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ABSTRACT

SECOND-ORDER SCALAR-TENSOR FIELD THEORIES

SAHIN, ERTAN SINAN
M.S., Department of Physics

Supervisor : Prof. Dr. B. Ozgiir Sarioglu

March 2017, (96| pages

We review Horndeski’s scalar-tensor theory in this thesis. Partial differential equa-
tions that are satisfied by the Lagrangian limit its most general form. Demanding
second-order field equations both for the metric and the scalar field, and choosing
a four-dimensional spacetime also put restrictions on the most general form of the
Lagrangian. Besides, by using similar techniques, in a four-dimensional spacetime,
we find the most general form of the second-order Euler-Lagrange equations that are
obtained from the Lagrangian through a variation of the metric. Finally, making use
of relations between field equations and the Lagrangian, the most general form of the
Lagrangian is obtained. Thus, one establishes the most general scalar-tensor theory
in a four-dimensional spacetime.

Keywords: General Relativity, Modified Theories of Gravity, Scalar-Tensor Theory
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IKINCI DERECEDEN SKALER-TENSOR ALAN KURAMLARI

SAHIN, ERTAN SINAN

Yiiksek Lisans, Fizik Boliimii

Tez Yoneticisi : Prof. Dr. B. Ozgiir Sarioglu

Mart 2017, 96| sayfa

Bu tezde Horndeski’nin skaler-tensor kurami incelenmistir. Lagrangian tarafindan
saglanan kismi diferansiyel denklemler onun en genel halini kisitlar. Metrik ve skaler
alan denklemlerinin ikinci dereceden olmasini istemek ve dort boyutlu bir uzayza-
man1 se¢mek de Lagrangian’in en genel halini kisitlar. Ayrica benzer teknikleri kul-
lanarak, dort boyutlu bir uzayzamanda Lagrangian’in metrik varyasyonundan elde
edilen ikinci dereceden Euler-Lagrange denklemlerinin en genel halini buluruz. Son
olarak alan denklemleri ve Lagrangian arasindaki iligskilerden faydalanarak Lagran-
gian’1n en genel hali elde edilir. Boylece, dort boyutlu uzayzamanda en genel skaler-
tensor kurami elde edilmis olur.

Anahtar Kelimeler: Genel Gorelilik, Degistirilmis Kiitlecekim Kuramlari, Skaler-Tensor
Kurami
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GR
FLRW
LIGO

NOTATION:

LIST OF ABBREVIATIONS

General Relativity
Friedmann-Lemaitre—Robertson—Walker

Laser Interferometer Gravitational-Wave Observatory

Every index belongs to n dimensional spacetime and runs from
1 to n. There is no special meaning of any index. Einstein’s
n

summation convention , e.g. u,v* = » u,v", is used through-
p=1

out the text.
A comma denotes partial differentiation and a vertical bar de-

notes covariant differentiation.

The Levi-Civita symbol €2°“? is defined as the permutation sym-

bol which takes the values 0, 1 and —1.
Generalized Kronecker delta symbol is

i i

o 0, v 05

010k = det :
11 ik

5jk o 5jk

The determinant of the matrix formed by the components of

the metric tensor is g = | det(g,,)|-
The Christoffel symbols are

1

I, = §9ha(9bh,c + Genp = Gben)-

Components of the Riemann curvature tensor are
a o a a a h a h
Reyd =% = L%ea + T I — T T

The Ricci tensor, the scalar curvature and the Einstein tensor
are

1
Ry=R"yy R=RY and Gu=Ry— §gabR

respectively.
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CHAPTER 1

INTRODUCTION

Newton’s theory of gravity was remarkably successful in explaining closed elliptical
orbits of planets around the Sun. This theory is still accurate enough if one uses it
in astronomy and astrophysics, where the effect of the gravity is not strong enough.
However, Newton’s theory could not fully explain the precession of the perihelion of
the planet Mercury. Due to Mercury’s orbit’s deviation from the theory, another planet
named Vulcan is hypothesized by Urbain Le Verrier in the 19th century. However,
such a planet has never been observed. Therefore, it was assumed that Newton’s
theory was incomplete. Actually, Newton was the first to consider modified theories
to explain Lunar precession by including an inverse-cube term in his inverse-square

law of the gravitational force.

After the theory of special relativity proposed by Einstein in 1905, he aimed general-
izing his theory with the gravitation theory. Instead of the idea of action at a distance
in Newton’s theory, he considered gravitation as a curvature of spacetime. In 1915,

Einstein published the geometric theory of gravitation, General Relativity (GR).

GR is considered as the best explanation of how spacetime behaves on macroscopic
scales. One of the early successes of the theory was the correct prediction of the
advance in the perihelion of Mercury. As a consequence of the theory, original ideas
and their solutions are emerged. The idea of black holes, gravitational deflection of

light, gravitational redshift and Shapiro delay are all predictions of GR.

The field equations found by Einstein have passed many experimental tests. These



equations are

_8nG (1.1)

pv oA T

G

where G, is the Einstein tensor, T}, is the energy—-momentum tensor, G is Newton’s
gravitational constant and c is the speed of light. These equations have been suc-
cessful in explaining many phenomena which could not be explained otherwise. For
instance, gravitational waves are natural consequence of Einstein’s field equations.
For the first time, the existence of gravitational waves was indirectly verified by mea-
suring the period decay of binary neutron stars in 1974 [[1]]. On September 14, 2015,
the first direct observation of gravitational waves was made by the LIGO team which

will certainly lead to a new way of observing the universe [2].

Despite its successes, as in Newton’s theory, GR has shortcomings in explaining some
of the observed phenomena. Although it passes experiments performed in solar sys-
tem scales, it has shortcomings on larger scales such as cosmological and galactic
scales. Therefore, gravitation may differ in such scales. For example, if one tries to
understand the galaxy rotation curve, which remains flat far away from the galaxy
center, by using GR, significant amount of dark matter is needed. In other words, in
a galactic scale limit, GR reduces to Newton’s theory of gravity. As it happens in
the Solar System, the theory suggests a decrease in the velocities of the orbits when
radial distance from the center of mass increases. However, observations have shown
that outer stars of a galaxy move faster than expected. Due to this fact, dark matter
is hypothesized, which may be an explanation of these observations. Similarly, the
accelerating expansion of the universe can only be explained in GR with the help of
dark energy which seems to dominate the distribution of ordinary (baryonic) matter
and energy in the universe. This need for the existence of considerable amount of
dark energy and dark matter in the universe leads to speculations that GR may not be

the complete theory of gravitation.

Although GR has had great success especially in the solar system experiments, al-
ternative theories emerged before observational tests were made. Soon after its first
publication in 1915, there were a flurry of theories in order to find a more unified
version. Eddington’s theory of connections [3], Weyl’s scale independent theory [4],
and the higher dimensional theories of Kaluza and Klein [5], [6] are some examples

that can be presented. Eddington’s studies influenced Dirac and thus, he discussed
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the idea of varying Newton’s constant in time [7]]. Later, this idea motivated Brans
and Dicke [8]. In addition to the metric, in the Brans-Dicke theory, a scalar field ¢ is
introduced which can be viewed as the varying gravitational constant GG. They devel-
oped the prototypical form of scalar-tensor theories of gravity, which are still actively

studied in the literature [9].

GR, together with a cosmological constant term in its field equations, is a unique
second-order metric theory in a four-dimensional spacetime. The most general form

of the action is
87G

+, /| is a constant and £, describes any matter fields. The field equa-

where k =

tions that are obtained from this action through a variation of the metric are

87TG
G;w + /lgm, = T (1.2)

Note that these equations are at most of second-order in the derivatives of the metric.
As we mentioned, due to its constant cosmological term, GR has shortcomings in
explaining different phases of the universe’s expansion. As a consequence of this
fact, one may make use of an additional degree of freedom in the Lagrangian such
as a scalar field. Similarly, one may also consider higher dimensions than four in
order to have different field equations rather than (I.2]) which may explain the cosmic

expansion.

In the seventies, Lovelock and Horndeski studied scalar-tensor theories in a more
mathematical way to obtain the most general forms of both the Lagrangian and the
Euler-Lagrange equations [10, [11} [12]. They applied and improved the methods de-

veloped by Rund on variational problems involving combined tensor fields [[13].

Lovelock had shown that GR is the unique metric field theory of four-dimensional
spacetime [14]. Moreover, Lovelock obtained the most general form of a metric
theory in any dimension [15]. The Lovelock densities are

5A1 A Ah Byp—1Bp,

B1 B>
B1Bgy-- RA1 A2 ’

L(h/2 e RA,HAh

and the Lovelock Lagrangian is

k
L= Z ChL(h)
h=0



where k& = [(D — 1)/2] and D is the dimension of spacetime. Here, L) is the
Einstein-Hilbert term and L) is the Gauss-Bonnet term. However, for the case h =
D, the Lovelock density becomes topological. Due to the Gauss-Bonnet theorem, the
Einstein-Hilbert term is a topological invariant when D = 2. Therefore, the Einstein
tensor is zero in a two-dimensional spacetime. Similarly, when D = 4, the variation

of the Gauss-Bonnet term vanishes which keeps the Einstein field equations unique.

Due to this uniqueness, if we limit ourselves to four-dimensional spacetime, we have
to consider some additional fields. A scalar could be the simplest way of adding
extra degrees of freedom. Theories involving a scalar field together with a tensor
field are called as scalar-tensor theories. The most general form of these theories in

four-dimensional spacetime was constructed by Horndeski [[16]].

This study can be considered as a review of works done by Rund, Lovelock, and
Horndeski on scalar-tensor field theories. In this thesis, we are seeking for the most
general form of the Lagrangian which yields the most general form of the second-

order scalar-tensor field equations in a four-dimensional spacetime.

In Chapter[2] we begin with choosing our Lagrangian of the form

L(.gijvgij,kv 955 kh>s b, (/5@) (1.3)

Since the derivatives higher than second order create instabilities that lead to a the-
ory with ghosts, we would like to obtain the second-order field equations from this
Lagrangian. Therefore, the Lagrangian should be also at most of second-order. More-
over, for simplicity, we do not let our Lagrangian to have dependency on the second-
order derivative of the scalar. By doing so, we can not construct the most general
form of the field equations which is done in Chapter[3] Starting from the Lagrangian
given in (1.3), we then work out the symmetries that are required for generating gen-
eralized tensor densities. These symmetric tensor densities are related to the partial
derivatives of the Lagrangian with respect to the metric, the scalar and their deriva-
tives. In addition to these symmetries, we obtain some important identities which put
restrictions on these tensor densities. These identities are partial differential equa-
tions which are satisfied by the Lagrangian. Moreover, due to symmetries of these
tensor densities, having a four-dimensional spacetime also restricts the general form

of the Lagrangian. By virtue of these equations, relevant symmetries and dimensional
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restrictions, one can construct the most general form of the Lagrangian. To study the
dynamics, we need to obtain the second-order field equations and to do so we de-
rive the Euler-Lagrange equations corresponding to variations of the Lagrangian with
respect to the metric and scalar field. Then we find the necessary conditions which
guarantee that the field equations are functions of the metric, a scalar and their first
two derivatives. After imposing these conditions on the Lagrangian the most general

form of it is generated.

In Chapter[3] we look for the Lagrangian which has the Euler-Lagrange equations in-
volving the metric, a scalar and their first two derivatives. Since there is no restriction

in the beginning,

L= L(gijv Gijsiro - Gigyir..ip> b, ¢,i17 . 7¢,i1...iq) (1.4)

is the Lagrangian in this case. Approaching this problem in reverse order proves to
be useful. In order to generate the most general form of the Lagrangian, we start
by constructing the most general form of the Euler-Lagrange equations. Since the
field equations are tensor densities, we may obtain new tensor densities out of field

equations by taking their derivatives.

Generalized Bianchi identities for this Lagrangian defined as
ij L
E J\j (L) = 59 J¢|jE<L)7

where £ and E(L) are Euler-Lagrange equations through a variation of the La-
grangian with respect to the metric and the scalar, respectively. Having at most of
second-order £(L) means also having at most of second-order £* ; (L) at the same
time. Obviously, this fact puts severe restrictions on the most general form of the
field equations. Again by considering dimensional restrictions, we generate the most
general form of the field equations obtained from the Lagrangian given in (I.4). Af-

terwards, by using the relations between the Lagrangian and its field equations, we

will obtain the desired Lagrangian in a four-dimensional spacetime.

The implications of the results that we have obtained in chapters — will be discussed
in Chapter d] We will briefly examine the applicability of the methods that we have
used to other field theories such as the bi-scalar-tensor theory and we will give a short

summary of recent research on scalar-tensor theories.

5



In Appendix[A] Riemann normal coordinates and their properties are explained. These
coordinates are frequently used throughout this thesis. General forms of various ten-
sor densities that possess certain symmetries are derived in Appendix [B] Detailed

calculations are relegated to Appendix [C|in order to provide fluency in reading.



CHAPTER 2

SCALAR-TENSOR FIELD THEORIES

In this chapter, our goal is to generate the most general Lagrangian of the form
L(Gijs 9ij > 9ijkns @ ;) which yields second-order field equations in a four dimen-

sional spacetime. Therefore, we want to obtain

E® = Eab(gij 1 9ij.k0 9ij kho o, ¢,ia ¢,ij)7
E = E(gij 1 9ij.k0 9ij kh> o, ¢,ia ¢,ij)-
In this chapter, we consider the first derivative of the scalar field ¢ only. By doing
so, we study an easier but specific example of general scalar-tensor field theories.
However, while we are studying this example, we will be developing some general
methods which will be useful in the next chapter. Moreover, these general methods

can be applied to various field theories.

To begin with, we are looking for an action invariant under arbitrary coordinate trans-
formations of the form
T =),
where the action is
I = / L(gij 1 9ij.k0 9ij kho o, ¢,i)dnx'
Therefore, we study the Lagrangians of the form L(gij s i ks Gij s O gb,i) which sat-

isfies
BL(g;u/? guy,p? g[u,z/,pg? ¢7 d),'u) - Z(gz_]ﬂ gij,k? gij,kh? 57 a,i% (21)
where g;; is the metric, g;; , is the first derivative of the metric, g,; ;, is the second

derivative of the metric and

B = det (@) >0,

T



is the Jacobian. Since our Lagrangian is a scalar density, we may call it as Lagrange

scalar density.

We can define the transformation matrix and its derivatives, which will be useful

throughout the chapter, as

oxt
Bt = 2
o
g = OB O
Yoo ooz
B 0*B", D3t

ik = ozkom | OTrOTIOT

We calculate the transformation of the scalar ¢, the metric, and their derivatives as

¢ =9,
g_b,i :B“i (b#“

¢,ij :gb,pl/B#i BV] + qb”uBui]W

- " v
9ij —QWB ;B §o

Gijh =Y BB ;B + 9, B"y, B ; + 9., B"; By, 2
gijvkh :guv,paBMiBVijkBah + pv.p (B'uihBVijk + BMiBthBpk
+ BMiBVijkh + Buz‘kBVj B, + BMiBijBph)
t 9 (Buik:hByj + BuiBijh + BuikBth + BuihBij)'

Before going further, we define the following partial derivatives which will frequently

appear

NI = (9_L
8gl]’

Aij,k = oL
agij,k

Aij,kh = oL
8gz‘j,kh

b = a—L,
P

P = (9_L
8<bﬂ

We emphasize that the first three terms are symmetric in (4, j) and that the third term
is also symmetric in (k, k). In the next section, we will show that A%*" @, and ¢!

are tensor densities that are of the fourth, zeroth, and the first rank, respectively.

8



2.1 The Construction of Certain Symmetric Tensor Densities

In this section, we will construct symmetric tensor densities. In order to do this,
we will apply similar techniques developed originally by Rund [13]. Applying these
methods reveals symmetries of tensor densities. Moreover, we can put some restric-

tions on tensor densities to obtain their most general form.

In Section we will show that A%"*" is a tensor density. In Section we will
obtain tensor densities /1% and IT%"* which are very useful for obtaining the Euler-
Lagrange equations in clear tensorial form. Then we will obtain important invariance
identities for AY*" [Tk and ITY and in Section m to put restrictions on the
Lagrangian L. These important identities can be obtained by taking the derivative of

(2.1) with respect to B" , , B" , and B’, respectively.

abe?

This method can be used for different Lagrange scalar densities. There are various
examples of application of this method on diverse Lagrange scalar densities which

are conducted by Rund [13].

2.1.1 Proving that A%*"s a Tensor Density

Taking the derivative of (2.1) with respect to g,,,, ,, yields

oL _ OL  9G; rn n OL  0Gi;x L oL 09,
89/,1,1/,;)0’ agij,kh 39#11,,;0 agij,k: ag,u,u,po' a?z’j ag,ul/,po
0L 9% , OL 9,
06 0900 00 ;0900
The only surviving term on the right hand side is the first one due to transformations

that we have given in (2.2). Therefore, we have

B

—ij,kh

BAw#r = A7 B BY. B, BY,.

Note that A***? is a tensor density, as can be easily seen. Similarly, ¢* and @ are
also tensor densities. One can easily check this by taking the derivative of (2.1)) with
respect to ¢ , and ¢, respectively. However, A*”* and A" are not tensor densities
which can be proven by taking the derivative of equation (2.1) with respectto g, ,

and g, respectively. These calculations can be found in the beginning of Section

9



Applying repeated partial differentiation of L with respect to g,,,, ,,, ¢ , and ¢

will produce a tensorial quantity.

2.1.2 Deriving the Tensor Densities /7 and I7"*

We can differentiate equation (2.1) with respect to gy, .4, 9,1, and g, respectively. In

light of (2.2), by considering nonvanishing terms, one has

BAed = J’kh—ag 2 (2.3)
ab,cd
e — 7 Wi ik O (2.4)
agab,c agozb,c ’ .
B = o Liakh | ikl | i3 20y 2.5)
8gab agotb 8gab

Note that only the first one is a tensor density but the rest are not. However, we can

seek for tensor densities which include them.

Let us define a symmetric tensor /;; which will be transforming similar to the metric
tensor components as shown in (2.2). Now, we define a new quantity /' which was

introduced by du Plessis [17] as

F=A%“p,, A APCh, 4 APh,,. (2.6)

ab,c ab,c

After multiplying each side of this equation with B, one can substitute equations

(2-3), (2-4) and (2.3)) into this to obtain

iiwn [ OT oG 9.
BF =1 J,kh( 9ijkh hab,cd n gz],khh n 9ij kh hab>

agab,cd agab,c abe agab
—igk 8§i'k 8§i‘k —iJ a?z"
+ A7 ( 22 By o 4 ha)+/1 (—Jha :
agobb,c abe agab ’ a-gab ’

Note that the quantities in the parentheses are equal to Eij’ Khs Eij, . and h;

;> TEspec-

tively. This is obvious from (2.2). Therefore, we have

—ij.kh

If we compare this with @, we conclude that F' is a scalar density. Therefore, we
may define F’ as

F = A7 by, + T By + IT7 27

10



It is remarkable that every term is a tensor density in this equation. Finally, we can

obtain [1"* and IT* after calculating h,;,, and h,,.

J— a a
hz‘j|k _hij,k — 4 g haj — 4k o

hij\kh :hij,kh - Faik haj,h - Fajk: hm,h - Faik:,h haj - Fajk,h hm
-1, i e — Fbjh P — ', hijp+ r, (I hej + T, M)
+ Fbjh (I hey + T hie) + I ( G hej T chbhic)'

If we substitute these two equations into , we obtain

a a a
aj,h r ik hia,h - r ik,h h’aj - I jk,h h‘ia

F =7k (hij,kh — I h
-1, i e — Fbjh hip e — ' hijp+ re, (I hej + Ty, hie)
+Fbjh( % ey + T i) +Fbkh( G Pej + chbhic))

+ 17" (hijw = Do hgy — T% hug) + 117 Ry
:Aij’khhi]’,kh + Aij’kh( — % i — L%k Pian, — r, i ke — Fbjh hip .

aj,h
—I'% hij,b) + Hij’khij,k + Aij’kh( — I n oy — T Mg

+ Fbih( o Teg + 1, hye) + Fbjh Sl + T i)

* Fbkh( Py + 1 hic)) + Hij’k( = g gy — 1%, hia) +IIVh,

After renaming the indices, we should obtain
F = A+ A7y o+ AR
Therefore, we can write down the tensor densities that we need as
[0k = fiik 4 [k pidab o paikb 4 2Fjab Aaiskb

and
JT9 =A% + Fiab,c Aa]}bc + F]ab’c Aai’bc

+ Fiab (Haj,b . Fde Aaj,cd . Facd ch,bd . chd Aca,bd)
+ Fjab (Hai,b . Fde Aai,cd . Facd Aci,bd . F’Lcd Aca,bd>.
We remark obvious symmetries satisfied by these tensors as

] 71 i,k __ Ji,k
7 = [, [T+ = [Titk,

11
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One can easily see that the relations, that we have in (2.8 and (2.9)), are valid for the
metric field theories that contain at most second-order derivative of the metric. Fur-
thermore, these equations are still valid, even though the Lagrangian involves scalar

fields and their derivatives, i.e., @, ¢, ...

2.1.3 Putting Restrictions on the Lagrangian

In this section, we will derive three identities that put restrictions on L. Therefore,
we will differentiate (2.1) with respect to B” , , B" , and B’,, respectively. We will

divide this section into three parts, in order to make it easier to follow.

Part 1: Differentiation of (2.1) with respect to B" ,
Taking the derivative of (2.1) with respect to B*,, . yields

abc
—ijkh Oy —ijk 074 —ij 075 0¢ _i 09,
-A J,kh i7,kh A 75 i3,k A J iJ b o K
! 8B'U‘abc aBu‘abc a‘B/Labc " a‘B/Labc " a‘Buabc

The only non-zero term is the first one on the right hand side. Therefore, we have

0 = A/ ST TN B (620007 + 070455 + 050167 + 610005 + o100
abc

15
+ﬂ$ﬁ)+6Amh

+ OROLSE + GRSL0C + 52626%).

9, B"; (6?5,’;5,2 + (5;-‘625; + 5,@‘6?52

Now, with (¢, j) symmetry, we have

—ij kh

A7 g, B (820085 + 626705 + 0R0L8T, + 016705 + 618,05 + 676765 ) = 0.

We have this equation for an arbitrary transformation. Moreover, in particular, this is

also valid for the identity transformation
7 =21 with B*, =& and B", =B" . =0. (2.11)
As a result, we have
G ( Aavibe o pavieb | pbrac | pgevba 4 pevab Abu,ca) —0.
Using the symmetry properties that we have, we can rewrite this as

QQ;W (Aua,bc+Aub,ac+Auc,ba) —0.

12



Consequently, we obtain a remarkable identity for A%¥" as
AR ATl iR =, (2.12)

We emphasize that the identity above puts severe restrictions on L. Therefore, we

will be frequently using this identity throughout this thesis.

By using (2.12)) and known symmetry properties of A%**" we can find another sym-

metry for Ak

AUk L ik L giki — ()

AFikR L pdkih gtk _ o

Akl o pkdih | pAkhij _ ()
Summing these three equations yields zero. The sum of third terms of each line is
Aihki o pihik - ARMGG — () from equation (2.12). Therefore, the sum of the rest is

also zero.

2(Aij,kh + Ak’i,jh + Ajk,ih) = 0.
When we compare this result with equation (2.12)), the first and the second terms of
both equations are the same, respectively. As a result, the third terms in both equations
will be equal to each other. Therefore, we will have a new symmetry property of A%+
as
Aij,lch — Akh,ij.
Consequently, A%k" enjoys the following symmetry properties
Aij,kh — Aji,kh — Aij,hk — Akh,ij.
Part 2: Differentiation of (2.1) with respect to B” ,

In order to obtain an equation which is satisfied by I7% % we take the derivative of the

equation (2.1) with respect to B* , which will yield

—iikn i | sk O | —is 09y = 00— 09,
OZAJJCh ij,kh Ajv iJ, AJ i b & K . 2.13
opr, N apr, TN g, T Papr, T g G
The only contribution is coming from the first two terms due to (2.2)
1—j
0= <g (4B”; B (620} + 630)) + Gy, (BY: BT (526}, + 5g5§;)))
1—ijk

+ 547 9, (2% (070 + 0767)) + 2%,

13



where the Q“bu term contains terms which are linear in B”_;. Due to li , there will
be no contribution coming from this term. As previously applied, using the identity

transformation of the form in (2.11]), we have
0 At (g (4757 (526% + 6101)) + 9, (5767 (575, + 5g5,g>))

+ AT (207 (5268 + 6200))

:4Aau,abgwj’g + 4Aby’0agw/’g + 2Aucr,abgugnu + 2Aau,bgw’ 4+ 2Ab1/,agwj.

As a result, we have found
2Aau,obgwj,g 4 2Abz/,oagwjva 4 Auo,abgyaﬂu + Aau,bgwj + Abu,agw/ = 0. (214)

As stated in Appendix [A] at the pole P of the Riemann normal coordinate system, we

have
Gy 7 0; however, Gape = 0, therefore, %e = 0. (2.15)

Therefore, at the pole P, we can rewrite equation (2.14) together with equation (2.8)
as

Hau,bglw + Hbu,agw’ — 0,

as a result, we have
[Tk 4 [IM7 =0 or 9% = — 7k, (2.16)
By virtue of (2.10), it is possible to write
7k — _qrkii — _ppiki — qrikd — prkid — _ ik
Therefore, we have a remarkable equation here
T+ = . (2.17)

Since this is a tensorial equation, once we obtain this equation at a particular point
of our coordinate system, we can generalize it to be valid at any point of an arbitrary

coordinate system.

Lemma 2.1 If we have a scalar density of the form L(gijagij,k7g@'j,kha ¢,¢;) and
ATk = () then AU+ = 0.

14



This is an obvious result of equations (2.8) and (2.17) when we have the condition
Aij,kh =0

Part 3: Differentiation of (2.1) with respect to B",

Note that 22~ = BA®,, where A, is the inverse of B",, thatis A%, B", = 0;. Taking

the derivative of (2.1]) with respect to B", yields

8¢ i 00,
i 2.18
on- " Yop T Pop 1Y

S S S S

There is no contribution to the right hand side of this equation from the fourth term
when equation (2.2)) is used. Therefore, we have

BA*,L =A"""q (B",B",B%,8!5; + B",B*, B%, "5
+ B, B¥; B%),000; + B“iB”jB’)chff(Sfl)
+ Zij’kg
+A%g,, (BY;040; + B*0187) + @ 61559, + (27,

Jjore 1or g %

(B B",016; + BY, B, 6167 + B", B”;6£6;)

where term (2%, contains terms which are linear in B” ; and B" , . Due to equation
(2.11)), there will be no contribution coming from this term. As applied before from

the identity transformation given in (2.11)), we have
o,L :Asj’khgrj,k;h + Ais’khgz‘r,kh + Aij’Shgij,rh + Aij’ksgij,kr
+ AT g o ARG A+ AT 245+ D
After renaming dummy indices, we have
opL :Asj7kigrj,ki + Ajs’kigjr,ki + Aij’Skgij,rk + Aij’ksgz‘j,kr
AT ARG+ AT 245 g D
Using the symmetries, we have
o, L :2Asj’kigrj,ki + 2Aij’8k9ij,rk + 2Asj’k9rj,k + Aij’sgij,r + 2Asjgrj + @Sﬁb,r

after renaming dummy indices once more, we obtain

o, L =24%7F (grj,k:i + gz‘k,rj) + 2A8j’k9rj,k + Aij’sgij,r + QASjgrj + stﬁbw (2.19)
At the pole P of the Riemann normal coordinate system, we have

R (gz'j,rk: T Grkij — Grjik — gz‘k,rj)'

DN —

irkj —

15



Upon multiplying this with A*"%7 we have

ki,sj _ - ki,sj ki,sj ki,sj ki,sj
AR,y = 5 (9156 A 4 g i A Grjind it A7),

If ¥ is a quantity which is symmetric in (7, j), and ¢;;.;, = @i = Pijni together

J
Wlth ¢'ijh + ¢ikjh + (bzhk] = O, then

. 1 ..
a/quaibj = _§aw¢abij' (220)
Making use of (2.20)), we find
o 1 - 1 . 1 o 1 .
ki,s ij,sk ij,sk ki,s ki,s
A JRirkj = Zgij,rk/“’ - Zgrk:,ij P — §grj,ik/l o — §gik,rj/1 >
1 ij,s 1 ij 1 ji 1 ji
= — —G;j A" b ~ ki3 disk — =Gk V ok =917V o
4 4 2 2
3 ) 3 B (2.21)
== Zgij,rkAl]’Sk - Zgrk,ij/w’Sk

3 .
=— ZA]“’S] (Gitrj T Grjin)-

At the pole P of the Riemann normal coordinates, we have

AT = IS — [T Ais,jk o Fsij,k Ait,jk' (222)

ij,k
Again at the pole P, we find

r

1 T
ik = 59 h(gih,jk T Ginik — gij,hk)‘
Inserting this into (2.22)) yields

rs TS 1 is,5k r
A =11 — 5/1 kg h(gz‘h,jk T Ginik — gij,hk)

1 itik s
— 5/1 mkg h(gih,jk + ihik — gij,hk)'

In light of (2.20), we obtain

1 .. 1 ..
A = 11" — Z/ll‘wkgrh (gz‘h,jk - gjlc,ih) - ZAZt’]kQSh (gih,jk - gjk;,ih)’

Equation (2.21) reduces this to
1
3

1

AT‘S — H’V‘S
* 3

rh pik,sj sh pik,rj
g R+ g™ AT Ry

After multiplying this with the metric, we have
rs s 1 ik,sj 1 sh ik,rj
g’r‘tA = g'rtH + g/l Rktlj + gg grtA Rkhij?
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after renaming indices, we find

S js 1 ik,sj 1 s ik,g
gjrA] = gerj + 5/1 " ]erij + 59 hgjrA k’thkhir

By inserting this and equation (2.21) into equation (2.19) at the pole P of the Riemann

normal coordinates, we obtain

8 9 2 .
0, L = — gASJJ%Rirkj + 29;, 1T + §Alk’SJRk:rij + ggngr/llk’ﬁRkhit +9°0,

= = 2AMR, i+ 29, IT7° + ggShgjrAlthRkhit +9°0,.

Since this is a tensorial equation, this identity is valid for any point of any coordinate

system. Multiplying this with ¢"* while renaming dummy indices yields

A 2 .
gsuL - _ 2gruA3j,szirkj + 2 ITus i 5gshA'Lk,utLRkhit + gru@sqb’r
5 (2.23)
_ QASjykiRiukj 4 20TY 4 §AZk7ujRisk‘j + gru@sgbﬂ“

The left hand side of this equation is symmetric in (s, u), thus the right hand side
should also be symmetric in (s, u). The second term on the right hand side of this

equation is symmetric in (s, u). Therefore, we have
o 2
sjki pu ik,u, s U S
—2A77 R, kj+§/1 'R+ 990,
uy,ki S 2 ik,sj u S AU

After rearranging, we find

)

8 i 8 .
_gASLkZR'ukj + grugpsgb’r — _gAuijRiskj + gTsAugb’T'
Consequently, we obtain
uj,ki s si,kipu 3 TS AU TU S
NIHR, kj = ATHR, kit g(g Ap, — g P ¢,r)~
If we substitute this into equation (2.23), we have
su si,kipu us 2 si,kipu
1
+ —(gTSAUQb’T _ grugpsgbm) + grugpsqu.

4
Following the long calculations, we end up with a very important identity

1 .. 2 . 3 .. 1 ., .
S0 L=11" - g/lmthﬂkm + ggﬂhqyd)ﬁ + gglh¢]¢7h. (2.24)

Finally, we have very important identities (2.12)), (2.17) and (2.24). These are very

useful since they put severe restrictions on the Lagrangian. We will be using these

results to obtain the Euler-Lagrange equations in the next section.
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2.2 Properties of the Euler-Lagrange Equations

In this section, we will obtain some identities for the Euler-Lagrange equations. These

identities are useful for finding field equations.

2.2.1 Finding the Tensorial Form of £*

We can write the Euler-Lagrange equations of our Lagrangian as

0 0

W@ZEWMh%ﬂW%M, (2.25)
E@):£;¢—@ (2.26)

Consider a symmetric tensor /r,;;, we can write its first and second-order partial deriva-

tives as
h. AiJ}k

ij,k

(hij/lij’k),k — hy AT

Aij,kh Aij,kh) —h Aij,k‘h

h 15,k

hij,k:h (hij,k ,h

ij,kh ij,kh ij,kh
(hyy A7) = (hig AT ) 4 By AT
From (2.6), we can write
_ ij,k ij,kh iJ
F——hij(/l A ’kh—/l”)

. D (227)
(R ATF 4 Ry AT ATTER Y

1j,h k-
Similarly, by using (2.7) for the first term in the parenthesis on the right hand side,

we find

F=—hy (Hmkk — AT kh HU)

» e (2.28)
17, 17, 17,
+ (hip 7 + g AT — By AP )

It is clear that the term inside the second parenthesis on the right hand side is a com-

ponent of a (1, 0) type tensor density. For a tensor density of this type, we can write

Aj|l<: — Aj,k + 17 A —wl™, AT,

where w is the weight of the tensor density. Since w = 1 in our case, we can write
k k k  gh h o Ak k
A|k:A,k‘+Fhk)A _FkhA :A,k‘

18



Therefore, the covariant derivative of the second parenthesis on the right hand side of
(2.28) reduces to partial derivative. Before taking the derivative, we have to calculate
.. k .. kh ; 7kh .
g IT0F + Ry, AP — i A7, - We find easily that
hij|h = hij,h - Faih haj - Fajh hia
and
Azg,khlh :A’Lj,kh’h + anh Aaj,k:h + Fjah Aza,kh + Fkah Az],ah
+ th/lij,k:a _ thAij,ka
a a
:Az‘j,kh’h + Fiah Aaj,kh + Fjah Aia,kh + Fkah Az’j,ah_
Using these two equations in conjunction with (2.8)), we find
hinij,k + hz‘j\hAij’kh _ hij/lij,khm :hij (Aij,k + Fkab Aij,ab + 4FZ;1b Aaj,k:b)
_ hw (Aij7kh’h + 2[11'ah Aaj,k:h + Fkah Aij,ah)
ij,kh
— AT (R —20%, By )
ok ok i kh
=h; A"+ hy; , AV — hij/l” e
Now, by using the fact that the covariant derivative of the second parenthesis on the

right hand side of (2.28)) reduces to ordinary partial derivative and from equations

(2.27) and (2.28), we can easily obtain

hy; (EJ (L) = (7, — AT — UU)> =0

for arbitrary symmetric ;. Therefore, we have

EY(L) = IT%%, — A7 — T

which is a tensorial condition as expected. If we put equations (2.17) and (2.24)) into

the equation above, we find

ij ij L 2 im j 3 ihgsi L ings
EY (L) =-A ]’khwm 59 'L — 5/1 MR ggﬂ@ ¢+ 37 "I, (2.29)
This is a very useful equation since we only need to calculate A%*" and &’ to obtain

an expression for £ (L).

222 A Relation Between E" (L) and E(L)

At the pole P of the Riemann normal coordinate system, due to (2.25)), a covariant

derivative reduces to

EijU(L) _ Aij,k’kj _ Aij,khkh' Ny

J »J
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The second term on the right hand side is zero due to the symmetry that we have in

equation (2.12). Making use of (2.8)) and (2.17), we have
Ak — _pk pidab _ g faikb _ 2Fjab aikb
If we use (2.20), we find
Aij,k _ _Fkab Aij,ab + Fiab Ak:j,ab + Fjab Aki,ab.
From this, we can easily obtain

Aij7k7kj — (F’Lab Akj,ab)

kJ

and at the pole P of the Riemann normal coordinate system, we have

gk kj,ab i kj,ab
AT gy = Doy A0 4 207 A0 5,

where at the pole P, we have

ih(

; 1
Fve = 59" Ganik + Iohak — Gab k)

2
Fiab,kj = §gih(gah,bkj + Goh.aki = Gabnkj)-

Using these in (2.30)), we find

g 1 . .
ik _ ih kj,ab
AT =159 (Gan ki + Gonakj = Jabpk)A

2
1h o Ak:j,ab
+9" (Yanpr + Gon.ak — Jabnk) g
From (2.12)) and (2.20)), we obtain
3 1 , , .
i7,k ih kj,ab ih kj,ab
AY ki = 59 Iav i A = 9" (Gnkab + Jap i) A P

Multiplying (2.19)) with ¢"* and renaming the dummy indices yields
g7 L =24 AIVK" (gab,hk: + ghk,ab) + QQGiAjb’kgab,k
+ gai/lhb’jghb,a + 247 + gai¢j¢,a-

Therefore, we have

1

A° :igij[f — g A (G F Geas) — 9N Gy,
1 . . |
- azAhb,j — Zg®PI .
29 Ihb,a 29 Pq

20
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Resulting from this, at the pole P of the Riemann normal coordinate system, we find

y 1 y i 0 i A
AY =59 IL; — g A" (gab,hkj + ghk,abj) -9 Ajb’kh,j (gab,hk + ghk,ab)
—g" A" Gabkj — 59(”/1 ’Jghb,aj - 59(”/1],]' a §gm(p]¢,aj-

If we calculate L ;, we obtain

oL o 6.gab ab agab,c ab,c agab,Cd ab,cd a¢ 8¢va a
o0~ aw T N e M et e

The first term on the right hand side is zero at P; therefore, we have

18‘[/ i ab,c ij ab,cd ij ij a
9" 505 = 9 9abei A+ 97 Gab g A+ 970 ;8 + 970 45 A%

If we insert this into (2.31)), we find

ij 1 1] ab,c 1 1] ab,c 1 1] 1 17 a
A ;=597 9ab ;A be+ 59" 9ab.ct A hed 1 5970,2+ 597044
ai Ajb, ai Ajb.kh
— g (gab,hkj + ghk,abj) — gr A (gab,hk + ghk,ab)
o 1 . . 1 . . L
ai Ajb.k ai Ahb, ai ai
— 9 A Gy = 9 A gy = 597N b0 — 59" P0
Simplifying this yields
ij 1 i ab,cd 1 i ait Ajb,kh
A =359 Gabeaqj A7 + 59 @D — 9" N gy v
o o 1 .
ai Ajbkh ai s ai
—gm AN J (gab,hk +9hk,ab) — g’ kgab,kj 59 A],j a

Note that g* A7** g, . = 0, due to (2.16) at P. Therefore, we have

ij 1 ij ab,c 1 ij ai A3
A ],J' :Eg Jgab,cdj A e T 59 ]gbvjdj -9 A]b7khghk’abj

o 1 .
ai Ajb,kh ai
— g A (gab,hk +9hk,ab) 59 N b,

Using all of these results to calculate £ ; (L), we finally obtain

EUU (L) _ Aij7k7kj . Aij '

5]
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which is also equal to

ij L, i i kj,ab
E j|j (L) =— 59 hgab,hkj/lk]’ "—g h(ghk,ab + Gap ) A F

1 i ab,c 1 7] at AJ
39 ? Gabcaj A bod 59 ‘o P +yg Ajb’khghk,abj
. . 1 .
ai b,kh ai
+ 9" (Gab ke + Ink.ap) N gt 29 A],j¢,a
1 i j,a 1 ij ab,c ai )
=59 hgab,hkj/lk]’ b — 59 ! Gab,eaj bed 4 g ghk,abj/ljb’kh
L L i 1a
- 59 ¢ ;P + 59 A% 9,
1 ] cd,a 1 17 ab,c 17 c,a
=- 59 ? Gab jeall hab _ 59 7 Gab,caj A bed g ]gab,dchd o

1 1 .
— 59702+ 59709,
1 17 a

=59 9, (A a ‘ﬁ)'

Note that the term in the parenthesis is equal to (2.26). We state this important result

as a theorem.

Theorem 2.1 For a scalar density of the type

L(gz‘j 195k 9ij khs 03 ¢z>

and if the corresponding Euler-Lagrange equations are EY (L) and E(L) are given

by equations (2.25) and (2.26), then

. 1 ..
EY, (L) = 5976 ;E(L). (2.32)

Note that even though we have found this relation at the pole P of the Riemann normal
coordinate system, being a tensorial equation, it is guaranteed to be valid everywhere.
As a consequence of this, if the Euler-Lagrange equations for the metric are satisfied,
i.e., E9(L) = 0, then E(L) = 0. It is clear that the converse does not generally hold

true.

The equation given in (2.32)) is the generalization of the Bianchi identity. This equa-

tion reduces to divergence-free field equations in a metric field theory.
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2.3 Degenerate Lagrange Densities in n Dimensions

We start by defining the following useful quantities that will be relevant in the discus-

sion that follows

Aij,kh;rs,tu — a 8L
0 0 ’
grs,tu gingh
Xij,kh;rs,tu — Aij,kh;rs,tu+Aij,ku;rs,th_'_Aij,kt;rs,hu
- )
ij,kh;rs,tusab,ed — a a aL
A = ,
8gab7cd agrs,tu 8gij7kh
Aij,k;h;a — d oL
- Y
8¢,a 8gij,kh
Aij,kh;ab — a aL
~ 9g,, 0 ’
Gab 9955 kn
Aij,kh;ab,c — 8 8L

8gab,c 8gij,kh
Note that apart from the last term, all these terms are tensor densities.
The Euler-Lagrange equations associated with L. = L(gl'j7 Yij k> 9ij khs o, %) are (2.25)

and (2.26). Note that these equations are of the form

t t
E™ = Eu(gij7gij,k?gij,kmgij,khrvgij,khrs’¢> ¢,i’¢,ijv¢,ijk)v

E = E<gij s Gig o> Gig o> Gij kb > @5 @ i ¢zg)

We can calculate (2.23)) and (2.26) as

. 99 O ik 99 O - 0Gupca O e 00 O
EY(L) =—2 —A" =AY : APF 4 —— — A
L) =50k 99, T ok ag, N T oak gy T oxk 09
X %i/lij,k _ 0 (09, 0 ik ape O Nidkh
dxk 0¢ , dzh \ 0z% dg,, Oxk gy, .

0Gpcd O ... dp 0 .. o, O .. y
ab,c Azy,kh __Alj,k:h _ﬂ_/lzg,kh — AV
Or* Oy | 0zF0G | Ou* Do, ) ’

ag b a i agabc 8 ; agabcd a i

E(L) =—%2—¢" > P : P

(L) ozt 0g,, * oxt 8gab,c + oxt 8gab,cd
-0 ‘
P00 g 00y,

ozt D¢ ori dp,
Here, we find the terms involving the fourth and the third-order derivatives of g,; and
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¢ such that

ij _ ij,kh;ab,ed ij,kh;a ij,k;ab,cd
E(L) = = Gup carn A ® akn + Yab,cdk (A

o 0 ... O i
_ Azy,kd,ab,c o @Am,kh@b,cd) _ gab,ckWA”,hkﬂb’C (233)
0 iinka O iihka 0 i ij
~ Javk 57 Jhkiab a5 74 Jhka Prg A TR P,
E(L) =Ggpc; A" + P, (2.34)

where we have defined

Pij = Pij (gab’ Yab,c> Jab,cds ¢’ ¢,a7 ¢,ab)7
P = P(gab7 gab,c’ gab,cd’ ¢7 ¢,a7 (b,ab)

for convenience.

Lemma 2.2 (i) E(L) is at most of second-order in g;; if and only if

Ai;ab,cd+Ad;ab,ci +Ac;ab,id — O7 (235)

(ii) EY (L) is at most of second-order in ¢ if and only if

Akhia o pijahik o pigkah 0; (2.36)

(iii) EY (L) is at most of third-order in g,; if and only if

Aij,kh;ab,cd+Aij,kd;ab,ch + Aij,kc;ab,hd

2.37
+Aij,cd;ab,kh+Aij,ch;ab,kd+Aij,hd;ab,kc =0. ( )

These three relations are direct consequences of symmetry relations associated with

the derivatives of the metric. It is obvious that (2.35)) and (2.36) are in fact identical

conditions. Note that equation (2.37) can be written as

ij,kh;ab,ed __ ab,kh;ij,cd
X J — _X J . (2.38)

Applying conditions of Lemma leaves £ (L) at most of third-order in g;;- There-

fore, we need to eliminate all third-order dependency of E%(L). All third-order terms
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of the Euler-Lagrange equations of the metric are obtained from (2.33) as

ij,k;ab,ed _ Aig,kd;ab,c ij,kh;ab,ed | ij,hk;ab,c;rs,tu
gab,cdk (A A 8 hA gab,ckgrs,tuhA
Xz
. ij,hk;abirstu ij,hk;asrs,tu ij,hk;rs,tu
gab,kgrs,tuh/l ¢,akgrs,tuhA ¢,kgrs,tuh¢ :
(2.39)
The third term in the parenthesis can be written as
6 Aij,kh;ab,cd _ Aij,hk;ab,cd;rs,tu
gab,cdk a h _gab,cdkgrs,tuh
x
ij,hk;ab,cd;rs,t ij,hk;ab,cd;rs
+ gab,cdlcgrs,th‘/1 + gab,cdkgrs,h/l

Aij,hk;rs,tu Aij,hk;rs,tu;r

+ Gabcar® n + Gab.cak P rn

We can rewrite (2.39) using the equation above. The last four terms of (2.39) can
be written as the third term in the parenthesis as shown above by index renaming.

Therefore, we can write all third-order terms as

o .. .
o ij,kh;ab,cd ij,hk;ab,cd;rs,tu
2gab,cdk al’h A + gab,cdkgrs,tuh/1 (2 40)
1j,k;ab,ed ij,kd;ab,c
+ Gab car /A Gab car 1 :

By taking the derivative of (2.8) with respect to g,, ., and g;; ;4 respectively, we may

write the last two terms in terms of A%:"%7stw Now, we can calculate them.
From the third term, we find
gab’CdkAij,k;ab,cd = Gub.cdn (Hij,k;ab,cd . Fkrs Aij,rs;ab,ed
o 2Fzrs A'r’j,ks;ab,cd . 2ij Air,ks;ab,cd) )
From the fourth term, we have
_gab’CdkAij,kd;ab,c = —Gabcdi (Hij,k;d;ab,c _ FcTS Az‘j,kd;ab,rs
_ 2FaTS Aij7kd;rb7cs o 2]—1brs Aij,kd;ar,cs) )

Note that according to equation (2.17)), the first terms on the right hand sides of both

equations above are zero. Using

ij,kh;ab,ed __ 1 ij,hk;ab,cd
)

Yab,cdk 3 Yab,cdk X
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we can write the expression in (2.40) as

2 o .. y
“ ij,hk;ab,cd ij,hk;ab,cd;rs,tu
- gab,cdk h X + gab,cdkgrs,tuh/l
3 ox
+ o Fk: Aij,rs;ab,cd . gl—lz rj,sk;ab,ed g[v] ir,sk;ab,cd
gab,cdk rs 37 s X 3 TS X (241)

- 2 - 2 -
- I ale ij,dk;ab,rs < pa rb,scyij,kd b ar,sc;ij,kd
gab,cdk ( Frs/l ?)F rs X 3FTSX .

We calculate the covariant derivative of /"2t g5

ij,hk;ab,ecd  __ ij,hk;ab,cd i rj,hk;ab,cd J ir,hk;ab,cd h ij,rk;ab,cd
X n =X n TR X + 1%, X + 17X

k ij,hr;ab,cd a ij,hk;rb,cd b ij,hk;ar,cd
+Fth +Fth +Fth

4 Ie, ydhkiabrd 4 pd o ighkiaber _ pr o ijhksabed

Now, we use the equation above to write all third-order terms in a compact form. By

inserting the relation above into (2.41), we obtain

2 g 2 . , C
ij,hk;ab,cd 7 rj,hk;ab,cd J ir,hk;ab,cd
= 3Y9ab,cdrX nt 3 ab,cdk (Frh X + 1Y, X

+ Fhrh Xij,rk;ab,cd + Fkrh Xijﬁr;ab,cd + Farh Xij,hk;rb7cd + Fbrh Xij,hk;ar,cd
c ij,hk;ab,rd d ij,hk;ab,cr T ij,hk;ab,cd k ij,rh;ab,cd
+Fth +Fth _Fth _§Frh‘/1
e rj,hk;abed 17 ir,hk;ab,cd < e ij,kd;ab,rh a rb,hc;ig,kd
Fth Fth +2Frh/1 +Fth

b ar,hc;ij,kd ij,hk;ab,cd;rs,tu
+ Fth ) + gab,cdkgrs,tuh/l .

After rearranging the terms and renaming indices, we find

2 g 2 g g
ij,kh;ab,cd a ij,hk;rb,cd rb,hk;ij,cd
— 5Y9ab,cdk X it 39abedk \ L rn (X +X )

3 3
b ij,hk;ar,cd ar,hk;ij,cd k ij,hc;ab,rd k ij,hd;ab,cr
+Frh(X +X )+Frhx +F7‘hX (242)
3 3 3 3 3 '
k ij,hr;ab,cd “rk ij,cd;ab,rh Yk ij,rh;ab,cd
+Fth +2Frh/1 2Frh/1
ij,hk;ab,cd;rs,tu
+ gab,cdkgrs,tuh :
One can write
Aij,cd;ab,rh o Aij,rh;ab,cd :2Aij,cd;ab,rh T Aij,rc;ab,hd + Aij,ch;ab,rd
+ Aij,rd;ab,ch + Aij,hd;ab,rc o Xij,cd;ab,rh o Xab,cd;ij,rh
__.ij,cd;ab,rh ij,dc;ab,rh ij,cd;ab,rh ab,cd;ij,rh
=X +X - X - X

__ . ij,dc;ab,rh ab,cd;ij,rh
=X - X .
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Therefore, all third-order terms are

2 . y )
7,kh;ab,cd a ij,hk;rb,cd rb,hk;ij,cd
~ 3Y9abcak X n T 39abedr | 1 7rn (X +X )
+ Fb N (Xij,hk;ar,cd + Xar,hk;ij,cd) + §Fk N (Xij,hr;ab,cd + Xab,hr;ij,cd) (243)
r T
2

+ gab?Cdkgrs?tu}lAij,hk;ab,cd;rs,tu‘

Thus we have established

Lemma 2.3 A necessary and sufficient condition to have no third-order dependency

OE®
b —
agij,khr

is that

ij,kh;ab,cd a ij,hk;rb,cd rb,hk;ij,cd b ij,hk;ar,cd ar,hk;ij,cd
X I, (x +Xx ) + 1% (x +X )

|h rh

3 o
+ §Fkrh (Xz],hr,ab,cd + Xab,hr,zg,cd) =0.

We note that this is not a tensorial condition due to the bracketed term. In order to
satisfy this equation for all coordinate transformations, the bracketed term must be
equal to zero. The terms in the parentheses are zero if (2.38) is satisfied. However,

the vanishing of the terms in the brackets does not imply that (2.38)) will be satisfied.

Lemma 2.4 In order not to have any third-order derivatives of the metric in E%

under arbitrary transformations, the Lagrangian must satisfy

ij,kh;ab,ed
X h = 0

and

[’arh (Xij,hk;rb,cd + Xrb,hk;ij,cd) + Fbrh (Xij,hk;ar,cd + Xar,hk;ij,cd)
3 (2.44)

+ EFkrh (Xij,hr;ab,cd + Xab,hr;ij,cd) = 0.

The condition (2.38)) guarantees that there will be no fourth-order derivatives of the
metric in E¥(L). Besides, equation (2.44) is satisfied due to (2.38)). Therefore, we

immediately have the following lemma.
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Lemma 2.5 E is at most of second-order in derivatives of the metric i.e.,

aLab o oE 0
agij,khrs agij,khr
if and only if
\idkhiabed _ . abkhiijied
and
Xij,kh;ab,cd‘h —0 (2.45)

are satisfied.

As a result, (2.35)), (2.38) and (2.45)) are necessary and sufficient conditions to have

the Euler-Lagrange equations that are at most of second-order both in the metric and

the scalar field.

2.4 The Most General Lagrange Scalar Density in Four Dimensions

In this section, we start with deriving the most general form of the Lagrangian in a
four-dimensional spacetime. After completing this task, we will impose the condi-

tions that we have in Section [2.3]to have the Euler-Lagrange equations of the form
B = Eab(gij7 9ij.k» 9ij kh> o, ¢,i> ¢,¢j)a
E = E(gijv 9ij.k0 9ij kh> o, ¢,ia (bw)

As a result, at the end of this section, we will obtain the most general form of the

Lagrangian which yields field equations above.
The detailed calculations in this section relegated to Appendices [B]and [C]

Due to dimensional restrictions on our Lagrangian, in a spacetime of four dimensions,

we have the equation below
Aij,k:h;ab,cd;rs,tu;pq,lm —0. (246)

The detailed proof of this can be found in Lemmas (B.10) and (B.TT)) in Appendix [B]

Integrating this equation yields

Azg,kh;ab,cd;rs,tu — Aezg,kh;ab,cd;rs,tu’ (247)
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where

A= 14(9U  9ij k> ¢7 ¢,z)

and
z] kh;ab,cd;rs,tu — E § E : 2 E § zkacejhrt bdsu/
tu rs cd ab ]
where €%%¢ is the four-dimensional permutation symbol. The summation symbol is
defined as

D A= A4 AT
]
Making use of Lemmas (2.1)) and (B.7)), we obtain
A=A, p),

where p = ¢¢ ;¢ ;. As a result of Lemma [B.12}, we have A"/ = 0 which implies

% = 0. Therefore, we have A = A(¢). Due to 1} we can easily find

Aij’khgzg kh = 3/1” thIm]h (2.43)

Upon integrating (2.46) together with the relation above, we obtain

2

Azy,kh;ab,cd — _Aezj,kh;ab,cd;rs,tuR

| qpidkhiabied (2.49)

trsu

where (i Fhiabed — qyiikhiabed(q g ¢ ) is a tensor density which has the same

symmetry properties as A%-Fhiabed - Ag a result of Lemma we have
¢ij,kh;ab,cd — aijkhabcdrgbm + 5ij,kh;ab,cd7
where
aijkhabcdr — aijkhabcdr (gab7 (b) and ﬁ” ,kh;ab,cd /B’Lj ,kh;ab, Cd(gabJ (b) (250)

Here, since a'ikhabedr(gq . %) has a tensorial character and nine indices which is an

odd number, it is very obvious that a/*hebedr — () [18]].

Now, we can write equation (2.49) as
. 2 .. -
ij,kh;ab,ed __ = ij,kh;ab,cd;rs,tu ij,kh;ab,cd
A - 3A€ Rtrsu + w (gab’ ¢)

If we integrate this equation again, we obtain

2 2 .. g
ij,kh;ab,cd;rs,tu < ig,kh;ab,cd ij,kh
9A6 R Rcabd + 377D Rcabd + K ’

trsu

Aij,kh
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where p/+" = ik (g $. ¢ ) is a tensor density. Note that A" and (""" have

the similar symmetry properties. Finally, the integration of this equation gives

4 - 2 -
_ ij,kh;ab,cd;rs,tu = ,tg,kh;ab,cd ij,kh
L= _—Ae Ry o BeapaBhin + 9w RegpaLrijn + 17" Ryiip + A

81
(2.51)
where A = A(g,,, ¢, @) is a scalar density. Therefore, from Lemma we have

A=A, p).

Now, for the first term, we adopt the results that we get from Appendix For the
second term, we make use of Lemmas (B.5) and in conjunction with the calcu-
lations in Appendix [C.2] For the third term, we benefit from Lemma[B.9] Finally, for
the last term, by virtue of Lemma [B.8] we find

L :a(*Rijkh)(*Rkhrs)(*Rmij)/g + BV9(R? — 4R¢ijj + Rijthijkh)

g g (2.52)
+ 7y * kathhz’j +0VgRY 0 ; + u/gR +1v/9,

where

*Rijkh _ EijTSR’r‘Sk‘h7 o = a(gb)’ 8= B(QS), Y= ’7(¢)a

o=o0c(¢,p), 1= (¢, p), n=n(¢p).

In order to complete our work, we have to impose the conditions that we have in equa-

tions (2.45)) and (2.35)) on our Lagrangian. However, for the former one, this process

will undoubtedly lead to long calculations. Instead of imposing the condition (2.45)),
we can calculate the Euler-Lagrange equations and then decide on the possibilities
to deal with the terms which include the third-order derivative of the metric. Since
we have already imposed the condition that we have in (2.37)) during this derivation,
we will not have any terms which has the fourth-order derivative of the metric in the

Euler-Lagrange equations.
For L = a(xR”,,)(+R* ) (xR";;)/g. due to (2.29), we find the Euler-Lagrange
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equations as

g OR
£ (L) - _ 3a€efrs€khabecdtu <Rr5th abcd)
Jijkh / |kh

OR
! efrs _khab _cdtu abed
—6a’g e e e (Rrsth
|h

Yij kh

OR
_ 3(O/l¢;k;¢;h + O(/(b;kh)EefTSEkhabECdtu (Rrsthtuef agAabcd)

. §Ckg” 6efrselchabecdtuR
oR ;
efrs _khab _cdtu abed J
— 20 ¢ € <Rrsthtuefa Rh km>
im,kh

rskh Rtuef Rabcd

where a prime denotes a partial derivative with respect to ¢.

The first term of this leads to terms that involve the third-order derivatives of the
metric i.e., R, Therefore, « = 0. Note that sum of all the terms of the form
R pekn are zero. It can be easily shown by calculating them. We note that this is a

direct consequence of equation (2.37).

For the 7(*R",, ) R*" . term, by using equation ll we calculate the Euler-Lagrange

equations as

EY (L) — 27 ab?“sgtcgud (Rrstu 5 abcd) _ 4,}//¢;k€abrsgtcgud (Rrstu 5 abcd)
|kh h

9ij kh ij,kh
CL 7S C U 8Ra Ci
- 2(7//¢;k¢;h + ry,qb;kh) b gt g d (Rrstua - d>

ij,kh

1 ij .ab d 4 brs t d( aRbd j
__,ngears uRrsuRac __,yearsgcgu Rrsu abc R]m'
92 t bed 3 t agim,kh h k

Here, the first term vanishes. The second term yields the third-order derivatives of the

metric. Therefore, we have v/ = 0 which means v = ¢, where c is a constant.

A Lagrangian of the form L = o/gR" ¢ ;¢ ; + j1,/g R should satisfy equation (2.35)).
Otherwise, we will have third-order derivatives of the scalar in the Euler-Lagrange

equations. Consequently, we can calculate
A% jij,kh \/_a¢ (U(¢’i¢’hgkj + ¢,i¢,kghj + gb’jgb’hgki + ¢,j¢,kghi

) % su raRrsu a a
— 20767 g — 2% g ) | + 297 grt S et ot SR
81]kh ap
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Applying the chain rule in partial derivative yields

iij 1 do j i j j i j i i
A =2/ (—(% (6°6"9" + 0" 0" 9" + 79" g" + 76" g™ — 20767 g

i 1 a 3

—2¢”“¢’hgf)) +ZN§“W((¢ 6" + 675t g + Gighg
+ 07 " — 20097 g™ — 20 " g ))
+ 8_M¢;a(gkjgih+g 29kh z])

dp

By taking the derivative, we have
Aa;ij,kh _\/—a ( ( ¢hgkj+¢ ¢kgh]+¢,]¢hgkz+¢ ¢k hi 2¢,i¢,jgkh

_2¢,k¢,hg2])) ‘l’Z\/EU(( az¢hgk]+¢z ah k] +gaz¢,kghj
+¢1 ak h] _’_gaj¢,hgki+¢,j ahgkz+ga]¢kghz_|_¢,] ak hz
_2gai¢ 2¢z a] _2gak¢,hgij ¢k ah z]))

on . .
+ _lu“qs,a(gk]gzh +gh]gzk . 2gkhgz]>

dp

Now, using the equation above, we can calculate the expression in equation ([2.33)) as
0 :Aa;ij,kh + Ak;ij,ah + Ah;ij,ka
Vo (000" + 6 ok + 9 6T0" M + oot
+ cb’“cb’ 1+ @It — 670 6T — oI g — ohig g
o 3¢,k¢,a¢,hgw) + 5\/.60- (gmgb,hgk] + gang,kgh] + ga]gb,hgkz + ga]¢,kghz
+ gki¢,aghj + ghigb,agkj o 29ak¢,hgzj 2¢ kgah i 2¢ agkh Z])
a:u a j 0 j 0 ) a j ia ah i
+ \/Ea—p (df (69" + gMg™* = 29" g7) + ¢* (g7 g™ + g g"* — 29°" ")
4 (b;h (gkjgia + gajgik o 2gkagz]))
In order to satisfy this equation, we have 22 = 0 and 9 — _Lly. Therefore, W=

p dp 2

Theorem 2.2 Ifn = 4 then the most general L = L(g;;, 9, Gij.kns O @ ;) for which

the corresponding Euler-Lagrange equations are at most of second-order in g,; and
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(b is L = BILI + 52[/2 + ﬁng + 77L4 + CL5, where

Ly = \/g(R* —4R,;R" + R
Ly = \/EGZ]gb,ng,]a
L3 = \/ER,

L4 = \/ga
L5 = *lethkhZ],

hRijkh),

i7k

and By = P1(9), B2 = Pa2(¢), Bs = Bs(9), n = n(¢, p) and c is a constant.

2.5 The Euler-Lagrange Equations of L

By virtue of (2.29) and (2.26)) (or (2.32)), we can calculate the Euler-Lagrange equa-

tions for the Lagrangian given in Theorem[2.2] These long calculations can be found
in Appendix [C3)
B9 (5110) =458 (RS + R, + SR(5 99" — 69)
— g7 R = 970, BT — ¢, R
FAYGE(S0, R+ 016, B+ S R(gI9,6 — V)
= 9790, R = R76),0" — 61,0, R""),
B(BiLy) = - BiL,
B (aLa) =i (507 (00" = 660~ 20,0, + 301,0°)
+ 00, = 9" 0wd" + 6y, (6" RV + ¢ R")
— %¢i¢|jR — %¢|a¢aRij _ ¢a¢|bRaijb>
N G
= g+ (60 + 600,) 0,00 )
B(BaL2) =\/GG" (Ban + Bh0ra0).
EY(BsLs) =\/g( — B50" ¢V + 8597 ¢,0" — Byd17 + B397 g™ b0 + B2GV),
B(BsLs) = — VGG R
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g on . .. 1 ..
EY (L) :@(a—ZWW - 59“77),

0?n 0%n an 10n
E(nL,) =2 la - laglo 4 2 ab -

E'(cLs) =0,
E(CL5) =0.

Finally, we have found the field equations of the Lagrangian that is given in Theorem
[2.2] Note that these field equations are second-order in derivatives of the metric and

the scalar field.
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CHAPTER 3

SECOND-ORDER SCALAR-TENSOR FIELD EQUATIONS IN
A FOUR-DIMENSIONAL SPACETIME

In this chapter, we review the paper of Horndeski [16].

The field equations that we obtained in Section [2.5] are not the most general second-
order field expressions due to fact that we have chosen our Lagrangian to be at most
of second-order in the metric and at most of first order in ¢. Now, we can look for the
Lagrangian which yields second-order Euler-Lagrange equations. Therefore, we will
not put any restriction on our Lagrangian in the beginning. Our Lagrangian can be of

the form
L= L(gijagij,ip o Bijiy iy o, ¢,ila e aéb,il,,,iq)a (3.1)

where p, ¢ > 2 in a four-dimensional spacetime.

The field equations of (3.1)) are given by

p
-~ d d oL
E9(L) = )= = 3.2
(L) ;( ) drn " da Oy (3.2)
and .
d d 0L
E(L) = )= 3.3
(Z) ’;( ) det " dan d¢,, (3.3)

where equations (3.2) and (3.3) follow from the variation of L with respect to g,; and

¢, respectively.

By employing similar techniques as in Section [2.2]on the new L, we can show easily

that these two equations are related by
ij L
L ]U (L) = 59 J¢|jE(L)' (3.4)

35



We demand both E%(L) and E(L) to involve at most second-order in the deriva-

tives of the metric g;; and the scalar ¢. Therefore, if EY(L) is of second-order then
EY ; (L) will be of third-order. However, by (3.4), we see that EY ; (L) has to be of

second-order.

3.1 The Construction of the Most General Form of A%

From now on, we will be using the following notation: Given A" we define

: 0A:: : 0A::
Arabed — - and A =
agab,cd aqb,ub
For example, we have
Aij;ab;cd,ef;rs _ 9 9 0 AV 3.5
a(b,rs agccl,ef 8¢,ab

Since li puts strict restrictions on EY ; (L), in a four-dimensional spacetime, we

can seek for the most general symmetric tensor density of the form

Aij = Al] (gab7 gab,c’ gab,cd’ ¢’ ¢,c7 ¢v0d> (36)
which is such that

Aijlj = Aij (galﬁ Yab,c> Yab,cd ¢7 ¢,c7 ¢,cd)' (37)

Once we find the most general form of A%/, we know that £/ (L) that we seek will be

contained in A¥.
As a result of li we should be able to express AY ;j as follows

A7 = glia, (3.8)
where A is a scalar density of the form

A= A<gab7 gab,c’ gab,cd’ ¢7 ¢,c7 ¢,cd>'

As aresult of equation (3.7]), we can easily write
ij

0A |3

agrs,t'uu

=0 (3.9)
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and

04", 0 (3.10)
a¢,rst T .

Note that A is a tensor density and repeated partial differentiation of it with respect
10 g,p g and ¢ ,, will also yield tensor densities. In order to prove this, we may apply

the same method that we have used in Section 2.1.1]

Since A¥ is a tensor density, we may write

—Ts

BA™ = B! B* A", (3.11)

and taking the derivative with respect to g,,,, ,, yields

OA™ _ 9A"” 8@57% B' B* + A" %Bt Bu
agy,l/,po’ agij,khaguy,pa T agij,kagyl/,po T
00" By gy g A" 06
095 0ppe "5 0D G yy
a¢,i ag,ul/,po T a¢,ij agul/,po‘ T

B

u

Except for the first term all the terms vanish on the right hand side. Therefore, we

have

. —rs;ab,cd
BAM#ee — BB B BY, BP, B, A

which proves that A%:%<? ig a tensor density. Analogously, taking the partial deriva-

tive of (3.11) with respect to ¢, yields
BA™# — B! B* B! BY, A",

which proves that A% is a tensor density.

Since A" T is expected to be of third-order, applying similar methods above shows
that equations (3.9) and (3.10) are tensorial conditions. Analogously to the derivation
of (2.12)), we can easily obtain

Atdiab.ed + Atacbd + Atiaded _ () (3.12)
Therefore, one has the following symmetries
Aij;ab,cd — Aij;ba,cd — Aij;cd,ab
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Since A% is a tensor density of the form |l , we can calculate AY ; as

aAij aAZ] ij;ab,cd
Fi :ngab,j + ﬂgab,cj + A gab,cdj
DAY AT
o, + oo
o9 7 Do,

Equations (3.9) and (3.10) will hold if and only if

AY

+

¢,aj + Aij;abqsﬂbj + Ak]]"lk] .

Aij;ab,cdagabycdj =0

agrs,tvu
and
Aij;abagbyabj =0.
8¢,rst
Therefore one finds that
Aiu;rs,tv + Ait;rs,uv + Aiv;rs,tu =0 (313)
and
Aitirs L Airits o pisirt 0, (3.14)
respectively. Hence, one arrives at
Aidiabed - gabsijed - pedsabiij (3.15)
and
Aij;ab — Aabﬂj’ (316)
respectively.

Now, we can use the definition which is used by Lovelock [[19]]:

Definition 3.1 A guantity B'1%-2h—1%2h-20 where p > 1, is said to enjoy property S
if it satisfies the following conditions:
(i) it is symmetric in (igp,_1,09n) for h=1,... p;

(ii) it is symmetric under the interchange of the pair iyio with the pair is,_11sp for

h=2,....p;

(iii) it satisfies the cyclic identity involving any three of the four indices (i112)(ion_1121);

i.e., when h =2
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Bitizisia-izp | Bizisitisizy | pisitizia.izg _ ()

A quantity B® has property S if B*®* = B%.

By considering the symmetry relations above, we can say that when n = 4, then we
have

A1]§111271314§251671718 — 0 (317)

The proof of this is straightforward. Considering the symmetries (3.15) and (3.16),
we are capable of interchanging any two groups of two indices. If three of any four

indices in a group of four indices are the same, then from equation (3.12)) (or (3.14),

we get zero. Since there are 10 indices here, when n = 4, at least three indices must
be the same. Making use of the symmetries introduced and (2.20), we can easily put
these three indices in the same group of four indices. Therefore, we will have nothing
but zeroes in a four-dimensional spacetime. Integrating equation two times

with respect to g, . yields
Aab — Babcdef90d7ef + ﬁab) (318)

where fetede/ — Badeef(gijagij,k7¢a ¢7z‘7¢,ij)v prt = Bab(gz‘j7gij,kv¢7 ¢,ia¢,i]‘) and

both enjoy property S. By considering our symmetry relations, we can use the rela-

tion in (2.48)) to find
aocae 2 aocae a
ﬁ bed fgcd,ef = gﬁ bed fRecdf +J b’

where J* = J*(g,;, g, 5, .0, 0,;) and J* is symmetric in (a,b). Now, we can

rewrite (3.18) as
Aab _ BabcdefReCdf + Bab7 (3.19)

where jobedel — Badeef(gijagij’k7¢7 Qs,mﬁb,ij)» p* = Bab(gijagij,ka¢7 ¢,iu¢,ij) and
both enjoy property S.

Employing the same technique used for (3.17)), it can be easily shown that
fabedefiijikh _ () (3.20)
As a result of this we can conclude that
[abedefiij _ (abedefiij (G5 Gijuer D 0.0)-
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As a consequence of Lemma[2.1] we have

[abedefiij _ (abedefsij (9,56, 6.).
Consequently, we find

fabedef _ gabedefgh b o+ qabedef
where £obede/i = gabedefii(g . ¢, ¢ ;) with property S and

bed, bed
aetel = gt ef(gz’jagij,kv o, ¢Z)a

which also possesses property S. Here we can replace ¢, by Don + ¢|TF " o

construct a tensorial equation of the form
Babcdef — gabcdefghqb'gh + gabcdef’ (321)

where £bedel — gabedel (g, ¢ ¢ ;) with property S.

Now, applying the same techniques that we have used for equations (3.17)) and (3.20),

one finds when n = 4

Bab;cd;ef;gh;jk =0.
By integrating this several times, we obtain

ﬁab — ¢abcdefgh¢‘6d¢‘€f¢‘gh + ¢ab6d€f¢\cd¢\ef 4 ¢abcd¢|6d i ¢ab’ (322)

where pabedefgh qpabedef qjabed and )b are arbitrary tensor densities possessing prop-

erty S and a function of g;;, ¢ and ¢,. Combining our results that we get from

equations (3.19), (3.21) and (3.22)), we find

Aab :fabcdefghRecdf ¢|gh + é-abcdefRecdf + ¢ab6d6fgh¢|cd¢‘ef¢|gh

(3.23)
+ ¢ab6d€f¢|cd¢‘€f + 77Z)abcdqbk:d + @Z)ab-

Now, we need to find the most general form of these arbitrary tensor densities. To
this end, we need to use similar techniques that we have used in Lemmas (B.2) and

(B.3). The most general tensor densities which possess property S and a function of
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9ij» ¢ and ¢ ; in a four-dimensional spacetime are

wab :\/gclgab + \/ECQQS’GQS’I),
wabcd :\/503 (gacgbd + gadgbc - anbng) + \/504 (¢,a¢,cgbd + ¢,b¢,dgac
+ ¢,a¢,dgbc 4 ¢,b¢,cgad o 2(¢,a¢,bgcd T ¢,c¢,dgab)) 7

1
abcde acer bdf s acfr bdes ader befs adfr _bces
(0 f:_(05¢,r¢75+069rs)(6 hdls 4 gaclrebdes | cader befs 4 cadfr ),

V9
Cr

wabcdefgh — (Eacegebdfh + Eacethdfg + 6acfgebdeh + 6acfhEbdeg
V9
+ 6adfh 6bceg + 6aclfg Gbceh + Eadeh€bcfg + eadegebcfh)7

where C1, . .., C7 are arbitrary functions of g;;, ¢ and ¢ ;. However, as we have shown

in Lemma[B.7, C, ..., C; can be written as arbitrary functions of ¢ and p.

Using these together with the symmetry properties of the Riemann curvature tensor,

(3:23) becomes

A =g (K00555597 9" Ry + Kadlfhg Ry
+ K05t g0 0" R, + Kaogits g0 "0 0
+ Ks0ifigo o " + Keditig 00" o,
+ K753§9db¢|c|e + K853;%96b¢|c¢|f¢\dlh + Kog™ + Ki0¢"¢l"),

(3.24)

where K1, ..., K, are arbitrary functions of ¢ and p.

3.2 The Consequences of Demanding that A" I Pl A

Equation (3.24) represents the most general form of the tensor density of the form
li together with 1i We remark that both A%° and A“b|b are at most of second-

order.
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We can calculate A“b| , by using the Ricci and Bianchi identities as

Ay =g (K100l 0 " Ry * + 2K00250 0,07 R,
+ Koot oo, R, + Ksolgnd™ " Ry e
20,078, By 4+ D K0, R
SR R, MR KO R,
b KO R, K0 R
+ 2K30%58 6,07 6,0 R, + KodGsls o0 0, R,,
+ K550 00,70, + 2K50t510,070 o))"
+ Kodfiio" o 0,00 + 2Kaifi0,0" 0100,
+ 2K 0,07 6,00, T, 2Ki855550,0 0 Mo Vo
+ Kioosndleo, o), + 2K7050,070, "
+ K2V 0"+ (2K + Kio) el + Kp650l0, 0
+ QK| + pK, + 2K10¢|b¢|c¢|bc + K10¢|c|c)>,

where a prime denotes a partial derivative with respect to ¢ and a dot denotes a partial

derivative with respect to p. This equation can be further reduced to

Ay =GOQ + /5 (0digi0 e, Ru + BO 06, Ry
I R+ 0o, Ry
 UORO Ry, L vl o
+ 2w532¢"’¢,p'd¢|c'e + §¢|p¢‘ap)7

(3.25)

where
Q =185, 0," 0" Ry + (K] — K)o, R,
= 2K30j507 0, 0 By = Kod 006, B!

1 , 1
- gKl(gz?fﬁancthdekm + Ké(sjc”(ljchdfh - §K85£Z¢|c¢|mRmdhe

. 1. ; m
— 2R3, 07 00," + S K0, 0. 0 0, (3:26)

— 2Ke055 070 T 1.0,7 0" + (K, — Ke)oitso "o, 0"
+ (K} = Ks)o510,7 8" + K§ + K
+ 2K100° 0y, + (Ko + Ké)cb\c‘c
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and

&:2K1—2K3+K5+p[(6, BZQKQ—Ki—FKg—FQng,

7:4K3+K6a €:2K1+§K47

. . . _ (3.27)
MZQKé+§K7+§pK8, V:2K5+3K6—3K4/1+2pK6,
w:K7—Ké+Kg+pK8, fZQKQ—FKlo—Ké.

Due to the fact that (3.25) must satisfy (3.8)), there must be a scalar density 7" of the

form
T = T<gab7 gab,c’ gab,cd’ ¢7 ¢,c7 ¢,cd>7

which is such that
0T =\/g(adisid%s, "R, + B3 sl )M R,
— 105550, 0 00 Ry + i, 00, 9 " R
+ u85d" R+ w30, 6,06
+ 208506, 8) + £0,07).

(3.28)

Therefore, we need to find a solution for 7" to find the most general form of A“b‘b.
We can differentiate this equation once with respect to g, ,,, and twice with respect

to ¢ ,,, to obtain

(6,0, ., . OR
\aTiq;uw;rs,tu — 5abce Ip |e e jd _hf pbdf )
¢ 6\/5 h]km¢ a¢7iqa¢’uw g g agrs’tu

Multiplying this with g;, g,,,,9,.s yields
B i Gus G T = 43 /Ge(Plg" + @' g" + ¢1"g"). (3.29)
We can always construct a non-null vector field X* which is orthogonal to ¢
X, X“#0, ¢,X“=0.
Multiplying (3.29) by X, X, yields
0= ey,
and therefore, e = 0. Applying similar methods on (3.28)) shows that
a=0=v=e=p=v=w=E¢=0.
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As aresult, we have B = 0. Thus, we have eight partial differential equations follow-

ing from (3.27). Two of these can be expressed in terms of the others

v=2&+vy—2¢ and w=24—ad + py —20". (3.30)

Consequently, the remaining six equations are as follows

4 . .
K4 :—gKl, K5 :2K3—2K{+4PK3,

. 1
K¢ =— 4K, Ky=oF +, (3.31)
K; =—2F —2W' — pKys, Kig= —2F" —4W" — pK} — 2K,

where K7, K3, Kg and Ky are arbitrary functions of ¢ and p, W is an arbitrary
function of ¢ only and F'is given by

F=F(¢,p) = / (K} — K3 — 2pK3)dp. (3.32)

By inserting (3.37) into (3.24)), we obtain

A = (K550, R+ (GF + W) R/
+ Kadfiig" 00" Ry — %Kﬂsﬁﬁgﬁ‘?ch%%ek
+ (2K5 — 2K + 4pK3)051 9% M 0 " (3.33)
— 4K 0558 7000, 0" — (2F + AW 4 pKy)35g™e,
+ K029 010 0" + Kog®
— (2F" +4W" + pK} + 2K,)¢l°¢l").
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Using equations (3.25]) and (3.26) together with (3.31) yields

Ay =/gol (Kaapsie, 0" 6 Ra ™ + (K] — K3)8550,) R,
— 20305500 Vo R, + AR08 0,00 R,

1 . 1

— K R R 4 (GF - WS,

1
_ 5K85°ﬁ¢|c¢|mR — 2K 850,07 6,0,

-3 52§%%¢\blh¢\c‘]qb\d‘kqb\e‘m + 8K35;?Z¢|p¢\p|f¢|0¢\d|j¢|e‘k
4. .
+ (4K — S K650, 0,0,

+ (2K3 — 2K7 + 4PK§ - K8)5§%¢|C|f¢\d‘h

(3.34)

+ Ky = p(2F" + AW + pKY + 2K5)
— 202F" + K§ + pK{ + 2K9)¢P 90,
— (4F" + 8W" + 2pK, + 2K), ).

Now, the relation Aablb = qﬁ‘aA(gij, Gij k> 9ij khs o, Qﬁ’h, gb,hk) between (1333') and (I334I)
holds.

3.3 Construction of Useful Tensor Densities

In this section, we will apply methods similar to those employed in Section[2.1.3] We
remark that we have ¢ ;; dependency in the Lagrangian which produces additional

terms to the calculations carried out in Chapter 2]
We have the Lagrangian of the form
L = L(9i;, 9ij x> Gijen> @ @45 8.35) (3.35)
which satisfies
BL(gW, Yyv.ps Ypv,po 03 ¢,,ﬂ (b,uv) = z@zja Gijke> 9ij kh> 5, 5,,” E,W)- (3.36)

We need to define a new quantity since we now have second-order derivatives of the

scalar ¢, i.e., ¢ ;; in the Lagrangian,




Taking the derivative of (3.36) with respect to ¢ ;; yields

oL oL 8§ij,kh+ oL Gk oL 99
6¢,MV agij,kh 8¢,uy agz],k‘ a¢,uy ng] a¢,ul/
oL 96 OL 0; . L 99
8¢ agb,;u/ agb,z a¢,uu 8¢,z’j 8¢,,u,l/

(3.37)
_l’_

From (2.2), only the last term contributes. Therefore, we have
Bo" = &7 B*, B},

Consequently, $¥ is a tensor density. It can be easily seen that the representations of
IT* and IT% defined in Section are still valid. It can also be easily seen that

although A%"*" and & are tensor densities, ¢’ is not.

By taking the derivative of equation (3.36) with respect to ¢ ;, we obtain

oL oL 8@ n oL aa,ij
99, (9571- 99 , 85,13' 09, '

(3.38)
Taking the derivatives yields
B®" =& B", + 3" B",,.

Since this is not a tensor density, we can seek for its tensorial form. As we did before

in Section[2.1.2] we can define a new quantity K as
K = 9h ,, + °h , + Ph, (3.39)

where h is a scalar. After multiplying each side of this equation with B, we can

substitute equations (3.37) and (3.38)) into this to obtain

i (00, 09 ;. oy -
_ T K] ,1] s
BK =9 <—3¢,ab h . + 90, h,a) + @ 90, h .+ ®h.

Due to (2.2)), we can rewrite this

BK =&"T,, +®h, + ®h.
We conclude that K is a scalar density. Therefore, we may define K as
K = Cabh\ab + <ah|a + Ch7
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where (%, (% and ( are tensor densities. We can easily calculate the following covari-

ant derivatives

By = By — T B hyy = hg.

ab ¥,
Inserting these into the equation above yields
K :Cab(h,ab B Fuab h‘,u) + Cah,a + Ch
:gabh,ab + (Ca - Fars Crs>h,a + Ch

If we compare this with (3.39), we conclude that (** = @ and ¢ = & as expected.

Moreover, we have also obtained the tensor density (¢ = @ 4 % (™.

In order to construct an equation for I7%* of the Lagrangian of the form (3.35), we

take the derivative of the equation (3.36) with respect to B” , to obtain

OZAjvkh gj/lkh—k/l],k; gi,kﬁ_i_/lj -gy:] +¢ Qf +¢ leui +¢] ¢;L]
oB*", oB*, oB*, oB*, oB*, oB*,
Due to last term on the right hand side, instead of (2.14), we now have
_ av,ob bv,oa vo,ab av,b bv,a ab
0=2A G o +24 o tA Yo + A9, + A7, + PV,
At the pole P of the Riemann normal coordinate system, we have

av,b bv,a ab _
H gp,zz—i_n g/u/—i_@ wa—o

Since this is a tensorial condition, it can be generalized to any point of any coordinate

system. Multiplying this with g, , yields
1197 4 [P0 1 pgle — (.
In order to solve this equation for I1%°*, we can use symmetries. Therefore, we write
19 — _ [ _ gabgle
Due to fact that there is a symmetry in (a, p) on the left hand side, we can write
[190b — _[1ber _ grbgla.

Similarly, we have

pr,a _ _Hab,p . @pa¢|b.
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By combining these two, we immediately find

Hab,h — %(@abqu . @hb¢|a . @haqbﬂ))‘

(3.40)

Taking the derivative of (3.36) with respect to B",, one can construct an equation for

IT% . Therefore, we obtain

‘Mhagzj,kh —ij,kagij,k —ij 591‘3‘

BA® L =A" A
’ ap. 4 apr, oB"
+ gp a¢ + @ QZS’ + Q*) J ¢7 J

aBMa aBMa 8Bua '

Note that, the only difference between this and (2.18) is the last term. Therefore,

instead of (2.19), we have
(SiL :2Asj’ki (grj,ki + gz’k,rj) + 2Asj’kg7"j’k
+ Aij,sgij,r + 2A8jgrj + ¢S¢,'r + 2<p5j¢7"’j'

(3.41)

At the pole P of the Riemann normal coordinate system, we have % = (“, similar to

the result obtained in (2.23)), we have

. 2 ik b,
gL = — ZASJ’kZRiukj + 201" + §Alk’wRiskj + o+ 2¢SJ¢IJ| :

(3.42)

Since this is a tensorial equation, it can be generalized to any point of any coordinate

system. After renaming indices and some rearranging, we obtain

1

a am a m ]' a S a 1 a
Hb:_RkbmhAhk, _kah/lhk,b _§¢| C\b_@b¢|8| + g by,

3 2

Analogous to what was done in Section we obtain field equations

Eab(L) — _Aab,khlkh + Hab,k‘k . Hab,

and

E(L) = _@kh\kh + Ck|k — .

(3.43)

(3.44)

In order to calculate these, we need the following identities that we derived in this

section
S A
bk — %@a%m _ plbgla _ qv)im¢|b>7
e — %Rkbmh/lhk,am _ R Alkbm %¢|a<|b
_¢bs¢|sla + %gabL.
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3.4 Lagrange Scalar Densities

According to Lovelock [20], the Lagrangian L defined in (3.I)) may be obtained by

examining g;; AY . Therefore, in order to obtain the Lagrangian, we calculate
a cde h j 4 cde h j k
9 A" =g (K15755.0," Ry, — §Kl5h?k¢|cl 94'%).
+ Kadifid Ry — 4K 000, 6, "
+ (F+2W)05 R, + 22K5 — 2K + 4pK3)580, 0" 348)
— 3(2F" + AW’ + pKy)o, + 2K50540,.07 ¢, + 4K,
— p(2F" + AW + pK} + 2Ky)).
As a result of the equation above, we can write Ly, Lo, L3, Ly, L5 and Lg as
Ll - \/EMIQS'C‘C;
Ly = VMR, —4y/ghhiie N o,",
LS - \/§M3 e?’¢|c¢|€¢|d|f7
cde j 4 r scde j k
Ly = VMo Ry — 5 ValLiogio o, 0,
cde j r_scde j k
L5 = \/§M56fcjl'k¢|c¢|fRdejk - 4\/§M55f(]ik¢\c¢‘f¢|d|j¢|el )
LG = \/gMﬁa

where M;, ..., Mg are arbitrary functions of ¢ and p.

We can calculate field equations by using (3.44), (3.43), (3.46) and (3.47) together.
Therefore, we have

E(Ly) =\/gpM185¢g dbm‘e — VIM g 00 )"
+\/_M'( g°p — ¢lgl"),

E(Ly) = — \/gM20%% 97 ¢, 0" R, + /9 (p Mo
—2/9(2pMy + My)o5ng™ 6, 0"
+ 4/g0b0558. 670810, 6, + 20/a(M + 20M5) 550 g™
— 8VaM30L5 g™ 0.0V 8" + 2/Gp My g™ — 23 /gME ¢,

(3.49)

1
— M) R,

(3.50)
3 . :
B (L) =/a(p" Ms + QpMsmeg%g ~ V/a(pM; s
3 / a ! Lla .
+ 5 M3)82559% 8 8" + 5 f Msp*g®" — ﬁpr' o
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Eab<L4) :\/§M4dz;z;£ghb¢‘c¢\j¢‘d\kRequ
AL S R~ S G S R
VMG 0 R AN 0,070,/ 0,6
N O AL P W
+VI(2M; + 2pM)S5559"0 0" — 4 /aM5is 9" 00" 0, 6,
+2/gM; 3559”687 6"

(3.52)
. 1 . .
E™(Ls) =v/g(0"Ms + 5pMs)0f9" Ry = v/g(pMs + Ms)3ig" 6.0 Ry,
— VG(2Ms + 10pM; + 4p” M) 557970, 0"
) y acde j k
+ 4y/g(2Ms + plls) 5% 670, 0 o,
— VG2M + 4pM) 555" 0.8 6,
(3.53)
: 1
E*(Lg) =\/gMsd"6" — = /gMsg™. (3.54)

Equations (3.48), and (3.49)-(3.54) now permit us to conclude that

a 07 - cade k ’ e j
E(g,, A7) =y/g (K105t 6" 8 R 7T+ pK 3659”60 R,

1 acd e 40 ' acde j k
+ (éJ - W)5efi9 bRcdfh - 5a_p(pKl)5fhcjl’kgfb¢|clh¢|d|]¢|e‘
o . )
— 45, (pK2)07i5 00", 0,

+ (—2pK] 4 6pKs3 + 4p2K3)5??ngb¢|d'j¢|e‘k
+ PK85§;igeb¢|c¢|f¢|d|h + (=2J" +4W' — P2K8)5§§9db¢\cle

+ (pKy — 2Kg) g™ + (—J" + 4W" + 2Ky — 20K — p*K3)pl9P),
(3.55)

where
J = / (g(pkl) — pK; — 2p3(pks))dp-
0¢p dp

Integration by parts together with equation (3.32)) yields

J=—F+pF.
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If we compare (3.55) with equation (3.33), then we deduce that

£ =Valkiho, R~ SKaiho o, o,
+ Kobiior o R = 4Kadifio 00,00,
F(F DR+ 22K — 2K+ 40K)05h0 o1 (350
3P AW 4 p/Cs)¢|clc n 2/C85%¢\c¢‘f¢|d|h + 4K,
— p(2F" + AW + pK§ + 2K5)),
where

1 1
ICl = /—Kldp, IC3 = /—Kgdp,
p p

1 1
Ks Z/—stp, Ko 202/—3K9dP7

p p
W= -W, f:/(lc; — K3 — 2pK3)dp.

Note that during this derivation, we have excluded the possibility of the additional
terms in £ that yields vanishing £/ (£). One can consider to include some additional
terms that do not change the field equations. Therefore, in a four-dimensional space-

time, the most general second-order Euler-Lagrange equations are derivable from
L.
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CHAPTER 4

DISCUSSION

In this thesis, we have studied scalar-tensor field theories and we have obtained some
important results in a four-dimensional spacetime. We have also derived useful iden-
tities for an n dimensional spacetime. One may easily apply the methods here on
many other field theories. The results that we have obtained in this thesis can be

helpful for those who study similar field theories.

In Chapter 2] we have started with a specific Lagrangian which is of the form

L(gij7gij,kvgij,kh> ¢a ¢,z) (41)

Choosing the Lagrangian to be a scalar density puts severe restrictions on it. In an n

dimensional spacetime, we have the following identities
TR AR RS — 0, (4.2)
2Aau,abg'uy’a + 2Abu,aag'uy’a + Aua,abgyavu + Aal/,bguy + Abu,ag'uy — 0’ (43)

L i 2 im j 3 i L oih i
59JL:H]_§A ’thhjkm+§9]h¢ Cb,h"’gg h¢j¢7h7

which should be satisfied by the Lagrangian. These partial differential equations are
called invariance identities. We have obtained the field equations by using these equa-
tions and their symmetry relations. We have also used similar techniques in Section
for the Lagrangian of the form L = L(g;;, 9;; ks 9ij g @5 @.i» ¢ ;) to obtain its

invariance identities.

Variation of the Lagrangian in (4.T)) with respect to the metric yields
1 1

' ij ij 2 im : 3 g ih g
EY(L) =-A ]7kh|kh 39 'L — §A MRy o ggﬂ@ ¢+ 39 "D,
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Note that every term in this equation is a tensor density and the equation is valid for

a n dimensional spacetime.

(.2) and (#.3)) are not only valid for L but also for any tensor densitiy which is a
function of g,;., g;; > 9;; kn» ¢ and ¢ ;. For example, a tensor density
A= A:::(gijvgij,m 9ij.kh> 03 ¢z)
satisfies
0A:: . 0A L 0A::
agij,k;h aqik,jh agih,kj
. o DA
Due to Lemma for a tensor density A__.(gij + Gij s> Gij o O (b,i), if By = 0 then

ij,kh
A _
dg

=0. 4.4)

ik
By virtue of the following relation which can be considered as a generalization of the
Bianchi identity

B9, (L) = 5976,B(L), (4.5)
whenever one has £ (L) = 0 then F(L) = 0 is automatically satisfied. Furthermore,
this important relation implies that both £(L) and E* ; (L) are functions of the metric,
a scalar, and their first two derivatives. This result puts severe restrictions on the most

general form of £ (L).

We should note that we have put everything into tensorial form in order to make use
of the Riemann normal coordinates. If we find an expression which is in a tensorial
form at a pole P of the Riemann normal coordinates, we can generalize it to any point

of any coordinate system.

Although we do not work with vector-metric field theories here, techniques used in
this thesis can be applied to those as well. An interested reader can easily adopt the
techniques used here not only to a different Lagrangian but also to a different number

of dimensions.
If we choose the Lagrangian to be of the form

L(gij 1y 9ij ks gz‘j,kh)v (4.6)

in a four-dimensional spacetime, the most general form of the Lagrangian which

yields the field equations involving the metric, a scalar and their first two derivatives
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is the following
L = Bg(R* — 4R, RV + R ;3 R"™) + v(xR” , R*" ) + ny/gR + 1v/g, (4.7)

where 3, 7, i and 7 are arbitrary constants and *R”,, = €/*R_,,. Since 3, 7, i
and 7 are just constants, by applying techniques similar to those developed in Section

[2.5] the Euler-Lagrange equations are found to be

1
Rij - 59@'3 + Agij =0, (4.8)

where A is a constant. This is nothing but Einstein’s vacuum field equations with a
cosmological constant. Therefore, if the Lagrangian is of the form (4.6), then Ein-
stein’s field equations are unique in a four-dimensional spacetime. Note that the first
term on the right hand side of (4.7), called the Gauss-Bonnet term, can be written
as a total derivative in a four-dimensional spacetime. In addition to this, one can
rewrite the second term on the right hand side of as a total derivative without

any dimensional restrictions.

The Gauss-Bonnet term contributes to the field equations in dimensions higher than
four. For the Lagrangian L = \/g(R*> — 4R;; RV + R,;;;, R7*"), we find the field
equations
g 1 .
EU(L) - 5\/§glj(R2 . 4RabRab +R dRabcd>

abc
+2/g(RRY — 2R R* — 2R*RJ,* + RM" R, Y,
which are identically zero in a four-dimensional spacetime due to the Lanczos iden-

tity. Therefore, one may consider dimensions n > 5 to obtain field equations other

than Einstein’s in a metric field theory.

For the Lagrangian of the form (#.6), from we immediately have the Bianchi
identity that automatically follows from diffeomorphism invariance, E"j‘j(L) = 0.
Note that this result is obviously in accordance with the field equations (#.8)). As a re-
sult, if one wants to construct field equations different than in a four-dimensional
spacetime, one has to use a Lagrangian different than (4.6). In that case, there will be

no divergence-free field equations, i.e. £ i (L) #0.

In Chapter [3] we have started by constructing the most general form of the Euler-

Lagrange equations that are functions of the metric, a scalar and their first two deriva-

tives in a four-dimensional spacetime. Therefore, we have generated the most general
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form of the tensor density AV = AY(gu,, Gapcr Japca> P> P e» D ca)» Which includes the
most general form of the Euler-Lagrange equations . Making use of , we
have concluded that £ i must also be at most of second-order. Due to this fact, one
is able to eliminate some terms from the most general form of A”. Then using the re-
lation between the Lagrangian and its field equations, we have found the Lagrangian
which yields the most general form of the Euler-Lagrange equations in a space of four

dimensions. As a result, the Lagrangian

L= VoKt R — SKadilio, 0,0, + Kbt 0" Ry
— 4K305%5. 0,00, 0" + (F + 2W) 050 R,
+2(2K5 — 2K} + 4pK3)050.0, 6, — BRF + AW + pKs)g)
+ 2K 050,08, + 4Kg — p(2F" + AW + pKi + 2K)).,

4.9)

yields field equations which are functions of the metric, a scalar and their first two
derivatives in a four-dimensional spacetime. Obviously, one may include some addi-
tional terms in this Lagrangian if their contributions to the Euler-Lagrange equations

vanish.

The Lagrangian given in (4.9) is a motivation for those who study and construct new
modified gravity theories. For example, the theory called the Fab Four is a subset
of Horndeski’s theory [21]. This theory is established in order to find a solution for
the cosmological constant problem on FLRW backgrounds. This theory possesses
self-tuning properties that may provide a partial solution to the cosmological constant

problem. The Fab Four consist of four pieces

Liohn = V8Viorn(0)G" 1,01,
Loai = /TVoaut ()P 4,00 0,5-
Locorge = v/TVgeorge(D)R,

Lringo = v/GVringo(0)G,

where G = R? — 4R;RY + R, ;;,, RV*" is the Gauss-Bonnet term, €, 5 is the Levi-
Civita tensor and P8 = —}le’“”\”R/\Uweo‘m‘S is the double dual of the Riemann
tensor. Note that, these Lagrange scalar densities are included in (4.9). The Fab
Four Lagrangian terms have potential to explain the matter-dominated phase of the

universe expansion and late-time acceleration phase at least at the classical level [22]].
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By following similar techniques that we use in Chapter [3] Ohashi et al. constructed
the most general second-order field equations of bi-scalar-tensor theory in four di-

mensions [23]]. They have chosen the Lagrangian of the form

I I 1
L= L(gijagij7i17 o agij,il,,,ip>¢ N0 FTEREE o ,il,,,iq)a

where [ = 1, 2. By considering more than one scalars in the Lagrangian, Ohashi et al.
have shown that one can obtain new terms in the field equations that are not included

in the Horndeski theory.

In this thesis, we have chosen torsion-free metric connection. However, one may
consider torsion to have results different than Horndeski’s. Valdivia et al. recently
have shown that effects of torsion can be critical in the very early universe [24].
Although they did not generate the most general Lagrangian for a spacetime with
torsion, they generalized Horndeski’s Lagrangian for the case when the torsion is

nonvanishing.
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APPENDIX A

RIEMANN NORMAL COORDINATES

We frequently make use of Riemann normal coordinates in this thesis in order to
simplify long calculations. Although these coordinates are specific coordinates, if we
find a tensorial condition in these coordinates we can generalize it to any arbitrary
coordinate system. Note that tensors are invariant under coordinate transformations.
Therefore, in order to utilize Riemann normal coordinates, we look for the tensorial

form of the quantities.

In a curved spacetime, one can locally construct a coordinate system where free par-
ticles move along straight lines. These straight lines can be found by using geodesic
equations. The general form of the geodesic equations in an arbitrary coordinate sys-

tem can be written as
d*z® . dxPdxy

o2 Theavay Y

where ) is an affine parameter. Since free particles are moving on straight lines at the

pole P of this coordinate system, we immediately find djj\”; = 0. Thus

dx? dx

@ —_—

Prax dx
and [°. = 0. By considering the spacetime metric, one can always construct an
orthonormal coordinate system to have e, - es = 1,3, where e, is a base vector of

the coordinate o and 7, is the metric of the flat spacetime. At the pole P of this

coordinate system, we have



Therefore, as an example, components of the Riemann curvature tensor at the pole of

this coordinate system can be calculated as

Raﬁ,uu(P) = gal/,ﬁ,u(‘P) - gay,,@u(‘P)'
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APPENDIX B

THE CONSTRUCTION OF GENERAL TENSOR DENSITIES

Lemma B.1 If¢ = £(g,., @) is a scalar density then one can always express it as

§ = n(d)Vyg- (B.1)

Proof. Taking the derivative of the metric g,, = BI'BYg,, with respect to By yields

99,5

§rvBYg,, + 620! B
gBe ~ Ca%rPsdu T 00

sg,uu rg;w'

(B.2)

Since we have a scalar density £, we may define a scalar ) by

=&/

By applying % to v, we obtain
0 _ 09 00 _ 0% O o
ap .

a - a - _gau = 2_gau
0By 0By agw, agbﬂ dg,, gy,

Therefore, 1) is a function of the scalar ¢. We have completed the proof.

Lemma B.2 If{;; = {,:(9,,, ¢) is a tensor then
§ij = Kg;; + 050/ge€i;,
where |1 and o are arbitrary functions of the scalar ¢, €;; is the two dimensional

Levi-Civita symbol and 6y is the Kronecker delta.

Proof. Taking the derivative of {,; = B! B¢, with respect to By yields

agMV agrs
0By GgW

= 57”0152 + 5&55113'
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Therefore, we have the following equation

0
2 57‘8 gal/ = 57"(15;) + 5&8 6713'
8gbl/
Multiplying each side by ¢g“¢ yields
0.
o%rs _ gacg 50+ gueg, 0 (B.3)
agbc
Since the left hand side is symmetric in (b, ¢), so must the right hand side. Therefore,
we have
857‘8 ac ac a C a C
28_ =g fraég + g gascsi =g bgra(ss _'_g bgas(sr'
gbc

With b = s, we have

gacgraég + gacgab(sfz = gabgra(slf + gabgabéﬁ'

In an n dimensional spacetime, we have

ng*6q + 9 %Car = "€ + 9607

After rearranging this, we obtain

(n - 1)gacgra + gacgar = gabfabéﬁ'

Multiplying each side by g, yields

(n—1)&q + & = 90y 9ar- (B.4)

Due to the symmetry in (d, r) of the right hand side, for n # 2, we have {,;, = £ \g,,,
where A = g?¢_,. Substituting this result into equation (B.3) yields
0 1 1 1
2_(_>\grs) = gac_)\gradg + gac_Agas(Svlz'
0g,. N n n
After straightforward calculations, we have

dg,, 1 X 1 1 1

2N 42— —g, = —AG7OL + — ALY,
0g,. 1 0Gy. M n n
1 1 1 1
2—\620¢ + QQ—gm = — IS0 + =A<,
n 0g,. 1 n n

Due to the (b, ¢) symmetry of the last equation, we get % = 0. Therefore, A is a
be
function of the scalar ¢. For n = 2 (B.4]) implies

1

_(frd - gdr)‘

1
— A
Srd 2 9rd + 2
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Since the second term on the right is proportional to €, 4, we have

1
frd = §>\grd + J\/Eed“

where A and o are arbitrary functions of the scalar ¢, which completes the proof.

Lemma B.3 If ;) = &0, (d,5, ¢) is a tensor then for n > 2,

iikn = 93 9kn + BGiGin + V9in Gk + A4V GEijkn,

where o, 3, v and \ are arbitrary functions of the scalar ¢ and €;;y, is the four-

dimensional Levi-Civita symbol.

Proof. Taking the derivative of £, = BY'BYB) B).¢ .5 with respect to Bj yields

% @fijkm _

6r6'BY BY B?
aBg agrs a1t "5k m£

uryo + 555?35‘8%3%6“1/76

+ 0]0y BIBYBY.£ .5 + 0100 BIBY B¢

pry prys

Therefore, we have the following equation

aéijkm q
agb av*

14

6zbgajkm + 5?£iakm + 5Il;£ijam + 5§n€ijk:a =2
Multiplying this with g®" yields

9 8§z]km

g = gahéféajkm + gah(s?giakm + gah(szgijam + gah(si)ngijka'
bh

After renaming indices, we obtain

agijkm

2
dg

= ghsfsirfhjkm + ghséjr'gz‘hkm +g" KSijhm ghs(s;%gijkh'

rs

Due to the symmetry in (r, s), we have

aglkm s <T s <r s cr EEve
Qﬁ = ¢"5; Enjkm + q" 07 &inkm + g" kEijhm T g" Om&ijkn
= ghr(sfghjkm +9hr5;§mkm +g" 1Sijhm +ghr6fn§z’jkh'
Multiplying this with g, yields
03 Etjkm + 03Sitkm T Okijtm T Om&ijne (B.5)

:gitgrsgsjkm + gjtgrs iskm + gktgrsgijsm + gmtgrsfijks‘ (B6)
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We sum over (r,¢) and replace ¢ by i and m by h to get

(n =D& nn + Einn + Erjin + Eniri = 9559 Srskn T 99 i + 9in g Erjrs- (BT)

Now, we can define the following quantities

9" sk, = AJgn» grsfrjsh = KGjn> grsfm‘hs = PYin> (B.8)

where A, 11 and p are arbitrary functions of the scalar ¢. Let us define ¢"°¢;,;,,.. = 0y,

where o is any function of the scalar ¢, then

rs

9" &skn = 9 Cenrs = (A= 0) G-
We multiply each side with g*” to get
gkhgrsgrskh - gkhgrsfkhrs =(A- J)gkhgkh =0.
Therefore, o = . It is easily shown in similar way that
9" Enrs = A 9" Ejrns = 19jn» 9" Ejrsh = PYjn- (B.9)
We may rewrite equation as
(n = D) n + Ejirn + Exjin T Enjri = NijGkn + 19w Iin + PGinjn- (B.10)

We may obtain three equations from equation by summing over (r, j), (r, h)
and (r, h) pairs and replacing ¢ by 7, k and h, respectively.

(n = D&sirn + Eirn + Eirgn + Sinkj = NijGen + 1995 + PIingn,  (B.11)
(n = D&swn + Erjin + Eirgn + Sijne = NijGen + 1995 + PIin9n,  (B.12)
(n = D& nn + Eniri + Sinkg T Eijne = A9ij G + 199 + P9ingjr-  (B.13)

We calculate (B.10]) + (B.11]) — (B.12) — (1B.13) to obtain

2(§jikzh - fijhk) =0, fjikh = gijhk‘ (B.14)

If we substitute this into (B.11)) — (B.12)), then one finds

Einkj — Skjin = 0, Sinki = Skjin = Snijn- (B.15)
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From (B.10), we obtain three similar equations by interchanging ¢ with j, k£ and h,

respectively.

(n = D& irn + Eijin + Ekign + Snirg = AijGen + P9ir9jn + 19ingjr,  (B.16)
(n = D)&kjin + Eiin + Sien T Snjie = P99k + K9 Gjn + Agin9j,  (B.17)
(n = D&pini + Einri + Sijni + Eijin = 19ij 9k + AdirGin + PGingj- (B.18)

We calculate [(n — 1)(B.10) + 2(B.16) — (B.17) — (B.18))], due to symmetries, we

have

(n— 1)2€z‘jkh +3(n = 1)&n =(n — 1)Ag;; 9 + (0 — 1) gir.g5n
+ (n = 1)pgingjr + 27055 9kn + 209 9;n
+ 209,955 — PYi; 9k — M9k Ijn
- )‘gihgjk — 1G9 9kn — )‘gikgjh ~ PYinY k-

We can put this result into a compact form as

(n = 120 +3(n — D& = 9559k + BIinIsn + 19in9jn (B.19)
where
vy=(n—=2)p— X+ 2pu.

Interchanging ¢ with j in equation (B.19) yields

(n— 1)25jz’kh +3(n — 1)&un = @i 9kn + BIxGin + V90 Gir- (B.20)

In order to eliminate &, , we calculate [(n — 1)(B.19) — 3(B.20)]

((n - 1>2 - 9)(” - l)fijkh =(n —4)(n+2)(n — 1)€ijlch
=a9;; 9 + Y9 9jn T CGinGji-
For n > 2 and n # 4, we have proved the lemma. When n = 4, we need to go back
to equation (B.19)
YEijkn + Eirn) = 93390 + BGixjn + IinGjr)-
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Let us define a tensor A, ;;, such that

Aiien =Ciikn — ik — Sikjn t Sikng — Sinkg T Sinkg — Sjikn T Ejink
+ &kin — Eikni T Ejnki — Sinik — Skjin T Skjni T Skijn — Eking
+ &knij — Sknji — Snjki T Shjie + Enig — Shigk T Snkji — Shkij-
Due to the fact that A, is anti-symmetric in every pair of indices, it has only one

independent component in a four-dimensional spacetime. Clearly, it is proportional

to the Levi-Civita symbol such that
Az‘jkzh = (s ¢)Eijkh'
By virtue of the symmetries that we have in (B.15]), we obtain
Aijrn = 450 — Sjien T Einri — Sngri T Sniej — Sinkg)- (B.21)

For n = 4, from (B.10) and (B.16)), we have

280n = —Eirn T Ekjin T Snjri) + AGijGrn + BGix9jn + Ginix ) (B.22)
28500 = —Eijkn T Erijn T Sning) + NGy Grn + B(Gin9jn + Ginik)- (B.23)

We calculate (B.22)) — (B.23) to obtain

A& en — jien) = Sning — Sinkj + Ejnki — Snjhi-
The right hand side of equation can be written in terms of the first two terms.
As a result, we obtain
1
Sijkn = 9339 + 09 9in + a9inGjt + 579 (Grs: P)€ijie,

where a, b and c are arbitrary functions of the scalar ¢. From Lemma we have

Y(g,s,¢) = B/, where j3 is an arbitrary function of the scalar ¢.

Lemma B.4 If ;) = &, (9up, @) is a tensor and
fzjkh = fjikh = gijhk
together with
Eijkn T Sinjn + &ink; =0
then forn > 2
Eijkn = a(gijgkh - %(gikgjh + gz‘hgjk))’

where « arbitrary function of the scalar .
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Proof. The result is obvious by applying the given symmetries to Lemma [B.3]

Lemma B.5 If &, .. 1 = &ii ks tu(Gaps @) 18 a tensor and

fij,k:h;rs,tu - frs,tu;ij,k:h - fji,k:h;rs,tu - Sij,hk;rs,tu (B24)

together with
fij,kh;rs,tu + éih,jk;rs,tu + gik,hj;rs,tu =0 (B25)

and

gij,kh;rs,tu + gij,ku;rs,th + gij,kt;rs,hu + grs,kh;ij,tu + grs,ku;ij,th + grs,kt;ij,hu = 07 (B26)

then forn > 3,

[(271 - 5)aij,kh;rs,tu + 2aij,rs;kh,tu]Rkithtrsu

s u REIR RIS —
gz],kh,rs,tu (27’L N 3) (n B 3) ’

where

™

aij,kh;rs,tu =4 gijgml,kh;rs,tu + gikgmj,lh;rs,tu + gihgmj,kl;rs,tu

(B.27)
+ girgmj,k:h;ls,tu + gisgmj,kh;rl,tu + gitfmj,kh;rs,lu + giugmj,kh;rs,tl}

Note that commas and semicolons are used for identifying the only symmetries. They

have no other meanings whatsoever here.

Proof. We can write

&jwnrsin = BY B BBy BEBY B/ B¢

aB, o uv,pA -

Taking the derivative of both sides with respect to a%;ﬂ yields,
b
8§ij,kh;rs,tu _ag&p agij,kh;rs,tu o 29 afij,kh;rs,tu
a - a - at
oB; 0B; 9o Yo

_ b b b b
_51 faj,k:h;rs,tu + 5j€ia,kh;7’s,tu + 6k€ij,ah;7“s,tu + 6h§ij,k:a;rs,tu
+ 6% + 6%¢ + 0%¢ + 6%¢
rSij,kh;as,tu s§Sij,kh;ratu tSij,kh;rs,au uSij,kh;rs,ta*
We multiply each side with g** and replace b with v to obtain

o€,

ij,khirsitu v _ap v _ap v _ajp

2 g _52 g gaj,kh;frs,tu + 5jg Sia,kh;rs,tu + 5kg ij,ah;rs,tu
uv

v _ap v ap v ap
+ 6hg gz‘j,ka;rs,tu + 57’9 gij,kh;as,tu + 6sg gij,kh;ra,tu

v ap v ap
+ 51& g ij,kh;rs,au + 5ug ij,kh;rs,ta-

69



Due to the symmetry in (u, ), we arrive at

v _ap v_ap v ap v ap
5@' g faj,kh;rs,tu + 5_]9 gia,kh;rs,tu + 6kg ij,ah;rs,tu + 6hg gij,ka;rs,tu
v au v ap v _ap v ap
+ 57‘9 gij,kh;as,tu + 659 ij,kh;ra,tu + 6t g fij,kh;rs,au + 5ug ij,kh;rs,ta
__SH _av w_av nav w_av
*51 g é-aj,kh;rs,tu + 5]’ g ia,kh;rs,tu + 6kg fij,ah;rs,tu + 5}19 fij,ka;rs,tu

W av W, av K av W, av
+ 5rg gij,kh;as,tu + 559 gij,kh;ra,tu + 5t g fij,kh;rs,au + 6ug éij,kh;rs,ta'

We multiply each side with g, to obtain

v v v v
(51' gaj,kh;rs,tu + 5]' gia,k’h;rs,tu + 6k€ij,ah;rs,tu + 6h€ij,ka;rs,tu
v v v v
+ 61” gij,kh;as,tu + 65 éij,kh;ra,tu + 5t gij,kh;rs,au + 5u£ij,kh;rs,ta
_ av av av av
=909 éaj,kh;rs,tu + gjag gia,kh;rs,tu + Iked gij,ah;rs,tu + Ihe9 éij,ka;rs,tu

av av av av
+ Ire9 gij,kh;as,tu + 9s09 gij,kh;ra,tu + Ytc9 gz‘j,kh;rs,au + Ius 9 Sij,k:h;rs,ta'

Summing over (v, ) and replacing o by 7 yields

(n=1)&; knrsiu T Eikhrsiu T Skjinmstu + Shjkizs.tu
+ frj,kh;z’s,tu + gsj,kh;ri,tu + €tj,kh;rs,iu + guj,kh;rs,ti
=99 &varnrsiu T 9ik9" Evjanrsiu T 9ind" Evjkawsiu T Iir 9" Suj khias.tu
+ gisgayfuj,kh;ra,tu + gitgayfyj,kh;rs,au + giugayfuj,kh;rs,ta‘

Upon using (B.23) for the second, the third and the fourth terms and using the equa-
tion (B.27) as well, we have

(n - ]')gij,kh;rs,tu + frj,kh;is,tu + gsj,kh;ri,tu + é.tj,kh;rs,iu + é.uj,kh;'rs,ti (B 28)

- aij,kh;rs,tu .

As a result of (B.26), we may write

(érj,kh;is,tu + gij,kh;rs,tu + gsj,kh;ri,tu + g'rj,tu;is,kh

kigh ptrsu __
+ fij,tu;rs,kh + gsj,tu;ri,kh)R R = 0.

Due to the symmetries, we have

S "‘ 2 "f_ 5 }Ekl ih tr
(2£Tj,kh;i Jtu fij,kh;vs,tu é'rj,tu;is,k:h i7,rs;kh,tu ) J R su
157 + + kijh ptrs
( 7,khjis,tu gij,kh;rs,tu fl’j,?’s;k)h,t? )“ J R = 0
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Considering the Riemann curvature tensor’s symmetries, we calculate
Rkithtrsu
kijh pt
[( ) zg kh;rs,tu + érj,kh;is,tu + gsj,kh;ri,tu + étj,kh;rs,iu + guj,kh;rs,ti]R Y R o
kijh pt
[(n 1) 'Lj kh;rs,tu + grj,kh;is,tu + gsj,kh;m’,tu + ésj,kh;ut,ir + grj,kh;ut,si]R Y R o
kijh ot
[(n 1) zj kh;rs,tu + 2§rj,kh;is,tu + 2§sj,kh;ri,tu]R Y R o

Oéij,k:h;?"s,tu

3

kijh pt
[ 1 ”L] kh;rstu + 4€Tj,kh;is,tu]R WERT
kijh pt
= | = &ijrsibhgu TR

Similarly, we have

n—2)¢

ij,kh;rs,tu

aij,rs;kh,tuRkithmu
= [(n = D& rsntu T Enjrsingn + Enjrsitn T Etjrsohiu T §Uj,rs;kh,ti]Rkithtrsu
= (n - UgijWS;kh,tu = &ijrskhtn t Srjtukhis T grjvut;khﬁi]Rkithtrsu

= [(n = 2)&; rsmhru + 20wk B RT

=(n— g)fij,rs;kh,tu - gz‘j,kh;m,tu]Rkithtrsu_

We may eliminate the £

ij.rs:kh.pu (€M DY using the last two equations to obtain

((2n - 5)aij,kh;r57tu + 2aij,rs;kh,m)Rkitht””
= [(2n = 5)(n — 2) = 1) €, ppursu BRI
= [(2n — 3)(n — 3)] &) ks 0 RE RIS,

which completes the proof.

Lemma B.6 Under the conditions of Lemma[B.3|and for n > 2

u 1
gt Sij,kh;rs,tu = mﬁij,kh;rs (B29)
and
Jt 1 Jt
g é-ij,kh;rs,tu - ig giu,kh;rs,tj
(B.30)
+ uéz\/g<gkr €iuhs + ks Ciuhr + IhrCiuks + Ihs Eiukr)7
where
1 1 1 1
ﬂz’j,kh;rs = /\<gz‘jgkhrs - §gikgjhrs - §gihgjkrs - égirgkhjs - §gisgkhjr)7
1

Ikhrs = 9kh9rs — §(gkrghs + gksghr>

and )\, 1 are arbitrary functions of the scalar ¢.
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Once again, note that commas and semicolons are used for identifying the only sym-

metries. They have no other meanings whatsoever here.

Proof. We may define a new tensor f;; ;... such that
t —
9" ij,khirs,tu = Hlﬁzj,kh;rsv (B.31)
t —
9 & rssknin = K285 psion s (B.32)

where k1 and k9 are arbitrary functions of the scalar ¢. Therefore, after multiplying
each line with the inverse metric, we have
ij kh rs t ij  kh
gl]g gmg ufij,kh;rs,tu - ’ilg”g gTS ij,kh;rs >
ij kh_rs t ij kh
97979y ufzj,rs;kh,m = K2g”yg grsﬂij,rs;kh‘
By comparing these two, we have
ij kh rs t ij kh _rs t
gZ]g gT‘Sg ugij,kh;rs,tu - g”g gTSg “ i7,rs;kh,tu
ij  kh ij  kh
= r19”g grsﬁij,kh;rs — K29 g gmﬁzj,m;kh =0.
Therefore, k, = ko. Together with this, we may also use to obtain the symme-

tries such that

ﬁij,kh;rs = ﬁz‘j,rs;kh? (B.33)
Bijwhirs T Bikjnirs T Bingjirs = 0- (B.34)
This tensor is a function of the the metric and the scalar, i.e.,
Bij,kh;rs = Bij,kh;rs (Yap> @)-
Since we have a tensor, we can write

aByduv -
Taking the derivative of both sides with respect to a;ga yields
b
aﬁij,kh;rs o ag@g& 8ﬁij,kh;rs o aﬁij,kh;rs
- 29{19

0By a 0By 9o, Yo
:6gﬁaj,kh;rs + 5gﬁia,kh;rs + 6zﬁij,ah;rs

b b b
+ 6hﬁij,ka;rs + 5rﬁij,kh;a5 + 536ij,kh;ra‘
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We multiply each side with g** and replace b with v to obtain

9P

ij,khirs _ cv ap v ap vV _ap
q _61 g Baj,kh;rs + 5]' g Bia,kh;rs + 6kg Bij,ah;rs
nv

2

+ 6Zgauﬁij,ka;rs + 5zgau£ij,kh;as + 5;/ga,u ij,kh;ra*
Due to the symmetry in (u, ), we find

v _ap v _ap vV _ap
5@' g ﬁaj,kh;rs + 6]' g ia,kh;rs + 5]{9 ij,ah;rs
vV _ap v _ap vV _ap
+ 6hg 6ij,ka;rs + 67"9 ﬁij,k:h;as + 639 Bij,kh;ra
__SH _av w _av w _av
_61 g /Baj,kh;rs + 6]' g /Bia,kh;rs + 6kg Bij,ah;rs

M _av © av u av
+ 5hg /Bij,k:a;’rs + 67‘9 ij,kh;as + 689 ij,kh;ra -

We multiply each side with g,,, to obtain

(ﬁlﬁgj,kh;rs + 5;'jﬁia,kh;rs + 5;6@,0}1;7"3
+ 01 Bij kows t 0r Bij khios + 05 Bij khoro
:giogayﬁaj,kh;rs + gjogay ia,kh;rs + gkogay ij,ah;rs
+ ghagayﬂij,ka;rs + gragayﬁij,k‘h;as + gsagayﬁij,kh;ra :
Summing over (v, ) and replacing o by 7 yields

(n —

1)Bij,kh;rs + ﬁji,kh;rs + ﬁkj,ih;rs + ﬁthci;rs + ﬁrj,kh;is + 6sj,kh;ri
:gijgayﬁua,kh;rs + gikgayﬁuj,ah;rs + gihgal/ﬁyj,ka;rs
+ girgayﬁuj,kh;as + gisgal/ﬁuj,kh;ra'

According to equation (B.25)), the sum of the second, the third and the fourth terms

vanishes. Similarly, we can calculate the first, the fifth, and the sixth terms in the
following way

(n - 1>ﬁij,kh;rs + Brj,k:h;is + st,kh;ri
:(n - Q)ﬁij,kh;rs
:gijgayﬁua,kh;rs + gikgayﬁuj,ah;rs + gihgayﬁuj,ka;rs

av av
+ 9ir9 Buj,kh;as + 9is9 5uj,kh;7"a‘

By virtue of (2.20), we may rewrite the latter equation as

av 1 av 1 av
(n - 2)/Bij,kh;rs :gz]g ﬁau,kh;rs - §gzkg Bau,jh;rs - §gzhg ﬁau,jk;rs
1 1 (B.35)
- §gi7‘gauﬁau,kh;js - §gisgal/6au,kh;jr
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We may show all symmetries of g% by using the symmetries of 3;; ;;,..; as

ij,kh;rs
gmﬁz‘j,kh;rs = 08 1nrs> (B.36)

gkhrs = ghkrs = grskh‘

Therefore, we calculate

gTS(Bij,kh;rs + Bik,jh;rs + 5ih,kj;7"s) = U(gijkh + fikjh + gihkj) = 07

where o is any function of the scalar ¢. Making use of Lemma [B.4] we find

ij Lok ih j
Een = alg? g™ — 59 Fgll + g g™

Then, we may define

G = 979" = 5 (9" ¢ + 979", (B.37)
By using (B.31)), (B.33)), (B.36) and (B.37), we may write
o 1 1
(TL - 2)9 gij,kh;rs,tu = A gz‘jgkhrs - §gikgjhrs - §gz’hgjkrs

1 1
- Egirgk;hjs - §gisgk;hjr

and
1 1 1 1
Bij,kh;rs =A 9ii9khrs — §gik9jhrs - igihgjkrs - §girgkhjs - §gisgkhjr )
where A is arbitrary function of the scalar ¢. Consequently, we have
1

tu _
g gij,kh;rs,tu - n— Qﬁij,kh;rs

We may also define a tensor as

i,kh;rs,u

%,kh;m,u = gjtfij,kh;rs,tu- (B.38)
We may obtain a relation related to this tensor by multiplying by ¢*"
Uhijitus T Cuigiths T Crijhus
- ﬁ [63h,ij;tu + B ijin + ﬂst,ij;hu} =0.
From (B.34)), we reduce the latter equation to
Uhijitus T Pugsths T Cijihu,s = 0- (B.39)
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We also have symmetries from (B.24) as
¢i,kh;rs,u = ¢i,hk;rs,u = 77Z)u,rs;lch,z" (B40)
We multiply (B.28) with g’* to obtain

1
(n - 1)¢z’,kh;rs,u + 77Z)r,kh;is,u + ws,k‘h;m’,u + mﬁkh;rs,iu + ¢u,kh;rs,i
1 1

e VL
n— 25kh;rs,zu 2(71, _ 2) 9ir9 th,rs;tu
1

- 2(71 _ 2>gihgjt5jk,rs;tu + girgallz/}wkh;as’u

(B.41)

+ gisgal/d]u,kh;ra,u + ,éz)akh;rs,u + giugaygjtguj,kh;rs,ta'
By using (2.20), (B.34)), and (B.39)), we calculate

1 1
girgaywu,kh;as,u = _§girgayws,kh;au,u = _§girgal/gﬁ’ygﬁs,kh;au,wy

1 1
= _g.d™ S ,
Q(n _ 2) 9ir9 Bﬁs,kh;u‘r 4(7’L N 2) gz'rguskh

Similarly, we have

9is9 wu,kh;ra,u - mgisfurkh‘
The last term of (B.41)) can be calculated by using (B.26)) as follows

it
giugayg] (fl/j,kh;’/‘s,ta + gl/a,kh;rs,tj + gut,kh;rs,ja

+ guj,rs;kh,ta + gua,rs;kh,tj + gut,’rs;k’h,ja)
2

:mgiugkzhrs + 4giugaygjt§1/j,kh;rs,ta =0.

Therefore, we find

1

mgiufkhm-

it
giugaygj guj,kh;rs,ta = -
We may further reduce (B.41) as

(n - 3)¢i,kh;r8,u + wu,kh;rs,i
1 1 1

:4(TL _ 2) gikghurs + 4(n _ 2) gihgkm’s + 4(n — 2) girguSkh

.9255 rkh gz 5 rs

1
- §6iu,kh;rs :
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Interchanging ¢ and u yields

1

(n - 3)¢u,kh;rs,i + wi,kh;rs,u - _§6iu,kh;rs' (B43)
We calculate (n — 3)(B.42) — (B.43)) to obtain
n—4
((n - 3) (TL - 3) - 1)wi,kh;rs,u = _Tﬂiu,kh;rs
n—4
= ((n - 2)(” - 4))¢i,kh;7"s,u = _Tﬁiu,kh;rs‘
For n > 2 and n # 4, we have
(0 = ! &) B.44
i,khyrs,u — 2(71 . 2) iu,kh;rs ( . )

or

Jt — Jt
g gij,k:h;rs,tu — 29 éiu,kh;rs,tj'

For n > 2 and n = 4, we have

1
zlji,k:h;rs,u + wu,kh;rs,i - _§Biu,kh;rs'

Therefore, the most general form of ¥ can be written by considering the anti-

i,kh;rs,u
symmetry in (i, u) in the following way

1
wi,kh;rs,u = Zﬂiu,kh;rs + Algrseiukh + Angheiurs
+ A3gkr€iuhs + A4gks Ciuhr T A5gh7‘ €iuks T A6ghs€iukr7

where Ay, As, A3, Ay, A5 and Ag are arbitrary functions of the scalar ¢. A; = A3 =0
due to (7, s) and (k, h) symmetry. Using these two symmetries, we also have A3 =

Ay = A5 = Ag. Thus, we have successfully completed the proof.

Jt — Jt
g gij,kh;rs,tu - 29 giu,kh;rs,tj

+ M&f\/?(gkr €iuhs + ks Ciuhr + IhrCiuks + ghsgiukr)v

where p is any function of the scalar ¢.

Lemma B.7 If ¢ is a scalar which depends on the variables g;;, ¢ and ¢ ;, i.e., ¢ =
¢(gij7 03 Qb,@'), then 1 = (¢, p), where p = gij¢,i¢,j'

Proof. If we have a scalar ¢ = ¢(g;;, ¢, ¢,), and we have
w<gij7 b, ¢z> = E(gija , 51)
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Taking the derivative of this with respect to B, together with (2.2), yields

o 9o O 09, O :23¢g +3_¢
0B%,  9B% 39,5 0B% 90, gy 0,

¢,=0.

If we multiply this with g*", we obtain

2 v _ —8—¢¢v’“, (B.45)

Gy, ¢,b
where ¢ = g*"¢ .. Due to symmetry in b and r on the right hand side, the left hand

side must be symmetric in (b, ¢). Therefore, we have

Y

_¢,r ¢,b.
(b,b ¢,r
Multiplying this equation by ¢, and defining p = g”¢ ;¢ ; and \ = p‘lqﬁ’r%, we
obtain
o
=\ B.46
90, ¢ (B.46)

Here, we can define ¥(g,;, ¢, ¢ ;) = F(g,;, ¢, ¢, p). By taking the derivative of this
with respect to ¢ . yields
o :8%5 oF N 8¢8_F+8¢,i OF N dp OF
¢, 00,09, 00,00 00,00, 0¢,0p’
oy  OF  0p OF

= —_—. B.47
90, 99, " 90, Op (B0
We can calculate the second term on the right hand side in the following way
dp OF . or oF
P —agie 0 = 20"
99, Op 7 Op dp
Consequently, we can rewrite (B.47) as
0 oF oF
v_OF L, 0F
9, 09, dp
By comparing this result with (B.46)), we find
oF oF
2— =\ d =0. B.48
o9 a 5, (49

Therefore, we find that ¢» = F(g;;, ¢, p). Considering the obtained result, the right
hand side of vanishes. Therefore, the left hand side must also vanish. As a

result, we have

b =1(¢,p). (B.49)
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Lemma B.8 If 1 is a scalar density which depends on the variables g;;, ¢ and ¢ ;,
ie, Y =1(g;,0,0,) then ) = \/gk(9, p), where k is a constant.

Proof. Using the methods and results employed in Lemmas and this can be
easily established.

Lemma B.9 If ¢, = V00, (9up, &, ¢ ,) is a tensor and
¢ijkh - ¢jikh - 1/’ijhk
together with
Yijkn + Virjn + Cingg = 0,
then forn > 3
Vi BM" = aR7¢ 16 ; + BR, (B.50)

where o = (¢, p) and B = (¢, p).

The detailed proof of this identity is long. However, this result is immediate when
one considers the most general form of the tensor ¢, = ¥, 4 (9ups @5 ¢ ,) With the
given symmetry properties. A rigorous proof of this can be obtained by following the

same techniques that we used in Lemmas and

Lemma B.10 [fn = 4 and if x> satisfies equation (2.38), then

ij,kh;ab,cd;rs,;tu __ ij,kh;ab,cd;rs,tu
A = Ae ,

where
A= A(gij7gij,k7 Yij kh> b, ¢z)

is a scalar and

Ezg,kzh;ab,cd;rs,tu = E 2 2 E E 2 ezk‘acejhrtebdsu/g,
ij

tu rs cd ab kh

ikac

where €7 is the four-dimensional permutation symbol which has the values 0, 1 and

—1. The summation symbol is defined as

D A= A4 A

ij
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Proof. Here, we can use the following notation
Nkhsab,edirs,tu — 17, kh; ab, cd;rs, tu

without using the summation convention. Since we have n = 4, some of the indices

must be equal to each other.

If five or more indices are equal, then we will have at least two of these indices in the

two of three groups (i, kh), (ab, cd) and (rs, tu). In light of (2.20), we can put them

in the form -, ¢¢; -+, %4; --, -2. By using (2.37), this term immediately vanishes. If three

or four are equal in the same group of indices, then due to (2.12)), we will have zero.

If four of the indices are equal to each other, we can calculate every possible com-
bination. However, considering the results above, there is no need to check every

possible combination. Let us say we have four ¢, three j and &, two h.
If our indices are in the form jk, 7i; jk, hi; jk, hi, from (2.37)), we have
275k, ii; jk, hi; 5k, hi + 25k, it; jk, hh; gk, ii + 25k, i; jk, hi; jk, hi = 0.

Note that the second term vanishes by (2.37). The first and the third terms are the

same. Therefore, this term is equal to zero.

If our indices are in the form of j7j, iz; jk, he; kk, hi, from (2.37)), we will get the same

result as the one above.
If our indices are in the form hh, it; jk, j4; jk, ki, again, we will get the same result.

If three of the indices are equal, then there must be three 7, j, £ and h. Let us say we

have ij, kh;ij, kh;ij, kh. We may use (2.37) to conclude that
A(ij, kh;ijg, kh;ij, kh) + 2(ij, kh;ij, kk;ij, hh) = 0.

From the second term, making use of (2.37) for £ in the first two group of indices, we
also find

6(ij, kh;ij, kk;ij, hh) = 0.
Therefore, we conclude that ij, kh;ij, kh; 17, kh = 0.

We infer that if we do not have any equal indices in any group, the result is zero as

shown above, unless we have jk,th; jk,ih;ij, kh.

79



If we have three equal indices in any two groups, then the other two pair of indices
should not be equal in order not to obtain a zero. Therefore, any combination such as
kh,ii; kh,-i; -, -- = 0, as shown above. Therefore, only the following combinations

will survive
ii, hh;ik, jh; kk, 77,  ii,hh;ik, jj; hj, kk,
ii, jk; g, hh; jhykk, i, jk;ij, kh; jk, hh,
jk,ih; jk,ih;ij, kh.
However, each term can be written in terms of the first one due to (2.37). Therefore,
we may write
ii, hh;ik, jj; hy, kk = —ii, hh; ik, jh; kk, j7,
15, gk; 15, hh; gh, kk = —%z’z’, hh;ik, jh; kk, 77,
1, jk; 15, kh; jk, hh = —iz’i, hh;ik, jh; kk, j7,
Jk,ih; gk, ih;ig, kh = éii, hh;ik, jh; kk, 77.
Therefore, AW-khiabedirstu hag only one independent component when n = 4. Since
we can obtain every non-zero permutation of indices from the first one, examining

only this term will suffice. It can be easily shown that i, hh; ik, jh; kk, 77 is anti-

symmetric under the interchange of any two groups of three equal indices as a conse-

quence of (2.377)).

Note that every equal indices in any group should be together as two, before or after
the comma. Otherwise, the term vanishes, namely, -, 7-; -+, --; -, -- = 0. Now, we can

define a new quantity which has the same symmetry properties as A%-khiabedirs,tu,

Ez],kh;ab,cd;rs,tu = E E § E E E Ezkacejhrtebdsu/g‘

tu rs cd ab kh ij

Therefore, if % khiabed gatisfies (2.38), we have

Az],kh;ab,cd;rs,tu — 1462],lch;a,b,cd;rs,tu7 (le)
where A = A(g,;, Yij k> Yijkhs D )-

Lemma B.11 Ifn = 4 and if x/"*"< satisfies equation (2.38), then

Azg,kh;ab,cd;rs,tu;pq,lm = 0.
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Proof. Note that we use the notation that we employed in Lemma [B.10] where there

is no summation on repeated indices.
We have two options to obtain non-zero terms from the results of Lemma [B.10}]
1, hh;ik, jhy kk, jj;ig, kh, i, hh;ik, jhy kk, jj;ih, kj
Other combinations of indices that we have in the last group of four indices are di-
rectly zero as shown before. If we apply to (ik, jh;ij, kh), we calculate
ik, gh;ig, kh + ik, jk;ij, hh + ik, jh;ig, kh
+ 17, 7h;yik, kh + 17, 5k; ik, hh + 13, 7h; ik, kh = 0.

This can be written as

2(ik, jh;ij, kh) + ik, jk;ij, hh + 2(ik, kh; ij, jh) + ik, hh;ij, jk =0
After using (2.20), we obtain

1

1
2(ik, jhij, kh) = 5 (i, kk; i, hh) — (ih, kk; ih, j5) — 5 (ik, kb ik, j5) = 0

The last three terms are zero. Therefore, the first term also is zero. The same proce-

dure shows that (ik, jh;ih, kj) is also zero. Thus

Aij,kh;ab,cd;rs,tu;pq,lm =0 (B52)

Due to (B.51) and (B.52), we can conclude that A = A(g,;, g;; ., , ;). As a result
of Lemmas (2.1) and (B.7), we have A = A(¢, p).

Lemma B.12 [fn = 4, then implies that A%b:Rhrs;tu — (),

Proof. We again employ our notation without summation. For the last two groups of
four indices, we can use the results that we have in Lemma[B.10] Therefore, the only

possible non-zero terms are of the form
1;7;%, hh; kk, 59,  k;g;9, hh; ik, gh.

Obviously the first term is zero due to (2.35). By virtue of the symmetry relation that

we have in Appendix [C.5] the second term can be written as
k; 751, hh; ik, 7h = j; h; i, hh; ik, k7,
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which vanishes again due to equation (2.33). Therefore, if n = 4, then

Aa;b;ij,khW&w = 0. (B53)
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APPENDIX C

EXTENDED CALCULATIONS

In this appendix, some long calculations arising from the derivation of the most gen-

eral form of the Lagrangian and the derivation of the field equations are made.

C.1 Calculation of the First Term of (2.51)

Starting from the definition of ¢¥/:khiabedirs,tu ye have
em,kh;ab,cd;rs,tu = E 2 E E : E 2 61I~cac€]hri,‘ebdsu/g
tu s cd ab kh ij
We calculate

ij,kh;ab,cd;rs,tu
Ae Rtrsu Rcabdeijh

=A Z Z Z Z Z Z 6UmcejhrtebdsuRtrsuRcabdeijh/g
ij

tu rs ecd ab kh

= AA(*thsu) (*Rsuca> (*Racjh)/gv

where ) is a constant.

C.2 Calculation of the Second Term of

Calculation of the second term on the right hand side of equation (2.51)) can be com-

pleted here. From Lemma we have

[(2” - 5)aij,kh;rs,tu + 2aij,rs;kh,tu]Rkithtrsu

(2n — 3)(n - 3) ’

&ijhnirsu BRI = (C.1)
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where from equation (B.27), we have

_Im
aij,kh;rs,tu =9 [gijgml,kh;rs,tu + gikgmj,lh;rs,tu + gihgmj,kl;rs,tu

+ gi’rfmj,kh;lsiu + gisfmj7kh;rl7tu + gitgmj,kh;rs,lu + giugmj,kh;rs,tl]'

Using equations (2.20), and (B.38), we calculate

1 1 1

aij,kh;rs,tu = 2 [gijﬁkh,rs;tu - §gik;/8jh,rs;tu - §gihﬁjk,rs;tu]

+ gir¢j,kh;tu,s + giswj,kh;tu,r + git¢j,kh;rs,u + giuwj,kh;rs,ﬂ

1 1 1
Qs rsikhtu :n _9 [gijﬁrs,kh;tu - §girﬁjs,kh;tu - §gisﬁjr,kh;tu]

+ gik¢j,7‘s;tu,h + gihdjj,rs;tu,k + git¢j,rs;kh,u + giuwj,rs;kh,t'

Consequently, we find

(2n - 5)aij,kh;rs,tu + 2aij,rs;kh,tu
2n — 3 2n —5
:—gijfﬁkh,rs;tu + ik [2wj,7"s;tu,h + mgjh,rs;tu]

n—2
2n —5
+ Gin [2wj,rs;tu,k + mgjk,rs;tu]

1 C2
+ gzr[(Qn - 5)¢j,kh;tu,5 + mﬂjs,kh;tu] ( )

1
+ Yis [(2n - 5)¢j,kh;tu,r + mﬂjr,kh;tu]

+ it [(2n o 5)77Z)j,kh;7"s,u + 2,¢}j,7’s;kh,u]
+ gzu[(2n - 5)wj,kh;rs,t + ij,rs;kh,t]'

We can use equation (B.30) together with equation in order to rewrite the latter

as

(27’L - 5)aij,kh;rs,tu + 2aij,rs;kh,tu

2n —3 2n —3 2n — 3
= n_9 gijﬁkh,rs;tu - 2(n — 2) gikﬁjh,rs;tu - 2(n — 2) gihﬁjk,rs;tu
2n — 3 2n — 3 oM — 3
_ —Q(n — 2) girﬂjs,kh;tu - 2(n —_ 2) gisﬁjr,kh;tu - 2(n —_ 2) gitﬁju,kh;rs
2n —3

- 2(n _ 2) giuﬁjt,kh;?“s + Rijkhrstus

84



where £, ;p,,.o,, TEPresents all the terms containing the metric and €, ;,,, together, aris-

ing from equation (B.30). Multiplying this with R*" R'rs* yields

((2n - 5)041']‘ kh;rs,tu + 2a7,] rs;kh tu)Rkithtrsu
2n —3 2n —3 2n — 3
_( n—9 gz]ﬁkh rsitu 2<n _ 2) gikﬁjh,rs;tu - mgihﬁjk,m;tu
2n —3 2n —3 on —3
_ —2(n — 2)gir6js,kh;tu o Q(TL _ 2) gisﬁjr,kh;tu - mgztﬁju khirs

2n—3 i rsu
- mgwﬁjt kh;rs + Iiz]khrstu) Rk Jth

(C.3)
We are ready to calculate the right hand side of equation (C.3) term by term. From

the first term, we have

2n—3 i rsu
n—2 gljﬁk‘h rS; tuRk Jth
2n — 3 1 1
:)‘mgw IkhGrstu — égkrghstu - égksghrtu
1 1 7 TSU
= 59kt9rshu — 5 9kuIrsht Rk ]th
2 2
-3 rSu 1 1
= >\ _9 Rtht <gkh (g’rsgtu - §grtgsu - §grugst)
1 1 1
- §gkr (ghsgtu - éghtgsu - §ghugst)
1 1 1
- Egk:s (ghrgtu - ghtgru - §ghugrt)
1 1 1

- _gkt (grsghu grhgsu - égrugsh)

1 1
- _gku (grsght grhgst 2thgSh)> :

Applying contractions reduces the latter

2n —3 1 1 1 1 1
A 2 —p2_ 75 - U T st st
s (R 0+ 3R~ SR R"+0~ R, K"~ R,R" ~ R,R

4

B 2n—3 (3 , ij
—)\n_2(2R 3Rin )

1 1 1 1
0= SR, R +0— R R® — SR, R — TR R™+ o)

The second term on the right hand side of equation (C.3)) vanishes due to symmetry

relations of the metric and the Riemann curvature tensor.

The third term on the right hand side of equation (C.3) gives the same result as the

first term with a factor of % by interchanging j and h. We calculate the fourth term on
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the right hand side of equation (C.3) as
2n —3

—mgnﬂjs khitu szgthrsu
2n —3 . su 1 1
=A—F0 n—29 Rk ]th (gk:h (gjsgtu - §gjtgsu - §gjugst)
1 1
§gkj (ghsgtu - ghtgsu - §ghugst>
1 1 (C4)
= 595 (91390 — ghtgju — 39nujt)
1 1 1
§gkt (g]sghu - g]hgsu - Egjugsh>
1 1 1
= 59k (95590 = 59595 = 595095n) |-
Applying contractions reduces the latter
2n —3 g 1 o1 , 1 :
Y :_ > ( — RyRY + 0= SR,RY = SRy R" +0— SR, R
. 1 .
+0+ 4RkaRk”h + 4kath”h — éR,.kth’“”h +0
. 1 . 1 .
+ ZRikth’“”h — §Rihijk”h +0+ ZRUMR’“”L>
C.5)
M-3(9 . 1. (
=—A 9 <1Rz’jRJ + ZR] (= Rjpir — Rjpan
+ 2R i — Bjipg + 2R pp — lechz‘))
Due to the first Bianchi identity
R (Rikjh + Rjpy + Rihkj) =0,
we have
Rijthijkh = RV (Rz‘kjh - Rihjk) = 2Rijthikjh' (C.6)

This can be used in the last term of equation (C.5). As a result, the fourth term on the

right hand side of equation (C.3)) can be written as

2n — 3
292’!"

2n—3 /9 9 N
Bijs ens tuRkUthmu =—A ‘ <_R--R” — —Rijthmkh).

n— n—2\4 Y 8

It can be easily shown that the fourth and the fifth terms on the right hand side of
equation (C.3) are equal. Interchanging r and s together with interchanging ¢ and
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u leads to the equality due to the symmetry relations of the tensor 3, ;... and the

Riemann curvature tensor.

Similarly, it is also easy to show that the fourth, the sixth, and the seventh terms on
the right hand side of equation (C.3) are all equal. Therefore, we calculate equation

(C.3)) such that

((271 - 5)aij,kh;rs,tu + 2Oéij,rs;kh,tu) Rkithtrsu
9

2n—-3 (9 .

2(n —2) \ 2
9(2n — 3)
4(n —2)

Rin Rz’jkh) Kyt RFiih ptrsu

=\ <R2 —4R;;R7 + Rijthij’fh) + Kijiprsta BRI

Using @) and for n = 4, we can calculate the last term of the latter as
K’ijkhrstuRkithtmu

:Mn\/§<<2n - 5>gzr (gktﬁjshu + gkuﬁjsht + ghtejsku + ghuejskt)

+ (271 - 5)913 (gktejrhu + gkuejrht + ghtejrku + ghuejrkt)
+ (2n - 7)gzt (gkrejuhs + ks Cjunr + Ihr €juks + ghsejukr)

+ (27’L - 7)gw (gkrejths + gksejthr + ghrejtks + ghsejtk:'r’)> Rkithtrsu’

where 1 is an arbitrary function of the scalar ¢. It can be easily shown that every term
of the latter is proportional to (*Ri‘j kh)Rkhij and the sum is non-zero. Therefore, we

have

kijh ptrsu __ 7J kh
’fijkhrstuR R = (xR, R ij

where -y is an arbitrary function of the scalar ¢.

C.3 Calculations of Field Equations

We use equations (2.29) and (2.26)) (or (2.32) to obtain the Euler-Lagrange equations.

Therefore, in this appendix, we will frequently use the following equations to calcu-
late field equations.

By considering the second-order terms, we can easily calculate

8Rabccl _

ijkh ijkh _ mnyijkh _ pyijkh
B Z (Dabcd + Dbadc Dabdc ‘Dbacd)7
Yij kh
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where

ijkh _
Dabcd =

(8455 + 0202) (3507 + 0263).

N | —

In order to obtain the Euler-Lagrange equations that follow from L, we first note the

following
0R2 R acgbd aRabcd

agij,kh agij,kh

I

a(RacRac> :gbdgrtgsaguca(RabcdRrstu)
agij,kh

OR

OR
abced + grtRsu rstu
agij,kh 8gij7kh
ZngdRac aRabcd ’
agij,kh

:gbdRac

a(R dRabcd)

abc

— 2Rabcd aRabcd )
agz’j,kh 8gz‘j,kh

Finally, we can calculate the following

0
agz’j,kh

(R2 . 4RabRab + RadeRabcd>

OR
—9 abcd (gacgbdR o 4gbdRac T Rabcd)
8gij,kh

=7 (5353 + 040) (353 + 020y + (8407 + 6:0,) (9303 + 640,
— (500 + 0:00) (3505 + 640y) — (5305 + 0a03) (930¢ + 0707)
% (gacgbdR o 4gbdRac + Rabcd)

:i (gihgij _ 4gMI R - Rikhi | gikghi R 4ghi Rik 4 Riki
4 ghgMi R — Aghi RN 4 RIRRE ik ghip _ gghigik 4 Rihki
4 Mgt R — 4gih RN 4 RFh . ghigik R _ gqik ghi 4 Rhidk
4 Mgt R — 4gIhRKE 4 RNy ghigik R _ ik Rhi 4 Rhiik
_ (gijgth — 4gkh R 4 RikIh | gii ghk B gghk Ris 4 Rihsk
4 gt R — 4gFh Rt 4 RIkih | giighk R gk Rii thik)
_ (gkhgin _ 4gP RER 4 RFIRG | ghkgid R 4qid Rik . Rhiki
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After rearranging this, we obtain

0
By
ij,kh

(R* = 4R, R* + R, R

C.3.1 The Euler-Lagrange Equations of L, of Theorem [2.2]

If we use the identity R‘ h = 2R“h|a, we can calculate the covariant derivative of the

equation above as

aRabcd
g, ;

ij,kh

:ngjRia|a + QgikRjala . 4gink:a|a . ng:jRia‘a . 2g]thk:|h . 2gikRja‘a

(29acgbdR|h . 8gbdRac‘h + 2Rabcd|h)

— 20" R" |, + 49" R",, + 4g" R*, + 2R™ | 4+ 2R™,
(C7)

In light of second Bianchi identity, one can easily find the following identities which
helps simplifying (C.7)
Rikhj‘h n Rkhhj|i n ha’hjlk _0,
Rikhjlh — REili _ Ridlk,

and

Rz‘hkj‘h n Rz‘hjh\k n Rihhk:|j _p,
Rikhj|h — _Rilk 4 Rkl

After substituting these in (C.7)), we obtain

aRabcd

a (2gacgbdR|h o SgbdRac‘h + 2Rabcd|h) =0.
Yij kh
Therefore, we have

8Ratbccl

5 (2gacgbdR|hk _ 8gbdRac|hk 4 2Rabcd|hk> =0.
Yij kh
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By inserting the relations above into (2.29), we can calculate the Euler-Lagrange

equations derived from L; as

- OR
E9(B1Ly) = — 51\/57—89 abed (2% g™ Ry, — 89" Ry, + 2R )
ij,kh
/ aRabcd ac . bd bd pac abed
- 251\/§¢\k—a (29°g"* Ry, — 89" R, 4+ 2R™, )
ij,kh
" / aFiabccl ac bd bd pac abed
— V(B Py + 51¢|kh)ag (29"g" R — 8¢* R™ + 2R")
ij,kh
1 .
o 5\/5619” (R2 o 4RabRab + RadeRabcd)
2 OR .
- g\/gﬁl ag abcd (ancgbdR . SdeRac + 2Rabcd) thkm'
im,kh

After taking the relevant derivatives by using the methods described in the beginning

of this appendix, we finally obtain
BY(hLy) =450 (0" R, + R, + SR(g" 09" = 6Y)
- gij¢|abRab - gab¢|abRi‘j - ¢|abRaijb)
i aj j ai | Lo ij a i i
+ 4GB! (8" ¢ B + 679 R + S R(g7 91,8 — ¢V
- gij¢|a¢|bRab - Rij¢|a¢|a - ¢|a¢\mejb)
1 .

- 5\/5&19”(1’:{2 - 4RabRab + RabcdRade)

- §\/551( —3RRY + 6R’ ,R" + 6R*R,’,' —3R™"R’,, ).
The field equation above is valid for n dimensional spacetime. However, in a four-
dimensional spacetime, one can further reduce this equation. Since in our case, we
have a four-dimensional spacetime, we are able to make use of the Lanczos identity

[25]]. The detailed derivation of the Lanczos identity can be found in Appendix [C.4]

Lanczos has shown that if n = 4 then
;1672 (R“deRabcd —4R™R, + R2) = Redebecd = 2beeded = 2beReb + RR;.
Therefore, in a four-dimensional spacetime, we have
B9 (51 13) =458 (8RS + R, + SR(5™ 9" — 6)
- gi‘j¢|abRab - gab¢|abRij - Cb\abRaijb)
FAYGE(S°6, B + 016, B+ S R(g9,6° — )
- gij¢|a¢|bRab - Rij(ﬁ\aﬁﬁla - ¢\a¢|bRaijb)'
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By virtue of (2.26), we can easily calculate

E(ﬁlLl) = —ﬁiLl-

C.3.2 The Euler-Lagrange Equations of L, of Theorem [2.2]

Due to (2.29), we calculate the Euler-Lagrange equations derived from L, as

ij OR 1 OR
EY(ByLs) = — <x/§b’2¢r¢s gyt S — g gl >
Ir] ( @gij,kh 2 agij,kh) "

— VBG4 GGG, + 1 TG

2 ar cs aRa c 1 rs ac 8Ra C j
~3 (\/552925%%(9 g gbdﬁ - 59 gbd J))Rh]km-

g
im,kh 2 agim,kh

Upon taking the relevant derivatives, we find

B (faka) = = (Vi (646194 + gl 4 Il g
— 20l g — 291F ¢l g7y — Bl (gMT g™ + g g™ — 29" g7 )) .
~ 5V (010 1 0 1 g 4 ol
— 201l g — 2¢/F ¢l g ) — 4,01 (g g™ + g g™ — 29" g7 )) )
— Va0 + Bion) (040 + 0¥ + iy
+ @l gl — 201 ¢l g — 29k pl" g7
— 0" (979" + g™ g — 29" 9" ))
~ VIR (TR0, — 597 Ro,0)
- V(0™ g g gt g
—2¢l'gm gk — 29k gl g
— 0,0 (6" g™ + g"" g™ — 29’“’191"”)) Ry
V(GRG0 + R0, — oY),
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After rearranging this, we obtain
B4 (6aLa) =i 50" ((0" 00 — 000~ 20,0, + 36,0°)
+ 60,7 — °¢,u07 + ), (8" RY + ¢ R*)
300 R ~ 30,0°RY - 8,0,
+ %\@5& (gij (¢|a¢\a9kh¢|kh - ¢|a¢‘b¢|ab)
— '@ g b + 6" (00, + D 9),") — ¢'%.a¢'a) :
Using equation (2.26)), we can easily calculate

E(B2Ls) = 2/9(52G" 1), — VIGDadpy
= /G (52¢|ab + 5§¢|a¢\b)-

C.3.3 The Euler-Lagrange Equations of L; of Theorem [2.2]
From (2.29)), we can calculate the Euler-Lagrange equations obtained from L; as

B (BaLs) :@(—< outn + B (3979 + 2™ — )

—~ —Bzg”R — —6 ( hghm — g"mg’“h)thkm>-
After rearranging this, we obtain
E"(BsLs) =7 ( — B0 + 976,60 — B0 + Big" g0 + BsG”> .
By virtue of (2.26), we can easily calculate

E(B3L3) = —/gB3R.

C.3.4 The Euler-Lagrange Equations of L, of Theorem [2.2]

Due to (2.29)), we calculate the Euler—Lagrange equations derived from L4 as

iJ 1 % 1 7 87]
EY(nLy) = — —9 ]77\/_ + 9]h¢h \/_ + 2 h¢h 96,
N g% Va2 Loing v, /ol
2 47 T TV 4T TR IV
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After rearranging this, we obtain

3 on . .1 .
EY(nLy) =\/§<a—z¢"¢“ - 59”77)

Making use of (2.32)), we can calculate £(L) from £ ; (L). After taking the covariant

derivative, we find

B, 110 =V 80 + 25000067 + ot
1877 ;

+ a—pﬁb'igabﬁb\ab - 58_¢ ]925 n¢|ij¢lj)

3
_\/_<a¢a ¢|j¢\z¢\]+282 gab¢|aj¢b¢h¢|j

8771

)i ab i AN
+ ap¢ g ¢\ab 2a¢ ¢|])

As aresult, we have

Bt = 2va( il

a a a 10
8¢ap ¢| ¢|ab¢‘ ¢|b b¢|ab _77) :

20¢
C.3.5 The Euler-Lagrange Equations of L; of Theorem [2.2]

From (2.29), we calculate the Euler-Lagrange equations derived from Lj; as

aR bed 1 ij ab t d
abc — Zca s gtcqud R
rstu agiquh ) |kh 9 g gg rstu

4 b t d OR bed j
— Zeedbrsgtequd (B abed \ p J '
306 g g ( rstu agim,kh ) h km

Eij (CL5> — QCEabrsgtcgud(R

Rabcd

To assist in our calculation of E%(cLs), we calculate

€

OR 1, . . , ,
abrsgtc ud (Rrstu 5 abcd) —_ (Ezkrsgthgug Rrstu + Ezhrsgtkgu]R
935, kh 8

rstu

+ Ejkrsgthngrgtu + Ejh’rsgtkguiR

rstu

+€kzrs tj uhR +€hl7’8 tj uk’R

rstu rstu

4 Ekjrsgtzguthstu + €h]rsgtigukR

rstu

o zkrs t] uhR o zhrs tj ukR

rstu rstu

_ gkrs ti_uh _ ghrs _ti_uk
€ 99 Rrstu € 99 Rrstu

kirs th uj hirs tk uj
— € g g R, — € g g R

rstu

k]’r‘s th ui hjrs tk ui
g Rrstu_e g g Rrstu)’
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which reduces to

€abrs gte gud ( R.. % )
ij kh
:%Rmu (eikrs(gthguj _ gtjguh) i Eihrs(gtkguj _ gtjguk)
+ Ejk:rs(gthgui _ gtiguh) i Ejhrs(gtkgui _ gtz‘guk))‘
After long calculations where one uses the first and the second Bianchi, and the Ricci

identities, we see that all the terms vanish. Consequently, we obtain
E'(cLs) = 0.
Therefore, from equation (2.32)), we immediately have

E(CL5) = 0.

C.4 Derivation of the Lanczos Identity

In a n dimensional spacetime, the Weyl tensor is given by

1
Cabcd :Rabcd -5 2(gacRbd - gadRcb — gbCRad + gbdRaC)
n
1 (C.8)
R _
+ (n _ 1)(n - 2) (gacgdb gadch)a

together with obvious symmetries

C bed — _Cbacd7 C bed — C dab

a a Ci

The trace of the Weyl tensor is zero, C'%,,;, = 0. By considering this and the symmetry

relations, we write

S Cety, =4C8,. (C.9)

pved a;
Since 535225 = 0 when n = 4, we have 5355;500% = (. By virtue of this and (C.9),
we conclude
ed ce]
CHdy =0.

Consequently, we have
1
§ (OCdab 5;+Cdeab Jcc + Cecab 5? + Ccdbf (52 + Cdebf Z+
Cecbaéff + CCdfaég + C% 205 + ecfaag) = 0.
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Upon multiplying this with C*®_,, we obtain
Cabchade 5; — 4Ceb6d0fbcd-
Calculating both sides by using (C.8) when n = 4 yields
1
abed e ab e 2 ce
R Rabcdéf - 2R Rab(;f + gR 5f
1 1
ebcd e bd eb e ab e 2 ce
After rearranging the terms, we find
1
155} (R“b“lRabcd — 4RabRab + RZ) = Redebecd - 2beeded - 2beReb + RR*.

This is known as the Lanczos identity.

C.5 Symmetries of A%b:kh

By the compatibility of the partial derivatives, it is obvious that
Aa;b;ij,kh — Ab;a;ij,kh
If we use this together with (2.35), then we have
Aa;b;ij,k:h + Aa;i;bj,k:h + Aa;j;ib,kh =0 (C 10)
As a result of (C.10), the second and the third terms can be calculated as
s3b7,kh jisba,kh bjisaj,kh

A@tb — _ piiba — Abbad ’

Aa;j;ib,kh — _Ai;j;ab,kh . Ab;j;i(z,kh
By inserting these into equation (C.10)), we obtain

Aa;b;zg,kh o Aj;z;ba,kh o Ab;z;a],kh . Az;];ab,kh o Ab;];m,kh = 0. (Cll)

Again, by using (C.10), the sum of the third and the fifth terms on the left hand side

are

_Ab;i;aj,kh . Ab;j;m,kh — Ab;a;ij,k:h
Therefore, (C.11)) can be written as
Aa;b;z],kh . Aj;z;ba,kh o Az;];ab,kh + Ab;a;z],kh =0

2Aa;b;zg,kh o 2Az;];ab,kh =0.
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Consequently, we have the following symmetry

Aa;b;ij,kh —_ Ai;j;ab,kh' (C12)
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