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Head of Department, Physics

Prof. Dr. B. Özgür Sarıoğlu
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ABSTRACT

SECOND-ORDER SCALAR-TENSOR FIELD THEORIES

ŞAHİN, ERTAN SİNAN
M.S., Department of Physics

Supervisor : Prof. Dr. B. Özgür Sarıoğlu

March 2017, 96 pages

We review Horndeski’s scalar-tensor theory in this thesis. Partial differential equa-
tions that are satisfied by the Lagrangian limit its most general form. Demanding
second-order field equations both for the metric and the scalar field, and choosing
a four-dimensional spacetime also put restrictions on the most general form of the
Lagrangian. Besides, by using similar techniques, in a four-dimensional spacetime,
we find the most general form of the second-order Euler-Lagrange equations that are
obtained from the Lagrangian through a variation of the metric. Finally, making use
of relations between field equations and the Lagrangian, the most general form of the
Lagrangian is obtained. Thus, one establishes the most general scalar-tensor theory
in a four-dimensional spacetime.

Keywords: General Relativity, Modified Theories of Gravity, Scalar-Tensor Theory
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ÖZ

İKİNCİ DERECEDEN SKALER-TENSÖR ALAN KURAMLARI

ŞAHİN, ERTAN SİNAN
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. B. Özgür Sarıoğlu

Mart 2017, 96 sayfa

Bu tezde Horndeski’nin skaler-tensör kuramı incelenmiştir. Lagrangian tarafından
sağlanan kısmı diferansiyel denklemler onun en genel halini kısıtlar. Metrik ve skaler
alan denklemlerinin ikinci dereceden olmasını istemek ve dört boyutlu bir uzayza-
manı seçmek de Lagrangian’ın en genel halini kısıtlar. Ayrıca benzer teknikleri kul-
lanarak, dört boyutlu bir uzayzamanda Lagrangian’ın metrik varyasyonundan elde
edilen ikinci dereceden Euler-Lagrange denklemlerinin en genel halini buluruz. Son
olarak alan denklemleri ve Lagrangian arasındaki ilişkilerden faydalanarak Lagran-
gian’ın en genel hali elde edilir. Böylece, dört boyutlu uzayzamanda en genel skaler-
tensör kuramı elde edilmiş olur.

Anahtar Kelimeler: Genel Görelilik, Değiştirilmiş Kütleçekim Kuramları, Skaler-Tensör
Kuramı
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To the beautiful lady with whom we look at the same sky
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NOTATION: Every index belongs to n dimensional spacetime and runs from
1 to n. There is no special meaning of any index. Einstein’s

summation convention , e.g. uµvµ =
n∑
µ=1

uµv
µ, is used through-

out the text.
A comma denotes partial differentiation and a vertical bar de-
notes covariant differentiation.
The Levi-Civita symbol εabcd is defined as the permutation sym-
bol which takes the values 0, 1 and −1.
Generalized Kronecker delta symbol is

δj1···jk
i1···ik = det

 δi1j1 · · · δikj1
... . . . ...
δi1jk · · · δikjk

 .

The determinant of the matrix formed by the components of
the metric tensor is g ≡ | det(gab)|.
The Christoffel symbols are

Γ a
bc =

1

2
gha(gbh,c + gch,b − gbc,h).

Components of the Riemann curvature tensor are

Ra
bcd = Γ a

bd,c − Γ a
bc,d + Γ a

chΓ
h
bd − Γ a

dhΓ
h
bc

The Ricci tensor, the scalar curvature and the Einstein tensor
are

Rab ≡ Rh
ahb, R ≡ Rh

h and Gab ≡ Rab −
1

2
gabR

respectively.
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CHAPTER 1

INTRODUCTION

Newton’s theory of gravity was remarkably successful in explaining closed elliptical

orbits of planets around the Sun. This theory is still accurate enough if one uses it

in astronomy and astrophysics, where the effect of the gravity is not strong enough.

However, Newton’s theory could not fully explain the precession of the perihelion of

the planet Mercury. Due to Mercury’s orbit’s deviation from the theory, another planet

named Vulcan is hypothesized by Urbain Le Verrier in the 19th century. However,

such a planet has never been observed. Therefore, it was assumed that Newton’s

theory was incomplete. Actually, Newton was the first to consider modified theories

to explain Lunar precession by including an inverse-cube term in his inverse-square

law of the gravitational force.

After the theory of special relativity proposed by Einstein in 1905, he aimed general-

izing his theory with the gravitation theory. Instead of the idea of action at a distance

in Newton’s theory, he considered gravitation as a curvature of spacetime. In 1915,

Einstein published the geometric theory of gravitation, General Relativity (GR).

GR is considered as the best explanation of how spacetime behaves on macroscopic

scales. One of the early successes of the theory was the correct prediction of the

advance in the perihelion of Mercury. As a consequence of the theory, original ideas

and their solutions are emerged. The idea of black holes, gravitational deflection of

light, gravitational redshift and Shapiro delay are all predictions of GR.

The field equations found by Einstein have passed many experimental tests. These
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equations are

Gµν =
8πG

c4
Tµν , (1.1)

whereGµν is the Einstein tensor, Tµν is the energy–momentum tensor, G is Newton’s

gravitational constant and c is the speed of light. These equations have been suc-

cessful in explaining many phenomena which could not be explained otherwise. For

instance, gravitational waves are natural consequence of Einstein’s field equations.

For the first time, the existence of gravitational waves was indirectly verified by mea-

suring the period decay of binary neutron stars in 1974 [1]. On September 14, 2015,

the first direct observation of gravitational waves was made by the LIGO team which

will certainly lead to a new way of observing the universe [2].

Despite its successes, as in Newton’s theory, GR has shortcomings in explaining some

of the observed phenomena. Although it passes experiments performed in solar sys-

tem scales, it has shortcomings on larger scales such as cosmological and galactic

scales. Therefore, gravitation may differ in such scales. For example, if one tries to

understand the galaxy rotation curve, which remains flat far away from the galaxy

center, by using GR, significant amount of dark matter is needed. In other words, in

a galactic scale limit, GR reduces to Newton’s theory of gravity. As it happens in

the Solar System, the theory suggests a decrease in the velocities of the orbits when

radial distance from the center of mass increases. However, observations have shown

that outer stars of a galaxy move faster than expected. Due to this fact, dark matter

is hypothesized, which may be an explanation of these observations. Similarly, the

accelerating expansion of the universe can only be explained in GR with the help of

dark energy which seems to dominate the distribution of ordinary (baryonic) matter

and energy in the universe. This need for the existence of considerable amount of

dark energy and dark matter in the universe leads to speculations that GR may not be

the complete theory of gravitation.

Although GR has had great success especially in the solar system experiments, al-

ternative theories emerged before observational tests were made. Soon after its first

publication in 1915, there were a flurry of theories in order to find a more unified

version. Eddington’s theory of connections [3], Weyl’s scale independent theory [4],

and the higher dimensional theories of Kaluza and Klein [5], [6] are some examples

that can be presented. Eddington’s studies influenced Dirac and thus, he discussed
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the idea of varying Newton’s constant in time [7]. Later, this idea motivated Brans

and Dicke [8]. In addition to the metric, in the Brans-Dicke theory, a scalar field φ is

introduced which can be viewed as the varying gravitational constant G. They devel-

oped the prototypical form of scalar-tensor theories of gravity, which are still actively

studied in the literature [9].

GR, together with a cosmological constant term in its field equations, is a unique

second-order metric theory in a four-dimensional spacetime. The most general form

of the action is

S =

∫ [
1

2κ
(R− 2Λ) + LM

]
√
gd4x,

where κ = 8πG
c4

, Λ is a constant and LM describes any matter fields. The field equa-

tions that are obtained from this action through a variation of the metric are

Gµν + Λgµν =
8πG

c4
Tµν . (1.2)

Note that these equations are at most of second-order in the derivatives of the metric.

As we mentioned, due to its constant cosmological term, GR has shortcomings in

explaining different phases of the universe’s expansion. As a consequence of this

fact, one may make use of an additional degree of freedom in the Lagrangian such

as a scalar field. Similarly, one may also consider higher dimensions than four in

order to have different field equations rather than (1.2) which may explain the cosmic

expansion.

In the seventies, Lovelock and Horndeski studied scalar-tensor theories in a more

mathematical way to obtain the most general forms of both the Lagrangian and the

Euler-Lagrange equations [10, 11, 12]. They applied and improved the methods de-

veloped by Rund on variational problems involving combined tensor fields [13].

Lovelock had shown that GR is the unique metric field theory of four-dimensional

spacetime [14]. Moreover, Lovelock obtained the most general form of a metric

theory in any dimension [15]. The Lovelock densities are

L(h/2) =
1

2h
δB1B2···Bh
A1A2···Ah R B1B2

A1A2
· · ·R Bh−1Bh

Ah−1Ah

and the Lovelock Lagrangian is

L =
k∑

h=0

chL(h)

3



where k = [(D − 1)/2] and D is the dimension of spacetime. Here, L(1) is the

Einstein-Hilbert term and L(2) is the Gauss-Bonnet term. However, for the case h =

D, the Lovelock density becomes topological. Due to the Gauss-Bonnet theorem, the

Einstein-Hilbert term is a topological invariant when D = 2. Therefore, the Einstein

tensor is zero in a two-dimensional spacetime. Similarly, when D = 4, the variation

of the Gauss-Bonnet term vanishes which keeps the Einstein field equations unique.

Due to this uniqueness, if we limit ourselves to four-dimensional spacetime, we have

to consider some additional fields. A scalar could be the simplest way of adding

extra degrees of freedom. Theories involving a scalar field together with a tensor

field are called as scalar-tensor theories. The most general form of these theories in

four-dimensional spacetime was constructed by Horndeski [16].

This study can be considered as a review of works done by Rund, Lovelock, and

Horndeski on scalar-tensor field theories. In this thesis, we are seeking for the most

general form of the Lagrangian which yields the most general form of the second-

order scalar-tensor field equations in a four-dimensional spacetime.

In Chapter 2, we begin with choosing our Lagrangian of the form

L(gij , gij,k , gij,kh, φ, φ,i). (1.3)

Since the derivatives higher than second order create instabilities that lead to a the-

ory with ghosts, we would like to obtain the second-order field equations from this

Lagrangian. Therefore, the Lagrangian should be also at most of second-order. More-

over, for simplicity, we do not let our Lagrangian to have dependency on the second-

order derivative of the scalar. By doing so, we can not construct the most general

form of the field equations which is done in Chapter 3. Starting from the Lagrangian

given in (1.3), we then work out the symmetries that are required for generating gen-

eralized tensor densities. These symmetric tensor densities are related to the partial

derivatives of the Lagrangian with respect to the metric, the scalar and their deriva-

tives. In addition to these symmetries, we obtain some important identities which put

restrictions on these tensor densities. These identities are partial differential equa-

tions which are satisfied by the Lagrangian. Moreover, due to symmetries of these

tensor densities, having a four-dimensional spacetime also restricts the general form

of the Lagrangian. By virtue of these equations, relevant symmetries and dimensional
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restrictions, one can construct the most general form of the Lagrangian. To study the

dynamics, we need to obtain the second-order field equations and to do so we de-

rive the Euler-Lagrange equations corresponding to variations of the Lagrangian with

respect to the metric and scalar field. Then we find the necessary conditions which

guarantee that the field equations are functions of the metric, a scalar and their first

two derivatives. After imposing these conditions on the Lagrangian the most general

form of it is generated.

In Chapter 3, we look for the Lagrangian which has the Euler-Lagrange equations in-

volving the metric, a scalar and their first two derivatives. Since there is no restriction

in the beginning,

L = L(gij , gij,i1 , . . . , gij,i1...ip , φ, φ,i1 , . . . , φ,i1...iq) (1.4)

is the Lagrangian in this case. Approaching this problem in reverse order proves to

be useful. In order to generate the most general form of the Lagrangian, we start

by constructing the most general form of the Euler-Lagrange equations. Since the

field equations are tensor densities, we may obtain new tensor densities out of field

equations by taking their derivatives.

Generalized Bianchi identities for this Lagrangian defined as

Eij
|j (L) =

1

2
gijφ|jE(L),

where Eij and E(L) are Euler-Lagrange equations through a variation of the La-

grangian with respect to the metric and the scalar, respectively. Having at most of

second-order E(L) means also having at most of second-order Eij
|j (L) at the same

time. Obviously, this fact puts severe restrictions on the most general form of the

field equations. Again by considering dimensional restrictions, we generate the most

general form of the field equations obtained from the Lagrangian given in (1.4). Af-

terwards, by using the relations between the Lagrangian and its field equations, we

will obtain the desired Lagrangian in a four-dimensional spacetime.

The implications of the results that we have obtained in chapters — will be discussed

in Chapter 4. We will briefly examine the applicability of the methods that we have

used to other field theories such as the bi-scalar-tensor theory and we will give a short

summary of recent research on scalar-tensor theories.
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In Appendix A, Riemann normal coordinates and their properties are explained. These

coordinates are frequently used throughout this thesis. General forms of various ten-

sor densities that possess certain symmetries are derived in Appendix B. Detailed

calculations are relegated to Appendix C in order to provide fluency in reading.
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CHAPTER 2

SCALAR-TENSOR FIELD THEORIES

In this chapter, our goal is to generate the most general Lagrangian of the form

L(gij , gij,k , gij,kh, φ, φ,i) which yields second-order field equations in a four dimen-

sional spacetime. Therefore, we want to obtain

Eab = Eab(gij , gij,k , gij,kh, φ, φ,i, φ,ij),

E = E(gij , gij,k , gij,kh, φ, φ,i, φ,ij).

In this chapter, we consider the first derivative of the scalar field φ only. By doing

so, we study an easier but specific example of general scalar-tensor field theories.

However, while we are studying this example, we will be developing some general

methods which will be useful in the next chapter. Moreover, these general methods

can be applied to various field theories.

To begin with, we are looking for an action invariant under arbitrary coordinate trans-

formations of the form

xi = xi(xµ),

where the action is

I =

∫
L(gij , gij,k , gij,kh, φ, φ,i)d

nx.

Therefore, we study the Lagrangians of the form L(gij , gij,k , gij,kh, φ, φ,i) which sat-

isfies

BL(gµν , gµν,ρ, gµν,ρσ , φ, φ,µ) = L(gij, gij,k, gij,kh, φ, φ,i), (2.1)

where gij is the metric, gij,k is the first derivative of the metric, gij,kh is the second

derivative of the metric and

B ≡ det
(∂xµ
∂xi

)
> 0,

7



is the Jacobian. Since our Lagrangian is a scalar density, we may call it as Lagrange

scalar density.

We can define the transformation matrix and its derivatives, which will be useful

throughout the chapter, as

Bµ
i =

∂xµ

∂xj

Bµ
ij =

∂Bµ
i

∂xj
=

∂2xµ

∂xj∂xi
,

Bµ
ijk =

∂2Bµ
i

∂xk∂xj
=

∂3xµ

∂xk∂xj∂xi
.

We calculate the transformation of the scalar φ, the metric, and their derivatives as

φ =φ,

φ,i =B
µ
iφ,µ,

φ,ij =φ,µνB
µ
iB

ν
j + φ,µB

µ
ij ,

gij =gµνB
µ
iB

ν
j ,

gij,k =gµν,ρB
µ
iB

ν
jB

ρ
k + gµνB

µ
ikB

ν
j + gµνB

µ
iB

ν
jk ,

gij,kh =gµν,ρσB
µ
iB

ν
jB

ρ
kB

σ
h + gµν,ρ

(
Bµ

ihB
ν
jB

ρ
k +Bµ

iB
ν
jhB

ρ
k

+Bµ
iB

ν
jB

ρ
kh +Bµ

ikB
ν
jB

ρ
h +Bµ

iB
ν
jkB

ρ
h

)
+ gµν

(
Bµ

ikhB
ν
j +Bµ

iB
ν
jkh +Bµ

ikB
ν
jh +Bµ

ihB
ν
jk

)
.

(2.2)

Before going further, we define the following partial derivatives which will frequently

appear

Λij ≡ ∂L

∂gij
,

Λij,k ≡ ∂L

∂gij,k
,

Λij,kh ≡ ∂L

∂gij,kh
,

Φ ≡ ∂L

∂φ
,

Φi ≡ ∂L

∂φ,i
.

We emphasize that the first three terms are symmetric in (i, j) and that the third term

is also symmetric in (k, h). In the next section, we will show that Λij,kh, Φ, and Φi

are tensor densities that are of the fourth, zeroth, and the first rank, respectively.

8



2.1 The Construction of Certain Symmetric Tensor Densities

In this section, we will construct symmetric tensor densities. In order to do this,

we will apply similar techniques developed originally by Rund [13]. Applying these

methods reveals symmetries of tensor densities. Moreover, we can put some restric-

tions on tensor densities to obtain their most general form.

In Section 2.1.1, we will show that Λij,kh is a tensor density. In Section 2.1.2, we will

obtain tensor densities Π ij and Π ij,k which are very useful for obtaining the Euler-

Lagrange equations in clear tensorial form. Then we will obtain important invariance

identities for Λij,kh, Π ij,k and Π ij and in Section 2.1.3 to put restrictions on the

Lagrangian L. These important identities can be obtained by taking the derivative of

(2.1) with respect to Bµ
abc , B

µ
ab and Br

s , respectively.

This method can be used for different Lagrange scalar densities. There are various

examples of application of this method on diverse Lagrange scalar densities which

are conducted by Rund [13].

2.1.1 Proving that Λij,khs a Tensor Density

Taking the derivative of (2.1) with respect to gµν,ρσ yields

B
∂L

∂gµν,ρσ
=

∂L

∂gij,kh

∂gij,kh
∂gµν,ρσ

+
∂L

∂gij,k

∂gij,k
∂gµν,ρσ

+
∂L

∂gij

∂gij
∂gµν,ρσ

+
∂L

∂φ

∂φ

∂gµν,ρσ
+

∂L

∂φ,i

∂φ,i
∂gµν,ρσ

.

The only surviving term on the right hand side is the first one due to transformations

that we have given in (2.2). Therefore, we have

BΛµν,ρσ = Λ
ij,kh

Bµ
iB

ν
jB

ρ
kB

σ
h .

Note that Λµν,ρσ is a tensor density, as can be easily seen. Similarly, Φµ and Φ are

also tensor densities. One can easily check this by taking the derivative of (2.1) with

respect to φ,µ and φ, respectively. However, Λµν,ρ and Λµν are not tensor densities

which can be proven by taking the derivative of equation (2.1) with respect to gµν,ρ
and gµν , respectively. These calculations can be found in the beginning of Section

9



2.1.2. Applying repeated partial differentiation of L with respect to gµν,ρσ , φ,µ and φ

will produce a tensorial quantity.

2.1.2 Deriving the Tensor Densities Π ij and Π ij,k

We can differentiate equation (2.1) with respect to gab,cd , gab,c and gab respectively. In

light of (2.2), by considering nonvanishing terms, one has

BΛab,cd = Λ
ij,kh∂gij,kh

∂gab,cd
, (2.3)

BΛab,c = Λ
ij,kh∂gij,kh

∂gab,c
+ Λ

ij,k ∂gij,k
∂gab,c

, (2.4)

BΛab = Λ
ij,kh∂gij,kh

∂gab
+ Λ

ij,k ∂gij,k
∂gab

+ Λ
ij ∂gij
∂gab

. (2.5)

Note that only the first one is a tensor density but the rest are not. However, we can

seek for tensor densities which include them.

Let us define a symmetric tensor hij which will be transforming similar to the metric

tensor components as shown in (2.2). Now, we define a new quantity F which was

introduced by du Plessis [17] as

F ≡ Λab,cdhab,cd + Λab,chab,c + Λabhab. (2.6)

After multiplying each side of this equation with B, one can substitute equations

(2.3), (2.4) and (2.5) into this to obtain

BF =Λ
ij,kh

(
∂gij,kh
∂gab,cd

hab,cd +
∂gij,kh
∂gab,c

hab,c +
∂gij,kh
∂gab

hab

)
+ Λ

ij,k
(
∂gij,k
∂gab,c

hab,c +
∂gij,k
∂gab

hab

)
+ Λ

ij
(
∂gij
∂gab

hab

)
.

Note that the quantities in the parentheses are equal to hij,kh, hij,k and hij , respec-

tively. This is obvious from (2.2). Therefore, we have

BF = Λ
ij,kh

hij,kh + Λ
ij,k
hij,k + Λ

ij
hij.

If we compare this with (2.6), we conclude that F is a scalar density. Therefore, we

may define F as

F = Λij,khhij|kh +Π ij,khij|k +Π ijhij. (2.7)
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It is remarkable that every term is a tensor density in this equation. Finally, we can

obtain Π ij,k and Π ij after calculating hij|kh and hij|k.

hij|k =hij,k − Γ a
ik haj − Γ a

jk hia,

hij|kh =hij,kh − Γ a
ik haj,h − Γ a

jk hia,h − Γ a
ik,h haj − Γ a

jk,h hia

− Γ b
ih hbj,k − Γ b

jh hib,k − Γ b
kh hij,b + Γ b

ih

(
Γ c
bk hcj + Γ c

jk hbc
)

+ Γ b
jh

(
Γ c
ik hcb + Γ c

bk hic
)
+ Γ b

kh

(
Γ c
ib hcj + Γ c

jb hic
)
.

If we substitute these two equations into (2.7), we obtain

F =Λij,kh
(
hij,kh − Γ a

ik haj,h − Γ a
jk hia,h − Γ a

ik,h haj − Γ a
jk,h hia

− Γ b
ih hbj,k − Γ b

jh hib,k − Γ b
kh hij,b + Γ b

ih

(
Γ c
bk hcj + Γ c

jk hbc
)

+ Γ b
jh

(
Γ c
ik hcb + Γ c

bk hic
)
+ Γ b

kh

(
Γ c
ib hcj + Γ c

jb hic
))

+Π ij,k
(
hij,k − Γ a

ik haj − Γ a
jk hia

)
+Π ijhij

=Λij,khhij,kh + Λij,kh
(
− Γ a

ik haj,h − Γ a
jk hia,h − Γ b

ih hbj,k − Γ b
jh hib,k

− Γ b
kh hij,b

)
+Π ij,khij,k + Λij,kh

(
− Γ a

ik,h haj − Γ a
jk,h hia

+ Γ b
ih

(
Γ c
bk hcj + Γ c

jk hbc
)
+ Γ b

jh

(
Γ c
ik hcb + Γ c

bk hic
)

+ Γ b
kh

(
Γ c
ib hcj + Γ c

jb hic
))

+Π ij,k
(
− Γ a

ik haj − Γ a
jk hia

)
+Π ijhij.

After renaming the indices, we should obtain

F = Λij,khhij,kh + Λij,khij,k + Λijhij.

Therefore, we can write down the tensor densities that we need as

Π ij,k = Λij,k + Γ k
abΛ

ij,ab + 2Γ i
abΛ

aj,kb + 2Γ j
abΛ

ai,kb (2.8)

and
Π ij =Λij + Γ i

ab,cΛ
aj,bc + Γ j

ab,cΛ
ai,bc

+ Γ i
ab

(
Πaj,b − Γ b

cdΛ
aj,cd − Γ a

cdΛ
cj,bd − Γ j

cdΛ
ca,bd

)
+ Γ j

ab

(
Πai,b − Γ b

cdΛ
ai,cd − Γ a

cdΛ
ci,bd − Γ i

cdΛ
ca,bd

)
.

(2.9)

We remark obvious symmetries satisfied by these tensors as

Π ij = Πji, Π ij,k = Πji,k. (2.10)
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One can easily see that the relations, that we have in (2.8) and (2.9), are valid for the

metric field theories that contain at most second-order derivative of the metric. Fur-

thermore, these equations are still valid, even though the Lagrangian involves scalar

fields and their derivatives, i.e., φ, φ,i1...in .

2.1.3 Putting Restrictions on the Lagrangian

In this section, we will derive three identities that put restrictions on L. Therefore,

we will differentiate (2.1) with respect to Bµ
abc , B

µ
ab and Br

s , respectively. We will

divide this section into three parts, in order to make it easier to follow.

Part 1: Differentiation of (2.1) with respect to Bµ
abc

Taking the derivative of (2.1) with respect to Bµ
abc yields

0 = Λ
ij,kh ∂gij,kh

∂Bµ
abc

+ Λ
ij,k ∂gij,k

∂Bµ
abc

+ Λ
ij ∂gij
∂Bµ

abc

+ Φ
∂φ

∂Bµ
abc

+ Φ
i ∂φ,i
∂Bµ

abc

.

The only non-zero term is the first one on the right hand side. Therefore, we have

0 = Λ
ij,kh ∂gij,kh

∂Bµ
abc

=
1

6
Λ
ij,kh

gµνB
ν
j

(
δai δ

b
kδ
c
h + δai δ

b
hδ
c
k + δakδ

b
i δ
c
h + δahδ

b
kδ
c
i + δakδ

b
hδ
c
i

+ δahδ
b
i δ
c
k

)
+

1

6
Λ
ij,kh

gµνB
ν
i

(
δaj δ

b
kδ
c
h + δaj δ

b
hδ
c
k + δakδ

b
jδ
c
h

+ δahδ
b
kδ
c
j + δakδ

b
hδ
c
j + δahδ

b
jδ
c
k

)
.

Now, with (i, j) symmetry, we have

Λ
ij,kh

gµνB
ν
j

(
δai δ

b
kδ
c
h + δai δ

b
hδ
c
k + δakδ

b
i δ
c
h + δahδ

b
kδ
c
i + δakδ

b
hδ
c
i + δahδ

b
i δ
c
k

)
= 0.

We have this equation for an arbitrary transformation. Moreover, in particular, this is

also valid for the identity transformation

xi = xi with Bµ
i = δµi and Bµ

ij = Bµ
ijk = 0. (2.11)

As a result, we have

gµν
(
Λaν,bc + Λaν,cb + Λbν,ac + Λcν,ba + Λcν,ab + Λbν,ca

)
= 0.

Using the symmetry properties that we have, we can rewrite this as

2gµν
(
Λνa,bc + Λνb,ac + Λνc,ba

)
= 0.

12



Consequently, we obtain a remarkable identity for Λij,kh as

Λij,kh + Λik,jh + Λih,kj = 0. (2.12)

We emphasize that the identity above puts severe restrictions on L. Therefore, we

will be frequently using this identity throughout this thesis.

By using (2.12) and known symmetry properties of Λij,kh, we can find another sym-

metry for Λij,kh:

Λij,kh + Λik,jh + Λih,kj = 0,

Λji,kh + Λjk,ih + Λjh,ik = 0,

Λki,jh + Λkj,ih + Λkh,ij = 0.

Summing these three equations yields zero. The sum of third terms of each line is

Λih,kj + Λjh,ik + Λkh,ij = 0 from equation (2.12). Therefore, the sum of the rest is

also zero.

2(Λij,kh + Λki,jh + Λjk,ih) = 0.

When we compare this result with equation (2.12), the first and the second terms of

both equations are the same, respectively. As a result, the third terms in both equations

will be equal to each other. Therefore, we will have a new symmetry property ofΛij,kh

as

Λij,kh = Λkh,ij.

Consequently, Λij,kh enjoys the following symmetry properties

Λij,kh = Λji,kh = Λij,hk = Λkh,ij.

Part 2: Differentiation of (2.1) with respect to Bµ
ab

In order to obtain an equation which is satisfied by Π ij,k, we take the derivative of the

equation (2.1) with respect to Bµ
ab which will yield

0 = Λ
ij,kh∂gij,kh

∂Bµ
ab

+ Λ
ij,k ∂gij,k

∂Bµ
ab

+ Λ
ij ∂gij
∂Bµ

ab

+ Φ
∂φ

∂Bµ
ab

+ Φ
i ∂φ,i
∂Bµ

ab

. (2.13)

The only contribution is coming from the first two terms due to (2.2)

0 =
1

2
Λ
ij,kh

(
gµν,σ

(
4Bν

jB
σ
k(δ

a
i δ

b
h + δahδ

b
i )
)
+ gνσ,µ

(
Bν

iB
σ
j (δ

a
kδ

b
h + δahδ

b
k)
))

+
1

2
Λ
ij,k
gµν
(
2Bν

j (δ
a
i δ

b
k + δakδ

b
i )
)
+Ωab

µ ,
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where theΩab
µ term contains terms which are linear inBν

cd . Due to (2.11), there will

be no contribution coming from this term. As previously applied, using the identity

transformation of the form in (2.11), we have

0 =Λij,kh
(
gµν,σ

(
4δνj δ

σ
k (δ

a
i δ

b
h + δahδ

b
i )
)
+ gνσ,µ

(
δνi δ

σ
j (δ

a
kδ

b
h + δahδ

b
k)
))

+ Λij,kgµν
(
2δνj (δ

a
i δ

b
k + δakδ

b
i )
)

=4Λaν,σbgµν,σ + 4Λbν,σagµν,σ + 2Λνσ,abgνσ,µ + 2Λaν,bgµν + 2Λbν,agµν .

As a result, we have found

2Λaν,σbgµν,σ + 2Λbν,σagµν,σ + Λνσ,abgνσ,µ + Λaν,bgµν + Λbν,agµν = 0. (2.14)

As stated in Appendix A, at the pole P of the Riemann normal coordinate system, we

have

gab 6= 0; however, gab,c = 0, therefore, Γ a
bc = 0. (2.15)

Therefore, at the pole P , we can rewrite equation (2.14) together with equation (2.8)

as

Πaν,bgµν +Πbν,agµν = 0,

as a result, we have

Π ij,k +Πkj,i = 0 or Π ij,k = −Πkj,i. (2.16)

By virtue of (2.10), it is possible to write

Π ij,k = −Πkj,i = −Πjk,i = Π ik,j = Πki,j = −Πji,k.

Therefore, we have a remarkable equation here

Π ij,k = 0. (2.17)

Since this is a tensorial equation, once we obtain this equation at a particular point

of our coordinate system, we can generalize it to be valid at any point of an arbitrary

coordinate system.

Lemma 2.1 If we have a scalar density of the form L(gij , gij,k , gij,kh, φ, φ,i) and

Λij,kh = 0 then Λij,k = 0.
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This is an obvious result of equations (2.8) and (2.17) when we have the condition

Λij,kh = 0.

Part 3: Differentiation of (2.1) with respect to Br
s

Note that ∂B
∂Brs

= BAsr, where Asr is the inverse of Br
k , that is AsrB

r
k = δsk. Taking

the derivative of (2.1) with respect to Br
s yields

BAsrL = Λ
ij,kh∂gij,kh

∂Br
s

+ Λ
ij,k ∂gij,k

∂Br
s

+ Λ
ij ∂gij
∂Br

s

+ Φ
∂φ

∂Br
s

+ Φ
i ∂φ,i
∂Br

s

. (2.18)

There is no contribution to the right hand side of this equation from the fourth term

when equation (2.2) is used. Therefore, we have

BAsrL =Λ
ij,kh

gµν,ρσ
(
Bν

jB
ρ
kB

σ
hδ

µ
r δ

s
i +Bµ

iB
ρ
kB

σ
hδ

ν
r δ

s
j

+Bµ
iB

ν
jB

σ
hδ

ρ
rδ
s
k +Bµ

iB
ν
jB

ρ
kδ

σ
r δ

s
h

)
+ Λ

ij,k
gµν,ρ

(
Bν

jB
ρ
kδ

µ
r δ

s
i +Bµ

iB
ρ
kδ

ν
r δ

s
j +Bµ

iB
ν
j δ
ρ
rδ
s
k

)
+ Λ

ij
gµν
(
Bν

j δ
µ
r δ

s
i +Bµ

iδ
ν
r δ

s
j

)
+ Φ

i
δµr δ

s
iφ,µ +Ωr

s ,

where term Ωs
r contains terms which are linear in Bµ

ab and Bµ
abc . Due to equation

(2.11), there will be no contribution coming from this term. As applied before from

the identity transformation given in (2.11), we have

δsrL =Λsj,khgrj,kh + Λis,khgir,kh + Λij,shgij,rh + Λij,ksgij,kr

+ Λsj,kgrj,k + Λis,kgir,k + Λij,sgij,r + 2Λsjgrj + Φsφ,r.

After renaming dummy indices, we have

δsrL =Λsj,kigrj,ki + Λjs,kigjr,ki + Λij,skgij,rk + Λij,ksgij,kr

+ Λsj,kgrj,k + Λjs,kgjr,k + Λij,sgij,r + 2Λsjgrj + Φsφ,r.

Using the symmetries, we have

δsrL =2Λsj,kigrj,ki + 2Λij,skgij,rk + 2Λsj,kgrj,k + Λij,sgij,r + 2Λsjgrj + Φsφ,r.

after renaming dummy indices once more, we obtain

δsrL =2Λsj,ki
(
grj,ki + gik,rj

)
+ 2Λsj,kgrj,k + Λij,sgij,r + 2Λsjgrj + Φsφ,r. (2.19)

At the pole P of the Riemann normal coordinate system, we have

Rirkj =
1

2

(
gij,rk + grk,ij − grj,ik − gik,rj

)
.
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Upon multiplying this with Λki,sj , we have

Λki,sjRirkj =
1

2

(
gij,rkΛ

ki,sj + grk,ijΛ
ki,sj − grj,ikΛki,sj − gik,rjΛki,sj

)
.

If αij is a quantity which is symmetric in (i, j), and φijkh = φjikh = φijhk together

with φijkh + φikjh + φihkj = 0, then

αijφaibj = −
1

2
αijφabij. (2.20)

Making use of (2.20), we find

Λki,sjRirkj =−
1

4
gij,rkΛ

ij,sk − 1

4
grk,ijΛ

ij,sk − 1

2
grj,ikΛ

ki,sj − 1

2
gik,rjΛ

ki,sj

=− 1

4
gij,rkΛ

ij,sk − 1

4
grk,ijΛ

ij,sk − 1

2
grk,ijΛ

ji,sk − 1

2
gij,rkΛ

ji,sk

=− 3

4
gij,rkΛ

ij,sk − 3

4
grk,ijΛ

ij,sk

=− 3

4
Λki,sj

(
gik,rj + grj,ik

)
.

(2.21)

At the pole P of the Riemann normal coordinates, we have

Λrs = Πrs − Γ r
ij,kΛ

is,jk − Γ s
ij,kΛ

it,jk. (2.22)

Again at the pole P , we find

Γ r
ij,k =

1

2
grh
(
gih,jk + gjh,ik − gij,hk

)
.

Inserting this into (2.22) yields

Λrs =Πrs − 1

2
Λis,jkgrh

(
gih,jk + gjh,ik − gij,hk

)
− 1

2
Λit,jkgsh

(
gih,jk + gjh,ik − gij,hk

)
.

In light of (2.20), we obtain

Λrs = Πrs − 1

4
Λis,jkgrh

(
gih,jk − gjk,ih

)
− 1

4
Λit,jkgsh

(
gih,jk − gjk,ih

)
.

Equation (2.21) reduces this to

Λrs = Πrs +
1

3
grhΛik,sjRkhij +

1

3
gshΛik,rjRkhij .

After multiplying this with the metric, we have

grtΛ
rs = grtΠ

rs +
1

3
Λik,sjRktij +

1

3
gshgrtΛ

ik,rjRkhij ,
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after renaming indices, we find

gjrΛ
js = gjrΠ

js +
1

3
Λik,sjRkrij +

1

3
gshgjrΛ

ik,jtRkhit.

By inserting this and equation (2.21) into equation (2.19) at the pole P of the Riemann

normal coordinates, we obtain

δsrL =− 8

3
Λsj,kiRirkj + 2gjrΠ

js +
2

3
Λik,sjRkrij +

2

3
gshgjrΛ

ik,jtRkhit + Φsφ,r

=− 2Λsj,kiRirkj + 2gjrΠ
js +

2

3
gshgjrΛ

ik,jtRkhit + Φsφ,r.

Since this is a tensorial equation, this identity is valid for any point of any coordinate

system. Multiplying this with gru while renaming dummy indices yields

gsuL =− 2gruΛsj,kiRirkj + 2Πus +
2

3
gshΛik,utRkhit + gruΦsφ,r

=− 2Λsj,kiR u
i kj + 2Πus +

2

3
Λik,ujR s

i kj + gruΦsφ,r.
(2.23)

The left hand side of this equation is symmetric in (s, u), thus the right hand side

should also be symmetric in (s, u). The second term on the right hand side of this

equation is symmetric in (s, u). Therefore, we have

−2Λsj,kiR u
i kj +

2

3
Λik,ujR s

i kj + gruΦsφ,r

= −2Λuj,kiR s
i kj +

2

3
Λik,sjR u

i kj + grsΛuφ,r.

After rearranging, we find

−8

3
Λsj,kiR u

i kj + gruΦsφ,r = −
8

3
Λuj,kiR s

i kj + grsΛuφ,r.

Consequently, we obtain

Λuj,kiR s
i kj = Λsj,kiR u

i kj +
3

8

(
grsΛuφ,r − gruΦsφ,r

)
.

If we substitute this into equation (2.23), we have

gsuL =− 2Λsj,kiR u
i kj + 2Πus +

2

3
Λsj,kiR u

i kj

+
1

4

(
grsΛuφ,r − gruΦsφ,r

)
+ gruΦsφ,r.

Following the long calculations, we end up with a very important identity

1

2
gijL = Π ij − 2

3
Λim,khR j

h km +
3

8
gjhΦiφ,h +

1

8
gihΦjφ,h. (2.24)

Finally, we have very important identities (2.12), (2.17) and (2.24). These are very

useful since they put severe restrictions on the Lagrangian. We will be using these

results to obtain the Euler-Lagrange equations in the next section.
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2.2 Properties of the Euler-Lagrange Equations

In this section, we will obtain some identities for the Euler-Lagrange equations. These

identities are useful for finding field equations.

2.2.1 Finding the Tensorial Form of Eij

We can write the Euler-Lagrange equations of our Lagrangian as

Eij(L) =
∂

∂xk
(
Λij,k − ∂

∂xh
Λij,kh

)
− Λij, (2.25)

E(L) =
∂

∂xi
Φi − Φ. (2.26)

Consider a symmetric tensor hij , we can write its first and second-order partial deriva-

tives as
hij,kΛ

ij,k =
(
hijΛ

ij,k
)
,k
− hijΛ

ij,k
,k,

hij,khΛ
ij,kh =

(
hij,kΛ

ij,kh
)
,h
− hij,kΛ

ij,kh
,h

=
(
hijΛ

ij,kh
)
,h
−
(
hijΛ

ij,kh
,h

)
,k
+ hijΛ

ij,kh
,hk.

From (2.6), we can write

F =− hij
(
Λij,k,k − Λ

ij,kh
,kh − Λ

ij
)

+
(
hijΛ

ij,k + hij,hΛ
ij,kh − hijΛ

ij,kh
,h

)
,k
.

(2.27)

Similarly, by using (2.7) for the first term in the parenthesis on the right hand side,

we find

F =− hij
(
Π ij,k

|k − Λ
ij,kh

|kh −Π
ij
)

+
(
hijΠ

ij,k + hij|hΛ
ij,kh − hijΛ

ij,kh
|h
)
|k.

(2.28)

It is clear that the term inside the second parenthesis on the right hand side is a com-

ponent of a (1, 0) type tensor density. For a tensor density of this type, we can write

Aj|k = Aj,k + Γ j
hkA

h − wΓ h
khA

j,

where w is the weight of the tensor density. Since w = 1 in our case, we can write

Ak|k = Ak,k + Γ k
hkA

h − Γ h
khA

k = Ak,k.
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Therefore, the covariant derivative of the second parenthesis on the right hand side of

(2.28) reduces to partial derivative. Before taking the derivative, we have to calculate

hijΠ
ij,k + hij|hΛ

ij,kh − hijΛ
ij,kh

|h. We find easily that

hij|h = hij,h − Γ a
ih haj − Γ a

jh hia

and
Λij,kh|h =Λ

ij,kh
,h + Γ i

ahΛ
aj,kh + Γ j

ahΛ
ia,kh + Γ k

ahΛ
ij,ah

+ Γ h
ahΛ

ij,ka − Γ h
ahΛ

ij,ka

=Λij,kh,h + Γ i
ahΛ

aj,kh + Γ j
ahΛ

ia,kh + Γ k
ahΛ

ij,ah.

Using these two equations in conjunction with (2.8), we find

hijΠ
ij,k + hij|hΛ

ij,kh − hijΛ
ij,kh

|h =hij
(
Λij,k + Γ k

abΛ
ij,ab + 4Γ i

abΛ
aj,kb

)
− hij

(
Λij,kh,h + 2Γ i

ahΛ
aj,kh + Γ k

ahΛ
ij,ah

)
− Λij,kh

(
hij,h − 2Γ a

ih haj
)

=hijΛ
ij,k + hij,hΛ

ij,kh − hijΛ
ij,kh

,h.

Now, by using the fact that the covariant derivative of the second parenthesis on the

right hand side of (2.28) reduces to ordinary partial derivative and from equations

(2.27) and (2.28), we can easily obtain

hij

(
Eij(L)−

(
Π ij,k

|k − Λ
ij,kh

|kh −Π
ij
))

= 0

for arbitrary symmetric hij . Therefore, we have

Eij(L) = Π ij,k
|k − Λ

ij,kh
|kh −Π

ij

which is a tensorial condition as expected. If we put equations (2.17) and (2.24) into

the equation above, we find

Eij(L) = −Λij,kh|kh −
1

2
gijL− 2

3
Λim,khR j

h km +
3

8
gjhΦiφ,h +

1

8
gihΦjφ,h. (2.29)

This is a very useful equation since we only need to calculate Λij,kh and Φi to obtain

an expression for Eij(L).

2.2.2 A Relation Between Eij
|j (L) and E(L)

At the pole P of the Riemann normal coordinate system, due to (2.25), a covariant

derivative reduces to

Eij
|j (L) = Λij,k,kj − Λ

ij,kh
,khj − Λ

ij
,j.
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The second term on the right hand side is zero due to the symmetry that we have in

equation (2.12). Making use of (2.8) and (2.17), we have

Λij,k = −Γ k
abΛ

ij,ab − 2Γ i
abΛ

aj,kb − 2Γ j
abΛ

ai,kb.

If we use (2.20), we find

Λij,k = −Γ k
abΛ

ij,ab + Γ i
abΛ

kj,ab + Γ j
abΛ

ki,ab.

From this, we can easily obtain

Λij,k,kj =
(
Γ i
abΛ

kj,ab
)
,kj

and at the pole P of the Riemann normal coordinate system, we have

Λij,k,kj = Γ i
ab,kj Λ

kj,ab + 2Γ i
ab,kΛ

kj,ab
,j, (2.30)

where at the pole P , we have

Γ i
ab,k =

1

2
gih(gah,bk + gbh,ak − gab,hk),

Γ i
ab,kj =

1

2
gih(gah,bkj + gbh,akj − gab,hkj ).

Using these in (2.30), we find

Λij,k,kj =
1

2
gih(gah,bkj + gbh,akj − gab,hkj )Λkj,ab

+gih(gah,bk + gbh,ak − gab,hk)Λ
kj,ab

,j.

From (2.12) and (2.20), we obtain

Λij,k,kj = −
1

2
gihgab,hkjΛ

kj,ab − gih(ghk,ab + gab,hk)Λ
kj,ab

,j.

Multiplying (2.19) with gri and renaming the dummy indices yields

gijL =2gaiΛjb,kh
(
gab,hk + ghk,ab

)
+ 2gaiΛjb,kgab,k

+ gaiΛhb,jghb,a + 2Λij + gaiΦjφ,a.

Therefore, we have

Λij =
1

2
gijL− gaiΛjb,kh

(
gab,hk + ghk,ab

)
− gaiΛjb,kgab,k

− 1

2
gaiΛhb,jghb,a −

1

2
gaiΦjφ,a.
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Resulting from this, at the pole P of the Riemann normal coordinate system, we find

Λij,j =
1

2
gijL,j − gaiΛjb,kh

(
gab,hkj + ghk,abj

)
− gaiΛjb,kh,j

(
gab,hk + ghk,ab

)
− gaiΛjb,kgab,kj −

1

2
gaiΛhb,jghb,aj −

1

2
gaiΛj,jφ,a −

1

2
gaiΦjφ,aj.

(2.31)

If we calculate L,j , we obtain

∂L

∂xj
=
∂gab
∂xj

Λab +
∂gab,c
∂xj

Λab,c +
∂gab,cd
∂xj

Λab,cd +
∂φ

∂xj
Φ+

∂φ,a
∂xj

Λa.

The first term on the right hand side is zero at P ; therefore, we have

gij
∂L

∂xj
= gijgab,cjΛ

ab,c + gijgab,cdjΛ
ab,cd + gijφ,jΦ+ gijφ,ajΛ

a.

If we insert this into (2.31), we find

Λij,j =
1

2
gijgab,cjΛ

ab,c +
1

2
gijgab,cdjΛ

ab,cd +
1

2
gijφ,jΦ+

1

2
gijφ,ajΛ

a

− gaiΛjb,kh
(
gab,hkj + ghk,abj

)
− gaiΛjb,kh,j

(
gab,hk + ghk,ab

)
− gaiΛjb,kgab,kj −

1

2
gaiΛhb,jghb,aj −

1

2
gaiΛj,jφ,a −

1

2
gaiΦjφ,aj.

Simplifying this yields

Λij,j =
1

2
gijgab,cdjΛ

ab,cd +
1

2
gijφ,jΦ− gaiΛjb,khghk,abj

− gaiΛjb,kh,j
(
gab,hk + ghk,ab

)
− gaiΛjb,kgab,kj −

1

2
gaiΛj,jφ,a.

Note that gaiΛjb,kgab,kj = 0, due to (2.16) at P . Therefore, we have

Λij,j =
1

2
gijgab,cdjΛ

ab,cd +
1

2
gijφ,jΦ− gaiΛjb,khghk,abj

− gaiΛjb,kh,j
(
gab,hk + ghk,ab

)
− 1

2
gaiΛj,jφ,a.

Using all of these results to calculate Eij
|j (L), we finally obtain

Eij
|j (L) = Λij,k,kj − Λ

ij
,j
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which is also equal to

Eij
|j (L) =−

1

2
gihgab,hkjΛ

kj,ab − gih(ghk,ab + gab,hk)Λ
kj,ab

,j

− 1

2
gijgab,cdjΛ

ab,cd − 1

2
gijφ,jΦ+ gaiΛjb,khghk,abj

+ gai(gab,hk + ghk,ab)Λ
jb,kh

,j +
1

2
gaiΛj,jφ,a

=− 1

2
gihgab,hkjΛ

kj,ab − 1

2
gijgab,cdjΛ

ab,cd + gaighk,abjΛ
jb,kh

− 1

2
gijφ,jΦ+

1

2
gijΛa,aφ,j

=− 1

2
gijgab,jcdΛ

cd,ab − 1

2
gijgab,cdjΛ

ab,cd + gijgab,dcjΛ
dc,ab

− 1

2
gijφ,jΦ+

1

2
gijΛa,aφ,j

=
1

2
gijφ,j

(
Λa,a − Φ

)
.

Note that the term in the parenthesis is equal to (2.26). We state this important result

as a theorem.

Theorem 2.1 For a scalar density of the type

L(gij , gij,k , gij,kh, φ, φ,i)

and if the corresponding Euler-Lagrange equations are Eij(L) and E(L) are given

by equations (2.25) and (2.26), then

Eij
|j (L) =

1

2
gijφ,jE(L). (2.32)

Note that even though we have found this relation at the pole P of the Riemann normal

coordinate system, being a tensorial equation, it is guaranteed to be valid everywhere.

As a consequence of this, if the Euler-Lagrange equations for the metric are satisfied,

i.e., Eij(L) = 0, then E(L) = 0. It is clear that the converse does not generally hold

true.

The equation given in (2.32) is the generalization of the Bianchi identity. This equa-

tion reduces to divergence-free field equations in a metric field theory.
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2.3 Degenerate Lagrange Densities in n Dimensions

We start by defining the following useful quantities that will be relevant in the discus-

sion that follows

Λij,kh;rs,tu ≡ ∂

∂grs,tu

∂L

∂gij,kh
,

χij,kh;rs,tu ≡ Λij,kh;rs,tu + Λij,ku;rs,th + Λij,kt;rs,hu,

Λij,kh;rs,tu;ab,cd ≡ ∂

∂gab,cd

∂

∂grs,tu

∂L

∂gij,kh
,

Λij,kh;a ≡ ∂

∂φ,a

∂L

∂gij,kh
,

Λij,kh;ab ≡ ∂

∂gab

∂L

∂gij,kh
,

Λij,kh;ab,c ≡ ∂

∂gab,c

∂L

∂gij,kh
.

Note that apart from the last term, all these terms are tensor densities.

The Euler-Lagrange equations associated withL = L(gij , gij,k , gij,kh, φ, φ,i) are (2.25)

and (2.26). Note that these equations are of the form

Etu = Etu(gij , gij,k , gij,kh, gij,khr , gij,khrs, φ, φ,i, φ,ij, φ,ijk),

E = E(gij , gij,k , gij,kh, gij,khr , φ, φ,i, φ,ij).

We can calculate (2.25) and (2.26) as

Eij(L) =
∂gab
∂xk

∂

∂gab
Λij,k +

∂gab,c
∂xk

∂

∂gab,c
Λij,k +

∂gab,cd
∂xk

∂

∂gab,cd
Λij,k +

∂φ

∂xk
∂

∂φ
Λij,k

+
∂φ,a
∂xk

∂

∂φ,a
Λij,k − ∂

∂xh

(
∂gab
∂xk

∂

∂gab
Λij,kh +

∂gab,c
∂xk

∂

∂gab,c
Λij,kh

+
∂gab,cd
∂xk

∂

∂gab,cd
Λij,kh +

∂φ

∂xk
∂

∂φ
Λij,kh +

∂φ,a
∂xk

∂

∂φ,a
Λij,kh

)
− Λij,

E(L) =
∂gab
∂xi

∂

∂gab
Φi +

∂gab,c
∂xi

∂

∂gab,c
Φi +

∂gab,cd
∂xi

∂

∂gab,cd
Φi

+
∂φ

∂xi
∂

∂φ
Φi +

∂φ,a
∂xi

∂

∂φ,a
Φi − Φ.

Here, we find the terms involving the fourth and the third-order derivatives of gij and
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φ such that

Eij(L) =− gab,cdkhΛij,kh;ab,cd − φ,akhΛij,kh;a + gab,cdk

(
Λij,k;ab,cd

− Λij,kd;ab,c − ∂

∂xh
Λij,kh;ab,cd

)
− gab,ck

∂

∂xh
Λij,hk;ab,c

− gab,k
∂

∂xh
Λij,hk;ab − φ,ak

∂

∂xh
Λij,hk;a − φ,k

∂

∂xh
Λij,hk + P ij,

(2.33)

E(L) =gab,cdiΛ
i;ab,cd + P, (2.34)

where we have defined

P ij = P ij(gab, gab,c, gab,cd, φ, φ,a, φ,ab),

P = P (gab, gab,c, gab,cd, φ, φ,a, φ,ab)

for convenience.

Lemma 2.2 (i) E(L) is at most of second-order in gij if and only if

Λi;ab,cd + Λd;ab,ci + Λc;ab,id = 0; (2.35)

(ii) Eij(L) is at most of second-order in φ if and only if

Λij,kh;a + Λij,ah;k + Λij,ka;h = 0; (2.36)

(iii) Eij(L) is at most of third-order in gij if and only if

Λij,kh;ab,cd+Λij,kd;ab,ch + Λij,kc;ab,hd

+Λij,cd;ab,kh + Λij,ch;ab,kd + Λij,hd;ab,kc = 0.
(2.37)

These three relations are direct consequences of symmetry relations associated with

the derivatives of the metric. It is obvious that (2.35) and (2.36) are in fact identical

conditions. Note that equation (2.37) can be written as

χij,kh;ab,cd = −χab,kh;ij,cd. (2.38)

Applying conditions of Lemma 2.2 leavesEij(L) at most of third-order in gij . There-

fore, we need to eliminate all third-order dependency ofEij(L). All third-order terms
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of the Euler-Lagrange equations of the metric are obtained from (2.33) as

gab,cdk

(
Λij,k;ab,cd − Λij,kd;ab,c − ∂

∂xh
Λij,kh;ab,cd

)
− gab,ckgrs,tuhΛij,hk;ab,c;rs,tu

− gab,kgrs,tuhΛij,hk;ab;rs,tu − φ,akgrs,tuhΛij,hk;a;rs,tu − φ,kgrs,tuhΦij,hk;rs,tu.
(2.39)

The third term in the parenthesis can be written as

gab,cdk
∂

∂xh
Λij,kh;ab,cd =gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu

+ gab,cdkgrs,thΛ
ij,hk;ab,cd;rs,t + gab,cdkgrs,hΛ

ij,hk;ab,cd;rs

+ gab,cdkφ,hΛ
ij,hk;rs,tu + gab,cdkφ,rhΛ

ij,hk;rs,tu;r.

We can rewrite (2.39) using the equation above. The last four terms of (2.39) can

be written as the third term in the parenthesis as shown above by index renaming.

Therefore, we can write all third-order terms as

− 2gab,cdk
∂

∂xh
Λij,kh;ab,cd + gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu

+ gab,cdkΛ
ij,k;ab,cd − gab,cdkΛij,kd;ab,c.

(2.40)

By taking the derivative of (2.8) with respect to gab,cd and gij,kd , respectively, we may

write the last two terms in terms of Λij,hk;rs,tu. Now, we can calculate them.

From the third term, we find

gab,cdkΛ
ij,k;ab,cd = gab,cdk

(
Π ij,k;ab,cd − Γ k

rsΛ
ij,rs;ab,cd

− 2Γ i
rsΛ

rj,ks;ab,cd − 2Γ j
rsΛ

ir,ks;ab,cd

)
.

From the fourth term, we have

−gab,cdkΛij,kd;ab,c = −gab,cdk
(
Π ij,kd;ab,c − Γ c

rsΛ
ij,kd;ab,rs

− 2Γ a
rsΛ

ij,kd;rb,cs − 2Γ b
rsΛ

ij,kd;ar,cs

)
.

Note that according to equation (2.17), the first terms on the right hand sides of both

equations above are zero. Using

gab,cdkΛ
ij,kh;ab,cd =

1

3
gab,cdkχ

ij,hk;ab,cd,
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we can write the expression in (2.40) as

− 2

3
gab,cdk

∂

∂xh
χij,hk;ab,cd + gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu

+ gab,cdk

(
− Γ k

rsΛ
ij,rs;ab,cd − 2

3
Γ i
rsχ

rj,sk;ab,cd − 2

3
Γ j

rsχ
ir,sk;ab,cd

)
− gab,cdk

(
− Γ c

rsΛ
ij,dk;ab,rs − 2

3
Γ a

rsχ
rb,sc;ij,kd − 2

3
Γ b
rsχ

ar,sc;ij,kd

)
.

(2.41)

We calculate the covariant derivative of χij,hk;ab,cd as

χij,hk;ab,cd|h =χ
ij,hk;ab,cd

,h + Γ i
rhχ

rj,hk;ab,cd + Γ j
rhχ

ir,hk;ab,cd + Γ h
rhχ

ij,rk;ab,cd

+ Γ k
rhχ

ij,hr;ab,cd + Γ a
rhχ

ij,hk;rb,cd + Γ b
rhχ

ij,hk;ar,cd

+ Γ c
rhχ

ij,hk;ab,rd + Γ d
rhχ

ij,hk;ab,cr − Γ r
hr χ

ij,hk;ab,cd.

Now, we use the equation above to write all third-order terms in a compact form. By

inserting the relation above into (2.41), we obtain

− 2

3
gab,cdkχ

ij,hk;ab,cd
|h +

2

3
gab,cdk

(
Γ i
rhχ

rj,hk;ab,cd + Γ j
rhχ

ir,hk;ab,cd

+ Γ h
rhχ

ij,rk;ab,cd + Γ k
rhχ

ij,hr;ab,cd + Γ a
rhχ

ij,hk;rb,cd + Γ b
rhχ

ij,hk;ar,cd

+ Γ c
rhχ

ij,hk;ab,rd + Γ d
rhχ

ij,hk;ab,cr − Γ r
hr χ

ij,hk;ab,cd − 3

2
Γ k

rhΛ
ij,rh;ab,cd

− Γ i
rhχ

rj,hk;ab,cd − Γ j
rhχ

ir,hk;ab,cd +
3

2
Γ c
rhΛ

ij,kd;ab,rh + Γ a
rhχ

rb,hc;ij,kd

+ Γ b
rhχ

ar,hc;ij,kd
)
+ gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu.

After rearranging the terms and renaming indices, we find

− 2

3
gab,cdkχ

ij,kh;ab,cd
|h +

2

3
gab,cdk

(
Γ a

rh

(
χij,hk;rb,cd + χrb,hk;ij,cd

)
+ Γ b

rh

(
χij,hk;ar,cd + χar,hk;ij,cd

)
+ Γ k

rhχ
ij,hc;ab,rd + Γ k

rhχ
ij,hd;ab,cr

+ Γ k
rhχ

ij,hr;ab,cd +
3

2
Γ k

rhΛ
ij,cd;ab,rh − 3

2
Γ k

rhΛ
ij,rh;ab,cd

)
+ gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu.

(2.42)

One can write

Λij,cd;ab,rh − Λij,rh;ab,cd =2Λij,cd;ab,rh + Λij,rc;ab,hd + Λij,ch;ab,rd

+ Λij,rd;ab,ch + Λij,hd;ab,rc − χij,cd;ab,rh − χab,cd;ij,rh

=χij,cd;ab,rh + χij,dc;ab,rh − χij,cd;ab,rh − χab,cd;ij,rh

=χij,dc;ab,rh − χab,cd;ij,rh.
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Therefore, all third-order terms are

− 2

3
gab,cdkχ

ij,kh;ab,cd
|h +

2

3
gab,cdk

[
Γ a

rh

(
χij,hk;rb,cd + χrb,hk;ij,cd

)
+ Γ b

rh

(
χij,hk;ar,cd + χar,hk;ij,cd

)
+

3

2
Γ k

rh

(
χij,hr;ab,cd + χab,hr;ij,cd

)]
+ gab,cdkgrs,tuhΛ

ij,hk;ab,cd;rs,tu.

(2.43)

Thus we have established

Lemma 2.3 A necessary and sufficient condition to have no third-order dependency

∂Eab

∂gij,khr
= 0

is that

χij,kh;ab,cd|h −
[
Γ a

rh

(
χij,hk;rb,cd + χrb,hk;ij,cd

)
+ Γ b

rh

(
χij,hk;ar,cd + χar,hk;ij,cd

)
+

3

2
Γ k

rh

(
χij,hr;ab,cd + χab,hr;ij,cd

)]
= 0.

We note that this is not a tensorial condition due to the bracketed term. In order to

satisfy this equation for all coordinate transformations, the bracketed term must be

equal to zero. The terms in the parentheses are zero if (2.38) is satisfied. However,

the vanishing of the terms in the brackets does not imply that (2.38) will be satisfied.

Lemma 2.4 In order not to have any third-order derivatives of the metric in Eab

under arbitrary transformations, the Lagrangian must satisfy

χij,kh;ab,cd|h = 0

and

Γ a
rh

(
χij,hk;rb,cd + χrb,hk;ij,cd

)
+ Γ b

rh

(
χij,hk;ar,cd + χar,hk;ij,cd

)
+

3

2
Γ k

rh

(
χij,hr;ab,cd + χab,hr;ij,cd

)
= 0.

(2.44)

The condition (2.38) guarantees that there will be no fourth-order derivatives of the

metric in Eij(L). Besides, equation (2.44) is satisfied due to (2.38). Therefore, we

immediately have the following lemma.
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Lemma 2.5 Eab is at most of second-order in derivatives of the metric i.e.,

∂Eab

∂gij,khrs
= 0,

∂Eab

∂gij,khr
= 0

if and only if

χij,kh;ab,cd = −χab,kh;ij,cd

and

χij,kh;ab,cd|h = 0 (2.45)

are satisfied.

As a result, (2.35), (2.38) and (2.45) are necessary and sufficient conditions to have

the Euler-Lagrange equations that are at most of second-order both in the metric and

the scalar field.

2.4 The Most General Lagrange Scalar Density in Four Dimensions

In this section, we start with deriving the most general form of the Lagrangian in a

four-dimensional spacetime. After completing this task, we will impose the condi-

tions that we have in Section 2.3 to have the Euler-Lagrange equations of the form

Eab = Eab(gij , gij,k , gij,kh, φ, φ,i, φ,ij),

E = E(gij , gij,k , gij,kh, φ, φ,i, φ,ij).

As a result, at the end of this section, we will obtain the most general form of the

Lagrangian which yields field equations above.

The detailed calculations in this section relegated to Appendices B and C.

Due to dimensional restrictions on our Lagrangian, in a spacetime of four dimensions,

we have the equation below

Λij,kh;ab,cd;rs,tu;pq,lm = 0. (2.46)

The detailed proof of this can be found in Lemmas (B.10) and (B.11) in Appendix B.

Integrating this equation yields

Λij,kh;ab,cd;rs,tu = Aεij,kh;ab,cd;rs,tu, (2.47)

28



where

A = A(gij , gij,k , φ, φ,i)

and

εij,kh;ab,cd;rs,tu ≡
∑
tu

∑
rs

∑
cd

∑
ab

∑
kh

∑
ij

εikacεjhrtεbdsu/g,

where εikac is the four-dimensional permutation symbol. The summation symbol is

defined as ∑
ij

Aij······ ≡ Aij······ + Aji······ .

Making use of Lemmas (2.1) and (B.7), we obtain

A = A(φ, ρ),

where ρ ≡ gijφ,iφ,j . As a result of Lemma B.12, we have Ai;j = 0 which implies
∂A
∂ρ

= 0. Therefore, we have A = A(φ). Due to (2.21), we can easily find

Λij,khgij,kh =
2

3
Λij,khRkijh. (2.48)

Upon integrating (2.46) together with the relation above, we obtain

Λij,kh;ab,cd =
2

3
Aεij,kh;ab,cd;rs,tuRtrsu + ψij,kh;ab,cd, (2.49)

where ψij,kh;ab,cd = ψij,kh;ab,cd(gab, φ, φ,a) is a tensor density which has the same

symmetry properties as Λij,kh;ab,cd. As a result of Lemma B.12, we have

ψij,kh;ab,cd = αijkhabcdrφ,r + βij,kh;ab,cd,

where

αijkhabcdr = αijkhabcdr(gab, φ) and βij,kh;ab,cd = βij,kh;ab,cd(gab, φ). (2.50)

Here, since αijkhabcdr(gab, φ) has a tensorial character and nine indices which is an

odd number, it is very obvious that αijkhabcdr = 0 [18].

Now, we can write equation (2.49) as

Λij,kh;ab,cd =
2

3
Aεij,kh;ab,cd;rs,tuRtrsu + ψij,kh;ab,cd(gab, φ).

If we integrate this equation again, we obtain

Λij,kh =
2

9
Aεij,kh;ab,cd;rs,tuRtrsuRcabd +

2

3
ψij,kh;ab,cdRcabd + µij,kh,
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where µij,kh = µij,kh(gab, φ, φ,a) is a tensor density. Note that Λij,kh and µij,kh have

the similar symmetry properties. Finally, the integration of this equation gives

L =
4

81
Aεij,kh;ab,cd;rs,tuRtrsuRcabdRkijh +

2

9
ψij,kh;ab,cdRcabdRkijh + µij,khRkijh + λ,

(2.51)

where λ = λ(gab, φ, φ,a) is a scalar density. Therefore, from Lemma B.7, we have

λ = λ(φ, ρ).

Now, for the first term, we adopt the results that we get from Appendix C.1. For the

second term, we make use of Lemmas (B.5) and (B.6) in conjunction with the calcu-

lations in Appendix C.2. For the third term, we benefit from Lemma B.9. Finally, for

the last term, by virtue of Lemma B.8, we find

L =α(∗Rij
kh)(∗R

kh
rs)(∗Rrs

ij)/g + β
√
g(R2 − 4RijR

ij +RijkhR
ijkh)

+ γ ∗Rij
khR

kh
ij + σ

√
gRijφ,iφ,j + µ

√
gR + η

√
g,

(2.52)

where

∗Rij
kh = εijrsRrskh, α = α(φ), β = β(φ), γ = γ(φ),

σ = σ(φ, ρ), µ = µ(φ, ρ), η = η(φ, ρ).

In order to complete our work, we have to impose the conditions that we have in equa-

tions (2.45) and (2.35) on our Lagrangian. However, for the former one, this process

will undoubtedly lead to long calculations. Instead of imposing the condition (2.45),

we can calculate the Euler-Lagrange equations and then decide on the possibilities

to deal with the terms which include the third-order derivative of the metric. Since

we have already imposed the condition that we have in (2.37) during this derivation,

we will not have any terms which has the fourth-order derivative of the metric in the

Euler-Lagrange equations.

For L = α(∗Rij
kh)(∗Rkh

rs)(∗Rrs
ij)/g, due to (2.29), we find the Euler-Lagrange
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equations as

Eij(L) =− 3αεefrsεkhabεcdtu
(
RrskhRtuef

∂Rabcd

∂gij,kh

)
|kh

− 6α′φ;kε
efrsεkhabεcdtu

(
RrskhRtuef

∂Rabcd

∂gij,kh

)
|h

− 3(α′′φ;kφ;h + α′φ;kh)ε
efrsεkhabεcdtu

(
RrskhRtuef

∂Rabcd

∂gij,kh

)
− 1

2
αgijεefrsεkhabεcdtuRrskhRtuefRabcd

− 2αεefrsεkhabεcdtu
(
RrskhRtuef

∂Rabcd

∂gim,kh

)
R j
h km,

where a prime denotes a partial derivative with respect to φ.

The first term of this leads to terms that involve the third-order derivatives of the

metric i.e., Rabcd;h. Therefore, α = 0. Note that sum of all the terms of the form

Rabcd;kh are zero. It can be easily shown by calculating them. We note that this is a

direct consequence of equation (2.37).

For the γ(∗Rij
kh)R

kh
ij term, by using equation (2.29), we calculate the Euler-Lagrange

equations as

Eij(L) =− 2γεabrsgtcgud
(
Rrstu

∂Rabcd

∂gij,kh

)
|kh
− 4γ′φ;kε

abrsgtcgud
(
Rrstu

∂Rabcd

∂gij,kh

)
|h

− 2(γ′′φ;kφ;h + γ′φ;kh)ε
abrsgtcgud

(
Rrstu

∂Rabcd

∂gij,kh

)
− 1

2
γgijεabrsgtcgudRrstuRabcd −

4

3
γεabrsgtcgud

(
Rrstu

∂Rabcd

∂gim,kh

)
R j
h km.

Here, the first term vanishes. The second term yields the third-order derivatives of the

metric. Therefore, we have γ′ = 0 which means γ = c, where c is a constant.

A Lagrangian of the form L = σ
√
gRijφ,iφ,j+µ

√
gR should satisfy equation (2.35).

Otherwise, we will have third-order derivatives of the scalar in the Euler-Lagrange

equations. Consequently, we can calculate

Λa;ij,kh =
1

4

√
g
∂

∂φ,a

(
σ
(
φ,iφ,hgkj + φ,iφ,kghj + φ,jφ,hgki + φ,jφ,kghi

− 2φ,iφ,jgkh − 2φ,kφ,hgij
))

+ 2gsugrt
∂Rrstu

∂gij,kh
gabφ;b

∂µ

∂ρ
.
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Applying the chain rule in partial derivative yields

Λa;ij,kh =
1

4

√
g

(
∂σ

∂φ,a

(
φ,iφ,hgkj + φ,iφ,kghj + φ,jφ,hgki + φ,jφ,kghi − 2φ,iφ,jgkh

− 2φ,kφ,hgij
))

+
1

4

√
gσ

∂

∂φ,a

((
φ,iφ,hgkj + φ,iφ,kghj + φ,jφ,hgki

+ φ,jφ,kghi − 2φ,iφ,jgkh − 2φ,kφ,hgij
))

+
∂µ

∂ρ
φ;a
(
gkjgih + ghjgik − 2gkhgij

)
.

By taking the derivative, we have

Λa;ij,kh =
1

2

√
g
∂σ

∂ρ

(
φ,a
(
φ,iφ,hgkj + φ,iφ,kghj + φ,jφ,hgki + φ,jφ,kghi − 2φ,iφ,jgkh

− 2φ,kφ,hgij
))

+
1

4

√
gσ

((
gaiφ,hgkj + φ,igahgkj + gaiφ,kghj

+ φ,igakghj + gajφ,hgki + φ,jgahgki + gajφ,kghi + φ,jgakghi

− 2gaiφ,jgkh − 2φ,igajgkh − 2gakφ,hgij − 2φ,kgahgij
))

+
∂µ

∂ρ
φ;a
(
gkjgih + ghjgik − 2gkhgij

)
.

Now, using the equation above, we can calculate the expression in equation (2.35) as

0 =Λa;ij,kh + Λk;ij,ah + Λh;ij,ka

=
√
g
∂σ

∂ρ

(
φ,aφ,iφ,hgkj + φ,aφ,iφ,kghj + φ,aφ,jφ,hgki + φ,aφ,jφ,kghi

+ φ,aφ,iφ,hgaj + φ,aφ,jφ,hgai − φ,aφ,iφ,jgkh − φ,kφ,iφ,jgah − φ,hφ,iφ,jgka

− 3φ,kφ,aφ,hgij
)
+

1

2

√
gσ
(
gaiφ,hgkj + gaiφ,kghj + gajφ,hgki + gajφ,kghi

+ gkiφ,aghj + ghiφ,agkj − 2gakφ,hgij − 2φ,kgahgij − 2φ,agkhgij
)

+
√
g
∂µ

∂ρ

(
φ;a
(
gkjgih + ghjgik − 2gkhgij

)
+ φ;k

(
gajgih + ghjgia − 2gahgij

)
+ φ;h

(
gkjgia + gajgik − 2gkagij

))
.

In order to satisfy this equation, we have ∂σ
∂ρ

= 0 and ∂µ
∂ρ

= −1
2
σ. Therefore, µ =

−1
2
σρ+ θ(φ).

Theorem 2.2 If n = 4 then the most general L = L(gij , gij,k , gij,kh;φ, φ,i) for which

the corresponding Euler-Lagrange equations are at most of second-order in gij and
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φ is L = β1L1 + β2L2 + β3L3 + ηL4 + cL5, where

L1 =
√
g(R2 − 4RijR

ij +RijkhR
ijkh),

L2 =
√
gGijφ,iφ,j,

L3 =
√
gR,

L4 =
√
g,

L5 = ∗Rij
khR

kh
ij ,

and β1 = β1(φ), β2 = β2(φ), β3 = β3(φ), η = η(φ, ρ) and c is a constant.

2.5 The Euler-Lagrange Equations of L

By virtue of (2.29) and (2.26) (or (2.32), we can calculate the Euler-Lagrange equa-

tions for the Lagrangian given in Theorem 2.2. These long calculations can be found

in Appendix C.3.

Eij(β1L1) =4
√
gβ′1
(
φ|iaR j

a + φ|jaR i
a +

1

2
R(gabφ|abg

ij − φ|ij)

− gijφ|abRab − gabφ|abRij − φ|abRaijb
)

+ 4
√
gβ′′1
(
φ|iφ|aR

aj + φ|jφ|aR
ai +

1

2
R(gijφ|aφ

|a − φ|iφ|j)

− gijφ|aφ|bRab −Rijφ|aφ
|a − φ|aφ|bRaijb

)
,

E(β1L1) =− β′1L1,

Eij(β2L2) =
√
gβ2

(
1

2
gij
(
(gabφ|ab)

2 − φ|abφ|ab − 2φ|aφ|bR
ab +

1

2
φ|aφ

|aR
)

+ φ|iaφ j
|a − g

abφ|abφ
|ij + φ|a

(
φ|iRaj + φ|jRai

)
− 1

2
φ|iφ|jR− 1

2
φ|aφ

|aRij − φ|aφ|bRaijb

)
+

1

2

√
gβ′2

(
gij
(
φ|aφ|ag

khφ|kh − φ|aφ|bφ|ab
)

− φ|iφ|jg|abφ|ab + φ|a
(
φ|iφ j

|a + φ|jφ i
|a
)
− φ|ijφ|aφ|a

)
,

E(β2L2) =
√
gGab

(
β2φ|ab + β′2φ|aφ|b

)
,

Eij(β3L3) =
√
g
(
− β′′3φ|iφ|j + β′′3g

ijφ|aφ
|a − β′3φ|ij + β′3g

ijgabφ|ab + β3G
ij
)
,

E(β3L3) =−
√
gβ′3R,

33



Eij(ηL4) =
√
g

(
∂η

∂ρ
φ|iφ|j − 1

2
gijη

)
,

E(ηL4) =2
√
g

(
∂2η

∂φ∂ρ
φ|aφ

|a + 2
∂2η

∂2ρ
φ|abφ

|aφ|b +
∂η

∂ρ
gabφ|ab −

1

2

∂η

∂φ

)
,

Eij(cL5) =0,

E(cL5) =0.

Finally, we have found the field equations of the Lagrangian that is given in Theorem

2.2. Note that these field equations are second-order in derivatives of the metric and

the scalar field.

34



CHAPTER 3

SECOND-ORDER SCALAR-TENSOR FIELD EQUATIONS IN

A FOUR-DIMENSIONAL SPACETIME

In this chapter, we review the paper of Horndeski [16].

The field equations that we obtained in Section 2.5 are not the most general second-

order field expressions due to fact that we have chosen our Lagrangian to be at most

of second-order in the metric and at most of first order in φ. Now, we can look for the

Lagrangian which yields second-order Euler-Lagrange equations. Therefore, we will

not put any restriction on our Lagrangian in the beginning. Our Lagrangian can be of

the form

L = L(gij , gij,i1 , . . . , gij,i1...ip , φ, φ,i1 , . . . , φ,i1...iq), (3.1)

where p, q ≥ 2 in a four-dimensional spacetime.

The field equations of (3.1) are given by

Eij(L) =

p∑
h=0

(−1)h+1 d

dxi1
. . .

d

dxih
∂L

∂gij,i1...ih
(3.2)

and

E(L) =

q∑
h=0

(−1)h+1 d

dxi1
. . .

d

dxih
∂L

∂φ,i1...ih
, (3.3)

where equations (3.2) and (3.3) follow from the variation of L with respect to gij and

φ, respectively.

By employing similar techniques as in Section 2.2 on the new L, we can show easily

that these two equations are related by

Eij
|j (L) =

1

2
gijφ|jE(L). (3.4)
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We demand both Eij(L) and E(L) to involve at most second-order in the deriva-

tives of the metric gij and the scalar φ. Therefore, if Eij(L) is of second-order then

Eij
|j (L) will be of third-order. However, by (3.4), we see that Eij

|j (L) has to be of

second-order.

3.1 The Construction of the Most General Form of Aij

From now on, we will be using the following notation: Given A······ we define

A······
;ab,cd ≡ ∂A······

∂gab,cd
, and A······

;ab ≡ ∂A······
∂φ,ab

.

For example, we have

Aij ;ab;cd,ef ;rs =
∂

∂φ,rs

∂

∂gcd,ef

∂

∂φ,ab
Aij. (3.5)

Since (3.4) puts strict restrictions on Eij
|j (L), in a four-dimensional spacetime, we

can seek for the most general symmetric tensor density of the form

Aij = Aij(gab, gab,c, gab,cd, φ, φ,c, φ,cd) (3.6)

which is such that

Aij|j = Aij(gab, gab,c, gab,cd, φ, φ,c, φ,cd). (3.7)

Once we find the most general form of Aij , we know that Eij(L) that we seek will be

contained in Aij .

As a result of (3.4), we should be able to express Aij|j as follows

Aij|j = φ|iA, (3.8)

where A is a scalar density of the form

A = A(gab, gab,c, gab,cd, φ, φ,c, φ,cd).

As a result of equation (3.7), we can easily write

∂Aij|j
∂grs,tvu

= 0 (3.9)
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and
∂Aij|j
∂φ,rst

= 0. (3.10)

Note that Aij is a tensor density and repeated partial differentiation of it with respect

to gab,cd and φ,ab will also yield tensor densities. In order to prove this, we may apply

the same method that we have used in Section 2.1.1.

Since Aij is a tensor density, we may write

BAtu = Bt
rB

u
sA

rs
, (3.11)

and taking the derivative with respect to gµν,ρσ yields

B
∂Atu

∂gµν,ρσ
=
∂A

rs

∂gij,kh

∂gij,kh
∂gµν,ρσ

Bt
rB

u
s +

∂A
rs

∂gij,k

∂gij,k
∂gµν,ρσ

Bt
rB

u
s

+
∂A

rs

∂gij

∂gij
∂gµν,ρσ

Bt
rB

u
s +

∂A
rs

∂φ

∂φ

∂gµν,ρσ
Bt

rB
u
s

+
∂A

rs

∂φ,i

∂φ,i
∂gµν,ρσ

Bt
rB

u
s +

∂A
rs

∂φ,ij

∂φ,ij
∂gµν,ρσ

Bt
rB

u
s .

Except for the first term all the terms vanish on the right hand side. Therefore, we

have

BAtu;µν,ρσ = Bt
rB

u
sB

µ
aB

ν
bB

ρ
cB

σ
dA

rs;ab,cd

which proves that Aij;ab,cd is a tensor density. Analogously, taking the partial deriva-

tive of (3.11) with respect to φ,µν yields

BAtu;µν = Bt
rB

u
sB

µ
aB

ν
bA

rs;ab
,

which proves that Aij;ab is a tensor density.

Since Aij|j is expected to be of third-order, applying similar methods above shows

that equations (3.9) and (3.10) are tensorial conditions. Analogously to the derivation

of (2.12), we can easily obtain

Aij;ab,cd + Aij;ac,bd + Aij;ad,cb = 0. (3.12)

Therefore, one has the following symmetries

Aij;ab,cd = Aij;ba,cd = Aij;cd,ab.
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Since Aij is a tensor density of the form (3.6), we can calculate Aij|j as

Aij|j =
∂Aij

∂gab
gab,j +

∂Aij

∂gab,c
gab,cj + Aij;ab,cdgab,cdj

+
∂Aij

∂φ
φ,j +

∂Aij

∂φ,a
φ,aj + Aij;abφ,abj + AkjΓ i

kj .

Equations (3.9) and (3.10) will hold if and only if

Aij;ab,cd
∂gab,cdj
∂grs,tvu

= 0

and

Aij;ab
∂φ,abj
∂φ,rst

= 0.

Therefore one finds that

Aiu;rs,tv + Ait;rs,uv + Aiv;rs,tu = 0 (3.13)

and

Ait;rs + Air;ts + Ais;rt = 0, (3.14)

respectively. Hence, one arrives at

Aij;ab,cd = Aab;ij,cd = Acd;ab,ij (3.15)

and

Aij;ab = Aab;ij, (3.16)

respectively.

Now, we can use the definition which is used by Lovelock [19]:

Definition 3.1 A quantity Bi1i2...i2h−1i2h...i2p , where p > 1, is said to enjoy property S
if it satisfies the following conditions:

(i) it is symmetric in (i2h−1, i2h) for h = 1, . . . , p;

(ii) it is symmetric under the interchange of the pair i1i2 with the pair i2h−1i2h for

h = 2, . . . , p;

(iii) it satisfies the cyclic identity involving any three of the four indices (i1i2)(i2h−1i2h);

i.e., when h = 2
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Bi1i2i3i4...i2p +Bi2i3i1i4...i2p +Bi3i1i2i4...i2p = 0.

A quantity Bab has property S if Bab = Bba.

By considering the symmetry relations above, we can say that when n = 4, then we

have

Aij;i1i2,i3i4;i5i6,i7i8 = 0. (3.17)

The proof of this is straightforward. Considering the symmetries (3.15) and (3.16),

we are capable of interchanging any two groups of two indices. If three of any four

indices in a group of four indices are the same, then from equation (3.12) (or (3.14),

we get zero. Since there are 10 indices here, when n = 4, at least three indices must

be the same. Making use of the symmetries introduced and (2.20), we can easily put

these three indices in the same group of four indices. Therefore, we will have nothing

but zeroes in a four-dimensional spacetime. Integrating equation (3.17) two times

with respect to gcd,ef yields

Aab = βabcdefgcd,ef + βab, (3.18)

where βabcdef = βabcdef (gij , gij,k , φ, φ,i, φ,ij), β
ab = βab(gij , gij,k , φ, φ,i, φ,ij) and

both enjoy property S. By considering our symmetry relations, we can use the rela-

tion in (2.48) to find

βabcdefgcd,ef =
2

3
βabcdefRecdf + Jab,

where Jab = Jab(gij , gij,k , φ, φ,i, φ,ij) and Jab is symmetric in (a, b). Now, we can

rewrite (3.18) as

Aab = β̂abcdefRecdf + β̂ab, (3.19)

where β̂abcdef = β̂abcdef (gij , gij,k , φ, φ,i, φ,ij), β̂
ab = β̂ab(gij , gij,k , φ, φ,i, φ,ij) and

both enjoy property S.

Employing the same technique used for (3.17), it can be easily shown that

β̂abcdef ;ij;kh = 0. (3.20)

As a result of this we can conclude that

β̂abcdef ;ij = β̂abcdef ;ij(gij , gij,k , φ, φ,i).
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As a consequence of Lemma 2.1, we have

β̂abcdef ;ij = β̂abcdef ;ij(gij , φ, φ,i).

Consequently, we find

β̂abcdef = ξabcdefghφ,gh + αabcdef ,

where ξabcdefij = ξabcdefij(gij , φ, φ,i) with property S and

αabcdef = αabcdef (gij , gij,k , φ, φ,i),

which also possesses property S. Here we can replace φ,gh by φ|gh + φ|rΓ
r
gh to

construct a tensorial equation of the form

β̂abcdef = ξabcdefghφ|gh + ξabcdef , (3.21)

where ξabcdef = ξabcdef (gij , φ, φ,i) with property S.

Now, applying the same techniques that we have used for equations (3.17) and (3.20),

one finds when n = 4

βab;cd;ef ;gh;jk = 0.

By integrating this several times, we obtain

βab = ψabcdefghφ|cdφ|efφ|gh + ψabcdefφ|cdφ|ef + ψabcdφ|cd + ψab, (3.22)

where ψabcdefgh, ψabcdef , ψabcd and ψab are arbitrary tensor densities possessing prop-

erty S and a function of gij , φ and φ,i. Combining our results that we get from

equations (3.19), (3.21) and (3.22), we find

Aab =ξabcdefghRecdf φ|gh + ξabcdefRecdf + ψabcdefghφ|cdφ|efφ|gh

+ ψabcdefφ|cdφ|ef + ψabcdφ|cd + ψab.
(3.23)

Now, we need to find the most general form of these arbitrary tensor densities. To

this end, we need to use similar techniques that we have used in Lemmas (B.2) and

(B.3). The most general tensor densities which possess property S and a function of
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gij , φ and φ,i in a four-dimensional spacetime are

ψab =
√
gC1g

ab +
√
gC2φ

,aφ,b,

ψabcd =
√
gC3(g

acgbd + gadgbc − 2gabgcd) +
√
gC4

(
φ,aφ,cgbd + φ,bφ,dgac

+ φ,aφ,dgbc + φ,bφ,cgad − 2(φ,aφ,bgcd + φ,cφ,dgab)
)
,

ψabcdef =
1
√
g
(C5φ,rφ,s + C6grs)

(
εacerεbdfs + εacfrεbdes + εaderεbcfs + εadfr εbces

)
,

ψabcdefgh =
C7√
g

(
εacegεbdfh + εacehεbdfg + εacfgεbdeh + εacfhεbdeg

+ εadfh εbceg + εadfg εbceh + εadehεbcfg + εadegεbcfh
)
,

whereC1, . . . , C7 are arbitrary functions of gij , φ and φ,i. However, as we have shown

in Lemma B.7, C1, . . . , C7 can be written as arbitrary functions of φ and ρ.

Using these together with the symmetry properties of the Riemann curvature tensor,

(3.23) becomes

Aab =
√
g
(
K1δ

acde
fhjkg

fbφ
|h
|c R jk

de +K2δ
acd
efhg

ebR fh
cd

+K3δ
acde
fhjkg

fbφ|cφ
|hR jk

de +K4δ
acde
fhjkg

fbφ
|h
|c φ

|j
|d φ

|k
|e

+K5δ
acd
efhg

ebφ
|f
|c φ

|h
|d +K6δ

acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e

+K7δ
ac
deg

dbφ
|e
|c +K8δ

acd
efhg

ebφ|cφ
|fφ

|h
|d +K9g

ab +K10φ
|aφ|b

)
,

(3.24)

where K1, . . . , K10 are arbitrary functions of φ and ρ.

3.2 The Consequences of Demanding that Aij|j = φ|iA

Equation (3.24) represents the most general form of the tensor density of the form

(3.6) together with (3.7). We remark that both Aab and Aab|b are at most of second-

order.
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We can calculate Aab|b by using the Ricci and Bianchi identities as

Aab|b =
√
g
(
K ′1δ

acde
fhjkφ

|fφ
|h
|c R jk

de + 2K̇2δ
acd
efhφ|pφ

|peR fh
cd

+K3δ
acde
fhjkφ

|hφ
|f
|c R jk

de +K5δ
acd
efhφ

|mφ
|h
|d R fe

mc

+ 2K̇1δ
acde
fhjkφ|pφ

|pfφ
|h
|c R jk

de +
3

2
K4δ

acde
fhjkφ

|mφ
|j
|d φ

|k
|e R hf

mc

+
1

2
K1δ

acde
fhjkφ

|mR hf
mc R jk

de +K ′2δ
acd
efhφ

|eR fh
cd

+
1

2
K7δ

ac
deφ
|mR ed

mc +
1

2
K8δ

acd
efhφ|cφ

|fφ|mR he
md

+ 2K̇3δ
acde
fhjkφ|pφ

|pfφ|cφ
|hR jk

de +K6δ
acde
fhjkφ|cφ

|hφ|mφ
|k
|e R jf

md

+K ′4δ
acde
fhjkφ

|fφ
|h
|c φ

|j
|d φ

|k
|e + 2K̇5δ

acd
efhφ|pφ

|peφ
|f
|c φ

|h
|d

+K6δ
acde
fhjkφ

|hφ
|f
|c φ

|j
|d φ

|k
|e + 2K̇8δ

acd
efhφ|pφ

|peφ|cφ
|fφ

|h
|d

+ 2K̇6δ
acde
fhjkφ|pφ

|pfφ|cφ
|hφ

|j
|d φ

|k
|e + 2K̇4δ

acde
fhjkφ|pφ

|pfφ
|h
|c φ

|j
|d φ

|k
|e

+K ′5δ
acd
efhφ

|eφ
|f
|c φ

|h
|d + 2K̇7δ

ac
deφ|pφ

|pdφ
|e
|c

+K8δ
acd
efhφ

|fφ
|e
|c φ

|h
|d + (2K̇9 +K10)φ|bφ

|ab +K ′7δ
ac
deφ
|dφ

|e
|c

+ φ|a(K ′9 + ρK ′10 + 2K̇10φ
|bφ|cφ|bc +K10φ

|c
|c )
)
,

.

where a prime denotes a partial derivative with respect to φ and a dot denotes a partial

derivative with respect to ρ. This equation can be further reduced to

Aab|b =
√
gφ|aQ+

√
g
(
αδacehjkφ

|dφ
|h
|c R jk

de + βδadehjkφ
|cφ

|h
|c R jk

de

− γδacefjkφ|pφ
|pfφ|cφ

|dR jk
de + εδabcehjkmφ

|pφ
|k
|c φ

|m
|e R jh

pb

+ µδacdeφ
|mR ed

mc + νδadefjkφ
|pφ

|f
|p φ

|j
|d φ

|k
|e

+ 2ωδacdeφ
|pφ

|d
|p φ

|e
|c + ξφ|pφ

|ap),
(3.25)

where

Q =K̇1δ
bcde
hjkmφ

|h
|b φ

|j
|c R

km
de + (K ′1 −K3)δ

cde
fjkφ

|f
|c R jk

de

− 2K̇3δ
cde
fjkφ

|pφ
|f
|p φ|cR

jk
de −K6δ

cde
fjkφ|cφ

|mφ
|k
|e R jf

md

− 1

8
K1δ

bcde
hjkmR

hj
bc R km

de +K ′2δ
cd
fhR

fh
cd − 1

2
K8δ

cd
ehφ|cφ

|mR he
md

− 2K̇8δ
cd
ehφ|pφ

|peφ|cφ
|h
|d +

1

2
K̇4δ

bcde
hjkmφ

|h
|b φ

|j
|c φ

|k
|d φ

|m
|e

− 2K̇6δ
cde
fjkφ

|pφ
|f
|p φ|cφ

|j
|d φ

|k
|e + (K ′4 −K6)δ

cde
hjkφ

|h
|c φ

|j
|d φ

|k
|e

+ (K ′5 −K8)δ
cd
fhφ

|f
|c φ

|h
|d +K ′9 + ρK ′10

+ 2K̇10φ
|bφ|cφ|bc + (K10 +K ′7)φ

|c
|c

(3.26)
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and

α = 2K ′1 − 2K3 +K5 + ρK6, β = 2K̇2 −K ′1 +K3 + 2ρK̇3,

γ = 4K̇3 +K6, ε = 2K̇1 +
3

2
K4,

µ = 2K ′2 +
1

2
K7 +

1

2
ρK8, ν = 2K̇5 + 3K6 − 3K ′4 + 2ρK̇6,

ω = K̇7 −K ′5 +K8 + ρK̇8, ξ = 2K̇9 +K10 −K ′7.

(3.27)

Due to the fact that (3.25) must satisfy (3.8), there must be a scalar density T of the

form

T = T (gab, gab,c, gab,cd, φ, φ,c, φ,cd),

which is such that

φ|aT =
√
g
(
αδacehjkφ

|dφ
|h
|c R jk

de + βδadehjkφ
|cφ

|h
|c R jk

de

− γδacefjkφ|pφ
|pfφ|cφ

|dR jk
de + εδabcehjkmφ

|pφ
|k
|c φ

|m
|e R jh

pb

+ µδacdeφ
|mR ed

mc + νδadefjkφ
|pφ

|f
|p φ

|j
|d φ

|k
|e

+ 2ωδacdeφ
|pφ

|d
|p φ

|e
|c + ξφ|pφ

|ap).
(3.28)

Therefore, we need to find a solution for T to find the most general form of Aab|b.

We can differentiate this equation once with respect to grs,tu and twice with respect

to φ,uw to obtain

φ|aT iq;uw;rs,tu = ε
√
gδabcehjkmφ

|p
∂2(φ

|k
|c φ

|m
|e )

∂φ,iq∂φ,uw
gjdghf

∂Rpbdf

∂grs,tu
.

Multiplying this with giqguwgrs yields

φ|agiqguwgrsT
iq;uw;rs,tu = 4

√
gε(φ|agvt + φ|tgva + φ|vgta). (3.29)

We can always construct a non-null vector field Xa which is orthogonal to φ,a:

XaX
a 6= 0, φ,aX

a = 0.

Multiplying (3.29) by XaXt yields

0 = 4ε
√
gφ,v

and therefore, ε = 0. Applying similar methods on (3.28) shows that

α = β = γ = ε = µ = ν = ω = ξ = 0.
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As a result, we have B = 0. Thus, we have eight partial differential equations follow-

ing from (3.27). Two of these can be expressed in terms of the others

ν = 2α̇ + γ − 2ε′ and ω = 2µ̇− α′ + ργ′ − 2β′. (3.30)

Consequently, the remaining six equations are as follows

K4 =− 4

3
K̇1, K5 = 2K3 − 2K ′1 + 4ρK̇3,

K6 =− 4K̇3, K2 =
1

2
F +W,

K7 =− 2F ′ − 2W ′ − ρK8, K10 = −2F ′′ − 4W ′′ − ρK ′8 − 2K̇9,

(3.31)

where K1, K3, K8 and K9 are arbitrary functions of φ and ρ, W is an arbitrary

function of φ only and F is given by

F = F (φ, ρ) =

∫ (
K ′1 −K3 − 2ρK̇3

)
dρ. (3.32)

By inserting (3.31) into (3.24), we obtain

Aab =
√
g
(
K1δ

acde
fhjkg

fbφ
|h
|c R jk

de + (
1

2
F +W )δacdefhg

ebR fh
cd

+K3δ
acde
fhjkg

fbφ|cφ
|hR jk

de −
4

3
K̇1δ

acde
fhjkg

fbφ
|h
|c φ

|j
|d φ

|k
|e

+ (2K3 − 2K ′1 + 4ρK̇3)δ
acd
efhg

ebφ
|f
|c φ

|h
|d

− 4K̇3δ
acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e − (2F ′ + 4W ′ + ρK8)δ

ac
deg

dbφ
|e
|c

+K8δ
acd
efhg

ebφ|cφ
|fφ

|h
|d +K9g

ab

− (2F ′′ + 4W ′′ + ρK ′8 + 2K̇9)φ
|aφ|b

)
.

(3.33)
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Using equations (3.25) and (3.26) together with (3.31) yields

Aab|b =
√
gφ|a

(
K̇1δ

bcde
hjkmφ

|h
|b φ

|j
|c R

km
de + (K ′1 −K3)δ

cde
fjkφ

|f
|c R jk

de

− 2K̇3δ
cde
fjkφ

|pφ
|f
|p φ|cR

jk
de + 4K̇3δ

cde
fjkφ|cφ

|mφ
|k
|e R jf

md

− 1

8
K1δ

bcde
hjkmR

hj
bc R km

de + (
1

2
F ′ +W ′)δcdfhR

fh
cd

− 1

2
K8δ

cd
ehφ|cφ

|mR he
md − 2K̇8δ

cd
ehφ|pφ

|peφ|cφ
|h
|d

− 2

3
K̈1δ

bcde
hjkmφ

|h
|b φ

|j
|c φ

|k
|d φ

|m
|e + 8K̈3δ

cde
fjkφ

|pφ
|f
|p φ|cφ

|j
|d φ

|k
|e

+ (4K̇3 −
4

3
K̇ ′1)δ

cde
hjkφ

|h
|c φ

|j
|d φ

|k
|e

+ (2K ′3 − 2K ′′1 + 4ρK̇ ′3 −K8)δ
cd
fhφ

|f
|c φ

|h
|d

+K ′9 − ρ(2F ′′′ + 4W ′′′ + ρK ′′8 + 2K̇ ′9)

− 2(2Ḟ ′′ +K ′8 + ρK̇ ′8 + 2K̈9)φ
|bφ|cφ|bc

− (4F ′′ + 8W ′′ + 2ρK ′8 + 2K̇9)φ
|c
|c
)
.

(3.34)

Now, the relationAab|b = φ|aA(gij , gij,k , gij,kh, φ, φ,h, φ,hk) between (3.33) and (3.34)

holds.

3.3 Construction of Useful Tensor Densities

In this section, we will apply methods similar to those employed in Section 2.1.3. We

remark that we have φ,ij dependency in the Lagrangian which produces additional

terms to the calculations carried out in Chapter 2.

We have the Lagrangian of the form

L = L(gij , gij,k , gij,kh, φ, φ,i, φ,ij), (3.35)

which satisfies

BL(gµν , gµν,ρ, gµν,ρσ , φ, φ,µ, φ,µν) = L(gij, gij,k, gij,kh, φ, φ,µ, φ,µν). (3.36)

We need to define a new quantity since we now have second-order derivatives of the

scalar φ, i.e., φ,ij in the Lagrangian,

Φij ≡ ∂L

∂φ,ij
.
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Taking the derivative of (3.36) with respect to φ,ij yields

B
∂L

∂φ,µν
=

∂L

∂gij,kh

∂gij,kh
∂φ,µν

+
∂L

∂gij,k

∂gij,k
∂φ,µν

+
∂L

∂gij

∂gij
∂φ,µν

+
∂L

∂φ

∂φ

∂φ,µν
+

∂L

∂φ,i

∂φ,i
∂φ,µν

+
∂L

∂φ,ij

∂φ,ij
∂φ,µν

.

(3.37)

From (2.2), only the last term contributes. Therefore, we have

BΦµν = Φ
ij
Bµ

iB
ν
j .

Consequently, Φij is a tensor density. It can be easily seen that the representations of

Π ij,k and Π ij defined in Section 2.1.2 are still valid. It can also be easily seen that

although Λij,kh and Φ are tensor densities, Φi is not.

By taking the derivative of equation (3.36) with respect to φ,i, we obtain

B
∂L

∂φ,µ
=

∂L

∂φ,i

∂φ,i
∂φ,µ

+
∂L

∂φ,ij

∂φ,ij
∂φ,µ

. (3.38)

Taking the derivatives yields

BΦµ = Φ
i
Bµ

i + Φ
ij
Bµ

ij .

Since this is not a tensor density, we can seek for its tensorial form. As we did before

in Section 2.1.2, we can define a new quantity K as

K ≡ Φabh,ab + Φah,a + Φh, (3.39)

where h is a scalar. After multiplying each side of this equation with B, we can

substitute equations (3.37) and (3.38) into this to obtain

BK =Φ
ij
(
∂φ,ij
∂φ,ab

h,ab +
∂φ,ij
∂φ,a

h,a

)
+ Φ

i ∂φ,i
∂φ,a

h,a + Φh.

Due to (2.2), we can rewrite this

BK = Φ
ab
h,ab + Φ

a
h,a + Φh.

We conclude that K is a scalar density. Therefore, we may define K as

K = ζabh|ab + ζah|a + ζh,
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where ζab, ζa and ζ are tensor densities. We can easily calculate the following covari-

ant derivatives

h|ab = h,ab − Γ
µ
ab h,µ, h|a = h,a.

Inserting these into the equation above yields

K =ζab(h,ab − Γ
µ
ab h,µ) + ζah,a + ζh

=ζabh,ab + (ζa − Γ a
rs ζ

rs)h,a + ζh.

If we compare this with (3.39), we conclude that ζab = Φab and ζ = Φ as expected.

Moreover, we have also obtained the tensor density ζa = Φa + Γ a
rs ζ

rs.

In order to construct an equation for Π ij,k of the Lagrangian of the form (3.35), we

take the derivative of the equation (3.36) with respect to Bµ
ab to obtain

0 = Λ
ij,kh∂gij,kh

∂Bµ
ab

+ Λ
ij,k ∂gij,k

∂Bµ
ab

+ Λ
ij ∂gij
∂Bµ

ab

+ Φ
∂φ

∂Bµ
ab

+ Φ
i ∂φ,i
∂Bµ

ab

+ Φ
ij ∂φ,ij
∂Bµ

ab

.

Due to last term on the right hand side, instead of (2.14), we now have

0 = 2Λaν,σbgµν,σ + 2Λbν,σagµν,σ + Λνσ,abgνσ,µ + Λaν,bgµν + Λbν,agµν + Φabφ,µ.

At the pole P of the Riemann normal coordinate system, we have

Πaν,bgµν +Πbν,agµν + Φabφ|µ = 0.

Since this is a tensorial condition, it can be generalized to any point of any coordinate

system. Multiplying this with gµρ yields

Πaρ,b +Πbρ,a + Φabφ|ρ = 0.

In order to solve this equation for Πab,ρ, we can use symmetries. Therefore, we write

Πaρ,b = −Πbρ,a − Φabφ|ρ.

Due to fact that there is a symmetry in (a, ρ) on the left hand side, we can write

Πaρ,b = −Πba,ρ − Φρbφ|a.

Similarly, we have

Πbρ,a = −Πab,ρ − Φρaφ|b.

47



By combining these two, we immediately find

Πab,h =
1

2
(Φabφ|h − Φhbφ|a − Φhaφ|b). (3.40)

Taking the derivative of (3.36) with respect to Br
s , one can construct an equation for

Π ij . Therefore, we obtain

BAsrL =Λ
ij,kh∂gij,kh

∂Bµ
a

+ Λ
ij,k ∂gij,k

∂Bµ
a
+ Λ

ij ∂gij
∂Bµ

a

+ Φ
∂φ

∂Bµ
a
+ Φ

i ∂φ,i
∂Bµ

a
+ Φ

ij ∂φ,ij
∂Bµ

a
.

Note that, the only difference between this and (2.18) is the last term. Therefore,

instead of (2.19), we have

δsrL =2Λsj,ki
(
grj,ki + gik,rj

)
+ 2Λsj,kgrj,k

+ Λij,sgij,r + 2Λsjgrj + Φsφ,r + 2Φsjφ,rj.
(3.41)

At the pole P of the Riemann normal coordinate system, we have Φa = ζa, similar to

the result obtained in (2.23), we have

gsuL =− 2Λsj,kiR u
i kj + 2Πsu +

2

3
Λik,ujR s

i kj + ζsφ|u + 2Φsjφ
|u
|j . (3.42)

Since this is a tensorial equation, it can be generalized to any point of any coordinate

system. After renaming indices and some rearranging, we obtain

Πab =
1

3
R b
k mhΛ

hk,am −R a
k mhΛ

hk,bm − 1

2
φ|aζ |b − Φbsφ |a

|s +
1

2
gabL. (3.43)

Analogous to what was done in Section 2.2, we obtain field equations

Eab(L) = −Λab,kh|kh +Πab,k
|k −Π

ab, (3.44)

and

E(L) = −Φkh|kh + ζk|k − Φ.

In order to calculate these, we need the following identities that we derived in this

section

ζa =
∂L

∂φ,a
+ Γ a

rsΦ
rs, (3.45)

Πab,h =
1

2
(Φabφ|h − Φhbφ|a − Φhaφ|b), (3.46)

Πab =
1

3
R b
k mhΛ

hk,am −R a
k mhΛ

hk,bm − 1

2
φ|aζ |b

−Φbsφ |a
|s +

1

2
gabL. (3.47)
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3.4 Lagrange Scalar Densities

According to Lovelock [20], the Lagrangian L defined in (3.1) may be obtained by

examining gijA
ij . Therefore, in order to obtain the Lagrangian, we calculate

gabA
ab =
√
g
(
K1δ

cde
hjkφ

|h
|c R jk

de −
4

3
K̇1δ

cde
hjkφ

|h
|c φ

|j
|d φ

|k
|e

+K3δ
cde
hjkφ|cφ

|hR jk
de − 4K̇3δ

cde
hjkφ|cφ

|hφ
|j
|d φ

|k
|e

+ (F + 2W )δcdfhR
fh

cd + 2(2K3 − 2K ′1 + 4ρK̇3)δ
cd
fhφ

|f
|c φ

|h
|d

− 3(2F ′ + 4W ′ + ρK8)φ
|c
|c + 2K8δ

cd
fhφ|cφ

|fφ
|h
|d + 4K9

− ρ(2F ′′ + 4W ′′ + ρK ′8 + 2K̇9)
)
.

(3.48)

As a result of the equation above, we can write L1, L2, L3, L4, L5 and L6 as

L1 =
√
gM1φ

|c
|c ,

L2 =
√
gM2δ

cd
efR

ef
cd − 4

√
gṀ2δ

cd
fkφ

|f
|c φ

|k
|d ,

L3 =
√
gM3δ

cd
efφ|cφ

|eφ
|f
|d ,

L4 =
√
gM4δ

cde
fjkφ

|f
|c R jk

de −
4

3

√
gṀ4δ

cde
fjkφ

|f
|c φ

|j
|d φ

|k
|e ,

L5 =
√
gM5δ

cde
fjkφ|cφ

|fR jk
de − 4

√
gṀ5δ

cde
fjkφ|cφ

|fφ
|j
|d φ

|k
|e ,

L6 =
√
gM6,

where M1, . . . ,M6 are arbitrary functions of φ and ρ.

We can calculate field equations by using (3.44), (3.45), (3.46) and (3.47) together.

Therefore, we have

Eab(L1) =
√
gρṀ1δ

ac
deg

dbφ
|e
|c −

√
gṀ1δ

acd
efhg

ebφ|cφ
|fφ

|h
|d

+
√
gM ′

1(
1

2
gabρ− φ|aφ|b),

(3.49)

Eab(L2) =−
√
gṀ2δ

acde
fhjkg

fbφ|cφ
|hR jk

de +
√
g(ρṀ2 −

1

2
M2)δ

acd
efhg

ebR fh
cd

− 2
√
g(2ρM̈2 + Ṁ2)δ

acd
efhg

ebφ
|f
|c φ

|h
|d

+ 4
√
gM̈2δ

acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e + 2

√
g(M ′

2 + 2ρṀ ′
2)δ

ac
deg

dbφ
|e
|c

− 8
√
gṀ ′

2δ
acd
efhg

ebφ|cφ
|fφ

|h
|d + 2

√
gρM ′′

2 g
ab − 2

√
gM ′′

2 φ
|aφ|b,

(3.50)

Eab(L3) =
√
g(ρ2Ṁ3 +

3

2
ρM3)δ

ac
deg

dbφ
|e
|c −

√
g(ρṀ3

+
3

2
M3)δ

acd
efhg

ebφ|cφ
|fφ

|h
|d +

1

2

√
gM ′

3ρ
2gab − 1

2

√
gρM ′

3φ
|aφ|b,

(3.51)
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Eab(L4) =
√
gṀ4δ

acdef
hjkpqg

hbφ|cφ
|jφ

|k
|d R pq

ef

+
√
gṀ4ρδ

adef
hkpqg

hbφ
|k
|d R pq

ef − 1

2

√
gρM ′

4δ
acd
efhg

ebR fh
cd

+
√
gM ′

4δ
acde
fhjkg

fbφ|cφ
|hR jk

de +
4

3

√
gM̈4δ

acdef
hjkpqg

hbφ|cφ
|jφ

|k
|d φ

|p
|e φ

|q
|f

− 4

3

√
g(ρM̈4 + Ṁ4)δ

acde
fhjkg

fbφ
|h
|c φ

|j
|d φ

|k
|e

+
√
g(2M ′

4 + 2ρṀ ′
4)δ

ade
fjkg

fbφ
|j
|d φ

|k
|e − 4

√
gṀ ′

4δ
acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e

+ 2
√
gM ′′

4 δ
acd
efhg

ebφ|cφ
|fφ

|h
|d ,

(3.52)

Eab(L5) =
√
g(ρ2Ṁ5 +

1

2
ρM5)δ

acd
efhg

ebR fh
cd −√g(ρṀ5 +M5)δ

acde
fhjkg

fbφ|cφ
|hR jk

de

−√g(2M5 + 10ρṀ5 + 4ρ2M̈5)δ
acd
efhg

ebφ
|f
|c φ

|h
|d

+ 4
√
g(2Ṁ5 + ρM̈5)δ

acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e

−√g(2M ′
5 + 4ρṀ ′

5)δ
ace
jfrg

jbφ|cφ
|fφ

|r
|e ,

(3.53)

Eab(L6) =
√
gṀ6φ

|aφ|b − 1

2

√
gM6g

ab. (3.54)

Equations (3.48), and (3.49)-(3.54) now permit us to conclude that

Eab(gijA
ij) =

√
g
(
ρK̇1δ

adef
hkpqg

hbφ
|k
|d R pq

ef + ρK̇3δ
acde
fhjkg

fbφ|cφ
|hR jk

de

+ (
1

2
J −W )δacdefhg

ebR fh
cd − 4

3

∂

∂ρ
(ρK̇1)δ

acde
fhjkg

fbφ
|h
|c φ

|j
|d φ

|k
|e

− 4
∂

∂ρ
(ρK̇3)δ

acde
fhjkg

fbφ|cφ
|hφ

|j
|d φ

|k
|e

+ (−2ρK̇ ′1 + 6ρK̇3 + 4ρ2K̈3)δ
ade
fjkg

fbφ
|j
|d φ

|k
|e

+ ρK̇8δ
acd
efhg

ebφ|cφ
|fφ

|h
|d + (−2J ′ + 4W ′ − ρ2K̇8)δ

ac
deg

dbφ
|e
|c

+ (ρK̇9 − 2K9)g
ab + (−J ′′ + 4W ′′ + 2K̇9 − 2ρK̈9 − ρ2K̇ ′8)φ|aφ|b

)
,

(3.55)

where

J =

∫ ( ∂
∂φ

(ρK̇1)− ρK̇3 − 2ρ
∂

∂ρ
(ρK̇3)

)
dρ.

Integration by parts together with equation (3.32) yields

J = −F + ρḞ .

50



If we compare (3.55) with equation (3.33), then we deduce that

L =
√
g
(
K1δ

cde
hjkφ

|h
|c R jk

de −
4

3
K̇1δ

cde
hjkφ

|h
|c φ

|j
|d φ

|k
|e

+K3δ
cde
hjkφ|cφ

|hR jk
de − 4K̇3δ

cde
hjkφ|cφ

|hφ
|j
|d φ

|k
|e

+ (F + 2W)δcdfhR
fh

cd + 2(2K3 − 2K′1 + 4ρK̇3)δ
cd
fhφ

|f
|c φ

|h
|d

− 3(2F ′ + 4W ′ + ρK8)φ
|c
|c + 2K8δ

cd
fhφ|cφ

|fφ
|h
|d + 4K9

− ρ(2F ′′ + 4W ′′ + ρK′8 + 2K̇9)
)
,

(3.56)

where
K1 =

∫
1

ρ
K1dρ, K3 =

∫
1

ρ
K3dρ,

K8 =

∫
1

ρ
K8dρ, K9 = ρ2

∫
1

ρ3
K9dρ,

W = −W, F =

∫ (
K′1 −K3 − 2ρK̇3

)
dρ.

Note that during this derivation, we have excluded the possibility of the additional

terms in L that yields vanishing Eij(L). One can consider to include some additional

terms that do not change the field equations. Therefore, in a four-dimensional space-

time, the most general second-order Euler-Lagrange equations are derivable from

L.
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CHAPTER 4

DISCUSSION

In this thesis, we have studied scalar-tensor field theories and we have obtained some

important results in a four-dimensional spacetime. We have also derived useful iden-

tities for an n dimensional spacetime. One may easily apply the methods here on

many other field theories. The results that we have obtained in this thesis can be

helpful for those who study similar field theories.

In Chapter 2, we have started with a specific Lagrangian which is of the form

L(gij , gij,k , gij,kh, φ, φ,i). (4.1)

Choosing the Lagrangian to be a scalar density puts severe restrictions on it. In an n

dimensional spacetime, we have the following identities

Λij,kh + Λik,jh + Λih,kj = 0, (4.2)

2Λaν,σbgµν,σ + 2Λbν,σagµν,σ + Λνσ,abgνσ,µ + Λaν,bgµν + Λbν,agµν = 0, (4.3)

1

2
gijL = Π ij − 2

3
Λim,khR j

h km +
3

8
gjhΦiφ,h +

1

8
gihΦjφ,h,

which should be satisfied by the Lagrangian. These partial differential equations are

called invariance identities. We have obtained the field equations by using these equa-

tions and their symmetry relations. We have also used similar techniques in Section

3.3 for the Lagrangian of the form L = L(gij , gij,k , gij,kh, φ, φ,i, φ,ij) to obtain its

invariance identities.

Variation of the Lagrangian in (4.1) with respect to the metric yields

Eij(L) = −Λij,kh|kh −
1

2
gijL− 2

3
Λim,khR j

h km +
3

8
gjhΦiφ,h +

1

8
gihΦjφ,h.
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Note that every term in this equation is a tensor density and the equation is valid for

a n dimensional spacetime.

(4.2) and (4.3) are not only valid for L but also for any tensor densitiy which is a

function of gij , gij,k , gij,kh , φ and φ,i. For example, a tensor density

A···... = A······(gij , gij,k , gij,kh, φ, φ,i)

satisfies
∂A······
∂gij,kh

+
∂A······
∂gik,jh

+
∂A······
∂gih,kj

= 0. (4.4)

Due to Lemma 2.1, for a tensor density A······(gij , gij,k , gij,kh, φ, φ,i), if ∂A···
···

∂gij,kh
= 0 then

∂A···
···

∂gij,k
= 0.

By virtue of the following relation which can be considered as a generalization of the

Bianchi identity

Eij
|j (L) =

1

2
gijφ,jE(L), (4.5)

whenever one hasEij(L) = 0 thenE(L) = 0 is automatically satisfied. Furthermore,

this important relation implies that bothE(L) andEij
|j (L) are functions of the metric,

a scalar, and their first two derivatives. This result puts severe restrictions on the most

general form of Eij(L).

We should note that we have put everything into tensorial form in order to make use

of the Riemann normal coordinates. If we find an expression which is in a tensorial

form at a pole P of the Riemann normal coordinates, we can generalize it to any point

of any coordinate system.

Although we do not work with vector-metric field theories here, techniques used in

this thesis can be applied to those as well. An interested reader can easily adopt the

techniques used here not only to a different Lagrangian but also to a different number

of dimensions.

If we choose the Lagrangian to be of the form

L(gij , gij,k , gij,kh), (4.6)

in a four-dimensional spacetime, the most general form of the Lagrangian which

yields the field equations involving the metric, a scalar and their first two derivatives
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is the following

L = β
√
g(R2 − 4RijR

ij +RijkhR
ijkh) + γ(∗Rij

khR
kh
ij) + µ

√
gR + η

√
g, (4.7)

where β, γ, µ and η are arbitrary constants and ∗Rij
kh = εijrsRrskh. Since β, γ, µ

and η are just constants, by applying techniques similar to those developed in Section

2.5, the Euler-Lagrange equations are found to be

Rij −
1

2
gijR + Λgij = 0, (4.8)

where Λ is a constant. This is nothing but Einstein’s vacuum field equations with a

cosmological constant. Therefore, if the Lagrangian is of the form (4.6), then Ein-

stein’s field equations are unique in a four-dimensional spacetime. Note that the first

term on the right hand side of (4.7), called the Gauss-Bonnet term, can be written

as a total derivative in a four-dimensional spacetime. In addition to this, one can

rewrite the second term on the right hand side of (4.7) as a total derivative without

any dimensional restrictions.

The Gauss-Bonnet term contributes to the field equations in dimensions higher than

four. For the Lagrangian L =
√
g(R2 − 4RijR

ij + RijkhR
ijkh), we find the field

equations

Eij(L) =− 1

2

√
ggij(R2 − 4RabR

ab +RabcdR
abcd)

+ 2
√
g
(
RRij − 2Rj

kR
ik − 2RkhR j i

h k +RihkmRj
hkm

)
,

which are identically zero in a four-dimensional spacetime due to the Lanczos iden-

tity. Therefore, one may consider dimensions n ≥ 5 to obtain field equations other

than Einstein’s in a metric field theory.

For the Lagrangian of the form (4.6), from (4.5) we immediately have the Bianchi

identity that automatically follows from diffeomorphism invariance, Eij
|j (L) = 0.

Note that this result is obviously in accordance with the field equations (4.8). As a re-

sult, if one wants to construct field equations different than (4.8) in a four-dimensional

spacetime, one has to use a Lagrangian different than (4.6). In that case, there will be

no divergence-free field equations, i.e. Eij
|j (L) 6= 0.

In Chapter 3, we have started by constructing the most general form of the Euler-

Lagrange equations that are functions of the metric, a scalar and their first two deriva-

tives in a four-dimensional spacetime. Therefore, we have generated the most general
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form of the tensor density Aij = Aij(gab, gab,c, gab,cd, φ, φ,c, φ,cd), which includes the

most general form of the Euler-Lagrange equations Eij . Making use of (4.5), we

have concluded that Eij
|j must also be at most of second-order. Due to this fact, one

is able to eliminate some terms from the most general form of Aij . Then using the re-

lation between the Lagrangian and its field equations, we have found the Lagrangian

which yields the most general form of the Euler-Lagrange equations in a space of four

dimensions. As a result, the Lagrangian

L =
√
g
(
K1δ

cde
hjkφ

|h
|c R jk

de −
4

3
K̇1δ

cde
hjkφ

|h
|c φ

|j
|d φ

|k
|e +K3δ

cde
hjkφ|cφ

|hR jk
de

− 4K̇3δ
cde
hjkφ|cφ

|hφ
|j
|d φ

|k
|e + (F + 2W)δcdfhR

fh
cd

+ 2(2K3 − 2K′1 + 4ρK̇3)δ
cd
fhφ

|f
|c φ

|h
|d − 3(2F ′ + 4W ′ + ρK8)φ

|c
|c

+ 2K8δ
cd
fhφ|cφ

|fφ
|h
|d + 4K9 − ρ(2F ′′ + 4W ′′ + ρK′8 + 2K̇9)

)
,

(4.9)

yields field equations which are functions of the metric, a scalar and their first two

derivatives in a four-dimensional spacetime. Obviously, one may include some addi-

tional terms in this Lagrangian if their contributions to the Euler-Lagrange equations

vanish.

The Lagrangian given in (4.9) is a motivation for those who study and construct new

modified gravity theories. For example, the theory called the Fab Four is a subset

of Horndeski’s theory [21]. This theory is established in order to find a solution for

the cosmological constant problem on FLRW backgrounds. This theory possesses

self-tuning properties that may provide a partial solution to the cosmological constant

problem. The Fab Four consist of four pieces

Ljohn =
√
gVjohn(φ)G

µνφ|µφ|ν ,

Lpaul =
√
gVpaul(φ)P

µναβφ|µφ|αφ|νβ,

Lgeorge =
√
gVgeorge(φ)R,

Lringo =
√
gVringo(φ)Ĝ,

where Ĝ = R2 − 4RijR
ij + RijkhR

ijkh is the Gauss-Bonnet term, εµναβ is the Levi-

Civita tensor and P µναβ = −1
4
εµνλσRλσγδε

αβγδ is the double dual of the Riemann

tensor. Note that, these Lagrange scalar densities are included in (4.9). The Fab

Four Lagrangian terms have potential to explain the matter-dominated phase of the

universe expansion and late-time acceleration phase at least at the classical level [22].
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By following similar techniques that we use in Chapter 3, Ohashi et al. constructed

the most general second-order field equations of bi-scalar-tensor theory in four di-

mensions [23]. They have chosen the Lagrangian of the form

L = L(gij , gij,i1 , . . . , gij,i1...ip , φ
I , φI,i1 , . . . , φ

I
,i1...iq

),

where I = 1, 2. By considering more than one scalars in the Lagrangian, Ohashi et al.

have shown that one can obtain new terms in the field equations that are not included

in the Horndeski theory.

In this thesis, we have chosen torsion-free metric connection. However, one may

consider torsion to have results different than Horndeski’s. Valdivia et al. recently

have shown that effects of torsion can be critical in the very early universe [24].

Although they did not generate the most general Lagrangian for a spacetime with

torsion, they generalized Horndeski’s Lagrangian for the case when the torsion is

nonvanishing.
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APPENDIX A

RIEMANN NORMAL COORDINATES

We frequently make use of Riemann normal coordinates in this thesis in order to

simplify long calculations. Although these coordinates are specific coordinates, if we

find a tensorial condition in these coordinates we can generalize it to any arbitrary

coordinate system. Note that tensors are invariant under coordinate transformations.

Therefore, in order to utilize Riemann normal coordinates, we look for the tensorial

form of the quantities.

In a curved spacetime, one can locally construct a coordinate system where free par-

ticles move along straight lines. These straight lines can be found by using geodesic

equations. The general form of the geodesic equations in an arbitrary coordinate sys-

tem can be written as
d2xα

dλ2
+ Γα

βγ

dxβ

dλ

dxγ

dλ
= 0,

where λ is an affine parameter. Since free particles are moving on straight lines at the

pole P of this coordinate system, we immediately find d2xα

dλ2
= 0. Thus

Γα
βγ

dxβ

dλ

dxγ

dλ
= 0

and Γα
βγ = 0. By considering the spacetime metric, one can always construct an

orthonormal coordinate system to have eα · eβ = ηαβ , where eα is a base vector of

the coordinate α and ηαβ is the metric of the flat spacetime. At the pole P of this

coordinate system, we have

gαβ(P ) = ηαβ,

gαβ,µ(P ) = 0,

gαβ,µν (P ) 6= 0.
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Therefore, as an example, components of the Riemann curvature tensor at the pole of

this coordinate system can be calculated as

Rαβµν(P ) = gαν,βµ(P )− gαµ,βν (P ).

62



APPENDIX B

THE CONSTRUCTION OF GENERAL TENSOR DENSITIES

Lemma B.1 If ξ = ξ(grs, φ) is a scalar density then one can always express it as

ξ = µ(φ)
√
g. (B.1)

Proof. Taking the derivative of the metric grs = Bµ
rB

ν
sgµν with respect to Ba

b yields

∂grs
∂Ba

b

= δµaδ
b
rB

ν
sgµν + δνaδ

b
sB

µ
r gµν . (B.2)

Since we have a scalar density ξ, we may define a scalar ψ by

ψ = ξ/
√
g.

By applying ∂
∂Bab

to ψ, we obtain

∂ψ

∂Ba
b

=
∂gµν
∂Ba

b

∂ψ

∂gµν
=

∂ψ

∂gbµ
gaµ +

∂ψ

∂gbν
gaν = 2

∂ψ

∂gbν
gaν = 0.

Therefore, ψ is a function of the scalar φ. We have completed the proof.

Lemma B.2 If ξij = ξij (grs, φ) is a tensor then

ξij = µgij + δn2σ
√
gεij,

where µ and σ are arbitrary functions of the scalar φ, εij is the two dimensional

Levi-Civita symbol and δab is the Kronecker delta.

Proof. Taking the derivative of ξrs = Bµ
rB

ν
sξµν with respect to Ba

b yields

∂gµν
∂Ba

b

∂ξrs
∂gµν

= ξraδ
b
s + ξasδ

b
r.
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Therefore, we have the following equation

2
∂ξrs
∂gbν

gaν = ξraδ
b
s + ξasδ

b
r.

Multiplying each side by gac yields

2
∂ξrs
∂gbc

= gacξraδ
b
s + gacξasδ

b
r. (B.3)

Since the left hand side is symmetric in (b, c), so must the right hand side. Therefore,

we have

2
∂ξrs
∂gbc

= gacξraδ
b
s + gacξasδ

b
r = gabξraδ

c
s + gabξasδ

c
r.

With b = s, we have

gacξraδ
b
b + gacξabδ

b
r = gabξraδ

c
b + gabξabδ

c
r.

In an n dimensional spacetime, we have

ngacξra + gacξar = gacξra + gabξabδ
c
r.

After rearranging this, we obtain

(n− 1)gacξra + gacξar = gabξabδ
c
r.

Multiplying each side by gcd yields

(n− 1)ξrd + ξdr = gabξabgdr . (B.4)

Due to the symmetry in (d, r) of the right hand side, for n 6= 2, we have ξrd =
1
n
λgrd ,

where λ = gabξab . Substituting this result into equation (B.3) yields

2
∂

∂gbc
(
1

n
λgrs) = gac

1

n
λgraδ

b
s + gac

1

n
λgasδ

b
r.

After straightforward calculations, we have

2
∂grs
∂gbc

1

n
λ+ 2

∂λ

∂gbc

1

n
grs =

1

n
λδcrδ

b
s +

1

n
λδcsδ

b
r,

2
1

n
λδbrδ

c
s + 2

∂λ

∂gbc

1

n
grs =

1

n
λδcrδ

b
s +

1

n
λδcsδ

b
r.

Due to the (b, c) symmetry of the last equation, we get ∂λ
∂gbc

= 0. Therefore, λ is a

function of the scalar φ. For n = 2 (B.4) implies

ξrd =
1

2
λgrd +

1

2
(ξrd − ξdr).
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Since the second term on the right is proportional to εrd, we have

ξrd =
1

2
λgrd + σ

√
gεdr,

where λ and σ are arbitrary functions of the scalar φ, which completes the proof.

Lemma B.3 If ξijkh = ξijkh(grs, φ) is a tensor then for n > 2,

ξijkh = αgijgkh + βgikgjh + γgihgjk + λδn4 ν
√
gεijkh,

where α, β, γ and λ are arbitrary functions of the scalar φ and εijkh is the four-

dimensional Levi-Civita symbol.

Proof. Taking the derivative of ξijkm = Bµ
i B

ν
jB

γ
kB

δ
mξµνγδ with respect to Ba

b yields

∂grs
∂Ba

b

∂ξijkm
∂grs

=δµaδ
b
iB

ν
jB

γ
kB

δ
mξµνγδ + δνaδ

b
jB

µ
i B

γ
kB

δ
mξµνγδ

+ δγaδ
b
kB

µ
i B

ν
jB

δ
mξµνγδ + δµi δ

b
mB

µ
i B

ν
jB

γ
kξµνγδ .

Therefore, we have the following equation

δbi ξajkm + δbjξiakm + δbkξijam + δbmξijka = 2
∂ξijkm
∂gbν

gaν .

Multiplying this with gah yields

2
∂ξijkm
∂gbh

= gahδbi ξajkm + gahδbjξiakm + gahδbkξijam + gahδbmξijka .

After renaming indices, we obtain

2
∂ξijkm
∂grs

= ghsδri ξhjkm + ghsδrj ξihkm + ghsδrkξijhm + ghsδrmξijkh .

Due to the symmetry in (r, s), we have

2
∂ξijkm
∂grs

= ghsδri ξhjkm + ghsδrj ξihkm + ghsδrkξijhm + ghsδrmξijkh

= ghrδsi ξhjkm + ghrδsjξihkm + ghrδskξijhm + ghrδsmξijkh .

Multiplying this with gst yields

δri ξtjkm + δrj ξitkm + δrkξijtm + δrmξijkt (B.5)

=gitg
rsξsjkm + gjtg

rsξiskm + gktg
rsξijsm + gmtg

rsξijks . (B.6)
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We sum over (r, i) and replace t by i and m by h to get

(n− 1)ξijkh + ξjikh + ξkjih + ξhjki = gijg
rsξrskh + gikg

rsξrjsh + gihg
rsξrjks . (B.7)

Now, we can define the following quantities

grsξrskh = λgkh, grsξrjsh = µgjh, grsξrjhs = ρgjh, (B.8)

where λ, µ and ρ are arbitrary functions of the scalar φ. Let us define grsξkhrs = σgkh ,

where σ is any function of the scalar φ, then

grsξrskh − grsξkhrs = (λ− σ)gkh.

We multiply each side with gkh to get

gkhgrsξrskh − gkhgrsξkhrs = (λ− σ)gkhgkh = 0.

Therefore, σ = λ. It is easily shown in similar way that

grsξkhrs = λgkh, grsξjrhs = µgjh, grsξjrsh = ρgjh. (B.9)

We may rewrite equation (B.7) as

(n− 1)ξijkh + ξjikh + ξkjih + ξhjki = λgijgkh + µgikgjh + ρgihgjk . (B.10)

We may obtain three equations from equation (B.6) by summing over (r, j), (r, h)

and (r, h) pairs and replacing t by j, k and h, respectively.

(n− 1)ξijkh + ξjikh + ξikjh + ξihkj = λgijgkh + µgikgjh + ρgihgjk , (B.11)

(n− 1)ξijkh + ξkjih + ξikjh + ξijhk = λgijgkh + µgikgjh + ρgihgjk , (B.12)

(n− 1)ξijkh + ξhjki + ξihkj + ξijhk = λgijgkh + µgikgjh + ρgihgjk . (B.13)

We calculate (B.10) + (B.11)− (B.12)− (B.13) to obtain

2(ξjikh − ξijhk) = 0, ξjikh = ξijhk . (B.14)

If we substitute this into (B.11)− (B.12), then one finds

ξihkj − ξkjih = 0, ξihkj = ξkjih = ξhijh . (B.15)
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From (B.10), we obtain three similar equations by interchanging i with j, k and h,

respectively.

(n− 1)ξjikh + ξijkh + ξkijh + ξhikj = λgijgkh + ρgikgjh + µgihgjk , (B.16)

(n− 1)ξkjih + ξjkih + ξijkh + ξhjik = ρgijgkh + µgikgjh + λgihgjk , (B.17)

(n− 1)ξhjki + ξjhki + ξkjhi + ξijkh = µgijgkh + λgikgjh + ρgihgjk . (B.18)

We calculate [(n− 1)(B.10) + 2(B.16)− (B.17)− (B.18)], due to symmetries, we

have

(n− 1)2ξijkh + 3(n− 1)ξjikh =(n− 1)λgijgkh + (n− 1)µgikgjh

+ (n− 1)ρgihgjk + 2λgijgkh + 2ρgikgjh

+ 2µgihgjk − ρgijgkh − µgikgjh
− λgihgjk − µgijgkh − λgikgjh − ρgihgjk .

We can put this result into a compact form as

(n− 1)2ξijkh + 3(n− 1)ξjikh = αgijgkh + βgikgjh + γgihgjk , (B.19)

where
α = (n+ 1)λ− ρ− µ,

β = (n− 2)µ− λ+ 2ρ,

γ = (n− 2)ρ− λ+ 2µ.

Interchanging i with j in equation (B.19) yields

(n− 1)2ξjikh + 3(n− 1)ξijkh = αgijgkh + βgjkgih + γgjhgik . (B.20)

In order to eliminate ξjikh , we calculate [(n− 1)(B.19)− 3(B.20)]

(
(n− 1)2 − 9

)
(n− 1)ξijkh =(n− 4)(n+ 2)(n− 1)ξijkh

=agijgkh + bgikgjh + cgihgjk .

For n > 2 and n 6= 4, we have proved the lemma. When n = 4, we need to go back

to equation (B.19)

9(ξijkh + ξjikh) = αgijgkh + β(gikgjh + gihgjk).
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Let us define a tensor Aijkh such that

Aijkh ≡ξijkh − ξijhk − ξikjh + ξikhj − ξihkj + ξihkj − ξjikh + ξjihk

+ ξjkih − ξjkhi + ξjhki − ξjhik − ξkjih + ξkjhi + ξkijh − ξkihj
+ ξkhij − ξkhji − ξhjki + ξhjik + ξhikj − ξhijk + ξhkji − ξhkij .

Due to the fact that Aijkh is anti-symmetric in every pair of indices, it has only one

independent component in a four-dimensional spacetime. Clearly, it is proportional

to the Levi-Civita symbol such that

Aijkh = ψ(grs, φ)εijkh.

By virtue of the symmetries that we have in (B.15), we obtain

Aijkh = 4(ξijkh − ξjikh + ξjhki − ξhjki + ξhikj − ξihkj ). (B.21)

For n = 4, from (B.10) and (B.16), we have

2ξijkh = −(ξjikh + ξkjih + ξhjki) + λgijgkh + β(gikgjh + gihgjk), (B.22)

2ξjikh = −(ξijkh + ξkijh + ξhikj ) + λgijgkh + β(gikgjh + gihgjk). (B.23)

We calculate (B.22)− (B.23) to obtain

4(ξijkh − ξjikh) = ξhikj − ξihkj + ξjhki − ξhjki .

The right hand side of equation (B.21) can be written in terms of the first two terms.

As a result, we obtain

ξijkh = agijgkh + bgikgjh + agihgjk +
1

24
ψ(grs, ρ)εijkh,

where a, b and c are arbitrary functions of the scalar φ. From Lemma B.1, we have

ψ(grs, φ) = β
√
g, where β is an arbitrary function of the scalar φ.

Lemma B.4 If ξijkh = ξijkh(gab, φ) is a tensor and

ξijkh = ξjikh = ξijhk

together with

ξijkh + ξikjh + ξihkj = 0

then for n ≥ 2

ξijkh = α
(
gijgkh −

1

2
(gikgjh + gihgjk)

)
,

where α arbitrary function of the scalar φ.
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Proof. The result is obvious by applying the given symmetries to Lemma B.3.

Lemma B.5 If ξij,kh;rs,tu = ξij,kh;rs,tu(gab, φ) is a tensor and

ξij,kh;rs,tu = ξrs,tu;ij,kh = ξji,kh;rs,tu = ξij,hk;rs,tu (B.24)

together with

ξij,kh;rs,tu + ξih,jk;rs,tu + ξik,hj;rs,tu = 0 (B.25)

and

ξij,kh;rs,tu + ξij,ku;rs,th + ξij,kt;rs,hu + ξrs,kh;ij,tu + ξrs,ku;ij,th + ξrs,kt;ij,hu = 0, (B.26)

then for n > 3,

ξij,kh;rs,tuR
kijhRtrsu =

[(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu]R
kijhRtrsu

(2n− 3)(n− 3)
,

where

αij,kh;rs,tu = glm[gijξml,kh;rs,tu + gikξmj,lh;rs,tu + gihξmj,kl;rs,tu

+ girξmj,kh;ls,tu + gisξmj,kh;rl,tu + gitξmj,kh;rs,lu + giuξmj,kh;rs,tl ]
(B.27)

Note that commas and semicolons are used for identifying the only symmetries. They

have no other meanings whatsoever here.

Proof. We can write

ξij,kh;rs,tu = Bα
i B

β
jB

γ
kB

δ
hB

µ
rB

ν
sB

ρ
tB

λ
uξαβ,γδ;µν,ρλ .

Taking the derivative of both sides with respect to ∂
∂Bab

yields,

∂ξij,kh;rs,tu
∂Ba

b

=
∂gθϕ
∂Ba

b

∂ξij,kh;rs,tu
gθϕ

= 2gaθ
∂ξij,kh;rs,tu

gθb

=δbi ξaj,kh;rs,tu + δbjξia,kh;rs,tu + δbkξij,ah;rs,tu + δbhξij,ka;rs,tu

+ δbrξij,kh;as,tu + δbsξij,kh;ra,tu + δbtξij,kh;rs,au + δbuξij,kh;rs,ta .

We multiply each side with gaµ and replace b with ν to obtain

2
∂ξij,kh;rs,tu

gµν
=δνi g

aµξaj,kh;rs,tu + δνj g
aµξia,kh;rs,tu + δνkg

aµξij,ah;rs,tu

+ δνhg
aµξij,ka;rs,tu + δνr g

aµξij,kh;as,tu + δνs g
aµξij,kh;ra,tu

+ δνt g
aµξij,kh;rs,au + δνug

aµξij,kh;rs,ta .
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Due to the symmetry in (µ, ν), we arrive at

δνi g
aµξaj,kh;rs,tu + δνj g

aµξia,kh;rs,tu + δνkg
aµξij,ah;rs,tu + δνhg

aµξij,ka;rs,tu

+ δνr g
aµξij,kh;as,tu + δνs g

aµξij,kh;ra,tu + δνt g
aµξij,kh;rs,au + δνug

aµξij,kh;rs,ta

=δµi g
aνξaj,kh;rs,tu + δµj g

aνξia,kh;rs,tu + δµkg
aνξij,ah;rs,tu + δµhg

aνξij,ka;rs,tu

+ δµr g
aνξij,kh;as,tu + δµs g

aνξij,kh;ra,tu + δµt g
aνξij,kh;rs,au + δµug

aνξij,kh;rs,ta .

We multiply each side with gµσ to obtain

δνi ξσj,kh;rs,tu + δνj ξiσ,kh;rs,tu + δνkξij,σh;rs,tu + δνhξij,kσ;rs,tu

+ δνr ξij,kh;σs,tu + δνs ξij,kh;rσ,tu + δνt ξij,kh;rs,σu + δνuξij,kh;rs,tσ

=giσg
aνξaj,kh;rs,tu + gjσg

aνξia,kh;rs,tu + gkσg
aνξij,ah;rs,tu + ghσg

aνξij,ka;rs,tu

+ grσg
aνξij,kh;as,tu + gsσg

aνξij,kh;ra,tu + gtσg
aνξij,kh;rs,au + guσg

aνξij,kh;rs,ta .

Summing over (ν, i) and replacing σ by i yields

(n−1)ξij,kh;rs,tu + ξji,kh;rs,tu + ξkj,ih;rs,tu + ξhj,ki;rs,tu

+ ξrj,kh;is,tu + ξsj,kh;ri,tu + ξtj,kh;rs,iu + ξuj,kh;rs,ti

=gijg
aνξνa,kh;rs,tu + gikg

aνξνj,ah;rs,tu + gihg
aνξνj,ka;rs,tu + girg

aνξνj,kh;as,tu

+ gisg
aνξνj,kh;ra,tu + gitg

aνξνj,kh;rs,au + giug
aνξνj,kh;rs,ta .

Upon using (B.25) for the second, the third and the fourth terms and using the equa-

tion (B.27) as well, we have

(n− 1)ξij,kh;rs,tu + ξrj,kh;is,tu + ξsj,kh;ri,tu + ξtj,kh;rs,iu + ξuj,kh;rs,ti

= αij,kh;rs,tu.
(B.28)

As a result of (B.26), we may write

(ξrj,kh;is,tu + ξij,kh;rs,tu + ξsj,kh;ri,tu + ξrj,tu;is,kh

+ ξij,tu;rs,kh + ξsj,tu;ri,kh)R
kijhRtrsu = 0.

Due to the symmetries, we have

(2ξrj,kh;is,tu + ξij,kh;rs,tu + 2ξrj,tu;is,kh + ξij,rs;kh,tu)R
kijhRtrsu

=(4ξrj,kh;is,tu + ξij,kh;rs,tu + ξij,rs;kh,tu)R
kijhRtrsu = 0.
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Considering the Riemann curvature tensor’s symmetries, we calculate

αij,kh;rs,tuR
kijhRtrsu

= [(n− 1)ξij,kh;rs,tu + ξrj,kh;is,tu + ξsj,kh;ri,tu + ξtj,kh;rs,iu + ξuj,kh;rs,ti ]R
kijhRtrsu

= [(n− 1)ξij,kh;rs,tu + ξrj,kh;is,tu + ξsj,kh;ri,tu + ξsj,kh;ut,ir + ξrj,kh;ut,si ]R
kijhRtrsu

= [(n− 1)ξij,kh;rs,tu + 2ξrj,kh;is,tu + 2ξsj,kh;ri,tu ]R
kijhRtrsu

= [(n− 1)ξij,kh;rs,tu + 4ξrj,kh;is,tu ]R
kijhRtrsu

= [(n− 2)ξij,kh;rs,tu − ξij,rs;kh,tu ]RkijhRtrsu.

Similarly, we have

αij,rs;kh,tuR
kijhRtrsu

= [(n− 1)ξij,rs;kh,tu + ξkj,rs;ih,tu + ξhj,rs;ki,tu + ξtj,rs;kh,iu + ξuj,rs;kh,ti ]R
kijhRtrsu

= [(n− 1)ξij,rs;kh,tu − ξij,rs;kh,tu + ξrj,tu;kh,is + ξrj,ut;kh,si ]R
kijhRtrsu

= [(n− 2)ξij,rs;kh,tu + 2ξrj,tu;kh,is ]R
kijhRtrsu

= [(n− 5

2
)ξij,rs;kh,tu − ξij,kh;rs,tu ]RkijhRtrsu.

We may eliminate the ξij,rs;kh,tu term by using the last two equations to obtain(
(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu

)
RkijhRtrsu

= [(2n− 5)(n− 2)− 1] ξij,kh;rs,tuR
kijhRtrsu

= [(2n− 3)(n− 3)] ξij,kh;rs,tuR
kijhRtrsu,

which completes the proof.

Lemma B.6 Under the conditions of Lemma B.5 and for n > 2

gtuξij,kh;rs,tu =
1

n− 2
βij,kh;rs (B.29)

and

gjtξij,kh;rs,tu =− 1

2
gjtξiu,kh;rs,tj

+ µδn4
√
g(gkrεiuhs + gksεiuhr + ghrεiuks + ghsεiukr),

(B.30)

where

βij,kh;rs = λ(gijgkhrs −
1

2
gikgjhrs −

1

2
gihgjkrs −

1

2
girgkhjs −

1

2
gisgkhjr),

gkhrs = gkhgrs −
1

2
(gkrghs + gksghr)

and λ, µ are arbitrary functions of the scalar φ.
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Once again, note that commas and semicolons are used for identifying the only sym-

metries. They have no other meanings whatsoever here.

Proof. We may define a new tensor βij,kh;rs such that

gtuξij,kh;rs,tu ≡ κ1βij,kh;rs , (B.31)

gtuξij,rs;kh,tu ≡ κ2βij,rs;kh , (B.32)

where κ1 and κ2 are arbitrary functions of the scalar φ. Therefore, after multiplying

each line with the inverse metric, we have

gijgkhgrsgtuξij,kh;rs,tu = κ1g
ijgkhgrsβij,kh;rs ,

gijgkhgrsgtuξij,rs;kh,tu = κ2g
ijgkhgrsβij,rs;kh .

By comparing these two, we have

gijgkhgrsgtuξij,kh;rs,tu − gijgkhgrsgtuξij,rs;kh,tu
= κ1g

ijgkhgrsβij,kh;rs − κ2gijgkhgrsβij,rs;kh = 0.

Therefore, κ1 = κ2. Together with this, we may also use (B.25) to obtain the symme-

tries such that

βij,kh;rs = βij,rs;kh , (B.33)

βij,kh;rs + βik,jh;rs + βih,kj;rs = 0. (B.34)

This tensor is a function of the the metric and the scalar, i.e.,

βij,kh;rs = βij,kh;rs(gab, φ).

Since we have a tensor, we can write

βij,kh;rs = Bα
i B

β
jB

γ
kB

δ
hB

µ
rB

ν
sβαβ,γδ;µν .

Taking the derivative of both sides with respect to ∂
∂Bab

yields

∂βij,kh;rs
∂Ba

b

=
∂gθϕ
∂Ba

b

∂βij,kh;rs
gθϕ

= 2gaθ
∂βij,kh;rs
gθb

=δbiβaj,kh;rs + δbjβia,kh;rs + δbkβij,ah;rs

+ δbhβij,ka;rs + δbrβij,kh;as + δbsβij,kh;ra .

72



We multiply each side with gaµ and replace b with ν to obtain

2
∂βij,kh;rs
gµν

=δνi g
aµβaj,kh;rs + δνj g

aµβia,kh;rs + δνkg
aµβij,ah;rs

+ δνhg
aµβij,ka;rs + δνr g

aµξij,kh;as + δνs g
aµβij,kh;ra .

Due to the symmetry in (µ, ν), we find

δνi g
aµβaj,kh;rs + δνj g

aµβia,kh;rs + δνkg
aµβij,ah;rs

+ δνhg
aµβij,ka;rs + δνr g

aµβij,kh;as + δνs g
aµβij,kh;ra

=δµi g
aνβaj,kh;rs + δµj g

aνβia,kh;rs + δµkg
aνβij,ah;rs

+ δµhg
aνβij,ka;rs + δµr g

aνβij,kh;as + δµs g
aνβij,kh;ra .

We multiply each side with gµσ to obtain

δνi βσj,kh;rs + δνj βiσ,kh;rs + δνkβij,σh;rs

+ δνhβij,kσ;rs + δνrβij,kh;σs + δνsβij,kh;rσ

=giσg
aνβaj,kh;rs + gjσg

aνβia,kh;rs + gkσg
aνβij,ah;rs

+ ghσg
aνβij,ka;rs + grσg

aνβij,kh;as + gsσg
aνβij,kh;ra .

Summing over (ν, i) and replacing σ by i yields

(n− 1)βij,kh;rs + βji,kh;rs + βkj,ih;rs + βhj,ki;rs + βrj,kh;is + βsj,kh;ri

=gijg
aνβνa,kh;rs + gikg

aνβνj,ah;rs + gihg
aνβνj,ka;rs

+ girg
aνβνj,kh;as + gisg

aνβνj,kh;ra .

According to equation (B.25), the sum of the second, the third and the fourth terms

vanishes. Similarly, we can calculate the first, the fifth, and the sixth terms in the

following way

(n− 1)βij,kh;rs + βrj,kh;is + βsj,kh;ri

=(n− 2)βij,kh;rs

=gijg
aνβνa,kh;rs + gikg

aνβνj,ah;rs + gihg
aνβνj,ka;rs

+ girg
aνβνj,kh;as + gisg

aνβνj,kh;ra .

By virtue of (2.20), we may rewrite the latter equation as

(n− 2)βij,kh;rs =gijg
aνβaν,kh;rs −

1

2
gikg

aνβaν,jh;rs −
1

2
gihg

aνβaν,jk;rs

− 1

2
girg

aνβaν,kh;js −
1

2
gisg

aνβaν,kh;jr

(B.35)
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We may show all symmetries of gijβij,kh;rs by using the symmetries of βij,kh;rs as

gijβij,kh;rs = σξkhrs , (B.36)

ξkhrs = ξhkrs = ξrskh .

Therefore, we calculate

grs(βij,kh;rs + βik,jh;rs + βih,kj;rs) = σ(ξijkh + ξikjh + ξihkj ) = 0,

where σ is any function of the scalar φ. Making use of Lemma B.4, we find

ξijkh = a[gijghk − 1

2
(gikgjh + gihgjk)]

Then, we may define

gijkh ≡ [gijghk − 1

2
(gikgjh + gihgjk)]. (B.37)

By using (B.31), (B.35), (B.36) and (B.37), we may write

(n− 2)gtuξij,kh;rs,tu = λ

(
gijgkhrs −

1

2
gikgjhrs −

1

2
gihgjkrs

− 1

2
girgkhjs −

1

2
gisgkhjr

)
and

βij,kh;rs = λ

(
gijgkhrs −

1

2
gikgjhrs −

1

2
gihgjkrs −

1

2
girgkhjs −

1

2
gisgkhjr

)
,

where λ is arbitrary function of the scalar φ. Consequently, we have

gtuξij,kh;rs,tu =
1

n− 2
βij,kh;rs

We may also define a tensor ψi,kh;rs,u as

ψi,kh;rs,u ≡ gjtξij,kh;rs,tu . (B.38)

We may obtain a relation related to this tensor by multiplying (B.26) by gkr

ψh,ij;tu,s + ψu,ij;th,s + ψt,ij;hu,s

− 1

2(n− 2)

[
βsh,ij;tu + βsu,ij;th + βst,ij;hu

]
= 0.

From (B.34), we reduce the latter equation to

ψh,ij;tu,s + ψu,ij;th,s + ψt,ij;hu,s = 0. (B.39)

74



We also have symmetries from (B.24) as

ψi,kh;rs,u = ψi,hk;rs,u = ψu,rs;kh,i. (B.40)

We multiply (B.28) with gjt to obtain

(n− 1)ψi,kh;rs,u + ψr,kh;is,u + ψs,kh;ri,u +
1

n− 2
βkh;rs,iu + ψu,kh;rs,i

=
1

n− 2
βkh;rs,iu −

1

2(n− 2)
gikg

jtβjh,rs;tu

− 1

2(n− 2)
gihg

jtβjk,rs;tu + girg
aνψν,kh;as,u

+ gisg
aνψν,kh;ra,u + ψi,kh;rs,u + giug

aνgjtξνj,kh;rs,ta .

(B.41)

By using (2.20), (B.34), and (B.39), we calculate

girg
aνψν,kh;as,u = −1

2
girg

aνψs,kh;aν,u = −1

2
girg

aνgβγξβs,kh;aν,uγ

= − 1

2(n− 2)
girg

βγββs,kh;uγ =
1

4(n− 2)
girξuskh .

Similarly, we have

gisg
aνψν,kh;ra,u =

1

4(n− 2)
gisξurkh .

The last term of (B.41) can be calculated by using (B.26) as follows

giug
aνgjt

(
ξνj,kh;rs,ta + ξνa,kh;rs,tj + ξνt,kh;rs,ja

+ ξνj,rs;kh,ta + ξνa,rs;kh,tj + ξνt,rs;kh,ja
)

=
2

(n− 2)
giuξkhrs + 4giug

aνgjtξνj,kh;rs,ta = 0.

Therefore, we find

giug
aνgjtξνj,kh;rs,ta = − 1

2(n− 2)
giuξkhrs .

We may further reduce (B.41) as

(n− 3)ψi,kh;rs,u + ψu,kh;rs,i

=
1

4(n− 2)
gikξhurs +

1

4(n− 2)
gihξkurs +

1

4(n− 2)
girξuskh

+
1

4(n− 2)
gisξurkh −

1

2(n− 2)
giuξkhrs

=− 1

2
βiu,kh;rs .

(B.42)
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Interchanging i and u yields

(n− 3)ψu,kh;rs,i + ψi,kh;rs,u = −1

2
βiu,kh;rs . (B.43)

We calculate (n− 3)(B.42)− (B.43) to obtain(
(n− 3)(n− 3)− 1

)
ψi,kh;rs,u = −n− 4

2
βiu,kh;rs

=
(
(n− 2)(n− 4)

)
ψi,kh;rs,u = −n− 4

2
βiu,kh;rs .

For n > 2 and n 6= 4, we have

ψi,kh;rs,u = − 1

2(n− 2)
βiu,kh;rs (B.44)

or

gjtξij,kh;rs,tu = −1

2
gjtξiu,kh;rs,tj .

For n > 2 and n = 4, we have

ψi,kh;rs,u + ψu,kh;rs,i = −
1

2
βiu,kh;rs .

Therefore, the most general form of ψi,kh;rs,u can be written by considering the anti-

symmetry in (i, u) in the following way

ψi,kh;rs,u =− 1

4
βiu,kh;rs + Λ1grsεiukh + Λ2gkhεiurs

+ Λ3gkrεiuhs + Λ4gksεiuhr + Λ5ghrεiuks + Λ6ghsεiukr,

where Λ1, Λ2, Λ3, Λ4, Λ5 and Λ6 are arbitrary functions of the scalar φ. Λ1 = Λ2 = 0

due to (r, s) and (k, h) symmetry. Using these two symmetries, we also have Λ3 =

Λ4 = Λ5 = Λ6. Thus, we have successfully completed the proof.

gjtξij,kh;rs,tu =− 1

2
gjtξiu,kh;rs,tj

+ µδn4
√
g(gkrεiuhs + gksεiuhr + ghrεiuks + ghsεiukr),

where µ is any function of the scalar φ.

Lemma B.7 If ψ is a scalar which depends on the variables gij , φ and φ,i, i.e., ψ =

ψ(gij , φ, φ,i), then ψ = ψ(φ, ρ), where ρ ≡ gijφ,iφ,j .

Proof. If we have a scalar ψ = ψ(gij , φ, φ,i), and we have

ψ(gij , φ, φ,i) = ψ(gij, φ, φ,i).
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Taking the derivative of this with respect to Ba
b , together with (2.2), yields

∂ψ

∂Ba
b

=
∂gαβ
∂Ba

b

∂ψ

∂gαβ
+

∂φ,i
∂Ba

b

∂ψ

∂φ,i
= 2

∂ψ

∂gbβ
gaβ +

∂ψ

φ,b
φ,a = 0.

If we multiply this with gar, we obtain

2
∂ψ

∂gbr
= −∂ψ

φ,b
φ,r, (B.45)

where φ,r = garφ,a. Due to symmetry in b and r on the right hand side, the left hand

side must be symmetric in (b, c). Therefore, we have

∂ψ

φ,b
φ,r =

∂ψ

φ,r
φ,b.

Multiplying this equation by φ,r and defining ρ ≡ gijφ,iφ,j and λ ≡ ρ−1φ,r
∂ψ
∂φ,r

, we

obtain
∂ψ

∂φ,r
= λφ,r. (B.46)

Here, we can define ψ(gij , φ, φ,i) = F (gij , φ, φ,i, ρ). By taking the derivative of this

with respect to φ,r yields

∂ψ

∂φ,r
=
∂gαβ
∂φ,r

∂F

∂gαβ
+

∂φ

∂φ,r

∂F

∂φ
+
∂φ,i
∂φ,r

∂F

∂φ,i
+

∂ρ

∂φ,r

∂F

∂ρ
,

∂ψ

∂φ,r
=

∂F

∂φ,r
+

∂ρ

∂φ,r

∂F

∂ρ
. (B.47)

We can calculate the second term on the right hand side in the following way

∂ρ

∂φ,r

∂F

∂ρ
= 2gijφ,iδ

r
j

∂F

∂ρ
= 2φ,r

∂F

∂ρ
.

Consequently, we can rewrite (B.47) as

∂ψ

∂φ,r
=

∂F

∂φ,r
+ 2φ,r

∂F

∂ρ

By comparing this result with (B.46), we find

2
∂F

∂ρ
= λ and

∂F

∂φ,r
= 0. (B.48)

Therefore, we find that ψ = F (gij , φ, ρ). Considering the obtained result, the right

hand side of (B.45) vanishes. Therefore, the left hand side must also vanish. As a

result, we have

ψ = ψ(φ, ρ). (B.49)
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Lemma B.8 If ψ is a scalar density which depends on the variables gij , φ and φ,i,

i.e., ψ = ψ(gij , φ, φ,i), then ψ =
√
gκ(φ, ρ), where κ is a constant.

Proof. Using the methods and results employed in Lemmas B.1 and B.7, this can be

easily established.

Lemma B.9 If ψijkh = ψijkh(gab, φ, φ,a) is a tensor and

ψijkh = ψjikh = ψijhk

together with

ψijkh + ψikjh + ψihkj = 0,

then for n ≥ 3

ψijkhR
kijh = αRijφ,iφ,j + βR, (B.50)

where α = α(φ, ρ) and β = β(φ, ρ).

The detailed proof of this identity is long. However, this result is immediate when

one considers the most general form of the tensor ψijkh = ψijkh(gab, φ, φ,a) with the

given symmetry properties. A rigorous proof of this can be obtained by following the

same techniques that we used in Lemmas B.3 and B.7.

Lemma B.10 If n = 4 and if χij,kh;ab,cd satisfies equation (2.38), then

Λij,kh;ab,cd;rs,tu = Aεij,kh;ab,cd;rs,tu,

where

A = A(gij , gij,k , gij,kh, φ, φ,i)

is a scalar and

εij,kh;ab,cd;rs,tu ≡
∑
tu

∑
rs

∑
cd

∑
ab

∑
kh

∑
ij

εikacεjhrtεbdsu/g,

where εikac is the four-dimensional permutation symbol which has the values 0, 1 and

−1. The summation symbol is defined as∑
ij

Aij······ ≡ Aij······ + Aji······ .
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Proof. Here, we can use the following notation

Λij,kh;ab,cd;rs,tu ≡ ij, kh; ab, cd; rs, tu

without using the summation convention. Since we have n = 4, some of the indices

must be equal to each other.

If five or more indices are equal, then we will have at least two of these indices in the

two of three groups (ij, kh), (ab, cd) and (rs, tu). In light of (2.20), we can put them

in the form ··, ii; ··, ii; ··, ·i. By using (2.37), this term immediately vanishes. If three

or four are equal in the same group of indices, then due to (2.12), we will have zero.

If four of the indices are equal to each other, we can calculate every possible com-

bination. However, considering the results above, there is no need to check every

possible combination. Let us say we have four i, three j and k, two h.

If our indices are in the form jk, ii; jk, hi; jk, hi, from (2.37), we have

2jk, ii; jk, hi; jk, hi+ 2jk, ii; jk, hh; jk, ii+ 2jk, ii; jk, hi; jk, hi = 0.

Note that the second term vanishes by (2.37). The first and the third terms are the

same. Therefore, this term is equal to zero.

If our indices are in the form of jj, ii; jk, hi; kk, hi, from (2.37), we will get the same

result as the one above.

If our indices are in the form hh, ii; jk, ji; jk, ki, again, we will get the same result.

If three of the indices are equal, then there must be three i, j, k and h. Let us say we

have ij, kh; ij, kh; ij, kh. We may use (2.37) to conclude that

4(ij, kh; ij, kh; ij, kh) + 2(ij, kh; ij, kk; ij, hh) = 0.

From the second term, making use of (2.37) for k in the first two group of indices, we

also find

6(ij, kh; ij, kk; ij, hh) = 0.

Therefore, we conclude that ij, kh; ij, kh; ij, kh = 0.

We infer that if we do not have any equal indices in any group, the result is zero as

shown above, unless we have jk, ih; jk, ih; ij, kh.
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If we have three equal indices in any two groups, then the other two pair of indices

should not be equal in order not to obtain a zero. Therefore, any combination such as

kh, ii; kh, ·i; ··, ·· = 0, as shown above. Therefore, only the following combinations

will survive

ii, hh; ik, jh; kk, jj, ii, hh; ik, jj;hj, kk,

ii, jk; ij, hh; jh, kk, ii, jk; ij, kh; jk, hh,

jk, ih; jk, ih; ij, kh.

However, each term can be written in terms of the first one due to (2.37). Therefore,

we may write

ii, hh; ik, jj;hj, kk = −ii, hh; ik, jh; kk, jj,

ii, jk; ij, hh; jh, kk = −1

2
ii, hh; ik, jh; kk, jj,

ii, jk; ij, kh; jk, hh = −1

4
ii, hh; ik, jh; kk, jj,

jk, ih; jk, ih; ij, kh =
1

8
ii, hh; ik, jh; kk, jj.

Therefore, Λij,kh;ab,cd;rs,tu has only one independent component when n = 4. Since

we can obtain every non-zero permutation of indices from the first one, examining

only this term will suffice. It can be easily shown that ii, hh; ik, jh; kk, jj is anti-

symmetric under the interchange of any two groups of three equal indices as a conse-

quence of (2.37).

Note that every equal indices in any group should be together as two, before or after

the comma. Otherwise, the term vanishes, namely, i·, i·; ··, ··; ··, ·· = 0. Now, we can

define a new quantity which has the same symmetry properties as Λij,kh;ab,cd;rs,tu,

εij,kh;ab,cd;rs,tu ≡
∑
tu

∑
rs

∑
cd

∑
ab

∑
kh

∑
ij

εikacεjhrtεbdsu/g.

Therefore, if χij,kh;ab,cd satisfies (2.38), we have

Λij,kh;ab,cd;rs,tu = Aεij,kh;ab,cd;rs,tu, (B.51)

where A = A(gij , gij,k , gij,kh, φ, φ,i).

Lemma B.11 If n = 4 and if χij,kh;ab,cd satisfies equation (2.38), then

Λij,kh;ab,cd;rs,tu;pq,lm = 0.
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Proof. Note that we use the notation that we employed in Lemma B.10, where there

is no summation on repeated indices.

We have two options to obtain non-zero terms from the results of Lemma B.10.

ii, hh; ik, jh; kk, jj; ij, kh, ii, hh; ik, jh; kk, jj; ih, kj

Other combinations of indices that we have in the last group of four indices are di-

rectly zero as shown before. If we apply (2.38) to (ik, jh; ij, kh), we calculate

ik, jh; ij, kh+ ik, jk; ij, hh+ ik, jh; ij, kh

+ ij, jh; ik, kh+ ij, jk; ik, hh+ ij, jh; ik, kh = 0.

This can be written as

2(ik, jh; ij, kh) + ik, jk; ij, hh+ 2(ik, kh; ij, jh) + ik, hh; ij, jk = 0

After using (2.20), we obtain

2(ik, jh; ij, kh)− 1

2
(ij, kk; ij, hh)− (ih, kk; ih, jj)− 1

2
(ik, hh; ik, jj) = 0

The last three terms are zero. Therefore, the first term also is zero. The same proce-

dure shows that (ik, jh; ih, kj) is also zero. Thus

Λij,kh;ab,cd;rs,tu;pq,lm = 0 (B.52)

Due to (B.51) and (B.52), we can conclude that A = A(gij , gij,k , φ, φ,i). As a result

of Lemmas (2.1) and (B.7), we have A = A(φ, ρ).

Lemma B.12 If n = 4, then (2.35) implies that Λa;b;ij,kh;rs,tu = 0.

Proof. We again employ our notation without summation. For the last two groups of

four indices, we can use the results that we have in Lemma B.10. Therefore, the only

possible non-zero terms are of the form

i; j; ii, hh; kk, jj, k; j; ii, hh; ik, jh.

Obviously the first term is zero due to (2.35). By virtue of the symmetry relation that

we have in Appendix C.5, the second term can be written as

k; j; ii, hh; ik, jh = j;h; ii, hh; ik, kj,
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which vanishes again due to equation (2.35). Therefore, if n = 4, then

Λa;b;ij,kh;rs,tu = 0. (B.53)
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APPENDIX C

EXTENDED CALCULATIONS

In this appendix, some long calculations arising from the derivation of the most gen-

eral form of the Lagrangian and the derivation of the field equations are made.

C.1 Calculation of the First Term of (2.51)

Starting from the definition of εij,kh;ab,cd;rs,tu, we have

εij,kh;ab,cd;rs,tu ≡
∑
tu

∑
rs

∑
cd

∑
ab

∑
kh

∑
ij

εikacεjhrtεbdsu/g

We calculate

Aεij,kh;ab,cd;rs,tuRtrsuRcabdRkijh

= A
∑
tu

∑
rs

∑
cd

∑
ab

∑
kh

∑
ij

εikacεjhrtεbdsuRtrsuRcabdRkijh/g

= Aλ(∗Rjh
su)(∗Rsu

ca)(∗Rac
jh)/g,

where λ is a constant.

C.2 Calculation of the Second Term of (2.51)

Calculation of the second term on the right hand side of equation (2.51) can be com-

pleted here. From Lemma B.5, we have

ξij,kh;rs,tuR
kijhRtrsu =

[(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu]R
kijhRtrsu

(2n− 3)(n− 3)
, (C.1)
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where from equation (B.27), we have

αij,kh;rs,tu =g
lm[gijξml,kh;rs,tu + gikξmj,lh;rs,tu + gihξmj,kl;rs,tu

+ girξmj,kh;ls,tu + gisξmj,kh;rl,tu + gitξmj,kh;rs,lu + giuξmj,kh;rs,tl ].

Using equations (2.20), (B.29) and (B.38), we calculate

αij,kh;rs,tu =
1

n− 2
[gijβkh,rs;tu −

1

2
gikβjh,rs;tu −

1

2
gihβjk,rs;tu ]

+ girψj,kh;tu,s + gisψj,kh;tu,r + gitψj,kh;rs,u + giuψj,kh;rs,t,

αij,rs;kh,tu =
1

n− 2
[gijβrs,kh;tu −

1

2
girβjs,kh;tu −

1

2
gisβjr,kh;tu ]

+ gikψj,rs;tu,h + gihψj,rs;tu,k + gitψj,rs;kh,u + giuψj,rs;kh,t.

Consequently, we find

(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu

=
2n− 3

n− 2
gijβkh,rs;tu + gik [2ψj,rs;tu,h +

2n− 5

2(n− 2)
βjh,rs;tu ]

+ gih[2ψj,rs;tu,k +
2n− 5

2(n− 2)
βjk,rs;tu ]

+ gir [(2n− 5)ψj,kh;tu,s +
1

n− 2
βjs,kh;tu ]

+ gis[(2n− 5)ψj,kh;tu,r +
1

n− 2
βjr,kh;tu ]

+ git[(2n− 5)ψj,kh;rs,u + 2ψj,rs;kh,u]

+ giu[(2n− 5)ψj,kh;rs,t + 2ψj,rs;kh,t].

(C.2)

We can use equation (B.30) together with equation (B.44) in order to rewrite the latter

as

(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu

=
2n− 3

n− 2
gijβkh,rs;tu −

2n− 3

2(n− 2)
gikβjh,rs;tu −

2n− 3

2(n− 2)
gihβjk,rs;tu

− 2n− 3

2(n− 2)
girβjs,kh;tu −

2n− 3

2(n− 2)
gisβjr,kh;tu −

2n− 3

2(n− 2)
gitβju,kh;rs

− 2n− 3

2(n− 2)
giuβjt,kh;rs + κijkhrstu,
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where κijkhrstu represents all the terms containing the metric and εijkh together, aris-

ing from equation (B.30). Multiplying this with RkijhRtrsu yields(
(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu

)
RkijhRtrsu

=

(
2n− 3

n− 2
gijβkh,rs;tu −

2n− 3

2(n− 2)
gikβjh,rs;tu −

2n− 3

2(n− 2)
gihβjk,rs;tu

− 2n− 3

2(n− 2)
girβjs,kh;tu −

2n− 3

2(n− 2)
gisβjr,kh;tu −

2n− 3

2(n− 2)
gitβju,kh;rs

− 2n− 3

2(n− 2)
giuβjt,kh;rs + κijkhrstu

)
RkijhRtrsu.

(C.3)

We are ready to calculate the right hand side of equation (C.3) term by term. From

the first term, we have
2n− 3

n− 2
gijβkh,rs;tuR

kijhRtrsu

=λ
2n− 3

n− 2
gij

(
gkhgrstu −

1

2
gkrghstu −

1

2
gksghrtu

− 1

2
gktgrshu −

1

2
gkugrsht

)
RkijhRtrsu

=− λ2n− 3

n− 2
RkhRtrsu

(
gkh
(
grsgtu −

1

2
grtgsu −

1

2
grugst

)
− 1

2
gkr
(
ghsgtu −

1

2
ghtgsu −

1

2
ghugst

)
− 1

2
gks
(
ghrgtu −

1

2
ghtgru −

1

2
ghugrt

)
− 1

2
gkt
(
grsghu −

1

2
grhgsu −

1

2
grugsh

)
− 1

2
gku
(
grsght −

1

2
grhgst −

1

2
grtgsh

))
.

Applying contractions reduces the latter

λ
2n− 3

n− 2

(
R2 − 0 +

1

2
R2 − 1

2
RrsR

rs + 0− 1

4
RruR

ru − 1

2
RsrR

sr − 1

4
RstR

st

+ 0− 1

2
RtuR

tu + 0− 1

4
RtsR

ts − 1

2
RutR

ut − 1

4
RruR

ru + 0

)
=λ

2n− 3

n− 2

(
3

2
R2 − 3RijR

ij

)
.

The second term on the right hand side of equation (C.3) vanishes due to symmetry

relations of the metric and the Riemann curvature tensor.

The third term on the right hand side of equation (C.3) gives the same result as the

first term with a factor of 1
2

by interchanging j and h. We calculate the fourth term on
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the right hand side of equation (C.3) as

−2n− 3

n− 2
girβjs,kh;tuR

kijhRtrsu

=λ
2n− 3

n− 2
RkijhR tsu

i

(
gkh
(
gjsgtu −

1

2
gjtgsu −

1

2
gjugst

)
− 1

2
gkj
(
ghsgtu −

1

2
ghtgsu −

1

2
ghugst

)
− 1

2
gks
(
ghjgtu −

1

2
ghtgju −

1

2
ghugjt

)
− 1

2
gkt
(
gjsghu −

1

2
gjhgsu −

1

2
gjugsh

)
− 1

2
gku
(
gjsght −

1

2
gjhgst −

1

2
gjtgsh

))
.

(C.4)

Applying contractions reduces the latter

λ
2n− 3

n− 2

(
−RijR

ij + 0− 1

2
RijR

ij − 1

2
RihR

ih + 0− 1

4
RihR

ih

+ 0 +
1

4
RihkjR

kijh +
1

4
RijkhR

kijh − 1

2
RikjhR

kijh + 0

+
1

4
RikjhR

kijh − 1

2
RihjkR

kijh + 0 +
1

4
RijhkR

kijh

)
=− λ2n− 3

n− 2

(
9

4
RijR

ij +
1

4
Rijkh

(
−Rjhik −Rjkih

+ 2Rjikh −Rjihk + 2Rjhki −Rjkhi

))
=− λ2n− 3

n− 2

(
9

4
RijR

ij − 3

4
Rijkh

(
Rikjh +Rijkh

))
.

(C.5)

Due to the first Bianchi identity

Rijkh
(
Rikjh +Rijhk +Rihkj

)
= 0,

we have

RijkhRijkh = Rijkh
(
Rikjh −Rihjk

)
= 2RijkhRikjh. (C.6)

This can be used in the last term of equation (C.5). As a result, the fourth term on the

right hand side of equation (C.3) can be written as

−2n− 3

n− 2
girβjs,kh;tuR

kijhRtrsu = −λ2n− 3

n− 2

(
9

4
RijR

ij − 9

8
RijkhR

ijkh

)
.

It can be easily shown that the fourth and the fifth terms on the right hand side of

equation (C.3) are equal. Interchanging r and s together with interchanging t and
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u leads to the equality due to the symmetry relations of the tensor βij,kh;rs and the

Riemann curvature tensor.

Similarly, it is also easy to show that the fourth, the sixth, and the seventh terms on

the right hand side of equation (C.3) are all equal. Therefore, we calculate equation

(C.3) such that(
(2n− 5)αij,kh;rs,tu + 2αij,rs;kh,tu

)
RkijhRtrsu

= λ
2n− 3

2(n− 2)

(
9

2
R2 − 18RijR

ij +
9

2
RijkhR

ijkh

)
+ κijkhrstuR

kijhRtrsu

= λ
9(2n− 3)

4(n− 2)

(
R2 − 4RijR

ij +RijkhR
ijkh

)
+ κijkhrstuR

kijhRtrsu.

Using (B.30) and for n = 4, we can calculate the last term of the latter as

κijkhrstuR
kijhRtrsu

=µn
√
g

(
(2n− 5)gir

(
gktεjshu + gkuεjsht + ghtεjsku + ghuεjskt

)
+ (2n− 5)gis

(
gktεjrhu + gkuεjrht + ghtεjrku + ghuεjrkt

)
+ (2n− 7)git

(
gkrεjuhs + gksεjuhr + ghrεjuks + ghsεjukr

)
+ (2n− 7)giu

(
gkrεjths + gksεjthr + ghrεjtks + ghsεjtkr

))
RkijhRtrsu,

where µ is an arbitrary function of the scalar φ. It can be easily shown that every term

of the latter is proportional to (∗Rij
kh)R

kh
ij and the sum is non-zero. Therefore, we

have

κijkhrstuR
kijhRtrsu = γ(∗Rij

kh)R
kh
ij ,

where γ is an arbitrary function of the scalar φ.

C.3 Calculations of Field Equations

We use equations (2.29) and (2.26) (or (2.32) to obtain the Euler-Lagrange equations.

Therefore, in this appendix, we will frequently use the following equations to calcu-

late field equations.

By considering the second-order terms, we can easily calculate

∂Rabcd

∂gij,kh
=

1

4

(
Dijkh
abcd +Dijkh

badc −D
ijkh
abdc −D

ijkh
bacd

)
,
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where

Dijkh
abcd ≡

1

2
(δiaδ

j
d + δidδ

j
a)(δ

k
b δ

h
c + δkc δ

h
b ).

In order to obtain the Euler-Lagrange equations that follow from L1, we first note the

following
∂R2

∂gij,kh
= 2Rgacgbd

∂Rabcd

∂gij,kh
,

∂(RacR
ac)

∂gij,kh
=gbdgrtgsaguc

∂(RabcdRrstu)

∂gij,kh

=gbdRac∂Rabcd

∂gij,kh
+ grtRsu∂Rrstu

∂gij,kh

=2gbdRac∂Rabcd

∂gij,kh
,

∂(RabcdR
abcd)

∂gij,kh
= 2Rabcd∂Rabcd

∂gij,kh
.

Finally, we can calculate the following

∂

∂gij,kh

(
R2 − 4RabR

ab +RabcdR
abcd
)

=2
∂Rabcd

∂gij,kh

(
gacgbdR− 4gbdRac +Rabcd

)
=
1

4

(
(δiaδ

j
d + δidδ

j
a)(δ

k
b δ

h
c + δkc δ

h
b ) + (δibδ

j
c + δicδ

j
b)(δ

k
aδ

h
d + δkdδ

h
a)

− (δiaδ
j
c + δicδ

j
a)(δ

k
b δ

h
d + δkdδ

h
b )− (δibδ

j
d + δidδ

j
b)(δ

k
aδ

h
c + δkc δ

h
a)
)

×
(
gacgbdR− 4gbdRac +Rabcd

)
=
1

4

(
gihgkjR− 4gkjRih +Rikhj + gikghjR− 4ghjRik +Rihkj

+ gjhgkiR− 4gkiRjh +Rjkhi + gjkghiR− 4ghiRjk +Rjhki

+ gkjgihR− 4gihRkj +Rkijh + ghjgikR− 4gikRhj +Rhijk

+ gkigjhR− 4gjhRki +Rkjih + ghigjkR− 4gjkRhi +Rhjik

−
(
gijgkhR− 4gkhRij +Rikjh + gijghkR− 4ghkRij +Rihjk

+ gjigkhR− 4gkhRji +Rjkih + gjighkR− 4ghkRji +Rjhik
)

−
(
gkhgijR− 4gijRkh +Rkihj + ghkgijR− 4gijRhk +Rhikj

+ gkhgjiR− 4gjiRkh +Rkjhi + ghkgjiR− 4gjiRhk +Rhjki
))
.
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After rearranging this, we obtain

∂

∂gij,kh

(
R2 − 4RabR

ab +RabcdR
abcd
)

=gihgkjR + gikgjhR− 2gijgkhR− 2gkjRih − 2gjhRik − 2gkiRjh

− 2ghiRjk + 4gkhRij + 4gijRkh + 2Rikhj + 2Rihkj.

C.3.1 The Euler-Lagrange Equations of L1 of Theorem 2.2

If we use the identity R|h = 2Ra
h|a, we can calculate the covariant derivative of the

equation above as

∂Rabcd

∂gij,kh

(
2gacgbdR|h − 8gbdRac

|h + 2Rabcd
|h
)

=2gkjRia
|a + 2gikRja

|a − 4gijRka
|a − 2gkjRia

|a − 2gjhRik
|h − 2gikRja

|a

− 2ghiRjk
|h + 4gkhRij

|h + 4gijRka
|a + 2Rikhj

|h + 2Rihkj
|h.

(C.7)

In light of second Bianchi identity, one can easily find the following identities which

helps simplifying (C.7)

Rikhj
|h +R

k hj|i
h +R ihj

h |k = 0,

Rikhj
|h = Rkj|i −Rij|k,

and

Rihkj
|h +R

ihj |k
h +R

ih k|j
h = 0,

Rikhj
|h = −R

ij|k +Rik|j.

After substituting these in (C.7), we obtain

∂Rabcd

∂gij,kh

(
2gacgbdR|h − 8gbdRac

|h + 2Rabcd
|h
)
= 0.

Therefore, we have

∂Rabcd

∂gij,kh

(
2gacgbdR|hk − 8gbdRac

|hk + 2Rabcd
|hk
)
= 0.
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By inserting the relations above into (2.29), we can calculate the Euler-Lagrange

equations derived from L1 as

Eij(β1L1) =− β1
√
g
∂Rabcd

∂gij,kh

(
2gacgbdR|kh − 8gbdRac

|kh + 2Rabcd
|kh
)

− 2β′1
√
gφ|k

∂Rabcd

∂gij,kh

(
2gacgbdR|h − 8gbdRac

|h + 2Rabcd
|h
)

−√g(β′′1φ|kφ|h + β′1φ|kh)
∂Rabcd

∂gij,kh

(
2gacgbdR− 8gbdRac + 2Rabcd

)
− 1

2

√
gβ1g

ij
(
R2 − 4RabR

ab +RabcdR
abcd
)

− 2

3

√
gβ1

∂Rabcd

∂gim,kh

(
2gacgbdR− 8gbdRac + 2Rabcd

)
R j
h km.

After taking the relevant derivatives by using the methods described in the beginning

of this appendix, we finally obtain

Eij(β1L1) =4
√
gβ′1
(
φ|iaR j

a + φ|jaR i
a +

1

2
R(gabφ|abg

ij − φ|ij)

− gijφ|abRab − gabφ|abRij − φ|abRaijb
)

+ 4
√
gβ′′1
(
φ|iφ|aR

aj + φ|jφ|aR
ai +

1

2
R(gijφ|aφ

|a − φ|iφ|j)

− gijφ|aφ|bRab −Rijφ|aφ
|a − φ|aφ|bRaijb

)
− 1

2

√
gβ1g

ij(R2 − 4RabR
ab +RabcdR

abcd)

− 2

3

√
gβ1
(
− 3RRij + 6Rj

kR
ik + 6RkhR j i

h k − 3RihkmRj
hkm

)
.

The field equation above is valid for n dimensional spacetime. However, in a four-

dimensional spacetime, one can further reduce this equation. Since in our case, we

have a four-dimensional spacetime, we are able to make use of the Lanczos identity

[25]. The detailed derivation of the Lanczos identity can be found in Appendix C.4.

Lanczos has shown that if n = 4 then

1

4
δef
(
RabcdRabcd − 4RabRab +R2

)
= RebcdRfbcd − 2R e

fb dR
bd − 2RfbR

eb +RRe
f .

Therefore, in a four-dimensional spacetime, we have

Eij(β1L1) =4
√
gβ′1
(
φ|iaR j

a + φ|jaR i
a +

1

2
R(gabφ|abg

ij − φ|ij)

− gijφ|abRab − gabφ|abRij − φ|abRaijb
)

+ 4
√
gβ′′1
(
φ|iφ|aR

aj + φ|jφ|aR
ai +

1

2
R(gijφ|aφ

|a − φ|iφ|j)

− gijφ|aφ|bRab −Rijφ|aφ
|a − φ|aφ|bRaijb

)
.
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By virtue of (2.26), we can easily calculate

E(β1L1) = −β′1L1.

C.3.2 The Euler-Lagrange Equations of L2 of Theorem 2.2

Due to (2.29), we calculate the Euler-Lagrange equations derived from L2 as

Eij(β2L2) =−
(
√
gβ2φ|rφ|s

(
gargcsgbd

∂Rabcd

∂gij,kh
− 1

2
grsgbdgac

∂Rabcd

∂gij,kh

))
|kh

− 1

2

√
gβ2g

ijGabφ|aφ|b +
3

4

√
gβ2G

iaφ|aφ
|j +

1

4

√
gβ2G

jaφ|aφ
|i

− 2

3

(
√
gβ2φ|rφ|s

(
gargcsgbd

∂Rabcd

∂gim,kh
− 1

2
grsgbdgac

∂Rabcd

∂gim,kh

))
R j
h km.

Upon taking the relevant derivatives, we find

Eij(β2L2) =−
1

4

√
gβ2

((
φ|iφ|hgkj + φ|iφ|kghj + φ|jφ|hgki + φ|jφ|kghi

− 2φ|iφ|jgkh − 2φ|kφ|hgij
)
− φ|aφ|a

(
gkjgih + ghjgik − 2gkhgij

))
|kh

− 1

2

√
gβ′2φ|k

((
φ|iφ|hgkj + φ|iφ|kghj + φ|jφ|hgki + φ|jφ|kghi

− 2φ|iφ|jgkh − 2φ|kφ|hgij
)
− φ|aφ|a

(
gkjgih + ghjgik − 2gkhgij

))
|h

− 1

4

√
g(β′′2φ|kφ|h + β′2φ|kh)

((
φ|iφ|hgkj + φ|iφ|kghj + φ|jφ|hgki

+ φ|jφ|kghi − 2φ|iφ|jgkh − 2φ|kφ|hgij
)

− φ|aφ|a
(
gkjgih + ghjgik − 2gkhgij

))
− 1

2

√
gβ2
(
gijRabφ|aφ|b −

1

2
gijRφ|aφ

|a)
− 1

6

√
gβ2

((
φ|iφ|hgkm + φ|iφ|kghm + φ|mφ|hgki + φ|mφ|kghi

− 2φ|iφ|mgkh − 2φ|kφ|hgim
)

− φ|aφ|a
(
gkmgih + ghmgik − 2gkhgim

))
R j
h km

+
√
gβ2
(3
4
Riaφ|aφ

|j +
1

4
Rjaφ|aφ

|i − 1

2
Rφ|iφ|j

)
.

91



After rearranging this, we obtain

Eij(β2L2) =
√
gβ2

(
1

2
gij
(
(gabφ|ab)

2 − φ|abφ|ab − 2φ|aφ|bR
ab +

1

2
φ|aφ

|aR
)

+ φ|iaφ j
|a − g

abφ|abφ
|ij + φ|a

(
φ|iRaj + φ|jRai

)
− 1

2
φ|iφ|jR− 1

2
φ|aφ

|aRij − φ|aφ|bRaijb

)
+

1

2

√
gβ′2

(
gij
(
φ|aφ|ag

khφ|kh − φ|aφ|bφ|ab
)

− φ|iφ|jg|abφ|ab + φ|a
(
φ|iφ j

|a + φ|jφ i
|a
)
− φ|ijφ|aφ|a

)
.

Using equation (2.26), we can easily calculate

E(β2L2) = 2
√
g
(
β2G

aiφ|a
)
|i −
√
gβ′2G

abφ|aφ|b

=
√
gGab

(
β2φ|ab + β′2φ|aφ|b

)
.

C.3.3 The Euler-Lagrange Equations of L3 of Theorem 2.2

From (2.29), we can calculate the Euler-Lagrange equations obtained from L3 as

Eij(β3L3) =
√
g

(
− (β′′3φ|kφ|h + β′3φ|kh)

(1
2
gihgkj +

1

2
gikghj − gijgkh

)
− 1

2
β3g

ijR− 2

3
β3
(1
2
gikghm − gimgkh

)
R j
h km

)
.

After rearranging this, we obtain

Eij(β3L3) =
√
g

(
− β′′3φ|iφ|j + β′′3g

ijφ|aφ
|a − β′3φ|ij + β′3g

ijgabφ|ab + β3G
ij

)
.

By virtue of (2.26), we can easily calculate

E(β3L3) = −
√
gβ′3R.

C.3.4 The Euler-Lagrange Equations of L4 of Theorem 2.2

Due to (2.29), we calculate the Euler-Lagrange equations derived from L4 as

Eij(ηL4) =−
1

2
gijη
√
g +

3

8
gjhφ,h

∂ρ

∂φ,i

√
g
∂η

∂ρ
+

1

8
gihφ,h

∂ρ

∂φ,j

√
g
∂η

∂ρ

=− 1

2
gijη
√
g +

3

4
gjhφ,hg

ibφ,b
√
g
∂η

∂ρ
+

1

4
gihφ,hg

jbφ,b
√
g
∂η

∂ρ
.
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After rearranging this, we obtain

Eij(ηL4) =
√
g

(
∂η

∂ρ
φ|iφ|j − 1

2
gijη

)
.

Making use of (2.32), we can calculateE(L) fromEij
|j (L). After taking the covariant

derivative, we find

Eij
|j (ηL4) =

√
g

(
∂2η

∂φ∂ρ
φ|jφ

|iφ|j + 2
∂2η

∂2ρ
gabφ|ajφ|bφ

|iφ|j +
∂η

∂ρ
φ|ijφ|j

+
∂η

∂ρ
φ|igabφ|ab −

1

2

∂η

∂φ
gijφ|j −

∂η

∂ρ
φ|ijφ|j

)
=
√
g

(
∂2η

∂φ∂ρ
φ|jφ

|iφ|j + 2
∂2η

∂2ρ
gabφ|ajφ|bφ

|iφ|j

+
∂η

∂ρ
φ|igabφ|ab −

1

2

∂η

∂φ
gijφ|j

)
.

As a result, we have

E(ηL4) = 2
√
g

(
∂2η

∂φ∂ρ
φ|aφ

|a + 2
∂2η

∂2ρ
φ|abφ

|aφ|b +
∂η

∂ρ
gabφ|ab −

1

2

∂η

∂φ

)
.

C.3.5 The Euler-Lagrange Equations of L5 of Theorem 2.2

From (2.29), we calculate the Euler-Lagrange equations derived from L5 as

Eij(cL5) =− 2cεabrsgtcgud
(
Rrstu

∂Rabcd

∂gij,kh

)
|kh −

1

2
cgijεabrsgtcgudRrstuRabcd

− 4

3
cεabrsgtcgud

(
Rrstu

∂Rabcd

∂gim,kh

)
R j
h km.

To assist in our calculation of Eij(cL5), we calculate

εabrsgtcgud
(
Rrstu

∂Rabcd

∂gij,kh

)
=
1

8

(
εikrsgthgujRrstu + εihrsgtkgujRrstu

+ εjkrsgthguiRrstu + εjhrsgtkguiRrstu

+ εkirsgtjguhRrstu + εhirsgtjgukRrstu

+ εkjrsgtiguhRrstu + εhjrsgtigukRrstu

− εikrsgtjguhRrstu − εihrsgtjgukRrstu

− εjkrsgtiguhRrstu − εjhrsgtigukRrstu

− εkirsgthgujRrstu − εhirsgtkgujRrstu

− εkjrsgthguiRrstu − εhjrsgtkguiRrstu

)
,
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which reduces to

εabrsgtcgud
(
Rrstu

∂Rabcd

∂gij,kh

)
=
1

4
Rrstu

(
εikrs(gthguj − gtjguh) + εihrs(gtkguj − gtjguk)

+ εjkrs(gthgui − gtiguh) + εjhrs(gtkgui − gtiguk)
)
.

After long calculations where one uses the first and the second Bianchi, and the Ricci

identities, we see that all the terms vanish. Consequently, we obtain

Eij(cL5) = 0.

Therefore, from equation (2.32), we immediately have

E(cL5) = 0.

C.4 Derivation of the Lanczos Identity

In a n dimensional spacetime, the Weyl tensor is given by

Cabcd =Rabcd −
1

n− 2
(gacRbd − gadRcb − gbcRad + gbdRac)

+
1

(n− 1)(n− 2)
R(gacgdb − gadgcb),

(C.8)

together with obvious symmetries

Cabcd = −Cbacd , Cabcd = Ccdab .

The trace of the Weyl tensor is zero, Ca
bad = 0. By considering this and the symmetry

relations, we write

δαβabµνcdC
cd
ab = 4Cαβ

µν . (C.9)

Since δαβabeµνcdf = 0 when n = 4, we have δαβabeµνcdf C
cd
ab = 0. By virtue of this and (C.9),

we conclude

C
[cd
[abδ

e]
f ] = 0.

Consequently, we have

1

9

(
Ccd

abδ
e
f+C

de
abδ

c
f + Cec

abδ
d
f + Ccd

bf δ
e
a + Cde

bf δ
c
a+

Cec
baδ

d
a + Ccd

faδ
e
b + Cde

faδ
c
b + Cec

faδ
d
b

)
= 0.
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Upon multiplying this with Cab
cd , we obtain

CabcdCabcdδ
e
f = 4CebcdCfbcd .

Calculating both sides by using (C.8) when n = 4 yields

RabcdRabcdδ
e
f − 2RabRabδ

e
f +

1

3
R2δef

= 4
(
RebcdRfbcd − 2R e

fb dR
bd − 2RfbR

eb +RRe
f +

1

2
RabRabδ

e
f −

1

6
R2δef

)
.

After rearranging the terms, we find

1

4
δef
(
RabcdRabcd − 4RabRab +R2

)
= RebcdRfbcd − 2R e

fb dR
bd − 2RfbR

eb +RRe
f .

This is known as the Lanczos identity.

C.5 Symmetries of Λa;b;ij,kh

By the compatibility of the partial derivatives, it is obvious that

Λa;b;ij,kh = Λb;a;ij,kh.

If we use this together with (2.35), then we have

Λa;b;ij,kh + Λa;i;bj,kh + Λa;j;ib,kh = 0. (C.10)

As a result of (C.10), the second and the third terms can be calculated as

Λa;i;bj,kh = −Λj;i;ba,kh − Λb;i;aj,kh,

Λa;j;ib,kh = −Λi;j;ab,kh − Λb;j;ia,kh.

By inserting these into equation (C.10), we obtain

Λa;b;ij,kh − Λj;i;ba,kh − Λb;i;aj,kh − Λi;j;ab,kh − Λb;j;ia,kh = 0. (C.11)

Again, by using (C.10), the sum of the third and the fifth terms on the left hand side

are

−Λb;i;aj,kh − Λb;j;ia,kh = Λb;a;ij,kh.

Therefore, (C.11) can be written as

Λa;b;ij,kh − Λj;i;ba,kh − Λi;j;ab,kh + Λb;a;ij,kh = 0

2Λa;b;ij,kh − 2Λi;j;ab,kh = 0.
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Consequently, we have the following symmetry

Λa;b;ij,kh = Λi;j;ab,kh. (C.12)

96


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF ABBREVIATIONS
	Introduction
	Scalar-Tensor Field Theories
	The Construction of Certain Symmetric Tensor Densities
	Proving that is a Tensor Density
	Deriving the Tensor Densities  and 
	Putting Restrictions on the Lagrangian

	Properties of the Euler-Lagrange Equations
	Finding the Tensorial Form of 
	A Relation Between  and 

	Degenerate Lagrange Densities in n Dimensions
	The Most General Lagrange Scalar Density in Four Dimensions
	The Euler-Lagrange Equations of 

	Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Spacetime
	The Construction of the Most General Form of 
	The Consequences of Demanding that 
	Construction of Useful Tensor Densities
	Lagrange Scalar Densities

	Discussion
	REFERENCES
	APPENDICES
	Riemann Normal Coordinates
	The Construction of General Tensor Densities
	Extended Calculations
	Calculation of the First Term of (2.51)
	Calculation of the Second Term of (2.51)
	Calculations of Field Equations
	The Euler-Lagrange Equations of L1 of Theorem 2.2
	The Euler-Lagrange Equations of L2 of Theorem 2.2
	The Euler-Lagrange Equations of L3 of Theorem 2.2
	The Euler-Lagrange Equations of L4 of Theorem 2.2
	The Euler-Lagrange Equations of L5 of Theorem 2.2

	Derivation of the Lanczos Identity
	Symmetries of 


