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ABSTRACT 

   

 

AN ANALYSIS OF PROSPECTIVE MIDDLE SCHOOL MATHEMATICS 

TEACHERS‘ ARGUMENTATION STRUCTURES IN TECHNOLOGY AND 

PAPER-PENCIL ENVIRONMENTS 

 

  

Erkek, Özlem 

Ph.D., Department of Middle school Education 

Supervisor: Assoc. Prof. Dr. Mine IĢıksal Bostan 

 

 

May 2017, 296 pages 

   

 

   

 

 The purpose of the current study was to investigate the nature of 

argumentation structures of prospective middle school mathematics teachers while 

solving geometry tasks within the GeoGebra and Paper-Pencil groups. The study 

employed qualitative case study design and the data of which were collected from 

16 prospective middle school mathematics teachers during the fall semester of the 

2013-2014 academic year. Data were based on the video recordings of the 

implementations, the focus group interviews and documents. 

 The findings revealed five types of global argumentation structures, two of 

which emerged from the present study: Line-structure and Independent-Arguments 

structure. In addition, the participants employed 9 types of local arguments while 

three of them were most frequently preferred. Finally, the local argumentations 

were examined by focusing on the justifications of the participants. This analysis 

revealed the characteristics of the local argumentations that prospective middle 



v 

 

school mathematics teachers use while solving geometry tasks in GeoGebra and 

Paper-Pencil groups.  

 

Keywords: Argumentation Structures, Prospective Middle School Mathematics 

Teachers, Technology, Global Argumentation, Local Argumentation 
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ÖZ 

  

 

ORTAOKUL MATEMATĠK ÖĞRETMEN ADAYLARININ 

ARGÜMANTASYON YAPILARININ TEKNOLOJĠ VE KAĞIT-KALEM 

ORTAMLARINDA ĠNCELENMESĠ 

 

  

  

Erkek, Özlem 

Doktora, Ġlköğretim Bölümü 

Tez Yöneticisi: Doç. Dr. Mine IĢıksal Bostan 

 

 

Mayıs 2017, 296 sayfa 

  

 

 

 

 Bu çalıĢmanın amacı, GeoGebra ve Kağıt-Kalem gruplarında geometri 

soruları çözen ortaokul matematik öğretmen adaylarının argümantasyon yapılarının 

doğasını incelemektir. Bu çalıĢmada nitel durum çalıĢması deseni kullanılmıĢ ve 

veriler 2013-2014 akademik yılının sonbahar döneminde 16 ortaokul matematik 

öğretmen adayından toplanmıĢtır. Veri kaynaklarını uygulamaların video kayıtları, 

odak grup görüĢmeleri ve belgeler oluĢturmaktadır. 

 Bulgularda beĢ çeĢit global argümantasyon yapısı ortaya çıkmıĢtır. Bunların 

ikisi Çizgi/Hat yapı ve Bağımsız-Argümanlar yapısı bu çalıĢmada ortaya çıkmıĢtır. 

Ayrıca katılımcılar 9 çeĢit lokal argüman yapılarından üçünü çok sık kullanmayı 

tercih etmiĢlerdir. Son olarak, katılımcıların gerekçelendirmelerine odaklanarak 

lokal argümantasyonları incelenmiĢtir. Bu analiz, ortaokul matematik öğretmen 
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adaylarının GeoGebra ve Kağıt-Kalem gruplarında geometri soruları çözerken 

kullandıkları lokal argümantasyonların niteliğini ortaya çıkarmıĢtır.  

 

Anahtar Kelimeler: Argümantasyon Yapıları, Ortaokul Matematik Öğretmen 

Adayları, Teknoloji, Global Argümantasyon, Lokal Argümantasyon 
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CHAPTER I 

 

CHAPTER 

INTRODUCTION 

 

 

 Mathematics education researchers have been conducting research studies in 

order to increase mathematical learning of students for years. From time to time 

new trends in the teaching and learning of mathematics are proposed by different 

organizations. One of the largest organizations which has a significant impact on 

mathematics teaching all over the world is the National Council of Teachers of 

Mathematics [NCTM], which makes publications by considering the changing 

needs and new developments in the world. NCTM (1991) emphasized the 

importance of some skills which were necessary in mathematics education: complex 

problem solving, high level reasoning, making connections across mathematical 

domains, and communicating. In addition, instead of the transmission of factual 

knowledge from the teacher to the student, the active participation of students in 

discussing ideas, making convincing arguments, making reflection and clarifying 

their thoughts (which are the requirements of argumentation) have been promoted 

and expected for a better mathematical understanding (Forman, Larreamendy-

Joerns, Stein, & Brown, 1998; Hufferd-Ackles, Fuson, & Sherin, 2004; 

Krummheuer, 2000; Stein, Engle, Smith, & Hughes, 2008). Similarly, NCTM 

(2000) emphasized the necessity of the integration of reasoning and proof in 

classroom discussions of all topics with the statement, ―Reasoning and proof are not 

special activities reserved for special topics in the curriculum but should be a 

natural, ongoing part of classroom discussions, no matter what topic is being 

studied‖ (p.342). At this point, the importance of argumentation in mathematics 

emerged since it was claimed by researchers that reasoning and argumentation were 

closely related to each other (Conner, Singletary, Smith, Wagner, & Francisco, 

2014b). They defended this idea by saying, ―When an individual is creating an 

argument, he or she is reasoning, and when an individual is reasoning, he or she is 
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creating an argument; thus we contend that, when considered as individual 

activities, argumentation and reasoning refer to the same process in mathematics‖ 

(p. 183). On the other hand, there are researchers who identified the subtle 

distinction between argumentation and reasoning by saying that argumentation 

requires an attempt of convincing an active or passive audience of a claim, while 

reasoning requires careful consideration to come to a justified claim. Despite this 

subtle distinction, argumentation and reasoning were accepted to refer to the same 

process and became the main concern of the present study.  

 Another current trend in mathematics education was analyzing the process of 

teaching and learning in accordance with the socio-cultural perspective (Recio & 

Godino, 2001). Mathematical knowledge was asserted to be developed within 

institutions so that it could be accepted as a socio-cultural product (Godino & 

Batanero, 1998). In the past, the Australian Education Council took the attention of 

the researchers to the argumentation based actions to do mathematics in 1991 by 

stating that:  

 

the systematic and formal way in which mathematics is often presented 

conveys an image of mathematics which is at odds with the way it actually 

develops. Mathematical discoveries, conjectures, generalizations, counter-

examples, refutations and proofs are all part of what it means to do 

mathematics. School mathematics should show the intuitive and creative 

nature of the process, and also the false starts and blind alleys, the erroneous 

conceptions and errors of reasoning which tends to be a part of mathematics. 

(p. 14; as cited in Vincent, Chick & McCrae, 2005)  

 

 As understood from the paragraph, the issues (discoveries, conjectures, 

generalizations, counter-examples, refutations and proofs), which were expressed as 

closely related parts for doing mathematics, refer to the actions which were 

essential in argumentation. In addition, it was emphasized that these actions should 

be applied in school mathematics naturally to encourage mathematics learning in a 

socio-cultural way. That is to say, researchers started to give importance to the 

process of learning knowledge through social interaction by means of the 

argumentation activities such as conjecturing refuting, generalizing, and providing 

counter-examples. Thus, the context of the present study was defined by 
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considering the tendency in learning with social interaction in mathematics 

education. 

 The model of argumentation was firstly introduced in 1958 by Toulmin to 

describe the non-mathematical arguments in the field of science. In fact, Toulmin 

wrote his book ‗The Uses of Argument‘ in 1958 to criticize the formal logic (Pease, 

Smaill, Colton & Lee, 2008) and that book allowed researchers of  a wide variety of 

domains to analyze arguments (Conner et al., 2014b; Erduran, Simon, & Osborne, 

2004; Forman et al., 1998; Hoyles & Küchemann, 2002; Jiménez-Aleixandre, 

Rodríquez, & Duschl, 2000; Krummheuer, 1995; Lavy, 2006; Osborne, Erduran, & 

Simon, 2004; Pedemonte, 2007; Yackel, 2002). Moreover, Toulmin‘s model was 

asserted to be viewing argumentation from a practical perspective instead of a pure 

logico-mathematical viewpoint (Hollebrands, Conner, & Smith, 2010). In the 

framework, Toulmin (1958) proposed a layout to enable discussion analysis by 

reconstructing arguments in different fields so his layout has become a popular 

model across disciplines (Knipping, 2008). In this layout, there were argument 

components which were claim, data, warrant, backing, modal qualifier and 

rebuttal. These components were explained in literature part but here the relation 

between them was expressed with an example in Figure 1.1 which was offered by 

Toulmin (1958, 2003).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Toulmin’s sample for an argument (2003, p. 97) 
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 In his book, Toulmin (2003) presented a sample claim which was ‗Harry is a 

British subject‘. In order to support this claim, he stated a fact as a datum: ‗Harry 

was born in Bermuda‘. Then, the connection between the datum and the claim was 

expressed as a warrant: ‗A man born in Bermuda will generally be a British 

subject‘. However, the warrant needed additional support of the backing, which was 

related to ―the dates of enactment of the Parliament Acts and other legal provisions 

which regulate the people‘s nationality in British colonies‖ (Toulmin, 2003, p. 97). 

Moreover, the force of the warrant is not sufficient to express the certainty of the 

argument, so the qualifier ‗presumably‘ was stated. Lastly, there are possible 

rebuttals to the argument, such as ‗when both Harry‘s parents were aliens‘ or ‗he 

has become a naturalized American‘.  

 The given example above belonged to a verbal statement but Toulmin‘s 

(1958) argumentation model could be used in other fields because of its field 

independency nature, such as in mathematics. That is, the researchers advocated 

that the model was field independent and, thus, could be used in a variety of 

contexts, but the validity of the argument elements were stated to be field 

dependent. More clearly, the arguments in science, mathematics or philosophy may 

have the same argument elements (data, claim, warrant ...etc) but the content of 

these elements and their validity were stated to be field dependent. In addition, 

Toulmin‘s (1958) model of argumentation was stated to be useful in terms of 

focusing on various aspects of arguments such as warrants, qualifiers and rebuttals. 

The present study also aimed to investigate the argumentation structures of the 

prospective middle school mathematics teachers. Thus, Toulmin‘s (1958) 

argumentation model, which was used to analyze argument structures in the 

literature (Walter & Barros, 2011), is suitable in determining and analyzing 

argument structures in mathematics field, so it was selected for the data analysis of 

the present study.  

 The importance of social interaction and argumentation in achievement was 

recognized by many researchers in the literature (Cross, 2009; Inagaki, Hatano, & 

Morita, 1998; Kosko, Rougee, & Herbst, 2014; Sfard, 2008; Walter & Barros, 

2011). For instance, Inagaki, Hatano and Morita (1998) mentioned that making 
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contribution to discussions, asking questions, having their ideas evaluated, and 

receiving immediate feedback were some of the effective strategies for knowledge 

construction. Likewise, Sfard (2008) suggested taking part in specific forms of 

discourse and communicational activities in order to learn mathematics more 

effectively. In addition to these, Cross (2009) found that students who engaged in 

activities which were based on cognitive and socio-cultural views of knowledge 

obtained higher achievement. Specifically, she investigated the specific scaffolds 

for facilitating argumentation of 9th grade students claimed that students who were 

consistently prompted to justify and explain their reasoning had significant gains 

when compared to the ones who did not receive such scaffolding. Thus, she 

concluded that engagement in mathematical argumentation and justification had a 

positive impact on mathematics achievement (Cross, 2009). Similarly, Walter and 

Barros (2011) asserted that students‘ being active in the production of substantial 

arguments and working on different solution approaches to reach a consensus 

contributed to the development of higher-order mathematical thinking (Kosko et al., 

2014) and  reflective mathematical reasoning. Considering conducted studies, it can 

be concluded that using argumentation in mathematics class would be beneficial not 

only for students‘ achievement but also for teachers in terms of understanding their 

students‘ mathematical concept development. In this way, teachers would make 

decisions about the necessary contributions for providing collective argumentation 

and would assume the suitable role in order to elicit such contributions (Yackel, 

2002). 

 

1.1 Problem statement and purpose of the study 

 

 Arguing includes skills such as justifying, challenging, counterchallenging 

and conceding (Schwarz, 2009). According to the NCTM (2000), learning to argue, 

which means acquiring the mentioned skills, was stated in many curricula all over 

the world. Moreover, taking part in a productive form of mathematical argument, 

conjecturing and justifying their reasoning, was suggested by mathematics 

educators for students of all grade levels from prekindergarten through grade 12 
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(Ball & Bass, 2003; Hanna & De Villiers, 2008; NCTM, 2000). This means people 

from all ages need to learn and use arguing on the concepts and issues for 

meaningful learning. Arguing has a crucial place in argumentation and researchers 

mentioned the benefits of argumentation for students in many studies (Cross, 2009; 

Manoucheri & St John, 2006; McCrone, 2005; Wood, Williams, & McNeal, 2006). 

For instance, the students who took part in an argumentation were said to have the 

chance of hearing others‘ ideas, detecting misconceptions, confirming their own 

thinking (Cross, 2009) and so they could enhance their reasoning, explanations and 

justification (Manoucheri & St John, 2006; McCrone, 2005; Wood, Williams, & 

McNeal, 2006). In addition to these benefits, when they confront a situation of 

conflict during the discussion, they will conjecture and make explorations, thus 

acquiring the opportunity to enhance their conceptual knowledge and generate new 

knowledge (Cross, 2009). As an arguing-based method, argumentation was asserted 

to require higher-order thinking skills for both students and teachers. Therefore, not 

only students but also teachers should practice argumentation and improve their 

higher-order thinking skills in order to be able to facilitate argumentation in their 

classes. Based on the literature, it is well-known that students at different school 

levels had difficulties in justification, argumentation and proof (Ellis, 2007; Harel & 

Sowder, 1998; Healy & Hoyles, 1998; Reiss, Klieme, & Heinze, 2001; Selden & 

Selden, 2003; Walter & Barros, 2011), which is also a valid situation for Turkish 

students. This was our starting point for the present study and we considered 

arguing and argumentation as an issue in which there were important research 

questions remaining to be addressed.  

 In Turkey, middle school mathematics curriculum was revised in 2013 

(MoNE, 2013), and the intense contents of each grade level were reduced. When the 

goals and objectives of the last curriculum were examined, it was seen that there 

were sentences regarding reasoning, which we accept to be the same as 

argumentation. However, in other parts of the curriculum, there were no detailed 

explanations or expectations from students regarding argumentation, so it could be 

said that argumentation was a tacit objective which was expected from students to 

perform in the recent curriculum. In this regard, the teachers who implement the 
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new curriculum in class have an important role and are, thus, regarded as an 

important constituent in the process. Especially in argumentation, teacher 

facilitation was found to be of prime importance. It was found in empirical studies 

that small children can also do deductive reasoning, but they might not do this 

naturally without the help of a facilitator (Stylianides, 2007). At this point the 

importance of the teacher who orchestrates the argumentation emerges for 

productive argumentation. Then, a question ‗what are the actions that a teacher 

should perform in argumentation class?‘ arise. Common Core State Standards 

Initiative [CCSSI] (2010) outlined the opportunities that teachers should provide 

students with in argumentation environment: giving opportunities for conjecturing, 

providing time to students for constructing arguments, recognizing and using 

counterexamples, and making plausible arguments. However, there is no course 

related to implementation of argumentation in class in middle school mathematics 

teacher education programs so mathematics teachers in Turkey graduate from 

university without having the necessary skills regarding argumentation. It is argued 

that a teacher should be able to formulate strong mathematical arguments and 

proofs in order to respond to students‘ arguments and explanations in classroom for 

high level mathematical learning (Rice, 2012). Accordingly, the answer of the 

question ‗How far can teachers argue and develop arguments?‘ is an issue of 

concern of the current study. Thus, understanding the nature of prospective 

teachers‘ knowledge regarding argumentation became an important point to be 

investigated for future developments regarding argumentation in middle school 

mathematics teacher education programs. 

     Recently, analyzing argumentation in terms of argument structures has been 

suggested by researchers in the literature (Walter & Barros, 2011). For example, 

Walter and Barros (2011) offered two grounded theories for the argumentation 

structure of calculus students who were building mathematical arguments in their 

study. One of them was related to the collaborative development of mathematical 

methods. The other one was related to students‘ choices for using warrants, 

clarification and convincement of others for the validity of their conjectures. In 

short, they analyzed mathematical argumentation at a qualitative level to reveal the 
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meaning making, communicating and problem solving accuracy of the calculus 

students.  They emphasized the importance of analyzing argument structure as 

follows:  

 

Careful analysis of structural elements in students‘ substantial arguments 

provides important details with respect to how students can reason about 

and make sense of problem situations to build and refine representations 

and understandings of mathematical ideas that they did not previously 

know or need in problem solving.  (Walter & Barros, 2011, p. 340) 

 

 As understood, the analysis of argument structures in the problem solving 

process would give precious information about how students make sense and reason 

in detail. In this regard, it is believed that analysis of argumentation structures of 

prospective middle school mathematics teachers will provide invaluable 

information about their reasoning and learning in an argumentation environment. 

Ultimately, based on the information gathered from the argumentation structure 

analysis studies, the researchers could obtain information about teachers‘ future 

performances in their mathematics classes. In the present study, prospective middle 

school mathematics teachers‘ argumentation structures will be analyzed in terms of 

global and local argumentation and this will provide information about their 

reasoning and so future performances. 

 The other important concern of the current study was the environment in 

which argumentation would take place. Since argumentation was a popular topic in 

mathematics education, there are many issues to be investigated related to 

argumentation in this field. One of them could be the technology enhanced 

argumentation environment. Technology use in geometry was encouraged by many 

researchers since it was believed that it allows users to perform various geometrical 

activities ranging from constructing accurate diagrams to visualizing abstract 

relationships among concepts (Hollebrands, 2007; Laborde, Kynigos, Hollebrands, 

& Sträβer, 2006; NCTM, 2000). Although there were few studies investigating 

argumentation in the dynamic geometry environment (Hewit, 2010; Hollebrands et 

al., 2010; Inglis, Mejia-Ramos & Simpson, 2007; Prusak, Hershkowitz & Schwarz, 

2012), the findings of these studies include signs of positive effects of technology in 
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argumentation. It was claimed that individuals who used technology had the chance 

of engaging in in-depth thinking in their investigation, so they could be able to 

notice the relationships that could not be discovered by the students using paper and 

pencil. Argumentation was also known as being a method requiring higher-order 

thinking (Hewit, 2010; Lin & Mintzes, 2010). At the beginning of the present study, 

I was curious about how technology use would support argumentation structures of 

prospective middle school mathematics teachers and prepared two groups, 

GeoGebra group and Paper-Pencil group, who will solve the same geometry tasks 

with argumentative classroom. Thus, it is believed that the present study will 

provide comparable results regarding the argumentation structures of prospective 

middle school mathematics teachers in technology and paper-pencil environments. 

In addition, it will be revealed whether or not technology has positive effects on 

argument structures of participants. 

 With the expectation of meeting the needs in the issues mentioned above, the 

purpose of this study was to investigate the nature of argumentation structures of 

prospective middle school mathematics teachers while solving geometry tasks in 

technology and paper-pencil environments. The following questions were 

formulated for this study:  

1.  What is the nature of argumentation structures of prospective middle 

school mathematics teachers while solving geometry tasks in GeoGebra and 

Paper-Pencil groups? 

2. What are the characteristics of the local arguments within the global 

argumentation structures? 

- What are the characteristics of local arguments based on the flow of 

argument components (claim, data, warrant) that prospective middle 

school mathematics teachers express while solving geometry tasks in 

GeoGebra and Paper-Pencil groups?  

3. What are the characteristics of local argumentations that prospective 

middle school mathematics teachers utilize while solving geometry tasks in 

GeoGebra and Paper-Pencil groups?  
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1.2 Significance of the study 

 

 The main issue of concern of the current study was argumentation structures 

utilized by prospective middle school mathematics teachers. The most significant 

aspects of this study are clarified in the following paragraphs. 

 In the field of science, argumentation was defined as ―the evaluation of 

knowledge claims in the light of available evidence‖ (Jiménez-Aleixandre & 

Erduran, 2008, p. 478) and it was seen as an epistemic practice (Jiménez-

Aleixandre, 2014). Likewise, in a mathematics study, argumentation was defined as 

statements including rhetoric means, the goal of which was persuading someone of 

the truth of falsehood of a statement (Antonini & Martignone, 2011). In the 

literature, argumentation was accepted by many researchers as a collective 

discourse technique rather than the sole individual action (Krummheuer, 1995; 

Walter & Johnson, 2007). There are specific actions to be performed by the 

participants during the argumentation. Hewit (2010) listed the actions taken in 

argumentation as generating hypothesis, justifying a position, synthesizing 

problems, challenging others‘ views, comparing different perspectives, and 

evaluating the hypothesis consistency by using empirical evidences. These were not 

simple actions because they require critical thinking and reasoning, which require 

higher order thinking. In addition, in one of the studies in science, Lin and Mintzes 

(2010) stated that rebutting an argument is a higher-order thinking skill and it is 

quite difficult cognitive task for most of the students. The reason for this difficulty 

was that the student should consider both an argument and the opposing argument 

before constructing rebuttals (Lin & Mintzes, 2010). Considering such thinking 

processes and related studies, it was believed that mathematical argumentation 

which was characterized by such actions as ―sharing, explaining, and justifying … 

mathematical ideas‖ (Cross, 2009, p. 908), had a positive impact on mathematical 

learning (Hoyles & Küchemann, 2002; Hufferd-Ackles et al., 2004; Krummheuer, 

2000; Stein et al., 2008).  

 At this point, the implementation of argumentation in mathematics education 

emerged as an important issue. The teacher is the main element who orchestrates 
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argumentation in mathematics classes. It was claimed that a significant problem 

about argumentation-based science classes rises to be lack of pedagogical 

knowledge of teachers to design the lesson (Duschl, 2008). Although middle school 

mathematics teachers in Turkey are familiar with inquiry-based teaching approach, 

the same situation is also valid for mathematics teachers since argumentation has 

not been common in middle school mathematics curriculum yet. Researchers 

alleged that there is a need of training for teachers to orchestrate argumentation in 

class so they suggested teachers to first experience argumentation as learners 

themselves to be able to  facilitate argumentation effectively (Prusak et al., 2012). 

Hence, it would be beneficial for prospective teachers to gain experience in 

developing arguments and facilitating an argumentation class before starting their 

professional life. However, in Turkey, there are no elective or must courses which 

include information related to the argumentation method and its implementation in 

middle school mathematics teacher education programs. Therefore, prospective 

middle school mathematics teachers graduate from university without any 

information regarding argumentation. Prospective teachers, who will guide the 

argumentation of the future students, have an important role in productive 

argumentation. Specifically, teacher performance in formulating strong 

mathematical arguments and proofs play an ultimate role in mathematical learning 

since teachers are the ones who must respond to students‘ claims or explanations in 

the classroom (Rice, 2012). Thus, prospective middle school mathematics teachers‘ 

own argumentation needed to be looked into in detail. This need may be met by 

means of the current study with the path that it will open by providing the initial 

necessary information regarding the nature of prospective middle school 

mathematics teachers‘ argumentation, and, thus, may help to lead subsequent 

studies aiming to develop teacher education programs. That is, the present study 

could provide invaluable implications for mathematics educators and policy makers 

in designing the course contents of middle school mathematics teacher education 

programs. 

 Argumentation was studied in the field of science in terms of quite many 

aspects and its benefits regarding scientific reasoning and conceptual understanding 
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have been revealed with many research studies (Lawson, 2010; YeĢiloğlu, 2007). 

However, argumentation was a relatively new topic to be studied in the field of 

mathematics education so the benefits of argumentation in mathematics learning of 

different topics and how the argumentation to be integrated in these topics in 

different environments is an issue of concern. As the argumentation is not a method 

to be taught in middle school mathematics teacher education programs, little is 

known about how the argumentation-based teaching affect conceptual learning and 

reasoning of students in mathematics field.  

 Considering the studies in the literature, there were many aspects to be 

considered in mathematical argumentation. In this regard, another significance of 

the present study is the integration of technology in the argumentation. In the 

related literature some researchers have been interested in examining argumentation 

in a technology environment (Hollebrands et al., 2010; Inglis et al., 2007; Prusak et 

al., 2012). In some studies existent in the literature, the argument structures of 

college geometry students (Hollebrands et al., 2010), modal qualifier use and 

warrant types of postgraduate mathematics students (Inglis et al., 2007), and peer 

unguided argumentation of preservice teachers (Prusak et al., 2012) were 

investigated. As understood, technology use in argumentation has been a popular 

topic but an area that lacked in-depth study. One of the important aspects to be 

studied is dynamic geometry programs which are known to provide students with 

the opportunity to construct accurate diagrams, which enable students to realize the 

relationships between abstract and general properties of geometry. Therefore, 

researchers wonder whether it assists or hinders the development of reasoning 

(Vincent, Chick & McCrae, 2002). That is, how the technology guide  the 

argumentation was not clear in the literature and there was no study confronted in 

literature regarding this issue within the Turkish context. Thus, it is believed that 

the findings of the current study related to the prospective middle school 

mathematics teachers‘ argumentation structures in technology and paper-pencil 

environment will reflect the implications regarding the relationship between 

technology use and argumentation. 
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 Furthermore, it is expected that findings will contribute to a large extent to the 

technology integration approach in the Turkish education system. As a tool 

promoting social interaction, GeoGebra was expected to supply productive 

argumentation among prospective middle school mathematics teachers. Ultimately, 

current study focused on prospective middle school mathematics teachers‘ own 

argumentation structures in a technology environment, supported with the 

GeoGebra dynamic geometry program, and paper-pencil environment. Moreover, in 

which aspects the use of GeoGebra affected the argumentation structures of 

prospective middle school mathematics teachers was an important issue for the 

present study. Two groups were established (GeoGebra group and Paper-Pencil 

group) to make comparisons about argumentation structures and to investigate 

whether or not GeoGebra use make changes in global/local argumentation 

structures of prospective middle school mathematics teachers. Considering the 

findings, teachers can make decisions in which situations/topics they should 

integrate technology into their argumentation classes by considering the context 

explained in the present study. 

 The findings of the present study related to prospective middle school 

mathematics teachers‘ argumentation structures has a great importance in the field 

of mathematics education since teachers‘ own practices would signify their future 

intentions regarding their teaching preferences. In the literature, Knipping (2008) 

also conducted a proof study with argumentation structures and emphasized the 

need for further research regarding the argumentation structures. The present study 

revealed prospective middle school mathematics teachers‘ reasoning style by 

examining their global argumentation structures and flow of argument components 

(claim, data, and warrant). Moreover, local argumentations of the participants were 

examined within the geometry context in order to contribute to the existing 

classification developed by Knipping (2008). In this way, patterns related to the 

prospective middle school mathematics teachers‘ argument construction process 

and reasoning were added to the argumentation literature in geometry context. For 

instance, by means of the current study, the most frequently used local 

argumentation types (visual argumentation or conceptual argumentation) were 



14 

 

investigated in two groups and the ones which were valued by prospective middle 

school mathematics teachers were revealed. The differences in local argumentation 

preferences of GeoGebra group and Paper-Pencil group illustrate the effect of 

technology use in prospective middle school mathematics teachers‘ justification 

characteristics. This information is invaluable since it includes hints related to 

possible justification preferences for future teachers while planning their 

argumentation classes. For instance, they should know that the students in 

technology supported environment might present visual argumentation more, so 

they should encourage them to support their arguments with theoretical 

justifications if they need justification with conceptual argumentation. Thus, the 

present study will open a new door to studies regarding argumentation structures in 

technology enhanced or paper-pencil environments.  

 To conclude, the present study revealed the aspects of prospective middle 

school mathematics teachers‘ argumentation within a technologically enhanced 

geometry context. There has been no argumentation related course in mathematics 

teacher education programs up to now, so it is believed that this study will draw the 

attention of the teacher educators and policy makers to this issue and will raise their 

awareness regarding argumentation in mathematics education. Thus, the use of 

argumentation will be encouraged in the mathematics field and teaching of future 

students would be fostered.  

     

1.3 Definition of the important terms 

 

 The research questions consist of several terms that need to be constitutively 

and operationally defined. 

Prospective middle school mathematics teachers:  

 These were the participants of the study, and they were the senior students 

majoring in middle school mathematics education. Being in their fourth year of 

undergraduate teacher education program, they had taken all the courses regarding 

teacher education. In addition, they were the candidates who would teach 
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mathematics from fourth grade to eighth grade in primary and middle schools after 

their graduation.   

Argument:  

 Argument was defined by Krummheuer (1995, p.231) as ―The intentional 

explication of the reasoning of a solution during its development or after it‖. In the 

current study, each statement made by students consisting of a judgement followed 

by a conclusion and justification (if exists) was accepted as an argument. In order to 

identify the arguments, firstly the conclusions that the participants reached were 

detected, and then the justification and the data they had were sought in the 

transcriptions.   

Argumentation:  

 The accepted definition for argumentation in the current study was ―A process 

of logically connected mathematical discourse‖ (Vincent, 2002, p. 11). In the 

current study, argumentation included both pair-discussions and class discussions in 

which the participants presented a conclusion or a standpoint they had and then 

justified their conclusion by considering the data they had. In addition, the major 

aim was to convince other participants about their conclusion with the support of 

their justifications. This convincing action occurred between pairs during pair-work, 

between the participants who were at the board and as whole-class in class 

discussions. This means that the entire geometry problem solving process of the 

study was accepted as an argumentation.  

Argument Components (claim, data, warrant): 

 Argument components were the elements that were defined by Toulmin 

(1958) in his book ‗The Uses of Argument‘. These components were claim, data 

and warrant. In the present study ‗claim‘ refers to the conclusions of the 

participants‘ arguments. The data are the facts that participants appealed to for 

support of the claim. Finally, the warrant refers to the statements justifying the 

connection between data and claim.  

Global Argumentation Structures:  

 Knipping (2008) defined global argumentation as ―layout of the structure of 

the argument as a whole (the anatomical structure)‖ (p. 430). In the present study, 
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the layouts of the argumentation of each geometry task in two groups were drawn in 

order to see the whole picture of the argumentation. These general schemas were 

named as global argumentation structures and these structures were analyzed. 

Local Arguments:  

 Knipping (2008) defined the local arguments as ―single out distinct 

arguments‖ (p. 430). The present study also refers to single arguments with the 

components of the claim, data and warrant (all component may not exist) as a local 

argument. 

Local Argumentations:  

 Knipping (2008) analyzed the warrant components of the local arguments and 

classified the warrants according the notions of figural and conceptual aspects of 

reasoning developed by Fischbein (Fischbein 1993; Mariotti & Fischbein 1997). 

Visual field of justification and conceptual field of justification were the two main 

local argumentations she classified. She explained these two levels as ―Reasoning 

based on the figural aspect concerns perceptions of space. Reasoning based on the 

conceptual aspect concerns abstract and theoretical knowledge‖ (Knipping, 2008, p. 

436). In the present study, Knipping‘s (2008) classification was used, and the local 

argumentations were analyzed by evaluating the warrant components of the local 

arguments. 

Dynamic Geometry Environment:  

 Dynamic geometry environment is a general term which was used for the 

computer microworld with Euclidean geometry as the embedded infrasutructure and 

students have the opportunity to interact with geometrical figures (Lopez-Real & 

Leung, 2007) via dynamic geometry softwares such as Cabri, GeoGebra and 

Geometer‘s Sketchpad. Dynamic geometry programs refer to computer programs 

which can be used in geometry interactively. In the present study, the dynamic 

geometry environment refers to the computers laboratory in which the participants 

have the opportunity to use GeoGebra dynamic geometry software while solving 

geometry tasks.  
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GeoGebra:  

 GeoGebra is a dynamic geometry program which can be used in the teaching 

and learning process by a large age group ranging from middle school to university 

level (Hohenwarter & Preiner, 2007). The program has a range of tools to be able to 

construct geometric objects. These tools range from primitive objects, such as point, 

line and segments to classical constructions, such as midpoint, perpendicular and 

parallel line (Jones, 2002). Moreover, there are transformations and measurements 

which help users to see the relations. GeoGebra also provides teachers with 

opportunities to share their materials online and with other teachers and students for 

free. GeoGebra has a graphic window and an algebra window, and any change in 

the graphic window can be seen on the algebra window simultaneously.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

  

 The purpose of this study was to investigate the nature of the argumentation 

structures of prospective middle school mathematics teachers while solving 

geometry tasks in technology and paper-pencil environments. In addition, local 

arguments (core arguments including claim, data and warrant components) and 

local argumentations (only warrant components of the local arguments) were 

analyzed. More specifically, the kinds of global argumentation structures the 

prospective elementary mathematics teachers employed, the kinds of local 

arguments they expressed based on the flow of argument components, and the kinds 

of local argumentations they utilized to justify their arguments were investigated.  

 The theoretical background related to the argumentation framework, 

Toulmin‘s argumentation model, the uses of Toulmin‘s argumentation model in 

mathematics education research, technology support and argumentation, and teacher 

responsibilities in argumentation process are presented throughout the chapter in 

order to provide insight and a better understanding of the scope of the study. 

 

2.1 Theoretical background 

  

 Developments in mathematics learning have highlighted the importance of 

social and cultural processes in learning (Cobb & Bauersfeld, 1995; Yackel, 

Ramussen, & King, 2000). Specifically, it was claimed that learning contains both 

individual and social components which are critical for academic achievement 

(Cobb, Yackel, Wood, Nicholls, Wheatley, & Trigatti, 1991; Lesh, Doerr, Carmone, 

& Hjalmarson, 2003; Schoenfeld, 1992). The few theoretical perspectives that were 

claimed to have contributed to mathematics education by means of argumentation 

are social interaction, socio-mathematical norms, sociocultural influences, and 
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social negotiation of roles (Walter & Barros, 2011). Each of these perspectives put 

forward different suggestions to educators regarding the teaching and social 

learning of mathematics. With an awareness of the importance of social learning, 

the main interest of the present study can be considered as social interaction in an 

argumentation environment. Argumentation is accepted as closely related concept 

with proof by many researchers (Conner, 2007b; Hemmi, Lepik, & Viholainen, 

2013; Stylianides & Al-Murani, 2010) so the relationship between these two terms 

were explained in the next section.  

 

2.1.1 Argumentation and proof 

  

 The key concepts addressed in the present study were argument and 

argumentation. Krummheuer (1995) defined argument as ―The final sequence of 

statements accepted by all participants, which are more or less completely 

reconstructable by the participants or by an observer as well‖ (p. 247), while 

argumentation was defined by Antonini and Martignone (2011) as the statements 

consisting of rhetoric means, the goal of which is to convince individuals of the 

truth or the falsehood of a statement. It can be inferred from these definitions that 

argumentation is regarded as a process of logically connected mathematical 

discourse (Vincent, 2002), while an argument is referred to as the end-product of 

the argumentation. 

 Antonini and Martignone (2011) defined mathematical proof as a statement 

consisting of a logical sequence of propositions regarding the validity of the 

statement. Another definition was stated as ―the argumentative process that 

mathematicians develop to justify the truth of mathematical propositions, which is 

essentially a logical process‖ (Recio & Godino, 2001, p. 94). In the literature, 

researchers specified five functions of proofs, which were verification, explanation, 

systematisation, discovery and communication (Hanna, 2000; De Villiers, 1999). 

Viholainen (2011) advocated that although argumentation has a broader meaning 

than the term proof, it has the same functions mentioned for proofs. Hanna (2000) 

claimed that the main function of proof in mathematics education is providing 
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explanations as well as justifications and verifications. She also stated that the 

explanatory proofs could be in the form of calculations, visual demonstrations, a 

guided discussion, a pre-formal proof, an informal proof, or a proof conforming to 

strict norms of rigor.   

In the literature, some of the researchers accepted proof as a special type of 

argumentation (Conner, 2007b; Hemmi et al., 2013). For example, Stylianides 

(2007) was one of the researchers who accepted proof as a mathematical argument 

when it possessed the following characteristics:  

 

- Proof is a mathematical argument, a connected sequence of assertions for 

or against a mathematical claim, with the following characteristics: 

- It uses statements accepted by the classroom community (set of accepted 

statements) that are true and available without further justifications; 

- It employs forms of reasoning (modes of argumentation) that are valid 

and known to, or within the conceptual reach of, the classroom community;  

- It is communicated with forms of expression (modes of argument 

representation) that are appropriate and known to, or within the conceptual 

reach of, the classroom community (Stylianides, 2007, p. 107). 

 

As understood, the proof expressions that include taken-as-shared 

statements, which do not need further justifications, can be accepted as 

mathematical arguments when various forms of reasoning are used, and these 

opinions are expressed to the classroom by means of argument representation 

modes. Likewise, in another study, Stylianides and Al-Murani (2010) clarified the 

criteria for an argument to be regarded as proof:  

 

1.  It can be used to convince not only myself or a friend but also a  

sceptic. It should not require someone to make a leap of faith (e.g., 

‗This is how it is‘ or ‗You need to believe me that this pattern will go 

on forever.‘) 

2. It should help someone understand why a statement is true (e.g., why a  

  pattern works the way it does). 

3. It should use ideas that our class knows already or is able to understand  

  (e.g., equations, pictures, diagrams). 

4. It should contain no errors (e.g., in calculations) 

5. It should be clearly presented. (p. 312) 

 



21 

 

It can be deduced that a proof needs to be sceptic and convincing, and 

explanatory to be accepted as an argument. In addition, it should include a reason 

for why a statement is true, have correct calculations and be clearly presented. 

Considering these properties, it can be understood that proof and argumentation are 

closely related concepts. Therefore, it is not surprising that there are many studies 

related to argumentation and proof which were explained in the section explaining 

the uses of argumentation in mathematics education research. However, the 

Toulmin‘s Argumentation model was primarily explained in the next section in 

order to make argumentation studies explained in subsequent sections more 

meaningful to the reader. 

 

2.1.2 Toulmin’s argumentation model 

  

 Toulmin, a British philosopher and logician, wrote a book ‗The Uses of 

Argument‘ in 1958 and proposed an argumentation model. In his book, Toulmin 

presented a structure for rational arguments and interrelated the 

components/elements − claim, data, and warrant − of the argument. He also 

mentioned three auxiliary components, which were modal qualifier, backing and 

rebuttal. Rumsey (2012) stated that these auxiliary elements were not essential 

components but could be present in arguments. ‗The Uses of Argument‘, 

emphasizes the following points listed by Hitchcock and Verheij (2005): 

 

1. Reasoning and argument involve not only support for points of view,  

    but also attack against them. 

2. Reasoning can have qualified conclusions. 

3. There are other good types of argument than those of standard formal   

    logic. 

4. Unstated assumptions linking premisses to a conclusion are better  

    thought of as inference licenses than as implicit premisses. 

5. Standards of reasoning can be field-dependent, and can themselves  

    be the subject of argumentation (p. 255) 

 

Each item above represents each component of Toulmin‘s (1958) 

argumentation model (Hitchcock & Verheij, 2005). The first one is the rebuttal, the 

second one is the modal qualifier, and the other three items represent the warrant 
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and backing components of the model (Hitchcock & Verheij, 2005). In addition to 

the components listed above, one other component, which is the main component 

that each argument has to possess, is the claim/conclusion [C]. The emergence of 

these components during the argumentation is not so straightforward. For instance, 

a statement which was proposed as data in one argument can have the function of a 

claim or warrant in following arguments (Conner, Singletary, Smith, Wagner & 

Francisco, 2014b; Forman et al., 1998). In order to support the claim or conclusion 

of any argument, there should be some facts, information or other statements which 

refer to the data [D] (Yackel, 2002). Then the following question may come to mind 

‗Are the data valid for the claim?‘ Then, several data or separate arguments can be 

presented as data to the argument (Yackel, 2002). Subsequently, the explanatory 

relevance of the data to the claim is questioned, and the legitimacy of the data will 

be stated with the help of the warrant [W] (Yackel, 2002). In some cases, further 

supports, such as general theories, beliefs, and primary strategies, will be needed for 

the warrant which corresponds to the backing [B] component (Yackel, 2002). 

Furthermore, to be able to express the degree of confidence, modal qualifiers [Q] 

are needed. Finally, exceptional situations, if any, where the claim is not valid, can 

be added as rebuttal [R] to the argument. Toulmin (1958) reveals the relationship 

between these components with a specific layout or schema displayed in Figure 2.1.   

 

 

Figure 2.1 Toulmin’s (1958) argument layout (p. 97) 

 

 In a majority of studies, researchers have defined the argument components in 

various ways, and some of these definitions are listed in the following table.  
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Table 2.1 Argument components and definitions 

Component Definitions 

 

 

Claim 

 

 

Conclusion of the argument (Toulmin, 1958, p. 101) 

The statement of the speaker (Pedemonte, 2007, p. 27) 

The statement that the argument is meant to establish (Walter & 

Johnson, 2007, p. 708) 

Assertion about an issue (Lin & Mintzes, 2010) 

Statements whose validity is being established (Conner, Singletary, 

Smith, Wagner, & Francisco, 2014a, p. 404) 

The statement of which the arguer wishes to convince an audience 

(Nardi, Biza & Zachariadez, 2012, p. 159) 
 

 

 

Data 

 

Consists of facts that support the claim (Conner, Singletary, Smith, 

Wagner, & Francisco, 2014a, p. 404; Verheij, 2005) 

Facts we appeal to as the foundation of the claim, or minor premise 

(Toulmin, 1958, p. 101) 

Specific facts relied on to support a given claim (Sekiguchi, 2002)  

The facts that serve as the basis for the conclusion (Walter & 

Johnson, 2007, p. 708)  

Foundations on which the argument is based; this includes evidence 

relevant to the claim being made (Nardi, Biza & Zachariadez, 2012, 

p. 159) 
 

 

 

 

Warrant 

 

The statement authorising the move from the data to the claim, or 

major premise (Toulmin, 1958, p. 101) 

The inference rule that allows data to be connected to the claim 

(Pedemonte, 2007, p. 27) 

The statement that explain or authorize why data establish the 

conclusion acceptably (Walter & Johnson, 2007, p. 708) 

Statements that connect data with claims (Conner, Singletary, 

Smith, Wagner, & Francisco, 2014a, p. 404) 

Justifies the connection between data and conclusion; warrants 

include appealing to a definition, a rule, an example, or an analogy 

(Nardi, Biza & Zachariadez, 2012, p. 159) 
 

 

 

Backing 

 

Further reason to believe the warrant (Toulmin, 1958, p. 101) 

Additional support for the warrant (Pedemonte & Reid, 2011) 

The statement that attempts to establish the authority of the warrant 

(Walter & Johnson, 2007, p. 708) 

Usually unstated, dealing with the field in which the argument 

occurs (Conner, Singletary, Smith, Wagner, & Francisco, 2014a, p. 

404) 

Further evidence, justifications or reasons (Nardi, Biza & 

Zachariadez, 2012, p. 159) 
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Table 2.1 (continued) 

Component Definitions 

 

Modal Qualifier 

 

The statements which express the force of the claim (Toulmin, 

1958, p. 101) 

The statement that express the strength of the argument 

(Pedemonte & Reid, 2011) 

Statements describing the certainity whith which a claim is 

made (Conner, Singletary, Smith, Wagner, & Francisco, 

2014a, p. 404) 

Qualifies the conclusion by expressing the degrees of the 

arguer‘s confidence (Nardi, Biza & Zachariadez, 2012, p. 159) 
 

 

 

Rebuttal 

 

The exceptional conditions which might be capable of 

defeating or rebutting the warranted conclusion (Toulmin, 

1958, p. 101) 

Introduces counter-argument (Pedemonte & Reid, 2011) 

A valid rejection of a warrant that is in support of a 

counterargument (Lin & Mintzes, 2010) 

Statements describing circumstances under which the warrants 

would not be valid (Conner, Singletary, Smith, Wagner, & 

Francisco, 2014a, p. 404) 

Potential refutations of the conclusions;rebuttals include 

exceptions to the conclusion or citing the conditions under 

which the conclusion would not hold (Nardi, Biza & 

Zachariadez, 2012, p. 159)  
 

 

 Toulmin‘s argumentation model was revealed to be used in a variety of 

contexts, so it can be said that the model is field independent. However, some of the 

researchers have asserted that the backing component of the model is field-specific, 

which means that it is field dependent since the source of authority is related to the 

nature of the argument (Hollebrands et al., 2010; Verheij, 2005; Vincent, 2002). 

Similarly, Hollebrands et al. (2010) assert that the reason why backing is 

specifically field dependent is that backings are accepted and well-comprehended in 

the field in which the argument is constructed. In other words, an argument may 

have the same components in science, law, philosophy and mathematics, but the 

valid data, warrant and especially backing are said to be different based on the field 

in which the argument is made (Hollebrands et al., 2010).  
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 Another point regarding argument components is their presence in student 

discussions. That is, Nardi, Biza and Zachariadez (2012) emphasized that not all 

components of the arguments are explicitly presented by individuals in all 

arguments. In some situations, warrants may be implicit (Voss, 2005), so the modal 

qualifiers and exceptions support the warrants (Cramer, 2011). In such a situation, 

the teacher can ask students to justify their reasoning so that they can clearly state 

the warrant of the argument. 

 Lastly, a possible stituation that can be encountered in argumentation studies 

is that the argumentation process may include argumentation structures which entail 

one or more steps. That is, when more than one step exist, the claims of the initial 

arguments, which are accepted by the other participants as taken-as-shared, can 

become the data or warrant of the later arguments (Cramer, 2011). In addition, 

Cramer (2011) states that there are situations in which participants question the 

data, warrant or backing of the argument. In these situations, the questioned part is 

asserted to be examined in a separate argumentation process before considering it in 

the primal argument. These separate argumentation processes were named as ‗lines 

of argumentation‘ by Krummheuer and Brandt (2001) (as cited in Cramer, 2011). 

After giving a detailed explanation regarding the Toulmin‘s argumentation model, 

the studies in mathematics education research related to argumentation were 

explained in the next sections.  

 

2.2 Uses of Toulmin’s argumentation model in mathematics education research 

 

Initially, Toulmin‘s (1958) work was not accepted among philosophers and 

logicians, but the model was gradually adopted by communication theorists and 

became the keystone of the study of argumentation (Aberdein, 2008). The model 

was first introduced to describe non-mathematical arguments (Toulmin, 1958), but 

later Toulmin, Richard and Allan (1979) applied the theorem in order to prove 

Theaetetus‘s proof, which says that ‗there are exactly five platonic solids‘. There 

has been a growing interest among mathematics researchers in practices related to 

argumentation in recent years (Inglis et al., 2007). Numerous researchers have used 
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Toulmin‘s (1958) model of argumentation to examine the argument structures and 

proof structures in the mathematics field (Giannakoulias, Mastorides, Potari, & 

Zachariades, 2010; Krummheuer, 2007; Pedemonte, 2007; Pedemonte & Reid, 

2011). Moreover, the model was used by mathematics education researchers to 

analyze classroom discussions (Forman et al., 1998; Krummheuer, 1995, 2007; 

Moore-Russo, Conner, & Rugg, 2011; Pedemonte & Reid, 2011; Yackel, 2001), 

interview data of students (Hollebrands, Conner, & Smith, 2010; Inglis et al., 2007), 

interview data of teachers (Nardi, Biza, & Zachariades, 2012; Steele, 2005), and 

quality of mathematical arguments (Inglis & Mejia-Ramos, 2008; Pedemonte, 

2007). This section summarizes earlier studies (Forman et al., 1998; Krummheuer, 

1995; McClain, 2009; O‘Connor, 1998; Pedemonte, 2007; Pedemonte & Reid, 

2011; Wood, 1999; Yackel, 2002) regarding argumentation and mathematics.  

 The author of the book entitled ‗The Ethnography of Argumentation‘, 

Krummheuer (1995) was the first researcher to adapt and use Toulmin‘s (1958) 

argumentation model to conduct research in mathematics education. The significant 

point of this study was that Krummheuer (1995) used the restricted version of the 

model, which means the arguments included only the claim, data and warrant 

components. Moreover, he did not view argumentation as a singular activity in 

which an individual tries to persuade others of his/her claim. Instead, he analyzed 

students‘ argumentation in a social environment and propounded the term collective 

argumentation, which was defined as ―a social phenomenon, when cooperating 

individuals tried to adjust their intentions and interpretations by verbally presenting 

the rationale of their actions (Krummheuer, 1995, p. 229). Similarly, collective 

argumentation was stated to be concerned with a group‘s reaching consensus and 

differed from the Aristotelian argumentation which is based on an individual‘s 

endeavor to convince a group (Conner, 2007b). While there some researchers 

analyzed individuals‘ construction of arguments (Hollebrands, Conner, & Smith, 

2010; Inglis et al., 2007), many other research studies in the literature focused on 

collective argumentation in mathematics education (Conner, Singletary, Smith, 

Wagner, & Francisco, 2014a; Krummheuer, 2007; Ramussen & Stephan, 2008; 

Yackel, 2002). For instance, Conner et al. (2014a) focused on teacher support in 
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collective argumentation with secondary mathematics students. Particularly, they 

investigated direct teacher contributions to arguments, teachers‘ question types and 

other supportive actions and then revealed ways of analyzing conversations of 

collective argumentation in terms of mathematical aspects by using the framework. 

Ultimately, they admitted that the framework was useful in the examination of how 

teachers support reasoning and argumentation of the students. In another study, a 

methodology to document collective activity was presented by Ramussen and 

Stephan (2008). They proposed a three-phase methodological approach in analyzing 

collective activity of students. This approach was also based on Toulmin‘s 

argumentation model schema, but they chose to use core arguments like one that 

was previously used by Krummheuer (1995). They asserted that in the first phase 

the claims made by the students or the teacher existing in the transcriptions were 

identified. Then, in the second phase, they took the argumentation log as data and 

examined the whole class sessions to determine the mathematical ideas expressed in 

the arguments which were accepted as part of the group‘s way of normative 

reasoning. For this reason, they prepared a three-column table for each day:  

 

a column for the ideas that now function as if shared, (b) a column of 

the mathematical ideas that were discussed and that we want to keep an 

eye on to see if they function subsequently as if they were shared, (c) a 

column of additional comments, both practical and theoretical, or 

connections to related strands of literature‖ (Ramussen & Stephan, 

2008, p. 200). 

  

 Finally in the third phase, the charts of phase two were taken and the ideas 

from ―as-if-shared‖ column were listed to organize them around common 

mathematical activities. Considering the analyses of collective argumentation, 

Yackel (2002) asserted that it was not sufficient to analyze the sequence of the 

statements that were made, so the researchers could analyze the functions of the 

statements in the interactions of participants in order to make sense of the collective 

argumentation. It can be inferred that the analysis of the collective argumentation 

was a critical issue and changed based on the nature of the data in each study.  

  Following Krummheuer (1995), who was the first scholar to use Toulmin‘s 

argumentation model in mathematics education, many researchers used the 
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restricted version of the model, i.e. the core of the argument, which included only 

the claim, data and warrant components (Conner et al., 2014b; Forman et al., 1998; 

Hoyles & Küchemann, 2002; Krummheuer, 1995; Lavy, 2006; Pedemonte, 2007; 

Yackel, 2002). However, some researchers defended the importance of using 

Toulmin‘s (1958) model as a whole in mathematics education (Aberdein, 2005; 

Hollebrands, Conner & Smith, 2010; Inglis et al., 2007; Jahnke, 2008). For 

example, Inglis et al. (2007) conducted a study with highly talented postgraduate 

mathematics students and analyzed the data of their task-based interviews. In this 

analysis, they used the full scheme of Toulmin (1958), including backing, rebuttal 

and qualifier components. It was emphasized that the role of modal qualifiers in 

mathematical argumentation was underestimated (Inglis et al., 2007). Ultimately, 

the researchers proposed that developing students‘ abilities to matching warrant-

types with modal qualifiers should be one of the main goals of instruction (Inglis et 

al. 2007).  

In literature, researchers examined argumentation from various perspectives 

in mathematics. For instance, some researchers contributed to the literature by 

analyzing reasoning types (Conner et al. 2014b; Pease & Aberdein, 2011; Pierce, 

1960). Some of them took arguments as a whole and classified argument types 

(Aberdein, 2005; Viholainen, 2011), while others investigated the inner part 

(warrant component) and classified warrant types (Inglis et al., 2007; Nardi, Biza, & 

Zachariades, 2012; Walter & Barros, 2011). In the following sections, studies 

related to each perspective are explained. 

 

2.2.1 Argumentation studies related to reasoning types 

 

Pierce‘s (1960) study was considered as a corner stone among the studies 

analyzing reasoning types. In this study, Pierce (1960) defined three types of 

reasoning: abduction, deduction and induction. Abduction was used to explain facts, 

while deduction was used to produce testable results. To make it clear, Pierce 

(1960) defined abduction as follows: 
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abduction looks at facts and looks for a theory to explain them, but it can 

only say ―might be‖, because it has a probabilistic nature. The general form 

of an abduction is: a fact A is observed; if C was true, then A would 

certainly be true; so, it is reasonable to assume C is true. (p. 372) 

   

 As can be deduced, after the observation of fact A, the statements of the 

person who is talking abductively would not be accurate since he/she could not test 

C, so there was no certainity of fact A.  

 The other reasoning type, induction, which refers to reasoning from specific 

cases to general rules, was used to compare predictions and observed behaviors 

(Pease & Aberdein, 2011). The most frequently used reasoning type in proof studies 

was deduction, which refers to reasoning from general rules to specific cases (Pease 

& Aberdein, 2011). Although Pierce believed that only deduction could be used in 

mathematics, Pease and Aberdein (2011) stated that abduction was a useful and 

applicable reasoning type in mathematical thinking as well. 

 Another study which focused on reasoning types in collective argumentation 

was a study by Conner et al. (2014b). They combined Toulmin‘s argumentation 

model with Pierce‘s reasoning classification mentioned above. At the end of the 

study, they recommended that teachers use this combination to detecting and 

support students‘ different kinds of reasonings (deductive, inductive, abductive, 

analogical reasoning). Conner et al. (2014b) characterized deductive reasoning as 

the only reasoning type enabling individuals to arrive at a conclusion with certainty; 

furthermore, it was defined as a reasoning type including the logical consequence of 

aforementioned assumptions to arrive at conclusions. They also explained inductive 

reasoning as drawing abstractions and generalizations using individual observations 

(Conner et al., 2014b). Another definition proposed for inductive reasoning was 

reasoning proceeding from specific to general (Reid & Knipping, 2010). The other 

reasoning type, abductive reasoning, was defined as ―an inference which allows the 

construction of a claim starting from an observed fact‖ (Pedemonte, 2007, p. 29). 

Conner et al. (2014b) stated that abduction was observed in a mathematics 

classroom when students‘ first come across the result and then have to guess which 

particular rule and case afforded such a result. Finally, analogical reasoning was 
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characterized with the requirement of developing a claim based on the similarities 

among related cases (Reid & Knipping, 2010). 

 

2.2.2 Argumentation studies related to different types of arguments 

  

 As mentioned, some researchers focused on different types of arguments in 

their studies (Aberdein, 2005; Baccaglini-Frank & Mariotti, 2010; Viholainen, 

2011). One of these studies was conducted by Viholainen (2011). Viholainen 

(2011) mentioned two types of arguments, formal arguments and informal 

arguments, in his paper presented at the 7th Congress of European Research in 

Mathematics Education (CERME 7). Formal arguments were described as those 

arguments having warrants which were based on definitions, axioms and previously 

proven theorems. On the other hand, the arguments whose warrants were based on 

the concrete interpretations of mathematical concepts were accepted as informal 

arguments (Viholainen, 2011). He clarified the difference between constructing 

formal and informal arguments as follows:  

 

Construction of formal arguments often requires exact and detailed 

analytical reasoning based on symbolic representations and procedural 

skills to carry out calculations and other technical procedures. However, 

informal arguments may reveal holistic features and wider trends, 

which, yet, may also be very important in the construction process of the 

argument, by simplifying and concretising the problem situation 

(Viholainen, 2011, p. 5). 

  

 As can be understood, the process in constructing formal arguments is more 

challenging than that of informal arguments. In formal arguments, the evidence and 

its presentation via symbolic representations after analytical reasoning is important, 

while reasoning in informal arguments is holistic in nature. In the differentiation of 

formal and informal arguments, Viholainen (2011) suggested categorization of 

arguments based not on the reasoning process but on the final forms of arguments. 

The reason was explained by Viholainen (2011) with the following example: For 

instance, when a person used visualization as an aid of thinking in reasoning, this 

could not guarantee that the argument was an informal argument. On the other 
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hand, during the informal argument construction process, a person could use formal 

definitions (as backing) to justify visual or physical interpretations, but this did not 

make the argument formal.  

 Another classification of different types of arguments was proposed in a study 

on proof by Aberdein (2005). He presented how the argumentation model can be 

used in both regular arguments and critical arguments. According to Toulmin, 

Richard, and Allan (1979, p. 247), regular arguments were the ones ―conducted 

within or as applications of a scientific theory‖, while critical arguments were the 

ones ―challenging a prevailing theory or seek[ing] to motivate an alternative‖ 

(Toulmin, Richard, & Allan, 1979, p. 247). Aberdein (2005) particularly focused on 

regular argumentation in his study since mathematical proof corresponds to regular 

argumentation.  

 Lastly, another argument type, instrumented argument, was proposed in a 

study with the use of technology (Baccaglini-Frank & Mariotti, 2010). In their 

study, Baccaglini-Frank and Mariotti (2010) defined the instrumented argument as 

an argument, the warrant of which includes the tools of a dynamic geometry 

program, such as the dragging tool. They claimed that the persuasion of the 

participant came from the use of the dragging tool and its intrinsic logic in 

instrumented arguments.  

 In the present study, the different types of arguments were examined in terms 

of the order of the statements of the argument components (claim, data and 

warrant), which had not been investigated in earlier studies. Therefore, this study 

will contribute to the literature by presenting a pattern of argument construction 

which was used by the prospective elementary mathematics teachers in the 

geometry context.  

 

2.2.3 Argumentation studies related to different types of warrants  

  

 Some of the research related to argumentation focused on the analysis of the 

warrant components of arguments (Inglis et al., 2007; Knipping, 2008; Nardi, Biza, 

& Zachariades, 2012; Walter & Barros, 2011) since justification had an important 
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place in argumentation studies. For instance, Inglis et al. (2007) conducted a study 

related to the classification of mathematical reasoning but focused particularly on 

the warrants. They especially examined the modal qualifier component of 

Toulmin‘s argumentation model, stressed the importance of modal qualifiers in 

mathematical arguments and proposed three types of warrant developed by 

postgraduate mathematics students: the inductive warrant, the structural-intuitive 

warrant and deductive warrant. The definition of the inductive warrant type was 

explained based on the inductive proof schema of Harel and Sowder (1998), which 

was ―when students ascertain for themselves and persuade others about the truth of 

a conjecture in one or more specific cases‖ (p. 252). They mentioned that a similar 

strategy was used to decrease uncertainty in the claim of an argument in the 

inductive type of warrant. In the structural-intuitive type of warrant, the individual 

persuades others by using observations, experiments, some kind of mental structure 

and visual things (Inglis et al. 2007). The last type of warrant, the deductive 

warrant, corresponds to the use of formal mathematical justifications, such as 

axioms, algebraic manipulations and counterexamples, to justify the claim. 

Ultimately, Inglis et al. (2007) emphasized that the inductive and structural-intuitive 

types of warrant played an important role in mathematical argumentation.  

Similarly, Nardi, Biza and Zachariades (2012) focused on the warrant 

components of secondary mathematics teachers‘ arguments in their study. The data 

were collected through written responses and interviews after teachers were 

engaged with the classroom scenarios prepared from the mathematical areas of 

analysis and algebra. The researchers adapted Toulmin‘s argumentation model and 

Freeman‘s classification, which differentiates between epistemological and 

pedagogical a priori warrants, professional and personal empirical warrants, 

epistemological and curricular institutional warrants and evaluative warrants (Nardi, 

Biza, & Zachariades, 2012). At the end of the study, they proposed a classification 

of warrants which included four types: a priori, empirical, institutional and 

evaluative warrants. They asserted that teachers‘ arguments should not only be 

analyzed in terms of accuracy but should also be evaluated in the light of other 
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teacher considerations and priorities since teacher arguments were shaped by 

different sources of teacher knowledge (Kennedy, 2002; Shulman, 1987). 

Other researchers who focused on warrant types were Walter and Barros 

(2011). They mentioned another warrant type in their study, namely semantic 

warrants. Their study was emphasizing the importance of collaboration in 

mathematical learning and they examined the linguistic invention and semantic 

warrant production of elementary teachers within mathematical discourse on 

graphs. They defined semantic warrants as ―personally meaningful instantiations 

which ground developmental reasoning and support mathematical inferences‖ 

(Walter & Barros, 2011, p. 325). They asserted that learners construct mathematical 

meaning in the process of creating semantic warrants since learners reconstruct, 

evolve, and deepen their mathematical reasoning in this process. Besides, they 

stated that semantic warrants were prefered by the individuals purposefully to 

convince both themselves and others about the correctness of a constructed 

mathematics. In this respect, they believed that the semantic warrants contained 

clues to the learners‘ reasoning processes in the development of a mathematical 

truth and deepened their mathematical reasoning. In addition, they concluded that 

students‘ understanding of general mathematical concepts can increase if their 

personal talks in conventional language were supported by semantic warrants. 

Lastly, Knipping (2008) examined local argumentations to analyze warrants 

of arguments and proposed a classification by considering the nature of warrants 

used in proof context. According to her classification, local argumentations were 

divided into two: conceptual argumentation and visual argumentation. In addition, 

she looked into visual argumentations in detail and revealed two types of visual 

argumentations, namely empirical-visual argumentation and conceptual-visual 

argumentation. The details of these local argumentations are explained in detail in 

the method section since this classification was used in the data analysis of the 

current study.    
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2.2.4 Argumentation studies based on an adapted version of Toulmin’s models  

  

 Although the literature includes many studies based on Toulmin‘s 

argumentation model, there were situations in which the model was not sufficient to 

present the argumentation which took place in various studies. Therefore, in such 

studies, the researchers adapted the model and/or added new components to the 

model (Conner et al., 2014a; Prusak et al., 2012; Voss, 2005; Walter & Johnson, 

2007) or combined Toulmin‘s (1958) model with other models (Conner et al., 

2014b). For instance, Voss (2005) studied ill-structured problems and analyzed the 

data using Toulmin‘s model. He proposed six extensions, or generalizations, which 

were as follows:  

 

1. Claim of an argument can serve as datum for a second argument 

2. Backing can be an argument itself  

3. Implicit warrant exists in every argument 

4. A rebuttal can have a backing 

5. A rebuttal can be an argument  

6. Qualifiers can be arguments (p. 326) 

 

These extensions emerged from that study and they contributed to the 

argumentation model as modifications. For instance, based on the second extention, 

a backing component can be presented as an argument which has a claim, data and 

warrant as displayed in the Figure 2.2. 

 

 

Figure 2.2 Modification example based on extention 2 of Voss (2005) 
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Similarly, Conner et al. (2014b) determined an insufficiency in Toulmin‘s 

(1958) argumentation model (with claim, data and warrant) in differentiating the 

nuanced evolution of reasoning in arguments and, thus, combined the model with 

Pierce‘s (1956) rule, case and result model. In Reid and Knipping‘s (2010) study 

which was based on a reinterpretation of Pierce‘s work, the case, rule and result 

were defined. According to this study, case was ―a specific observation that a 

condition holds‖ (Reid & Knipping, 2010, p. 83) and the example for a case was 

presented as ―2 is a natural number‖ and the condition in this example was being a 

natural number. The other concept, rule, was defined as ―a general proposition that 

states that if one condition occurs then another one will also occur‖ (Reid & 

Knipping, 2010, p. 83). The sample for the rule was ―Natural numbers are integers‖ 

(Reid & Knipping, 2010, p. 83) and it could be said that the two linked conditions 

were ‗being a natural number‘ and ‗being an integer‘. Finally the result concept was 

defined by Reid and Knipping (2010) as being similar to the case concept, but it 

was not only a specific observation (like in the case) but also required a condition to 

hold. Conner et al. (2014b) used Toulmin‘s model and Pierce‘s rule and the 

following diagrams emerged and started to be used in reasoning analyses in 

argumentation (See Figure 2.3). 
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Figure 2.3 Toulmin-style diagrams of arguments reflecting different kinds of 

reasonings (Conner et al., 2014b, p. 186) 

 

At the end of the study, they asserted that analyzing the core of the argument 

was sufficient in determining the different types of reasonings of the participants 

(Conner et al., 2014b). Moreover, they recommended teachers to use this adaptation 

in detecting and supporting students‘ different kinds of reasonings (deductive, 

inductive, abductive, analogical reasoning).  

Up to now, the studies focusing on Toulmin‘s argumentation model and its 

components were explained in detail. In the next section, the proof-related 

argumentation studies were addressed.  

 

2.2.5 Studies related to proof and argumentation 

 

The proof studies in the literature focused on investigating the proof 

schemes of students (Harel & Sowder, 1998; Housman & Porter, 2003), examining 

student difficulties in providing proof (Chazan, 1993; Moore, 1994; Weber, 2001), 

criticizing the dichotomy/continuum between argumentation and proof (Balacheff, 
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1991; Boero, 2007; Douek, 1999; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti, 

Bartolini Bussi, Boero, Ferri, & Garuti, 1997; Mariotti, 2006; Pedemonte, 2007; 

Raman, 2002), seeking for the relationship between technology and learning proof 

in geometry (Laborde, 2000; Leung & Lopez-Real, 2002; Mariotti, 2006), 

examining proof perceptions (Recio & Godino, 2001) and analyzing the validation 

of texts as proofs (Selden & Selden, 2003; Stylianides, Stylianides, & Philippou, 

2004). 

Initially, the proof schemas framework was propounded by Harel and 

Sowder (1998). In their study, the participants developed three types of arguments, 

which were external arguments (e.g. an authority figure, meaningless symbolic 

manipulation), empirical arguments (e.g. numerical substitution, measurements, 

visio-spatial images), and deductive arguments (e.g. generic examples, examples 

depending on the axiomatic system). It was asserted that these three types of 

arguments may be valid in different mathematical content areas since students 

developed the same type of arguments in different proof tasks. Researchers 

investigated which types of arguments were used by participants of various grade 

levels (Healy & Hoyles, 1998; Klieme, Reiss & Heinze, 2003; Lin, 2000; Reiss, 

Heinze, Renkl & Groβ, 2008; Reiss, Hellmich & Reiss, 2002). For instance, Healy 

and Hoyles (1998) administered a survey to 10th grade high-achieving students and 

identified difficulties that many of students exprienced in implicating, so they used 

empirical-inductive arguments. In the same way, the findings of the studies 

conducted by Reiss, Hellmich and Reiss (2002) and  Klieme, Reiss and Heinze 

(2003) illustrated that middle school (grade 7 and 8) and high school  (grade 12 and 

13) students, respectively, prefered to seek empirical evidences, such as analyzing 

one or two examples, measuring angles and lines in geometry, in proof production. 

Reiss, Heinze, Renkl and Groβ (2008) asserted that the students of western 

countries might have the deficit of using empirical arguments like generalizing from 

a few examples as a proof. On the other hand, students of Asian countries were 

known to be encouraged to use deductive arguments from the beginning of the 

proving task (Lin, 2000). Reiss et al. (2008) argued that the reason why Asian 

students use deductive arguments might be their teachers‘ viewpoint regarding the 
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distinction of argumentation and proof. It was claimed that teachers‘ own beliefs 

also affect their teaching performance in many aspects (Conner, 2007b). A proof 

study supporting this idea was conducted with high school geometry teachers by 

Conner (2007b). Specifically, Conner (2007b) investigated the argumentation 

produced in a high school geometry class and provided evidence of the relationship 

between a student teacher‘s proof perception and her facilitation in collective 

classroom argumentation. She concluded that a student teacher‘s proof perception 

and her argumentation support in classroom had parallel aspects. This suggests that 

the proof conception of the teacher had the potential to be a crucial factor for 

him/her in determining how to facilitate the argumentation process in the classroom. 

Moreover, she claimed that Toulmin‘s (1958) model was efficient in analyzing 

teacher support in argumentation and constituencies within the classroom, which 

supported argumentation in detail. Another study which investigated teachers‘ 

refutations and their preference in refuting in argumentation was conducted by 

Giannakuolias, Mastorides, Potari and Zachariades (2010). In this argumentation 

and proof study, Giannakuolias et al. (2010) focused on teachers‘ refutations of 

students‘ invalid algebraic claims. To be more specific, they analyzed the content of 

teachers‘ argumentation, teachers' argumentation structure, the underlying 

reasoning, and the different types of counterexamples they generated. They 

concluded that teachers considered refutation by theorems to be providing stronger 

and more general conclusions when compared to refuting by counterexamples. It 

was inferred that refutation of invalid claims with counterexamples was 

undervalued by teachers and they used counterexamples when they could not use an 

appropriate theorem or as a complementary support to the refutation by theorems. It 

is highly probable that these teachers would appreciate the refutations their students 

made based on an appropriate theorem, but would undervalue refutations via 

counterexamples. In the current study, the prospective teachers were selected as 

participants since their performance in argumentation and their argumentation 

structures would include indications of their future teaching practices based on 

argumentation. In addition, Toulmin‘s model was selected to be used in data 
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analysis since it was claimed that the model was effective in the analysis of teacher 

support in argumentation.  

 Another issue which was most frequently dwell upon in proof studies was its 

relation with argumentation. That is, the dichotomy (Balacheff, 1991; Douek, 1999; 

Mariotti, 2006; Pedemonte, 2007) and the continuum between argumentation and 

proof (Boero, 2007; Douek, 1999; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti 

et al., 1997; Raman, 2002) was discussed by many researchers in the literature. For 

instance, Balacheff (1991) maintained that argumentation and mathematical proof 

were different in terms of social point of view by stating that: 

 

The aim of argumentation is to obtain the agreement of the partner of the 

interaction, but not in the first place to establish the truth of some 

statement. As a social behavior it is an open process, in other words it 

allows the use of any kind of means; whereas, for mathematical proofs, we 

have to fit the requirement for the use of knowledge taken from a body of 

knowledge on which people (mathematician) agree (p. 188). 

 

  This expression asserts that the main focus of proof is establishing the truth 

of some statement, while in argumentation it is to convince others, so these terms 

were regarded to be different in this respect. Balacheff (1991) also expressed the 

difference between argumentation and proof in terms of the actions specific to 

argumentation, such as intuition, experimental methods and everyday practices 

external to a mathematical theory. Duval was the other researcher who emphasized 

the gap between argumentation and proof in terms of cognitive and logical point of 

view (as cited in Barrier, Mathe, & Durand-Guerrier, 2010). He asserted that the 

discursive process of argumentation acted against a valid reasoning process in 

ordinary language, so it could result in misunderstandings and obstacles as regards 

the meaning of proof (as cited in Barrier, Mathe, & Durand-Guerrier, 2010). In 

addition, Duval explained the distinction between deductive reasoning (used in 

proof) and argumentation as follows:  

 

Deductive reasoning holds two characteristics which oppose it to 

argumentation. First, it is based on the operational value of statements and 

not on their epistemic value (the belief which may be attached to them). 

Second, the development of a deductive reasoning relies on the possibility 
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of chaning the elementary deductive steps, whereas argumentation relies on 

the reinterpretation or the accumulation of arguments from different points 

of view (Duval, 1991 as cited in Barrier, Mathe, & Durand-Guerrier, 2010, 

p. 193). 

 

As can be understood, unlike in argumentation, deductive reasoning, which 

is the base of proof, is operation-based and relies on the possibility of chaining the 

elementary deductive steps, whereas in argumentation, arguments are reinterpreted 

from various perspectives. Although Duval‘s arguments were strong, the distinction 

between argumentation and proof was still debated since some of the researchers 

asserted that the structural continuity between argumentation and proof could be 

constructed. To be more precise, when the processes of argumentation and proof 

generation were investigated, some researchers highlighted the continuity between 

argumentation and proof by proposing the framework of Cognitive Unity (Boero, 

2007; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti, et al., 1997; Raman, 2002). 

These researchers focused on argument production in problem solving, 

experimentation and exploration context and expected the constructed arguments to 

be organized logically in the formation of mathematical proof (Hanna & de Villiers, 

2008). In addition, these studies postulated that in open-ended problems there may 

or may not be a continuity between argumentation and the related mathematical 

proof. It was asserted that the crucial thing was identification of the factors favoring 

continuities and the factors leading to the gap between argumentation and proof 

(Antonini & Martignone, 2011). Boero et al. (1996) claimed that ―it [reasoning] 

allows students to consciously explore different alternatives, to progressively 

specify the statement [of the conjecture] and to justify, the plausibility of the 

produced conjecture‖ (p. 118). Based on this idea, Boero, Douek, Morselli and 

Pedemonte (2010) asserted that structural continuity could be satisfied if inferences 

in argumentation and proof were connected through the same reasoning structure 

(abduction, induction or deduction) since he believed that reasoning taking place in 

argumentation had a crucial role in the proof which was produced at the end. Boero 

et al. (1996) introduced the notion of cognitive unity as follows: 
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During the production of the conjecture, the student progressively works 

out his/her statement through an intense argumentative activity 

functionally intermingled with the justification of the plausibility of 

his/her choices: during the subsequent proving stage, student links up 

with his process in a coherent way, organizing some of the justifications 

(arguments) produced during the construction of the statement according 

to a logical chain (p. 113). 

  

 Based on the notion of Boero et al. (1996), it can be deduced that when the 

reasoning in the initial argumentative process and the reasoning in the constructed 

proof at the end are in line with each other, the cognitive unity between 

argumentation and proof is obtained. Similarly, cognitive unity was also expressed 

as the the continuity of reasoning from conjecture producing process to proof 

construction (Mariotti et al. 1997). In other words, when there is continuity between 

the argumentative activity occuring in the conjecturing phase and the process of 

formal justification occuring during the proving phase, it can be said that the 

cognitive unity is established (Baccaglini & Frank, 2010). According to results 

reported in experimental studies, proof was more accessible to students when 

cognitive unity between argumentation and proof was established (Boero, Garuti, & 

Mariotti, 1996; Garuti, Boero, Lemut, & Mariotti, 1996; Garuti, Boero, & Lemut, 

1998).  

The distance between argumentation and proof was stated to be inevitable in 

the deductive proof production process since the structure of argumentation was 

usually not deductive (Pedemonte, 2007; Pedemonte & Buchbinder, 2011). 

Pedemonte and Buchbinder (2011) conducted a study regarding argumentation and 

proof and investigated the role of examples in the proving process. They conducted 

a study with 17-18 year old secondary school students who were trying to find a 

general rule for triangular numbers. It was claimed that cognitive unity did not 

cover all aspects of the relationship between argumentation and proof (Pedemonte 

& Buchbinder, 2011). They proposed the necessity of structural continuity, which is 

considering the structural difference between argumentation and proof as well as 

providing cognitive unity for the cognitive analysis. Pedemonte (2007) defined 

structure as a logical cognitive connection between statements which correspond to 

different types of reasoning. That is, the structure of proof was usually deductive 
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while abduction, which means looking at facts and looking for a theory to explain 

reasoning (Pierce, 1960), and induction were asserted to be the most frequently used 

reasoning types in argumentation (Hemmi et al., 2013; Pedemonte, 2007; 

Pedemonte & Buchbinder, 2011). Therefore, it was asserted that argumentation and 

proof should have the same logical structure in order to provide structural continuity 

(Pedemonte, 2007). To make it clear, the results of the Pedemonte‘s (2007) study 

could be referred to. She focused on the structure of arguments developed by 

students for two mathematical problems to analyze the quality of arguments. She 

concluded that there were structural continuities and structural distances between 

argumentation which supported a conjecture and its proof. Moreover, it was 

observed in her study that students were not able to construct a deductive proof 

while solving geometry problems since they could not transform their abductive 

argumentation (naturally used in geometry) into deductive proofs (Pedemonte, 

2007; Martinez & Pedemonte, 2014). Thus, it was suggested that researchers or 

teachers should consider cognitive unity and select appropriate examples which 

would be effective for proof construction (Pedemonte & Buchbinder, 2011). On the 

other hand, Pedemonte (2007) believed that in the Geometry context, the distance 

between argumentation and proof was removed because discovering and 

conjecturing processes were often characterized by abductive argumentation. 

Likewise, Arzarello (2008) maintained that by means of various modalities, such as 

the ―dragging‖ option of dynamic geometry programs, the shift from inquiry to 

proving could be stimulated within a rich argumentation. In addition, researchers 

revealed that dynamic geometry tools were helpful in engaging students in informal 

mathematics actions and bridging these informal efforts with formal ones (Prusak et 

al., 2012). As noted by Mariotti (2006), the students should change the abductive 

structure into deductive structure while constructing proof. Otherwise, the structural 

continuity between argumentation and proof could be broken. 

Although the relationship between argumentation and proof was not the 

focus of the current study, it was an important issue to be considered in preparing 

the geometry tasks of the present study. In order to provide cognitive unity, the 

researcher paid special attention to select questions which did not only require 
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deductive reasoning with the algebraic operations. In addition, geometry was 

selected as a context since it was claimed that the discovering and conjecturing 

processes requiring abductive reasoning would be helpful in removing the structural 

difference between argumentation and proof (Pedemonte, 2007). Lastly, 

argumentation in the dynamic geometry environment was also prepared in order to 

engage students in an inquiry which would help enrich argumentation (Arzarello, 

2008). 

 

2.3 Technology support and argumentation 

  

 Literature review illustrated that dynamic geometry softwares (DGS) were 

advised to be used in geometry teaching by many mathematics researchers and 

organizations (Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Sträβer, 2006; 

NCTM, 2000). One of the reasons was that these programs gave the opportunity to 

construct accurate diagrams for students to recognize the relationships between 

general abstract properties of geometry (Jones, 2002). In addition, dynamic 

geometry softwares allow users to do a wide range of geometrical activity to solve 

various types of questions by exploring, conjecturing and explaining the geometric 

relationships (Jones, 2002).  

 

2.3.1 Technology use and its benefits 

  

 Many researchers argued that use of DGS promoted achievement in geometry 

(Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Sträβer, 2006; NCTM, 

2000). For instance, Laborde et al. (2006) found that the use of DGS increased 

secondary students‘ understanding of geometry concepts. Similarly, in the research 

study conducted with high school students, Hollebrands (2007) revealed a 

bidirectional relationship between use of DGS and geometric understanding. 

 In the literature, the benefits of using DGS were emphasized by many 

researchers (González & Herbst, 2009; Lampert, 1993; Ruthven, Hennessy, & 

Deaney, 2005; Scher, 1999; Vincent, 2002). One of the benefits was that the use of 
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DGS was regarded by teachers as a source of motivation for students and a tool that 

could illustrated many examples simultaneously, thus leading to improvements in 

the classroom environment (Lampert, 1993; Ruthven, Hennessy, & Deaney, 2005) 

and encouragement in geometric reasoning (Vincent, 2002). Another benefit 

mentioned was that the DGS users could interact with various geometrical objects 

and relationships which enabled them to construct and manipulate new objects and 

relations (Healy & Hoyles, 2000). In addition to these benefits, the studies focusing 

on justification and reasoning also revealed the benefits of the use of DGS in 

geometry. To illustrate, it was revealed that students could make conjectures, prove 

properties for a given geometric figure and model, and investigate a dynamic 

physical situation to detect the effect of changing various parameters (Vincent, 

2002). Likewise, González and Herbst (2009) indicated that students who used the 

tools of DGS had the opportunity to engage in in-depth thinking in their 

investigation; in this way, they were able to notice the relationships that could not 

be discovered by the students using the paper and pencil. In the same vein, Scher 

(1999) asserted that proving a theorem or solving a problem via paper-pencil 

prevented students from exploring new relationships since they were dealing with 

static drawings, so they recommended the use of DGS for the visualization of the 

relationships. As it is clear in the literature, the justification is a keystone in 

argumentation studies. Regarding justification via DGS in proof, Mariotti (1997) 

asserted that users‘ justifications for their constructions could be accepted as 

proving a theorem since they were explaining why it worked and forsaw that it 

would function. Thus, the applicability of DGS in argumentation studies was open 

to research since there were few studies focusing on justification using technology. 

 Another important benefit of using DGS in argumentation was asserted to be 

promoting peer interaction, which was important for argumentation studies 

(Vincent, Chick & McCrae, 2005). Vincent, Chick and McCrae (2005) stressed the 

importance of the level of peer interaction in argumentation in their study which 

was conducted with 8th grade students in Australia. They administered three types 

of conjecturing/proving tasks: pencil-and-paper proofs, computer-based (using 

Cabri Geometry II) tasks and geometry tasks including the investigation of 
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appropriate mechanical linkages. They concluded that argumentation was a social 

process and the quality of the benefit obtained from this social interaction was 

affected by the level of peer interaction in all tasks (Vincent, Chick, & McCrae, 

2005). Likewise, Hewit (2010) emphasized the importance of social interaction and 

time for productive argumentation in computer environment. Hewit (2010) asserted 

that learners who lacked domain knowledge would be unable to construct 

convincing warrants for their claims or analyze other participants‘ arguments. Thus, 

Hewit (2010) suggested giving sufficient lead-time to students before class 

discussion in order for students to develop a reasonable and deep understanding of 

the domain to interpret the validity of the other positions.  

 The last benefit of DGS in argumentation was the dragging option, which is 

one of the most important options. Dynamic geometry softwares are used in 

research studies since they provide users with several opportunities that cannot be 

performed without technology. Dragging is performed by grabbing the elements of 

a geometrical figure via the computer mouse, changing the place of those elements 

on the screen and observing the responses of various other parts of the figure 

dynamically. This action enables users to see the preserved properties of 

geometrical objects. Moreover, users can observe infinite examples to support their 

claim and have the opportunity to detect the counterexamples to a statement (Hanna 

& de Villiers, 2008). Researchers see dragging as a beneficial option in terms of 

many aspects. For instance, Lopez-Real and Leung (2007) believe that dragging 

facilitates the theoretical concept formation (Hanna & de Villiers, 2008) and should 

not be accepted solely as a confirmation or exploration tool. Similarly, Arzarello, 

Olivero, Paola and Robutti (2002) referred to the contribution of the dragging 

option to the proof and conjecturing process since dragging provided feedback to 

the discovering phase and thus supported proof explanations. Therefore, checking 

the construction by dragging was advised by researchers in order to observe the 

necessity of relevant geometric facts (Hoyles & Jones, 1998).  

  As previously mentioned, evidence has a crucial role in argumentation 

studies. In many studies, dynamic figures were considered to provide students with 

strong evidence that a property was true since dragging seemed sufficient to 
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guarantee the truth of the observed property (Arzarello et al., 2002; Chazan, 1993; 

De Villiers, 2003; Healy & Hoyles, 2000). On the other hand, Heinze and Reiss 

(2007) stated that empirical arguments, which include concrete geometrical objects 

based on the observation, could be accepted as validation in the geometry context 

although experimentally generated results seemed not to offer explanations 

(justifications) for the observed relations. Likewise, González and Herbst (2009) 

criticized using measurements (empirical evidence) calculated by dynamic 

geometry software to provide evidence for the generalizations. Noss and Hoyles 

(1996) claimed that the students who used dynamic geometry software were prone 

to attribute their results to measurements instead of theoretical considerations. Thus, 

Chazan and Houde (1989) advised teachers to avoid using dynamic geometry 

software measurements as the basis of statements in a geometry class. Moreover, 

teachers were advised to construct and sequence the tasks carefully while using 

technology in order to motivate students in creating formal proof (Hoyles & Healy, 

1999). Another suggestion to teachers who used dynamic geometry software in their 

mathematics classes was motivating students to find out why a conjecture is true 

(Arzarello et al., 2002). It was asserted that when the teacher made the role of proof 

in justifying explicit, the students would be motivated to prove why a certain 

proposition is true after seeing that it is true within the dynamic geometry 

environment (Arzarello et al., 2002). As an important factor in many research 

studies, technology was also a matter of discussion for some argumentation studies. 

These studies are explained in the following section. 

  

2.3.2 Studies related to argumentation via technology  

  

 The argumentation application in a dynamic geometry environment was 

investigated in several studies (Hewit, 2010; Hollebrands, Conner & Smith, 2010; 

Inglis, Mejia-Ramos & Simpson, 2007; Prusak et al., 2012). For instance, 

Hollebrands, Conner and Smith (2010) used Toulmin‘s argumentation model in 

their study with college geometry students with access to technology. They 

conducted a task-based interview with students while they were solving hyperbolic 
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geometry tasks. In the end, they revealed the themes regarding the structure of 

students‘ arguments. These themes were related to the explicitness of warrants, 

technology use, and task types. According to the results, they claimed that students 

who were solving tasks related to justification and proof did not use technology but 

provided explicit warrants. On the other hand, they found that students who did not 

use explicit warrants had used technology. They claimed that this indirect relation 

was due to the students‘ lack of familiarity with the use of technology in a formal 

mathematical environment. To be more precise, the students did not need to explain 

how the objects on the screen led to the claims and accepted the appearance of the 

relations on the screen as a sufficient warrant (Hollebrands, Conner, & Smith, 

2010). Similar to the results reported in the study conducted by Inglis et al. (2007), 

Hollebrands et al. (2010) also emphasized the importance of the use of qualifiers in 

the use of technology-aided environment. They stated that the students used the 

technology when they were uncertain about the claim. According to the findings, 

when technology use confirmed the claim, they accepted that as evidence; 

otherwise, they changed their claims (Hollebrands, Conner, & Smith, 2010). 

 Another study focusing on peer interaction of argumentation with DGS was 

conducted by Prusak et al. (2012). They used Toulmin‘s argumentation model and 

examined peer interaction of two preservice teachers by creating a conflict situation, 

creating a collaborative situation and providing a device (DGS) for checking 

hypotheses/conjectures. They also aimed to investigate the reasoning processes in 

peer-unguided argumentation. The core arguments -arguments including claim, 

data, warrant and backing elements- of Toulmin‘s argumentation model were 

analyzed. The design enabling the shift from intuitive/visual argumentation to 

logical-deductive considerations was presented in the findings. The researchers 

claimed that the three design principles, which were creating a situation of conflict, 

a situation of collaboration and providing tools to raise and check hypotheses, 

promoted productive argumentation. In addition, the adaptation of Toulmin‘s 

argumentation model was claimed to be useful in tracing the dynamic changes in 

collective argumentation through dyad interaction. In the end, they elaborated on 

the methodology to identify learning in peer argumentation. 
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 There are also various studies in the literature supporting the use of DGS and 

in which the proof and reasoning of the participants were analyzed (Baccaglini-

Frank & Mariotti, 2009; Hoyles & Healy, 1999; Olivero & Robutti, 2001; Mariotti, 

2006; Vincent, 2002). In some of these studies, the researchers claimed that 

dynamic geometry environments were beneficial in opening new frontiers which 

link informal argumentation with formal proofs (Hoyles & Healy, 1999; Olivero & 

Robutti, 2001; Mariotti, 2006; Vincent, 2002). For instance, Vincent (2002) 

investigated the role of mechanical linkages which correspond to the devices based 

on systems of hinged rods and dynamic geometry software in bridging empirical 

justification and deductive reasoning. She used Toulmin‘s argumentation model to 

analyze the structure of geometry proofs developed by 12-14-year-old students. 

Vincent (2002) used mechanical linkages and dynamic geometry software to 

provide the context of conjecturing, argumentation and deductive reasoning. At the 

end of the study, she concluded that all students, including the ones who had a 

lower level of geometric understanding, developed an understanding of deductive 

proofs and made significant progress in understanding geometric properties. 

Moreover, the mechanical linkages and dynamic geometry software were found to 

be highly suitable to bridge empirical and deductive reasoning. Similarly, Christou, 

Mousoulides, Pittalis and Pitta-Pantazi (2004) also encouraged the use of dynamic 

geometry software and appropriate questions, which motivate students to justify 

their conjectures in geometric proofs in order to bridge inductive exploration and 

deductive proof. 

 The Cabri dynamic geometry program was used in another research study to 

investigate the conjecturing and proving processes of students working on open 

problems in Euclidean geometry (Baccaglini-Frank & Mariotti, 2009). The 

researchers analyzed the process rather than the product, and they conceived a 

model related to the dragging schemes and the processes occuring while students 

were conjecturing and proving. It was claimed that students were be able to make 

dynamic conjectures in a Dynamic Geometry Environment [DGE] rather than the 

static-conjectures developed in paper-pencil environment (Baccaglini-Frank & 

Mariotti, 2009). Likewise, Mariotti (2006) asserted that DGE contributed to the 
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reasoning and proving processes of individuals who were solving open problems by 

making conjectures. Similarly, some cognitive difficulties that students confronted 

during conjecturing and proving in geometry were stated to be overcome with the 

encouragement of DGE on learners‘ constructions and ways of thinking (Noss & 

Hoyles, 1996; De Villiers, 2004).  

 In another study, Leung and Lopez-Real (2002) analyzed the proofs of 

secondary school students in the Cabri environment in Hong Kong. They focused 

on how the students‘ constructions motivated their visual-cognitive scheme on 

seeing proof in a dynamic geometry environment and how this scheme could fit into 

cognitive unity, which was proposed by Boero, Garuti and Mariotti (1996). 

Moreover, Leung and Lopez-Real (2002) proposed a framework related to the 

theorem acquisition and justification in DGE as follows:  

 

Theorem acquisition and justification in DGE is a schematic cognitive-

visual dual process potent with structured conjecture forming activities, in 

which dynamic visual explorations through different dragging modalities 

are applied on geometric entities. These activities stimulate 

argumentative/transformational reasoning, which enables the process to 

converge towards integrated figural concepts that could bring about 

formal mathematical proofs, hence producing a cognitive unity in 

acquiring and proving geometrical theorems (p. 9).  

   

 The framework above emphasized the importance of the knowledge 

producing process instead of the rational proof produced at the end of the process. 

That is, the process was seen more important than the product. In addition, it was 

deduced that technology use contributed to obtaining the cognitive unity between 

argumentation and proof by stimulating argumentative reasoning with the help of 

integrated figural concepts. 

 On the other hand, there were also a few studies in which ynamic Geometry 

Software [DGS] was not beneficial in proof (Hoyles & Healy, 1999). For instance, 

Hoyles and Healy (1999) conducted a study regarding the use of the Cabri dynamic 

geometry software in proof production. Specifically, they analyzed the relationship 

between students‘ visual reasoning in Cabri and their motivation in using empirical 

conjectures in formal proof. They concluded that the students‘ perceptions related to 
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the Cabri construction differed from the Euclidean proof they constructed. That is, 

Cabri was asserted to be beneficial in defining and identifying geometrical 

properties but not beneficial in proving them (Hoyles & Healy, 1999). 

 In the literature, researchers suggested planning the instructions and activities 

of studies on DGS and argumentation carefully. The reason for this was that 

students may not always follow instructions and may experiment and notice 

unexpected relations which was called play paradox (Healy & Hoyles, 2000). In 

addition, it was asserted that DGS itself did not guarantee the participants to transit 

from empirical to generic objects, so the importance of teacher role in guiding 

students to theoretical thinking was emphasized (Jones, 2002; Leikin & Grossman, 

2013). Likewise, Hölzl (2001) emphasized the importance of the way DGS is used 

and suggesting not using DGS only for verification.   

 To sum up, in this section, the opportunities that DGS provided the 

researchers with, such as solving various types of questions by exploring, 

conjecturing and explaining the geometric relationships have been presented. In 

addition, DGS was claimed to enable peer interaction in mathematics studies, so 

DGS is considered to be suitable and beneficial for argumentation studies. In short, 

literature indicated that the crucial role that technology plays in the teaching and 

learning of mathematics by means of argumentation was approved by the 

researchers, theorists, educators. 

 

2.4 Teacher responsibilities in argumentation process  

  

 Argumentation is considered to be a social activity by some scholars as can be 

understood in the following definition of argumentation, which emphasizes the 

characteristics and the social and rational aspects of argumentation.  

 

Argumentation is a verbal activity that can be performed orally as well as 

in writing. It is also a social activity: In advancing argumentation, one 

directs oneself by definition to others. In addition, argumentation is a 

rational activity that is aimed at defending a standpoint in such a way that it 

becomes acceptable to a critic who takes a reasonable attitude (van 

Eemeren, Grootendorst, & Henkemans, 2002, p. xi). 
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 In the social environments, there could be some shared and accepted 

information during the interactions. In particular, it was claimed that mathematical 

justification includes the taken-as-shared knowledge of the participants (Simon & 

Blume, 1996). For a result or statement to be taken-as-shared knowledge, all 

participants in a class should accept the truth of that result with prior justifications. 

At this point, the participants accept the result without needing further justification 

in subsequent discussions (Simon & Blume, 1996; Yackel, 2002). In their study, 

Yackel, Ramussen and King (2000) emphasized the importance of taken-as-shared 

knowledge in the argumentation process, and argued that the argumentation process 

was reflexively related to the taken-as-shared basis for communication. Thus, taken-

as-shared knowledge could be considered as an important issue in analyzing 

discussions of argumentation studies.  

 Yackel and Cobb (1996) are prominent researchers who emphasized the close 

relationship between reasoning/making sense and interactive constitution of taken-

as-shared mathematical meanings. They believe that learning is a social process and 

that meaning making is formed in and through the process of interpreting and 

interacting with others. Many researchers maintain that the more students are 

encouraged to join in argumentation and justification, the higher the quality of their 

reasoning, justification and explanation will be (Manoucheri & St John, 2006; 

McCrone, 2005; Wood, Williams & McNeal, 2006). Although children have the 

potential to develop persuasive and defensible arguments, their arguments rely on 

untested presumptions of shared knowledge and may not have sufficient evidence 

(Anderson, Chinn, Chang, Waggoner, & Yi, 1997); thus, they still need teacher 

assistance and facilitation to be able to integrate many sources of information 

(Strom, Kemeny, Lehrer, & Forman, 2001) and to be effectively engaged in 

mathematical argumentation (Cobb, Stephan, McClain, & Gravemeijer, 2001; 

Conner, 2007a; Forman et al. 1998; Hunter, 2007; Yackel & Cobb, 1996). Research 

studies emphasized the importance of teacher role in establishing the mathematical 

quality of the class and the norms for mathematical aspects of student actions 

(Heinze & Reiss, 2007; Yackel & Cobb, 1996). For a productive argumentation, the 
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teacher should have some necessary skills to orchestrate the argumentation and to 

provide suitable environment for argumentative environment.  

Suggestions for suitable teaching environment for argumentation were 

provided in the literature. For instance, the teaching environment for argumentation 

should be arranged in such a way that students will not hesitate and will not feel any 

risk and pressure while talking about their ideas and answers (Lin & Mintzes, 

2010). In this way, students will be aware of their own ideas and listen to the ideas 

of others more attentively (Lin & Mintzes, 2010). In order to provide such an 

environment and to engage more students in the mathematical discourse, teachers 

can encourage students to exchange their thoughts with their classmates and prompt 

students‘ answers (Hunter, 2007; Kosko et al., 2014) instead of being satisfied with 

their correct answers to the questions and judging the students‘ responses directly. 

In this way, teachers will be encouraging students to justify and support their 

answers (Wood & McNeal, 2003).  

In argumentation, which is an inquiry based teaching method, the supportive 

role of the teacher is of great importance. For supporting the whole class inquiry in 

secondary school, Staples (2007) clarified teacher actions as ―guiding the 

mathematics, establishing and monitoring a common ground, and supporting 

students in making contributions‖ (p. 172). Likewise, Yackel and Cobb (1996) 

clarified teacher roles in inquiry classrooms as facilitating mathematical 

discussions, acting as a participant to legitimizing certain aspects of students‘ 

activities, and making sense of children‘s wide range of solutions. Yackel (2002) 

also maintained that the teacher should initiate collective argumentation, support 

interaction among students and raise awareness regarding omitted or implicitly 

stated argument elements in arguments. By the same token, McClain and Cobb 

(2001) emphasize that the teacher‘s role should be to facilitate not to transmit 

knowledge to the students. How can teachers facilitate discussions? According to 

Cross (2009), teachers should ensure that students follow the route and make sense 

of the questions. Moreover, teachers should follow each group by listening to their 

conversations to ensure that all students participate (Cross, 2009). The other 

important roles of the teacher are to encourage students to provide justifications to 
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their statements and to pose questions to the students in order to engage them in in-

depth thinking (Cross, 2009). In addition, the teacher could provide students with 

clues and suggestions when they get stuck at some point (Cross, 2009). Finally, the 

facilitator teacher should not use evaluative statements to respond to students since 

statements, such as ‗That is correct/right answer‘ are believed to impede student 

discourse (Cross, Taasoobshirazi, Hendricks, & Hickey, 2008). Another obstacle to 

be confronted when the teacher uses evaluative statements is students‘ reluctance to 

talk since the student would feel fear of being judged regarding his/her thoughts in 

the exploratory stage (Mercer, 2000). When the teacher responds to students‘ 

arguments without indicating her/his position, the teacher would direct all the 

participants by thinking carefully, and in this way, students would have the chance 

to examine the presented idea and develop mathematical backing to agree/disagree 

the conjecture (Hunter, 2014). 

One of the beneficial methods for promoting productive argumentation has 

been asserted as teachers‘ encouragement of students to convince other participants. 

Specifically, after a student provides justification for his/her claim, the teacher 

should ask that student to convince other students about the claim in the 

argumentation (Martino & Maher, 1999). Sample questions of promoting 

justification are as follows: ―How did you reach that conclusion?, Could you 

explain to me what you did? and Can you convince the rest of us that your method 

works?‖ (Martino & Maher, 1999, p. 57). In addition, the questions helping students 

to focus on other students‘ ideas have been listed as ―Did anyone have the same 

answer but a different approach?, Is there anything about your solution that‘s the 

same as your classmate‘s? and ―Can you explain what your classmate has done?‖ 

(Martino & Maher, 1999, p. 57). Finally, ―Have you ever worked on a problem like 

this one before?‖ (Martino & Maher, 1999, p. 57) is a question that leads to making 

generalizations and mathematical connections. Ultimately, the teachers who want to 

apply argumentation in their classes should make effort to use such questions in 

order to provide interactive argumentation environment for better conceptual 

learning. 
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Research related to argumentation illustrates that another skill that a teacher 

should have to engage students in mathematical argumentation is questioning 

(Kosko et al., 2014). Questioning is not only used for assessing student knowledge 

but also for challenging students‘ conceptual frames and obtaining knowledge 

related to students‘ thinking processes and development of mathematical ideas 

(Martino & Maher, 1999). However, the quality of the questions is of great 

significance in this respect. Martino and Maher (1999) stress that the main benefit 

of skillfully questioning students is that the teacher is provided with the necessary 

knowledge related to students‘ mathematical concept development. However, 

Kosko et al. (2014) state that every question does not have the potential to 

encourage justification and student engagement in mathematical argumentation. For 

instance, in a study by Temple and Doerr (2012), it is reported that 10th grade 

classrooms were observed and it was found that in some lessons, the teacher 

encouraged students to provide an explanation of their thinking process and add to 

each others‘ contributions, while in some other lessons the questioning of the 

teacher was more concerned with accuracy, rather than exploration, and, thus, 

encouraged students to provide precise explanations. Temple and Doerr (2012) 

assert that leading questions can be used in stimulating conversations about 

previously learned content but not effective in encouraging justification in 

mathematical argumentation. On the other hand, probing questions enable students 

to make connections between various ways of representing the mathematics and 

establishes a more productive environment for argumentation since these questions 

often include requests for justification (Temple & Doerr, 2012). Similarly, Boero 

(1999) emphasizes the need for strong teacher mediation in Toulmin-Type 

argumentation and name these interventions as ‗warrant-prompts‘. A sample 

question given for warrant-prompts is ―Why do you say that?‖. This question 

directs students to think about their claims/conjectures (Vincent, 2002). Similarly, 

Wood (2003) mentions prompting questions as ―How are the two things the same? 

Does this make sense? Does it always work? Why does this happen?‖ (p. 440). By 

the same token, Owens (2005) states that in order to promote student justification, 

teachers could ask the following questions: ―Would you tell us what you thought? 
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How did you decide this? Are there patterns? Is there a different way you can do 

this?‖ (p. 34). The argumentative talk prompts, such as ‗Can you explain X?, 

Articulate X with your own words, What do you think about the issue?, Could you 

add anything else about X?‘, were defined as ground rules by Mercer (2000), and 

the researcher claims that these prompts foster interaction among students and 

enable students to inter-think (Mercer, 2000). Ultimately, it can be concluded that 

the quality of questions is of great importance for students to construct arguments, 

so the teachers‘ facilitation and scaffolding are needed for effective mathematical 

argumentation (Kosko et al., 2014).  

Another essential method which should be used by teachers to make 

students engaged in collective argumentation is stated as revoicing (Chapin, 

O‘Connor & Anderson, 2003; O‘Connor & Michaels, 1996). The goals of revoicing 

are stated as clarifying/amplifying the content, explaining the reasoning further, 

intoducing particular ideas or redirecting the discussion (Forman et al., 1998). The 

main benefit of revoicing is clarifying and making a participant‘s contribution to the 

discussion more comprehensible to all the other participants in class (Conner et al., 

2014a). Moreover, revoicing is claimed to make students take a specific stance in a 

dialogue and, thus, develop inquiry skills and mathematical argumentation while 

defending their ideas (O‘Connor & Michaels, 1996). Forman et al. (1998) claim that 

reported speech could be used to align students with argumentative positions. 

Moreover, teachers‘ repetitions in pointing out important aspects of the arguments 

are also believed to be beneficial in orchestrating argumentation (Forman, et al., 

1998). That is, Forman et al. (1998) postulate that the mentioned roles of the teacher 

are necessary and highly important since the teacher‘s framing is the main factor 

affecting the convincingness of students‘ arguments.  

To sum up, the role of the teacher is of vital importance in the process of 

fostering productive argumentation; to this end, they should be the facilitator, not 

the knowledge transmitter in the class. As for methods to orchestrate argumentation 

in mathematics, the key methods can be listed as questioning, revoicing and 

encouraging students to convince other students. Prusak et al. (2012) have stated 

that there is a need for teacher training in the area of fostering collective 
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argumentation since there is no training in teacher education programs related to 

orchestrating argumentation. Specifically, Prusak et al. (2012) have advised that 

teachers should first experience argumentation as learners themselves in order to 

facilitate argumentation in class effectively. Thus, the focus of the current study is 

on the prospective middle school mathematics teachers since they will facilitate 

argumentation in their mathematics classes in the future. In the next section, some 

research studies related to argumentation in mathematics education are explained in 

detail. 

 

2.5 Summary of the literature  

 

To sum up, theoretical background and Toulmin‘s argumentation model was 

introduced and the layout prepared by Toulmin was explained in detail in this 

chapter. Subsequently, argumentation studies in mathematics education research 

were listed in detail to provide a rationale for the current study. Afterwards, the use 

of technology and technology supported argumentation studies were explained.  

Lastly, the teacher responsibilities in argumentation process were explained.  

 Literature review illustrated that, Toulmin‘s argumentation model was used to 

examine argument structures, proof structures, reasoning types, argument types and 

warrant types in numerous studies. The focus of the proof studies were on proof 

schemas of students, student difficulties in proving, criticism of the relationship 

between argumentation and proof, proof perceptions, validation of texts as proofs 

and technology use in proof.  On the other hand, the technology related studies 

mostly focused on the benefits of using technology in terms of various aspects. One 

of the most important benefits of technology was asserted as promoting the peer 

interaction which was critical in argumentation studies (Vincent, Chick & McCrae, 

2005). In addition to these, the primary factor in argumentation, teacher, and the 

responsibilities of the teachers in argumentation classes were investigated in many 

studies. However, as clarified in significance and literature parts, there were few 

studies focusing on argumentation structures of prospective teachers who will be 

the future teachers facilitating argumentation classes. Especially, in Turkey, there is 
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no such and investigation on prospective middle school mathematics teachers since 

argumentation is a quite new method in mathematics field. Thus, the current study  

focused on the investigation of prospective middle school mathematics teachers‘ 

argumentation structures in a technology integrated environment and paper-pencil 

environment. It is believed that this attempt will give valuable insights to both 

policy makers and mathematics educators to improve middle school mathematics 

teacher education programs by integrating argumentation into mathematics field.  

 

 

  



58 

 

CHAPTER III 

 

 

METHODOLOGY 

 

 

 The purpose of this study was to investigate the nature of argumentation 

structures of prospective middle school mathematics teachers while solving 

geometry tasks in technology and paper-pencil environments. More specifically, the 

argumentation structures of the prospective middle school mathematics teachers, 

local arguments (core arguments including claim, data and warrant components) in 

the global argumentation structures, and the local argumentations (only warrant 

components of the local arguments) were analyzed in detail. More specifically, the 

kinds of global argumentation structures they produced, the kinds of local 

arguments they used, and the kinds of local argumentations they utilized to justify 

their arguments were investigated. 

In this chapter, the research questions, design of the study, procedure, pilot 

study, main study, trustworthiness of the study, researcher role and bias, and 

limitations are described. In short, the method of inquiry is depicted in detail.  

 

3.1 Research questions 

 

The following major questions and sub-questions were formulated for this 

qualitative case study: 

1. What is the nature of argumentation structures of prospective middle 

school mathematics teachers while solving geometry tasks in GeoGebra and Paper-

Pencil groups? 

2. What are the characteristics of the local arguments in the global 

argumentation structures? 

- What are the characteristics of local arguments based on the flow of 

argument components (claim, data, warrant) that prospective middle 
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school mathematics teachers express while solving geometry tasks in 

GeoGebra and Paper-Pencil groups?  

3. What are the characteristics of local argumentations that prospective 

middle school mathematics teachers utilize while solving geometry tasks in 

GeoGebra and Paper-Pencil groups?  

 

3.2 Design of the study 

 

The present study employs qualitative research techniques. Fraenkel and 

Wallen (2012) state that some researchers‘ interests are based on the quality of a 

particular activity rather than on its frequency. When the quality of relationships, 

activities, situations or materials is the issue, the preferred research type is 

qualitative research (Fraenkel & Wallen, 2012). 

How people interpret their lives and how they construct their meanings from 

their experiences have been stated to be the main interest of qualitative researchers 

(Merriam, 2009). Similarly, Denzin and Lincoln (2005) emphasize the importance 

of meaning derived by the individual him/herself in qualitative research by stating 

that ―qualitative researchers study things in their natural settings, attempting to 

make sense of, or interpret, phenomena in terms of the meanings people bring to 

them‖ (p. 3). Therefore, qualitative researchers are disposed to collect data directly 

within the natural setting in which participants experience the problem or the 

phenomena (Creswell, 2007). In qualitative research, descriptive data is collected 

and they are presented in terms of words and pictures instead of numbers (Bogdan 

& Biklen, 2007). The other crucial issue in qualitative research is collecting 

multiple sources of data such as observations, interviews, documents and 

audiovisual materials (Creswell, 2007) in order to ensure the validity and reliability 

of the findings. Lastly, the preferred method in data analysis in qualitative studies is 

inductive data analysis instead of testing initially formulated hypotheses (Bogdan & 

Biklen, 2007). Creswell (2007) categorized qualitative approaches under five 

headings: narrative research, phenomenology, grounded theory, ethnography and 

case studies. The design utilized in the present study was a case study.  
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Various definitions of the qualitative case study can be encountered in the 

related literature. To illustrate, Stake (2005) states that ―qualitative case study is 

characterized by the researcher spending extended time on site, personally in 

contact with activities and operations of the case, reflecting, and revising 

descriptions and meanings of what is going on‖ (p. 450). Another definition is made 

by Yin (2003), who defines the scope of the case study as follows: ―A case study is 

an empirical inquiry that investigates a contemporary phenomenon within its real-

life context, especially when the boundaries between phenomenon and context are 

not clearly evident‖ (p. 13). He also differentiates the case study from other 

methods by comparing the characteristics of the methodologies. 

 

Case study inquiry copes with the technically distinctive situation in 

which there will be many more variables of interest than data points, and 

as one result relies on multiple sources of evidence with data needing to 

converge in a triangulating fashion, and as another result benefits from the 

prior development of theoretical propositions to guide data collection and 

analysis (Yin, 2003, p. 13). 

 

 Merriam (2009) also defines the qualitative case study by referring to as ―an 

intense holistic description and analysis of a bounded phenomenon such as a 

program, an institution, a person, a process, or a social unit‖ (p. x). This definition 

entitles the case as an entity or a unit and emphasizes the importance of the 

boundaries of the case. Similarly, Creswell (2007) defined the case study as ―a 

qualitative approach in which the investigator explores a bounded system (a case) or 

multiple bounded systems (cases) over time, through detailed, in-depth data 

collection involving multiple sources of information, and reports a case description 

and case-based themes‖ (p. 73). The way case study was employed in the current 

research study is in accordance with Merriam and Creswell‘s perspective since the 

aim was to present an in-depth description of the argumentation of prospective 

middle school mathematics teachers in GeoGebra and Paper-Pencil environments. 

Creswell (2007) and Stake (1995) categorize case studies into three based on 

their intents: the single instrumental case study, the collective or multiple case 

study, and intrinsic case study. The instrumental case study is a case study in which 

the researcher stays focused on the issue or concern and then selects one bounded 
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case to express that issue (Stake, 1995). As for the multiple-case study, the 

researcher again selects the issue but studies several cases jointly in order to 

examine this issue (Creswell, 2007). In the last type, intrinsic case study, the 

researcher focuses on the case itself (such as evaluating a program or studying a 

student who has difficulty) since the case is an unusual or unique situation 

(Creswell, 2007). Accordingly, the present study can be specified as a multiple case 

study since the argumentation of the prospective middle school teachers was 

examined in two cases: GeoGebra and Paper-Pencil. 

In the qualitative case study, the unit of analysis can be an event, a program, 

or an activity (Creswell, 2007). Similarly, Yin (2003) asserts that the unit of 

analysis can be not only an individual and a group but also an event, an 

implementation process or entity. He proposed four basic types of case study 

designs based on the unit of analysis, which are single-case design with single unit 

of analysis (Holistic), single-case design with multiple units of analysis 

(Embedded), multiple-case design with single unit of analysis (Holistic), and 

multiple-case design with multiple units of analysis (Embedded) (Yin, 2003). In 

addition, Yin (2003) modelled these basic case study designs as illustrated in 

Figure 3.1. 

 

 

Figure 3.1 Basic types of designs for case studies (Yin, 2003, p. 40) 
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 In the present study, the unit of analysis was the argumentation structures of 

prospective middle school mathematics teachers and the cases were two working 

groups, GeoGebra and Paper-Pencil, in the context of the Middle School 

Mathematics Teacher Education Program. Thus, the model of the analysis of the 

present study was holistic multiple case study design and can be summarized as in 

Figure 3.2. 

 

 

Figure 3.2 Holistic multiple case study, design of the present study  

 

 The following section provides detailed information about the data collection 

procedure pursued in the current study. 

 

3.3 Procedure 

 

The current study entailed a pilot study and a main study. Thus, initially, the 

participants and the data collection procedure of the pilot study is explained; 

subsequently, detailed information about the main study is presented in the 

following sections. 

 

3.4 Pilot Study 

 

Yin (2003) proposed a pilot test prior to the main implementation in order to 

refine data collection plans and develop a relevant line of questions. Accordingly, in 

the present study data for the pilot study was collected in the 2012-2013 spring 

semester. The specific purposes of conducting the pilot study were to check whether 
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the geometry tasks were suitable for argumentation, to estimate the necessary time 

for each geometry task, to decide on the number of tasks to be applied each week, to 

be sure about the clarity of the statements in the geometry tasks and to decide on the 

number of people in each group. 

 

3.4.1 Participants of the pilot study 

 

The participants were selected through convenience sampling from a Middle 

School Mathematics Education undergraduate program of one of the public 

universities in Ankara. They were 4th grade students (9 females) who had 

volunteered to participate in the study. Based on their level of GeoGebra 

knowledge, they were assigned to either the GeoGebra group or the Paper-Pencil 

group. In addition, they were randomly divided into subgroups of two or three. The 

dates, the number of groups, the number of people in each group and the number of 

computers used in the GeoGebra group for three weeks are presented in Table 3.1. 

 

Table 3.1 Pilot study dates and details about the groups 

Date Group # of 

groups 

# of people in 

small groups 

# of computers in 

small groups 

09.05.2013 GeoGebra 2 3 and 2 1 

11.05.2013 Paper-Pencil 2 2 and 2 - 

17.05.2013 GeoGebra 2 2 and 2 2 

18.05.2013 Paper-Pencil 2 2 and 2 - 

30.05.2013 GeoGebra 2 2 and 2 1 

25.05.2013 Paper-Pencil 2 2 and 2 - 

 

Computers and GeoGebra, a dynamic geometry program, were provided to 

the participants in the GeoGebra group to solve the geometry tasks. On the other 

hand, paper, pencil, a protractor, a ruler and a compass were provided to the 

participants in the Paper-Pencil group.  
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3.4.2 Data collection tools of the pilot study 

  

 In the next sections, the geometry tasks, interviews and reflection papers of 

the pilot study are explained in detail. 

 

3.4.2.1 Geometry tasks in the pilot study 

 

Initially, 10 geometry tasks were prepared for the pilot study. Four of them 

were based on triangles, three of them on quadrilaterals and three of them on 

circles. During the preparation of the tasks, challenging questions to accompany the 

geometrical figures were sought. Moreover, they needed to be questions that could 

be solved via both GeoGebra and paper-pencil. One other characteristic sought in 

the questions was to ensure that they had multiple solutions so that argumentation 

could emerge. After the pilot study, some of the tasks were adapted, while some of 

them were omitted. The details of the geometry tasks have been explained in the 

data collection part of the main study. 

 

3.4.2.2 Interviews and reflection papers in the pilot study 

 

Pilot interviews are crucial to figure out which questions are confusing, need 

rewording, or yield useless data (Merriam, 1998). There were pilot interviews with 

4 prospective middle school mathematics teachers, 2 of whom were from the 

GeoGebra group and 2 of whom were from the Paper-Pencil group. All the 

interviews were videotaped, recorded and transcribed. The purposes of doing pilot 

interviews were to detect the possible difficulties which might be faced during the 

interviewing process of the main study, to check whether the questions were clear, 

and to determine the approximate time needed for the interview.  

The participants of the pilot interview were asked whether or not the 

interview questions were clear to them, and their suggestions were taken into 

account to modify the interview protocol for the main study. Specifically, there 

were questions about the geometry background of the participants, the difficulty of 
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the tasks, the use of materials provided, suggestions for the application process to 

promote argumentation, and the clarity of the statements in the worksheets. 

 The reflection paper also consisted of the same questions to collect the 

opinions of all the participants. However, the participants‘ answers to the reflection 

paper questions were highly superficial. In the interviews, the researcher collected 

more detailed information from the participants by questioning their answers. As 

previously indicated, the interviews were more beneficial when they were held just 

after the application. 

 

3.4.3 Data collection procedure 

 

There were three administrations and the administrations were implemented 

once a week for each group (GeoGebra and Paper-Pencil Groups). The application 

was recorded with a camera and audio recorders. 

In the first administration, the participants solved 4 geometry tasks related to 

triangles. Initially, they studied in small groups, and then voluntary pairs presented 

their solutions on the board and discussed their arguments with the whole class. 

Meanwhile, the researcher guided the discussion by promoting the participants to 

develop arguments. To illustrate, the researcher asked such questions as ‗How do 

you know that is true?, What does that mean to you?, Can you tell me more about 

your thinking process…?, Why do you think so?, and Are there any other ideas?‘ 

after discussing two geometry tasks, the participants were tired and the researcher 

gave a break. Following the break, the participants continued discussing the other 

two geometry tasks. Immediately after the first application, the researcher 

conducted an interview about the application with one pair of voluntary students, 

one from the GeoGebra group and one from the Paper-Pencil group. The other 

remaining pairs were asked to write a reflection paper, which they sent to the 

researcher on the application day till midnight by e-mail. 

The second administration was applied one week after the first 

administration with 8 participants, rather than 9, because one of the participants in 

the GeoGebra group decided to give up participating in the study. During the 
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application, 3 geometry tasks related to the quadrilaterals were solved. The same 

application procedure was followed in that week.  

During the third and the last week, the participants solved three geometry 

tasks related to circles following the same procedure. Different geometric figures 

were used in the tasks of different administrations (e.g. circles, triangles) to offset 

the possibility that the students might not have been able to produce arguments 

related to the geometric figures they were not competent at. To illustrate, a student 

may not have been able to create an argument for the tasks on circles, but s/he could 

be more competent in other geometrical figures, and thus be able to create 

arguments for tasks on, for example triangles and/or quadrilaterals. If the researcher 

had prepared all of the tasks based solely on circles, not all the students may have 

been able to create arguments, so the researcher would have missed out on some 

data. Thus, the researcher decided to prepare the tasks on three different geometrical 

figures in order to ensure that arguments were collected from all the participants. In 

this way, the researcher was able to collect arguments of all the participants. 

 

3.4.4 Conclusions of the pilot study 

  

 The video recordings of the applications in the pilot study were analyzed in 

terms of argumentation. In addition, the reflection papers and interview recordings 

were analyzed in order to make inferences for the arrangement of the main study.  

 In the first week, the researcher prepared 4 geometry tasks on triangles. 

However, 4 activities were found to be too tiring for the students. The students 

experienced difficulties in discussing the questions towards the end of the 

application. Thus, the researcher decided to reduce the number of tasks and discuss 

the questions in detail in each application in the main study. 

 Since the researcher was not sure whether the prepared tasks were suitable for 

argumentation, the decision was made to solve 3 tasks in each implementation of 

the pilot study and then to omit the tasks that did not work prior to the main study. 

In the first week, two of the four tasks related to triangles were easily solved in a 

short time by the participants, so the class discussion was not rich in terms of 
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argument development. Thus, those tasks were omitted from the study. In the 

second week, the researcher prepared 3 geometry tasks on quadrilaterals. However, 

these 3 tasks related to quadrilaterals were omitted from the study specifically 

because in the first task, there were no accurate solutions for some of the questions. 

The participants in the GeoGebra group held effective discussions, but sometimes 

they did not use GeoGebra to arrive at the solution. Thus, that task was omitted 

from the study. Besides, the other two quadrilateral tasks were omitted since they 

led participants to use only algebraic expressions rather than GeoGebra to solve the 

problem. In the third week, the researcher prepared 3 geometry tasks on circles. In 

the class of the GeoGebra group the 1st and 2nd tasks were conductive to the use of 

GeoGebra and argumentation. However, in the 3rd task, the students did not hold 

effective discussions because there was only one answer and it was easy to show it 

via a GeoGebra file. That is, the solution was easy after drawing the required 

drawing figure on GeoGebra. Similarly, in the class of the Paper-Pencil group, there 

was a short discussion based on their drawings. Thus, it was concluded that the third 

task was not suitable for argumentation, so it was omitted from the study. 

 In the GeoGebra group, there were 5 people. The two small groups were 

generated with 3 people in one group and 2 people in the other group. In this way, 

the researcher had the chance of examining the arguments developed in small 

groups of two and three. The interview results indicated that in the group of two 

people, the participants expressed more opinions, and the discussion was more 

effective, while in the group of three people, one of the participants did not join the 

discussion most of the time. After analyzing the audio recordings in terms of 

arguments, the researcher decided that the ideal number of people in the small 

groups should be 2 for the main study.  

 In the GeoGebra group, each pair had only one computer and one activity 

sheet to work on the tasks. In the second week the researcher tried to provide two 

computers for each pair to work on the tasks. In the meantime, each participant in a 

pair worked on his/her own computer and shared his/her thoughts less frequently 

with his/her partner. That is, the communication between the pairs was minimal 

when they had their own computer. Thus, the researcher decided to provide one 
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computer and one activity sheet to each pair in the main study in order to encourage 

discussion and argument development. 

 In the Paper-Pencil group, there were 4 people in the first week. The two 

groups were generated with 2 people. A ruler, protractor and a pair of compasses 

were provided to each group. Most of the time, they first produced a rough draft of 

their solutions to the questions and then they checked their solutions by using the 

materials they were provided with. Similarly, the people in the GeoGebra group 

used the GeoGebra program to check their claims and solutions in some of the 

tasks. That is, they were drawing the shape with paper and pencil and then checking 

their solution via GeoGebra afterwards in some of the tasks so they were using 

GeoGebra not through the whole solution process. Considering this, the researcher 

decided to encourage the GeoGebra group to use the GeoGebra program more 

frequently in main study. 

 In the first week, the researcher allowed less time for the discussion in small 

groups and started the class discussion. However, the students did not efficiently 

criticize the opinions of the student who was explaining her/his solution on the 

board because they were anxious about their own solutions and did not carefully 

listen to the students at the board. Thus, the researcher decided to spare more time 

for pair work. In the following weeks, more time was spared for pair work so the 

class discussions were more effective.  

 In addition to the above arrangements, the reflection paper and the interview 

questions of the pilot study were improved to collect more detailed information in 

the main study. In the first week, there was no time for the interview just after the 

application in the GeoGebra group. Then it was observed that the participants had 

forgotten the details of the implementation process, so their answers to the 

interview questions were not satisfying. For this reason, the researcher decided to 

make the interviewees skim the video of the implementation quickly just before 

asking the interview questions in the main study. Moreover, the questions asking for 

the participants‘ suggestions regarding the application were omitted because the 

purpose of asking those questions was to improve the quality of the main study. 
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3.5 Main Study 

  

 In the following sections, the details regarding the participants, the data 

collection tools, data collection procedure and the data analysis were explained. 

 

3.5.1 Participants of the main study 

 

In quantitative research studies, large representative samples are selected 

randomly but qualitative research studies include relatively small samples that are 

selected purposefully. According to Patton (2002), purposeful sampling is powerful 

because the participants who can provide rich information are selected to obtain in-

depth information. In addition, it is crucial to determine the selection criteria 

according to the purpose of the study. In the related literature, argumentation was 

said to be a dialogical event which was done among two or more individuals 

(Duschl & Osborne, 2002). Therefore, the number of participants should not be too 

few in order to provide a highly argumentative environment when the findings of 

the pilot study was considered. Moreover, senior students are considered to be 

suitable as participants since they have taken most of the courses related to the 

teaching profession and can analyze the geometry tasks in a multidimensional way. 

 Thus the participants of the current study were 16 senior undergraduate 

students who were enrolled in an Middle School Mathematics Education 

undergraduate program at a public university in Ankara. Participants from only one 

public university were chosen since the time and classrooms for the administration 

of the study had to be arranged at the hours that did not overlap with each 

participant‘s weekly schedule. The participants in the GeoGebra group (8 students) 

were the students who took the course ‗Exploring geometry with dynamic geometry 

applications‘ and knew how to use GeoGebra - a dynamic geometry program. The 

rationale underlying this criterion was to eliminate having to teach the participants 

how to use GeoGebra; this was advantageous as it saved time. The participants in 

the Paper-Pencil group were again 8 senior students who were selected from among 
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the volunteers without considering their GeoGebra knowledge because they did not 

need to use GeoGebra during the study.  

 In the present study, pseudonyms were used instead of the participants‘ 

names. Some demographic information about the participants in the GeoGebra and 

Paper-Pencil groups, such as gender, number of pairs and grade level are presented 

in Table 3.2.  

 

Table 3.2 Gender, number of discussion pairs and grade levels of the participants 

 Gender # of 

discussion 

pairs 

Grade level of 

participants  Female Male 

GeoGebra Group 7 1 4 4 

Paper-Pencil 

Group 

6 2 4 4 

 

 Effort was made to include a similar number of females and males in the 

GeoGebra and Paper-Pencil groups. Moreover, their personal characteristics such as 

talkativeness, enthusiasm, predisposition towards technology, shyness, and 

disinterestedness were taken into consideration, while arranging the pairs in each 

group. The researcher did not experience any difficulty in selecting and arranging 

the participants in groups since the researcher knew the participants well as she was 

the assistant of their courses related to middle school mathematics teaching and had 

attended their courses from the beginning to the end of each semester to become 

closely familiarized with the whole class.  

 

3.5.2 Data collection of the main study 

  

 Data were collected at the end of the fall semester of the 2013-2014 academic 

year. In order to examine the argumentation process of the participants, an in-depth 

analysis was needed where multiple sources of evidence were necessary to ensure 

the accuracy of the results. For this reason, multiple sources of information were 

collected in this study. These sources were the recordings of the implementation of 
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geometry tasks (transcriptions of audiotapes and videotapes of pair-works and 

group discussions), interview recordings and documents (reflection papers), which 

are explained in detail below. 

 

3.5.2.1 Data collection tools 

  

 In this section, the data collection tools of the main study are explained in 

detail. More precisely, the geometry tasks, interviews and documents are addressed 

respectively. 

 

3.5.2.1.1 Geometry tasks 

 

Subsequent to the pilot study, the best working 4 tasks were selected to be 

applied in the main study. That is, the tasks that were most suitable to the nature of 

the argumentation process were kept in the main study. Two tasks were related to 

triangles, while the other two tasks were related to circles. The tasks were prepared 

and adapted in such a way that they included challenging open-ended questions so 

that the participants could develop arguments and support their opinions. In 

addition, the questions had multiple solutions and the participants discussed their 

own answers initially with peers and then with the whole class. Moreover, the tasks 

were arguable and solvable with both GeoGebra and Paper-Pencil. 

 The first geometry task was taken from a master‘s thesis of Ceylan (2012), 

who studied the proof types of 2
nd

 year pre-service teachers while using GeoGebra. 

This task was selected since it requires hypothesizing and testing conjectures, which 

are crucial in argumentation process. In addition, it is also solvable by both 

GeoGebra and paper-pencil. After receiving permission, the task was edited to 

make it conductive to justification and argumentation as illustrated in Figure 3.3.  
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Figure 3.3 Geometry task 1 

 

 The focus of the present study was on their reasoning, so in addition to the 

original questions of the task, the researcher asked them to justify their answers all 

the time. In geometry task 1, it was expected from participants to think all possible 

drawings while placing poins F and G on segment  |BC|. In this way, they should 

find alternative solutions to the questions. They were also expected to justify their 

interpretations for different solutions they found. 

 The second geometry task (see Figure 3.4), which was adapted from Iranzo-

Domènech‘s doctoral dissertation (2009), has three sub-questions. The first question 

asks the relation between |EG| and |GF| when the given conditions are ensured. The 

second question asks the same thing when the triangle ABC is equilateral or 

isosceles triangle. The third question in geometry task 2 is different since it asks the 

specific position of a dynamic point P. 
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Figure 3.4 Geometry task 2 

 

 This task was also suitable for argumentation by both the GeoGebra and the 

Paper-Pencil groups in the pilot study. It was expected from participants to be able 

to notice the dynamic structure of point P and place point P to the right position to 

provide |BE|=|EF|=|FC|. Providing justifications for their solutions were also 

expected via theoretical and visual supports in both groups.  

 The third and fourth geometry tasks were taken from the book entitled 

‗Challenging problems in Geometry‘, written by Posamentier and Salkind (1988), 

from whom the necessary permission was taken. The book includes many 

challenging geometry problems, their solutions and hints. The following figures 

illustrate the geometry tasks taken from the book. Both tasks were based on circles.   

 



74 

 

 

Figure 3.5 Geometry task 3 (Posamentier & Salkind, 1988, p. 26) 

 

 As it can be seen in Figure 3.5, the Geometry Task 3 entailed two questions 

related to circles. In the first question, the participants were asked to find the area of 

triangle FGH. This question could be solved with knowledge based on the 

properties of circle. Therefore, it was expected from participants to justify their 

arguments based on the relationships between angles and arcs of the circles. 

However, solving the second question required mental imagination and calculations 

or a dynamic geometry program. The participants were expected to ensure the given 

conditions of the geometry task 3 after dragging point F while they were finding the 

minimum and maximum area of triangle FGH. 



75 

 

 

Figure 3.6 Geometry task 4 (Posamentier & Salkind, 1988, p. 17) 

  

 Geometry Task 4, which was based on circles, is presented in Figure 3.6. 

There were two questions. The first one asked the participants to prove that 

|EH|=|CE| in the given condition and justify their answers. The second question 

required imagining the semicircle‘s movement on the circle. The participants were 

asked to interpret the relationship between |EH| and |CE| in the new conditions 

given in the second question. They were expected to imagine the new positions of 

the points and segments mentally after dragging to be able to make interpretations 

in both groups. Even the participants in GeoGebra group needed the mental 

imagination of the points for their drawings to be dynamic, and for providing the 

given conditions of the task after dragging. 
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3.5.2.1.2 Interviews  

  

 According to Patton (2002), interviewing makes the researcher enter into 

another person‘s perspective so the interviewing process requires attention and 

effort on the part of the researcher. Interviews are categorized into three by Yin 

(2003) as open-ended interviews, focused interviews and structured interviews. In 

the present study, focused (semi-structured) interview was conducted since this kind 

of interview collects detailed information in a style that is somewhat conversational. 

The semi-structured interview protocol was prepared, and the interviews were 

recorded by a camera and an audio recorder. 

After the pilot study, the interview questions were refined by considering their 

applicability and suitability for the main study. Subsequently, two mathematics 

educators were asked to check the face validity of the interview questions. The 

purpose of checking face validity was to determine whether the interview questions 

matched with the research questions, and whether they were in agreement with the 

goal of the study. In addition, biased and leading questions were detected and 

changed within this process. 

The aim of implementing an interview in the main study was to clarify the 

arguments of the participants. Some components of the arguments were missing in 

the discussion when the discussion flowed to different directions. In some 

situations, the participants did not explain their reasoning but implied it somehow in 

the main study. In the interview, the researcher asked for clarification of these parts 

to the participants by discussing the tasks. Thus, the interview questions were 

different each week since the questions related to the arguments developed during 

each administration were different (See Appendix A). At the end of each interview, 

the interviewees were asked to think about some arguments related to the task of the 

week and justify or refute them in order to understand whether or not they got the 

main points in the application. 
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3.5.2.1.3 Documents  

 

In this study, documents include the worksheets on which the participants 

took notes for each geometry task and the reflection papers. All the participants 

were required to write a reflection paper at the end of the application. In fact, 

reflection paper questions were prepared from the interview questions of the focus 

group which were executed after each application. The researcher selected the 

questions which were not specific to the arguments developed in the focus groups 

and then organized them to gather information from all the participants (see 

Appendix B). Specifically, there were questions about mathematical background of 

the participants, the use of materials, the difficulties while using materials 

(GeoGebra / ruler, protractor, compass), the difficulty of the tasks, the justification 

preferences of participants, and two arguments to be supported or refuted. The 

reason for asking the participants to justify or refute these arguments was for 

triangulation purposes; they were required to write anything that they had forgotten 

to say during the argumentation. The reflection paper questions were the same for 

both the GeoGebra group and the Paper-Pencil group, except for the questions 

related to the material used (GeoGebra / Compass, Protractor and Ruler) since they 

had to answer the question according to the materials they had used. The researcher 

sent each student the reflection paper questions with his/her own activity sheets of 

the four geometry tasks to make them remember what they had done. They 

answered the reflection paper questions and sent their answers to the researcher by 

e-mail. 

 

3.5.2.2 Data collection procedure 

 

The researcher administered the geometry tasks by herself and she was not 

able to take notes about the process; thus, she was a participant-observer in this 

study. According to Yin (2003) participant-observers may not raise questions about 

the process from a different perspective as a good observer may not have enough 

time to take notes. In order to solve this problem, the entire administrations were 
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recorded with video cameras, and the audio recorders were placed on the desks of 

each pair of group members. The number of cameras was arranged in a way that 

enabled the whole class to be observed from different perspectives. These 

recordings were used after the administration. They were transcribed and the 

researcher took notes and coded them. These recordings were beneficial data 

because the researcher did not miss any part or situation related to the 

argumentation. In this way, the process was analyzed holistically in order to be able 

to understand the whole process. 

As soon as the 16 voluntary prospective middle school mathematics teachers 

were selected for the main study, the procedure which was determined with the help 

of the pilot study was administered. Two groups were arranged one of which was 

the GeoGebra Group (GG) and the other one was the Paper-Pencil Group (PPG). 

Then, two applications with each group were carried out. The dates and the number 

of pairs in each group and the number of people in each group are presented in 

Table 3.3. 

 

Table 3.3 Main study dates and detail about groups 

Date Group # of pairs in 

each group 

# of people in 

each group 

# of computer 

for each pair in 

GeoGebra group 

12.11.2013 Paper-Pencil 4 8 - 

15.11.2013 GeoGebra 4 8 1 

19.11.2013 Paper-Pencil 4 8 - 

22.11.2013 GeoGebra 4 8 1 

 

The administrations of the GG were in a computer laboratory while the 

administrations of the PPG were in an ordinary classroom on different days. At the 

beginning of the first administration, necessary information about the argumentation 

process was given and the participants were informed about what they were 

expected to do during the administration. Then, the worksheet of the first geometry 

task was distributed to the pairs. The organization of the class of the main study for 

the GG is illustrated in the Figure 3.7 below. 
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Figure 3.7 Organization of the GeoGebra group in the main study 

 

In the GeoGebra group, the participants worked on the given geometry tasks 

in pairs initially with one computer and one worksheet (see Table 3.3). Then, they 

discussed their solutions with the whole class. After the class discussion, the 

worksheet of geometry task 2 was distributed to the pairs. In the same way, a pair 

discussion and a class discussion were executed consecutively. Just after the first 

week‘s administration, the researcher watched the pair-work video recording of the 

focus pair and the class discussion to prepare the interview questions for that week. 

One day after each administration, the researcher held an interview with the focus 

pair. At the beginning of the interview, the researcher made the interviewees skim 

the video of their pair-work and class discussion quickly in order to remind them 

the administration. They also looked at their own activity sheets. Then, the 
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researcher asked interview questions and recorded the interview process via a 

camera and an audio recorder. 

Except for the use of computer to solve geometry tasks, the same procedure 

was valid for the PPG. Instead of a computer, there were one ruler, one protractor 

and one compass on the desk of each pair. The organization of the class of the main 

study for PPG is illustrated below in Figure 3.8. 

 

 

Figure 3.8 Organization of the Paper-Pencil group in the main study 

 

 In the second week, the participants solved geometry tasks 3 and 4 following 

the same procedure explained above. After the last administrations, the reflection 

paper questions (see Appendix B) were prepared and sent to the participants via e-

mail. They were given a deadline to answer and send their answers back again via 

e-mail.  
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3.5.2.3 Data analysis 

 

In case studies, data collection and analyzing processes occur simultaneously 

since the main purpose is to provide intensive and holistic description of the case 

(Merriam, 1998; Yin, 2003). According to Yin (2003), the researcher should 

examine, categorize, tabulate, test or otherwise recombine both qualitative and 

quantitative evidence to analyze data to refer to initial propositions. Creswell (2009) 

also explained the data analysis in qualitative research studies in such a way that it 

requires ―preparing the data for analysis, conducting different analyses, moving 

deeper and deeper into understanding the data, representing the data, and making an 

interpretation of the larger meaning of the data (p. 183). An informative schema, 

which is illustrated in Figure 3.9, was also provided by Creswell (2009) for 

qualitative researchers.   

 

 

Figure 3.9 Data analysis in qualitative research 
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Thus, within the data analysis procedures, initially the collected data were 

organized and prepared for data analysis. For this purpose, the first step, which took 

a long time for the researcher, was to transcribe all the videotaped and audio 

recorded data. These transcriptions and all other data sources were organized and 

stored as computer files. The spoken language was Turkish throughout all the 

transcriptions. The researcher translated only the necessary parts of the 

transcriptions into English for the results chapter. The researcher had the chance of 

engaging in the whole data since she watched the videotapes and audio recordings 

several times. In addition, the translated data were compared to the original data in 

terms of their grammatical, syntactic and linguistic aspects in order to ensure the 

accuracy of the transcription. 

The second step of the data analysis was coding of the data in order to identify 

themes and categories. Merriam (2009) maintained that data analysis in qualitative 

studies was a complex process which includes moving back and forth between the 

parts of data, and between inductive and deductive reasoning. Similarly, Yin (2003) 

emphasized the difficulty of data analysis in case studies since there were no clearly 

defined strategies and techniques. In this study, the data (transcriptions of the 

interviews and observation videos and documents) were reviewed repeatedly to 

make sense of the data, and notes were taken to identify the arguments in the data. 

The researcher decided to work with an intercoder while determining the arguments 

in the discussions. The intercoder was a doctoral student studying mathematics 

education in the Elementary Education program of Middle East Technical 

University (METU). In addition, she was knowledgeable in the qualitative research 

method and the nature of argumentation in mathematics. The reason for this 

intercoder application was to have consensus about the arguments and their 

elements (claim, data, warrant, backing…) in the data, and reduce researcher bias. 

The researcher provided the intercoder with information from literature about the 

elements of the arguments. The researcher and intercoder determined the local 

arguments in 25% of the transcriptions of the applications separately. Subsequently, 

they got together. The interrater reliability was calculated as 76% before discussion. 

Then, they discussed the differences between their arguments and arrived at a 100 
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% consensus for all of the arguments. This work was beneficial for the researcher 

since the argument elements became clearer in her mind. After the intercoder 

application, the researcher determined the arguments of the remaining data based on 

the intercoder application results.  

Lastly, the argument schemas of the four geometry tasks of the GG and the 

PPG were drawn according to the argumentation model of Toulmin (1958). 

Subsequently, the researcher did another intercoder application with two doctoral 

students who were studying mathematics education. This time, the researcher gave 

the inter-coders 25% of the drawn argument schemas and the information about the 

argumentation model of Toulmin (1958). Then, the researcher asked them to read 

the transcriptions, look at the argument schemas, and take notes about whether they 

agreed or disagreed with the arguments and their components. In this intercoder 

application, the process was in the reverse order of the previous inter-coder 

application. The researcher and the two inter-coders worked separately with the 

data; then they came together to discuss the differences they detected. Before 

discussion there was 60% agreement between the researcher and the intercoders. In 

the end, they discussed their ideas by watching the observation videos and built 

consensus for all the arguments with 100% agreement. The researcher did these two 

inter-coder applications to be sure about the arguments of the study. 

In order to answer the first research question which sought for the nature of 

the argumentation structures of prospective middle school mathematics teachers 

while solving geometry tasks using dynamic geometry software or using paper and 

pencil, the global argumentation structures for each geometry task were generated. 

The framework for this analysis was developed by Knipping and Reid (2013) in the 

proof context with 9
th

 grade students from Germany and Canada. They suggested a 

method to analyze and reconstruct the complex argumentations in proving 

processes. Firstly, they used the argumentation model of Toulmin (1958) to 

determine developed arguments, while 9
th

 grade students were working on the proof 

of the Pythagorean Theorem. Then, they analyzed the general structure of the 

process which they called as global argumentation structure. In the present study, 

the global argumentation structures in the geometry context were analyzed. 
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Before explaining Knipping‘s (2008) classification of global argumentation 

structures, it would be of benefit to clarify the terms argumentation steps, 

argumentation stream and parallel arguments. Knipping (2008) used the term 

argumentation step as for distinct arguments. That is, a single argument with one 

conclusion and other elements (data, warrant, backing), if exists, can be defined as 

an argumentation step. It has the same meaning with local arguments. The other 

term argumentation stream was defined as ―a chain of argumentation steps by which 

a target conclusion is justified‖ (Knipping, 2008, p. 434). In the present study, the 

series of arguments which were connected to each other to justify the target 

conclusions were defined as argumentation stream. The last term to be defined was 

parallel arguments, which refers to different arguments supporting the same 

conclusion in an argumentation stream, and this happens when the participants 

develop substantially different arguments for the same conclusion (Knipping, 

2008).  

The schematic representation which was developed by Knipping (2008) was 

used in the present study. In order for the representation to be more meaningful the 

sample argumentation stream is illustrated in Figure 3.10. 

 

 

Figure 3.10 Sample argumentation stream 



85 

 

 In Figure 3.10, the letters at the beginning of the sentences convey a meaning. 

‗D‘ means data, ‗W‘ represents warrant, while ‗C‘ stands for claim of the 

argument. In this argumentation stream the target conclusion was ‗Triangle FGH is 

equilateral‘. The participant first presented the argument which concludes that 

‗Triangles HCD and CDE are equilateral‘ and then used this information as datum 

for the target conclusion by also using other data, which were ‗ HDE =120 , 

 HCE =120 ‘ and ‗The arc HE=240 ‘. The schematic representation of this based 

on the method prosed by Knipping (2008) is presented in Figure 3.11. 

 

 

Figure 3.11 The schematic representation of argumentation stream in Figure 3.10 

based on the method of Knipping (2008) 

  

 As it can be inferred from the Figure 3.11, Knipping (2008) represented data 

or the claim of the argument with black circles, while she used a black rectangle for 

the target conclusion of the global argumentation structure. In addition, black 

rhombus represents the warrant, while the white rectangle stands for the claim/data 

in this schematic representation. Claim/Data means that the claim of an argument is 



86 

 

used as a datum for the following argument and functions like a transition 

component between these two arguments. In the global argumentation structure 

analysis, the schemas were like the miniature representation under the 

argumentation stream in Figure 3.11. In the following paragraphs, each global 

argumentation structure was explained in detail with schematic representations. 

 The global argumentation structures developed by Knipping (2008) and Reid 

and Knipping (2010, 2013) were source-structure, reservoir-structure, spiral-

structure and gathering-structure. In the present study, there was no global 

argumentation structure which was suitable to the gathering structure, so the 

gathering structure was not used in the adapted classification of the global 

argumentation structures. Moreover, some of the argumentation structures which 

emerged in the present study possessed different properties and, thus, did not fit into 

any one of these four global argumentation structures. For this reason, the 

researcher categorized those structures under new categories; line-structure and 

independent arguments-structure. Therefore, the model used in the present study 

included the following global argumentation structures, each of which is explained 

in detail: Source-structure, Reservoir-structure, Spiral-structure, Line-structure, and 

Independent arguments-structure. 

 In source-structure, the ideas and arguments flow as if arising from a variety 

of origins (Reid & Knipping, 2010). That is, arguments are like water welling up 

from many springs (Reid & Knipping, 2010). This structure has the following 

characteristics: 

 

- Argumentation streams that do not connect to the main structure  

- Parallel arguments for the same conclusion  

- Argumentation steps that have more than one datum, each of which is 

the conclusion of an argumentation stream.  

- The presence of refutations in the argumentation structure (Reid & 

Knipping, 2010, p. 180). 

 

 In addition to these characteristics, Reid and Knipping (2010) have stated that 

source-structure can lack explicit warrant and data. Moreover, a funneling effect, 

which refers to the fact that many arguments are considered at the beginning of the 

discussion and connecting to only to one concluding statement at the end, is 
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asserted to be apparent in source structure (Reid & Knipping, 2010). During the 

discussions, there may be situations that a false conjecture is constructed. In such 

situations, false conjectures can be disproved but are valued at the same time 

(Knipping, 2008). The source-structure, taken from a study by Knipping (2008), is 

illustrated in Figure 3.12.  

 

 

Figure 3.12 Source-structure schema (Knipping, 2008, p. 437) 

 

 As displayed in Figure 3.12, the arrows in the schema represent the objection 

to a datum or conclusion. In present study, black rounded rectangles were used to 

represent the rebuttals instead of arrows. Knipping (2008) stated that AS-6 

(Argumentation stream-6) was a refuted argument by the teacher and other 

participants, so it was not connected to the main structure. In addition, AS-4 was 

supported by more than one justification of a statement (AS-1 and AS-2). AS-1, and 

AS-2 were parallel arguments for the same conclusion. AS-8 had more than one 
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datum, each of which was the conclusion of an argumentation stream. AS-3 and 

AS-6 had refutations in the schema.  

Another global argumentation structure that emerged from the data was 

reservoir-structure. The reservoir-structures had a flow towards intermediate target 

conclusions, which were distinct and self-contained. These intermediate target 

conclusions were described like reservoirs holding and purifying water before 

allowing it to pass to the next stage (Reid & Knipping, 2010). In this type, 

argumentation steps lacked explicit warrants or data, like in the source-structure, 

but it was less frequent when compared to source-structure. The differentiating 

characteristic of the reservoir-structure is that the reasoning occasionally moved 

backwards and then forward again in order to provide further support by the data. 

When this need was satisfied, the deductions that followed led to the final 

conclusion (Reid & Knipping, 2010). That is, this process included more in-depth 

discussion than the other structures since students thought about the arguments 

repeatedly to provide additional supports and data by moving back and forth. 

 

 

Figure 3.13 Reservoir-structure schema (Knipping, 2008, p. 437) 

  

 In Figure 3.13, the arrow shows the differentiating property of the reservoir-

structure, which is reasoning backwards, and the dotted line shows where the 

reasoning goes back to. Specifically, after constructing AS-1, AS-2 and AS-3, the 

reasoning moved backwards to AS-2 again. Then, AS-2b and AS-3b parts were 
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discussed. Until AS-X, the target conclusion was self-contained. The second part 

(AS-5, AS-6 and AS-7) was also a closed structure but reasoning went only forward 

in that part (Reid & Knipping, 2010). Reid and Knipping (2010) stated that at the 

end of the discussion, a further justification was requested, so the AS-8 was 

discussed. 

The third global argumentation structure that emerged in the current study 

was spiral-structure. Reid and Knipping (2010) stated that spiral-structure had the 

same four characteristics with source-structure which were as follows: 

 

- Argumentation streams that do not connect to the main structure  

- Parallel arguments for the same conclusion  

- Argumentation steps that have more than one datum, each of which is 

the conclusion of an argumentation stream.  

-The presence of refutations in the argumentation structure (Reid & 

Knipping, 2010, p. 187). 

 

As it can be inferred, the properties of the spiral structure seemed to be the 

same with those of source-structure. However, they were different in terms of some 

properties. Specifically, the main difference between spiral-structure and source-

structure was the place of the parallel argumentation structures within the global 

argumentation (Reid & Knipping, 2010). Parallel argumentation streams were 

located at the beginning of the discussion in source-structure, while they were 

located at the end of the discussion in spiral-structure (Reid & Knipping, 2010). 

That is, in spiral-structure the target of the parallel argumentation streams was the 

final conclusion (Reid & Knipping, 2010), whereas in source-structure the target of 

parallel argumentation streams was the claim/data that emerged during the 

argumentation. The other difference between source-structure and spiral-structure 

was the frequency of the emergence of the explicit warrants or data in the process. 

Reid and Knipping (2010) asserted that the lack of explicit warrant or data was 

observed less often in spiral-structure when compared to source-structure. 
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Figure 3.14 Spiral-structure schema (Reid & Knipping, 2010, p. 437) 

 

 In Figure 3.14, AS-C is the argumentation stream that is not connected to the 

main structure. In addition, there are three parallel argumentation streams, AS-B, 

AS-D and AS-E, which lead directly to the target conclusion. The argumentation 

steps which possess more than one datum, each of which is the conclusion of 

another argumentation stream can be seen in AS-A and within the final conclusions 

of AS-B and AS-E (Reid & Knipping, 2010). There was only one refutation in AS-

D in this sample.  

The fourth global argumentation structure that emerged from the data was line 

structure.  

 

 

Figure 3.15 Line-structure schema 

 

As it can be seen in Figure 3.15, line structure is different from the other 

structures since it flows like a line; the transitions are provided with claim/data 

components and the argumentation ends with the target conclusion. The claims 
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which became the data for the subsequent argument were confronted very often. 

There are explicit warrants and refutations but these refutations did not end the flow 

of the discussion. There were no parallel argumentation streams which 

differentiated the line-structure from source-structure and spiral-structure. 

Moreover, in line structure, there was no reasoning going backwards then forwards 

which was the characteristic property of reservoir-structure. 

The last global argumentation structure that emerged in the present study was 

independent arguments-structure. The sample shape of the structure is illustrated in 

Figure 3.16. 

 

. 

Figure 3.16 Independent arguments-structure schema 

 

The independent arguments-structure schema emerged when the participants 

could not solve the problem, but expressed an opinion about the solution. In 

addition, these single arguments were made during the class discussion as if the 

participant were thinking loudly. Sometimes the participant expressed the argument 

and then refuted it herself/himself. Another situation in which independent 

argument-structure emerged was when the participant constructed an argument and 

then made another argument which was not related to the previous one. Yet, another 

situation was that the participants sometimes solved a part of the problem with only 

one argument and then continued with another part of the problem. Therefore, that 

argument was not connected to the other arguments. When all these situations were 

examined, it was concluded that there was no connection between those arguments, 

so the global structure included distinct arguments. In addition, independent 

arguments-structure was different from disconnected argumentation streams, which 

a term used by Reid and Knipping (2010) in the properties of the spiral structure 

and source structure. Knipping and Reid (2013) defined disconnected 
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argumentation streams as ―the contributions that do not lead to the conclusion 

result‖ (p. 136). However, in the present study it was not possible to talk about such 

argumentation streams since each local argument was independent of each other.  

Thus, that global argumentation structure was entitled with a new term independent 

arguments-structure.  

In the data analysis process, initially, the global argumentation structures of 

each geometry task were drawn for both groups based on the adapted model of Reid 

and Knipping (2010). At this point, another intercoder application was needed and, 

thus, conducted in order to arrive at a consensus in the identification of the 

argumentation structure types and to reduce researcher bias. The researcher 

recruited another doctoral student who was knowledgeable in the qualitative 

research method and the nature of argumentation in mathematics and who had 

already taken part in the previous intercoder study done to determine the arguments 

and argument components. The researcher gave intercoder 50% of the global 

argument structure schemas of the present study and the necessary information from 

literature about the global argumentation structures and then asked the intercoder to 

decide in which category each global argumentation structure fit. Subsequently, the 

researcher and the intercoder came together and discussed all global argumentation 

structures in order to arrive at a 100 % consensus. After the intercoder application, 

the researcher categorized all the global argumentation structures of the present 

study. Then, the researchers analyzed the global argumentation structures and 

compared each geometry task separately. In addition, the global argumentation 

structures produced by the GeoGebra and Paper-Pencil groups were compared. 

Finally, the global argumentation structures were compared on the basis of the 

mathematical contents (triangle tasks / circle tasks) in order to reveal any significant 

pattern or theme.  

   The second research question, ‗What are the characteristics of the local 

arguments in the global argumentation structures?‘, necessitated the investigation of 

the characteristics of local arguments based on the flow of the argument 

components (claim, data, warrant) that prospective middle school mathematics 

teachers use while solving geometry tasks in the GeoGebra and Paper-Pencil 
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groups. The researcher wondered whether or not there was a pattern in the flow of 

argument construction in geometry. That is, the prospective middle school 

mathematics teachers‘ arguments were analyzed in the order the argument 

components were stated. In other words, the researcher examined the order in which 

the participants stated the components of local arguments, namely the claim, data 

and warrant during the discussion. For this reason, the researcher read through the 

transcriptions and numbered the argument components to find the most frequently 

used patterns. Thus, the present study contributed to the related literature by 

identifying 9 different local argument types in the geometry context. The next step 

was to compare the local argument types on the basis of groups, mathematical 

contents (triangle tasks / circle tasks), and task by task in order to find any emerging 

theme. 

The third research question was related to the characteristics of the local 

argumentations that prospective middle school mathematics teachers utilized to 

justify their arguments while solving geometry tasks in GeoGebra and Paper-Pencil 

groups. Knipping (2008) developed this classification in her study which was within 

the context of proof. In order to analyze local argumentations, she examined the 

types of warrants (and backings) that were employed by students and teachers to 

identify the field of justification that applied in that classroom. In the current study, 

the researcher also examined the warrants and backings of each local argument to 

answer this sub-question. The schema of the classification by Knipping (2008) is 

presented in Figure 3.17 and the researcher used this classification to analyze local 

argumentations of the prospective middle school mathematics teachers in the 

geometry context. 
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Figure 3.17 Local argumentation classification developed by Knipping (2008) 

 

 Knipping (2008) asserted that conceptual argumentation can be categorized in 

the deductive conceptual field of justification, which requires using concepts and 

general conceptual principles as warrants to justify the conclusions. Specifically, 

Knipping (2008) pointed out that the warrants of conceptual argumentations were 

composed of mathematical concepts, mathematical relations between concepts, and 

references to theorems, definitions, axioms and rules of logic. She also emphasized 

the language used while stating conceptual argumentations as the use of 

conjunctions such as ‗as‘ and ‗since‘, and a statement like ‗because one knows 

that …‘, which shows a generally accepted status of the conceptual warrant. On the 

other hand, the reference to figures as warrants came to the forefront in visual 

argumentation. For instance, a reference to the figure or diagram on the board as 

justification can be a visual argumentation since conclusions are drawn from the 

figure rather than the results of the individual steps in the argumentation (Knipping, 

2008). Visual argumentation is divided into two levels: empirical-visual level and 

conceptual-visual level (Knipping, 2008). The empirical-visual level entails an 

argument based on a concrete diagram and the relations among its components, 

which can be accepted as the justification for the claim in the diagram. More 

specifically, Knipping (2008) states that properties and relations in mathematics can 

be perceived through the senses as they are bound to concrete figures. However, in 
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the conceptual-visual level, the diagram can be accepted as the representation of the 

idea (concept) (Knipping, 2008). That is, the generalization can be made by using 

the conceptual-visual level argumentation. 

 In the related literature, no example presented for local argumentation levels 

(empirical-visual, conceptual-visual and conceptual) were encountered so the 

researcher consulted David Reid and Christine Knipping via e-mail in order to ask 

whether or not they could provide any examples. The following example (see in 

Figure 3.18) was sent to the researcher:  

 

Argument: The sum of the first n natural numbers is equal to n(n+1)/2. 

 

Conceptual argumentation: The sum can be written 

1+2+3…+(n-1)+n and   this can be added to the same sum in reverse: 

(1+n)+(2+n-1)+…+(n-1+2)+(n+1).This new sum has n terms, each on 

equal to n+1, and so the sum is equal to n(n+1). It is two times 

1+2+…+(n-1)+n, so 1+2+…+(n-1)+n =  n(n+1)/2. No reference to a 

diagram is made.  

Empirical visual argumentation:The sum can be represented 

with a picture: 

O 

OO 

OOO 

OOOO 

OOOOO 

This can be added to the same picture in reverse: 

O OOOOO 

OO OOOO 

OOO OOO 

OOOO OO 

OOOOOO 

There are 5 rows, each with 5+1 tokens. So in this case, we see that 

1+2+3+4+5 = 5(5+1)/2.      

Conceptual-visual argumentation: In addition to the diagram 

given in empirical-visual argumentation, the following extension can be 

made:  

In general, there will be n rows, each with n+1 tokens. So  

1+2+…+(n-1)+n =  n(n+1)/2. This statement (if it is understood) prompts 

us to see the diagram in a more general way, transforming the argument 

into a conceptual-visual argument.    
 

 

Figure 3.18 Example argument for local argumentation levels 
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 After making the distinction of the local argumentation levels clear, the data 

were analyzed according to the classification presented by Knipping (2008). First of 

all, the warrants and backings of all arguments were classified according to the 

classification in the current study. In order to arrive at a consensus regarding the 

classification and reduce researcher bias, the researcher did an intercoder 

application with another researcher who was competent in argumentation and 

mathematics education and working as an instructor in the Middle School 

Mathematics Education department of the Faculty of Education at METU. The 

researcher and the intercoder read 25% of the arguments together and assigned each 

argument‘s warrant and backing to one of the categories given in Figure 3.17. 

Before discussion the researcher and the intercoder agreed on 28 arguments out of 

36 arguments which corresponds to 77% agreement.  They discussed until they 

persuaded each other and they built full consensus on all arguments in the end. 

Subsequently, the researcher classified the remaining 75% arguments by taking into 

consideration the consensus arrived at with the inter-coder. Finally, she compared 

the local argumentations of the participants on the basis of tasks and mathematical 

contents (triangle tasks / circle tasks), by considering each group (the GeoGebra 

group and the Paper-Pencil group) to generate a conclusion. 

 

3.6 Trustworthiness of the study 

  

 Two important issues to be considered in scientific studies are validity and 

reliability. Fraenkel and Wallen (2012) defined validity as ―…the appropriateness, 

correctness, meaningfulness, and usefulness of the specific inferences researchers 

make based on the data they collect‖ (p. 151) and reliability as ―the consistency of 

the scores obtained how consistent they are for each individual from one 

administration of an instrument to another and from one set of items to another‖ 

(p. 157). These two concepts were asserted to be considered by any researcher 

while designing a study, analyzing results, and judging the study‘s quality (Patton, 

2002). In qualitative studies, the term trustworthiness is used to refer both validity 

and reliability. Moreover, the concepts of validity and reliability are perceived and 
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named differently by different qualitative researchers (Creswell & Miller, 2000; 

Lincoln & Guba, 1985; Patton, 2002; Shenton, 2004, Yin, 2003). For instance, in 

order to judge the quality of qualitative case study designs, Yin (2003) mentioned 

four design tests, which are construct validity, internal validity, external validity and 

reliability. As indicators of trustworthiness of qualitative studies, other 

terminologies were proposed by Lincoln and Guba (1985), namely credibility, 

transferability, dependability and confirmability.  In the present study, the term 

‗trustworthiness‘ is preferred to be used instead of validity and reliability, and the 

terms mentioned by Lincoln and Guba (1985) were addressed in order to assure the 

trustworthiness of the present study.  

 One of the most important criteria to assure the trustworthiness of a 

qualitative study is credibility, which refers to internal validity (Lincoln & Guba, 

1985). Merriam (2009) mentioned the questions of concern to establish credibility 

as ―How congruent are the findings with reality? Do the findings capture what is 

really there? Are investigators observing or measuring what they think they are 

measuring?‖ (p. 213). Although it is quite hard to capture an objective ―truth‖ and 

―reality‖ for qualitative researchers, there are some strategies offered by different 

researchers to increase the credibility of the studies (Merriam, 2009). For instance, 

Creswell (2007) suggested the following eight strategies for credibility: prolonged 

engagement and persistent observation, triangulation, peer review or debriefing, 

negative case analysis, clarifying researcher bias, member checking, thick 

description and external audit. In addition to the suggestions offered by Creswell 

(2007), Merriam (2009) suggested six basic strategies to increase credibility: 

triangulation, member checks, engagement in data collection adequately, reflexivity 

and peer examination.  

 One of the strategies that was used in the present study to ensure credibility 

was triangulation, defined as ―a validity procedure where researchers look for 

convergence among multiple and different sources of information to form themes or 

categories in a study‖ (Creswell & Miller, 2000, p. 126). Another way of defining 

triangulation is its being ―a process of using multiple perceptions to clarify 

meaning, verifying the repeatability of an observation or interpretation‖ (Stake, 
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2000, p. 443). In fact, four different types of triangulation in the literature on 

qualitative research are mentioned. These are data triangulation, investigator 

triangulation, methodological triangulation and theory triangulation (Creswell & 

Miller, 2000; Creswell, 2007; Patton, 2002). In the present study, data triangulation, 

investigator triangulation and methodological triangulation were used to establish 

credibility. To be more precise, 16 prospective middle school mathematics teachers 

were used as a source of data (data triangulation). Moreover, multiple sources of 

data (methodological triangulation), which were observation, interview and 

documents, were collected. The other strategy for credibility was counteracting 

researcher bias by explaining the researcher‘s initial beliefs and perspectives 

towards the current study in detail. In addition, all the procedures and the 

administrations were managed and followed by the researcher to assure the 

prolonged involvement. Moreover, the findings of the previous research were 

investigated, a thick description was made and debriefing sessions with the 

supervisor and the thesis committee members were conducted to benefit from their 

feedbacks. 

 The other important criterion to assure the trustworthiness of a qualitative 

study is transferability, which refers to external validity. The concern of 

transferability is the generalizability of the findings of a research study.  Although 

the purpose in qualitative studies is not to make inferences from a small sample and 

then to generalize them to a larger population, it is possible to ensure transferability 

when the sufficient data is provided (Merriam, 1998). For instance, it was suggested 

that providing thick descriptions for the readers can be one method to achieve 

transferability (Miles & Huberman, 1994). Similarly, Lincoln and Guba (1985) give 

the responsibility of providing adequate contextual information about the fieldwork 

site to the researcher.  In this way, readers will have the chance to compare the 

results of that study with the findings of their own study to make inferences. Thus, 

as indicated by Shenton (2004), ―…it is the responsibility of the investigator to 

ensure that sufficient contextual information about the fieldwork sites is provided to 

enable the reader to make such a transfer‖ (p. 69). 
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 The aim of the researcher of the present study was to gain an in-depth 

understanding of the argumentation of prospective middle school mathematics 

teachers in the geometry context; thus, the generalization of the findings to all 

prospective middle school mathematics teachers was not the concern of this study. 

However, our findings can be shared with the instructors of other universities which 

have similar characteristics. In order to ensure the transferability of the findings, the 

context of the study was tried to be explained in detail. Specifically, the following 

contextual information was presented in this study: the selection criteria of the 

participants, the findings of the pilot study, the number of participants in the pilot 

and main studies, the data collection tools, data collection methods that were 

employed, and the data collection procedures in detail in the method section. 

Ultimately, a thick description of the study was provided for the readers for the sake 

of the transferability of the findings. 

The third criterion for the trustworthiness of qualitative studies is 

dependability, which corresponds to reliability in quantitative studies. Merriam 

(1998) defined reliability as ―the extent to which research findings can be 

replicated‖ (p. 220). However, the concern is not whether the same results are 

obtained by other researchers in qualitative studies. It is whether the results of the 

study are dependable and consistent with the data (Merriam, 1998). According to 

Yin (2003), the aim of reliability in qualitative studies is to minimize the errors and 

biases in a study. In the related literature, researchers suggested some methods to 

ensure dependability. For instance, Shenton (2004) advised researchers to describe 

the research design, implementation procedure, and data collection procedure in 

detail and then evaluate the effectiveness of the process to provide dependability.  

In addition, he asserted that another method is to establish credibility, which helps 

to ensure dependability. Another researcher who suggested techniques to ensure 

dependability was Patton (2002). He suggested explaining an investigator‘s 

position, triangulating the data and doing audit trail to establish dependability. 

Lastly, Creswell (2007) stated that getting detailed field notes and obtaining 

intercoder agreement are other methods to ensure reliability in qualitative studies.  



100 

 

In order to address dependability of the present study to a certain extent, the 

researcher described the research design, implementation and data collection 

procedure in detail as Shenton (2004) advised. Furthermore, in the present study, as 

Creswell (2007) suggested, intercoder agreements from another doctoral student 

and an instructor were obtained in several parts of the data analysis process for 

dependability. The researcher initially discussed the codes with her advisor and then 

coded the data with the intercoder. Specifically, the researcher and the second coder 

coded the data individually and then they came together to discuss their codes. They 

compared their initial codes until they reached a total consensus. Furthermore, the 

researcher ensured the dependability of her study by establishing the credibility of 

the study as suggested by Shenton (2004). 

The last criterion to ensure trustworthiness in qualitative studies is 

confirmability. Confirmability corresponds to objectivity in quantitative studies. 

Shenton (2004) asserted that it should be ensured that the findings are the results of 

the experiences and ideas of the participants and they are independent of the 

characteristics and preferences of the researcher. Shenton (2004) and Lincoln and 

Guba (1985) suggested triangulating the data to reduce the effects of researcher bias 

to assure confirmability. Likewise, Miles and Huberman (1994) emphasized the 

importance of the researcher‘s admissions for his/her bias for confirmability.  

The methods utilized to ensure confirmability of the present study were 

triangulation of the data, in-depth description of the methodology, and the 

admission of bias. Triangulation was assured as mentioned above by collecting data 

from different sources to see whether they converged to the same findings (Lincoln 

& Guba, 1985; Shenton, 2004). Additionally, a detailed description of the 

methodology was helpful in ensuring confirmability. Lastly, the researcher bias was 

reduced in order to assure confirmability. In the present study, the entire data 

collection procedure was conducted by the researcher herself, so she was in active 

interaction with all participants. For this purpose, the researcher studied and 

improved her argumentation facilitating skills and interview skills to a considerable 

extent in the pilot study. In addition, she repeatedly examined the video recordings 

of the application and looked into whether or not she had interfered in anything. 
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Thus, the researcher believes that she was honest and objective as much as possible 

throughout the whole process and that her study did not yield biased findings.   

 

3.7 Researcher role and bias 

 

In qualitative studies, which are open-ended and less structured, the 

researcher can be considered as the key instrument for collecting and analyzing data 

(Merriam, 1998). The researcher‘s bias causes the researcher to find what she/he 

wants to find unconsciously in her/his study since her/his views and beliefs will 

affect her/his interpretations. In order to lessen and control the researcher‘s bias, 

reflexivity, which refers to a researcher‘s active engagement in critical self-

reflection on her/his bias, was proposed (Johnson, 1997). 

During the study, the researcher was working as a teaching assistant at the 

university at which the participants of the present study were studying. Therefore, 

she had a strong relationship with prospective middle school mathematics teachers. 

In addition to being a teaching assistant, she was also the supervisor of some of the 

senior prospective middle school mathematics teachers who took part in the pilot 

study. Since the pilot study of the present study was conducted in the spring 

semester and then the main study was conducted in the following fall semester, the 

participants of the pilot study had graduated. Thus, the researcher had no participant 

who was in a supervisor-student relationship with the researcher in the main study. 

However, they knew the researcher from the other courses that they had previously 

taken. This was advantageous for the researcher because as soon as she explained 

the purpose of her study, they accepted to participate in the study and share their 

knowledge voluntarily. Moreover, she knew all of them personally and had the 

chance to select the most suitable participants for the study by means of purposeful 

sampling. In this way, she was able to work with the participants who could provide 

rich and in-depth information for the study. 

In order to lessen the effect of the research assistant-student relationship, the 

researcher followed several strategies. After giving information about the 

application, she told them that they could participate in the study on a voluntary 
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basis which meant that their participation was not compulsory. In addition, the 

researcher ensured the confidentiality of their answers and dialogs. This meant that 

the researcher was the only person who had the access to the data. Furthermore, the 

researcher analyzed the data using pseudonym names for the participants in order to 

eliminate any bias and or favoritism. Therefore, their grades in the program were 

not affected by any professor or teaching assistant since they did not see any of the 

data. 

The researcher was involved in the process as a teacher who guided the 

discussions of the two groups and who held the interviews with the focus groups 

during the study. She wanted to obtain information about the reasoning of the 

participants as much as possible since the justification of the ideas has a great 

importance in argumentation theory. Her aim was to provide an argumentative 

environment and identify the arguments of the participants. Therefore, she placed 

cameras and audio recorders onto the tables of all the groups by taking their 

permissions in order not to miss any conversation. In general, the individuals tended 

to express their conclusion (claim) by stating the information they had (data) 

without stating their justification (warrant) since they knew the reason themselves. 

However, the researcher needed to hear their reasoning and warrants to analyze 

their argumentation. Thus, at the beginning of the application, she asked all the 

participants to talk about their thoughts all the time. That is, she requested them to 

think loudly all the time. She also reminded the participants that what was important 

about the study was their justifications and how their thinking processes, not the 

accuracy of their solutions. Moreover, she asked them to listen to the responses of 

the participants who were showing their solution(s) on the board and to contribute 

to the discussion by supporting or refuting their solution(s) in order to increase 

interaction among the students. Meanwhile, the researcher asked probing questions 

to make them think deeper about their solutions and justifications. In addition, she 

asked them to find more than one solution to the questions if possible. In order to 

increase the interaction between the participants in pairs, she gave only one 

computer and one worksheet to each pair in the GeoGebra group, and only one 

worksheet, one protractor, one ruler and one compass in the Paper-Pencil group. 
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The researcher gave them sufficient time for pair-work discussions and class 

discussions by asking them whether they needed extra time to discuss further. The 

role of the instructor was important to supply a good argumentative environment. 

Therefore, she always asked questions which encouraged students to justify their 

answers since they sometimes did not need to express warrants for their claims. 

Some of these questions were as follows: ‗How do you know that it is true?, What 

does that mean to you?, Can you tell me more about your thinking process…?, Why 

do you think so?, Are there any other ideas?, Is there anyone who doesn‘t agree 

with this idea?‘. Additionally, the researcher did not judge the participants for the 

accuracy or inaccuracy of their answers while they were presenting their solutions. 

Instead, she questioned and made other participants think about the solution to find 

the correct answer together. In this way, she guided the discussion by making the 

participants reveal their reasoning. 

After the applications, the researcher also held an interview with the focus 

pairs, one from the GeoGebra group and one from the Paper-Pencil group. She 

provided them with a place where they would feel comfortable in terms of place and 

timing, so they would not feel in a rush while answering the questions. 

Argumentation is a topic that has been studied within the science context for a 

long time and it is a new area to be studied in mathematics education. Determining 

the arguments and their elements, classifying the warrant types and argumentation 

structure issues were challenging for the researcher, who studies argumentation in 

mathematics. During the data analysis process she sometimes needed an intercoder 

in order to decrease researcher bias because she was undecided in determining the 

arguments and their elements, and classifying the argumentation structures and 

warrant types. Thus, she obtained intercoder agreement of two doctoral students and 

an instructor at different stages of the data analysis process. 

Lastly, being affected from the findings of the literature was another type of 

researcher bias which the researcher needed to pay attention to. This means that a 

researcher who is influenced by the theories in the related literature would try to 

reach similar findings to be in line with the literature. However, the researcher of 

the present study was not influenced by the literature and carried out the present 
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study objectively. She did not try to arrive at findings similar to those reported in 

the literature. In fact, the researcher implemented a new data analysis method to 

seek an answer to the second research question in order to contribute to the 

literature with new findings. 

  

3.8 Limitations 

 

The primary limitation of the present study is representativeness since the 

purposefully selected participants of the present study were 16 prospective middle 

school mathematics teachers who were 4
th

 grade students in the teacher education 

program at one public university in Ankara. Moreover, the content of the geometry 

tasks implemented were two triangle and two circle tasks so the content of the 

geometry tasks was also a limited. Therefore, the findings were limited to the 

answers of these 16 prospective middle school mathematics teachers‘ and the two 

mathematical concepts, triangles and circles. Thus, the readers should evaluate the 

findings by considering the limitations. 

 The researcher efficiency in facilitating argumentation was the other 

limitation of the present study. After reading the essential teacher actions in 

argumentation from the literature, the researcher tried to orchestrate the 

argumentation in this study for the first time. Although the researcher conducted a 

pilot study in order to reduce the effect of this limitation, the researcher could still 

have some deficiencies in following all the arguments during the applications. Some 

of the arguments did not have some components such as warrant and data 

components. The reason could be that the researcher did not question the argument 

for justification effectively enough or missed the argument in a collective 

discussion.  
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CHAPTER IV 

 

 

RESULTS 

 

 

The findings of the present study are summarized in this chapter under three 

main sections, each of which addresses one of the research questions of the study. 

The first research question, which is taken up in the first section, was ‗What is the 

nature of argumentation structures of prospective middle school mathematics 

teachers while solving geometry tasks in the GeoGebra and Paper-Pencil groups?‘. 

In the second section, the characteristics of the local arguments (core arguments 

including claim, data and warrant components) were analyzed. Specifically, the 

second part addresses the characteristics of local arguments based on the flow of 

argument components (claim, data, warrant) that prospective middle school 

mathematics teachers express while solving geometry tasks in the GeoGebra and 

Paper-Pencil groups. In the third section, local argumentations (only warrant 

components of the local arguments) within the global argumentation structures are 

analyzed. That is, the third part dwells on the characteristics of local argumentations 

that prospective middle school mathematics teachers utilize while solving geometry 

tasks in the GeoGebra and Paper-Pencil groups. 

 

 4.1 Nature of argumentation structures developed in the geometry context 

 

As mentioned above, what this study intended to reveal was the nature of 

argumentation structures of prospective middle school mathematics teachers while 

solving geometry tasks in the GeoGebra and Paper-pencil groups. In order to 

determine the general pattern of the argumentation, all arguments and the 

relationships among them were examined. For this purpose, a discussion for each 

geometry task was analyzed as a whole with a schematic representation of the 

overall argumentative structure. This layout of the structure of the argumentation as 
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a whole was defined as the global argumentation structure (Knipping, 2008). 

Categorization for the global argumentation structures proposed by Reid and 

Knipping (2010) was adapted in the current study. Then, the global argumentation 

structures developed in the geometry context were identified based on the adapted 

categorization. These global argumentation structures are presented in detail with 

sample conversations in this section.  

In this study, 4 geometry tasks (GT) were analyzed both for the GeoGebra 

group and the Paper-Pencil group. Two of the tasks were triangle activities while 

the other two were circle activities. The analysis revealed five main global 

argumentation structures: Source-Structure, Reservoir-Structure, Spiral-Structure, 

Line-Structure and Independent Arguments. While source-structure, reservoir-

structure, and spiral-structure were obtained from a study by Reid and Knipping 

(2010), line-structure and independent arguments-structure did not exist in the 

literature and emerged from the data of the present study. Table 4.1 illustrates the 

global argumentation structures and the number of times they emerged in the 

discussions of each geometry task. 

 

Table 4.1 Global argumentation structures that emerged in the working groups for 

each geometry task 

 GeoGebra Paper-Pencil 

Geometry Task 1 1 Reservoir-structure  

1 Spiral-structure       

1 Reservoir-structure  

1 Line-structure 

8 Independent arguments 

 

Geometry Task 2 3 Spiral-structure       

2 Independent arguments 

 

2 Spiral-structure  

2 Independent arguments 

1 Source-structure  

 

Geometry Task 3 1 Reservoir-structure  

1 Line-structure  

4 Independent arguments 

1 Reservoir-structure  

1 Line-structure  

6 Independent arguments 

1 Source- structure  

 

Geometry Task 4 2 Spiral-structure  

5 Independent arguments 

1 Source-structure  

1 Reservoir-structure  

3 Spiral-structure 

5 Independent arguments 
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As revealed in Table 4.1, the source-structure type of argumentation emerged 

three times in the discussions throughout the entire application. Moreover, the 

reservoir-structure was observed five times, while the spiral-structure was used 

eleven times. The global argumentation structure which was used most frequently – 

eleven times - within both the GeoGebra and Paper-Pencil groups was the spiral-

structure. The other global argumentation structure which emerged in the present 

study was the line-structure and it was used three times throughout the application. 

Finally, there were independent arguments which also emerged in the study and it 

was frequently used by both groups. It emerged thirty-two times in total.  

 When the global argumentation structure distribution is considered task by 

task, some similarities and differences between the GeoGebra and Paper-Pencil 

groups can be observed. In geometry task 1, the discussion of both groups included 

one reservoir-structure. In addition, while one spiral-structure emerged in the 

GeoGebra group, there were one line structure and eight independent arguments 

emerging in the Paper-Pencil group. In geometry task 2, the GeoGebra group used 

three spiral-structures and two independent arguments. Similarly, the Paper-Pencil 

group used two spiral-structure and 2 independent arguments. Additionally, one 

source-structure emerged in the Paper-Pencil group. The argumentation for the 

geometry task 3 was similar for both groups. The GeoGebra group used one 

reservoir-structure, one line-structure and four independent arguments. Similarly, 

the Paper-Pencil group used one reservoir-structure and 6 independent arguments. 

Unlike the GeoGebra group, one source-structure was used in the Paper-Pencil 

group in geometry task 3. In the last geometry task, the GeoGebra group used 

variable global argumentation structures. They used two spiral-structure, one 

source-structure, one reservoir-structure and five independent arguments. On the 

other hand, three spiral-structure and five independent arguments were used in the 

Paper-Pencil group. 

 In order to make these structures clearer, sample conversations and 

argumentation structure schemas for each global argumentation structure are 

explained in detail below.  
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4.1.1 The source-structure argumentation  

  

 In the present study, the source-structure type of argumentation was used 

twice. One of them emerged during the discussion on geometry task 4 within the 

GeoGebra group and the other one emerged during the discussion on geometry task 

3 within the Paper-Pencil group. The source-structure example could be given from 

geometry task 3 in the Paper-Pencil group. In geometry task 3, two circles, each of 

which passes through the center of the other circle, was given as illustrated in 

Figure 4.1(a). The circles intersect at points H and E, and a line from point E 

intersects the circles at points F and G.  The questions asked were as follows: 

If   |FG|= 6, compute the area of the triangle FGH? Justify your solution. 

If r is the measure of the radius of each circle, find the least value and 

greatest value of the area of triangle FGH. Justify your solution. 

 

        

       (a)                                                   (b) 

Figure 4.1 The shape of geometry task 3 and Gözde’s additional drawings (red 

segments) 

 

 The red segments on the shape in Figure 4.1(b) were the additional segments 

which were drawn by Gözde while she was explaining her solution on the 

whiteboard. 
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Figure 4.2 A source-structure example from geometry task 3 in the PPG 

 

 The overall global argumentation structure was like in Figure 4.2. In AS-1, 

Gözde drew the radiuses |CH|, |HD|, |CD|, |CE| and |DE| and claimed that ‗The 

triangles HCD and CDE are equilateral‘. Then, she used these equilateral triangles 

and the arcs of the circle to conclude that  HFG=60  in AS-2. At this point, Gözde 

drew the red lines as in Figure 4.1(b) and claimed that arc FH=60 , which was 

refuted by the other participants and the teacher. The details of this refutation are 

given within the conversation below. Then, she used these two claims - AS-1 and 

AS-2 - as data for AS-4 with additional data ‗ HDE=120  ,  HCE=120 ‘ and ‗arc 

HE=240 ‘ and claimed that ‗triangle FGH was an equilateral triangle in AS-4‘. 

  The typical characteristics of source-structure argumentation and the 

argumentation streams including those characteristics are demonstrated below: 

 

- The argumentation streams which were not connected to the main 

structure (AS-3) 

- Parallel arguments for the same conclusion (AS-1 and AS-2) 

- Argumentation steps which have more than one datum and each of 

these data is the conclusion of an argumentation stream (AS-1, AS-2, 

AS-3 and AS-4) 
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- Refutations refuting mostly data in arguments (AS-3)  

 

 The parallel arguments in this structure were AS-1 and AS-2, which were 

both leading to the conclusion that the triangles HCD and CDE were equilateral. All 

argumentation streams had more than one datum, which were presented with circles 

as in Figure 4.2. Thus, it can be concluded that this global argumentation structure 

was suitable for source-structure. 

 AS-3 includes the refutation which was not connected to the main structure. 

Therefore, presenting some details about this argument and how it was refuted 

could be of benefit. The discussion of AS-3 occurred as in the following 

conversation. The teacher asked the students to explain their solution to the class 

and Gözde came to the board voluntarily. 

 

Gözde : We said  HCD is equal to 60 .  
Teacher : Yes 

Gözde :│AD│ is the diameter of the circle (D47). Since arc HD 

is 60  we can say that arc AH is equal to 120  (W47).  

Teacher : Yes, true. 

Gözde : From alternate-interior angles  ACF sees the arc which 

is 60 . We know that arc AH is equal to 120  so arc FH 

will be 60  (C47).  

Erhan : Ok but I did not understand why arc AF is equal to 60
0
.  

  How did you find that triangle ACF is equilateral? (R47) 

Gözde : From alternate-interior angles. It is as if a cross is drawn  

  from the center C with chords │AD│ and │FE│. 

Teacher : But you still do not have a connection with triangle  

  FGH. 

Bahar  : But the drawing on the board does not resemble our  

   drawing on our worksheet. 

Teacher : I drew the initial shape like this. You have drawn the  

   chord EF as if it crosses from the center C. But in the  

   original shape it does not cross from the center C. (R47) 

Bahar : You are right. We thought that we obtained an isosceles  

   trapezoid AFHD but we made a mistake in our drawing. 

 

In this argumentation, Gözde drew the red lines indicated in Figure 4.1 and 

talked as if chord │FE│ crossed over point C and conjectured that ‗arc │FH│= 

60 ‘. The teacher and another student refuted the data of this argument by showing 
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that  ACF and  ECD were not alternate-interior angles and chord │FE│ did not 

cross over point C, so arc │FH│ could not be 60 . Thus, the discussion, in terms of 

the Toulmin model, can be drawn as illustrated in Figure 4.3 below.  

 

 

Figure 4.3 Toulmin’s schema drawn for AS-3 

 

4.1.2 Reservoir-structure argumentation 

 

The reservoir-structure emerged 5 times in the current study. Three of them 

emerged in the GeoGebra group in geometry tasks 1, 3 and 4, while two of them 

emerged in the Paper-Pencil group in geometry tasks 1 and 3. The following 

example, which is an example of the reservoir-structure, comes from the discourse 

of the GeoGebra group regarding geometry task 1. The task was presented in the 

worksheet in the following way: 

‗ABC is a triangle. The midpoints of sides |AB| and |AC| are points D 

and E, respectively. F and G points are placed on the side |BC| so as to 

be |BG|=|CF|. The segments |DG| and |EF| intersects at point H.  

When does |AH| become the angle bisector of  A? (Think about all 

types of triangles). Explain your reasoning and justify your solutions.‘   
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Figure 4.4 The shape of geometry task 1 and students’ drawings (red segments)  

 

The participants discussed among themselves to find the triangle types in 

which │AH│ became an angle bisector when the givens (see Figure 4.4) were 

satisfied. 

 

 

Figure 4.5 A reservoir-structure example from geometry task 1 in the GG 
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Firstly, the students decided how to place the points F and G on segment 

│BC│ in AS-1 illustrated in Figure 4.5. In AS-1, they marked F to the left, G to the 

right on segment │BC│ and drew the shape based on the givens in the task. Then, 

after a dragging move on GeoGebra concluded that │AH│ was an angle bisector 

when triangle ABC was isosceles and equilateral triangles in AS-2. Then, the 

teacher asked why they had placed points F and G in that order on segment │BC│. 

She asked what if points F and G were switched. Upon this question, which 

required the participants to provide a more detailed solution, the participants 

thought about it again, which meant reasoning moved backwards to AS3, AS4 and 

AS5 (a dashed line shows the direction of reasoning). They claimed that when they 

placed points F and G reversely, point H would again be on the line passing through 

│AI│ in equilateral triangles (AS-3), in isosceles triangles (AS-4), and in scalene 

triangles (AS-5). They explained their additional justification, clarifying their 

reasoning sufficiently and concluding with the intermediate target conclusion which 

was ‗In any triangle, when point F and G are inversely placed, point H will change 

place on the line passing through │AI│‘. Afterwards, they solved the task again 

when triangle ABC was an isosceles and an equilateral triangle separately in AS-6 

and AS-7, respectively. They asserted that ‗When triangle ABC is isosceles, │AH│ 

will be an angle bisector‘ (AS-6) and ‗when triangle ABC is equilateral, │AH│ will 

be an angle bisector‘. This was also again a reasoning that moved backwards, which 

is a characteristic of a reservoir-structure. In this type of global argumentation 

structure, there can also be refutations as in AS-3, AS-6 and AS-7, although all 

refutations were not successful in refuting the claim. As it can be inferred, 

reasoning moved backwards to give more detail about their justification, and the 

existence of the intermediate target conclusion were the properties of the reservoir-

structure, so this argumentation structure could be categorized within the reservoir-

structure. 

The second example for the reservoir-structure is from the Paper-Pencil 

group‘s geometry task 1. The geometry task has already been explained in the 

previous example. The participants discussed among themselves to identify the 

triangle types in which │AH│ became an angle bisector when the givens of 
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geometry task 1 were satisfied. Güler came to the board and started solving the task 

by drawing the shape. She selected any triangle ABC and placed F and G in such a 

way that F was on the left, G was on the right to segment |BC| (see Figure 4.6(a)). 

 

 

 

(a) 

        

     (b) 

Figure 4.6 The shape drawn on the board by Güler for geometry task 1  

 

In the givens, points D and E were the midpoints of segments |AB| and |AC|. 

Güler assumed that F and G were placed on |BC| in such a way that ‗|FE   |AC|‘ 

and ‗|GD|   |AB|‘. Then she drew |AF| and |AG|. The teacher asked whether or not 

she could take both of them perpendicular at the same time. This point remained as 

a question in the minds of all students and Güler continued to present her solution. 
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The global argumentation structure of this solution is illustrated in Figure 4.7 

below. 

 

 

Figure 4.7 A reservoir-structure example from geometry task 1 in the PPG 

 

In AS-1, Güler conjectured that the triangle AFG was an isosceles triangle 

by using the isosceles triangle properties of triangles AFC and AGB to find the 

lengths of |AF|=|AG|= x+y. Then, she used the isosceles triangle properties again 

and conjectured that |GD| was the angle-bisector of  AFG and in the same way |FE| 

was the angle-bisector of  AFG. Thus, she expressed an intermediate conclusion of 

AS-2(a), which was ‗|AH| is also an angle-bisector of  BAC‘. This argument was 

refuted by other participants since AH was the angle-bisector of  FAG, not  BAC. 

Therefore, the reasoning moved backwards to AS-1 and continued with AS-2(b). 

Güler stretched |AH| to segment |BC| and claimed that ‗|AK|  |BC|‘ and segment 
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|FK|=|KG|=y/2. Then, an angle-bisector ratio was written for triangle ABC for 

segment |AK|. That is, 
  

   
 

 
 
 

  

   
 

 
 
. Then, they concluded that segment |AH| was 

an angle-bisector when c=d, which meant that triangle ABC was an isosceles 

triangle. Then, Okan said that three perpendicular segments and three angle-

bisectors coincided at one point, so we could say that triangle ABC was an 

equilateral triangle in AS-2(b), which was an intermediate target conclusion. 

However, another participant, Bahar, noticed that all three perpendicular segments 

did not belong to the same triangle ABC. That is, |GD| was the perpendicular 

segment for triangle AGB, |FE| was the perpendicular segment for triangle AFC 

while |AK| was the perpendicular segment for triangle AFG (see Figure 4.6(b)). 

Similarly, these three segments were not the angle-bisectors of triangle ABC either. 

Thus, the argument claiming that triangle ABC was an equilateral triangle was 

refuted. Again the students‘ reasoning moved backwards and they questioned the 

solution again. In AS-3, Ġnci came to the board and overviewed the assumptions and 

the solution and concluded that |AH| was the angle-bisector of triangle ABC when 

triangle ABC was an equilateral and isosceles triangle, not a scalene triangle. The 

justification was the angle-bisector ratio explained above, and the intersection of the 

three perpendicular segments were not related to the solution. Furthermore, the only 

assumption was the one which Güler had stated at the beginning of the solution 

while placing points F and G on segment |BC| in such a way that ‗|FE  |AC|‘ and 

‗|GD| |AB|‘ at the same time. Ultimately, it was deduced that this argumentation 

was suitable for the reservoir-structure since the students moved back to some parts 

of the solution again and again in order to give more detailed justifications, there 

were refutations in AS-2(a), AS-2(b) and AS-3, and there was an intermediate target 

conclusion during the process before reaching the target conclusion. 

4.1.3 Spiral-structure argumentation 

 

The spiral-structure was one of the most frequently used structures (11 

times) in the current study. In the GeoGebra group it emerged once in geometry 

task 1, 3 times in geometry task 2, and 2 times in geometry task 4. On the other 
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hand, in the Paper-Pencil group, it was seen twice in geometry task 2, and 3 times in 

geometry task 4. The following example comes from the GeoGebra group‘s 

argumentation in geometry task 4 to represent the spiral-structure. Figure 4.8 

illustrates the given shape. In the task, the circle with center A and the semi-circle 

with diameter  AG were given. The chord  CD  was bisected by  FG  at point 

E. Moreover,  HE  was perpendicular to  FG  as given. The tasks of the students 

were: 

 Prove that  CE = HE and justify your reasoning. 

Show whether the theorem is trivial if chord  FG  is a diameter of the first 

circle, or if  FG coincides with  CD . Justify your reasoning. 

 

 

Figure 4.8 The shape of geometry task 4 

 

The overall argumentation structure was drawn as in Figure 4.9 for spiral-

structure. The typical characteristics and the argumentation streams including those 

characteristics were revealed as indicated below: 

- The argumentation streams which were not connected to the main 

structure (AS-C) 

- Parallel arguments for the same conclusion (AS-A, AS-B and AS-D) 
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- Argumentation steps which have more than one datum and each of these 

data is the conclusion of an argumentation stream. (AS-A) 

- Refutations refuting mostly data in the arguments (AS-C)  

 

 

Figure 4.9 A spiral-structure example from geometry task 4 in the GG 

 

The target conclusion of the global argumentation was CE = HE   In AS-

A, the students initially used the Euclid‘s theorem and found 

│HE│
2 

 =│FE│.│EG│, and then they used angle-angle-angle triangle similarity 

and found │CE│
2
=│FE│.│EG│. As it can be seen, these two equations were equal 

to each other so the students concluded that CE = HE The details of this 

argumentation stream are given below. In AS-B, students empirically discovered 

the measurement and dragging options of the dynamic geometry program GeoGebra 

that CE = HE . Specifically, they measured the lengths of │CE│ and │HE│, 
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and then dragged the shape to see the relationship between these lengths. There was 

an argument stream which was not connected to the main structure, AS-C, since it 

was related to the second question of the task. In this argument, Özer claimed that 

when │FG│ was the diameter of the first circle with center A, │CE│ and │HE│ 

would not be equal since the place of │HE│ moved to the center of the semicircle 

and it did not fit the givens of the task. Other participants refuted this claim by 

showing their GeoGebra drawing and justifying the dynamic property of segment 

│HE│. Finally, in AS-D, the students produced the equality│CE│
2
= a

2
-x

2
 from the 

intersecting chords theorem where │OG│= a , │EO│= x and point ‗O‘ was the 

center of the semicircle. Then, they produced the equality │HE│
2
= a

2
-x

2
 from the 

Pythagoras' theorem in the right-angled-triangle HEO. These two equations were 

equal to each other so they claimed that  CE = HE which was again the target 

conclusion of the global argumentation structure. This argumentation structure 

fitted the spiral-structure since the three parallel arguments, AS-A, AS-B and AS-D 

lead to the target conclusion that the two segments  CE and  HE were equal in 

the end.  That is, the parallel argumentation streams were at the end of the global 

argumentation structure. Moreover, each parallel argumentation stream reached the 

target conclusion separately and was self-contained. 

The conversation of one of the parallel argumentation streams AS-A is 

given below in detail with Toulmin‘s (1958) argument schema illustrated in Figure 

4.10.  

Beren : Firstly, we drew │FH│ and │HG│(D55). Then we saw 

that  FHG sees the diameter of the semicircle, so it is a 

right angle (W55).  

Teacher : You mean the inscribed angle which sees the diameter? 

Beren : Yes. │HE│ │FG│, so we could use the Euclid‘s 

theorem in this triangle (W55) and found the equality 

│HE│
2
=│FE│.│EG│(C55).   

Teacher : Ok. Then? 

Beren : We drew chords │CF│ and │DG│ (D56) and saw that 

the inscribed angles  CFE and  EDG sees the same arc so 

these angles are equal to each other (W56).  

Teacher : You are saying that they see the same arcs. Ok. 

Beren : Similarly the angles   FCE and  DGE are equal to each 

other. And the alternate-interior angles   FEC and   DEG 

are equal to each other (W56). Therefore there is an angle-
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angle-angle similarity between these triangles (C56). We 

can write the similarity ratio 
  

  
 

  

  
. In the givens of the 

task, it says that │CE│=│ED│. Therefore the equality 

turns out to be │CE│
2
=│FE│.│EG│   (C57).  

Teacher : So you found another equation. 

Beren : These two equations are equal to each other. Therefore, 

│HE│
2
=│CE│

2
 (W58). Finally, we can say that 

│HE│=│CE│ since their squares are equal to each other 

(C58). 

Teacher : Is there anybody who wants to add something to this 

solution? Do you all agree with Beren? 

Aslı : We can find the same equality by applying the 

intersecting chord theorem to chords │CD│ and 

│FG│(W57). 

 

 

Figure 4.10 Toulmin’s schema drawn for AS-A 
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In AS-A, the shape of the task was drawn and chords │FH│ and │HG│ 

were drawn to obtain the right triangle. Afterwards, the Euclid‘s theorem was used 

in triangle FHG to form the equality │HE│
2
=│FE│.│EG│. Then, chords │CF│ 

and │DG│ were drawn and similar triangles CFE and GDE were obtained by using 

the angle-angle-angle similarity, which became a warrant for the subsequent 

argument. Beren wrote the similarity equation to get │CE│
2
=│FE│.│EG│. Then, 

in AS-C, the equality of these two equations resulted in the equality of 

│HE│=│CE│, which was the answer of the task. Finally, Aslı added another 

warrant to the equation│CE│
2
=│FE│.│EG│, which was based on the intersecting 

chords theorem.  

 

4.1.4 Line-structure argumentation 

 

In the present study, the line-structure emerged 3 times. One of them was 

found to emerge in geometry task 1 in the Paper-Pencil group, another one was in 

geometry task 3 in the GeoGebra group, while the third one was again in geometry 

task 3 in the Paper-Pencil group. The example for line structure comes from the 

discourse of geometry task 3 in the GeoGebra group. The geometrical shape used in 

geometry task 3 was as displayed in Figure 4.11 and the details of the task were 

previously given in the source-structure section since the example of the source-

structure was also from geometry task 3.  

 

 

Figure 4.11 The shape of geometry task 3 
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 The overall structure of the line-structure argumentation was drawn as 

displayed in Figure 4.12. The remarkable property of this structure is the existence 

of claim/data components through the global argumentation structure until the end 

of target conclusion. Each claim is used as data for subsequent argument steps, so it 

functions as a transition between them. There may be additional data to support 

arguments beside claim/data. In addition to that, the line-structure had no parallel 

argumentation streams from the beginning to the end of the global argumentation 

structure. The shape of the whole argumentation seems like a line, so this type of 

argumentation structure was defined as the line-structure. 

 

 

Figure 4.12 The line-structure example from geometry task 3 in the GG 

 

In this geometry task, the students were trying to find the area of triangle 

FGH when the length of │FG│ was 6 units. The claims, data, and warrants were 

numbered from 34 to 39 in the original data of the GeoGebra group. Their contents 

are presented within the conversation below which took place during the application 

of geometry task 3: 

 

Özde  : Firstly we draw │HE│(D34). Then we looked at angle  

   FEH. This angle is an inscribed angle and sees chord  

  │FH│ on the circle with center C and chord │GH│ on  

  the circle with center D. Therefore, these chords are    

  equal to each other (W34). Then we see that the arcs that  

 FEH see are equal to each other (W34), so 

│FH│=│GH│(C34). 

Teacher : Yes. Do you all agree with Özde? Okay. But this is true 

since the circles are identical, aren‘t they? (B34) 

Özde : Yes. Then I know that CD is the radius of both circles.  

  We drew │CD│, │CH│ and │HD│(D35). These are all  

  equal to each other and they are the radius of the circles  

  (W35). Therefore, triangles CHD and CED are equilateral  
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  triangles (C35). 

Teacher : Yes. 

Özde  : Similarly, we drew │CE│ and │DE│ which are the  

  sides of an equilateral triangle CED (D36). Let‘s look at  

  arc HDE. The central angle HCE the measure of which is  

  equal to 120
0
 sees arc HDE (W36). Thus, arc HDE=120

0
  

  (C36/D37). 

Teacher : Okay. 

Özde  : Let‘s look at angle  HFE. It sees arc HDE and it is an  

  inscribed angle (W37), so its measure is 60
0
 (C37/D38).  

Teacher : Okay. 

Özde  : As we know that |FH|=|HG|, and the measure of  HGF  

  is 60
0
 (W38), I can say that FGH is an equilateral triangle  

  (C38). Thus, the area of an equilateral triangle with one of  

  the sides equal to 6 (D39) can be found with the formula   

  a
2√ /4 (W39). The answer is 9√  (C39). 

 

 

Figure 4.13 Toulmin’s schema drawn for line-structure 

 

 As it can be inferred from Toulmin‘s schema drawn for line structure in 

Figure 4.13, the main characteristic of this structure included many ‗claim/data‘ 

elements and, therefore, the arguments are connected to each other and formed a 

shape like a line. Moreover, there was no parallel argumentation streams and 

disconnected argumentation streams. Thus, this discussion was labelled as line-

structure.  

In C34, Özde found that chords │FH│ and │GH│ were equal by drawing 

│HE│ and by using one of the circle property which was ‗the inscribed angles 

seeing the chords which have the same length are equal to each other‘. Then 

Özde drew segments │CD│, │CH│ and │HD│, which were all the radius of 

the circle and concluded that triangles CHD and CED were equilateral in C35. 

There was no interruption or refutations made by the other students in the 

classroom. Then, Özde continued drawing │CE│ and │DE│, using the circle 
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property ‗The measure of the arc is equal to the central angle seeing that arc‘ as 

a warrant, and concluding that arc HDE=120
0
 in C36. Subsequently, using the 

circle property ‗The measure of the inscribed angle is the half of the measure of 

the arc that it sees‘ Özde claimed that  HFE=60
0
 (C37). This information 

helped Özde to see that triangle FGH is equilateral (C38) since she first found 

the equality │FH│ =│GH│ in C34 and identified one of the base angles of an 

isosceles triangle FGH as 60
0
. Finally the area formula of the equilateral triangle 

was used to find the area of triangle FGH since one side of the triangle was 

given as 6 units in the task. As it can be inferred, the reasoning in line-structure 

flows quickly without interruptions and ends with the target conclusion. The 

claims were the main transition elements since they were used as data for the 

subsequent arguments. The characteristics of the line-structure were noticed in 

this conversation, so this global argumentation structure was labelled as the line-

structure. 

 

4.1.5 Argumentation based on independent arguments-structure 

 

In the current study, the most frequently used global argumentation structure 

was the independent arguments-structure. It emerged in the GeoGebra group 11 

times: twice in geometry task 2, 4 times in geometry task 3, and 5 times in geometry 

task 4. In the Paper-Pencil group, it emerged 21 times: 8 times in geometry task 1, 

twice in geometry task 2, 6 times in geometry task 3, and 5 times in geometry task 

4. The sample shape of the structure was as illustrated in Figure 4.14.  

 

 

Figure 4.14 Independent arguments-structure from geometry task 1 in the PPG 
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The example above comes from the discourse produced in the Paper-Pencil 

group for geometry task 1 (see the shape used in the task in Figure 4.4) to represent 

the independent arguments-structure argumentations. The details of geometry task 1 

were explained in the reservoir-structure section. The task of the students was to 

identify the triangle types in which │AH│ became the angle bisector when the 

givens were satisfied. The arguments were not connected to each other. In C1, the 

participant was claiming that points F and G could be interchanged. After a few 

minutes, the other participant claimed that │AH│ was an angle bisector when 

triangle ABC was an isosceles triangle, but she was refuted by her friend who said 

that ‗Why do you think so? This is not an isosceles triangle‘. However, she did not 

present a justification for her claim. After thinking on the problem for a while, they 

decided to work on the equilateral triangle (see Figure 4.15) and they drew the 

givens on the equilateral triangle. Then, they realized and claimed that │HI│ also 

became an angle bisector of triangle FHG (C3), but again they did not justify their 

claim. 

 

 

Figure 4.15 The shape drawn by the participants for geometry task 1 

 

 As it can be inferred from this discussion, the arguments were independent of 

each other, and they were stated as if the participants were thinking loudly. 

Therefore, the global argumentation structure includes single arguments without 

connections to other arguments. 
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4.2 The characteristics of the local arguments 

 

While the previous section examined the global argumentation structures of 

the prospective middle school mathematics teachers, this section focuses on their 

local arguments within these structures. The second research question of the current 

study necessitated revealing the characteristics of the local arguments, based on the 

flow of argument components (claim, data, warrant), in the argumentation 

structures developed by prospective middle school mathematics teachers while 

discussing the geometry tasks in technology or paper-pencil environment. For this 

purpose, the researcher read through all the transcriptions of 4 geometry tasks of the 

GeoGebra and Paper-Pencil groups and numbered the argument components (claim, 

data, warrant) based on the order they were stated by the participants during the 

discussion. Then, the similar arguments were grouped to identify the categories of 

the argument types based on the flow of the components. The results revealed nine 

main types of arguments. These argument types emerged from the current study, not 

obtained from the literature. Each argument type is explained below in detail with 

sample arguments below in the following sections.  

 

4.2.1 Local argument type 1: Data-Claim-Warrant (DCW) 

  

 In this type of argument, the participants first talked about the data they had, 

and then stated their claim. Then they justified their reasoning by stating the 

warrant. Thus, the order of flow was Data, Claim and Warrant respectively. The 

component flow of the DCW type argument is presented in Figure 4.16.   

 

 

Figure 4.16 Component flow in DCW type of argument  
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The red arrows in Figure 4.16 show the direction of the statement of the 

components. When the red arrows were examined, it was concluded that the 

statements of the components proceeded from the data to the claim and then to the 

warrant. To make it clearer, the following sample local argument from geometry 

task 2 in the GeoGebra group and the Toulmin schema (see Figure 4.18) was given 

for the DCW type of argument: 

Geometry task 2 was related to triangles and it was presented in the 

worksheet as presented below with the shape displayed in Figure 4.17:  

‗Let P be any point on the median of |AG| of a triangle ABC. Let parallel 

lines m and n proceed through P to sides |AB| and |AC| of the triangle. 

1. What relation is there between segments |EG| and |GF|? Explain your 

reasoning. 

2. What if triangle ABC is equilateral or isosceles triangle? Can any 

generalization be made for the relationship between segments |EG| and |GF|? 

Explain your reasoning. 

3. Where must point P be positioned, such that |BE|=|EF|=|FC|. What if 

triangle ABC is equilateral or isosceles triangle? Justify your solution.‘  

 

 

Figure 4.17 Shape given in the worksheet for GT 2 

 

In the GeoGebra group, the following conversation occurred as an example 

for the DCW type of local argument: 
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Elif  : Now, we draw an equilateral triangle. We first 

measured |BE|, |EF| and |FC|.  The task says that these 

segments should be equal to each other, so there is a 

ratio here 1:2. We looked at this ratio and said it is the 

centroid of the equilateral triangle. Then, we talked 

about isosceles triangle since it is also valid here. 

However, it is not valid for a scalene triangle.  

Teacher : How did you conclude that it is the centroid? 

Elif  : In order to make |BE|, |EF| and |FC| equal, we can say 

units to these segments. Let |BE|=|FC|=2a, |EG|=|GF|=a. 

Then, |GE|:|EB|=1:2=|PG|:|AG|. This ratio is valid for 

both equilateral and isosceles triangles and it is the   

centroid. 

Teacher : Okay that is good. 

Bade  : Why isn‘t it valid for scalene triangles? 

Aslı  : It is also valid for scalene triangles. 

Elif  : Can you say that it is also the centroid for a scalene 

triangle? 

Bade  : If you say that |AG| is a median, it should also be valid 

for scalene triangles. 

 

 

Figure 4.18 A sample local argument for a DCW type of argument 

 

 As it can be seen in the conversation, Elif talked about the data they had and 

the claim they deduced, and then the teacher interrupted by asking ‗How did you 

conclude that it is the centroid?‘. Then, Elif explained her justification by assigning 

the unit ‗a‘ to the sides |EG| and |GF|, ‗2a‘ to sides |BE| and |FC| and showing the 
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ratio |GE|:|EB|=1:2=|PG|:|AG| as a warrant. Afterwards, Bade and Aslı interrupted 

to modify the claim since the conclusion was also valid for all types of triangles. 

 

4.2.2 Local argument type 2: Data-Warrant-Claim (DWC) 

 

In this type of argument, the participants first talked about the data they had, 

and then stated their warrant about their claim. Afterwards, they expressed their 

claim. That is, they used the data they had and stated their conclusion after 

presenting their warrant. Thus, the order of flow of the argument components was 

Data, Warrant, and Claim, respectively. The component flow of the DWC type of 

argument is presented in Figure 4.19.  

 

 

Figure 4.19 Component flow in the DWC type of local argument  

 

When the red arrows in Figure 4.19 are examined, it can be concluded that 

the direction of the statement order of the components was from the data to the 

warrant and then to the claim. A sample local argument for the DWC type of 

argument comes from geometry task 4 in the Paper-Pencil group. In the task, the 

circle with center ‗A‘ and the semi-circle with diameter  AG were given (see 

Figure 4.20(a)). Chord  CD  was bisected by  FG  at point E. Moreover,  HE  

was perpendicular to  FG  as given. The task of the students was to prove that 

 CE   HE and to justify their reasoning. A part of the conversation which was 

related to the sample local argument is given below, and Pelin‘s drawings on the 

board are represented with the color red in Figure 4.20(b). Then, the Toulmin 

schema (see Figure 4.21) was drawn for the type of DWC local argument. 
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    (a)                                                        (b) 

Figure 4.20 The shape of GT 4 (a) and the additional drawings of Pelin (b)  

 

Pelin  : Now let me write ‗x‘ for |CE| and |ED|. Then, ‗a‘ and ‗b‘ for  

segments |FE | and |EG | respectively (D71).  We can write the 

equation of the intersecting chord theorem for these chords. x.x=a.b 

so we obtained the first equation ‗x
2
=a.b‘  (W71). 

Teacher : Okay. 

Pelin     : For the second equation, we first drew arc FG and segment |EI| by  

  drawing the symmetry of |HE| with respect to |FG|   (D71). Then I    

remembered that |HE|=|EI| since |FG| is the diameter dividing chord 

|HI| into two. Thus, I can label |HE| and |EI| with ‗c‘. Then I can 

write the intersecting chord theorem equation again with c.c=a.b .  

Then we found ‗c
2
=a.b‘  (W71).  

Teacher  : Yes.  

Pelin  : Thus we had two equations ‗c
2
=a.b‘ and ‗x

2
=a.b‘ which were  

equal to each other (W71). Then c=x which means |HE|=|CE|  

(C71). 
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Figure 4.21 A sample local argument for the DWC type of argument  

 

 As it can be seen in the conversation, Pelin talked about the data they had by 

labeling the segments on the shape and by doing additional drawings, using the 

color red, upon the original shape. Then she stated the warrant, which was the use 

of the intersecting chord theorem to conclude that |HE|=|CE|.  

 

4.2.3 Local argument type 3: Claim-Data-Warrant (CDW) 

  

 In this type of argument, the participants first stated their claim, and then they 

talked about the data they had, and subsequently stated their justification about their 

claim. Thus, the order of the flow of the argument components was Claim, Data, 

and Warrant, respectively. The component flow of the CDW type of argument is 

presented in Figure 4.22. 

 

Figure 4.22 Component flow in the CDW type of local argument  
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When the red arrows in Figure 4.22 are examined, it can be understood that 

the direction of the statement order of the components was from the claim to the 

data and then to the warrant. A sample local argument for argument type 3 comes 

from geometry task 4 in the Paper-Pencil group. The details of the task are given in 

the DWC type of argument section and illustrated in Figure 4.20(a). The task was 

to prove that |CE|=|HE|. In some parts of the discussion, one of the participants 

talked about the intersecting chords theorem. Then, the teacher asked the 

participants where the equation of the intersecting chords derived from. Afterwards, 

the sample argument for the CDW type of argument emerged since they knew the 

claim ‗x.y=z.t‘ and tried to justify this rule. The conversation of the argument and 

the shape drawn on the board by the participants (see Figure 4.23) are presented 

below. Finally, the Toulmin schema (see Figure 4.24) was drawn for the CDW type 

of local argument: 

 

       

   (a)                                                            (b) 

Figure 4.23 Shapes drawn on the board by instructor (a) and the participants (b)  

 

Teacher : So where does the intersecting chords theorem derive from? 

Erhan  : Okay I found it. One moment. Let |EG|=x, |GF|=y, |CG|=z  

and |GD|=t. (He draws EC and DF) (D70). These arcs are the 

same, aren‘t they? 

Okan  : I said the same, yes. But are they equal? 

Gözde : Yes, equal. 

Okan  : Yes, but as far as I know to be able to express that equality,  
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the intersection point G should be in the center of the circle  

(R70). 

Gözde  : No it is an inscribed angle. You do not need a central angle 

(W70). 

Erhan : Then, let  ECG and  DFG be alpha, (W70)  

Teacher  : You mean both angles see the same arc? 

Erhan : Yes. So let  GEC and  GDF be beta. Finally, let      and  

 DGF be teta (W70). Then the intersecting chord rule derives 

from triangle similarity. Angle-Angle-Angle triangle 

similarity (W70). 

    Gözde  : Let‘s write the similarity. 

    Erhan   : |EG|:|GF| = |CG|:|GD|= |EC|:|DF|. Then x.y=z.t derives from  

    this similarity (C70). 

 

 

 

Figure 4.24 A sample local argument for the CDW type of argument 

 

As can be seen in the conversation, first the claim ‗x.y=z.t‘ was made during 

the discussion by the participant since the students knew the intersecting chords 

theorem as a taken-as-shared knowledge. However, the teacher probed participants 

to think more on this theorem and asked ‗Where does the equation derive from?‘. 
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Then, Erhan drew a circle, labeled the segments and angles, and then tried to find 

the justification for the intersecting chords theorem. In the end, he found the angle-

angle-angle triangle similarity as a warrant.  

 

4.2.4 Local argument type 4: Warrant-Data-Claim (WDC) 

 

In this type of argument, the participants first stated the justification, and 

then they talked about the data they had, and finally stated their claim. Thus, the 

order of the flow of argument components was Warrant, Data, and Claim, 

respectively. The component flow of the WDC type of local argument is presented 

in Figure 4.25. 

 

 

Figure 4.25 Component flow in the WDC type of local argument  

 

When the red arrows in Figure 4.25 are examined, it can be concluded that 

the direction of the statement order of the components was from the warrant to the 

data and then to the claim. A sample local argument for the WDC type of argument 

comes from geometry task 1 in the Paper-Pencil group. The task was presented in 

the worksheet in the following way: 

‗ABC is a triangle. The midpoints of the sides |AB| and |AC| are points D 

and E respectively. Points F and G are placed on side |BC| so as to be 

|BG|=|CF|. The segments |DG| and |EF| intersect at point H.  

When does |AH| become the angle bisector of  A? (Think about all types 

of triangles). Explain your reasoning and justify your solutions.‘ 

 

Güler was solving the task on the board. She drew the shape given in Figure 

4.26 and used the triangle property that ‗If a segment of a triangle is both an altitude 
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and a median, then it has to be an angle bisector also‘ as a warrant for an argument. 

Then the following local argument emerged as a sample for the WDC type of 

argument. In this type, the warrant was first stated. The reason for the warrant to be 

stated before the claim and the data was its being a taken-as-shared rule. The 

conversation below occurred while a sample argument for argument type 4 was 

produced.   

 

Güler  : We assumed that |DG|  |AB| and |FE|  |AC| at the same  

  time. 

Teacher  : Okay let‘s assume that both are perpendicular.  

Güler  : We drew |AG and |AF|. The triangle AFG becomes an  

isosceles triangle because a side-angle-side similarity exists 

(D12). 

Ġnci  : Yes. 

Güler  : Now look at triangle AGB. |DG| is the altitude and the  

median of the triangle, so it becomes the angle bisector at the 

same time (W12/13).  

Teacher  : You mean the triangle property that ‗when a segment is both  

  the altitude and the median, it also has to be an angle  

  bisector‘.  

Güler  : Yes. Similarly, we can conclude with the same rule that in  

  triangle AFC, FE is the altitude and the  median, and thus it  

  will be an angle bisector too (C13). 

 

 

Figure 4.26 The shape Güler drew on the board 
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As it can be seen in the conversation, Güler first talked about how she found 

that |GD| is the angle bisector of  AGB with a justification including the rule 

‗When a segment is both the altitude and the median of a triangle, it also has to be 

an angle bisector‘. This warrant became a taken as shared rule at that moment. Then 

she talked about triangle AFC. Argument 13 in Figure 4.27 is the sample local 

argument for the WDC type of argument since the warrant was stated first. Then, 

Güler talked about the data of the argument, followed by the claim of the argument 

as presented with the red arrows in Figure 4.27. 

 

 

Figure 4.27 A sample local argument for the WDC type of argument 

 

4.2.5 Local argument type 5: Claim-Data (CD) 

 

In this type of argument, the participants first stated their conclusions and then 

stated the data of their argument but they did not justify their claims. Thus, the 

order of the flow of the argument components was Claim and Data, respectively. 

The component flow of the CD type of  local argument is presented in Figure 4.28. 
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Figure 4.28 Component flow in the CD type of local argument  

 

When the red arrow in Figure 4.28 is examined, it can be understood that the 

direction of the statement order of the components was from the claim to the data 

and the warrant was not stated. A sample local argument for the CD type of 

argument comes from geometry task 3 in the Paper-Pencil group. In geometry task 

3, two circles, each of which passes through the center of the other circle, were 

given as in Figure 4.29(a). The circles intersect at points H and E, and a line from E 

intersects the circles at points F and G.  The questions that were asked were as 

follows: 

‗If  |FG|= 6, compute the area of the triangle FGH? Justify your solution. 

If r is the measure of the radius of each circle, find the minimum value and 

maximum value of the area of triangle FGH. Justify your solution.‘    

     

The task was to find the triangle with maximum area when the givens were 

satisfied, as can be understood from the following conversation:  

 

 Teacher   : What do you think about the second question? What is the  

  maximum area of triangle FGH? 

 Gözde   : In my opinion, chord |EF| should pass from point C for the  

maximum area (C49). I mean one side of the triangle FGH 

should be the radius of the circle (D49). 

 Okan  : No. I think you can drag the chord |EF| beyond point C. You  

    can pass center C and the triangle becomes larger (R49). 
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(a)           (b) 

Figure 4.29 The shape of geometry task 3 (a), and Gözde’s drawing (b) 

 

 

 

Figure 4.30 A sample local argument for the CD type of argument 

 

As can be seen in the conversation, Gözde thinks that maximum area for 

triangle FGH could be obtained when chord |EF| passes through center C. However, 

Okan opposed her idea by saying that chord |EF| can be drawn beyond point C to 

obtain a larger triangle FGH. At this moment, the discussion stopped and Gözde 

turned to her worksheet and thought about it. Thus, the argument flow was from the 

claim to the data, but there was no justification as presented in Figure 4.30. 
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4.2.6 Local argument type 6: Data-Claim (DC) 

 

In this type of argument, the participants firstly stated the data they had, and 

then they talked about their conclusion without justification. Thus, the order of the 

flow of the argument components was Data and Claim, respectively. The 

component flow of the DC type of local argument is presented in Figure 4.31. 

 

 

Figure 4.31 Component flow in the DC type of local argument 

 

When the red arrow in Figure 4.31 is examined, it can be understood that the 

direction of the statement order of the components was from the data to the claim. A 

sample local argument for the DC type of argument comes from geometry task 4 in 

the GeoGebra group. The details of geometry task 4 has already been explained in 

the section on the DWC type of argument, in Figure 4.20(a). The task was to find 

whether |CE|=|HE| when the chord |FG| becomes the diameter of the big circle. 

Bade was showing her solution to the class by using the GeoGebra program. The 

shape of the task prior to dragging is given in Figure 4.32(a), while the shape 

subsequent to dragging is presented in Figure 4.32(b). Bade‘s utterances while 

dragging point G are as follows: 

 

Bade  : I dragged point G in order to make chord FG the diameter of  

  the big circle (D61). Here, we can see that |CE|=|HE| (C61). 
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   (a)                                                                (b) 

Figure 4.32 The shape Bade dragged via GeoGebra 

 

 

Figure 4.33 A sample local argument for the DC type of argument  

 

As can be seen in Bade‘s talk, she did the dragging move by using the 

dynamic geometry program GeoGebra to show her claim which was ‗When FG is 

the diameter of the big circle, |CE|=|HE|‘. Then, she passed onto the other part of 

the task, which was asking whether |CE|=|HE| when chord |FG| overlapped with 

chord |CD|. Bade dragged the shape quickly to show the answer of the other part of 

the task. Participants were satisfied with the GeoGebra dragging, so nobody in class 

asked for her justification. Thus, this local argument became an example for the DC 

type of argument. 
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4.2.7 Local argument type 7: Claim-Warrant (CW) 

 

In this type of local argument, the participants first stated their conclusion, 

and then talked about their justification. Thus, the order of the flow of the argument 

components was Claim and Warrant respectively. The component flow of the CW 

type of local argument is presented in Figure 4.34. 

 

 

Figure 4.34 Component flow in the CW type of local argument 

 

When the red arrow in Figure 4.34 is examined, it can be concluded that the 

direction of the statement order of the components was from the claim to the 

warrant, and the data was not stated. A sample local argument for the CW type of 

argument comes from geometry task 3 in the Paper-Pencil group. The details of 

geometry task 3 were given in the section on the CD type of local argument with the 

shape in Figure 4.29(a). The task of the conversation was to find the minimum area 

of triangle FGH. Bahar was at the board to show the triangle FGH with the 

minimum area. She drew chord |EF| to point H (see Figure 4.35(b)). Then she said, 

‗The minimum area can be zero. When I drag point F to point H, the triangle 

disappears. Thus, there is no area and the minimum area is zero‘. 
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    (a)           (b) 

Figure 4.35 The shape of geometry task 3 (a) and the shape dragged by Bahar (b)  

 

 

Figure 4.36 Sample local argument for the CW type of argument 

 

As can be seen in the conversation, Bahar claimed that the minimum area of 

triangle FGH was zero, and then she justified her conclusion by using GeoGebra 

dragging. The participants were satisfied with the dragging, so the argumentation 

stopped at that point. 

 

4.2.8 Local argument type 8: Warrant-Claim (WC) 

 

In this type of local argument, the participants first stated the justification, and 

then they talked about their claim. Thus, the order of flow of the argument 
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components was Warrant and Claim, respectively. The component flow of the WC 

type of local argument is presented in Figure 4.37. 

 

 

Figure 4.37 Component flow in the WC type of local argument 

 

When the red arrow in Figure 4.37 is examined, it can be understood that the 

direction of the order of the components was from the warrant to the claim. A 

sample local argument for the WC type of argument comes from geometry task 1 in 

the GeoGebra group. The task was related to triangles and it was asked in the 

worksheet in the following way: 

‗ABC is a triangle. The midpoints of sides |AB| and |AC| are points D 

and E, respectively. Points F and G are placed on side |BC| so as to be 

|BG|=|CF|. Segments |DG| and |EF| intersect at point H.  

When does |AH| become the angle bisector of  A? (Think about all 

types of triangle). Explain your reasoning and justify your solutions.‘  

 

The task was to identify the triangle types in which segment |AH| becomes an 

angle bisector. The shape of the task was previously drawn via GeoGebra. Özer 

came to the computer to show his solution. He drew a circle from the midpoint of 

|BC| in order to make points F and G dynamic (see in Figure 4.38). Then he 

measured  BAH and  HAC. Subsequently, he made an observation by dragging 

point A and by changing the shape of triangle ABC. 

 

Özer  : I drew the circle with center T in order the points F and G be 

dynamic. So I can see all the different situations. 

Aslı : We can first think of drawing the angle bisector, altitude and 

median and then drag the shape to make an inference. 

Özer  : I was already looking at |AH| to be an angle bisector by  
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dragging point A and changing the triangle (W11). Then, I 

saw that when |AH| is an angle bisector, it crosses over the 

center of the circle all the time (W11). I found that |AH| 

became the altitude of the triangle at the same time. Then I 

concluded that triangle ABC is an isosceles triangle (C11) 

since |AH| is both an angle bisector and an altitude. 

Teacher  : Can you say that AH should be an altitude for all isosceles  

  triangles? 

Bade   : Yes, we can say that. 

Özer  : Yes all the time.  

Teacher  : What about the other triangles? When you change the  

triangle into a scalene triangle by dragging, what can you 

say? 

Bade   : In that case, |AH| cannot be an altitude. 

Özer   : In that case, it cannot be an angle bisector either. I saw that  

whenever it is angle bisector, it crossed over the midpoint of 

|BC| so it was also the median. 

Bade   : So |AH| cannot be an altitude in scalene triangles (R11). 

Özer  : I conclude this because of segment |AH| became both an  

  angle bisector and the median and thus, the altitude. 

 

 

 

Figure 4.38 The shape Özer dragged via GeoGebra 

 



145 

 

 

Figure 4.39 A sample local argument for the WC type of argument 

 

 As can be seen in the sample local argument, Özer first dragged the shape and 

showed his justification, and then he talked about his conclusion which was ‗|AH| 

becomes an angle bisector whenever triangle ABC is an isosceles triangle‘. That is, 

he initially talked about his warrant and then he stated his claim. Finally, the teacher 

promoted further thinking about scalene triangles by asking a question. In this way 

an exceptional condition emerged as a rebuttal to the argument.  

 

4.2.9 Local argument type 9: Claim (C) 

 

In this type of local argument, the participants only stated their conclusion and 

then said nothing related to the data they had or the justification they had in mind.  

Thus, the sole component of the argument was the Claim as presented in Figure 

4.40. 
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Figure 4.40 C type of local argument 

 

 Arguments of this type emerged when the participants were thinking aloud or 

when it was a shared idea, so there was no need to justify the claim. A sample local 

argument comes from the Paper-Pencil group‘s geometry task 1. While solving the 

task, different groups placed points F and G in the same order on side |BC|. The 

teacher asked the students why they all placed F and G in that order? Then, Güler 

said, ‗Friends, we will conclude at the end of the discussion that when points F and 

G are dragged and switched, their places |DG| and |EF| will always intersect on the 

line passing through |AT|‘ (see Figure 4.38).  That is, point H will move up and 

down on the line passing through |AT| when you move points F and G dynamically. 

The argument schema for this conversation is presented in Figure 4.41. 

 

 

Figure 4.41 A sample local argument for the C type of argument  

 

4.2.10 The analysis results of the different types of local arguments based on 

the flow of the argument components 

 

So far, each type of local argument has been introduced with sample local 

arguments and conversations from the current study. In this section, the numbers of 
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local arguments in each type are analyzed. The total number of local arguments in 

each group is presented in Table 4.2.  

 

Table 4.2 The total number of local arguments in each type of argument in the 

GeoGebra and the Paper-Pencil groups 

 GeoGebra Paper Pencil 

1. DCW 11 10 

2. DWC 29 38 

3. CDW 1 4 

4. WDC 2 2 

5. CD 1 2 

6. DC 2 3 

7. CW 10 8 

8. WC 4 3 

9. C 3 4 

 

In conclusion, DWC, DCW and CW were the most frequently confronted 

types of local arguments in both the GeoGebra and the Paper-Pencil groups. 

Especially the DWC type of argument was the most frequently used argument by 

prospective middle school mathematics teachers. That is, the prospective middle 

school mathematics teachers were disposed to initially state the data they had, and 

then express their justification and finally to state what they concluded. Sometimes, 

they changed the places of the warrant and the claim, thus stating the data they had 

first, and then the claim of their argument and finally the warrant they used to 

justify as in DCW type of local argument. In the third most frequently used 

argument type, they did not mention the data they had but stated their argument 

components in the order of claim and warrant. In this type, the data became taken-

as-shared in the class discussion, so they avoided repetition. 

The frequencies of the other types of local arguments were close to each 

other. When the groups are examined, it can be seen that the number of local 
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arguments in both groups were close to each other. That is, a similar pattern 

occurred in the two groups in terms of the flow of argument components which 

were developed by prospective middle school mathematics teachers in the geometry 

context. That means, the existence of the dynamic geometry program, GeoGebra, 

did not change the course of reasoning of the prospective teachers and they behaved 

similarly in the argument construction process in terms of the flow of argument 

components. 

After analyzing the different types of local arguments between the groups, the 

researcher analyzed the geometry tasks separately. The numbers of different types 

of local arguments by geometry task are listed in Table 4.3.  

 

Table 4.3 Number of arguments for each type of local argument by geometry task 

 GeoGebra  Paper Pencil 

 GT 1 GT 2 GT 3 GT 4 GT 

1 

GT 2 GT 3 GT 

4 

1. DCW 2 1 3 5 3 2 2 3 

2. DWC 3 10 7 9 8 11 8 11 

3. CDW 0 1 0 0 1 0 1 2 

4. WDC 1 1 0 0 2 0 0 0 

5. CD 0 0 0 1 0 0 2 0 

6. DC 1 0 0 1 2 0 0 1 

7. CW 5 1 4 0 4 1 3 0 

8. WC 3 0 1 0 2 1 0 0 

9. C 1 0 0 2 3 0 0 1 

 

When the distribution of the local arguments is listed in terms of geometry 

task (see Table 4.3), it can be inferred that the DWC type of local argument was the 

most confronted type in all geometry tasks in both the GeoGebra and the Paper-

Pencil groups, except for GeoGebra group‘s geometry task 1. This means that the 

use of GeoGebra did not make any difference in prospective middle school 
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mathematics teachers‘ preferences regarding the type of local argument. However, 

in geometry task 1, the GeoGebra drawing of the givens shortened the solution 

process and they did not need to talk while they were drawing the shape. Their 

drawing process was in fact the data they possessed, but they did not state their 

actions while drawing the shape, so the type of local argument they used most 

frequently turned out to be the CW type of argument in geometry task 1 in the 

GeoGebra group. Upon seeing this, the researcher encouraged the participants in the 

GeoGebra group in the subsequent tasks to talk about every action they did during 

the solution process, just as they would in thinking aloud, to catch the data 

components of their arguments. Nevertheless, it can be seen in Table 4.3 that the 

frequency of the CW type of local argument was again high in both groups in 

geometry task 3.  

As it can be seen in Table 4.3, the DCW type of local argument emerged in all 

the geometry tasks in both groups. In addition, the number of the DCW local 

argument was a little high in GeoGebra group‘s geometry task 4. When those 

arguments were examined, the researcher noticed that after the participant stated the 

data and the claim, the researcher or another participant asked for his/her 

justification, so the warrant came later in the process.  

In the present study, two geometry tasks were related to triangles while the 

other two were related to circles. Therefore, the different types of local argument in 

terms of the flow of argument components are compared in terms of these two 

mathematical contents in Table 4.4.  
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Table 4.4 Number of local arguments in each argument type by mathematical 

content 

 GeoGebra Paper Pencil 

 Triangle Circle Triangle Circle 

1. DCW 3 8 5 5 

2. DWC 13 16 19 19 

3. CDW 1 0 1 3 

4. WDC 2 0 2 0 

5. CD 0 1 0 2 

6. DC 1 1 2 1 

7. CW 6 4 5 3 

8. WC 3 1 3 0 

9. C 1 2 3 1 

 

 The distribution of the local arguments in different types of argument in 

triangle tasks, which were geometry task 1 and 2, had a similar pattern in both the 

GeoGebra and Paper-Pencil groups. The most frequently emerging local argument 

was found to be the DWC type of local argument. In addition, in the GeoGebra 

group, the CW type of local argument also had a high frequency in the triangle 

tasks. On the other hand, in the Paper-Pencil group, the DCW and CW types of 

local argument had a high frequency in the triangle tasks. Similarly, in the circle 

tasks, which were geometry tasks 3 and 4, the distribution of the local arguments 

was similar in the GeoGebra and Paper-Pencil groups. Similar to triangle tasks, the 

highest number of local arguments can be seen in the DWC type of local argument 

in the circle tasks. Moreover, in the circle tasks, the DCW type of local argument 

also had a high number of local arguments when compared to the other types in 

both groups. 

In summary, both groups showed a similar pattern in their argument 

construction process. That is, the flow of argument components was similar in both 

groups. Moreover, the most frequently used three types of local arguments were 

DWC, DCW and CW in both groups when the patterns were investigated by group, 

by geometry task and by mathematical content. 
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4.3 Local argumentation analysis  

  

 In the previous sections, the global argumentation structures developed by 

prospective middle school mathematics teachers were analyzed for the purpose of 

responding to the first research question. Subsequently, the different types of local 

arguments developed by prospective middle school mathematics teachers based on 

the flow of argument components were analyzed to respond to the second research 

question. This section seeks to respond to the third research question, ‗What are the 

characteristics of local argumentations that prospective middle school mathematics 

teachers utilize while solving geometry tasks in the GeoGebra and the Paper-Pencil 

groups?‘. The local arguments were analyzed based on the classification developed 

by Knipping (2008), which is presented in Figure 4.42. 

 

 

Figure 4.42 Local argumentation classification developed by Knipping (2008) 

 

  Knipping (2008) classified local argumentations into two basic levels: 

conceptual argumentation and visual argumentation. Visual argumentation was 

divided further into two levels, namely empirical-visual and conceptual-visual 

argumentations (Knipping, 2008). The method of classification of Knipping (2008) 

was based on the examination of the warrants and backings of the local arguments. 

During the data analysis of local argumentations in the present study, the warrants 

and backings of the local arguments were classified according to the classification 
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developed by Knipping (2008). Then, the local arguments were analyzed on the 

basis of the tasks (GT1, GT2, GT3, GT4) and the mathematical content (triangle, 

circle) by considering each group (GeoGebra group, Paper-Pencil group). Some of 

the local arguments did not have any warrant or backing so they could not be placed 

in any of the groupings within the classification. Those local arguments were listed 

in tables in the last sections under the heading ‗Arguments which don‘t have a 

warrant‘. Moreover, some of the warrants did not fit into any of the groupings in the 

classification, so the researcher explained their special conditions within each 

analysis under the heading ‗new condition‘. Initially, the sample local arguments for 

each local argumentation level are presented and then each type of analysis is 

explained under different headings in the following sections. 

 The sample local argument for conceptual argumentation is from geometry 

task 2 in the GeoGebra group. Beren labelled the segments |EG|=a, |GF|=c, |BE|=b, 

|FC|=d (see Figure 4.43).  

 

 

Figure 4.43 Diagram drawn for GT 2 as an example of conceptual argumentation 

 

Then, she said that b+a=c+d since |AG| is the median. Afterwards, she used 

the angle-angle-angle triangle similarity and wrote a similarity ratio for the triangles 

PGF≈AGC and for the triangles PGE≈AGB as a warrant. In the end, she found the 

conclusion a=c, which means |EG|=|GF|. The Toulmin schema for this local 

argument was as follows:  
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Figure 4.44 A Toulmin schema for a sample local argument of conceptual 

argumentation from the GeoGebra group 

 

The warrant of the local argument in Figure 4.44 was directly a reference to 

the triangle similarity theorem. Moreover, Beren worked with such general units ‗a, 

b, c, d‘, not with specific values. Thus, it can be concluded that the local argument 

fits the conceptual argumentation level.  

Another example for conceptual argumentation was from geometry task 1 of 

the Paper-Pencil group.  Similarly, Erhan labelled the segments in Figure 4.45 

using general units.  

 

 

Figure 4.45 Labeling of Erhan for GT 1 as an example for conceptual 

argumentation 
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 Then, he used the Menelaus‘ theorem from both sides of the triangle as the 

warrant. Afterwards, he solved two equations obtained from the Menelaus theorem 

and found that a=z, which means |AT| was a median of the triangle ABC as a claim.  

The Toulmin schema for this local argument is given in Figure 4.46.  

 

 

Figure 4.46 A Toulmin schema for a sample local argument of conceptual 

argumentation from the Paper-Pencil group 

 

Similar to the local argument in Figure 4.44, the warrant of the argument in 

Figure 4.46 was also directly a reference to the Menelaus theorem. Moreover, 

Erhan worked with general units ‗x, y, z, a, b‘, not with specific values. Thus, it can 

be concluded that the local argument fits the conceptual argumentation level.  

The second local argumentation level which was proposed by Knipping 

(2008) was visual argumentation, which has two levels: empirical-visual and 

conceptual-visual. The sample local argument for empirical-visual level is again 

from geometry task 1 in the GeoGebra group. Özer was trying to find the triangle 

types in which |AH| was an angle-bisector. He drew the givens of the task using the 

GeoGebra dynamic geometry program and dragged point A to make |AH| an angle-

bisector. He realized that when |AH| became an angle-bisector, it was also a median 

of side |BC|. He showed this on various triangle figures by dragging point A. 

Subsequently, he noticed that |AH| also became an altitude when |AH| became an 



155 

 

angle-bisector. Özer said that being an angle-bisector, median and the altitude at the 

same time was the property of isosceles triangles as the justification of his claim, 

which was ‗|AH| is a median in isosceles triangles‘. The Toulmin schema of the 

local argument was as illustrated in Figure 4.47. 

 

 

Figure 4.47 A Toulmin schema for a sample local argument of empirical-visual 

argumentation from the GeoGebra group 

 

The teacher asked Özer in which cases this relationship was valid. He 

answered by saying that this was valid for isosceles and equilateral triangles but not 

valid for scalene triangles, which corresponded to the rebuttal as an exception of the 

situation. This sample local argument fitted the empirical-visual level since Özer 

showed the relationship and his warrant on a visual figure, not based on a concept, a 

theorem, or a rule etc. That is, his justification was the conclusion of his trial and 

error in dragging of a diagram on GeoGebra.  

Another example for empirical-visual argumentation was from the Paper-

Pencil group‘s geometry task 2. Ġnci, together with Erhan, labelled the diagram on 

their worksheet as illustrated Figure 4.48.  
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Figure 4.48 Labeling of İnci on the worksheet for GT 2 as example for empirical-

visual argumentation  

 

Ġnci claimed that |AN|=|HP| and similarly |AH|=|NP|. Erhan asked, ‗How did 

you conclude that?‘ and Ġnci justified her claim by showing the parallelism of 

|AC|//|HF| and |AB|//|NE| on the diagram. She also added that ‗The quadrilateral 

ANPD became a parallelogram and in parallelogram the opposite sides have equal 

lengths‘. Therefore, it can be concluded that the local argument fits the empirical-

visual argumentation level. The Toulmin schema of the local argument is presented 

in Figure 4.49. This sample local argument fitted the empirical-visual level since 

Ġnci showed the relationship and his warrant on a visual figure, not based on a 

concept, a theorem, or a rule etc.  
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Figure 4.49 A Toulmin schema for a sample local argument of empirical-visual 

argumentation from the Paper-Pencil group 

 

The last local argumentation level proposed by Knipping (2008) was the 

conceptual-visual level for local argumentation. The sample local argument for this 

level comes from the GeoGebra group‘s geometry task 1. The diagram drawn by 

Özer using the GeoGebra program was as illustrated in Figure 4.50.  

 

 

Figure 4.50 The diagram of GT 1 drawn by Özer using the GeoGebra program 



158 

 

 Özer was discussing geometry task 1 with his partner Aslı. He drew the 

triangle ABC.  Then, he found the midpoints of the sides |AB| and |AC|, which were 

points D and E, respectively. The task asked to place points F and G as equidistant 

to vertices B and C to find the intersection point H. Özer decided to find the 

midpoint of segment |BC| and labelled it with N. He drew a circle with center N to 

find the points F and G on segment |BC|. Drawing segments |DG| and |EF|, he 

complemented the givens in the task. Then, he dragged the points to look at the 

changes in the shape and to find the triangle types in which |AH| became an angle-

bisector. He noticed that when |AH| became an angle-bisector, its extension passed 

through point N, which was the midpoint of side |BC|. He said that segment |AN| 

was an angle-bisector when triangle ABC was an isosceles and an equilateral 

triangle. He used this information as a warrant to his claim, which was ‗|AH| 

became an angle-bisector in isosceles and equilateral triangles‘. His justification 

was the triangle property that ‗When a segment is both an angle-bisector and a 

median in a triangle, this means that the segment is also an altitude and the triangle 

is isosceles or an equilateral triangle.‘ The Toulmin schema was drawn for Özer‘s 

local argument as displayed in Figure 4.51.       
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Figure 4.51 A Toulmin schema for a sample local argument of conceptual-visual 

level from the GeoGebra group 

 

This local argument fitted the conceptual-visual level argumentation since 

Özer used a visual diagram drawn via GeoGebra to justify his claim. To make a 

generalization, he also used the conceptual triangle property that ‗When a segment 

is both an angle-bisector and a median in a triangle, this means that the segment is 

also an altitude and the triangle is isosceles or an equilateral triangle‘. That is, his 

warrant enabled him to generalize his finding to the isosceles and equilateral 

triangles. Thus, he could be able to say that ―|AH| became an angle-bisector in 

isosceles and equilateral triangles‖. 

Another sample local argument for conceptual-visual level was from the 

Paper-Pencil group‘s geometry task 4. While solving the circle task, Bade used the 

intersecting chords theorem. Then, the teacher asked the whole class where the 

intersecting chords theorem had derived from. Following her question, the teacher 

drew the diagram in Figure 4.52(a) and wrote ―x.y=z.t‖ on the board. She asked the 

students to justify this claim.  
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       (a)                                                            (b) 

 Figure 4.52 Teacher’s drawing (a) and Erhan’s solution (b) as a sample local 

argument for conceptual-visual level. 

 

 Erhan came to the board and drew segments |EC| and |DF|. Then, he noticed 

the inscribed angles seeing the same arcs in the circle. He labelled the equal angles 

with symbols as illustrated in Figure 4.52(b). At that moment Bade asked, ‗Isn‘t it 

necessary for point K to be in the center of the circle in order to label those angles?‘ 

Erhan answered by emphasizing that he was dealing with the inscribed angles, so he 

did not need point K to be in the center of the circle. Afterwards, he used the angle-

angle-angle triangle similarity as a warrant for his claim. Using the triangle 

similarity equation, he found that x.y=z.t, as presented in Toulmin‘s schema in 

Figure 4.53. 
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Figure 4.53 A Toulmin schema for a sample local argument of conceptual-visual 

level from the Paper-Pencil group   

 

 This local argument was accepted as a conceptual-visual local argument since 

Erhan showed his solution on the diagram by using the circle properties and the 

A.A.A triangle similarity theorem to be able to justify the intersecting chords 

theorem. He could be able to make generalizations with the relationships he showed 

on the diagram. 

 In the current study, sometimes the participants did not state the warrant, 

which means their warrant was implicit in some of their local arguments. In the 

local argumentation analysis of Knipping (2008) the differentiating component was 

warrant (and backing) since the local argumentation type was decided by looking at 

the characteristics of the warrants. Thus, the local arguments which did not have a 

warrant component could not be classified into one of the local argumentation 

levels developed by Knipping (2008). Those arguments were listed in the following 

tables under the heading ‗Arguments which doesn’t have a warrant‘. The sample 

local argument comes from the GeoGebra group‘s geometry task 4, which has 

already been explained in the spiral structure argumentation section (see Figure 
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4.8). It was a circle task and required dragging the shape to solve the question. Bade 

was explaining her solution to the question, ‗Show whether the theorem is trivial if 

chord |FG| is a diameter of the first circle, or if |FG| coincides with |CD|. Justify 

your reasoning‘. 

 

 

Figure 4.54 A Toulmin schema of the sample local argument for the DC type of 

argument 

  

Bade responded to the first part of the question -‗if chord |FG| is a diameter 

of the first circle‘- by dragging the shape and then moved to the second part –‗if 

|FG| coincides with |CD|‘. The other participants did not question Bade for her 

warrant. Thus, this local argument (see in Figure 4.54) did not have a warrant and 

could not be classified into one of the groups in Knipping‘s (2008) classification. 

Finally, in the present study, some local arguments did not completely fit the 

levels of Knipping‘s (2008) classification. These arguments were the following 

local arguments: the givens as justification, GeoGebra measurement as 

justification, GeoGebra actions as justification. 

The sample local argument for the givens as justification in the task comes 

from the Paper-Pencil group‘s geometry task 1. Erhan claimed that points F and G 

should be placed on segment |BC| in such a way that F should be close to vertex B, 

and point G should be close to vertex C. He drew the givens on the triangle ABC 

and stated his warrant as ‗In the givens it says that segments |DG| and |EF| should 

coincide to create point H‘. The Toulmin schema was as illustrated in Figure 4.55. 
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Figure 4.55 A Toulmin schema of a sample local argument for a new type: the 

givens as justification 

 

 The local argument in Figure 4.55 did not fit the conceptual argumentation 

since it did not have a theorem, rule, axiom etc. as a warrant. Moreover, it did not fit 

empirical-visual or conceptual visual levels since it did not include the justification 

on the diagram. The warrant only includes the givens in geometry task 1. Thus, this 

argumentation type was named as the givens as justification. 

The second local argument which did not fit Knipping‘s (2008) 

classification is presented with a sample from GeoGebra group‘s geometry task 3. 

In this argument, Özer claimed that ‗Triangle FGH is an equilateral triangle‘. He 

concluded by drawing the givens in the task (see Figure 4.56) and justifying his 

claim by only measuring the sides of triangle FGH in the diagram. The Toulmin 

schema of this local argument was as illustrated in Figure 4.57. 
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Figure 4.56 Özer’s drawing for GT 3 as a sample for new type: GeoGebra 

measurement as justification 

 

 This argument did not fit any of the local argumentation levels of Knipping 

(2008) since its warrant was not a theorem, a rule, an axiom, a representation on a 

diagram, or a representation of a concept on a diagram. The warrant was only an act 

of measurement. Thus, this new type of justification was named with the name 

GeoGebra measurement as justification.  

 

 

Figure 4.57 A Toulmin schema of a sample local argument for new type: GeoGebra 

measurement as justification  
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 The last local argument which did not fit the classification of Knipping (2008) 

was presented with a sample from the GeoGebra group‘s geometry task 3. Bade 

came to the board and drew the diagram based on the givens in geometry task 3. 

Then, she dragged point G in order to obtain triangle FGH with the minimum area. 

When point G coincided with point E, the triangle disappeared and the area value 

was ‗undefined‘ in the GeoGebra program since the program could not calculate the 

area of a point. Then, Bade claimed that the minimum area of triangle FGH was 

undefined and she justified her claim by saying, ‗The GeoGebra program showed it 

as such‘. The Toulmin schema of this local argument was as displayed in Figure 

4.58. 

 

 

Figure 4.58 A Toulmin schema of a sample local argument for a new type: 

GeoGebra actions as justification 

 

Similar to the previous two arguments, this argument did not fit any of the 

local argumentation levels of Knipping (2008) either since its warrant was not a 

theorem, a rule, an axiom, a representation on a diagram, or a representation of a 

concept on a diagram. The warrant was only the reaction of the GeoGebra program 

to the user‘s drawing and dragging. Thus, it was named as GeoGebra actions as 

justification. 
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4.3.1 The characteristics of the local argumentations  

  

 The local argumentations were classified according to the warrants and 

backings of local arguments. There were 4 geometry tasks in the application, and 

the argumentation types were listed for each geometry task in the following tables, 

respectively. The warrants of the arguments were numbered with the number of 

their claims. For instance, ‗1‘ in the table refers to the warrant of the first claim 

while ‗5‘ refers to the warrant of the fifth claim. Table 4.5 reveals the distribution of 

the warrants of geometry task 1 in each local argumentation level. 

 

Table 4.5 Distribution of local arguments of GT 1 across local argumentation levels  
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4 

 

 Geometry task 1 entailed a triangle task. As it can be inferred from Table 4.5, 

the GeoGebra group mostly used empirical-visual warrants, while they were 

working with the GeoGebra dynamic geometry program. They asserted the 

conceptual-visual warrant which was stated in the 6
th

 argument and the conceptual 

warrants which were stated in the 8
th

 and 15
th

 arguments. Moreover, they did not 

justify arguments 1 and 3. In addition, there was one new condition which included 
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the givens as justification to their claim in argument 4. On the other hand, in the 

Paper-Pencil group, the participants mostly used the conceptual type of 

argumentation as local argumentation. They also alleged six empirical-visual 

warrants: 9, 14, 18, 20, 23, and 24. In addition, the arguments in which they did not 

include any justification (warrant) were arguments 1, 2, 3, 10, and 25. Similar to the 

GeoGebra group, there was one new condition which included the givens as 

justification to their claim in argument 4. The difference between the GeoGebra 

group and the Paper-Pencil group was obvious in this task in terms of local 

argumentation. The use of GeoGebra directed the participants in the GeoGebra 

group to justify their claims by talking about the dynamic figure they drew, while 

the participants in the Paper-Pencil group used the concepts, theorems, rules, and 

mathematical relations to justify their reasoning. Specifically, the participants in the 

Paper-Pencil group were inclined to use theorems, such as Menelaus‘ theorem and 

Angle-bisector theorem and mathematical relations, such as triangle similarity and 

triangle properties to show that they drew the givens of the task appropriately and to 

show the situations in which segment |AH| was an angle-bisector. 

 Geometry task 2 was also based on triangles. Table 4.6 presents the argument 

numbers of geometry task 2 in each local argumentation level. 
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Table 4.6 Distribution of local arguments of GT 2 within local argumentation levels  
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As it can be observed in Table 4.6, the participants in GeoGebra group 

mostly used visual warrants (empirical-visual and conceptual-visual). They also 

used five conceptual warrants which were stated in arguments 18, 21, 25, 26 and 27. 

On the other hand, in the Paper-Pencil group, the number of local argumentations 

was equally distributed across the visual and conceptual levels. It can be seen that 

there was no argument without justification and there was no new condition in the 

discussion of GT 2 in both groups. The difference between GT 1 and GT 2 was that 

the participants decided how to place points F and G and drew the dynamic figure. 

Then, they interpreted the dynamic relations in GT 1, but in GT 2, the places of the 

points were apparent, they were only interpreting the dynamic relations of the 

figure. This could lead to a longer discussion among the participants in the Paper-

Pencil group on the relationships in the figure besides the conceptual arguments in 

GT 2 when compared to GT 1.   

Geometry task 3 was based on the circles. Table 4.7 presents the argument 

numbers of geometry task 3 in each local argumentation level. 
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Table 4.7 Distribution of local arguments of GT 3 within local argumentation levels  
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As it can be inferred from Table 4.7, it was obvious that the participants in 

both the GeoGebra and the Paper-Pencil groups mostly used visual warrants in their 

local arguments in GT 3. Only one conceptual warrant was presented in the 

GeoGebra group in the 39
th

 argument. Finally, two new condition warrants were 

presented in the GeoGebra group. The warrant in the 31st argument was similar to 

the warrants of the empirical-visual level argumentation, but it provided an 

opportunity for generalization with the help of the measurement tools of the 

GeoGebra dynamic geometry program, so it did not completely fit the empirical-

visual argumentation. The other local argument which fit the new condition was 

stated in the 40
th

 argument. It was asserting the actions of the GeoGebra program as 

justification to their claim. In the Paper-Pencil group, there were two conceptual 

argumentations in the 51
st
 and 56

th
 arguments. In addition, there were two local 

arguments (49 and 55) which were not justified by the participants in the Paper-

Pencil group. In GT 3, the participants used mathematical relations, such as circle 

properties in the first question by referring to the figure and using visual 

argumentations. Similarly, the solution of the second question completely required 
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the interpretation of the dynamic figure, so the participants‘ interpretations included 

the references to the dynamic figure which resulted in an increase in the number of 

the visual argumentations in both the GeoGebra and Paper-Pencil groups. 

Geometry task 4 was also based on circles. Table 4.8 presents the argument 

numbers of GT 4 in each local argumentation level. 

 

Table 4.8 Distribution of local arguments of GT 4 within local argumentation levels 
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As it can be observed in Table 4.8, the participants in the GeoGebra group 

mostly used visual argumentation. There were four arguments (46, 49, 50, and 61) 

which were not justified in the GeoGebra group. Finally, there was no ‗new 

condition‘ in both groups. In the Paper-Pencil group, the distribution of the warrants 

in the visual and conceptual argumentations was approximately equal. Only one 

empirical-visual argumentation (57) was used in the Paper-Pencil group. There 

were two arguments (58 and 61) which were not justified in the Paper-Pencil group. 

In GT 4, the first question was one that asked for proof (prove that …) and the 

second question was a dynamic figure question which required the dragging of the 

points to see mathematical relations. In the GeoGebra group, the participants used 

both the dragging option of the GeoGebra and the theorems and rules to justify their 
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reasoning. In the Paper-Pencil group, the participants did not have a tool to check 

their interpretations regarding the dynamic figure in their imagination, so they once 

again resorted to conceptual rules to justify their claims. 

 After analyzing the different types of local argumentations task by task, the 

researcher decided to examine them in terms of mathematical content since there 

were two triangle tasks (GT1 and GT2) and two circle tasks (GT3 and GT4).  

In the triangle tasks, it was apparent that the participants in the GeoGebra 

group preferred to use mostly visual argumentation, especially empirical-visual 

argumentation. On the other hand, the participants in the Paper-Pencil group 

preferred conceptual argumentation. This was an expected result since the use of 

GeoGebra had the potential to direct the participants to think and talk about the 

figure they drew and dragged, so they talked about specific examples while solving 

the geometry tasks, referring to empirical-visual argumentation. As for the Paper-

Pencil group, it was also an expected result since the participants used their 

conceptual knowledge to justify their drawings and inferences. 

In the circle tasks, the most preferred local argumentation by the participants 

of the GeoGebra group was again visual argumentation, especially empirical-visual 

argumentation. This meant that the mathematical content did not make a difference 

in the use of the various types of local argumentation for the participants in the 

GeoGebra group. However, the situation was different for the Paper-Pencil group. 

At the time, the participants in the Paper-Pencil group mostly resorted to visual 

argumentation in the circle tasks. In the circle tasks, the numbers of local arguments 

in the empirical-visual and the conceptual-visual argumentation were nearly equal 

in the Paper-Pencil group. This was an interesting finding since the participants in 

the Paper-Pencil group could imagine the difference in the figures after dragging the 

points correctly and made interpretations mostly by referring to the figures they 

drew rather than using theorems and rules as a conceptual argumentation.  
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CHAPTER V 

 

 

DISCUSSION, CONCLUSION AND IMPLICATIONS 

 

 

The aim of the present study was to investigate the nature of the 

argumentation structures employed by prospective middle school mathematics 

teachers while solving geometry tasks in GeoGebra and Paper-Pencil groups. In 

addition, the prospective middle school mathematics teachers‘ local arguments in 

the global argumentation structures were analyzed in detail. More specifically, the 

kinds of global argumentation structures the prospective middle school mathematics 

teachers employed, the kinds of local arguments they expressed based on the flow 

of argument components, and the kinds of local argumentations they utilized to 

justify their arguments were investigated.  

This chapter addresses the discussions based on the findings, the conclusions 

and implications, and recommendations for further research studies. That is, the 

striking points of the results of the study are reviewed and discussed by referring to 

the related literature. The chapter is organized in three main sections based on the 

three research questions of the study. The first section presents the discussion 

regarding the global argumentation structures of the prospective middle school 

mathematics teachers with reference to previous studies. In the second section, the 

local arguments based on the flow of argument components are discussed. Finally, 

in the third section, the local argumentations based on the warrant and backings of 

the arguments are discussed in detail. 

 

5.1 Prospective middle school mathematics teachers’ global argumentation 

structures 

 

In an argumentation environment, the participants constructed arguments 

collectively. Some of these arguments were interconnected, meaning the claim of 
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one argument stood for a data or warrant for subsequent arguments. In addition, 

there were some arguments which were independent of the other arguments. That is, 

the processes involved in the discussions within each classroom were based on 

rationales peculiar to themselves, and thus there was a need to reconstruct and 

analyze complex argumentative structures in classrooms where argumentation took 

place (Knipping & Reid, 2013). Moreover, based on the assertion that formal 

mathematical logic is insufficient to present the rationale in argumentation 

(Knipping & Reid, 2013), the present study sought to gain insight into the whole 

picture of the discourse of the geometry tasks in order to interpret the general 

situation occurring in the classroom, and to understand the rationale and contextual 

constraints shaping the argumentations. In addition, it was believed that analyzing 

this general structure would be helpful in improving the efforts made to teach 

geometry within a technology-enabled environment. More specifically, the 

researchers would gain insight into the quality of the argumentations taking place in 

the classroom when they analyze the big picture. It was expected that those students 

who were taught in a well-directed argumentation environment would display the 

concept relationships in their minds. They would even reveal the misconceptions 

they inadvertently possessed. In this way, the instructors would have the chance to 

gain information about their students‘ knowledge and they would be able to 

evaluate their students‘ abilities in reasoning, justification and performance in the 

topic that was covered via argumentation. In the literature, Knipping (2008) 

detected this need and defined global argumentation as an anatomical structure, 

which means considering the layout of argument structures as a whole. She also 

considered the single arguments, schematized via Toulmin‘s model, and called them 

local arguments, which are discussed in the following sections.  

In the present study, Knipping‘s (2008) global argumentation structures were 

considered, but the model was revised and developed since there were structures 

among the data of the present study which did not fit any of these global 

argumentation structures. Therefore, names were created for these structures. Thus, 

data analysis revealed five main global argumentation structures in a geometry 
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context: Source-Structure, Reservoir-Structure, Spiral-Structure, Line-Structure and 

Independent Arguments-Structure. 

 When the global argumentation structures of the GeoGebra group and the 

Paper-Pencil group were compared task by task, it was seen that there were some 

similarities and differences between the two groups. The first difference identified 

between the groups was that in geometry task 1, there were one reservoir-structure 

and one spiral structure in the GeoGebra group, while there were one reservoir-

structure, one line structure and eight independent arguments in the Paper-Pencil 

group. When the data were examined in detail, the high number of independent 

arguments in the Paper-Pencil group drew attention. The participants in the Paper-

Pencil group drew the figures with measurement tools, such as the ruler, protractor 

and compass, so their drawings were not precise as in the GeoGebra drawings. 

Therefore, they were not sure about some of the interpretations they made while 

they were solving the geometry task. As a result, they stated some disconnected 

facts while they were discussing among each other. Thus, the reason underlying the 

use of many independent arguments in the Paper-Pencil group could be due to the 

absence of a reliable tool like GeoGebra to justify their drawings. In addition, one 

of the participants (Güler) mentioned several assumptions at the beginning of her 

solution for geometry task 1, which could not be justified till the end of the solution. 

These assumptions were solely stated since they could not be checked via a tool 

such as GeoGebra in the Paper-Pencil group. Thus, another reason for the high 

number of independent arguments could be attributed to the assumptions of Güler in 

her solution since other participants talked about her assumptions frequently and 

those arguments were not connected to the whole structure and remained as 

independent arguments. The second difference between the groups was the 

existence of the spiral structure, which included parallel argumentation streams, in 

the GeoGebra group. The existence of parallel argumentation streams could be 

attributed to teacher facilitation since the teacher asked the other pairs in the group 

to explain their solutions, so the task was solved repeatedly, which led to the 

emergence of parallel argumentation streams. The conclusion of these parallel 

argumentation streams was the target conclusion, so the global argumentation 
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structure had the characteristics of the spiral structure. The third difference was the 

existence of the line structure in the Paper-Pencil group. This argumentation 

structure existed at the beginning of the discussion and included arguments related 

to the drawing of the shape in the task. Therefore, the claims and subsequent data 

(claim/data) were connected to each other like a line and the line structure was 

constructed. However, in the GeoGebra group, the drawing process was connected 

to the reservoir-structure since the participants discussed the solution by drawing 

and dragging the shape simultaneously. As for the similarity between the two 

groups, it was revealed that in both groups the reservoir-structure was existent since 

both groups moved backwards in their reasoning process, which is a characteristic 

of the reservoir-structure. The reason could be rooted in the detailed solution of the 

tasks and turning back to clarify some missing parts which were previously 

discussed in both groups with the help of the teacher‘s facilitation.  

 The global argumentation structures of the GeoGebra and the Paper-Pencil 

groups were similar when the global argumentation structures of geometry task 2 

were compared. That is, in the Geogebra group, three spiral structures and two 

independent arguments were observed, while in the Paper-Pencil group, two spiral 

structures, two independent arguments, and one source-structure emerged. The 

spiral structures in both groups emerged either when the teacher asked the other 

groups for another solution to the task or when the nature of the task encouraged 

solving the problem again from the beginning by changing one of the properties. 

For instance, the first question related to triangles asked the relationship between 

segments |EG| and |GF|, while the second question asked the relationship between 

segments |EG| and |GF| when triangle ABC was an isosceles or an equilateral 

triangle. In the first question, the participants found a general relation that 

|EG| = |GF|, and then they solved the question again by drawing an isosceles 

triangle ABC. Subsequently, they proceeded with the solution by drawing an 

equilateral triangle ABC. In the end, they found the same relationship, and the spiral 

structure was formed during the argumentation. The only difference between the 

global argumentations of the two groups was the emergence of the source structure 

in the Paper-Pencil group. When the data was examined, it was seen that the 
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participants in the Paper-Pencil group had used Menelaus‘s theorem and similarity 

in triangles to justify their claim that |EG| = |GF|. Specifically, different participants 

proposed different parts of the solution by using theorems and mathematical 

relationships, and then they reached the target conclusion. Thus, the arguments were 

flowing from different sources. As a result, the parallel arguments occurred at the 

beginning of the solution, which was a characteristic of the source structure. The 

reason for the emergence of a source-structure in the Paper-Pencil group could be 

the use of algebraic solutions instead of dynamic drawing in the Paper-Pencil group. 

More specifically, when the shape of the argumentation was examined, it was seen 

that the opinions of participants were flowing as if arising from a variety of origins 

and this led to a funneling effect which was said to be apparent in source-structure 

argumentations (Reid & Knipping, 2010). As a result, the argumentation structure 

was named as source structure in the Paper-Pencil group.  

 The third geometry task was a circle task and the global argumentation 

structures were again similar to those in geometry task 2. In both groups, the 

reservoir-structure, the line-structure and independent arguments were observed, but 

the only single difference was the existence of one source-structure in the Paper-

Pencil group. The reason for this was the existence of the parallel argumentation 

streams at the beginning of the solution via collective argumentation. That is, the 

initial properties were stated by different individuals simultaneously, and then the 

target claim of the structure was stated collectively in the argumentation. In the 

Paper-Pencil group, the solution of the geometry task was justified by theorems or 

relations proposed by different individuals, while in the GeoGebra group, the 

participants also considered the options provided by the GeoGebra dynamic 

program. That is, when the participants focused on the actions of the GeoGebra 

program, they rarely interrupted the participant solving the task on the board until 

the end of the solution. Therefore, in the GeoGebra group, most of the time parallel 

argumentations were not placed at the beginning of the argumentation (parallel 

arguments at the beginning of the solution is a characteristic of a source structure). 

An interesting finding was that both groups used line-structure to answer the same 

part of the question, which asked for the area of triangle FGH. This could be 
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accounted for with the nature of geometry task 3 and the properties of the circle. In 

geometry task 3, the part in which the participants were trying to find the area of 

triangle FGH, the solution required step by step connected arguments based on the 

properties of the circle. That is, they found the measure of the length of an arc, and 

then they used that value to find another arc or length. In this way, the claims of the 

arguments became the data of the subsequent arguments (claim/data) repeatedly 

until the target solution was reached. This led the participants of both groups to use 

the line structure in this part. Another finding was the existence of many 

independent arguments in both groups. In both groups, the researcher encouraged 

the participants to express their thought all the time during the argumentation. 

Therefore, there were many independent arguments which were not connected to 

the solution directly but were the bases of the target conclusion. Thus, this finding 

could be linked to the thinking aloud of the participants most of the time with the 

encouragement of the instructor to express their opinions. 

 The last geometry task was again a circle task which required dragging the 

segments. There were again both similarities and differences between the global 

argumentation structures emerging in the GeoGebra group and the Paper-Pencil 

group. Two spiral-structures, five independent arguments, one source-structure and 

one reservoir-structure emerged in the GeoGebra group, while three spiral-

structures and five independent arguments emerged in the Paper-Pencil group. In 

this task, different solutions were encouraged by the teacher, so the spiral-structure 

was frequently used in both groups. In addition, the task was a bit difficult, so 

students proposed some ideas (although they were not sure that the idea would 

work) which were not related to the solution but seemed to contribute to the 

solution. Hence, the number of independent arguments in both groups was high. On 

the other hand, the differences between the groups were the emergence of the 

source-structure and the reservoir-structure in the GeoGebra group. The participants 

in the Geogebra group were brainstorming by dragging the segments and they 

analyzed the shape in detail with the help of the GeoGebra. Therefore, the reasoning 

moved backwards in the logical structure and then forward again, leading to the 

emergence of the reservoir-structure. In addition, the ideas were stated by different 
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participants, while an individual was drawing the shape on the board, and the 

parallel arguments were placed at the beginning of the solution process. Thus, it 

was observed that a source structure was produced within the argumentation of the 

GeoGebra group. Ultimately, it could be deduced that the existence of GeoGebra 

contributed to the emergence of the source-structure and the reservoir-structure in 

the GeoGebra group in geometry task 4 since the task required changing the shape 

by dragging and interpreting the new shape based on the given properties. That is, it 

was necessary to drag the shape and then return to the previous arguments and then 

move forward in order to interpret the new shape correctly, which led to the 

emergence of the reservoir-structure.  

 After examining the findings task by task, a general inference was made by 

considering the reasoning in all the geometry tasks and the studies in the literature. 

There were four global argumentation structures which were proposed in the 

context of proof in the literature (Knipping, 2008; Knipping & Reid, 2013; Reid & 

Knipping, 2010): source-structure, reservoir-structure, spiral-structure and 

gathering-structure. However, within the argumentations of the present study only 

three of these global argumentation structures emerged. It was believed that 

examining global argumentation structures would facilitate the understanding of the 

rationales and contextual limitations of participants‘ argumentations, which, in turn, 

would provide researchers with insight into the features of the proving processes 

utilized in the classrooms. Ultimately, teaching proof could be improved (Reid & 

Knipping, 2010). In addition, the analysis of argumentation structures was believed 

to uncover different classroom cultures and approaches of teaching (Reid & 

Knipping, 2010). They mentioned that their findings were not stable and strict as 

they could be affected by the cultures in which they were implemented, the nature 

of the mathematics content and the application of teachers‘ goals (Reid & Knipping, 

2010). The findings of the current study were interpreted taking all these into 

consideration. 

An interesting finding of the present study was the emergence of new global 

argumentation structures that did not exist in the literature in the geometry context, 

namely the line-structure and independent arguments-structure. These new 
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structures clearly demonstrated the prospective middle school mathematics 

teachers‘ nature of argumentation in geometry in the Turkish context. Specifically, 

these new global argumentation structures did not have a structure like a complex 

net of connected arguments. Instead, the line-structure was a simple flowing 

structure which had arguments connected to the claim/data. As can be inferred from 

its name, independent arguments entailed disconnected facts, which were proposed 

by the participants when they were thinking aloud at any time of the argumentation. 

The interesting observation was the high number of independent arguments in 

almost all the geometry tasks. These single arguments indicated that the prospective 

middle school mathematics teachers could not see the relationships among concepts 

and, thus, could not reach the target solution. That is, the independent arguments 

stood alone during the collective argumentation as disconnected facts and the bonds 

between those arguments could not be constructed effectively. Although the 

independent arguments could be regarded as natural since the participants were 

thinking aloud, the connections of these independent arguments were not 

constructed even at later stages during the argumentation. That is, it could be 

deduced that both in the GeoGebra group and the Paper-Pencil group, the 

prospective middle school mathematics teachers were prone to construct simple 

logical relations (not complex structures) and the complex structures rarely emerged 

only with the support, facilitation and questioning of the instructor. At this point, 

the quality of the mathematical reasoning that prospective middle school 

mathematics teachers presented should be considered. In the literature, one of the 

crucial aspects of learning and doing mathematics was stated as mathematical 

reasoning (Conner et al. 2014b) and it was defined as ―purposeful inference about 

mathematical entities or relationships‖ (Conner et al., 2014b, p.183). As understood 

from the definition, mathematical reasoning is based on seeing relationships and it 

is a crucial characteristic that each mathematics teacher should have in order to do 

mathematics with students. When the simplicity of most of the argumentation 

structures of the participants is considered, it is clear that the prospective middle 

school mathematics teachers‘ mathematical reasoning could be regarded as weak 

since they did not notice and present the complex mathematical relationships in 
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their arguments. The reason for the low level mathematical reasoning of the 

prospective middle school mathematics teachers could be their unfamiliarity with 

argumentation in their previous educational experiences. They were not used to 

learning mathematics and geometry through argumentative activities during their 

education. Another reason for poor mathematical reasoning of the participants 

might be the national examination system and the curriculum applied in Turkey. In 

any country, the examination system directs the education system and the applied 

curriculum at schools. In Turkey, students are subjected to multiple-choice exams 

several times throughout their education. Therefore, study of mathematics is based 

on memorizing the rules and doing drill questions most of the time in Turkish 

schools. This leads to the situation where students do not engage in high-level 

mathematical reasoning and proof, which are said to be essential in student learning 

(NCTM, 1991, 2000). Moreover, students in Turkey rarely engage in classroom 

discussions which require student interaction and social learning (Hewit, 2010; 

Prusak et al., 2012; Vincent, Chick & McCrae, 2005; Yackel, Ramussen & King, 

2000). The participants of the present study were also educated with the mentioned 

curriculum and practices, without high-level reasoning experiences. Although, they 

obtained the university education, they still prone to behave according to their past 

habits of background education. Considering all of these background experiences, it 

could be deduced that their low-level mathematical reasoning could be the source of 

the high number of independent arguments in their argumentation. 

Another important finding was the relatively frequent use of the spiral-

structure among the global argumentation structures existent in the literature. 

Consistent with the characteristics of the spiral-structure, the parallel argumentation 

streams ended with the target conclusion, which means the parallel argumentations 

were located at the end of the discussion (Knipping & Reid, 2013). In particular, the 

target conclusion of the discussion was reached by means of different solutions and 

each solution corresponded to one of the parallel argumentation streams. The reason 

for the existence of the spiral structure more than the other structures (source-

structure and reservoir-structure) could be attributed to teacher facilitation. The 

teacher promoted alternative solutions by asking ‗Is there any other different 
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solution?‘ all the time and invited each pair to the board to present their solution. 

Thus, the task was solved again and each solution corresponded to one of the 

argumentation streams. This finding revealed the importance of teacher facilitation 

in argumentation (Conner, 2007a; Forman et al. 1998; Heinze & Reiss, 2007; 

Hunter, 2007; Yackel & Cobb, 1996). If the instructor had not asked for another 

solution, there would not have been parallel argumentation streams and so the 

global argumentation structure could be like a line structure which had only one 

solution. In the present study, the instructor supported student interaction, and 

raised the students‘ attention to hear all the argument elements by asking for 

justification all the time (Cross, 2009). Other teacher actions performed in the 

present study were following up on each group in the discussion to encourage 

student participation, providing hints when students could not proceed further and 

avoiding the use of evaluative statements which had the potential to end the 

discussion (Cross, 2009). Furthermore, the questioning (Kosko et al., 2014; 

Vincent, Chick, & McCrae, 2005; Wood, 2003) and revoicing (Chapin, O‘Connor 

& Anderson, 2003; Conner, Singletary, Smith, Wagner, & Francisco, 2014a; 

O‘Connor & Michaels, 1996) methods were used all the time in order to promote 

argumentation. Thus, the researcher‘s facilitation for alternative solutions and using 

argumentation promoting actions might have contributed to the high number of the 

spiral-structure in both groups in the present study.    

 

5.2 Local arguments of prospective middle school mathematics teachers 

 

 The findings related to the local argument types are important since they 

reveal how the prospective middle school mathematics teachers reason and what 

they mostly pay attention to during the construction of local arguments. As 

mentioned in the literature section, the different types of arguments were examined 

in some studies (Aberdein, 2005; Baccaglini-Frank & Mariotti, 2010; Viholainen, 

2011). The researchers proposed formal arguments and informal arguments 

(Viholainen, 2011), regular arguments and critical arguments (Aberdein, 2005), and 

instrumented arguments (Baccaglini-Frank & Mariotti, 2010). In the present study, 
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the analysis of the flow of argument components was conducted in order to seek 

any existing pattern in the arguments constructed by prospective middle school 

mathematics teachers in the geometry context. Thus, in this section, the findings of 

the second research question related to the local arguments based on the flow of 

argument components are discussed.  

The findings revealed nine types of local arguments constructed by 

prospective middle school mathematics teachers: DCW, DWC, CDW, WDC, CD, 

DC, CW, WC, C. Letter D represents data, letter C represents claim and W 

represents the warrant of the argument. The names of the local argument types were 

given by considering the order of the argument component‘s emergence during the 

discussion. For instance, the Data-Claim-Warrant (DCW) type of argument was 

constructed in such a way that the data was stated first, and then the claim, and 

finally the warrant of the argument were stated. After the identification of the local 

argument type of all the arguments, the number of times each type emerged were 

compared. The most frequently used local argument type was Data-Warrant-Claim 

(DWC). This was an expected result since the participants mostly stated the data of 

the argument first while they were drawing the geometric shape, and then they 

justified their argument to show how the data led to the claim of the argument and 

lastly they stated their claim. The second and third mostly used local argument 

types were DCW and CW, respectively (their frequency was quite close to each 

other). In DCW, the participants started by mentioning the data, and then they stated 

their claim and finally justified their reasoning. In CW, which was similar to the 

previous one (DCW), the participant made a claim and then justified his/her claim 

but did not state the data most probably since the data seemed taken-as-shared to 

him/her during the argumentation. As mentioned in the literature, taken-as-shared 

knowledge exists in class discussions (Simon & Blume, 1996; Yackel & Cobb, 

1996; Yackel, Ramussen, & King, 2000). Similarly, in the present study, the 

participants continued their discourse without stating some parts of the arguments. 

In the other local argument types, which were Claim-Data (CD), Data-Claim (DC), 

Warrant-Claim (WC) and Claim (C), a similar situation could be mentioned. 

Consistent with the taken-as-shared knowledge definition proposed by Yackel 
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(2002), the participants could have thought that the warrant and/or data of the 

argument were mentioned and were understood with prior justifications by the rest 

of the participants, so they may not have felt the need to restate it while discussing. 

This was a striking finding to be considered since teachers could confront such 

situations during the argumentation in their future classes. When they do so, they 

should not immediately think that the student does not know the related concept and 

has memorized the method of solution when se/he does not mention the warrant or 

data of the argument. The student could think that it was taken-as-shared so there is 

no need to restate that information. Thus, prospective middle school mathematics 

teachers in the present study might know the absent components of the arguments in 

CD, DC, WC and C types of local arguments but think that it was taken-as-shared, 

so they might not have felt the need to restate them. In order to request detailed 

information about missing argument components, some sample questions to be 

asked were suggested in the literature: ―Why do you say that?‖ (Vincent, 2002, 

p. 147), ―How are the two things the same? Does this make sense? ... Does it always 

work? Why does this happen?‖ (Wood, 2003, p. 440), and ―Would you tell us what 

you thought? How did you decide this? Are there patterns? Is there a different way 

you can do this?‖ (Vincent, Chick & McCrae, 2005, p. 284). If I had noticed these 

absent components in the current study and asked the mentioned questions to the 

participants for additional information at the right time (as soon as the argument 

was stated), I would have been sure about their knowledge regarding those 

arguments. 

The remaining local argument types (CDW and WDC) were observed a few 

times in the current study. Based on the flow of collective argumentation, the place 

of the components changed unexpectedly, leading to the emergence of these local 

argument types. For instance, in WDC the warrant was stated first, and then 

followed the data and the claim. However, these types could not be accepted as the 

characteristic to the local arguments produced by prospective middle school 

mathematics teachers within a technology-aided environment since they were stated 

rarely. Instead, it could be deduced that the prospective middle school mathematics 

teachers generally use DWC, DCW and CW local argument types in a geometry 
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context in a technology-aided environment. The researcher requested from the 

participants to present justifications to their claims all the time at the beginning of 

the implementation. Therefore, the participants were aware of the fact that they 

should present evidence (warrant) to their arguments. However, they could have 

forgotten to mention their warrant in some arguments since they were not familiar 

to argumentation in their ordinary lessons. At this point, the researcher encouraged 

them to justify their conclusion. Thus, sometimes warrant was presented before 

their claim (DWC), and sometimes after the claim (DCW). Moreover, they could 

think that the data was taken-as-shared in some situations. At those times, they 

might not state the data of their argument, so the local argument type they used 

became CW.   

When the GeoGebra and Paper-Pencil groups were compared, it was observed 

that the frequency of local arguments in each local argument type was similar. 

Therefore, it was concluded that use of technology did not make a significant 

change in the flow of argument components in the argumentation of the GeoGebra 

group. Moreover, the local arguments produced by both groups were analyzed for 

each geometry task. The findings revealed that the two groups‘ local arguments 

were similar in each geometry task also. The only difference was in geometry task 1 

where the most frequently used local argument type in the GeoGebra group was 

CW, while it was DWC in the Paper-Pencil group. The GeoGebra group 

participants did not talk about the data of their arguments while they were drawing 

and dragging the shape of the first geometry task, which could be attributed to the 

interaction with the GeoGebra screen. Even though they were presenting an 

explanation to the class, they were inclined to remain quiet while they were drawing 

the shape since they were face to face with a computer screen. On the other hand, 

the reason for stating the claim component first might be due to the degree of 

difficulty of geometry task 1. More specifically, the dragging option of the 

GeoGebra program facilitates solving geometric problems. In the literature it was 

asserted that dragging allows individuals to notice geometrical relationships hidden 

in static diagrams (González & Herbst, 2009). As geometry task 1 was relatively 

easy for the dynamic geometry group, they could present their claim immediately 
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after drawing the shape of the task. Afterwards, the participants searched for 

relationships by dragging the shape. Subsequently, the justification was required by 

the instructor (if the participants hadn‘t stated a warrant). Thus, the local argument 

type most frequently used in geometry task 1 was CW in the GeoGebra group. The 

paper-pencil group participants also discussed the drawing process of the task. 

Therefore, they emphasized the data component in their arguments. Thus, their 

argumentation was ordinary like in the other three geometry tasks.   

Lastly, the local arguments were examined based on the geometry contents, 

which were triangles and circles. It was concluded that again each group had a 

similar distribution for different types of local argument, which means each group 

frequently used DWC, then DCW and finally CW types of local arguments. Thus, 

the existence of technology in one group did not make a significant difference 

between the types of local arguments used by prospective middle school 

mathematics teachers when the content of the geometry tasks were considered. The 

flow of argument types might be related to the reasoning process of the participants. 

More specifically, the participants possess a habit in expressing their opinions 

which they obtained throughout their entire education. For instance, they did not 

learn by an inquiry based method like argumentation as it was not part of the 

Turkish middle school mathematics curriculum. Therefore, although the 

environment in which they were solving the geometry tasks were not the same 

(GeoGebra and Paper-Pencil), their approach to the tasks might have been similar. 

Therefore, their expressions of local arguments were overall similar. In addition, the 

order of the argument components might change because of the questions asked by 

the instructor and the other participants. That is the instructor‘s directions could 

affect the presentation of the ideas of the participants. For instance, if the instructor 

asks the proof of a rule, the rule will be claim of the argument (stated first) and the 

participants will search for the data and warrant of that argument. In this case, the 

local argument type could be CDW, CW or CD. In the literature, there was no study 

investigating the pattern about the flow of argument components, so this study 

could be regarded as a preliminary study focusing on this issue in argumentation in 
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a technology-aided environment. Therefore, it could open the door to further studies 

in different areas of topic and with participants from different grade levels. 

 

5.3 Local argumentations of prospective middle school mathematics teachers 

 

The last issue to be discussed is the third research question related to the local 

argumentations of the prospective middle school mathematics teachers. Since 

argument is a product while argumentation is a process (Krummheuer, 1995; 

Vincent, 2002), local argument is considered different from the local 

argumentations. In local arguments types mentioned in the previous section, the 

local arguments were interpreted as a whole. However, in local argumentation 

analysis, the characteristics of the warrant (and backing) component, in other words 

the justification part of the arguments, were analyzed. As asserted, justification is 

the indispensable effort of argumentation (Cross, 2009), and the present study seeks 

to find out whether the prospective middle school mathematics teachers prefer a 

specific kind of justification or not. In order to investigate this issue, the 

justification of the participants were analyzed based on Knipping‘s (2008) 

classification, which divides local argumentations into two: visual argumentation 

(empirical-visual and conceptual-visual) and conceptual argumentation. As 

previously mentioned, in visual justification, the warrants include a reference to the 

figure or diagram and the conclusions are drawn from that figure (Knipping, 2008). 

On the other hand, in conceptual argumentation, the warrants are formed by means 

of mathematical concepts, mathematical relations and references to 

theorems/definitions/axioms/rules of logic (Knipping, 2008). In addition, visual 

argumentation is divided into two as empirical-visual level (argument is based on a 

concrete diagram and the relations can be perceived through senses of the 

individual) and conceptual-visual level (diagram can be accepted as the 

representation of the idea and generalization can be made).  

Initially, the local argumentations of the prospective middle school 

mathematics teachers were compared task by task. In geometry task 1 and 2 (GT1 

and GT2), which were triangle tasks, the local argumentations of the groups 
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differed. The participants in GeoGebra group mostly used visual argumentation 

(empirical-visual in GT1, conceptual-visual in GT2), while those in the Paper-

Pencil group used conceptual argumentation. On the other hand, in GT3 and GT4, 

the groups performed similar local argumentations. Specifically, both groups 

preferred visual argumentation in the circle tasks.  

In GT1, the participants in the Paper-Pencil group used concepts, theorems 

(Menelaus‘ theorem and Angle-bisector theorem), rules and mathematical relations 

(triangle similarity and triangle properties) to justify their arguments while the ones 

in the GeoGebra group focused on their drawings and dragging with GeoGebra to 

make justifications. The use of dynamic geometry might have naturally encouraged 

the participants in the GeoGebra group to use empirical conjectures rather than 

theoretical ones (Hoyles & Healy, 1999). In a proof study by Healy (2000), it was 

stated that the use of CABRI helped the students to identify geometrical properties 

but did not contribute to their proof since they believed that the connection between 

the empirical and theoretical cognitive domain could not be constituted via 

experimental actions. Contrary to this idea, in the current study, the participants in 

the GeoGebra group accepted their empirical actions as justifications to their 

arguments. Therefore, it can be deduced that the participants in the GeoGebra group 

could have the opinion that exploratory activities in which the theorem can be 

experimentally verified can be accepted as evidence (Chazan, 1993). Thus, the 

participants who determined the mathematical relations via their drawings on 

GeoGebra thought that they proved the relationship but in fact they remained at the 

empirical-visual level of argumentation. Ultimately, it could be deduced that the 

difference in justifications of the two groups when the warrants and local 

argumentations were considered in GT1 might have derived from the existence of 

the GeoGebra tool in the classroom. Similarly, in GT2, the participants in the Paper-

Pencil group focused on the mathematical relations to be able to draw the best 

figure to solve the task, so their local argumentation was mostly conceptual. In 

contrast, the GeoGebra group dealt with dynamic relations with the help of 

GeoGebra, so their argumentation was mostly visual. As expected, the participants 

in the GeoGebra group were directed to think and talk about the figure they drew 
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and dragged by means of GeoGebra, but this time, they could sometimes make 

generalizations from their drawings by presenting conceptual-visual warrants to 

their claims. In the literature, it was asserted that the students might not be familiar 

in how to present formal proof and justification in a technology-aided environment 

and they might primarily use technology for explorations via dynamic geometry 

programs (Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith, 

2010). Therefore, the reason why the justifications of the GeoGebra group were 

based on visual argumentation could be their unfamiliarity in justifying at 

conceptual level in a technology environment. However, in the Paper-Pencil group, 

the situation was different. They used both visual and conceptual argumentation 

although most of their arguments were conceptual. It was an expected result since 

the participants in the Paper-Pencil group were familiar in providing conceptual 

justifications by using paper and pencil since they had the experience of providing 

proof using paper and pencil in their ordinary classes where they used paper and 

pencil.  

When the local argumentations in the circle tasks (GT3 and GT4) were 

analyzed, it was concluded that both groups showed similar performance, which 

was an unexpected finding. The circle tasks required more dragging and it was not 

so easy for the students to visualize the final shape to appear after dragging. 

Nevertheless, the participants in the Paper-Pencil group were as successful as the 

participants in the GeoGebra group in these dynamic problems. Since the Paper-

Pencil group did not have a tool to check their drawings after dragging, they also 

used conceptual argumentation as much as visual argumentation in GT4. This 

finding was quite interesting since the Paper-Pencil group could visualize the 

differences in the shape after drawing the desired changes via paper and pencil. This 

finding could be accounted with the participants‘ own ability, such as dynamic 

visualization ability, which was defined in the literature as forming moving pictures 

in the mind (Harel & Sowder, 1998). In the literature, it was claimed that 

individuals who have a high level of dynamic visualization ability could reason 

about the fundamental properties of moving, shrinking or rotating figures in their 

minds (Harel & Sowder, 1998). Thus, it is highly likely that the participants in the 
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Paper-Pencil could visualize the drawings after the dragging occurred in their minds 

and they drew the correct figures because of their high dynamic visualization 

ability. Another possible reason could be that the geometry task was not so difficult 

for the participants in the Paper-Pencil group, so they could predict the necessary 

changes on the shape without the help of GeoGebra. 

In summary, when the local argumentations of the participants were examined 

in general, it was concluded that the prospective middle school mathematics 

teachers in the GeoGebra group used empirical-visual argumentation most 

frequently while those in the Paper-Pencil group were prone to use conceptual 

argumentation. One of the reasons underlying the use of empirical-visual warrants 

by the GeoGebra participants could be the use of a dragging option of the dynamic 

geometry program. With the help of dragging, they could make interpretations 

based on the specific shapes that they constructed. That is, they talked about the 

measurements of the lengths, angles and arcs that they drew via GeoGebra. 

Therefore, they sometimes did not need to explain the relationships they explored 

with theoretical support (Chazan, 1993). Another reason for underlying the use of 

empirical-visual warrants by the participants of GeoGebra group might be their 

unfamiliarity in providing theoretical evidence in a technology environment 

(Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith, 2010). On 

the other hand, the participants in the Paper-Pencil group needed to explain the 

relationships that they noticed with theoretical support, which corresponds to 

conceptual argumentation. Specifically, they defended their opinions by using 

axioms, theorems, rules and mathematical properties that they knew in order to 

generalize their solutions since they did not have a tool like GeoGebra to show the 

precise drawings. As indicated in the literature, the use of empirical evidence, such 

as dragging and measuring for justification, is a critical issue for the mathematics 

educators (Arzarello et al., 2002; Chazan, 1993; De Villiers, 2003; Healy & Hoyles, 

2000). Although Hoyles and Healy (1999) asserted that DGS was not beneficial in 

proving theorems since it promoted empirical conjectures in formal proof, many 

researchers argued that DGS was useful in proving (Christou et al., 2004; Heinze & 

Reiss, 2007; Vincent, 2002). For instance, Vincent (2002) claimed that dynamic 
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geometry software was highly suitable in order to bridge empirical and deductive 

reasoning. Similarly, Christou et al. (2004) stated that DGS motivated students and 

bridged inductive exploration and deductive proof. In addition, Heinze and Reiss 

(2007) accepted empirical justifications as validation in geometry context although 

experimentally generated results did not seem to offer explanation for the observed 

relations. In line with the studies in the literature, it could be deduced that 

GeoGebra was useful in argumentation in the geometry context but using solely 

empirical evidence, such as dragging and measurement, should not be accepted 

sufficient for the solution. As Arzarello et al. (2002) asserted, students could be 

motivated to prove why a certain proposition is true after seeing that it is true with 

DGS. Then a theoretical support could also be desired from students for better 

conceptual understanding.  

Finally, the findings of the present study revealed local argumentations which 

did not fit into Knipping‘s (2008) classification of local argumentations; thus, they 

were named as the givens as justification, GeoGebra measurement as justification, 

and GeoGebra actions as justification. As can be understood from its name, in 

arguments named as the givens as justification, the participant showed what was 

given in the geometry task as evidence. In some other arguments, the participants 

showed a measurement of an angle, side or any length via GeoGebra as evidence, 

which was accepted as a new condition and called GeoGebra measurement as 

justification. Similarly, if the participant provided an evidence of a dragging, 

tracing, or some other actions of GeoGebra, it was a new condition called 

GeoGebra actions as justification. These were the justifications that the prospective 

middle school mathematics teachers used as evidence to their claims in some of 

their arguments. In fact, these justifications were not so strong to support the claims 

of the arguments since they were based on the givens in the geometry task or the 

actions and measurements of the GeoGebra without any logical reasoning and 

theoretical support (Chazan, 1993). The reason underlying the presentation of such 

justifications could be that the participants who had the GeoGebra tool did not need 

to provide conceptual explanations in these rare situations when they saw the 

relationship with the help of GeoGebra (Chazan, 1993). Instead, they demonstrated 
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GeoGebra measurements and the givens of the tasks as authority and evidence for 

their arguments. These new justifications were rare when the number of all 

arguments were considered. Namely, it could be deduced that these few 

justifications did not represent the general tendency in the justifications of 

prospective middle school mathematics teachers in technology enhanced 

argumentation. However, this finding could be taken into consideration in further 

studies, if encountered by other researchers. 

 

5.4 Implications 

 

As indicated above the prospective middle school mathematics teachers did 

not use high level of mathematical reasoning in argumentation. Literature review 

illustrated that mathematical reasoning could be developed with computer-based 

applications, educational plays, concrete manipulatives, daily life examples, 

interactive argumentation and dealing with open-ended problems (Erdem, 2015). 

Thus, these findings recommend the urgent need for the reconstruction of the 

courses offered in the teacher education programs to develop prospective middle 

school mathematics teachers‘ mathematical reasoning and to provide them with 

argumentation skills. In Turkey, argumentation is taught in the courses offered in 

science and technology teacher education programs but there is limited information 

regarding argumentation in the content of courses offered in the middle school 

mathematics teacher education program. Ultimately, argumentation, which requires 

higher order thinking, should be prevalent in middle school mathematics teacher 

education programs like in the science teacher education programs in Turkey. For 

this purpose, educators in middle school mathematics education program should 

offer both must and elective courses including the applications to bring in the 

argumentation skills to prospective middle school mathematics teachers. That is, 

prospective middle school mathematics teachers should practice argumentation in 

technology based applications, concrete manipulative applications, interactive 

argumentation applications and open-ended problem solutions (Erdem, 2015) and 

develop the necessary skills to be able to orchestrate an argumentation class. These 



192 

 

skills were mentioned in the literature as encouraging students to participate in 

argumentation (Cross, 2009; Staples, 2007), providing challenging questions to be 

discussed for in-depth thinking (Cross, 2009), not using evaluative statements to 

student responses so as not to make them feel fear of being judged (Mercer, 2000), 

encouraging students to convince others about their claims (Martino & Maher, 

1999), asking the key questions/warrant-prompts to promote justification all the 

time (Boero, 1999; Kosko et al., 2014; Martino & Maher, 1999; Owens, 2005), 

revoicing to clarify the content, to explain the reasoning further or to redirect the 

argumentation (Forman et al., 1998). If the undergraduate course contents were 

revised in such a way that the mentioned skills were practiced by the prospective 

middle school mathematics teachers, the future teachers would be equipped with the 

necessary skills to provide an argumentative environment to their students to 

develop higher level of mathematical reasoning and, thus, a high level of 

achievement in mathematics.  

Another possible solution to improve mathematical reasoning of teachers  

may be changing the national examination system. The national exams may be 

redesigned to ask students open-ended problems to promote higher order thinking 

(Hmelo & Ferrari, 1997). This would naturally result in reforms in school programs. 

In this way, the mathematics curriculums could be revised in such a way that 

students would find the opportunity to take place in argumentative environments in 

which challenging problems are discussed collectively in order to engage in higher 

order thinking practices while preparing for the national exams. 

Based on the conclusions, the prospective middle school mathematics 

teachers appeared to be using the givens of the task, the GeoGebra measurement 

and GeoGebra actions in order to give evidence to their arguments. Based on the 

literature, these kinds of justifications were criticized by the researchers and were 

not regarded as satisfying a justification (Chazan & Houde, 1989; González & 

Herbst, 2009; Noss & Hoyles, 1996). Therefore, the prospective middle school 

mathematics teachers could be informed by their instructors that it is not enough to 

use GeoGebra measurement, the givens of the tasks and geogebra actions as 

justification in argumentation classes. They should be aware of that they should also 
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support their claims with not only via visual evidences (visual argumentation) but 

also with theoretical evidences (conceptual argumentation). At this point, the role of 

instructor is important. More specifically, when the prospective middle school 

mathematics teachers use such visual argumentations, the instructors should 

question the thoughts in their minds by asking the questions mentioned above, such 

as ‗Why do you think so?‘ (Arzarello et al., 2002). In this way, they would have the 

chance to think about their claim again to produce more valid evidences. Another 

possible way to make participants in GeoGebra group to share their ideas 

conceptually could be preparing a step-by-step worksheet directing them to search 

for theoretical evidences after presenting their visual argumentation with GeoGebra 

illustrations. Thus, critical questions could be prepared to make them think deeper 

on their visual drawings.  

One more suggestion could be the limitation regarding the use of GeoGebra 

buttons. More specifically, the buttons such as ‗drawing a rectangle, drawing a 

midpoint, drawing an equilateral triangle‘ which enables the basic drawings could 

be inhibited during the solution of the geometry tasks. In this way, the participants 

have to think deeply about the properties of the shapes in order to draw the correct 

figures. By this way, prospective middle school mathematics teachers could be 

encouraged to use logical reasoning to provide conceptual arguments besides visual 

argumentation structures. 

 

5.5 Recommendations for further research studies 

  

The current study focused on the nature of argumentation structures of 

prospective middle school mathematics teachers in technology and paper-pencil 

environments. Specifically, their global argumentations, local argument types and 

local argumentations were investigated in two groups: GeoGebra group and Paper-

Pencil group. In the view of the results, the offered recommendations for further 

studies are explained in the following paragraphs. 

This study contributed to the literature with the new global argumentation 

structures (line-structure and independent-arguments structure) in geometry context. 
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Therefore, the validity of these structures in mathematical argumentation is an issue 

to be tested with new models. These structures could also be searched in other 

mathematics topics in order to talk about its generalizability. Thus, new research 

studies could be conducted in order to test these global argumentation structures. 

The results of the present study were limited to the data collected from one 

public university in Ankara. However, the argumentation structures of the 

individuals might show variation from one university to another and even from 

culture to culture. Argumentation method is based on convincing, supporting and 

even refuting others. Therefore, its application in different cultures and contexts 

might lead to different results (Reid & Knipping, 2010). For instance, in the 

Japanese culture, people communicate to provide harmony, and disagreements are 

believed to be a threat to the harmony (Sekiguchi, 2000). Thus, Sekiguchi (2000) 

claimed that Japanese people avoid explicit disagreement statements in public. 

Therefore, it is believed that implementation of the argumentation method for 

teaching mathematics in the Japanese culture would be difficult (Sekiguchi, 2000). 

Similar situations could be confronted in other cultures too. Therefore, further 

research might be conducted to investigate the applicability of the argumentation 

method at the international level.  

 In the present study, the contents of the argument components were not 

analyzed. A more comprehensive study might be conducted to analyze the contents 

of warrants, data and rebuttals. In this way, the type of knowledge prospective 

middle school mathematics teachers use in order to justify their claims, to provide 

base for their arguments, and to rebut the constructed arguments might be revealed. 

A research study from this aspect could be beneficial for comprehending the 

rationale that shapes the argumentation of prospective middle school mathematics 

teachers, and thus, could help improve the geometry teaching in technology 

supported and paper-pencil based argumentation environments.  

Lastly, the present study was based on geometry tasks entailing two topics: 

triangles and circles. Hence, the content of the findings was limited to these topics. 

Moreover, there were only 4 geometry tasks. In order to further explore various 

aspects of argumentation in the geometry context, geometry tasks related to other 



195 

 

concepts such as quadrilaterals and polygons could be prepared in technology and 

paper-pencil environments. Moreover, the number of tasks could be increased in 

order to address more aspects of the topics comprehensively.  
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APPENDICES 

 

A: INTERVIEW QUESTIONS OF THE MAIN STUDY 

 

 

Interview questions prepared for the focus groups (GeoGebra group) 

 

For triangle activities (GeoGebra group) 

1. Which high school did you graduate from? 

2. Do you think that you are successful in Geometry? What are the grades you got 

from the geometry courses you took from the department of Mathematics?  

(Calculus, Analytical Geometry, Elementary geometry). 

3. What was your grade point average (GPA) in the last semester?  

4. Was the GeoGebra helpful while you were solving the two triangle tasks? If yes, 

in which aspect was the GeoGebra helpful? (Did you use the GeoGebra program 

to check your solution or to solve the problem?) 

5. Did  GeoGebra help you to discover the things that you were not able to see in 

the drawings that you made with paper and pencil?  (Hint: In geometry task 1, 

you did not notice that point H could be still on the line passing through the 

angle bisector of angle A when it was outside triangle ABC.) 

6. Have you encountered any difficulties when you were using the GeoGebra 

program? If yes, in which situations? (Did you have difficulties while drawing 

the givens of the tasks? Explain the situations in which you had difficulties by 

giving specific examples from the implementation. 

7.  In Activity 1, you drew a circle, the center of which was the midpoint of the 

segment BC. Afterwards, you placed F and G points on segment BC. What was 

the reason for drawing the circle from that point? If you suppose that F and G 

points are dynamic, how does the place of point H change when you drag the 

points F and G? 

8.  Discuss the following arguments. Do you think they are true? How can you 

support or refute these arguments? 
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- When the givens were drawn and the segment AH was stretched, the line 

divides the segment FG into two equal segments in all kinds of triangles. 

- AH is the angle-bisector in all the triangles whose median is also its angle-

bisector. 

9. Throughout the implementation, you provided justifications to your answers, 

defended your ideas, evaluated your friends‘ opinions and criticized others‘ 

ideas. What were the things you used when you were defending your ideas (and 

answering the questions such as ‗Why do you think so? ...how did you know that 

it is so?‘ (Rule, theorem, past experiences, GeoGebra visual drawings). 

10. In activity 1, Özer drew two circles the diameters of which were the segments 

|DG| and |EF| on an equilateral triangle. But he could not remember to explain 

why |AH| became the angle-bisector of the triangle ABC. Can you explain it 

now? 

11. In activity 2, Aslı said that ‗We solved it by using Menelaus‘ theorem‘ but you 

did not explain it. Can we solve this geometry task by using Menelaus‘s 

theorem? How? 

 

For Circle Activities (GeoGebra group) 

1. Was the GeoGebra helpful while you were solving the two circle tasks? If yes, in 

which aspect was the GeoGebra helpful? (Did you use the GeoGebra program to 

check your solution or to solve the problem?) 

2. Have you encountered any difficulties when you were using the GeoGebra 

program? If yes, in which situations? (Did you have difficulties while drawing 

the givens of the tasks? Explain the situations in which you had difficulties by 

giving specific examples from the implementation. 

3. Throughout the implementation, you provided justifications to your answers, 

defended your ideas, evaluated your friends‘ opinions and criticized others‘ 

ideas. What were the things you used when you were defending your ideas (and 

answering the questions such as ‗Why do you think so? ...how did you know that 

it is so?‘ (Rule, theorem, past experiences, GeoGebra visual drawings). 
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4. In geometry task 3, you could not find the solution in pair-work. Why did not you 

see that triangle FGH was an equilateral triangle? What was the reason of your 

mistake? In which part did you make a mistake? 

5. In the second question of geometry task 4, Özer was confused since the place of 

point H changed as the shape was dragged. He thought that the situation in which 

the segment HE passed through the center of the circle was false. Do you still 

think the same Özer? Aslı, what do you think about this idea? (If Aslı thinks the 

opposite: Can you convince Özer?) 

 

For triangle activities (Paper-Pencil group) 

1. Which high school did you graduate from?  

2. Do you think that you are successful in Geometry? What are the grades you got 

from the geometry courses you took from the department of Mathematics?  

(Calculus, Analytical Geometry, Elementary geometry). 

3. What was your grade point average (GPA) in the last semester?  

4. Were the materials helpful while you were solving the two triangle tasks? If yes, 

in which aspects were the materials helpful? Give specific examples.  

5. Were there any situations that you had difficulties while using the materials you 

had? If yes, in which situations? Explain the situations in which you had 

difficulties by giving specific examples. 

6. Did you need any tool in order to solve the triangle tasks? If yes, which 

materials? For what did you need that tool?  

7. In geometry task 1, you placed points F and G on segment |BC|. According to 

what did you place those points? Think that the points F and G were dynamic. 

Make interpretations about the place of point H when you move the points F and 

G. 

8. Discuss the following arguments. Do you think they are true? How can you 

support or refute these arguments? 

  - When the givens were drawn and the segment AH was stretched, the line 

divides the segment FG into two equal segments in all kinds of triangles. 
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- AH is the angle-bisector in all the triangles whose median is also its angle-

bisector. 

9. You showed that |AH| was angle-bisector in isosceles and equilateral triangles. 

Okan asked the situation for scalene triangles. Ġnci said that ‗In scalene triangles, 

the angle-bisector cannot pass through the point H. Therefore, it is not valid for 

scalene triangles‘. Do you agree with Ġnci? Why? 

10. Throughout the implementation, you provided justifications to your answers, 

defended your ideas, evaluated your friends‘ opinions and criticized others‘ 

ideas. What were the things you used when you were defending your ideas (and 

answering the questions such as ‗Why do you think so? ...how did you know that 

it is so?‘ (Rule, theorem, past experiences, GeoGebra visual drawings). 

11. In geometry task 2, we discussed whether or not the segment |KT| was parallel 

to the segment |BC|. What do you think about this? Explain with reasons. 

 

 

 

For circle activities (Paper-Pencil group) 

1. Were the materials helpful while you were solving the two circle tasks? If yes, in 

which aspects were the materials helpful? Give specific examples.  

2. In geometry task 3, you said that the task was quite easy just like the ones in 

university entrance examinations. But you had difficulties in the argumentation. 

At the end, you could not solve the task. What was your mistake? 

3. Have you encountered any difficulties when you were using the materials you 

had? If yes, in which situations? Explain the situations in which you had 

difficulties by giving specific examples. 
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4. Did you need any tool in order to solve the circle tasks? If yes, which materials? 

For what did you need that tool?  

5. In geometry task 4, you did not discuss the first part of the last question. That is 

‗Show whether the theorem is trivial if chord |FG| is a diameter of the first 

circle‘. Can you discuss and solve this question right now? 

6. In geometry task 4, you drew the situation in which the |FG| coincides with |CD| 

like in the figure below. Is this drawing true or false? Why? 
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B: REFLECTION PAPERS 

 

REFLECTION – Geogebra Group 

1. Which high school did you graduated from? 

2. Do you think that you are successful in Geometry? What are the grades you 

obtained from the geometry courses you took from the department of 

Mathematics?  (Calculus, Analytical Geometry, Elementary geometry). 

3. What was your grade point average (GPA) in the last semester?  

4. Was the GeoGebra helpful while you were solving the geometry tasks? If yes, in 

which aspects weas the GeoGebra helpful? (Did you use the GeoGebra program 

to check your solution or to solve the problem?) Give specific examples.  

5. Did GeoGebra program help you while you were solving the geometry tasks? If 

yes, in which aspects was the program helpful? Explain with specific examples. 

6. Have you encountered any difficulties when you were using the GeoGebra 

program? If yes, in which situations? (Did you have difficulties while drawing 

the givens of the tasks? Explain the situations in which you had difficulties by 

giving specific examples from the implementation. 

7. Throughout the implementation, you provided justifications to your answers, 

defended your ideas, evaluated your friends‘ opinions and criticized others‘ 

ideas. What were the things you used when you were defending your ideas (and 

answering the questions such as ‗Why do you think so? ...how did you know that 

it is so?‘ (Rule, theorem, past experiences, GeoGebra visual drawings). 

8. Discuss the following arguments. Do you think they are true? How can you 

support or refute these arguments? 

- When the givens were drawn and the segment AH was stretched, the line 

divides the segment FG into two equal segments in all kinds of triangles. 

- AH is the angle-bisector in the triangles whose median is also its angle-

bisector. 
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REFLECTION –Paper-Pencil group 

1. Which high school did you graduated from? 

2. Do you think that you are successful in Geometry? What are the grades you 

obtained from the geometry courses you took from the department of 

Mathematics?  (Calculus, Analytical Geometry, Elementary geometry). 

3. What was your grade point average (GPA) in the last semester?  

4. Were the materials helpful while you were solving the geometry tasks? If yes, in 

which aspects were the materials helpful? Give specific examples.  

5. Were there any situations that you had difficulties while using the materials you 

had? If yes, in which situations? Explain the situations in which you had 

difficulties by giving specific examples.  

6. Did you need any tool in order to solve the geometry tasks? If yes, which 

materials? For what did you need that tool?  

7. Throughout the implementation, you provided justifications to your answers, 

defended your ideas, evaluated your friends‘ opinions and criticized others‘ 

ideas. What were the things you used when you were defending your ideas (and 

answering the questions such as ‗Why do you think so? ...how did you know that 

it is so?‘ (Rule, theorem, past experiences, GeoGebra visual drawings). 

8. Discuss the following arguments. Do you think they are true? How can you 

support or refute these arguments? 

- When the givens were drawn and the segment AH was stretched, the line 

divides the segment FG into two equal segments in all kinds of triangles. 

- AH is the angle-bisector in the triangles whose median is also its angle-

bisector.  
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C: ARGUMENTS OF THE GEOGEBRA GROUP 

 

The arguments in this study have been analyzed by means of schematization 

based on Toulmin‘s argument layout as in the following sample argument. 

 

In the table below, the contents of the argument components put forward by 

the participants in the GeoGebra group are presented. There are some argument 

components that do not exist in some of the arguments. The explanation/contents 

box for these components are left blank in the table. 

Argument 

No: 
The Contents of the Argument Components 

1 Data: ‗F and G points placed on the side |BC| so as to be |BG|=|CF|‘ 

Given statement in the task.   

Warrant: - 

Rebuttal: - 

Claim: F and G points can be placed on the side |BC| separately or they 

can be placed on the midpoint of side |BC| together.  

2 Data: It says ‗the point that |DG| and |EF| intersects‖ in the givens. F 

and G cannot be the midpoint of the side side |BC|.    

Warrant: I made a mistake by selecting the midpoint. F and G should 

be dynamic in order to construct the intersection of |DG| and |EF|. 

Rebuttal: Do we have to divide the segment side |BC|  into three 

segments? We can also divide it into four segments.  

Claim: We should divide the segment |BC| into three segments while 

placing the points F and G. 

3 Data: -  

Warrant: - 

Rebuttal: - 

Claim: We can divide |BC| into four. 
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4 Data: -  
Warrant: But we should consider the order given in the task.  

Therefore, we should place the points F and G as they are presented in 

the task.  

Rebuttal: - 
Claim: We should place the points F and G on the segment  |BC| in the 

order of ‗B, G, F, C‘. 

5 Data: -  
Warrant: Since it satisfies |BG|=|FC|. When we draw |DG| and |EF| , 

the intersection point H is constructed.  

Rebuttal: - 
Claim: We can also place the points F and G on the segment  |BC| in 

the order B, F, G, C.  

6 Data: Draw any triangle ABC.  The midpoints of |AB| and |AC| are D 

and E respectively. Let‘s the midpoint of |BC| be ‗M‘. I draw a circle 

with center M. The intersection points of the circle and the segment 

|BC| are F and G.  We can find the intersection point H by drawing the 

segments |DG| and |EF|.    

Warrant: (Observation by dragging the radious of the circle with 

center M) Can you see that the line passing through |AH| and the center 

of the circle M intersects. Namely, |AH| becomes both angle-bisector 

and median at the same time. That is the property of isosceler triangle 

and equilateral triangle.   

Rebuttal: This situation is not valid for scalene triangle ABC.  

Claim: |AH|  is angle-bisector in isosceles and equilateral triangles.  

7 Data:  - 

Warrant: |BD|=|DA| and |CE|=|EA|. If |BG|=|CF| then |GM|=|MF|. So  

|GH|=|FH| and |HD|=|HE| . Therefore triangle FGH becomes an 

isosceles triangle. 

Rebuttal: - 

Claim: |AH|  is angle-bisector when triangle ABC is an isosceles or 

equilateral triangle.  

8 Data: -  

Warrant: Since triangle FHG is isosceles triangle, |GH|=|HF|.  

|HM| is both median, angle-bisector and altitude of this triangle. Since 

ABC is an isosceles triangle, |AD|=|AE| and |DB|=|EC|.    

Rebuttal: But we did not prove that |AH | and |HM| are on the same 

line (linear).  

Claim: The angle-bisector of the triangle FHG is also the angle-

bisector of the triangle BAC.  

9 Data:  Let‘s draw any triangle ABC. The midpoints of |AB| and |AC| 

are D and E respectively.  

Warrant: I would like  |DG | ve  |EF | to intersect to construct point H.  

If the radious of the circle can be negative, it could be vice versa.  

Rebuttal: - 

Claim: We should place the points F and G on the segment  |BC| in the 

order B, F, G, C. 
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10 Data:  I drew the givens of the task with GeoGebra. I used slider and 

triangle in order to make points F and G dynamic.   

Warrant: I measured the angles BAH and HAC with GeoGebra. The 

measures of these angles can be observed while dragging the vertices 

of the triangle until the two angles become equal to each other. I saw 

that whenever |AH| became an angle-bisector, it passes through the 

point M. (The midpoint of the segment |BC|).  Since |BF|=|CG|, 

|FM|=|GM|, |BD|=|DA|, |AE|=|EC|, |DG|=|EF| the triangle FGH is 

isosceles triangle. If triangle FGH is isosceles, triangle ABC should be 

isosceles triangle too.  

Rebuttal: - 

Claim: |AH|  is angle-bisector when triangle ABC is an isosceles or 

equilateral triangle. 

11 Data:  - 

Warrant: Observation is made by changing the shape of the triangle 

with GeoGebra. When |AH| is the angle-bisector, it passes through the 

middle point of  |BC|. |AH| becomes both the bisector and the median. 

At the same time it becomes the height. So it will be isosceles triangle. 

Rebuttal: When triangle ABC is a scalene triangle, |AH| is not the 

angle bisector. 

Claim: |AH|  is angle-bisector when triangle ABC is an isosceles 

triangle. 

12 Data: It is made drawing on an equilateral triangle with GeoGebra. 

Points F and G are taken as the midpoint of |BC| as if they are the same 

point. In this case, the same point becomes H point. |AH| is drawn. 

Warrant: Angles are measured and it is seen that |AH| is the angle 

bisector. When we make dynamic by reflecting the points F and G 

according to the midpoint of |BC|, point H is moving on |AF| and 

nothing changes. 

Rebuttal: However, we have made this only on equilateral triangle, not 

on isosceles triangle. 

Claim: |AH|  is angle-bisector when triangle ABC is an equilateral 

triangle. 

13 Data:  - 

Warrant: With Geogebra, the movement of point H can be observed 

by dragging the points F and G.  

Because there is no point H, there is no such thing as |AH| is the angle 

bisector. 

Rebuttal: There is also a situation where |DG| and |EF| do not intersect 

and there is no point H. When it is |DG|//|EF|.  

Claim: If points F and G are replaced on the equilateral triangle, H 

point again moves on the line | AH |. 

14 Data: The circles the radius of which are | DG | and | EF | are drawn. 

The line passing through the intersection points of these circles is 

drawn. It can be seen that it passes through  the angle bisector of angle 

A. 

Warrant: Since | DG | = | EF |, I have drawn these radius circles. 
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Rebuttal: - 

Claim: The line passing through the intersection points of the circles 

on equilateral triangular is the bisector of angle A. 

15 Data:  The line passing through the intersection points of the circles on 

equilateral triangular is the bisector of angle A.(Claim 14) 

Warrant: An equilateral triangle is also an isosceles triangle. That is 

why the same is true for the isosceles triangle. 

Rebuttal: - 

Claim: When the triangle ABC is the isosceles triangle, | DG | and 

 | EF| intersect on the bisector line. 

16 Data: -  

Warrant: With the counter example on a scalene triangle, we can show 

that there is not an angle bisector. 

Rebuttal: - 

Claim: On scalene triangles, AH is not angle bisector. 

17 Data: Any ABC triangle is drawn. A median drawn from the vertex A 

and a point P on it are drawn. Lines paralel to edges | AB | and | AC | 

from point P are drawn. The point P is moved on the median. The 

lengths  | BE | and | FC | are measured. 

Warrant: The median of the triangle BAC is also the median of the 

triangle EPF.       | BE | = | FC | . Since they are the equivalent triangle, 

this is also the median of the small triangle. There is a A.A.A 

similarity. 

Rebuttal: - 

Claim: |EG|=|GF|   

18 Data: (Claim 17)  

Warrant: We have already found that |EG|=|GF| on a general triangle. 

This is true for all triangles. 

Rebuttal: - 

Claim: If the triangle ABC were a isosceles triangle or equilateral 

triangle, it would be |EG|=|GF|. 

19 Data:  Let triangle ABC be isosceles triangle, let‘s draw it like that. 

Warrant: |AG| will be both the median and the height. Since the height 

of BAC will also be the height of EPF,  |EF|will be divided into two 

equal parts. 

Rebuttal: - 

Claim: When the triangle ABC is isosceles triangle, it is  |EG|=|GF| 

20 Data: The lines drawn form P are parallel tothe edges |AC| and |AB|. 

The position of point P when |EF|:|FC|=1:2 is asked in the task.   

Warrant: It is |EF|:|FC|=1:2=|PF|:|HC|=|PG|:|AP|. From smilairty. 

Rebuttal: - 

Claim: In order to be |BE|=|EF|=|FC|,  the location of the point P must 

be as |AP|:|PG|=2:1 

21 Data: ABC≈PEF. | AG | is the also the median of PEF. The 

intersection point of medians is found. Point P is dragged onto this 

point and | BE |, | EF |, | FC | lengths are examined. 
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Warrant: EFP≈ECT . |EF|:|FC|=|PF|:|AC|=|PG|: |AP| . Since we show 

on a general trianglei it is true for all triangles. 

Rebuttal: - 

Claim: In all triangles, in order to be |BE|=|EF|=|FC|, point P must be 

at the circumcenter. 

22 Data: Any ABC triangle is drawn. |AG| is the median of the triangle 

ABC. The lines drawn form P are parallel to the edges of the triangle 

ABC. The triangle PEF is drawn. 

Warrant: Because of parallelism.  

Rebuttal: - 

Claim: BAC≈EPF  

23 Data:  BAC≈EPF  (Claim 22) 

Warrant: The edge |AG| is also the median of the triangle EPF. 

Rebuttal:  - 

Claim: |EG|=|GF| 

24 Data:  Let ABC be isosceles or equilateral triangle. |EG|=|GF| (Claim 

23) 

Warrant: As we show this equality on a scalene triangle, it is already 

true for other triangles. We can see that it is also valid in other triangles 

by making the triangle move by dragging it. 

Rebuttal: - 

İddia: |EG|=|GF| 

25 Data:  Any ABC triangle is drawn. A median drawn from A and a P 

point on it are drawn. Lines paralel to edges | AB | and | AC | from 

point P are drawn. |EP| is stretched, the point T is found. |FP| is 

stretched and the point Y is found. 

  ABG= PEG=α.  ACG=  PFG= ᵝ. 

Let it be  BAC=  EPF= BYF= ETC=c 

Let it be |EG|=a, |BG|=b, |GF|=c, |FC|=d. We know that a+b=c+d 

Warrant: When I applied a similarity to the BYF ≈ETC triangle, I had 

found that b and d are equal, but now I could not. 

Rebuttal: - 

Claim: a=c   |EG|=|GF| 

26 Data:  The shape is drawn on the white board. (Data 25) 

Warrant: ETC ≈ BYF are similar triangles. There is A.A.A similarity. 

Rebuttal: - 

Claim: |PF| /|TC| = |PE| / |YB| 

27 Data: |EG|=a, |GF|=c,  |BE|=b, |FC|=d. When |AG| is the median, 

a+b=c+d. 

Warrant: PGF≈AGC are similar triangles. PGE≈AGB are similar 

triangles. Let‘s write similarity ratio: c:(c+d)= |PG|:|AG|=a:(a+b) .  a=c 

Rebuttal: - 

Claim: |EG|=|GF| 

28 Data: An equilateral triangle and the givens are drawn. |BE|, |EF| and 

|FC| are measured. The point P is dragged and observed. There is a 

ratio 1:2 here.  (Claim 23 and 27)  
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Warrant: |BE|=2a=|FC|.  |EG|=a=|GF|.  There is the ratio |GE|:|EB|=1:2 

=|PG|:|AG|  

This ratio on equilateral triangle is also valid for the isosceles triangle. 

Since |AG| was a median, circumcenter will be on this segment.  

Rebuttal: Why is not it true for a scalene triangle? It is. If you say that 

|AG| is the median, it should be also valid for scalene triangles. 

Claim: In equilateral triangle, in order to be |BE|=|EF|=|FC|, point P 

must be at the circumcenter. It is not valid in scalene triangles. 

29 Data: In any triangle, if a parallel is drawn from the circumcenter to 

the edges of the triangles, it divides the edges by 2:1 

Warrant: If we draw a paralel to| AB | and | AC | and write the ratio 

2:1 , the edge | BC | is divided into 3 equal parts. A triangle is drawn 

with Geogebra. Two medians are drawn and the circumcenter is found 

from their intersection. Parallel lines are drawn from the circumcenter 

and  | BE |, | EF |, | FC | lengths are measured.   

Rebuttal: - 

Claim: In all triangles, in order to be |BE|=|EF|=|FC|, the point P must 

be at the circumcenter. 

30 Data: Any triangle is drawn onto the white board. The point P and line 

parallel to the edges are drawn. Let |BE|=|EF|=|FC| =a.  

Warrant: From EFP ≈ ECT similarity It is |PF|:|TC|=k:2k 

From AGC≈PGF similarity It is |PG|:|AG|=|PF|:|TC|=1:2 

|PG|=m, |AG|=2m. Since |AG| is median  |GF|=a/2.  

From AGC≈PGF ,   |GF|:|GC|=a/2: 3a/2=|PG|:|AG| . 

Rebuttal: - 

Claim: In order to be |BE|=|EF|=|FC|, the point P must be on |AG| in 

the ratio of 2:1. 

31 Data: Any two circles that have equal radius and pass through the 

center of each other are drawn. The intersection points of the circles 

are H and E. A chord is drawn in such a way that the two circles of E 

are cut off to form an FGE chord. | FH | and | HG | are drawn and the 

FGH triangle is created.  

Warrant: We measured the sides of the triangle FGH with GeoGebra 

and noticed that all three sides were equal.  

Rebuttal:  - 

Claim: The triangle FGH is an equalateral triangle. 

32 Data:  Any two circles that have equal radius and pass through the 

center of each other are drawn. The intersection points of the circles 

are H and E. A chord is drawn in such a way that it intersects with the 

two circles to form an FGE chord. | FH | and | HG | are drawn and the 

FGH triangle is created. 

Warrant: The G point is dragged and the edge lengths of the triangle 

are observed. The edge length of the equilateral triangle is always 

increases when we move the point G upon to the point K. When it 

passes over the point K, it is starting to decrease. At the point K, one 

edge of the triangles becomes as the diameter. 

Rebuttal: - 
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Claim: One edge of the possible largest FGH triangle becomes 2R 

long. 

33 Data:  - 

Warrant: By combining TE we can show from |HF|//|TE|. Is it true? 

Rebuttal: No, you can not know that they are equal. For example, it 

can be |FG|=4, |GT|=4, |HG|=2, |GE|=6 

Claim: |GT|=|GE|    

34 Data: Let‘s draw |HE|.  Let the  FEH be alpha. These are the arcs that 

the alpha sees in the two circles. 

Warrant: The arcs of the Alpha angle seen on the two circles are equal 

to each other. Therefore, the chords they see are equal to each other. 

Rebuttal: - 

Claim: |FH|=|GH|   

35 Data: |CH| and |HD| are drawn. |CD| is drawn. CE| and |DE| are drawn.    

Warrant: Since |CD|, |CH|, |HD|, |CE| and |DE|, they are all equal to 

the radius of the triangle, they are all equal to each other. 

Rebuttal:  - 

Claim: CHD and CED are equilateral triangles. 

36 Data: CHD and CED are equilateral triangles. (Claim 35).  Because  

 HCD =  DCE= 60° , it is  HCE=120° 
 
  

Warrant: Since HDE is the arc which was seen by the central angle 

HCE.  

Rebuttal: - 

Claim: arc HDE =120° 
   

37 Data:  arc HDE =120°   (Claim 36) 

Warrant: Since it is inscribed angle, the measurement of the angle 

 HFE is equal to the half of the chord it sees. 

Rebuttal: - 

Claim:It is   HFE = 60°. 

38 Data: |FH|=|GH|  (Claim 34),  HFE = 60° (Claim 37)   

Warrant: Since FGH is an isosceles triangle and its one base angle is 

60 degrees, The other angles are also 60°. 

Rebuttal:  - 

Claim: The triangle FGH is an equalateral triangle. 

39 Data:  The triangle FGH is an equilateral triangle. (Claim 38).  

|FG|=6 unit.      

Warrant: On equilateral triangle if the area formula A=a
2
√3:4  is 

applied. 

Rebuttal:  - 

Claim: The area of the triangle FGH is 9√3   

40 Data: Point G is dragged up to point E. The triangle disappears. 

Warrant: When we calculate the area, GeoGebra showed like this. 

Triangle disappeared and area was calculated as ‗undefined‘. 

Rebuttal:  - 

Claim: When the point G is dragged onto the point E, the area of the 

triangle becomes undefined so minimum area is undefined. 
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41 Data:  - 

Warrant: The point F is dragged upto the point H. The area 

disappeared.   

Rebuttal: Is the area zero? The area can not be zero. The minimum 

area is larger than zero. 

Claim: The area of the triangle FGH is minimum zero. 

42 Data:  - 

Warrant: The point G is dragged to the point E in GeoGebra. 

Rebuttal:  - 

Claim: The maximum area fort he FGH triangle is when the chord 

FGE is the tangent to the circle that is D centered. 

43 Data:  - 

Warrant: Because of the arc that the angles sees, It is always 

equilateral triangle according to the solution way that Özde shows. 

Rebuttal:  - 

Claim: FGH triangle is an equilateral triangle in all cases. 

44 Data: (Claim 42 and Claim 43).   |CF|, |CG| and |CH| are combined. 

These lenghts are equal to R.   

Warrant: It is  FCG= FCH= HCG=120°.  In 30-30-120 triangle, the 

isosceles are R, and the long edge is R√3. One edge of the FGH 

triangle is R√3. If we put it in the triangle area Formula. 

Rebuttal:   - 

Claim: The area of the triangle FGH is maximum (3R
2
√3):4   

45 Data: With GeoGebra dragging, FGH triangle is drawn as its one edge 

is 2R.  

Warrant: For example, when I draw a chord from E, when I take the 

extension, it cuts that triangle outside, then G is out there. 

Rebuttal: But if we do the drawing in that way, we change the 

question. The question says the chord that is drawn from E. Is it true 

that we should do it with the line that passes from | FE |? Here the 

chord is divided into two. The chord is the line segment. G point can 

cut the D centered circle at maximum E point. When we continue, G 

point is not on the chord  | EF | . 

But would that be the extension of the chord? The chord is formed by 

joining two points on the circle. 

If the G point continues, it is not on the chord  | EF |.  There becomes 

two chords, | EF | and | EG | In fact, there is a line passing through the 

circles, not a chord. The question talks about a chord drawn from E. 

That's not all. 

Claim: The largest FGH triangle forms when its one edge is 2R. 

46 Data: |FH|  and | HO|  are drawn.   HOF = α. The arc FH is α olur.  

Arc HG =180-α..  HFO = 90-(α/2). 

Warrant:  - 

Rebuttal: It is not equal. FHE =α/2  but  EHO = 90-α   

Claim: |FH|=|HO|   
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47 Data: Let‘s say |FE|=x , |EG|=y. 

|CE|=|ED|=a. |FH| and |HG| are drawn. 

Warrant: The triangle FGH is a right angled triangle. And, an altitude 

was drawn to the hypotenuse. Euclidean formula can be applied. 

|HE|
2
=x.y     

Rebuttal:  - 

Claim: |HE|=√x.y 

48 Data:  |HE|=√x.y  (Claim47) 

Warrant: In circle there is the intersecting chords theorem. If x.y=a.a,   

a
2
=|CA|

2
=x.y   

Rebuttal:  - 

Claim: |CA| =√x.y. 

49 Data:  - 

Warrant:  - 

Rebuttal:  - 

Claim: If |FG| and |CD| overlaps, there is no intersection of |HE| and 

|CD|. 

50 Data:  - 

Warrant:  - 

Rebuttal:  - 

Claim:  When  |FG | and  |CD | overlaps, |HE| and |CE| can not be 

equal. 

51 Data:  The shape given is drawn with GeoGebra. |FG| is moved by 

being dragged and overlapped with |CD|. 

Warrant: |EH| and |CE| are both equal to the radius of the hemicyle. 

Rebuttal:  - 

Claim: When FGE overlaps with |CD|, |EH|=|CE| again. 

52 Data:  The shape is drawn with GeoGebra. |CD| and |FG| is dragged as 

in the figure. 

Warrant: If this angle is 90 degrees, that angle is also 90 degrees… 

Ohh, It is 90 degrees. When we bring this here as if it is the diameter… 

Look, this is |FG|. 

Rebuttal: |CE| here is equal with what on the screen? The letters are 

different.When it is diameter, it is not equal. 

Claim: If FEG is the diameter of the large circle, |EH|=|CE|. 

53 Data:  The segment FEG is dragged until it overlaps the diameter of 

the big circle.   

Warrant:  HEF =90. |EH| and |CE| becomes the radius of the big 

circle. 

Rebuttal: - 

Claim: When segment FEG overlaps the diameter of the big circle, 

|EH|=|CE|. 

54 Data:  Geogebra dragging. 

Warrant: In the givens |HE| was on the left side of the center. 

However, after dragging FEG, it passed through the center of the 

circle. I think |HE| should not glide. Geogebra begaves according to 
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our drawing choices. Therefore, there is a problem in our drawing. We 

should immobilize some points. After dragging, |HE| should stay on 

the left side of the circle. 

Rebuttal: But |HE| is still perpendicular to FEG. I think there is no 

problem in the gliding of the |HE| to the center.  

Claim: |EH|≠|CE| when FEG coincides with |CD|. 

55 Data:  The givens of the task is drawn. We draw |FH| and |GE|. 

Warrant:  FHG =90° since it is inscribe angle which sees the 

diameter.  Euclidean formula can be applied in right triangle. 

Rebuttal:  - 

Claim: |HE|
2
 = |FE|.|EG|  

56 Data: We drew the chords |CF| and |DG| .   

Warrant: Let the measure of  CEF and   GED be α. alternate-interior 

angles.  CFE is equal to  GDE since they both see the same arc and 

they are the inscribed angles. The third angles of the triangles are also 

equal.     

Rebuttal:  - 

Claim: The triangles CFE and GDE are similar triangles.  

57 Data: │CE│=│ED│       

Warrant: The triangles CFE and GDE are similar triangles. (Claim 

56). We  can use the intersecting chords theorem in circles and write 

this equation.  

Rebuttal:  - 

Claim: │CE│
2 

= │FE│.│EG│   

58 Data:  |HE|
2
 = |FE|.|EG|  (Claim 55 

│CE│
2 

= │FE│.│EG│  (Claim 57)  

Warrant: │HE│
2 

=│CE│
2 

 If the squares of two number is equal, 

these numbers will be equal to each other.  

Rebuttal:  - 

Claim: │CE│=│HE│   

59 Data:  Drawing the shape with GeoGebra. 

Warrant: We measured the |CE| and |HE| with the measure tool of 

GeoGebra. By dragging the shape, it is seen that in almost all cases the 

segments are equal to each other.   

Rebuttal:  - 

Claim: │CE│=│HE│ 

60 Data:  |OG|=a (radius), |EO|=x, |FE|= a-x . 

|CE|=|ED|=y.  Let  HEG =90 °. 

Warrant: By using the intersecting chords theorem in circles,  a
2
-x

2
=y

2
 

=|CE|
2 

.
 

And then a Pytagorean formula in right triangle is applied to triangle 

HEO  |HE|
2
= a

2
-x

2 
. 

Since │CE│
2
=│HE│

2
   

Rebuttal:  - 

Claim: │CE│=│HE│ 

 

http://tureng.com/tr/turkce-ingilizce/alternate-interior%20angles
http://tureng.com/tr/turkce-ingilizce/alternate-interior%20angles
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61 Data:  The segment FEG is dragged until it becomes the diameter of 

the big circle.     

Warrant:  - 

Rebuttal:  - 

Claim: When FEG is the diameter of the big circle│CE│=│HE│. 

62 Data:  The segment FEG is dragged until it overlap on the segment 

|CD|. 

Warrant: |CE| = |HE| since they are both radius of the same circle. At 

the beginning of the solution we did not know the lenght of FEG. After 

dragging, the lenghts of the segments changed. In the givens, it says 

that  |HE| passes through the midpoint of the chord |CD|. But when we 

dragged, The midpoint of the |CD| became the center of the circle. In 

the givens, it says that  |HE| divides the chord |CD| into two and is 

perpendicular to the diameter of the half circle. The only segment can 

be drawn from the center of the circle in such a situation.  

Rebuttal: In the given shape, |HE| does not pass through the center of 

the circle.  It should not pass through the center after dragging the 

shape. I think  |CD|=FEG  at the beginning in otder to overlap after 

dragging. Thus, |HE| should pass on the left side of the cnter of the half 

circle. . 

Claim: When |CD| overlapsthe segment FEG,  |CE|=|HE| . 

63 Data:  FEG is dragged until it becomes the diameter of the big circle. 

We know that |CE| and |ED| are radius. Then, this line will be 

perpendicular to |CD|.   

Warrant: If a segment divides the chord into two and it passes from 

the diameter of the circle, it should be perpendicular to the diameter.  

Then this segment is also a radius. Both segments are the radius of the 

big circle so they are equal to each other. 

Rebuttal:  - 

Claim: When FEG is the diameter of the big circle |CE|=|HE|. 
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D: ARGUMENTS OF THE PAPER-PENCIL GROUP 

 

The arguments in this study have been analyzed by means of schematization 

based on Toulmin‘s argument layout as in the following sample argument. 

 

In the table below, the contents of the argument components put forward by 

the participants in the Paper-Pencil group are presented. There are some argument 

components that do not exist in some of the arguments. The explanation/contents 

box for these components are left blank in the table. 

Argument 

No: 

Contents of the Argument Components 

1 Data:  - 

Warrant: - 

Rebuttal: - 

Claim: The points F anf G can be placed vice versa. The places of 

them can be changed.  

2 Data: The midpoints of the |AC| and |AB| is drawn. The points F and 

G are placed on the segment  |BC|  in such a way that  |DG| and |EF| 

intersects at point H.  |AH| is drawn. Let |FG|=a, |BF|=b=|CG|  

Warrant:  - 

Rebuttal: Why? It is not an isosceles triangle. 

Claim:  Then |AH| becomes an angle-bisector when the triangle ABC 

is an isosceles triangle.  

3 Data: An equilateral triangle, the side of which is 6a unit is drawn. 

The givens of the task are drawn. It is assumed that |AH| is an angle-

bisector.    

Warrant:  - 

Rebuttal:  - 
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Claim: Then, |HI| also became an angle-bisector.  

4 Data:  A triangle is drawn . D and E points are placed.  

Warrant: In the givens it says that the segments |DG|  and |EF| should 

coincide to create the point H. 

Rebuttal:  - 

Claim:  The points F and G should be placed on the segment |BC| in 

the order of ‗B-F-G-C‘. 

5 Data: Assume that|BD|=|DA|= x , |AE|=|EC|=y.  |BG|=|CF| so |FG|=2a, 

|BF|=|GC|=b. |DE| =a+b is drawn. Two equations are written by using 

Menelaus‘s theorem and the similarity ratio between parallel lines.   

Warrant: The Melanous‘s theorem is applied two times from different 

directions and they were solved together to find a=z.  

Rebuttal:  - 

Claim: |AH| is a median in all type of triangles. 

6 Data:  (Claim5)  

Warrant: In all triangles, median is not angle-bisector at the same 

time.  

Rebuttal:  - 

Claim: |AH| is not angle-bisector in all triangles.  

7 Data:  (Claim5 and  Claim 6) 

Warrant: The angle-bisector ratios are written on the sides of the 

triangle.  2x/a+b=2y/a+b . In order the equality to be satisfies x should 

be equal to y. That means |AB|=|AC|. 

Rebuttal: In scalene triangles, x will not be equal to y so the equality 

will not be satisfied.  

Claim:  |AH| is angle-bisector in isosceles and equilateral triangles.  

8 Data: Let the midpoint of the segment |BC| be Z.  |DE|, |DZ| and |EZ| 

are drawn. The ADZE parallelogram is formed.  

Warrant: In parallelogram the opposite edges and angles are equal to 

each other. If |DE|=|AZ| in ADZE paralleolgram. 

Rebuttal: We cannot know whether or not the extension of |AH| will 

pass through the intersection point of the intermediate bases. 

Claim: The extension of |AH|  is the point Z. Namely, Z is the 

intersection point of the intermediate bases of |DZ| and |EZ|.  

9 Data:   - 

Warrant: In order the |DG| and |EF| intersect and form the point H. 

Rebuttal:  - 

Claim: The points F and G should be placed on the segment |BC| in 

the order of ‗B-F-G-C‘. 

10 Data:   - 

Warrant:  - 

Rebuttal:  - 

Claim: When points F and G move (dragged), point H will move on 

the line passing through AT. 

11 Data: We combined  |AF| and |AG|.  

Asssume that |DG| and |EF| are perpendicular to the sides |AB| and 
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|AC|  respectively.  

Warrant: When we look at the triangles ECF and EFA. Because of the 

Side-Angle-Side similarity in triangles |FA|=|FC| = x+y 

In the same way, because of the similarity in triangles DGB and DGA, 

|AG|=|GB|= x+y.  

Rebuttal:  - 

Claim: Triangle AFG is an isosceles triangle.  

12 Data: |DG| is perpendicular to |AB| and |AD|=|DB|. We found AF=AG 

from side-angle-side similarity before. In triangle AGB, GD is an 

altitude and a median.   

Warrant: If a segment is both median and an altitude, it will also be an 

angle-bisector in any triangle.   

Rebuttal:  - 

Claim: |GD| is the angle-bisector of   AGB.   

13 Data:  |FE| is perpendicular to |AC| so it is altitude and |AE|=|EC|. 

Warrant: If a segment is both median and an altitude, it will also be an 

angle-bisector in any triangle.   

Rebuttal: - 

Claim: |FE|  is the angle-bisector of   AFC.  

14 Data:  |GD|  is the angle-bisector of   AGB (Claim12). |FE|  is the 

angle-bisector of   AFC. (Claim13).    

Warrant: But |AH| is the same line. Isn‘t it the angle-bisector of 

 BAC?   

Rebuttal: |AH| becomes the angle-bisector of  FAG. Not the angle-

bisector of the big triangle (ABC).  You are assuming that 

 BAF= GAC . We cannot know that.  

Claim: |AH| is the angle-bisector of    BAC. 

15 Data:  - 

Warrant: Previously we found AFG as isosceles triangle. |AG|=|AF|   

Rebuttal:  - 

Claim:  AFG =  AGF. 

16 Data:  (Claim 15) 

Warrant: Triangle AFG is isosceles and |AH| is the angle-bisector of 

 BAC.  

Rebuttal:  - 

Claim: The line passing through |AH| is perpendicular to |BC|. 

17 Data: (Claim 12, Claim 13, Claim 15 and Claim 16). |AH| is 

perpendicular to |BC|. 

|AH| divides |FG| into two equal segments as y/2 and y/2 .    

Warrant: In triangle ABC üçgeninde |AZ| is angle-bisector since it is 

both median and altitude. It suits also the angle-bisector relation. 

2c/(x+(y/2)) = 2d/(x+(y/2))   

Rebuttal: But we assumed that |FE| and |GD|  are perpendicular to the 

segments |AC| and |AB| at the same time, respectively.  Is such a 

situation can not exist, this solution is wrong.  

You said that equilateral triangle but in the figure |FE| and |DG| are not 
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the medians of triangle ABC. In the same way, point H is not the 

intersection point of the altitudes in triangle ABC.  

Claim: In equilateral triangles |AH| is the angle-bisector of  BAC.   

18 Data: The extension of |AH| divides  |FG| into two equal segments.   

Warrant: The angle-bisector is drawn but it will not pass through 

|AH|.  It will not satisfy the givens of the task. |AH| is drawn in such a 

way that it divides |FG| into two equal segments.  

Rebuttal:  - 

Claim: In scalene triangles |AH| cannot be an angle-bisector. 

19 Data:  (Claim17) 

Warrant: Equilateral triangles are isosceles triangles at the same time.  

Rebuttal: In the drawing, point H is not the intersection point of the 

altitudes or medians of the triangle ABC.   

Claim: If |AH| becomes angle-bisector in isosceles triangles, it will be 

angle-bisector of the equilaterat triangles also.  

20 Data:  (Claim 11 and Claim 15). The only assumption is that  the 

perpendicular segments being at the same time.  

|AF|=|AG|.   |AH| is the angle-bisector of  FAG.  

Warrant: |DG|=|FE| (Claim21).  |BD|=|EC| ,  c=d (Claim22). 

Rebuttal: Right now, the 90 degree is also our assumption to be 

proved.  

Claim: In both equilateral and isosceles triangles, |AH| will be the 

angle-bisector of  BAC.  

21 Data:  -  

Warrant: A.A.A smilarity. BDG≈ CEF triangles are identical. 

You can say that the edges are equal to 90 degrees. 

Rebuttal: The angles are the same but the triangles are not similar 

Claim: |DG|=|FE| 

22 Data:  - 

Warrant: A.A.A smilarity. BDG≈ CEF triangles are identical. 

You can say that the edges are equal to 90 degrees.  (Warrant 21) 

Rebuttal:  - 

Claim:  |BD|=|EC| . That is, c=d. 

23 Data:  ABC Isosceles triangle.  |AE|=|EC|   

Warrant: ABC isosceles triangle | BE | is perpendicuar to | AC | hence, 

FE could not be perpendicular to  | AC | at the same time. 

Rebuttal: How do you know that height pass through the middle of the 

|AC|? The height you draw from corner B can be parallel with| FE |. To 

be so, the ABC must be an equilateral triangle. 

You are coming off the side of the isosceles triangle hill, not the 

height. So it does not come to E point. You need to download from A 

Claim: |FE| can not be perpendicular to |AC| 

24 Data:   - 

Warrant: Because, in our first drawing, perpendicular bisectors were 

drawn. 

Rebuttal: Then the result would be wrong for the isosceles triangle. 
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Something that is not right at the equilateral triangle is not even in the 

isosceles triangle. 

Claim: In an equilateral triangle |FE| and|GD| could be perpendicular 

to sides of |AC| ve |AB| respectively. 

25 Data:  - 

Warrant:  - 

Rebuttal:  - 

Claim: The result is the same when F and G are replaced. 

26 Data: |BG|=|GC|.  |GF|=x, |FC|= y, |EG|=z, |BE|=x+y-z  

Since |NE|//|AB| then |HA|=yk, |HB|=(2x+y)k 

Since |HF|//|AC| then |NA|=(x+y-z)c, |NC|= (x+y+z)c 

Warrant: If we apply the Menelaus theorem: (x/2xy).(2xy/y). 

|AP|/|PG|=1 

Since |PG|.x=|AP|.y   |AP|/|PG|=x/y is found. 

There is a similarity in triangles.BCA ≈ BFH ve CBA ≈ CEN  

Rebuttal:  - 

Claim: |PG|=ys  , |AP|=xs 

So |PG| is multiple of y,|AP| is multiple of x. 

27 Data:  - 

Warrant: |HF|//|AC| ve |NE|//|AB|. ANPH quadrilateral is a 

parallelogram. 

Rebuttal:  - 

Claim: |AN|=|HP| and |HA|=|PN| 

28 Data:  (Claim26) 

Warrant: FEP≈FBH are similar triangles, |PE|// |HB|.     

Rebuttal: - 

Claim: |EP|=(x+z)k 

29 Data:  (Claim 25 and Claim 26) 

Warrant: EPF≈ENC are similar triangles |PE|// |HB|     

Rebuttal: - 

Claim: |FP|=(x+z)c  

30 Data:  - 

Warrant: Since  |AB|//|EN| ve |AC|//|HF| , would not the third be 

parallel? 

Rebuttal: - 

Claim: |BC|//|HN|   

31 Data:  (Claim26, Claim28 and Claim29). |HN| is drawn. Then it is 

assumed that |HN|//|BC|. 

Warrant: HNP≈FEP are similar triangles. 

     KP:PE = HP:PF .   yk: (x+z)k= (x+y-z)c : (x+z)c  

Rebuttal: We need to prove that |HN|//|BC| in order to say it is true. 

Claim: |EG|=|GF|.      z=x 

32 Data:  (Claim 31),   The ABC triangle is an isosceles triangle or an 

equilateral triangle. 

Warrant: We can generalize to all the triangles because we make the 

solution over a scalene triangle. 
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Rebuttal: - 

Claim: |EG|=|GF|   

33 Data:  :  |AP|=xs,  |PG|=ys. The shape is drawn. In the first drawing, 

y=|FG|.  Take |BE|=2x, |EG|=x=|GF|, |FC|=2x   

y=2x . z=x  (Claim 31) 

Warrant: |BE|=|EF|=|FC|,   x+y-z=z+x=y. If we put x instead of z , 

2x=y.  We said that |AP|:|PG|. And  xs : ys. |AP|:|PG|= x:2x. 

Rebuttal: - 

Claim: If |BE|=|EF|=|FC| is, P point must be in proportion to 

|AP|:|PG|=1:2. 

34 Data:  ABC triangle is any triangle, Take  |EP|//|AB| and |FP|//|AC|. 

|EG|=a , |GF|=b, |BG|=|GC|=x 

Warrant: GEP≈GBA and GPF≈GAC are similar triangles. Common 

edges of those are| AG |. When the similarity ratio is written: 

It is |GP|:|AG|=ak:xk=b:x (x and k are simplified).   a=b. 

Rebuttal: - 

Claim: In all triangles   |EG|=|GF|     a=b     

35 Data:  Assume ABC is isoscelene triangle . |AB|=|AC|.  

The measure of angle B is same with that of angle C.  

Warrant: |AG| is perpendicular to |BC| and bisector. |AG| is also 

bisector of angle of EPF. Due to parallelism triangle EPF is isoscelene 

triangle. Hence |EG|=|GF| 

Rebuttal:  - 

Claim: |EG|=|GF|   

36 Data:  Assume ABC is equileteral triangle. |AG| is bisector, altitude 

and median. |AG| divides angle A into two with 30-30 degrees.. 

Warrant: |EP|//|AB| ve |FP|//|AC| olduğundan |EP|=|FP| olur açılardan.  

In the EPF triangle, altitude drawn from the top is bisector and also 

median. 

Is not it obvious that a triangle similar to a big triangle is formed 

because of parallelism?   

Rebuttal: - 

Claim: |EG|=|GF| 

37 Data:  (Claim 34), Assume |EF|=|FG|=a and  |BE|=|FC|=2a 

Warrant: Since GEP ≈ GBA triangles are similar 

a:3a=|PG|:|AG|= 1:3. 

Rebuttal: - 

Claim: The position of the P point should be such that  

| AP |: | PG | = 2:1 for any other triangle. This point is the center of 

gravity in equilateral triangle. 

38 Data:  Assume |EG|=z, |GF|=x, |FC|=y ve |BE|=x+y-z. 

Warrant: |EP|//|AB|, |FP|//|AC|. FPE≈FKB ve ECT≈EFP triangles are  

similar. Because of this similarity, the multiples are written on the 

edges and the Melanous theorem is applied. 

x:(2x+y) * (2x+y)k:yk * |AP|:|PG|=1 

Rebuttal: - 
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Claim: There is a ratio that |AP|:|PG| = x:y 

39 Data:  FEP≈FBK .  Since |EP|//|AB|, |FP|//|AC|,  

|KP|=(x+y-z)c and |PT|=yk. 

Warrant: |KT| is combined (which is parallel to |BC|). |KT|//|BC|. 

Again due to proportionality of | KP |: | PF | = | TP |: | PE | it was found 

that x = z. 

Rebuttal: -  

Claim: |EG|=|GF|  ,      z=x    

40 Data: (Claim 39). |BE|=|EF|=|FC| is desired. 

Warrant: Let's solve it according to the letters we give such as x + y-z 

= z + x = y. We know that z = x. Here 2x = y. We found that| AP | = xs 

and | PG | = ys. 

Since at base, |BE|=2x and |EG|=x, due to similarities of triangles of 

AGB≈PGE, it will be found the ratio of | AP |: | PG | = 2: 1. We wrote 

'xs' and 'ys' are in the wrong place. 

Rebuttal: But you found the opposite. It's not the center of gravity 

then. 

Claim: |AP|:|PG|=1:2   

41 Data: |HD|=|DE|=|EH|=|EC|=|CD|=R 

HCD and  ECD  are equilateral triangles. The radiuses of the circles 

are equal to each other. |GD| is drawn.     

Warrant: GDFH becomes deltoid. Triangle FGH is equilateral. We 

can apply the area formula of equilateral triangles A
2
√3/4.  

Rebuttal: - 

Claim: The area of triangle FGH is 9√3. 

42 Data:  Assume that  EDG = 2α,  GDH = 2ᵝ .  
Warrant:  GFH and   GHF are the same (90-α+ᵝ)/2. |GH|=|GF|    

Rebuttal: My theorem did not work. I wrote wrong letter. The arc |DH| 

cannot be 90-beta since the angle is not in the center of the circle.   

Claim: FGH is an isosceles triangle.  

43 Data: |CD|, |DE|, |EC|, |HD|, |GD|, |CH|  are drawn.   

|CD|=|DE|=|EC|=|HD|=|CH|=r 

CDE and CHD are equilateral triangles.     

Warrant: Since  HCD= 60 º , the arc HD will also be 60 º. In the 

same way,  DCE =60 º so the arc DE = 60 º.  HFG is the inscribed 

angle which sees the arc measured 120 º.   HFG =120:2=60 º. 

Rebuttal: - 

Claim:  HFG = 60º. 

44 Data:  |CD|=|DF|=|DH|=R. 

Warrant: Three sides of the rectangle are equal to the radius. Isn‘t the 

fourth side be equal to the radius?  

Rebuttal: Does it have to be radius? But we do not know the angle.  

Claim: |HF| = R. 

45 Data: The circles with centers C and D  are identical.  |CH|, |HD|, 

|CD|, |CE| and |DE| are drawn.    

Warrant: |CH|=|HD|=|CD|=|CE|=|DE| = r   Since all of them are 
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radius.  

Rebuttal: - 

Claim: Triangles HCD and CDE are equilateral. 

46 Data:  HCD = DCE=60º   

HCE = 120 º and it is central angle. The arc HDE = 120 º .   

Warrant:  HFG is the inscribed angle which sees the arc measured 

120 º . 

Rebuttal: - 

Claim:  HFG = 60 º. 

47 Data:  |CD| is extended anf it intersected with the circle (C centered) at 

point A.  |AD| becomes the diameter. |AF| and |FC| are drawn.    

Warrant: Arc HD=60 º . Arc AF=60 º . |FE| and |AD|  formed 

alternate-interior angles at the center of the circle the center of which 

is C.     ACF =60 º. |FH| will be 180-(60+60)=60 º. 

Rebuttal: How does the alternate-interior angle be 60 º? 

I am drawing the whole shape in a smaller shape again. You extended 

|CE| and combined it with point F. That part of the drawing is not 

linear. You draw the chord FE as if it crosses from the center point C. 

But in the original shape it does not cross from the center. 

Claim: Arc |FH| =60 º. 

48 Data:  (Claim45 and Claim46). Since arc HDE = 120 º  then arc HCE 

yayı will be 120 º also. The major arc of HE=360-120=240 º.   

Warrant:  HGE sees the arc of 240 º so its measure is 120 º.  60 º  

remained to  HGF. So  FHG =60 º. 

Rebuttal: - 

Claim: Triangle FGH is an equilateral. 

49 Data: Let the chord drawn from point E pass through point C. One 

side of the triangle becomes radius.    

Warrant:  - 

Rebuttal: No. I think you can drag the chord |EF| beyond point C. You 

can pass the center C and the triangle becomes larger. 

Claim: For the triangle FGH with maximum area, the chord drawn 

from point E should pass through point C.  

50 Data:  - 

Warrant:We did not use the 6unit while solving the question. We used 

the arcs.  

Rebuttal: - 

Claim: When the chord |EF| is dragged, the triangle FGH is observed 

as equilateral triangle all the time.  

51 Data:  (Claim50), Sinus formula of an area is  (½).a.b.Sin . 

Warrant: The edge of a  maximum of a  triangle becomes R.  

The formula of (½).x
2
.Sin   is derived. Derivative of the formula: 

2X√3/4 

For the an edge of the triangle R is put instead of X. Area becomes 

A=2R√3/4= R√3/2    

Rebuttal: Why did you use the derivative?  You found the growth rate. 
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Claim: The maximum area of the FGH triangle becomes R√3/2. 

52 Data: It bocomes when the chord drawn from point E passes through 

point H, isn‘t it?   

Warrant: - 

Rebuttal: - 

Claim: The maximum area of the FGH triangle becomes zero. 

53 Data:  When the same procedure is applied to triangle FGH  it will be 

equilateral triangle again. Radius of the circles is R.    

Warrant: When we dragged the point F to the right, triangle expands, 

when we shift the point F to the left it becomes smaller. The biggest 

triangle becomes when the chord of |FE|  passes through the center of 

point C. 

Then the triangle don‘t  pass through the center. Still we don‘t know 

whether it is equilateral triangle or not.. 

Rebuttal: why doesn‘t it become true when the chord of  |EF| is 

dragged even more? Why it becomes the greatest triangle when 

passing through the center? According to Hande‘s solution the angle of  

HGE becomes again 120
o
, the angle of GFH becomes again 60

o
. So 

the equilateral triangle is not distorted. Still providing even if passes 

the center (point C) 

Claim: The maximum area of the FGH triangle becomes (R
2
√3)/4. 

54 Data:  - 

Warrant: The smallest triangle becomes when point F overlaps with 

point H. Triangle got lost. There is no triangle so no area. 

Rebuttal: - 

Claim: The area of FGH triangle becomes minimum 0. 

55 Data:  The chord |FE| is drawn in such a way that it will be tangent to 

the circle with D centered. C-centered circle becomes the circumcircle 

of FGH triangle. One edge of the triangle is R√3. 

Warrant: - 

Rebuttal: - 

Claim: The largest FGH triangle becomes, when the chord | FE |  is 

tangent to D centered circle at point E. Area becomes (3R
2
√3)/4 

56 Data:  (Claim53 and Claim55) 

Warrant: If I enlarge further,  the chord | EF | does not cut the second 

circle and triangle does not occur. But then we do not mean to draw a 

chord. Instead two chords occured. Chord is a segment which cuts the 

circle at two point.  Therefore, the situation that we drew the radius of 

circumcenter is true. 

Rebuttal: Is chord a line? Here it is. It cuts circle at points F and G. 

Claim: The largest FGH triangle occurs, when the chord | FE | is 

tangent to the D centered circle at E point and area becomes (3R2√3)/4 

57 Data: Point E was a midpoint. It says |FG| is diameter. The line 

passing through EH is perpendicular to diameter |FG| and cuts the 

radius at point H.   

Warrant: Angles are different 
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Rebuttal: But angles are the same since teacher mentioned it in the 

question 

Claim: |HE| is not equal to |CE| 

58 Data:  - 

Warrant:  - 

Rebuttal:  - 

Claim: |FE|. |EG| = |CE|. |ED| 

59 Data: |CE|=|ED|=a and |FE|=2b, |EG|=2c .  

Warrant: |CE|.|ED|=a.a=2b.2c =4bc. 

Rebuttal: - 

Claim: |CE|=√4bc 

60 Data:  Let the center of the half circle be 'O' 

|OG|=b+c and |EO|=c-b.  Let it |HE|=t and  |HO| is drawn. 

Warrant: t
2
=(b+c)

2
-(c-b)

2
      then      t

2
=4bc. 

Rebuttal: - 

Claim: |HE|=√4bc 

61 Data:  |CE|=√4bc (Claim59), |HE|=√4bc (Claim60),    T
2
 equals to A

2
. 

Warrant: - 

Rebuttal: - 

Claim: |HE|=|CE|   

62 Data:  If we draw the|HF| and |HG| 

Warrant: because it is the inscribed angle viewing the diameter 

Rebuttal: - 

Claim:  FHG= 90 º  . 

63 Data:   FHG= 90 º  (Claim62) 

Warrant: Euclid 

Rebuttal: - 

Claim: T
2
 = 2b.2c   

64 Data:  |CD| and FEG overlaps. |HE| is drown left side of the center. 

|HC| and |HD| are drown. The midpoint of the |CD| is E, ,isn‘t it? 

|CE|=a.  

Warrant: |HO| is drawn and it is found by pythagorean theorem as 

well.There is an Euclidean theorem in the right triangle HCD. 

|CD| is diameter. Because the   CHD is inscribed angle viewing the 

diameter, it is 90 degree. Euclidean theorem can be used there. 

        |HE|2=|CE|. |ED| 

       | HE|
2
=a.a=a

2
         

Rebuttal: But here |HE|=√4b and |CE|= 2b. They are not equal to each 

other 

Claim: When |CD| and FEG overlaps, still |HE|=|CE|  .  

65 Data: |HF |and |FG| are drawn 

Warrant: |CD| is diameter of half circle. Inscribed angle viewing the 

diameter it is 90 degree. 

Rebuttal: - 

Claim:  FHG =90º. 

66 Data:   FHG =90º (Claim 65). Let the center of the half circle be 
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point ‗O‘.  |FE|=a, |EO|=b, |OG|=a+b. And |HE|=y . 

Warrant: We applied the Euclidean formula in right triangle FHG 

|HE|
2
=y

2
=a(a+2b). 

Rebuttal: -  

Claim: |HE|
2
=y

2
=a(a+2b) 

67 Data: |CE|=|ED|=x. Let the center of the half circle be point ‗O‘. 

|FE|=a, |EO|=b, |OG|=a+b. 

Warrant: Inner force in a circle is used |CE|.|ED|=|FE|.|EG|.    

Rebuttal: - 

Claim: x
2
=a(a+2b) 

68 Data: |HE|
2
=y

2
=a(a+2b) (Claim 66) ve x

2
=a(a+2b)   (Claim 67)   

Warrant: the lenghts cannot be negative. 

Rebuttal: - 

Claim: |HE|=|CE|       ,      y=x.    

69 

 

Data:  The end points of the chords joined together. The segments 

were named as x, y, z and t.  

Warrant: The chord lenghts of opposite (alternate) angles are written 

based on the Cosinus theorem. X
2
+T

2
-2XT.  

Rebuttal: There is no parallelism, so there cannot be similarity. Only 

one angles of triangles are equal so similarity cannot exist. 

Claim: x.y=z.t  (intersecting chords theorem) 

70 Data:  The end points of the chords joined together. 

Warrant: The inscribed angles which see the same lenght are equal to 

each other in circles so the angles are found to be equal.  ECG= DFG 

 GEC=  GDF, and  EGC= DGF 

Then A.A.A similarity exists.  x.y=z.t .  

No it is an inscribed angle. You do not need a central angle. 

Rebuttal: Does not G have to be in the center? 

Claim: The intersecting chords relation in circle is calculated by  

x.y=z.t.  

71 Data: |CE|=|ED|=x, |FE|=a, |EG|=b, |HE|=c. Half circle is completed to 

the whole circle. FEG is the diameter of that circle.   

Warrant: |HE| is extended and intersected with circle at point K. If I 

named |HE|= c,  |EK|= c ince this is the diameter.  We can apply 

intersecting chords theorem in both circles: 

c
2
=a.b  and x

2
=a.b  so x=c. 

Rebuttal: - 

Claim: |HE|=|CE|              

72 Data:  Let the center of the half circle be ‗O‘.  |HO| is drawn. Let the 

diameter of the half circle be 2b+2c.  |FE|=2b, |EO|=c-b, |OG|=b+c, 

|HO|=b+c. 

Warrant: From the intersecting chords teorem in circle x.x=2b.2c 

               |CE|=x=√4bc. 

HEO is a right triangle. Using the Pythagorean formula  

|HE|
2
=(b+c)

2
-(c-b)

2
    |HE|=√4bc. 

Rebuttal: - 
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Claim: |HE|=|CE|              

73 Data:  FEG is drawn so as it would be the diameter of the big circle.  

Then, the half circle and the big circle overlaps. |CD| is drawn.  

|CE|=|ED|=x, |FE|=a, |EG|=b. Point H is formed by drawing a 

perpendicular to the diameter at point E. |HE| is extended and 

intersected with circle at point K.  

Warrant: |HE| is equal to |EK|  since it is perpendicular to the 

diameter.  |HE|=|EK|=c. From the power of point relation in circles, 

x
2
=a.b   and c

2
=a.b.  x=c  

Since we found x=c  that means  |CD|  is perpendicular to the 

diameter.|CD| and |HK| became the same chord.  

Rebuttal: - 

Claim: When FEG becomes the diameter of the big circle |HE|=|CE| .             

74 Data:  Half circle is drawn in such a way that its diameter be |CD|. 

Point H is formed by drawing a perpendicular line to the diameter of 

the half circle. |CE|=|ED|=r, |HE|    It is perpendicular to |CD| . 

|CH| and |HD| are drawn. 

Warrant:  CHD = 90 º since it sees the diameter of the circle. 

Euclidean formula can be applied in triangle. |HE|
2
=r.r.      

 |HE|= r=|CE|.   

|HE| is also the radius of the half circle at the same time.  We proved 

that. Both of them are radius so they are equal.   

Rebuttal: - 

Claim: When segment FEG and |CD|  overlaps, |HE|=|CE| . 

 

 

  



248 

 

E: GLOBAL ARGUMENTATION STRUCTURES 

 

Source-Structure argumentations of GeoGebra group 

            

Source-Structure argumentations of Paper-Pencil group 

      

 

 

       

From GT 4 

From GT 2 

From GT3 
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Reservoir-Structure argumentations of GeoGebra group 

    

 

 

    

From GT1 

From GT3 
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Reservoir -Structure argumentations of Paper-Pencil group 

   

From GT4 

From GT1 
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Spiral-Structure argumentations of GeoGebra group 

    

From GT3 

From GT1 
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From GT2 

From GT2 
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From GT2 

From GT4 
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Spiral-Structure argumentations of Paper-Pencil group 

       

From GT4 

From GT2 
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From GT2 

From GT4 

From GT4 
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Line-Structure Argumentations of GeoGebra Group 

 

 

 

Line-Structure Argumentations of Paper-Pencil Group 

 

 

 

      

 

From GT4 

From GT3 

From GT1 

From GT3 
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Independent Arguments Structures of GeoGebra Group 

         

 

 

      

 

From GT2 

From GT3 
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Independent Arguments Structures of Paper-Pencil Group 

      

 

 

From GT4 

From GT1 



259 

 

       

       

 

 

       

 

 

From GT2 

From GT3 

From GT3 
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From GT4 

From GT4 

From GT4 
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F: LOCAL ARGUMENTS 

 

 

In the tables below, the numbers represent the argument numbers. For 

instance, ‗2‘ refers to the second argument while ‗41‘ refers to the 41st argument. 

Local Arguments of GeoGebra Group 

Local Argument Type Argument number 

1. DCW 2, 9, 28, 31, 40, 44, 63, 51, 52, 53, 54,  

2. DWC 6, 10, 12, 17, 18, 19, 20, 22, 23, 24, 25, 29, 30, 32, 34, 

35, 36, 37, 38, 39, 47, 48, 55, 56, 57, 58, 59, 60, 62 

3. CDW 21 

4. WDC 14, 27 

5. CD 46 

6. DC 1, 61 

7. CW 4, 7, 13, 15, 16, 26, 33, 41, 43, 45 

8. WC 5, 8, 11, 42 

9. C 3, 49, 50 

 

Local Arguments of Paper-Pencil group 

Local Argument Type Argument number 

1. DCW 6, 14, 19, 29, 32, 44, 56, 57, 62, 69 

2. DWC 4, 5, 7, 11, 12, 17, 20, 23, 26, 28, 31, 33, 34, 35, 36, 37, 

38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 59, 60, 63, 65, 

66, 67, 68, 71, 72, 73, 74 

3. CDW 8, 45, 64, 70 

4. WDC 13, 18 

5. CD 49, 55 

6. DC 2, 3, 61 

7. CW 9, 16, 21, 24, 27, 50, 52, 54 

8. WC 15, 22, 30, 

9. C 1, 10, 25, 58 
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G: ETHICS PERMISSION 

 

 

Approval of the Ethics Committe of METU Applied Ethics Research Center  
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H: TURKISH SUMMARY (TÜRKÇE ÖZET)  

 

ORTAOKUL MATEMATĠK ÖĞRETMEN ADAYLARININ 

ARGÜMANTASYON YAPILARININ TEKNOLOJĠ VE KAĞIT-KALEM 

ORTAMLARINDA ĠNCELENMESĠ 

 

 

Giriş 

 

1.1 Matematik eğitiminde argümantasyon  

Matematikte derinlemesine öğrenmenin anahtarları Ģüphesiz ki muhakeme ve 

ispattır. Alanyazındaki birçok çalıĢmada adı ispat ile birlikte anılan argümantasyon, 

matematik öğrenme konusunda oldukça önemsenmesi gereken bir yöntemdir 

(Conner, 2007b). Argümantasyon, bireylerin bilimsel iddialarını deneysel veya 

kuramsal delillerle destekledikleri ve değerlendirdikleri bilimsel tartıĢma ve sosyal 

etkileĢim sürecine verilen addır (Jimenéz-Aleixandre & Erduran, 2008). Bireyler 

argümantasyon sürecinde argüman oluĢturur, argümanlarının gerekçelerini sorgular, 

farklı bakıĢ açılarıyla sunulmuĢ argümanları değerlendirir ve bilimsel anlamda 

kaliteli açıklamalara ulaĢırlar (Driver, Newton ve Osborne, 2000). Conner ve 

diğerleri (2014b) argümantasyonun ve muhakemenin eĢ süreçler olduklarını 

savunmuĢlardır. Ulusal Matematik Öğretmenleri Konseyi (NCTM, 2000), 

muhakeme ve ispatın belli baĢlı konularda uygulanması gereken bir yöntem 

olmadığını, okullardaki bütün konularda gerçekleĢtirilecek sınıf tartıĢmalarına dahil 

edilmesi gerektiğini vurgulayarak matematik eğitiminde argümantasyonun önemine 

dikkat çekmiĢtir. 

Toulmin (1958)‘in ‗The Uses of Argument‘ adlı kitabıyla alanyazına 

kazandırdığı argümantasyon yöntemi, öğrenmede sonuçtan çok sürecin ve sosyal 

öğrenmenin önem kazanmaya baĢlamasıyla (Reiss, Heinze, Renkl & Gross, 2008) 

birçok araĢtrmacının dikkatini çekmiĢtir. Ġlk olarak fen alanında alanyazına 

kazandırılan ve üzerine birçok çalıĢma yapılan bu yöntem, matematik alanında yeni 
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yeni kullanılmaya baĢlamıĢtır. Alanyazındaki birçok çalıĢmada argümantasyon ve 

sosyal etkileĢimin baĢarı üzerindeki olumlu etkisinden bahsedilmiĢtir (Cross, 2009; 

Inagaki, Hatano, & Morita, 1998; Kosko, Rougee, & Herbst, 2014; Sfard, 2008; 

Walter & Barros (2011). Örneğin Sfard (2008), kiĢilerin matematikte baĢarılı olmak 

için belirli tartıĢma biçimlerine ve iletiĢimsel etkinliklere katılmalarını önermiĢtir. 

Benzer Ģekilde, Walter ve Barros (2011) öğrencilerin daha derin matematiksel 

düĢünmelerinin sağlanması için onların argüman geliĢtirmede aktif olmalarını ve bir 

sonuca varmak için farklı çözüm yaklaĢımları üzerinde çalıĢmalarını önermiĢlerdir. 

Dolayısıyla argümantasyonun matematik alanında uygulanmasına yönelik 

çalıĢmalar, matematik baĢarısının arttırılması için araĢtırılmaya değer 

görülmektedir. 

TartıĢma-tabanlı öğretim yöntemi olan argümantasyon, hem öğrenciler, hem 

de tartıĢmayı yöneten öğretmen açısından üst düzey düĢünme gerektiren bir 

yöntemdir. Alanyazındaki çalıĢmalara göre farklı sınıf seviyelerindeki öğrencilerin 

gerekçe sunma, argümantasyon ve ispat konularında zorlandıkları bilinmektedir 

(Ellis, 2007; Harel & Sowder, 1998; Healy & Hoyles, 1998; Reiss, Klieme, & 

Heinze, 2001; Selden & Selden, 2003; Walter & Barros, 2011). Bu durum 

Türkiye‘deki öğrenciler için de geçerli olduğundan argümantasyon, içerisinde 

cevaplanması gereken birçok soru barındıran bir konu olarak karĢımıza çıkmaktadır. 

Türkiye‘de ortaokul matematik müfredatı en son 2013 yılında revize edilmiĢtir. 

Müfredatın ana hedeflerinde öğrencilere ―araĢtırma ve sorgulama yapabilecekleri, 

iletiĢim kurabilecekleri, eleĢtirel düĢünebilecekleri, gerekçelendirme 

yapabilecekleri, fikirlerini rahatlıkla paylaĢabilecekleri ve farklı çözüm 

yöntemlerini sunabilecekleri‖ (MEB, 2013, s. I) sınıf ortamlarının sağlanması yer 

almaktadır. Bu beceriler argümantasyon yönteminde yer aldığından, 

argümantasyonun etkili bir biçimde uygulanmasının yeni müfredatta örtük kazanım 

olarak yer aldığı görülmektedir. Bu yöntemi uygulayacak olan öğretmenlerin bu 

konudaki becerisi, araĢtırılması gereken bir durumdur. Peki öğretmenler ne kadar 

sorgulama yapıyor / nasıl argümanlar üretebiliyor? Bu açıdan bakıldığında 

öğretmenlerin argümantasyon yapılarının incelenmesi araĢtırılması gereken önemli 

bir konu olarak karĢımıza çıkmaktadır. 
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Argümantasyon yapısının incelenmesi araĢtırmacılara argümanı ileri süren 

kiĢinin nasıl anladığı ve nasıl muhakeme ettiği ile ilgili detaylı bilgi sunmaktadır. 

Bu nedenle alanyazında bazı araĢtırmacılar argümantasyon yapılarının 

incelenmesini tavsiye etmiĢtir (Walter & Barros, 2011). Öğretmen adaylarının 

gelecekteki öğretim Ģekilleri ile ilgili çıkarımlarda bulunabilmek için bu çalıĢmanın 

odağı argümantasyon yapılarının detaylı incelenmesi olarak belirlenmiĢtir.  

Alanyazındaki çalıĢmalar incelendiğinde teknoloji destekli ortamlarda 

gerçekleĢen argümantasyon çalıĢmalarının sayısının az olduğu sonucuna varılmıĢtır 

(Hewit, 2010; Hollebrands, Conner & Smith, 2010; Inglis, Mejia-Ramos & 

Simpson, 2007; Prusak, Hershkowitz & Schwarz, 2012). Mevcut çalıĢmalarda 

teknoloji kullanımının argümantasyona olumlu etkileri olduğundan bahsedilmiĢtir. 

Ayrıca teknolojinin derinlemesine düĢünmeye ve kağıt kalemle yapılan çözümlerde 

farkedilemeyecek iliĢkileri keĢfetmeye yardımcı olduğu iddia edilmektedir. 

Argümantasyonun ileri seviyede düĢünmeyi gerektirdiği dikkate alındığında 

teknolojinin ortaokul matematik öğretmen adaylarının geliĢtireceği argüman 

yapılarını nasıl değiĢtireceği merak edilmektedir. 

Yukarıda bahsedilen konulardan yola çıkılarak bu çalıĢmada ortaokul 

matematik öğretmen adaylarının argümantasyon yapılarının teknoloji ve kağıt 

kalem ortamlarında karĢılaĢtırmalı olarak incelenmesine karar verilmiĢtir ve 

aĢağıdaki araĢtırma sorularına cevap aranmıĢtır: 

1. GeoGebra ve Kağıt-Kalem gruplarında geometri problemleri çözen 

ortaokul matematik öğretmen adaylarının kullandıkları argümantasyon 

yapılarının doğası nasıldır? 

2. Global argümantasyon yapılarının içindeki lokal argümanların özellikleri 

nasıldır?  

- GeoGebra ve Kağıt-Kalem gruplarında geometri problemleri çözen 

ortaokul matematik öğretmen adaylarının kullandıkları lokal 

argümanların, argüman elemanı (iddia, veri, gerekçe) akıĢ sırasına göre 

çeĢitleri nelerdir? 



266 

 

3. GeoGebra ve Kağıt-Kalem gruplarında geometri problemleri çözen 

ortaokul matematik öğretmen adaylarının kullandıkları lokal argümantasyon 

özellikleri nelerdir? 

 

1.2 Çalışmanın önemi 

 

Argümantasyon, hipotez kurma, kendi görüĢünü gerekçelendirme, problem 

sentezleme, baĢkalarının görüĢlerine meydan okuma, farklı bakıĢ açılarını 

karĢılaĢtırma, deliller kullanarak hipotez tutarsızlıklarını değerlendirme gibi 

becerileri içerdiğinden (Hewit, 2010) ileri seviyede ve eleĢtirel düĢünme gerektiren 

bir yöntemdir. Bu becerilerin öğrencilere kazandırılması için argümantasyonu 

yöneten kiĢi olan öğretmen önemli bir faktördür. Argümantasyonu yönetmeden 

önce öğretmenin argüman üretmeyi ve sınıfı argümantasyona uygun Ģekilde 

yönetmeyi deneyimlemesi gerekmektedir (Prusak et al., 2012). Türkiye‘deki 

matematik öğretmenliği eğitimi programı incelendiğinde öğretmen adaylarının 

hiçbir dersi kapsamında argümantasyon uygulaması ile karĢılaĢmadığı görülmüĢtür. 

Ayrıca matematik eğitimi alanında bu konuyu içeren herhangi bir seçmeli derse de 

rastlanmamıĢtır. Dolayısıyla ortaokul matematik öğretmen adaylarının 

argümantasyon yöntemi uygulamasından bihaber olarak mezun oldukları sonucuna 

varılmıĢtır. Geleceğin öğrencilerine argümantasyon-tabanlı matematik dersi 

anlatabilecek öğretmen adaylarının yetiĢtirilebilmesi için bu çalıĢmanın bulgularının 

gelecekte yapılacak araĢtırmalara yol göstereceğine inanılmaktadır. Ayrıca bu 

çalıĢma ile program geliĢtiricilerin dikkatinin argümantasyon yöntemine çekilmesi 

amaçlanmıĢtır. Böylelikle öğretmen yetiĢtirme programlarında bu açıdan düzenleme 

yapılması konusunda eğitimcilerin ve politikacıların bilgilendirilmesi sağlanacaktır. 

Fen alanında çeĢitli açılardan incelenen argümantasyon yönteminin, matematik 

alanında çok yeni olması sebebiyle araĢtırılması gereken birçok yönü vardır. 

Bunlardan birisi de teknoloji ortamında gerçekleĢen argüman yapılarıdır. Bu 

çalıĢmanın bulguları hem teknoloji ortamında hem de kağıt kalem ortamında 

kullanılan argümantasyon yapılarının karĢılaĢtırılmasına olanak sağlaması açısından 

önemlidir. Bu çalıĢmada dinamik geometri programının kullanılması doğal olarak 
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geometri problemlerinin argümantasyon yöntemiyle çözülmesine olanak 

sağlamıĢtır. Adı birçok bilimsel çalıĢmada ispat ile birlikte anılan argümantasyonun, 

geometri alanında incelenmesi ile bu açıdan da alanyazına katkıda bulunulacaktır.  

Bu çalıĢmanın matematik eğitimi alanyazınına bir diğer katkısı da ortaokul 

matematik öğretmen adaylarının argümantasyon yapılarını incelemesidir. 

Alanyazında ispat konusunda yaptığı çalıĢmada Knipping (2008) argümantasyon 

yapılarının analizinin önemini vurgulamıĢtır. Bu çalıĢmada öğretmen adaylarının 

argümantasyon yapıları geometri alanında incelenerek bu alandaki muhakeme 

süreçleri, tercih ettikleri lokal argüman ve lokal argümantasyon çeĢitleri  hakkında 

bilgiler sunulacaktır. Bu bilgiler, geleceğin öğretmenlerinin argümantasyon 

becerileri ve muhakeme süreçleri hakkında ipuçları verecek ve onların 

argümantasyon yöntemini uygularken neleri önemseyeceğini gözler önüne 

serecektir. Böylelikle bu çalıĢmanın sonuçları, gelecekte teknoloji veya kağıt kalem  

ortamlarında yapılacak olan argümantasyon çalıĢmalarına argümantasyon yapısının 

incelenmesi açısından ıĢık tutacaktır. 

 

2. ALANYAZIN TARAMASI 

 

2.1 Teorik çerçeve  

 

Öğrenmenin hem bireysel hem sosyal boyutları vardır ve bu boyutlar 

akademik baĢarı için büyük öneme sahiptirler (Cobb, Yackel, Wood, Nicholls, 

Wheatley, & Trigatti, 1991; Lesh, Doerr, Carmone, & Hjalmarson, 2003, 

Schoenfeld, 1992). Bu çalıĢmanın odak noktası öğrenci merkezli öğrenmeyi ön 

planda tutan, argümantasyona dayalı öğrenme yaklaĢımıdır.  

Krummheuer‘in (1995) tanımına göre argüman, katılımcılar veya gözlemciler 

tarafından kısmen ya da tamamen  yeniden yapılandırılabilen, tartıĢmanın sonunda 

tüm katılımcılar tarafından kabul edilen ifade dizisidir. Argümantasyon ise Antonini 

ve Martignone (2011) tarafından amacı bireyleri bir ifadenin doğruluğuna veya 

yanlıĢlığına inandırmak olan söylemler içeren tartıĢma süreci olarak tanımlanmıĢtır. 
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Bu tanımlara bakılarak argümantasyonun bir süreç, argümanın ise bir ürün olduğu 

sonucuna varılabilir.  

Argümantasyon yaklaĢımının bilimsel olarak incelenmesi Toulmin‘in 1958 

de yayınladığı ‗The Uses of Argument‘ isimli kitaba dayanmaktadır. Toulmin 

(1958) bu kitabında, birbiriyle iliĢkili üç ana üç yardımcı elemandan oluĢan 

rasyonel argüman yapısı sunmuĢtur. Ana elemanlar iddia (claim), veri (data), ve 

gerekçe (warrant) iken yardımcı elemanlar destek (backing), niteleyen (qualifier) ve 

çürütendir (rebuttal). Rumsey (2012) yardımcı elemanların olmazsa olmaz 

elemanlar olmadıklarını fakat argümanlarda bulunabileceklerini söylemiĢtir. Ġddia 

(claim) tartıĢmacının diğerlerini ikna etmeyi düĢündüğü ifade, sonuç veya görüĢtür 

(Nardi, Biza & Zachariadez, 2012, s.159). Ġddiayı destekleyen gerçekler veya 

kanıtlar veri (data) olarak tanımlanmıĢtır (Conner, Singletary, Smith, Wagner, & 

Francisco, 2014a, s.404). Gerekçe (warrant) ise veriden iddiaya nasıl ulaĢıldığını 

ileri süren genel ifadelerle kurulan bir köprüdür (Toulmin, 1958, s.101). Yani 

gerekçe, verilerden iddiaya ulaĢmayı sağlayan varsayımlar olarak tanımlanabilir. 

Modelin yardımcı elemanlarından destek (backing), gerekçe için ek destek olarak 

tanımlanabilir (Pedemonte & Reid, 2011). Destek elemanı, gerekçe kabul 

edilmediğinde veya yetersiz kaldığında onun otoritesini arttırmak amacıyla ileri 

sürülebilir. Destek, verileri ve iddia-veri arasındaki iliĢkiyi destekleyen her türlü 

bilgi olabilir. Bir diğer yardımcı eleman olan niteleyen (qualifier) iddianın gücünü, 

kesinliğini ifade eder (Toulmin, 1958, s.101). Genellikle, nadiren, kesinlikle ve 

sıklıkla gibi gelimeler niteleyene örnek olabilir. Son olarak çürüten (rebuttal) 

elemanı, gerekçe sunulmuĢ iddiayı yenme/çürütme kapasitesine sahip istisnai 

durumlar olarak tanımlanmıĢtır (Toulmin, 1958, s.101). BaĢka bir deyiĢle iddianın 

geçerli olmadığı koĢullar çürüten olabilir. Toulmin‘in ileri sürdüğü argümantasyon 

modelinde argüman elemanlarının arasındaki iliĢki Toulmin tarafından ġekil 

2.1‘deki gibi gösterilmiĢtir.  
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Şekil 2.1 Toulmin‘in (1958) argüman Ģeması (s. 97) 

 

Toulmin modeli alandan bağımsız olarak ileri sürüldüğünden alanyazında 

ekonomi (Cho & Jonassen, 2002), fen eğitimi (Erduran, Simon, & Osborne, 2004; 

Jiménez-Aleixandre, Rodriguez & Duschl, 2000; Osborne , Erduran & Simon, 

2004; Walker & Sampson, 2013) ve matematik (Forman, Larreamendy-Joerns, 

Stein, & Brown, 1998; Krummheuer, 1995)  gibi birçok alanda kullanılmıĢtır.  

 

2.2 Argümantasyonda öğretmen sorumluluklarına dair çalışmalar 

 

Sosyal öğrenme ortamlarında paylaĢılan (taken-as-shared) bilginin 

matematiksel gerekçelendirmede önemi büyüktür. PaylaĢılan bilgi sınıftaki bütün 

öğrenciler tarafından doğru olarak kabul edildiğinden tartıĢmanın ileri safhalarında 

tekrar sorgulanmaz ve doğru kabul edilerek tartıĢmaya devam edilir. Bu nedenle 

paylaĢılan bilgi gerekçe olduğunda bazı argümanlarda gerekçe elemanı 

bulunmayabilir. Dolayısıyla argümantasyon analizinde paylaĢılan (taken-as-shared) 

bilgi dikkat edilmesi gereken bir husus olarak karĢımıza çıkmaktadır. Yackel ve 

Cobb (1996) muhakeme ile paylaĢılan matematiksel bilgi arasındaki iliĢkiye dikkat 

çeken önde gelen araĢtırmacılardır. Argümantasyon ortamında sosyal etkileĢimi 

sağlayacak olan ve argümantasyonu yönetecek olan kiĢi öğretmendir. Dolayısıyla 

öğretmenlerin bu konularda kendilerini yetiĢtirmiĢ olması önemli bir durum olarak 

karĢımıza çıkmaktadır. 

Argümantasyonun uygulanabilmesi için öğretmenler, öğrencilerin fikirlerini 

söyleme konusunda tereddüte düĢmeyeceği bir sosyal ortam sağlamalıdırlar. Yani 

öğrenciler fikrini söylediğinde diğer arkadaĢları veya öğretmeni tarafından 
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yargılanmayacağından ve aĢağılanmayacağından emin olmalıdırlar (Shu-Sheng, 

Mintzes, 2010). Bunun yanında, Yackel (2002) öğretmenlerin toplu 

argümantasyonu baĢlatma, öğrenciler arasındaki etkileĢimi teĢvik etme, argüman 

elemanlarında eksik kalan kısımların farkedilmesini sağlama gibi konularda 

kendilerini yetiĢtirmeleri gerektiğini savunmaktadır. Diğer yandan, argümantasyon 

yöntemini uygulayan öğretmenin sahip olması gereken iki önemli özellik; 

öğrencileri gerekçe sunmaya teĢvik etme ve öğrencilerin derinlemesine düĢünmesini 

sağlayan sorular sorma olarak ileri sürülmüĢtür (Cross, 2009). Bunların dıĢında, 

öğretmenin yargılayıcı yorumlardan kaçınması ve sınıftaki akranların da yargılayıcı 

konuĢmasını engellemesi, öğrencilerin varsayımlarını uygun matematiksel 

ifadelerle savunmalarını sağlayacaktır (Hunter, 2014).  

 

2.3 Toulmin’in argümantasyon modelinin matematik eğitimi araştırmalarında 

kullanımı 

 

Toulmin‘in (1958) argümanyasyon modeli ilk olarak matematiksel olmayan 

tartıĢmalarda kullanılmıĢtır. Daha sonra Toulmin, Richard ve Allan (1979) ile 

birlikte bu modeli, Theaetetus‘un ‗Kesinlikle 5 adet platonik katı cisim 

bulunmaktadır‘ iddiasını ispat etmek için kullanmıĢtır. Matematik eğitiminde ise ilk 

olarak Krummheuer (1995) tarafından toplu (collective) argümantasyon analizinde 

kullanılan bu model, daha sonra  matematik araĢtırmacıları arasında ilgi görmeye 

baĢlamıĢtır. Toulmin‘in argümantasyon modeli matematikte argüman yapılarını ve 

ispat yapılarını incelemede (Giannakoulias, Mastorides, Potari, & Zachariades, 

2010; Krummheuer, 2007; Pedemonte, 2007; Pedemonte & Reid, 2011), matematik 

eğitiminde sınıf tartıĢmalarının analizinde (Forman et al., 1998; Krummheuer, 1995, 

2007; Moore-Russo, Conner, & Rugg, 2011; Pedemonte & Reid, 2011; Yackel, 

2001), öğrencilerle yapılan görüĢme verilerinin analizinde  (Nardi, Biza, & 

Zachariades, 2012; Steele, 2005) ve matematiksel argümanların kalitesinin 

incelenmesinde (Inglis & Mejia-Ramos, 2008; Pedemonte, 2007) kullanılmıĢtır. 

Alanyazıdaki çalıĢmalar incelendiğinde argümantasyona farklı açılardan 

odaklanıldığı görülmektedir. Bazı araĢtırmacılar muhakeme çeĢitlerini (Tümevarım, 
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tümdengelim vb.) inceleyerek argümantasyon alanyazınına katkıda bulunmuĢlardır 

(Conner et al. 2014b; Pease & Aberdein, 2011; Pierce, 1960). Örneğin, Conner ve 

arkadaĢları (2014b) Toulmin‘in modelini Pierce‘nin (1960) muhakeme 

sınıflandırması ile birleĢtirerek argümanları muhakeme çeĢidine göre 

sınıflandırmıĢlardır. Bu sınıflandırmada deductive, inductive, abductive ve 

reasoning by analogy olmak üzere dört çeĢit argüman ileri sürmüĢlerdir. 

Argümantasyonu farklı açıdan inceleyen kimi araĢtırmacılar da argümanı bir bütün 

olarak ele alıp argüman çeĢitlerini incelemiĢlerdir (Aberdein, 2005; Viholainen, 

2011). Örneğin, Viholainen (2011) çalıĢmasında resmi (formal) ve resmi olmayan 

(informal) argüman çeĢitlerinden söz etmiĢtir. Gerekçe olarak tanım, aksiyom ve 

teoremlerin sunulduğu argümanlar resmi argüman olarak tanımlanmıĢtır 

(Viholainen, 2011). Somut matematiksel yorumların ve matematiksel kavramların 

gerekçe olarak sunulduğu argümanlar ise resmi olmayan argüman olarak 

tanımlanmıĢtır (Viholainen, 2011). Bunların dıĢında argümanın gerekçe (warrant) 

elemanına odaklanarak gerekçe çeĢitlerini inceleyen çalıĢmalar da mevcuttur (Inglis 

ve diğerleri, 2007; Nardi, Biza, & Zachariades, 2012; Walter & Barros, 2011). 

Örneğin, Knipping (2008), ispat konusunda yaptığı çalıĢmasında, argüman 

yapılarını gerekçelerine odaklanarak incelemiĢtir. Knipping‘in (2008) ileri sürdüğü 

sınıflandırmada argümantasyon, gerekçelerin yapısına göre kavramsal ve görsel 

olmak üzere iki çeĢittir. Görsel argümantasyon ise ampirik-görsel ve kavramsal-

görsel olmak üzere ikiye ayrılmaktadır.  

Alanyazın incelendiğinde Toulmin modelini kullanan araĢtırmacılardan 

bazılarının bu modeli kendi çalıĢmasına göre adapte ettiği görülmektedir. Daha açık 

söylemek gerekirse, kimi araĢtırmacılar modele ek elemanlar eklemiĢ (Conner, 

Singletary, Smith, Wagner & Francisco, 2014a; Prusak, Hershkowitz, & Schwarz, 

2012; Voss, 2005; Walter & Johnson, 2007), kimileri modeli baĢka modellerle 

birleĢtirerek kullanmıĢlardır (Conner, Singletary, Smith, Wagner & Francisco, 

2014b). Yapılan her bir argümantasyon çalıĢması kendine özgü tartıĢma süreçleri 

içereceğinden veri analizinde araĢtırmacıların bu tür düzenlemeler yapması 

beklenen bir durumdur.     
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2.4 İspat ve argümantasyon çalışmaları 

 

Alanyazında argümantasyon ve ispat arasındaki iliĢki araĢtırmacılar arasında 

hala tartıĢma konusudur. Ġspat genel anlamda tümdengelime dayanmakta iken 

argümantasyonda her türlü muhakemenin (tümdengelim, tümevarım, abdüksiyon 

vb.) görülmesi araĢtırmacıları ikiye bölmüĢtür. Kimi araĢtırmacılar argümantasyon 

ile ispat arasında bir süreklilik (continuity) olduğunu (Boero, 2007; Douek, 1999; 

Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti, Bartolini Bussi, Boero, Ferri, & 

Garuti, 1997; Raman, 2002) savunurken, kimileri bu kavramların ikiye ayrıldığını 

(Balacheff, 1991; Douek, 1999; Mariotti, 2006; Pedemonte, 2007) savunmaktadır. 

Örneğin Balacheff (1991) argümantasyon da odağın sınıftaki akranları ikna etmek 

olduğunu, ispatta ise odağın söylenen ifadenin doğruluğu olduğunu, dolayısıyla bu 

iki kavram arasında sosyal açıdan farklılık olduğunu savunmaktadır. Diğer yandan 

birçok araĢtırmacı argümantasyon ve ispat arasında yapısal süreklilik (structural 

continuity) sağlanabileceğini savunmaktadırlar (Boero, 2007; Garuti, Boero, Lemut, 

& Mariotti, 1996; Mariotti, Bartolini Bussi, Boero, Ferri, & Garuti, 1997; Raman, 

2002). Örneğin, Boero (2010) eğer argümantasyon ve ispat arasındaki çıkarımlar 

aynı mantık yapısında (tümevarım, tümdengelim) olurlarsa yapısal sürekliliğin 

sağlanacağını savunmuĢtur. Bu demektir ki, argümantasyon süreci boyunca yapılan 

muhakeme ile tartıĢma sonunda ortaya ürün olarak sunulan ispat, muhakeme çeĢidi 

açısından birbiriyle uyumlu ise argümantasyon ve ispat arasındaki yapısal süreklilik 

sağlanmıĢtır.   

 

2.5 Teknoloji ve argümantasyon üzerine yapılan çalışmalar 

  

Alanyazında dinamik geometri programlarının geometri çalıĢmalarında 

kullanılmasının birçok faydasından bahsedilmiĢtir. Bunlar arasında dinamik 

geometri programlarının kullanıcıya kesin çizimleri yapabilme fırsatını vermesi ve 

böylelikle kullanıcının aradaki iliĢkileri daha net görmesini sağlaması (Vincent, 

2002), soyut geometri kavramlarını anlamlandırmaya yardımcı olması 

(Hollebrands, Laborde, & Sträβer, 2008), kullanıcıların keĢfetmelerine, 
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varsayımlarda bulunmalarına olanak sağlaması, geometri baĢarısını desteklemesi 

(Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Sträβer, 2006; NCTM, 

2000), motivasyonu arttırması (Lampert, 1993; Ruthven, Hennessy, & Deaney, 

2005) ve kullanıcılar arasındaki etkileĢimi desteklemesi (Vincent, Chick & McCrae, 

2005) olarak sıralanabilir. 

Alanyazında, teknoloji ortamında gerçekleĢtirilen argümantasyon 

çalıĢmalarına da rastlanmaktadır (Hewit, 2010; Hollebrands, Conner & Smith, 

2010; Inglis, Mejia-Ramos & Simpson, 2007; Prusak, Hershkowitz & Schwarz, 

2012). Örneğin, Prusak, Hershkowitz ve Schwarz (2012) iki öğretmen adayına fikir 

ayrılığı yaĢayacakları bir problem durumu verip onlara durumu çözmeleri için 

teknolojik destek sağlayarak ürettikleri argümanları incelemiĢlerdir. Daha sonra 

Toulmin modelini adapte ederek akran tartıĢması analizi için bir model 

geliĢtirmiĢlerdir. Bir diğer teknoloji destekli çalıĢmada ise Cabri dinamik geometri 

yazılımı ispat sürecinin değerlendirilmesinde kullanılmıĢtır (Baccaglini-Frank & 

Mariotti, 2009). AraĢtırmacılar, katılımcıların sürükleme aracını kullanma 

sebeplerine odaklanmıĢ böylelikle sürükleme Ģemalarını belirlemiĢlerdir. Ayrıca bu 

araĢtırmacılar katılımcıların dinamik Ģekiller ile ileri sürdükleri varsayımların kağıt 

kalem ortamında ileri sürdükleri varsayımlardan daha geliĢmiĢ olduğu sonucuna 

varmıĢlardır (Baccaglini-Frank & Mariotti, 2009). Bir diğer çalıĢmada ise Mariotti 

(2006) katılımcılara teknoloji ortamında açık uçlu problem çözdürmüĢ ve 

geliĢtirdikleri varsayımları incelemiĢtir. ÇalıĢma sonucunda Mariotti (2006) 

dinamik geometri yazılımının muhakeme ve ispat süreçlerine olumu katkıda 

bulunduğu sonucuna varmıĢtır. 

 

3. YÖNTEM 

 

 3.1. Araştırmanın Deseni  

 

Ortaokul matematik öğretmen adaylarının teknoloji ortamında veya kağıt-

kalem ile geometri soruları çözerken kullandıkları argümantasyon yapılarının 

incelendiği bu araĢtırmada nitel araĢtırma yöntemilerinden durum çalıĢması deseni 
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kullanılmıĢtır. Alanyazına bakıldığında Yin‘in (2003) dört durum çalıĢmasından 

bahsettiği görülmektedir. Bunlar bütüncül tek durum deseni, bütüncül çoklu durum 

deseni, iç içe geçmiĢ tek durum deseni ve iç içe geçmiĢ çoklu durum desenidir. Bu 

çalıĢmada durum çalıĢması türlerinden bütüncül çoklu durum deseni kullanılmıĢtır. 

   

3.2 Pilot Çalışma 

 

Uygulamanın nasıl yapılacağını netleĢtirmek için öncelikle 2013 yılı bahar 

döneminde ortaokul matematik öğretmenliği programında öğrenim gören dokuz 

gönüllü öğretmen adayı ile pilot çalıĢma yapılmıĢtır. Bu çalıĢmanın amacı 

çözülecek geometri problemlerinin argümantasyon yöntemine uygunluğunu kontrol 

etmek, geometri problemlerinin çözülebileceği gerekli süreleri belirlemek, her bir 

uygulamada kaç geometri problemin çözülebileceğine karar vermek, uygulamada 

kullanılan materyallerin açık ve anlaĢılır olup olmadığını incelemek ve her bir 

grupta olması gereken katılımcı sayısını belirlemektir.  

Katılımcılar elveriĢli örnekleme yöntemiyle seçilmiĢ ve GeoGebra bilen beĢ 

kiĢi GeoGebra grubuna, diğer dört kiĢi Kağıt-Kalem grubuna atanmıĢtır. 

Katılımcılar ikili üçlü çalıĢma gruplarına bölünmüĢtür. GeoGebra grubunda her bir 

çalıĢma grubu bir çalıĢma kağıdı ve bir bilgisayar ile soruları çözmüĢlerdir. Kağıt-

Kalem grubunda ise yine her bir çalıĢma grubu bir çalıĢma kağıdı ve çizim araçları 

(cetvei, pergel ve gönye) ile soruları çözmüĢlerdir. Pilot çalıĢmada katılımcılar üç 

uygulamada üçgenler, dörtgenler ve çemberler konularından seçilerek hazırlanmıĢ 

10 geometri problemi çözmüĢlerdir. Her bir uygulama sonunda seçilen bir çalıĢma 

grubu ile görüĢme yapılmıĢtır, diğer katılımcılardan ise yansıtıcı düĢünme yazısı 

yazmaları istenmiĢtir. Uygulamalar ve görüĢmeler kamera ve ses kayıt cihazları ile 

kaydedilmiĢtir.  

AraĢtırmacı pilot çalıĢma sonucunda ana uygulamanın nasıl yapılacağı 

konusunda çıkarımlarda bulunmuĢtur. Öncelikle bir uygulamada katılımcılara iki 

geometri problemi çözdürülmesi uygun görülmüĢtür çünkü bir uygulamada daha 

fazla problem çözdürülmesi katılımcıları yormuĢ ve argüman üretme isteklerini 

azaltmıĢtır. Uygulamadaki geometri problemlerinin argümantasyon yöntemine 
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uygunluğu, tartıĢmaya ne kadar açık olduğu, ne kadar farklı çözüm yolunun olduğu 

incelenerek iki üçgen ve iki çember geometri problemi ana uygulama için 

seçilmiĢtir. Küçük çalıĢma gruplarının kaçar kiĢiden oluĢması gerektiğini 

belirlemek için ikili ve üçlü grupların tartıĢmaları incelenmiĢtir. Üç kiĢiden oluĢan 

grupta katılımcılardan bazılarının tartıĢmaya dahil olmadığı, dinleyici konumuna 

geçtiği gözlemlenmiĢtir. Bu nedenle küçük çalıĢma gruplarının ikiĢer kiĢi ile 

oluĢturulmasına karar verilmiĢtir. Katılımcıların tartıĢmalarını ve etkileĢimini 

desteklemek için her bir çalıĢma grubuna bir bilgisayar, bir çalıĢma kağıdı, birer 

tane çizim aracı verilmesine karar verilmiĢtir. Aksi takdirde bireysel çalıĢtıkları 

gözlemlenmiĢtir. Uygulamadan bir gün sonra yapılan görüĢmelerde katılımcıların 

bazı detayları unuttuğu farkedilmiĢtir. Bu nedenle, katılımcılara görüĢme öncesinde 

sınıftaki tartıĢma video kaydına hızlıca göz gezdirme fırsatı verilmesine karar 

verilmiĢtir. 

 

3.3 Ana Uygulama 

 

 Bu bölümde ana uygulamada yer alan katılımcılar, veri toplama araçları ve 

veri analizi hakkında bilgi verilecektir.  

 

3.3.1 Katılımcılar  

 

AraĢtırmanın katılımcıları amaca yönelik olarak Ankara‘daki bir devlet 

üniversitesinin eğitim fakültesinin, Ortaokul Matematik Öğretmenliği Programı‘nda 

eğitim gören son sınıf öğrencileri arasından seçilen 16 öğretmen adayıdır. Patton‘a 

(2002) göre zengin bilgi vereceği düĢünülen adaylar seçildiğinden dolayı amaçlı 

örnekleme yöntemi, derinlemesine bilgi sağlamak açısından güçlü bir yöntemdir. 

Bu çalıĢmada zengin veri toplamak önemli olduğu için çalıĢmanın katılımcıları 

amaçlı örnekleme yöntemi kullanılarak belirlenmiĢtir. Uygulama katılımcıların ders 

saatleri dıĢında ayarlanacak saatlerde uygulanacağı ve haftalık ders programlarına 

göre boĢ zaman ayarlanacağı için yalnızca bir devlet üniversitesinden katılımcı 

seçilmiĢtir. Böylelikle en azından katılımcıların ders programlarının birbirine yakın 
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olması öngörülmüĢtür. Uygulama GeoGebra grubu ve Kağıt-Kalem grubu olmak 

üzere iki grup ile gerçekleĢtirilmiĢtir. GeoGebra grubuna ‗Dinamik geometri 

uygulamaları ile geometri keĢfetme‘ dersini almıĢ, GeoGebra programını 

kullanmayı bilen sekiz öğretmen adayı seçilmiĢtir. Böylelikle GeoGebra grubundaki 

katılımcılara programı kullanmayı öğretmeye gerek kalmamıĢtır. Kağıt-Kalem 

grubuna ise GeoGebra programını bilmeyen gönüllü adaylar arasından sekiz 

öğretmen adayı seçilmiĢtir.  

 

3.3.2 Veri Toplama 

  

Ana uygulama 2013-2014 eğitim öğretim yılının sonbahar döneminde 

yapılmıĢtır. AraĢtırmanın amacına uygun olarak zengin veri sağlamak için ‗çoklu 

veri toplama araçları‘ kullanılmıĢtır (Creswell, 2007). Uygulamaların ve 

görüĢmelerin video ve ses kayıtları, yansıtıcı düĢünme yazısına ek olarak 

katılımcıların not aldıkları çalıĢma kağıtları ve her türlü çizimleri veri toplama 

kaynağı olarak kullanılmıĢtır. Veri toplama araçları ve süreci ilgili detaylı bilgi 

takip eden bölümlerde verilmiĢtir. 

 

3.3.2.1 Veri Toplama Araçları  

3.3.2.2 Geometri problemleri 

 

Bu çalıĢmada dört geometri problemi kullanılmıĢtır. Bu problemlerin gayret 

gerektiren, birden fazla çözüm yolu olan, hem GeoGebra ile hem kağıt kalemle 

çözülebilen, argüman üretilebilecek problemler olmasına çalıĢılmıĢtır. Geometri 

problemlerinden birisi Ceylan‘ın (2012) yüksek lisans tezinde uyguladığı bir üçgen 

problemidir. Bir diğeri Iranzo-Domènech‘in (2009) doktora tezinde kullandığı bir 

üçgen problemidir. Üçüncü ve dördüncü geometri problemleri ise Posamentier ve 

Salkind‘in (1988) ‗Challenging problems in Geometry‘ isimli kitabından seçilmiĢ 

çember problemleridir. 
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3.3.2.3 Görüşmeler 

 

Yarı-yapılandırılmıĢ görüĢme soruları her bir uygulama sonrasında 

araĢtırmacı tarafından uygulamanın videosu izlenerek hazırlanmıĢtır. Uygulama 

süresince katılımcıların argüman öğelerinin hepsini her bir argümanda 

belirtmedikleri görülmüĢtür. Belirtilmeyen öğelerin (örneğin gerekçe) içeriğini 

sorgulamak görüĢmeler yapılmıĢtır. AraĢtırmacı GeoGebra ve Kağıt-Kalem 

grubundan birer çalıĢma grubu seçmiĢ, onların kendi aralarındaki ikili tartıĢmasını 

ve sınıf tartıĢmasını izleyerek görüĢme soruları hazırlamıĢtır. Bu aĢamada 

katılımcıların argümanları belirlenerek argümanlarındaki eksik öğeler (iddia, veri, 

gerekçe) not alınmıĢ ve katılımcıların bu eksik öğeler hakkındaki düĢüncelerini 

açığa çıkaracak sorular hazırlanmıĢtır. Ayrıca görüĢme yapılan katılımcılara 

uygulamada bahsi geçen iddialardan verilip bu iddiaları savunmaları, eğer 

savunmuyorlarsa çürütmeleri istenmiĢtir.  

 

3.3.2.4 Yazılı Kaynaklar  

 

Katılımcıların geometri problem çözümleri ve mülâkatlar sırasında 

kullandıkları her türlü yazılı kağıt veri toplama aracı olarak kullanılmıĢtır.  

Yansıtıcı düĢünme yazısı soruları, sınıf tartıĢmasında yer alan argümanlar ile 

ilgili görüĢme soruları arasından seçilerek düzenlenmiĢtir. Bu sorular bütün 

katılımcılara gönderilmiĢtir. Dolayısıyla görüĢme için seçilen çalıĢma gruplarının 

ikili çalıĢmalarına özgü sorular dıĢındaki sorular düzenlenerek hazırlanmıĢtır. 

AraĢtırmacı, katılımcılara görüĢme sorularını gönderirken üzerinde kendi çözümleri 

olan çalıĢma kağıtlarının fotokopilerini de göndermiĢtir. Katılımcılar yansıtıcı 

düĢünme yazılarını e-posta ile araĢtırmacıya göndermiĢlerdir. 

 

3.3.3 Veri Toplama Süreci   

  

AraĢtırmacı her bir grup ile (GeoGebra ve Kağıt-Kalem grubu) ikiĢer 

uygulama gerçekleĢtirmiĢtir. Ġlk uygulama yaklaĢık üç saat sürmüĢ ve üçgenlerle 
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ilgili iki geometri problemi çözülmüĢtür. Katılımcılar ikiĢerli çalıĢma gruplarına 

ayrılmıĢ, dolayısıyla her bir grupta iki kiĢiden oluĢan dört çalıĢma grubu olacak 

Ģekilde organize edilmiĢtir. Bu çalıĢma gruplarının her birine bir kamera ve bir ses 

kayıt cihazı ayarlanmıĢ, sınıf tartıĢmasını kaydetmek üzere de tahtayı gören bir 

kamera ayarlanmıĢtır. Ġlk önce birinci geometri probleminin çalıĢma kağıdı çalıĢma 

gruplarına birer tane verilmiĢ ve çalıĢma gruplarının soruyu çözmesi için yeteri 

kadar süre verilmiĢtir. Katılımcılar ikiĢerli olarak yeteri kadar tartıĢtıktan sonra sınıf 

tartıĢmasına geçilmiĢtir. Sınıf tartıĢmasında önce gönüllü grupların sonra diğer 

grupların çözümleri sınıfça araĢtırmacının yönlendirmeleriyle argümantasyon 

yöntemlerine uygun olarak gerçekleĢtirilmiĢtir. AraĢtırmacı argümantasyonu 

yönetirken farklı çözüm yollarını ve öğrencilerin gerekçelerini sorgulayan sorular 

sormuĢ, katılımcıların sürekli aktif olmalarını sağlamıĢtır. TartıĢma bittikten sonra 

aynı Ģekilde ikinci geometri sorusu da çözülmüĢtür. Uygulama yaklaĢık üç saat 

sürmüĢtür. Uygulama sonrası araĢtırmacı aynı gün seçtiği bir çalıĢma grubunun 

bütün video görüntülerini ve sınıf tartıĢmalarının görüntülerini izleyerek görüĢme 

soruları hazırlamıĢtır. Ertesi gün seçilen çalıĢma grubu ile görüĢme yapılarak bu 

görüĢme yine video ile kaydedilmiĢtir. GörüĢme öncesi katılımcıların sınıftaki 

uygulama videosunu hızlıca gözden geçirmeleri ve yapılanları hatırlamaları 

sağlanmıĢtır. 

Üçgen sorularının çözüldüğü ilk uygulamada gerçekleĢtirilen aĢamalar aynı 

Ģekilde ikinci uygulamada, iki çember sorusu için de gerçekleĢtirilmiĢtir. 

AraĢtırmacı uygulamalar bittikten sonra yansıtıcı düĢünme yazısı sorularını 

hazırlamıĢ ve bütün katılımcılara online olarak göndermiĢtir. Katılımcılar 

cevaplarını e-posta yoluyla en kısa sürede araĢtırmacıya göndermiĢlerdir. 

 

3.3.4 Verilerin analizi  

 

Bu çalıĢmada da veri analizi, veri toplama süreciyle eĢ zamanlı olarak 

geliĢmiĢtir. Bunun için Creswell‘in (2009) ileri sürdüğü data analiz süreçleri takip 

edilmiĢtir. Öncelikle ses ve görüntü kayıtları alınan bütün uygulamalar ve 

görüĢmeler yazıya aktarılmıĢ ve diğer veri kaynaklarıyla birlikte bilgisayar 
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dosyaları olarak organize edilmiĢtir. Daha sonra mülâkatların yazıya aktarılan 

kayıtları, çalıĢma kağıtları, katılımcıların yazılı kayıtları tekrar tekrar okunup 

incelenerek büyük boyutlardaki veriyi daha anlamlı hale getirebilmek adına 

kodlamalar yapılmıĢtır. Alanyazındaki çalıĢmaların veri analizleri incelenerek 

veriler için uygun analizler belirlenmiĢtir. Bu analizler yapılırken gerektiğinde 

kodlayıcı tutarlılığı (intercoder reliability) uygulanmıĢ ve verilerin daha sağlıklı 

analiz edilmesi için çalıĢılmıĢtır. Daha sonra elde edilen bulgular yorumlanarak 

anlamlandırılmıĢ genel bir çerçeve sunulmuĢtur.  

 

4. BULGULAR 

 

 Bu araĢtırmanın bulguları ortaokul matematik öğretmen adaylarının 

argümantasyon yapıları, lokal argüman tipleri ve lokal argümantasyon çeĢitleri 

olmak üzere üç bölümde açıklanmıĢtır.  

 

4.1 Ortaokul matematik öğretmen adaylarının argümantasyon yapıları 

 

Bu analiz için Knipping‘in (2008) kendi çalıĢmasında kullandığı global 

argüman yapıları analizi adapte edilerek kullanılmıĢtır. Knipping (2008) ve Reid ve 

Knipping (2010) dört çeĢit global argümantasyon yapısının varlığından söz 

etmiĢlerdir: Kaynak yapı (Source-structure), Rezervuar yapı (Reservoir-structure), 

Spiral yapı (Spiral-structure) ve Toplanma yapıdır (Gathering-structure). Bu 

çalıĢmada Knipping‘in (2008) geliĢtirdiği çizim Ģekli kullanılarak global 

argümantasyon Ģemaları her bir geometri problem çözümü için çizilmiĢtir. Daha 

sonra bu çizimler bahsi geçen global argümantasyon yapıları ile karĢılaĢtırılmıĢ, 

Knipping‘in (2008) Toplanma-yapısı hariç diğer yapı çeĢitlerine rastlanmıĢ, bunun 

yanında bazı global argümantasyon yapılarının bu sınıflandırmaya uymadığı, farklı 

Ģekil oluĢturduğu görülmüĢtür. Bunlar Çizgi/Hat-yapı (Line-structure) ve Bağımsız 

argümanlar-yapısıdır (Independent arguments-structure). Bu argümanların geometri 

problemleri içinde dağılımı ve kaç kez gözlemlendiği aĢağıdaki tabloda 

gösterilmiĢtir.  
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Tablo 4.1 Çalışma gruplarında gözlenen global argümantasyon yapıları  

 GeoGebra Grubu Kağıt-Kalem Grubu 

Geometri 

Problemi 1 

 

1 Rezervuar-Yapı  

1 Spiral-Yapı       

1 Rezervuar-Yapı 

1 Çizgi/Hat-Yapı 

8 Bağımsız Argümanlar-

Yapısı 

Geometri 

Problemi 2 

3 Spiral-Yapı       

2 Bağımsız Argümanlar-Yapısı 
 

2 Spiral-Yapı       

2 Bağımsız Argümanlar-

Yapısı 

1 Kaynak-Yapı 

Geometri 

Problemi 3 

1 Rezervuar-Yapı 

1 Çizgi/Hat-Yapı  

4 Bağımsız Argümanlar-Yapısı 

1 Rezervuar-Yapı 

1 Çizgi/Hat-Yapı 

6 Bağımsız Argümanlar-

Yapısı 

1 Kaynak-Yapı 
 

Geometri 

Problemi 4 

2 Spiral-Yapı       

5 Bağımsız Argümanlar-Yapısı 

1 Kaynak-Yapı  

1 Rezervuar-Yapı 

3 Spiral-Yapı       

5 Bağımsız Argümanlar-

Yapısı 

  

Tabloda görüldüğü gibi Knipping‘in (2008) sınıflandırmasından kaynak-

yapı tüm uygulamada üç kez, rezervuar-yapı beĢ kez, spiral-yapı on bir kez 

gözlemlenmiĢtir. Bunlardan iki grupta da en çok gözlemlenen spiral-yapı olmuĢtur. 

Bu çalıĢmada ortaya çıkan çizgi/hat-yapı üç kez, bağımsız argümanlar-yapısı ise 

otuz iki kez gözlemlenmiĢtir.  

Global argümantasyon yapıları geometri problemi bazında incelendiğinde 

GeoGebra grubu ile Kağıt-Kalem grubu arasında benzerlik ve farklılıkların olduğu 

görülmektedir. Birinci geometri probleminde iki grupta da birer rezervuar-yapı 

bulunmaktadır. Bunun yanında GeoGebra grubunda bir spiral-yapı var iken Kağıt-

Kalem grubunda bir çizgi/hat-yapı ve sekiz bağımsız argümanlar-yapısı 

bulunmaktadır. Ġkinci geometri problemi çözümünde iki grupta da spiral-yapı ve 

bağımsız argümanlar yapısı bulunmakta iken Kağıt-Kalem grubunda fazladan bir 

kaynak-yapı argümantasyon görülmüĢtür. Üçüncü geometri probleminin çözümü 

incelendiğinde iki grupta yine benzer global argümantasyonlar (rezervuar-yapı, 

çizgi/hat-yapı ve bağımsız argümanlar-yapısı) gözlemlenmiĢtir. Yine Kağıt-Kalem 

grubunda fazladan bir kaynak-yapı argümantasyon gözlemlenmiĢtir. Son geometri 

probleminin çözümünde GeoGebra grubunda global argümantasyon yapısı 
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açısından çeĢitlilik görülürken Kağıt-Kalem grubunda sadece spiral-yapı ve 

bağımsız argümanlar-yapısı gözlemlenmiĢtir. 

 

4.2 Ortaokul matematik öğretmen adaylarının lokal argüman tipleri 

 

Bu analizde global argümantasyon yapılarının içindeki lokal argümanlarda 

(iddia, veri, gerekçe içeren argümanlar) Toulmin‘in (1958) argüman elemanlarının 

(iddia, veri, gerekçe) sınıfta söyleniĢ sırası yani argüman elemanlarının akıĢ sırası 

incelenmiĢtir. Bunun için araĢtırmacı verileri tekrar tekrar okuyarak herbir argüman 

içinde hangi elemanın daha önce söylendiğini değerlendirmiĢ her bir elemana 

numara vermiĢtir (iddia ilk önce söylenmiĢse iddiaya ‗1‘, sonra gerekçe 

söylenmiĢse gerekçeye ‗2‘, en son verilerden bahsedilmiĢse verilere ‗3‘ numarası 

verilmiĢtir). Analiz sonucunda dokuz adet lokal argüman tipi ortaya çıkmıĢtır. Bu 

argüman tipleri isimlendirilirken argüman elemanlarının Ġngilizce isimlerinin baĢ 

harfleri, söyleniĢ sırasına göre yazılmıĢtır. Örneğin veri için ‗data‘ kelimesinin baĢ 

harfi olan ‗D‘, iddia için ‗claim‘ kelimesinin baĢ harfi olan ‗C‘ ve gerekçe için 

‗warrant‘ kelimesinin baĢ harfi olan ‗W‘ kullanılmıĢtır. Yani önce gerekçe, sonra 

veri, daha sonra iddia elemanlarının söylendiği bir argüman ‗WDC‘ lokal argüman 

tipi olarak kodlanmıĢtır. Eğer bir argüman elemanı ifade edilmemiĢse onun yeri boĢ 

bırakılmıĢtır (Ör:CD). Tüm argümanlar kodlandıktan sonra belirlenen lokal 

argüman tipilerinin her bir grupta kaçar tane olduğu incelenmiĢ, aĢağıdaki tablo 

oluĢturulmuĢtur. 

 

Tablo 4.2 GeoGebra ve Kağıt-Kalem gruplarındaki argümanların lokal argüman 

tiplerine göre dağılımı 
 GeoGebra Grubu Kağıt-Kalem Grubu 

1. DCW 11 10 

2. DWC 29 38 

3. CDW 1 4 

4. WDC 2 2 

5. CD 1 2 

6. DC 2 3 

7. CW 10 8 

8. WC 4 3 

9. C 3 3 
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 Tablodaki verilere göre ortaokul öğretmen adaylarının en çok kullandıkları 

lokal argüman tiplerinin sırasıyla DWC, DCW and CW dir. Lokal argüman tipleri 

grup bazında karĢılaĢtırıldığında iki grupta da benzer Ģekilde dağıldıkları sonucuna 

varılmıĢtır. AraĢtırmacı lokal argüman tiplerinin geometri problemleri arasındaki 

dağılımını da incelemiĢtir.  

 

Tablo 4.3 Lokal argüman sayılarının her bir geometri sorusuna göre dağılımı 

 GeoGebra  Kağıt-Kalem 
 GP 1 GP 2 GP 3 GP 4 GP 1 GP 2 GP 3 GP 

4 

1. DCW 2 1 3 5 3 2 2 3 

2. DWC 3 10 7 9 8 11 8 11 

3. CDW 0 1 0 0 1 0 1 2 

4. WDC 1 1 0 0 2 0 0 0 

5. CD 0 0 0 1 0 0 2 0 

6. DC 1 0 0 1 2 0 0 1 

7. CW 5 1 4 0 4 1 3 0 

8. WC 3 0 1 0 2 1 0 0 

9. C 1 0 0 2 1 0 0 1 

 

 

 Lokal argüman tiplerinin iki grupta da herbir geometri problemine göre 

dağılımı incelendiğinde, ortaokul matematik öğretmen adaylarının en çok DWC 

lokal argüman tipini kullandıkları görülmektedir. Bu sonuçlara göre bir grupta 

GeoGebra dinamik geometri programı kullanılmasına rağmen öğretmen adaylarının 

argümanlarının lokal argüman tiplerine göre dağılımının benzer olduğu ve iki 

grupta da en çok DWC lokal argüman tipini kullandığı sonucuna varılmıĢtır. 

Lokal argüman tipleri geometri problemlerinin konularına (üçgenler, 

çemberler) göre de karĢılaĢtırılmıĢ (Bkz. Tablo 4.4) 
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Tablo 4.4 Matematik içeriğine göre lokal argümanların argüman tiplerine göre 

dağılımı 
 GeoGebra Grubu Kağıt-Kalem grubu 

 Üçgenler Çemberler Üçgenler Çemberler 

1. DCW 3 8 5 5 

2. DWC 13 16 19 19 

3. CDW 1 0 1 3 

4. WDC 2 0 2 0 

5. CD 0 1 0 2 

6. DC 1 1 2 1 

7. CW 6 4 5 3 

8. WC 3 1 3 0 

9. C 1 2 2 1 

 

Lokal argüman tiplerinin matematik içeriğine göre dağılımı incelendiğinde 

GeoGebra ve Kağıt-Kalem gruplarındaki öğretmen adaylarının benzer Ģekilde 

argüman ürettikleri görülmüĢtür. En sık gözlenen lokal argüman tipi üçgen 

problemlerinde de çember problemlerinde de DWC dir. Daha sonra en sık 

kullanılan lokal argüman tipinin kimi geometri problemlerinde DCW, kimilerinde 

CW olduğu görülmektedir. Bunun yanında bir grupta GeoGebra kullanılmasının, 

lokal argüman tipi dağılımında bir fark yaratmadığı görülmektedir. 

 

 

4.3 Ortaokul matematik öğretmen adaylarının lokal argümantasyon nitelikleri 

 

Ortaokul matematik öğretmen adaylarının lokal argümantasyonları 

Knipping‘in (2008) geliĢtirdiği sınıflandırmaya göre incelenmiĢtir. Bu 

sınıflandırmada lokal argümanların gerekçe (warrant) kısımları yani sunulan 

muhakeme incelenmiĢtir. Bu sınıflandırmada gerekçeler öncelikle kavramsal 

argümantasyon ve görsel argümantasyon olarak ikiye ayrılmakta; görsel 

argümantasyon ise ampirik-görsel ve kavramsal-görsel argümantasyon olarak ikiye 

ayrılmaktadır. Lokal argümantasyonlar öncelikle her bir geometri problemi için ayrı 

ayrı incelenmiĢtir. AĢağıdaki tabloda birinci geometri problemi çözümünde 
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oluĢturulan lokal argümanların gerekçeleri sınıflandırılmıĢtır. Örneğin ‗2‘ sayısı 

ikinci lokal argümanın gerekçesidir. 

 

Tablo 4.5 Birinci geometri problem çözümünde oluşturulan argümanların lokal 

argümantasyon çeşitlerine göre dağılımı  

Lokal 

Argümantasyon 

Görsel Argümantasyon 

 

 

Kavramsal 

Argümantasyon 
 

 

 
Gerekçe 

elemanı 

olmayan 

arg. 

 

 

 

 

Yeni 

Durum 

Ampirik-

Görsel 

Kavramsal-

Görsel 

A
rg

ü
m

a
n

 n
u

m
a
ra

la
rı

 

G
eo

G
eb

ra
 

G
ru

b
u

 

2, 5, 7,9, 

10, 11,12, 

13, 14, 16 

6 8, 15 1, 3 4 

K
a
ğ
ıt

-K
a
le

m
 

G
ru

b
u

 

9, 14, 18, 

20,  

23, 24 

---- 5, 6, 7, 8,  

11, 12, 13, 15,  

16, 17, 19, 21,  

22 

1, 2, 3,  

10, 25 

 

4 

 

Tablo 4.5‘te GeoGebra grubundaki katılımcıların çoğunlukla ampirik-görsel 

gerekçeler sundukları görülmektedir. Diğer yandan Kağıt-Kalem grubundaki 

katılımcıların daha çok kavramsal argümantasyona uygun gerekçeler kullandıkları 

görülmektedir. Bunun yanında iki grupta da gerekçesi olmayan argümanlar 

bulunmaktadır. Ayrıca iki grupta da 4 numaralı argümanların gerekçeleri bu 

sınıflandırmaya girmediği için tabloda yeni durum sütununda yer almıĢlardır. 

Ortaya çıkan bu yeni durum ―soruda verilenleri gerekçe gösterme” olarak 

isimlendirilmiĢtir.  

Tablo 4.6‘da ikinci geometri problemi çözümünde elde edilen argümanların 

gerekçelerinin Knipping‘in (2008) sınıflandırmasına göre dağılımı görülmektedir. 
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Tablo 4.6 İkinci geometri problem çözümünde oluşturulan argümanların lokal 

argümantasyon çeşitlerine göre dağılımı 

Lokal 

Argümantasyon 

Görsel Argümantasyon 

 

 

Kavramsal 

Argümantasyon 

Ampirik-

Görsel 

Kavramsal-Görsel 

A
rg

ü
m

a
n

 n
u

m
a

ra
la

rı
 

G
eo

G
eb

ra
 

G
ru

b
u

 

19, 20, 22, 23 17, 24, 28, 29,  

30 

18, 21, 25, 26,  

27 

 

K
a

ğ
ıt

-K
a
le

m
 

G
ru

b
u

 

27, 30, 33, 39 32, 35, 36 26, 28, 29, 31, 

34, 37, 38, 40 

 

Tablo 4.6‘da görüldüğü gibi GeoGebra grubundaki katılımcılar daha çok 

görsel argümantasyon kullanmıĢlardır. Kağıt-Kalem grubundaki katılımcılar ise 

ikinci geometri probleminin çözümünde hem görsel hem kavramsal argümantasyon 

kullanmıĢlardır.  

Üçüncü geometri probleminin çözümünde oluĢturulan argümanların 

gerekçeleri Tablo 4.7‘deki gibi dağılmaktadır. 
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Tablo 4.7 Üçüncü geometri problem çözümünde oluşturulan argümanların lokal 

argümantasyon çeşitlerine göre dağılımı 

Lokal 

Argümantasyon 

Görsel Argümantasyon 

 

 

Kavramsal 

Argümantasyon 

 

 

 

Gerekçe 

elemanı 

olmayan 

arg. 

 

 

 

Yeni 

Durum 
Ampirik-

Görsel 

Kavramsal-

Görsel 

A
rg

ü
m

a
n

 n
u

m
a

ra
la

rı
 

G
eo

G
eb

ra
 

G
ru

b
u

 

32, 33, 34,  

35, 36, 41, 

42,  

45 

37, 38, 43, 

44 

  39 --- 31, 40 

K
a
ğ
ıt

-K
a
le

m
 

G
ru

b
u

 

42, 44, 48, 

52,  

45, 47, 53, 

54 

41, 43, 50, 

46 

  51, 56 49, 55 --- 

 

Tablo 4.7‘de görüldüğü gibi iki gruptaki katılımcılar da üçüncü geometri 

problemini çözerken benzer çeĢitte gerekçeler sunmuĢlardır. Daha detaylı söylemek 

gerekirse katılımcılar gerekçe sunarken daha çok görsel argümantasyona 

baĢvurmuĢlardır. Görsel argümantasyonlardan ise daha çok ampirik-görsel 

argümantasyonu kullanmıĢlardır. Kağıt-Kalem grubunda gerekçesi olmayan iki 

argüman bulunmakta iken, GeoGebra grubunda bu sınıflandırmaya uymayan, 

GeoGebra ölçümlerini gerekçe sunma olarak tanımladığımız (31. Argümanın 

gerekçesi) ve GeoGebra eylemlerini gerekçe sunma (Ör: sürükleme) olarak 

tanımladığımız (40. argümanın gerekçesi) yeni durumları ile karĢılaĢılmıĢtır.  

Son olarak dördüncü geometri probleminin çözümünde oluĢturulan 

argümanların gerekçeleri Tablo 4.8‘deki gibi dağılmaktadır. 
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Tablo 4.8 Dördüncü geometri problem çözümünde oluşturulan argümanların lokal 

argümantasyon çeşitlerine göre dağılımı 

Lokal 

Argümantasyon 

Görsel Argümantasyon 

 

 

Kavramsal 

Argümantasyon 

 

 

 

Gerekçe 

elemanı 

olmayan 

argümanlar 

Ampirik-

Görsel 

Kavramsal-

Görsel 

A
rg

ü
m

a
n

 n
u

m
a

ra
la

rı
 

G
eo

G
eb

ra
 

G
ru

b
u

 

51, 52, 53, 54, 

59, 62 

55, 56, 63 47, 48, 57, 58,  

60, 

46, 49, 50, 61 

K
a
ğ
ıt

-K
a
le

m
 

G
ru

b
u

 

57 64, 65, 69, 

70,  

71, 73, 74 

59, 60, 62, 63,  

66, 67, 68, 72 

58, 61 

 

 

 Tablo 4.8 incelendiğinde GeoGebra grubundaki katılımcıların daha çok 

görsel argümantasyon kullandıkları, görsel argümantasyon çeĢitlerinden ise daha 

çok ampirik-görsel gerekçe sundukları görülmektedir. Kağıt-Kalem grubunda ise 

görsel ve kavramsal argümantasyon kullanımının eĢit sayıda olduğu görülmektedir. 

Bu katılımcıların kullandığı görsel argümantasyon çeĢidinin ise çoğunlukla 

kavramsal-görsel olduğu görülmektedir. Son olarak iki grupta da gerekçe elemanı 

olmayan argümanların olduğu görülmektedir.  

 AraĢtırmacı geometri problemlerinin çözümlerini ayrı ayrı inceledikten 

sonra bu problemlerin konularına göre (Üçgenler, Çemberler) de inceleme 

yapmıĢtır. Bunun için birinci ve ikinci geometri problemleri üçgen konusunda 

oldukları için birlikte ele alınırken, çember konusunda hazırlanan üçüncü ve 

dördüncü geometri problemleri birlikte ele alınmıĢtır.  

Üçgen problemlerinde GeoGebra grubundaki katılımcıların daha çok 

ampirik-görsel argümantasyon kullandığı sonucuna varılmıĢtır. Diğer yandan 

Kağıt-Kalem grubundaki katılımcıların ise daha çok kavramsal argümantasyonu 

tercih ettikleri sonucuna varılmıĢtır. GeoGebra programı insanları kendi çizimleri 

üzerinde deneme yanılma yolu ile düĢünmeye teĢvik etmektedir. Bu nedenle 
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GeoGebra grubundaki katılımcıların spesifik çizimler üzerinden yorum yapmayı 

tercih etmeleri beklenen bir sonuçtur. Benzer Ģekilde Kağıt-Kalem grubundaki 

katılımcıların kavramsal bilgileri kullanmaya yönelmesi de beklenen bir durumdur. 

Çünkü katılımcılar kendi çizmlerini kavramsal bilgileriyle desteklemeye ve çıkarım 

yapmaya çalıĢmıĢlardır. 

Çember problemlerinde bu durumun GeoGebra grubu için aynı olduğu 

görülmektedir. Dolayısıyla matematiksel içeriğin GeoGebra grubundaki 

katılımcılarda farklı lokal argümantasyon tercih etmeye neden olmadığı 

görülmüĢtür. Kağıt-Kalem grubunda ise durum farklılık göstermiĢtir. Katılımcılar 

çember problemlerinde daha çok görsel argümantasyon kullanmıĢlardır. Ampirik-

görsel ve kavramsal-görsel argümantasyonlardaki argüman sayıları incelendiğinde 

Kağıt-Kalem grubunda neredeyse eĢit sayılarda oldukları görülmektedir. Ayrıca 

Kağıt-Kalem grubundaki katılımcıların problemlerdeki dinamik soruları GeoGebra 

programı kullanmadan zihinlerinde doğru bir Ģekilde hayal edebilmeleri, teorem ve 

matematiksel kurallar yerine görsel çizimler üzerinden yorum yaparak gerekçe 

sunmaları, beklenmeyen bir sonuç olarak karĢımıza çıkmaktadır. 

 

5. TARTIŞMA 

5.1 Argümantasyon yapısı ile ilgili sonuçlar 

 

Matematik öğretmen adaylarının argümantasyon süreçleri her bir geometri 

problemi için GeoGebra ve Kağıt-Kalem grubu karĢılaĢtırılarak incelenmiĢtir. Buna 

göre her bir geometri problemi için grupların argümantasyon yapıları arasında 

benzerlikler ve farklılıklar bulunmaktadır. Bütün geometri problemleri 

incelendiğinde genel olarak aĢağıdaki sonuçlar elde edilmiĢtir. 

Bu çalıĢmada global argümantasyon yapılarını incelemek için Knipping 

(2008)‘in sınıflandırması geliĢtirilerek kullanılmıĢtır. Knipping‘in 

sınıflandırmasında yer alan yapılardan üç tanesi bu çalıĢmada gözlemlenmiĢ 

(Kaynak-yapı, Rezervuar-yapı ve Spiral-yapı), bunun dıĢında bu sınıflandırmaya 

uymayan iki yeni yapı ortaya çıkmıĢtır. Bunlar Çizgi/Hat yapı ve Bağımsız-
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Argümanlar yapısı olarak isimlendirilmiĢtir. Bu yeni yapılar geometri alanında 

argümantasyon çalıĢmalarına katkıda bulunması açısından önemlidir.  

Bir diğer önemli sonuç tercih edilen global argüman yapıları ile ilgilidir. 

Kaynak-yapı, rezervuar-yapı ve spiral-yapı daha karmaĢık global argümantasyon 

yapılarıdır ve bu çalıĢmada çoğunlukla öğretmenin sorgulatması ve teĢviki ile 

gözlemlenmiĢtir. Bu yapılar arasında  en çok rastlanan ise spiral-yapı olmuĢtur. 

Bunun en önemli nedeni araĢtırmacının sürekli farklı çözüm yolları bulmayı teĢvik 

etmesi ve argümantasyona sevk eden davranıĢları olabilir. Bu davranıĢlar öğrenci 

iletiĢimini destekleme, gerekçe sunmayı teĢvik etme, cevapları sorgulama (Kosko, 

Rougee, & Herbst, 2014; Vincent, Chick, & McCrae, 2005; Wood, 2003), bütün 

grupları takip etme, yargılayıcı dönütlerden kaçınma (Cross, 2009) olarak 

sıralanabilir. Bu bulgu argümantasyon yönteminin uygulanmasında öğretmen 

faktörünün önemini bir kez daha ortaya çıkarmaktadır (Conner, 2007; Forman ve 

diğerleri, 1998; Heinze & Reiss, 2007; Hunter, 2007; Yackel & Cobb, 1996). 

Önemli bulgulardan bir diğeri katılımcıların argüman yapılarının sayıları 

karĢılaĢtırıldığında daha çok bağımsız argümanlar-yapısı gibi basit yapıları 

kullanmalarıdır. Genel olarak bütün geometri problemlerinde iki grupta da 

(GeoGebra ve Kağıt-Kalem) bağımsız argümanlar-yapısının görülmesi 

katılımcıların matematiksel muhakeme yapma konusunda zayıf olduklarının 

göstergesi olabilir. Çünkü katılımcılar argümanları arasındaki iliĢkileri 

kuramamakta ve argüman yapıları basit kalmaktadır. Alanyazında matematiksel 

muhakeme ―matematiksel kavramlar ve iliĢkiler üzerinde amaçlı olarak yapılan 

çıkarım‖ (Conner ve arkadaĢları, 2014b, s. 183) olarak tanımlanmıĢtır. Matematik 

öğretmen adaylarının öğrencilerine matematik anlatabilmeleri için mutlaka 

matematiksel muhakeme becerilerini geliĢtirmeleri gerekmektedir. Bu çalıĢmadaki 

öğretmen adaylarının daha çok bağımsız argümanlar-yapısını kullanmaya eğilimli 

olmalarının ve dolayısıyla matematiksel muhakemede biraz zayıf olmalarının 

nedeni eğitim yaĢamları boyunca argümantasyon veya tartıĢma yöntemlerinin 

uygulandığı derslere tanıdık olmamaları olabilir. Türkiye‘deki eğitim sistemi ve 

uygulanan müfredat incelendiğinde, öğrencileri çoktan seçmeli ulusal sınavlara 

hazırlamayı amaç edindikleri görülmektedir. Bu sınavlarda kısa sürede doğru cevabı 
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bulmak önemli olduğundan öğrencilerin benzer alıĢtırma sorularından sürekli 

çözdüğü, kuralları ezberlediği bir çalıĢma yöntemine alıĢık olduğu söylenebilir. 

Bunun sonucunda öğrenciler ispat, tartıĢma, argümantasyon gibi yüksek seviyede 

muhakeme gerektirecek çalıĢmalara katılmamıĢ ve matematiksel muhakeme 

becerilerini geliĢtirmemiĢ olarak yetiĢmektedirler. Bu becerilerin geliĢtirilmesi 

matematiği kavramsal öğrenme açısından önemli olduğu kadar geleceğin 

öğrencilerini bu becerilere sahip Ģekilde yetiĢtirmek adına önemlidir. Bu nedenle 

ortaokul matematik öğretim programına öğretmenlerin argümantasyon uygulamaları 

yapacağı ve matematiksel muhakemelerini geliĢtirecekleri dersler eklenmesi 

yerinde olacaktır. 

 

5.2 Lokal argüman tipleri ile ilgili sonuçlar 

 

Ortaokul matematik öğretmen adaylarının geliĢtirdikleri lokal argümanlar 

(iddia, veri ve gerekçe içeren argümanlar), argüman elemanlarının argümantasyon 

sürecinde söylenme sırasına göre analiz edilmiĢtir. Böylelikle argümanların nasıl bir 

muhakeme sonucu ortaya çıktığı konusunda ipuçları elde edilmiĢtir. Bulgular 

incelendiğinde ortaokul matematik öğretmen adaylarının teknoloji ve kağıt-kalem 

ortamlarında en sık kullandıkları üç lokal argüman tipi sırasıyla Veri-Gerekçe-Ġddia 

(DWC), Veri-Ġddia-Gerekçe (DCW) ve Ġddia-Gerekçe (CW) olarak 

gözlemlenmiĢtir. Bu aslında beklenen bir sonuçtu çünkü katılımcılar ilk önce 

ellerindeki verilerden bahsetmiĢ, daha sonra bir gerekçe sunmuĢ ve bir iddiada 

bulunmuĢlardır (DWC). Bunun yanında bazen iddia ile gerekçenin yerinin değiĢtiği 

(DCW) bazen de verilerden bahsedilmediği durumlarla karĢılaĢılmıĢtır. CW lokal 

argüman tipinde verilerden bahsedilmemesinin nedeni, o verilerin artık sınıfça 

bilinen paylaĢılan bilgi (taken-as-shared) olması olabilir (Simon & Blume, 1996; 

Yackel & Cobb, 1996; Yackel, Ramussen, & King, 2000). Katılımcıların bazı 

argümanlarında veriyi ve/veya gerekçeyi paylaĢılan bilgi (taken-as-shared) olması 

nedeniyle sunmadığı gözlemlenmiĢtir (CD, DC, WC and C). Bu nedenle 

çğretmenlerin bu argüman elemanlarını sunmayan öğrencileri değerlendirirken  bu 

bilgilerin sınıfça paylaĢılan bilgi olup olmadığına dikkat etmesi önerilmektedir. 
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Çünkü öğrencinin bahsetmemesi o bilgiyi bilmediği anlamına gelmeyebilir. Bazen 

sınıfça kabul edilmesi sebebiyle söylemeye gerek duymamıĢ olabilirler. Sonuç 

olarak argümantasyon yöntemini uygulayan öğretmenlerin öğrencilerin gerçekten 

bilip bilmediğini anlamak için sürekli ‗Neden?‘ sorusuyla sorgulama yapması 

önerilmektedir (Vincent, 2002; Wood, 2003). 

Lokal argümanlar GeoGebra ve Kağıt-Kalem grubu arasında 

karĢılaĢtırıldığında iki grubunda benzer Ģekilde lokal argüman sundukları 

gözlemlenmiĢtir. Benzer Ģekilde lokal argümanlar her bir geometri problemi için 

ayrı ayrı incelendiğinde yine en sık kullanılan lokal argüman tiplerinin DWC, DCW 

ve CW tipleri olduğu görülmüĢtür. Lokal argüman tipleri ayrıca üçgen soruları ve 

çember soruları arasında da karĢılaĢtırılmıĢ, yine iki grubun benzer Ģekilde lokal 

argüman tiplerini kullandığı gözlenmiĢtir. Dolayısıyla teknoloji kullanımının, 

geometri problemi çeĢidinin veya geometri konusunun argüman elemanı söyleniĢ 

sırası açısından önemli bir değiĢikliğe neden olmadığı sonucuna varılabilir. 

Argüman elemanı sunma Ģeklinin, alıĢkın olunan muhakeme Ģekliyle alakalı olduğu 

düĢünülmektedir. Daha açık söylemek gerekirse, Türkiye‘deki öğrenciler eğitim 

hayatları boyunca argümantasyon gibi soruĢturma tabanlı öğrenme yöntemlerine 

çok alıĢık olmadıkları için argümanlarını benzer Ģekilde ifade ederek 

sunmaktadırlar. Farklı öğrenme ortamlarında bulunmaları (teknoloji, Kağıt-Kalem) 

onların argüman tiplerinde değiĢikliğe neden olmamaktadır. 

 

5.3 Lokal argümantasyon çeşitleri ile ilgili sonuçlar 

 

Ortaokul matematik öğretmen adaylarının local argümantasyon çeĢitleri, 

argümanlarında sundukları gerekçelere (warrant) odaklanılarak Knipping‘in (2008) 

sunduğu sınıflandırmaya göre incelenmiĢtir. Genel olarak GeoGebra grubundaki 

katılımcıların ampirik-görsel argümantasyon, Kağıt-Kalem grubundaki 

katılımcıların ise kavramsal argümantasyon kullanmaya meyilli oldukları 

gözlemlenmiĢtir. GeoGebra grubunda daha çok ampirik-görsel argümantasyon 

kullanılmasının nedenlerinden birisi GeoGebra‘nın sürükleme yapma olanağı 

olabilir. Kullanıcılar sürükleme yaparak belirli Ģekiller üzerinde konuĢmakta, o 
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Ģekiller üzerindeki ölçümler/değerler üzerinden yorum yapmaktadırlar. Sonuç 

olarak bu yorumları yeterli bir gerekçe olarak kabul etmektedirler. Bu nedenle 

çıkarımlarını çoğunlukla teorik olarak desteklememektedirler (Chazan, 1993). Bir 

diğer neden teknoloji ortamında teorik gerekçe sunmaya alıĢkın olmamaları olabilir 

(Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith, 2010). 

Diğer yandan Kağıt-Kalem grubunda katılımcılar gerekçelerini teorik olarak 

desteklemek zorunda kaldıkları için teorem, aksiyom, kural ve benzeri iliĢkileri 

gerekçe olarak sunmuĢlardır ve kavramsal argümantasyon kullanmıĢlardır. 

Alanyazında sürükleme, ölçme gibi ampirik delillerin kullanımının önemli olduğu 

(Arzarello ve diğerleri, 2002; Chazan, 1993; De Villiers, 2003; Healy & Hoyles, 

2001) fakat gerekçelendirme açısından yeterli olmadığı savunulmaktadır (Hoyles & 

Healy, 1999). AraĢtırmacılar ampirik delillerin teorik olarak desteklenemesinin 

gerekli olduğunu savunmaktadırlar (Arzarello ve diğerleri, 2002). 

Bu çalıĢmada Knipping‘in (2008) sınıflandırmasına tam olarak uymayan 

birkaç çeĢit gerekçe de sunulmuĢtur. Bu gerekçeler ‗soruda verilenleri gerekçe 

sunma‘, ‗GeoGebra ölçümlerini gerekçe sunma‘ ve ‗GeoGebra hareketlerini 

gerekçe sunma‘ olarak sınıflandırılmıĢtır. Ġsimlerinden de anlaĢılacağı gibi 

katılımcılar bazı durumlarda soruda verilenleri, bazı durumlarda ise GeoGebra ile 

yaptıkları ölçümleri ve sürüklemeleri delil olarak göstermiĢlerdir. Bu gerekçeler 

herhangi bir muhakeme veya teorik bilgi ile desteklenmediği için iddialarını 

savunmaları açısından yeteri kadar güçlü değildir (Chazan, 1993). Sayıları çok az 

olan bu tip gerekçeler, ortaokul matematik öğretmen adaylarının genel anlamda 

kullandığı bir lokal argümantasyon çeĢidi olarak kabul edilmemektedir. Diğer 

yandan, bu çalıĢmanın bulgularının ileride yapılacak çalıĢmalara kaynak olabileceği 

düĢünülerek bu tip gerekçelerin de mevcudiyetinin dikkate alınması tavsiye 

edilmektedir.  
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