orange lines represent the FLOW-3D
® 

predictions when 

𝑛 = 0 , 𝑛 = 0.005, 𝑛 = 0.01, 𝑛 = 0.02 and  𝑛 = 0.03, respectively. 
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The results indicate that the overland flow depth and cross-shore velocity values 

decrease as the friction factor is increased. However, in more inland areas (i.e. 

locations B6 and B9), the effect of varying friction is stronger as opposed to that in 

location B1, which is closest to the shoreline. When the bottom surface conditions 

are very rough, in the furthest areas inland, there is a decrease in the overland flow 

depth by 20%, in the cross-shore velocity by 60%, and in the specific momentum 

flux by 80%. These results support the findings of the NAMI DANCE simulations 

and reveal the sensitivity of velocity and momentum flux terms to bottom friction. 

The arrival time of the inundation wave is earliest when no friction is set in the 

model. The effect of bottom friction on arrival times can be clearly observed in the 

above figures. It is seen that in location B1, which is situated closest to the shoreline, 

the friction effect is almost negligible; however, dominancy of friction on the arrival 

times is increased as the flow moves towards inland areas. 

 

4.5.4. Simulation Results 

 

Through the analysis of many disastrous tsunami incidents such as the 2004 Indian 

Ocean tsunami or the 2011 Great East Japan tsunami, the insight into and the 

understanding of tsunami deep water propagation and transformation in shallow 

waters have increased greatly in the last century. Yet, tsunami runup dynamics and 

coastal inundation mechanisms are still not sufficiently understood,especially in 

coastal urban agglomerations, where the tsunami induced on-land bore-like wave 

front patterns are strongly dominated by macro roughness elements such as houses 

and infrastructure (Goseberg and Schlurmann, 2010). This inundation process is 

difficult to model both physically and numerically (Cox et al. 2008). 

 

Generally, the slope of the near coast region and the land cover characteristics, such 

as marshes or mangroves, and infrastructure and municipal developments, determine 

the maximum inundation distance in the coastal hinterland. BMP 5 focuses on the 

experimental study of the relationship between tsunami runup and macro-roughness 

elements and is used to test the abilities of 2D depth-averaged NSW and 3D-RANS 

models in predicting the flow conditions around macro-roughness elements. 
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The NAMI DANCE and FLOW-3D
®
 model predictions regarding the overland flow 

depth, cross-shore velocity and cross-shore specific momentum flux are compared at 

four locations, B1, B4, B6 and B9 (Figures 4.111 – 4.113). It is a fact that inundation 

parameters are very sensitive to bottom friction for this specific case; therefore, it is 

important to calibrate the models according to the most appropriate roughness 

coefficient. The numerical simulations are conducted using a Manning’s roughness 

coefficient of 0.01. After a careful friction analysis, it is found that the results most 

similar to the physical model are produced by this value, which is then used for all 

subsequent analyses with both models. 

 

The results of the laboratory measurements reveal that, as the wave propagates 

around the macro-roughness, properties such as wave shape, the location of 

maximum free surface elevation, cross-shore velocity, and cross-shore momentum 

flux, change. The maximum overland flow depth, which is 0.22 m at location B1, 

decreases to 0.05 m at location B9. The cross-shore velocity is 2.0 m/sec at location 

B1 but falls to 1.4 m/sec at location B9. The maximum specific momentum flux, 

0.96 m
2
/sec

3
 at location B1, becomes 0.03 m

2
/sec

3
 at location B9. The corresponding 

NAMI DANCE values are, for the maximum overland flow depth, 0.16 m at location 

B1 and 0.01 m at location B9. The maximum cross-shore velocity decreases from 1.2 

m/sec to 0.7 m/sec and the maximum cross-shore momentum flux falls from 0.2 

m
2
/sec

3
 at location B1 to 0.002 m

2
/sec

3
 at location B9. Similarly, the maximum 

overland flow depth computed via FLOW-3D
®
 decreases from 0.14 m at location B1 

to 0.03 m at location B9, the maximum cross-shore velocity decreases from 1.5 

m/sec to 0.9 m/sec and the maximum cross-shore momentum flux decreases from 0.3 

m
2
/s

3
 to 0.02 m

2
/sec

3
. Overall, it is found that the inundation depth decreases 

approximately by 80% as the wave propagates inland. There is a decrease of 30% in 

the cross-shore velocity and a fall of almost 97% in the cross-shore momentum flux. 

Note that the specific momentum flux is calculated by multiplying each time series 

of the overland flow depth by the square of the cross-shore velocity values. The 

momentum flux is an important parameter since it is directly related to the 

hydrodynamic force acting on the infrastructure (FEMA, 2008). 



 

 283 

 

 

 

  
 

 

Figure 4.111 Comparison of predicted and measured overland flow depth for locations B1, 

B4, B6 and B9, respectively. The black line represents the laboratory measurements; the red 

line represents NAMI DANCE results; the green line represents the FLOW-3D
® 

results. 
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Figure 4.112 Comparison of predicted and measured cross-shore velocity for locations B1, 

B4, B6 and B9, respectively. The black line represents the laboratory measurements; the red 

line represents NAMI DANCE results; the green line represents the FLOW-3D
® 

results 

0,0

1,0

2,0

0,0

1,0

2,0

0,0

1,0

2,0

0,0

1,0

2,0

20 22 24 26 28 30 32 34 36 38 40

C
ro

ss
-s

h
o
re

 V
el

o
ci

ty
 (

m
/s

ec
) 

𝑡 (sec) 

Location B1 (33.721, -0.588) 

Location B4 (35.176, -0.406) 

Location B6 (36.635, -0.229) 

Location B9 (40.668, -0.269) 



 

 285 

   

  

 

 
 

 

Figure 4.113 Comparison of predicted and measured cross-shore momentum flux for 

locations B1, B4, B6 and B9, respectively. The black line represents the laboratory 

measurements; the red line represents NAMI DANCE results; the green line represents the 

FLOW-3D
® 

results. 

0,0

0,5

1,0

0,0

0,5

1,0

0,0

0,5

1,0

0,00

0,05

0,10

20 22 24 26 28 30 32 34 36 38 40

C
ro

ss
-s

h
o
re

 M
o
m

en
tu

m
 F

lu
x

 (
m

3
/s

ec
2
) 

𝑡 (sec) 

Location B1 (33.721, -0.588) 

Location B4 (35.176, -0.406) 

Location B6 (36.635, -0.229) 

Location B9 (40.668, -0.269) 



 

 286 

The NRMSE of the NAMI DANCE and FLOW-3D
®
 predictions for the overland 

flow depth, cross-shore velocity and cross-shore momentum flux at lines A, B, C and 

D are given in Figure 4.114. 

 

The NRMSE of NAMI DANCE predictions for the overland flow depth at lines A 

and B is less than the threshold value, which is 10%. The NRMSE is around 15 % 

along line C, whereas it increases up to 30% along line D. FLOW-3D
®
 predicts the 

overland flow depth along lines A, B and C with an NRMSE less than 10%. 

However, along line D, the numerical model overestimated the values with an 

NRMSE of approximately 25%. 

 

The NRMSE of NAMI DANCE results regarding the cross-shore velocity ranges 

between 17% and 29%, with the largest at C9 location and along line D. FLOW-3D
® 

predictions have the same trend as NAMI DANCE results, having an NRMSE range 

between 9% and 25%. 

 

In the case of specific momentum flux, with the exception of line D which measured 

around 50% for both model results, most values are less than 20%. Overall, with the 

exception of line D, and line A for velocity, the NRMSE is less than 10%. The 

NRMSE for line D is relatively large. This anomaly may be attributed to the 

difference in the measurement locations. In the experimental model, the gauges along 

lines A, B, and C are located on the road, with no obstructions between the locations 

and the ocean, while along line D the gauges are situated mostly behind the 

buildings. The discrepancy between lines A, B and C and line D may be caused by 

the inherent difficulty of generating an energy dissipation process which includes 

turbulence in the numerical model, as the broken wave passes around the buildings. 

These results also coincide with the work of Park et al. (2013).  
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               Overland Flow Depth (m)                             Overland Flow Depth (m) 
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2
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3
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2
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Figure 4.114 NRMSE of (a) NAMI DANCE; (b) FLOW-3D
®
 predictions along lines A, B, 

C, and D. The circles, triangles, squares and diamonds represent the predictions along lines 

A, B, C and D, respectively.  
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Figure 4.115 Snapshots of (a) NAMI DANCE; (b) FLOW-3D
®
 simulations at time 𝑡 = 30 

sec. The red points correspond to gauges B1 through B9 where the model predictions are 

compared with the observations.  

(a) 

(b) 
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Figure 4.115 illustrates the snapshots of the NAMI DANCE and FLOW-3D
®
 

simulations at time 𝑡 = 30  sec, which are performed to exhibit the inundation 

pattern, overtopping of some buildings, and the generation of many small waves 

within the flow. 

 

To sum up, the majority of the previous benchmark tests for inundation models 

typically compare a time series of free surface elevation or maximum runup height. 

However, in BMP 5, the time series and maximum values of overland flow depth, 

cross-shore velocity and cross-shore momentum flux are extracted from the 

numerical models and directly compared with the physical model results for model 

verification.  

 

It is found that the overland flow depth, cross-shore velocity and cross-shore 

momentum flux are very sensitive to bottom friction, as expected. The arrival time of 

the inundation wave is earlier and the leading velocity is larger as the friction factor 

is decreased. The maximum cross-shore momentum flux is considerably reduced as 

the friction factor is increased. This fact highlights the importance of comparing 

velocity terms in the validation and verification of tsunami inundation models as the 

flow velocity is directly related to the force exerted on the structures. 

 

The results reveal that the general tendencies and magnitudes of predicted overland 

flow depth and cross-shore velocity are well matched with the physical model results 

for the locations that are close to the shoreline. In both models, it is observed that the 

maximum overland flow depth and cross-shore momentum flux rapidly decrease as 

the wave moves landward, while the cross-shore velocity slowly decreases. 

Specifically, from B1 to B9, the maximum overland flow depth decreases by 77%, 

the maximum cross-shore velocity decreases by 30% and the maximum momentum 

flux decreases by 97% in the physical model. Both numerical models succeed in 

catching the same trend. 
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The comparison of the predicted and recorded water level dynamics at the control 

point, i.e. 𝑥 =18.618 m, reveals that both models reproduce and transform the 

incident wave very well. The largest discrepancies between the numerical 

simulations and laboratory experiments occur during the inundation stage. Although 

both models manage to predict the maximum overland flow depth at locations B4 

and B6, they underestimate the maximum water level at locations B1 and B9. In 

order to determine the reason for the mismatch between the simulations and 

measurements at the onland gauges along line B, an attempt is made to conduct an 

analysis of the free surface elevation time histories in the seaward direction from 

location B1. However, as the number of measurements near the coastline is not large 

enough to provide data about where/how the dynamics of the simulated wave 

diverged from that observed, the idea of this analysis is dropped. 

 

According to the measurements of the cross-shore velocities at B1, B4, B6 and B9, 

the 2D depth-averaged model NAMI DANCE predicts the cross-shore velocity 

approximately 20% less than the 3D model FLOW-3D
®
. The FLOW-3D

®
 results are 

in considerably good agreement with the laboratory measurements. The model is 

able to predict the maximum cross-shore velocity accurately and follows a similar 

trend with the laboratory data. This is where the importance of vertical velocity 

component steps in. It is reasonable to conclude that 𝑤 is an important parameter in 

tsunami inundation calculations and should be considered in order to reflect real life 

data as well as possible.  
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4.6. BMP 6: 2011 Tōhoku Tsunami in Hilo Harbor, Hawaii 

 

4.6.1. Problem Description 

 

On 11 March 2011, the Mw 9.0 Tōhoku earthquake, also known as Great East Japan 

earthquake, generated a devastating nearfield tsunami across the northeastern Japan 

coasts with up to 39.75 m of runup (Mori et al., 2011), causing localized damage to 

coastal infrastructure across the Pacific (Figure 4.116). 

 

A warning was issued by the Pacific Tsunami Warning Center for Hawaii and coastal 

residents and marine vessels were evacuated. The waves reached Hawaii 7 hours 

after the earthquake. The surges did not stop for another day, creating strong 

hazardous currents around the islands and causing harbors and marinas to be closed 

for up to 38 hours. Hilo Harbor, for instance, experienced a mix of 15 min and 30 

min oscillations (Allan et al., 2012; Lynett et al., 2013).  
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Figure 4.116 (a) The epicenter of 2011 Tōhoku earthquake; (b) contours of maximum wave 

amplitudes, detailing tsunami energy propagation (Credit: NOAA); (c) the maximum 

tsunami heights observed after 2011 Tōhoku earthquake (Credit: Wikipedia)  
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During the 11 March 2011 Tōhoku tsunami, the 328 current meters that had been 

placed around the islands of Hawaii recorded the time series of the fluid velocity at 

varying depths of water within the water column at 18 different locations (stations) 

(Lynett et al., 2014) (Figure 4.117 and Table 4.28). 

 

 
 

Figure 4.117 Location of current velocity meter stations deployed around Hawaii, including 

the two stations at Hilo Harbor, which are used in BMP 6 (Cheung et al., 2013; Arcos and 

LeVeque, 2014)  
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Table 4.28 The identifications and depths of current meters at observation stations  

(Arcos and LeVeque, 2014) 

 

Station 

ID 

Station 

Name 
Lat (

0
) Long (

0
) 

Number 

of 

Current 

Meters 

Depth at 

Station 

(m) 

Max. 

Observed 

Velocity 

(m/sec) 

HA1102 Port Allen 21.896 200.408 6 12.56 1.62 

HA1107 

Approach to 

Honolulu 

Harbor 

21.292 202.126 11 14.90 0.39 

HA1112 Kahuku Point 21.730 202.010 26 67.37 0.81 

HA1116 
Kalohi 

Channel 
21.003 203.041 22 105.60 

Tsunami 

within 

background 

currents 

HA1117 
Kaumalapau 

Harbor 
20.785 203.008 12 19.62 

Tsunami 

within 

background 

currents 

HA1118 Hawea Point 21.002 203.308 34 83.69 0.51 

HA1119 

Auau 

Channel East 

Side 

20.867 203.253 29 73.51 0.43 

HA1120 Lahaina 20.869 203.315 14 20.48 0.52 

HA1121 
Alalakeiki 

Channel 
20.613 203.492 28 153.98 0.76 

HA1122 Maalaea Bay 20.765 203.508 18 49.83 0.41 

HA1123 
Kahului 

Harbor 
20.902 203.528 8 14.02 1.84 

HA1124 Hana Bay 20.761 204.022 14 21.19 0.24 

HA1125 
Approach to 

Hilo Harbor 
19.745 204.918 15 19.29 0.70 

HA1126 Hilo Harbor 19.742 204.930 9 12.46 1.04 

HA1127 Upolu Point 20.265 204.098 27 72.10 

Tsunami 

within 

background 

currents 

HA1128 
Kawaihae 

Entrance 
20.041 204.158 17 41.74 0.37 

HA1129 Kailua Kona 19.635 204.000 17 20.48 0.35 

HA1130 Honokohau 19.668 203.968 21 56.60 

Tsunami 

within 

background 

currents 
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The data recorded in the velocity meters are direct measurements of the 2011 Tōhoku 

tsunami, which makes them very valuable in tsunami research. Moreover, compared 

to many previous studies, they provide information about a much wider range of 

bathymetric conditions including open coastline, deep channels and harbors. The 

effect of the 2011 Tōhoku tsunami on Hawaiian Islands was discussed in many 

studies. Yamazaki et al. (2012) made velocity comparisons at the Kilo Nalu 

Observatory near Honolulu Harbor, Cheung et al (2013) made comparisons for all 

the velocity meter stations around the island, and Arcos and LeVeque (2014) 

compared several velocity records around the Hawaiian Islands. 

 

The instrumentally recorded data sets from the 2011 Tōhoku tsunami were of perfect 

quality and coverage so they contributed greatly to model validation and scientific 

research. BMP 6 introduces a part of this data set from the recordings at Hilo Harbor. 

The modern town of Hilo, which is the largest settlement in Hawaii County, 

overlooks the Hilo Bay (Figure 4.118). 

 

 
 

Figure 4.118 Hilo Bay and the town of Hilo in 1929, the year when the breakwater was 

completed (Credit: Wikipedia) 
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Because of its topography, Hilo Bay has been hit by tsunamis resulting from the 

earthquakes in active areas such as Chile and the Aleutian Islands several times, 

making it known as the the tsunami capital of the United States. 96 people were 

killed when the tsunami from the 1946Aleutian Islands earthquake struck Hilo Bay. 

A tsunami following the 1960 Valdivia earthquake hit Hilo Bay on May 20 and 

killed 61 people. After the February 27, 2010 Chile earthquake, tsunami warnings 

were made. Fortunately, no one was injured.  

 

To provide a clear understanding of the location of Hilo Harbor, aerial views of the 

study area are provided in Figure 4.119. 

 

 
 

Figure 4.119 Google Earth images of Hawaiian Islands and Hilo Harbor 
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The 2011 Tōhoku tsunami caused no significant inundation as it propagated across 

the Hawaiian Islands yet, the surges it created over insular shelves, nearshore reefs 

and harbors were energetic and persistent (Cheung et al., 2013). Strong currents 

driven by the surges were recorded at the semi-enclosed Hilo Harbor by two NOAA 

Acoustic Doppler Current Profilers (ADCPs) at 6-min sampling intervals. The data 

from those two NOAA ADCPs and from the local tidal gauge provide the BMP 6 

data set. BMP 6 is a field benchmark problem and is Benchmark Problem 2 of the 

2015 National Tsunami Hazard Mitigation Program (NTHMP) workshop, which was 

held in Portland, U.S. 

 

The case in BMP 6 is idealized to a certain extent to reduce its complexity by 

isolating the differences in the employed incident wave forcing so that the best 

modeling results are obtained. The reduction is realised as a flattening of the 

bathymetry at a depth of 30 meters. In other words, in the offshore portion of the 

bathymetry grid, there are no depths greater than 30 m. The bathymetry data is 

provided in (lat, long) on a 1/3 arcsec grid (Figure 4.120). 

 

 
 

Figure 4.120 The bathymetry of Hilo Harbor. The white dot represents the control point, the 

black dots are the two ADCP locations and the blue dot is the Hilo tide station 

(NTHMP, 2015). 
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In BMP 6, the free surface elevation time series from the Hilo tide station and the 

velocity information from the two ADCPs, namely HA1125 and HA1126 are to be 

compared and reliable agreements with the measured data are to be achieved. 

However, the primary goal is to understand the importance of model resolution and 

numerics on the prediction of currents. 

 

The Hilo tide station (Hilo_TS) is located at (lat, long) = (19.731, 204.945). The 

simulated data at the Hilo tide station is shifted to match the measured tide station 

data such that the leading numerical wave arrives at the proper time. This time shift 

is also used in the velocity comparisons. 

 

The first ADCP, HA1125, is located at the Hilo Harbor entrance, at (lat, long) = 

(19.745, 204.918). The second ADCP, HA1126, is located inside the Hilo Harbor, at 

(lat, long) = (19.742, 204.930). Here, it is important to note that the data recorded at 

the ADCPs are averaged over depth and filtered to remove the long period tidal 

components. 

 

In BMP 6, the simulations are driven with an offshore simulated free surface 

elevation time series which is supposed to be located at (lat, long) = (19.758, 

204.930) (i.e. Control Point) (Figure 4.121). 

 

 

 

 
Figure 4.121 The incident wave of BMP 6: time series of ocean surface elevation at Control 

Point (NTHMP, 2015) 
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BMP 6 can be simulated in any of the following ways: i) through upper grid 

boundary, ii) with an internal source generator in the northern part of the domain or 

iii) from source to Hilo harbor with nesting (simulation of the complete problem). 

For all the conditions above, the modeled time series has to be checked at the control 

point to ensure that the proper offshore wave conditions are generated. 

 

It is required that BMP 6 be simulated in three different numerical configurations:    

i) at ~20 m resolution (2/3 arcsec), using a Manning’s roughness coefficient of 0.025 

(or approximate equivalent if using a different bottom stress model), ii) at ~10 m (1/3 

arcsec) resolution using a Manning’s roughness coefficient of 0.025 (or approximate 

equivalent if using a different bottom stress model) and iii) at 5 m resolution (1/6 

arcsec, or the lowest resolution possible), using a Manning’s roughness coefficient of 

0.025 (or approximate equivalent if using a different bottom stress model). The 

simulation results are to be compared locally and also the statistical measures of 

spatial variability should be examined. The simulation time is determined as 13.5 

hours in order to capture the resonance oscillations around the Hawaiian Islands 

during the crucial initial hours of the event. 

 

4.6.2. NAMI DANCE Model 
 

The computational domain of NAMI DANCE is the full geographic footprint of the 

1/3 arc second benchmark bathymetry at longitude 204.901º ≤ 𝑥  ≤ 204.965º and 

latitude 19.710º ≤ 𝑦  ≤ 19.774º. The 𝑥  axis of the Cartesian coordinate system is 

parallel to the Hilo breakwater and the 𝑦  axis is perpendicular to the wave 

propagation direction (Figure 4.122). The gravitational force, 𝑔, is in the downward 

direction. 

 

BMP 6 bathymetry is automatically converted from the geographic coordinate 

system to Universal Transverse Mercator coordinate system (UTM) by FLOW-3D
®
. 

When the NAMI DANCE model is run with the UTM coordinates to ensure 

consistency, the results are found to be exactly the same. The geographic coordinate 

system is favoured in the simulations performed via NAMI DANCE. 
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Figure 4.122 NAMI DANCE computational domain for BMP 6  

 

Figure 4.123 illustrates the 3D view of NAMI DANCE computational domain. 

 

 
 

Figure 4.123 3D top view of NAMI DANCE computational domain for BMP 6 
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The offshore simulated time series at the Control Point is inputted through the 

northern grid boundary, i.e. maximum 𝑦 boundary. The simulation results are shifted 

by -17 min to match the measured tide station data.  

 

4.6.2.1. Spatial Discretization 

 

The results of the simulations with different spatial grid resolutions are compared to 

identify the grid resolution effect. The numerical modeling of BMP 6 is carried out at 

5 m, 10 m and 20 m grid resolutions with a Manning’s roughness coefficient of 

0.025, which is the recommended value for the analysis of this benchmark problem. 

The computed and measured time series of the water surface elevation at the Hilo 

tide station are compared. The average flow speeds recorded at the two ADCP 

locations, HA1125 and HA1126, are also compared with the predictions.  

 

The grid refinement study shows reasonable self-consistent overall convergence of 

the results, going down from a 20 m resolution to a 10 m one and then a 5 m one 

(Figure 4.124). The average flow distribution computed with the three different cell 

sizes consistently displays the same flow pattern. The maxima of the predicted 

average flow speed is 0.7 m/sec at 20 m resolution, 0.81 m/sec at 10 m resolution, 

and 0.85 m/sec at 5 m resolution at HA1125 and, at HA1126, 0.9 m/sec, 1.05 m/sec 

and 1.1 m/sec at 20, 10 and 5 m resolutions, respectively. 

 

The time step, Δ𝑡, is selected as 0.25 second, which satisfies the stability condition 

for the NAMI DANCE solutions. Different time steps are also tested; however, no 

significant change is observed in the numerical predictions. 
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Figure 4.124 NAMI DANCE convergence test for BMP 6 at: (a) Hilo tide station; (b) 

HA1125; (c) HA1126. The dashed black line represents the field data; the solid blue, red and 

green lines represent the numerical predictions for ∆𝑥 = 20 m, ∆𝑥 = 10 m, and ∆𝑥 = 5 m, 

respectively. 
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Evidently, the accuracy of the numerical predictions depends on the grid resolution 

in the areas with high vorticity concentration. As the grid resolution decreases, finer 

details of the flow pattern appear around the breakwater head in the form of small 

eddies. On the other hand, at the ADCPs, the sensitivity of the model predictions to 

the grid size is less due to either the ADCP locations away from the main vorticity 

sources or the low sampling intervals. Overall, the results reveal that 10 m grid 

resolution, i.e. ∆𝑥 = 10  m, is sufficient for the convergence of the results and 

provides good fits to the measured data. 

 

4.6.2.2. Friction 

 

The results of simulations with different roughness coefficients are compared to 

identify the effect of friction. Figure 4.125 shows the comparisons of the computed 

free surface elevation at the Hilo tide station and the average flow speeds at the two 

ADCPs, HA1125 and HA1126, with the measured data, with Manning’s roughness 

coefficients of: (i) 𝑛 = 0 (i.e. frictionless bottom), (ii) 𝑛 = 0.015  and (iii)              

 𝑛 = 0.025 at 10 m grid resolution. 

 

It is found that the effect of varying friction is very limited and only slightly felt in 

the maximum and minimum values of the time series in the current speed and surface 

elevation (Figure 4.126).  
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Figure 4.125 NAMI DANCE results according to different Manning’s roughness 

coefficients at: (a) Hilo tide station; (b) HA1125; (c) HA1126. The dashed black line 

represents the measured data; the solid blue, red and green lines represent the NAMI 

DANCE predictions when  𝑛 = 0 , 𝑛 = 0.015 and  𝑛 = 0.025, respectively. 
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4.6.3. FLOW-3D
® 

Model 

 

The approximate dimension of the FLOW-3D
®
 computational domain is 6770 m by 

6680 m (Figure 4.126). 

 

 

 

Figure 4.126 FLOW-3D
® 

computational domain constructed for BMP 6: (a) meshing 

(enlarged for clarity); (b) boundary conditions and gauge locations; (c) after using 

FAVOR™  

(a) (b) 

(c) 
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4.6.3.1. Spatial Discretization 

 

In order to simulate BMP 6 efficiently, it is necessary to model the Hilo breakwater 

and cliffs around Hilo Harbor properly. To achieve this, the FAVOR™ module of 

FLOW-3D
®
 is used in order to see whether the topography is modeled accurately 

enough. The numerical modeling of BMP 6 is carried out at 8 m, 10 m and 20 m grid 

resolutions with a Manning’s roughness coefficient of 0.025. The computed and 

measured time series of the water surface elevation at the Hilo tide station are 

compared. The average flow speeds recorded at the two ADCP locations, HA1125 

and HA1126, are also compared with the predictions.  

 

The results show that a 20 m grid resolution is not adequate to accurately model the 

Hilo topography in FLOW-3D
®
. On the other hand, proper modeling of the study 

domain is possible with a 10 m resolution. Minimal difference is seen in the results 

using a high resolution grid, i.e. 8 m. It is important to note that employing a 

resolution higher than 8 m is not possible due to the computational constraints of the 

3D model for this size of domain. There is not much difference between the 

predictions made with 8 m and 10 m resolutions; therefore, no significant difference 

is expected for a higher resolution simulation. 

 

It is also necessary to analyse the effect of the vertical grid size, Δ𝑧 , on the 

simulations in a three-dimensional model. When the grid size is decreased from 10 m 

to 8 m with constant Δ𝑥 , the results are the same as those obtained when the 

horizontal grid size is changed. It is preferred to use a uniform grid size along the 

computational domain, i.e. Δ𝑥 = Δ𝑦 = Δ𝑧 =10 m. 

 

The grid refinement study shows reasonable self-consistent overall convergence of 

the results, going from a 10 m to a 8 m resolution (Figure 4.127). The simulation 

which is carried out using a 20 m grid size does not provide accurate predictions of 

the average current speeds at HA1125 and HA1126 stations. For finer grid 

resolutions, however, a very well agreement is achieved. 
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Figure 4.127 FLOW-3D

®
 convergence test for BMP 6 at: (a) Hilo tide station; (b) HA1125; 

(c) HA1126. The dashed black line represents the field data; the solid blue, red and green 

lines represent the numerical predictions for ∆𝑥 = 20 m, ∆𝑥 = 10 m, and ∆𝑥 = 8 m, 

respectively. 
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The average flow distribution computed with the 8 m and 10 m cell sizes consistently 

displays the same flow pattern. The maxima of the predicted average flow speed is 

0.9 m/sec at 20 m resolution, 0.75 m/sec at 10 m resolution, and 0.76 m/sec at 8 m 

resolution at HA1125 and, at HA1126, 0.9 m/sec, 1.05 m/sec and 1.15 m/sec at 20, 

10 and 8 m resolutions, respectively. 

 

The results indicate that the grid size is effective in the areas with high vorticity 

concentration. Similar to the NAMI DANCE results, the FLOW-3D
®
 results show 

that, with the decrease of the grid size, finer details of the flow pattern appear around 

the breakwater head in the form of small eddies. The model results at the ADCPs are 

less sensitive to the grid size due to either the ADCP locations away from the main 

vorticity sources or the low sampling intervals. Overall, the results are consistent 

with the NAMI DANCE simulations and reveal that a 10 m grid resolution, i.e. 

∆𝑥 = 10 m, is sufficient for the convergence of the results, which agree well with the 

measured data. 

 

The time step, Δ𝑡, is selected as 0.25 second to be consistent with the simulations 

conducted using NAMI DANCE. When variable time stepping is employed in order 

to assess the effect of the time step size, no significant effect is observed. 

 

4.6.3.2. Friction 
 

The effect of friction is investigated through the application of different roughness 

coefficients to the BMP 6 numerical model. Figure 4.128 shows the comparisons of 

the computed free surface elevation at the Hilo tide station and the average flow 

speeds at the two ADCPs, HA1125 and HA1126, with the measured data, with 

Manning’s roughness coefficients of: (i) 𝑛 = 0 (i.e. frictionless bottom), (ii) 𝑛 =

0.015 and (iii)  𝑛 = 0.025 at 10 m grid resolution.  

 

The results support the findings of NAMI DANCE simulations and indicate that the 

effect of varying friction is slightly felt in the surface elevation and in the maximum 

and minimum values of the time series in the current speed (Figure 4.128).  
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Figure 4.128 FLOW-3D
®
 results according to different Manning’s roughness coefficients at: 

(a) Hilo tide station; (b) HA1125; (c) HA1126. The dashed black line represents the 

measured data; the solid blue, red and green lines represent the FLOW-3D
®
 predictions when 

𝑛 = 0 , 𝑛 = 0.015 and  𝑛 = 0.025, respectively. 
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4.6.4. Simulation Results 

 

The grid resolution is taken as 10 m and Manning’s roughness coefficient, 𝑛, is set to 

0.025 as recommended for the following inter-model analyses. In addition, the 

maximum tsunami current maps are constructed for each model for a 10 m grid 

resolution. It is important to note that strong vortex shedding creates vortices that can 

be quite different at different resolutions (Lynett et al., 2017). In fact, when high 

resolution simulations are performed, finer details of the flow pattern appear around 

the breakwater head in the form of small eddies. 

 

The incident wave propagates southward and enters the harbor through a wide 

entrance, in the middle of which ADCP HA1125 is located. The waves refract and 

diffract around the breakwater before reaching HA1126 and the Hilo tide station. The 

reflected waves interact with the subsequent arrivals to produce a complex wave 

field in Hilo Bay. The three grid resolutions (i.e. 5 m, 10 m and 20 m) give nearly the 

same surface elevations at the tide gauge and very similar average current speeds at 

the two ADCPs. 

 

Even though the results indicate that both models follow the same trend regarding the 

current velocity components, whether the flow spectral content is reproduced 

correctly can not be decided because of the relatively low sampling rate (6 min) of 

the velocity measurements. In the spatial discretization and friction analyses 

conducted previously, before the comparisons are made between the measured and 

computed free surface elevation time series at the Hilo tide station and the average 

current speeds at the two ADCPs, the simulated time histories were re-sampled to 

match the sampling method of the recorded data. No re-sampling is done in the 

following analyses. 
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Figure 4.129 illustrates the comparison of the modeled and observed 2011 Tōhoku 

tsunami dynamics at the Hilo tide station. For both models, the wave crests/troughs 

agree with each other till 𝑡 =9 hrs; however, the wave train between 𝑡 =9 hrs and 

𝑡 =9.5 hrs is overestimated. 

 

 

 

 

 

Figure 4.129 Comparison of the free surface elevation time series at Hilo tide station. The 

dashed black line represents the laboratory measurements; the red line represents the NAMI 

DANCE results; the green line represents the FLOW-3D
® 

results. 

 

The predicted 𝑢 and 𝑣  components of current velocities in N – S and E – W 

directions are favourably compared with their observed counterparts (Figure 4.129). 

It is seen that the predicted velocity components have lots of fluctuation and thus 

several maxima/minima after 𝑡 =9 hrs. These values are not observed in the recorded 

data. Because of the coarse time sampling of the tsunami currents during the Tōhoku 

2011 event, some peak velocities might be missing in the recorded data. The 

sampling of the predicted current velocity components is 3 seconds for both models, 

while the sampling interval of the recorded velocity data is 6 minutes. This may be 

the main reason why there is a mismatch between the predicted and recorded velocity 

values after 𝑡 =9 hrs. 
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Figure 4.130 Comparison of velocity components in E – W and N – S directions at HA1125, 

located at the entrance of the Hilo Harbour and at HA1126, located inside the Hilo Harbour. 

The dashed black line represents the laboratory measurements; the red line represents NAMI 

DANCE results; the green line represents the FLOW-3D
® 

results. 
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While time series comparisons are useful for understanding how errors and variations 

evolve temporally, they do not help to understand how quickly flow properties 

change spatially. To examine spatial variability, maps for the predicted maximum 

current distribution are constructed for both models (Figures 4.131 and 4.132). The 

greatest speeds are found in the area around breakwater head and along the coast 

where the depths are shallow. In these areas the predicted current speeds are in an 

excess of 4 m/s. These results are consistent with the findings of the previous studies 

(Cheung et al., 2013, NTHMP, 2015; Lynett et al., 2017). 

 

 

 
Figure 4.131 The distribution of the computed maximum current speed during the entire 

duration of the NAMI DANCE simulation. The resolution of computational domain is 10 m. 
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Figure 4.132 The distribution of the computed maximum current speed during the entire 

duration of the FLOW-3D
®
 simulation. The resolution of computational domain is 10 m. 

 

As stated in Chapter 4, Table 4.1, the allowable error thresholds vary according to 

the reference data types. BMP 6 provides field data, for which the allowable NRMSE 

and MAX limits are 25% and 20%, respectively, for free surface elevation time 

series according to the OAR PMEL-135 standard. At present, no allowable error 

threshold is provided for the recorded velocity values in the field. Here, it is 

important to note that, for the sake of consistency with the previous BMPs, the 

statistical error analysis is conducted only to include the first maxima/minima of the 

wave train and current velocities. When whole time segment (i.e. from t=7.5 hrs to 

t=11 hrs) is considered, the errors increase considerably. In fact, the NRMSE of the 

NAMI DANCE and FLOW-3D results for the free surface dynamics recorded at the 

Hilo tide station are calculated as 24% and 21% respectively, and the MAX errors 

are calculated as 33% and 27% for the NAMI DANCE and FLOW-3D results, 

respectively. 
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When the method proposed and employed for the previous BMPs is applied, the 

NRMSE of the NAMI DANCE and FLOW-3D results for the free surface dynamics 

recorded at the Hilo tide station are calculated as 13% and 11% respectively, and the 

MAX errors are calculated as 19% and 20% for the NAMI DANCE and FLOW-3D 

results, respectively. 

 

The NRMSE and MAX error of the model results for the current velocities recorded 

at HA1125 and HA1126 are given in Table 4.29 and Figure 4.133. 

 

Table 4.29 NRMSE and MAX errors for BMP 6 

 

Gauge 
NAMI DANCE FLOW-3D

®
 

% NRMSE % MAX % NRMSE % MAX 

HA1125 - 𝑢 33 39 21 29 

HA1125 - 𝑣 30 35 27 23 

HA1126 - 𝑢 34 17 19 5 

HA1126 - 𝑣 28 35 23 27 

 

  
 

Figure 4.133 Error bars for BMP 6: (a) % NRMSE; (b) % MAX error. The red and green 

bars represent the errors of the NAMI DANCE and FLOW-3D
®
 results, respectively. 
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The NRMSE of the NAMI DANCE results is around 30% while the MAX error 

ranges from 17% to 39%. The FLOW-3D
®

 results have an NRMSE of around 20% 

and a MAX error range between 5% and 29%. The effects of grid refinement are 

crucial for the current velocities. At the ADCP 1125, the NRMSE difference in the 

velocity magnitude between the 20 and 10 m grids is about 4% for the NAMI 

DANCE results and 8% for the FLOW-3D results, whereas it is about 1% between 

the 10 and 5 m grids for both models. At the ADCP 1126, similar values are 

observed. Note that, at both locations, the maximum velocity is on the order of 1 m/s. 

 

To sum up, the damage caused by tsunamis far from their sources amounts to 

millions of dollars. This damage is usually done by the strong currents that are 

generated in harbors and along coastlines, rather than by high flow depth or long 

inundation distances. In the U.S., the damage that has been done by tsunamis in the 

last ten years costs over $170 million. The 2011 Tōhoku tsunami, for instance, 

probably caused $90 million in damages in the U.S., despite the fact that the highest 

waves arrived near low tide and there was little on-shore inundation (Arcos and 

LeVeque, 2014). It is obvious that understanding and predicting the velocities of 

currents generated by tsunamis in harbors and channels better is essential and further 

research into this issue should be carried out. 

 

A recent study by Lynett et al. (2014) illustrates that moderate damage can be done 

by tsunami current velocities between 1.5 m/sec to 3 m/sec while velocities above 3 

m/sec can cause major damage. Tsunami science is primarily involved in the ability 

to measure and compute tsunami velocities. Depth-averaged water velocity is 

calculated by tsunami models, but not enough data sets have been available to 

validate the model results until recently. The comparison of tsunami velocity 

simulations with laboratory results, post-tsunami survey data and analysis of survivor 

videos, or direct measurement from current meters is a relatively new area of 

research. It should be noted that directly measured tsunami currents yield limited 

data. 
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As stated earlier, substantial damage and lengthy closure of harbors and marinas 

resulted from the incessant oscillations and dangerous currents around Hawaii 

triggered by the 2011 Tōhoku tsunami. The data collected from this tsunami is 

valuable because of Hilo Harbor’s location. BMP 6 provides probably the most 

comprehensive current data set for a tsunami since the collected data is from the 

most interesting and challenging locations due to the Hilo Harbor’s location. The 

point measurements for the validation and assessment of the model results in Hawaii 

were obtained from a number of tide gauges, bottom pressure sensors and ADCPs. 

Spectral analysis of the computed surface elevation and currents reveals complex 

flow patterns due to multiscale resonance. Thus, the recorded tsunami current data of 

BMP 6 has great importance since the differences between two- and three-

dimensional models can be assessed based on this data. 

 

The depth-averaged velocity, which is most relevant to the primary flow caused by 

tsunamis, is calculated from the arithmetic mean of the recorded components over 

the water column in the N – S and E – W directions in BMP 6. Being a depth-

averaged model, NAMI DANCE gives the direct solutions for the depth-averaged 

velocities at HA1125 and HA116 locations. With FLOW-3D
®
 there are two options. 

The depth-averaged velocities at the given gauge points are automatically calculated 

or, if desired, calculated from the arithmetic mean of the predicted velocity 

components over the water columns. For this study, the first option is chosen in order 

to save time. 

 

The computed free surface elevation time series at the Control Point and the Hilo tide 

gauge are compared with the previously recorded data. Starting about 𝑡 = 10.3 hrs 

after the earthquake, there is a gap in the data because the gauge did not function 

properly. The two velocity components at the two ADCP locations, HA1125 and 

HA1126, are compared with the recorded values. Moreover, the average current 

speed values at both ADCPs are also compared at all three resolutions. The results 

show good agreement between the computed and recorded time series at the Control 

Point, the Hilo tide station and the two ADCPs for both models. 
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The grid converge test results indicate there is almost negligible variability in the free 

surface elevation time series at the Hilo tide station at different resolutions. In the 

average current speed analysis a small, but slightly larger variability is observed at 

all three resolutions. These results suggest that, both the free surface elevation and 

current velocity solutions are well-resolved for this particular benchmark problem. 

However, further inspection of the maximum current speed variability in the areas 

with strong vorticity concentration may require higher resolution. The variability of 

field-scale currents due to the existence of eddies is still a matter of controversy in 

the field of numerical modeling. Previous studies suggest that as grid size increases, 

the vortex strengthens and expands (NTHMP, 2015). This creates some difficulty: in 

eddy areas, many models will increasingly diverge with decreasing resolution (i.e. 

increasing grid size). Therefore, it is recommended a single model be accompanied 

by careful and conservative expert interpretation and identification of where potential 

eddies could form and move in the nearshore region (NTHMP, 2015). 

 

It is known that there is complex nearshore circulation driven by winds, waves, 

eddies, and tides in the strongly stratified water around Hawaii (Eich et al., 2004; 

Lowe et al., 2009; Johnson et al., 2013). The ADCP measurements showed variations 

of the flow velocity over the water column before the tsunami arrived, which 

indicated the existence of three-dimensional background currents. The predicted 

current velocity components at HA1125 are slightly higher, but the predictions are in 

phase with the measurements. The flow field around HA1126 is subject to vortices 

generated around the breakwater head. Thus, velocity measurements with a higher 

sampling rate and numerical models with proper turbulence closure are required for a 

meaningful comparison. Particularly, at the ADCP HA1126, there is good agreement 

between the FLOW-3D
®

 results and the recorded data for the first and second peaks 

of the current velocities in N – S and E – W directions. This shows the importance of 

the 3D numerical model structure in the reproduction of tsunami-induced coastal 

currents in harbors.  
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As a large number of closely located measurements were made in Hilo Harbor during 

the 2011 tsunami, it remains a unique location in terms of instrumentation 

observations. Yet, demonstrating model accuracy is still problematic. There are 

mainly two reasons for this. First, the ADCP time series data are sampled every six 

minutes. The velocity field under a tsunami, particularly inside a harbor, can change 

quickly. There are studies suggesting that a sample rate of a minute is necessary to 

resolve nearshore currents (Lynett et al., 2012). If the flow is affected by eddies, the 

sample rate may decrease. Secondly, BMP 6 is a field-data case that is subject to 

uncertainty and error due to initial condition and propagation of the tsunami wave 

over half of the Pacific, as well as the fact that the ADCP measurements may be 

imprecise. It is a fact that Hilo Harbor is possibly the best location for instrumented 

measurements of tsunami-induced currents, and it has highlighted the necessity of 

higher resolution sampling of nearshore tsunami-induced currents. 
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CHAPTER 5  
 

 

SUMMARY AND CONCLUSIONS 

5. SUMMARY AND CONCLUSIONS 

 

 

The assessment of coastal environment is a major issue in coastal engineering. 

Surface water waves that interact with structures or that propagate over varying 

topographies should be predicted accurately, which poses a challenge. Over the past 

several decades, many numerical models have been developed to compute wave 

transformation from deep water to shallow water (Liu, 1994; Wu, 2001). As waves 

propagate over varying topographies and interact with submerged structures, wave 

reflection, shoaling, refraction and diffraction can all have a combination of effects. 

Energy transfers can become more complicated due to nonlinear effects during these 

interactions. Therefore, the computation needed for the accurate prediction of the 

variation of free surface elevation and velocity field over structures can be too costly. 

As a consequence, when nonlinear and dispersive waves over irregular, steep 

topography are simulated, it is vital that the efficiency and accuracy of models be 

ensured (Wu and Yuan, 2005). 

 

There are mainly three approaches to the modeling of surface water waves. The first 

one is Laplace’s equation, which is based on the potential flow theory with the 

assumption of irrotational motion and incompressible fluid. Numerical techniques 

such as Boundary Element Methods (Longuet-Higgins and Cokelet, 1976; Isaacson, 

1982; Grilli et al., 2001) and spectral methods (Dommermuth and Yue, 1987; 

Bateman et al., 2001) have been employed to solve the Laplace’s equation. In 

general, the application of this type of technique to three-dimensional waves is 

difficult (Tsai and Yue, 1996). Moreover, when modeling the flows that involve 

shear, vortex and turbulence generation during their interaction with structures, the 

potential flow theory is not recommended (Wu and Yuan, 2005). 
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The second approach to model wave transformation is a so-called depth-integrated 

model (Liu, 1994). It is based on the idea of integrating the vertical dimension to 

minimize computational cost. For example, Peregrine (1967) derived the 

conventional Boussinesq model under the constraint of the equal importance of weak 

nonlinearity and dispersion. A great deal of progress has been made to remove this 

constraint by accounting for higher-order effects (Madsen et al., 1991; Nwogu, 1993; 

Wei et al., 1995; Madsen et al., 2002). The improvement of depth-integrated models 

also demands higher-order numerical schemes and computation, thus motivating the 

development of multi-layer Boussinesq models (Lynett and Liu, 2004b; Hsiao et al., 

2005). 

 

The third approach is the non-hydrostatic model. Recently, the development of non-

hydrostatic models has gained importance because they are able to resolve the 

variations of surface displacement and velocity field over complicated bottom 

topographies. Essentially, these types of models are based on the Navier–Stokes 

equations. To track the moving air–water interface, several methods such as the 

Lagrangian–Eulerian method (Hodges and Street, 1999; Zhou and Stansby, 1999), 

the Marker-and-Cell method (Harlow and Welch, 1965), the Volume-of-Fluid 

method (Hirt and Nichols, 1981) and the Level set method (Iafrati et al., 2001) have 

been incorporated. The practical applications of these models are limited due to the 

high cost of computation and strict requirements for stability even though they can 

handle complicated free surfaces (i.e. breaking waves). 

 

The computational cost of 3D numerical models, which require the numerical 

solution of the full Navier-Stokes equations, is higher than that of 2D numerical 

models, which are based on the shallow water approximation. Determining which 

model would be suitable for a particular problem requires knowledge and experience. 

The selection of a proper model also depends on the nature of the problem (Wang 

and Chu, 2012). 
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This study investigates the sufficiency of nonlinear forms of two-dimensional depth-

averaged shallow water equations in tsunami wave evolution, propagation, 

amplification and inundation and focuses on two numerical tools; NAMI DANCE 

and FLOW-3D
®

. NAMI DANCE solves nonlinear forms of two-dimensional depth-

averaged shallow water (2D-NSW) equations in long wave problems. FLOW-3D
®

 

simulates linear and nonlinear propagating surface waves as well as long waves by 

solving three-dimensional Reynolds-averaged Navier-Stokes (3D-RANS) equations. 

The codes are applied to analytical, experimental and field benchmark problems and 

validated. A total of six benchmark problems are considered. This dissertation is the 

first in-depth study to employ such a large number of benchmark problems in order 

to validate the commercial numerical model FLOW-3D
®
 in tsunami wave evolution, 

propagation and inundation. 

 

The first benchmark problem (BMP 1) covers both analytical and experimental 

investigations of evolution, propagation and runup of a single solitary wave climbing 

up a plane beach. Benchmark problem 2 (BMP 2) is composed of physical model 

studies which focus on wave transformation and overtopping around a conical island. 

Benchmark problem 3 (BMP 3) describes a series of experiments that analyze the 

transformation of a single solitary wave as it propagates up a shallow triangular-

shaped shelf. Benchmark problem 4 (BMP 4) focuses on the laboratory experiments 

investigating the propagation and inundation of a tsunami wave over a complex 3D 

beach and the extreme runup observed at the very narrow valley with very steep 

slopes leading to the beach. Benchmark problem 5 (BMP 5) investigates the 

interaction between the macro-roughness elements and tsunami inundation 

characteristics. The last benchmark problem, Benchmark problem 6 (BMP 6), 

provides a comprehensive current data set for the Japan 2011 tsunami recorded in 

Hilo Harbor, Hawaii. It is also possible to regard BMP 6 as a case study as it is a 

field benchmark presenting real data. NAMI DANCE and FLOW-3D
®

 are both 

tested and validated via BMPs 1 – 5 and then applied to a case study, namely BMP 6. 
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BMP 1 analyses reveal that NAMI DANCE can not accurately describe the wave 

form of the large amplitude solitary wave in very shallow areas (i.e. 𝐻 = 5.9 cm and 

𝑑 ≅ 20 cm). The wave crest steepens, which is typical of any hydrostatic model, and 

the predicted wave heights are approximately 30% smaller than the laboratory 

measurements and FLOW-3D
®
 results. This leads to the underestimation of the 

runup height of large amplitude solitary waves, by approximately 20% – 25% by the 

depth-averaged model. 

 

When the results of BMP 2 are assessed, it is seen that NAMI DANCE predicts the 

simulated runup 20% less than the measured one on the lee side of the island for the 

large amplitude solitary wave case (i.e. 𝐻 = 5.8 cm and 𝑑 = 32 cm). The reason for 

this is that the simulated waves steepen more rapidly than those measured in the 

laboratory experiments for large amplitude waves, which is a well-known effect of 

the shallow water approximation (NTHMP, 2011). For BMP 2 case, it is obvious that 

3D-RANS equations show an appreciable improvement over the 2D depth-averaged 

NSW equations. The vertical velocity component, 𝑤, is fairly effective on the back 

side of the island for the large amplitude case. It rapidly increases and becomes 

nearly as large as the horizontal velocity component the moment the two splitting 

waves converge behind the island.  

 

BMP 3 involves energetic breaking waves with overtopping, vortex formation and 

runup. There is no delay in the arrival times at the proposed gauges for the three-

dimensional model predictions. However, NAMI DANCE shows small time delays 

at the gauges located in the wake of the island. Moreover, NAMI DANCE 

underestimates the propagation speed of the wave and somewhat misrepresents the 

waveform at the gauge located behind the obstacle, on the centerline, where strong 

turbulence and nonlinearities occur. At this gauge, NAMI DANCE predicts the wave 

amplitude nearly 10% less just prior to wave breaking. Moreover, the cross-shore 

velocity component is predicted 20% less than the measured one and the FLOW-3D
®

 

results. On the other hand, FLOW-3D
®
 predicts the cross-shore and longshore 

velocity components reasonably well with no mismatch in the phase at all gauges. 
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This shows that the 2D depth-averaged NSW equations are not capable of reflecting 

strong nonlinearities in the flow. Therefore, 3D-RANS equations are required to 

adequately resolve the initial wavelength and to prevent the wave front from 

steepening prior to island impact.  

 

In BMP 4, it is seen that both models are able to reproduce the rapid sequence of 

runup and rundown as well as the maximum runup in the narrow gully near the 

village of Monai. However, NAMI DANCE predicts the amplitude of the waves 

reflected from the coast 20% – 30% less than the values measured in the laboratory 

and FLOW-3D
®

 results. The reason for this is that the flow conditions are not fully 

hydrostatic after the wave is reflected from the coast. It is important to note that the 

vertical velocity component gets extremely large on the steep slopes of the narrow 

valley and ignoring it may lead to unreliable results. Thus, depth-averaged models 

seem insufficient for runup on steep slopes since NSW equations do not include the 

vertical velocity component.  

 

The majority of the previous benchmark tests for inundation models engage in time 

series of free surface elevation or maximum runup height. However, in BMP 5, the 

time series and maximum values of overland flow depth, cross-shore velocity and 

cross-shore momentum flux are considered. Both models reproduce and transform 

the incident wave very well, as expected. The largest discrepancies between the 

numerical simulations and laboratory experiments occur during the inundation stage. 

Both models manage to reproduce the maximum overland flow depth at the gauges 

situated close to the shore, however, they underestimate the maximum overland flow 

depth at landward locations. Compared to the measurements along line B, NAMI 

DANCE computes the cross-shore velocity ~20% and cross-shore momentum flux 

~50% less than FLOW-3D
®

 at the farthest landward locations. This is a huge 

deviation in terms of force calculations. On the other hand, FLOW-3D
®

 is able to 

predict the maximum cross-shore velocity accurately and follows a similar trend with 

the laboratory data. 
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As stated earlier, BMP 6 can also be considered as a case study, providing a 

comprehensive tsunami current data set recorded after the 2011 Tōhoku tsunami at 

Hilo Harbor, Hawaii. The depth-averaged velocity, which is most relevant to the 

primary flow caused by tsunamis, is calculated from the arithmetic mean of the 

recorded components over the water column in the N – S and E – W directions and 

the data is filtered to remove the long period tidal components. It is important to note 

that the flow field inside the Hilo Harbor is subject to vortices; therefore, the data 

recorded at HA1126 requires a higher sampling rate for a meaningful comparison. 

Particularly, at both ADCPs, there is good agreement between the FLOW-3D
®
 

results and the recorded data for the first and second peaks of the current velocities in 

N – S and E – W directions. This shows the importance of the 3D model structure in 

the reproduction of tsunami-induced coastal currents in harbors.  

 

As stated previously, numerical models solve the nonlinear partial-differential 

equations (PDE’s) describing fluid flow with numerical methods. Numerical 

methods are the process of discretizing the PDE’s into algebraic equations and 

solving those algebraic equations to obtain the solutions. This is where grid size and 

time step size are involved. There are several types of errors associated with 

numerical solutions. The first type is called truncation error, which is caused by a 

truncated Taylor series expansion replacing the spatial derivative and time derivative. 

The order of truncation error is proportional to ∆𝑥 (grid size) and ∆𝑡 (time step size). 

This implies that as ∆𝑥 and ∆𝑡 decrease, the truncation error decreases. However, 

decreased grid size and time step size result in an increased number of computational 

operations, which introduces an additional error called computational round-off 

error. Moreover, decreasing grid size does not necessarily always provide stability. 

Therefore, the determination of grid and time step size is an important issue in 

numerical modeling. In this study, spatial discretization analysis is done for all 

benchmark problems. The most prominent result obtained is that grid size is a key 

parameter for the wave – macro-roughness interaction analyses as well as for real 

case tsunami inundation studies, where analysis of the areas with strong vorticity 

concentration may require higher resolution. 
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Friction is another important paremeter in the assessment of inundation heights and 

distances. While friction is negligible offshore, its effects start to be felt in the 

shallower regions and along the shoreline. For laboratory conditions, several friction 

parameters are proposed for several materials; however, the determination of the 

friction factor is relatively difficult for field studies since it is not uniform in real life. 

Especially for regions with dense settlements along the shorelines, variations in the 

bottom friction are considerably large, making the friction factor very crucial in the 

estimation of inundation parameters. BMP 5 is quite a good example illustrating this. 

Thus, calibration of the friction parameter is essential for all tsunami numerical 

models. 

 

The limited consideration of bottom friction and the neglect of coastal structures like 

seawalls or revetments, which may attenuate wave impact, usually results in 

unreliable runup height and inundation distance predictions. In fact, previous tsunami 

inundation case studies suggest that there may be a considerably high overestimation 

of 150% – 200% in predicted maximum water levels, which is probably caused by 

inaccuracies in the topography/bathymetry and friction factors and the disregard of 

coastal structures (Løvholt et al., 2012b). Thus, the importance of friction is realised 

by many researchers in tsunami inundation studies. Different friction coefficients are 

tested in numerical models to account for land cover roughness such as forests or 

human-made structures, which are supposed to influence inundation characteristics. 

In the analysis of large-scale tsunamis, most case studies show that Manning’s 

roughness coefficients of 0.025 ≤ 𝑛 ≤ 0.035 give relatively reliable results in the 

validation of tsunami models against runup height and inundation distance 

measurements obtained from field surveys (Løvholt et al., 2012b). 

 

Even though 2D depth-averaged models are very satisfactory in predicting wave 

evolution, transformation and propagation along both simple and complex 

bathymetries, they have some shortcomings when the bottom topography becomes 

too shallow, when there are obtacles in the propagation direction of the wave or 

when nonlinear effects develop and/or are dominant, raising the need for non-
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hydrostatic solutions. Due to the assumptions in the derivation of 2D depth-averaged 

NSW equations (i.e. hydrostatic pressure distribution along depth), these equations 

can not produce accurate results when non-hydrostatic effects are present such as 

wave breaking and turbulence. To illustrate, in the extreme wave cases of BMP 1 and 

BMP 2 (i.e. large amplitude waves), NAMI DANCE predicts a steeper wave front 

and, therefore, its predictions of a wave height are 20% less than the laboratory 

measurements and FLOW-3D
®
 results since it neglects wave breaking. 

 

Numerical simulations conducted in order to forecast possible tsunami damage to the 

settlements have started to play a crucial role in tsunami hazard mitigation in recent 

years. In other words, the analysis of the interaction of tsunami waves with both 

coastal defense structures and settlements along the coastline is very important in 

tsunami mitigation. The results of this study suggest that three-dimensional models, 

capable of solving non-hydrostatic effects, should be favoured when very shallow 

areas are studied and/or complex flows such as vortices, turbulence mixing, etc. are 

dominant. BMP 5 is a very good example illustrating this phenomenon. The force 

exerted on structures due to inundation flow is directly related to the momentum 

flux, which is the multiplication of the overland flow depth by the square of cross-

shore velocity. Therefore, it is very important to calculate these parameters as 

accurately as possible. Even though the resolution of the bathymetry is crucial in 

detailed inundation calculations including settlements, it is seen that three-

dimensional models give better results regarding tsunami wave arrival times, 

overland flow depths and velocities.  

 

Overall, it is seen that both models are capable of predicting the evolution, 

transformation and inundation of small amplitude waves perfectly, when nonlinear 

effects are negligible. In the case of large amplitude waves and/or when nonlinear 

effects are dominant, NAMI DANCE predicts the wave height (i.e. BMP 1, BMP 2 

and BMP 4) approximately 20% lower than the measurements and FLOW-3D
® 

predictions when the wave reaches very shallow areas (before breaking). 
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Accordingly, the runup heights are predicted by the depth-averaged NSW equations 

15% – 20% lower than the laboratory measurements and FLOW-3D
®

 results. 

 

As a result, it is concluded that 2D depth-averaged NSW equations are more than 

sufficient for the modeling of a tsunami from its source to the shore. However, when 

the wave reaches shallower regions, i.e. 𝑑 ≤  30 m, and when nonlinear effects 

develop, 3D-RANS equations should be favoured over the 2D depth-averaged NSW 

equations. In real life, the vertical velocity component plays an important role in 

tsunami inundation and wave-structure interaction; therefore, it should not be 

neglected in tsunami inundation simulations, which are carried out for tsunami 

hazard mitigation. Also, model predictions for overland flow depth and cross-shore 

velocity are being more commonly used for structural loading calculations; thus, 

further research is needed to quantify errors and variability in inundation velocities. 

As 3D numerical models consume too much computing power and time (Table 5.1), 

2D depth-averaged NSW models are recommended for the transformation of tsunami 

waves from their source to nearshore regions.  

 

In order to prepare for possible future events, it is important to hindcast past largest 

tsunamis such as the 2004 Indian Ocean tsunami and 2011 Tōhoku tsunami. 

Although they are often based on coarse data, rapid tsunami hazard assessments are 

indispensable in risk assessment and mitigation because fast and cost-effective 

hazard mapping can be done. For the rapid assessment of possible tsunami damage, 

2D depth-averaged equations are the best option for now since they are fast, accurate 

and reliable. However, for high risk areas, such as nuclear power plant sites, military 

zones and heavily populated regions, 3D analyses should be preferred for mitigation 

strategies. At this point, it is important to note that, when modeling a global tsunami, 

it is not necessary to solve the whole domain, starting from the source to the shore, 

via 3D equations. It will be sufficient to model the transformation of tsunami waves 

from their source to nearshore regions via 2D depth-averaged NSW equations and 

use 3D models in the rest of the study domain, i.e. the nearshore region, where the 

shoaling effect starts to be significant, and on land. 



 

 

3
3
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Table 5.1 Mesh properties and process time for all BMPs 

 

BM Test Category Tested Quantity 

Grid 

Size 

(m) 

Time 

Step 

(sec) 

Simulation 

Time (sec) 

NAMI DANCE FLOW-3D
®

 

Process Time 

Intel
®
 Xeon

®
  

E5-1650 v3 3.5 

GHz Processor 

Process Time 

Intel
®
 Xeon

®
 

E5-1650 v3 3.5 

GHz Processor 

BMP 1 

Analytical Solution 

and Laboratory 

Measurements 

Runup/Amplitude 0.01 0.02 60 10 minutes 4 hours 

BMP 2 
Laboratory 

Measurements 
Runup/Amplitude 0.05 0.02 40 40 minutes 6 hours 

BMP 3 
Laboratory 

Measurements 
Amplitude/Velocity 0.05 0.001 20 15 hours 2 days 

BMP 4 
Laboratory 

Measurements 
Runup/Amplitude 0.014 0.05 50 3 hours 3 days 

BMP 5 
Laboratory 

Measurements 
Runup/Velocity 0.05 0.001 40 21 hours 3 days 

BMP 6 
Field 

Measurements 
Amplitude/Velocity 10 0.25 48 600 2 days 15 days 
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It is necessary to validate numerical models incessantly via the newly developed 

benchmark problems. In the field of numerical modeling, the key parameter is 

uncompromised and realiable data. Therefore, obtaining measurements of real 

tsunami data is of utmost importance. The placement of new offshore DART buoys 

in the strategic areas most vulnerable to tsunamis would provide invaluable data for 

modelers. It is also crucial to conduct further research regarding the 3D tsunami 

modeling and be aware of the newly developed methods.  

 

Most tsunami modelers base their studies on the shallow water equations for 

predictions of propagation and runup of tsunami waves, whereas others rely on 

dispersive wave models, sometimes even with enhanced nonlinear properties. The 

latter are in-house models or available as standard codes, free or commercial 

(Glimsdal et al., 2013). With the advances in computing technology and the 

development of new numerical methods, it is highly probable that there will be a 

significant decrease in the required computing power and time for the solutions of 

three-dimensional equations and that 3D numerical models will be overwhelmingly 

employed in numerical simulations regarding tsunami hazard mitigation strategies.  
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APPENDICES 

 

 

APPENDIX A 

 

A. GOVERNING EQUATIONS OF FLUID DYNAMICS 

GOVERNING EQUATIONS OF FLUID DYNAMICS 

 

 

 

The cornerstone of computational fluid dynamics (CFD) is the governing equations 

of fluid dynamics, which are the equations of continuity, momentum and energy. 

These equations are the mathematical statements of the three fundamental physical 

principles upon which all of fluid dynamics is based (Anderson, 2009): (i) mass is 

conserved; (ii) acceleration is produced when a force acts on a mass (Newton’s 

second law); (iii) energy is conserved. 

 

The governing equations can be obtained in different forms (i.e. conservative or  

non-conservative forms). In CFD, the use of the equations in one form may lead to 

success, whereas the use of an alternate form may result in oscillations in the 

numerical results, or even instability. Therefore, the forms of the equations are of 

vital interest for all CFD models. In fact, the nomenclature which is used to 

distinguish these two forms (conservative versus non-conservative) has arisen 

primarily in the CFD literature. 

 

It is important to apply the physical principles to a suitable model of the flow. A 

solid body is rather easy to see and define, whereas a fluid is a substance that is hard 

to grab and does not have a shape unless a container is used. If a solid body is in 

translational motion, the velocity of each part of the body is the same; on the other 

hand, if a fluid is in motion, the velocity may be different at every point of the fluid. 

Therefore, it is important to visualize a moving fluid so as to apply to it the 

fundamental physical principles (Anderson, 2009).  
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There are two approaches that can be applied for a continuum fluid (Figure A.1): 

(i) Finite control volume approach 

(ii) Infinitesimal fluid element approach 

 

 

 
Figure A.1 Approaches for the continuum fluid: (a) fluid passing through a finite control 

volume fixed in space; (b) finite control volume moving with the fluid; (c) fluid passing 

through an infinitesimal cubical element fixed in space; (d) an infinitesimal cubical element 

moving with the fluid (Anderson, 2009) 

 

Finite Control Volume 

 

A closed volume is defined within a finite region of a general flow field, which is 

represented by the streamlines shown in Figure A.1 (a – b). This volume defines a 

control volume, 𝑉, and a control surface, 𝑆, which is referred to as the closed surface 

bounding the volume. The control volume may be fixed in space with the fluid 

moving through it, or may be moving with the fluid such that the same fluid particles 

always remain inside (Figure A.1 (a – b)). In either case, the control volume is a 

reasonably large, finite region of the flow. 

(a) (b) 

(c) (d) 
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The fundamental physical principles are applied to the fluid inside the control 

volume, and to the fluid crossing the control surface if the control volume is fixed in 

space. The control volume model enables focusing on the fluid in the finite region of 

the volume itself, instead of the whole flow field. The fluid flow equations that are 

directly obtained by applying the fundamental physical principles to a finite control 

volume are in integral form. These integral forms of the governing equations can be 

manipulated to indirectly obtain partial differential equations. 

 

The equations obtained from the finite control volume fixed in space are called the 

conservative form of the governing equations (Figure A.1 (a)). The equations 

obtained from the finite control volume moving with the fluid, in either integral or 

partial differential form, are called the non-conservative form of the governing 

equations (Figure A.1 (b)) (Anderson, 2009). 

 

Infinitesimal Fluid Element 

 

An infinitesimally small fluid element in the flow with a differential volume, 𝑑𝑉, is 

defined along a general flow field represented by the streamlines shown in Figure 

A.1 (c – d). The fluid element is infinitesimal in the same sense as differential 

calculus; however, it is large enough to contain a huge number of molecules so that it 

can be viewed as a continuous medium. The fluid element may be fixed in space 

with the fluid moving through it, or may be moving along a streamline with a vector 

velocity, 𝑉⃑⃑, equal to the flow velocity at each point.  

 

The fundamental physical principles are applied to just the fluid element itself. This 

application leads directly to the fundamental equations in partial differential 

equation form. The particular partial differential equations obtained directly from the 

fluid element fixed in space (Figure A.1(c)) are the conservative form of the 

equations. The partial differential equations obtained directly from the moving fluid 

element (Figure A.1 (d)) are called the non-conservative form of the equations 

(Anderson, 2009). 
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A.1. Derivation of Flow Equations 

 

The differential equations of flow are derived by considering a differential volume 

element of fluid and describing mathematically: 

(i) the conservation of mass of fluid entering and leaving the control volume; 

equation of continuity. 

(ii) the conservation of momentum entering and leaving the control volume;  

equations of motion or Navier-Stokes equations. 

 

A.1.1 Equation of Continuity 

 

The mass conservation of fluid passing through an infinitesimal cubical element 

∆𝑉 = ∆𝑥∆𝑦∆𝑧 (Figure A.1) is stated as follows: 

 

rate of change of mass = transport rate of mass in − transport rate of mass out      [A. 1] 

 

 

 

Figure A.2 Fluid passing through an infinitesimal cubical element 

 

The transport rate of mass into the element at location 𝑥 and through the face ∆𝑦∆𝑧 

is the product of mass flux of fluid in 𝑥 direction and surface area of face ∆𝑦∆𝑧: 
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transport rate of mass in = (𝜌𝑢)𝑥∆𝑦∆𝑧                                                                      [A. 2] 

 

The transport rate of mass out of the element at location 𝑥 + ∆𝑥 and through the face 

∆𝑦∆𝑧 is expressed by Equation [A.3]: 

 

(𝜌𝑢)𝑥+∆𝑥(∆𝑦∆𝑧) = [(𝜌𝑢)𝑥 +
𝜕(𝜌𝑢)

𝜕𝑥
∆𝑥] (∆𝑦∆𝑧)                                                       [A. 3] 

 

The change in the fluid density is the only way that mass can be 

accumulated/depleted within the control volume.  

 

rate of change of mass =
𝜕𝜌

𝜕𝑡
(∆𝑥∆𝑦∆𝑧)                                                                       [A. 4] 

 

By substituting Equations [A.2] – [A.4] in the conservation equation [A.1]: 

 

𝜕𝜌

𝜕𝑡
(∆𝑥. ∆𝑦. ∆𝑧) =  (𝜌𝑢)𝑥∆𝑦∆𝑧 − [(𝜌𝑢)𝑥 +

𝜕(𝜌𝑢)

𝜕𝑥
∆𝑥] (∆𝑦∆𝑧)                              [A. 5] 

 

𝜕𝜌

𝜕𝑡
=  −

𝜕𝜌𝑢

𝜕𝑥
                                                                                                                        [A. 6] 

 

When the same considerations are applied to 𝑦 and 𝑧 directions, the general equation 

of continuity in three-dimensional flow is given by: 

 

𝜕𝜌

𝜕𝑡
=  − [

𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧
]                                                                              [A. 7] 

 

By differentiating the product terms on the right hand side of Equation [A.7] and 

then collecting all derivatives of density on the left hand side: 

 



 

 366 

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+ 𝑤

𝜕𝜌

𝜕𝑧
= −𝜌 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
)                                                    [A. 8] 

 

Using: 

 

D𝜌

D𝑡
=
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+ 𝑤

𝜕𝜌

𝜕𝑧
                                                                                     [A. 9] 

 

The general equation of continuity in three-dimensional flow becomes: 

 

D𝜌

D𝑡
+ 𝜌 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) = 0                                                                                        [A. 10] 

 

For incompressible fluids (i.e. negligible variation in density of fluid), the general 

equation of continuity in three-dimensional flow is: 

 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                                                                                                           [A. 11] 

 

A.1.2 Equations of Motion 

 

Newton’s second law of motion states that the net force on a fluid element equals to 

the product of its mass and its acceleration. It is a vector relation, and hence can be 

split into three scalar relations along 𝑥, 𝑦 and 𝑧 axes. The 𝑥-component is: 

 

𝐹𝑥 = 𝑚a𝑥                                                                                                                            [A. 12] 

 

where 𝐹𝑥 and a𝑥 are the scalar components of the force and acceleration, respectively 

and 𝑚 is mass. 
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The forces acting on the fluid element are: 

(i) Body forces, which act directly on the volumetric mass of the fluid element, i.e. 

gravitational, electromagnetic, centrifugal and coriolis forces. 

(ii) Surface forces, which act directly on the surface of the fluid element. These 

forces are: (a) pressure force acting on the surface and (b) viscous forces, which lead 

to the formation of shear and normal stresses acting on the surface. 

 

If the body force per unit mass acting on the fluid element due to gravity is denoted 

by 𝑔⃑ , with 𝑔𝑥  as its 𝑥 -component and the volume of the fluid element is ∆𝑉 =

∆𝑥∆𝑦∆𝑧: 

 

Body force on the fluid element acting in x direction = 𝜌𝑔𝑥∆𝑥∆𝑦∆𝑧             [A. 13] 

 

The net pressure force acting on the surface of the element in 𝑥 direction is given as: 

 

Net pressure force in x direction = 𝑃∆𝑦∆𝑧 − (𝑃 +
𝜕𝑃

𝜕𝑥
∆𝑥)∆𝑦∆𝑧                    [A. 14] 

 

The shear and normal stresses in a fluid are related to the time rate of change of 

deformation of the fluid element (Figure A.2) 

 

 

 

Figure A.3 Stress components acting on the surface of the fluid element: (a) shear stress; (b) 

normal stress on 𝑥𝑦 plane 
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The net shear and normal stresses acting on the surface of the element in 𝑥 direction 

is given as: 

 

Net shear and normal stresses in x direction = 

[(𝜏𝑥𝑥 +
𝜕𝜏𝑥𝑥
𝜕𝑥

∆𝑥) − 𝜏𝑥𝑥] ∆𝑦∆𝑧 + [(𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦
∆𝑦) − 𝜏𝑦𝑥] ∆𝑥∆𝑧 +      

[(𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥
𝜕𝑧

∆𝑧) − 𝜏𝑧𝑥] ∆𝑥∆𝑦                                                                                      [A. 15] 

 

The surface forces exerted on the fluid element in 𝑥 direction are shown in Figure 

A.3. 𝜏ij denotes a stress in j direction exerted on a plane perpendicular to the i axis.  

 

 

 

Figure A.4 Surface forces in 𝑥 direction exerted on the fluid element 

 

The total force in 𝑥 direction, 𝐹𝑥, is the sum of Equations [A.13] - [A.15]: 

 

𝐹𝑥 = (−
𝜕𝑃

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

)∆𝑥∆𝑦∆𝑧 + 𝜌𝑔𝑥∆𝑥∆𝑦∆𝑧                              [A. 16] 
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The mass of the fluid element is fixed and is equal to: 

 

𝑚 = 𝜌∆𝑥∆𝑦∆𝑧                                                                                                                  [A. 17] 

 

The acceleration of the fluid element is the time rate of change of its velocity. Hence, 

the component of acceleration in 𝑥 direction, a𝑥, is the time rate of change of 𝑢: 

 

a𝑥 =
D𝑢

D𝑡
                                                                                                                             [A. 18] 

 

Combining Equations [A.12], [A.16], [A.17] and [A.18]: 

 

𝜌
D𝑢

D𝑡
= −

𝜕𝑃

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑔𝑥                                                              [A. 19] 

 

Similarly,  

 

𝜌
D𝑣

D𝑡
= −

𝜕𝑃

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦                                                              [A. 20] 

 

𝜌
Dw

D𝑡
= −

𝜕𝑃

𝜕𝑧
+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝜌𝑔𝑧                                                              [A. 21] 

 

Equations [A.19] – [A.21] are the 𝑥 -, 𝑦 - and 𝑧 -components of the momentum 

equation in non-conservative form. These equations are also referred to as the 

Navier-Stokes equations. These equations describe how the velocity, pressure, 

temperature, and density of a moving fluid are related. The equations were derived 

independently by George Gabriel Stokes, in England, and Claude Louis Marie Henri 

Navier, in France, in the early 1800's. The equations are extensions of the Euler 

Equations and include the effects of viscosity on the flow. 

 

The Navier-Stokes equations can be obtained in conservative form as follows: 
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𝜌
D𝑢

D𝑡
=
𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕(𝜌𝑢2)

𝜕𝑥
+
𝜕(𝜌𝑢𝑣)

𝜕𝑦
+
𝜕(𝜌𝑢𝑤)

𝜕𝑧
                                                        [A. 22] 

 

Substituting Equation [A.22] into [A.19], the equations of motion in 𝑥 direction are 

obtained as: 

 

𝜕𝜌𝑢

𝜕𝑡
= −(

𝜕(𝜌𝑢2)

𝜕𝑥
+
𝜕(𝜌𝑢𝑣)

𝜕𝑦
+
𝜕(𝜌𝑢𝑤)

𝜕𝑧
) −

𝜕𝑃

𝜕𝑥
+
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

+ 𝜌𝑔𝑥              [A. 23] 

 

Similarly, 

 

𝜕𝜌𝑣

𝜕𝑡
= −(

𝜕(𝜌𝑣𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣2)

𝜕𝑦
+
𝜕(𝜌𝑣𝑤)

𝜕𝑧
)−

𝜕𝑃

𝜕𝑦
+
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜏𝑦𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

+ 𝜌𝑔𝑦          [A. 24] 

 

𝜕𝜌𝑤

𝜕𝑡
= −(

𝜕(𝜌𝑤𝑢)

𝜕𝑥
+
𝜕(𝜌𝑤𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤2)

𝜕𝑧
)−

𝜕𝑃

𝜕𝑧
+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜏𝑧𝑧
𝜕𝑧

+ 𝜌𝑔𝑧         [A. 25] 

 

For incompressible fluids (i.e. negligible variation in density of fluid), the simplified, 

three-dimensional unsteady forms of Navier-Stokes Equations are: 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+ (

𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

) + 𝜌𝑔𝑥          [A. 26] 

 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑦
+ (

𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
+
𝜕𝜏𝑧𝑦

𝜕𝑧
) + 𝜌𝑔𝑦          [A. 27] 

 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ (

𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+
𝜕𝜏𝑧𝑧
𝜕𝑧

) + 𝜌𝑔𝑧        [A. 28] 
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A.2. Leibniz Integral Rule 

 

Let 𝑓(𝑥, 𝑡) be a function such that both 𝑓(𝑥, 𝑡) and its partial derivative 𝑓𝑥(𝑥, 𝑡) are 

continuous in 𝑡 and 𝑥 in some region of the (𝑥, 𝑡) plane, including 𝑎(𝑥) ≤ 𝑡 ≤ 𝑏(𝑥), 

𝑥0 ≤ 𝑥 ≤ 𝑥1. Also suppose that the functions 𝑎(𝑥) and 𝑏(𝑥)are both continuous and 

both have continuous derivatives for 𝑥0 ≤ 𝑥 ≤ 𝑥1. Then for 𝑥0 ≤ 𝑥 ≤ 𝑥1: 

 

𝜕

𝜕𝑥
∫ 𝑓(𝑥, 𝑡)𝑑𝑡
𝑏(𝑥)

𝑎(𝑥)

= ∫
𝜕

𝜕𝑥
𝑓(𝑥, 𝑡)𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

+ 𝑓(𝑥, 𝑏(𝑥))
𝜕𝑏

𝜕𝑥
− 𝑓(𝑥, 𝑎(𝑥))

𝜕𝑎

𝜕𝑥
       [A. 29] 

 

Equation [A.29] is the general form of the Leibniz integral rule, which is also known 

as differentiation under the integral sign. The rule is derived using the fundamental 

theorem of calculus (Flanders, 1973). 

 

In order to provide a clear understanding how the Leibniz integral rule is applied to 

obtain the nonlinear shallow water equations, the expansion of the first term of the 

momentum equation in 𝑥  direction, Equation [3.5], is given as an illustrative 

example: 

 

∫
𝜕𝑢

𝜕𝑡
𝑑𝑧

𝜂

−𝑑

=
𝜕

𝜕𝑡
∫ 𝑢𝑑𝑧
𝜂

−𝑑

− 𝑢
𝜕𝜂

𝜕𝑡
|
𝑧=−𝑑

− 𝑢
𝜕(−𝑑)

𝜕𝑡
|
𝑧=−𝑑

                                          [A. 30] 
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