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ABSTRACT

AN ANALYSIS OF PROSPECTIVE MIDDLE SCHOOL MATHEMATICS
TEACHERS’ ARGUMENTATION STRUCTURES IN TECHNOLOGY AND
PAPER-PENCIL ENVIRONMENTS

Erkek, Ozlem
Ph.D., Department of Middle school Education

Supervisor: Assoc. Prof. Dr. Mine Isiksal Bostan

May 2017, 296 pages

The purpose of the current study was to investigate the nature of
argumentation structures of prospective middle school mathematics teachers while
solving geometry tasks within the GeoGebra and Paper-Pencil groups. The study
employed qualitative case study design and the data of which were collected from
16 prospective middle school mathematics teachers during the fall semester of the
2013-2014 academic year. Data were based on the video recordings of the
implementations, the focus group interviews and documents.

The findings revealed five types of global argumentation structures, two of
which emerged from the present study: Line-structure and Independent-Arguments
structure. In addition, the participants employed 9 types of local arguments while
three of them were most frequently preferred. Finally, the local argumentations
were examined by focusing on the justifications of the participants. This analysis

revealed the characteristics of the local argumentations that prospective middle
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school mathematics teachers use while solving geometry tasks in GeoGebra and
Paper-Pencil groups.

Keywords: Argumentation Structures, Prospective Middle School Mathematics
Teachers, Technology, Global Argumentation, Local Argumentation



0z

ORTAOKUL MATEMATIK OGRETMEN ADAYLARININ
ARGUMANTASYON YAPILARININ TEKNOLOJI VE KAGIT-KALEM
ORTAMLARINDA INCELENMESI

Erkek, Ozlem
Doktora, Ik gretim Boliimii

Tez Yoneticisi: Dog. Dr. Mine Isiksal Bostan

Mayis 2017, 296 sayfa

Bu c¢alismanin amaci, GeoGebra ve Kagit-Kalem gruplarinda geometri
sorular1 ¢6zen ortaokul matematik 6gretmen adaylarinin argiimantasyon yapilarinin
dogasini1 incelemektir. Bu ¢alismada nitel durum calismast deseni kullanilmis ve
veriler 2013-2014 akademik yilinin sonbahar déneminde 16 ortaokul matematik
ogretmen adayindan toplanmigtir. Veri kaynaklarin1 uygulamalarin video kayaitlari,
odak grup goriismeleri ve belgeler olusturmaktadir.

Bulgularda bes cesit global arglimantasyon yapisi ortaya ¢ikmistir. Bunlarin
ikisi Cizgi/Hat yap1 ve Bagimsiz-Argiimanlar yapisi bu ¢alismada ortaya ¢ikmistir.
Ayrica katilimcilar 9 ¢esit lokal argiiman yapilarindan ti¢linii ¢ok sik kullanmay1
tercih etmislerdir. Son olarak, katilimcilarin gerekcelendirmelerine odaklanarak

lokal argiimantasyonlari incelenmistir. Bu analiz, ortaokul matematik &gretmen
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adaylarimin GeoGebra ve Kagit-Kalem gruplarinda geometri sorular1 ¢odzerken

kullandiklar1 lokal argiimantasyonlarin niteligini ortaya ¢ikarmustir.

Anahtar Kelimeler: Argiimantasyon Yapilar;, Ortaokul Matematik Ogretmen

Adaylar1, Teknoloji, Global Arglimantasyon, Lokal Argiimantasyon
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CHAPTER |

INTRODUCTION

Mathematics education researchers have been conducting research studies in
order to increase mathematical learning of students for years. From time to time
new trends in the teaching and learning of mathematics are proposed by different
organizations. One of the largest organizations which has a significant impact on
mathematics teaching all over the world is the National Council of Teachers of
Mathematics [NCTM], which makes publications by considering the changing
needs and new developments in the world. NCTM (1991) emphasized the
importance of some skills which were necessary in mathematics education: complex
problem solving, high level reasoning, making connections across mathematical
domains, and communicating. In addition, instead of the transmission of factual
knowledge from the teacher to the student, the active participation of students in
discussing ideas, making convincing arguments, making reflection and clarifying
their thoughts (which are the requirements of argumentation) have been promoted
and expected for a better mathematical understanding (Forman, Larreamendy-
Joerns, Stein, & Brown, 1998; Hufferd-Ackles, Fuson, & Sherin, 2004;
Krummbheuer, 2000; Stein, Engle, Smith, & Hughes, 2008). Similarly, NCTM
(2000) emphasized the necessity of the integration of reasoning and proof in
classroom discussions of all topics with the statement, “Reasoning and proof are not
special activities reserved for special topics in the curriculum but should be a
natural, ongoing part of classroom discussions, no matter what topic is being
studied” (p.342). At this point, the importance of argumentation in mathematics
emerged since it was claimed by researchers that reasoning and argumentation were
closely related to each other (Conner, Singletary, Smith, Wagner, & Francisco,
2014b). They defended this idea by saying, “When an individual is creating an
argument, he or she is reasoning, and when an individual is reasoning, he or she is

1



creating an argument; thus we contend that, when considered as individual
activities, argumentation and reasoning refer to the same process in mathematics”
(p. 183). On the other hand, there are researchers who identified the subtle
distinction between argumentation and reasoning by saying that argumentation
requires an attempt of convincing an active or passive audience of a claim, while
reasoning requires careful consideration to come to a justified claim. Despite this
subtle distinction, argumentation and reasoning were accepted to refer to the same
process and became the main concern of the present study.

Another current trend in mathematics education was analyzing the process of
teaching and learning in accordance with the socio-cultural perspective (Recio &
Godino, 2001). Mathematical knowledge was asserted to be developed within
institutions so that it could be accepted as a socio-cultural product (Godino &
Batanero, 1998). In the past, the Australian Education Council took the attention of
the researchers to the argumentation based actions to do mathematics in 1991 by
stating that:

the systematic and formal way in which mathematics is often presented
conveys an image of mathematics which is at odds with the way it actually
develops. Mathematical discoveries, conjectures, generalizations, counter-
examples, refutations and proofs are all part of what it means to do
mathematics. School mathematics should show the intuitive and creative
nature of the process, and also the false starts and blind alleys, the erroneous
conceptions and errors of reasoning which tends to be a part of mathematics.
(p. 14; as cited in Vincent, Chick & McCrae, 2005)

As understood from the paragraph, the issues (discoveries, conjectures,
generalizations, counter-examples, refutations and proofs), which were expressed as
closely related parts for doing mathematics, refer to the actions which were
essential in argumentation. In addition, it was emphasized that these actions should
be applied in school mathematics naturally to encourage mathematics learning in a
socio-cultural way. That is to say, researchers started to give importance to the
process of learning knowledge through social interaction by means of the
argumentation activities such as conjecturing refuting, generalizing, and providing

counter-examples. Thus, the context of the present study was defined by



considering the tendency in learning with social interaction in mathematics
education.

The model of argumentation was firstly introduced in 1958 by Toulmin to
describe the non-mathematical arguments in the field of science. In fact, Toulmin
wrote his book ‘The Uses of Argument’ in 1958 to criticize the formal logic (Pease,
Smaill, Colton & Lee, 2008) and that book allowed researchers of a wide variety of
domains to analyze arguments (Conner et al., 2014b; Erduran, Simon, & Osborne,
2004; Forman et al., 1998; Hoyles & Kiichemann, 2002; Jiménez-Aleixandre,
Rodriquez, & Duschl, 2000; Krummheuer, 1995; Lavy, 2006; Osborne, Erduran, &
Simon, 2004; Pedemonte, 2007; Yackel, 2002). Moreover, Toulmin’s model was
asserted to be viewing argumentation from a practical perspective instead of a pure
logico-mathematical viewpoint (Hollebrands, Conner, & Smith, 2010). In the
framework, Toulmin (1958) proposed a layout to enable discussion analysis by
reconstructing arguments in different fields so his layout has become a popular
model across disciplines (Knipping, 2008). In this layout, there were argument
components which were claim, data, warrant, backing, modal qualifier and
rebuttal. These components were explained in literature part but here the relation
between them was expressed with an example in Figure 1.1 which was offered by
Toulmin (1958, 2003).

Harry was born \
R So, presumably,
in Bermuda |
Since Unless

A man born in Both his parents were
Bermuda will aliens/he has become a
generally be a naturalised American/ ...
British subject

{ Harry is a
British subject

On account of
The following statutes
and other legal provisions:

Figure 1.1 Toulmin’s sample for an argument (2003, p. 97)



In his book, Toulmin (2003) presented a sample claim which was ‘Harry is a
British subject’. In order to support this claim, he stated a fact as a datum: ‘Harry
was born in Bermuda’. Then, the connection between the datum and the claim was
expressed as a warrant: ‘A man born in Bermuda will generally be a British
subject’. However, the warrant needed additional support of the backing, which was
related to “the dates of enactment of the Parliament Acts and other legal provisions
which regulate the people’s nationality in British colonies” (Toulmin, 2003, p. 97).
Moreover, the force of the warrant is not sufficient to express the certainty of the
argument, so the qualifier ‘presumably’ was stated. Lastly, there are possible
rebuttals to the argument, such as ‘when both Harry’s parents were aliens’ or ‘he
has become a naturalized American’.

The given example above belonged to a verbal statement but Toulmin’s
(1958) argumentation model could be used in other fields because of its field
independency nature, such as in mathematics. That is, the researchers advocated
that the model was field independent and, thus, could be used in a variety of
contexts, but the validity of the argument elements were stated to be field
dependent. More clearly, the arguments in science, mathematics or philosophy may
have the same argument elements (data, claim, warrant ...etc) but the content of
these elements and their validity were stated to be field dependent. In addition,
Toulmin’s (1958) model of argumentation was stated to be useful in terms of
focusing on various aspects of arguments such as warrants, qualifiers and rebuttals.
The present study also aimed to investigate the argumentation structures of the
prospective middle school mathematics teachers. Thus, Toulmin’s (1958)
argumentation model, which was used to analyze argument structures in the
literature (Walter & Barros, 2011), is suitable in determining and analyzing
argument structures in mathematics field, so it was selected for the data analysis of
the present study.

The importance of social interaction and argumentation in achievement was
recognized by many researchers in the literature (Cross, 2009; Inagaki, Hatano, &
Morita, 1998; Kosko, Rougee, & Herbst, 2014; Sfard, 2008; Walter & Barros,
2011). For instance, Inagaki, Hatano and Morita (1998) mentioned that making
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contribution to discussions, asking questions, having their ideas evaluated, and
receiving immediate feedback were some of the effective strategies for knowledge
construction. Likewise, Sfard (2008) suggested taking part in specific forms of
discourse and communicational activities in order to learn mathematics more
effectively. In addition to these, Cross (2009) found that students who engaged in
activities which were based on cognitive and socio-cultural views of knowledge
obtained higher achievement. Specifically, she investigated the specific scaffolds
for facilitating argumentation of 9th grade students claimed that students who were
consistently prompted to justify and explain their reasoning had significant gains
when compared to the ones who did not receive such scaffolding. Thus, she
concluded that engagement in mathematical argumentation and justification had a
positive impact on mathematics achievement (Cross, 2009). Similarly, Walter and
Barros (2011) asserted that students’ being active in the production of substantial
arguments and working on different solution approaches to reach a consensus
contributed to the development of higher-order mathematical thinking (Kosko et al.,
2014) and reflective mathematical reasoning. Considering conducted studies, it can
be concluded that using argumentation in mathematics class would be beneficial not
only for students’ achievement but also for teachers in terms of understanding their
students’ mathematical concept development. In this way, teachers would make
decisions about the necessary contributions for providing collective argumentation
and would assume the suitable role in order to elicit such contributions (Yackel,
2002).

1.1 Problem statement and purpose of the study

Arguing includes skills such as justifying, challenging, counterchallenging
and conceding (Schwarz, 2009). According to the NCTM (2000), learning to argue,
which means acquiring the mentioned skills, was stated in many curricula all over
the world. Moreover, taking part in a productive form of mathematical argument,
conjecturing and justifying their reasoning, was suggested by mathematics

educators for students of all grade levels from prekindergarten through grade 12



(Ball & Bass, 2003; Hanna & De Villiers, 2008; NCTM, 2000). This means people
from all ages need to learn and use arguing on the concepts and issues for
meaningful learning. Arguing has a crucial place in argumentation and researchers
mentioned the benefits of argumentation for students in many studies (Cross, 2009;
Manoucheri & St John, 2006; McCrone, 2005; Wood, Williams, & McNeal, 2006).
For instance, the students who took part in an argumentation were said to have the
chance of hearing others’ ideas, detecting misconceptions, confirming their own
thinking (Cross, 2009) and so they could enhance their reasoning, explanations and
justification (Manoucheri & St John, 2006; McCrone, 2005; Wood, Williams, &
McNeal, 2006). In addition to these benefits, when they confront a situation of
conflict during the discussion, they will conjecture and make explorations, thus
acquiring the opportunity to enhance their conceptual knowledge and generate new
knowledge (Cross, 2009). As an arguing-based method, argumentation was asserted
to require higher-order thinking skills for both students and teachers. Therefore, not
only students but also teachers should practice argumentation and improve their
higher-order thinking skills in order to be able to facilitate argumentation in their
classes. Based on the literature, it is well-known that students at different school
levels had difficulties in justification, argumentation and proof (Ellis, 2007; Harel &
Sowder, 1998; Healy & Hoyles, 1998; Reiss, Klieme, & Heinze, 2001; Selden &
Selden, 2003; Walter & Barros, 2011), which is also a valid situation for Turkish
students. This was our starting point for the present study and we considered
arguing and argumentation as an issue in which there were important research
questions remaining to be addressed.

In Turkey, middle school mathematics curriculum was revised in 2013
(MoNE, 2013), and the intense contents of each grade level were reduced. When the
goals and objectives of the last curriculum were examined, it was seen that there
were sentences regarding reasoning, which we accept to be the same as
argumentation. However, in other parts of the curriculum, there were no detailed
explanations or expectations from students regarding argumentation, so it could be
said that argumentation was a tacit objective which was expected from students to

perform in the recent curriculum. In this regard, the teachers who implement the



new curriculum in class have an important role and are, thus, regarded as an
important constituent in the process. Especially in argumentation, teacher
facilitation was found to be of prime importance. It was found in empirical studies
that small children can also do deductive reasoning, but they might not do this
naturally without the help of a facilitator (Stylianides, 2007). At this point the
importance of the teacher who orchestrates the argumentation emerges for
productive argumentation. Then, a question ‘what are the actions that a teacher
should perform in argumentation class?’ arise. Common Core State Standards
Initiative [CCSSI] (2010) outlined the opportunities that teachers should provide
students with in argumentation environment: giving opportunities for conjecturing,
providing time to students for constructing arguments, recognizing and using
counterexamples, and making plausible arguments. However, there is no course
related to implementation of argumentation in class in middle school mathematics
teacher education programs so mathematics teachers in Turkey graduate from
university without having the necessary skills regarding argumentation. It is argued
that a teacher should be able to formulate strong mathematical arguments and
proofs in order to respond to students’ arguments and explanations in classroom for
high level mathematical learning (Rice, 2012). Accordingly, the answer of the
question ‘How far can teachers argue and develop arguments?’ is an issue Of
concern of the current study. Thus, understanding the nature of prospective
teachers’ knowledge regarding argumentation became an important point to be
investigated for future developments regarding argumentation in middle school
mathematics teacher education programs.

Recently, analyzing argumentation in terms of argument structures has been
suggested by researchers in the literature (Walter & Barros, 2011). For example,
Walter and Barros (2011) offered two grounded theories for the argumentation
structure of calculus students who were building mathematical arguments in their
study. One of them was related to the collaborative development of mathematical
methods. The other one was related to students’ choices for using warrants,
clarification and convincement of others for the validity of their conjectures. In

short, they analyzed mathematical argumentation at a qualitative level to reveal the



meaning making, communicating and problem solving accuracy of the calculus
students. They emphasized the importance of analyzing argument structure as

follows:

Careful analysis of structural elements in students’ substantial arguments
provides important details with respect to how students can reason about
and make sense of problem situations to build and refine representations
and understandings of mathematical ideas that they did not previously
know or need in problem solving. (Walter & Barros, 2011, p. 340)

As understood, the analysis of argument structures in the problem solving
process would give precious information about how students make sense and reason
in detail. In this regard, it is believed that analysis of argumentation structures of
prospective  middle school mathematics teachers will provide invaluable
information about their reasoning and learning in an argumentation environment.
Ultimately, based on the information gathered from the argumentation structure
analysis studies, the researchers could obtain information about teachers’ future
performances in their mathematics classes. In the present study, prospective middle
school mathematics teachers’ argumentation structures will be analyzed in terms of
global and local argumentation and this will provide information about their
reasoning and so future performances.

The other important concern of the current study was the environment in
which argumentation would take place. Since argumentation was a popular topic in
mathematics education, there are many issues to be investigated related to
argumentation in this field. One of them could be the technology enhanced
argumentation environment. Technology use in geometry was encouraged by many
researchers since it was believed that it allows users to perform various geometrical
activities ranging from constructing accurate diagrams to visualizing abstract
relationships among concepts (Hollebrands, 2007; Laborde, Kynigos, Hollebrands,
& Strafer, 2006; NCTM, 2000). Although there were few studies investigating
argumentation in the dynamic geometry environment (Hewit, 2010; Hollebrands et
al., 2010; Inglis, Mejia-Ramos & Simpson, 2007; Prusak, Hershkowitz & Schwarz,
2012), the findings of these studies include signs of positive effects of technology in
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argumentation. It was claimed that individuals who used technology had the chance
of engaging in in-depth thinking in their investigation, so they could be able to
notice the relationships that could not be discovered by the students using paper and
pencil. Argumentation was also known as being a method requiring higher-order
thinking (Hewit, 2010; Lin & Mintzes, 2010). At the beginning of the present study,
| was curious about how technology use would support argumentation structures of
prospective middle school mathematics teachers and prepared two groups,
GeoGebra group and Paper-Pencil group, who will solve the same geometry tasks
with argumentative classroom. Thus, it is believed that the present study will
provide comparable results regarding the argumentation structures of prospective
middle school mathematics teachers in technology and paper-pencil environments.
In addition, it will be revealed whether or not technology has positive effects on
argument structures of participants.

With the expectation of meeting the needs in the issues mentioned above, the
purpose of this study was to investigate the nature of argumentation structures of
prospective middle school mathematics teachers while solving geometry tasks in
technology and paper-pencil environments. The following questions were
formulated for this study:

1. What is the nature of argumentation structures of prospective middle
school mathematics teachers while solving geometry tasks in GeoGebra and
Paper-Pencil groups?
2. What are the characteristics of the local arguments within the global
argumentation structures?
- What are the characteristics of local arguments based on the flow of
argument components (claim, data, warrant) that prospective middle
school mathematics teachers express while solving geometry tasks in
GeoGebra and Paper-Pencil groups?
3. What are the characteristics of local argumentations that prospective
middle school mathematics teachers utilize while solving geometry tasks in

GeoGebra and Paper-Pencil groups?



1.2 Significance of the study

The main issue of concern of the current study was argumentation structures
utilized by prospective middle school mathematics teachers. The most significant
aspects of this study are clarified in the following paragraphs.

In the field of science, argumentation was defined as ‘“the evaluation of
knowledge claims in the light of available evidence” (Jiménez-Aleixandre &
Erduran, 2008, p. 478) and it was seen as an epistemic practice (Jiménez-
Aleixandre, 2014). Likewise, in a mathematics study, argumentation was defined as
statements including rhetoric means, the goal of which was persuading someone of
the truth of falsehood of a statement (Antonini & Martignone, 2011). In the
literature, argumentation was accepted by many researchers as a collective
discourse technique rather than the sole individual action (Krummheuer, 1995;
Walter & Johnson, 2007). There are specific actions to be performed by the
participants during the argumentation. Hewit (2010) listed the actions taken in
argumentation as generating hypothesis, justifying a position, synthesizing
problems, challenging others’ views, comparing different perspectives, and
evaluating the hypothesis consistency by using empirical evidences. These were not
simple actions because they require critical thinking and reasoning, which require
higher order thinking. In addition, in one of the studies in science, Lin and Mintzes
(2010) stated that rebutting an argument is a higher-order thinking skill and it is
quite difficult cognitive task for most of the students. The reason for this difficulty
was that the student should consider both an argument and the opposing argument
before constructing rebuttals (Lin & Mintzes, 2010). Considering such thinking
processes and related studies, it was believed that mathematical argumentation
which was characterized by such actions as “sharing, explaining, and justifying ...
mathematical ideas” (Cross, 2009, p. 908), had a positive impact on mathematical
learning (Hoyles & Kiichemann, 2002; Hufferd-Ackles et al., 2004; Krummbheuer,
2000; Stein et al., 2008).

At this point, the implementation of argumentation in mathematics education

emerged as an important issue. The teacher is the main element who orchestrates
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argumentation in mathematics classes. It was claimed that a significant problem
about argumentation-based science classes rises to be lack of pedagogical
knowledge of teachers to design the lesson (Duschl, 2008). Although middle school
mathematics teachers in Turkey are familiar with inquiry-based teaching approach,
the same situation is also valid for mathematics teachers since argumentation has
not been common in middle school mathematics curriculum yet. Researchers
alleged that there is a need of training for teachers to orchestrate argumentation in
class so they suggested teachers to first experience argumentation as learners
themselves to be able to facilitate argumentation effectively (Prusak et al., 2012).
Hence, it would be beneficial for prospective teachers to gain experience in
developing arguments and facilitating an argumentation class before starting their
professional life. However, in Turkey, there are no elective or must courses which
include information related to the argumentation method and its implementation in
middle school mathematics teacher education programs. Therefore, prospective
middle school mathematics teachers graduate from university without any
information regarding argumentation. Prospective teachers, who will guide the
argumentation of the future students, have an important role in productive
argumentation.  Specifically, teacher performance in formulating strong
mathematical arguments and proofs play an ultimate role in mathematical learning
since teachers are the ones who must respond to students’ claims or explanations in
the classroom (Rice, 2012). Thus, prospective middle school mathematics teachers’
own argumentation needed to be looked into in detail. This need may be met by
means of the current study with the path that it will open by providing the initial
necessary information regarding the nature of prospective middle school
mathematics teachers’ argumentation, and, thus, may help to lead subsequent
studies aiming to develop teacher education programs. That is, the present study
could provide invaluable implications for mathematics educators and policy makers
in designing the course contents of middle school mathematics teacher education
programs.

Argumentation was studied in the field of science in terms of quite many

aspects and its benefits regarding scientific reasoning and conceptual understanding
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have been revealed with many research studies (Lawson, 2010; Yesiloglu, 2007).
However, argumentation was a relatively new topic to be studied in the field of
mathematics education so the benefits of argumentation in mathematics learning of
different topics and how the argumentation to be integrated in these topics in
different environments is an issue of concern. As the argumentation is not a method
to be taught in middle school mathematics teacher education programs, little is
known about how the argumentation-based teaching affect conceptual learning and
reasoning of students in mathematics field.

Considering the studies in the literature, there were many aspects to be
considered in mathematical argumentation. In this regard, another significance of
the present study is the integration of technology in the argumentation. In the
related literature some researchers have been interested in examining argumentation
in a technology environment (Hollebrands et al., 2010; Inglis et al., 2007; Prusak et
al., 2012). In some studies existent in the literature, the argument structures of
college geometry students (Hollebrands et al., 2010), modal qualifier use and
warrant types of postgraduate mathematics students (Inglis et al., 2007), and peer
unguided argumentation of preservice teachers (Prusak et al., 2012) were
investigated. As understood, technology use in argumentation has been a popular
topic but an area that lacked in-depth study. One of the important aspects to be
studied is dynamic geometry programs which are known to provide students with
the opportunity to construct accurate diagrams, which enable students to realize the
relationships between abstract and general properties of geometry. Therefore,
researchers wonder whether it assists or hinders the development of reasoning
(Vincent, Chick & McCrae, 2002). That is, how the technology guide the
argumentation was not clear in the literature and there was no study confronted in
literature regarding this issue within the Turkish context. Thus, it is believed that
the findings of the current study related to the prospective middle school
mathematics teachers’ argumentation structures in technology and paper-pencil
environment will reflect the implications regarding the relationship between

technology use and argumentation.
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Furthermore, it is expected that findings will contribute to a large extent to the
technology integration approach in the Turkish education system. As a tool
promoting social interaction, GeoGebra was expected to supply productive
argumentation among prospective middle school mathematics teachers. Ultimately,
current study focused on prospective middle school mathematics teachers’ own
argumentation structures in a technology environment, supported with the
GeoGebra dynamic geometry program, and paper-pencil environment. Moreover, in
which aspects the use of GeoGebra affected the argumentation structures of
prospective middle school mathematics teachers was an important issue for the
present study. Two groups were established (GeoGebra group and Paper-Pencil
group) to make comparisons about argumentation structures and to investigate
whether or not GeoGebra use make changes in global/local argumentation
structures of prospective middle school mathematics teachers. Considering the
findings, teachers can make decisions in which situations/topics they should
integrate technology into their argumentation classes by considering the context
explained in the present study.

The findings of the present study related to prospective middle school
mathematics teachers’ argumentation structures has a great importance in the field
of mathematics education since teachers’ own practices would signify their future
intentions regarding their teaching preferences. In the literature, Knipping (2008)
also conducted a proof study with argumentation structures and emphasized the
need for further research regarding the argumentation structures. The present study
revealed prospective middle school mathematics teachers’ reasoning style by
examining their global argumentation structures and flow of argument components
(claim, data, and warrant). Moreover, local argumentations of the participants were
examined within the geometry context in order to contribute to the existing
classification developed by Knipping (2008). In this way, patterns related to the
prospective middle school mathematics teachers’ argument construction process
and reasoning were added to the argumentation literature in geometry context. For
instance, by means of the current study, the most frequently used local

argumentation types (visual argumentation or conceptual argumentation) were
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investigated in two groups and the ones which were valued by prospective middle
school mathematics teachers were revealed. The differences in local argumentation
preferences of GeoGebra group and Paper-Pencil group illustrate the effect of
technology use in prospective middle school mathematics teachers’ justification
characteristics. This information is invaluable since it includes hints related to
possible justification preferences for future teachers while planning their
argumentation classes. For instance, they should know that the students in
technology supported environment might present visual argumentation more, so
they should encourage them to support their arguments with theoretical
justifications if they need justification with conceptual argumentation. Thus, the
present study will open a new door to studies regarding argumentation structures in
technology enhanced or paper-pencil environments.

To conclude, the present study revealed the aspects of prospective middle
school mathematics teachers’ argumentation within a technologically enhanced
geometry context. There has been no argumentation related course in mathematics
teacher education programs up to now, so it is believed that this study will draw the
attention of the teacher educators and policy makers to this issue and will raise their
awareness regarding argumentation in mathematics education. Thus, the use of
argumentation will be encouraged in the mathematics field and teaching of future

students would be fostered.

1.3 Definition of the important terms

The research questions consist of several terms that need to be constitutively
and operationally defined.

Prospective middle school mathematics teachers:

These were the participants of the study, and they were the senior students
majoring in middle school mathematics education. Being in their fourth year of
undergraduate teacher education program, they had taken all the courses regarding
teacher education. In addition, they were the candidates who would teach
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mathematics from fourth grade to eighth grade in primary and middle schools after
their graduation.
Argument:

Argument was defined by Krummheuer (1995, p.231) as “The intentional
explication of the reasoning of a solution during its development or after it”. In the
current study, each statement made by students consisting of a judgement followed
by a conclusion and justification (if exists) was accepted as an argument. In order to
identify the arguments, firstly the conclusions that the participants reached were
detected, and then the justification and the data they had were sought in the
transcriptions.

Argumentation:

The accepted definition for argumentation in the current study was “A process
of logically connected mathematical discourse” (Vincent, 2002, p. 11). In the
current study, argumentation included both pair-discussions and class discussions in
which the participants presented a conclusion or a standpoint they had and then
justified their conclusion by considering the data they had. In addition, the major
aim was to convince other participants about their conclusion with the support of
their justifications. This convincing action occurred between pairs during pair-work,
between the participants who were at the board and as whole-class in class
discussions. This means that the entire geometry problem solving process of the
study was accepted as an argumentation.

Argument Components (claim, data, warrant):

Argument components were the elements that were defined by Toulmin
(1958) in his book ‘The Uses of Argument’. These components were claim, data
and warrant. In the present study °‘claim’ refers to the conclusions of the
participants’ arguments. The data are the facts that participants appealed to for
support of the claim. Finally, the warrant refers to the statements justifying the
connection between data and claim.

Global Argumentation Structures:
Knipping (2008) defined global argumentation as “layout of the structure of

the argument as a whole (the anatomical structure)” (p. 430). In the present study,
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the layouts of the argumentation of each geometry task in two groups were drawn in
order to see the whole picture of the argumentation. These general schemas were
named as global argumentation structures and these structures were analyzed.

Local Arguments:

Knipping (2008) defined the local arguments as “single out distinct
arguments” (p. 430). The present study also refers to single arguments with the
components of the claim, data and warrant (all component may not exist) as a local
argument.

Local Argumentations:

Knipping (2008) analyzed the warrant components of the local arguments and
classified the warrants according the notions of figural and conceptual aspects of
reasoning developed by Fischbein (Fischbein 1993; Mariotti & Fischbein 1997).
Visual field of justification and conceptual field of justification were the two main
local argumentations she classified. She explained these two levels as “Reasoning
based on the figural aspect concerns perceptions of space. Reasoning based on the
conceptual aspect concerns abstract and theoretical knowledge” (Knipping, 2008, p.
436). In the present study, Knipping’s (2008) classification was used, and the local
argumentations were analyzed by evaluating the warrant components of the local
arguments.

Dynamic Geometry Environment:

Dynamic geometry environment is a general term which was used for the
computer microworld with Euclidean geometry as the embedded infrasutructure and
students have the opportunity to interact with geometrical figures (Lopez-Real &
Leung, 2007) via dynamic geometry softwares such as Cabri, GeoGebra and
Geometer’s Sketchpad. Dynamic geometry programs refer to computer programs
which can be used in geometry interactively. In the present study, the dynamic
geometry environment refers to the computers laboratory in which the participants
have the opportunity to use GeoGebra dynamic geometry software while solving

geometry tasks.
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GeoGebra:

GeoGebra is a dynamic geometry program which can be used in the teaching
and learning process by a large age group ranging from middle school to university
level (Hohenwarter & Preiner, 2007). The program has a range of tools to be able to
construct geometric objects. These tools range from primitive objects, such as point,
line and segments to classical constructions, such as midpoint, perpendicular and
parallel line (Jones, 2002). Moreover, there are transformations and measurements
which help users to see the relations. GeoGebra also provides teachers with
opportunities to share their materials online and with other teachers and students for
free. GeoGebra has a graphic window and an algebra window, and any change in

the graphic window can be seen on the algebra window simultaneously.
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CHAPTER II

REVIEW OF LITERATURE

The purpose of this study was to investigate the nature of the argumentation
structures of prospective middle school mathematics teachers while solving
geometry tasks in technology and paper-pencil environments. In addition, local
arguments (core arguments including claim, data and warrant components) and
local argumentations (only warrant components of the local arguments) were
analyzed. More specifically, the kinds of global argumentation structures the
prospective elementary mathematics teachers employed, the kinds of local
arguments they expressed based on the flow of argument components, and the kinds
of local argumentations they utilized to justify their arguments were investigated.

The theoretical background related to the argumentation framework,
Toulmin’s argumentation model, the uses of Toulmin’s argumentation model in
mathematics education research, technology support and argumentation, and teacher
responsibilities in argumentation process are presented throughout the chapter in

order to provide insight and a better understanding of the scope of the study.

2.1 Theoretical background

Developments in mathematics learning have highlighted the importance of
social and cultural processes in learning (Cobb & Bauersfeld, 1995; Yackel,
Ramussen, & King, 2000). Specifically, it was claimed that learning contains both
individual and social components which are critical for academic achievement
(Cobb, Yackel, Wood, Nicholls, Wheatley, & Trigatti, 1991; Lesh, Doerr, Carmone,
& Hjalmarson, 2003; Schoenfeld, 1992). The few theoretical perspectives that were
claimed to have contributed to mathematics education by means of argumentation

are social interaction, socio-mathematical norms, sociocultural influences, and
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social negotiation of roles (Walter & Barros, 2011). Each of these perspectives put
forward different suggestions to educators regarding the teaching and social
learning of mathematics. With an awareness of the importance of social learning,
the main interest of the present study can be considered as social interaction in an
argumentation environment. Argumentation is accepted as closely related concept
with proof by many researchers (Conner, 2007b; Hemmi, Lepik, & Viholainen,
2013; Stylianides & Al-Murani, 2010) so the relationship between these two terms

were explained in the next section.

2.1.1 Argumentation and proof

The key concepts addressed in the present study were argument and
argumentation. Krummbheuer (1995) defined argument as “The final sequence of
statements accepted by all participants, which are more or less completely
reconstructable by the participants or by an observer as well” (p. 247), while
argumentation was defined by Antonini and Martignone (2011) as the statements
consisting of rhetoric means, the goal of which is to convince individuals of the
truth or the falsehood of a statement. It can be inferred from these definitions that
argumentation is regarded as a process of logically connected mathematical
discourse (Vincent, 2002), while an argument is referred to as the end-product of
the argumentation.

Antonini and Martignone (2011) defined mathematical proof as a statement
consisting of a logical sequence of propositions regarding the validity of the
statement. Another definition was stated as “the argumentative process that
mathematicians develop to justify the truth of mathematical propositions, which is
essentially a logical process” (Recio & Godino, 2001, p. 94). In the literature,
researchers specified five functions of proofs, which were verification, explanation,
systematisation, discovery and communication (Hanna, 2000; De Villiers, 1999).
Viholainen (2011) advocated that although argumentation has a broader meaning
than the term proof, it has the same functions mentioned for proofs. Hanna (2000)

claimed that the main function of proof in mathematics education is providing
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explanations as well as justifications and verifications. She also stated that the
explanatory proofs could be in the form of calculations, visual demonstrations, a
guided discussion, a pre-formal proof, an informal proof, or a proof conforming to
strict norms of rigor.

In the literature, some of the researchers accepted proof as a special type of
argumentation (Conner, 2007b; Hemmi et al., 2013). For example, Stylianides
(2007) was one of the researchers who accepted proof as a mathematical argument

when it possessed the following characteristics:

- Proof is a mathematical argument, a connected sequence of assertions for
or against a mathematical claim, with the following characteristics:

- It uses statements accepted by the classroom community (set of accepted
statements) that are true and available without further justifications;

- It employs forms of reasoning (modes of argumentation) that are valid
and known to, or within the conceptual reach of, the classroom community;
- It is communicated with forms of expression (modes of argument
representation) that are appropriate and known to, or within the conceptual
reach of, the classroom community (Stylianides, 2007, p. 107).

As understood, the proof expressions that include taken-as-shared
statements, which do not need further justifications, can be accepted as
mathematical arguments when various forms of reasoning are used, and these
opinions are expressed to the classroom by means of argument representation
modes. Likewise, in another study, Stylianides and Al-Murani (2010) clarified the
criteria for an argument to be regarded as proof:

1. It can be used to convince not only myself or a friend but also a
sceptic. It should not require someone to make a leap of faith (e.g.,
“This is how it is’ or ‘You need to believe me that this pattern will go
on forever.”)

2. It should help someone understand why a statement is true (e.g., why a
pattern works the way it does).

3. It should use ideas that our class knows already or is able to understand
(e.g., equations, pictures, diagrams).

4. It should contain no errors (e.g., in calculations)

5. It should be clearly presented. (p. 312)
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It can be deduced that a proof needs to be sceptic and convincing, and
explanatory to be accepted as an argument. In addition, it should include a reason
for why a statement is true, have correct calculations and be clearly presented.
Considering these properties, it can be understood that proof and argumentation are
closely related concepts. Therefore, it is not surprising that there are many studies
related to argumentation and proof which were explained in the section explaining
the uses of argumentation in mathematics education research. However, the
Toulmin’s Argumentation model was primarily explained in the next section in
order to make argumentation studies explained in subsequent sections more

meaningful to the reader.

2.1.2 Toulmin’s argumentation model

Toulmin, a British philosopher and logician, wrote a book ‘The Uses of
Argument’ in 1958 and proposed an argumentation model. In his book, Toulmin
presented a structure for rational arguments and interrelated the
components/elements — claim, data, and warrant — of the argument. He also
mentioned three auxiliary components, which were modal qualifier, backing and
rebuttal. Rumsey (2012) stated that these auxiliary elements were not essential
components but could be present in arguments. ‘The Uses of Argument’,

emphasizes the following points listed by Hitchcock and Verheij (2005):

1. Reasoning and argument involve not only support for points of view,
but also attack against them.

. Reasoning can have qualified conclusions.

3. There are other good types of argument than those of standard formal
logic.

4. Unstated assumptions linking premisses to a conclusion are better
thought of as inference licenses than as implicit premisses.

5. Standards of reasoning can be field-dependent, and can themselves
be the subject of argumentation (p. 255)

N

Each item above represents each component of Toulmin’s (1958)
argumentation model (Hitchcock & Verheij, 2005). The first one is the rebuttal, the
second one is the modal qualifier, and the other three items represent the warrant
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and backing components of the model (Hitchcock & Verheij, 2005). In addition to
the components listed above, one other component, which is the main component
that each argument has to possess, is the claim/conclusion [C]. The emergence of
these components during the argumentation is not so straightforward. For instance,
a statement which was proposed as data in one argument can have the function of a
claim or warrant in following arguments (Conner, Singletary, Smith, Wagner &
Francisco, 2014b; Forman et al., 1998). In order to support the claim or conclusion
of any argument, there should be some facts, information or other statements which
refer to the data [D] (Yackel, 2002). Then the following question may come to mind
‘Are the data valid for the claim?’ Then, several data or separate arguments can be
presented as data to the argument (Yackel, 2002). Subsequently, the explanatory
relevance of the data to the claim is questioned, and the legitimacy of the data will
be stated with the help of the warrant [W] (Yackel, 2002). In some cases, further
supports, such as general theories, beliefs, and primary strategies, will be needed for
the warrant which corresponds to the backing [B] component (Yackel, 2002).
Furthermore, to be able to express the degree of confidence, modal qualifiers [Q]
are needed. Finally, exceptional situations, if any, where the claim is not valid, can
be added as rebuttal [R] to the argument. Toulmin (1958) reveals the relationship

between these components with a specific layout or schema displayed in Figure 2.1.

D | >S50, Q, C
|

Since Unless
W R

On account of
B

Figure 2.1 Toulmin’s (1958) argument layout (p. 97)

In a majority of studies, researchers have defined the argument components in

various ways, and some of these definitions are listed in the following table.
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Table 2.1 Argument components and definitions

Component Definitions

Conclusion of the argument (Toulmin, 1958, p. 101)
The statement of the speaker (Pedemonte, 2007, p. 27)

Claim The statement that the argument is meant to establish (Walter &
Johnson, 2007, p. 708)
Assertion about an issue (Lin & Mintzes, 2010)
Statements whose validity is being established (Conner, Singletary,
Smith, Wagner, & Francisco, 2014a, p. 404)
The statement of which the arguer wishes to convince an audience
(Nardi, Biza & Zachariadez, 2012, p. 159)
Consists of facts that support the claim (Conner, Singletary, Smith,
Data Wagner, & Francisco, 2014a, p. 404; Verheij, 2005)
Facts we appeal to as the foundation of the claim, or minor premise
(Toulmin, 1958, p. 101)
Specific facts relied on to support a given claim (Sekiguchi, 2002)
The facts that serve as the basis for the conclusion (Walter &
Johnson, 2007, p. 708)
Foundations on which the argument is based; this includes evidence
relevant to the claim being made (Nardi, Biza & Zachariadez, 2012,
p. 159)
The statement authorising the move from the data to the claim, or
major premise (Toulmin, 1958, p. 101)
Warrant The inference rule that allows data to be connected to the claim
(Pedemonte, 2007, p. 27)
The statement that explain or authorize why data establish the
conclusion acceptably (Walter & Johnson, 2007, p. 708)
Statements that connect data with claims (Conner, Singletary,
Smith, Wagner, & Francisco, 2014a, p. 404)
Justifies the connection between data and conclusion; warrants
include appealing to a definition, a rule, an example, or an analogy
(Nardi, Biza & Zachariadez, 2012, p. 159)
Further reason to believe the warrant (Toulmin, 1958, p. 101)
Backing Additional support for the warrant (Pedemonte & Reid, 2011)

The statement that attempts to establish the authority of the warrant
(Walter & Johnson, 2007, p. 708)

Usually unstated, dealing with the field in which the argument
occurs (Conner, Singletary, Smith, Wagner, & Francisco, 2014a, p.
404)

Further evidence, justifications or reasons (Nardi, Biza &
Zachariadez, 2012, p. 159)

23



Table 2.1 (continued)

Component

Definitions

Modal Qualifier

The statements which express the force of the claim (Toulmin,
1958, p. 101)

The statement that express the strength of the argument
(Pedemonte & Reid, 2011)

Statements describing the certainity whith which a claim is
made (Conner, Singletary, Smith, Wagner, & Francisco,
2014a, p. 404)

Qualifies the conclusion by expressing the degrees of the
arguer’s confidence (Nardi, Biza & Zachariadez, 2012, p. 159)

Rebuttal

The exceptional conditions which might be capable of
defeating or rebutting the warranted conclusion (Toulmin,
1958, p. 101)

Introduces counter-argument (Pedemonte & Reid, 2011)

A valid rejection of a warrant that is in support of a
counterargument (Lin & Mintzes, 2010)

Statements describing circumstances under which the warrants
would not be valid (Conner, Singletary, Smith, Wagner, &
Francisco, 2014a, p. 404)

Potential refutations of the conclusions;rebuttals include
exceptions to the conclusion or citing the conditions under
which the conclusion would not hold (Nardi, Biza &
Zachariadez, 2012, p. 159)

Toulmin’s argumentation model was revealed to be used in a variety of

contexts, so it can be said that the model is field independent. However, some of the

researchers have asserted that the backing component of the model is field-specific,

which means that it is field dependent since the source of authority is related to the
nature of the argument (Hollebrands et al., 2010; Verheij, 2005; Vincent, 2002).
Similarly, Hollebrands et al. (2010) assert that the reason why backing is

specifically field dependent is that backings are accepted and well-comprehended in

the field in which the argument is constructed. In other words, an argument may

have the same components in science, law, philosophy and mathematics, but the

valid data, warrant and especially backing are said to be different based on the field

in which the argument is made (Hollebrands et al., 2010).
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Another point regarding argument components is their presence in student
discussions. That is, Nardi, Biza and Zachariadez (2012) emphasized that not all
components of the arguments are explicitly presented by individuals in all
arguments. In some situations, warrants may be implicit (Voss, 2005), so the modal
qualifiers and exceptions support the warrants (Cramer, 2011). In such a situation,
the teacher can ask students to justify their reasoning so that they can clearly state
the warrant of the argument.

Lastly, a possible stituation that can be encountered in argumentation studies
is that the argumentation process may include argumentation structures which entail
one or more steps. That is, when more than one step exist, the claims of the initial
arguments, which are accepted by the other participants as taken-as-shared, can
become the data or warrant of the later arguments (Cramer, 2011). In addition,
Cramer (2011) states that there are situations in which participants question the
data, warrant or backing of the argument. In these situations, the questioned part is
asserted to be examined in a separate argumentation process before considering it in
the primal argument. These separate argumentation processes were named as ‘lines
of argumentation” by Krummheuer and Brandt (2001) (as cited in Cramer, 2011).
After giving a detailed explanation regarding the Toulmin’s argumentation model,
the studies in mathematics education research related to argumentation were

explained in the next sections.

2.2 Uses of Toulmin’s argumentation model in mathematics education research

Initially, Toulmin’s (1958) work was not accepted among philosophers and
logicians, but the model was gradually adopted by communication theorists and
became the keystone of the study of argumentation (Aberdein, 2008). The model
was first introduced to describe non-mathematical arguments (Toulmin, 1958), but
later Toulmin, Richard and Allan (1979) applied the theorem in order to prove
Theaetetus’s proof, which says that ‘there are exactly five platonic solids’. There
has been a growing interest among mathematics researchers in practices related to

argumentation in recent years (Inglis et al., 2007). Numerous researchers have used
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Toulmin’s (1958) model of argumentation to examine the argument structures and
proof structures in the mathematics field (Giannakoulias, Mastorides, Potari, &
Zachariades, 2010; Krummbheuer, 2007; Pedemonte, 2007; Pedemonte & Reid,
2011). Moreover, the model was used by mathematics education researchers to
analyze classroom discussions (Forman et al., 1998; Krummheuer, 1995, 2007;
Moore-Russo, Conner, & Rugg, 2011; Pedemonte & Reid, 2011; Yackel, 2001),
interview data of students (Hollebrands, Conner, & Smith, 2010; Inglis et al., 2007),
interview data of teachers (Nardi, Biza, & Zachariades, 2012; Steele, 2005), and
quality of mathematical arguments (Inglis & Mejia-Ramos, 2008; Pedemonte,
2007). This section summarizes earlier studies (Forman et al., 1998; Krummheuer,
1995; McClain, 2009; O’Connor, 1998; Pedemonte, 2007; Pedemonte & Reid,
2011; Wood, 1999; Yackel, 2002) regarding argumentation and mathematics.

The author of the book entitled ‘The Ethnography of Argumentation’,
Krummbheuer (1995) was the first researcher to adapt and use Toulmin’s (1958)
argumentation model to conduct research in mathematics education. The significant
point of this study was that Krummheuer (1995) used the restricted version of the
model, which means the arguments included only the claim, data and warrant
components. Moreover, he did not view argumentation as a singular activity in
which an individual tries to persuade others of his/her claim. Instead, he analyzed
students’ argumentation in a social environment and propounded the term collective
argumentation, which was defined as “a social phenomenon, when cooperating
individuals tried to adjust their intentions and interpretations by verbally presenting
the rationale of their actions (Krummheuer, 1995, p. 229). Similarly, collective
argumentation was stated to be concerned with a group’s reaching consensus and
differed from the Aristotelian argumentation which is based on an individual’s
endeavor to convince a group (Conner, 2007b). While there some researchers
analyzed individuals’ construction of arguments (Hollebrands, Conner, & Smith,
2010; Inglis et al., 2007), many other research studies in the literature focused on
collective argumentation in mathematics education (Conner, Singletary, Smith,
Wagner, & Francisco, 2014a; Krummheuer, 2007; Ramussen & Stephan, 2008;

Yackel, 2002). For instance, Conner et al. (2014a) focused on teacher support in
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collective argumentation with secondary mathematics students. Particularly, they
investigated direct teacher contributions to arguments, teachers’ question types and
other supportive actions and then revealed ways of analyzing conversations of
collective argumentation in terms of mathematical aspects by using the framework.
Ultimately, they admitted that the framework was useful in the examination of how
teachers support reasoning and argumentation of the students. In another study, a
methodology to document collective activity was presented by Ramussen and
Stephan (2008). They proposed a three-phase methodological approach in analyzing
collective activity of students. This approach was also based on Toulmin’s
argumentation model schema, but they chose to use core arguments like one that
was previously used by Krummheuer (1995). They asserted that in the first phase
the claims made by the students or the teacher existing in the transcriptions were
identified. Then, in the second phase, they took the argumentation log as data and
examined the whole class sessions to determine the mathematical ideas expressed in
the arguments which were accepted as part of the group’s way of normative

reasoning. For this reason, they prepared a three-column table for each day:

a column for the ideas that now function as if shared, (b) a column of
the mathematical ideas that were discussed and that we want to keep an
eye on to see if they function subsequently as if they were shared, (c) a
column of additional comments, both practical and theoretical, or
connections to related strands of literature” (Ramussen & Stephan,
2008, p. 200).

Finally in the third phase, the charts of phase two were taken and the ideas
from “as-if-shared” column were listed to organize them around common
mathematical activities. Considering the analyses of collective argumentation,
Yackel (2002) asserted that it was not sufficient to analyze the sequence of the
statements that were made, so the researchers could analyze the functions of the
statements in the interactions of participants in order to make sense of the collective
argumentation. It can be inferred that the analysis of the collective argumentation
was a critical issue and changed based on the nature of the data in each study.

Following Krummheuer (1995), who was the first scholar to use Toulmin’s

argumentation model in mathematics education, many researchers used the
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restricted version of the model, i.e. the core of the argument, which included only
the claim, data and warrant components (Conner et al., 2014b; Forman et al., 1998;
Hoyles & Kiichemann, 2002; Krummheuer, 1995; Lavy, 2006; Pedemonte, 2007;
Yackel, 2002). However, some researchers defended the importance of using
Toulmin’s (1958) model as a whole in mathematics education (Aberdein, 2005;
Hollebrands, Conner & Smith, 2010; Inglis et al., 2007; Jahnke, 2008). For
example, Inglis et al. (2007) conducted a study with highly talented postgraduate
mathematics students and analyzed the data of their task-based interviews. In this
analysis, they used the full scheme of Toulmin (1958), including backing, rebuttal
and qualifier components. It was emphasized that the role of modal qualifiers in
mathematical argumentation was underestimated (Inglis et al., 2007). Ultimately,
the researchers proposed that developing students’ abilities to matching warrant-
types with modal qualifiers should be one of the main goals of instruction (Inglis et
al. 2007).

In literature, researchers examined argumentation from various perspectives
in mathematics. For instance, some researchers contributed to the literature by
analyzing reasoning types (Conner et al. 2014b; Pease & Aberdein, 2011; Pierce,
1960). Some of them took arguments as a whole and classified argument types
(Aberdein, 2005; Viholainen, 2011), while others investigated the inner part
(warrant component) and classified warrant types (Inglis et al., 2007; Nardi, Biza, &
Zachariades, 2012; Walter & Barros, 2011). In the following sections, studies
related to each perspective are explained.

2.2.1 Argumentation studies related to reasoning types

Pierce’s (1960) study was considered as a corner stone among the studies
analyzing reasoning types. In this study, Pierce (1960) defined three types of
reasoning: abduction, deduction and induction. Abduction was used to explain facts,
while deduction was used to produce testable results. To make it clear, Pierce
(1960) defined abduction as follows:
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abduction looks at facts and looks for a theory to explain them, but it can
only say “might be”, because it has a probabilistic nature. The general form
of an abduction is: a fact A is observed; if C was true, then A would
certainly be true; so, it is reasonable to assume C is true. (p. 372)

As can be deduced, after the observation of fact A, the statements of the
person who is talking abductively would not be accurate since he/she could not test
C, so there was no certainity of fact A.

The other reasoning type, induction, which refers to reasoning from specific
cases to general rules, was used to compare predictions and observed behaviors
(Pease & Aberdein, 2011). The most frequently used reasoning type in proof studies
was deduction, which refers to reasoning from general rules to specific cases (Pease
& Aberdein, 2011). Although Pierce believed that only deduction could be used in
mathematics, Pease and Aberdein (2011) stated that abduction was a useful and
applicable reasoning type in mathematical thinking as well.

Another study which focused on reasoning types in collective argumentation
was a study by Conner et al. (2014b). They combined Toulmin’s argumentation
model with Pierce’s reasoning classification mentioned above. At the end of the
study, they recommended that teachers use this combination to detecting and
support students’ different kinds of reasonings (deductive, inductive, abductive,
analogical reasoning). Conner et al. (2014b) characterized deductive reasoning as
the only reasoning type enabling individuals to arrive at a conclusion with certainty;
furthermore, it was defined as a reasoning type including the logical consequence of
aforementioned assumptions to arrive at conclusions. They also explained inductive
reasoning as drawing abstractions and generalizations using individual observations
(Conner et al., 2014b). Another definition proposed for inductive reasoning was
reasoning proceeding from specific to general (Reid & Knipping, 2010). The other
reasoning type, abductive reasoning, was defined as “an inference which allows the
construction of a claim starting from an observed fact” (Pedemonte, 2007, p. 29).
Conner et al. (2014b) stated that abduction was observed in a mathematics
classroom when students’ first come across the result and then have to guess which

particular rule and case afforded such a result. Finally, analogical reasoning was
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characterized with the requirement of developing a claim based on the similarities

among related cases (Reid & Knipping, 2010).

2.2.2 Argumentation studies related to different types of arguments

As mentioned, some researchers focused on different types of arguments in
their studies (Aberdein, 2005; Baccaglini-Frank & Mariotti, 2010; Viholainen,
2011). One of these studies was conducted by Viholainen (2011). Viholainen
(2011) mentioned two types of arguments, formal arguments and informal
arguments, in his paper presented at the 7th Congress of European Research in
Mathematics Education (CERME 7). Formal arguments were described as those
arguments having warrants which were based on definitions, axioms and previously
proven theorems. On the other hand, the arguments whose warrants were based on
the concrete interpretations of mathematical concepts were accepted as informal
arguments (Viholainen, 2011). He clarified the difference between constructing

formal and informal arguments as follows:

Construction of formal arguments often requires exact and detailed
analytical reasoning based on symbolic representations and procedural
skills to carry out calculations and other technical procedures. However,
informal arguments may reveal holistic features and wider trends,
which, yet, may also be very important in the construction process of the
argument, by simplifying and concretising the problem situation
(Viholainen, 2011, p. 5).

As can be understood, the process in constructing formal arguments is more
challenging than that of informal arguments. In formal arguments, the evidence and
its presentation via symbolic representations after analytical reasoning is important,
while reasoning in informal arguments is holistic in nature. In the differentiation of
formal and informal arguments, Viholainen (2011) suggested categorization of
arguments based not on the reasoning process but on the final forms of arguments.
The reason was explained by Viholainen (2011) with the following example: For
instance, when a person used visualization as an aid of thinking in reasoning, this

could not guarantee that the argument was an informal argument. On the other
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hand, during the informal argument construction process, a person could use formal
definitions (as backing) to justify visual or physical interpretations, but this did not
make the argument formal.

Another classification of different types of arguments was proposed in a study
on proof by Aberdein (2005). He presented how the argumentation model can be
used in both regular arguments and critical arguments. According to Toulmin,
Richard, and Allan (1979, p. 247), regular arguments were the ones “conducted
within or as applications of a scientific theory”, while critical arguments were the
ones “challenging a prevailing theory or seek[ing] to motivate an alternative”
(Toulmin, Richard, & Allan, 1979, p. 247). Aberdein (2005) particularly focused on
regular argumentation in his study since mathematical proof corresponds to regular
argumentation.

Lastly, another argument type, instrumented argument, was proposed in a
study with the use of technology (Baccaglini-Frank & Mariotti, 2010). In their
study, Baccaglini-Frank and Mariotti (2010) defined the instrumented argument as
an argument, the warrant of which includes the tools of a dynamic geometry
program, such as the dragging tool. They claimed that the persuasion of the
participant came from the use of the dragging tool and its intrinsic logic in
instrumented arguments.

In the present study, the different types of arguments were examined in terms
of the order of the statements of the argument components (claim, data and
warrant), which had not been investigated in earlier studies. Therefore, this study
will contribute to the literature by presenting a pattern of argument construction
which was used by the prospective elementary mathematics teachers in the

geometry context.

2.2.3 Argumentation studies related to different types of warrants

Some of the research related to argumentation focused on the analysis of the
warrant components of arguments (Inglis et al., 2007; Knipping, 2008; Nardi, Biza,
& Zachariades, 2012; Walter & Barros, 2011) since justification had an important
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place in argumentation studies. For instance, Inglis et al. (2007) conducted a study
related to the classification of mathematical reasoning but focused particularly on
the warrants. They especially examined the modal qualifier component of
Toulmin’s argumentation model, stressed the importance of modal qualifiers in
mathematical arguments and proposed three types of warrant developed by
postgraduate mathematics students: the inductive warrant, the structural-intuitive
warrant and deductive warrant. The definition of the inductive warrant type was
explained based on the inductive proof schema of Harel and Sowder (1998), which
was “when students ascertain for themselves and persuade others about the truth of
a conjecture in one or more specific cases” (p. 252). They mentioned that a similar
strategy was used to decrease uncertainty in the claim of an argument in the
inductive type of warrant. In the structural-intuitive type of warrant, the individual
persuades others by using observations, experiments, some kind of mental structure
and visual things (Inglis et al. 2007). The last type of warrant, the deductive
warrant, corresponds to the use of formal mathematical justifications, such as
axioms, algebraic manipulations and counterexamples, to justify the claim.
Ultimately, Inglis et al. (2007) emphasized that the inductive and structural-intuitive
types of warrant played an important role in mathematical argumentation.

Similarly, Nardi, Biza and Zachariades (2012) focused on the warrant
components of secondary mathematics teachers’ arguments in their study. The data
were collected through written responses and interviews after teachers were
engaged with the classroom scenarios prepared from the mathematical areas of
analysis and algebra. The researchers adapted Toulmin’s argumentation model and
Freeman’s classification, which differentiates between epistemological and
pedagogical a priori warrants, professional and personal empirical warrants,
epistemological and curricular institutional warrants and evaluative warrants (Nardi,
Biza, & Zachariades, 2012). At the end of the study, they proposed a classification
of warrants which included four types: a priori, empirical, institutional and
evaluative warrants. They asserted that teachers’ arguments should not only be

analyzed in terms of accuracy but should also be evaluated in the light of other
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teacher considerations and priorities since teacher arguments were shaped by
different sources of teacher knowledge (Kennedy, 2002; Shulman, 1987).

Other researchers who focused on warrant types were Walter and Barros
(2011). They mentioned another warrant type in their study, namely semantic
warrants. Their study was emphasizing the importance of collaboration in
mathematical learning and they examined the linguistic invention and semantic
warrant production of elementary teachers within mathematical discourse on
graphs. They defined semantic warrants as “personally meaningful instantiations
which ground developmental reasoning and support mathematical inferences”
(Walter & Barros, 2011, p. 325). They asserted that learners construct mathematical
meaning in the process of creating semantic warrants since learners reconstruct,
evolve, and deepen their mathematical reasoning in this process. Besides, they
stated that semantic warrants were prefered by the individuals purposefully to
convince both themselves and others about the correctness of a constructed
mathematics. In this respect, they believed that the semantic warrants contained
clues to the learners’ reasoning processes in the development of a mathematical
truth and deepened their mathematical reasoning. In addition, they concluded that
students’ understanding of general mathematical concepts can increase if their
personal talks in conventional language were supported by semantic warrants.

Lastly, Knipping (2008) examined local argumentations to analyze warrants
of arguments and proposed a classification by considering the nature of warrants
used in proof context. According to her classification, local argumentations were
divided into two: conceptual argumentation and visual argumentation. In addition,
she looked into visual argumentations in detail and revealed two types of visual
argumentations, namely empirical-visual argumentation and conceptual-visual
argumentation. The details of these local argumentations are explained in detail in
the method section since this classification was used in the data analysis of the

current study.
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2.2.4 Argumentation studies based on an adapted version of Toulmin’s models

Although the literature includes many studies based on Toulmin’s
argumentation model, there were situations in which the model was not sufficient to
present the argumentation which took place in various studies. Therefore, in such
studies, the researchers adapted the model and/or added new components to the
model (Conner et al., 2014a; Prusak et al., 2012; Voss, 2005; Walter & Johnson,
2007) or combined Toulmin’s (1958) model with other models (Conner et al.,
2014b). For instance, Voss (2005) studied ill-structured problems and analyzed the
data using Toulmin’s model. He proposed Six extensions, or generalizations, which

were as follows:

1. Claim of an argument can serve as datum for a second argument
2. Backing can be an argument itself

3. Implicit warrant exists in every argument

4. A rebuttal can have a backing

5. A rebuttal can be an argument

6. Qualifiers can be arguments (p. 326)

These extensions emerged from that study and they contributed to the
argumentation model as modifications. For instance, based on the second extention,
a backing component can be presented as an argument which has a claim, data and
warrant as displayed in the Figure 2.2.

Figure 2.2 Modification example based on extention 2 of Voss (2005)
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Similarly, Conner et al. (2014b) determined an insufficiency in Toulmin’s
(1958) argumentation model (with claim, data and warrant) in differentiating the
nuanced evolution of reasoning in arguments and, thus, combined the model with
Pierce’s (1956) rule, case and result model. In Reid and Knipping’s (2010) study
which was based on a reinterpretation of Pierce’s work, the case, rule and result
were defined. According to this study, case was “a specific observation that a
condition holds” (Reid & Knipping, 2010, p. 83) and the example for a case was
presented as “2 is a natural number” and the condition in this example was being a
natural number. The other concept, rule, was defined as “a general proposition that
states that if one condition occurs then another one will also occur” (Reid &
Knipping, 2010, p. 83). The sample for the rule was “Natural numbers are integers”
(Reid & Knipping, 2010, p. 83) and it could be said that the two linked conditions
were ‘being a natural number’ and ‘being an integer’. Finally the result concept was
defined by Reid and Knipping (2010) as being similar to the case concept, but it
was not only a specific observation (like in the case) but also required a condition to
hold. Conner et al. (2014b) used Toulmin’s model and Pierce’s rule and the
following diagrams emerged and started to be used in reasoning analyses in
argumentation (See Figure 2.3).
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Rule Case/Rule/Result -—|—> Case/Rule/Result
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Analogy
Data Claim Warrant
Rule = Case
Result
Warrant
c. Two Abductive Arguments d. Reasoning by Analogy

Figure 2.3 Toulmin-style diagrams of arguments reflecting different kinds of
reasonings (Conner et al., 2014b, p. 186)

At the end of the study, they asserted that analyzing the core of the argument
was sufficient in determining the different types of reasonings of the participants
(Conner et al., 2014b). Moreover, they recommended teachers to use this adaptation
in detecting and supporting students’ different kinds of reasonings (deductive,
inductive, abductive, analogical reasoning).

Up to now, the studies focusing on Toulmin’s argumentation model and its
components were explained in detail. In the next section, the proof-related

argumentation studies were addressed.

2.2.5 Studies related to proof and argumentation

The proof studies in the literature focused on investigating the proof
schemes of students (Harel & Sowder, 1998; Housman & Porter, 2003), examining
student difficulties in providing proof (Chazan, 1993; Moore, 1994; Weber, 2001),

criticizing the dichotomy/continuum between argumentation and proof (Balacheff,
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1991, Boero, 2007; Douek, 1999; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti,
Bartolini Bussi, Boero, Ferri, & Garuti, 1997; Mariotti, 2006; Pedemonte, 2007;
Raman, 2002), seeking for the relationship between technology and learning proof
in geometry (Laborde, 2000; Leung & Lopez-Real, 2002; Mariotti, 2006),
examining proof perceptions (Recio & Godino, 2001) and analyzing the validation
of texts as proofs (Selden & Selden, 2003; Stylianides, Stylianides, & Philippou,
2004).

Initially, the proof schemas framework was propounded by Harel and
Sowder (1998). In their study, the participants developed three types of arguments,
which were external arguments (e.g. an authority figure, meaningless symbolic
manipulation), empirical arguments (e.g. numerical substitution, measurements,
visio-spatial images), and deductive arguments (e.g. generic examples, examples
depending on the axiomatic system). It was asserted that these three types of
arguments may be valid in different mathematical content areas since students
developed the same type of arguments in different proof tasks. Researchers
investigated which types of arguments were used by participants of various grade
levels (Healy & Hoyles, 1998; Klieme, Reiss & Heinze, 2003; Lin, 2000; Reiss,
Heinze, Renkl & Grof, 2008; Reiss, Hellmich & Reiss, 2002). For instance, Healy
and Hoyles (1998) administered a survey to 10th grade high-achieving students and
identified difficulties that many of students exprienced in implicating, so they used
empirical-inductive arguments. In the same way, the findings of the studies
conducted by Reiss, Hellmich and Reiss (2002) and Klieme, Reiss and Heinze
(2003) illustrated that middle school (grade 7 and 8) and high school (grade 12 and
13) students, respectively, prefered to seek empirical evidences, such as analyzing
one or two examples, measuring angles and lines in geometry, in proof production.
Reiss, Heinze, Renkl and Grop (2008) asserted that the students of western
countries might have the deficit of using empirical arguments like generalizing from
a few examples as a proof. On the other hand, students of Asian countries were
known to be encouraged to use deductive arguments from the beginning of the
proving task (Lin, 2000). Reiss et al. (2008) argued that the reason why Asian

students use deductive arguments might be their teachers’ viewpoint regarding the
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distinction of argumentation and proof. It was claimed that teachers’ own beliefs
also affect their teaching performance in many aspects (Conner, 2007b). A proof
study supporting this idea was conducted with high school geometry teachers by
Conner (2007b). Specifically, Conner (2007b) investigated the argumentation
produced in a high school geometry class and provided evidence of the relationship
between a student teacher’s proof perception and her facilitation in collective
classroom argumentation. She concluded that a student teacher’s proof perception
and her argumentation support in classroom had parallel aspects. This suggests that
the proof conception of the teacher had the potential to be a crucial factor for
him/her in determining how to facilitate the argumentation process in the classroom.
Moreover, she claimed that Toulmin’s (1958) model was efficient in analyzing
teacher support in argumentation and constituencies within the classroom, which
supported argumentation in detail. Another study which investigated teachers’
refutations and their preference in refuting in argumentation was conducted by
Giannakuolias, Mastorides, Potari and Zachariades (2010). In this argumentation
and proof study, Giannakuolias et al. (2010) focused on teachers’ refutations of
students’ invalid algebraic claims. To be more specific, they analyzed the content of
teachers’ argumentation, teachers' argumentation structure, the underlying
reasoning, and the different types of counterexamples they generated. They
concluded that teachers considered refutation by theorems to be providing stronger
and more general conclusions when compared to refuting by counterexamples. It
was inferred that refutation of invalid claims with counterexamples was
undervalued by teachers and they used counterexamples when they could not use an
appropriate theorem or as a complementary support to the refutation by theorems. It
is highly probable that these teachers would appreciate the refutations their students
made based on an appropriate theorem, but would undervalue refutations via
counterexamples. In the current study, the prospective teachers were selected as
participants since their performance in argumentation and their argumentation
structures would include indications of their future teaching practices based on

argumentation. In addition, Toulmin’s model was selected to be used in data
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analysis since it was claimed that the model was effective in the analysis of teacher
support in argumentation.

Another issue which was most frequently dwell upon in proof studies was its
relation with argumentation. That is, the dichotomy (Balacheff, 1991; Douek, 1999;
Mariotti, 2006; Pedemonte, 2007) and the continuum between argumentation and
proof (Boero, 2007; Douek, 1999; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti
et al., 1997; Raman, 2002) was discussed by many researchers in the literature. For
instance, Balacheff (1991) maintained that argumentation and mathematical proof

were different in terms of social point of view by stating that:

The aim of argumentation is to obtain the agreement of the partner of the
interaction, but not in the first place to establish the truth of some
statement. As a social behavior it is an open process, in other words it
allows the use of any kind of means; whereas, for mathematical proofs, we
have to fit the requirement for the use of knowledge taken from a body of
knowledge on which people (mathematician) agree (p. 188).

This expression asserts that the main focus of proof is establishing the truth
of some statement, while in argumentation it is to convince others, so these terms
were regarded to be different in this respect. Balacheff (1991) also expressed the
difference between argumentation and proof in terms of the actions specific to
argumentation, such as intuition, experimental methods and everyday practices
external to a mathematical theory. Duval was the other researcher who emphasized
the gap between argumentation and proof in terms of cognitive and logical point of
view (as cited in Barrier, Mathe, & Durand-Guerrier, 2010). He asserted that the
discursive process of argumentation acted against a valid reasoning process in
ordinary language, so it could result in misunderstandings and obstacles as regards
the meaning of proof (as cited in Barrier, Mathe, & Durand-Guerrier, 2010). In
addition, Duval explained the distinction between deductive reasoning (used in

proof) and argumentation as follows:

Deductive reasoning holds two characteristics which oppose it to
argumentation. First, it is based on the operational value of statements and
not on their epistemic value (the belief which may be attached to them).
Second, the development of a deductive reasoning relies on the possibility
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of chaning the elementary deductive steps, whereas argumentation relies on
the reinterpretation or the accumulation of arguments from different points
of view (Duval, 1991 as cited in Barrier, Mathe, & Durand-Guerrier, 2010,
p. 193).

As can be understood, unlike in argumentation, deductive reasoning, which
is the base of proof, is operation-based and relies on the possibility of chaining the
elementary deductive steps, whereas in argumentation, arguments are reinterpreted
from various perspectives. Although Duval’s arguments were strong, the distinction
between argumentation and proof was still debated since some of the researchers
asserted that the structural continuity between argumentation and proof could be
constructed. To be more precise, when the processes of argumentation and proof
generation were investigated, some researchers highlighted the continuity between
argumentation and proof by proposing the framework of Cognitive Unity (Boero,
2007; Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti, et al., 1997; Raman, 2002).
These researchers focused on argument production in problem solving,
experimentation and exploration context and expected the constructed arguments to
be organized logically in the formation of mathematical proof (Hanna & de Villiers,
2008). In addition, these studies postulated that in open-ended problems there may
or may not be a continuity between argumentation and the related mathematical
proof. It was asserted that the crucial thing was identification of the factors favoring
continuities and the factors leading to the gap between argumentation and proof
(Antonini & Martignone, 2011). Boero et al. (1996) claimed that “it [reasoning]
allows students to consciously explore different alternatives, to progressively
specify the statement [of the conjecture] and to justify, the plausibility of the
produced conjecture” (p. 118). Based on this idea, Boero, Douek, Morselli and
Pedemonte (2010) asserted that structural continuity could be satisfied if inferences
in argumentation and proof were connected through the same reasoning structure
(abduction, induction or deduction) since he believed that reasoning taking place in
argumentation had a crucial role in the proof which was produced at the end. Boero
et al. (1996) introduced the notion of cognitive unity as follows:
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During the production of the conjecture, the student progressively works
out his/her statement through an intense argumentative activity
functionally intermingled with the justification of the plausibility of
his/her choices: during the subsequent proving stage, student links up
with his process in a coherent way, organizing some of the justifications
(arguments) produced during the construction of the statement according
to a logical chain (p. 113).

Based on the notion of Boero et al. (1996), it can be deduced that when the
reasoning in the initial argumentative process and the reasoning in the constructed
proof at the end are in line with each other, the cognitive unity between
argumentation and proof is obtained. Similarly, cognitive unity was also expressed
as the the continuity of reasoning from conjecture producing process to proof
construction (Mariotti et al. 1997). In other words, when there is continuity between
the argumentative activity occuring in the conjecturing phase and the process of
formal justification occuring during the proving phase, it can be said that the
cognitive unity is established (Baccaglini & Frank, 2010). According to results
reported in experimental studies, proof was more accessible to students when
cognitive unity between argumentation and proof was established (Boero, Garuti, &
Mariotti, 1996; Garuti, Boero, Lemut, & Mariotti, 1996; Garuti, Boero, & Lemut,
1998).

The distance between argumentation and proof was stated to be inevitable in
the deductive proof production process since the structure of argumentation was
usually not deductive (Pedemonte, 2007; Pedemonte & Buchbinder, 2011).
Pedemonte and Buchbinder (2011) conducted a study regarding argumentation and
proof and investigated the role of examples in the proving process. They conducted
a study with 17-18 year old secondary school students who were trying to find a
general rule for triangular numbers. It was claimed that cognitive unity did not
cover all aspects of the relationship between argumentation and proof (Pedemonte
& Buchbinder, 2011). They proposed the necessity of structural continuity, which is
considering the structural difference between argumentation and proof as well as
providing cognitive unity for the cognitive analysis. Pedemonte (2007) defined
structure as a logical cognitive connection between statements which correspond to

different types of reasoning. That is, the structure of proof was usually deductive
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while abduction, which means looking at facts and looking for a theory to explain
reasoning (Pierce, 1960), and induction were asserted to be the most frequently used
reasoning types in argumentation (Hemmi et al., 2013; Pedemonte, 2007;
Pedemonte & Buchbinder, 2011). Therefore, it was asserted that argumentation and
proof should have the same logical structure in order to provide structural continuity
(Pedemonte, 2007). To make it clear, the results of the Pedemonte’s (2007) study
could be referred to. She focused on the structure of arguments developed by
students for two mathematical problems to analyze the quality of arguments. She
concluded that there were structural continuities and structural distances between
argumentation which supported a conjecture and its proof. Moreover, it was
observed in her study that students were not able to construct a deductive proof
while solving geometry problems since they could not transform their abductive
argumentation (naturally used in geometry) into deductive proofs (Pedemonte,
2007; Martinez & Pedemonte, 2014). Thus, it was suggested that researchers or
teachers should consider cognitive unity and select appropriate examples which
would be effective for proof construction (Pedemonte & Buchbinder, 2011). On the
other hand, Pedemonte (2007) believed that in the Geometry context, the distance
between argumentation and proof was removed because discovering and
conjecturing processes were often characterized by abductive argumentation.
Likewise, Arzarello (2008) maintained that by means of various modalities, such as
the “dragging” option of dynamic geometry programs, the shift from inquiry to
proving could be stimulated within a rich argumentation. In addition, researchers
revealed that dynamic geometry tools were helpful in engaging students in informal
mathematics actions and bridging these informal efforts with formal ones (Prusak et
al., 2012). As noted by Mariotti (2006), the students should change the abductive
structure into deductive structure while constructing proof. Otherwise, the structural
continuity between argumentation and proof could be broken.

Although the relationship between argumentation and proof was not the
focus of the current study, it was an important issue to be considered in preparing
the geometry tasks of the present study. In order to provide cognitive unity, the

researcher paid special attention to select questions which did not only require
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deductive reasoning with the algebraic operations. In addition, geometry was
selected as a context since it was claimed that the discovering and conjecturing
processes requiring abductive reasoning would be helpful in removing the structural
difference between argumentation and proof (Pedemonte, 2007). Lastly,
argumentation in the dynamic geometry environment was also prepared in order to
engage students in an inquiry which would help enrich argumentation (Arzarello,
2008).

2.3 Technology support and argumentation

Literature review illustrated that dynamic geometry softwares (DGS) were
advised to be used in geometry teaching by many mathematics researchers and
organizations (Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Strdfer, 2006;
NCTM, 2000). One of the reasons was that these programs gave the opportunity to
construct accurate diagrams for students to recognize the relationships between
general abstract properties of geometry (Jones, 2002). In addition, dynamic
geometry softwares allow users to do a wide range of geometrical activity to solve
various types of questions by exploring, conjecturing and explaining the geometric
relationships (Jones, 2002).

2.3.1 Technology use and its benefits

Many researchers argued that use of DGS promoted achievement in geometry
(Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Strdper, 2006; NCTM,
2000). For instance, Laborde et al. (2006) found that the use of DGS increased
secondary students’ understanding of geometry concepts. Similarly, in the research
study conducted with high school students, Hollebrands (2007) revealed a
bidirectional relationship between use of DGS and geometric understanding.

In the literature, the benefits of using DGS were emphasized by many
researchers (Gonzélez & Herbst, 2009; Lampert, 1993; Ruthven, Hennessy, &
Deaney, 2005; Scher, 1999; Vincent, 2002). One of the benefits was that the use of
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DGS was regarded by teachers as a source of motivation for students and a tool that
could illustrated many examples simultaneously, thus leading to improvements in
the classroom environment (Lampert, 1993; Ruthven, Hennessy, & Deaney, 2005)
and encouragement in geometric reasoning (Vincent, 2002). Another benefit
mentioned was that the DGS users could interact with various geometrical objects
and relationships which enabled them to construct and manipulate new objects and
relations (Healy & Hoyles, 2000). In addition to these benefits, the studies focusing
on justification and reasoning also revealed the benefits of the use of DGS in
geometry. To illustrate, it was revealed that students could make conjectures, prove
properties for a given geometric figure and model, and investigate a dynamic
physical situation to detect the effect of changing various parameters (Vincent,
2002). Likewise, Gonzalez and Herbst (2009) indicated that students who used the
tools of DGS had the opportunity to engage in in-depth thinking in their
investigation; in this way, they were able to notice the relationships that could not
be discovered by the students using the paper and pencil. In the same vein, Scher
(1999) asserted that proving a theorem or solving a problem via paper-pencil
prevented students from exploring new relationships since they were dealing with
static drawings, so they recommended the use of DGS for the visualization of the
relationships. As it is clear in the literature, the justification is a keystone in
argumentation studies. Regarding justification via DGS in proof, Mariotti (1997)
asserted that users’ justifications for their constructions could be accepted as
proving a theorem since they were explaining why it worked and forsaw that it
would function. Thus, the applicability of DGS in argumentation studies was open
to research since there were few studies focusing on justification using technology.
Another important benefit of using DGS in argumentation was asserted to be
promoting peer interaction, which was important for argumentation studies
(Vincent, Chick & McCrag, 2005). Vincent, Chick and McCrae (2005) stressed the
importance of the level of peer interaction in argumentation in their study which
was conducted with 8th grade students in Australia. They administered three types
of conjecturing/proving tasks: pencil-and-paper proofs, computer-based (using

Cabri Geometry Il) tasks and geometry tasks including the investigation of
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appropriate mechanical linkages. They concluded that argumentation was a social
process and the quality of the benefit obtained from this social interaction was
affected by the level of peer interaction in all tasks (Vincent, Chick, & McCrae,
2005). Likewise, Hewit (2010) emphasized the importance of social interaction and
time for productive argumentation in computer environment. Hewit (2010) asserted
that learners who lacked domain knowledge would be unable to construct
convincing warrants for their claims or analyze other participants’ arguments. Thus,
Hewit (2010) suggested giving sufficient lead-time to students before class
discussion in order for students to develop a reasonable and deep understanding of
the domain to interpret the validity of the other positions.

The last benefit of DGS in argumentation was the dragging option, which is
one of the most important options. Dynamic geometry softwares are used in
research studies since they provide users with several opportunities that cannot be
performed without technology. Dragging is performed by grabbing the elements of
a geometrical figure via the computer mouse, changing the place of those elements
on the screen and observing the responses of various other parts of the figure
dynamically. This action enables users to see the preserved properties of
geometrical objects. Moreover, users can observe infinite examples to support their
claim and have the opportunity to detect the counterexamples to a statement (Hanna
& de Villiers, 2008). Researchers see dragging as a beneficial option in terms of
many aspects. For instance, Lopez-Real and Leung (2007) believe that dragging
facilitates the theoretical concept formation (Hanna & de Villiers, 2008) and should
not be accepted solely as a confirmation or exploration tool. Similarly, Arzarello,
Olivero, Paola and Robutti (2002) referred to the contribution of the dragging
option to the proof and conjecturing process since dragging provided feedback to
the discovering phase and thus supported proof explanations. Therefore, checking
the construction by dragging was advised by researchers in order to observe the
necessity of relevant geometric facts (Hoyles & Jones, 1998).

As previously mentioned, evidence has a crucial role in argumentation
studies. In many studies, dynamic figures were considered to provide students with

strong evidence that a property was true since dragging seemed sufficient to
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guarantee the truth of the observed property (Arzarello et al., 2002; Chazan, 1993;
De Villiers, 2003; Healy & Hoyles, 2000). On the other hand, Heinze and Reiss
(2007) stated that empirical arguments, which include concrete geometrical objects
based on the observation, could be accepted as validation in the geometry context
although experimentally generated results seemed not to offer explanations
(justifications) for the observed relations. Likewise, Gonzalez and Herbst (2009)
criticized using measurements (empirical evidence) calculated by dynamic
geometry software to provide evidence for the generalizations. Noss and Hoyles
(1996) claimed that the students who used dynamic geometry software were prone
to attribute their results to measurements instead of theoretical considerations. Thus,
Chazan and Houde (1989) advised teachers to avoid using dynamic geometry
software measurements as the basis of statements in a geometry class. Moreover,
teachers were advised to construct and sequence the tasks carefully while using
technology in order to motivate students in creating formal proof (Hoyles & Healy,
1999). Another suggestion to teachers who used dynamic geometry software in their
mathematics classes was motivating students to find out why a conjecture is true
(Arzarello et al., 2002). It was asserted that when the teacher made the role of proof
in justifying explicit, the students would be motivated to prove why a certain
proposition is true after seeing that it is true within the dynamic geometry
environment (Arzarello et al., 2002). As an important factor in many research
studies, technology was also a matter of discussion for some argumentation studies.
These studies are explained in the following section.

2.3.2 Studies related to argumentation via technology

The argumentation application in a dynamic geometry environment was
investigated in several studies (Hewit, 2010; Hollebrands, Conner & Smith, 2010;
Inglis, Mejia-Ramos & Simpson, 2007; Prusak et al.,, 2012). For instance,
Hollebrands, Conner and Smith (2010) used Toulmin’s argumentation model in
their study with college geometry students with access to technology. They

conducted a task-based interview with students while they were solving hyperbolic
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geometry tasks. In the end, they revealed the themes regarding the structure of
students’ arguments. These themes were related to the explicitness of warrants,
technology use, and task types. According to the results, they claimed that students
who were solving tasks related to justification and proof did not use technology but
provided explicit warrants. On the other hand, they found that students who did not
use explicit warrants had used technology. They claimed that this indirect relation
was due to the students’ lack of familiarity with the use of technology in a formal
mathematical environment. To be more precise, the students did not need to explain
how the objects on the screen led to the claims and accepted the appearance of the
relations on the screen as a sufficient warrant (Hollebrands, Conner, & Smith,
2010). Similar to the results reported in the study conducted by Inglis et al. (2007),
Hollebrands et al. (2010) also emphasized the importance of the use of qualifiers in
the use of technology-aided environment. They stated that the students used the
technology when they were uncertain about the claim. According to the findings,
when technology use confirmed the claim, they accepted that as evidence;
otherwise, they changed their claims (Hollebrands, Conner, & Smith, 2010).
Another study focusing on peer interaction of argumentation with DGS was
conducted by Prusak et al. (2012). They used Toulmin’s argumentation model and
examined peer interaction of two preservice teachers by creating a conflict situation,
creating a collaborative situation and providing a device (DGS) for checking
hypotheses/conjectures. They also aimed to investigate the reasoning processes in
peer-unguided argumentation. The core arguments -arguments including claim,
data, warrant and backing elements- of Toulmin’s argumentation model were
analyzed. The design enabling the shift from intuitive/visual argumentation to
logical-deductive considerations was presented in the findings. The researchers
claimed that the three design principles, which were creating a situation of conflict,
a situation of collaboration and providing tools to raise and check hypotheses,
promoted productive argumentation. In addition, the adaptation of Toulmin’s
argumentation model was claimed to be useful in tracing the dynamic changes in
collective argumentation through dyad interaction. In the end, they elaborated on

the methodology to identify learning in peer argumentation.
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There are also various studies in the literature supporting the use of DGS and
in which the proof and reasoning of the participants were analyzed (Baccaglini-
Frank & Mariotti, 2009; Hoyles & Healy, 1999; Olivero & Robutti, 2001; Mariotti,
2006; Vincent, 2002). In some of these studies, the researchers claimed that
dynamic geometry environments were beneficial in opening new frontiers which
link informal argumentation with formal proofs (Hoyles & Healy, 1999; Olivero &
Robutti, 2001; Mariotti, 2006; Vincent, 2002). For instance, Vincent (2002)
investigated the role of mechanical linkages which correspond to the devices based
on systems of hinged rods and dynamic geometry software in bridging empirical
justification and deductive reasoning. She used Toulmin’s argumentation model to
analyze the structure of geometry proofs developed by 12-14-year-old students.
Vincent (2002) used mechanical linkages and dynamic geometry software to
provide the context of conjecturing, argumentation and deductive reasoning. At the
end of the study, she concluded that all students, including the ones who had a
lower level of geometric understanding, developed an understanding of deductive
proofs and made significant progress in understanding geometric properties.
Moreover, the mechanical linkages and dynamic geometry software were found to
be highly suitable to bridge empirical and deductive reasoning. Similarly, Christou,
Mousoulides, Pittalis and Pitta-Pantazi (2004) also encouraged the use of dynamic
geometry software and appropriate questions, which motivate students to justify
their conjectures in geometric proofs in order to bridge inductive exploration and
deductive proof.

The Cabri dynamic geometry program was used in another research study to
investigate the conjecturing and proving processes of students working on open
problems in Euclidean geometry (Baccaglini-Frank & Mariotti, 2009). The
researchers analyzed the process rather than the product, and they conceived a
model related to the dragging schemes and the processes occuring while students
were conjecturing and proving. It was claimed that students were be able to make
dynamic conjectures in a Dynamic Geometry Environment [DGE] rather than the
static-conjectures developed in paper-pencil environment (Baccaglini-Frank &
Mariotti, 2009). Likewise, Mariotti (2006) asserted that DGE contributed to the

48



reasoning and proving processes of individuals who were solving open problems by
making conjectures. Similarly, some cognitive difficulties that students confronted
during conjecturing and proving in geometry were stated to be overcome with the
encouragement of DGE on learners’ constructions and ways of thinking (Noss &
Hoyles, 1996; De Villiers, 2004).

In another study, Leung and Lopez-Real (2002) analyzed the proofs of
secondary school students in the Cabri environment in Hong Kong. They focused
on how the students’ constructions motivated their visual-cognitive scheme on
seeing proof in a dynamic geometry environment and how this scheme could fit into
cognitive unity, which was proposed by Boero, Garuti and Mariotti (1996).
Moreover, Leung and Lopez-Real (2002) proposed a framework related to the

theorem acquisition and justification in DGE as follows:

Theorem acquisition and justification in DGE is a schematic cognitive-
visual dual process potent with structured conjecture forming activities, in
which dynamic visual explorations through different dragging modalities
are applied on geometric entities. These activities stimulate
argumentative/transformational reasoning, which enables the process to
converge towards integrated figural concepts that could bring about
formal mathematical proofs, hence producing a cognitive unity in
acquiring and proving geometrical theorems (p. 9).

The framework above emphasized the importance of the knowledge
producing process instead of the rational proof produced at the end of the process.
That is, the process was seen more important than the product. In addition, it was
deduced that technology use contributed to obtaining the cognitive unity between
argumentation and proof by stimulating argumentative reasoning with the help of
integrated figural concepts.

On the other hand, there were also a few studies in which ynamic Geometry
Software [DGS] was not beneficial in proof (Hoyles & Healy, 1999). For instance,
Hoyles and Healy (1999) conducted a study regarding the use of the Cabri dynamic
geometry software in proof production. Specifically, they analyzed the relationship
between students’ visual reasoning in Cabri and their motivation in using empirical

conjectures in formal proof. They concluded that the students’ perceptions related to
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the Cabri construction differed from the Euclidean proof they constructed. That is,
Cabri was asserted to be beneficial in defining and identifying geometrical
properties but not beneficial in proving them (Hoyles & Healy, 1999).

In the literature, researchers suggested planning the instructions and activities
of studies on DGS and argumentation carefully. The reason for this was that
students may not always follow instructions and may experiment and notice
unexpected relations which was called play paradox (Healy & Hoyles, 2000). In
addition, it was asserted that DGS itself did not guarantee the participants to transit
from empirical to generic objects, so the importance of teacher role in guiding
students to theoretical thinking was emphasized (Jones, 2002; Leikin & Grossman,
2013). Likewise, Holzl (2001) emphasized the importance of the way DGS is used
and suggesting not using DGS only for verification.

To sum up, in this section, the opportunities that DGS provided the
researchers with, such as solving various types of questions by exploring,
conjecturing and explaining the geometric relationships have been presented. In
addition, DGS was claimed to enable peer interaction in mathematics studies, so
DGS is considered to be suitable and beneficial for argumentation studies. In short,
literature indicated that the crucial role that technology plays in the teaching and
learning of mathematics by means of argumentation was approved by the

researchers, theorists, educators.

2.4 Teacher responsibilities in argumentation process

Argumentation is considered to be a social activity by some scholars as can be
understood in the following definition of argumentation, which emphasizes the
characteristics and the social and rational aspects of argumentation.

Argumentation is a verbal activity that can be performed orally as well as
in writing. It is also a social activity: In advancing argumentation, one
directs oneself by definition to others. In addition, argumentation is a
rational activity that is aimed at defending a standpoint in such a way that it
becomes acceptable to a critic who takes a reasonable attitude (van
Eemeren, Grootendorst, & Henkemans, 2002, p. xi).
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In the social environments, there could be some shared and accepted
information during the interactions. In particular, it was claimed that mathematical
justification includes the taken-as-shared knowledge of the participants (Simon &
Blume, 1996). For a result or statement to be taken-as-shared knowledge, all
participants in a class should accept the truth of that result with prior justifications.
At this point, the participants accept the result without needing further justification
in subsequent discussions (Simon & Blume, 1996; Yackel, 2002). In their study,
Yackel, Ramussen and King (2000) emphasized the importance of taken-as-shared
knowledge in the argumentation process, and argued that the argumentation process
was reflexively related to the taken-as-shared basis for communication. Thus, taken-
as-shared knowledge could be considered as an important issue in analyzing
discussions of argumentation studies.

Yackel and Cobb (1996) are prominent researchers who emphasized the close
relationship between reasoning/making sense and interactive constitution of taken-
as-shared mathematical meanings. They believe that learning is a social process and
that meaning making is formed in and through the process of interpreting and
interacting with others. Many researchers maintain that the more students are
encouraged to join in argumentation and justification, the higher the quality of their
reasoning, justification and explanation will be (Manoucheri & St John, 2006;
McCrone, 2005; Wood, Williams & McNeal, 2006). Although children have the
potential to develop persuasive and defensible arguments, their arguments rely on
untested presumptions of shared knowledge and may not have sufficient evidence
(Anderson, Chinn, Chang, Waggoner, & Yi, 1997); thus, they still need teacher
assistance and facilitation to be able to integrate many sources of information
(Strom, Kemeny, Lehrer, & Forman, 2001) and to be effectively engaged in
mathematical argumentation (Cobb, Stephan, McClain, & Gravemeijer, 2001;
Conner, 2007a; Forman et al. 1998; Hunter, 2007; Yackel & Cobb, 1996). Research
studies emphasized the importance of teacher role in establishing the mathematical
quality of the class and the norms for mathematical aspects of student actions
(Heinze & Reiss, 2007; Yackel & Cobb, 1996). For a productive argumentation, the
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teacher should have some necessary skills to orchestrate the argumentation and to
provide suitable environment for argumentative environment.

Suggestions for suitable teaching environment for argumentation were
provided in the literature. For instance, the teaching environment for argumentation
should be arranged in such a way that students will not hesitate and will not feel any
risk and pressure while talking about their ideas and answers (Lin & Mintzes,
2010). In this way, students will be aware of their own ideas and listen to the ideas
of others more attentively (Lin & Mintzes, 2010). In order to provide such an
environment and to engage more students in the mathematical discourse, teachers
can encourage students to exchange their thoughts with their classmates and prompt
students’ answers (Hunter, 2007; Kosko et al., 2014) instead of being satisfied with
their correct answers to the questions and judging the students’ responses directly.
In this way, teachers will be encouraging students to justify and support their
answers (Wood & McNeal, 2003).

In argumentation, which is an inquiry based teaching method, the supportive
role of the teacher is of great importance. For supporting the whole class inquiry in
secondary school, Staples (2007) clarified teacher actions as “guiding the
mathematics, establishing and monitoring a common ground, and supporting
students in making contributions” (p. 172). Likewise, Yackel and Cobb (1996)
clarified teacher roles in inquiry classrooms as facilitating mathematical
discussions, acting as a participant to legitimizing certain aspects of students’
activities, and making sense of children’s wide range of solutions. Yackel (2002)
also maintained that the teacher should initiate collective argumentation, support
interaction among students and raise awareness regarding omitted or implicitly
stated argument elements in arguments. By the same token, McClain and Cobb
(2001) emphasize that the teacher’s role should be to facilitate not to transmit
knowledge to the students. How can teachers facilitate discussions? According to
Cross (2009), teachers should ensure that students follow the route and make sense
of the questions. Moreover, teachers should follow each group by listening to their
conversations to ensure that all students participate (Cross, 2009). The other

important roles of the teacher are to encourage students to provide justifications to
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their statements and to pose questions to the students in order to engage them in in-
depth thinking (Cross, 2009). In addition, the teacher could provide students with
clues and suggestions when they get stuck at some point (Cross, 2009). Finally, the
facilitator teacher should not use evaluative statements to respond to students since
statements, such as ‘That is correct/right answer’ are believed to impede student
discourse (Cross, Taasoobshirazi, Hendricks, & Hickey, 2008). Another obstacle to
be confronted when the teacher uses evaluative statements is students’ reluctance to
talk since the student would feel fear of being judged regarding his/her thoughts in
the exploratory stage (Mercer, 2000). When the teacher responds to students’
arguments without indicating her/his position, the teacher would direct all the
participants by thinking carefully, and in this way, students would have the chance
to examine the presented idea and develop mathematical backing to agree/disagree
the conjecture (Hunter, 2014).

One of the beneficial methods for promoting productive argumentation has
been asserted as teachers’ encouragement of students to convince other participants.
Specifically, after a student provides justification for his/her claim, the teacher
should ask that student to convince other students about the claim in the
argumentation (Martino & Maher, 1999). Sample questions of promoting
justification are as follows: “How did you reach that conclusion?, Could you
explain to me what you did? and Can you convince the rest of us that your method
works?” (Martino & Mabher, 1999, p. 57). In addition, the questions helping students
to focus on other students’ ideas have been listed as “Did anyone have the same
answer but a different approach?, Is there anything about your solution that’s the
same as your classmate’s? and “Can you explain what your classmate has done?”
(Martino & Mabher, 1999, p. 57). Finally, “Have you ever worked on a problem like
this one before?” (Martino & Maher, 1999, p. 57) is a question that leads to making
generalizations and mathematical connections. Ultimately, the teachers who want to
apply argumentation in their classes should make effort to use such questions in
order to provide interactive argumentation environment for better conceptual

learning.
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Research related to argumentation illustrates that another skill that a teacher
should have to engage students in mathematical argumentation is questioning
(Kosko et al., 2014). Questioning is not only used for assessing student knowledge
but also for challenging students’ conceptual frames and obtaining knowledge
related to students’ thinking processes and development of mathematical ideas
(Martino & Maher, 1999). However, the quality of the questions is of great
significance in this respect. Martino and Maher (1999) stress that the main benefit
of skillfully questioning students is that the teacher is provided with the necessary
knowledge related to students’ mathematical concept development. However,
Kosko et al. (2014) state that every question does not have the potential to
encourage justification and student engagement in mathematical argumentation. For
instance, in a study by Temple and Doerr (2012), it is reported that 10th grade
classrooms were observed and it was found that in some lessons, the teacher
encouraged students to provide an explanation of their thinking process and add to
each others’ contributions, while in some other lessons the questioning of the
teacher was more concerned with accuracy, rather than exploration, and, thus,
encouraged students to provide precise explanations. Temple and Doerr (2012)
assert that leading questions can be used in stimulating conversations about
previously learned content but not effective in encouraging justification in
mathematical argumentation. On the other hand, probing questions enable students
to make connections between various ways of representing the mathematics and
establishes a more productive environment for argumentation since these questions
often include requests for justification (Temple & Doerr, 2012). Similarly, Boero
(1999) emphasizes the need for strong teacher mediation in Toulmin-Type
argumentation and name these interventions as ‘warrant-prompts’. A sample
question given for warrant-prompts is “Why do you say that?”. This question
directs students to think about their claims/conjectures (Vincent, 2002). Similarly,
Wood (2003) mentions prompting questions as “How are the two things the same?
Does this make sense? Does it always work? Why does this happen?” (p. 440). By
the same token, Owens (2005) states that in order to promote student justification,

teachers could ask the following questions: “Would you tell us what you thought?
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How did you decide this? Are there patterns? Is there a different way you can do
this?” (p. 34). The argumentative talk prompts, such as ‘Can you explain X?,
Articulate X with your own words, What do you think about the issue?, Could you
add anything else about X?’, were defined as ground rules by Mercer (2000), and
the researcher claims that these prompts foster interaction among students and
enable students to inter-think (Mercer, 2000). Ultimately, it can be concluded that
the quality of questions is of great importance for students to construct arguments,
so the teachers’ facilitation and scaffolding are needed for effective mathematical
argumentation (Kosko et al., 2014).

Another essential method which should be used by teachers to make
students engaged in collective argumentation is stated as revoicing (Chapin,
O’Connor & Anderson, 2003; O’Connor & Michaels, 1996). The goals of revoicing
are stated as clarifying/amplifying the content, explaining the reasoning further,
intoducing particular ideas or redirecting the discussion (Forman et al., 1998). The
main benefit of revoicing is clarifying and making a participant’s contribution to the
discussion more comprehensible to all the other participants in class (Conner et al.,
2014a). Moreover, revoicing is claimed to make students take a specific stance in a
dialogue and, thus, develop inquiry skills and mathematical argumentation while
defending their ideas (O’Connor & Michaels, 1996). Forman et al. (1998) claim that
reported speech could be used to align students with argumentative positions.
Moreover, teachers’ repetitions in pointing out important aspects of the arguments
are also believed to be beneficial in orchestrating argumentation (Forman, et al.,
1998). That is, Forman et al. (1998) postulate that the mentioned roles of the teacher
are necessary and highly important since the teacher’s framing is the main factor
affecting the convincingness of students’ arguments.

To sum up, the role of the teacher is of vital importance in the process of
fostering productive argumentation; to this end, they should be the facilitator, not
the knowledge transmitter in the class. As for methods to orchestrate argumentation
in mathematics, the key methods can be listed as questioning, revoicing and
encouraging students to convince other students. Prusak et al. (2012) have stated

that there is a need for teacher training in the area of fostering collective
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argumentation since there is no training in teacher education programs related to
orchestrating argumentation. Specifically, Prusak et al. (2012) have advised that
teachers should first experience argumentation as learners themselves in order to
facilitate argumentation in class effectively. Thus, the focus of the current study is
on the prospective middle school mathematics teachers since they will facilitate
argumentation in their mathematics classes in the future. In the next section, some
research studies related to argumentation in mathematics education are explained in
detail.

2.5 Summary of the literature

To sum up, theoretical background and Toulmin’s argumentation model was
introduced and the layout prepared by Toulmin was explained in detail in this
chapter. Subsequently, argumentation studies in mathematics education research
were listed in detail to provide a rationale for the current study. Afterwards, the use
of technology and technology supported argumentation studies were explained.
Lastly, the teacher responsibilities in argumentation process were explained.

Literature review illustrated that, Toulmin’s argumentation model was used to
examine argument structures, proof structures, reasoning types, argument types and
warrant types in numerous studies. The focus of the proof studies were on proof
schemas of students, student difficulties in proving, criticism of the relationship
between argumentation and proof, proof perceptions, validation of texts as proofs
and technology use in proof. On the other hand, the technology related studies
mostly focused on the benefits of using technology in terms of various aspects. One
of the most important benefits of technology was asserted as promoting the peer
interaction which was critical in argumentation studies (Vincent, Chick & McCrae,
2005). In addition to these, the primary factor in argumentation, teacher, and the
responsibilities of the teachers in argumentation classes were investigated in many
studies. However, as clarified in significance and literature parts, there were few
studies focusing on argumentation structures of prospective teachers who will be

the future teachers facilitating argumentation classes. Especially, in Turkey, there is
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no such and investigation on prospective middle school mathematics teachers since
argumentation is a quite new method in mathematics field. Thus, the current study
focused on the investigation of prospective middle school mathematics teachers’
argumentation structures in a technology integrated environment and paper-pencil
environment. It is believed that this attempt will give valuable insights to both
policy makers and mathematics educators to improve middle school mathematics

teacher education programs by integrating argumentation into mathematics field.
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CHAPTER 11

METHODOLOGY

The purpose of this study was to investigate the nature of argumentation
structures of prospective middle school mathematics teachers while solving
geometry tasks in technology and paper-pencil environments. More specifically, the
argumentation structures of the prospective middle school mathematics teachers,
local arguments (core arguments including claim, data and warrant components) in
the global argumentation structures, and the local argumentations (only warrant
components of the local arguments) were analyzed in detail. More specifically, the
kinds of global argumentation structures they produced, the kinds of local
arguments they used, and the kinds of local argumentations they utilized to justify
their arguments were investigated.

In this chapter, the research questions, design of the study, procedure, pilot
study, main study, trustworthiness of the study, researcher role and bias, and

limitations are described. In short, the method of inquiry is depicted in detail.

3.1 Research questions

The following major questions and sub-questions were formulated for this
qualitative case study:

1. What is the nature of argumentation structures of prospective middle
school mathematics teachers while solving geometry tasks in GeoGebra and Paper-
Pencil groups?

2. What are the characteristics of the local arguments in the global
argumentation structures?

- What are the characteristics of local arguments based on the flow of

argument components (claim, data, warrant) that prospective middle
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school mathematics teachers express while solving geometry tasks in
GeoGebra and Paper-Pencil groups?
3. What are the characteristics of local argumentations that prospective
middle school mathematics teachers utilize while solving geometry tasks in
GeoGebra and Paper-Pencil groups?

3.2 Design of the study

The present study employs qualitative research techniques. Fraenkel and
Wallen (2012) state that some researchers’ interests are based on the quality of a
particular activity rather than on its frequency. When the quality of relationships,
activities, situations or materials is the issue, the preferred research type is
qualitative research (Fraenkel & Wallen, 2012).

How people interpret their lives and how they construct their meanings from
their experiences have been stated to be the main interest of qualitative researchers
(Merriam, 2009). Similarly, Denzin and Lincoln (2005) emphasize the importance
of meaning derived by the individual him/herself in qualitative research by stating
that “qualitative researchers study things in their natural settings, attempting to
make sense of, or interpret, phenomena in terms of the meanings people bring to
them” (p. 3). Therefore, qualitative researchers are disposed to collect data directly
within the natural setting in which participants experience the problem or the
phenomena (Creswell, 2007). In qualitative research, descriptive data is collected
and they are presented in terms of words and pictures instead of numbers (Bogdan
& Biklen, 2007). The other crucial issue in qualitative research is collecting
multiple sources of data such as observations, interviews, documents and
audiovisual materials (Creswell, 2007) in order to ensure the validity and reliability
of the findings. Lastly, the preferred method in data analysis in qualitative studies is
inductive data analysis instead of testing initially formulated hypotheses (Bogdan &
Biklen, 2007). Creswell (2007) categorized qualitative approaches under five
headings: narrative research, phenomenology, grounded theory, ethnography and

case studies. The design utilized in the present study was a case study.
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Various definitions of the qualitative case study can be encountered in the
related literature. To illustrate, Stake (2005) states that “qualitative case study is
characterized by the researcher spending extended time on site, personally in
contact with activities and operations of the case, reflecting, and revising
descriptions and meanings of what is going on” (p. 450). Another definition is made
by Yin (2003), who defines the scope of the case study as follows: “A case study is
an empirical inquiry that investigates a contemporary phenomenon within its real-
life context, especially when the boundaries between phenomenon and context are
not clearly evident” (p. 13). He also differentiates the case study from other
methods by comparing the characteristics of the methodologies.

Case study inquiry copes with the technically distinctive situation in
which there will be many more variables of interest than data points, and
as one result relies on multiple sources of evidence with data needing to
converge in a triangulating fashion, and as another result benefits from the
prior development of theoretical propositions to guide data collection and
analysis (Yin, 2003, p. 13).

Merriam (2009) also defines the qualitative case study by referring to as “an
intense holistic description and analysis of a bounded phenomenon such as a
program, an institution, a person, a process, or a social unit” (p. X). This definition
entitles the case as an entity or a unit and emphasizes the importance of the
boundaries of the case. Similarly, Creswell (2007) defined the case study as “a
qualitative approach in which the investigator explores a bounded system (a case) or
multiple bounded systems (cases) over time, through detailed, in-depth data
collection involving multiple sources of information, and reports a case description
and case-based themes” (p. 73). The way case study was employed in the current
research study is in accordance with Merriam and Creswell’s perspective since the
aim was to present an in-depth description of the argumentation of prospective
middle school mathematics teachers in GeoGebra and Paper-Pencil environments.

Creswell (2007) and Stake (1995) categorize case studies into three based on
their intents: the single instrumental case study, the collective or multiple case
study, and intrinsic case study. The instrumental case study is a case study in which

the researcher stays focused on the issue or concern and then selects one bounded
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case to express that issue (Stake, 1995). As for the multiple-case study, the
researcher again selects the issue but studies several cases jointly in order to
examine this issue (Creswell, 2007). In the last type, intrinsic case study, the
researcher focuses on the case itself (such as evaluating a program or studying a
student who has difficulty) since the case is an unusual or unique situation
(Creswell, 2007). Accordingly, the present study can be specified as a multiple case
study since the argumentation of the prospective middle school teachers was
examined in two cases: GeoGebra and Paper-Pencil.

In the qualitative case study, the unit of analysis can be an event, a program,
or an activity (Creswell, 2007). Similarly, Yin (2003) asserts that the unit of
analysis can be not only an individual and a group but also an event, an
implementation process or entity. He proposed four basic types of case study
designs based on the unit of analysis, which are single-case design with single unit
of analysis (Holistic), single-case design with multiple units of analysis
(Embedded), multiple-case design with single unit of analysis (Holistic), and
multiple-case design with multiple units of analysis (Embedded) (Yin, 2003). In
addition, Yin (2003) modelled these basic case study designs as illustrated in
Figure 3.1.

Single-case Designs Multiple-case Designs

Holistic
(single unit
of analysis)

Embedded
(multiple units
of analysis)

Figure 3.1 Basic types of designs for case studies (Yin, 2003, p. 40)
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In the present study, the unit of analysis was the argumentation structures of
prospective middle school mathematics teachers and the cases were two working
groups, GeoGebra and Paper-Pencil, in the context of the Middle School
Mathematics Teacher Education Program. Thus, the model of the analysis of the
present study was holistic multiple case study design and can be summarized as in

Figure 3.2.

Teacher Education Program

GeoGebra Group Paper-Pencil Group

Argumentation Argumnentation
structures structures

Figure 3.2 Holistic multiple case study, design of the present study

The following section provides detailed information about the data collection

procedure pursued in the current study.

3.3 Procedure

The current study entailed a pilot study and a main study. Thus, initially, the
participants and the data collection procedure of the pilot study is explained;
subsequently, detailed information about the main study is presented in the

following sections.

3.4 Pilot Study

Yin (2003) proposed a pilot test prior to the main implementation in order to
refine data collection plans and develop a relevant line of questions. Accordingly, in
the present study data for the pilot study was collected in the 2012-2013 spring
semester. The specific purposes of conducting the pilot study were to check whether
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the geometry tasks were suitable for argumentation, to estimate the necessary time
for each geometry task, to decide on the number of tasks to be applied each week, to
be sure about the clarity of the statements in the geometry tasks and to decide on the

number of people in each group.

3.4.1 Participants of the pilot study

The participants were selected through convenience sampling from a Middle
School Mathematics Education undergraduate program of one of the public
universities in Ankara. They were 4th grade students (9 females) who had
volunteered to participate in the study. Based on their level of GeoGebra
knowledge, they were assigned to either the GeoGebra group or the Paper-Pencil
group. In addition, they were randomly divided into subgroups of two or three. The
dates, the number of groups, the number of people in each group and the number of

computers used in the GeoGebra group for three weeks are presented in Table 3.1.

Table 3.1 Pilot study dates and details about the groups

Date Group # of  #of peoplein # of computers in
groups small groups small groups
09.05.2013 GeoGebra 2 3and 2 1
11.05.2013 Paper-Pencil 2 2 and 2 -
17.05.2013 GeoGebra 2 2and 2 2
18.05.2013 Paper-Pencil 2 2 and 2 -
30.05.2013 GeoGebra 2 2and 2 1
25.05.2013 Paper-Pencil 2 2and 2 -

Computers and GeoGebra, a dynamic geometry program, were provided to

the participants in the GeoGebra group to solve the geometry tasks. On the other

hand, paper, pencil, a protractor, a ruler and a compass were provided to the

participants in the Paper-Pencil group.
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3.4.2 Data collection tools of the pilot study

In the next sections, the geometry tasks, interviews and reflection papers of

the pilot study are explained in detail.

3.4.2.1 Geometry tasks in the pilot study

Initially, 10 geometry tasks were prepared for the pilot study. Four of them
were based on triangles, three of them on quadrilaterals and three of them on
circles. During the preparation of the tasks, challenging questions to accompany the
geometrical figures were sought. Moreover, they needed to be questions that could
be solved via both GeoGebra and paper-pencil. One other characteristic sought in
the questions was to ensure that they had multiple solutions so that argumentation
could emerge. After the pilot study, some of the tasks were adapted, while some of
them were omitted. The details of the geometry tasks have been explained in the

data collection part of the main study.

3.4.2.2 Interviews and reflection papers in the pilot study

Pilot interviews are crucial to figure out which questions are confusing, need
rewording, or yield useless data (Merriam, 1998). There were pilot interviews with
4 prospective middle school mathematics teachers, 2 of whom were from the
GeoGebra group and 2 of whom were from the Paper-Pencil group. All the
interviews were videotaped, recorded and transcribed. The purposes of doing pilot
interviews were to detect the possible difficulties which might be faced during the
interviewing process of the main study, to check whether the questions were clear,
and to determine the approximate time needed for the interview.

The participants of the pilot interview were asked whether or not the
interview questions were clear to them, and their suggestions were taken into
account to modify the interview protocol for the main study. Specifically, there

were questions about the geometry background of the participants, the difficulty of
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the tasks, the use of materials provided, suggestions for the application process to
promote argumentation, and the clarity of the statements in the worksheets.

The reflection paper also consisted of the same questions to collect the
opinions of all the participants. However, the participants’ answers to the reflection
paper questions were highly superficial. In the interviews, the researcher collected
more detailed information from the participants by questioning their answers. As
previously indicated, the interviews were more beneficial when they were held just

after the application.

3.4.3 Data collection procedure

There were three administrations and the administrations were implemented
once a week for each group (GeoGebra and Paper-Pencil Groups). The application
was recorded with a camera and audio recorders.

In the first administration, the participants solved 4 geometry tasks related to
triangles. Initially, they studied in small groups, and then voluntary pairs presented
their solutions on the board and discussed their arguments with the whole class.
Meanwhile, the researcher guided the discussion by promoting the participants to
develop arguments. To illustrate, the researcher asked such questions as ‘How do
you know that is true?, What does that mean to you?, Can you tell me more about
your thinking process...?, Why do you think so?, and Are there any other ideas?’
after discussing two geometry tasks, the participants were tired and the researcher
gave a break. Following the break, the participants continued discussing the other
two geometry tasks. Immediately after the first application, the researcher
conducted an interview about the application with one pair of voluntary students,
one from the GeoGebra group and one from the Paper-Pencil group. The other
remaining pairs were asked to write a reflection paper, which they sent to the
researcher on the application day till midnight by e-mail.

The second administration was applied one week after the first
administration with 8 participants, rather than 9, because one of the participants in
the GeoGebra group decided to give up participating in the study. During the
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application, 3 geometry tasks related to the quadrilaterals were solved. The same
application procedure was followed in that week.

During the third and the last week, the participants solved three geometry
tasks related to circles following the same procedure. Different geometric figures
were used in the tasks of different administrations (e.g. circles, triangles) to offset
the possibility that the students might not have been able to produce arguments
related to the geometric figures they were not competent at. To illustrate, a student
may not have been able to create an argument for the tasks on circles, but s/he could
be more competent in other geometrical figures, and thus be able to create
arguments for tasks on, for example triangles and/or quadrilaterals. If the researcher
had prepared all of the tasks based solely on circles, not all the students may have
been able to create arguments, so the researcher would have missed out on some
data. Thus, the researcher decided to prepare the tasks on three different geometrical
figures in order to ensure that arguments were collected from all the participants. In

this way, the researcher was able to collect arguments of all the participants.

3.4.4 Conclusions of the pilot study

The video recordings of the applications in the pilot study were analyzed in
terms of argumentation. In addition, the reflection papers and interview recordings
were analyzed in order to make inferences for the arrangement of the main study.

In the first week, the researcher prepared 4 geometry tasks on triangles.
However, 4 activities were found to be too tiring for the students. The students
experienced difficulties in discussing the questions towards the end of the
application. Thus, the researcher decided to reduce the number of tasks and discuss
the questions in detail in each application in the main study.

Since the researcher was not sure whether the prepared tasks were suitable for
argumentation, the decision was made to solve 3 tasks in each implementation of
the pilot study and then to omit the tasks that did not work prior to the main study.
In the first week, two of the four tasks related to triangles were easily solved in a

short time by the participants, so the class discussion was not rich in terms of
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argument development. Thus, those tasks were omitted from the study. In the
second week, the researcher prepared 3 geometry tasks on quadrilaterals. However,
these 3 tasks related to quadrilaterals were omitted from the study specifically
because in the first task, there were no accurate solutions for some of the questions.
The participants in the GeoGebra group held effective discussions, but sometimes
they did not use GeoGebra to arrive at the solution. Thus, that task was omitted
from the study. Besides, the other two quadrilateral tasks were omitted since they
led participants to use only algebraic expressions rather than GeoGebra to solve the
problem. In the third week, the researcher prepared 3 geometry tasks on circles. In
the class of the GeoGebra group the 1st and 2nd tasks were conductive to the use of
GeoGebra and argumentation. However, in the 3rd task, the students did not hold
effective discussions because there was only one answer and it was easy to show it
via a GeoGebra file. That is, the solution was easy after drawing the required
drawing figure on GeoGebra. Similarly, in the class of the Paper-Pencil group, there
was a short discussion based on their drawings. Thus, it was concluded that the third
task was not suitable for argumentation, so it was omitted from the study.

In the GeoGebra group, there were 5 people. The two small groups were
generated with 3 people in one group and 2 people in the other group. In this way,
the researcher had the chance of examining the arguments developed in small
groups of two and three. The interview results indicated that in the group of two
people, the participants expressed more opinions, and the discussion was more
effective, while in the group of three people, one of the participants did not join the
discussion most of the time. After analyzing the audio recordings in terms of
arguments, the researcher decided that the ideal number of people in the small
groups should be 2 for the main study.

In the GeoGebra group, each pair had only one computer and one activity
sheet to work on the tasks. In the second week the researcher tried to provide two
computers for each pair to work on the tasks. In the meantime, each participant in a
pair worked on his/her own computer and shared his/her thoughts less frequently
with his/her partner. That is, the communication between the pairs was minimal

when they had their own computer. Thus, the researcher decided to provide one
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computer and one activity sheet to each pair in the main study in order to encourage
discussion and argument development.

In the Paper-Pencil group, there were 4 people in the first week. The two
groups were generated with 2 people. A ruler, protractor and a pair of compasses
were provided to each group. Most of the time, they first produced a rough draft of
their solutions to the questions and then they checked their solutions by using the
materials they were provided with. Similarly, the people in the GeoGebra group
used the GeoGebra program to check their claims and solutions in some of the
tasks. That is, they were drawing the shape with paper and pencil and then checking
their solution via GeoGebra afterwards in some of the tasks so they were using
GeoGebra not through the whole solution process. Considering this, the researcher
decided to encourage the GeoGebra group to use the GeoGebra program more
frequently in main study.

In the first week, the researcher allowed less time for the discussion in small
groups and started the class discussion. However, the students did not efficiently
criticize the opinions of the student who was explaining her/his solution on the
board because they were anxious about their own solutions and did not carefully
listen to the students at the board. Thus, the researcher decided to spare more time
for pair work. In the following weeks, more time was spared for pair work so the
class discussions were more effective.

In addition to the above arrangements, the reflection paper and the interview
questions of the pilot study were improved to collect more detailed information in
the main study. In the first week, there was no time for the interview just after the
application in the GeoGebra group. Then it was observed that the participants had
forgotten the details of the implementation process, so their answers to the
interview questions were not satisfying. For this reason, the researcher decided to
make the interviewees skim the video of the implementation quickly just before
asking the interview questions in the main study. Moreover, the questions asking for
the participants’ suggestions regarding the application were omitted because the

purpose of asking those questions was to improve the quality of the main study.
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3.5 Main Study

In the following sections, the details regarding the participants, the data

collection tools, data collection procedure and the data analysis were explained.

3.5.1 Participants of the main study

In quantitative research studies, large representative samples are selected
randomly but qualitative research studies include relatively small samples that are
selected purposefully. According to Patton (2002), purposeful sampling is powerful
because the participants who can provide rich information are selected to obtain in-
depth information. In addition, it is crucial to determine the selection criteria
according to the purpose of the study. In the related literature, argumentation was
said to be a dialogical event which was done among two or more individuals
(Duschl & Osborne, 2002). Therefore, the number of participants should not be too
few in order to provide a highly argumentative environment when the findings of
the pilot study was considered. Moreover, senior students are considered to be
suitable as participants since they have taken most of the courses related to the
teaching profession and can analyze the geometry tasks in a multidimensional way.

Thus the participants of the current study were 16 senior undergraduate
students who were enrolled in an Middle School Mathematics Education
undergraduate program at a public university in Ankara. Participants from only one
public university were chosen since the time and classrooms for the administration
of the study had to be arranged at the hours that did not overlap with each
participant’s weekly schedule. The participants in the GeoGebra group (8 students)
were the students who took the course ‘Exploring geometry with dynamic geometry
applications’ and knew how to use GeoGebra - a dynamic geometry program. The
rationale underlying this criterion was to eliminate having to teach the participants
how to use GeoGebra; this was advantageous as it saved time. The participants in

the Paper-Pencil group were again 8 senior students who were selected from among
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the volunteers without considering their GeoGebra knowledge because they did not
need to use GeoGebra during the study.

In the present study, pseudonyms were used instead of the participants’
names. Some demographic information about the participants in the GeoGebra and
Paper-Pencil groups, such as gender, number of pairs and grade level are presented
in Table 3.2.

Table 3.2 Gender, number of discussion pairs and grade levels of the participants

Gender # of Grade level of
Female Male discussion participants
pairs
GeoGebra Group 7 1 4 4
Paper-Pencil 6 2 4 4

Group

Effort was made to include a similar number of females and males in the
GeoGebra and Paper-Pencil groups. Moreover, their personal characteristics such as
talkativeness, enthusiasm, predisposition towards technology, shyness, and
disinterestedness were taken into consideration, while arranging the pairs in each
group. The researcher did not experience any difficulty in selecting and arranging
the participants in groups since the researcher knew the participants well as she was
the assistant of their courses related to middle school mathematics teaching and had
attended their courses from the beginning to the end of each semester to become

closely familiarized with the whole class.

3.5.2 Data collection of the main study

Data were collected at the end of the fall semester of the 2013-2014 academic
year. In order to examine the argumentation process of the participants, an in-depth
analysis was needed where multiple sources of evidence were necessary to ensure
the accuracy of the results. For this reason, multiple sources of information were

collected in this study. These sources were the recordings of the implementation of
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geometry tasks (transcriptions of audiotapes and videotapes of pair-works and
group discussions), interview recordings and documents (reflection papers), which

are explained in detail below.
3.5.2.1 Data collection tools

In this section, the data collection tools of the main study are explained in
detail. More precisely, the geometry tasks, interviews and documents are addressed

respectively.
3.5.2.1.1 Geometry tasks

Subsequent to the pilot study, the best working 4 tasks were selected to be
applied in the main study. That is, the tasks that were most suitable to the nature of
the argumentation process were kept in the main study. Two tasks were related to
triangles, while the other two tasks were related to circles. The tasks were prepared
and adapted in such a way that they included challenging open-ended questions so
that the participants could develop arguments and support their opinions. In
addition, the questions had multiple solutions and the participants discussed their
own answers initially with peers and then with the whole class. Moreover, the tasks
were arguable and solvable with both GeoGebra and Paper-Pencil.

The first geometry task was taken from a master’s thesis of Ceylan (2012),
who studied the proof types of 2" year pre-service teachers while using GeoGebra.
This task was selected since it requires hypothesizing and testing conjectures, which
are crucial in argumentation process. In addition, it is also solvable by both
GeoGebra and paper-pencil. After receiving permission, the task was edited to

make it conductive to justification and argumentation as illustrated in Figure 3.3.
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GEOMETRY TASK 1

ABCisatriangle. The midpoints of sides |[AB| and |AC| are points D and E,
respectively. F and G points are placed on the side [BC| so as to be[BG|=|CF|.
The segments |DG| and |[EF| intersects at point H.

When does |AH| become the angle bisector of £ A7 (Think about all types of triangles).
Explain vour reasoning and justify vour solutions.

Figure 3.3 Geometry task 1

The focus of the present study was on their reasoning, so in addition to the
original questions of the task, the researcher asked them to justify their answers all
the time. In geometry task 1, it was expected from participants to think all possible
drawings while placing poins F and G on segment |BC|. In this way, they should
find alternative solutions to the questions. They were also expected to justify their
interpretations for different solutions they found.

The second geometry task (see Figure 3.4), which was adapted from Iranzo-
Domeénech’s doctoral dissertation (2009), has three sub-questions. The first question
asks the relation between |EG| and |GF| when the given conditions are ensured. The
second question asks the same thing when the triangle ABC is equilateral or
isosceles triangle. The third question in geometry task 2 is different since it asks the

specific position of a dynamic point P.
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GEOMETRY TASK 2

Let P be any point onthe median of |JAG| of atriangle ABC. Letm and n parallel
lines through Pto the sides |]AB|and |JAC | of the triangle.

1. What relation is there between the segments |[EG| and |GF|? Explain your
reasoning.
2. Whatif the triangle ABC is equilateral or isosceles triangle? Can any

generalization be made for therelation between the segments |[EG| and |GF|? Explain
your reasoning.

3. Where must bethe point P positioned such that |BE/=|EF|=|FC|. Whatifthe
triangle ABC is equilateral or isoscelestriangle? Justify vour solution.

Figure 3.4 Geometry task 2

This task was also suitable for argumentation by both the GeoGebra and the
Paper-Pencil groups in the pilot study. It was expected from participants to be able
to notice the dynamic structure of point P and place point P to the right position to
provide |BE|=|EF|=|FC|. Providing justifications for their solutions were also
expected via theoretical and visual supports in both groups.

The third and fourth geometry tasks were taken from the book entitled
‘Challenging problems in Geometry’, written by Posamentier and Salkind (1988),
from whom the necessary permission was taken. The book includes many
challenging geometry problems, their solutions and hints. The following figures

illustrate the geometry tasks taken from the book. Both tasks were based on circles.
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GEOMETRY TASK 3

Two circles each of which passes through the center of the other, intersect at points
Hand E. Aline from E intersects circles at F and G.

1. If [FG|=6. compute the area of the tnangle FGH? Justify vour solution.

2. Ifristhemeasure oftheradius of each circle, find the minimum value and
maximum value of the area of tiangle FGH. Justify vour solution.

Figure 3.5 Geometry task 3 (Posamentier & Salkind, 1988, p. 26)

As it can be seen in Figure 3.5, the Geometry Task 3 entailed two questions
related to circles. In the first question, the participants were asked to find the area of
triangle FGH. This question could be solved with knowledge based on the
properties of circle. Therefore, it was expected from participants to justify their
arguments based on the relationships between angles and arcs of the circles.
However, solving the second question required mental imagination and calculations
or a dynamic geometry program. The participants were expected to ensure the given
conditions of the geometry task 3 after dragging point F while they were finding the

minimum and maximum area of triangle FGH.
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GEOMETEY TASK 4

1. |CD|is a chord of a circle and bisected by another chord [FG|atpoimt E. A
semicircleis drawn with diameter [FG|. |[EH|, perpendicular to |[FG|, meets this
semicircle at point H. Prove [EH|=|CE| and justify vour reasoning.

2. Show whether the theorem is trivial if chord [FG|is a diameter of the first circle
or if [FG| coincides with |[CD|. Justify vour reasoning.

Figure 3.6 Geometry task 4 (Posamentier & Salkind, 1988, p. 17)

Geometry Task 4, which was based on circles, is presented in Figure 3.6.
There were two questions. The first one asked the participants to prove that
|EH|=|CE]| in the given condition and justify their answers. The second question
required imagining the semicircle’s movement on the circle. The participants were
asked to interpret the relationship between |[EH| and |CE| in the new conditions
given in the second question. They were expected to imagine the new positions of
the points and segments mentally after dragging to be able to make interpretations
in both groups. Even the participants in GeoGebra group needed the mental
imagination of the points for their drawings to be dynamic, and for providing the

given conditions of the task after dragging.
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3.5.2.1.2 Interviews

According to Patton (2002), interviewing makes the researcher enter into
another person’s perspective so the interviewing process requires attention and
effort on the part of the researcher. Interviews are categorized into three by Yin
(2003) as open-ended interviews, focused interviews and structured interviews. In
the present study, focused (semi-structured) interview was conducted since this kind
of interview collects detailed information in a style that is somewhat conversational.
The semi-structured interview protocol was prepared, and the interviews were
recorded by a camera and an audio recorder.

After the pilot study, the interview questions were refined by considering their
applicability and suitability for the main study. Subsequently, two mathematics
educators were asked to check the face validity of the interview questions. The
purpose of checking face validity was to determine whether the interview questions
matched with the research questions, and whether they were in agreement with the
goal of the study. In addition, biased and leading questions were detected and
changed within this process.

The aim of implementing an interview in the main study was to clarify the
arguments of the participants. Some components of the arguments were missing in
the discussion when the discussion flowed to different directions. In some
situations, the participants did not explain their reasoning but implied it somehow in
the main study. In the interview, the researcher asked for clarification of these parts
to the participants by discussing the tasks. Thus, the interview questions were
different each week since the questions related to the arguments developed during
each administration were different (See Appendix A). At the end of each interview,
the interviewees were asked to think about some arguments related to the task of the
week and justify or refute them in order to understand whether or not they got the

main points in the application.
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3.5.2.1.3 Documents

In this study, documents include the worksheets on which the participants
took notes for each geometry task and the reflection papers. All the participants
were required to write a reflection paper at the end of the application. In fact,
reflection paper questions were prepared from the interview questions of the focus
group which were executed after each application. The researcher selected the
questions which were not specific to the arguments developed in the focus groups
and then organized them to gather information from all the participants (see
Appendix B). Specifically, there were questions about mathematical background of
the participants, the use of materials, the difficulties while using materials
(GeoGebra / ruler, protractor, compass), the difficulty of the tasks, the justification
preferences of participants, and two arguments to be supported or refuted. The
reason for asking the participants to justify or refute these arguments was for
triangulation purposes; they were required to write anything that they had forgotten
to say during the argumentation. The reflection paper questions were the same for
both the GeoGebra group and the Paper-Pencil group, except for the questions
related to the material used (GeoGebra / Compass, Protractor and Ruler) since they
had to answer the question according to the materials they had used. The researcher
sent each student the reflection paper guestions with his/her own activity sheets of
the four geometry tasks to make them remember what they had done. They
answered the reflection paper questions and sent their answers to the researcher by

e-mail.

3.5.2.2 Data collection procedure

The researcher administered the geometry tasks by herself and she was not
able to take notes about the process; thus, she was a participant-observer in this
study. According to Yin (2003) participant-observers may not raise questions about
the process from a different perspective as a good observer may not have enough

time to take notes. In order to solve this problem, the entire administrations were

77



recorded with video cameras, and the audio recorders were placed on the desks of
each pair of group members. The number of cameras was arranged in a way that
enabled the whole class to be observed from different perspectives. These
recordings were used after the administration. They were transcribed and the
researcher took notes and coded them. These recordings were beneficial data
because the researcher did not miss any part or situation related to the
argumentation. In this way, the process was analyzed holistically in order to be able
to understand the whole process.

As soon as the 16 voluntary prospective middle school mathematics teachers
were selected for the main study, the procedure which was determined with the help
of the pilot study was administered. Two groups were arranged one of which was
the GeoGebra Group (GG) and the other one was the Paper-Pencil Group (PPG).
Then, two applications with each group were carried out. The dates and the number
of pairs in each group and the number of people in each group are presented in
Table 3.3.

Table 3.3 Main study dates and detail about groups

Date Group # of pairs in # of peoplein  # of computer
each group each group for each pair in
GeoGebra group
12.11.2013  Paper-Pencil 4 8 -
15.11.2013  GeoGebra 4 8 1
19.11.2013  Paper-Pencil 4 8 -
22.11.2013 GeoGebra 4 8 1

The administrations of the GG were in a computer laboratory while the
administrations of the PPG were in an ordinary classroom on different days. At the
beginning of the first administration, necessary information about the argumentation
process was given and the participants were informed about what they were
expected to do during the administration. Then, the worksheet of the first geometry
task was distributed to the pairs. The organization of the class of the main study for

the GG is illustrated in the Figure 3.7 below.
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Figure 3.7 Organization of the GeoGebra group in the main study

In the GeoGebra group, the participants worked on the given geometry tasks
in pairs initially with one computer and one worksheet (see Table 3.3). Then, they
discussed their solutions with the whole class. After the class discussion, the
worksheet of geometry task 2 was distributed to the pairs. In the same way, a pair
discussion and a class discussion were executed consecutively. Just after the first
week’s administration, the researcher watched the pair-work video recording of the
focus pair and the class discussion to prepare the interview questions for that week.
One day after each administration, the researcher held an interview with the focus
pair. At the beginning of the interview, the researcher made the interviewees skim
the video of their pair-work and class discussion quickly in order to remind them

the administration. They also looked at their own activity sheets. Then, the
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researcher asked interview questions and recorded the interview process via a
camera and an audio recorder.

Except for the use of computer to solve geometry tasks, the same procedure
was valid for the PPG. Instead of a computer, there were one ruler, one protractor
and one compass on the desk of each pair. The organization of the class of the main
study for PPG is illustrated below in Figure 3.8.
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Figure 3.8 Organization of the Paper-Pencil group in the main study

In the second week, the participants solved geometry tasks 3 and 4 following
the same procedure explained above. After the last administrations, the reflection
paper questions (see Appendix B) were prepared and sent to the participants via e-
mail. They were given a deadline to answer and send their answers back again via

e-mail.
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3.5.2.3 Data analysis

In case studies, data collection and analyzing processes occur simultaneously
since the main purpose is to provide intensive and holistic description of the case
(Merriam, 1998; Yin, 2003). According to Yin (2003), the researcher should
examine, categorize, tabulate, test or otherwise recombine both qualitative and
quantitative evidence to analyze data to refer to initial propositions. Creswell (2009)
also explained the data analysis in qualitative research studies in such a way that it
requires “preparing the data for analysis, conducting different analyses, moving
deeper and deeper into understanding the data, representing the data, and making an
interpretation of the larger meaning of the data (p. 183). An informative schema,
which is illustrated in Figure 3.9, was also provided by Creswell (2009) for

qualitative researchers.

Interpreting the meaning of ThemesDescriptions

T

Interrelating Themes/Description
(e.g. grounded theory, case study

| T

Validating the Themes Description
accuracy of the 7
information

Reading through all data

T

Coding of the Data (hand or computer)

T

Orginizing and preparing Data for Analysis

T

Faw Data (Transcripts, Fieldnotes, images etc.)

Figure 3.9 Data analysis in qualitative research
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Thus, within the data analysis procedures, initially the collected data were
organized and prepared for data analysis. For this purpose, the first step, which took
a long time for the researcher, was to transcribe all the videotaped and audio
recorded data. These transcriptions and all other data sources were organized and
stored as computer files. The spoken language was Turkish throughout all the
transcriptions. The researcher translated only the necessary parts of the
transcriptions into English for the results chapter. The researcher had the chance of
engaging in the whole data since she watched the videotapes and audio recordings
several times. In addition, the translated data were compared to the original data in
terms of their grammatical, syntactic and linguistic aspects in order to ensure the
accuracy of the transcription.

The second step of the data analysis was coding of the data in order to identify
themes and categories. Merriam (2009) maintained that data analysis in qualitative
studies was a complex process which includes moving back and forth between the
parts of data, and between inductive and deductive reasoning. Similarly, Yin (2003)
emphasized the difficulty of data analysis in case studies since there were no clearly
defined strategies and techniques. In this study, the data (transcriptions of the
interviews and observation videos and documents) were reviewed repeatedly to
make sense of the data, and notes were taken to identify the arguments in the data.
The researcher decided to work with an intercoder while determining the arguments
in the discussions. The intercoder was a doctoral student studying mathematics
education in the Elementary Education program of Middle East Technical
University (METU). In addition, she was knowledgeable in the qualitative research
method and the nature of argumentation in mathematics. The reason for this
intercoder application was to have consensus about the arguments and their
elements (claim, data, warrant, backing...) in the data, and reduce researcher bias.
The researcher provided the intercoder with information from literature about the
elements of the arguments. The researcher and intercoder determined the local
arguments in 25% of the transcriptions of the applications separately. Subsequently,
they got together. The interrater reliability was calculated as 76% before discussion.

Then, they discussed the differences between their arguments and arrived at a 100
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% consensus for all of the arguments. This work was beneficial for the researcher
since the argument elements became clearer in her mind. After the intercoder
application, the researcher determined the arguments of the remaining data based on
the intercoder application results.

Lastly, the argument schemas of the four geometry tasks of the GG and the
PPG were drawn according to the argumentation model of Toulmin (1958).
Subsequently, the researcher did another intercoder application with two doctoral
students who were studying mathematics education. This time, the researcher gave
the inter-coders 25% of the drawn argument schemas and the information about the
argumentation model of Toulmin (1958). Then, the researcher asked them to read
the transcriptions, look at the argument schemas, and take notes about whether they
agreed or disagreed with the arguments and their components. In this intercoder
application, the process was in the reverse order of the previous inter-coder
application. The researcher and the two inter-coders worked separately with the
data; then they came together to discuss the differences they detected. Before
discussion there was 60% agreement between the researcher and the intercoders. In
the end, they discussed their ideas by watching the observation videos and built
consensus for all the arguments with 100% agreement. The researcher did these two
inter-coder applications to be sure about the arguments of the study.

In order to answer the first research question which sought for the nature of
the argumentation structures of prospective middle school mathematics teachers
while solving geometry tasks using dynamic geometry software or using paper and
pencil, the global argumentation structures for each geometry task were generated.
The framework for this analysis was developed by Knipping and Reid (2013) in the
proof context with 9" grade students from Germany and Canada. They suggested a
method to analyze and reconstruct the complex argumentations in proving
processes. Firstly, they used the argumentation model of Toulmin (1958) to
determine developed arguments, while 9" grade students were working on the proof
of the Pythagorean Theorem. Then, they analyzed the general structure of the
process which they called as global argumentation structure. In the present study,

the global argumentation structures in the geometry context were analyzed.
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Before explaining Knipping’s (2008) classification of global argumentation
structures, it would be of benefit to clarify the terms argumentation steps,
argumentation stream and parallel arguments. Knipping (2008) used the term
argumentation step as for distinct arguments. That is, a single argument with one
conclusion and other elements (data, warrant, backing), if exists, can be defined as
an argumentation step. It has the same meaning with local arguments. The other
term argumentation stream was defined as “a chain of argumentation steps by which
a target conclusion is justified” (Knipping, 2008, p. 434). In the present study, the
series of arguments which were connected to each other to justify the target
conclusions were defined as argumentation stream. The last term to be defined was
parallel arguments, which refers to different arguments supporting the same
conclusion in an argumentation stream, and this happens when the participants
develop substantially different arguments for the same conclusion (Knipping,
2008).

The schematic representation which was developed by Knipping (2008) was
used in the present study. In order for the representation to be more meaningful the

sample argumentation stream is illustrated in Figure 3.10.

D: The circles
with centers C and C/D: Triangles
D are equivalent. HCD and CDE are
equalateral
- - C; Triangle FGH
EDDE‘EE CdHDI-g] 15 equilateral.
y o 0 D: £HDE =120°
2HCE =120
W
CH=HD=CD=CE=DE=r D:
The arc HE=240°
W: £HGE =120" since
it 15 inscnbed angle
Ii: Data seeing the arc HE. The
C: Claim supplementary angle 15
W: Warrant 60°.
LHGE =120°

Figure 3.10 Sample argumentation stream
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In Figure 3.10, the letters at the beginning of the sentences convey a meaning.
‘D’ means data, ‘W’ represents warrant, while ‘C’ stands for claim of the
argument. In this argumentation stream the target conclusion was ‘Triangle FGH is
equilateral’. The participant first presented the argument which concludes that
‘Triangles HCD and CDE are equilateral’ and then used this information as datum
for the target conclusion by also using other data, which were ‘£ZHDE =120°,
£HCE =120°" and ‘The arc HE=240°". The schematic representation of this based
on the method prosed by Knipping (2008) is presented in Figure 3.11.

D: The circles with
centers Cand D C/D: Triangles

are equ:'valent. HCD and CDE are

equilateral

C: Triangle FGH
EDDEE“ CdH.DHD. is equilateral.
5 an D: £HDE =120¢
£LHCE =120#
D.

w:
CH=HD=CD=CE=DE=r

Tﬁ.e arc HE= E-I-ﬁ'

W: £HGE =120 since

it is inscribed angle
. : Data or Claim seeing the arc HE. The

supplementary angle i1s
I Tarcct Conclusion 60°,

£HGE =120°

‘ : Warrant or Backing

[ ] :ClaimData (Transition from first to the second part of the argumentation

Figure 3.11 The schematic representation of argumentation stream in Figure 3.10
based on the method of Knipping (2008)

As it can be inferred from the Figure 3.11, Knipping (2008) represented data
or the claim of the argument with black circles, while she used a black rectangle for
the target conclusion of the global argumentation structure. In addition, black
rhombus represents the warrant, while the white rectangle stands for the claim/data

in this schematic representation. Claim/Data means that the claim of an argument is

85



used as a datum for the following argument and functions like a transition
component between these two arguments. In the global argumentation structure
analysis, the schemas were like the miniature representation under the
argumentation stream in Figure 3.11. In the following paragraphs, each global
argumentation structure was explained in detail with schematic representations.

The global argumentation structures developed by Knipping (2008) and Reid
and Knipping (2010, 2013) were source-structure, reservoir-structure, spiral-
structure and gathering-structure. In the present study, there was no global
argumentation structure which was suitable to the gathering structure, so the
gathering structure was not used in the adapted classification of the global
argumentation structures. Moreover, some of the argumentation structures which
emerged in the present study possessed different properties and, thus, did not fit into
any one of these four global argumentation structures. For this reason, the
researcher categorized those structures under new categories; line-structure and
independent arguments-structure. Therefore, the model used in the present study
included the following global argumentation structures, each of which is explained
in detail: Source-structure, Reservoir-structure, Spiral-structure, Line-structure, and
Independent arguments-structure.

In source-structure, the ideas and arguments flow as if arising from a variety
of origins (Reid & Knipping, 2010). That is, arguments are like water welling up
from many springs (Reid & Knipping, 2010). This structure has the following
characteristics:

- Argumentation streams that do not connect to the main structure

- Parallel arguments for the same conclusion

- Argumentation steps that have more than one datum, each of which is
the conclusion of an argumentation stream.

- The presence of refutations in the argumentation structure (Reid &
Knipping, 2010, p. 180).

In addition to these characteristics, Reid and Knipping (2010) have stated that
source-structure can lack explicit warrant and data. Moreover, a funneling effect,
which refers to the fact that many arguments are considered at the beginning of the

discussion and connecting to only to one concluding statement at the end, is
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asserted to be apparent in source structure (Reid & Knipping, 2010). During the
discussions, there may be situations that a false conjecture is constructed. In such
situations, false conjectures can be disproved but are valued at the same time
(Knipping, 2008). The source-structure, taken from a study by Knipping (2008), is
illustrated in Figure 3.12.

e Statements (Data (D) or conclusions (C))

‘ Warrant (W) or backing (B)
: or o) Objection to a datum or conclusion

Figure 3.12 Source-structure schema (Knipping, 2008, p. 437)

As displayed in Figure 3.12, the arrows in the schema represent the objection
to a datum or conclusion. In present study, black rounded rectangles were used to
represent the rebuttals instead of arrows. Knipping (2008) stated that AS-6
(Argumentation stream-6) was a refuted argument by the teacher and other
participants, so it was not connected to the main structure. In addition, AS-4 was
supported by more than one justification of a statement (AS-1 and AS-2). AS-1, and

AS-2 were parallel arguments for the same conclusion. AS-8 had more than one
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datum, each of which was the conclusion of an argumentation stream. AS-3 and
AS-6 had refutations in the schema.

Another global argumentation structure that emerged from the data was
reservoir-structure. The reservoir-structures had a flow towards intermediate target
conclusions, which were distinct and self-contained. These intermediate target
conclusions were described like reservoirs holding and purifying water before
allowing it to pass to the next stage (Reid & Knipping, 2010). In this type,
argumentation steps lacked explicit warrants or data, like in the source-structure,
but it was less frequent when compared to source-structure. The differentiating
characteristic of the reservoir-structure is that the reasoning occasionally moved
backwards and then forward again in order to provide further support by the data.
When this need was satisfied, the deductions that followed led to the final
conclusion (Reid & Knipping, 2010). That is, this process included more in-depth
discussion than the other structures since students thought about the arguments

repeatedly to provide additional supports and data by moving back and forth.

AS-]

Figure 3.13 Reservoir-structure schema (Knipping, 2008, p. 437)

In Figure 3.13, the arrow shows the differentiating property of the reservoir-
structure, which is reasoning backwards, and the dotted line shows where the
reasoning goes back to. Specifically, after constructing AS-1, AS-2 and AS-3, the
reasoning moved backwards to AS-2 again. Then, AS-2b and AS-3b parts were
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discussed. Until AS-X, the target conclusion was self-contained. The second part
(AS-5, AS-6 and AS-7) was also a closed structure but reasoning went only forward
in that part (Reid & Knipping, 2010). Reid and Knipping (2010) stated that at the
end of the discussion, a further justification was requested, so the AS-8 was
discussed.

The third global argumentation structure that emerged in the current study
was spiral-structure. Reid and Knipping (2010) stated that spiral-structure had the

same four characteristics with source-structure which were as follows:

- Argumentation streams that do not connect to the main structure

- Parallel arguments for the same conclusion

- Argumentation steps that have more than one datum, each of which is
the conclusion of an argumentation stream.

-The presence of refutations in the argumentation structure (Reid &
Knipping, 2010, p. 187).

As it can be inferred, the properties of the spiral structure seemed to be the
same with those of source-structure. However, they were different in terms of some
properties. Specifically, the main difference between spiral-structure and source-
structure was the place of the parallel argumentation structures within the global
argumentation (Reid & Knipping, 2010). Parallel argumentation streams were
located at the beginning of the discussion in source-structure, while they were
located at the end of the discussion in spiral-structure (Reid & Knipping, 2010).
That is, in spiral-structure the target of the parallel argumentation streams was the
final conclusion (Reid & Knipping, 2010), whereas in source-structure the target of
parallel argumentation streams was the claim/data that emerged during the
argumentation. The other difference between source-structure and spiral-structure
was the frequency of the emergence of the explicit warrants or data in the process.
Reid and Knipping (2010) asserted that the lack of explicit warrant or data was

observed less often in spiral-structure when compared to source-structure.
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Figure 3.14 Spiral-structure schema (Reid & Knipping, 2010, p. 437)

In Figure 3.14, AS-C is the argumentation stream that is not connected to the
main structure. In addition, there are three parallel argumentation streams, AS-B,
AS-D and AS-E, which lead directly to the target conclusion. The argumentation
steps which possess more than one datum, each of which is the conclusion of
another argumentation stream can be seen in AS-A and within the final conclusions
of AS-B and AS-E (Reid & Knipping, 2010). There was only one refutation in AS-
D in this sample.

The fourth global argumentation structure that emerged from the data was line

structure.

> °
®
Figure 3.15 Line-structure schema

As it can be seen in Figure 3.15, line structure is different from the other
structures since it flows like a line; the transitions are provided with claim/data
components and the argumentation ends with the target conclusion. The claims
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which became the data for the subsequent argument were confronted very often.
There are explicit warrants and refutations but these refutations did not end the flow
of the discussion. There were no parallel argumentation streams which
differentiated the line-structure from source-structure and spiral-structure.
Moreover, in line structure, there was no reasoning going backwards then forwards
which was the characteristic property of reservoir-structure.

The last global argumentation structure that emerged in the present study was
independent arguments-structure. The sample shape of the structure is illustrated in
Figure 3.16.

o © o ©

-

Figure 3.16 Independent arguments-structure schema

The independent arguments-structure schema emerged when the participants
could not solve the problem, but expressed an opinion about the solution. In
addition, these single arguments were made during the class discussion as if the
participant were thinking loudly. Sometimes the participant expressed the argument
and then refuted it herself/himself. Another situation in which independent
argument-structure emerged was when the participant constructed an argument and
then made another argument which was not related to the previous one. Yet, another
situation was that the participants sometimes solved a part of the problem with only
one argument and then continued with another part of the problem. Therefore, that
argument was not connected to the other arguments. When all these situations were
examined, it was concluded that there was no connection between those arguments,
so the global structure included distinct arguments. In addition, independent
arguments-structure was different from disconnected argumentation streams, which
a term used by Reid and Knipping (2010) in the properties of the spiral structure

and source structure. Knipping and Reid (2013) defined disconnected
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argumentation streams as “the contributions that do not lead to the conclusion
result” (p. 136). However, in the present study it was not possible to talk about such
argumentation streams since each local argument was independent of each other.
Thus, that global argumentation structure was entitled with a new term independent
arguments-structure.

In the data analysis process, initially, the global argumentation structures of
each geometry task were drawn for both groups based on the adapted model of Reid
and Knipping (2010). At this point, another intercoder application was needed and,
thus, conducted in order to arrive at a consensus in the identification of the
argumentation structure types and to reduce researcher bias. The researcher
recruited another doctoral student who was knowledgeable in the qualitative
research method and the nature of argumentation in mathematics and who had
already taken part in the previous intercoder study done to determine the arguments
and argument components. The researcher gave intercoder 50% of the global
argument structure schemas of the present study and the necessary information from
literature about the global argumentation structures and then asked the intercoder to
decide in which category each global argumentation structure fit. Subsequently, the
researcher and the intercoder came together and discussed all global argumentation
structures in order to arrive at a 100 % consensus. After the intercoder application,
the researcher categorized all the global argumentation structures of the present
study. Then, the researchers analyzed the global argumentation structures and
compared each geometry task separately. In addition, the global argumentation
structures produced by the GeoGebra and Paper-Pencil groups were compared.
Finally, the global argumentation structures were compared on the basis of the
mathematical contents (triangle tasks / circle tasks) in order to reveal any significant
pattern or theme.

The second research question, ‘What are the characteristics of the local
arguments in the global argumentation structures?’, necessitated the investigation of
the characteristics of local arguments based on the flow of the argument
components (claim, data, warrant) that prospective middle school mathematics

teachers use while solving geometry tasks in the GeoGebra and Paper-Pencil
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groups. The researcher wondered whether or not there was a pattern in the flow of
argument construction in geometry. That is, the prospective middle school
mathematics teachers’ arguments were analyzed in the order the argument
components were stated. In other words, the researcher examined the order in which
the participants stated the components of local arguments, namely the claim, data
and warrant during the discussion. For this reason, the researcher read through the
transcriptions and numbered the argument components to find the most frequently
used patterns. Thus, the present study contributed to the related literature by
identifying 9 different local argument types in the geometry context. The next step
was to compare the local argument types on the basis of groups, mathematical
contents (triangle tasks / circle tasks), and task by task in order to find any emerging
theme.

The third research question was related to the characteristics of the local
argumentations that prospective middle school mathematics teachers utilized to
justify their arguments while solving geometry tasks in GeoGebra and Paper-Pencil
groups. Knipping (2008) developed this classification in her study which was within
the context of proof. In order to analyze local argumentations, she examined the
types of warrants (and backings) that were employed by students and teachers to
identify the field of justification that applied in that classroom. In the current study,
the researcher also examined the warrants and backings of each local argument to
answer this sub-question. The schema of the classification by Knipping (2008) is
presented in Figure 3.17 and the researcher used this classification to analyze local
argumentations of the prospective middle school mathematics teachers in the

geometry context.
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Figure 3.17 Local argumentation classification developed by Knipping (2008)

Knipping (2008) asserted that conceptual argumentation can be categorized in
the deductive conceptual field of justification, which requires using concepts and
general conceptual principles as warrants to justify the conclusions. Specifically,
Knipping (2008) pointed out that the warrants of conceptual argumentations were
composed of mathematical concepts, mathematical relations between concepts, and
references to theorems, definitions, axioms and rules of logic. She also emphasized
the language used while stating conceptual argumentations as the use of
conjunctions such as ‘as’ and ‘since’, and a statement like ‘because one knows
that ...”, which shows a generally accepted status of the conceptual warrant. On the
other hand, the reference to figures as warrants came to the forefront in visual
argumentation. For instance, a reference to the figure or diagram on the board as
justification can be a visual argumentation since conclusions are drawn from the
figure rather than the results of the individual steps in the argumentation (Knipping,
2008). Visual argumentation is divided into two levels: empirical-visual level and
conceptual-visual level (Knipping, 2008). The empirical-visual level entails an
argument based on a concrete diagram and the relations among its components,
which can be accepted as the justification for the claim in the diagram. More
specifically, Knipping (2008) states that properties and relations in mathematics can

be perceived through the senses as they are bound to concrete figures. However, in
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the conceptual-visual level, the diagram can be accepted as the representation of the
idea (concept) (Knipping, 2008). That is, the generalization can be made by using
the conceptual-visual level argumentation.

In the related literature, no example presented for local argumentation levels
(empirical-visual, conceptual-visual and conceptual) were encountered so the
researcher consulted David Reid and Christine Knipping via e-mail in order to ask
whether or not they could provide any examples. The following example (see in

Figure 3.18) was sent to the researcher:

Argument: The sum of the first n natural numbers is equal to n(n+1)/2.

Conceptual argumentation: The sum can be written
1+2+3...+(n-1)+n and this can be added to the same sum in reverse:
(1+n)+(2+n-1)+...+(n-1+2)+(n+1).This new sum has n terms, each on
equal to n+l, and so the sum is equal to n(n+1). It is two times
1+2+...+(n-1)+n, so 1+2+...+(n-1)+n = n(n+1)/2. No reference to a
diagram is made.

Empirical visual argumentation:The sum can be represented
with a picture:

O
00
000
0000
00000
This can be added to the same picture in reverse:
O 00000
OO0 0000
000 000
0000 00
000000
There are 5 rows, each with 5+1 tokens. So in this case, we see that
1+2+3+4+5 = 5(5+1)/2.

Conceptual-visual argumentation: In addition to the diagram
given in empirical-visual argumentation, the following extension can be
made:

In general, there will be n rows, each with n+1 tokens. So
1+2+...+(n-1)+n = n(n+1)/2. This statement (if it is understood) prompts
us to see the diagram in a more general way, transforming the argument
into a conceptual-visual argument.

Figure 3.18 Example argument for local argumentation levels
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After making the distinction of the local argumentation levels clear, the data
were analyzed according to the classification presented by Knipping (2008). First of
all, the warrants and backings of all arguments were classified according to the
classification in the current study. In order to arrive at a consensus regarding the
classification and reduce researcher bias, the researcher did an intercoder
application with another researcher who was competent in argumentation and
mathematics education and working as an instructor in the Middle School
Mathematics Education department of the Faculty of Education at METU. The
researcher and the intercoder read 25% of the arguments together and assigned each
argument’s warrant and backing to one of the categories given in Figure 3.17.
Before discussion the researcher and the intercoder agreed on 28 arguments out of
36 arguments which corresponds to 77% agreement. They discussed until they
persuaded each other and they built full consensus on all arguments in the end.
Subsequently, the researcher classified the remaining 75% arguments by taking into
consideration the consensus arrived at with the inter-coder. Finally, she compared
the local argumentations of the participants on the basis of tasks and mathematical
contents (triangle tasks / circle tasks), by considering each group (the GeoGebra

group and the Paper-Pencil group) to generate a conclusion.

3.6 Trustworthiness of the study

Two important issues to be considered in scientific studies are validity and
reliability. Fraenkel and Wallen (2012) defined validity as “...the appropriateness,
correctness, meaningfulness, and usefulness of the specific inferences researchers
make based on the data they collect” (p. 151) and reliability as “the consistency of
the scores obtained how consistent they are for each individual from one
administration of an instrument to another and from one set of items to another”
(p. 157). These two concepts were asserted to be considered by any researcher
while designing a study, analyzing results, and judging the study’s quality (Patton,
2002). In qualitative studies, the term trustworthiness is used to refer both validity

and reliability. Moreover, the concepts of validity and reliability are perceived and
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named differently by different qualitative researchers (Creswell & Miller, 2000;
Lincoln & Guba, 1985; Patton, 2002; Shenton, 2004, Yin, 2003). For instance, in
order to judge the quality of qualitative case study designs, Yin (2003) mentioned
four design tests, which are construct validity, internal validity, external validity and
reliability. As indicators of trustworthiness of qualitative studies, other
terminologies were proposed by Lincoln and Guba (1985), namely credibility,
transferability, dependability and confirmability. In the present study, the term
‘trustworthiness’ is preferred to be used instead of validity and reliability, and the
terms mentioned by Lincoln and Guba (1985) were addressed in order to assure the
trustworthiness of the present study.

One of the most important criteria to assure the trustworthiness of a
qualitative study is credibility, which refers to internal validity (Lincoln & Guba,
1985). Merriam (2009) mentioned the questions of concern to establish credibility
as “How congruent are the findings with reality? Do the findings capture what is
really there? Are investigators observing or measuring what they think they are
measuring?” (p. 213). Although it is quite hard to capture an objective “truth” and
“reality” for qualitative researchers, there are some strategies offered by different
researchers to increase the credibility of the studies (Merriam, 2009). For instance,
Creswell (2007) suggested the following eight strategies for credibility: prolonged
engagement and persistent observation, triangulation, peer review or debriefing,
negative case analysis, clarifying researcher bias, member checking, thick
description and external audit. In addition to the suggestions offered by Creswell
(2007), Merriam (2009) suggested six basic strategies to increase credibility:
triangulation, member checks, engagement in data collection adequately, reflexivity
and peer examination.

One of the strategies that was used in the present study to ensure credibility
was triangulation, defined as “a validity procedure where researchers look for
convergence among multiple and different sources of information to form themes or
categories in a study” (Creswell & Miller, 2000, p. 126). Another way of defining
triangulation is its being “a process of using multiple perceptions to clarify

meaning, verifying the repeatability of an observation or interpretation” (Stake,
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2000, p. 443). In fact, four different types of triangulation in the literature on
qualitative research are mentioned. These are data triangulation, investigator
triangulation, methodological triangulation and theory triangulation (Creswell &
Miller, 2000; Creswell, 2007; Patton, 2002). In the present study, data triangulation,
investigator triangulation and methodological triangulation were used to establish
credibility. To be more precise, 16 prospective middle school mathematics teachers
were used as a source of data (data triangulation). Moreover, multiple sources of
data (methodological triangulation), which were observation, interview and
documents, were collected. The other strategy for credibility was counteracting
researcher bias by explaining the researcher’s initial beliefs and perspectives
towards the current study in detail. In addition, all the procedures and the
administrations were managed and followed by the researcher to assure the
prolonged involvement. Moreover, the findings of the previous research were
investigated, a thick description was made and debriefing sessions with the
supervisor and the thesis committee members were conducted to benefit from their
feedbacks.

The other important criterion to assure the trustworthiness of a qualitative
study is transferability, which refers to external validity. The concern of
transferability is the generalizability of the findings of a research study. Although
the purpose in qualitative studies is not to make inferences from a small sample and
then to generalize them to a larger population, it is possible to ensure transferability
when the sufficient data is provided (Merriam, 1998). For instance, it was suggested
that providing thick descriptions for the readers can be one method to achieve
transferability (Miles & Huberman, 1994). Similarly, Lincoln and Guba (1985) give
the responsibility of providing adequate contextual information about the fieldwork
site to the researcher. In this way, readers will have the chance to compare the
results of that study with the findings of their own study to make inferences. Thus,
as indicated by Shenton (2004), “...it is the responsibility of the investigator to
ensure that sufficient contextual information about the fieldwork sites is provided to

enable the reader to make such a transfer” (p. 69).
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The aim of the researcher of the present study was to gain an in-depth
understanding of the argumentation of prospective middle school mathematics
teachers in the geometry context; thus, the generalization of the findings to all
prospective middle school mathematics teachers was not the concern of this study.
However, our findings can be shared with the instructors of other universities which
have similar characteristics. In order to ensure the transferability of the findings, the
context of the study was tried to be explained in detail. Specifically, the following
contextual information was presented in this study: the selection criteria of the
participants, the findings of the pilot study, the number of participants in the pilot
and main studies, the data collection tools, data collection methods that were
employed, and the data collection procedures in detail in the method section.
Ultimately, a thick description of the study was provided for the readers for the sake
of the transferability of the findings.

The third criterion for the trustworthiness of qualitative studies is
dependability, which corresponds to reliability in quantitative studies. Merriam
(1998) defined reliability as “the extent to which research findings can be
replicated” (p. 220). However, the concern is not whether the same results are
obtained by other researchers in qualitative studies. It is whether the results of the
study are dependable and consistent with the data (Merriam, 1998). According to
Yin (2003), the aim of reliability in qualitative studies is to minimize the errors and
biases in a study. In the related literature, researchers suggested some methods to
ensure dependability. For instance, Shenton (2004) advised researchers to describe
the research design, implementation procedure, and data collection procedure in
detail and then evaluate the effectiveness of the process to provide dependability.
In addition, he asserted that another method is to establish credibility, which helps
to ensure dependability. Another researcher who suggested techniques to ensure
dependability was Patton (2002). He suggested explaining an investigator’s
position, triangulating the data and doing audit trail to establish dependability.
Lastly, Creswell (2007) stated that getting detailed field notes and obtaining

intercoder agreement are other methods to ensure reliability in qualitative studies.
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In order to address dependability of the present study to a certain extent, the
researcher described the research design, implementation and data collection
procedure in detail as Shenton (2004) advised. Furthermore, in the present study, as
Creswell (2007) suggested, intercoder agreements from another doctoral student
and an instructor were obtained in several parts of the data analysis process for
dependability. The researcher initially discussed the codes with her advisor and then
coded the data with the intercoder. Specifically, the researcher and the second coder
coded the data individually and then they came together to discuss their codes. They
compared their initial codes until they reached a total consensus. Furthermore, the
researcher ensured the dependability of her study by establishing the credibility of
the study as suggested by Shenton (2004).

The last criterion to ensure trustworthiness in qualitative studies is
confirmability. Confirmability corresponds to objectivity in quantitative studies.
Shenton (2004) asserted that it should be ensured that the findings are the results of
the experiences and ideas of the participants and they are independent of the
characteristics and preferences of the researcher. Shenton (2004) and Lincoln and
Guba (1985) suggested triangulating the data to reduce the effects of researcher bias
to assure confirmability. Likewise, Miles and Huberman (1994) emphasized the
importance of the researcher’s admissions for his/her bias for confirmability.

The methods utilized to ensure confirmability of the present study were
triangulation of the data, in-depth description of the methodology, and the
admission of bias. Triangulation was assured as mentioned above by collecting data
from different sources to see whether they converged to the same findings (Lincoln
& Guba, 1985; Shenton, 2004). Additionally, a detailed description of the
methodology was helpful in ensuring confirmability. Lastly, the researcher bias was
reduced in order to assure confirmability. In the present study, the entire data
collection procedure was conducted by the researcher herself, so she was in active
interaction with all participants. For this purpose, the researcher studied and
improved her argumentation facilitating skills and interview skills to a considerable
extent in the pilot study. In addition, she repeatedly examined the video recordings

of the application and looked into whether or not she had interfered in anything.
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Thus, the researcher believes that she was honest and objective as much as possible

throughout the whole process and that her study did not yield biased findings.

3.7 Researcher role and bias

In qualitative studies, which are open-ended and less structured, the
researcher can be considered as the key instrument for collecting and analyzing data
(Merriam, 1998). The researcher’s bias causes the researcher to find what she/he
wants to find unconsciously in her/his study since her/his views and beliefs will
affect her/his interpretations. In order to lessen and control the researcher’s bias,
reflexivity, which refers to a researcher’s active engagement in critical self-
reflection on her/his bias, was proposed (Johnson, 1997).

During the study, the researcher was working as a teaching assistant at the
university at which the participants of the present study were studying. Therefore,
she had a strong relationship with prospective middle school mathematics teachers.
In addition to being a teaching assistant, she was also the supervisor of some of the
senior prospective middle school mathematics teachers who took part in the pilot
study. Since the pilot study of the present study was conducted in the spring
semester and then the main study was conducted in the following fall semester, the
participants of the pilot study had graduated. Thus, the researcher had no participant
who was in a supervisor-student relationship with the researcher in the main study.
However, they knew the researcher from the other courses that they had previously
taken. This was advantageous for the researcher because as soon as she explained
the purpose of her study, they accepted to participate in the study and share their
knowledge voluntarily. Moreover, she knew all of them personally and had the
chance to select the most suitable participants for the study by means of purposeful
sampling. In this way, she was able to work with the participants who could provide
rich and in-depth information for the study.

In order to lessen the effect of the research assistant-student relationship, the
researcher followed several strategies. After giving information about the

application, she told them that they could participate in the study on a voluntary
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basis which meant that their participation was not compulsory. In addition, the
researcher ensured the confidentiality of their answers and dialogs. This meant that
the researcher was the only person who had the access to the data. Furthermore, the
researcher analyzed the data using pseudonym names for the participants in order to
eliminate any bias and or favoritism. Therefore, their grades in the program were
not affected by any professor or teaching assistant since they did not see any of the
data.

The researcher was involved in the process as a teacher who guided the
discussions of the two groups and who held the interviews with the focus groups
during the study. She wanted to obtain information about the reasoning of the
participants as much as possible since the justification of the ideas has a great
importance in argumentation theory. Her aim was to provide an argumentative
environment and identify the arguments of the participants. Therefore, she placed
cameras and audio recorders onto the tables of all the groups by taking their
permissions in order not to miss any conversation. In general, the individuals tended
to express their conclusion (claim) by stating the information they had (data)
without stating their justification (warrant) since they knew the reason themselves.
However, the researcher needed to hear their reasoning and warrants to analyze
their argumentation. Thus, at the beginning of the application, she asked all the
participants to talk about their thoughts all the time. That is, she requested them to
think loudly all the time. She also reminded the participants that what was important
about the study was their justifications and how their thinking processes, not the
accuracy of their solutions. Moreover, she asked them to listen to the responses of
the participants who were showing their solution(s) on the board and to contribute
to the discussion by supporting or refuting their solution(s) in order to increase
interaction among the students. Meanwhile, the researcher asked probing questions
to make them think deeper about their solutions and justifications. In addition, she
asked them to find more than one solution to the questions if possible. In order to
increase the interaction between the participants in pairs, she gave only one
computer and one worksheet to each pair in the GeoGebra group, and only one

worksheet, one protractor, one ruler and one compass in the Paper-Pencil group.
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The researcher gave them sufficient time for pair-work discussions and class
discussions by asking them whether they needed extra time to discuss further. The
role of the instructor was important to supply a good argumentative environment.
Therefore, she always asked questions which encouraged students to justify their
answers since they sometimes did not need to express warrants for their claims.
Some of these questions were as follows: ‘How do you know that it is true?, What
does that mean to you?, Can you tell me more about your thinking process...?, Why
do you think so?, Are there any other ideas?, Is there anyone who doesn’t agree
with this idea?’. Additionally, the researcher did not judge the participants for the
accuracy or inaccuracy of their answers while they were presenting their solutions.
Instead, she questioned and made other participants think about the solution to find
the correct answer together. In this way, she guided the discussion by making the
participants reveal their reasoning.

After the applications, the researcher also held an interview with the focus
pairs, one from the GeoGebra group and one from the Paper-Pencil group. She
provided them with a place where they would feel comfortable in terms of place and
timing, so they would not feel in a rush while answering the questions.

Argumentation is a topic that has been studied within the science context for a
long time and it is a new area to be studied in mathematics education. Determining
the arguments and their elements, classifying the warrant types and argumentation
structure issues were challenging for the researcher, who studies argumentation in
mathematics. During the data analysis process she sometimes needed an intercoder
in order to decrease researcher bias because she was undecided in determining the
arguments and their elements, and classifying the argumentation structures and
warrant types. Thus, she obtained intercoder agreement of two doctoral students and
an instructor at different stages of the data analysis process.

Lastly, being affected from the findings of the literature was another type of
researcher bias which the researcher needed to pay attention to. This means that a
researcher who is influenced by the theories in the related literature would try to
reach similar findings to be in line with the literature. However, the researcher of

the present study was not influenced by the literature and carried out the present
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study objectively. She did not try to arrive at findings similar to those reported in
the literature. In fact, the researcher implemented a new data analysis method to
seek an answer to the second research question in order to contribute to the

literature with new findings.
3.8 Limitations

The primary limitation of the present study is representativeness since the
purposefully selected participants of the present study were 16 prospective middle
school mathematics teachers who were 4™ grade students in the teacher education
program at one public university in Ankara. Moreover, the content of the geometry
tasks implemented were two triangle and two circle tasks so the content of the
geometry tasks was also a limited. Therefore, the findings were limited to the
answers of these 16 prospective middle school mathematics teachers’ and the two
mathematical concepts, triangles and circles. Thus, the readers should evaluate the
findings by considering the limitations.

The researcher efficiency in facilitating argumentation was the other
limitation of the present study. After reading the essential teacher actions in
argumentation from the literature, the researcher tried to orchestrate the
argumentation in this study for the first time. Although the researcher conducted a
pilot study in order to reduce the effect of this limitation, the researcher could still
have some deficiencies in following all the arguments during the applications. Some
of the arguments did not have some components such as warrant and data
components. The reason could be that the researcher did not question the argument
for justification effectively enough or missed the argument in a collective

discussion.
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CHAPTER IV

RESULTS

The findings of the present study are summarized in this chapter under three
main sections, each of which addresses one of the research questions of the study.
The first research question, which is taken up in the first section, was ‘What is the
nature of argumentation structures of prospective middle school mathematics
teachers while solving geometry tasks in the GeoGebra and Paper-Pencil groups?”’.
In the second section, the characteristics of the local arguments (core arguments
including claim, data and warrant components) were analyzed. Specifically, the
second part addresses the characteristics of local arguments based on the flow of
argument components (claim, data, warrant) that prospective middle school
mathematics teachers express while solving geometry tasks in the GeoGebra and
Paper-Pencil groups. In the third section, local argumentations (only warrant
components of the local arguments) within the global argumentation structures are
analyzed. That is, the third part dwells on the characteristics of local argumentations
that prospective middle school mathematics teachers utilize while solving geometry

tasks in the GeoGebra and Paper-Pencil groups.

4.1 Nature of argumentation structures developed in the geometry context

As mentioned above, what this study intended to reveal was the nature of
argumentation structures of prospective middle school mathematics teachers while
solving geometry tasks in the GeoGebra and Paper-pencil groups. In order to
determine the general pattern of the argumentation, all arguments and the
relationships among them were examined. For this purpose, a discussion for each
geometry task was analyzed as a whole with a schematic representation of the

overall argumentative structure. This layout of the structure of the argumentation as

105



a whole was defined as the global argumentation structure (Knipping, 2008).
Categorization for the global argumentation structures proposed by Reid and
Knipping (2010) was adapted in the current study. Then, the global argumentation
structures developed in the geometry context were identified based on the adapted
categorization. These global argumentation structures are presented in detail with
sample conversations in this section.

In this study, 4 geometry tasks (GT) were analyzed both for the GeoGebra
group and the Paper-Pencil group. Two of the tasks were triangle activities while
the other two were circle activities. The analysis revealed five main global
argumentation structures: Source-Structure, Reservoir-Structure, Spiral-Structure,
Line-Structure and Independent Arguments. While source-structure, reservoir-
structure, and spiral-structure were obtained from a study by Reid and Knipping
(2010), line-structure and independent arguments-structure did not exist in the
literature and emerged from the data of the present study. Table 4.1 illustrates the
global argumentation structures and the number of times they emerged in the

discussions of each geometry task.

Table 4.1 Global argumentation structures that emerged in the working groups for
each geometry task

GeoGebra Paper-Pencil
Geometry Task 1 1 Reservoir-structure 1 Reservoir-structure
1 Spiral-structure 1 Line-structure
8 Independent arguments
Geometry Task 2 3 Spiral-structure 2 Spiral-structure
2 Independent arguments 2 Independent arguments
1 Source-structure
Geometry Task 3 1 Reservoir-structure 1 Reservoir-structure
1 Line-structure 1 Line-structure
4 Independent arguments 6 Independent arguments
1 Source- structure
Geometry Task 4 2 Spiral-structure 3 Spiral-structure

5 Independent arguments
1 Source-structure
1 Reservoir-structure

5 Independent arguments
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As revealed in Table 4.1, the source-structure type of argumentation emerged
three times in the discussions throughout the entire application. Moreover, the
reservoir-structure was observed five times, while the spiral-structure was used
eleven times. The global argumentation structure which was used most frequently —
eleven times - within both the GeoGebra and Paper-Pencil groups was the spiral-
structure. The other global argumentation structure which emerged in the present
study was the line-structure and it was used three times throughout the application.
Finally, there were independent arguments which also emerged in the study and it
was frequently used by both groups. It emerged thirty-two times in total.

When the global argumentation structure distribution is considered task by
task, some similarities and differences between the GeoGebra and Paper-Pencil
groups can be observed. In geometry task 1, the discussion of both groups included
one reservoir-structure. In addition, while one spiral-structure emerged in the
GeoGebra group, there were one line structure and eight independent arguments
emerging in the Paper-Pencil group. In geometry task 2, the GeoGebra group used
three spiral-structures and two independent arguments. Similarly, the Paper-Pencil
group used two spiral-structure and 2 independent arguments. Additionally, one
source-structure emerged in the Paper-Pencil group. The argumentation for the
geometry task 3 was similar for both groups. The GeoGebra group used one
reservoir-structure, one line-structure and four independent arguments. Similarly,
the Paper-Pencil group used one reservoir-structure and 6 independent arguments.
Unlike the GeoGebra group, one source-structure was used in the Paper-Pencil
group in geometry task 3. In the last geometry task, the GeoGebra group used
variable global argumentation structures. They used two spiral-structure, one
source-structure, one reservoir-structure and five independent arguments. On the
other hand, three spiral-structure and five independent arguments were used in the
Paper-Pencil group.

In order to make these structures clearer, sample conversations and
argumentation structure schemas for each global argumentation structure are

explained in detail below.
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4.1.1 The source-structure argumentation

In the present study, the source-structure type of argumentation was used
twice. One of them emerged during the discussion on geometry task 4 within the
GeoGebra group and the other one emerged during the discussion on geometry task
3 within the Paper-Pencil group. The source-structure example could be given from
geometry task 3 in the Paper-Pencil group. In geometry task 3, two circles, each of
which passes through the center of the other circle, was given as illustrated in
Figure 4.1(a). The circles intersect at points H and E, and a line from point E
intersects the circles at points F and G. The questions asked were as follows:

If |FG|= 6, compute the area of the triangle FGH? Justify your solution.
If r is the measure of the radius of each circle, find the least value and

greatest value of the area of triangle FGH. Justify your solution.

E

(a) (b)

Figure 4.1 The shape of geometry task 3 and Gézde’s additional drawings (red
segments)

The red segments on the shape in Figure 4.1(b) were the additional segments
which were drawn by Go6zde while she was explaining her solution on the

whiteboard.
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AS-1 AS-4

@ : Data or Claim
- Target conclusion
& : Warrant or Backing
[__]: Claim/Data
. : Rebuttal

Figure 4.2 A source-structure example from geometry task 3 in the PPG

The overall global argumentation structure was like in Figure 4.2. In AS-1,
Gozde drew the radiuses |[CH|, [HD|, |CD|, |CE| and |DE| and claimed that ‘The
triangles HCD and CDE are equilateral’. Then, she used these equilateral triangles
and the arcs of the circle to conclude that ZHFG=60° in AS-2. At this point, Gozde
drew the red lines as in Figure 4.1(b) and claimed that arc FH=60°, which was
refuted by the other participants and the teacher. The details of this refutation are
given within the conversation below. Then, she used these two claims - AS-1 and
AS-2 - as data for AS-4 with additional data ‘2HDE=120° , ZHCE=120°" and ‘arc
HE=240°" and claimed that ‘triangle FGH was an equilateral triangle in AS-4’.

The typical characteristics of source-structure argumentation and the

argumentation streams including those characteristics are demonstrated below:

- The argumentation streams which were not connected to the main
structure (AS-3)

- Parallel arguments for the same conclusion (AS-1 and AS-2)

- Argumentation steps which have more than one datum and each of
these data is the conclusion of an argumentation stream (AS-1, AS-2,

AS-3 and AS-4)
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- Refutations refuting mostly data in arguments (AS-3)

The parallel arguments in this structure were AS-1 and AS-2, which were
both leading to the conclusion that the triangles HCD and CDE were equilateral. All
argumentation streams had more than one datum, which were presented with circles
as in Figure 4.2. Thus, it can be concluded that this global argumentation structure
was suitable for source-structure.

AS-3 includes the refutation which was not connected to the main structure.
Therefore, presenting some details about this argument and how it was refuted
could be of benefit. The discussion of AS-3 occurred as in the following
conversation. The teacher asked the students to explain their solution to the class

and Gozde came to the board voluntarily.

Gozde : We said £HCD is equal to 60°.

Teacher :Yes

Gozde  :|AD]| is the diameter of the circle (D47). Since arc HD
IS 60° we can say that arc AH is equal to 120° (W47).

Teacher  : Yes, true.

Gozde : From alternate-interior angles ZACF sees the arc which
is 60°. We know that arc AH is equal to 120° so arc FH
will be 60° (C47).

Erhan : Ok but I did not understand why arc AF is equal to 60°.
How did you find that triangle ACF is equilateral? (R47)
Gozde : From alternate-interior angles. It is as if a cross is drawn

from the center C with chords | AD | and | FE | .
Teacher  : But you still do not have a connection with triangle

FGH.

Bahar : But the drawing on the board does not resemble our
drawing on our worksheet.

Teacher  : I drew the initial shape like this. You have drawn the

chord EF as if it crosses from the center C. But in the

original shape it does not cross from the center C. (R47)
Bahar : You are right. We thought that we obtained an isosceles

trapezoid AFHD but we made a mistake in our drawing.

In this argumentation, Gézde drew the red lines indicated in Figure 4.1 and
talked as if chord | FE | crossed over point C and conjectured that ‘arc | FH | =

60°°. The teacher and another student refuted the data of this argument by showing
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that ZACF and 2ECD were not alternate-interior angles and chord |FE| did not
cross over point C, so arc | FH | could not be 60°. Thus, the discussion, in terms of

the Toulmin model, can be drawn as illustrated in Figure 4.3 below.

Data 47: We draw
AC. Then, AD
becam e diam eter.

Claim47: The arc FH is equal
to 60°.

Datad7: AF, AC
and HD are drawn.

Eebuttal 47: Why arc AF is
equal to 60°7 How did you
find that triangle ACF is
equilateral?

Eebuttal47: You draw the
chord EF as if it crosses
from the center C. But in
the original shape it does
not cross from the center.

Warrant47: Arc
HD=60" Arc
AH=120From
alternate-interior
angles £ACF sees
thearc 607

Figure 4.3 Toulmin’s schema drawn for AS-3

4.1.2 Reservoir-structure argumentation

The reservoir-structure emerged 5 times in the current study. Three of them
emerged in the GeoGebra group in geometry tasks 1, 3 and 4, while two of them
emerged in the Paper-Pencil group in geometry tasks 1 and 3. The following
example, which is an example of the reservoir-structure, comes from the discourse
of the GeoGebra group regarding geometry task 1. The task was presented in the
worksheet in the following way:

‘ABC is a triangle. The midpoints of sides |AB| and |AC]| are points D
and E, respectively. F and G points are placed on the side |BC| so as to
be |BG|=|CF|. The segments |[DG| and |EF| intersects at point H.

When does |AH| become the angle bisector of £A? (Think about all

types of triangles). Explain your reasoning and justify your solutions.’
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Figure 4.4 The shape of geometry task I and students’ drawings (red segments)

The participants discussed among themselves to find the triangle types in
which |AH| became an angle bisector when the givens (see Figure 4.4) were

satisfied.

LT
AS-1 AS-2

’ i
I A5-3 "[\
E

.

Figure 4.5 A reservoir-structure example from geometry task 1 in the GG
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Firstly, the students decided how to place the points F and G on segment
| BC| in AS-1 illustrated in Figure 4.5. In AS-1, they marked F to the left, G to the
right on segment | BC | and drew the shape based on the givens in the task. Then,
after a dragging move on GeoGebra concluded that | AH | was an angle bisector
when triangle ABC was isosceles and equilateral triangles in AS-2. Then, the
teacher asked why they had placed points F and G in that order on segment | BC | .
She asked what if points F and G were switched. Upon this question, which
required the participants to provide a more detailed solution, the participants
thought about it again, which meant reasoning moved backwards to AS3, AS4 and
AS5 (a dashed line shows the direction of reasoning). They claimed that when they
placed points F and G reversely, point H would again be on the line passing through
| AT| in equilateral triangles (AS-3), in isosceles triangles (AS-4), and in scalene
triangles (AS-5). They explained their additional justification, clarifying their
reasoning sufficiently and concluding with the intermediate target conclusion which
was ‘In any triangle, when point F and G are inversely placed, point H will change
place on the line passing through |AI| ’. Afterwards, they solved the task again
when triangle ABC was an isosceles and an equilateral triangle separately in AS-6
and AS-7, respectively. They asserted that ‘When triangle ABC is isosceles, | AH |
will be an angle bisector’ (AS-6) and ‘when triangle ABC is equilateral, | AH | will
be an angle bisector’. This was also again a reasoning that moved backwards, which
IS a characteristic of a reservoir-structure. In this type of global argumentation
structure, there can also be refutations as in AS-3, AS-6 and AS-7, although all
refutations were not successful in refuting the claim. As it can be inferred,
reasoning moved backwards to give more detail about their justification, and the
existence of the intermediate target conclusion were the properties of the reservoir-
structure, so this argumentation structure could be categorized within the reservoir-
structure.

The second example for the reservoir-structure is from the Paper-Pencil
group’s geometry task 1. The geometry task has already been explained in the
previous example. The participants discussed among themselves to identify the

triangle types in which | AH| became an angle bisector when the givens of
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geometry task 1 were satisfied. Giiler came to the board and started solving the task
by drawing the shape. She selected any triangle ABC and placed F and G in such a
way that F was on the left, G was on the right to segment |BC| (see Figure 4.6(a)).

(b)
Figure 4.6 The shape drawn on the board by Giiler for geometry task 1

In the givens, points D and E were the midpoints of segments |[AB| and |AC]|.
Giiler assumed that F and G were placed on |BC| in such a way that ‘|FE| L |AC|’
and ‘|GD| L |ABJ’. Then she drew |AF| and |AG|. The teacher asked whether or not
she could take both of them perpendicular at the same time. This point remained as

a question in the minds of all students and Giiler continued to present her solution.
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The global argumentation structure of this solution is illustrated in Figure 4.7

below.

Figure 4.7 A reservoir-structure example from geometry task 1 in the PPG

In AS-1, Giiler conjectured that the triangle AFG was an isosceles triangle
by using the isosceles triangle properties of triangles AFC and AGB to find the
lengths of |AF|=|AG|= x+y. Then, she used the isosceles triangle properties again
and conjectured that |GD| was the angle-bisector of ZAFG and in the same way |FE|
was the angle-bisector of ZAFG. Thus, she expressed an intermediate conclusion of
AS-2(a), which was ‘|AH| is also an angle-bisector of ZBAC’. This argument was
refuted by other participants since AH was the angle-bisector of FAG, not 2BAC.
Therefore, the reasoning moved backwards to AS-1 and continued with AS-2(b).

Giiler stretched |AH| to segment |BC| and claimed that ‘|{AK|Ll [BC|" and segment
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|FK|=|KGJ|=y/2. Then, an angle-bisector ratio was written for triangle ABC for

segment |JAK|. That is, e =22 Then, they concluded that segment |AH| was

=@+
an angle-bisector when c=d, which meant that triangle ABC was an isosceles
triangle. Then, Okan said that three perpendicular segments and three angle-
bisectors coincided at one point, so we could say that triangle ABC was an
equilateral triangle in AS-2(b), which was an intermediate target conclusion.
However, another participant, Bahar, noticed that all three perpendicular segments
did not belong to the same triangle ABC. That is, |GD| was the perpendicular
segment for triangle AGB, |FE| was the perpendicular segment for triangle AFC
while |AK| was the perpendicular segment for triangle AFG (see Figure 4.6(b)).
Similarly, these three segments were not the angle-bisectors of triangle ABC either.
Thus, the argument claiming that triangle ABC was an equilateral triangle was
refuted. Again the students’ reasoning moved backwards and they questioned the
solution again. In AS-3, Inci came to the board and overviewed the assumptions and
the solution and concluded that |AH| was the angle-bisector of triangle ABC when
triangle ABC was an equilateral and isosceles triangle, not a scalene triangle. The
justification was the angle-bisector ratio explained above, and the intersection of the
three perpendicular segments were not related to the solution. Furthermore, the only
assumption was the one which Giiler had stated at the beginning of the solution
while placing points F and G on segment [BC| in such a way that ‘|FE| L]AC|’ and
‘|GD|L|AB|’ at the same time. Ultimately, it was deduced that this argumentation
was suitable for the reservoir-structure since the students moved back to some parts
of the solution again and again in order to give more detailed justifications, there
were refutations in AS-2(a), AS-2(b) and AS-3, and there was an intermediate target

conclusion during the process before reaching the target conclusion.
4.1.3 Spiral-structure argumentation
The spiral-structure was one of the most frequently used structures (11

times) in the current study. In the GeoGebra group it emerged once in geometry

task 1, 3 times in geometry task 2, and 2 times in geometry task 4. On the other
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hand, in the Paper-Pencil group, it was seen twice in geometry task 2, and 3 times in
geometry task 4. The following example comes from the GeoGebra group’s
argumentation in geometry task 4 to represent the spiral-structure. Figure 4.8

illustrates the given shape. In the task, the circle with center A and the semi-circle
with diameter |AG|were given. The chord |CD| was bisected by |FG| at point

E. Moreover, | HE| was perpendicular to | FG | as given. The tasks of the students

were:
Prove that | CE | = | HE | and justify your reasoning.
Show whether the theorem is trivial if chord | FG | is a diameter of the first

circle, or if |FG | coincides with |CD | . Justify your reasoning.

Figure 4.8 The shape of geometry task 4

The overall argumentation structure was drawn as in Figure 4.9 for spiral-
structure. The typical characteristics and the argumentation streams including those
characteristics were revealed as indicated below:

- The argumentation streams which were not connected to the main
structure (AS-C)
- Parallel arguments for the same conclusion (AS-A, AS-B and AS-D)
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- Argumentation steps which have more than one datum and each of these
data is the conclusion of an argumentation stream. (AS-A)

- Refutations refuting mostly data in the arguments (AS-C)

.—I C—— AS-A

G —

[ ] — AS-D

@ ‘ [ ] ‘
Figure 4.9 A spiral-structure example from geometry task 4 in the GG

The target conclusion of the global argumentation was | CE | = | HE | .In AS-
A, the students initially wused the FEuclid’s theorem and found
|HE |? =|FE|.|EG|, and then they used angle-angle-angle triangle similarity
and found | CE | 2= | FE | . | EG | . As it can be seen, these two equations were equal
to each other so the students concluded that|CE|=|HE|The details of this
argumentation stream are given below. In AS-B, students empirically discovered

the measurement and dragging options of the dynamic geometry program GeoGebra

that | CE | = | HE | . Specifically, they measured the lengths of | CE | and | HE | ,
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and then dragged the shape to see the relationship between these lengths. There was
an argument stream which was not connected to the main structure, AS-C, since it
was related to the second question of the task. In this argument, Ozer claimed that
when | FG | was the diameter of the first circle with center A, | CE | and | HE |
would not be equal since the place of | HE | moved to the center of the semicircle
and it did not fit the givens of the task. Other participants refuted this claim by
showing their GeoGebra drawing and justifying the dynamic property of segment
| HE | . Finally, in AS-D, the students produced the equality | CE | ’= a%-x? from the
intersecting chords theorem where | oG | =a, |EO | = x and point ‘O’ was the
center of the semicircle. Then, they produced the equality | HE | 2= a%-x? from the

Pythagoras' theorem in the right-angled-triangle HEO. These two equations were

equal to each other so they claimed that |CE | = | HE | which was again the target
conclusion of the global argumentation structure. This argumentation structure

fitted the spiral-structure since the three parallel arguments, AS-A, AS-B and AS-D

lead to the target conclusion that the two segments | CE | and | HE | were equal in
the end. That is, the parallel argumentation streams were at the end of the global
argumentation structure. Moreover, each parallel argumentation stream reached the
target conclusion separately and was self-contained.

The conversation of one of the parallel argumentation streams AS-A is

given below in detail with Toulmin’s (1958) argument schema illustrated in Figure
4.10.

Beren : Firstly, we drew |FH| and |HG | (D55). Then we saw
that £FHG sees the diameter of the semicircle, so it is a
right angle (W55).

Teacher  : You mean the inscribed angle which sees the diameter?

Beren : Yes. |HE | 1 | FG | , so we could use the Euclid’s
theorem in this triangle (W55) and found the equality
| HE | >=| FE| .| EG | (C55).

Teacher  : Ok. Then?

Beren : We drew chords |CF| and |DG| (D56) and saw that
the inscribed angles 2CFE and ZEDG sees the same arc so
these angles are equal to each other (W56).

Teacher  : You are saying that they see the same arcs. OKk.

Beren : Similarly the angles « FCE and «DGE are equal to each
other. And the alternate-interior angles « FEC and « DEG
are equal to each other (W56). Therefore there is an angle-
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angle-angle similarity between these triangles (C56). We
can write the similarity ratio g—i = %. In the givens of the
task, it says that |CE|=|ED|. Therefore the equality
turns out to be | CE|*=|FE|.|EG| (C57).

Teacher  : So you found another equation.

Beren : These two equations are equal to each other. Therefore,

HE|*|CE|* (W58). Finally, we can say that
HE | = | CE| since their squares are equal to each other
(C58).

Teacher  : Is there anybody who wants to add something to this
solution? Do you all agree with Beren?

Asli : We can find the same equality by applying the
intersecting chord theorem to chords |CD| and
| FG | (W57).

Data 55: The givens
== drzwn. Then FH
=nd HG was drawn

| Claim && /Data:
|EE|? = |FE|.|EG|

Claim 58 :
|HE|= |<E|

Warrant 55: L FHG =90°
zince inscribed angls

zazing the
dizmeter Euclid’s
theor=m was written.

Claim 57/ Data:
|cE|*=|FE|.|EG|

Warrant 25:
Equal squations

Data 56: The
chords

| CF |znd | DG |
was diawn

Claim &4
Warrant: Trizngls
similarity
FE #GDE

Warrant £7:
Interzacting chord
thaorem to chords | D |
=nd |FG|

Figure 4.10 Toulmin’s schema drawn for AS-A
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In AS-A, the shape of the task was drawn and chords |FH| and |HG |
were drawn to obtain the right triangle. Afterwards, the Euclid’s theorem was used
in triangle FHG to form the equality | HE | ’= | FE | . | EG | . Then, chords | CF |
and | DG | were drawn and similar triangles CFE and GDE were obtained by using
the angle-angle-angle similarity, which became a warrant for the subsequent
argument. Beren wrote the similarity equation to get | CE | ’= | FE | . | EG | . Then,
in AS-C, the equality of these two equations resulted in the equality of
|HE | = | CE | , which was the answer of the task. Finally, Asli added another
warrant to the equation | CE | 2= | FE | . | EG | , which was based on the intersecting

chords theorem.
4.1.4 Line-structure argumentation

In the present study, the line-structure emerged 3 times. One of them was
found to emerge in geometry task 1 in the Paper-Pencil group, another one was in
geometry task 3 in the GeoGebra group, while the third one was again in geometry
task 3 in the Paper-Pencil group. The example for line structure comes from the
discourse of geometry task 3 in the GeoGebra group. The geometrical shape used in
geometry task 3 was as displayed in Figure 4.11 and the details of the task were
previously given in the source-structure section since the example of the source-

structure was also from geometry task 3.

F

T

Figure 4.11 The shape of geometry task 3
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The overall structure of the line-structure argumentation was drawn as
displayed in Figure 4.12. The remarkable property of this structure is the existence
of claim/data components through the global argumentation structure until the end
of target conclusion. Each claim is used as data for subsequent argument steps, so it
functions as a transition between them. There may be additional data to support
arguments beside claim/data. In addition to that, the line-structure had no parallel
argumentation streams from the beginning to the end of the global argumentation
structure. The shape of the whole argumentation seems like a line, so this type of

argumentation structure was defined as the line-structure.

* °
®
Figure 4.12 The line-structure example from geometry task 3 in the GG

In this geometry task, the students were trying to find the area of triangle
FGH when the length of |FG| was 6 units. The claims, data, and warrants were
numbered from 34 to 39 in the original data of the GeoGebra group. Their contents
are presented within the conversation below which took place during the application

of geometry task 3:

Ozde : Firstly we draw | HE | (D34). Then we looked at angle

£FEH. This angle is an inscribed angle and sees chord

| FH | on the circle with center C and chord | GH | on
the circle with center D. Therefore, these chords are

equal to each other (W34). Then we see that the arcs that
¢FEH see are equal to each other (W34), so
| FH | =| GH | (C34).

Teacher  : Yes. Do you all agree with Ozde? Okay. But this is true
since the circles are identical, aren’t they? (B34)

Ozde : Yes. Then | know that CD is the radius of both circles.
Wedrew |CD|, |CH| and | HD | (D35). These are all
equal to each other and they are the radius of the circles
(W35). Therefore, triangles CHD and CED are equilateral
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triangles (C35).

Teacher : Yes.

Ozde : Similarly, we drew | CE | and | DE | which are the
sides of an equilateral triangle CED (D36). Let’s look at
arc HDE. The central angle HCE the measure of which is
equal to 120° sees arc HDE (W36). Thus, arc HDE=120°

(C36/D37).
Teacher  : Okay.
Ozde : Let’s look at angle 2HFE. It sees arc HDE and it is an

inscribed angle (W37), so its measure is 60° (C37/D38).
Teacher : Okay.
Ozde : As we know that |FH|=|HG|, and the measure of ZHGF
is 60° (W38), | can say that FGH is an equilateral triangle
(C38). Thus, the area of an equilateral triangle with one of
the sides equal to 6 (D39) can be found with the formula

a%/3/4 (W39). The answer is 9v3 (C39).

<& S O O
S

Figure 4.13 Toulmin’s schema drawn for line-structure

D34 | cas |—| [ cas C36/D37 ca7/D3s [ czs H——— cag
| '%>' | | | || |

As it can be inferred from Toulmin’s schema drawn for line structure in
Figure 4.13, the main characteristic of this structure included many ‘claim/data’
elements and, therefore, the arguments are connected to each other and formed a
shape like a line. Moreover, there was no parallel argumentation streams and
disconnected argumentation streams. Thus, this discussion was labelled as line-
structure.

In C34, Ozde found that chords | FH | and | GH | were equal by drawing
| HE | and by using one of the circle property which was ‘the inscribed angles
seeing the chords which have the same length are equal to each other’. Then
Ozde drew segments | CD | , | CH | and | HD | , which were all the radius of
the circle and concluded that triangles CHD and CED were equilateral in C35.
There was no interruption or refutations made by the other students in the

classroom. Then, Ozde continued drawing | CE | and | DE | , using the circle
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property ‘The measure of the arc is equal to the central angle seeing that arc’ as
a warrant, and concluding that arc HDE=120° in C36. Subsequently, using the
circle property ‘The measure of the inscribed angle is the half of the measure of
the arc that it sees’ Ozde claimed that 2HFE=60° (C37). This information
helped Ozde to see that triangle FGH is equilateral (C38) since she first found
the equality | FH | = | GH | in C34 and identified one of the base angles of an
isosceles triangle FGH as 60°. Finally the area formula of the equilateral triangle
was used to find the area of triangle FGH since one side of the triangle was
given as 6 units in the task. As it can be inferred, the reasoning in line-structure
flows quickly without interruptions and ends with the target conclusion. The
claims were the main transition elements since they were used as data for the
subsequent arguments. The characteristics of the line-structure were noticed in
this conversation, so this global argumentation structure was labelled as the line-

structure.

4.1.5 Argumentation based on independent arguments-structure

In the current study, the most frequently used global argumentation structure

was the independent arguments-structure. It emerged in the GeoGebra group 11

times: twice in geometry task 2, 4 times in geometry task 3, and 5 times in geometry

task 4. In the Paper-Pencil group, it emerged 21 times: 8 times in geometry task 1,

twice in geometry task 2, 6 times in geometry task 3, and 5 times in geometry task

4. The sample shape of the structure was as illustrated in Figure 4.14.

o—© o ©

-

Figure 4.14 Independent arguments-structure from geometry task 1 in the PPG
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The example above comes from the discourse produced in the Paper-Pencil
group for geometry task 1 (see the shape used in the task in Figure 4.4) to represent
the independent arguments-structure argumentations. The details of geometry task 1
were explained in the reservoir-structure section. The task of the students was to
identify the triangle types in which |AH| became the angle bisector when the
givens were satisfied. The arguments were not connected to each other. In C1, the
participant was claiming that points F and G could be interchanged. After a few
minutes, the other participant claimed that |AH| was an angle bisector when
triangle ABC was an isosceles triangle, but she was refuted by her friend who said
that “Why do you think so? This is not an isosceles triangle’. However, she did not
present a justification for her claim. After thinking on the problem for a while, they
decided to work on the equilateral triangle (see Figure 4.15) and they drew the
givens on the equilateral triangle. Then, they realized and claimed that | HI | also
became an angle bisector of triangle FHG (C3), but again they did not justify their

claim.

Figure 4.15 The shape drawn by the participants for geometry task 1

As it can be inferred from this discussion, the arguments were independent of
each other, and they were stated as if the participants were thinking loudly.
Therefore, the global argumentation structure includes single arguments without

connections to other arguments.
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4.2 The characteristics of the local arguments

While the previous section examined the global argumentation structures of
the prospective middle school mathematics teachers, this section focuses on their
local arguments within these structures. The second research question of the current
study necessitated revealing the characteristics of the local arguments, based on the
flow of argument components (claim, data, warrant), in the argumentation
structures developed by prospective middle school mathematics teachers while
discussing the geometry tasks in technology or paper-pencil environment. For this
purpose, the researcher read through all the transcriptions of 4 geometry tasks of the
GeoGebra and Paper-Pencil groups and numbered the argument components (claim,
data, warrant) based on the order they were stated by the participants during the
discussion. Then, the similar arguments were grouped to identify the categories of
the argument types based on the flow of the components. The results revealed nine
main types of arguments. These argument types emerged from the current study, not
obtained from the literature. Each argument type is explained below in detail with

sample arguments below in the following sections.
4.2.1 Local argument type 1: Data-Claim-Warrant (DCW)

In this type of argument, the participants first talked about the data they had,
and then stated their claim. Then they justified their reasoning by stating the

warrant. Thus, the order of flow was Data, Claim and Warrant respectively. The

component flow of the DCW type argument is presented in Figure 4.16.

—— Claim
<t >

Figure 4.16 Component flow in DCW type of argument
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The red arrows in Figure 4.16 show the direction of the statement of the
components. When the red arrows were examined, it was concluded that the
statements of the components proceeded from the data to the claim and then to the
warrant. To make it clearer, the following sample local argument from geometry
task 2 in the GeoGebra group and the Toulmin schema (see Figure 4.18) was given
for the DCW type of argument:

Geometry task 2 was related to triangles and it was presented in the
worksheet as presented below with the shape displayed in Figure 4.17:

‘Let P be any point on the median of |AG| of a triangle ABC. Let parallel

lines m and n proceed through P to sides |AB| and |AC| of the triangle.

1. What relation is there between segments |EG| and |GF|? Explain your

reasoning.

2. What if triangle ABC is equilateral or isosceles triangle? Can any

generalization be made for the relationship between segments |EG| and |GF|?

Explain your reasoning.

3. Where must point P be positioned, such that |BE|=|EF|=|FC|. What if

triangle ABC is equilateral or isosceles triangle? Justify your solution.’

Figure 4.17 Shape given in the worksheet for GT 2

In the GeoGebra group, the following conversation occurred as an example

for the DCW type of local argument:
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Elif : Now, we draw an equilateral triangle. We first
measured |BE|, |[EF| and |FC|. The task says that these
segments should be equal to each other, so there is a
ratio here 1:2. We looked at this ratio and said it is the
centroid of the equilateral triangle. Then, we talked
about isosceles triangle since it is also valid here.
However, it is not valid for a scalene triangle.

Teacher : How did you conclude that it is the centroid?

Elif . In order to make |BE|, |[EF| and |FC| equal, we can say
units to these segments. Let |BE|=|FC|=2a, |[EG|=|GF|=a.
Then, |GE|:|EB|=1:2=|PG|:|AG|. This ratio is valid for
both equilateral and isosceles triangles and it is the

centroid.

Teacher : Okay that is good.

Bade : Why isn’t it valid for scalene triangles?

Asli - Itis also valid for scalene triangles.

Elif : Can you say that it is also the centroid for a scalene
triangle?

Bade . If you say that |[AG| is a median, it should also be valid

for scalene triangles.

D: An equilateraltriangle is
drawn. EG/=GF

We measured BE , EF and
FC| segments. The task savs
thatthese segm ents should
be equalto each otherso
thereis aratio 1:2 here.

C: The point P should be in the
- p | centroid to provide that

BE=EF =FC| in equilateraland
isosceles triangles. Not valid for

scalene Hﬁngie.

W: Let |BE=FC|=2a,
EG=GF=a
GE:[EB/=1:2=PG|: AG .
This ratio is valid for
both equilateral and

How did vou
conclude that it
is centroid?

R: Why it is not valid for
scalene triangles? If you
saythat AG| is amedian. it
should be also valid for
scalene triangles.

Figure 4.18 A sample local argument for a DCW type of argument

As it can be seen in the conversation, Elif talked about the data they had and
the claim they deduced, and then the teacher interrupted by asking ‘How did you
conclude that it is the centroid?’. Then, Elif explained her justification by assigning

the unit ‘a’ to the sides |[EG| and |GF|, ‘2a’ to sides |BE| and |FC| and showing the
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ratio |GE|:|[EB|=1:2=|PG|:]AG| as a warrant. Afterwards, Bade and Asli interrupted

to modify the claim since the conclusion was also valid for all types of triangles.

4.2.2 Local argument type 2: Data-Warrant-Claim (DWC)

In this type of argument, the participants first talked about the data they had,
and then stated their warrant about their claim. Afterwards, they expressed their
claim. That is, they used the data they had and stated their conclusion after
presenting their warrant. Thus, the order of flow of the argument components was
Data, Warrant, and Claim, respectively. The component flow of the DWC type of

argument is presented in Figure 4.19.

Data Claim

7

Figure 4.19 Component flow in the DWC type of local argument

When the red arrows in Figure 4.19 are examined, it can be concluded that
the direction of the statement order of the components was from the data to the
warrant and then to the claim. A sample local argument for the DWC type of
argument comes from geometry task 4 in the Paper-Pencil group. In the task, the
circle with center ‘A’ and the semi-circle with diameter |AG |Were given (see
Figure 4.20(a)). Chord |CD| was bisected by |FG| at point E. Moreover, |HE|
was perpendicular to | FG | as given. The task of the students was to prove that
| CE | = | HE | and to justify their reasoning. A part of the conversation which was
related to the sample local argument is given below, and Pelin’s drawings on the

board are represented with the color red in Figure 4.20(b). Then, the Toulmin

schema (see Figure 4.21) was drawn for the type of DWC local argument.
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(@) (b)
Figure 4.20 The shape of GT 4 (a) and the additional drawings of Pelin (b)

Pelin  : Now let me write ‘x’ for |CE| and |[ED|. Then, ‘a’ and ‘b’ for
segments |FE | and |[EG | respectively (D71). We can write the
equation of the intersecting chord theorem for these chords. x.x=a.b
s0 we obtained the first equation ‘x*=a.b’ (W71).

Teacher : Okay.

Pelin  : For the second equation, we first drew arc FG and segment |El| by
drawing the symmetry of |HE| with respect to [FG| (D71). Then |
remembered that |HE|=|EI| since |FG| is the diameter dividing chord
|[HI| into two. Thus, | can label HE| and |[EI| with ‘c’. Then I can
write the intersecting chord theorem equation again with c.c=a.b .
Then we found ‘c“=a.b’ (WT71).

Teacher : Yes.

Pelin  : Thus we had two equations ‘c’>=a.b’ and ‘x’=a.b’ which were
equal to each other (W71). Then c=x which means |HE|=|CE|
(CT71).
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D71: Let CE = ED =x,

FE =aand EG =b
Draw chord FG andthe
segment EIl.

C71: x=c thatis

HE|= CE

W71: Intersecting
chord theorem

equations“x=a b"
andc®=a b"was

Figure 4.21 A sample local argument for the DWC type of argument

As it can be seen in the conversation, Pelin talked about the data they had by
labeling the segments on the shape and by doing additional drawings, using the
color red, upon the original shape. Then she stated the warrant, which was the use

of the intersecting chord theorem to conclude that |[HE|=|CE].

4.2.3 Local argument type 3: Claim-Data-Warrant (CDW)

In this type of argument, the participants first stated their claim, and then they
talked about the data they had, and subsequently stated their justification about their
claim. Thus, the order of the flow of the argument components was Claim, Data,
and Warrant, respectively. The component flow of the CDW type of argument is

presented in Figure 4.22.

@ Claim

>

Figure 4.22 Component flow in the CDW type of local argument
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When the red arrows in Figure 4.22 are examined, it can be understood that
the direction of the statement order of the components was from the claim to the
data and then to the warrant. A sample local argument for argument type 3 comes
from geometry task 4 in the Paper-Pencil group. The details of the task are given in
the DWC type of argument section and illustrated in Figure 4.20(a). The task was
to prove that |CE|=|HE|. In some parts of the discussion, one of the participants
talked about the intersecting chords theorem. Then, the teacher asked the
participants where the equation of the intersecting chords derived from. Afterwards,
the sample argument for the CDW type of argument emerged since they knew the
claim ‘x.y=z.t’ and tried to justify this rule. The conversation of the argument and
the shape drawn on the board by the participants (see Figure 4.23) are presented
below. Finally, the Toulmin schema (see Figure 4.24) was drawn for the CDW type

of local argument:

(a) (b)
Figure 4.23 Shapes drawn on the board by instructor (a) and the participants (b)

Teacher : So where does the intersecting chords theorem derive from?

Erhan : Okay I found it. One moment. Let [EG|=X, |GF|=y, |CG|=z
and |GD|=t. (He draws EC and DF) (D70). These arcs are the
same, aren’t they?

Okan . | said the same, yes. But are they equal?
Gozde - Yes, equal.
Okan . Yes, but as far as | know to be able to express that equality,
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Gozde

Erhan
Teacher
Erhan

Gozde
Erhan

D70: Let EGl=x, |GF|=y,
CGj=z and |GT|=t
Draw [EC| and [DF!.

the intersection point G should be in the center of the circle
(R70).

: No it is an inscribed angle. You do not need a central angle
(WT70).

: Then, let ZECG and £DFG be alpha, (W70)

: You mean both angles see the same arc?

: Yes. So let zGEC and £GDF be beta. Finally, let ZEGC and
2DGF be teta (W70). Then the intersecting chord rule derives
from triangle similarity. Angle-Angle-Angle triangle
similarity (W70).

: Let’s write the similarity.

. |EG|:|GF| = |CG|:|GD|= |EC|:|DF|. Then x.y=z.t derives from
this similarity (C70).

C70: xy=zt

R70: To be able to say that

equality, the intersection point
G should be in the center of the
circle

W70: let LECG and £DFG
be alpha, £GEC and
LGDF be beta, LEGC and
LDGF be teta, since these
angles see the same arcs

g

W70: Triangles ECG and
DGF are similar. AAA

triangle similarity. Similarity
equation was written.

Figure 4.24 A sample local argument for the CDW type of argument

As can be seen in the conversation, first the claim ‘x.y=z.t” was made durin
9

the discussion by the participant since the students knew the intersecting chords

theorem as a taken-as-shared knowledge. However, the teacher probed participants

to think more on this theorem and asked ‘Where does the equation derive from?’.
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Then, Erhan drew a circle, labeled the segments and angles, and then tried to find
the justification for the intersecting chords theorem. In the end, he found the angle-

angle-angle triangle similarity as a warrant.

4.2.4 Local argument type 4: Warrant-Data-Claim (WDC)

In this type of argument, the participants first stated the justification, and
then they talked about the data they had, and finally stated their claim. Thus, the
order of the flow of argument components was Warrant, Data, and Claim,
respectively. The component flow of the WDC type of local argument is presented
in Figure 4.25.

*| Claim
“~_
Figure 4.25 Component flow in the WDC type of local argument
When the red arrows in Figure 4.25 are examined, it can be concluded that
the direction of the statement order of the components was from the warrant to the
data and then to the claim. A sample local argument for the WDC type of argument
comes from geometry task 1 in the Paper-Pencil group. The task was presented in
the worksheet in the following way:
‘ABC is a triangle. The midpoints of the sides |AB| and |AC| are points D
and E respectively. Points F and G are placed on side |BC| so as to be
|IBG|=|CF|. The segments |[DG| and |EF| intersect at point H.

When does |AH| become the angle bisector of ZA? (Think about all types

of triangles). Explain your reasoning and justify your solutions.’

Giiler was solving the task on the board. She drew the shape given in Figure

4.26 and used the triangle property that ‘If a segment of a triangle is both an altitude
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and a median, then it has to be an angle bisector also’ as a warrant for an argument.
Then the following local argument emerged as a sample for the WDC type of
argument. In this type, the warrant was first stated. The reason for the warrant to be
stated before the claim and the data was its being a taken-as-shared rule. The

conversation below occurred while a sample argument for argument type 4 was

produced.

Giiler : We assumed that |DG| L|AB| and |[FE|L |AC| at the same
time.

Teacher : Okay let’s assume that both are perpendicular.

Giiler : We drew |AG and |AF|. The triangle AFG becomes an
isosceles triangle because a side-angle-side similarity exists
(D12).

Inci - Yes.

Giiler : Now look at triangle AGB. |DG| is the altitude and the
median of the triangle, so it becomes the angle bisector at the
same time (W12/13).

Teacher : You mean the triangle property that ‘when a segment is both
the altitude and the median, it also has to be an angle
bisector’.

Giiler - Yes. Similarly, we can conclude with the same rule that in

triangle AFC, FE is the altitude and the median, and thus it
will be an angle bisector too (C13).

&

Figure 4.26 The shape Giiler drew on the board
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As it can be seen in the conversation, Giiler first talked about how she found
that |GD| is the angle bisector of 2AGB with a justification including the rule
‘When a segment is both the altitude and the median of a triangle, it also has to be
an angle bisector’. This warrant became a taken as shared rule at that moment. Then
she talked about triangle AFC. Argument 13 in Figure 4.27 is the sample local
argument for the WDC type of argument since the warrant was stated first. Then,
Giiler talked about the data of the argument, followed by the claim of the argument

as presented with the red arrows in Figure 4.27.

D 13: Assume that |DG|
1|AB| and [FE|L |AC|. We
drew |AG and |AF|. We
found AF=AG from side-
angle-side similarity before.
In triangle AGB, GDisan
altitude and amedian.

C 12: GDis the angle
bisector of ZAGB.

W12/13: Inany triangle,
when a segmentisboth

altitude and median_ it has to
be an angle bisector also

D 13: In triangle AFC, FE
is an altitude and amedian.

C 13: FE is the angle
bisector of LAFC.

Figure 4.27 A sample local argument for the WDC type of argument

4.2.5 Local argument type 5: Claim-Data (CD)

In this type of argument, the participants first stated their conclusions and then
stated the data of their argument but they did not justify their claims. Thus, the
order of the flow of the argument components was Claim and Data, respectively.

The component flow of the CD type of local argument is presented in Figure 4.28.
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Figure 4.28 Component flow in the CD type of local argument

When the red arrow in Figure 4.28 is examined, it can be understood that the
direction of the statement order of the components was from the claim to the data
and the warrant was not stated. A sample local argument for the CD type of
argument comes from geometry task 3 in the Paper-Pencil group. In geometry task
3, two circles, each of which passes through the center of the other circle, were
given as in Figure 4.29(a). The circles intersect at points H and E, and a line from E
intersects the circles at points F and G. The questions that were asked were as
follows:

‘If |FG|= 6, compute the area of the triangle FGH? Justify your solution.
If r is the measure of the radius of each circle, find the minimum value and

maximum value of the area of triangle FGH. Justify your solution.’

The task was to find the triangle with maximum area when the givens were

satisfied, as can be understood from the following conversation:

Teacher : What do you think about the second question? What is the
maximum area of triangle FGH?
Gozde : In my opinion, chord |EF| should pass from point C for the

maximum area (C49). I mean one side of the triangle FGH
should be the radius of the circle (D49).

Okan : No. I think you can drag the chord |EF| beyond point C. You
can pass center C and the triangle becomes larger (R49).
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(@) (b)
Figure 4.29 The shape of geometry task 3 (a), and Gézde’s drawing (b)

“ — | C 49:For the maximum

D 49: One side of the
triangle FGH will be
radius of the circle.

R 49: No. I think vou can drag
the chord |[EF| bevond point C.

You can pass the center C and the

area. [EF| should pass over
the point C.

triangle becomes larger.

Figure 4.30 A sample local argument for the CD type of argument

As can be seen in the conversation, Gozde thinks that maximum area for
triangle FGH could be obtained when chord |EF| passes through center C. However,
Okan opposed her idea by saying that chord |EF| can be drawn beyond point C to
obtain a larger triangle FGH. At this moment, the discussion stopped and Gozde
turned to her worksheet and thought about it. Thus, the argument flow was from the

claim to the data, but there was no justification as presented in Figure 4.30.
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4.2.6 Local argument type 6: Data-Claim (DC)

In this type of argument, the participants firstly stated the data they had, and
then they talked about their conclusion without justification. Thus, the order of the
flow of the argument components was Data and Claim, respectively. The

component flow of the DC type of local argument is presented in Figure 4.31.

Figure 4.31 Component flow in the DC type of local argument

Claim

When the red arrow in Figure 4.31 is examined, it can be understood that the
direction of the statement order of the components was from the data to the claim. A
sample local argument for the DC type of argument comes from geometry task 4 in
the GeoGebra group. The details of geometry task 4 has already been explained in
the section on the DWC type of argument, in Figure 4.20(a). The task was to find
whether |CE|=|HE| when the chord |FG| becomes the diameter of the big circle.
Bade was showing her solution to the class by using the GeoGebra program. The
shape of the task prior to dragging is given in Figure 4.32(a), while the shape
subsequent to dragging is presented in Figure 4.32(b). Bade’s utterances while

dragging point G are as follows:

Bade : I dragged point G in order to make chord FG the diameter of
the big circle (D61). Here, we can see that |CE|=|HE| (C61).
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=\

(@) (b)
Figure 4.32 The shape Bade dragged via GeoGebra

C 01: When FG is
the diameter of the
big circle. |CE|=HE|.

D 61: GeoGebra S E—

Unspecified

Figure 4.33 A sample local argument for the DC type of argument

dragging of the
point G.

As can be seen in Bade’s talk, she did the dragging move by using the
dynamic geometry program GeoGebra to show her claim which was ‘When FG is
the diameter of the big circle, |CE[=[HE|’. Then, she passed onto the other part of
the task, which was asking whether |CE|=|HE| when chord |FG| overlapped with
chord |CD|. Bade dragged the shape quickly to show the answer of the other part of
the task. Participants were satisfied with the GeoGebra dragging, so nobody in class
asked for her justification. Thus, this local argument became an example for the DC

type of argument.
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4.2.7 Local argument type 7: Claim-Warrant (CW)

In this type of local argument, the participants first stated their conclusion,
and then talked about their justification. Thus, the order of the flow of the argument
components was Claim and Warrant respectively. The component flow of the CW

type of local argument is presented in Figure 4.34.

T >

Figure 4.34 Component flow in the CW type of local argument

When the red arrow in Figure 4.34 is examined, it can be concluded that the
direction of the statement order of the components was from the claim to the
warrant, and the data was not stated. A sample local argument for the CW type of
argument comes from geometry task 3 in the Paper-Pencil group. The details of
geometry task 3 were given in the section on the CD type of local argument with the
shape in Figure 4.29(a). The task of the conversation was to find the minimum area
of triangle FGH. Bahar was at the board to show the triangle FGH with the
minimum area. She drew chord |EF| to point H (see Figure 4.35(b)). Then she said,
‘The minimum area can be zero. When | drag point F to point H, the triangle

disappears. Thus, there is no area and the minimum area is zero’.
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@ (b)
Figure 4.35 The shape of geometry task 3 (a) and the shape dragged by Bahar (b)

Unspecified C 54: The minimum area
of thetriangle FGH is

W 54: GeoGebra
dragging of point F to
point H. The triangle
got lost. There is no
triangle so no area.

Figure 4.36 Sample local argument for the CW type of argument

As can be seen in the conversation, Bahar claimed that the minimum area of
triangle FGH was zero, and then she justified her conclusion by using GeoGebra
dragging. The participants were satisfied with the dragging, so the argumentation

stopped at that point.

4.2.8 Local argument type 8: Warrant-Claim (WC)

In this type of local argument, the participants first stated the justification, and

then they talked about their claim. Thus, the order of flow of the argument
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components was Warrant and Claim, respectively. The component flow of the WC

type of local argument is presented in Figure 4.37.

e

Figure 4.37 Component flow in the WC type of local argument

When the red arrow in Figure 4.37 is examined, it can be understood that the
direction of the order of the components was from the warrant to the claim. A
sample local argument for the WC type of argument comes from geometry task 1 in
the GeoGebra group. The task was related to triangles and it was asked in the
worksheet in the following way:

‘ABC is a triangle. The midpoints of sides |AB| and |AC]| are points D
and E, respectively. Points F and G are placed on side |BC]| so as to be
|IBG|=|CF|. Segments |DG| and |EF| intersect at point H.

When does |AH| become the angle bisector of £A? (Think about all

types of triangle). Explain your reasoning and justify your solutions.’

The task was to identify the triangle types in which segment |AH| becomes an
angle bisector. The shape of the task was previously drawn via GeoGebra. Ozer
came to the computer to show his solution. He drew a circle from the midpoint of
IBC| in order to make points F and G dynamic (see in Figure 4.38). Then he
measured £BAH and £HAC. Subsequently, he made an observation by dragging

point A and by changing the shape of triangle ABC.

Ozer . I drew the circle with center T in order the points F and G be
dynamic. So | can see all the different situations.

Ash : We can first think of drawing the angle bisector, altitude and
median and then drag the shape to make an inference.

Ozer : I was already looking at |AH| to be an angle bisector by
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Teacher

Bade
OZCI‘
Teacher

If__%ade
Ozer

If__%ade
Ozer

dragging point A and changing the triangle (W11). Then, I
saw that when |AH| is an angle bisector, it crosses over the
center of the circle all the time (W11). | found that |AH|
became the altitude of the triangle at the same time. Then |
concluded that triangle ABC is an isosceles triangle (C11)
since |AH| is both an angle bisector and an altitude.

: Can you say that AH should be an altitude for all isosceles
triangles?

: Yes, we can say that.

> Yes all the time.

: What about the other triangles? When you change the
triangle into a scalene triangle by dragging, what can you
say?

> In that case, |JAH| cannot be an altitude.

. In that case, it cannot be an angle bisector either. | saw that
whenever it is angle bisector, it crossed over the midpoint of
IBC] so it was also the median.

: So |JAH| cannot be an altitude in scalene triangles (R11).

. I conclude this because of segment |AH| became both an
angle bisector and the median and thus, the altitude.

Figure 4.38 The shape Ozer dragged via GeoGebra
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C 11: |AH|becomes an

Unspecified angle bisector whenever
the triangle ABC is an
isosceles triangle.

/’7

~

When you change the triangle
into scalene triangle by
dragging, what can vousay?

R 11: When ABCisa
scalene triangle |AH)|
cannot be an angle
bisector.

W 11: GeoGebra dragging
of point A. When |AH]|is an
angle bisector, it crosses over
the center of the circle all the
time. Therefore, |AH|
becomes an altitude also.
Thus, the triangle is an
isosceles triangle.

Figure 4.39 A sample local argument for the WC type of argument

As can be seen in the sample local argument, Ozer first dragged the shape and
showed his justification, and then he talked about his conclusion which was ‘|AH|
becomes an angle bisector whenever triangle ABC is an isosceles triangle’. That is,
he initially talked about his warrant and then he stated his claim. Finally, the teacher
promoted further thinking about scalene triangles by asking a question. In this way

an exceptional condition emerged as a rebuttal to the argument.
4.2.9 Local argument type 9: Claim (C)

In this type of local argument, the participants only stated their conclusion and
then said nothing related to the data they had or the justification they had in mind.

Thus, the sole component of the argument was the Claim as presented in Figure
4.40.

145



Figure 4.40 C type of local argument

Arguments of this type emerged when the participants were thinking aloud or
when it was a shared idea, so there was no need to justify the claim. A sample local
argument comes from the Paper-Pencil group’s geometry task 1. While solving the
task, different groups placed points F and G in the same order on side |BC|. The
teacher asked the students why they all placed F and G in that order? Then, Giiler
said, ‘Friends, we will conclude at the end of the discussion that when points F and
G are dragged and switched, their places |DG| and |EF| will always intersect on the
line passing through |AT|” (see Figure 4.38). That is, point H will move up and
down on the line passing through |AT| when you move points F and G dynamically.

The argument schema for this conversation is presented in Figure 4.41.

_ . C 10: Point H will move up and down
Unspecified on the line passing through |AT| when

vou move points F and G

Unspecified

Figure 4.41 A sample local argument for the C type of argument

4.2.10 The analysis results of the different types of local arguments based on

the flow of the argument components

So far, each type of local argument has been introduced with sample local

arguments and conversations from the current study. In this section, the numbers of
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local arguments in each type are analyzed. The total number of local arguments in

each group is presented in Table 4.2.

Table 4.2 The total number of local arguments in each type of argument in the
GeoGebra and the Paper-Pencil groups

GeoGebra Paper Pencil
1. DCwW 11 10
2. bwC 29 38
3. CDW 1 4
4. WDC 2 2
5. CD 1 2
6. DC 2 3
7. CW 10 8
8. WC 4 3
9. C 3 4

In conclusion, DWC, DCW and CW were the most frequently confronted
types of local arguments in both the GeoGebra and the Paper-Pencil groups.
Especially the DWC type of argument was the most frequently used argument by
prospective middle school mathematics teachers. That is, the prospective middle
school mathematics teachers were disposed to initially state the data they had, and
then express their justification and finally to state what they concluded. Sometimes,
they changed the places of the warrant and the claim, thus stating the data they had
first, and then the claim of their argument and finally the warrant they used to
justify as in DCW type of local argument. In the third most frequently used
argument type, they did not mention the data they had but stated their argument
components in the order of claim and warrant. In this type, the data became taken-
as-shared in the class discussion, so they avoided repetition.

The frequencies of the other types of local arguments were close to each
other. When the groups are examined, it can be seen that the number of local
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arguments in both groups were close to each other. That is, a similar pattern
occurred in the two groups in terms of the flow of argument components which
were developed by prospective middle school mathematics teachers in the geometry
context. That means, the existence of the dynamic geometry program, GeoGebra,
did not change the course of reasoning of the prospective teachers and they behaved
similarly in the argument construction process in terms of the flow of argument
components.

After analyzing the different types of local arguments between the groups, the
researcher analyzed the geometry tasks separately. The numbers of different types
of local arguments by geometry task are listed in Table 4.3.

Table 4.3 Number of arguments for each type of local argument by geometry task

GeoGebra Paper Pencil

GTl1 GT2 GT3 GT4 GT GT2 GT3 GT

1 4
1. DCW 2 1 3 5 2 2 3
2. DWC 3 10 7 9 8 11 8 11
3. CDW 0 1 0 0 1 0 1 2
4. WDC 1 1 0 0 2 0 0 0
5. CD 0 0 0 1 0 0 2 0
6. DC 1 0 0 1 2 0 0 1
7. CW 5 1 4 0 4 1 3 0
8. WC 3 0 1 0 2 1 0 0
9. C 1 0 0 2 3 0 0 1

When the distribution of the local arguments is listed in terms of geometry
task (see Table 4.3), it can be inferred that the DWC type of local argument was the
most confronted type in all geometry tasks in both the GeoGebra and the Paper-
Pencil groups, except for GeoGebra group’s geometry task 1. This means that the
use of GeoGebra did not make any difference in prospective middle school
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mathematics teachers’ preferences regarding the type of local argument. However,
in geometry task 1, the GeoGebra drawing of the givens shortened the solution
process and they did not need to talk while they were drawing the shape. Their
drawing process was in fact the data they possessed, but they did not state their
actions while drawing the shape, so the type of local argument they used most
frequently turned out to be the CW type of argument in geometry task 1 in the
GeoGebra group. Upon seeing this, the researcher encouraged the participants in the
GeoGebra group in the subsequent tasks to talk about every action they did during
the solution process, just as they would in thinking aloud, to catch the data
components of their arguments. Nevertheless, it can be seen in Table 4.3 that the
frequency of the CW type of local argument was again high in both groups in
geometry task 3.

As it can be seen in Table 4.3, the DCW type of local argument emerged in all
the geometry tasks in both groups. In addition, the number of the DCW local
argument was a little high in GeoGebra group’s geometry task 4. When those
arguments were examined, the researcher noticed that after the participant stated the
data and the claim, the researcher or another participant asked for his/her
justification, so the warrant came later in the process.

In the present study, two geometry tasks were related to triangles while the
other two were related to circles. Therefore, the different types of local argument in
terms of the flow of argument components are compared in terms of these two

mathematical contents in Table 4.4.
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Table 4.4 Number of local arguments in each argument type by mathematical
content

GeoGebra Paper Pencil

Triangle Circle Triangle Circle
1. DCW 3 8 5 5
2. DWC 13 16 19 19
3. Cbw 1 0 1 3
4. WDC 2 0 2 0
5. CD 0 1 0 2
6. DC 1 1 2 1
7. CW 6 4 5 3
8. WC 3 1 3 0
9. C 1 2 3 1

The distribution of the local arguments in different types of argument in
triangle tasks, which were geometry task 1 and 2, had a similar pattern in both the
GeoGebra and Paper-Pencil groups. The most frequently emerging local argument
was found to be the DWC type of local argument. In addition, in the GeoGebra
group, the CW type of local argument also had a high frequency in the triangle
tasks. On the other hand, in the Paper-Pencil group, the DCW and CW types of
local argument had a high frequency in the triangle tasks. Similarly, in the circle
tasks, which were geometry tasks 3 and 4, the distribution of the local arguments
was similar in the GeoGebra and Paper-Pencil groups. Similar to triangle tasks, the
highest number of local arguments can be seen in the DWC type of local argument
in the circle tasks. Moreover, in the circle tasks, the DCW type of local argument
also had a high number of local arguments when compared to the other types in
both groups.

In summary, both groups showed a similar pattern in their argument
construction process. That is, the flow of argument components was similar in both
groups. Moreover, the most frequently used three types of local arguments were
DWC, DCW and CW in both groups when the patterns were investigated by group,
by geometry task and by mathematical content.
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4.3 Local argumentation analysis

In the previous sections, the global argumentation structures developed by
prospective middle school mathematics teachers were analyzed for the purpose of
responding to the first research question. Subsequently, the different types of local
arguments developed by prospective middle school mathematics teachers based on
the flow of argument components were analyzed to respond to the second research
question. This section seeks to respond to the third research question, ‘What are the
characteristics of local argumentations that prospective middle school mathematics
teachers utilize while solving geometry tasks in the GeoGebra and the Paper-Pencil
groups?’. The local arguments were analyzed based on the classification developed

by Knipping (2008), which is presented in Figure 4.42.

Conceptual
Argumentation
Empirical-Visual
Visual Argumentation ~|:
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Figure 4.42 Local argumentation classification developed by Knipping (2008)

Knipping (2008) classified local argumentations into two basic levels:
conceptual argumentation and visual argumentation. Visual argumentation was
divided further into two levels, namely empirical-visual and conceptual-visual
argumentations (Knipping, 2008). The method of classification of Knipping (2008)
was based on the examination of the warrants and backings of the local arguments.
During the data analysis of local argumentations in the present study, the warrants

and backings of the local arguments were classified according to the classification
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developed by Knipping (2008). Then, the local arguments were analyzed on the
basis of the tasks (GT1, GT2, GT3, GT4) and the mathematical content (triangle,
circle) by considering each group (GeoGebra group, Paper-Pencil group). Some of
the local arguments did not have any warrant or backing so they could not be placed
in any of the groupings within the classification. Those local arguments were listed
in tables in the last sections under the heading ‘Arguments which don’t have a
warrant’. Moreover, some of the warrants did not fit into any of the groupings in the
classification, so the researcher explained their special conditions within each
analysis under the heading ‘new condition’. Initially, the sample local arguments for
each local argumentation level are presented and then each type of analysis is
explained under different headings in the following sections.

The sample local argument for conceptual argumentation is from geometry
task 2 in the GeoGebra group. Beren labelled the segments |EG|=a, |GF|=c, |BE|=b,
|FC|=d (see Figure 4.43).

Figure 4.43 Diagram drawn for GT 2 as an example of conceptual argumentation

Then, she said that b+a=c+d since |AG| is the median. Afterwards, she used
the angle-angle-angle triangle similarity and wrote a similarity ratio for the triangles
PGF=AGC and for the triangles PGE~AGB as a warrant. In the end, she found the
conclusion a=c, which means |EG|=|GF|. The Toulmin schema for this local

argument was as follows:
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D: [EG|=a, |GF|=c,
|BE|=b, |[FC|=d. Since
|AG| is the median

at+b=c+d.

C27: [EG| = |GF|

W: The similarity (A.AA
triangle similarity) ratios of the
triangles PGF=AGC and
PGE~AGE were solved together
ci(ct+d)=PG|:|AG|=a:(a+h)

a=C

Figure 4.44 A Toulmin schema for a sample local argument of conceptual
argumentation from the GeoGebra group

The warrant of the local argument in Figure 4.44 was directly a reference to
the triangle similarity theorem. Moreover, Beren worked with such general units ‘a,
b, ¢, d’, not with specific values. Thus, it can be concluded that the local argument
fits the conceptual argumentation level.

Another example for conceptual argumentation was from geometry task 1 of
the Paper-Pencil group. Similarly, Erhan labelled the segments in Figure 4.45

using general units.

Figure 4.45 Labeling of Erhan for GT 1 as an example for conceptual
argumentation
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Then, he used the Menelaus’ theorem from both sides of the triangle as the
warrant. Afterwards, he solved two equations obtained from the Menelaus theorem
and found that a=z, which means |AT| was a median of the triangle ABC as a claim.

The Toulmin schema for this local argument is given in Figure 4.46.

C5: |AH]| 15 a median in all
type of triangles.

D: BD|=DA==,
|AE=[EC|=y. [FG[=2a,
|BF|=|GC|=b, |DE|=a+h.

W: Menelaus theorem used
from both sides and the
equations were solved
together. Then we found
a=z.

Figure 4.46 A Toulmin schema for a sample local argument of conceptual
argumentation from the Paper-Pencil group

Similar to the local argument in Figure 4.44, the warrant of the argument in
Figure 4.46 was also directly a reference to the Menelaus theorem. Moreover,
Erhan worked with general units ‘X, y, z, a, b’, not with specific values. Thus, it can
be concluded that the local argument fits the conceptual argumentation level.

The second local argumentation level which was proposed by Knipping
(2008) was visual argumentation, which has two levels: empirical-visual and
conceptual-visual. The sample local argument for empirical-visual level is again
from geometry task 1 in the GeoGebra group. Ozer was trying to find the triangle
types in which |AH| was an angle-bisector. He drew the givens of the task using the
GeoGebra dynamic geometry program and dragged point A to make |AH| an angle-
bisector. He realized that when |AH| became an angle-bisector, it was also a median
of side |BC|. He showed this on various triangle figures by dragging point A.

Subsequently, he noticed that |[AH| also became an altitude when |AH| became an
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angle-bisector. Ozer said that being an angle-bisector, median and the altitude at the
same time was the property of isosceles triangles as the justification of his claim,
which was ‘|AH| is a median in isosceles triangles’. The Toulmin schema of the

local argument was as illustrated in Figure 4.47.
Unspecified . C11: [AH] 1s 2 median in
1sosceles tnangles.

W: With GeoGebra
dragging we can see that
when |AH] 15 the angle-
bisector, it passes through
the madpoint of [BC | and
also becomes the altitude.
This 15 the 150sceles
triangle property

R: When the tniangle
ABC is scalene
triangle, AH 15 not an
angle-bisector

Figure 4.47 A Toulmin schema for a sample local argument of empirical-visual
argumentation from the GeoGebra group

The teacher asked Ozer in which cases this relationship was valid. He
answered by saying that this was valid for isosceles and equilateral triangles but not
valid for scalene triangles, which corresponded to the rebuttal as an exception of the
situation. This sample local argument fitted the empirical-visual level since Ozer
showed the relationship and his warrant on a visual figure, not based on a concept, a
theorem, or a rule etc. That is, his justification was the conclusion of his trial and
error in dragging of a diagram on GeoGebra.

Another example for empirical-visual argumentation was from the Paper-
Pencil group’s geometry task 2. Inci, together with Erhan, labelled the diagram on
their worksheet as illustrated Figure 4.48.
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Figure 4.48 Labeling of /nci on the worksheet for GT 2 as example for empirical-
visual argumentation

Inci claimed that |[AN|=|HP| and similarly |[AH|=|NP|. Erhan asked, ‘How did
you conclude that?’ and Inci justified her claim by showing the parallelism of
|AC|//|HF| and |AB|//INE| on the diagram. She also added that ‘The quadrilateral
ANPD became a parallelogram and in parallelogram the opposite sides have equal
lengths’. Therefore, it can be concluded that the local argument fits the empirical-
visual argumentation level. The Toulmin schema of the local argument is presented
in Figure 4.49. This sample local argument fitted the empirical-visual level since
Inci showed the relationship and his warrant on a visual figure, not based on a
concept, a theorem, or a rule etc.
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C27: AN=HPand HA=PN

Unspecified

W: [HF|// |AC| and
NE|// |AB|. The
quadrilateral ANPD
became a parallelogram
and in parallelogram the
opposite sides have equal

lengths

Figure 4.49 A Toulmin schema for a sample local argument of empirical-visual
argumentation from the Paper-Pencil group

The last local argumentation level proposed by Knipping (2008) was the
conceptual-visual level for local argumentation. The sample local argument for this
level comes from the GeoGebra group’s geometry task 1. The diagram drawn by

Ozer using the GeoGebra program was as illustrated in Figure 4.50.

Figure 4.50 The diagram of GT 1 drawn by Ozer using the GeoGebra program
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Ozer was discussing geometry task 1 with his partner Asli. He drew the
triangle ABC. Then, he found the midpoints of the sides |[AB| and |AC|, which were
points D and E, respectively. The task asked to place points F and G as equidistant
to vertices B and C to find the intersection point H. Ozer decided to find the
midpoint of segment |BC| and labelled it with N. He drew a circle with center N to
find the points F and G on segment |BC|. Drawing segments |DG| and |[EF|, he
complemented the givens in the task. Then, he dragged the points to look at the
changes in the shape and to find the triangle types in which |AH| became an angle-
bisector. He noticed that when |AH| became an angle-bisector, its extension passed
through point N, which was the midpoint of side |BC|. He said that segment |AN|
was an angle-bisector when triangle ABC was an isosceles and an equilateral
triangle. He used this information as a warrant to his claim, which was ‘|AH|
became an angle-bisector in isosceles and equilateral triangles’. His justification
was the triangle property that ‘When a segment is both an angle-bisector and a
median in a triangle, this means that the segment is also an altitude and the triangle
is isosceles or an equilateral triangle.” The Toulmin schema was drawn for Ozer’s

local argument as displayed in Figure 4.51.
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D: Drew anisosceles triangle AEC. Found
the midpointsD andE on the sides |AB| and
AC'. Then drew the circle with center N.
The intersection points of the circle andthe

Co: |AH| becamean
angle-bisector in isosceles
and equilateral triangles.

segm ent BC) wasnamedwith F andG. Drew
DG and EF tofind the intersection point H.

R: When triangle ABC is
scalene, |AH|didnot pass
through the point M.

W: Dragged the point F and G andthe
vertices of the triangle. When |AH| wasan
angle-bisector, the line passing through
AH| passedthrough N, the midpoint of
the segm ent BC|. Thatis AH| became
medianalso. “A segm ent which is both

median and an angle-bisector, is also the
altitudein isosceles and equilateral
triangles’.

Figure 4.51 A Toulmin schema for a sample local argument of conceptual-visual
level from the GeoGebra group

This local argument fitted the conceptual-visual level argumentation since
Ozer used a visual diagram drawn via GeoGebra to justify his claim. To make a
generalization, he also used the conceptual triangle property that ‘When a segment
is both an angle-bisector and a median in a triangle, this means that the segment is
also an altitude and the triangle is isosceles or an equilateral triangle’. That is, his
warrant enabled him to generalize his finding to the isosceles and equilateral
triangles. Thus, he could be able to say that “|AH| became an angle-bisector in
isosceles and equilateral triangles”.

Another sample local argument for conceptual-visual level was from the
Paper-Pencil group’s geometry task 4. While solving the circle task, Bade used the
intersecting chords theorem. Then, the teacher asked the whole class where the
intersecting chords theorem had derived from. Following her question, the teacher
drew the diagram in Figure 4.52(a) and wrote “x.y=z.t” on the board. She asked the

students to justify this claim.

159



(@) (b)
Figure 4.52 Teacher’s drawing (a) and Erhan’s solution (b) as a sample local
argument for conceptual-visual level.

Erhan came to the board and drew segments |[EC| and |DF|. Then, he noticed
the inscribed angles seeing the same arcs in the circle. He labelled the equal angles
with symbols as illustrated in Figure 4.52(b). At that moment Bade asked, ‘Isn’t it
necessary for point K to be in the center of the circle in order to label those angles?’
Erhan answered by emphasizing that he was dealing with the inscribed angles, so he
did not need point K to be in the center of the circle. Afterwards, he used the angle-
angle-angle triangle similarity as a warrant for his claim. Using the triangle
similarity equation, he found that x.y=z.t, as presented in Toulmin’s schema in

Figure 4.53.
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C70: In circles, the
multiplication of the segments
divided by intersecting chords
always equal to each other.
That is x.v=z.t

D: Draw |EC| and
|DEF|.

R: I=n’t it necessary the
point K to be in the center
of the crcdle in order to label
those angles?

W: Incircles, theinscribed angles seeing the
sam e arcsare equal to each other.
£CEE=sKDF,. +tECE=sKFD. +EKC=sDKF.
There is noneed the point K to bein the center
of the circle since we arelooking atinscribed
angles.

The tnangles FCK and DFE. have A A A triangle
similanty. Thus, the similarity ratio canbe

written:
|CK| |EK| x oz

KF| KDl £ y

Figure 4.53 A Toulmin schema for a sample local argument of conceptual-visual
level from the Paper-Pencil group

This local argument was accepted as a conceptual-visual local argument since
Erhan showed his solution on the diagram by using the circle properties and the
A.A.A triangle similarity theorem to be able to justify the intersecting chords
theorem. He could be able to make generalizations with the relationships he showed
on the diagram.

In the current study, sometimes the participants did not state the warrant,
which means their warrant was implicit in some of their local arguments. In the
local argumentation analysis of Knipping (2008) the differentiating component was
warrant (and backing) since the local argumentation type was decided by looking at
the characteristics of the warrants. Thus, the local arguments which did not have a
warrant component could not be classified into one of the local argumentation
levels developed by Knipping (2008). Those arguments were listed in the following
tables under the heading ‘Arguments which doesn’t have a warrant’. The sample
local argument comes from the GeoGebra group’s geometry task 4, which has

already been explained in the spiral structure argumentation section (see Figure
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4.8). It was a circle task and required dragging the shape to solve the question. Bade
was explaining her solution to the question, ‘Show whether the theorem is trivial if

chord |FG| is a diameter of the first circle, or if |[FG| coincides with |[CD|. Justify

your reasoning’.

C61: When |FG|is the
diameter of the big drde,
|CE|= HE|

D: GeoGebra dragging
of the point G.

Unspecified

Figure 4.54 A Toulmin schema of the sample local argument for the DC type of
argument

Bade responded to the first part of the question -‘if chord |FG]| is a diameter
of the first circle’- by dragging the shape and then moved to the second part —if
I[FG| coincides with |CD|’. The other participants did not question Bade for her
warrant. Thus, this local argument (see in Figure 4.54) did not have a warrant and
could not be classified into one of the groups in Knipping’s (2008) classification.

Finally, in the present study, some local arguments did not completely fit the
levels of Knipping’s (2008) classification. These arguments were the following
local arguments: the givens as justification, GeoGebra measurement as
justification, GeoGebra actions as justification.

The sample local argument for the givens as justification in the task comes
from the Paper-Pencil group’s geometry task 1. Erhan claimed that points F and G
should be placed on segment |BC| in such a way that F should be close to vertex B,
and point G should be close to vertex C. He drew the givens on the triangle ABC
and stated his warrant as ‘In the givens it says that segments [DG| and |EF| should

coincide to create point H’. The Toulmin schema was as illustrated in Figure 4.55.

162



C4: The points F and G should
be placed on the segment [BC|
in such a way that F should be
close to the vertex B, and the
point G should be close to the
vertex C.

D: We drew the triangle
ABC and found the
midpoints of the
segments |AB| and |AC

W: In the givens it says
that the segments [DG|

and [EF| should coincide
to create the point H.

Figure 4.55 A Toulmin schema of a sample local argument for a new type: the
givens as justification

The local argument in Figure 4.55 did not fit the conceptual argumentation
since it did not have a theorem, rule, axiom etc. as a warrant. Moreover, it did not fit
empirical-visual or conceptual visual levels since it did not include the justification
on the diagram. The warrant only includes the givens in geometry task 1. Thus, this
argumentation type was named as the givens as justification.

The second local argument which did not fit Knipping’s (2008)
classification is presented with a sample from GeoGebra group’s geometry task 3.
In this argument, Ozer claimed that ‘Triangle FGH is an equilateral triangle’. He
concluded by drawing the givens in the task (see Figure 4.56) and justifying his
claim by only measuring the sides of triangle FGH in the diagram. The Toulmin

schema of this local argument was as illustrated in Figure 4.57.
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Figure 4.56 Ozer’s drawing for GT 3 as a sample for new type: GeoGebra
measurement as justification

This argument did not fit any of the local argumentation levels of Knipping
(2008) since its warrant was not a theorem, a rule, an axiom, a representation on a
diagram, or a representation of a concept on a diagram. The warrant was only an act
of measurement. Thus, this new type of justification was named with the name

GeoGebra measurement as justification.

D: Drew the circles
with center C and D.
Drew the segment

[FE|. [FH| and |GH].

C31: The triangle FGH
13 equilateral triangle

W: We measured the sides of
the triangle FGH with the
measurement tool of the
GeoGebra program and
noticed that all three sides
were equal.

Figure 4.57 A Toulmin schema of a sample local argument for new type: GeoGebra
measurement as justification
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The last local argument which did not fit the classification of Knipping (2008)
was presented with a sample from the GeoGebra group’s geometry task 3. Bade
came to the board and drew the diagram based on the givens in geometry task 3.
Then, she dragged point G in order to obtain triangle FGH with the minimum area.
When point G coincided with point E, the triangle disappeared and the area value
was ‘undefined’ in the GeoGebra program since the program could not calculate the
area of a point. Then, Bade claimed that the minimum area of triangle FGH was
undefined and she justified her claim by saying, ‘The GeoGebra program showed it
as such’. The Toulmin schema of this local argument was as displayed in Figure
4.58.

D: 1 measuredthe area of the

triangle FGH and draggedthe C40: Minim um area fortriangle
N FGH is undefined.

N

Canit be because of your
drawing?

point and observed the decrease
in the area of the tnangle FGH. |
dragged the point G over the
pointE andthe tnangle FGH
disappeared.

W: GeoGebra showed like thus.
The triangle disappeared and
the area was calculated as
‘undefined’ .

Figure 4.58 A Toulmin schema of a sample local argument for a new type:
GeoGebra actions as justification

Similar to the previous two arguments, this argument did not fit any of the
local argumentation levels of Knipping (2008) either since its warrant was not a
theorem, a rule, an axiom, a representation on a diagram, or a representation of a
concept on a diagram. The warrant was only the reaction of the GeoGebra program
to the user’s drawing and dragging. Thus, it was named as GeoGebra actions as

justification.
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4.3.1 The characteristics of the local argumentations

The local argumentations were classified according to the warrants and
backings of local arguments. There were 4 geometry tasks in the application, and
the argumentation types were listed for each geometry task in the following tables,
respectively. The warrants of the arguments were numbered with the number of
their claims. For instance, ‘1’ in the table refers to the warrant of the first claim
while 5’ refers to the warrant of the fifth claim. Table 4.5 reveals the distribution of

the warrants of geometry task 1 in each local argumentation level.

Table 4.5 Distribution of local arguments of GT 1 across local argumentation levels

Local Visual Argumentation Conceptual Arguments  New
Argumentation Argumentation ~Wwhich don’t Condition
have a
warrant
Empirical- Conceptual-
visual visual

. 2,5,7,9, 6 8,15 1,3 4

j -

2 10, 11,12,

Q5

o

- < 13,14, 16
2 9, 14, 18, --- 5,6,7,8, 1,2,3,10, 4
S _ o,
c S 11,12, 13,15, 25
= o 23,24
g % 16, 17, 19, 21,

- 0
> 83
< T 2 22
< o o

Geometry task 1 entailed a triangle task. As it can be inferred from Table 4.5,
the GeoGebra group mostly used empirical-visual warrants, while they were
working with the GeoGebra dynamic geometry program. They asserted the
conceptual-visual warrant which was stated in the 6™ argument and the conceptual
warrants which were stated in the 8" and 15" arguments. Moreover, they did not

justify arguments 1 and 3. In addition, there was one new condition which included
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the givens as justification to their claim in argument 4. On the other hand, in the
Paper-Pencil group, the participants mostly used the conceptual type of
argumentation as local argumentation. They also alleged six empirical-visual
warrants: 9, 14, 18, 20, 23, and 24. In addition, the arguments in which they did not
include any justification (warrant) were arguments 1, 2, 3, 10, and 25. Similar to the
GeoGebra group, there was one new condition which included the givens as
justification to their claim in argument 4. The difference between the GeoGebra
group and the Paper-Pencil group was obvious in this task in terms of local
argumentation. The use of GeoGebra directed the participants in the GeoGebra
group to justify their claims by talking about the dynamic figure they drew, while
the participants in the Paper-Pencil group used the concepts, theorems, rules, and
mathematical relations to justify their reasoning. Specifically, the participants in the
Paper-Pencil group were inclined to use theorems, such as Menelaus’ theorem and
Angle-bisector theorem and mathematical relations, such as triangle similarity and
triangle properties to show that they drew the givens of the task appropriately and to
show the situations in which segment |AH| was an angle-bisector.

Geometry task 2 was also based on triangles. Table 4.6 presents the argument
numbers of geometry task 2 in each local argumentation level.
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Table 4.6 Distribution of local arguments of GT 2 within local argumentation levels

Local Visual Argumentation Conceptual
Argumentation Argumentation
Empirical- Conceptual-
visual visual
. 19, 20, 22,23 17, 24, 28, 29, 18, 21, 25, 26,
S
§ o 30 27
& 33
g O o
2 o  27,30,33,39 32,35, 36 26, 28, 29, 31,
= 3
@ S 34, 37, 38, 40
£ o=
> L O
® 25
< o a

As it can be observed in Table 4.6, the participants in GeoGebra group
mostly used visual warrants (empirical-visual and conceptual-visual). They also
used five conceptual warrants which were stated in arguments 18, 21, 25, 26 and 27.
On the other hand, in the Paper-Pencil group, the number of local argumentations
was equally distributed across the visual and conceptual levels. It can be seen that
there was no argument without justification and there was no new condition in the
discussion of GT 2 in both groups. The difference between GT 1 and GT 2 was that
the participants decided how to place points F and G and drew the dynamic figure.
Then, they interpreted the dynamic relations in GT 1, but in GT 2, the places of the
points were apparent, they were only interpreting the dynamic relations of the
figure. This could lead to a longer discussion among the participants in the Paper-
Pencil group on the relationships in the figure besides the conceptual arguments in
GT 2 when compared to GT 1.

Geometry task 3 was based on the circles. Table 4.7 presents the argument

numbers of geometry task 3 in each local argumentation level.
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Table 4.7 Distribution of local arguments of GT 3 within local argumentation levels

Local Visual Argumentation Conceptual
Argumentation Argumentation
Arguments  New
which don’t Condition
Empirical-  Conceptual- have a
visual visual warrant
32,33,34, 37, 38, 43, 39 --- 31,40
44
© 35, 36, 41,
g . 4
o 25
£ 65 ®
2 o 42, 44, 48, 41, 43, 50, 51,56 49, 55 -—-
= 3 52 46
= (&)
E £3 45 47,53
S &5 54
< aa

As it can be inferred from Table 4.7, it was obvious that the participants in
both the GeoGebra and the Paper-Pencil groups mostly used visual warrants in their
local arguments in GT 3. Only one conceptual warrant was presented in the
GeoGebra group in the 39" argument. Finally, two new condition warrants were
presented in the GeoGebra group. The warrant in the 31st argument was similar to
the warrants of the empirical-visual level argumentation, but it provided an
opportunity for generalization with the help of the measurement tools of the
GeoGebra dynamic geometry program, so it did not completely fit the empirical-
visual argumentation. The other local argument which fit the new condition was
stated in the 40™ argument. It was asserting the actions of the GeoGebra program as
justification to their claim. In the Paper-Pencil group, there were two conceptual
argumentations in the 51* and 56 arguments. In addition, there were two local
arguments (49 and 55) which were not justified by the participants in the Paper-
Pencil group. In GT 3, the participants used mathematical relations, such as circle
properties in the first question by referring to the figure and using visual

argumentations. Similarly, the solution of the second question completely required
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the interpretation of the dynamic figure, so the participants’ interpretations included
the references to the dynamic figure which resulted in an increase in the number of
the visual argumentations in both the GeoGebra and Paper-Pencil groups.

Geometry task 4 was also based on circles. Table 4.8 presents the argument

numbers of GT 4 in each local argumentation level.

Table 4.8 Distribution of local arguments of GT 4 within local argumentation levels

Local Visual Argumentation Conceptual -
Argumentation Argumentation
Arguments
which don’t
— have a
E_mpmcal- C_onceptual- warrant
visual visual
. 51,52, 53,54, 55,56, 63 47,48,57,58, 46, 49, 50,
o 61
= o 59, 62 60,
@)
5 88
g O o
2 = 57 64, 65, 69, 70, 59, 60, 62,63, 58,61
= o
é o 71,73, 74 66, 67, 68, 72
5 8T
< ge

As it can be observed in Table 4.8, the participants in the GeoGebra group
mostly used visual argumentation. There were four arguments (46, 49, 50, and 61)
which were not justified in the GeoGebra group. Finally, there was no ‘new
condition’ in both groups. In the Paper-Pencil group, the distribution of the warrants
in the visual and conceptual argumentations was approximately equal. Only one
empirical-visual argumentation (57) was used in the Paper-Pencil group. There
were two arguments (58 and 61) which were not justified in the Paper-Pencil group.
In GT 4, the first question was one that asked for proof (prove that ...) and the
second question was a dynamic figure question which required the dragging of the
points to see mathematical relations. In the GeoGebra group, the participants used
both the dragging option of the GeoGebra and the theorems and rules to justify their
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reasoning. In the Paper-Pencil group, the participants did not have a tool to check
their interpretations regarding the dynamic figure in their imagination, so they once
again resorted to conceptual rules to justify their claims.

After analyzing the different types of local argumentations task by task, the
researcher decided to examine them in terms of mathematical content since there
were two triangle tasks (GT1 and GT2) and two circle tasks (GT3 and GT4).

In the triangle tasks, it was apparent that the participants in the GeoGebra
group preferred to use mostly visual argumentation, especially empirical-visual
argumentation. On the other hand, the participants in the Paper-Pencil group
preferred conceptual argumentation. This was an expected result since the use of
GeoGebra had the potential to direct the participants to think and talk about the
figure they drew and dragged, so they talked about specific examples while solving
the geometry tasks, referring to empirical-visual argumentation. As for the Paper-
Pencil group, it was also an expected result since the participants used their
conceptual knowledge to justify their drawings and inferences.

In the circle tasks, the most preferred local argumentation by the participants
of the GeoGebra group was again visual argumentation, especially empirical-visual
argumentation. This meant that the mathematical content did not make a difference
in the use of the various types of local argumentation for the participants in the
GeoGebra group. However, the situation was different for the Paper-Pencil group.
At the time, the participants in the Paper-Pencil group mostly resorted to visual
argumentation in the circle tasks. In the circle tasks, the numbers of local arguments
in the empirical-visual and the conceptual-visual argumentation were nearly equal
in the Paper-Pencil group. This was an interesting finding since the participants in
the Paper-Pencil group could imagine the difference in the figures after dragging the
points correctly and made interpretations mostly by referring to the figures they

drew rather than using theorems and rules as a conceptual argumentation.
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CHAPTERV

DISCUSSION, CONCLUSION AND IMPLICATIONS

The aim of the present study was to investigate the nature of the
argumentation structures employed by prospective middle school mathematics
teachers while solving geometry tasks in GeoGebra and Paper-Pencil groups. In
addition, the prospective middle school mathematics teachers’ local arguments in
the global argumentation structures were analyzed in detail. More specifically, the
kinds of global argumentation structures the prospective middle school mathematics
teachers employed, the kinds of local arguments they expressed based on the flow
of argument components, and the kinds of local argumentations they utilized to
justify their arguments were investigated.

This chapter addresses the discussions based on the findings, the conclusions
and implications, and recommendations for further research studies. That is, the
striking points of the results of the study are reviewed and discussed by referring to
the related literature. The chapter is organized in three main sections based on the
three research questions of the study. The first section presents the discussion
regarding the global argumentation structures of the prospective middle school
mathematics teachers with reference to previous studies. In the second section, the
local arguments based on the flow of argument components are discussed. Finally,
in the third section, the local argumentations based on the warrant and backings of

the arguments are discussed in detail.

5.1 Prospective middle school mathematics teachers’ global argumentation

structures

In an argumentation environment, the participants constructed arguments

collectively. Some of these arguments were interconnected, meaning the claim of
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one argument stood for a data or warrant for subsequent arguments. In addition,
there were some arguments which were independent of the other arguments. That is,
the processes involved in the discussions within each classroom were based on
rationales peculiar to themselves, and thus there was a need to reconstruct and
analyze complex argumentative structures in classrooms where argumentation took
place (Knipping & Reid, 2013). Moreover, based on the assertion that formal
mathematical logic is insufficient to present the rationale in argumentation
(Knipping & Reid, 2013), the present study sought to gain insight into the whole
picture of the discourse of the geometry tasks in order to interpret the general
situation occurring in the classroom, and to understand the rationale and contextual
constraints shaping the argumentations. In addition, it was believed that analyzing
this general structure would be helpful in improving the efforts made to teach
geometry within a technology-enabled environment. More specifically, the
researchers would gain insight into the quality of the argumentations taking place in
the classroom when they analyze the big picture. It was expected that those students
who were taught in a well-directed argumentation environment would display the
concept relationships in their minds. They would even reveal the misconceptions
they inadvertently possessed. In this way, the instructors would have the chance to
gain information about their students’ knowledge and they would be able to
evaluate their students’ abilities in reasoning, justification and performance in the
topic that was covered via argumentation. In the literature, Knipping (2008)
detected this need and defined global argumentation as an anatomical structure,
which means considering the layout of argument structures as a whole. She also
considered the single arguments, schematized via Toulmin’s model, and called them
local arguments, which are discussed in the following sections.

In the present study, Knipping’s (2008) global argumentation structures were
considered, but the model was revised and developed since there were structures
among the data of the present study which did not fit any of these global
argumentation structures. Therefore, names were created for these structures. Thus,

data analysis revealed five main global argumentation structures in a geometry
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context: Source-Structure, Reservoir-Structure, Spiral-Structure, Line-Structure and
Independent Arguments-Structure.

When the global argumentation structures of the GeoGebra group and the
Paper-Pencil group were compared task by task, it was seen that there were some
similarities and differences between the two groups. The first difference identified
between the groups was that in geometry task 1, there were one reservoir-structure
and one spiral structure in the GeoGebra group, while there were one reservoir-
structure, one line structure and eight independent arguments in the Paper-Pencil
group. When the data were examined in detail, the high number of independent
arguments in the Paper-Pencil group drew attention. The participants in the Paper-
Pencil group drew the figures with measurement tools, such as the ruler, protractor
and compass, so their drawings were not precise as in the GeoGebra drawings.
Therefore, they were not sure about some of the interpretations they made while
they were solving the geometry task. As a result, they stated some disconnected
facts while they were discussing among each other. Thus, the reason underlying the
use of many independent arguments in the Paper-Pencil group could be due to the
absence of a reliable tool like GeoGebra to justify their drawings. In addition, one
of the participants (Giiler) mentioned several assumptions at the beginning of her
solution for geometry task 1, which could not be justified till the end of the solution.
These assumptions were solely stated since they could not be checked via a tool
such as GeoGebra in the Paper-Pencil group. Thus, another reason for the high
number of independent arguments could be attributed to the assumptions of Giiler in
her solution since other participants talked about her assumptions frequently and
those arguments were not connected to the whole structure and remained as
independent arguments. The second difference between the groups was the
existence of the spiral structure, which included parallel argumentation streams, in
the GeoGebra group. The existence of parallel argumentation streams could be
attributed to teacher facilitation since the teacher asked the other pairs in the group
to explain their solutions, so the task was solved repeatedly, which led to the
emergence of parallel argumentation streams. The conclusion of these parallel

argumentation streams was the target conclusion, so the global argumentation
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structure had the characteristics of the spiral structure. The third difference was the
existence of the line structure in the Paper-Pencil group. This argumentation
structure existed at the beginning of the discussion and included arguments related
to the drawing of the shape in the task. Therefore, the claims and subsequent data
(claim/data) were connected to each other like a line and the line structure was
constructed. However, in the GeoGebra group, the drawing process was connected
to the reservoir-structure since the participants discussed the solution by drawing
and dragging the shape simultaneously. As for the similarity between the two
groups, it was revealed that in both groups the reservoir-structure was existent since
both groups moved backwards in their reasoning process, which is a characteristic
of the reservoir-structure. The reason could be rooted in the detailed solution of the
tasks and turning back to clarify some missing parts which were previously
discussed in both groups with the help of the teacher’s facilitation.

The global argumentation structures of the GeoGebra and the Paper-Pencil
groups were similar when the global argumentation structures of geometry task 2
were compared. That is, in the Geogebra group, three spiral structures and two
independent arguments were observed, while in the Paper-Pencil group, two spiral
structures, two independent arguments, and one source-structure emerged. The
spiral structures in both groups emerged either when the teacher asked the other
groups for another solution to the task or when the nature of the task encouraged
solving the problem again from the beginning by changing one of the properties.
For instance, the first question related to triangles asked the relationship between
segments |EG| and |GF|, while the second question asked the relationship between
segments |[EG| and |GF| when triangle ABC was an isosceles or an equilateral
triangle. In the first question, the participants found a general relation that
|EG| = |GF|, and then they solved the question again by drawing an isosceles
triangle ABC. Subsequently, they proceeded with the solution by drawing an
equilateral triangle ABC. In the end, they found the same relationship, and the spiral
structure was formed during the argumentation. The only difference between the
global argumentations of the two groups was the emergence of the source structure

in the Paper-Pencil group. When the data was examined, it was seen that the
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participants in the Paper-Pencil group had used Menelaus’s theorem and similarity
in triangles to justify their claim that [EG| = |GF|. Specifically, different participants
proposed different parts of the solution by using theorems and mathematical
relationships, and then they reached the target conclusion. Thus, the arguments were
flowing from different sources. As a result, the parallel arguments occurred at the
beginning of the solution, which was a characteristic of the source structure. The
reason for the emergence of a source-structure in the Paper-Pencil group could be
the use of algebraic solutions instead of dynamic drawing in the Paper-Pencil group.
More specifically, when the shape of the argumentation was examined, it was seen
that the opinions of participants were flowing as if arising from a variety of origins
and this led to a funneling effect which was said to be apparent in source-structure
argumentations (Reid & Knipping, 2010). As a result, the argumentation structure
was named as source structure in the Paper-Pencil group.

The third geometry task was a circle task and the global argumentation
structures were again similar to those in geometry task 2. In both groups, the
reservoir-structure, the line-structure and independent arguments were observed, but
the only single difference was the existence of one source-structure in the Paper-
Pencil group. The reason for this was the existence of the parallel argumentation
streams at the beginning of the solution via collective argumentation. That is, the
initial properties were stated by different individuals simultaneously, and then the
target claim of the structure was stated collectively in the argumentation. In the
Paper-Pencil group, the solution of the geometry task was justified by theorems or
relations proposed by different individuals, while in the GeoGebra group, the
participants also considered the options provided by the GeoGebra dynamic
program. That is, when the participants focused on the actions of the GeoGebra
program, they rarely interrupted the participant solving the task on the board until
the end of the solution. Therefore, in the GeoGebra group, most of the time parallel
argumentations were not placed at the beginning of the argumentation (parallel
arguments at the beginning of the solution is a characteristic of a source structure).
An interesting finding was that both groups used line-structure to answer the same

part of the question, which asked for the area of triangle FGH. This could be
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accounted for with the nature of geometry task 3 and the properties of the circle. In
geometry task 3, the part in which the participants were trying to find the area of
triangle FGH, the solution required step by step connected arguments based on the
properties of the circle. That is, they found the measure of the length of an arc, and
then they used that value to find another arc or length. In this way, the claims of the
arguments became the data of the subsequent arguments (claim/data) repeatedly
until the target solution was reached. This led the participants of both groups to use
the line structure in this part. Another finding was the existence of many
independent arguments in both groups. In both groups, the researcher encouraged
the participants to express their thought all the time during the argumentation.
Therefore, there were many independent arguments which were not connected to
the solution directly but were the bases of the target conclusion. Thus, this finding
could be linked to the thinking aloud of the participants most of the time with the
encouragement of the instructor to express their opinions.

The last geometry task was again a circle task which required dragging the
segments. There were again both similarities and differences between the global
argumentation structures emerging in the GeoGebra group and the Paper-Pencil
group. Two spiral-structures, five independent arguments, one source-structure and
one reservoir-structure emerged in the GeoGebra group, while three spiral-
structures and five independent arguments emerged in the Paper-Pencil group. In
this task, different solutions were encouraged by the teacher, so the spiral-structure
was frequently used in both groups. In addition, the task was a bit difficult, so
students proposed some ideas (although they were not sure that the idea would
work) which were not related to the solution but seemed to contribute to the
solution. Hence, the number of independent arguments in both groups was high. On
the other hand, the differences between the groups were the emergence of the
source-structure and the reservoir-structure in the GeoGebra group. The participants
in the Geogebra group were brainstorming by dragging the segments and they
analyzed the shape in detail with the help of the GeoGebra. Therefore, the reasoning
moved backwards in the logical structure and then forward again, leading to the

emergence of the reservoir-structure. In addition, the ideas were stated by different
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participants, while an individual was drawing the shape on the board, and the
parallel arguments were placed at the beginning of the solution process. Thus, it
was observed that a source structure was produced within the argumentation of the
GeoGebra group. Ultimately, it could be deduced that the existence of GeoGebra
contributed to the emergence of the source-structure and the reservoir-structure in
the GeoGebra group in geometry task 4 since the task required changing the shape
by dragging and interpreting the new shape based on the given properties. That is, it
was necessary to drag the shape and then return to the previous arguments and then
move forward in order to interpret the new shape correctly, which led to the
emergence of the reservoir-structure.

After examining the findings task by task, a general inference was made by
considering the reasoning in all the geometry tasks and the studies in the literature.
There were four global argumentation structures which were proposed in the
context of proof in the literature (Knipping, 2008; Knipping & Reid, 2013; Reid &
Knipping, 2010): source-structure, reservoir-structure, spiral-structure and
gathering-structure. However, within the argumentations of the present study only
three of these global argumentation structures emerged. It was believed that
examining global argumentation structures would facilitate the understanding of the
rationales and contextual limitations of participants’ argumentations, which, in turn,
would provide researchers with insight into the features of the proving processes
utilized in the classrooms. Ultimately, teaching proof could be improved (Reid &
Knipping, 2010). In addition, the analysis of argumentation structures was believed
to uncover different classroom cultures and approaches of teaching (Reid &
Knipping, 2010). They mentioned that their findings were not stable and strict as
they could be affected by the cultures in which they were implemented, the nature
of the mathematics content and the application of teachers’ goals (Reid & Knipping,
2010). The findings of the current study were interpreted taking all these into
consideration.

An interesting finding of the present study was the emergence of new global
argumentation structures that did not exist in the literature in the geometry context,

namely the line-structure and independent arguments-structure. These new
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structures clearly demonstrated the prospective middle school mathematics
teachers’ nature of argumentation in geometry in the Turkish context. Specifically,
these new global argumentation structures did not have a structure like a complex
net of connected arguments. Instead, the line-structure was a simple flowing
structure which had arguments connected to the claim/data. As can be inferred from
its name, independent arguments entailed disconnected facts, which were proposed
by the participants when they were thinking aloud at any time of the argumentation.
The interesting observation was the high number of independent arguments in
almost all the geometry tasks. These single arguments indicated that the prospective
middle school mathematics teachers could not see the relationships among concepts
and, thus, could not reach the target solution. That is, the independent arguments
stood alone during the collective argumentation as disconnected facts and the bonds
between those arguments could not be constructed effectively. Although the
independent arguments could be regarded as natural since the participants were
thinking aloud, the connections of these independent arguments were not
constructed even at later stages during the argumentation. That is, it could be
deduced that both in the GeoGebra group and the Paper-Pencil group, the
prospective middle school mathematics teachers were prone to construct simple
logical relations (not complex structures) and the complex structures rarely emerged
only with the support, facilitation and questioning of the instructor. At this point,
the quality of the mathematical reasoning that prospective middle school
mathematics teachers presented should be considered. In the literature, one of the
crucial aspects of learning and doing mathematics was stated as mathematical
reasoning (Conner et al. 2014b) and it was defined as “purposeful inference about
mathematical entities or relationships” (Conner et al., 2014b, p.183). As understood
from the definition, mathematical reasoning is based on seeing relationships and it
is a crucial characteristic that each mathematics teacher should have in order to do
mathematics with students. When the simplicity of most of the argumentation
structures of the participants is considered, it is clear that the prospective middle
school mathematics teachers’ mathematical reasoning could be regarded as weak

since they did not notice and present the complex mathematical relationships in
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their arguments. The reason for the low level mathematical reasoning of the
prospective middle school mathematics teachers could be their unfamiliarity with
argumentation in their previous educational experiences. They were not used to
learning mathematics and geometry through argumentative activities during their
education. Another reason for poor mathematical reasoning of the participants
might be the national examination system and the curriculum applied in Turkey. In
any country, the examination system directs the education system and the applied
curriculum at schools. In Turkey, students are subjected to multiple-choice exams
several times throughout their education. Therefore, study of mathematics is based
on memorizing the rules and doing drill questions most of the time in Turkish
schools. This leads to the situation where students do not engage in high-level
mathematical reasoning and proof, which are said to be essential in student learning
(NCTM, 1991, 2000). Moreover, students in Turkey rarely engage in classroom
discussions which require student interaction and social learning (Hewit, 2010;
Prusak et al., 2012; Vincent, Chick & McCrae, 2005; Yackel, Ramussen & King,
2000). The participants of the present study were also educated with the mentioned
curriculum and practices, without high-level reasoning experiences. Although, they
obtained the university education, they still prone to behave according to their past
habits of background education. Considering all of these background experiences, it
could be deduced that their low-level mathematical reasoning could be the source of
the high number of independent arguments in their argumentation.

Another important finding was the relatively frequent use of the spiral-
structure among the global argumentation structures existent in the literature.
Consistent with the characteristics of the spiral-structure, the parallel argumentation
streams ended with the target conclusion, which means the parallel argumentations
were located at the end of the discussion (Knipping & Reid, 2013). In particular, the
target conclusion of the discussion was reached by means of different solutions and
each solution corresponded to one of the parallel argumentation streams. The reason
for the existence of the spiral structure more than the other structures (source-
structure and reservoir-structure) could be attributed to teacher facilitation. The

teacher promoted alternative solutions by asking ‘Is there any other different
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solution?” all the time and invited each pair to the board to present their solution.
Thus, the task was solved again and each solution corresponded to one of the
argumentation streams. This finding revealed the importance of teacher facilitation
in argumentation (Conner, 2007a; Forman et al. 1998; Heinze & Reiss, 2007,
Hunter, 2007; Yackel & Cobb, 1996). If the instructor had not asked for another
solution, there would not have been parallel argumentation streams and so the
global argumentation structure could be like a line structure which had only one
solution. In the present study, the instructor supported student interaction, and
raised the students’ attention to hear all the argument elements by asking for
justification all the time (Cross, 2009). Other teacher actions performed in the
present study were following up on each group in the discussion to encourage
student participation, providing hints when students could not proceed further and
avoiding the use of evaluative statements which had the potential to end the
discussion (Cross, 2009). Furthermore, the questioning (Kosko et al., 2014,
Vincent, Chick, & McCrae, 2005; Wood, 2003) and revoicing (Chapin, O’Connor
& Anderson, 2003; Conner, Singletary, Smith, Wagner, & Francisco, 2014a;
O’Connor & Michaels, 1996) methods were used all the time in order to promote
argumentation. Thus, the researcher’s facilitation for alternative solutions and using
argumentation promoting actions might have contributed to the high number of the

spiral-structure in both groups in the present study.

5.2 Local arguments of prospective middle school mathematics teachers

The findings related to the local argument types are important since they
reveal how the prospective middle school mathematics teachers reason and what
they mostly pay attention to during the construction of local arguments. As
mentioned in the literature section, the different types of arguments were examined
in some studies (Aberdein, 2005; Baccaglini-Frank & Mariotti, 2010; Viholainen,
2011). The researchers proposed formal arguments and informal arguments
(Viholainen, 2011), regular arguments and critical arguments (Aberdein, 2005), and

instrumented arguments (Baccaglini-Frank & Mariotti, 2010). In the present study,
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the analysis of the flow of argument components was conducted in order to seek
any existing pattern in the arguments constructed by prospective middle school
mathematics teachers in the geometry context. Thus, in this section, the findings of
the second research question related to the local arguments based on the flow of
argument components are discussed.

The findings revealed nine types of local arguments constructed by
prospective middle school mathematics teachers: DCW, DWC, CDW, WDC, CD,
DC, CW, WC, C. Letter D represents data, letter C represents claim and W
represents the warrant of the argument. The names of the local argument types were
given by considering the order of the argument component’s emergence during the
discussion. For instance, the Data-Claim-Warrant (DCW) type of argument was
constructed in such a way that the data was stated first, and then the claim, and
finally the warrant of the argument were stated. After the identification of the local
argument type of all the arguments, the number of times each type emerged were
compared. The most frequently used local argument type was Data-Warrant-Claim
(DWC). This was an expected result since the participants mostly stated the data of
the argument first while they were drawing the geometric shape, and then they
justified their argument to show how the data led to the claim of the argument and
lastly they stated their claim. The second and third mostly used local argument
types were DCW and CW, respectively (their frequency was quite close to each
other). In DCW, the participants started by mentioning the data, and then they stated
their claim and finally justified their reasoning. In CW, which was similar to the
previous one (DCW), the participant made a claim and then justified his/her claim
but did not state the data most probably since the data seemed taken-as-shared to
him/her during the argumentation. As mentioned in the literature, taken-as-shared
knowledge exists in class discussions (Simon & Blume, 1996; Yackel & Cobb,
1996; Yackel, Ramussen, & King, 2000). Similarly, in the present study, the
participants continued their discourse without stating some parts of the arguments.
In the other local argument types, which were Claim-Data (CD), Data-Claim (DC),
Warrant-Claim (WC) and Claim (C), a similar situation could be mentioned.

Consistent with the taken-as-shared knowledge definition proposed by Yackel

182



(2002), the participants could have thought that the warrant and/or data of the
argument were mentioned and were understood with prior justifications by the rest
of the participants, so they may not have felt the need to restate it while discussing.
This was a striking finding to be considered since teachers could confront such
situations during the argumentation in their future classes. When they do so, they
should not immediately think that the student does not know the related concept and
has memorized the method of solution when se/he does not mention the warrant or
data of the argument. The student could think that it was taken-as-shared so there is
no need to restate that information. Thus, prospective middle school mathematics
teachers in the present study might know the absent components of the arguments in
CD, DC, WC and C types of local arguments but think that it was taken-as-shared,
so they might not have felt the need to restate them. In order to request detailed
information about missing argument components, some sample questions to be
asked were suggested in the literature: “Why do you say that?” (Vincent, 2002,
p. 147), “How are the two things the same? Does this make sense? ... Does it always
work? Why does this happen?” (Wood, 2003, p. 440), and “Would you tell us what
you thought? How did you decide this? Are there patterns? Is there a different way
you can do this?” (Vincent, Chick & McCrae, 2005, p. 284). If | had noticed these
absent components in the current study and asked the mentioned questions to the
participants for additional information at the right time (as soon as the argument
was stated), | would have been sure about their knowledge regarding those
arguments.

The remaining local argument types (CDW and WDC) were observed a few
times in the current study. Based on the flow of collective argumentation, the place
of the components changed unexpectedly, leading to the emergence of these local
argument types. For instance, in WDC the warrant was stated first, and then
followed the data and the claim. However, these types could not be accepted as the
characteristic to the local arguments produced by prospective middle school
mathematics teachers within a technology-aided environment since they were stated
rarely. Instead, it could be deduced that the prospective middle school mathematics

teachers generally use DWC, DCW and CW local argument types in a geometry
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context in a technology-aided environment. The researcher requested from the
participants to present justifications to their claims all the time at the beginning of
the implementation. Therefore, the participants were aware of the fact that they
should present evidence (warrant) to their arguments. However, they could have
forgotten to mention their warrant in some arguments since they were not familiar
to argumentation in their ordinary lessons. At this point, the researcher encouraged
them to justify their conclusion. Thus, sometimes warrant was presented before
their claim (DWC), and sometimes after the claim (DCW). Moreover, they could
think that the data was taken-as-shared in some situations. At those times, they
might not state the data of their argument, so the local argument type they used
became CW.

When the GeoGebra and Paper-Pencil groups were compared, it was observed
that the frequency of local arguments in each local argument type was similar.
Therefore, it was concluded that use of technology did not make a significant
change in the flow of argument components in the argumentation of the GeoGebra
group. Moreover, the local arguments produced by both groups were analyzed for
each geometry task. The findings revealed that the two groups’ local arguments
were similar in each geometry task also. The only difference was in geometry task 1
where the most frequently used local argument type in the GeoGebra group was
CW, while it was DWC in the Paper-Pencil group. The GeoGebra group
participants did not talk about the data of their arguments while they were drawing
and dragging the shape of the first geometry task, which could be attributed to the
interaction with the GeoGebra screen. Even though they were presenting an
explanation to the class, they were inclined to remain quiet while they were drawing
the shape since they were face to face with a computer screen. On the other hand,
the reason for stating the claim component first might be due to the degree of
difficulty of geometry task 1. More specifically, the dragging option of the
GeoGebra program facilitates solving geometric problems. In the literature it was
asserted that dragging allows individuals to notice geometrical relationships hidden
in static diagrams (Gonzalez & Herbst, 2009). As geometry task 1 was relatively

easy for the dynamic geometry group, they could present their claim immediately
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after drawing the shape of the task. Afterwards, the participants searched for
relationships by dragging the shape. Subsequently, the justification was required by
the instructor (if the participants hadn’t stated a warrant). Thus, the local argument
type most frequently used in geometry task 1 was CW in the GeoGebra group. The
paper-pencil group participants also discussed the drawing process of the task.
Therefore, they emphasized the data component in their arguments. Thus, their
argumentation was ordinary like in the other three geometry tasks.

Lastly, the local arguments were examined based on the geometry contents,
which were triangles and circles. It was concluded that again each group had a
similar distribution for different types of local argument, which means each group
frequently used DWC, then DCW and finally CW types of local arguments. Thus,
the existence of technology in one group did not make a significant difference
between the types of local arguments used by prospective middle school
mathematics teachers when the content of the geometry tasks were considered. The
flow of argument types might be related to the reasoning process of the participants.
More specifically, the participants possess a habit in expressing their opinions
which they obtained throughout their entire education. For instance, they did not
learn by an inquiry based method like argumentation as it was not part of the
Turkish middle school mathematics curriculum. Therefore, although the
environment in which they were solving the geometry tasks were not the same
(GeoGebra and Paper-Pencil), their approach to the tasks might have been similar.
Therefore, their expressions of local arguments were overall similar. In addition, the
order of the argument components might change because of the questions asked by
the instructor and the other participants. That is the instructor’s directions could
affect the presentation of the ideas of the participants. For instance, if the instructor
asks the proof of a rule, the rule will be claim of the argument (stated first) and the
participants will search for the data and warrant of that argument. In this case, the
local argument type could be CDW, CW or CD. In the literature, there was no study
investigating the pattern about the flow of argument components, so this study

could be regarded as a preliminary study focusing on this issue in argumentation in
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a technology-aided environment. Therefore, it could open the door to further studies

in different areas of topic and with participants from different grade levels.

5.3 Local argumentations of prospective middle school mathematics teachers

The last issue to be discussed is the third research question related to the local
argumentations of the prospective middle school mathematics teachers. Since
argument is a product while argumentation is a process (Krummheuer, 1995;
Vincent, 2002), local argument is considered different from the local
argumentations. In local arguments types mentioned in the previous section, the
local arguments were interpreted as a whole. However, in local argumentation
analysis, the characteristics of the warrant (and backing) component, in other words
the justification part of the arguments, were analyzed. As asserted, justification is
the indispensable effort of argumentation (Cross, 2009), and the present study seeks
to find out whether the prospective middle school mathematics teachers prefer a
specific kind of justification or not. In order to investigate this issue, the
justification of the participants were analyzed based on Knipping’s (2008)
classification, which divides local argumentations into two: visual argumentation
(empirical-visual and conceptual-visual) and conceptual argumentation. As
previously mentioned, in visual justification, the warrants include a reference to the
figure or diagram and the conclusions are drawn from that figure (Knipping, 2008).
On the other hand, in conceptual argumentation, the warrants are formed by means
of mathematical concepts, mathematical relations and references to
theorems/definitions/axioms/rules of logic (Knipping, 2008). In addition, visual
argumentation is divided into two as empirical-visual level (argument is based on a
concrete diagram and the relations can be perceived through senses of the
individual) and conceptual-visual level (diagram can be accepted as the
representation of the idea and generalization can be made).

Initially, the local argumentations of the prospective middle school
mathematics teachers were compared task by task. In geometry task 1 and 2 (GT1

and GT2), which were triangle tasks, the local argumentations of the groups
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differed. The participants in GeoGebra group mostly used visual argumentation
(empirical-visual in GT1, conceptual-visual in GT2), while those in the Paper-
Pencil group used conceptual argumentation. On the other hand, in GT3 and GT4,
the groups performed similar local argumentations. Specifically, both groups
preferred visual argumentation in the circle tasks.

In GT1, the participants in the Paper-Pencil group used concepts, theorems
(Menelaus’ theorem and Angle-bisector theorem), rules and mathematical relations
(triangle similarity and triangle properties) to justify their arguments while the ones
in the GeoGebra group focused on their drawings and dragging with GeoGebra to
make justifications. The use of dynamic geometry might have naturally encouraged
the participants in the GeoGebra group to use empirical conjectures rather than
theoretical ones (Hoyles & Healy, 1999). In a proof study by Healy (2000), it was
stated that the use of CABRI helped the students to identify geometrical properties
but did not contribute to their proof since they believed that the connection between
the empirical and theoretical cognitive domain could not be constituted via
experimental actions. Contrary to this idea, in the current study, the participants in
the GeoGebra group accepted their empirical actions as justifications to their
arguments. Therefore, it can be deduced that the participants in the GeoGebra group
could have the opinion that exploratory activities in which the theorem can be
experimentally verified can be accepted as evidence (Chazan, 1993). Thus, the
participants who determined the mathematical relations via their drawings on
GeoGebra thought that they proved the relationship but in fact they remained at the
empirical-visual level of argumentation. Ultimately, it could be deduced that the
difference in justifications of the two groups when the warrants and local
argumentations were considered in GT1 might have derived from the existence of
the GeoGebra tool in the classroom. Similarly, in GT2, the participants in the Paper-
Pencil group focused on the mathematical relations to be able to draw the best
figure to solve the task, so their local argumentation was mostly conceptual. In
contrast, the GeoGebra group dealt with dynamic relations with the help of
GeoGebra, so their argumentation was mostly visual. As expected, the participants

in the GeoGebra group were directed to think and talk about the figure they drew
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and dragged by means of GeoGebra, but this time, they could sometimes make
generalizations from their drawings by presenting conceptual-visual warrants to
their claims. In the literature, it was asserted that the students might not be familiar
in how to present formal proof and justification in a technology-aided environment
and they might primarily use technology for explorations via dynamic geometry
programs (Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith,
2010). Therefore, the reason why the justifications of the GeoGebra group were
based on visual argumentation could be their unfamiliarity in justifying at
conceptual level in a technology environment. However, in the Paper-Pencil group,
the situation was different. They used both visual and conceptual argumentation
although most of their arguments were conceptual. It was an expected result since
the participants in the Paper-Pencil group were familiar in providing conceptual
justifications by using paper and pencil since they had the experience of providing
proof using paper and pencil in their ordinary classes where they used paper and
pencil.

When the local argumentations in the circle tasks (GT3 and GT4) were
analyzed, it was concluded that both groups showed similar performance, which
was an unexpected finding. The circle tasks required more dragging and it was not
so easy for the students to visualize the final shape to appear after dragging.
Nevertheless, the participants in the Paper-Pencil group were as successful as the
participants in the GeoGebra group in these dynamic problems. Since the Paper-
Pencil group did not have a tool to check their drawings after dragging, they also
used conceptual argumentation as much as visual argumentation in GT4. This
finding was quite interesting since the Paper-Pencil group could visualize the
differences in the shape after drawing the desired changes via paper and pencil. This
finding could be accounted with the participants’ own ability, such as dynamic
visualization ability, which was defined in the literature as forming moving pictures
in the mind (Harel & Sowder, 1998). In the literature, it was claimed that
individuals who have a high level of dynamic visualization ability could reason
about the fundamental properties of moving, shrinking or rotating figures in their
minds (Harel & Sowder, 1998). Thus, it is highly likely that the participants in the
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Paper-Pencil could visualize the drawings after the dragging occurred in their minds
and they drew the correct figures because of their high dynamic visualization
ability. Another possible reason could be that the geometry task was not so difficult
for the participants in the Paper-Pencil group, so they could predict the necessary
changes on the shape without the help of GeoGebra.

In summary, when the local argumentations of the participants were examined
in general, it was concluded that the prospective middle school mathematics
teachers in the GeoGebra group used empirical-visual argumentation most
frequently while those in the Paper-Pencil group were prone to use conceptual
argumentation. One of the reasons underlying the use of empirical-visual warrants
by the GeoGebra participants could be the use of a dragging option of the dynamic
geometry program. With the help of dragging, they could make interpretations
based on the specific shapes that they constructed. That is, they talked about the
measurements of the lengths, angles and arcs that they drew via GeoGebra.
Therefore, they sometimes did not need to explain the relationships they explored
with theoretical support (Chazan, 1993). Another reason for underlying the use of
empirical-visual warrants by the participants of GeoGebra group might be their
unfamiliarity in providing theoretical evidence in a technology environment
(Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith, 2010). On
the other hand, the participants in the Paper-Pencil group needed to explain the
relationships that they noticed with theoretical support, which corresponds to
conceptual argumentation. Specifically, they defended their opinions by using
axioms, theorems, rules and mathematical properties that they knew in order to
generalize their solutions since they did not have a tool like GeoGebra to show the
precise drawings. As indicated in the literature, the use of empirical evidence, such
as dragging and measuring for justification, is a critical issue for the mathematics
educators (Arzarello et al., 2002; Chazan, 1993; De Villiers, 2003; Healy & Hoyles,
2000). Although Hoyles and Healy (1999) asserted that DGS was not beneficial in
proving theorems since it promoted empirical conjectures in formal proof, many
researchers argued that DGS was useful in proving (Christou et al., 2004; Heinze &
Reiss, 2007; Vincent, 2002). For instance, Vincent (2002) claimed that dynamic
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geometry software was highly suitable in order to bridge empirical and deductive
reasoning. Similarly, Christou et al. (2004) stated that DGS maotivated students and
bridged inductive exploration and deductive proof. In addition, Heinze and Reiss
(2007) accepted empirical justifications as validation in geometry context although
experimentally generated results did not seem to offer explanation for the observed
relations. In line with the studies in the literature, it could be deduced that
GeoGebra was useful in argumentation in the geometry context but using solely
empirical evidence, such as dragging and measurement, should not be accepted
sufficient for the solution. As Arzarello et al. (2002) asserted, students could be
motivated to prove why a certain proposition is true after seeing that it is true with
DGS. Then a theoretical support could also be desired from students for better
conceptual understanding.

Finally, the findings of the present study revealed local argumentations which
did not fit into Knipping’s (2008) classification of local argumentations; thus, they
were named as the givens as justification, GeoGebra measurement as justification,
and GeoGebra actions as justification. As can be understood from its name, in
arguments named as the givens as justification, the participant showed what was
given in the geometry task as evidence. In some other arguments, the participants
showed a measurement of an angle, side or any length via GeoGebra as evidence,
which was accepted as a new condition and called GeoGebra measurement as
justification. Similarly, if the participant provided an evidence of a dragging,
tracing, or some other actions of GeoGebra, it was a new condition called
GeoGebra actions as justification. These were the justifications that the prospective
middle school mathematics teachers used as evidence to their claims in some of
their arguments. In fact, these justifications were not so strong to support the claims
of the arguments since they were based on the givens in the geometry task or the
actions and measurements of the GeoGebra without any logical reasoning and
theoretical support (Chazan, 1993). The reason underlying the presentation of such
justifications could be that the participants who had the GeoGebra tool did not need
to provide conceptual explanations in these rare situations when they saw the

relationship with the help of GeoGebra (Chazan, 1993). Instead, they demonstrated
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GeoGebra measurements and the givens of the tasks as authority and evidence for
their arguments. These new justifications were rare when the number of all
arguments were considered. Namely, it could be deduced that these few
justifications did not represent the general tendency in the justifications of
prospective middle school mathematics teachers in technology enhanced
argumentation. However, this finding could be taken into consideration in further

studies, if encountered by other researchers.

5.4 Implications

As indicated above the prospective middle school mathematics teachers did
not use high level of mathematical reasoning in argumentation. Literature review
illustrated that mathematical reasoning could be developed with computer-based
applications, educational plays, concrete manipulatives, daily life examples,
interactive argumentation and dealing with open-ended problems (Erdem, 2015).
Thus, these findings recommend the urgent need for the reconstruction of the
courses offered in the teacher education programs to develop prospective middle
school mathematics teachers’ mathematical reasoning and to provide them with
argumentation skills. In Turkey, argumentation is taught in the courses offered in
science and technology teacher education programs but there is limited information
regarding argumentation in the content of courses offered in the middle school
mathematics teacher education program. Ultimately, argumentation, which requires
higher order thinking, should be prevalent in middle school mathematics teacher
education programs like in the science teacher education programs in Turkey. For
this purpose, educators in middle school mathematics education program should
offer both must and elective courses including the applications to bring in the
argumentation skills to prospective middle school mathematics teachers. That is,
prospective middle school mathematics teachers should practice argumentation in
technology based applications, concrete manipulative applications, interactive
argumentation applications and open-ended problem solutions (Erdem, 2015) and

develop the necessary skills to be able to orchestrate an argumentation class. These
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skills were mentioned in the literature as encouraging students to participate in
argumentation (Cross, 2009; Staples, 2007), providing challenging questions to be
discussed for in-depth thinking (Cross, 2009), not using evaluative statements to
student responses so as not to make them feel fear of being judged (Mercer, 2000),
encouraging students to convince others about their claims (Martino & Maher,
1999), asking the key questions/warrant-prompts to promote justification all the
time (Boero, 1999; Kosko et al., 2014; Martino & Maher, 1999; Owens, 2005),
revoicing to clarify the content, to explain the reasoning further or to redirect the
argumentation (Forman et al., 1998). If the undergraduate course contents were
revised in such a way that the mentioned skills were practiced by the prospective
middle school mathematics teachers, the future teachers would be equipped with the
necessary skills to provide an argumentative environment to their students to
develop higher level of mathematical reasoning and, thus, a high level of
achievement in mathematics.

Another possible solution to improve mathematical reasoning of teachers
may be changing the national examination system. The national exams may be
redesigned to ask students open-ended problems to promote higher order thinking
(Hmelo & Ferrari, 1997). This would naturally result in reforms in school programs.
In this way, the mathematics curriculums could be revised in such a way that
students would find the opportunity to take place in argumentative environments in
which challenging problems are discussed collectively in order to engage in higher
order thinking practices while preparing for the national exams.

Based on the conclusions, the prospective middle school mathematics
teachers appeared to be using the givens of the task, the GeoGebra measurement
and GeoGebra actions in order to give evidence to their arguments. Based on the
literature, these kinds of justifications were criticized by the researchers and were
not regarded as satisfying a justification (Chazan & Houde, 1989; Gonzalez &
Herbst, 2009; Noss & Hoyles, 1996). Therefore, the prospective middle school
mathematics teachers could be informed by their instructors that it is not enough to
use GeoGebra measurement, the givens of the tasks and geogebra actions as

justification in argumentation classes. They should be aware of that they should also
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support their claims with not only via visual evidences (visual argumentation) but
also with theoretical evidences (conceptual argumentation). At this point, the role of
instructor is important. More specifically, when the prospective middle school
mathematics teachers use such visual argumentations, the instructors should
question the thoughts in their minds by asking the questions mentioned above, such
as “Why do you think so?’ (Arzarello et al., 2002). In this way, they would have the
chance to think about their claim again to produce more valid evidences. Another
possible way to make participants in GeoGebra group to share their ideas
conceptually could be preparing a step-by-step worksheet directing them to search
for theoretical evidences after presenting their visual argumentation with GeoGebra
illustrations. Thus, critical questions could be prepared to make them think deeper
on their visual drawings.

One more suggestion could be the limitation regarding the use of GeoGebra
buttons. More specifically, the buttons such as ‘drawing a rectangle, drawing a
midpoint, drawing an equilateral triangle’ which enables the basic drawings could
be inhibited during the solution of the geometry tasks. In this way, the participants
have to think deeply about the properties of the shapes in order to draw the correct
figures. By this way, prospective middle school mathematics teachers could be
encouraged to use logical reasoning to provide conceptual arguments besides visual

argumentation structures.

5.5 Recommendations for further research studies

The current study focused on the nature of argumentation structures of
prospective middle school mathematics teachers in technology and paper-pencil
environments. Specifically, their global argumentations, local argument types and
local argumentations were investigated in two groups: GeoGebra group and Paper-
Pencil group. In the view of the results, the offered recommendations for further
studies are explained in the following paragraphs.

This study contributed to the literature with the new global argumentation

structures (line-structure and independent-arguments structure) in geometry context.
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Therefore, the validity of these structures in mathematical argumentation is an issue
to be tested with new models. These structures could also be searched in other
mathematics topics in order to talk about its generalizability. Thus, new research
studies could be conducted in order to test these global argumentation structures.

The results of the present study were limited to the data collected from one
public university in Ankara. However, the argumentation structures of the
individuals might show variation from one university to another and even from
culture to culture. Argumentation method is based on convincing, supporting and
even refuting others. Therefore, its application in different cultures and contexts
might lead to different results (Reid & Knipping, 2010). For instance, in the
Japanese culture, people communicate to provide harmony, and disagreements are
believed to be a threat to the harmony (Sekiguchi, 2000). Thus, Sekiguchi (2000)
claimed that Japanese people avoid explicit disagreement statements in public.
Therefore, it is believed that implementation of the argumentation method for
teaching mathematics in the Japanese culture would be difficult (Sekiguchi, 2000).
Similar situations could be confronted in other cultures too. Therefore, further
research might be conducted to investigate the applicability of the argumentation
method at the international level.

In the present study, the contents of the argument components were not
analyzed. A more comprehensive study might be conducted to analyze the contents
of warrants, data and rebuttals. In this way, the type of knowledge prospective
middle school mathematics teachers use in order to justify their claims, to provide
base for their arguments, and to rebut the constructed arguments might be revealed.
A research study from this aspect could be beneficial for comprehending the
rationale that shapes the argumentation of prospective middle school mathematics
teachers, and thus, could help improve the geometry teaching in technology
supported and paper-pencil based argumentation environments.

Lastly, the present study was based on geometry tasks entailing two topics:
triangles and circles. Hence, the content of the findings was limited to these topics.
Moreover, there were only 4 geometry tasks. In order to further explore various

aspects of argumentation in the geometry context, geometry tasks related to other
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concepts such as quadrilaterals and polygons could be prepared in technology and
paper-pencil environments. Moreover, the number of tasks could be increased in

order to address more aspects of the topics comprehensively.
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APPENDICES

A: INTERVIEW QUESTIONS OF THE MAIN STUDY

Interview questions prepared for the focus groups (GeoGebra group)

For triangle activities (GeoGebra group)

1.
2.

Which high school did you graduate from?
Do you think that you are successful in Geometry? What are the grades you got
from the geometry courses you took from the department of Mathematics?

(Calculus, Analytical Geometry, Elementary geometry).

. What was your grade point average (GPA) in the last semester?

. Was the GeoGebra helpful while you were solving the two triangle tasks? If yes,

in which aspect was the GeoGebra helpful? (Did you use the GeoGebra program

to check your solution or to solve the problem?)

. Did GeoGebra help you to discover the things that you were not able to see in

the drawings that you made with paper and pencil? (Hint: In geometry task 1,
you did not notice that point H could be still on the line passing through the

angle bisector of angle A when it was outside triangle ABC.)

. Have you encountered any difficulties when you were using the GeoGebra

program? If yes, in which situations? (Did you have difficulties while drawing
the givens of the tasks? Explain the situations in which you had difficulties by
giving specific examples from the implementation.

In Activity 1, you drew a circle, the center of which was the midpoint of the
segment BC. Afterwards, you placed F and G points on segment BC. What was
the reason for drawing the circle from that point? If you suppose that F and G
points are dynamic, how does the place of point H change when you drag the
points F and G?

Discuss the following arguments. Do you think they are true? How can you
support or refute these arguments?
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- When the givens were drawn and the segment AH was stretched, the line
divides the segment FG into two equal segments in all kinds of triangles.

- AH is the angle-bisector in all the triangles whose median is also its angle-
bisector.

9. Throughout the implementation, you provided justifications to your answers,
defended your ideas, evaluated your friends’ opinions and criticized others’
ideas. What were the things you used when you were defending your ideas (and
answering the questions such as ‘Why do you think so? ...how did you know that
it is so?” (Rule, theorem, past experiences, GeoGebra visual drawings).

10. In activity 1, Ozer drew two circles the diameters of which were the segments
|IDG| and |EF| on an equilateral triangle. But he could not remember to explain
why |AH| became the angle-bisector of the triangle ABC. Can you explain it
now?

11. In activity 2, Ashi said that “We solved it by using Menelaus’ theorem’ but you
did not explain it. Can we solve this geometry task by using Menelaus’s

theorem? How?

For Circle Activities (GeoGebra group)

1. Was the GeoGebra helpful while you were solving the two circle tasks? If yes, in
which aspect was the GeoGebra helpful? (Did you use the GeoGebra program to
check your solution or to solve the problem?)

2. Have you encountered any difficulties when you were using the GeoGebra
program? If yes, in which situations? (Did you have difficulties while drawing
the givens of the tasks? Explain the situations in which you had difficulties by
giving specific examples from the implementation.

3. Throughout the implementation, you provided justifications to your answers,
defended your ideas, evaluated your friends’ opinions and criticized others’
ideas. What were the things you used when you were defending your ideas (and
answering the questions such as ‘Why do you think so? ...how did you know that

itis so?” (Rule, theorem, past experiences, GeoGebra visual drawings).
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4.

In geometry task 3, you could not find the solution in pair-work. Why did not you
see that triangle FGH was an equilateral triangle? What was the reason of your
mistake? In which part did you make a mistake?

In the second question of geometry task 4, Ozer was confused since the place of
point H changed as the shape was dragged. He thought that the situation in which
the segment HE passed through the center of the circle was false. Do you still
think the same Ozer? Asli, what do you think about this idea? (If Asli thinks the

opposite: Can you convince Ozer?)

For triangle activities (Paper-Pencil group)

1.
2.

3.
4.

Which high school did you graduate from?

Do you think that you are successful in Geometry? What are the grades you got
from the geometry courses you took from the department of Mathematics?
(Calculus, Analytical Geometry, Elementary geometry).

What was your grade point average (GPA) in the last semester?

Were the materials helpful while you were solving the two triangle tasks? If yes,

in which aspects were the materials helpful? Give specific examples.

. Were there any situations that you had difficulties while using the materials you

had? If yes, in which situations? Explain the situations in which you had

difficulties by giving specific examples.

. Did you need any tool in order to solve the triangle tasks? If yes, which

materials? For what did you need that tool?

. In geometry task 1, you placed points F and G on segment |BC|. According to

what did you place those points? Think that the points F and G were dynamic.
Make interpretations about the place of point H when you move the points F and
G.

Discuss the following arguments. Do you think they are true? How can you
support or refute these arguments?

- When the givens were drawn and the segment AH was stretched, the line

divides the segment FG into two equal segments in all kinds of triangles.
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- AH is the angle-bisector in all the triangles whose median is also its angle-
bisector.

9. You showed that |JAH| was angle-bisector in isosceles and equilateral triangles.
Okan asked the situation for scalene triangles. Inci said that ‘In scalene triangles,
the angle-bisector cannot pass through the point H. Therefore, it is not valid for
scalene triangles’. Do you agree with Inci? Why?

10. Throughout the implementation, you provided justifications to your answers,
defended your ideas, evaluated your friends’ opinions and criticized others’
ideas. What were the things you used when you were defending your ideas (and
answering the questions such as ‘Why do you think so? ...how did you know that
itis so?” (Rule, theorem, past experiences, GeoGebra visual drawings).

11. In geometry task 2, we discussed whether or not the segment |KT| was parallel

to the segment |BC|. What do you think about this? Explain with reasons.

For circle activities (Paper-Pencil group)

1. Were the materials helpful while you were solving the two circle tasks? If yes, in
which aspects were the materials helpful? Give specific examples.

2. In geometry task 3, you said that the task was quite easy just like the ones in
university entrance examinations. But you had difficulties in the argumentation.
At the end, you could not solve the task. What was your mistake?

3. Have you encountered any difficulties when you were using the materials you
had? If yes, in which situations? Explain the situations in which you had

difficulties by giving specific examples.
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. Did you need any tool in order to solve the circle tasks? If yes, which materials?
For what did you need that tool?

. In geometry task 4, you did not discuss the first part of the last question. That is
‘Show whether the theorem is trivial if chord [FG| is a diameter of the first
circle’. Can you discuss and solve this question right now?

. In geometry task 4, you drew the situation in which the |FG| coincides with |CD|
like in the figure below. Is this drawing true or false? Why?
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B: REFLECTION PAPERS

REFLECTION — Geogebra Group

1. Which high school did you graduated from?

2. Do you think that you are successful in Geometry? What are the grades you
obtained from the geometry courses you took from the department of

Mathematics? (Calculus, Analytical Geometry, Elementary geometry).
3. What was your grade point average (GPA) in the last semester?

4. Was the GeoGebra helpful while you were solving the geometry tasks? If yes, in
which aspects weas the GeoGebra helpful? (Did you use the GeoGebra program

to check your solution or to solve the problem?) Give specific examples.

5. Did GeoGebra program help you while you were solving the geometry tasks? If

yes, in which aspects was the program helpful? Explain with specific examples.

6. Have you encountered any difficulties when you were using the GeoGebra
program? If yes, in which situations? (Did you have difficulties while drawing
the givens of the tasks? Explain the situations in which you had difficulties by

giving specific examples from the implementation.

7. Throughout the implementation, you provided justifications to your answers,
defended your ideas, evaluated your friends’ opinions and criticized others’
ideas. What were the things you used when you were defending your ideas (and
answering the questions such as ‘Why do you think so? ...how did you know that

it is so?’ (Rule, theorem, past experiences, GeoGebra visual drawings).

8. Discuss the following arguments. Do you think they are true? How can you

support or refute these arguments?

- When the givens were drawn and the segment AH was stretched, the line

divides the segment FG into two equal segments in all kinds of triangles.

- AH is the angle-bisector in the triangles whose median is also its angle-
bisector.
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3.

4.

REFLECTION —Paper-Pencil group

. Which high school did you graduated from?

. Do you think that you are successful in Geometry? What are the grades you

obtained from the geometry courses you took from the department of
Mathematics? (Calculus, Analytical Geometry, Elementary geometry).

What was your grade point average (GPA) in the last semester?

Were the materials helpful while you were solving the geometry tasks? If yes, in

which aspects were the materials helpful? Give specific examples.

. Were there any situations that you had difficulties while using the materials you

had? If yes, in which situations? Explain the situations in which you had

difficulties by giving specific examples.

. Did you need any tool in order to solve the geometry tasks? If yes, which

materials? For what did you need that tool?

. Throughout the implementation, you provided justifications to your answers,

defended your ideas, evaluated your friends’ opinions and criticized others’
ideas. What were the things you used when you were defending your ideas (and
answering the questions such as ‘Why do you think so? ...how did you know that
it is so?” (Rule, theorem, past experiences, GeoGebra visual drawings).

Discuss the following arguments. Do you think they are true? How can you

support or refute these arguments?

- When the givens were drawn and the segment AH was stretched, the line
divides the segment FG into two equal segments in all kinds of triangles.

- AH is the angle-bisector in the triangles whose median is also its angle-

bisector.
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C: ARGUMENTS OF THE GEOGEBRA GROUP

The arguments in this study have been analyzed by means of schematization

based on Toulmin’s argument layout as in the following sample argument.

Data | Clamm

\\\h_ —_—

.

{: Warrant ) l Rebuttal

In the table below, the contents of the argument components put forward by

the participants in the GeoGebra group are presented. There are some argument
components that do not exist in some of the arguments. The explanation/contents

box for these components are left blank in the table.

Argument | The Contents of the Argument Components

No:
1 Data: ‘F and G points placed on the side |BC| so as to be [BG|=|CF|’
Given statement in the task.
Warrant: -
Rebuttal: -

Claim: F and G points can be placed on the side |BC| separately or they
can be placed on the midpoint of side |BC| together.

2 Data: It says ‘the point that |DG| and |EF| intersects” in the givens. F
and G cannot be the midpoint of the side side |BC]|.

Warrant: | made a mistake by selecting the midpoint. F and G should
be dynamic in order to construct the intersection of |DG| and |EF]|.
Rebuttal: Do we have to divide the segment side |[BC| into three
segments? We can also divide it into four segments.

Claim: We should divide the segment |BC| into three segments while
placing the points F and G.

3 Data: -

Warrant: -

Rebuttal: -

Claim: We can divide |BC]| into four.
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Data: -

Warrant: But we should consider the order given in the task.
Therefore, we should place the points F and G as they are presented in
the task.

Rebuttal: -

Claim: We should place the points F and G on the segment |BC| in the
order of ‘B, G, F, C’.

Data: -

Warrant: Since it satisfies |BG|=|FC|. When we draw |DG| and |EF]| ,
the intersection point H is constructed.

Rebuttal: -

Claim: We can also place the points F and G on the segment |BC| in
the order B, F, G, C.

Data: Draw any triangle ABC. The midpoints of |AB| and |AC| are D
and E respectively. Let’s the midpoint of |[BC| be ‘M’. I draw a circle
with center M. The intersection points of the circle and the segment
IBC| are F and G. We can find the intersection point H by drawing the
segments |[DG| and |EF|.

Warrant: (Observation by dragging the radious of the circle with
center M) Can you see that the line passing through |AH| and the center
of the circle M intersects. Namely, |AH| becomes both angle-bisector
and median at the same time. That is the property of isosceler triangle
and equilateral triangle.

Rebuttal: This situation is not valid for scalene triangle ABC.

Claim: JAH| is angle-bisector in isosceles and equilateral triangles.

Data: -

Warrant: |BD|=|DA| and |CE|=|EA|. If |BG|=|CF| then |GM|=|MF|. So
|GH|=|FH| and |HDI|=|HE| . Therefore triangle FGH becomes an
isosceles triangle.

Rebuttal: -

Claim: |AH| is angle-bisector when triangle ABC is an isosceles or
equilateral triangle.

Data: -

Warrant: Since triangle FHG is isosceles triangle, |GH|=|HF|.

|[HM]| is both median, angle-bisector and altitude of this triangle. Since
ABC is an isosceles triangle, |AD|=|AE| and |DB|=|EC].

Rebuttal: But we did not prove that |[AH | and |HM]| are on the same
line (linear).

Claim: The angle-bisector of the triangle FHG is also the angle-
bisector of the triangle BAC.

Data: Let’s draw any triangle ABC. The midpoints of |AB| and |AC|
are D and E respectively.

Warrant: | would like |DG | ve |EF | to intersect to construct point H.
If the radious of the circle can be negative, it could be vice versa.
Rebuttal: -

Claim: We should place the points F and G on the segment |BC| in the
order B, F, G, C.
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10 Data: | drew the givens of the task with GeoGebra. | used slider and
triangle in order to make points F and G dynamic.

Warrant: | measured the angles BAH and HAC with GeoGebra. The
measures of these angles can be observed while dragging the vertices
of the triangle until the two angles become equal to each other. | saw
that whenever |AH| became an angle-bisector, it passes through the
point M. (The midpoint of the segment |BC|). Since |BF|=|CG],
|[FM|=|GM|, |BD|=|DA|, |AE|=|EC]|, |DG|=|EF| the triangle FGH s
isosceles triangle. If triangle FGH is isosceles, triangle ABC should be
isosceles triangle too.

Rebuttal: -

Claim: |AH| is angle-bisector when triangle ABC is an isosceles or
equilateral triangle.

11 Data: -

Warrant: Observation is made by changing the shape of the triangle
with GeoGebra. When |AH]| is the angle-bisector, it passes through the
middle point of |BC|. |AH| becomes both the bisector and the median.
At the same time it becomes the height. So it will be isosceles triangle.
Rebuttal: When triangle ABC is a scalene triangle, |AH| is not the
angle bisector.

Claim: |AH| is angle-bisector when triangle ABC is an isosceles
triangle.

12 Data: It is made drawing on an equilateral triangle with GeoGebra.
Points F and G are taken as the midpoint of |BC| as if they are the same
point. In this case, the same point becomes H point. |AH]| is drawn.
Warrant: Angles are measured and it is seen that |AH| is the angle
bisector. When we make dynamic by reflecting the points F and G
according to the midpoint of |BC|, point H is moving on |AF| and
nothing changes.

Rebuttal: However, we have made this only on equilateral triangle, not
on isosceles triangle.

Claim: |AH| is angle-bisector when triangle ABC is an equilateral
triangle.

13 Data: -

Warrant: With Geogebra, the movement of point H can be observed
by dragging the points F and G.

Because there is no point H, there is no such thing as |AH] is the angle
bisector.

Rebuttal: There is also a situation where |DG| and |EF| do not intersect
and there is no point H. When it is [DG|/|EF]|.

Claim: If points F and G are replaced on the equilateral triangle, H
point again moves on the line | AH |.

14 Data: The circles the radius of which are | DG | and | EF | are drawn.

The line passing through the intersection points of these circles is
drawn. It can be seen that it passes through the angle bisector of angle
A.

Warrant: Since | DG | = | EF |, | have drawn these radius circles.
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Rebuttal: -
Claim: The line passing through the intersection points of the circles
on equilateral triangular is the bisector of angle A.

15 Data: The line passing through the intersection points of the circles on
equilateral triangular is the bisector of angle A.(Claim 14)

Warrant: An equilateral triangle is also an isosceles triangle. That is
why the same is true for the isosceles triangle.

Rebuttal: -

Claim: When the triangle ABC is the isosceles triangle, | DG | and

| EF| intersect on the bisector line.

16 Data: -

Warrant: With the counter example on a scalene triangle, we can show
that there is not an angle bisector.

Rebuttal: -

Claim: On scalene triangles, AH is not angle bisector.

17 Data: Any ABC triangle is drawn. A median drawn from the vertex A
and a point P on it are drawn. Lines paralel to edges | AB | and | AC |
from point P are drawn. The point P is moved on the median. The
lengths | BE | and | FC | are measured.

Warrant: The median of the triangle BAC is also the median of the
triangle EPF. | BE | = | FC | . Since they are the equivalent triangle,
this is also the median of the small triangle. There is a A.A.A
similarity.

Rebuttal: -

Claim: |[EG|=|GF|

18 Data: (Claim 17)

Warrant: We have already found that [EG|=|GF| on a general triangle.
This is true for all triangles.

Rebuttal: -

Claim: If the triangle ABC were a isosceles triangle or equilateral
triangle, it would be |[EG|=|GF|.

19 Data: Let triangle ABC be isosceles triangle, let’s draw it like that.
Warrant: |JAG| will be both the median and the height. Since the height
of BAC will also be the height of EPF, |EF|will be divided into two
equal parts.

Rebuttal: -
Claim: When the triangle ABC is isosceles triangle, it is |EG|=|GF|

20 Data: The lines drawn form P are parallel tothe edges |AC| and |AB|.
The position of point P when |EF|:|FC|=1:2 is asked in the task.
Warrant: It is |EF|:|FC|=1:2=|PF|:|HC|=|PGJ:|AP|. From smilairty.
Rebuttal: -

Claim: In order to be |BE|=|EF|=|FC|, the location of the point P must
be as |AP|:|PG|=2:1

21 Data: ABC=PEF. | AG | is the also the median of PEF. The

intersection point of medians is found. Point P is dragged onto this
point and | BE |, | EF |, | FC | lengths are examined.
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Warrant: EFP=ECT . |[EF|:|[FC|=|PF|:|[AC|=|PG|: |AP| . Since we show
on a general trianglei it is true for all triangles.

Rebuttal: -

Claim: In all triangles, in order to be |BE|=|EF|=|FC|, point P must be
at the circumcenter.

22

Data: Any ABC triangle is drawn. |AG| is the median of the triangle
ABC. The lines drawn form P are parallel to the edges of the triangle
ABC. The triangle PEF is drawn.

Warrant: Because of parallelism.

Rebuttal: -

Claim: BAC=EPF

23

Data: BAC=EPF (Claim 22)

Warrant: The edge |AG| is also the median of the triangle EPF.
Rebuttal: -

Claim: |EG|=|GF|

24

Data: Let ABC be isosceles or equilateral triangle. |[EG|=|GF| (Claim
23)

Warrant: As we show this equality on a scalene triangle, it is already
true for other triangles. We can see that it is also valid in other triangles
by making the triangle move by dragging it.

Rebuttal: -

Iddia: |EG|=|GF|

25

Data: Any ABC triangle is drawn. A median drawn from A and a P
point on it are drawn. Lines paralel to edges | AB | and | AC | from
point P are drawn. |EP| is stretched, the point T is found. |FP| is
stretched and the point Y is found.

£ABG=£PEG=a. £ACG= 2PFG=5,

Let it be ZBAC= £LEPF=£BYF=£ETC=c

Let it be |[EG|=a, |BG|=b, |GF|=c, |FC|=d. We know that a+b=c+d
Warrant: When | applied a similarity to the BYF ~ETC triangle, I had
found that b and d are equal, but now I could not.

Rebuttal: -

Claim: a=c > |EG|=|GF|

26

Data: The shape is drawn on the white board. (Data 25)

Warrant: ETC = BYF are similar triangles. There is A.A.A similarity.
Rebuttal: -

Claim: |PF|/|TC| = |PE|/ |YB]

27

Data: |[EG|=a, |GF|=c, |BE|=b, |FC|=d. When |AG| is the median,
a+b=c+d.

Warrant: PGF=AGC are similar triangles. PGE=<AGB are similar
triangles. Let’s write similarity ratio: c:(c+d)= |PG|:|AG|=a:(a+b) . a=c
Rebuttal: -

Claim: |[EG|=|GF|

28

Data: An equilateral triangle and the givens are drawn. |BE|, |EF| and
|FC| are measured. The point P is dragged and observed. There is a
ratio 1:2 here. (Claim 23 and 27)

229




Warrant: |BE|=2a=|FC|. |EG|=a=|GF|. There is the ratio |GE|:|[EB|=1:2
=|PG|:|AG]

This ratio on equilateral triangle is also valid for the isosceles triangle.
Since |AG| was a median, circumcenter will be on this segment.
Rebuttal: Why is not it true for a scalene triangle? It is. If you say that
|AG| is the median, it should be also valid for scalene triangles.

Claim: In equilateral triangle, in order to be |BE|=|EF|=|FC|, point P
must be at the circumcenter. It is not valid in scalene triangles.

29 Data: In any triangle, if a parallel is drawn from the circumcenter to
the edges of the triangles, it divides the edges by 2:1
Warrant: If we draw a paralel to| AB | and | AC | and write the ratio
2:1, the edge | BC | is divided into 3 equal parts. A triangle is drawn
with Geogebra. Two medians are drawn and the circumcenter is found
from their intersection. Parallel lines are drawn from the circumcenter
and | BE |, | EF |, | FC | lengths are measured.
Rebuttal: -
Claim: In all triangles, in order to be |BE|=|EF|=|FC]|, the point P must
be at the circumcenter.

30 Data: Any triangle is drawn onto the white board. The point P and line
parallel to the edges are drawn. Let |BE|=|EF|=|FC| =a.
Warrant: From EFP = ECT similarity =2 It is |PF|:|TC|=k:2k
From AGC~PGF similarity =2 It is |PG|:]AG|=|PF|:|TC|=1:2
|PG|=m, |[AG|=2m. Since |AG| is median |GF|=a/2.
From AGC=PGF , |GF|:|GC|=a/2: 3a/2=|PG|:|AG] .
Rebuttal: -
Claim: In order to be |BE|=|EF|=|FC|, the point P must be on |AG| in
the ratio of 2:1.

31 Data: Any two circles that have equal radius and pass through the
center of each other are drawn. The intersection points of the circles
are H and E. A chord is drawn in such a way that the two circles of E
are cut off to form an FGE chord. | FH | and | HG | are drawn and the
FGH triangle is created.
Warrant: We measured the sides of the triangle FGH with GeoGebra
and noticed that all three sides were equal.
Rebuttal: -
Claim: The triangle FGH is an equalateral triangle.

32 Data: Any two circles that have equal radius and pass through the

center of each other are drawn. The intersection points of the circles
are H and E. A chord is drawn in such a way that it intersects with the
two circles to form an FGE chord. | FH | and | HG | are drawn and the
FGH triangle is created.

Warrant: The G point is dragged and the edge lengths of the triangle
are observed. The edge length of the equilateral triangle is always
increases when we move the point G upon to the point K. When it
passes over the point K, it is starting to decrease. At the point K, one
edge of the triangles becomes as the diameter.

Rebuttal: -
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Claim: One edge of the possible largest FGH triangle becomes 2R
long.

33

Data: -

Warrant: By combining TE we can show from |HF|//|TE]|. Is it true?
Rebuttal: No, you can not know that they are equal. For example, it
can be |FG|=4, |GT|=4, |HG|=2, |GE|=6

Claim: |GT|=|GE|

34

Data: Let’s draw [HE|. Let the ZFEH be alpha. These are the arcs that
the alpha sees in the two circles.

Warrant: The arcs of the Alpha angle seen on the two circles are equal
to each other. Therefore, the chords they see are equal to each other.
Rebuttal: -

Claim: |FH|=|GH]

35

Data: |CH| and |HD| are drawn. |CD| is drawn. CE| and |DE| are drawn.
Warrant: Since |CD|, |CH|, |HD|, |CE| and |DE|, they are all equal to
the radius of the triangle, they are all equal to each other.

Rebuttal: -

Claim: CHD and CED are equilateral triangles.

36

Data: CHD and CED are equilateral triangles. (Claim 35). Because
£HCD = £DCE=60° , it is ZHCE=120°

Warrant: Since HDE is the arc which was seen by the central angle
HCE.

Rebuttal: -

Claim: arc HDE =120°

37

Data: arc HDE =120° (Claim 36)

Warrant: Since it is inscribed angle, the measurement of the angle
£HFE is equal to the half of the chord it sees.

Rebuttal: -

Claim:Itis £HFE = 60°.

38

Data: |FH|=|GH| (Claim 34), £HFE = 60° (Claim 37)

Warrant: Since FGH is an isosceles triangle and its one base angle is
60 degrees, The other angles are also 60°.

Rebuttal: -

Claim: The triangle FGH is an equalateral triangle.

39

Data: The triangle FGH is an equilateral triangle. (Claim 38).

|FG|=6 unit.

Warrant: On equilateral triangle if the area formula A=a*V3:4 is
applied.

Rebuttal: -

Claim: The area of the triangle FGH is 9V3

40

Data: Point G is dragged up to point E. The triangle disappears.
Warrant: When we calculate the area, GeoGebra showed like this.
Triangle disappeared and area was calculated as ‘undefined’.

Rebuttal: -

Claim: When the point G is dragged onto the point E, the area of the
triangle becomes undefined so minimum area is undefined.
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41

Data: -

Warrant: The point F is dragged upto the point H. The area
disappeared.

Rebuttal: Is the area zero? The area can not be zero. The minimum
area is larger than zero.

Claim: The area of the triangle FGH is minimum zero.

42 Data: -
Warrant: The point G is dragged to the point E in GeoGebra.
Rebuttal: -
Claim: The maximum area fort he FGH triangle is when the chord
FGE is the tangent to the circle that is D centered.

43 Data: -
Warrant: Because of the arc that the angles sees, It is always
equilateral triangle according to the solution way that Ozde shows.
Rebuttal: -
Claim: FGH triangle is an equilateral triangle in all cases.

44 Data: (Claim 42 and Claim 43). |CF|, |CG| and |CH| are combined.
These lenghts are equal to R.
Warrant: It is £ZFCG=£FCH=2£HCG=120°. In 30-30-120 triangle, the
isosceles are R, and the long edge is RV3. One edge of the FGH
triangle is R\3. If we put it in the triangle area Formula.
Rebuttal: -
Claim: The area of the triangle FGH is maximum (3R*3):4

45 Data: With GeoGebra dragging, FGH triangle is drawn as its one edge
is 2R.
Warrant: For example, when I draw a chord from E, when I take the
extension, it cuts that triangle outside, then G is out there.
Rebuttal: But if we do the drawing in that way, we change the
question. The question says the chord that is drawn from E. Is it true
that we should do it with the line that passes from | FE |? Here the
chord is divided into two. The chord is the line segment. G point can
cut the D centered circle at maximum E point. When we continue, G
point is not on the chord | EF |.
But would that be the extension of the chord? The chord is formed by
joining two points on the circle.
If the G point continues, it is not on the chord | EF |. There becomes
two chords, | EF | and | EG | In fact, there is a line passing through the
circles, not a chord. The question talks about a chord drawn from E.
That's not all.
Claim: The largest FGH triangle forms when its one edge is 2R.

46 Data: |FH| and | HO| are drawn. £HOF = a. The arc FH is a olur.

Arc HG =180-a.. ZHFO = 90-(0/2).

Warrant: -

Rebuttal: It is not equal.£ZFHE =o0/2 but ZEHO = 90-a
Claim: |FH|=|HO|
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47

Data: Let’s say |FE|=x , |EG|=Y.

|CE|=|ED|=a. |FH| and |HG]| are drawn.

Warrant: The triangle FGH is a right angled triangle. And, an altitude
was drawn to the hypotenuse. Euclidean formula can be applied.
HE[*=x.y

Rebuttal: -

Claim: |HE[=Vx.y

48

Data: [HE|=Vx.y (Claim47)

Warrant: In circle there is the intersecting chords theorem. If X.y=a.a,
a’=|CAP=x.y

Rebuttal: -

Claim: [CA| =Vx.y.

49

Data: -

Warrant: -

Rebuttal: -

Claim: If |FG| and |CD| overlaps, there is no intersection of |HE| and
|CD.

50

Data: -

Warrant: -

Rebuttal: -

Claim: When |FG | and |CD | overlaps, |HE| and |CE| can not be
equal.

51

Data: The shape given is drawn with GeoGebra. |FG| is moved by
being dragged and overlapped with |CD|.

Warrant: |EH| and |CE| are both equal to the radius of the hemicyle.
Rebuttal: -

Claim: When FGE overlaps with |CD|, |EH|=|CE| again.

52

Data: The shape is drawn with GeoGebra. |CD| and |FG]| is dragged as
in the figure.

Warrant: If this angle is 90 degrees, that angle is also 90 degrees...
Ohh, It is 90 degrees. When we bring this here as if it is the diameter...
Look, this is |FG|.

Rebuttal: |CE| here is equal with what on the screen? The letters are
different.When it is diameter, it is not equal.

Claim: If FEG is the diameter of the large circle, |EH|=|CE].

53

Data: The segment FEG is dragged until it overlaps the diameter of
the big circle.

Warrant: £HEF =90. |EH| and |CE| becomes the radius of the big
circle.

Rebuttal: -

Claim: When segment FEG overlaps the diameter of the big circle,
|EH|=|CE].

54

Data: Geogebra dragging.

Warrant: In the givens |HE| was on the left side of the center.
However, after dragging FEG, it passed through the center of the
circle. I think |HE| should not glide. Geogebra begaves according to
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our drawing choices. Therefore, there is a problem in our drawing. We
should immobilize some points. After dragging, [HE| should stay on
the left side of the circle.

Rebuttal: But |HE| is still perpendicular to FEG. | think there is no
problem in the gliding of the |HE| to the center.

Claim: |EH|#|CE| when FEG coincides with |CD|.

55 Data: The givens of the task is drawn. We draw |FH| and |GE]|.
Warrant: £ZFHG =90° since it is inscribe angle which sees the
diameter. Euclidean formula can be applied in right triangle.

Rebuttal: -
Claim: |HE[ = |FE|.[EG|

56 Data: We drew the chords |CF| and |DG| .

Warrant: Let the measure of 2CEF and 2£GED be a. alternate-interior
angles. 2CFE is equal to £GDE since they both see the same arc and
they are the inscribed angles. The third angles of the triangles are also
equal.

Rebuttal: -

Claim: The triangles CFE and GDE are similar triangles.

57 Data: [CE|=|ED|
Warrant: The triangles CFE and GDE are similar triangles. (Claim
56). We can use the intersecting chords theorem in circles and write
this equation.

Rebuttal: -
Claim: |CE|?= |FE|.|EG|

58 Data: JHE|2:|FE|.|EG| (Claim 55
| CE|*= |FE|.1EG| (Claim 57)

Warrant: |HE|*=|CE|? If the squares of two number is equal,
these numbers will be equal to each other.

Rebuttal: -

Claim: |CE|=|HE|

59 Data: Drawing the shape with GeoGebra.
Warrant: We measured the |CE| and |[HE| with the measure tool of
GeoGebra. By dragging the shape, it is seen that in almost all cases the
segments are equal to each other.
Rebuttal: -
Claim: |CE|=|HE|

60 Data: |OGJ=a (radius), [EO|=X, |FE|= a-x .

|CE|=|ED|=y. Let ZHEG =90 °.

Warrant: By using the intersecting chords theorem in circles, a’-x’=y?
=|CEP.

And then a Pytagorean formula in right triangle is applied to triangle
HEO - |HE[= a*-x’.

Since | CE|*=|HE|?

Rebuttal: -

Claim: | CE|=|HE |
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61

Data: The segment FEG is dragged until it becomes the diameter of
the big circle.

Warrant: -

Rebuttal: -

Claim: When FEG is the diameter of the big circle | CE |=| HE | .

62

Data: The segment FEG is dragged until it overlap on the segment
|CD.

Warrant: |CE| = |HE]| since they are both radius of the same circle. At
the beginning of the solution we did not know the lenght of FEG. After
dragging, the lenghts of the segments changed. In the givens, it says
that |HE| passes through the midpoint of the chord |CD|. But when we
dragged, The midpoint of the |CD| became the center of the circle. In
the givens, it says that |HE| divides the chord |CD] into two and is
perpendicular to the diameter of the half circle. The only segment can
be drawn from the center of the circle in such a situation.

Rebuttal: In the given shape, |HE| does not pass through the center of
the circle. It should not pass through the center after dragging the
shape. | think |CD|=FEG at the beginning in otder to overlap after
dragging. Thus, [HE| should pass on the left side of the cnter of the half
circle. .

Claim: When |CD| overlapsthe segment FEG, |CE|=|HE]| .

63

Data: FEG is dragged until it becomes the diameter of the big circle.
We know that |CE| and |[ED| are radius. Then, this line will be
perpendicular to |CD].

Warrant: If a segment divides the chord into two and it passes from
the diameter of the circle, it should be perpendicular to the diameter.
Then this segment is also a radius. Both segments are the radius of the
big circle so they are equal to each other.

Rebuttal: -

Claim: When FEG is the diameter of the big circle |CE|=|HE|.
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D: ARGUMENTS OF THE PAPER-PENCIL GROUP

The arguments in this study have been analyzed by means of schematization

based on Toulmin’s argument layout as in the following sample argument.

Data | Clamm

\\\\_ N

.

{: Warrant ) l Rebuttal

s

In the table below, the contents of the argument components put forward by
the participants in the Paper-Pencil group are presented. There are some argument
components that do not exist in some of the arguments. The explanation/contents

box for these components are left blank in the table.

Argument | Contents of the Argument Components

No:
1 Data: -
Warrant: -
Rebuttal: -

Claim: The points F anf G can be placed vice versa. The places of
them can be changed.

2 Data: The midpoints of the |JAC| and |AB| is drawn. The points F and
G are placed on the segment |BC| in such a way that |DG| and |EF|
intersects at point H. |AH| is drawn. Let |FG|=a, |BF|=b=|CG|
Warrant: -

Rebuttal: Why? It is not an isosceles triangle.

Claim: Then |AH| becomes an angle-bisector when the triangle ABC
IS an isosceles triangle.

3 Data: An equilateral triangle, the side of which is 6a unit is drawn.
The givens of the task are drawn. It is assumed that |AH| is an angle-
bisector.

Warrant: -

Rebuttal: -
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Claim: Then, |HI| also became an angle-bisector.

Data: A triangle is drawn . D and E points are placed.

Warrant: In the givens it says that the segments |DG| and |EF| should
coincide to create the point H.

Rebuttal: -

Claim: The points F and G should be placed on the segment |[BC| in
the order of ‘B-F-G-C’.

Data: Assume that|BD|=|DA|= x , |AE|=|EC|=y. |BG|=|CF|so |FG|=2a,
|BF|=|GC|=Db. |DE| =a+b is drawn. Two equations are written by using
Menelaus’s theorem and the similarity ratio between parallel lines.
Warrant: The Melanous’s theorem is applied two times from different
directions and they were solved together to find a=z.

Rebuttal: -

Claim: |JAH| is a median in all type of triangles.

Data: (Claimb)

Warrant: In all triangles, median is not angle-bisector at the same
time.

Rebuttal: -

Claim: |AH| is not angle-bisector in all triangles.

Data: (Claim5 and Claim 6)

Warrant: The angle-bisector ratios are written on the sides of the
triangle. 2x/a+b=2y/a+b . In order the equality to be satisfies x should
be equal to y. That means |AB|=|AC|.

Rebuttal: In scalene triangles, x will not be equal to y so the equality
will not be satisfied.

Claim: |AH]| is angle-bisector in isosceles and equilateral triangles.

Data: Let the midpoint of the segment |BC| be Z. |DE|, |DZ| and |EZ]
are drawn. The ADZE parallelogram is formed.

Warrant: In parallelogram the opposite edges and angles are equal to
each other. If |IDE|=|AZ| in ADZE paralleolgram.

Rebuttal: We cannot know whether or not the extension of |AH| will
pass through the intersection point of the intermediate bases.

Claim: The extension of |AH| is the point Z. Namely, Z is the
intersection point of the intermediate bases of |DZ| and |[EZ|.

Data: -

Warrant: In order the |DG| and |EF| intersect and form the point H.
Rebuttal: -

Claim: The points F and G should be placed on the segment |[BC| in
the order of ‘B-F-G-C’.

10

Data: -

Warrant: -

Rebuttal: -

Claim: When points F and G move (dragged), point H will move on
the line passing through AT.

11

Data: We combined |AF| and |AG|.
Asssume that |DG| and |EF| are perpendicular to the sides |AB| and
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|AC| respectively.

Warrant: When we look at the triangles ECF and EFA. Because of the
Side-Angle-Side similarity in triangles |FA|=|FC| = x+y

In the same way, because of the similarity in triangles DGB and DGA,
|AG|=|GBJ|= x+y.

Rebuttal: -

Claim: Triangle AFG is an isosceles triangle.

12 Data: |DG| is perpendicular to |AB| and |AD|=|DB|. We found AF=AG
from side-angle-side similarity before. In triangle AGB, GD is an
altitude and a median.

Warrant: If a segment is both median and an altitude, it will also be an
angle-bisector in any triangle.

Rebuttal: -

Claim: |GD| is the angle-bisector of ZAGB.

13 Data: |FE| is perpendicular to |JAC| so it is altitude and |AE|=|EC|.
Warrant: If a segment is both median and an altitude, it will also be an
angle-bisector in any triangle.

Rebuttal: -
Claim: |FE| is the angle-bisector of 2AFC.

14 Data: |GD| is the angle-bisector of 2AGB (Claim12). |FE| is the
angle-bisector of 2AFC. (Claim13).

Warrant: But |AH| is the same line. Isn’t it the angle-bisector of
£BAC?

Rebuttal: |[AH| becomes the angle-bisector of ZFAG. Not the angle-
bisector of the big triangle (ABC). You are assuming that
£BAF=£GAC . We cannot know that.

Claim: |AH| is the angle-bisector of 2BAC.

15 Data: -

Warrant: Previously we found AFG as isosceles triangle. |AG|=|AF|
Rebuttal: -
Claim: £AFG = £AGF.
16 Data: (Claim 15)
Warrant: Triangle AFG is isosceles and |AH| is the angle-bisector of
£BAC.
Rebuttal: -
Claim: The line passing through |AH| is perpendicular to |BC].
17 Data: (Claim 12, Claim 13, Claim 15 and Claim 16). |AH| is

perpendicular to |BC].

|AH| divides |FG| into two equal segments as y/2 and y/2 .

Warrant: In triangle ABC tiggeninde |AZ]| is angle-bisector since it is
both median and altitude. It suits also the angle-bisector relation.
2¢/(x+(y/2)) = 2d/(x+(y/2))

Rebuttal: But we assumed that |FE| and |GD| are perpendicular to the
segments |AC| and |AB| at the same time, respectively. Is such a
situation can not exist, this solution is wrong.

You said that equilateral triangle but in the figure |FE| and |DG]| are not
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the medians of triangle ABC. In the same way, point H is not the
intersection point of the altitudes in triangle ABC.
Claim: In equilateral triangles |AH| is the angle-bisector of ZBAC.

18 Data: The extension of |AH| divides |FG| into two equal segments.
Warrant: The angle-bisector is drawn but it will not pass through
|AH|. It will not satisfy the givens of the task. |AH| is drawn in such a
way that it divides |FG| into two equal segments.
Rebuttal: -
Claim: In scalene triangles |AH| cannot be an angle-bisector.

19 Data: (Claim17)
Warrant: Equilateral triangles are isosceles triangles at the same time.
Rebuttal: In the drawing, point H is not the intersection point of the
altitudes or medians of the triangle ABC.
Claim: If |AH| becomes angle-bisector in isosceles triangles, it will be
angle-bisector of the equilaterat triangles also.

20 Data: (Claim 11 and Claim 15). The only assumption is that the
perpendicular segments being at the same time.
|AF|=|AG|. |AH]| is the angle-bisector of ZFAG.
Warrant: |IDG|=|FE| (Claim21). |BD|=|EC|, c=d (Claim22).
Rebuttal: Right now, the 90 degree is also our assumption to be
proved.
Claim: In both equilateral and isosceles triangles, |AH| will be the
angle-bisector of ZBAC.

21 Data: -
Warrant: A.A.A smilarity. BDG~ CEF triangles are identical.
You can say that the edges are equal to 90 degrees.
Rebuttal: The angles are the same but the triangles are not similar
Claim: |DG|=|FE|

22 Data: -
Warrant: A.A.A smilarity. BDG~ CEF triangles are identical.
You can say that the edges are equal to 90 degrees. (Warrant 21)
Rebuttal: -
Claim: |BD|=|EC]. That is, c=d.

23 Data: ABC Isosceles triangle. |AE|=|EC]|
Warrant: ABC isosceles triangle | BE | is perpendicuar to | AC | hence,
FE could not be perpendicular to | AC | at the same time.
Rebuttal: How do you know that height pass through the middle of the
|AC|? The height you draw from corner B can be parallel with| FE |. To
be so, the ABC must be an equilateral triangle.
You are coming off the side of the isosceles triangle hill, not the
height. So it does not come to E point. You need to download from A
Claim: |FE| can not be perpendicular to |AC|

24 Data: -

Warrant: Because, in our first drawing, perpendicular bisectors were
drawn.
Rebuttal: Then the result would be wrong for the isosceles triangle.
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Something that is not right at the equilateral triangle is not even in the
isosceles triangle.

Claim: In an equilateral triangle |FE| and|GD| could be perpendicular
to sides of |AC| ve |AB| respectively.

25 Data: -
Warrant: -
Rebuttal: -
Claim: The result is the same when F and G are replaced.
26 Data: |BG|=|GC|. |GF|=x, |FC|=Y, |[EG|=z, |BE|=x+y-z
Since |[NE|//|AB| then [HA|=yk, [HB|=(2x+y)k
Since [HF|//|JAC| then [NA|=(x+y-z)c, INC|= (x+y+2z)c
Warrant: If we apply the Menelaus theorem: (x/2xy).(2xyly).
|AP|/|PG|=1
Since |PG|.x=|AP|.y |AP|/|PG|=x/y is found.
There is a similarity in triangles.BCA =~ BFH ve CBA ~ CEN
Rebuttal: -
Claim: |PG|=ys , |AP|=xs
So |PG| is multiple of y,|AP| is multiple of x.
27 Data: -
Warrant: |HF|//|AC| ve |NE|/|AB|. ANPH quadrilateral is a
parallelogram.
Rebuttal: -
Claim: |[AN|=|HP| and |HA|=|PN]|
28 Data: (Claim26)
Warrant: FEP~FBH are similar triangles, |PE|// |[HB|.
Rebuttal: -
Claim: [EP|=(x+z)k
29 Data: (Claim 25 and Claim 26)
Warrant: EPF~ENC are similar triangles |PE|// |HB|
Rebuttal: -
Claim: |FP|=(x+z)c
30 Data: -
Warrant: Since |AB|/[EN| ve |AC|//|HF| , would not the third be
parallel?
Rebuttal: -
Claim: |[BCJ|//|HN|
31 Data: (Claim26, Claim28 and Claim29). |[HN| is drawn. Then it is
assumed that [HN|/|BC]|.
Warrant: HNP=FEP are similar triangles.
KP:PE = HP:PF . yk: (Xx+z)k= (x+y-z)c : (x+z)c >
Rebuttal: We need to prove that |HN|//|BC| in order to say it is true.
Claim: |EG|=|GF|. z=X
32 Data: (Claim 31), The ABC triangle is an isosceles triangle or an

equilateral triangle.
Warrant: We can generalize to all the triangles because we make the
solution over a scalene triangle.
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Rebuttal: -
Claim: |[EG|=|GF|

33

Data: : |AP|=xs, |PG|=ys. The shape is drawn. In the first drawing,
y=|FG|. Take |BE|=2x, |EG|=x=|GF]|, |FC|=2x

y=2x .z=x (Claim 31)

Warrant: |BE|=|EF|=|FC|, x+y-z=z+x=y. If we put X instead of z ,
2x=y. We said that |[AP|:|PG|. And xs :ys. |AP|:|PG|= x:2x.

Rebuttal: -

Claim: If |BE|=|EF|=|FC]| is, P point must be in proportion to
|AP|:|PG|=1:2.

34

Data: ABC triangle is any triangle, Take |EP|//|AB| and |FP|//|AC|.
|[EG|=a, |GF|=b, |BG|=|GC|=x

Warrant: GEP=GBA and GPF=GAC are similar triangles. Common
edges of those are| AG |. When the similarity ratio is written:

It is |GP|:|AG|=ak:xk=Db:x (x and k are simplified). a=b.

Rebuttal: -

Claim: In all triangles |[EG|=|GF| > a=b

35

Data: Assume ABC is isoscelene triangle . |[AB|=|AC|.

The measure of angle B is same with that of angle C.

Warrant: |AG| is perpendicular to |BC| and bisector. |AG| is also
bisector of angle of EPF. Due to parallelism triangle EPF is isoscelene
triangle. Hence |EG|=|GF|

Rebuttal: -

Claim: |[EG|=|GF|

36

Data: Assume ABC is equileteral triangle. |AG| is bisector, altitude
and median. |AG| divides angle A into two with 30-30 degrees..
Warrant: |EP|//|AB| ve |FP|//|AC| oldugundan |EP|=|FP| olur acilardan.
In the EPF triangle, altitude drawn from the top is bisector and also
median.

Is not it obvious that a triangle similar to a big triangle is formed
because of parallelism?

Rebuttal: -

Claim: |[EG|=|GF|

37

Data: (Claim 34), Assume |EF|=|FG|=a and |BE|=|FC|=2a

Warrant: Since GEP ~ GBA triangles are similar

a:3a=|PG|:|AG|= 1:3.

Rebuttal: -

Claim: The position of the P point should be such that

| AP |- | PG | = 2:1 for any other triangle. This point is the center of
gravity in equilateral triangle.

38

Data: Assume |[EG|=z, |GF|=X, |FC|=y ve |BE|=x+y-z.

Warrant: |[EP|/|AB|, |FP}//|AC|. FPEXFKB ve ECT=EFP triangles are
similar. Because of this similarity, the multiples are written on the
edges and the Melanous theorem is applied.

X:(2x+y) * (2x+y)k:yk * |AP|)|PG|=1

Rebuttal: -

241




Claim: There is a ratio that |AP|:|PG| = x:y

39 Data: FEP=FBK . Since |EP|//|AB|, |FP|//|AC]|,
|KP|=(x+y-z)c and |PT|=yk.
Warrant: |[KT| is combined (which is parallel to |BC|). |KT|//|BC|.
Again due to proportionality of | KP |: | PF | =| TP |: | PE | it was found
that x = z.
Rebuttal: -
Claim: [EG|=|GF| , z=X

40 Data: (Claim 39). |BE|=|EF|=|FC] is desired.
Warrant: Let's solve it according to the letters we give such as x + y-z
=z +x =y. We know that z = x. Here 2x = y. We found that| AP | = xs
and |PG | = ys.
Since at base, |BE|=2x and |EG|=x, due to similarities of triangles of
AGB~PGE, it will be found the ratio of | AP |: | PG | = 2: 1. We wrote
'xs' and 'ys' are in the wrong place.
Rebuttal: But you found the opposite. It's not the center of gravity
then.
Claim: |AP[:|PG|=1:2

41 Data: |HD|=|DE|=|EH|=|EC|=|CD|=R
HCD and ECD are equilateral triangles. The radiuses of the circles
are equal to each other. |GD| is drawn.
Warrant: GDFH becomes deltoid. Triangle FGH is equilateral. We
can apply the area formula of equilateral triangles A%\3/4.
Rebuttal: -
Claim: The area of triangle FGH is 9V3.

42 Data: Assume that ZEDG = 20, 2GDH = 26 .
Warrant: £GFH and 2 GHF are the same (90-a+f)/2. |GH|=|GF|
Rebuttal: My theorem did not work. | wrote wrong letter. The arc |DH]|
cannot be 90-beta since the angle is not in the center of the circle.
Claim: FGH is an isosceles triangle.

43 Data: |CD|, |DE|, [EC|, [HD|, |GD|, |CH| are drawn.
|CD|=|DE|=|EC|=|HDI|=|CH|=r
CDE and CHD are equilateral triangles.
Warrant: Since £ZHCD= 60 ° , the arc HD will also be 60 °. In the
same way, £DCE =60 ° so the arc DE = 60 °. ZHFG is the inscribed
angle which sees the arc measured 120 °. £HFG =120:2=60 °.
Rebuttal: -
Claim: £HFG = 60°.

44 Data: |CD|=|DF|=|DH|=R.
Warrant: Three sides of the rectangle are equal to the radius. Isn’t the
fourth side be equal to the radius?
Rebuttal: Does it have to be radius? But we do not know the angle.
Claim: [HF| = R.

45 Data: The circles with centers C and D are identical. |CH|, [HD|,

|CD|, |CE| and |DE| are drawn.
Warrant: |CH|=|HD|=|CD|=|CE|=|DE| = r  Since all of them are
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radius.
Rebuttal: -
Claim: Triangles HCD and CDE are equilateral.

46

Data: HCD = DCE=60°

HCE = 120 ° and it is central angle. The arc HDE =120 °.

Warrant: £HFG is the inscribed angle which sees the arc measured
120°.

Rebuttal: -

Claim: £HFG =60 °.

47

Data: |CD| is extended anf it intersected with the circle (C centered) at
point A. |AD| becomes the diameter. |AF| and |FC| are drawn.
Warrant: Arc HD=60 ° . Arc AF=60 ° . |FE| and |AD| formed
alternate-interior angles at the center of the circle the center of which
isC. 2«ACF =60 °. |FH| will be 180-(60+60)=60 °.

Rebuttal: How does the alternate-interior angle be 60 °?

| am drawing the whole shape in a smaller shape again. You extended
|CE| and combined it with point F. That part of the drawing is not
linear. You draw the chord FE as if it crosses from the center point C.
But in the original shape it does not cross from the center.

Claim: Arc |FH| =60 °.

48

Data: (Claim45 and Claim46). Since arc HDE = 120 ° then arc HCE
yay1 will be 120 ° also. The major arc of HE=360-120=240 °.

Warrant: £HGE sees the arc of 240 ° so its measure is 120 °. 60 °
remained to ZHGF. So 2FHG =60 °.

Rebuttal: -

Claim: Triangle FGH is an equilateral.

49

Data: Let the chord drawn from point E pass through point C. One
side of the triangle becomes radius.

Warrant: -

Rebuttal: No. I think you can drag the chord |EF| beyond point C. You
can pass the center C and the triangle becomes larger.

Claim: For the triangle FGH with maximum area, the chord drawn
from point E should pass through point C.

50

Data: -

Warrant:We did not use the 6unit while solving the question. We used
the arcs.

Rebuttal: -

Claim: When the chord |EF| is dragged, the triangle FGH is observed
as equilateral triangle all the time.

51

Data: (Claim50), Sinus formula of an area is (2).a.b.Sina.

Warrant: The edge of a maximum of a triangle becomes R.

The formula of (1%).x%.Sin60 is derived. Derivative of the formula:
2X~3/4

For the an edge of the triangle R is put instead of X. Area becomes
A=2RV3/4= R~3/2

Rebuttal: Why did you use the derivative? You found the growth rate.
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Claim: The maximum area of the FGH triangle becomes RV3/2.

52 Data: It bocomes when the chord drawn from point E passes through

point H, isn’t it?

Warrant: -

Rebuttal: -

Claim: The maximum area of the FGH triangle becomes zero.

53 Data: When the same procedure is applied to triangle FGH it will be
equilateral triangle again. Radius of the circles is R.

Warrant: When we dragged the point F to the right, triangle expands,
when we shift the point F to the left it becomes smaller. The biggest
triangle becomes when the chord of |FE| passes through the center of
point C.

Then the triangle don’t pass through the center. Still we don’t know
whether it is equilateral triangle or not..

Rebuttal: why doesn’t it become true when the chord of |EF| is
dragged even more? Why it becomes the greatest triangle when
passing through the center? According to Hande’s solution the angle of
HGE becomes again 120° the angle of GFH becomes again 60°. So
the equilateral triangle is not distorted. Still providing even if passes
the center (point C)

Claim: The maximum area of the FGH triangle becomes (R*V3)/4.

54 Data: -

Warrant: The smallest triangle becomes when point F overlaps with
point H. Triangle got lost. There is no triangle so no area.

Rebuttal: -

Claim: The area of FGH triangle becomes minimum 0.

55 Data: The chord |FE]| is drawn in such a way that it will be tangent to
the circle with D centered. C-centered circle becomes the circumcircle
of FGH triangle. One edge of the triangle is RV3.

Warrant: -

Rebuttal: -

Claim: The largest FGH triangle becomes, when the chord | FE | is
tangent to D centered circle at point E. Area becomes (3R?3)/4

56 Data: (Claim53 and Claim55)

Warrant: If | enlarge further, the chord | EF | does not cut the second
circle and triangle does not occur. But then we do not mean to draw a
chord. Instead two chords occured. Chord is a segment which cuts the
circle at two point. Therefore, the situation that we drew the radius of
circumcenter is true.

Rebuttal: Is chord a line? Here it is. It cuts circle at points F and G.
Claim: The largest FGH triangle occurs, when the chord | FE | is
tangent to the D centered circle at E point and area becomes (3R2v3)/4

57 Data: Point E was a midpoint. It says |FG| is diameter. The line

passing through EH is perpendicular to diameter |FG| and cuts the
radius at point H.
Warrant: Angles are different
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Rebuttal: But angles are the same since teacher mentioned it in the
question
Claim: [HE] is not equal to |CE|

58

Data: -

Warrant: -

Rebuttal: -

Claim: |FE|. |EG| = |CE|. |ED|

59

Data: |CE|=|ED|=a and |FE|=2b, [EG|=2cC .
Warrant: |CE|.|ED|=a.a=2b.2c =4bc.
Rebuttal: -

Claim: |CE|=V4bc

60

Data: Let the center of the half circle be 'O’

|OG|=b+c and |[EO|=c-b. Let it |HE|=tand |HO]| is drawn.
Warrant: t*=(b+c)*-(c-b)> then  t*=4bc.
Rebuttal: -

Claim: |HE|=V4bc

61

Data: |CE[=V4bc (Claim59), |[HE|=V4bc (Claim60), T~ equals to A,
Warrant: -

Rebuttal: -

Claim: |[HE|=|CE|

62

Data: If we draw the|HF| and |HG]|

Warrant: because it is the inscribed angle viewing the diameter
Rebuttal: -

Claim: ZFHG=90° .

63

Data: £ZFHG=90° (Claim62)
Warrant: Euclid

Rebuttal: -

Claim: T2 =2b.2¢

64

Data: |CD| and FEG overlaps. |[HE| is drown left side of the center.
[HC| and |[HD| are drown. The midpoint of the |CD] is E, ,isn’t it?
|CE|=a.
Warrant: |[HO| is drawn and it is found by pythagorean theorem as
well. There is an Euclidean theorem in the right triangle HCD.
|CD| is diameter. Because the 2CHD is inscribed angle viewing the
diameter, it is 90 degree. Euclidean theorem can be used there.
|HE|2=|CE]|. |[ED|
| HE[*=a.a=a"
Rebuttal: But here [HE|=V4b and |CE|= 2b. They are not equal to each
other
Claim: When |CD| and FEG overlaps, still |HE|=|CE| .

65

Data: [HF |and |FG| are drawn

Warrant: |CD] is diameter of half circle. Inscribed angle viewing the
diameter it is 90 degree.

Rebuttal: -

Claim: £ZFHG =90°.

66

Data: «FHG =90° (Claim 65). Let the center of the half circle be
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point ‘O’. |FE|=a, |EO|=b, |OG|=a+b. And |[HE|=y .

Warrant: We applied the Euclidean formula in right triangle FHG
IHE[*=y*=a(a+2b).

Rebuttal: -

Claim: |HE[*=y’=a(a+2b)

67

Data: |CE|=|ED|=x. Let the center of the half circle be point ‘O’.
|FE|=a, |EO|=b, |OG|=a+b.

Warrant: Inner force in a circle is used |CE|.|[ED|=|FE|.|[EG]|.

Rebuttal: -

Claim: x’=a(a+2b)

68

Data: [HE|"=y“=a(a+2b) (Claim 66) ve x°=a(a+2b) (Claim 67)
Warrant: the lenghts cannot be negative.

Rebuttal: -

Claim: [HE|=|CE]| . Y=X.

69

Data: The end points of the chords joined together. The segments
were named as X, Y, z and t.

Warrant: The chord lenghts of opposite (alternate) angles are written
based on the Cosinus theorem. X?+T2-2XT.

Rebuttal: There is no parallelism, so there cannot be similarity. Only
one angles of triangles are equal so similarity cannot exist.

Claim: x.y=z.t (intersecting chords theorem)

70

Data: The end points of the chords joined together.

Warrant: The inscribed angles which see the same lenght are equal to
each other in circles so the angles are found to be equal. ZECG=2DFG
£GEC= £GDF, and £EGC=£DGF

Then A.A.A similarity exists. x.y=z.t.

No it is an inscribed angle. You do not need a central angle.

Rebuttal: Does not G have to be in the center?

Claim: The intersecting chords relation in circle is calculated by
X.y=z.t.

71

Data: |CE|=|EDI=x, |FE|=a, |EG|=Db, |HE|=c. Half circle is completed to
the whole circle. FEG is the diameter of that circle.

Warrant: |[HE| is extended and intersected with circle at point K. If |
named |[HE|= ¢, |EK]|= c ince this is the diameter. We can apply
intersecting chords theorem in both circles:

c’=a.b and x*=a.b so x=c.

Rebuttal: -

Claim: |HE|=|CE|

72

Data: Let the center of the half circle be ‘O’. |HO| is drawn. Let the

diameter of the half circle be 2b+2c. |FE|=2b, |[EO|=c-b, |OG|=b+c,

|HO|=b+c.

Warrant: From the intersecting chords teorem in circle x.x=2b.2c
|CE|=x=\4bc.

HEO is a right triangle. Using the Pythagorean formula

IHE[*=(b+c)*-(c-b)?> > |HE|=V4bc.

Rebuttal: -
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Claim: |[HE|=|CE|

73

Data: FEG is drawn so as it would be the diameter of the big circle.
Then, the half circle and the big circle overlaps. |CD]| is drawn.
|CE|=|ED|=x, |FE|=a, |EG|=b. Point H is formed by drawing a
perpendicular to the diameter at point E. |HE| is extended and
intersected with circle at point K.

Warrant: |HE| is equal to |[EK| since it is perpendicular to the
diameter. |HE|=|EK|=c. From the power of point relation in circles,
x?=a.b and c?=a.b. > x=c

Since we found x=c that means |CD| is perpendicular to the
diameter.|CD| and |[HK| became the same chord.

Rebuttal: -

Claim: When FEG becomes the diameter of the big circle |HE|=|CE]| .

74

Data: Half circle is drawn in such a way that its diameter be |CD|.
Point H is formed by drawing a perpendicular line to the diameter of
the half circle. |CE|=|ED|=r, |[HE| -> Itis perpendicular to |CD].

|CH| and |HD] are drawn.

Warrant: 2£CHD = 90 ° since it sees the diameter of the circle.
Euclidean formula can be applied in triangle. [HE|*=r.r.

|[HE|= r=|CE].

|[HE| is also the radius of the half circle at the same time. We proved
that. Both of them are radius so they are equal.

Rebuttal: -

Claim: When segment FEG and |CD| overlaps, |[HE|=|CE]| .
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F: LOCAL ARGUMENTS

In the tables below, the numbers represent the argument numbers. For
instance, ‘2’ refers to the second argument while ‘41’ refers to the 41st argument.

Local Arguments of GeoGebra Group

Local Argument Type Argument number

1. DCW 2,9, 28,31, 40, 44, 63, 51, 52, 53, 54,

2. DwC 6, 10, 12, 17, 18, 19, 20, 22, 23, 24, 25, 29, 30, 32, 34,
35, 36, 37, 38, 39, 47, 48, 55, 56, 57, 58, 59, 60, 62

3. CDW 21

4. WDC 14, 27

5. CD 46

6. DC 1,61

7. CW 4,7,13, 15, 16, 26, 33, 41, 43, 45

8. WC 5,8,11,42

9. C 3,49, 50

Local Arguments of Paper-Pencil group

Local Argument Type Argument number
1. DCW 6, 14, 19, 29, 32, 44, 56, 57, 62, 69
2. DWC 4,5,7,11, 12,17, 20, 23, 26, 28, 31, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 59, 60, 63, 65,
66, 67,68, 71,72, 73, 74

3. CDW 8,45,64,70

4. WDC 13,18

5. CD 49, 55

6. DC 2,3,61

7. CW 9,16, 21, 24, 27, 50, 52, 54
8. WC 15, 22, 30,

9. C 1,10, 25, 58
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H: TURKISH SUMMARY (TURKCE OZET)

ORTAOKUL MATEMATIK OGRETMEN ADAYLARININ
ARGUMANTASYON YAPILARININ TEKNOLOJi VE KAGIT-KALEM
ORTAMLARINDA INCELENMESI

Giris

1.1 Matematik egitiminde argiimantasyon

Matematikte derinlemesine dgrenmenin anahtarlar1 siiphesiz ki muhakeme ve
ispattir. Alanyazindaki bir¢ok ¢alismada adi ispat ile birlikte anilan arglimantasyon,
matematik 6grenme konusunda olduk¢a Onemsenmesi gereken bir yontemdir
(Conner, 2007b). Argiimantasyon, bireylerin bilimsel iddialarin1 deneysel veya
kuramsal delillerle destekledikleri ve degerlendirdikleri bilimsel tartisma ve sosyal
etkilesim siirecine verilen addir (Jimenéz-Aleixandre & Erduran, 2008). Bireyler
arglimantasyon siirecinde argiiman olusturur, argiimanlarinin gerekg¢elerini sorgular,
farkli bakis acilariyla sunulmus argiimanlar1 degerlendirir ve bilimsel anlamda
kaliteli agiklamalara ulasirlar (Driver, Newton ve Osborne, 2000). Conner ve
digerleri (2014b) arglimantasyonun ve muhakemenin es siire¢ler olduklarini
savunmuslardir. Ulusal Matematik Ogretmenleri Konseyi (NCTM, 2000),
muhakeme ve ispatin belli basli konularda uygulanmasi gereken bir yontem
olmadigini, okullardaki biitiin konularda gergeklestirilecek sinif tartismalarina dahil
edilmesi gerektigini vurgulayarak matematik egitiminde argliimantasyonun énemine
dikkat cekmistir.

Toulmin (1958)’in ‘The Uses of Argument’ adli kitabiyla alanyazina
kazandirdig1 argiimantasyon yontemi, 6grenmede sonugtan ¢ok siirecin ve sosyal
O0grenmenin onem kazanmaya baglamasiyla (Reiss, Heinze, Renkl & Gross, 2008)
birgok arastrmacinin dikkatini cekmistir. Ilk olarak fen alaninda alanyazina
kazandirilan ve iizerine bir¢cok calisma yapilan bu yontem, matematik alaninda yeni
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yeni kullanilmaya baglamistir. Alanyazindaki birgok calismada arglimantasyon ve
sosyal etkilesimin basar1 lizerindeki olumlu etkisinden bahsedilmistir (Cross, 2009;
Inagaki, Hatano, & Morita, 1998; Kosko, Rougee, & Herbst, 2014; Sfard, 2008;
Walter & Barros (2011). Ornegin Sfard (2008), kisilerin matematikte basarili olmak
icin belirli tartisma bigimlerine ve iletisimsel etkinliklere katilmalarini dnermistir.
Benzer sekilde, Walter ve Barros (2011) 6grencilerin daha derin matematiksel
diisiinmelerinin saglanmasi i¢in onlarin argiiman gelistirmede aktif olmalarini ve bir
sonuca varmak i¢in farkli ¢6ziim yaklasimlari lizerinde ¢alismalarin1 6nermislerdir.
Dolayisiyla argiimantasyonun matematik alaninda uygulanmasina yonelik
caligmalar, matematik basarisinin  arttirilmast  igin  arastirillmaya  deger
gortilmektedir.

Tartisma-tabanli 6gretim yontemi olan arglimantasyon, hem o6grenciler, hem
de tartigmay1 yoneten Ogretmen agisindan iist diizey disiinme gerektiren bir
yontemdir. Alanyazindaki ¢aligmalara gore farkli sinif seviyelerindeki dgrencilerin
gerek¢e sunma, arglimantasyon ve ispat konularinda zorlandiklar1 bilinmektedir
(Ellis, 2007; Harel & Sowder, 1998; Healy & Hoyles, 1998; Reiss, Klieme, &
Heinze, 2001; Selden & Selden, 2003; Walter & Barros, 2011). Bu durum
Tiirkiye’deki o6grenciler icin de gegerli oldugundan argiimantasyon, igerisinde
cevaplanmasi gereken bir¢ok soru barindiran bir konu olarak karsimiza ¢ikmaktadir.
Tiirkiye’de ortaokul matematik miifredat1 en son 2013 yilinda revize edilmistir.
Miifredatin ana hedeflerinde 6grencilere “arastirma ve sorgulama yapabilecekleri,
iletisim kurabilecekleri, elestirel diistinebilecekleri, gerekcelendirme
yapabilecekleri, fikirlerini rahatlikla paylasabilecekleri ve farkli ¢6ziim
yontemlerini sunabilecekleri” (MEB, 2013, s. I) siif ortamlarinin saglanmasi yer
almaktadir. Bu beceriler argiimantasyon yonteminde yer aldigindan,
argiimantasyonun etkili bir bicimde uygulanmasinin yeni miifredatta ortiilk kazanim
olarak yer aldig1 goriilmektedir. Bu yontemi uygulayacak olan 6gretmenlerin bu
konudaki becerisi, arastirilmasi1 gereken bir durumdur. Peki 6gretmenler ne kadar
sorgulama yapiyor / nasil arglimanlar iiretebiliyor? Bu agidan bakildiginda
Ogretmenlerin argiimantasyon yapilarinin incelenmesi arastirilmasi gereken énemli

bir konu olarak karsimiza ¢ikmaktadir.
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Arglimantasyon yapisinin incelenmesi arastirmacilara argiimani ileri siiren
kisinin nasil anladig1 ve nasil muhakeme ettigi ile ilgili detayli bilgi sunmaktadir.
Bu nedenle alanyazinda bazi arastirmacilar arglimantasyon yapilarinin
incelenmesini tavsiye etmistir (Walter & Barros, 2011). Ogretmen adaylarinin
gelecekteki dgretim sekilleri ile ilgili ¢ikarimlarda bulunabilmek i¢in bu ¢alismanin
odag1 argiimantasyon yapilarinin detayli incelenmesi olarak belirlenmistir.

Alanyazindaki ¢alismalar incelendiginde teknoloji destekli ortamlarda
gerceklesen argiimantasyon g¢alismalarinin sayisinin az oldugu sonucuna varilmistir
(Hewit, 2010; Hollebrands, Conner & Smith, 2010; Inglis, Mejia-Ramos &
Simpson, 2007; Prusak, Hershkowitz & Schwarz, 2012). Mevcut c¢alismalarda
teknoloji kullaniminin arglimantasyona olumlu etkileri oldugundan bahsedilmistir.
Ayrica teknolojinin derinlemesine diisiinmeye ve kagit kalemle yapilan ¢oztimlerde
farkedilemeyecek iliskileri kesfetmeye yardimci oldugu iddia edilmektedir.
Argiimantasyonun ileri seviyede diisiinmeyi gerektirdigi dikkate alindiginda
teknolojinin ortaokul matematik Ogretmen adaylarinin gelistirecegi argiiman
yapilarini nasil degistirecegi merak edilmektedir.

Yukarida bahsedilen konulardan yola c¢ikilarak bu c¢aligmada ortaokul
matematik Ogretmen adaylarinin argiimantasyon yapilarinin teknoloji ve kagit
kalem ortamlarinda karsilastirmali olarak incelenmesine karar verilmistir ve
asagidaki arastirma sorularina cevap aranmistir:

1. GeoGebra ve Kagit-Kalem gruplarinda geometri problemleri ¢dzen
ortaokul matematik Ogretmen adaylarinin kullandiklar1 argiimantasyon
yapilarinin dogasi nasildir?
2. Global argiimantasyon yapilarinin i¢indeki lokal argiimanlarin 6zellikleri
nasildir?
- GeoGebra ve Kagit-Kalem gruplarinda geometri problemleri ¢ézen
ortaokul matematik  Ogretmen adaylarinin  kullandiklart  lokal
arglimanlarin, argliman elemani (iddia, veri, gerekce) akis sirasina gore

cesitleri nelerdir?
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3. GeoGebra ve Kagit-Kalem gruplarinda geometri problemleri ¢dzen
ortaokul matematik 6gretmen adaylarinin kullandiklar1 lokal argiimantasyon

Ozellikleri nelerdir?

1.2 Calismanin 6nemi

Arglimantasyon, hipotez kurma, kendi goriisiinii gerek¢elendirme, problem
sentezleme, bagkalariin goriislerine meydan okuma, farkli bakis acilarini
karsilastirma, deliller kullanarak hipotez tutarsizliklarini degerlendirme gibi
becerileri i¢erdiginden (Hewit, 2010) ileri seviyede ve elestirel diisiinme gerektiren
bir yontemdir. Bu becerilerin Ogrencilere kazandirilmasi i¢in argiimantasyonu
yoneten kisi olan Ogretmen Onemli bir faktordiir. Arglimantasyonu yonetmeden
once Ogretmenin argiiman iiretmeyi ve smifi argiimantasyona uygun sekilde
yonetmeyi deneyimlemesi gerekmektedir (Prusak et al., 2012). Tirkiye’deki
matematik Ogretmenlii egitimi programi incelendiginde Ogretmen adaylarinin
hicbir dersi kapsaminda argiimantasyon uygulamasi ile karsilasmadigr goriilmiistiir.
Ayrica matematik egitimi alaninda bu konuyu i¢eren herhangi bir se¢meli derse de
rastlanmamigtir.  Dolayisiyla  ortaokul —matematik  6gretmen  adaylarinin
arglimantasyon yontemi uygulamasindan bihaber olarak mezun olduklar1 sonucuna
varllmigtir.  Gelecegin  Ogrencilerine argiimantasyon-tabanli matematik dersi
anlatabilecek 6gretmen adaylarinin yetistirilebilmesi i¢in bu ¢alismanin bulgularinin
gelecekte yapilacak arastirmalara yol gosterecegine inanilmaktadir. Ayrica bu
caligma ile program gelistiricilerin dikkatinin arglimantasyon yontemine ¢ekilmesi
amaclanmigtir. Boylelikle 6gretmen yetistirme programlarinda bu agidan diizenleme
yapilmasi konusunda egitimcilerin ve politikacilarin bilgilendirilmesi saglanacaktir.

Fen alaninda cesitli agilardan incelenen argiimantasyon yonteminin, matematik
alaninda ¢ok yeni olmasi sebebiyle arastirilmasi gereken bir¢ok yonii vardir.
Bunlardan birisi de teknoloji ortaminda gergeklesen argiiman yapilaridir. Bu
caligmanin bulgular1 hem teknoloji ortaminda hem de kagit kalem ortaminda
kullanilan arglimantasyon yapilariin karsilastirilmasina olanak saglamasi agisindan

onemlidir. Bu calismada dinamik geometri programinin kullanilmasi dogal olarak
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geometri  problemlerinin  argiimantasyon yontemiyle ¢oziilmesine olanak
saglamistir. Ad1 bir¢ok bilimsel ¢alismada ispat ile birlikte anilan argiimantasyonun,
geometri alaninda incelenmesi ile bu agidan da alanyazina katkida bulunulacaktir.
Bu calismanin matematik egitimi alanyazinina bir diger katkist da ortaokul
matematik O0gretmen adaylarinin  argiimantasyon  yapilarmi - incelemesidir.
Alanyazinda ispat konusunda yaptig1 ¢alismada Knipping (2008) argiimantasyon
yapilarinin analizinin 6nemini vurgulamistir. Bu ¢alismada 6gretmen adaylarinin
argiimantasyon yapilar1 geometri alaninda incelenerek bu alandaki muhakeme
stirecleri, tercih ettikleri lokal argliman ve lokal arglimantasyon gesitleri hakkinda
bilgiler sunulacaktir. Bu bilgiler, gelecegin Ogretmenlerinin argiimantasyon
becerileri ve muhakeme siiregleri hakkinda ipuglari verecek ve onlarin
arglimantasyon yontemini uygularken neleri Onemseyecegini gozler Oniine
serecektir. Boylelikle bu ¢aligmanin sonuglari, gelecekte teknoloji veya kagit kalem
ortamlarinda yapilacak olan argiimantasyon ¢aligmalarina argiimantasyon yapisinin

incelenmesi ag¢isindan 1s1k tutacaktir.

2. ALANYAZIN TARAMASI

2.1 Teorik cerceve

Ogrenmenin hem bireysel hem sosyal boyutlar1 vardir ve bu boyutlar
akademik basar1 i¢in biiyilk 6neme sahiptirler (Cobb, Yackel, Wood, Nicholls,
Wheatley, & Trigatti, 1991; Lesh, Doerr, Carmone, & Hjalmarson, 2003,
Schoenfeld, 1992). Bu calismanin odak noktasi 6grenci merkezli 6grenmeyi 6n
planda tutan, argiimantasyona dayali 6grenme yaklagimidir.

Krummbheuer’in (1995) tanimina goére argiiman, katilimcilar veya gézlemciler
tarafindan kismen ya da tamamen yeniden yapilandirilabilen, tartismanin sonunda
tiim katilimcilar tarafindan kabul edilen ifade dizisidir. Argiimantasyon ise Antonini
ve Martignone (2011) tarafindan amaci bireyleri bir ifadenin dogruluguna veya

yanlighigina inandirmak olan sdylemler iceren tartigma siireci olarak tanimlanmustir.
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Bu tanimlara bakilarak argiimantasyonun bir siire¢, arglimanin ise bir {iriin oldugu
sonucuna varilabilir.

Arglimantasyon yaklagiminin bilimsel olarak incelenmesi Toulmin’in 1958
de yayimnladigi ‘The Uses of Argument’ isimli kitaba dayanmaktadir. Toulmin
(1958) bu kitabinda, birbiriyle iligkili {i¢ ana ii¢ yardimci elemandan olusan
rasyonel argliman yapisi sunmustur. Ana elemanlar iddia (claim), veri (data), ve
gerekce (warrant) iken yardimci elemanlar destek (backing), niteleyen (qualifier) ve
curiitendir (rebuttal). Rumsey (2012) yardimci elemanlarin olmazsa olmaz
elemanlar olmadiklarii fakat argiimanlarda bulunabileceklerini sdylemistir. iddia
(claim) tartigmacinin digerlerini ikna etmeyi diisiindiigii ifade, sonug veya goriistiir
(Nardi, Biza & Zachariadez, 2012, s.159). Iddiayr destekleyen gercekler veya
kanitlar veri (data) olarak tanimlanmistir (Conner, Singletary, Smith, Wagner, &
Francisco, 2014a, s.404). Gerekce (warrant) ise veriden iddiaya nasil ulasildigini
ileri siiren genel ifadelerle kurulan bir kopridiir (Toulmin, 1958, s.101). Yani
gerekege, verilerden iddiaya ulasmayi saglayan varsayimlar olarak tanimlanabilir.
Modelin yardimci elemanlarindan destek (backing), gerekce igin ek destek olarak
tanimlanabilir (Pedemonte & Reid, 2011). Destek elemani, gerek¢e kabul
edilmediginde veya yetersiz kaldiginda onun otoritesini arttirmak amaciyla ileri
stirilebilir. Destek, verileri ve iddia-veri arasindaki iliskiyi destekleyen her tiirlii
bilgi olabilir. Bir diger yardimci eleman olan niteleyen (qualifier) iddianin giiciind,
kesinligini ifade eder (Toulmin, 1958, s.101). Genellikle, nadiren, kesinlikle ve
siklikla gibi gelimeler niteleyene ornek olabilir. Son olarak ciiriiten (rebuttal)
elemani, gerek¢e sunulmus iddiayr yenme/ciirlitme kapasitesine sahip istisnai
durumlar olarak tanimlanmistir (Toulmin, 1958, s.101). Baska bir deyisle iddianin
gegerli olmadigr kosullar ¢iiriiten olabilir. Toulmin’in ileri siirdiigli argiimantasyon
modelinde argiiman elemanlarmin arasindaki iliski Toulmin tarafindan Sekil

2.1’deki gibi gosterilmistir.
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Veni > Bu viizden Niteleyen, Iddia

_..oldugundan T

Gerekce Olmazsa
T Ciiriiten

_..dolavisi ile

Destek

Sekil 2.1 Toulmin’in (1958) argiiman semasi (S. 97)

Toulmin modeli alandan bagimsiz olarak ileri siiriildiigiinden alanyazinda
ekonomi (Cho & Jonassen, 2002), fen egitimi (Erduran, Simon, & Osborne, 2004;
Jiménez-Aleixandre, Rodriguez & Duschl, 2000; Osborne , Erduran & Simon,
2004; Walker & Sampson, 2013) ve matematik (Forman, Larreamendy-Joerns,

Stein, & Brown, 1998; Krummheuer, 1995) gibi bircok alanda kullanilmistir.

2.2 Argiimantasyonda 6gretmen sorumluluklarina dair ¢alismalar

Sosyal ogrenme ortamlarinda paylasilan (taken-as-shared) bilginin
matematiksel gerekcelendirmede 6nemi biiyiiktiir. Paylasilan bilgi siniftaki biitiin
Ogrenciler tarafindan dogru olarak kabul edildiginden tartismanin ileri sathalarinda
tekrar sorgulanmaz ve dogru kabul edilerek tartismaya devam edilir. Bu nedenle
paylasilan bilgi gerek¢ce oldugunda bazi1 arglimanlarda gerekge elemamn
bulunmayabilir. Dolayisiyla argiimantasyon analizinde paylasilan (taken-as-shared)
bilgi dikkat edilmesi gereken bir husus olarak karsimiza ¢ikmaktadir. Yackel ve
Cobb (1996) muhakeme ile paylasilan matematiksel bilgi arasindaki iliskiye dikkat
ceken Onde gelen aragtirmacilardir. Argiimantasyon ortaminda sosyal etkilesimi
saglayacak olan ve argiimantasyonu yonetecek olan kisi dgretmendir. Dolayisiyla
Ogretmenlerin bu konularda kendilerini yetistirmis olmas1 6nemli bir durum olarak
karsimiza ¢ikmaktadir.

Argiimantasyonun uygulanabilmesi i¢in 6gretmenler, 6grencilerin fikirlerini
sOyleme konusunda tereddiite diigmeyecegi bir sosyal ortam saglamalidirlar. Yani
Ogrenciler fikrini soOylediginde diger arkadaslari veya Ogretmeni tarafindan

269



yargilanmayacagindan ve asagilanmayacagindan emin olmalidirlar (Shu-Sheng,
Mintzes, 2010). Bunun yaninda, Yackel (2002) o&gretmenlerin toplu
argiimantasyonu baslatma, Ogrenciler arasindaki etkilesimi tesvik etme, argliman
elemanlarinda eksik kalan kisimlarin farkedilmesini saglama gibi konularda
kendilerini yetistirmeleri gerektigini savunmaktadir. Diger yandan, argiimantasyon
yontemini uygulayan Ogretmenin sahip olmasi gereken iki Onemli 6zellik;
ogrencileri gerekce sunmaya tesvik etme ve 6grencilerin derinlemesine diigiinmesini
saglayan sorular sorma olarak ileri siiriilmistiir (Cross, 2009). Bunlarin disinda,
Ogretmenin yargilayict yorumlardan kaginmasi ve siniftaki akranlarin da yargilayici
konugmasini engellemesi, Ogrencilerin varsayimlarini  uygun matematiksel

ifadelerle savunmalarini saglayacaktir (Hunter, 2014).

2.3 Toulmin’in argiimantasyon modelinin matematik egitimi arastirmalarinda

kullanim

Toulmin’in (1958) argiimanyasyon modeli ilk olarak matematiksel olmayan
tartigmalarda kullanilmistir. Daha sonra Toulmin, Richard ve Allan (1979) ile
birlikte bu modeli, Theaetetus’un ‘Kesinlikle 5 adet platonik kati cisim
bulunmaktadir’ iddiasin1 ispat etmek i¢in kullanmistir. Matematik egitiminde ise ilk
olarak Krummbheuer (1995) tarafindan toplu (collective) argiimantasyon analizinde
kullanilan bu model, daha sonra matematik arastirmacilari arasinda ilgi gérmeye
baslamistir. Toulmin’in argiimantasyon modeli matematikte argiman yapilarini ve
ispat yapilarin1 incelemede (Giannakoulias, Mastorides, Potari, & Zachariades,
2010; Krummheuer, 2007; Pedemonte, 2007; Pedemonte & Reid, 2011), matematik
egitiminde sinif tartigmalarinin analizinde (Forman et al., 1998; Krummheuer, 1995,
2007; Moore-Russo, Conner, & Rugg, 2011; Pedemonte & Reid, 2011; Yackel,
2001), ogrencilerle yapilan goriisme verilerinin analizinde (Nardi, Biza, &
Zachariades, 2012; Steele, 2005) ve matematiksel arglimanlarin kalitesinin
incelenmesinde (Inglis & Mejia-Ramos, 2008; Pedemonte, 2007) kullanilmustir.

Alanyazidaki c¢alismalar incelendiginde argiimantasyona farkli agilardan

odaklanildigi goriilmektedir. Bazi aragtirmacilar muhakeme ¢esitlerini (Tiimevarim,
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tiimdengelim vb.) inceleyerek argiimantasyon alanyazinina katkida bulunmuslardir
(Conner et al. 2014b; Pease & Aberdein, 2011; Pierce, 1960). Ornegin, Conner ve
arkadaglar1  (2014b) Toulmin’in modelini Pierce’nin  (1960) muhakeme
smiflandirmas1  ile  birlestirerek  arglimanlari  muhakeme ¢esidine  gore
smiflandirmiglardir.  Bu smiflandirmada deductive, inductive, abductive ve
reasoning by analogy olmak tizere dort cesit argliman ileri siirmiislerdir.
Arglimantasyonu farkli agidan inceleyen kimi arastirmacilar da argiimani bir biitiin
olarak ele alip argiiman c¢esitlerini incelemislerdir (Aberdein, 2005; Viholainen,
2011). Ornegin, Viholainen (2011) ¢alismasinda resmi (formal) ve resmi olmayan
(informal) argiiman c¢esitlerinden s6z etmistir. Gerekge olarak fanim, aksiyom ve
teoremlerin  sunuldugu argiimanlar resmi argiiman olarak tanimlanmigtir
(Viholainen, 2011). Somut matematiksel yorumlarin ve matematiksel kavramlarin
gerekee olarak sunuldugu argiimanlar ise resmi olmayan argiiman olarak
tanimlanmistir (Viholainen, 2011). Bunlarin disinda argiimanin gerekce (warrant)
elemanina odaklanarak gerekge ¢esitlerini inceleyen calismalar da mevcuttur (Inglis
ve digerleri, 2007; Nardi, Biza, & Zachariades, 2012; Walter & Barros, 2011).
Ornegin, Knipping (2008), ispat konusunda yapti§1 calismasinda, argiiman
yapilarin1 gerekcelerine odaklanarak incelemistir. Knipping’in (2008) ileri siirdiigi
siniflandirmada argiimantasyon, gerekgelerin yapisina gore kavramsal ve gorsel
olmak tizere iki gesittir. Gorsel argiimantasyon ise ampirik-gorsel ve kavramsal-
gorsel olmak tizere ikiye ayrilmaktadir.

Alanyazin incelendiginde Toulmin modelini kullanan arastirmacilardan
bazilarinin bu modeli kendi ¢alismasina gére adapte ettigi goriilmektedir. Daha agik
sOylemek gerekirse, kimi aragtirmacilar modele ek elemanlar eklemis (Conner,
Singletary, Smith, Wagner & Francisco, 2014a; Prusak, Hershkowitz, & Schwarz,
2012; Voss, 2005; Walter & Johnson, 2007), kimileri modeli baska modellerle
birlestirerek kullanmiglardir (Conner, Singletary, Smith, Wagner & Francisco,
2014b). Yapilan her bir argiimantasyon ¢alismasi kendine 6zgii tartisma siiregleri
icereceginden veri analizinde aragtirmacilarin bu tiir diizenlemeler yapmasi

beklenen bir durumdur.
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2.4 Ispat ve argiimantasyon ¢alismalari

Alanyazinda arglimantasyon ve ispat arasindaki iliski arastirmacilar arasinda
hala tarisma konusudur. Ispat genel anlamda tiimdengelime dayanmakta iken
arglimantasyonda her tlirli muhakemenin (tlimdengelim, timevarim, abdiiksiyon
vb.) goriilmesi arastirmacilari ikiye bolmiistiir. Kimi arastirmacilar argiimantasyon
ile ispat arasinda bir stireklilik (continuity) oldugunu (Boero, 2007; Douek, 1999;
Garuti, Boero, Lemut, & Mariotti, 1996; Mariotti, Bartolini Bussi, Boero, Ferri, &
Garuti, 1997; Raman, 2002) savunurken, kimileri bu kavramlarin ikiye ayrildigini
(Balacheff, 1991; Douek, 1999; Mariotti, 2006; Pedemonte, 2007) savunmaktadir.
Ornegin Balacheff (1991) argiimantasyon da odagimn smiftaki akranlari ikna etmek
oldugunu, ispatta ise odagin sdylenen ifadenin dogrulugu oldugunu, dolayisiyla bu
iki kavram arasinda sosyal agidan farklilik oldugunu savunmaktadir. Diger yandan
bircok arastirmaci argiimantasyon ve ispat arasinda yapisal siireklilik (structural
continuity) saglanabilecegini savunmaktadirlar (Boero, 2007; Garuti, Boero, Lemut,
& Mariotti, 1996; Mariotti, Bartolini Bussi, Boero, Ferri, & Garuti, 1997, Raman,
2002). Ornegin, Boero (2010) eger argiimantasyon ve ispat arasindaki ¢ikarimlar
ayn1 mantik yapisinda (tlimevarim, tiimdengelim) olurlarsa yapisal stirekliligin
saglanacagini savunmustur. Bu demektir ki, argiimantasyon siireci boyunca yapilan
muhakeme ile tartisma sonunda ortaya iiriin olarak sunulan ispat, muhakeme ¢esidi
acisindan birbiriyle uyumlu ise argiimantasyon ve ispat arasindaki yapisal siireklilik

saglanmustir.

2.5 Teknoloji ve argiimantasyon iizerine yapilan ¢aliymalar

Alanyazinda dinamik geometri programlarinin geometri calismalarinda
kullanilmasimin bircok faydasindan bahsedilmistir. Bunlar arasinda dinamik
geometri programlarinin kullaniciya kesin ¢izimleri yapabilme firsatini vermesi ve
boylelikle kullanicinin aradaki iliskileri daha net gdrmesini saglamasi (Vincent,
2002), soyut geometri kavramlarmi anlamlandirmaya yardimci olmasi

(Hollebrands, Laborde, & Strdfer, 2008), kullanicilarin kesfetmelerine,
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varsayimlarda bulunmalarina olanak saglamasi, geometri basarisini desteklemesi
(Hollebrands, 2007; Laborde, Kynigos, Hollebrands, & Strdfer, 2006; NCTM,
2000), motivasyonu arttirmasi (Lampert, 1993; Ruthven, Hennessy, & Deaney,
2005) ve kullanicilar arasindaki etkilesimi desteklemesi (Vincent, Chick & McCrae,
2005) olarak siralanabilir.

Alanyazinda, teknoloji  ortaminda  gerceklestirilen  argiimantasyon
caligmalarina da rastlanmaktadir (Hewit, 2010; Hollebrands, Conner & Smith,
2010; Inglis, Mejia-Ramos & Simpson, 2007; Prusak, Hershkowitz & Schwarz,
2012). Ornegin, Prusak, Hershkowitz ve Schwarz (2012) iki 6gretmen adayina fikir
ayrilig1 yasayacaklart bir problem durumu verip onlara durumu ¢ézmeleri igin
teknolojik destek saglayarak ftrettikleri argimanlari incelemislerdir. Daha sonra
Toulmin modelini adapte ederek akran tartismasi analizi ig¢in bir model
gelistirmislerdir. Bir diger teknoloji destekli caligmada ise Cabri dinamik geometri
yazilimi ispat siirecinin degerlendirilmesinde kullanilmistir (Baccaglini-Frank &
Mariotti, 2009). Arastirmacilar, katilimcilarin = siiriikleme aracim1i  kullanma
sebeplerine odaklanmis boylelikle siiriikleme semalarini belirlemislerdir. Ayrica bu
aragtirmacilar katilimcilarin dinamik sekiller ile ileri siirdiikleri varsayimlarin kagit
kalem ortaminda ileri siirdiikleri varsayimlardan daha gelismis oldugu sonucuna
varmiglardir (Baccaglini-Frank & Mariotti, 2009). Bir diger calismada ise Mariotti
(2006) katilimcilara teknoloji ortaminda agik uglu problem c¢ozdiirmiis ve
gelistirdikleri varsayimlari incelemistir. Calisma sonucunda Mariotti  (2006)
dinamik geometri yaziliminin muhakeme ve ispat siireglerine olumu katkida

bulundugu sonucuna varmistir.

3. YONTEM

3.1. Arastirmanin Deseni

Ortaokul matematik 6gretmen adaylarinin teknoloji ortaminda veya kagit-
kalem ile geometri sorulari c¢ozerken kullandiklar1 argiimantasyon yapilarinin

incelendigi bu arastirmada nitel arastirma yontemilerinden durum c¢alismasi deseni
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kullanilmigtir. Alanyazina bakildiginda Yin’in (2003) dort durum g¢aligmasindan
bahsettigi goriilmektedir. Bunlar biitlinciil tek durum deseni, biitiinciil ¢oklu durum
deseni, i¢ ice gecmis tek durum deseni ve i¢ ice gecmis ¢coklu durum desenidir. Bu

calismada durum ¢alismasi tiirlerinden biitiinciil coklu durum deseni kullanilmistir.

3.2 Pilot Calisma

Uygulamanin nasil yapilacagini netlestirmek i¢in oncelikle 2013 yili bahar
doneminde ortaokul matematik 6gretmenligi programinda 6grenim goren dokuz
goniillii 6gretmen aday1 ile pilot c¢alisma yapilmistir. Bu c¢alismanin amact
coziilecek geometri problemlerinin arglimantasyon yontemine uygunlugunu kontrol
etmek, geometri problemlerinin ¢oziilebilecegi gerekli siireleri belirlemek, her bir
uygulamada ka¢ geometri problemin ¢oziilebilecegine karar vermek, uygulamada
kullanilan materyallerin agik ve anlasilir olup olmadigint incelemek ve her bir
grupta olmasi gereken katilimci sayisini belirlemektir.

Katilimcilar elverisli 6rnekleme yontemiyle sec¢ilmis ve GeoGebra bilen bes
kisi GeoGebra grubuna, diger dort kisi Kagit-Kalem grubuna atanmistir.
Katilimcilar ikili Giglii ¢alisma gruplarina boliinmistiir. GeoGebra grubunda her bir
caligma grubu bir calisma kagidi ve bir bilgisayar ile sorular1 ¢ézmiislerdir. Kagit-
Kalem grubunda ise yine her bir ¢alisma grubu bir ¢alisma kagidi ve ¢izim araglari
(cetvei, pergel ve gonye) ile sorular1 ¢ozmiislerdir. Pilot ¢calismada katilimcilar {i¢
uygulamada ti¢genler, dortgenler ve ¢emberler konularindan secilerek hazirlanmis
10 geometri problemi ¢ézmiislerdir. Her bir uygulama sonunda secilen bir ¢alisma
grubu ile goriisme yapilmistir, diger katilimcilardan ise yansitict diislinme yazisi
yazmalar1 istenmistir. Uygulamalar ve goriismeler kamera ve ses kayit cihazlar ile
kaydedilmistir.

Aragtirmac1 pilot calisma sonucunda ana uygulamanin nasil yapilacagi
konusunda cikarimlarda bulunmustur. Oncelikle bir uygulamada katilimcilara iki
geometri problemi ¢ozdiiriilmesi uygun goériilmistiir ¢linkii bir uygulamada daha
fazla problem c¢ozdiiriilmesi katilimeilari yormus ve argiiman iretme isteklerini

azaltmistir. Uygulamadaki geometri problemlerinin argiimantasyon ydntemine
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uygunlugu, tartismaya ne kadar agik oldugu, ne kadar farkli ¢6ziim yolunun oldugu
incelenerek iki tiggen ve iki ¢ember geometri problemi ana uygulama igin
secilmistir. Kiicliik calisma gruplarinin  kagar kisiden olusmasi gerektigini
belirlemek icin ikili ve iiclii gruplarin tartismalari incelenmistir. Ug kisiden olusan
grupta katilimcilardan bazilarinin tartismaya dahil olmadigi, dinleyici konumuna
gectigi gozlemlenmistir. Bu nedenle kiigiik ¢alisma gruplarinin ikiser kisi ile
olusturulmasina karar verilmistir. Katilimcilarin tartismalarini ve etkilesimini
desteklemek i¢in her bir ¢alisma grubuna bir bilgisayar, bir ¢alisma kagidi, birer
tane ¢izim araci verilmesine karar verilmistir. Aksi takdirde bireysel calistiklari
gozlemlenmistir. Uygulamadan bir giin sonra yapilan goriismelerde katilimcilarin
bazi detaylar1 unuttugu farkedilmistir. Bu nedenle, katilimecilara goriisme oncesinde
smiftaki tartigma video kaydina hizlica goz gezdirme firsati verilmesine karar

verilmigtir.

3.3 Ana Uygulama

Bu boéliimde ana uygulamada yer alan katilimeilar, veri toplama aracglart ve

veri analizi hakkinda bilgi verilecektir.

3.3.1 Katilimcilar

Arastirmanin katilimcilart amaca yonelik olarak Ankara’daki bir devlet
{iniversitesinin egitim fakiiltesinin, Ortaokul Matematik Ogretmenligi Programi’nda
egitim goren son sinif 6grencileri arasindan segilen 16 6gretmen adayidir. Patton’a
(2002) gore zengin bilgi verecegi diisiiniilen adaylar secildiginden dolayr amagl
ornekleme yontemi, derinlemesine bilgi saglamak agisindan gii¢lii bir yontemdir.
Bu c¢aligmada zengin veri toplamak onemli oldugu i¢in ¢aligmanin katilimecilar
amacli 6rnekleme yontemi kullanilarak belirlenmistir. Uygulama katilimcilarin ders
saatleri disinda ayarlanacak saatlerde uygulanacag: ve haftalik ders programlarina
gore bos zaman ayarlanacagi i¢in yalmzca bir devlet iiniversitesinden katilimci

secilmigtir. Boylelikle en azindan katilimeilarin ders programlarinin birbirine yakin
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olmasi ongoriilmistiir. Uygulama GeoGebra grubu ve Kagit-Kalem grubu olmak
tizere iki grup ile gergeklestirilmistir. GeoGebra grubuna ‘Dinamik geometri
uygulamalar1 ile geometri kesfetme’ dersini almis, GeoGebra programini
kullanmay1 bilen sekiz 6gretmen aday1 se¢ilmistir. Boylelikle GeoGebra grubundaki
katilimeilara programi kullanmayi 6gretmeye gerek kalmamistir. Kagit-Kalem
grubuna ise GeoGebra programini bilmeyen goniillii adaylar arasindan sekiz

Ogretmen adayi secilmistir.

3.3.2 Veri Toplama

Ana uygulama 2013-2014 egitim Ogretim yilinin sonbahar déneminde
yapilmistir. Arastirmanin amacina uygun olarak zengin veri saglamak icin ‘¢oklu
veri toplama araglari’ kullanilmistir (Creswell, 2007). Uygulamalarin ve
goriismelerin video ve ses kayitlari, yansitici diisiinme yazisina ek olarak
katilimcilarin not aldiklar1 ¢alisma kagitlar1 ve her tiirli ¢izimleri veri toplama
kaynag1 olarak kullanilmistir. Veri toplama araclar1 ve siireci ilgili detayli bilgi

takip eden boliimlerde verilmistir.

3.3.2.1 Veri Toplama Araclar:
3.3.2.2 Geometri problemleri

Bu caligmada dort geometri problemi kullanilmigtir. Bu problemlerin gayret
gerektiren, birden fazla ¢6ziim yolu olan, hem GeoGebra ile hem kagit kalemle
coziilebilen, argliman iiretilebilecek problemler olmasina calisilmistir. Geometri
problemlerinden birisi Ceylan’in (2012) yiiksek lisans tezinde uyguladig: bir iggen
problemidir. Bir digeri Iranzo-Domeénech’in (2009) doktora tezinde kullandigi bir
ticgen problemidir. Ugiincii ve dordiincii geometri problemleri ise Posamentier ve
Salkind’in (1988) ‘Challenging problems in Geometry’ isimli kitabindan segilmis

¢ember problemleridir.
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3.3.2.3 Goriismeler

Yari-yapilandirilmig  goriisme sorulart her bir uygulama sonrasinda
arastirmact tarafindan uygulamanin videosu izlenerek hazirlanmistir. Uygulama
stiresince  katilimcilarin  argliman  6gelerinin  hepsini  her bir arglimanda
belirtmedikleri goriilmiistiir. Belirtilmeyen 0Ogelerin (6rnegin gerekge) igerigini
sorgulamak goriismeler yapilmistir. Arastirmaci GeoGebra ve Kagit-Kalem
grubundan birer ¢alisma grubu se¢mis, onlarin kendi aralarindaki ikili tartismasini
ve smif tartismasini izleyerek goriisme sorulart hazirlamistir. Bu asamada
katilimcilarin argiimanlart belirlenerek argiimanlarindaki eksik 6geler (iddia, veri,
gerekee) not alinmis ve katilimcilarin bu eksik 6geler hakkindaki diistincelerini
aciga ¢ikaracak sorular hazirlanmistir. Ayrica goriisme yapilan katilimeilara
uygulamada bahsi gegen iddialardan verilip bu iddialar1 savunmalari, eger

savunmuyorlarsa ¢iiriitmeleri istenmistir.

3.3.2.4 Yaznh Kaynaklar

Katilimecilarin - geometri  problem c¢oziimleri ve miilakatlar sirasinda
kullandiklart her tiirlii yazili kagit veri toplama araci olarak kullanilmistir.

Yansitic1 diisiinme yazis1 sorulari, sinif tartigmasinda yer alan argiimanlar ile
ilgili goriisme sorular1 arasindan segilerek diizenlenmistir. Bu sorular biitlin
katilimcilara gonderilmistir. Dolayisiyla goriisme icin secilen calisma gruplarinin
ikili caligmalarina 6zgii sorular disindaki sorular diizenlenerek hazirlanmistir.
Arastirmaci, katilimcilara goriisme sorularini gonderirken tlizerinde kendi ¢oziimleri
olan calisma kagitlarimin fotokopilerini de gondermistir. Katilimcilar yansitict

diisiinme yazilarini e-posta ile arastirmaciya géndermislerdir.

3.3.3 Veri Toplama Siireci

Aragtirmact her bir grup ile (GeoGebra ve Kagit-Kalem grubu) ikiser

uygulama gergeklestirmistir. ilk uygulama yaklasik ii¢ saat siirmiis ve iiggenlerle
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ilgili iki geometri problemi ¢oziilmiistiir. Katilimeilar ikiserli ¢caligma gruplarina
ayrilmis, dolayisiyla her bir grupta iki kisiden olusan dort calisma grubu olacak
sekilde organize edilmistir. Bu ¢alisma gruplarinin her birine bir kamera ve bir ses
kayit cihazi ayarlanmig, simif tartismasini kaydetmek iizere de tahtayr goren bir
kamera ayarlanmustir. Ik 6nce birinci geometri probleminin ¢alisma kagidi calisma
gruplarina birer tane verilmis ve ¢alisma gruplarinin soruyu ¢dzmesi i¢in yeteri
kadar siire verilmistir. Katilimcilar ikiserli olarak yeteri kadar tartistiktan sonra sinif
tartismasina gecilmistir. Simif tartismasinda Once goniillii gruplarin sonra diger
gruplarin ¢oziimleri simifga arastirmacinin yonlendirmeleriyle argiimantasyon
yontemlerine uygun olarak gerceklestirilmigtir. Arastirmact argiimantasyonu
yonetirken farkli ¢6ziim yollarim1 ve dgrencilerin gerekgelerini sorgulayan sorular
sormus, katilimcilarin siirekli aktif olmalarin1 saglamistir. Tartigsma bittikten sonra
ayni sekilde ikinci geometri sorusu da ¢oziilmiistiir. Uygulama yaklasik {i¢ saat
stirmiistiir. Uygulama sonrasi arastirmact ayni giin sectigi bir ¢alisma grubunun
biitiin video goriintiilerini ve siif tartismalarmin goriintiilerini izleyerek goriisme
sorular1 hazirlamigtir. Ertesi giin segilen calisma grubu ile goriisme yapilarak bu
gorisme yine video ile kaydedilmistir. Goriisme Oncesi katilimcilarin siiftaki
uygulama videosunu hizlica gbézden gecirmeleri ve yapilanlar1 hatirlamalar
saglanmistir.

Ucgen sorularmin ¢oziildiigii ilk uygulamada gergeklestirilen asamalar ayni
sekilde ikinci uygulamada, iki ¢ember sorusu i¢in de gercgeklestirilmistir.
Arastirmact uygulamalar bittikten sonra yansitici diisiinme yazisi sorularini
hazirlamis ve biitiin katilimcilara online olarak gondermistir. Katilimcilar

cevaplarini e-posta yoluyla en kisa siirede arastirmaciya gondermislerdir.

3.3.4 Verilerin analizi

Bu calismada da veri analizi, veri toplama slireciyle es zamanl olarak
geligsmistir. Bunun i¢in Creswell’in (2009) ileri siirdiigii data analiz stiregleri takip
edilmistir. Oncelikle ses ve goriintii kayitlar1 alman biitiin uygulamalar ve

goriismeler yaziya aktarilmis ve diger veri kaynaklariyla birlikte bilgisayar
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dosyalar1 olarak organize edilmistir. Daha sonra miilakatlarin yaziya aktarilan
kayitlari, calisma kagitlari, katilimcilarin yazili kayitlar1 tekrar tekrar okunup
incelenerek biiylik boyutlardaki veriyi daha anlamli hale getirebilmek adina
kodlamalar yapilmistir. Alanyazindaki c¢alismalarin veri analizleri incelenerek
veriler i¢in uygun analizler belirlenmistir. Bu analizler yapilirken gerektiginde
kodlayict tutarliligi (intercoder reliability) uygulanmis ve verilerin daha saglikli
analiz edilmesi i¢in ¢alisilmistir. Daha sonra elde edilen bulgular yorumlanarak

anlamlandirilmig genel bir ¢ergeve sunulmustur.

4. BULGULAR

Bu aragtirmanin bulgular1 ortaokul matematik Ogretmen adaylarinin
arglimantasyon yapilari, lokal argiiman tipleri ve lokal argiimantasyon cesitleri

olmak tizere li¢ boliimde agiklanmustir.

4.1 Ortaokul matematik 6gretmen adaylarinin argiimantasyon yapilari

Bu analiz i¢in Knipping’in (2008) kendi caligmasinda kullandig1 global
argliman yapilar1 analizi adapte edilerek kullanilmistir. Knipping (2008) ve Reid ve
Knipping (2010) dort ¢esit global arglimantasyon yapisinin varliindan s6z
etmiglerdir: Kaynak yapi (Source-structure), Rezervuar yapi1 (Reservoir-structure),
Spiral yap1 (Spiral-structure) ve Toplanma yapidir (Gathering-structure). Bu
calismada Knipping’in (2008) gelistirdigi ¢izim sekli kullanilarak global
arglimantasyon semalar1 her bir geometri problem ¢6ziimii i¢in ¢izilmistir. Daha
sonra bu gizimler bahsi gegen global arglimantasyon yapilari ile karsilastirilmus,
Knipping’in (2008) Toplanma-yapist hari¢ diger yapi ¢esitlerine rastlanmis, bunun
yaninda bazi global argiimantasyon yapilarinin bu siniflandirmaya uymadigi, farklh
sekil olusturdugu goriilmiistiir. Bunlar Cizgi/Hat-yap1 (Line-structure) ve Bagimsiz
argiimanlar-yapisidir (Independent arguments-structure). Bu arglimanlarin geometri
problemleri i¢inde dagilimi ve ka¢ kez gozlemlendigi asagidaki tabloda

gosterilmistir.
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Tablo 4.1 Calisma gruplarinda gozlenen global argiimantasyon yapilar

GeoGebra Grubu Kagit-Kalem Grubu
Geometri 1 Rezervuar-Yapi 1 Rezervuar-Yap1
Problemi 1 1 Spiral-Yap1 1 Cizgi/Hat-Yap1
8 Bagimsiz Argiimanlar-
Yapisi
Geometri 3 Spiral-Yap1 2 Spiral-Yap1
Problemi 2 2 Bagimsiz Arglimanlar-Yapist 2 Bagimsiz Arglimanlar-
Yapisi
1 Kaynak-Yap1
Geometri 1 Rezervuar-Yapi 1 Rezervuar-Yapi1
Problemi 3 1 Cizgi/Hat-Yap1 1 Cizgi/Hat-Yap1
4 Bagimsiz Argiimanlar-Yapist 6 Bagimsiz Arglimanlar-
Yapisi
1 Kaynak-Yap1
Geometri 2 Spiral-Yap1 3 Spiral-Yap1
Problemi 4 5 Bagimsiz Argiimanlar-Yapist 5 Bagimsiz Argiimanlar-

1 Kaynak-Yap1

Yapisi

1 Rezervuar-Yap1

Tabloda goriildiigii gibi Knipping’in (2008) smiflandirmasindan kaynak-
yapt tim uygulamada ii¢ kez, rezervuar-yapt bes kez, spiral-yapt on bir kez
gozlemlenmistir. Bunlardan iki grupta da en ¢ok gozlemlenen spiral-yap1 olmustur.
Bu c¢aligmada ortaya cikan ¢izgi/hat-yap1 ii¢ kez, bagimsiz argiimanlar-yapisi ise
otuz iki kez gozlemlenmistir.

Global argiimantasyon yapilar1 geometri problemi bazinda incelendiginde
GeoGebra grubu ile Kagit-Kalem grubu arasinda benzerlik ve farkliliklarin oldugu
gortilmektedir. Birinci geometri probleminde iki grupta da birer rezervuar-yapi
bulunmaktadir. Bunun yaninda GeoGebra grubunda bir spiral-yap1 var iken Kagit-
Kalem grubunda bir c¢izgi/hat-yapt ve sekiz bagimsiz arglimanlar-yapisi
bulunmaktadir. ikinci geometri problemi ¢dziimiinde iki grupta da spiral-yap: ve
bagimsiz argliimanlar yapist bulunmakta iken Kagit-Kalem grubunda fazladan bir
kaynak-yap1 argiimantasyon goriilmiistiir. Uciincii geometri probleminin ¢dziimii
incelendiginde iki grupta yine benzer global argiimantasyonlar (rezervuar-yapi,
cizgi/hat-yap1 ve bagimsiz arglimanlar-yapisi) gézlemlenmistir. Yine Kagit-Kalem
grubunda fazladan bir kaynak-yap1 argiimantasyon gozlemlenmistir. Son geometri

probleminin ¢oziimiinde GeoGebra grubunda global arglimantasyon yapisi
280



acisindan gesitlilik goriilirken Kagit-Kalem grubunda sadece spiral-yapt ve

bagimsiz argiimanlar-yapisi gozlemlenmistir.

4.2 Ortaokul matematik 6gretmen adaylarinin lokal argiiman tipleri

Bu analizde global argiimantasyon yapilarinin i¢indeki lokal argiimanlarda
(iddia, veri, gerekge igeren argiimanlar) Toulmin’in (1958) argliman elemanlarinin
(iddia, veri, gerekce) smifta sdylenis sirasi yani argiiman elemanlariin akis sirasi
incelenmistir. Bunun i¢in arastirmaci verileri tekrar tekrar okuyarak herbir argiiman
icinde hangi elemanin daha Once sdylendigini degerlendirmis her bir elemana
numara vermistir (iddia ilk Once sOylenmisse iddiaya ‘1°, sonra gerekge
sOylenmisse gerekceye ‘2°, en son verilerden bahsedilmisse verilere ‘3’ numarasi
verilmistir). Analiz sonucunda dokuz adet lokal argiiman tipi ortaya ¢ikmistir. Bu
argiiman tipleri isimlendirilirken argiiman elemanlarmin Ingilizce isimlerinin bas
harfleri, sdylenis sirasina gore yazilmistir. Ornegin veri i¢in ‘data’ kelimesinin bas
harfi olan ‘D’, iddia i¢in ‘claim’ kelimesinin bas harfi olan ‘C’ ve gerekge icin
‘warrant’ kelimesinin bas harfi olan ‘W’ kullanilmistir. Yani 6nce gerekge, sonra
veri, daha sonra iddia elemanlarinin séylendigi bir argliman ‘WDC’ lokal argliman
tipi olarak kodlanmigtir. Eger bir argiiman elemani ifade edilmemigse onun yeri bos
birakilmistir (Or:CD). Tiim argiimanlar kodlandiktan sonra belirlenen lokal
argliman tipilerinin her bir grupta kacar tane oldugu incelenmis, asagidaki tablo

olusturulmustur.

Tablo 4.2 GeoGebra ve Kagit-Kalem gruplarindaki argiimanlarin lokal argiiman
tiplerine gore dagilimi

GeoGebra Grubu Kagit-Kalem Grubu
1. DCwW 11 10
2. DWC 29 38
3. CDW 1 4
4. WDC 2 2
5. CD 1 2
6. DC 2 3
7. CW 10 8
8. WC 4 3
9. C 3 3
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Tablodaki verilere gore ortaokul d6gretmen adaylarinin en ¢ok kullandiklar
lokal argliman tiplerinin sirastyla DWC, DCW and CW dir. Lokal argiiman tipleri
grup bazinda karsilagtirildiginda iki grupta da benzer sekilde dagildiklar1 sonucuna
varilmistir. Arastirmaci lokal argiiman tiplerinin geometri problemleri arasindaki

dagilimini da incelemistir.

Tablo 4.3 Lokal argiiman sayilarinin her bir geometri sorusuna gore dagilimi

GeoGebra Kagit-Kalem

GP1 GP2 GP3 GP4 GP1 GP2 GP3

®
o

DCW
DWC
CDW
WDC
CD
DC
Cw
WC

o
-
-

CoNoUhA~WNE
PWUIFRORPROWN
COoORrROORBRLER
oOrhNooOooOooOoO~Nw®
NOOREFPR OO OO
PNRARNONPE O W
ORP P O0OO0COOR N
OCOWONOR ®N
POORFROONE Wh

Lokal argliman tiplerinin iki grupta da herbir geometri problemine gore
dagilimi incelendiginde, ortaokul matematik 6gretmen adaylarinin en ¢ok DWC
lokal argiiman tipini kullandiklar1 goriilmektedir. Bu sonuglara gore bir grupta
GeoGebra dinamik geometri programi kullanilmasina ragmen 6gretmen adaylariin
arglimanlarinin lokal argiiman tiplerine gore dagiliminin benzer oldugu ve iki
grupta da en cok DWC lokal argliman tipini kullandig1 sonucuna varilmastir.

Lokal argliman tipleri geometri problemlerinin konularma (liggenler,

cemberler) gore de karsilastirilmis (Bkz. Tablo 4.4)
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Tablo 4.4 Matematik icerigine gére lokal argiimanlarin argiiman tiplerine gore
dagilimi

] GeoGebra Grubu _ Kagit-Kalem grubu
Ucggenler Cemberler Ucggenler Cemberler

1. DCW 3 8 5 5

2. bwC 13 16 19 19

3. CDW 1 0 1 3

4. WDC 2 0 2 0

5. CD 0 1 0 2

6. DC 1 1 2 1

7. CW 6 4 5 3

8. WC 3 1 3 0

9. C 1 2 2 1

Lokal argliman tiplerinin matematik igerigine gére dagilimi incelendiginde
GeoGebra ve Kagit-Kalem gruplarindaki 6gretmen adaylarimin benzer sekilde
argliman irettikleri goriilmistiir. En sik gozlenen lokal argliman tipi tiggen
problemlerinde de cember problemlerinde de DWC dir. Daha sonra en sik
kullanilan lokal argiiman tipinin kimi geometri problemlerinde DCW, kimilerinde
CW oldugu goriilmektedir. Bunun yaninda bir grupta GeoGebra kullanilmasinin,

lokal argiiman tipi dagiliminda bir fark yaratmadigi goriilmektedir.

4.3 Ortaokul matematik 6gretmen adaylarimin lokal argiimantasyon nitelikleri

Ortaokul matematik Ogretmen adaylarinin lokal arglimantasyonlari
Knipping’in  (2008) gelistirdigi  simiflandirmaya gore incelenmistir. Bu
smniflandirmada lokal argiimanlarin gerekge (warrant) kisimlart yani sunulan
muhakeme incelenmigtir. Bu siniflandirmada gerekgeler oOncelikle kavramsal
arglimantasyon ve gorsel argiimantasyon olarak ikiye ayrilmakta; gorsel
arglimantasyon ise ampirik-gorsel ve kavramsal-gorsel arglimantasyon olarak ikiye
ayrilmaktadir. Lokal argiimantasyonlar dncelikle her bir geometri problemi i¢in ayr1

ayr1 incelenmigtir. Asagidaki tabloda birinci geometri problemi c¢6ziimiinde
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olusturulan lokal argiimanlarin gerekgeleri simiflandirilmistir. Ornegin “2° sayisi

ikinci lokal arglimanin gerekgesidir.

Tablo 4.5 Birinci geometri problem ¢oziimiinde olusturulan argiimanlarin lokal
argiimantasyon ¢esitlerine gore dagilimi

Lokal Gorsel Argiimantasyon Kavramsal
Argiimantasyon Argiimantasyon
Ampirik-  Kavramsal- Gerekge  veni
Gorsel Gorsel elemani DS?Lm
olmayan
arg.
2,5,7)9, 6 8, 15 1,3 4
© 10, 11,12,
S5 13, 14, 16
- 25
L] —
2 R0
3 9, 14, 18, — 5,6,7, 8, 1,2,3 4
E = 20, 11, 12, 13, 15, 10, 25
= s 23, 24 16,17, 19, 21,
g X 22
= = O
g0 % 2
< 2 O

Tablo 4.5’te GeoGebra grubundaki katilimcilarin ¢ogunlukla ampirik-gérsel
gerekgeler sunduklart gorilmektedir. Diger yandan Kagit-Kalem grubundaki
katilimcilarin daha ¢ok kavramsal argiimantasyona uygun gerekceler kullandiklar
goriilmektedir. Bunun yaninda iki grupta da gerekcesi olmayan arglimanlar
bulunmaktadir. Ayrica iki grupta da 4 numarali argiimanlarin gerekgeleri bu
siiflandirmaya girmedigi icin tabloda yeni durum siitununda yer almislardir.
Ortaya ¢ikan bu yeni durum “soruda verilenleri gerek¢e gosterme” olarak
isimlendirilmistir.

Tablo 4.6’da ikinci geometri problemi ¢oziimiinde elde edilen arglimanlarin

gerekgelerinin Knipping’in (2008) siniflandirmasina gére dagilimi goriilmektedir.
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Tablo 4.6 Ikinci geometri problem c¢oziimiinde olusturulan argiimanlarin lokal
argiimantasyon ¢egitlerine gore dagilimi

Lokal Gorsel Argiimantasyon Kavramsal
Argiimantasyon Argiimantasyon
Ampirik- Kavramsal-Gorsel
Gorsel
- 19, 20, 22,23 17, 24, 28, 29, 18, 21, 25, 26,
s 30 27
O S
s (ONG)
E 27,30,33,39 32,35,36 26, 28, 29, 31,
= £ 34, 37, 38, 40
£ G
=] ¥. >
= = O
22z
< 2 O

Tablo 4.6’da goriildiigii gibi GeoGebra grubundaki katilimcilar daha ¢ok
gorsel argiimantasyon kullanmislardir. Kagit-Kalem grubundaki katilimcilar ise
ikinci geometri probleminin ¢oziimiinde hem gorsel hem kavramsal argiimantasyon
kullanmiglardir.

Uciincii  geometri probleminin ¢dziimiinde olusturulan argiimanlarin

gerekceleri Tablo 4.7°deki gibi dagilmaktadir.
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Tablo 4.7 Uciincii geometri problem ¢éziimiinde olusturulan argiimanlarin lokal
argiimantasyon ¢esitlerine gore dagilimi

Lokal Gorsel Argiimantasyon Kavramsal
Argiimantasyon Argiimantasyon
Ampirik-  Kavramsal- Gerekce  'eNi
Gorsel Gorsel elemam BCLCLL
olmayan
arg.
< 32,33,34, 37, 38, 43, 39 --- 31, 40
S 35, 36, 41, 44
= 63 4
K 8 2 45
g (ONQ)
§ e 42, 44, 48, 41, 43, 50, 51,56 49, 55 ==
= k5 52, 46
5 S 45, 47, 53,
= t3 54
20 ' D
< 2 O

Tablo 4.7°de goriildiigii gibi iki gruptaki katilimcilar da {igiincii geometri
problemini ¢ozerken benzer ¢esitte gerekgeler sunmuglardir. Daha detayli sdylemek
gerekirse katilimcilar gerekce sunarken daha ¢ok gorsel argiimantasyona
basvurmuslardir. Gorsel argiimantasyonlardan ise daha c¢ok ampirik-gorsel
arglimantasyonu kullanmiglardir. Kagit-Kalem grubunda gerekgesi olmayan iki
argiman bulunmakta iken, GeoGebra grubunda bu smiflandirmaya uymayan,
GeoGebra dlgiimlerini gerekge sunma olarak tanimladigimiz (31. Arglimanin
gerekcesi) ve GeoGebra eylemlerini gerekce sunma (Or: siiriikleme) olarak
tanimladigimiz (40. argiimanin gerekgesi) yeni durumlari ile karsilagilmistir.

Son olarak dordiincii geometri probleminin ¢6ziimiinde olusturulan

arglimanlarin gerekceleri Tablo 4.8’deki gibi dagilmaktadir.
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Tablo 4.8 Dordiincii geometri problem ¢oziimiinde olusturulan argiimanlarin lokal
argiimantasyon ¢egitlerine gore dagilimi

Lokal Gorsel Argiimantasyon Kavramsal
Argiimantasyon Argiimantasyon
Ampirik- Kavramsal- Gerekce
Gorsel Gorsel elemam
olmayan
argiimanlar
51, 52, 53, 54, 55, 56, 63 47, 48, 57, 58, 46, 49, 50, 61
© 59, 62 60,
2
- 03
= oS
] D =
E 0o
g 57 64, 65, 69, 59,60, 62,63, 58, 61
= & 70, 66, 67, 68, 72
£ G 71,73, 74
N
E ]
= s o
¥
< 2 O

Tablo 4.8 incelendiginde GeoGebra grubundaki katilimcilarin daha ¢ok
gorsel argiimantasyon kullandiklari, gorsel argiimantasyon cesitlerinden ise daha
cok ampirik-gorsel gerekce sunduklart goriilmektedir. Kagit-Kalem grubunda ise
gorsel ve kavramsal argiimantasyon kullaniminin esit sayida oldugu goriilmektedir.
Bu katilimcilarin  kullandigr gorsel arglimantasyon c¢esidinin ise c¢ogunlukla
kavramsal-gorsel oldugu goriilmektedir. Son olarak iki grupta da gerek¢e elemani
olmayan arglimanlarin oldugu goriilmektedir.

Aragtirmact geometri problemlerinin ¢6ziimlerini ayr1 ayri inceledikten
sonra bu problemlerin konularma gore (Uggenler, Cemberler) de inceleme
yapmistir. Bunun i¢in birinci ve ikinci geometri problemleri tiggen konusunda
olduklar1 igin birlikte ele alinirken, ¢ember konusunda hazirlanan figilincii ve
dordiincii geometri problemleri birlikte ele alinmugtir.

Uggen problemlerinde GeoGebra grubundaki katilimcilarin daha ¢ok
ampirik-gorsel argiimantasyon kullandigr sonucuna varilmistir. Diger yandan
Kagit-Kalem grubundaki katilimeilarin ise daha ¢ok kavramsal argiimantasyonu
tercih ettikleri sonucuna varilmistir. GeoGebra programi insanlar1 kendi ¢izimleri

tizerinde deneme yanilma yolu ile diisiinmeye tesvik etmektedir. Bu nedenle
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GeoGebra grubundaki katilimcilarin spesifik ¢izimler iizerinden yorum yapmay1
tercih etmeleri beklenen bir sonugtur. Benzer sekilde Kagit-Kalem grubundaki
katilimcilarin kavramsal bilgileri kullanmaya yonelmesi de beklenen bir durumdur.
Ciinkii katilimcilar kendi ¢izmlerini kavramsal bilgileriyle desteklemeye ve ¢ikarim
yapmaya c¢aligmislardir.

Cember problemlerinde bu durumun GeoGebra grubu i¢in ayni oldugu
goriilmektedir. Dolayisiyla matematiksel icerigin  GeoGebra  grubundaki
katilimcilarda farkli lokal arglimantasyon tercih etmeye neden olmadigi
goriilmiistiir. Kagit-Kalem grubunda ise durum farklilik gostermistir. Katilimcilar
cember problemlerinde daha ¢ok gorsel arglimantasyon kullanmiglardir. Ampirik-
gorsel ve kavramsal-gorsel arglimantasyonlardaki argliman sayilar1 incelendiginde
Kagit-Kalem grubunda neredeyse esit sayilarda olduklar1 goriilmektedir. Ayrica
Kagit-Kalem grubundaki katilimcilarin problemlerdeki dinamik sorular1t GeoGebra
programi kullanmadan zihinlerinde dogru bir sekilde hayal edebilmeleri, teorem ve
matematiksel kurallar yerine gorsel ¢izimler {lizerinden yorum yaparak gerekge

sunmalari, beklenmeyen bir sonug olarak karsimiza ¢ikmaktadir.

5. TARTISMA

5.1 Argiimantasyon yapist ile ilgili sonuclar

Matematik 6gretmen adaylarmin argiimantasyon siiregleri her bir geometri
problemi i¢in GeoGebra ve Kagit-Kalem grubu karsilastirilarak incelenmistir. Buna
gore her bir geometri problemi i¢in gruplarin argiimantasyon yapilar1 arasinda
benzerlikler ve farkliliklar bulunmaktadir. Biitlin  geometri problemleri
incelendiginde genel olarak asagidaki sonuclar elde edilmistir.

Bu caligmada global argiimantasyon yapilarini incelemek i¢in Knipping
(2008)’in smiflandirmasi gelistirilerek kullanilmustir. Knipping’in
simiflandirmasinda yer alan yapilardan {i¢ tanesi bu calismada goézlemlenmis
(Kaynak-yap1, Rezervuar-yap1 ve Spiral-yapi), bunun disinda bu smiflandirmaya

uymayan iki yeni yap1 ortaya c¢ikmistir. Bunlar Cizgi/Hat yapt ve Bagimsiz-
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Arglimanlar yapisi olarak isimlendirilmistir. Bu yeni yapilar geometri alaninda
argiimantasyon c¢aligmalarina katkida bulunmasi agisindan 6nemlidir.

Bir diger 6nemli sonug tercih edilen global argiiman yapilan ile ilgilidir.
Kaynak-yapi, rezervuar-yapi ve spiral-yapi daha karmasik global arglimantasyon
yapilaridir ve bu g¢alismada cogunlukla Ogretmenin sorgulatmasi ve tesviki ile
gbzlemlenmistir. Bu yapilar arasinda en ¢ok rastlanan ise spiral-yap1 olmustur.
Bunun en 6nemli nedeni arastirmacinin siirekli farkli ¢6ziim yollar1 bulmay1 tesvik
etmesi ve argiimantasyona sevk eden davraniglari olabilir. Bu davranislar 6grenci
iletisimini destekleme, gerek¢e sunmay1 tesvik etme, cevaplart sorgulama (Kosko,
Rougee, & Herbst, 2014; Vincent, Chick, & McCrae, 2005; Wood, 2003), biitiin
gruplar1 takip etme, yargilayici doniitlerden kaginma (Cross, 2009) olarak
siralanabilir. Bu bulgu arglimantasyon yonteminin uygulanmasinda Ogretmen
faktoriiniin onemini bir kez daha ortaya ¢ikarmaktadir (Conner, 2007; Forman ve
digerleri, 1998; Heinze & Reiss, 2007; Hunter, 2007; Yackel & Cobb, 1996).

Onemli bulgulardan bir digeri katilimcilarin argiiman yapilarinin sayilari
karsilastirildiginda daha ¢ok bagimsiz argiimanlar-yapist gibi basit yapilart
kullanmalaridir. Genel olarak biitlin geometri problemlerinde iki grupta da
(GeoGebra ve Kagit-Kalem) bagimsiz argiimanlar-yapisinin = goriilmesi
katilimcilarin  matematiksel muhakeme yapma konusunda zayif olduklarinin
gostergesi  olabilir. Ciinki  katilimcilar  arglimanlar1  arasindaki  iligkileri
kuramamakta ve argiiman yapilari basit kalmaktadir. Alanyazinda matematiksel
muhakeme ‘“matematiksel kavramlar ve iliskiler iizerinde amaclh olarak yapilan
¢ikarim” (Conner ve arkadaslari, 2014b, s. 183) olarak tanimlanmistir. Matematik
O0gretmen adaylarinin  Ogrencilerine matematik anlatabilmeleri i¢in mutlaka
matematiksel muhakeme becerilerini gelistirmeleri gerekmektedir. Bu ¢alismadaki
ogretmen adaylariin daha ¢ok bagimsiz arglimanlar-yapisint kullanmaya egilimli
olmalarmmin ve dolayisiyla matematiksel muhakemede biraz zayif olmalarinin
nedeni egitim yasamlar1 boyunca arglimantasyon veya tartisma ydntemlerinin
uygulandig1 derslere tanidik olmamalar1 olabilir. Tirkiye’deki egitim sistemi ve
uygulanan miifredat incelendiginde, Ogrencileri ¢oktan se¢meli ulusal sinavlara

hazirlamay1 amag edindikleri goriilmektedir. Bu siavlarda kisa siirede dogru cevabi
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bulmak o6nemli oldugundan &grencilerin benzer alistirma sorularindan siirekli
¢ozdiigii, kurallar1 ezberledigi bir calisma yontemine alisik oldugu sdylenebilir.
Bunun sonucunda 6grenciler ispat, tartisma, argiimantasyon gibi yiliksek seviyede
muhakeme gerektirecek ¢alismalara katilmamis ve matematiksel muhakeme
becerilerini gelistirmemis olarak yetigmektedirler. Bu becerilerin gelistirilmesi
matematigi kavramsal Ogrenme acisindan Onemli oldugu kadar gelecegin
ogrencilerini bu becerilere sahip sekilde yetistirmek adina 6nemlidir. Bu nedenle
ortaokul matematik 6gretim programina 6gretmenlerin argiimantasyon uygulamalari
yapacagl ve matematiksel muhakemelerini gelistirecekleri dersler eklenmesi

yerinde olacaktir.

5.2 Lokal argiiman tipleri ile ilgili sonuclar

Ortaokul matematik 6gretmen adaylarinin gelistirdikleri lokal argiimanlar
(iddia, veri ve gerekce iceren argiimanlar), argiiman elemanlarinin argiimantasyon
stirecinde sdylenme sirasina gore analiz edilmistir. Boylelikle arglimanlarin nasil bir
muhakeme sonucu ortaya ¢ikti§i konusunda ipuglart elde edilmistir. Bulgular
incelendiginde ortaokul matematik 6gretmen adaylarimin teknoloji ve kagit-kalem
ortamlarinda en sik kullandiklar ii¢ lokal argiiman tipi sirastyla Veri-Gerekge-Iddia
(DWC), Veri-Iddia-Gerekce (DCW) ve Iddia-Gerekce (CW) olarak
gozlemlenmistir. Bu aslinda beklenen bir sonugtu ¢iinkii katilimcilar ilk once
ellerindeki verilerden bahsetmis, daha sonra bir gerekg¢e sunmus ve bir iddiada
bulunmuglardir (DWC). Bunun yaninda bazen iddia ile gerekgenin yerinin degistigi
(DCW) bazen de verilerden bahsedilmedigi durumlarla karsilagilmistir. CW lokal
argiiman tipinde verilerden bahsedilmemesinin nedeni, o verilerin artik sinifca
bilinen paylasilan bilgi (taken-as-shared) olmasi olabilir (Simon & Blume, 1996;
Yackel & Cobb, 1996; Yackel, Ramussen, & King, 2000). Katilimcilarin bazi
argimanlarinda veriyi ve/veya gerekgeyi paylasilan bilgi (taken-as-shared) olmasi
nedeniyle sunmadigi gozlemlenmistir (CD, DC, WC and C). Bu nedenle
cgretmenlerin bu argiiman elemanlarin1 sunmayan 6grencileri degerlendirirken bu

bilgilerin siifca paylasilan bilgi olup olmadigina dikkat etmesi Onerilmektedir.
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Ciinkii 6grencinin bahsetmemesi o bilgiyi bilmedigi anlamina gelmeyebilir. Bazen
sinifca kabul edilmesi sebebiyle sdylemeye gerek duymamis olabilirler. Sonug
olarak argiimantasyon yontemini uygulayan Ogretmenlerin 6grencilerin gercekten
bilip bilmedigini anlamak icin siirekli ‘Neden?’ sorusuyla sorgulama yapmasi
onerilmektedir (Vincent, 2002; Wood, 2003).

Lokal arglimanlar GeoGebra ve Kagit-Kalem grubu arasinda
karsilastirildiginda iki grubunda benzer sekilde lokal argiiman sunduklari
gozlemlenmistir. Benzer sekilde lokal argiimanlar her bir geometri problemi igin
ayr1 ayri1 incelendiginde yine en sik kullanilan lokal argliman tiplerinin DWC, DCW
ve CW tipleri oldugu goriilmiistiir. Lokal argiiman tipleri ayrica iiggen sorulari ve
cember sorular1 arasinda da karsilagtirilmis, yine iki grubun benzer sekilde lokal
argliman tiplerini kullandig1 goézlenmistir. Dolayisiyla teknoloji kullaniminin,
geometri problemi ¢esidinin veya geometri konusunun argliman elemani sdylenis
sirast agisindan Onemli bir degisiklige neden olmadigi sonucuna varilabilir.
Argiiman elemani sunma seklinin, aligkin olunan muhakeme sekliyle alakali oldugu
diisiiniilmektedir. Daha acik soylemek gerekirse, Tiirkiye’deki Ogrenciler egitim
hayatlar1 boyunca argiimantasyon gibi sorusturma tabanli 6grenme yontemlerine
¢ok alistk olmadiklar1t i¢in argiimanlarini  benzer sekilde ifade ederek
sunmaktadirlar. Farkli 6grenme ortamlarinda bulunmalari (teknoloji, Kagit-Kalem)

onlarin argiiman tiplerinde degisiklige neden olmamaktadir.

5.3 Lokal argiimantasyon cesitleri ile ilgili sonuclar

Ortaokul matematik Ogretmen adaylarinin local argiimantasyon cesitleri,
argiimanlarinda sunduklar1 gerekgelere (warrant) odaklanilarak Knipping’in (2008)
sundugu smiflandirmaya gore incelenmistir. Genel olarak GeoGebra grubundaki
katilmcilarin -~ ampirik-gorsel ~ argiimantasyon,  Kagit-Kalem  grubundaki
katilimeilarin  ise Kavramsal argiimantasyon kullanmaya meyilli olduklar
gozlemlenmistir. GeoGebra grubunda daha c¢ok ampirik-gorsel argiimantasyon
kullanilmasimin nedenlerinden birisi GeoGebra’nin siiriikleme yapma olanagi

olabilir. Kullanicilar siirtikleme yaparak belirli sekiller iizerinde konugmakta, o
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sekiller lizerindeki Olgiimler/degerler iizerinden yorum yapmaktadirlar. Sonug
olarak bu yorumlar1 yeterli bir gerekge olarak kabul etmektedirler. Bu nedenle
¢ikarimlarini ¢ogunlukla teorik olarak desteklememektedirler (Chazan, 1993). Bir
diger neden teknoloji ortaminda teorik gerek¢e sunmaya aligkin olmamalari olabilir
(Chazan, 1993; Harel & Sowder, 1998; Hollebrands, Conner, & Smith, 2010).
Diger yandan Kagit-Kalem grubunda katilimcilar gerekcelerini teorik olarak
desteklemek zorunda kaldiklar1 i¢in teorem, aksiyom, kural ve benzeri iliskileri
gerekce olarak sunmuslardir ve kavramsal argiimantasyon kullanmislardir.
Alanyazinda siiriikkleme, 6lgme gibi ampirik delillerin kullaniminin énemli oldugu
(Arzarello ve digerleri, 2002; Chazan, 1993; De Villiers, 2003; Healy & Hoyles,
2001) fakat gerekgelendirme agisindan yeterli olmadigi savunulmaktadir (Hoyles &
Healy, 1999). Arastirmacilar ampirik delillerin teorik olarak desteklenemesinin
gerekli oldugunu savunmaktadirlar (Arzarello ve digerleri, 2002).

Bu calismada Knipping’in (2008) siniflandirmasina tam olarak uymayan
birka¢ cesit gerekce de sunulmustur. Bu gerekgeler ‘soruda verilenleri gerekce
sunma’, ‘GeoGebra Olglimlerini gerekge sunma’ ve ‘GeoGebra hareketlerini
gerekge sunma’ olarak siniflandirilmistir. Isimlerinden de anlasilacagi gibi
katilimcilar bazi durumlarda soruda verilenleri, bazi durumlarda ise GeoGebra ile
yaptiklar1 olglimleri ve siiriiklemeleri delil olarak gostermislerdir. Bu gerekgeler
herhangi bir muhakeme veya teorik bilgi ile desteklenmedigi icin iddialari
savunmalar1 acisindan yeteri kadar giiglii degildir (Chazan, 1993). Sayilar1 ¢cok az
olan bu tip gerekgeler, ortaokul matematik 6gretmen adaylarinin genel anlamda
kullandig1 bir lokal argiimantasyon cesidi olarak kabul edilmemektedir. Diger
yandan, bu ¢alismanin bulgularinin ileride yapilacak ¢aligmalara kaynak olabilecegi
distintilerek bu tip gerekgelerin de mevcudiyetinin dikkate alinmasi tavsiye

edilmektedir.
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