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ABSTRACT

CHATTERING AND SINGULAR PERTURBATION IN DISCONTINUOUS
DYNAMICS

Çağ, Sabahattı̇n

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

April 2017, 113 pages

The main purpose of this dissertation is to address the chattering and singularity phe-
nomena in discontinuous dynamical systems. The study describes models of singu-
lar impulsive differential equations such that in the system, not only the differential
equation is singularly perturbed, but also the impulsive function is singular. Tikhonov
Theorem is extended for the impulsive differential equations. Interestingly, in some
models described here, a solution of the problem approaches more than one root of
the differential equation as the parameter decreases to zero.

Wilson-Cowan neuron model is studied with impulse function in which the membrane
time constant is considered as both the singularity and bifurcation parameter. A new
technique of analysis of the phenomenon is suggested. This allows to consider the
existence of solutions of the model and bifurcation in ultimate neural behavior is
observed through numerical simulations. The bifurcations are reasoned by impulses
and singularity in the model and they concern the structure of attractors, which consist
of newly introduced sets in the phase space such that medusas and rings.

Moreover, the singular impact moments are introduced and they are utilized for the
problems with chattering solutions. The singular impulse moments gives the advan-
tages that the chattering arising in models, e.g., a bouncing ball, an inverted pendu-
lum and a hydraulic relief valve, can be analyzed through the singularity point of
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view. The presence of chattering is shown exclusively by examination of the right
hand side of impact models. Criteria for the sets of initial data which always lead to
chattering are established.

Keywords: Singular Perturbation, Chattering, Impulsive Singularity, Tikhonov Theo-
rem, Wilson-Cowan Model, Medusa Bifurcation
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ÖZ

SÜREKSİZ DİNAMİKLERDE TINLAMA VE TEKİL PERTÜRBASYON

Çağ, Sabahattı̇n

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Nisan 2017 , 113 sayfa

Bu tezin amacı, süreksiz dinamik sistemlerde tınlama ve tekillik olgusunu ele al-
maktır. Çalışma tekil impalsif diferansiyel denklemlerin yeni modellerini açıklamış-
tır, şöyle ki; sistemde diferansiyel denklem pertürbe edilirken, aynı zamanda impalsif
fonksiyonda tekildir. Tikhonov Teoremi, impalsif diferansiyel denklemler için geniş-
letilmiştir. İlginçtir ki, burada açıklanan bazı modellerde, problemin çözümü, para-
metre sıfıra giderken diferansiyel denklemin birden fazla sabit noktasına yaklaşmak-
tadır.

Wilson-Cowan nöron modeli, membran zaman sabitinin hem singülarite hem de ça-
tallanma parametresi olarak kabul edildiği impuls fonksiyonu ile incelenmiştir. Ol-
gunun yeni bir analiz tekniği önerilmektedir. Bu, modelin çözümlerinin varlığını göz
önüne almaya ve son sinirsel davranışta çatallanmanın sayısal simülasyonlar yoluyla
gözlemlenmesine izin verir. Çatallanmalar, modeldeki dürtüler ve tekilliklerden kay-
naklanır ve fazör alanında medusalar ve halkalar gibi yeni tanıtılan kümelerden oluşan
çekicilerin yapısını ilgilendirir.

Ayrıca, tekil etki zamanları tanıtılmış ve bunlar tınlama çözümleri ile ilgili problemler
için kullanılmıştır. Tekil dürtü zamanları, modellerde ortaya çıkan tınlama, zıplayan
bir top, ters çevrilmiş bir sarkaç ve hidrolik bir tahliye vanası gibi örneklerde tekil-
lik bakış açısı ile analiz edilebilmesinin avantajını verir. Tınlamanın varlığı, yalnızca
darbe modellerinin sağ tarafının incelenmesi ile gösterilmiştir. Her zaman tınlamaya
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yol açan başlangıç veri kümeleri için kriterler oluşturulmuştur.

Anahtar Kelimeler: Tekil Pertürbasyon, Tınlama, İmpalsif Tekillik, Tikhonov Te-
oremi, Wilson-Cowan Modeli, Medusa Çatallanması
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Perturbation theory is a key theme in mathematics and its applications to the natu-

ral and engineering sciences [13, 31, 66, 75, 86, 115]. It has enormous numbers of

mathematical methods used to obtain approximate solution to problems that have no

analytical solution. The techniques work by reducing a difficult problem to a simple

problem that has an analytical solution. The simplified problem is then "perturbed" to

make the conditions that the perturbed solution really fulfills closer to the real prob-

lem. These problems have a small positive parameter. This parameter influences the

problem in a manner that the solution changes quickly in some region of the problem

domain and gradually in other parts.

Now, one can ask: What is a singular perturbation? Singular perturbation theory deals

with the investigation of issues including a parameter for which the solutions of the

issue at a limiting value of the parameter are distinctive in character from the limit of

the solutions to the general issue; to be specific, the limit is singular. In contrast to

singular perturbation, for regular perturbation problems, the solutions of the general

problem approach to the solutions of the limit problem as the parameter tends to the

limit value. The traditional view of the singular problem is that a differential equa-

tion (plus other conditions) having a small parameter that is multiplying the highest

derivatives. The contemporary view is that it is called a singular problem if, in an

appropriate norm, the difference of the perturbed problem and degenerated one does

not tend to zero when the small parameter goes to zero.

The history of singular perturbation dates back to 1904. Ludwig Prandtl, a professor

of mechanics at the Technical University of Hanover, made a presentation to the Third
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International Congress of Mathematicians in Heidelberg, Germany, entitled “Über

Flüssigkeitsbewegung bei sehr kleiner Reibung” (On Fluid Motion with Small Fric-

tion). His seven page report was published in the proceedings one year later. In the

1930s, a few early papers concerning singularly perturbed boundary value problems

mathematically showed up. However, they did not have a long-term effect. For ex-

ample, Y-W. Chen (1935) was a graduate student in mathematics at Göttingen, who

had a thesis topic on an ordinary differential equation model with boundary layer be-

havior. After he completed his thesis, Chen, however, never did further study on this

subject. In the late 1930’s the Japanese mathematician M. Nagumo studied a singu-

larly perturbed initial value problem εẍ + f(t, x, ẋ, ε) = 0. A particular problem of

this frame was proposed to Nagumo by a chemist.

Friedrichs and Wasow (1946) were the first persons who use the term "singular pertur-

bations" in a paper. Wasow continued to study on a variety of asymptotic problems,

while Friedrichs was most influential in advancing singular perturbations through his

lectures.

The singular perturbations were studied around the world. The efficient investigation

of singular perturbation problems started in the Soviet Union in the late of 1940s. The

basic studies were done by A. N. Tikhonov in 1948 and 1952 [116, 117]. Tikhonov

and his students at Moscow State University, particularly Adelaida Vasil’eva, devel-

oped comprehensive expansion strategies for broad types of differential equations.

In her PhD thesis, Vasil’eva investigated the derivatives of the solution of problem

with respect to small parameter which ultimately led to the construction of an asymp-

totic expansion of the solution. The singular perturbation approach of Tikhonov and

Vasil’eva was first applied to optimal control and regulator design by Kokotovic and

Sannuti [98, 99] and, more specifically, to flight-path optimization by Kelley and

Edelbaum [46].

The basic Tikhonov results were independently obtained later by Norman Levinson,

from MIT [73]. Levinson’s approach was more geometric, aimed at describing relax-

ation oscillations, as occur for the van der Pol equation.

After the 1960s, singular perturbation theory has expanded. The topic is now a part

of studies in applied mathematics and in many fields of engineering. The detailed
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history of singular perturbation can be found in [89, 90].

This perturbation method has vast applications in many fields such as: chemical kinet-

ics and combustion, mathematical biology, fluid dynamics, condensed matter physics

and control theory [16, 17, 18, 21, 24, 25, 26, 27, 28, 29, 37, 38, 40, 41, 42, 47, 50,

53, 54, 55, 57, 61, 67, 70, 71, 81, 82, 83, 84, 85, 91, 92, 93, 95, 96, 100, 101, 102,

103, 104, 107, 109, 111, 113, 114, 123]. For a general theory, we refer the reader to

[63, 78, 90, 119, 121] and the references therein for nice examples and applications.

In 1990s, the regular perturbation theory for the differential equations with impulses

were investigated by Akhmet. Results were published in three papers [9, 10, 11] and

they are widely described in the book [2]. In this thesis, we will study the singular

perturbation theory for the impulsive differential equations.

1.1 A Short Description of Singular Perturbation

In this thesis, real numbers, natural numbers, integers and Euclidean norm are denoted

by R, N, Z and ‖.‖, respectively.

1.1.1 Motivation

We start with a basic example in order to understand the singularly perturbed problem.

Consider the initial value problem

µẋ+ 2x = 2, with x(0, µ) = x0, (1.1)

where µ is a small real number. The solution of this problem is

x(t, µ) = 1 + (x0 − 1)e−
2t
µ .

For µ < 0 and x0 6= 1, the solution will become unbounded as µ → 0 for any t > 0.

However, for µ > 0, the solution tends to 1 for any t > 0 as µ → 0. In Figure 1.1,

the solution x(t, µ) is obtained for initial condition x0 = 0 and for some values of

parameter µ.
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As the parameter µ tends to zero from the right, we have the limit

x(t, µ)→

x0 for t = 0,

1 for t > 0.

If x0 6= 1, then the limit is discontinuous at t = 0. So, convergence is not uniform at
t = 0.

t
0 0.5 1 1.5

x

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 1.1: The solution of system (1.1) with initial value x0 = 0.5, for blue=0.2,
red=0.1. It is obviously seen that as the parameter µ decreases, the solution x(t, µ)

is getting closer to 1. There is a layer at the neighborhood of t = 0 on which the
convergence fails. However, for fix t > 0, the convergence is uniform.

1.1.2 Definition of a Singular Problem

Let us describe generally the definition of singularity. Consider

• Problem P (µ): the problem with small parameter µ,

• Problem P (0): the reduced (degenerated) problem.

The problem P (0) is a simplified model of P (µ) taking µ = 0. Denote the solution

of P (0) by z(t, 0) and the solution of P (µ) by z(t, µ).
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Definition 1.1.1 [119] P (µ) is called regularly perturbed problem in a domain D if

sup
D
‖z(t, µ)− z(t, 0)‖ → 0 when µ→ 0.

Otherwise, it is called singularly perturbed problem.

It follows from the definition that for a regularly perturbed problem the solution

z(t, 0) of P (0) will be close to the solution z(t, µ) of P (µ) in the entire domain

D for all sufficiently small µ. However, if the problem P (µ) is singularly perturbed,

then z(t, µ) will not be close to z(t, 0) for all small µ at least in some part of domain

D.

1.2 A Brief Description of Differential Equations with Impulses

Nature offers numerous cases of frameworks where states of the systems can be

changed suddenly. At this point, mathematicians propose discontinuous differential

equations to describe the real life problems adequately. There are different types of

them. In this thesis, we use the differential equations with impulse effects or with

the other name: Impulsive differential equations. Consider, for example, biological

structures involving thresholds such as drug resistance models in medicine. These

models exhibit impulse effects depending on the dosage of the drug [108]. More-

over, examples of such systems arise in mechanics, e.g., the behavior of a bouncing

bead, the behavior of clock mechanisms [4, 22, 23, 62, 88]. Consider a free falling

bead in the uniform gravity force field with a fixed horizontal base. After colliding

with the base the bead bounces back with the velocity whose norm is equal to the

norm of the pre-impact velocity multiplied by r, where r is the restitution coefficient,

0 < r < 1. Then, after some time interval the bead will fall on the base again and

the norm of its velocity will be equal to the norm of bouncing velocity in the pre-

vious collision multiplied by r. The process continues with these collisions. It can

be seen that after the each collision the velocity of the bead changes abruptly. This

example shows how the bouncing bead can be examined in this theory. The theory of

impulsive differential equations are well developed and also it has many applications

in: neuroscience, physics, mechanics,etc. The detailed theory and applications can

be found in [2, 3, 6, 7, 97].
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Now, let us give a general description of the impulsive differential equations. There

are two types of abrupt changes in the state of a mathematical system, namely, the

impulse effects at prescribed moments and the impulse effects at non-prescribed mo-

ments. The following model represents the first one.

ẋ = f(t, x),

∆x|t=θi = Ii(x),
(1.2)

where f : R × Rn → Rn, {θi} is a sequence of real numbers with the set of indexes

A which is either finite or infinite, I : A×Rn → Rn, ∆x|t=θi := x(θi+)−x(θi), and

x(θi+) = limt→θ+i
x(t). Let us give details of the system (1.2). When t 6= θi, a phase

portrait of system (1.2) is characterized by differential equation counterpart of (1.2);

it has jump at t = θi and satisfies difference equation x(θi+)− x(θi) = Ii(x(θi)).

The discontinuity moments occur at non-prescribed time in the second one. This

makes the theoretical analysis difficult. Fortunately, Akhmet [2] offers a useful tool-

B−equivalence method- which gives the advantages to transform the models with

non-prescribed moments to the ones with prescribed moments. Let us consider sys-

tems of the form

ẋ = f(t, x),

∆x|t=ηi(x) = Ii(x),
(1.3)

where ηi(x) are surfaces of discontinuity. One can easily see that impulse time in

(1.3) by its own nature depend on solutions. Consequently, jump moments can be

very different.

In this thesis, we will address systems with both impulse action at prescribed and

non-prescribed moments.

1.3 The Organization of the Thesis

The thesis is organized as follows:

Chapter 1. Introduction and preliminaries: We give some background of the

general theory of singular perturbation and impulsive differential equations.
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Chapter 2. Singularly perturbed differential equations with singular impulse

functions

• Section 1. Tikhonov theorem for differential equations with singular im-

pulses: The most general form of Tikhonov theorem for the impulsive systems

is obtained. The singularity in this chapter arises from both differential equa-

tions and the impulsive functions.

• Section 2. A differential equation with singular impulses and multi-stable

roots: Singularly perturbed differential equations with both small parameter in

front of the derivative and impulse function as in previous section is discussed

with a new approach. This approach is as follows: the solution approaches

more than one root of the differential equation as the parameter decreases to

zero.

Chapter 3. Bifurcation analysis of Wilson-Cowan model with singular impulses:

The theory developed in Chapter 2 is complemented with numerical simulations in

Wilson-Cowan model. In the coupled Wilson-Cowan models, a new attractor com-

posed of a new concept, namely medusa, is observed.

Chapter 4. Analysis of impact chattering: The concept of impact chattering is

introduced. Definition of chattering is given. Moreover, sufficient conditions are

provided for the existence of the impact chattering.

Chapter 5. Chattering as a singular problem: The singular impulse moments

are defined. Based on this definition, new singularly perturbed models are proposed.

Also, the systems with chattering solutions are discussed in the view of singular prob-

lem.

Conclusion and future works: Main contributions of the research and future works

are listed.
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CHAPTER 2

SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS

WITH SINGULAR IMPULSE FUNCTIONS

In this chapter, we state and prove the impulsive analogous of Tikhonov theorem

with singular impulsive function. Moreover, in the second section, the solution of

the new constructed model will approach more than one stable equilibrium when the

parameter decreases.

2.1 Tikhonov Theorem for Differential Equations with Singular Impulses

2.1.1 Introduction

The singularly perturbed differential equations arise in various fields of chemical ki-

netics [102], mathematical biology [57, 91], fluid dynamics [37] and in a variety

models for control theory [52, 67]. These problems depend on a small positive pa-

rameter such that the solution varies rapidly in some regions and varies slowly in

other regions.

The contribution of our work relates to a new Tikhonov theorem for singularly per-

turbed impulsive systems. This theorem expresses the limiting behavior of solu-

tions of the singularly perturbed system. It is a powerful instrument for analysis

of singular perturbation problems. It has been studied for many types of differential

equations; partial differential equations [64], singularly perturbed differential inclu-

sions [120], functional-differential inclusions [45], discontinuous differential equa-

tions [33, 34, 35, 105, 106].
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Impulse effects exist in a wide diversity of evolutionary processes that exhibit abrupt

changes in their states [2, 3, 6]. In many systems, in addition to singular perturbation,

there are also impulse effects [33, 34, 35, 105, 106]. Chen et al. [35] derived a

sufficient condition that guarantees robust exponential stability for sufficiently small

singular perturbation parameter by applying the Lyapunov function method and using

a two-time scale comparison principle. In [105, 106], authors proposed Lyapunov

function method to set up the exponential stability criteria for singularly perturbed

impulsive systems. This method can be efficiently used to overcome the impulsive

perturbation such that the stability of the original system can be ensured. In [33],

Lyapunov function method was further extended to study the exponential stability of

singularly perturbed stochastic time-delay systems with impulse effect. The results

in [33, 105, 106] only guarantee the systems under consideration to be exponentially

stable for sufficiently small positive parameter.

Various types of singular perturbation problems are discussed in many books [19,

90, 118, 119, 121]. Consider the following model of singularly perturbed differential

equation

µż = f(z, y, t),

ẏ = g(z, y, t),
(2.1)

where µ is a small positive real number. In the literature, the results based on this

system are known as Tikhonov Theorem [90, 117, 121]. Bainov and Covachev [19]

first extended the impulsive analogous of Tikhonov Theorem concerning system (2.1)

in the form of

µż = f(z, y, t), ∆z|t=ti = Ii(z(ti)),

ẏ = g(z, y, t), ∆y|t=ti = Ji(y(ti)),
(2.2)

where i = 1, 2, ..., p and 0 < t1 < t2 < ... < tp < T. However, only the differential

equation in their problem is singularly perturbed.

In this study, we consider differential equations where impulses are also singularly

perturbed which are different from [19]. The following system is our focus of discus-

sion

µ
dz

dt
= F (z, y, t), µ∆z|t=θi = Ii(z, y, µ)

dy

dt
= f(z, y, t), ∆y|t=ηj = Jj(z, y),

(2.3)
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where z, F and Ii are m-dimensional vector valued functions, y, f and Jj are n-

dimensional vector valued functions, 0 < θ1 < θ2 < · · · < θp < T, θi, i = 1, 2, . . . , p,

and ηj, j = 1, 2, . . . , k, are distinct discontinuity moments in (0, T ).

The main novelty of this section is the extension of Tikhonov Theorem such that

system (2.3) has the small parameter in impulse function, the discontinuity moments

are different for each dependent variables. The singularity in the impulsive part of the

system can be treated through perturbation theory methods.

2.1.2 A Particular Case of the Main Theorem

Before carrying out our main investigation, let us consider a particular case of the

main theorem. This case is useful by its geometric clarity. We introduce the following

problem

µ
dz

dt
= F (z),

µ∆z|t=θi = Ii(z, µ),

(2.4)

with z(0, µ) = z0, where z ∈ Rm, t ∈ [0, T ], F (z) is a continuously differentiable

function on D and Ii(z, µ), i = 1, 2, . . . , p, is a continuous function for (z, µ) ∈
D × [0, 1] , D is the domain D = {0 ≤ t ≤ T, ‖z‖ < d}, the impulse moments

θi, i = 1, 2, . . . , p, are defined above.

The parameter in the impulsive equation makes it possible that Ii(z,µ)
µ

, i = 1, 2, . . . , p,

blow up at impulse moments as µ → 0. This is why, a deep analysis and convenient

conditions for the limiting processes with µ→ 0 have to be provided.

2.1.2.1 Singularity with a Single Layer

Let us take µ = 0 in (2.4). Then, one has 0 = F (z) = Ii(z, 0), i = 1, 2, . . . , p. It

is the degenerate system since its order is less than the order of (2.4). Consider an

isolated real root z = ϕ of F (z) = 0 and Ii(z, 0) = 0.

Now, introduce a new variable τ = t
µ

and x = z − ϕ for the first equation in (2.4) to
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obtain
dx

dτ
= F (x+ ϕ). (2.5)

The following condition is required.

(C1) Suppose that there is a positive definite function V (x) such that V (0) = 0 and

whose derivative with respect to τ along system (2.5) is negative definite.

This condition implies that the zero solution of (2.5) is uniformly asymptotically sta-

ble. Moreover, for the impulsive function we need the following condition.

(C2)

lim
(z,µ)→(ϕ,0)

Ii(z, µ)

µ
= 0, i = 1, 2, . . . , p,

which prevents impulsive function to blow up as the parameter µ decays to zero. This

condition is the counterpart of (C1) considering impulsive function. Condition (C2)

plays a similar role to the condition (C1) in the proof of the next theorem.

Theorem 2.1.1 Suppose that conditions (C1) and (C2) are true. If the initial value

z0 is located in the domain of attraction of the root ϕ, then solution z(t, µ) of (2.4)

with z(0, µ) = z0 exists on [0, T ] and it satisfies the limit

lim
µ→0

z(t, µ) = ϕ for 0 < t ≤ T. (2.6)

Proof. In this proof, we will follow the idea of the proof of [118, Theorem 7.3].

Consider the first interval [0, θ1]. Let z0 ∈ D such that it is in the domain of attraction

of ϕ. Then, for fix µ > 0, the differential equation

dz

dt
=
F (z)

µ
(2.7)

with initial value z(0, µ) = z0 has a unique solution z(t, µ) since F (z) ∈ C1(D).

Then rescale the time as t = τµ and substitute x = z − ϕ in (2.7) to get

dx

dτ
= F (x+ ϕ). (2.8)

x = 0 is an equilibrium of this differential equation. By condition (C1), equation (2.8)

has a positive definite function V (x) whose derivative with respect to τ is negative
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definite and V (0) = 0. Hence, by the Lyapunov’s second method, one can say that

the zero solution of (2.8) is uniformly asymptotically stable as τ → ∞. Therefore,

∀ ε > 0 and for sufficiently small µ on 0 < t ≤ θ1 one has ‖z(t, µ)− ϕ‖ < ε, i.e,

lim
µ→0

z(t, µ) = ϕ for 0 < t ≤ θ1.

Now, consider the next interval (θ1, θ2]. From condition (C2), we have

lim
µ→0

z(θ1+, µ) = lim
µ→0

{
z(θ1, µ) +

I(z(θ1, µ), µ)

µ

}
= ϕ.

It means that z(θ1+, µ) is in the domain of attraction of the root ϕ. Repeating the

same processes as for the previous interval, one obtains

lim
µ→0

z(t, µ) = ϕ for θ1 < t ≤ θ2.

Similarly, one can show that z(t, µ)→ ϕ as µ→ 0 for t ∈ (θi, θi+1], i = 2, . . . , p− 1

and t ∈ (θp, T ]. As a result, limit (2.6) is true and the theorem is proved.

The convergence is not uniform at t = 0 since z(0, µ) = z0 and z0 6= ϕ for all µ > 0.

We can say that the region of nonuniform convergence is O(µ) thick, since for t > 0,

‖z(t, µ)− ϕ‖ can be made arbitrarily close to zero by choosing µ small enough. The

interval of nonuniform convergence is called an initial layer. This theorem implies

that there is a single initial layer.

Example. Consider the system

µẋ1 = −x1 + x2, µ∆x1|t=θi = −2µx1,

µẋ2 = −x1 − x2, µ∆x2|t=θi = µ sin(x
1/3
2 + µ),

(2.9)

with initial value (x1(0, µ), x2(0, µ)), where θi = i/3, i = 1, 2, . . . , 10. Let us take

µ = 0 in this system. Then

0 = −x1 + x2, 0 = 0,

0 = −x1 − x2, 0 = 0.

and so (x1, x2) = (0, 0) is the root. Substitute τ = t
µ

into the differential equations

part of (2.9) to obtain

dx1

dτ
= −x1 + x2,

dx2

dτ
= −x1 − x2, .

(2.10)
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We take the positive definite function V (x1, x2) = x2
1 + x2

2. Then

dV

dτ
= 2x1(−x1 + x2) + 2x2(−x1 − x2) = −2(x2

1 + x2
2) = −2V.

Hence, V (x1, x2) has a negative definite derivative with respect to τ along (2.10).

Now, let us check the condition (C2). Denote x = (x1, x2). Then

lim
(x,µ)→(0,0)

I(x, µ)

µ
= 0

since lim(x1,µ)→(0,0)−2x1 = 0 and lim(x2,µ)→(0,0) sin(x
1/3
2 + µ) = 0. Therefore, by

Theorem 2.1.1, if the initial value (x1(0, µ), x2(0, µ)) of (2.9) is in the domain of
attraction of the root (0, 0), then solution (x1(t, µ), x2(t, µ)) of (2.9) tends to (0, 0) as
µ→ 0 for 0 < t ≤ T. It is clearly seen in Figure 2.1 that the solution of system (2.9)
with initial (1.5,−1.5) tends to (0, 0) as µ→ 0.
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t
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Figure 2.1: Blue, red and black lines represents the solution of system (2.9) with
initial value (1.5,−1.5) for µ = 0.07, µ = 0.05 and µ = 0.03, respectively.

2.1.2.2 Singularity with Multi-Layers

In the previous subsection, it is shown that there is a single initial layer. Using an

impulse function, the convergence can be nonuniform near several points, that is to

say that multi-layers emerge. These layers will occur on the neighborhoods of t = 0

and t = θi, i = 1, 2, . . . , p.

Again, we consider system (2.4) with the same properties. In addition, we need the

following condition
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(C3)

lim
(z,µ)→(ϕ,0)

Ii(z, µ)

µ
= I0

i 6= 0, i = 1, 2, . . . , p,

and assume that ϕ+ I0
i is in the domain of attraction of the root ϕ.

By the virtue of this condition, after the each impulse moment, the difference ‖z(θi+, µ)−
ϕ‖ does not go to zero as µ→ 0. Hence, convergence is not uniform.

Theorem 2.1.2 Suppose that conditions (C1) and (C3) hold. If the initial value z0

is located in the domain of attraction of the root ϕ, then the solution z(t, µ) of (2.4)

with z(0, µ) = z0 exists on [0, T ] and the limit

lim
µ→0

z(t, µ) = ϕ (2.11)

is true for t ∈
p−1⋃
i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

Proof. Proof is similar to the proof of Theorem 2.1.1 with the exception that singu-

larity with multi-layers appears near t = 0 and t = θi, i = 1, 2, . . . , p.

By condition (C3), after the each discontinuity moment θi, the solution z(t, µ) is not

close to the root ϕ. In other words, the difference ‖z(θi+, µ)−ϕ‖ cannot be arbitrarily

small as µ→ 0. Hence, one can obtain multi-layers up to the number p+ 1.

Let us illustrate the theorem with the following example.

Example. Consider the following impulsive differential equation with small parame-

ter:

µż = −z − z3,

µ∆z|t=θi = µz1/3 + sinµ+ 0.1µ,
(2.12)

where θi = i/3, i = 1, 2, ..., 10. Let us take µ = 0 in this system. Then we have the

algebraic equation 0 = −z − z3. It has solution z = 0. Now, introduce t = τµ in the

first equation of (2.12) to obtain

dz

dτ
= −z − z3 (2.13)
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Using the Lyapunov function V (z) = z2, it can be shown that z = 0 is a uniformly

asymptotically stable solution of (2.13). Moreover, condition (C3) is satisfied since

lim
(z,µ)→(0,0)

µz1/3 + sinµ+ µ0.1

µ
= 1.1.

Choose the initial value z(0, µ) = 0.6. Then the solution z(t, µ) of system (2.12) with
this initial value has multi-layers at t = 0 and t = θi+, i = 1, 2, . . . , 10. Clearly, in
Figure 2.2, it can be seen that multi-layers occur.
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Figure 2.2: Solution z(t, µ) of system (2.12) with initial value z(0, µ) = 0.6 for
different values of parameter µ. Blue and red line represent for µ = 0.1, µ = 0.05,

respectively. It is seen that at t = 0 and at each θi, i = 1, 2, ..., 10, the convergence is
nonuniform, i.e., multi-layers exist.

Let us generalize the Theorem 2.1.2. Consider the following impulsive system

µ
dz

dt
= F (z),

µ∆z|t=θi = Ii(z, µ),

µ∆z|t=τ ij = Jj(z, µ),

(2.14)

where the impulse moments τ ij , j = 1, 2, . . . , pj are such that θi < τ i1 < τ i2 < · · · <
τ ipj < θi+1, i = 1, 2, . . . , p − 1 and θp < τ p1 < τ p2 < · · · < τ ppj < T. Assume

Jj(ϕ, 0) = 0, j = 1, 2, . . . , pj, and the following condition holds for (2.14)

(C4)

lim
(z,µ)→(ϕ,0)

Jj(z, µ)

µ
= 0, j = 1, 2, . . . , pj.

Now, we can assert the following theorem.
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Theorem 2.1.3 Suppose that conditions (C1), (C3) and (C4) hold. If the initial value

z0 is located in the domain of attraction of the root ϕ, then the solution z(t, µ) of

(2.14) with z(0, µ) = z0 exists on [0, T ] and the limit

lim
µ→0

z(t, µ) = ϕ (2.15)

is true for t ∈
p−1⋃
i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

2.1.3 Main Result

Now, we turn to main problem (2.3).

2.1.3.1 Singularity with a Single Layer

Define the initial conditions (for simplicity, we set t0 = 0.)

z(0, µ) = z0, y(0, µ) = y0, (2.16)

where z0 and y0 will be assumed to be independent of µ, and let us investigate the

solution z(t, µ), y(t, µ) of (2.3) and (2.16) on segment 0 ≤ t ≤ T .

In system (2.3), take µ = 0, then we obtain

0 = F (z̄, ȳ, t), 0 = Ii(z̄, ȳ, 0), i = 1, 2, . . . , p,

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ηj = Jj(z̄, ȳ), j = 1, 2, . . . , k,

(2.17)

which we call as degenerate system due to the fact that its order is less than the order

of (2.3). Therefore, for the system (2.17) the number of initial conditions must be

set less than the number of initial conditions for (2.3). We naturally insert the initial

condition for y, i.e., put

ȳ(0) = y0, (2.18)

and drop the initial condition for z. Now, the question is that whether there will be a

solution z(t, µ) and y(t, µ) of problem (2.3), (2.16) for small µ which is close to the

solution z̄(t), ȳ(t) of the degenerate problem (2.17), (2.18).
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To solve system (2.17), it is necessary to find z̄ from 0 = F (z̄, ȳ, t) and 0 = Ii(z̄, ȳ, 0), i =

1, 2, . . . , p. Then choose one of the root z̄ = ϕ(ȳ, t) such that 0 = F (ϕ(ȳ, t), ȳ, t) and

0 = Ii(ϕ(ȳ, θi), ȳ, 0), and substitute into (2.17) with initial value (2.18) to obtain

dȳ

dt
= f(ϕ(ȳ, t), ȳ, t), ∆ȳ|t=ηj = Jj(ϕ(ȳ, t), ȳ),

ȳ(0) = y0.

(2.19)

We need the following conditions in this section:

A1. The functions F (z, y, t), f(y, z, t), and Jj(z, y), j = 1, 2, . . . , k, are continuous

in some domain H = {(y, t) ∈ N̄ = {0 ≤ t ≤ T, ‖y‖ ≤ c}, ‖z‖ < d},
Ii(z, y, µ), i = 1, 2, . . . , p, is continuous in H × [0, 1] and they are Lipschitz

continuous with respect to z and y.

A2. Algebraic equations 0 = F (z, y, t) and 0 = Ii(z, y, 0) have a root z = ϕ(y, t)

such that F (ϕ(y, t), y, t) = 0 and Ii(ϕ(y(θi), θi), y(θi), 0) = 0, i = 1, 2, . . . , p,

in domain N̄ such that:

1. ϕ(y, t) is a piecewise continuous function in N̄ ,

2. (ϕ(y, t), y, t) ∈ H,

3. The root ϕ(y, t) is isolated in N̄ , i.e., ∃ ε > 0: F (z, y, t) 6= 0 and/or

Ii(z, y, µ) 6= 0, i = 1, 2, . . . , p, for 0 < ‖z − ϕ(y, t)‖ < ε, (y, t) ∈ N̄ .

A3. 1. System (2.19) has a unique solution ȳ(t) on 0 ≤ t ≤ T , and (ȳ(t), t) ∈ N̄
for 0 ≤ t ≤ T . Moreover, f(ϕ(y, t), y, t) and Jj(ϕ(y, t), y) are Lipschitz

with respect to y ∈ N̄ .

2. ϕ(ȳ(ηj+), ηj+) = ϕ(ȳ(ηj), ηj), j = 1, 2, . . . , k.

Now, setting x = z − ϕ and t = τµ, we introduce the system

dx

dτ
= F (x+ ϕ(y, t), y, t), τ ≥ 0, (2.20)

where y and t are considered as parameters, x = 0 is an isolated stationary point of

(2.20) for (y, t) ∈ D̄.

A4. Suppose that there is a positive definite function V (x, y, τ) whose derivative

with respect to τ along the system (2.20) is negative definite in the region H.

18



Consider the adjoint system

dz̃

dτ
= F (z̃, y0, 0), τ ≥ 0, (2.21)

with initial condition

z̃(0) = z0. (2.22)

Since z0 maybe, in general, far from stationary point ϕ(y0, 0), then the solution z̃(τ)

of equations (2.21) and (2.22) need not tend to ϕ(y0, 0) as τ →∞. Assume that

A5. the solution z̃(τ) of equations (2.21) and (2.22) satisfies the conditions

1. z̃(τ)→ ϕ(y0, 0) as τ →∞,

2. (z̃(τ), y0, 0) ∈ H for τ ≥ 0.

In this case, z0 is said to belong to the basin of attraction of the stationary point

z̃ = ϕ(y0, 0). By virtue of the asymptotic stability of this point all points near it will

belong to its basin of attraction.

A6. Assume also

lim
(z,y,µ)→(ϕ(ȳ(θi),θi),ȳ(θi),0)

Ii(z, y, µ)

µ
= 0, i = 1, 2, . . . , p.

Now, we state and prove the modified Tikhonov Theorem.

Theorem 2.1.4 Suppose that conditions A1 − A6 hold. Then, for sufficiently small

µ, solutions z(t, µ) and y(t, µ) of problem (2.3) with initial conditions (2.16) exist on

0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (2.23)

and

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ T. (2.24)

Before proving this theorem, we will consider the following auxiliary system:

µ
dz

dt
= F (z, y, t),

dy

dt
= f(z, y, t), ∆y|t=ηj = Jj(z, y),

(2.25)
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where this system has the same properties as (2.3).

In system (2.25), take µ = 0, then we obtain

0 = F (z̄, ȳ, t),

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ηj = Jj(z̄, ȳ),

(2.26)

which is the degenerate system of (2.25).

To solve system (2.26), it is necessary to find z̄ from 0 = F (z̄, ȳ, t). Then choose one

of the root z̄ = ϕ(ȳ, t) and substitute into (2.26) with initial value (2.18) to obtain

dȳ

dt
= f(ϕ(ȳ, t), ȳ, t), ∆ȳ|t=ηj = Jj(ϕ(ȳ, t), ȳ),

ȳ(0) = y0.

(2.27)

Now, introduce the adjoint system

dz̃

dτ
= F (z̃, y, t) τ ≥ 0, (2.28)

where y and t are considered as parameters, z̃ = ϕ(y, t) is an isolated stationary point

of (2.28) for (y, t) ∈ N̄ .

Suppose that

B. the stationary point z̃ = ϕ(y, t) of (2.20) is uniformly asymptotically stable

with respect to (y, t) ∈ N̄ , i.e. ∀ε > 0 ∃ δ(ε) > 0 such that if ‖z̃(0)−ϕ(y, t)‖ <
δ(ε) then ‖z̃(τ)− ϕ(y, t)‖ < ε and z̃(τ)→ ϕ(y, t) as τ →∞.

If this condition is true, then the root z̃ = ϕ(y, t) is said to be stable in N̄ .

Lemma 2.1.1 Suppose that for system (2.25) conditions A1-A3, A5 and B are true,

then, for sufficiently small µ, solutions z(t, µ) and y(t, µ) of problem (2.25) with

initial conditions (2.16) exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (2.29)

and

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ T. (2.30)
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Proof. First, consider the interval [0, η1]. On this interval, Lemma 2.1.1 is a type

of Tikhonov Theorem [119, Theorem 2.1] and all conditions are satisfied. Therefore,

by [119, Theorem 2.1], for sufficiently small µ, solutions z(t, µ), y(t, µ) of (2.3) and

(2.16) exist on [0, η1] and satisfies

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ η1,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ η1.
(2.31)

Now, consider the second interval (η1, η2]. For this interval the initial values are z1 =

z(η1+, µ), y1 = y(η1+, µ). Since limµ→0 y(η1, µ) = ȳ(η1) and limµ→0 z(η1, µ) =

ϕ(ȳ(η1), η1), z1 is in the basin of attraction of ϕ(ȳ(t), t) and y1 ∈ N. Again, all

conditions of Tikhonov Theorem are satisfied and by [119, Theorem 2.1]

lim
µ→0

y(t, µ) = ȳ(t) for η1 < t ≤ η2,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for η1 < t ≤ η2.

Similarly, for the next intervals (ηi, ηi+1], i = 2, 3, . . . , k − 1, and (ηk, T ] one can

show that as µ → 0, limµ→0 y(t, µ) = ȳ(t) and limµ→0 z(t, µ) = z̄(t) = ϕ(ȳ(t), t).

Lemma is proved.

Remark. At discontinuity moments ηj, j = 1, 2, . . . , k, layers do not emerge. This is

because,

lim
µ→0

z(ηj+, µ) = ϕ(ȳ(ηj), ηj) = z̄(ηj), j = 1, 2, . . . , k.

Proof of Theorem 2.1.4. Consider the interval [0, θ1]. Hence, on this interval, The-

orem 2.1.4 is the form of Lemma 2.1.1. Condition A4 is corresponding to the as-

sumption that uniformly asymptomatically stability of the root ϕ(y, τµ) as τ → ∞,
i.e. condition B is satisfied. Obviously, all conditions of Lemma 2.1.1 are true. Con-

sequently, for sufficiently small µ, solutions z(t, µ), y(t, µ) of (2.25) and (2.16) exist

and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ θ1,

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t) for 0 < t ≤ θ1.
(2.32)

Now, consider the next interval (θ1, θ2]. Condition A6 implies that

lim
µ→0

z(θ1+, µ) = lim
µ→0

{
z(θ1, µ) +

I1(z(θ1, µ), y(θ1, µ), µ)

µ

}
= ϕ(ȳ(θ1), θ1).
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Hence, condition A5 is true. Repeating the same processes as for the previous inter-

val, one can demonstrates that z(t, µ) → ϕ(ȳ(t), t) and y(t, µ) → ȳ(t) as µ → 0 for

(θ1, θ2]. Thus, recurrently it can be proven that for t ∈ (θi, θi+1], i = 1, 2, . . . , p − 1

and t ∈ (θp, T ] it is true that z(t, µ) → ϕ(ȳ(t), t) and y(t, µ) → ȳ(t) as µ → 0.

Therefore limits (2.23) and (2.24) are true. Theorem is proved.

Example for Lemma 2.1.1. Consider the system

µ
dz

dt
= z(1− z − 2y),

dy

dt
= y(1− 2z − y), ∆y|t=ηj = y2 − y + z,

(2.33)

with initial conditions z(0, µ) = 1 and y(0, µ) = 2, where ηj = j/3, j = 1, 2, . . . , 5.

Let us take µ = 0 in this problem. Then, the first equation becomes 0 = z(1−z−2y).

It has the solutions z = 0 and z = 1− 2y. Consider the zero solution z = 0. Now, we

check the conditions of Lemma 2.1.1.

∂

∂z
z(1− z − 2y)|z=0 = 1− 2y < 0

if y > 1/2. Therefore, if y > 1/2, z = 0 is uniformly asymptotically stable. Substi-

tute z = 0 into the second line of (2.33) to obtain

dȳ

dt
= ȳ(1− ȳ), ∆ȳ|t=ηj = ȳ2 − ȳ, (2.34)

with initial value ȳ(0) = 2. This system has a unique solution ȳ(t). Thus, by Lemma
2.1.1, solutions z(t, µ), y(t, µ) of (2.33) with z(0, µ) = 1 and y(0, µ) = 2 tends to
0, ȳ(t), respectively, as µ → 0 for 0 < t ≤ T. Obviously, in Figure 2.3, it can be
seen that when µ decreases to zero, solutions z(t, µ), y(t, µ) approaches to 0, ȳ(t),

respectively.
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Figure 2.3: Black, magenta, blue and red lines are the coordinates of system
(2.33) with initial values z(0, µ) = 1 and y(0, µ) = 2 for different values of
µ : 0, 0.05, 0.1, 0.2, respectively.

2.1.3.2 Singularity with Multi-Layers

In the previous subsection, it is shown that the convergence is not uniform at t = 0.

That is, an initial layer is obtained by Tikhonov Theorem. To get multi-layers by

Tikhonov Theorem we need another condition for the impulse function. These layers

will occur on the neighborhoods of t = 0 and t = θi, i = 1, 2, . . . , p.

Again, we consider system (2.3) with the same properties. In addition, we need the

following condition

A7.

lim
(z,y,µ)→(ϕ(ȳ(θi),θi),ȳ(θi),0)

Ii(z, y, µ)

µ
= I0

i 6= 0

and assume that ϕ(ȳ(θi), θi) + I0
i , i = 1, 2, . . . , p, is in the basin of attraction of

ϕ(ȳ(t), t).

This condition implies that after each impulse moment, the difference ‖z(θi+, µ)−ϕ‖
does not go to zero as µ→ 0. Hence, convergence is not uniform.
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Theorem 2.1.5 Suppose that conditions A1-A5 and A7 hold. Then, for sufficiently

small µ, solutions z(t, µ) and y(t, µ) of problem (2.3) with initial conditions (2.16)

exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T

and

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t)

is true for t ∈
p−1⋃
i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

Proof. Proof is similar to the proof of Theorem 2.1.4 with the exception that singu-

larity with multi-layers appears near t = 0 and t = θi, i = 1, 2, . . . , p.

Now, let us generalize this theorem. Consider the following impulsive system

µ
dz

dt
= F (z, y, t), µ∆z|t=θi = Ii(z, y, µ) µ∆z|t=τ ij = J̃i(z, y, µ)

dy

dt
= f(z, y, t), ∆y|t=ηj = Jj(z, y),

(2.35)

where τ ij is defined in Section 2.1.2.2. Additionally, we need J̃i(ϕ(ȳ(τ ij), τ
i
j , ), ȳ(τ ij), 0) =

0, i = 1, 2, . . . , p, j = 1, 2, . . . , pj and the following condition

A8.

lim
(z,y,µ)→(ϕ(ȳ(θi),θi),ȳ(θi),0)

J̃i(z, y, µ)

µ
= 0, i = 1, 2, . . . , p.

Now, we can assert our theorem.

Theorem 2.1.6 Suppose that conditions A1-A5 and A7-A8 hold. Then, for sufficiently

small µ, solutions z(t, µ) and y(t, µ) of problem (2.35) with initial conditions (2.16)

exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T

and

lim
µ→0

z(t, µ) = z̄(t) = ϕ(ȳ(t), t)

is true for t ∈
p−1⋃
i=0

(θi, θi+1] ∪ (θp, T ], where θ0 = 0.

24



2.1.4 Conclusion

In this section, we have introduced a new type of singular impulsive differential equa-

tions. The main novelty of this part is that singularity in the impulsive part of the

systems can be treated through perturbation methods.

In the book of Bainov and Covachev [19], and several papers cited in the book, they

considered singular impulsive systems with small parameter involved only in the dif-

ferential equations of the systems, but not in the impulsive equations of them while

we insert a small parameter into the impulse equation such that the singularity concept

has been significantly extended for discontinuous dynamics. Thus, the most general

Tikhonov theorem for the impulsive case has been obtained.

2.2 A Differential Equation with Singular Impulses and Multi-stable Roots

2.2.1 Introduction

The singularly perturbed differential equations have been investigated from the begin-

ning of 20th century due to their extensive applications in various fields of chemical

kinetics [102], mathematical biology [57, 91], fluid dynamics [37] and in a variety

models for control theory [52, 67]. This problem contains a small parameter such

that the problem cannot be approximated by setting the parameter value to zero. In

other words, the solution of this problem varies rapidly in some regions and varies

slowly in other regions.

It is well known that one of the basic instruments in differential equations is impulse

effect so that the role of discontinuity is understood better for the real world problems.

It exists in a wide diversity of evolutionary processes that exhibit abrupt changes in

their states [2, 3, 6, 7]. Hence, it has received considerable attention from many

researchers. In many systems, in addition to singular perturbation, there are also

impulse effects [33, 34, 35, 105, 106]. Chen et al. [35] derived a sufficient condition

that guarantees robust exponential stability for sufficiently small singular perturbation

parameter by applying the Lyapunov function method and using a two-time scale

comparison principle. In [105, 106], authors proposed Lyapunov function method to
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set up the exponential stability criteria for singularly perturbed impulsive systems.

This method can be efficiently used to overcome the impulsive perturbation such

that the stability of the original system can be ensured. In [33], Lyapunov function

method was further extended to study the exponential stability of singularly perturbed

stochastic time-delay systems with impulse effect. The results in [33, 105, 106] only

guarantee the systems under consideration to be exponentially stable for sufficiently

small positive parameter.

In this section, we develop the singularly perturbed problem to singularly perturbed

differential equations with both small parameter in front of the derivative and impulse

function. The intrinsic idea of the section is that in our model solution approaches

more than one root of the differential equation as the parameter decreases to zero.

Another novelty here is that the system has two impulse functions one of which is

singular. This provides new theoretical opportunities.

In this section, we propose the following singular impulsive differential equations

with a positive small real parameter µ:

µ
dz

dt
= F (z),

µ∆z|t=ηi = I(z, µ), ∆z|t=θi = J(z)

(2.36)

with z(0, µ) = z0, where z ∈ Rn, t ∈ [0, T ], F (z) is continuously differentiable on

D, I(z, µ) is continuous on D× [0, 1] and J(z) is continuous on D , D is the domain

D = {0 ≤ t ≤ T, ‖z‖ < d}, θi, i = 1, 2, . . . , p, and ηj, j = 1, 2, . . . , p̄, are distinct

discontinuity moments in (0, T ).

The parameter in the impulsive equation makes it possible that I(z,µ)
µ

blow up at im-

pulse moments as µ→ 0. This is why, a deep analysis and convenient conditions for

the limiting processes with µ→ 0 have to be researched.

2.2.2 Main Result

Let us take µ = 0 in (2.36). Then, one has

0 = F (z),

0 = I(z, 0), ∆z|t=θi = J(z)
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It is the degenerate system since its order is less than the order of (2.36). Assume

that F (z) = 0 has the roots ϕ1, ϕ2, ...ϕk, ϕk+1, . . . , ϕl such that I(ϕj, 0) = 0, j =

1, 2, ..., l and all of them are real and isolated in D̄.

The following conditions are required for system (2.36).

(C1) Jacobian matrix ∂F
∂z

∣∣
z=ϕj

, j = 1, 2, . . . , k, is Hurwitzian.

This condition implies that the roots ϕj, j = 1, 2, . . . , k are stable solutions of the

differential equation in (2.36). Furthermore, we need the following conditions for the

impulsive functions.

(C2) For each j ∈ {1, 2, . . . , k} there exists i ∈ {1, 2, . . . , k} such that

ϕj + J(ϕj) = ϕi.

That is, after the each impulse moment θi, the solution z(t, µ) will be close to another

stable equilibrium.

(C3)

lim
z→ϕj
µ→0

I(z, µ)

µ
= 0, j = 1, 2, . . . , k.

In the denominator of the limit we have a small parameter µ which goes to zero. In

order to avoid a blow up we need the last condition. Also, the zero value of the limit

gives us the advantage that the solution stays in the domain of attractions of the stable

roots.

DenoteDj as the domain of attraction of root ϕj, j = 1, 2, . . . , k, such thatDi∩Dj =

∅ if i 6= j and Dj ⊂ D, j = 1, 2, . . . , k. Moreover, zj(t) will be used for denoting the

solution of

0 = F (z), 0 = I(z, 0)

such that if the initial value z0 ∈ Dj, then zj(t) = ϕj for t ∈ (0, θ1] and it alter-

nates to the other stable roots by condition (C2) for the next intervals (θi, θi+1], i =

1, 2, . . . , p− 1.
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Theorem 2.2.1 Suppose that conditions (C1)-(C3) are true. If the initial value z0 is

located in the domain of attractionDj of the root ϕj, j = 1, 2, . . . , k, then the solution

z(t, µ) of (2.36) with z(0, µ) = z0 exists on [0, T ] and it satisfies the limit

lim
µ→0

z(t, µ) = zj(t) for 0 < t ≤ T, (2.37)

where j = 1, 2, . . . , k(k − 1)p.

Proof 2.2.1 In this proof, we will show that the theorem is true for two stable roots,

namely ϕ1, ϕ2. Consider the interval [0, θ1]. Without loss of generality, assume that

ηi ∈ (0, θ1), i = 1, 2, . . . , n, n < p̄. Let z0 ∈ D1 such that it is in the domain of

attraction of ϕ1. Then, for fixed µ > 0, the differential equation on the interval [0, η1]

dz

dt
=
F (z)

µ
(2.38)

with initial value z(0, µ) = z0 has a unique solution z(t, µ), since F (z) ∈ C1(D).

Introduce a new variable τ = t
µ

in (2.38) to obtain

dz

dτ
= F (z), τ > 0. (2.39)

Then, by condition (C1), one gets the following limit

lim
τ→∞

z(τ, µ) = ϕ1,

that is,

lim
µ→0

z(t, µ) = ϕ1 for 0 < t ≤ η1.

Next, let us consider the interval (η1, η2]. From condition (C3), we have

lim
µ→0

z(η1+, µ) = lim
µ→0

{
z(η1, µ) +

I(z(η1, µ), µ)

µ

}
= ϕ1.

Hence, z(η1+, µ) is in the domain of attraction of ϕ1, z(η1+, µ) ∈ D1. So, from

condition (C1),

lim
µ→0

z(t, µ) = ϕ1 for η1 < t ≤ η2.

Repeating the same technique as for the previous intervals, one has the limit

lim
µ→0

z(t, µ) = ϕ1 for 0 < t ≤ θ1.
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For two stable roots condition (C2) is of the form

ϕ1 + J(ϕ1) = ϕ2,

or

ϕ2 + J(ϕ2) = ϕ1.

It follows that z(θ1+, µ) = z(θ1, µ) + J(z(θ1, µ)) is in the neighborhood of ϕ2, i.e.,

it is in D2, the domain of attraction of ϕ2. Now, consider next the interval (θ1, θ2]. As

in the previous interval, we have

lim
µ→0

z(t, µ) = ϕ2 for θ1 < t ≤ θ2

and z(θ2+, µ) = z(θ2, µ) + J(z(θ2, µ)) is in the neighborhood of ϕ1. Recursively,

one can prove that

lim
µ→0

z(t, µ) = z1(t),

where

z1(t) =

ϕ1 if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

ϕ2 if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .
.

Note that if z0 ∈ D2, then we will have

lim
µ→0

z(t, µ) = z2(t),

where

z2(t) =

ϕ2 if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

ϕ1 if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .
.

Therefore, theorem is proved.

The convergence is not uniform at t = 0 since z(0, µ) = z0 and z0 6= ϕ1 for all µ > 0.

We can say that the region of nonuniform convergence is O(µ) thick, since for t > 0,

‖z(t, µ)−ϕ1‖ can be made arbitrarily close to zero by choosing µ small enough. The

interval of nonuniform convergence is called an initial layer. This theorem implies

that there is a single initial layer.
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Example 2.2.1 Let us consider the following one dimensional nonlinear system

µż = −z(1− z)(2− z),

µ∆z|t=ηi = −µz1/2(1− z2)(2− z)− µ2, ∆z|t=θi = 2− 2z,
(2.40)

with z(0, µ) = z0 where θi = 2i
3
, ηi = 2i−1

3
, i = 1, 2, 3, 4, 5, and F (z) = −z(1 −

z)(2 − z), I(z, µ) = −µz1/2(1 − z2)(2 − z) − µ2, J(z) = 2 − 2z. Now, we check

the conditions of Theorem 2.2.1. Take µ = 0 to obtain 0 = F (z). It has the roots

ϕ1 = 0, ϕ2 = 1, ϕ3 = 2, such that I(0, 0) = I(1, 0) = I(2, 0) = 0.

∂F

∂z

∣∣∣∣
z=ϕj

= (3z2 + 6z − 2)|z=ϕj < 0, j = 1, 3.

Moreover,

0 + J(0) = 2, 2 + J(2) = 0,

and

lim
z→ϕj
µ→0

I(z, µ)

µ
= lim

z→ϕj
µ→0

(−z1/2(1− z2)(2− z)− µ) = 0, j = 1, 3.

All conditions are satisfied. Thus, by Theorem 2.2.1, if the initial value z0 is located

in the domain of attraction Dj, of the root ϕj, j = 1, 3, then solution z(t, µ) of (2.40)

with z(0, µ) = z0 exists on [0, T ] and it satisfies the limit

lim
µ→0

z(t, µ) = zj(t) for 0 < t ≤ T, (2.41)

where j = 1, 2. If z0 ∈ D1, then

z1(t) =

0 if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

2 if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .

and if z0 ∈ D2, then

z2(t) =

2 if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

0 if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .
.

To demonstrate the results via simulations, choose z(0, µ) = 2.2 which is in the
domain of the attraction of root z = 2. In Figure 2.4, the result of Theorem 2.2.1 is
obviously seen.
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Figure 2.4: Blue and red lines represents the coordinates of solution of system (2.40)
with initial z(0, µ) = 2.2 for µ = 0.2 and µ = 0.1, respectively.
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CHAPTER 3

BIFURCATION ANALYSIS OF WILSON-COWAN MODEL

WITH SINGULAR IMPULSES

3.1 Introduction

Wilson and Cowan [124] proposed a model for describing the dynamics of localized

populations of excitatory and inhibitory neurons. This model is a coarse-grained

description of the overall activity of a large-scale neural network, employing just two

differential equations [65]. It is used in the developing of multi-scale mathematical

model of cortical electric activity with realistic mesoscopic connectivity [122]. On the

other hand, sudden changes and the instantaneous perturbations in a neural network

at a certain time, which are identified by external elements, are examples of impulsive

phenomena which may influence the evolutionary process of the neural network [1].

In fact, the existence of impulse is often a source of richness for a model. That is to

say, the impulsive neural networks will be an appropriate description of symptoms

of sudden dynamic changes. Therefore, the models considered in this chapter have

impulsive moments.

The singularly perturbed problems depend on a small positive parameter, which is in

front of the derivative, such that the solution varies rapidly in some regions and varies

slowly in other regions. They arise in the various processes and phenomena such as

chemical kinetics, mathematical biology, neural networks, fluid dynamics and in a

variety models for control theory [102, 57, 91, 96, 37, 67, 52]. In this chapter, we will

investigate the Wilson-Cowan model with singular impulsive function in which sin-

gular perturbation method has been used to analyze the dynamics of neuron models.
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Local bifurcations are ubiquitous in mathematical biology [69] and mathematical neu-

roscience [59, 49, 44], because they provide a framework for understanding behavior

of the biological networks modeled as dynamical systems. Moreover, a local bifurca-

tion can affect the global dynamic behavior of a neuron [59]. There are many neuronal

models to consider the bifurcation analysis, for instance, the bifurcation for Wilson-

Cowan model is discussed in the book of Hoppensteadt and Izhikevich [59] in which

they consider the model of the following type

ẋ = −x+ S(ρ+ cx),

where x ∈ R is the activity of the neuron, ρ ∈ R is the external input to the neuron,

the feedback parameter c ∈ R characterizes the non-linearity of the system, and S

is a sigma shaped function. This system consists only one neuron or one population

of neurons. When the bifurcation parameter ρ changes, the saddle-node bifurcation

occurs. In our research, we will discuss two and four of population of neurons. These

systems have impulses at prescribed moments of time. We will observe the local

bifurcation in these models.

The attractors observed in our simulations do not resemble any attractors which have

already been observed in the literature. This is why, we need to introduce a new

terminology to describe an ultimate behavior of motion in the model. We call the

recently introduced components of constructed attractors as medusas and rings. This

“zoological" approach to dynamics is not unique in differential equations. For ex-

ample, canards are cycles of singularly perturbed differential equations [68, 112, 39].

They were discovered in the van der Pol oscillator by Benoit et al [20]. This phe-

nomenon explains the very fast transition upon variation of a parameter from a small

amplitude limit cycle to a relaxation oscillation [68]. The fast transition is called

canard explosion and happens within an exponentially small range of the control pa-

rameter. Because this phenomenon is hard to detect it was nicknamed a canard, after

the French newspaper slang word for hoax. Furthermore, the shape of these periodic

orbits in phase space resemble a duck; hence the name “canard," the French word

for duck. So the notion of a canard cycle was born and the chase after these crea-

tures began [32]. It is important to note that both canards and medusas appear in the

singularly perturbed systems.
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Bifurcation occurred in this chapter cannot be reduced to the existing local bifurca-

tions in the literature, namely, saddle-node, pitchfork, Hopf bifurcations, etc. First of

all, we are talking about the change of an attractor set in the four subpopulations of

neurons of Wilson-Cowan model with impulses depending on the change of the small

parameter. This time the bifurcation parameter is also the parameter of the singular-

ity. Moreover, it is a parameter of the singularity not only in the differential equations

of the model, but also in the impulsive part of it. Thus, the cause of bifurcation is

not the change of eigenvalues, but it relates to the singular compartment and the im-

pulsive dynamics of the model. This is why, theoretical approvement of the observed

bifurcations has not been done here. However, we see that the abrupt changes in

the phase portrait through simulations. Additionally, we notice that in the numerical

study attractors of the model can be described through the new picture’s elements

which we call as medusa, medusa without ring and rings, which, in general, may not

be considered invariant for solutions of the model despite that the elements are intro-

duced for the first time. We are confident that they are very generic for differential

equations with impulses and they will give a big benefit in the next investigations of

discontinuous neural networks.

We will start by defining the membrane time constant since it will be used as the

parameter of singularity and bifurcation.

3.2 Membrane Time Constant

The role of the membrane time constant is important in Wilson-Cowan models. In

these models the frequency of the oscillation is determined primarily by the mem-

brane time constants [110]. Let us define the membrane time constant µ for a simple

circuit. Suppose that the membrane is characterized by a single membrane capaci-

tance C in series with a single voltage-independent membrane resistance R, see Fig-

ure 3.1. Then, by Ohm’s law the dynamics of the potential V across this circuit in

response to a current injection I changes as

RC
dV

dt
= −V + IR,

35



Figure 3.1: A simple RC circuit.

which has the solution

V (t) = IR(1− e−
t
RC )

The membrane time constant, here, is defined by the product of the membrane re-

sistance and membrane capacitance µ = RC. The potential V (t) is governed by

exponential decay toward the steady-state V = IR as µ → 0. The membrane time

constant is used to understand how quickly a neuron’s voltage level changes after it

receives an input signal.

3.3 Singular Model with Singular Impulsive Function

The dynamics of excitatory and inhibitory neurons are described as follows [124]

µe
dE

dt
= −E + (ke − reE)Se(c1E − c2I + P ),

µi
dI

dt
= −I + (ki − riI)Si(c3E − c4I +Q),

(3.1)

whereE(t) and I(t) are the proportion of excitatory and inhibitory cells firing per unit

time at time t, respectively, c1 and c2 are the connectivity coefficients, which are both

positive, represent the average number of excitatory and inhibitory synaptic inputs per

cell, P (t) represents the external input to the excitatory subpopulation, the quantities

c3, c4 and Q(t) are defined similarly for the inhibitory subpopulation. The nonzero

quantities µe and µi represent the membrane time constants while ke, ki, re and ri are

associated with the refractory terms. Moreover, Se(x) is the sigmoid function of the

following form

Se(x) =
1

1 + exp[−ae(x− θe)]
− 1

1 + exp(aeθe)
, (3.2)
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where θe is the position of the maximum slope of Se(x) and max[Ṡe(x)] = ae/4, and

Si is defined similarly.

Since the external inputs influence the neurons’ activities, E(t) and I(t) can change

abruptly. It is natural to consider the previous continuous dynamics in the way that

the membrane time constants proceed to be involved in the electrical processes and

the impulsive equations have the form

∆E|t=θi = K̄(E, I),

∆I|t=θi = J̄(E, I),
(3.3)

where the impulse moments θi are distinct, θi ∈ (0, T ) and the equality ∆E|t=θi =

E(θ+) − E(θ−) denotes the jump operator in which t = θ is the time when the

external input influence E(t), E(θ−) is the pre-impulse value and E(θ+) is the post-

impulse value. Moreover, if one considers the impulsive equations as the limit cases

of the differential equations, then at some moments impulsive changes of the activities

can depend on the membrane time constants, similar to the ones for the system (3.1).

More precisely, we will also study the equations of the form

µe∆E|t=ηj = K(E, I, µe),

µi∆I|t=ηj = J(E, I, µi),
(3.4)

where the moments ηj and θi are, in general, different. Finally, gathering all the

dynamics details formulated above, our single Wilson-Cowan model with impulses

has the following form

µe
dE

dt
= −E + (ke − reE)Se(c1E − c2I + P ),

µi
dI

dt
= −I + (ki − riI)Si(c3E − c4I +Q),

∆E|t=θi = K̄(E, I),

∆I|t=θi = J̄(E, I),

µe∆E|t=ηj = K(E, I, µe),

µi∆I|t=ηj = J(E, I, µi),

(3.5)

with the initial activity (E(0), I(0)) = (E0, I0).

Define the function F (E, I) =

−E + (ke − reE)Se(c1E − c2I + P )

−I + (ki − riI)Si(c3E − c4I +Q)

 .
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Suppose that E, I ∈ R, t ∈ [0, T ], F (E, I) is continuously differentiable on D,

K(E, I, µe), J(E, I, µi) are continuous onD×[0, 1] and K̄(E, I), J̄(E, I) are contin-

uous on D, D is the domain D = {0 ≤ t ≤ T, |E| < d, |I| < d}, θi, i = 1, 2, . . . , p,

and ηj, j = 1, 2, . . . , p̄, are distinct discontinuity moments in (0, T ).

Substituting µe = µi = 0 in (3.1) and (3.4), we obtain F (E, I) = 0 and

0 = K(E, I, 0),

0 = J(E, I, 0).
(3.6)

Assume that equations F (E, I) = 0 and (3.6) have the steady states

(E1, I1), (E2, I2), ...(Ek, Ik), (Ek+1, Ik+1), . . . , (El, Il)

such that all of them are real and isolated in D̄. They are considered to be states of

low level background activities since such activities seem ubiquitous in neural tissue.

E(t) and I(t) will be used to refer the activities in the respective subpopulations.

The following conditions are required for system (3.1).

(C1) Jacobian matrices of F (E, I) at the points (E1, I1), (E2, I2), ..., (Ek, Ik) are

Hurwitz matrices (they have eigenvalues whose real parts are negative).

This condition implies that the states (E1, I1), (E2, I2), ..., (Ek, Ik) are stable steady

states of the differential equation (3.1). Moreover, for the impulsive functions we

need the following conditions.

(C2) For each j ∈ {1, 2, . . . , k} there exists i ∈ {1, 2, . . . , k} such thatEj
Ij

+

K̄(Ej, Ij)

J̄(Ej, Ij)

 =

Ei
Ii

 .

That is, after the each impulse moment θj the activity (E(t), I(t)) will be close to

another stable steady state

Ei
Ii

 .

(C3)

lim
(E,I)→(Ej ,Ij)

µe,i→0

K(E,I,µe)
µe

J(E,I,µi)
µi

 =

0

0

 , j = 1, 2, . . . , k.
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In the denominator of the limit we have small parameters µe and µi which decay

to zero. In order to avoid a blow up we need the last condition. In addition, the

zero value of the limit gives us the privilege that the activities stay in the domain of

attractions of the stable steady states.

Denote Dj as the domain of attraction of stable steady state (Ej, Ij), j = 1, 2, . . . , k,

such that Di ∩ Dj = ∅ if i 6= j and Dj ⊂ D, j = 1, 2, . . . , k. Also, zj(t) will be

used for denoting the solution of F (E, I) = and (3.6) such that if the initial value

(E0, I0) ∈ Dj, then zj(t) = (Ej, Ij) for t ∈ (0, θ1] and it alternates to the other stable

steady states by condition (C2) for the next intervals (θi, θi+1], i = 1, 2, . . . , p− 1.

Theorem 3.3.1 Suppose that conditions (C1)-(C3) are true. If the initial value (E0, I0)

is located in the domain of attraction Dj of the steady state (Ej, Ij), j = 1, 2, . . . , k,

then the solution (E(t), I(t)) of (3.5) with (E0, I0) exists on [0, T ] and it satisfies the

limit

lim
µe,i→0

(E(t), I(t)) = zj(t) for 0 < t ≤ T, (3.7)

where j = 1, 2, . . . , k(k − 1)p.

The proof follows from the proof in [5].

Example. Now, let us take the external forces P (t) = Q(t) = 0, µe = µi = µ,

and other coefficients in (3.1) as follows: c1 = 12, c2 = 4, c3 = 13, c4 = 11, ae =

1.2, ai = 1, θe = 2.8, θi = 4, re = 1, ri = 1, ke = 0.97, ki = 0.98. Then, one obtains

µ
dE

dt
= −E + (0.97− E)Se(12E − 4I),

µ
dI

dt
= −I + (0.98− I)Si(13E − 11I).

(3.8)

Taking µ = 0, one has the three equilibria (see Figure 3.2), namelyE
I

 =

0

0

 ,

0.44234

0.22751

 and

 0.18816

0.067243

 .

We have F (E, I) =

−E + (0.97− E)Se(12E − 4I)

−I + (0.98− I)Si(13E − 11I)

 . Then, the Jacobian matri-
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Figure 3.2: E-I phase plane of (3.8). The green represents−E+(0.97−E)Se(12E−
4I) = 0 and the red represents −I + (0.98− I)Si(13E − 11I) = 0.

ces of F (E, I) on the steady states are−0.5468 −0.1511

0.2250 −1.1904

 ,

−0.9895 −0.2829

2.1299 −31045


and 1.0001 −0.7469

0.9879 −1.9096

 ,

respectively. All eigenvalues of the first two matrices are negative, but last one has a

positive eigenvalue. Therefore, the first two steady states are stable.

We extend model (3.8) with the following impulse functions

∆E|t=θi = −2E + 0.44234,

∆I|t=θi = −2I + 0.22751.
(3.9)

µ∆E|t=ηi = −µE1/2(E − 0.44234)2 − sin(µ2)I,

µ∆I|t=ηi = −µI1/3(I − 0.22751)3 − sin(µ2)E,
(3.10)

where θi = 2i
3
, ηi = 2i−1

3
, i = 1, 2, . . . , 20. Let us check the conditions of Theorem

3.3.1. We have shown that the states

0

0

 ,

0.44234

0.22751

 are stable. Moreover, they

satisfy the equations (3.10) if µ = 0. Condition (C2) holds since0

0

+

0.44234

0.22751

 =

0.44234

0.22751
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and 0.44234

0.22751

+

−0.88468 + 0.44234

−0.45502 + 0.22751

 =

0

0

 .

Lastly, let us check the condition (C3):

lim
(E,I)→(Ej ,Ij)

µ→0

−E1/2(E − 0.44234)2 − 1
µ

sin(µ2)I

−I1/3(I − 0.22751)3 − 1
µ

sin(µ2)E

 =

0

0

 , j = 1, 2.

Clearly, all conditions are satisfied. Therefore, if the initial value (E0, I0) is in the do-

main of attraction of the steady state (0, 0) then the activities (E(t), I(t)) approaches

to the steady states as µ→ 0, that is to say,

lim
µ→0

(E(t, µ), I(t, µ)) =

(0, 0) if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

(0.44234, 0.22751) if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .
,

and if it is in the domain of attraction of the steady state (0.44234, 0.22751), then

lim
µ→0

(E(t, µ), I(t, µ)) =

(0.44234, 0.22751) if t ∈ (0, θ1] ∪ (θ2, θ3] ∪ . . .

(0, 0) if t ∈ (θ1, θ2] ∪ (θ3, θ4] ∪ . . .
.

To demonstrate the results via simulation, we take (E0, I0) = (0.25, 0) which is in

the domain of attraction of (0.44234, 0.22751). Obviously, the results of the theorem

can be seen in Figure 3.3.

3.4 Bifurcation of New Attractor Composed of Medusa

In discontinuous dynamics, we will show that a new type of attractor consisting

medusa, medusa without ring, and rings exist. The technique used to obtain the

new attractor is as follows. We need a pair of coupled Wilson-Cowan models in

which each system has an excitatory and an inhibitory subpopulation. The first sys-

tem admits stable steady states and it has singular impulses. The second one has a

limit cycle. Also, in the latter system, the membrane time constants are equals to 1

whereas in the former it is the singularity parameter.
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Figure 3.3: Coordinates of (3.8), (3.9) and (3.10) with the initial value (0.25, 0),

where red, blue and black lines corresponds to value of µ = 0.1, 0.2, 0.3, respectively.

The first Wilson-Cowan model with impulsive singularity is of the following form:

µe
dE

dt
= −E + (0.97− E)Se(13E − 4I),

µi
dI

dt
= −I + (0.98− I)Si(22E − 2I),

∆E|t=θi = 6.741E2 − 3.58612E + 0.45064,

∆I|t=θi = 6.6087I2 − 3.85682I + 0.49,

µe∆E|t=ηi = µeE
1/2(E − 0.20353)(E − 0.45604)2 − sin(µ2

e),

µi∆I|t=ηi = µiI
1/3(I − 0.18691)(I − 0.49)2 − sin(µ2

i ),

(3.11)

where the sigmoid functions are

Se(x) =
1

1 + exp[−1.5(x− 2.5)]
− 1

1 + exp(3.75)
,

Si(x) =
1

1 + exp[−6(x− 4.3)]
− 1

1 + exp(25.8)
.

and impulse moments are θi = 2i + 4.95, ηi = 2i − 1 + 4.95, i = 1, 2, . . . , 50. The

differential equations in (3.11) have three stable states0

0

 ,

0.20353

0.18691

 ,

0.45064

0.49
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and two unstable steady states0.096205

0

 ,

0.37647

0.49

 .

The second model, which has a limit cycle, is of the form

de

dt
= −e+ (0.97− e)S̃e(16e− 12i+ 1.25),

di

dt
= −i+ (0.98− i)S̃i(15e− 3i),

(3.12)

where

S̃e(x) =
1

1 + exp[−1.3(x− 4)]
− 1

1 + exp(5.2)
,

S̃i(x) =
1

1 + exp[−2(x− 3.7)]
− 1

1 + exp(7.4)
.

We couple system (3.11) and (3.12) as follows

µe
dE

dt
= −E + (0.97− E)Se(13E − 4I),

µi
dI

dt
= −I + (0.98− I)Si(22E − 2I),

de

dt
= −e+ (0.97− e)S̃e(16e− 12i+ 1.25),

di

dt
= −i+ (0.98− i)S̃i(15e− 3i),

µe∆E|t=ηi = µeE
1/2(E − 0.20353)(E − 0.45604)2e− sin(µ2

e),

µi∆I|t=ηi = µiI
1/3(I − 0.18691)(I − 0.49)2i− sin(µ2

i ),

∆E|t=θi = 6.741E2 − 3.58612E + 0.45064,

∆I|t=θi = 6.6087I2 − 3.85682I + 0.49,

∆e|t=ηi = E(E − 0.20353)2(E − 0.45604),

∆i|t=ηi = I(I − 0.18691)(I − 0.49).

(3.13)

It is already known that differential equations in (3.11) have three stable steady states.

Suppose that the membrane time constants in (3.13) are equal such that µe = µi = µ

and the initial condition is (0.4656, 0.1101, 0.1101, 0.04766). Clearly, in Figure 3.4,

one can observe that a medusa exist for the value of parameter µ = 0.05. Note that

this is a single trajectory and its form looks like a medusa.

Figure 3.4 is formed as follows. The (E,e,i)-coordinates which start at the given initial

value approaches to the cycle. It moves around the cycle until the impulse moment η1.
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Figure 3.4: (E,e,i)-coordinates of system (3.13) for the initial value (0.4656, 0.1101,

0.1101, 0.04766) and the parameter µ = 0.05.

When the time reaches t = η1, because of the impulse function the coordinate jump to

(E(η1+, µ), e(η1+, µ), i(η1+, µ)).Again it will approach the cycle and move until the

impulse moment t = θ1. Then the coordinate jumps to (E(θ1+, µ), e(θ1+, µ), i(θ1+, µ))

and it will approach to the cycle. The (E,e,i)-coordinate moves in this pattern and fi-

nally the medusa in Figure 3.4 is observed. The pattern is visualized in Figure 3.5.
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Figure 3.5: Formation of Figure 3.4.
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In the following figures, we will see that for different values of the parameter µ and for

the different values of the initial conditions in various domain of attractions, we will

obtain different medusas and rings. First of all, consider the system (3.13) with the

initial values (−0.01, 0, 0.17, 0.25), (0.21, 0.20, 0.20, 0.15), (0.5, 0.5, 0.3, 0.3), and

with the parameter µ = 0.9 to get Figure 3.6. In this figure, there is a medusa without

ring, a medusa and a cycle. Indeed, they are a single trajectory, which is disconnected

in the geometrical sense, but it is connected in the dynamics sense.
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Figure 3.6: (E,e,i)-coordinates of system (3.13) for the initial values (−0.01, 0,

0.17, 0.25), (0.21, 0.20, 0.20, 0.15), (0.5, 0.5, 0.3, 0.3), and for the parameter µ = 0.9.

Blue, red and magenta trajectories correspond to each initial value, respectively. It is
seen that two medusas one of which is without ring and one cycle are formed. The
cycle is between two medusas.

Next, we change the parameter to µ = 0.2 and use the initial activations.

In Figure 3.7, one medusa and two different rings are emerged. Geometrically, the

attractor is disconnected. However, it is connected in the dynamics sense since it is

a single attractor with three parts. There does not exist any limit cycle. The cycles

which look like limits cycles are just parts of the whole trajectory.

Let us consider Figure 3.8. In this figure, the initial activations are the same as in

Figure 3.7. The parameter is fixed and µ = 0.1. Although the initial values are

different, the trajectories eventually obtain the shape of the same medusa. There is an

alone red trajectory. It is a part of the whole red trajectory. Therefore, it is neither a
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Figure 3.7: Attractor consists of one medusa and two different rings. Blue, red and
magenta trajectories represent solutions in the coordinates (E,e,i) for the given initial
values (−0.01, 0, 0.17, 0.25), (0.21, 0.20, 0.20, 0.15), (0.5, 0.5, 0.3, 0.3), respectively,
and µ = 0.2.
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Figure 3.8: Attractor consist only one medusa. Blue, red and magenta trajec-
tories represent solutions in the coordinates (E,e,i) for the given initial values
(−0.01, 0, 0.17, 0.25), (0.21, 0.20, 0.20, 0.15), (0.5, 0.5, 0.3, 0.3), respectively, and
µ = 0.1. The alone red cycle is not an attractor. It is just a part of the trajectory.
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limit cycle nor a ring since the trajectory never comes to the neighborhood of it.

Finally, fix the parameter µ = 0.05. In Figure 3.9, any trajectory from the differ-

ent initial values blue (−0.01, 0, 0.17, 0.25), red (0.21, 0.20, 0.20, 0.15) and magenta

(0.5, 0.5, 0.3, 0.3) ultimately gets the form of red or blue medusa. The blue and the

magenta trajectories converges to the same medusa. This is why, we will say that the

attractor consists of two disjoint medusas. They are disjoint since there is not a single

trajectory which makes two medusas.
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Figure 3.9: Trajectories of system (3.13) in coordinates (E,e,i) for different initial
values (−0.01, 0, 0.17, 0.25), (0.21, 0.20, 0.20, 0.15), (0.5, 0.5, 0.3, 0.3) and for the
fixed parameter µ = 0.05. Blue, red and magenta trajectories represent solutions for
the given initial values, respectively.

Note that as the parameter decreases the form of the trajectory becomes horizontal

through the E-coordinate.

In conclusion, we see that the neuron populations’ dynamics have the following prop-

erties: in the case µ = 0.9, two medusas one of which is without ring and a cycle are

obtained. When µ = 0.2 one medusa and two rings emerge and when µ = 0.1 one

medusa emerges. Finally, if µ = 0.05 two medusas emerge. These results demon-

strate that for different values of small parameter µ the qualitative changes in the

behavior of trajectories of (3.13) occur ultimately. Therefore, we have a bifurcation.

It is important to note that this bifurcation occurs because of the singularity and im-
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pulses. This is why, one cannot explain the bifurcations in this chapter through the

traditional types of bifurcations, saddle-node, pitchfork, Hopf bifurcation, etc. For

example, the change of the numbers of medusas and rings in the local phase por-

trait depend on the impulsive jumps’ sizes. Bifurcation, here, also depends on the

positions of cycles for the unperturbed system.

3.5 Conclusion

It is the first time that only a single small parameter µ causes not only to the singu-

larity, but also to the bifurcation. The singularity in this chapter is a new kind such

that it emerges both from the differential equation part and in the impulsive function.

It is also important that the small parameter µ is a natural parameter which comes

from the membrane time constant in Wilson-Cowan neuron model. We have shown

the existence of bifurcation through the simulations. Theoretical proofs are not given

since it is difficult to analyze the discontinuous dynamics of the model in which a sin-

gle parameter causes both singularity and bifurcation. Therefore, bifurcation is not

occurred by the change of eigenvalues, but it relates to the singular compartment and

the impulsive dynamics of the model.

New type of attractor, which consists medusa, medusa without ring and rings, is de-

fined. The name comes from the similarity of the form of trajectory and medusa.
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CHAPTER 4

ANALYSIS OF IMPACT CHATTERING

4.1 Introduction

The implementation of sliding mode control is often irritated by high frequency os-

cillations known as “chattering” in system outputs issued by dynamics from actuators

and sensors ignored in system modeling [72]. In study [62], chattering is considered

as a special type of oscillation characterized by very small amplitudes that are de-

creasing with time. In impacting systems, it is understood as an infinite number of

discontinuity moments occurring in a finite time period, for instance, a ball bouncing

to rest on a horizontal surface [51]. It is asserted in [51] that chattering resembles

with the inelastic collapse. The balls dissipate their energy through an infinite num-

ber of collisions in a finite time interval. Budd and Dux [30] showed that chattering

can occur for a periodically forced, single degree of freedom impact oscillator with a

restitution law. They demonstrated that chattering can form part of a periodic motion,

and this relates to certain types of chaotic behavior. However, they studied through

an example. Using the solution, they proved the existence of chattering for a linear

system.

Nordmark and Piiroinen [88] considered simulation problems for chattering as well

as analysis of stability of the limit cycle, which is chattering by solving the first vari-

ational equations. Moreover, they used the mappings, which are constructed with the

help of a solution, in simulation schemes. Similar to the one in paper [30], it was

shown that the existence of chattering for a linear system. Nonetheless, in both pa-

pers [30, 88], they do not consider the conditions which guarantee the appearance of
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chattering. In this study, we consider the chattering as a motion with infinite number

of discontinuities in a finite time. This is the first time that sufficient conditions are

provided for the chattering based on properties not on maps derived with the help

of solutions, but, on conditions for the right-hand side of impulsive systems. Our

models essentially are nonlinear (see, for example, Example 4.2.1). Since this is the

first result in this direction, the models under consideration are respectively simple.

Nevertheless, this is a class of mechanical models which can be significantly enlarged

in the future investigations by consideration of large ensembles of impact oscillators

and weakening conditions of the present chapter. We consider models with vibrating

surface of impacts as well as analyzed problems of Pyragas controllability and ex-

istence of continuous chattering for a model connected unilaterally to a system with

an impact chattering. An interesting problem of the regular perturbation of a system

with chattering is discussed.

A particular feature of system with impacts is the existence of the chattering. We have

two different types of it, namely complete and incomplete chattering [30, 88]. Com-

plete chattering is the phenomenon wherein a system an infinite number of disconti-

nuities in a finite time occurs, where the velocity tends to zero uniformly. Incomplete

chattering bears on a sequence of the impacts that initially has the same behavior as

complete chattering, but it ends after a large but finite number of impacts [88]. In

section 3, we will discuss the transient chattering for systems with small parameter

considering the transformation of the incomplete chattering to the complete one when

the parameter diminishes to zero.

It was first found by Arnold [15] that the significant characteristic property of chatter

vibration is that it is not generated by external periodic forces, but rather it is generated

in the dynamic process itself. Therefore, it is important to emphasize that the systems

under investigation in this chapter are autonomous.

Consider the problem of impact interaction of a body falling in the uniform grav-

ity force field with a fixed horizontal base. After colliding with the base the body

bounces back with the velocity whose norm is equal to the norm of the pre-impact

velocity multiplied by r, where r is the restitution coefficient, 0 < r < 1. Then, after

some time interval the body will fall on the base again and the norm of its velocity
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will be equal to the norm of bouncing velocity in the previous collision multiplied

by r. The process cannot end in a finite number of collisions. Thus, the considered

phenomenon consists in following: after the initial collision a series of repeated colli-

sions of attenuated to zero, which ends in a finite time with establishing a long contact

between interacted bodies. Arising this contact results in decreasing number of de-

grees of freedom of the system by a unit or more. So, it is reasonable to call this

phenomenon the impact chattering.

It is shown by investigations and observations that the impact chattering meets in

operating almost every mechanism and machine of impact-oscillating type [80]. Var-

ious problems of impact chattering are far from trivial, and their solutions cannot be

obtained in closed form for rather general case. As for the use of approximate an-

alytical and numerous methods, it is simplified essentially if one proceeds from the

conception about infinite number of impacts inside a finite time range. For example,

the existence of impact chattering was investigated in [80]. They simply consider the

free falling of a bead on an immobile base and on a vibrating table with constant ve-

locity. In this chapter, we consider a more general system and prove the existence of

impact chattering.

The chattering phenomena are unwanted in engineering since it is an appearance of

infinite discontinuities in a short period of time and this makes theoretical analysis

of mechanical models difficult. We have a research plan to consider theoretical and

mathematical complexities connected to chattering, and we approach the problem

from one of the two possible points of view. The first one is when mechanical models

change such that the theoretical chattering disappears [8]. The other point of view,

which is considered in this chapter, is that we approximate a model with infinite

moments of discontinuities with those having a finite number of impacts.

This chapter is organized as follows. First of all, the impact model is stated. In this

model each collision is assumed instantaneous, and it comes to rest after an infinite

number of impulse moments in a finite time. The existence of chattering is proved.

Asymptotic approximation of solutions with chattering are discussed in Section 4.3.

Then, we show that the chattering occurs for a bead bouncing on a sinusoidally vibrat-

ing table in Section 4.4. The modified Moon-Holmes model with a small perturbation
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is discussed in Section 4.5. Using the continuous dependence on parameters and ini-

tial value for the impulsive differential equations with non-fixed moments, it is shown

that the solution of the modified Moon-Holmes model is chattering. Following that,

the appearance of continuous chattering by perturbation method is demonstrated in

Section 4.6. Finally, by Pyragas control method the chattering solution is controlled

to be periodic.

4.2 Existence of Chattering

An impacting system admits a chattering if there is a solution with infinite impulse

moments in a finite time. Moreover, we will say that a perturbed system admits a

transient chattering, if a number of impacts increases to infinity on a fixed interval as

the small parameter tends to zero.

A mechanism with a rigid flat surface of impacts and the constant coefficient of resti-

tution r, 0 < r < 1, can be modeled by the following impulsive system

ẍ = f(x, ẋ),

∆ẋ|x=ϕ = −(1 + r)ẋ,
(4.1)

where x(t) is the coordinate of the bead which is over the impact surface x = ϕ,

ẋ(t) is its velocity, f(u, v) is a continuous function on the domain H = {0 < ϕ ≤
u ≤ h, |v| ≤ h̄} for fixed positive numbers h, h̄, and it satisfies the local Lipschitz

condition in its variables on H . The equality ∆ẋ(θ) = ẋ(θ+) − ẋ(θ−) denotes the

jump operator in which t = θ is the time when the bead reaches the rigid obstacle,

ẋ(θ−) is the pre-impact velocity and ẋ(θ+) is the post-impact velocity.

In system (4.1), we need the following conditions.

(C1) There is a positive number m such that f(u, v) < −m for all (u, v) ∈ H ,

(C2) f(u, v) = f(u,−v) for all (u, v) ∈ H.

Conditions on function f(u, v) and compactness of domain H imply that there exists

a positive number M such that f(u, v) ≥ −M for all (u, v) ∈ H.
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Theorem 4.2.1 If conditions (C1), (C2) are satisfied and the following inequality

M

√
2(h− ϕ)

m
< h̄ (4.2)

is valid, then all solutions with initial value (x(0), ẋ(0)) = (x0, 0), ϕ < x0 < h, of

system (4.1) are chattering.

Proof 4.2.1 Consider an initial value (x0, 0) ∈ H, ϕ < x0 < h. Denoting x1 =

x, x2 = ẋ present the system (4.1) as

ẋ1 = x2,

ẋ2 = f(x1, x2),

∆x2|x1=ϕ = −(1 + r)x2.

(4.3)

The solution of system (4.3) starting at (x0, 0) is

x1(t) = x0 +

∫ t

0

(t− s)f(x1(s), x2(s))ds, (4.4a)

x2(t) =

∫ t

0

f(x1(s), x2(s))ds, (4.4b)

while it is continuous. By equation (4.4a) and condition (C1), the coordinate x1(t)

decreases to ϕ such that there exists a moment θ1 where x1(θ1) = ϕ and x2(θ1) < 0.

Moreover, x1(θ1+) = ϕ and x2(θ1+) = −rx2(θ1) > 0.

Let us show that the solution is continuable to +∞ and it remains in the domain H.

First of all, consider the interval [0, θ1]. From conditions (C1) and (C2), it implies

that x1(t) ≤ x0 < h, t ∈ [0, θ1]. Using (4.4a) and inequality ϕ < x0 < h we get

|h− ϕ| > |ϕ− x0| =
∣∣∣∣∫ θ1

0

(θ1 − s)f(x1(s), x2(s))ds

∣∣∣∣ ≥ ∫ θ1

0

(θ1 − s)mds = m
θ2

1

2
,

which implies that θ1 <
√

2(h−ϕ)
m

.

Consequently, from (4.4b) and condition (4.2)

|x2(θ1)| =
∣∣∣∣∫ θ1

0

f(x1(s), x2(s))ds

∣∣∣∣ ≤Mθ1 < h̄.

Thus, we obtain that ϕ ≤ x1(t) < h and |x2(t)| < h̄ for t ∈ [0, θ1].
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Applying the same arguments as for θ1 one can show that there is an intersection

moment θ2 such that x1(θ2) = ϕ and x1(t) > ϕ, t ∈ (θ1, θ2). In this interval, we have

x1(t) = ϕ+ x2(θ1+)(t− θ1) +

∫ t

θ1

(t− s)f(x1(s), x2(s))ds, (4.5a)

x2(t) = x2(θ1+) +

∫ t

θ1

f(x1(s), x2(s))ds, (4.5b)

By condition (C2), x2(θ1+) is the maximum value of |x2(t)| for t ∈ (θ1, θ2]. Thus,

|x2(t)| ≤ r|x2(θ1)| < rh̄ < h̄.Moreover, from conditions (C1) and (C2), there exists

a moment ξ1, θ1 < ξ1 < θ2, such that x2(ξ1) = 0 and x1(ξ1) is the maximum value

of x1(t) on (θ1, θ2]. Thus, x1(t) ≤ x1(ξ1) < x0 < h, and the trajectory of x(t) is in

H for t ∈ [θ1, θ2]. Next, recursively, it can be shown that there exists an increasing

sequence θi, i = 1, 2, . . . , such that x1(θi) = ϕ, i = 1, 2, . . . , and the orbit of x(t) is

in H for all t ≥ 0.

Now, we will show that the sequence θi converges. The solution of system (4.3) is

defined by

x1(t) = ϕ+ x2(θi+)(t− θi) +

∫ t

θi

(t− s)f(x1(s), x2(s))ds, (4.6a)

x2(t) = x2(θi+) +

∫ t

θi

f(x1(s), x2(s))ds. (4.6b)

on the interval (θi, θi+1], i = 1, 2, . . . .

Using condition (C1), it can be shown that there exists a moment ξi, θi < ξi < θi+1,

such that x2(ξi) = 0. Also, utilizing condition (C2), we obtain ξi = θi+θi+1

2
. The

solution on the interval (θi+1, θi+2] is

x1(t) = ϕ+ rx2(θi+)(t− θi+1) +

∫ t

θi+1

(t− s)f(x1(s), x2(s))ds,

x2(t) = rx2(θi+) +

∫ t

θi+1

f(x1(s), x2(s))ds.

(4.7)

From x2(ξi) = 0 and x2(ξi+1) = 0, we get

x2(θi+) = −
∫ ξi

θi

f(x1(s), x2(s))ds, (4.8)

rx2(θi+) = −
∫ ξi+1

θi+1

f(x1(s), x2(s))ds. (4.9)
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Let us divide (4.9) by (4.8) in order to get

r =

∫ ξi+1

θi+1
f(x1(s), x2(s))ds∫ ξi

θi
f(x1(s), x2(s))ds

.

Using mean value theorem, we have

r =
(ξi+1 − θi+1)f(x1(s∗), x2(s∗))

(ξi − θi)f(x1(s∗∗), x2(s∗∗))
, (4.10)

for some s∗∗ and s∗ in (θi, θi+1) and (θi+1, θi+2) respectively.

Then,
θi+2 − θi+1

θi+1 − θi
=
ξi+1 − θi+1

ξi − θi
<
Mi

mi

r, i = 1, 2, 3...., (4.11)

where Mi = max
[θi,θi+1]

|f(x1(t), x2(t))| and mi = min
[θi,θi+1]

|f(x1(t), x2(t))|. Since r < 1,

max
[θi,θi+1]

|x1(t)| → ϕ and max
[θi,θi+1]

|x2(t)| → 0 as i→∞.Moreover, continuity of f(u, v)

implies that Mi

mi
→ 1 as i→∞. This and (4.11) prove the convergence. The theorem

is proved.

Example 4.2.1 Consider the following non-linear system

ẍ+ cos(ẋ) + x3 = 0,

∆ẋ|x=2 = −(1 + r)ẋ,
(4.12)

in the domain 2 ≤ x ≤ 2.5, |ẋ| < 7. We have f(x, ẋ) = − cos(ẋ) − x3 ≤ −7,

f(x, ẋ) = f(x,−ẋ), f(x, ẋ) ≥ −16.625 in the domain. Condition (4.2) is true since

16.625
√

1/7 ≈ 6.28 < 7. That is, we are in circumstances of Theorem 4.2.1 and if

we choose r = 0.8, x(0) = 2.1, ẋ(0) = 0, the solution of system (4.12) is chattering.

The simulation of this solution can be seen in Figure 4.1.

4.3 Asymptotics

Solutions of the system (4.1) admit infinitely many jumps, and this makes, in general,

impossible to find an exact solution or adequately to simulate it. So, in this section we

suggest considering degenerate equation to find the perturbed system approximately.

In order to increase the precision of approximation we follow the idea of asymptotic
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Figure 4.1: The graphs of coordinates x(t) and ẋ(t) with initials x(0) = 2.1 and
ẋ(0) = 0 of system (4.12) with r = 0.8.

approximations. Consider the system

ẍ = f(x, ẋ),

∆ẋ| x=ϕ
i<[ 1

r
]
= −(1 + r)ẋ,

(4.13)

where i is the index of impacts θi, [.] denotes the greatest integer function, with addi-

tional condition that the number of impulsive moments has to be not more than
[

1
r

]
,

i.e., θi, i = 1, 2, ...,
[

1
r

]
. One can guarantee for the fixed value of the parameter r,

the incomplete chattering occurs only. The number of impacts increases unbound-

edly as the parameter tends to zero. For this reason, we say that system (4.13) admits

the transient chattering. Assume that this system satisfy all conditions of Theorem

4.2.1. For time t > θ[ 1r ]
, the system is only governed by ẍ = f(x, ẋ). Condition (C1)

implies that on the interval [θ[ 1r ]
, θ∞], the bead stays on the position x = ϕ.

For each its solution, system (4.13) has finite number of discontinuity moments. That

is why, one can find an exact solution of the problem or at least it is possible to make

proper simulations. One can easily see that solutions of the last system and system

(4.1) with identical initial data coincide on the interval [0, θ[ 1r ]
). They are different
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only in the interval [θ[ 1r ]
, θ∞]. The length of the last interval diminishes to 0 as r → 0.

Consequently, the solutions of system (4.13) are asymptotic approximations for the

solutions of system (4.1).

4.4 The Dynamics of Repeated Impacts Against a Sinusoidally Vibrating Table

In this section, we consider a mechanical model consisting of a bead bouncing on

a vibrating table, which is investigated in the papers of Holmes and Guckenheimer

[58, 56]. It is demonstrated that the model can generate chaos [58]. In this chapter,

we show that in the mechanism one can observe another type of complex dynamics,

namely chattering.

Consider a bouncing bead colliding with a sinusoidally vibrating table. Assume that

the table is so massive that it does not react to collisions with the bouncing bead

and it moves according to law X(t) = X0 sinωt. The change of the velocity of the

bouncing bead at the impact moment is given by the relation r = Ẋ+−ẋ+
ẋ−−Ẋ−

, where r is

the restitution coefficient, 0 < r < 1, Ẋ−, Ẋ+, ẋ−, ẋ+ are the velocities of the table

and the bouncing bead before and after impact, respectively. Since the collision does

not affect the velocity of the table, we can write Ẋ− = Ẋ+. Then the model will be

as follows

ẍ = −g,

∆ẋ|x=X = −(1 + r)(ẋ− Ẋ),

X(t) = X0 sin(ωt),

(4.14)

where g is the gravitational acceleration (g ≈ 9.8m/s2).

Now, let us consider a general form. Instead of gravitational constant g, take a func-

tion f(u, v). Then, the model will be of the form

ẍ = f(x, ẋ),

∆ẋ|x=X = −(1 + r)(ẋ− Ẋ),

X(t) = X0 sinωt,

(4.15)

where function f(u, v) is a continuous function on the domain G = {X0/10 ≤ u ≤
h, |v| ≤ h̄}, for fixed positive numbers h, h̄, and it satisfies the local Lipschitz condi-
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tion in its variables on G. Also, this system satisfies the conditions (C1), (C2) defined

in the first section for all (u, v) ∈ G. By conditions on function f(u, v) and compact-

ness of the domain G, we have a positive number M such that f(u, v) ≥ −M for all

(u, v) ∈ G.

Next, consider the graph of the function X(t) = X0 sinωt. The slope of the graph is

Ẋ(t) = X0ω cosωt. It is easily seen that if ω is small and t is near π/2ω, the graph is

close to a horizontal line. Consequently, for sufficiently small ω and for time t near

π/2ω if the following inequality

M

√
2(h−X0/10)

m
< h̄ (4.16)

is true and conditions (C1), (C2) are satisfied, according to Theorem 4.2.1 there is

chattering for solutions whose integral curves are near to the point P (π/2ω,X0).

Finally, to demonstrate the result through simulation, we continue with the bouncing

bead on the sinusoidally vibrating table.

Example 4.4.1 Let us return to the bouncing bead on the sinusoidally vibrating table

with the same properties of system (4.15). Then the model will be as follows

ẍ = −g,

∆ẋ|x=X = −(1 + r)(ẋ− Ẋ),

X(t) = X0 sin(ωt),

(4.17)

where t ≥ 0. Let us take ϕ = X0 = 1 and consider the domain 0.1 ≤ x ≤ 2, |ẋ| < 7.

Then, we have f(x, ẋ) = −g < 0, |f(x, ẋ)| = | − g| = g = M = m and

M
√

2(h−X0/10)
m

=
√

37.24 < 7. If we choose the initial conditions x(2π/ω) =

1.9, ẋ(2π/ω) = 0, where r = 0.9, ω = 0.29, it can be seen that the conditions of

Theorem 4.2.1 are satisfied and consequently, this solution is chattering. In Figure

4.2, one can observe the coordinates of system (4.17) which supports our theoretical

result.
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Figure 4.2: The graph of the coordinates of system (4.17).

4.5 The Modified Moon-Holmes Model

The main task of this section is to consider the modified Moon-Holmes Model. Moon

and Holmes [79] showed that the Duffing equation in the form

ẍ+ δẋ− x+ x3 = γ coswt

provides the simplest possible model for the forced vibrations of a cantilever beam

in the nonuniform field of two permanent magnets. Such an equation describes the

dynamics of a buckled beam or plate when only one mode of vibration is considered.

We modify the model as adding a rigid obstacle over the magnet and in front of the

beam such that the beam collides the obstacle and from Newton Law of impacts it

bounces back. (The system is sketched in Figure 4.3.) The suggested model has the

form of the following impulsive system

ẍ = −δẋ+ x− x3 + γ coswt,

∆ẋ|x=ϕ = −(1 + r)ẋ,
(4.18)

where x is the distance from the wall to the end of the beam, ϕ is the position of the

obstacle, r is the restitution coefficient. Now, if the coefficients γ and δ are equal to

zero, one obtains

ẍ = x− x3,

∆ẋ|x=ϕ = −(1 + r)ẋ.
(4.19)
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Figure 4.3: The magneto-elastic beam with the obstacle.

For this system, choose ϕ = 1.1 and for the domain H let h = 1.5, h̄ = 3. One can

see that function f(x, ẋ) = x − x3 satisfies conditions (C1) and (C2), i.e. −1.875 ≤
f(u, v) ≤ −0.331 for all (u, v) ∈ H and f(u, v) is an even function in v. Moreover,

condition (4.2) is valid since 1.875
√

2(1.5−1.1)
0.331

≈ 2, 91 < 3. Therefore, by Theorem

4.2.1 all solutions of system (4.19) with initial values (x(0), ẋ(0)) = (x0, 0), ϕ <

x0 < h, are chattering. Obviously, system (4.18) does not satisfy condition (C2). But,

one can easily notice that for sufficiently small δ and γ, by the continuous dependence

on parameters and initial value for the impulsive differential equations with non-fixed

moments [2], the solutions of (4.18) with the same initial conditions of (4.19) are

chattering as well. For the numerical simulation, let (x(0), ẋ(0)) = (1.3, 0) and

r = 0.9. Then, one can see that Figure 4.4 supports our theoretical discussion.

4.6 Continuous Chattering

In this section, we demonstrate the continuous chattering which is understood as in-

finitely many oscillations in finite time. Let us observe how continuous chattering

appears if a mechanical model is perturbed with a discontinuous one. For this reason,
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Figure 4.4: The coordinates of systems (4.18) and (4.19) with w = 0.1. It can be seen
that the solution of perturbed system (4.18) is also chattering.

we couple system (4.1) with the following equation of a mass-spring-damper equation

mÿ + cẏ + ky = 0, (4.20)

with mass m, spring constant k, and viscous damper of damping coefficient c. If

the characteristic equation of system (4.20) has roots with negative real parts, then

it admits asymptotically stable equilibrium. By the argument of periodicity theorem

for system with stable equilibrium, one can expect that in system (4.20), continuous

chattering appears if it is perturbed by a chattering solution of (4.1). Thus, let us write

the coupled system taking f(x, ẋ) = −g in (4.1), m = 1, c = 3, k = 2 in (4.20) and

x = x1, ẋ = x2, y = x3, ẏ = x4, in the form

ẋ1 = x2,

ẋ2 = −g,

∆|x1=1 = −(1 + r)x2

ẋ3 = x4,

ẋ4 = −2x3 − 3x4 + 20x2
2.

(4.21)

with initial conditions x1(0) = 6, x2(0) = 0, x3(0) = 10, x4(0) = −1000 and r =

0.9. Since the first coupling is unilateral, the second equation does not influence
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Figure 4.5: The graphs of the coordinates of system (4.21).

the first one. That is why, its dynamics are the same as in Figure 4.5. But, for the

second coupling in Figure 4.5, we can see the effect of perturbation which we call as

continuous chattering.

4.7 Pyragas Control

There are many papers which are searching methods to minimize and control different

types of chattering [33, 12]. Also, the problem definitely has to be analyzed for the

impact chattering. One can accept that the control of impact chattering is a concrete

perturbation, which brings the system under control to a regular motion. That is,

equilibria or periodic motions. In the circumstances of the present research, it is

desired that a family of chattering solutions has to be regularized, if all of them are

not possible. We will discuss, in this part of the chapter, system (4.12) of Example

4.2.1. It was shown that any solution of this system, which starts in a domain, is

chattering. Let us apply the control of the form C[x1(t − τ) − x1(t)] to the system.

It is applied, for instance, to stabilize periodic motions of chaotic dynamics, and it is
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called Pyragas control [94]. Now, we will apply the control to depress the chattering

in the system. Let us construct the following system denoting x1 = x and x2 = ẋ

ẋ1 = x2,

ẋ2 = −x3
1 − cosx2 + C[x1(t− τ)− x1(t)]

∆x2|x1=2 = −(1 + r)x2.

(4.22)

We performed a series of simulations of the system with fixed C = −30, τ = 1 and
r = 0.6. Consider x2(0) as it was requested to prove family of chattering solutions in
Theorem 4.2.1. For the initial first coordinate x1(0) we tried values starting from 2.5

to 200.

x1(0) 2.5 3 5 10 100 200
Period T 1.22 1.22 1.22 1.22 1.22 1.22
Amplitude 2.933 2.933 2.933 2.933 2.933 2.933

Table 4.1: Periods and amplitudes of the first coordinate x1(t) of system (4.22) for
different values of x1(0).

For all these solutions the ultimate periodicity has been approved with period T =

1.22. Observe that the period is different from the delay term τ = 1. One can see

from the table that the amplitudes are equal to 2.933 for all values of x1(0) as well.

At the same time, the chattering has not been decaying for the solution with x1(0) =

2.1. These all demonstrate that the control problem can be solved for the chattering,

but certain conditions have to be determined to specify the controllable domains and

conditions for the stability of the arranged periodic motions. We suppose that these

problems will be researched in next studies.

For x1(0) = 3, the periodic orbit x1(t) can be seen in Figure 4.6, which shows the

effectiveness of the control.

4.8 Conclusion

In this chapter, we have considered the mechanical models with impacts. For these

models, the chattering phenomenon, which is defined as a motion with infinitely many

discontinuities in a finite time, is studied. The sufficient conditions are determined for
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Figure 4.6: Simulation of the first coordinate x1(t) of controlled system (4.22) with
initial conditions x1(0) = 3, x2(0) = 0.

the existence of the chattering. Asymptotics are discussed to find an approximation

solution and to simulate the chattering solution. We study the famous example: the

bouncing bead on a sinusoidally vibrating table which generates chaos [58]. It is

shown that this mechanism has chattering solutions. Furthermore, we modify the

Moon-Holmes model [79], which yields chaos also, with an obstacle to obtain an

impacting model. We demonstrate that this model provides chattering. Perturbing a

continuous mechanical process by a discontinuous one having chattering solutions,

continuous chattering, which is defined as the appearance of infinitely many oscilla-

tions in a finite time, is constructed.

The application of results of paper [88] is to prove the existence of a unique chattering

solution of the bouncing ball, see Section 3.5. At the same time, by simulation it is

proven that a double pendulum admits chattering. Our method, in some sense, is

wider than the one in paper [88]. For example, by Theorem 4.2.1 in this chapter, we

have verified that there are infinitely many chattering motions with initial values in

an interval. Thus, the present result is complement to that one accomplished in [88].

However, our approach does not work for the double pendulum, since condition (C2)

is not valid for the model. Nevertheless, in our next investigation, we plan to extend

the method without condition (C2).
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CHAPTER 5

CHATTERING AS A SINGULAR PROBLEM

5.1 Introduction

Investigations and observations show that the impact chattering meets in operating

almost every mechanism and machine of impact-oscillating type [80, 87, 125, 126].

Chattering is an important feature of impact systems [30, 36]. It is known as an infi-

nite number of discontinuity moments occurring in a finite time period. It is asserted

in [51] that chattering resembles with the inelastic collapse. The balls dissipate their

energy through an infinite number of collisions in a finite time interval. Budd and

Dux [30] showed that chattering can occur for a periodically forced, single degree of

freedom impact oscillator with a restitution law. They demonstrated that chattering

can form part of a periodic motion, and this relates to certain types of chaotic behav-

ior. Nordmark and Piiroinen [88] considered simulation problems for chattering as

well as analysis of stability of the limit cycle, which is chattering by solving the first

variational equations. Moreover, they used the mappings, which are constructed with

the help of a solution, in simulation schemes. Similar to the one in paper [30], it was

shown that the existence of chattering for a linear system.

In paper [4], authors consider the mechanical models with Newton’s Law of impacts.

They provided sufficient conditions for the presence of chattering by examination

of the right hand side of the impact models. The criteria for the sets of initial data

which always lead to chattering were established. Moreover, they subject the Moon-

Holmes model to regular impact perturbations for the chattering generation. Using

the chattering solutions, they generated the continuous chattering and they applied
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Pyragas control to the system in order to depress the chattering.

Two different types of chattering, namely complete and incomplete chattering [30,

88, 126] exist in impact systems. Complete chattering is the phenomenon wherein a

system an infinite number of discontinuities in a finite time occurs, where the velocity

tends to zero uniformly. Incomplete chattering bears on a sequence of the impacts

that initially has the same behavior as complete chattering, but it ends after a large

but finite number of impacts [88]. It is important to note that, in paper [126], authors

showed that in an electrically driven impact microactuator, as the excitation voltage

is increased the complete chattering is observed.

In this chapter, we will study three important models in mechanics; an inverted pen-

dulum [14, 43], a bouncing ball [48, 56, 76] and a hydraulic relief valve model [60],

all of which has chattering solutions. Moreover, we will study a spring-mass sys-

tem for the small mass. This model will have a chattering solution with the singular

properties as well.

In other respects, singular perturbation problems are common in many areas of the

science since they give a high level overview of certain problems that appear in the

modeling of real-world problems by differential equations [37, 52, 57, 67, 74, 77, 86,

91, 102]. These problems depend on a small positive parameter such that the solution

varies rapidly in some regions and varies slowly in other regions. In the book [86],

author, in order to show the difficulty that arises when a small parameter multiplies

the highest derivative, studies a second order differential equation, and one can un-

derstand the nature of the singular perturbation through that discussion. On the other

hand, impulse effects exist in a wide diversity of evolutionary processes that exhibit

abrupt changes in their states [2, 3, 6]. In many systems, in addition to singular pertur-

bation, there also have impulse effects [33, 34, 35, 105, 106]. Chen et al. [35] derived

a sufficient condition that guarantees robust exponential stability for sufficiently small

singular perturbation parameter by applying the Lyapunov function method and us-

ing a two-time scale comparison principle. In [105, 106], authors proposed Lyapunov

function method to set up the exponential stability criteria for singularly perturbed

impulsive systems. This method can be efficiently used to overcome the impulsive

perturbation such that the stability of the original system can be ensured. In [33],
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Lyapunov function method was further extended to study the exponential stability

of singularly perturbed stochastic time-delay systems with impulse effect. However,

the stability criteria in [33, 105, 106] are all based on Lyapunov functions. There is

no systematic procedure supplied therein for constructing the appropriate Lyapunov

functions. The results in [33, 105, 106] only guarantee the systems under considera-

tion to be exponentially stable for a sufficiently small positive parameter.

In this chapter, we introduce a new type of singularity. The systems under considera-

tion have singularity which appears through moments of impacts. More precisely, we

say that the impact moments are singular if they are infinite and there exist accumu-

lation points for the moments. Since there exist an infinite number of discontinuity

moments in a finite time, the possibility of the blow up of solutions occurs here. This

is why, the phenomenon has to be accepted as a singular one. We will consider the

system where the singularity presents only in the discontinuity moments as well as

the case when it occurs not only in the moments but also in the differential equation.

The main goal of a singular perturbation problem’s investigation is the analysis of

possibility to approximate a solution z(t, µ) of a problem P (µ) having small parame-

ter with a solution z̄(t) of the degenerate problem P (0) wherein the parameter is zero.

In what follows, we generally use the notations z(t, µ) and z̄(t) for the solutions of

perturbed P (µ) and degenerate P (0) problems, respectively. It is important to say

that in the present research, we are fully consistent with the paradigm of the singu-

lar perturbation considering solutions of chattering problem with solutions of models

without chattering.

In continuous dynamics, a parameter dependent problem P (µ) is singular if the con-

vergence of a solution z(t, µ) to a solution z̄(t) of degenerate equation P (0) is not

uniform [90, 119]. In the present chapter, we provide a rigorous argument that the

problem under investigation is singular from this fundamental point of view. How-

ever, during the analysis, we have found that there are additional arguments to be a

singular problem which are usually not mentioned in the literature. They are:

1. The solutions z(t, µ) and z̄(t) are from different functional spaces. In our case,

they are functions with infinitely many discontinuity moments and those with a

finite number of discontinuities.
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2. The set of discontinuity moments is in an interval which shrinks to a point.

Possibly, in the future, the first and the second features can be considered as sufficient

conditions for a problem with discontinuities to be a singular one.

5.2 Preliminaries: Chattering in Mechanical Models

Consider the problem of impact interaction of a body falling in the uniform grav-

ity force field with a fixed horizontal base. After colliding with the base the body

bounces back with the velocity whose norm is equal to the norm of the pre-impact

velocity multiplied by µ, where µ is the restitution coefficient, 0 < µ < 1. Then, after

some time interval the body will fall on the base again and the norm of its velocity

will be equal to the norm of bouncing velocity in the previous collision multiplied by

µ. The process cannot end in a finite number of collisions. Thus, the considered phe-

nomenon consists in following: after the initial collision a series of repeated collisions

of attenuated to zero, which ends in a finite time with establishing a long contact be-

tween interacted bodies. Arising this contact results in decreasing number of degrees

of freedom of the system by a unit or more.

In this section, we will demonstrate that some mechanical models with chattering

solutions.

5.2.1 A Bouncing Ball

The most famous model in mechanics is a bouncing ball model [48, 56, 76]. There-

fore, first of all, we start with a bouncing ball model. A ball is dropped from a height

h0 without initial velocity. The ball falls vertically onto a smooth horizontal surface.

During the free fall, we assume that the ball is subjected only to gravity. Besides, dur-

ing each bounce the collision is assumed instantaneous, i.e., the duration of contact is

zero, and inelastic, i.e., a part of the kinetic energy of the ball dissipated. Therefore,

the ball’s velocity after a collision is smaller than before the collision, and conse-

quently the height of bounces decreases with time. Let µ be the ratio between the ball

velocity after and before the impact. This ratio is between the ball and the surface,
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which is assumed constant for all impacts. Thus, if vn is the ball velocity before the

nth bounce, we have the following expression

vn+1 = µvn, n = 1, 2, 3, ....

Consider Fig. 5.1, it is easy to show that the ball first strikes the surface after a time

time(t)
0
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0
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Figure 5.1: Representation of a bouncing ball.

t0 =
√

2h0/g, with a velocity v1 =
√

2h0g where g is the acceleration of gravity.

Let tn be the time of flight of the ball between the nth and n + 1th bounces. Let us

compute the time tn, n = 1, 2, 3, ... :

tn =
2vn
g

= µn

√
8h0

g
, n = 1, 2, 3, ....

Now, we describe the system as follows:

ẍ = −g, ∆ẋ |x=0= −(1 + µ)ẋ,

x(0) = h0, ẋ(0) = 0,
(5.1)

where x ≥ 0. In Fig. 5.1 and from the above assumption, we can calculate the impact

moments as: θ0 =
√

2h0/g, θi+1 = θi + µi+1
√

8h0
g

, i = 0, 1, 2, . . . . Hence,

θ∞ = θ0 +
∞∑
i=1

tn = θ0 + t1

∞∑
i=1

µn−1 =
1 + µ

1− µ

√
2h0

g
,

since µ < 1. As a result, the ball admits infinitely many impacts and stays on the

surface without bouncing for t > θ∞.

69



It is easily seen that if one fix the moments θi and take x = y, ẋ = z in (5.1), then the

motion of the bouncing ball satisfies the following equations.

ż = −g, ∆z|t=θi = −(1 + µ)z,

ẏ = z,

z(0, µ) = 0, y(0, µ) = h0,

(5.2)

where y ≥ 0. It can be seen in Fig. 5.2 that solutions of system (5.2) with initial

t
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Figure 5.2: Solution of system (5.2) with initial values z(0, µ) = 1, y(0, µ) = 0

for different values of µ (blue, red and magenta represent the coordinates of (5.2) for
µ = 0.8, µ = 0.5 and µ = 0.3, respectively). It is obviously seen that as the parameter
µ decreases to zero, the time of the ball to rest also decreases.

values z(0, µ) = 1, y(0, µ) = 0 for different values of µ have many impact moments.

It is obvious that as the parameter µ decreases to zero, the time of the ball to rest

decreases and the impact moments tend to the first impact moment. That is, as µ→ 0,

the solution (z(t, µ), y(t, µ)) of (5.2) ultimately looks like in Fig. 5.3. There arise

questions: 1) are the functions in Fig. 5.3 are the limits of the solutions; 2) what

is the type of the convergence; 3) is there a model such that the functions are their

solutions? In what follows, we will answer the questions, and moreover, we specify

relations between the original model and the model with zero value of the parameter

as a singular perturbation, such that one can approximate the solution of (5.2) by

solutions of a degenerate equation. Moreover, we shall show that the interval (θ0, θ∞)

70



is a boundary layer of the problem. Similar discussion can be made for the next two

mechanical models.
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Figure 5.3: Ultimate form of the solution of system (5.2) as µ→ 0.

5.2.2 An Inverted Pendulum

Next, we will consider the inverted pendulum. It is used in the modeling of various

engineering applications, such as rings, printers, machine tools, dynamics of rigid

standing structures and rolling railway wheel set [14, 43]. The model in [43] will

be discussed which has a lateral obstacle for the chattering. The inverted pendulum

has impact against the rigid flat wall with a constant restitution coefficient µ. The

mechanical model can be observed in Fig. 5.4. The dynamics of the inverted

Figure 5.4: The impacting inverted pendulum [43].
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pendulum between the lateral walls is described by the equations

ẍ+ 2δẋ− x = γ sin(ωt), |x| < 1,

∆ẋ||x|=1 = −(1 + µ)ẋ,
(5.3)

where x = θ/θmax is the normalized angle (Fig. 5.4), δ is the viscous damping

(0 < δ < 1), f(t) = γ sin(ωt) is the harmonic excitation representing the horizontal

acceleration of the base. During the motion of the impacting pendulum, we will take

the wall at the position x = 1 as an impacting surface, 0 ≤ x ≤ 1, γ = 0.001, ω =

5, δ = −0.005 and µ = 0.9. Denote x = y, ẋ = z. Then, system (5.3) will be

ż = 0.01z + y + 0.001 sin(5t), ∆z|y=1 = −(1 + µ)z,

ẏ = z,
(5.4)

where 0 ≤ y ≤ 1. In Fig. 5.5, one can observe that the pendulum performs many

strikes in finite time if the initial values are z(0, µ) = 0, y(0, µ) = 0. (The detailed

mathematical investigations are presented in paper [43]. In particular, it was shown

that there are infinitely many strikes.)
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Figure 5.5: Solutions of (5.4) with initial values z(0, µ) = 0, y(0, µ) = 0. Here, red
and blue lines represent the solutions for µ = 0.5 and µ = 0.8, respectively.

Moreover, Fig. 5.5 tells us that when µ decreases solutions of (5.4) get closer to

functions demonstrated in Fig. 5.6.
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Figure 5.6: Demonstration of the solution of (5.4) with initial values z(0, µ) =

0, y(0, µ) = 0 as µ→ 0 in ultimate situation.

5.2.3 A Hydraulic Pressure Relief Valve

In this subsection, a mathematical model describing the dynamics of a single stage

relief valve embedded within a simple hydraulic circuit, which is derived in [60],

will be discussed. The equation of motion for the valve poppet system, which is

Figure 5.7: Sketch of the physical system. Here y1,2,3 stand for the dimensionless dis-
placement, velocity and pressure, q is the dimensionless flow rate entering the system,
δ and κ are the (dimensionless) spring precompression and damping coefficients, µ is
the restitution coefficient between the seat and the valve body, β is a measure of the
compressibility parameter of the fluid and the elastic hoses [60].
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described in Fig. 5.7, is of the form:

ẏ1 = y2,

ẏ2 = −κy2 − (y1 + δ) + y3,

ẏ3 = β(q − y1
√
y3),

∆y2|y1=0 = −(1 + µ)y2,

(5.5)

with the initial values y1(0, µ) = 10, y2(0, µ) = 0, y3(0, µ) = 10, where y1 is the

position and y2 is the velocity of the poppet, y3 is the pressure in the chamber. y1 > 0

if the valve is open and y1 = 0 if it is closed. It is assumed that y3 > 0, that is, the

reservoir pressure is above the ambient pressure, hence the flow direction is always

outwards from the reservoir. δ and κ are the spring precompression and damping

coefficients, µ is the restitution coefficient between the seat and the valve body, β is a

measure of the compressibility parameter of the fluid and the elastic hoses.

In [60], it is shown that in the case of low flow rates, i.e., for small values of q, and

y3 < δ chattering motion exists. Therefore, it is reasonable to discuss this model as an

example for the chattering. Fig. 5.8 represents the solutions y1(t, µ), y2(t, µ), y3(t, µ)
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Figure 5.8: Solutions of system (5.5) for y1(0, µ) = 10, y2(0, µ) = 0, y3(0, µ) = 10,

where β = 20, q = 0.3, κ = 1.25, δ = 20. Here, blue and red represent the solutions
for µ = 0.8 and µ = 0.3, respectively.

for different values of µ. Clearly, we can see that as the restitution coefficient µ de-
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cays to zero, they approach to functions y1(t), y2(t), y3(t), which are represented in

Fig. 5.9.
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Figure 5.9: Representation of solution of system (5.5) for y1(0, µ) = 10, y2(0, µ) = 0,

y3(0, µ) = 10, where β = 20, q = 0.3, κ = 1.25, δ = 20 as µ → 0 in ultimate
situation.

5.3 Main Results

5.3.1 Singularity in Impact Moments

We start to consider the following impulsive system

dz

dt
= F (z, y, t), ∆z|t=θi(µ) = I(z, y) (5.6a)

dy

dt
= f(z, y, t), ∆y|t=ξj = J(z, y) (5.6b)

where functions F, f, I and J are m-dimensional vector valued functions, z, y ∈ Rm,

t ∈ [0, T ], θ1(µ) = d1(µ), θi+1(µ) = θi(µ) + di+1(µ), i ≥ 1,
∞∑
i=1

di(µ) is uniformly

convergent and di(0) = 0, 0 < ξ1 < ξ2 < · · · < ξk < T, and ξi, 1 ≤ j ≤ k, is fixed.

Consequently, limit limi→∞ θi(µ) = θ∞(µ) exists and model (5.6) has infinitely many

discontinuity moments in finite time.
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Let us take µ = 0 in (5.6). Then we obtain

dz̄

dt
= F (z̄, ȳ, t), (5.7a)

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ξj = J(z̄, ȳ). (5.7b)

We will call system (5.7) as a degenerate equation for system (5.6).

Define the initial conditions (for simplicity, we set t0 = 0 and it is not a jump mo-

ment.)

z(0, µ) = z0, y(0, µ) = y0, (5.8)

where z0 and y0 are assumed to be independent of µ. Let us investigate the solution

z(t, µ), y(t, µ) of (5.6) and (5.8) on segment 0 ≤ t ≤ T .

Define the domain H = {0 ≤ t ≤ T, |y| < a, |z| < b}. Let J̃(z, y) = z +

I(z, y), z, y ∈ H. Assume that J̃(z, y) satisfies the Lipschitz condition:

(D1) ‖J̃(z1, y)− J̃(z2, y)‖ < L‖z1 − z2‖, 0 < L < 1, z1, z2, y ∈ H.

We write x = J̃∞(z, y), z, y ∈ H, if the limit

lim
n→∞

J̃(J̃(. . . J̃(z, y) . . . , y), y)︸ ︷︷ ︸
n−times

= x

exists.

Fix z0, y0 ∈ H such that

(D2) J̃∞(z0, y0) = ϕ.

Consider the following initial conditions for (5.7)

z̄(0) = ϕ, ȳ(0) = y0. (5.9)

We need the following conditions:

(D3) Functions F (z, y, t), f(z, y, t), I(z, y) and J(z, y) are continuous in each argu-

ment, and F (z, y, t), f(y, z, t) are continuously differentiable with respect to z

and y in the domain H.
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(D4) Functions F (z, y, t), f(z, y, t) are bounded on H i.e., ‖F (z, y, t)‖ ≤ M < ∞
and ‖f(z, y, t)‖ ≤ m <∞ for (z, y, t) ∈ H.

Theorem 5.3.1 If conditions (D1)-(D4) are true, then solutions z(t, µ) and y(t, µ) of

problem (5.6) with initial conditions (5.8) exist on 0 ≤ t ≤ T , are unique, and satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (5.10)

and

lim
µ→0

z(t, µ) = z̄(t) for 0 < t ≤ T, (5.11)

where z̄(t), ȳ(t) are solutions of (5.7) and (5.9).

In general, the initial condition z0 is not equal to ϕ. This is why, the solution of (5.6)

does not converge to the solution of (5.7) uniformly and the problem is singularly

perturbed.

Proof. Let z0, y0 ∈ H. Then the existence and uniqueness of solutions z(t, µ) and

y(t, µ) of (5.6) with (5.8) follow from [2, Theorem 2.3.2 and Theorem 2.3.4] since

condition (D3) holds.

Now, consider the following system

dz̃

dt
= 0, ∆z̃|t=θi(µ) = I(z̃, y0) (5.12a)

dȳ

dt
= f(z̄, ȳ, t), ∆ȳ|t=ξj = J(z̄, ȳ). (5.12b)

Solution z̃(t) of (5.12a) with initial value z̃(0) = z0, for each µ > 0 is equal to ϕ if

t ≥ θ∞(µ).

θ∞(µ) → 0 as µ → 0. Therefore, there exists µ0 > 0 such that θ∞(µ) < ξ1 for

0 ≤ µ < µ0. Define the recursive formula

Tn(µ) = LTn−1(µ) + dn(µ), n ≥ 2,

where T1(µ) = Md1(µ).

Then, for 0 ≤ t ≤ θ∞(µ) compare (5.6a) and (5.12a). If t ∈ [0, θ1(µ)], we obtain

‖z(t, µ)− z̃(t)‖ =

∥∥∥∥z0 +

∫ t

0

F (z, y, s)ds− z0

∥∥∥∥
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≤
∫ t

0

Mds ≤Mt ≤Md1(µ),

and for t ∈ (θ1(µ), θ2(µ)] :

‖z(t, µ)− z̃(t)‖ =

∥∥∥∥z0 +

∫ θ1

0

F (z, y, s)ds+ I(z0

+

∫ θ1

0

F (z, y, s)ds, y0) +

∫ t

θ1

F (z, y, s)ds

− (z0 + I(z0, y0))

∥∥∥∥ ≤ LMd1(µ) +Md2(µ).

For t ∈ (θ2(µ), θ3(µ)] :

‖z(t, µ)− z̃(t)‖ =

∥∥∥∥z0 +

∫ θ1

0

F (z, y, s)ds+ I(z0

+

∫ θ1

0

F (z, y, s)ds, y0) +

∫ θ2

θ1

F (z, y, s)ds

+ I

(
z0 +

∫ θ1

0

F (z, y, s)ds+ I(z0+

+

∫ θ1

0

F (z, y, s)ds, y0)

+

∫ θ2

θ1

F (z, y, s)ds, y0

)
+

∫ t

θ2

F (z, y, s)ds

− (z0 + I(z0, y0) + I(z0 + I(z0, y0), y0))

∥∥∥∥
≤ L2Md1(µ) + LMd2(µ) +Md3(µ).

By induction, one can show that for t ∈ (θn−1(µ), θn(µ)], ‖z(t, µ)− z̃(t)‖ ≤ Tn(µ),

Tn(µ) =
n∑
i=1

Ln−iMdi(µ) < M
n∑
i=1

di(µ) = Mθn(µ).

Tn(µ) → 0 as µ → 0. Therefore, for t ∈ (θn−1(µ), θn(µ)], z(t, µ) is in the neighbor-

hood of z̃(t). Moreover, as n→∞, we have z(θ∞(µ), µ)→ z̃(θ∞(µ)) = ϕ. At time

t = θ∞(µ),

z̄(θ∞(µ)) = ϕ+

∫ θ∞(µ)

0

F (z̄, ȳ, s)ds and z̃(θ∞(µ)) = ϕ,

where z̄(t) is the solution of (5.7) and (5.9). Hence,

‖z̄(θ∞(µ))− z̃(θ∞(µ))‖ ≤Mθ∞(µ).
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Since θ∞(µ) → 0 as µ → 0, z̃(θ∞(µ)) → z̄(θ∞(µ)), and so z(µ, θ∞(µ)) →
z̄(θ∞(µ)).

Now, if θ∞(µ) < t ≤ T, consider the systems (5.6a) and (5.7a). By continuous

dependence z(t, µ) is the neighborhood of z̄(t).

Similarly, if t ∈ [0, θ1(µ)], we get

‖y(t, µ)− ȳ(t)‖ = ‖y0 +

∫ t

0

f(z, y, s)ds− y0

−
∫ t

0

f(z̄, ȳ, s)ds‖ ≤ 2mt ≤ 2md1(µ).

For t ∈ (θ1(µ), θ2(µ)] :

‖y(t, µ)− ȳ(t)‖ = ‖y(θ1(µ), µ) +

∫ t

θ1(µ)

f(z, y, s)ds− ȳ(θ1(µ))

−
∫ t

θ1(µ)

f(z̄, ȳ, s)ds‖

≤ 2md1(µ) + 2m(t− θ1(µ))

≤ 2md1(µ) + 2md2(µ).

By induction, for t ∈ (θn−1(µ), θn(µ)], we have ‖y(t, µ) − ȳ(t)‖ ≤
n∑
i=1

2mdi(µ) =

2mθn(µ). Since θn(µ) → 0 as µ → 0, y(t, µ) → ȳ(t). Thus, y(θ∞(µ), µ) →
ȳ(θ∞(µ)) as µ → 0, n → ∞. Now, we examine the solution for t > θ∞(µ). It is

readily seen that by continuous dependence y(t, µ) is in the neighborhood of ȳ(t) on

(θ∞(µ), T ]. Theorem is proved.

This is the time to explain, on the basis of the above theorem and proof, why the

problem investigated in this chapter is a singularly perturbed problem. Indeed, a per-

turbation is singular if the convergence is not uniform [90, 119]. In our case, solution

(z(t, µ), y(t, µ)) converges to (z̄(t), ȳ(t)) uniformly on each interval [ε, T ], ε > 0, but

there is no convergence at the point t = 0 since z0 6= ϕ. This is why, the convergence

is not uniform and it is the sufficient argument to say that in Theorem 5.3.1 a singular

problem is considered. Another remarkable fact in our research is that the region in

which the impact moments are placed shrinks to a single point when the parameter

diminishes, i.e, [0, θ∞(µ)] → 0 as µ → 0. From the above research, one can make a

conclusion that [0, θ∞(µ)] is a boundary layer. Finally, it should be emphasized that
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the singularity in this chapter is not a consequence of the small parameter multiplied

by the derivative, but it is caused by singularity in impact moments.

In the next section, we will combine the singular perturbation through the small pa-

rameter multiplying the highest derivative and singularity in discontinuity moments.

5.3.2 Singularity in Impact Moments and Small Parameter Multiplying the

Derivative

In the previous subsection, we show the singularity emerging from impact moments.

Now, in addition to this, we will demonstrate the singularity in both from impact mo-

ments and from the small parameter in front of the derivative which can be described

as follows

µ
dz

dt
= F (z, y, t), ∆z|t=θi(µ) = I(z, y), (5.13a)

dy

dt
= f(z, y, t), ∆y|t=ξj = J(z, y), (5.13b)

where all functions, discontinuity moments, domain, initial conditions are defined in

subsection 5.3.1. This system is different from system (5.6) as follows: we have

a small parameter multiplying the derivative and singularity in impact moments.

Hence, additional condition is needed.

(D5) Suppose that lim
µ→0+

θi(µ)

µ
= 0, i = 1, 2, . . . .

Let us investigate the solution z(t, µ), y(t, µ) of (5.13) and (5.8) on segment 0 ≤ t ≤
T .

Take µ = 0 in (5.13). Then we obtain

0 = F (z̄, ȳ, t),

dȳ

dt
= f(z̄, ȳ, t) ∆ȳ|t=ξj = J(z̄, ȳ).

(5.14)

Assume that 0 = F (z̄, ȳ, t) has a root z̄ = ϕ such that condition (D2) is true. Hence,

we can write
dȳ

dt
= f(ϕ, ȳ, t), ∆ȳ|t=ξj = J(ϕ, ȳ),

ȳ(0) = y0.

(5.15)
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Introduce the adjoint system
dz̃

dτ
= F (z̃, y, t), (5.16)

where y and t are considered as parameters, z̃ = ϕ is an isolated stationary point of

(5.16) for y, t ∈ H . We need the following condition, also,

(D6) the stationary point z̃ = ϕ of (5.16) is uniformly asymptotically stable.

Theorem 5.3.2 If conditions (D1)-(D6) are true, then solutions z(t, µ) and y(t, µ)

of problem (5.13) with initial conditions (5.8) exist on 0 ≤ t ≤ T , are unique, and

satisfy

lim
µ→0

y(t, µ) = ȳ(t) for 0 ≤ t ≤ T (5.17)

and

lim
µ→0

z(t, µ) = ϕ for 0 < t ≤ T, (5.18)

where ȳ(t) is the solution of (5.15).

Proof. Let z0, y0 ∈ H. Similarly, the existence and uniqueness of solutions z(t, µ)

and y(t, µ) of (5.13) with (5.8) follow from [2, Theorem 2.3.2 and Theorem 2.3.4]

since condition (D3) holds.

Now, consider the following system

dẑ

dt
= 0, ∆ẑ|t=θi = I(ẑ, y0) (5.19a)

dȳ

dt
= f(ϕ, ȳ, t),∆ȳ|t=ξj = J(ϕ, ȳ) (5.19b)

which has the same discontinuity moments, impulse function and initial condition as

equation (5.13). Solution ẑ(t) of (5.19) with initial value ẑ(0) = z0, for each µ > 0

is equal to ϕ if t ≥ θ∞. Consequently, one can say

lim
µ→0

ẑ(t) = ϕ, 0 < t ≤ T.

θ∞(µ) → 0 as µ → 0. Therefore, there exists µ0 > 0 such that θ∞(µ) < ξ1 for

0 ≤ µ < µ0. Define the recursive formula

Hn(µ) = LHn−1(µ) +
dn(µ)

µ
, n ≥ 2,
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where H1(µ) = M d1(µ)
µ
.

Then, for 0 ≤ t ≤ θ∞ compare (5.13a) and (5.19a). If t ∈ [0, θ1], we obtain

‖z(t, µ)− ẑ(t)‖ =

∥∥∥∥z0 +

∫ t

0

F (z, y, s)

µ
ds− z0

∥∥∥∥
≤
∫ t

0

M

µ
ds ≤ M

µ
t ≤M

d1(µ)

µ
,

and for t ∈ (θ1, θ2] :

‖z(t, µ)− ẑ(t)‖ =

∥∥∥∥z0 +

∫ θ1

0

F (z, y, s)

µ
ds+ I(z0

+

∫ θ1

0

F (z, y, s)

µ
ds, y0)+

+

∫ t

θ1

F (z, y, s)

µ
ds− (z0 + I(z0, y0))

∥∥∥∥
≤ LM

d1(µ)

µ
+M

d2(µ)

µ
.

For t ∈ (θ2, θ3] :

‖z(t, µ)− ẑ(t)‖ =

∥∥∥∥z0 +

∫ θ1

0

F (z, y, s)

µ
ds+ I(z0

+

∫ θ1

0

F (z, y, s)

µ
ds, y0) +

∫ θ2

θ1

F (z, y, s)

µ
ds

+ I

(
z0 +

∫ θ1

0

F (z, y, s)

µ
ds+ I(z0+

+

∫ θ1

0

F (z, y, s)

µ
ds, y0)

+

∫ θ2

θ1

F (z, y, s)

µ
ds, y0

)
+

∫ t

θ2

F (z, y, s)

µ
ds

− (z0 + I(z0, y0) + I(z0 + I(z0, y0), y0))

∥∥∥∥
≤ L2M

d1(µ)

µ
+ LM

d2(µ)

µ
+M

d3(µ)

µ
.

By induction, for t ∈ (θn−1, θn], ‖z(t, µ)− ẑ(t)‖ ≤ Hn(µ), and

Hn(µ) =
n∑
i=1

Ln−iM
di(µ)

µ
< M

n∑
i=1

di(µ)

µ
= M

θn(µ)

µ
.

It follows from condition (D5) that Hn(µ) → 0 as µ → 0. Therefore, for t ∈
(θn−1, θn], z(t, µ) is in the neighborhood of ẑ(t). Moreover, as n → ∞, we have

z(θ∞, µ)→ ẑ(θ∞) = ϕ.
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Now, if θ∞ < t ≤ T, consider the systems (5.13a) and (5.19a). By condition (D6),

z(t, µ) is the neighborhood of z̃(t).

Similarly, if t ∈ [0, θ1], we get

‖y(t, µ)− ȳ(t)‖ = ‖y0 +

∫ t

0

f(z, y, s)ds− y0

−
∫ t

0

f(ϕ, ȳ, s)ds‖ ≤ 2mt ≤ 2md1(µ).

For t ∈ (θ1, θ2] :

‖y(t, µ)− ȳ(t)‖ = ‖y(θ1, µ) +

∫ t

θ1

f(z, y, s)ds− ȳ(θ1)

−
∫ t

θ1

f(ϕ, ȳ, s)ds‖

≤ 2md1(µ) + 2m(t− θ1) ≤ 2md1(µ)

+ 2md2(µ).

It follows from the induction that for t ∈ (θn−1, θn] we have ‖y(t, µ) − ȳ(t)‖ ≤
n∑
i=1

2mdi(µ) = 2mθn(µ). Since θn(µ) → 0 as µ → 0, y(t, µ) → ȳ(t). Thus,

y(θ∞, µ) → ȳ(θ∞) as µ → 0, n → ∞. Now, we examine the solution for t > θ∞. It

is readily seen that by continuous dependence y(t, µ) is in the neighborhood of ȳ(t)

on (θ∞, T ]. Theorem is proved.

5.4 Examples

The first example is a scalar one.

Example 1. Consider the initial value problem

dz

dt
= z2,

∆z|t=θi(µ) = −0.3z, z(0) = z0,

(5.20)

where θ1(µ) = hµ, θi+1(µ) = θi(µ) + hµi+1i ≥ 1, and z ∈ R. Here, J(x) =

x+ I(x) = 0.7x. Let us check the conditions of Theorem 5.3.1.

lim
n→∞

J(J(. . . J(z0)))︸ ︷︷ ︸
n−times

= lim
n→∞

(0.7)nz0 = 0 = ϕ.
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Also, |J(x)− J(y)| ≤ 0.7|x− y|. The system corresponding (5.7) and (5.9) is

dz̄

dt
= z̄2, z̄(0) = 0. (5.21)

Therefore, for any z0 ∈ R, solution z(t, µ) of (5.20) approaches to solution z̄ =

ϕ = 0 of (5.21) as µ → 0. It can be seen in Fig. 5.10 that solution z(t, µ) of (5.20)

approaches z̄ = 0 as µ→ 0 for the initial value z0 = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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1.4

t

z

Figure 5.10: Black, blue, magenta and red represent the solution z(t, µ) of (5.20) for
values of µ = 0.5, 0.3, 0.2, 0, respectively, with initial value z0 = 1.

Example 2. Let us consider the second example as follows.

dz

dt
= z2 − 5z + y, ∆z|t=θi(µ) = −0.8z + y2,

dy

dt
= yz, ∆y|t=ξj = z,

(5.22)

where 0 < µ < 1 , θ1(µ) = sinµ2, θi+1(µ) = θi(µ) + (sinµ)i+2, i > 1, ξj = 0.3 +

j/24, j = 12, 13, 14, 15, 16, with initial conditions z(0, µ) = 1, y(0, µ) = 1, on the

domain H = {0 ≤ t ≤ 1.5, ‖z‖ < 2, ‖y‖ < 10}. It is easily seen that the conditions

of Theorem 5.3.1 are satisfied. That is, J(z, y) = z + I(z, y) = 0.2z + y2 satisfies

‖J(z1, y)− J(z2, y)‖ ≤ 0.2‖z1 − z2‖,

J∞(1, 1) = lim
n→∞

(
(0.2)n +

n−1∑
i=1

(0.2)i

)
= 5/4.
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Figure 5.11: Magenta and blue represent the coordinates z(t, µ), y(t, µ) of (5.22) with
initial conditions z(0, µ) = 1, y(0, µ) = 1, for µ = 0.1, µ = 0.3, respectively, and
black represents the coordinates z̄(t), ȳ(t) of (5.23) with z̄(0) = 5/4, ȳ(0) = 1.

Now, consider the following system which is obtained by taking µ = 0 in (5.22)

with new initial conditions:

dz̄

dt
= z̄2 − 5z̄ + ȳ,

dȳ

dt
= ȳz̄, ∆ȳ|t=ξj = z̄,

(5.23)

with z̄(0) = 5/4, ȳ(0) = 1. By Theorem 5.3.1, solutions z(t, µ), y(t, µ) of (5.22) with

z(0, µ) = 1, y(0, µ) = 1, tend to solutions z̄(t), ȳ(t) of (5.23) as µ→ 0, respectively,

which are illustrated in Fig. 5.11.

5.5 Asymptotic Approximations

Solutions of the systems defined in this chapter admit infinitely many jumps, and

this makes, in general, impossible to find an exact solution or adequately to simulate

it. So, in this section we suggest a model with finitely many impacts to find the

solution of the perturbed system approximately. In order to increase the precision of

approximation we follow the idea of asymptotic approximations. In systems, we will

take finitely many discontinuity moments to find an asymptotic approximation. That
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is, the discussed systems are equipped with the same properties except infinite impact

moments.

Let us discuss the asymptotic approximation for each proposed system. Through this

section, [.] denotes the greatest integer function.

The solution of system (5.6) with (5.8) has the following asymptotic representation

z(t, µ) =


zm(t) if 0 ≤ t ≤ θm+1(µ),

zm(t) + z̄(t)

−J̃m(z0, y0) + ε1(t, µ) if θm+1(µ) < t ≤ T,

y(t, µ) =

ym(t) if 0 ≤ t ≤ θm+1(µ),

ȳ(t) + ε̃1(t, µ) if θm+1(µ) < t ≤ T,

where J̃m(z, y) is defined in Section 5.3.1, ε1(t, µ) → 0 and ε̃1(t, µ) → 0 as µ → 0,

z̄(t), ȳ(t) are the solutions of (5.7) and (5.9), zm(t), ym(t) are the solutions of

dzm
dt

= F (zm, ym, t), ∆zm|t=θi(µ) = I(zm, ym), (5.24a)

dym
dt

= f(zm, ym, t), ∆ym|t=ξj = J(zm, ym) (5.24b)

with initial conditions zm(0) = z0, ym(0) = y0, 1 ≤ i ≤ m. Here, assume that (5.24)

has the same properties as (5.6) except infinite impact moments θi(µ). Therefore, so-

lutions z(t, µ), y(t, µ) of (5.6) and zm(t), ym(t) of (5.24) with the same initial values

are equal on the interval [0, θm+1(µ)]. If t ∈ (θm+1(µ), T ],

‖ε1(t, µ)‖ = ‖z(t, µ)− zm(t)− z̄(t) + J̃m(z0, y0)‖

≤ ‖z(t, µ)− z̄(t)‖+ ‖zm(t)− J̃m(z0, y0)‖

Hence, by Theorem 5.3.1, ‖z(t, µ) − z̄(t)‖ < ε
2

as µ → 0. Moreover, ‖zm(t) −
J̃m(z0, y0)‖ < ε

2
as µ → 0 since θm(µ) → 0 as µ → 0. Therefore, we have

‖ε1(t, µ)‖ < ε.

Consider, again, t ∈ (θm+1(µ), T ]. In (5.6b), let us substitute the asymptotic approxi-

mation of z(t, µ). Then,

dy

dt
= f(zm + z̄ − J̃m(z0, y0) + ε1(t, µ), y, t),

∆y|t=ξj = J(zm + z̄ − J̃m(z0, y0) + ε1(t, µ), y),

(5.25)

86



where y(0, µ) = y0. System (5.7b) with ȳ(0) = y0 is the degenerated problem of

(5.25). Thus, by regular perturbation theory for impulsive systems [2], ‖y(t, µ) −
ȳ(t)‖ = ‖ε̃1(t, µ)‖ < ε for sufficiently small µ if t ∈ (θm+1(µ), T ]. Consequently,

we have proven the asymptotic representation for the solution of problem (5.6) with

(5.8). Note that if we increase the impact moments we obtain a better approximation.

The following is the final asymptotic approximation which is for solution of (5.13)

and (5.8).

z(t, µ) =


zm(t) if 0 ≤ t ≤ θm+1(µ),

zm(t) + J̃[ 1
µ

](z
0, y0)

−J̃m(z0, y0) + ε2(t, µ) if θm+1(µ) < t ≤ T,

y(t, µ) =

ym(t) if 0 ≤ t ≤ θm+1(µ),

ȳ(t) + ε̃2(t, µ) if θm+1(µ) < t ≤ T,

where ε2(t, µ) → 0 and ε̃2(t, µ) → 0 as µ → 0, ȳ(t) is the solution of (5.15),

zm(t), ym(t) are the solutions of

µ
dzm
dt

= F (zm, ym, t), ∆zm|t=θi(µ) = I(zm, ym), (5.26a)

dym
dt

= f(zm, ym, t), ∆ym|t=ξj = J(zm, ym) (5.26b)

with initial conditions zm(0) = z0, ym(0) = y0, 1 ≤ i ≤ m. Suppose that (5.26)

has the same properties as (5.13) except infinite impact moments θi(µ)s. Therefore,

solutions z(t, µ), y(t, µ) of (5.13) and zm(t), ym(t) of (5.26) with the same initial

conditions are equal on the interval [0, θm+1]. Now, we need to show for θm+1(µ) <

t ≤ T that the asymptotic representation is true. If t ∈ (θm+1(µ), T ],

‖ε2(t, µ)‖ = ‖z(t, µ)− zm(t)− J̃[ 1
µ

](z
0, y0) + J̃m(z0, y0)‖

≤ ‖z(t, µ)− J̃[ 1
µ

](z
0, y0)‖+ ‖zm(t)− J̃m(z0, y0)‖

Here, since J̃[ 1
µ

](z
0, y0)→ ϕ as µ→ 0, by Theorem 5.3.2, ‖z(t, µ)− J̃[ 1

µ
](z

0, y0)‖ <
ε
2

as µ → 0. Also, ‖zm(t) − J̃m(z0, y0)‖ < ε
2

as µ → 0 since θm(µ) → 0 as µ → 0.

Thus, we have ‖ε2(t, µ)‖ < ε.
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Consider θm+1(µ) < t ≤ T and substitute the asymptotic value of z(t, µ) into (5.13b)

to obtain

dy

dt
= f(zm + J̃[ 1

µ
](z

0, y0)− J̃m(z0, y0) + ε2(t, µ), y, t),

∆y|t=ξj = J(zm + J̃[ 1
µ

](z
0, y0)− J̃m(z0, y0) + ε2(t, µ), y),

(5.27)

where y(0, µ) = y0. System (5.27) with y(0, µ) = y0 is the regularly perturbed

problem of (5.15). As a result, by regular perturbation theory for impulsive systems

[2], ‖y(t, µ) − ȳ(t)‖ = ‖ε̃2(t, µ)‖ < ε for sufficiently small µ if t ∈ (θm+1(µ), T ].

Finally, the asymptotic representation of the solution of problem (5.13) with (5.8) has

been proven.

Remark 5.5.1 The precise asymptotic properties of ε1, ε̃1, ε2 and ε̃2 cannot be de-

scribed in the section, since one needs concrete asymptotics for the sequence di(µ).

Nevertheless, in the bouncing ball model in the next section the asymptotics for di(µ),

ε1 and for ε̃1 will be found.

5.6 Chattering in the View of Singularity

In this section, we will discuss the models in Section 5.2 as singular models defined

in Section 5.3.

5.6.1 A Bouncing Ball

Consider again bouncing ball system (5.2) on [θ0, T ] since the parameter µ does not

affect the solution on [0, θ0]. That is, we intend to apply Theorem 5.3.1 for a singular

perturbation problem on the interval [θ0, T ], considering the moment t = θ0 instead

of t = 0, discussed in the theorem. One can find that in the notations of the theorem

J̃(z, y) = z − (1 + µ)z = −µz, F (z, y, t) = −g, f(z, y, t) = z, t0 = θ0 =
√

2h0/g,

and impact moments θi+1 = θi+µ
i+1
√

8h0
g

, i = 0, 1, 2, . . . , θ∞ = 1+µ
1−µ

√
2h0
g
. Clearly,

J̃(z, y) has Lipschitz constant µ < 1 and J̃∞(z, y) = 0 for any z, y ∈ R. That is, ϕ =

0.Hence, conditions (D1) and (D2) are satisfied. Also, the functions F (z, y, t) = −g,
f(z, y, t) = z, and I(z, y) = −(1+µ)z are continuously differentiable for any z ∈ R,
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F (z, y, t) and f(z, y, t) are bounded in a finite domain H . It implies that conditions

(D3) and (D4) hold as well. Take µ = 0 in (5.2) and ȳ(θ0) = 0, Then

˙̄z = −g,

˙̄y = z̄,

ȳ(θ0) = 0, z̄(θ0) = 0.

(5.28)

which is the degenerate system of (5.2). One should emphasize that the last system is

considered as a model of the ball over the table, which is placed on the level y = 0.

That is, the motion with zero initial values is an equilibrium, since the table is an

obstacle for the ball to fall. As a result, the system has the solution z̄(t) = 0, ȳ(t) = 0.

Conditions of Theorem 5.3.1 are satisfied. Therefore, solutions of (5.2) with initial

value (z(θ0, µ), y(θ0, µ)) tend to solutions of (5.28) as µ → 0 on the interval [θ0, T ].

Moreover, the sequence di(µ) = µi
√

8h0
g

is described and the interval [θ0, θ∞] shrinks

to the single point θ0 as µ→ 0. This interval is the boundary layer.

Solution of (5.2) on the interval [0.4515, 4] has the initial value (z(0.4515, µ), y(0.4515, µ)) =

(−4.429, 0). It is difficult to simulate the solution for small value of µ. Hence, we

demonstrate the singularity by handmade picture and the coordinate z(t, µ) on the

interval [0.4515, 2] look likes in Fig. 5.12. and the limit position of the coordinate

0.5 1 1.5 2

t

-5

0

5

z

Figure 5.12: A sketch of the coordinate z(t, µ) of the solution of (5.2) on [θ0, 2],

where z(θ0, µ) = −4.429 and θ0 = 0.4515 for a small value of µ.

as µ→ 0 is pictured in Fig. 5.13.

It is useful to consider degenerate model for small value of µ according to Theorem

1. One can see from Fig. 5.12 and Fig. 5.13 that the z(t, µ) coordinate of solution

of (5.2) converge to the function in Fig. 5.13. However, the z̄(t) coordinate of the

solution of (5.28) graphically is represented just by a line. As a result, the convergence
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Figure 5.13: The limit of the coordinate z(t, µ) of the solution of (5.2) on [θ0, 4],

where z(θ0, µ) = −4.429 and θ0 = 0.4515. This figure shows that the uniform
convergence of the coordinate z fails at θ0.

is not uniform and it is a singular problem. However, approximation opportunity is

approved by Theorem 5.3.1.

The chattering problem is difficult to solve explicitly. Theorem 5.3.1 says that if the

parameter µ is sufficiently small, then we can accept the solution of non-perturbed

system (5.28) as an approximate solution of system (5.2).

Now, we find an asymptotic approximation for the bouncing ball. In the notation of

Section 5.5, the solution of system (5.2) on [0.4515, 4] with (z(0.4515, µ), y(0.4515, µ)) =

(−4.429, 0) has the following asymptotic representation

z(t, µ) =


zm(t) if 0 ≤ t ≤ θm+1(µ),

−J̃m(−4.429, 0)+

+ε1(t, µ) if θm+1(µ) < t ≤ 4,

y(t, µ) =

ym(t) if 0 ≤ t ≤ θm+1(µ),

ε̃1(t, µ) if θm+1(µ) < t ≤ 4,

2

where ε1(t, µ) → 0 and ε̃1(t, µ) → 0 as µ → 0, since (z̄(t), ȳ(t)) = (0, 0) is the

solution of degenerate equation (5.28), (zm(t), ym(t)) is the solution of

dzm
dt

= −g, ∆zm|t=θi = −(1 + µ)zm,

dym
dt

= zm,

(5.29)

with initial condition (zm(0), ym(0)) = (−4.429, 0), 1 ≤ i ≤ m. We know from Sec-

tion 5.5 that on the interval [0, θm+1] the solution and the asymptotic approximation

coincide. Moreover, (zm(t), ym(t)) = (0, 0) for t ∈ (θm+1, 4] since there is no impact
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moments in this interval, i.e., the ball stays on the surface. Therefore, the errors on

the interval (θm+1, 4] are

‖ε1(t, µ)‖ = ‖z(t, µ) + J̃m(−4.429, 0)‖

= ‖z(t, µ) + 4.429(−1)m+1µm‖

≤ ‖z(t, µ)‖+ 4.429µm

≤ 8.878µm

and

‖ε̃1(t, µ)‖ ≤ µ2m4.4292

2g
.

5.6.2 An Inverted Pendulum

Now, let us discuss the inverted pendulum model. Consider again system (5.4) on

[9.205, 15] since the fist impact moment is 9.205 and the solution is not affected by

the parameter µ on [0, 9.205]. Let J̃(z, y) = z− (1 +µ)z = −µz. Obviously, J̃(z, y)

has Lipschitz constant µ < 1 and J̃∞(z, y) = 0 for any z, y ∈ R, i.e., ϕ = 0.

Let us consider the restitution coefficient as µ = 0 in (5.4) with the initial condition

(z̄(9.205), ȳ(9.205)) = (0, 1).

˙̄z = 0.01z̄ + ȳ + 0.001 sin(5t),

˙̄y = z̄,

z̄(9.205) = 0, ȳ(9.205) = 1.

(5.30)

This system is the degenerate equations of (5.4). It means that at the position y =

1 the pendulum has zero velocity. Therefore, it admits the equilibrium solution

(z̄(t), ȳ(t)) = (0, 1). Obviously, conditions (D1)-(D4) of Theorem 5.3.1 are satisfied.

Therefore, solutions z(t, µ), y(t, µ) of (5.4) with initial (z(9.205, µ), y(9.205, µ)) =

(1, 1) tend to solutions z̄(t), ȳ(t) of (5.30) with initial (z̄(9.205), ȳ(9.205)) = (0, 1)

as µ→ 0. Note that the convergence of z(t, µ)→ z̄(t) is not uniform on [9.205, 15].

The solution of (5.4) on the interval [9.205, 15] has the initial value (z(9.205, µ), y(9.205, µ)) =

(1, 1). We represent the z(t, µ) coordinate of the solution for small value of µ on the

interval [9.205, 15] in Fig. 5.14. Moreover, the limit position of the coordinate

z(t, µ) as µ→ 0 is demonstrated in Fig. 5.15. It can be seen that the convergence is

not uniform on the interval [9.205, 15]. So, it is a singularly perturbed problem.
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t
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Figure 5.14: A sketch of the coordinate z(t, µ) of the solution of (5.4) on [9.205, 15]

for a small value of µ, where z(9.205, µ) = 1 and 9.205 is the first impact moment of
system (5.4)
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Figure 5.15: The limit of the coordinate z(t, µ) of the solution of (5.4) with initial
value (z(9.205, µ), y(9.205, µ)) = (1, 1) on [9.205, 15] as µ→ 0.

5.6.3 A Hydraulic Relief Valve

Our third model is the hydraulic relief valve. Consider the system (5.5) on the interval

[1.038, 4] on which the parameter µ has an effect on the solutions. Take µ = 0 in (5.5).

Then, we obtain

˙̄y1 = ȳ2,

˙̄y2 = −κȳ2 − (ȳ1 + δ) + ȳ3,

˙̄y3 = β(q − ȳ1

√
ȳ3).

(5.31)

Define y = (y1, y3) and J̃(y2, y) = y2 + I(y2, y) = −µy2, where I(y2, y) =

−(1 + µ)y2. Clearly, J̃∞(y2, y) = 0, for any y1, y2, y3 ∈ R, since 0 < µ < 1.

Also, J̃(y2, y) has a Lipschitz constant µ < 1, i.e., ϕ = 0. For this model take the

initial values ȳ1(1.038) = 0, ȳ2(1.038) = 0, ȳ3(1.038) = 0. Hence, system (5.31)

with these initials is the degenerate equations of (5.5) with initials y1(1.038, µ) = 0,

y2(1.038, µ) = −14.54, y3(1.038, µ) = 0. Conditions of Theorem 5.3.1 are satisfied.

Therefore, in (5.5), if we choose β = 20, q = 0.3, κ = 1.25, δ = 20, then solutions

y1(t, µ), y2(t, µ), y3(t, µ) of (5.5) with the given initial conditions tend to solutions
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ȳ1(t), ȳ2(t), ȳ3(t) of (5.31) as µ→ 0 on the interval [1.038, 4].

Similar to the previous mechanical models, we represent the z(t, µ) coordinate of the

solution for a small value of µ on the interval [1.038, 4] in Fig. 5.16. In addition,

1.5 2 2.5 3 3.5 4

t

0y 2

Figure 5.16: A sketch of the coordinate y2(t, µ) of the solution of (5.5) on [1.038, 4]

for a small value of µ, where z(1.038, µ) = −14.54, and 1.038 is the first impact
moment of system (5.5).

the limit position of the coordinate y2 as µ → 0 is shown in Fig. 5.17. One can

1.5 2 2.5 3 3.5 4

t

-10

0

10

y 2

Figure 5.17: The limit of the coordinate y2(t, µ) of the solution of (5.5) with ini-
tial values (y1(1.038, µ), y2(1.038, µ), y3(1.038, µ))=(0,−14.54, 0) on the interval
[1.038, 4] as µ→ 0.

figure out that the convergence of the coordinate y2(t, µ) to ȳ2(t) is not uniform on the

interval [1.038, 4], which implies that this is a singularly perturbed problem as well.

5.6.4 A Spring-Mass System with a Small Mass

Now, we study a model for Theorem 5.3.2. Consider a small mass connected to a

spring with a coefficient k. Assume that the surface on which mass is placed has no

friction. It is released from a position x0 without initial velocity and it moves onto

a smooth vertical surface. During the process, we assume that the mass is subjected
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Obstacl e

Figure 5.18: A Spring-mass system with an obstacle.

only to the spring’s coefficient. The mathematical model of this problem is as

follows.

µẍ+ kx = 0, (5.32)

∆ẋ|x=0 = −(1 + µ)ẋ, (5.33)

where k is the spring coefficient, µ is the mass as well as the restitution coefficient.

From the equation (5.33), one obtains

ẋ+ = −µẋ− if x = 0. (5.34)

Fix a small µ > 0. One can find from the simple calculation that any solution x(t, µ)

of (5.32) and (5.34) with initial value x(0, µ) = x0, ẋ(0, µ) = 0 is chattering and

the moments of impacts depend on µ. A simulation of this solution with x(0, µ) =

0.5, ẋ(0, µ) = 0 is presented in Fig. 5.19. Consequently, one can obtain that the

solution satisfies the system

µż = −ky, ∆z|t=θi(µ) = −(1 + µ)z,

ẏ = z,
(5.35)

where y = x, z = ẋ. It is easy to verify that system (5.35) satisfies the conditions of

Theorem 5.3.2, and the degenerate system (5.14) admits the form

0 = −kȳ,

˙̄y = z̄,
(5.36)

such that (0, 0) is the solution of this problem. It is asymptotically stable as the mass

is pressed to the wall motionless. Thus, one can observe the consequences of the

singular perturbation through the simulations. They are presented in Fig. 5.20. It
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is important to say that, in Fig. 5.20 (a), the limit process is very similar to the that

one can see in simulations of continuous dynamics with singular perturbation. This

confirms one more time that the singular problem is under discussion.
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Figure 5.19: The solution of (5.35) with 5 impacts and with the initial (0.5, 0) where
k = 2, µ = 0.6.
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Figure 5.20: The coordinates of (5.32) and (5.34) with the initial value (0.5, 0) where
k = 2. Blue, red and magenta lines represent the coordinates for µ = 0.5, µ = 0.3

and µ = 0.1, respectively.
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5.7 Conclusion

In this chapter, the chattering through the singularity point of view has been dis-

cussed. The chattering property is known as the appearance of an infinite number

of impact moments occurring in a finite time. The singularity of impact moments

has been introduced. The chattering problem has been discussed as a singularly per-

turbed problem. Three important mechanical models; a bouncing ball, an inverted

pendulum and a hydraulic relief valve models have been studied for the chattering

problem as a singular one. Additionally, the spring-mass system with the small mass

and with the chattering solution has been discussed as a singularly perturbed prob-

lem. Models with chattering are sophisticated for analysis because of infinitely many

impact moments accumulated in finite time. The result of this chapter which formu-

lates the chattering as a singular problem will help researchers to consider degenerate

systems without chattering to approximate initial models and reducing the complex-

ity. We consider the system with singularity in impact moments as well as the system

with both singularity in impact moments and small parameter multiplying the deriva-

tive.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this dissertation, we studied singular perturbation problem and chattering phe-

nomenon in discontinuous dynamical systems. We introduced the infinite number

of impulse moments depending on a small parameter and it was called as the singular

impulse moments. This definition gives a useful and convenient way to handle the

chattering problems in mechanics. It is the first time that the existence of chattering

is proved by considering the right hand side of the system. Moreover, the singular

impulse functions were used in the models, which can cause solutions to blow up

at jump moments as the parameter goes to zero. A new type of bifurcation, namely

medusa bifurcation, was obtained by the small parameter. This intrinsic idea is that

the parameter causes both the bifurcation and the singularity and it is the membrane

time constant.

After introducing some background of the general theory of singular perturbation and

impulsive differential equations in Chapter 1, in the first section of Chapter 2 we stud-

ied a new Tikhonov theorem for singularly perturbed impulsive systems. It is the first

time that the singularity arise both from differential equations and the impulsive func-

tions. It was shown that singularity in the impulsive part of the systems can be treated

through perturbation methods. Lyapunov’s second method was used to show the sta-

bility in the rescaled time. Then, the theoretical results were obtained in this chapter

by means of simulation results. The second section of Chapter 2 concerned with de-

veloping the singularly perturbed problem to singularly perturbed differential equa-

tions with both small parameter in front of the derivative and impulse function. The

intrinsic idea of this chapter is that in the models, the solution approaches more than
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one root of the differential equation as the parameter decreases to zero. Moreover, the

system has two impulse functions one of which is singular. This provides new the-

oretical opportunities. Appropriate examples with numerical simulations were given

to illustrate the theoretical results.

Chapter 3 is based on Wilson-Cowan model. Using the theoretical novelty of Chapter

2, it was shown that only a single small parameter causes not only to the singularity,

but also to the bifurcation. This parameter is a natural one such that it comes from the

membrane time constant in Wilson-Cowan neuron model. As in the previous chapter,

the singularity in this chapter emerges both from the differential equation part and in

the impulsive function. We have shown that the existence of bifurcation through the

simulations since it is difficult to analyze the discontinuous dynamics of the model

in which a single parameter causes both singularity and bifurcation. New type of

attractor, which consists of medusa, medusa without ring and rings, was defined. The

name comes from the similarity of the form of trajectory and medusa.

In Chapter 4, we analyzed the chattering in impact models and the existence of impact

chattering was proved for the autonomous systems.

Chapter 5 dealt with chattering in the view of singular problem. We implemented the

definition of singular impulse moments. In the beginning of the chapter, we gave three

important mechanical models, namely a bouncing ball, an inverted pendulum and a

hydraulic relief valve, in which chattering solutions arise. Then, we generalized the

results obtained in the first part through singular perturbation theory. Besides, these

three mechanical models were discussed in the singularity point of view. Addition-

ally, the spring-mass system with the small mass and with the chattering solution has

been discussed as a singularly perturbed problem. Illustration of theoretical results

were obtained through numerical simulations.

This study suggests many aspects of singular perturbation theory in discontinuous

dynamical systems such that it could be further developed. We describe some ideas

for possible future work.

• The models in Chapter 4 are respectively simple. Nevertheless, this is a class of

mechanical models which can be significantly enlarged in the future investiga-
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tions by consideration of large ensembles of impact oscillators and weakening

conditions.

• Issuing from the numerical simulations one can see that results of Chapter 3

can be further developed. In particular, the existence of medusa bifurcation can

be proved analytically.

• Chapter 3 interestingly presents a very powerful small parameter. We have

shown that it causes both singular perturbation and bifurcation. The relation be-

tween the bifurcation and singular perturbation should be demonstrated through

this parameter.

• Application of theories established in this thesis to mechanical models such

as bouncing ball, inverted pendulum, hydraulic relief valve, neural networks

models are subjects to be addressed. Moreover, other real world problems need

to be mentioned.

• The concept of singular perturbation and chaos are related themes. It remains

to be investigated that the relations between singular perturbation theory and

chaos.
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