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Head of Department, Electrical and Electronics Engineering

Prof. Dr. Nevzat Güneri Gençer
Supervisor, Electrical and Electronics Engineering Depart-
ment, METU

Examining Committee Members:

Prof. Dr. Murat Eyüboğlu
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ABSTRACT

THEORETICAL LIMITS AND SAFETY CONSIDERATIONS FOR
MAGNETO-ACOUSTO ELECTRICAL TOMOGRAPHY

Ghalichi, Elyar

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Nevzat Güneri Gençer

February 2017, 60 pages

In this study, the performance of Magneto-Acousto-Electrical Tomography (MAET)
method is investigated quantitatively by considering interrelations between its sen-
sitivity, resolution and conductivity contrast. An analytical solution for the forward
problem of MAET is derived for two-dimensional (2D) concentric bodies by Sepa-
ration of Variables Method. The electric potential and the acoustic pressure are sep-
arated to their angular and radial components. The series coefficients for these solu-
tions are obtained by their respective boundary conditions. These analytical solutions
are compared to the numerical solutions calculated by COMSOL Multiphysics. The
relative errors between these two solutions for electric potential and acoustic pres-
sure are obtained. In both cases, the average relative error is below one percent. The
electric potential on the boundary is related to the acoustic boundary acceleration an-
alytically. From this potential expression, a sensitivity expression is derived relating
fractional change in conductivity contrast to fractional change in the measured elec-
tric potential. This expression is a function of resolution and conductivity contrast of
the imaging system. It also depends on the acoustic wave number and the dimensions
of the body. The pair-wise relation between these parameters are presented. The sen-
sitivity behavior of MAET is compared with Electrical Impedance Tomography and
the improvements for small inhomogeneities are presented. For eccentric bodies, a
modified expression for the sensitivity is obtained by conformal mapping. For arbi-
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trary periodic boundary excitations, the sensitivity expressions of harmonic cases are
combined to obtain a unified sensitivity expression.

Moreover, the tissue heating concerns arising in MAET imaging method is investi-
gated numerically for a simplified 2D breast model. The steady state temperature
distribution in the model is evaluated for an external source free case. The medium
is excited with a 16 element linear phased array transducer at 1 MHz. The amplitude
of acoustic excitation is set to the mechanical safety limit (1.7 MPa) at 1 MHz. The
heating profiles due to acoustic absorption and resistive Lorentz current dissipation
are demonstrated. The maximum temperature change is below 1 Kelvin and within
the thermal safety limits.

Keywords: Separation of variables method, COMSOL Multiphysics, Magneto-Acousto
Electrical Tomography, Analytical solution, Sensitivity analysis
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ÖZ

MANYETO AKUSTO ELEKTRİKSEL TOMOGRAFİNİN TEORİK
SINIRLARI VE GÜVENLİK ÇALIŞMALARI

Ghalichi, Elyar

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nevzat Güneri Gençer

Şubat 2017 , 60 sayfa

Bu çalışmada, Magneto-Akusto-Elektriksel Tomografi (MAET) metodunun perfor-
mansı, duyarlılığı, çözünürlüğü ve iletkenlik kontrastı arasındaki ilişkiler kantitatif
(nicel) olarak incelenmiştir. Bu işlemi yapmak için, MAET’in ileri problemine bi-
leşkelerine ayırma metodunu uygulanarak iki boyutlu (2B) eş merkezli cisimler için
analitik bir ifade elde edilmiştir. Elektriksel potansiyel ve akustik basınç, açısal ve
radyal bileşenlerine ayrılmıştır. Sınır koşulları kullanılarak seri açılım katsayıları bu-
lunmaktadır. Bu analitik çözümler COMSOL çoklu fizik yazılımıyla elde edilen sa-
yısal çözümler ile kıyaslanmaktadır. Bu çözümler arasındaki nispi hatalar sunulmak-
tadır. Sonlu elemanlar metodundaki bütün ağ noktaları için bu hatalar hesaplanmıştır.
Her iki durumun da, elektrik potansiyel ve akustik basınç, nispi hataları yüzde birin
altındadır. Sınırda ölçülen elektrik potansiyeli analitik olarak uygulanan akustik sı-
nır ivme ile ilişkilendirilmiştir. Bu potansiyel ifadesinden, elektriksel potansiyeldeki
oransal değişim ile iletkenlik kontrastındaki oransal değişimi ilişkilendiren bir duyar-
lılık ifadesi elde edilmiştir. Bu ifade görüntüleme sisteminin çözünürlüğü, iletkenlik
kontrastına, akustik dalga sayısı ve cismin boyutlarına bağlıdır. Bu parametrelerin
arasındaki ikili ilişkiler gösterilmiştir. MAET’in duyarlılık karakteristiği Elektriksel
Empedans Tomografi ile karşılaştırılmıştır ve küçük çözünürlük değerlerindeki geliş-
meler gösterilmiştir. Eş merkezli olmayan cisimler için, açı korur gönderim yöntemi
ile bir duyarlılık ifadesi elde edilmiştir. Harmonik olmayan akustik uyarımlar için,
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harmonik uyarımların duyarlılık ifadesinin birleştirilmesi ile genel bir duyarlılık ifa-
desi elde edilmiştir.

Ayrıca, 2B basit bir göğüs modeli için MAET görüntüleme yöntemindeki ısınma
problemi sayısal olarak incelenmiştir. Harici kaynağın olmadığı durumda vücut içe-
risindeki sabit ısı dağılımı hesaplanmıştır. Daha sonra cisim 1 saniye boyunca 16 ele-
manlı akustik dönüştürücü ile uyarılmıştır. Akustik emilimden ve dirençsel Lorentz
akımlarından kaynaklanan güç yitiminden (kaybından) kaynaklanan ısı profili göste-
rilmiştir. Azami ısı artışı 1 Kelvin’in altındadır ve güvenlik limitleri içerisindedir.

Anahtar Kelimeler: değişkenlerine ayırma yöntemi, COMSOL Çoklufizik, Manyeto
Akusto Elektriksel Tomografi, Analitik çözüm, Duyarlılık analizi
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CHAPTER 1

INTRODUCTION

Electrical impedance tomography (EIT) is a noninvasive technique to image the con-

ductivity distribution of an object [1–5]. EIT system’s spatial resolution is limited by

number of electrodes in regions close to surface. Seagar et. al. [6] showed quantita-

tively that EIT’s spatial resolution is limited by number of electrodes in regions close

to surface. Also, the current density inside the object is lower than the current density

on the surface hence the spatial resolution is poorer in these regions. Hybrid imag-

ing methods are proposed to improve the spatial resolution of EIT. One such method,

Magneto-Acousto-Eletrical Tomography (MAET), combines ultrasound with electri-

cal impedance tomography [7–15]. In the existence of a static magnetic field, the

resultant (velocity) current density is sensed by a receiver coil encircling the body or

electrodes attached to the body (Fig. 1.1). The main objective of this study is to obtain

an analytic solution for the forward problem of MAET and investigate its theoretical

limits, i.e., its sensitivity, resolution and conductivity contrast.

Analytical solutions are essential in investigating the performance of an imaging sys-

tem quantitatively. Analytical solutions of EIT are investigated in [5, 16–19]. Sepa-

ration of variables method (SVM) is the most common method to solve the forward

problem of EIT. SVM is applicable to geometries with constant coordinate bound-

aries. One popular geometry for SVM, which is the concern of this study also, is two

dimensional (2D) concentric circles in polar coordinates [5,16]. In addition, different

2D geometries are studied in rectangular and elliptic coordinates [16]. 3D studies are

established in [17] for variety of coordinate systems and conductivity distributions.

For eccentric circles conformal mapping is utilized in 2D polar coordinates [5,18,19].
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In [19] both conductivity and permittivity are considered in obtaining electric poten-

tial.

In a recent thesis study SVM is be applied to reciprocal problem of Lorentz Field

Electrical Impedance Tomography (LFEIT) in homogeneous medium [9]. Although

this approach does not provide the potential and magnetic field distributions in the

domain that could be measured experimentally, it’s possible to calculate the voltage

induced in the coil with numerical integration of obtained electric field distribution in

reciprocal problem over the entire domain.

Ultrasound Transducer

φ
σ1, R1

σ2, R2 Ω

dΩ

B0

⊗

x

y

Figure 1.1: 2D concentric circle geometry of MAET in x-y coordinates. Here B0

is static magnetic field density normal to the plane (z-direction) and φ is the electric

potential distribution. Inner circle’s radius and electrical conductivity are represented

by R1 and σ1. The outer circle’s radius is R2 and its conductivity is denoted by σ2.

In this study, an analytical solution is obtained for forward problem of MAET in 2D

polar coordinates. Unlike EIT, in MAET the electric potential distribution is complex

valued function, since for acoustic excitation of 1 MHz the acoustic wavelength is

much smaller than the length of the body of interest. The forward problem in 2D

polar coordinates is separated to angular and radial components. In order to span

the space of complex functions, the solution for angular distribution is obtained by
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complex exponential harmonics. This forward problem is also solved numerically by

COMSOL Multiphysics [17] based on Finite Element Method (FEM). The analytic

solution of electric potential is calculated on each node of FEM mesh. The elec-

tric potential plots for both solutions are presented. The relative error for phase and

magnitude of these solutions is also calculated.

In chapter 2, analytical solutions for acoustic and electrical problems of MAET are

derived based on SVM. The coefficients of SVM series is obtained by applying the

boundary conditions of differential equations.

To validate the analytical solutions, differential equations of chapter 2 are solved nu-

merically in chapter 3. For acoustic problem, a first harmonic boundary acceleration

is applied to the boundary. The analytical and numerical solutions of this problem

are juxtaposed and their error is presented. In electrical problem for an acoustic point

source excitation, the problem is solved analytically and numerically. The electric

potential distribution for both cases are presented. The relative error between two

cases is given. Also the improvement in the average relative error as number of terms

in SVM series increases is provided.

A sensitivity expression is derived for MAET in chapter 4 by utilizing the analyt-

ical solutions derived earlier. First the Fourier coefficients of electric potential on

the boundary is related to the Fourier coefficients of acoustic boundary acceleration.

Then by taking the fractional derivative of potential with respect to conductivity con-

trast, the sensitivity expression is obtained. The relations between the sensitivity and

physical parameters of the object of interest are given. Finally, conformal mapping is

utilized to obtain an expression for sensitivity of eccentric circle bodies.

In chapter 5, the tissue heating in MAET imaging method is investigated. Due to

application of acoustic pressure and resultant Lorentz current the tissue temperature

increases. Here the steady state heat distribution in the tissues is obtained. Then an

acoustic excitation is applied for a second and the temperature increase in the tissues

and the cooling process afterwards is demonstrated.

3



4



CHAPTER 2

ANALYTICAL SOLUTION OF MAET

In order to assess the performance of MAET we have obtained an analytical expres-

sion relating the acoustic excitation on the boundary to the measured electric poten-

tials. To do so, first we expressed the Fourier series coefficient of particle velocities

in terms of the Fourier coefficients of acoustic boundary acceleration by solving the

Helmholtz equation for acoustic pressure. Then the differential equation for the elec-

tric potential is solved with particle velocity as a current source. This yields a relation

between the acoustic boundary acceleration and the measured electric potential on

the surface. The analytical solutions for the acoustic and electric problems are pre-

sented in following sections. Later in chapter 4, we relate the acoustic excitation to

the electric potential by utilizing the analytical solutions in this chapter.

2.1 Acoustic Problem

In MAET imaging method, the tissue is excited by ultrasound. This excitation can

be modeled as normal acceleration on the boundaries. Given such an excitation, the

equation that the acoustic pressure obeys inside the domain Ω and its boundary con-

dition are as follows (Fig. 1.1) [7]:

∇2p+ k2p = 0, in Ω (2.1)

n · ∇p = ρ an, on dΩ

where p (Pa) is the acoustic pressure, ρ (kg/m3) is the density of the medium and k
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(1/m) is the complex wave number which accounts for the acoustic attenuation inside

the medium. Given an inward acceleration an (m/s2) on the boundary and sound hard

boundary on the remaining boundaries, a general expression based on Separation of

Variables Method (SVM) is obtained for acoustic pressure p [20] (A homogeneous

medium is assumed since acoustic properties of the breast tissue does not vary much).

By defining p(r, θ) = R(r)Θ(θ) and explicitly writing the Laplacian operator, the

following expression is obtained for the Helmholtz equation:

d2R

dr2
Θ +

1

r

dR

dr
Θ +

1

r2
d2Θ

dθ2
R + k2RΘ = 0 (2.2)

Multiplying both sides with r2/(RΘ) to decouple the variables, the updated equation

is:

r2

R

d2R

dr2
+
r

R

dR

dr
+ k2r2 +

1

Θ

d2Θ

dθ2
= 0 (2.3)

The solution to the angular component of acoustic pressure must be periodic. That is:

1

Θ

d2Θ

dθ2
= −m2 (2.4)

where m is a non-negative integer. The eigenfunction satisfying said conditions are

{cos(mθ), sin(mθ)} for real functions and {ejmθ, e−jmθ} for complex functions. The

boundary conditions of (2.1) determines the eigenfunction set. For real valued acous-

tic boundary condition both sets span the function space. Whereas for a complex

valued acoustic boundary condition, exponential functions are the only eigenfunc-

tion set which can decompose the angular potential distribution. For such a case the

general solution is given as:

Θ(θ) = Ame
jmθ +Bme

−jmθ (2.5)

Consequently, the differential equation for the radial component is evaluated as:

6



r2

R

d2R

dr2
+
r

R

dR

dr
+ k2r2 = m2 (2.6)

The solution to the above equation are Bessel functions of the first and second kind.

The general solution for the radial component is:

R(r) = CmJm(kr) +DmYm(kr) (2.7)

Substituting (2.5) and (2.7) in p(r, θ) = R(r)Θ(θ), the general expression for acoustic

pressure is obtained:

p(r, θ) =
∞∑

m=0

(Ame
jmθ +Bme

−jmθ)(CmJm(kr) +DmYm(kr)) (2.8)

Here Am, Bm, Cm and Dm are the series expansion coefficients. Jm(·) and Ym(·) are

the Bessel functions of the first and second kinds. For a homogeneous circular object,

Ym(·) is not regular at origin, so its coefficient is set to zero.

p(r, θ) =
∞∑

m=0

(Ame
jmθ +Bme

−jmθ)Jm(kr) (2.9)

The coefficients Am and Bm are found from boundary condition of equation (2.1):

n · (dp
dr

ar +
1

r

dp

dθ
aθ) = ρan (2.10)

For a two dimensional concentric geometry given in Fig. 1.1, n = ar. Taking the

derivative of acoustic pressure with respective to r and using the orthogonality of

complex exponentials in (2.10), coefficients Am and Bm are obtained as:

Am =
ρ

π(Jm−1(kR2)− Jm+1(kR2))

∫ 2π

0

ane
−jmθdθ (2.11)

Bm =
ρ

π(Jm−1(kR2)− Jm+1(kR2))

∫ 2π

0

ane
jmθdθ (2.12)
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2.2 Electrical Problem

The electromagnetic forward problem of MAET is in the form of coupled differential

equations. To solve the forward problem, both electric potential and magnetic vector

potential must be calculated. In [7], the electrical and magnetic differential equations

are decoupled assuming that the displacement currents and inductive currents can be

ignored. Also at frequency of 1 MHz, the propagation effect is negligible. Conse-

quently, adopting the quasi-static approximation, by setting the divergence of total

current density to zero, a differential equation for the electric potential is obtained.

The equation and its boundary condition are as follows:

∇ · (σ∇φ) = ∇ · (JLorentz), in Ω (2.13)

∂φ

∂n
= n · (v ×B0), in dΩ

where σ (S/m) is electrical conductivity, φ (V) is electric potential, JLorentz (A/m2) is

Lorentz current density, v (m/s2) is particle velocity and B0 (T) is the static magnetic

field density. The current density due to Lorentz field is expressed as JLorentz =

σv ×B0.

Since the acoustic source is on the boundary, the divergence of v is zero inside the

body. Then the right hand side of (2.13) can be written as ∇σ · (v × B0). The

conductivity gradient and hence divergence of Lorentz current is zero for regions

with homogeneous conductivity. For the geometry in Fig. 1.1, equation (2.13) and its

boundary condition can be written as [7]:

∇ · (σ∇φ1) = 0, 0 < r < R1 (2.14)

∇ · (σ∇φ2) = 0, R1 < r < R2

∂φ2

∂r
= ar · (v ×B0), on R2
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On r = R1, the electric potential should satisfy the following continuity equations:

σ2
∂φ2

∂r
− σ1

∂φ1

∂r
= (σ2 − σ1)ar · (v ×B0), on R1

φ2 = φ1, on R1

Continuity of electric potential and normal component of currents is assumed on the

interface at r = R1. Implementing SVM reduces the Laplace equation to eigenvalue

problems for angular and radial components of electric potential.

φ(r, θ) = R(r)Θ(θ) (2.15)

Similar to the acoustic problem, the angular eigenfunctions are either {cos(mθ), sin(mθ)}
or {ejmθ, e−jmθ}. The velocity distribution on the boundaries determines whether real

or complex eigenfunctions are required to represent the distribution. Then the radial

component of electric potential satisfies following equation:

d2R

dr2
+

(
1

r
+
d ln(σ)

dr

)
dR

dr
− m2

r2
R = 0 (2.16)

Herem is a positive integer. The eigenfunctions are {1, ln r, rm, r−m} for radial com-

ponent. Linear combination of the eigenfunctions also satisfies the Laplace equation.

The general solution for the Laplace equation in the 2D concentric body is [16]:

φ(r, θ) = A+B ln r +
∞∑

m=1

(amr
m + bmr

−m)ejmθ + (cmr
m + dmr

−m)e−jmθ (2.17)

The equation above is valid for both regions given in (2.14). For the inner region

of radius R1, the electric potential must be finite. To satisfy this requirement the

coefficient for r−m is set to zero. Due to Neumann boundary conditions, the solution

for electric potential is determined up to a constant. Applying the boundary conditions

of (2.14), the first two terms in (2.17) for both inner and outer regions can be set to

zero. Then the electric potentials can be expressed as follows:
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φ1(r, θ) =
∞∑

m=1

rm(eme
jmθ + fme

−jmθ), 0 < r < R1 (2.18)

φ2(r, θ) =
∞∑

m=1

(amr
m+bmr

−m)ejmθ+(cmr
m+dmr

−m)e−jmθ, R1 < r < R2 (2.19)

Using orthogonality principles of complex exponentials and boundary conditions, the

coefficients am, bm and em of the series expansion can be obtained by solving the

following equations:

σ2(ammR
m−1
2 − bmmR−m−12 ) =

1

2π

∫ 2π

0

∇σ · (v ×B)e−jmθdθ (2.20)

σ2(ammR
m−1
1 −bmmR−m−11 )−σ1(emmRm−1

1 ) =

∫ 2π

0

∇σ ·(v×B)e−jmθdθ (2.21)

amR
m
1 + bmR

−m
1 = emR

m
1 (2.22)

The other three coefficients cm, dm and fm, can be obtained similarly by applying the

orthogonality principle:

σ2(cmmR
m−1
2 − dmmR−m−12 ) =

1

2π

∫ 2π

0

∇σ · (v ×B)ejmθdθ (2.23)

σ2(cmmR
m−1
1 − dmmR−m−11 )−σ1(fmmRm−1

1 ) =

∫ 2π

0

∇σ · (v×B)ejmθdθ (2.24)

cmR
m
1 + dmR

−m
1 = fmR

m
1 (2.25)
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CHAPTER 3

ACCURACY OF THE ANALYTIC SOLUTIONS

In this chapter, we investigate the MAET method numerically for simplified geome-

tries. First the analytical solutions developed in the previous chapter are tested by

solving the potential distribution numerically and analytically. For the acoustic case,

a simple harmonic boundary condition is applied to a homogeneous circular object.

The problem is solved in COMSOL and is compared to the analytical solution of the

same problem. For the electrical problem, an acoustic point source is placed above

the body. The electric potential due to induced Lorentz currents is calculated using

COMSOL. Here the Lorentz current on the boundaries can be decomposed to their

harmonic components. The analytical solution of the same excitation is obtained and

compared to the numerical solution. The relative error between the two calculations

are presented.

3.1 Acoustic Problem

To investigate the accuracy of the analytical solution in chapter 2, we solve the equa-

tion (2.1) numerically. For simplicity, the acoustic excitation on the outer boundary

is set an = A cos(θ), where A is the amplitude of excitation. Given this excitation

inside a circle of radius R2, the analytical solution can be written as:

p(r, θ) =
2Aρ cos(θ)

k(J0(kR2)− J2(kR2))
J1(kr) (3.1)

We perform the simulation for a circular region (R2 = 5 cm) with the acoustic prop-
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erties of the gland tissue. The speed of sound in the gland tissue is 1505 m/s at the

operation frequency of 1 MHz. The resultant acoustic wavelength is 1.505 mm. To

obtain an accurate simulation result, the domain is meshed with 0.1 mm triangular

elements. It contains 1, 694, 806 nodes and 3, 386, 466 elements. The acoustic ab-

sorption coefficient of gland tissue at this frequency is 8.635 Np/m. The boundary

acceleration is set as 105 m/s2.

We obtained the analytical solution for the same parameters by evaluating the acoustic

pressure at each mesh node analytically from (3.1). The two filled contour plots are

given side by side in Fig. 3.1. To better demonstrated the high acoustic pressure close

to the origin, zoomed in contour plots are added to the figure.

To analyze the error between analytical and numerical solutions, we calculate the

relative error in absolute value of these solutions for each point on the FEM mesh.

Since both solutions are complex, the absolute value of the phase difference between

the solutions is also evaluated. These equations are given as:

emagnitude =
||panalytical| − |pnumerical||

|panalytical|
(3.2)

ephase = |arg(panalytical)− arg(pnumerical)| (3.3)

Fig. 3.2 contains the location of the points with relative errors greater than 10 % and

phase differences greater than 5◦. It is observed that the points with greater error are

the zero acoustic pressure points. The numerical solution does have practically zero

values, however analytical solution is orders of magnitudes less than the numerical

one. Assuming the analytical solution as the reference, the relative errors for such

points are large in value. The average value for the relative error among 1, 694, 806

points is 0.064 %. For the phase difference, the average error in phase is 0.24◦.

12



(a) Analytical

(b) Numerical

Figure 3.1: (a) The analytical and (b) numerical acoustic pressure distributions inside

a homogeneous circle of radius R2 = 5 cm. First harmonic boundary acceleration is

applied and acoustic properties of the gland tissue are assumed. The acoustic pressure

distribution close to the origin is magnified to enhance its details.
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Figure 3.2: Location of points with relative error (acoustic pressure’s magnitude)

greater than 10 % (32 points) and a phase difference greater than 5◦ (29 points).

3.2 Electrical Problem

Now that we presented the accuracy of acoustic solution, here we take a different ap-

proach for the electrical problem. Here the body (medium) is excited by an acoustic

point source for which a closed analytical expression exist. The point source is placed

above the body (Fig. 3.3). As a result, the current distribution on boundaries encom-

passes wide harmonic range. It is assumed that there is no acoustic reflection from

the boundaries. The flow rate of acoustic source is Q (m2/s). The acoustic pressure

distribution for a medium with density ρ (kg/m3) and velocity c (m/s) satisfies the

following equation (An acoustically homogeneous media is assumed) [21]:

∇2p+ k2p = −ρQ(r)δ(r− rs) (3.4)

here r is the field point and rs is the source point.

p(R) =
ωaρQ

4
H2

0 (kR) (3.5)
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Q

R1, σ1

R2, σ2

Figure 3.3: Concentric circle geometry with an acoustic point source Q.

where R =
√
r2 + r2s − 2rrs cos(θ − θs) is the distance of the source (rs , θs) to any

point (r,θ), H2
0 (·) is the zero order Hankel function of the second kind and ωa is equal

to kc. Then the particle velocity can be calculated from the pressure distribution [22]:

v =
j

ωaρ
∇p (3.6)

The particle velocity (v) which is generated by the acoustic propagation, gives rise to

Lorentz current under a static magnetic field B0.

The differential equation for the electrical problem of MAET is described by equation

(2.13) and its boundary condition. In COMSOL Multiphysics, the equation is solved

in AC/DC module. Due to application of Neumann boundary condition, the problem

is not yet uniquely defined. To ensure convergence of the solution in analytical and

numerical problems, electric potential is set to zero at the center of concentric circles.

This makes the problem solution unique. For the comparison of the analytical and

numerical results, relative errors are calculated for all mesh nodes with following

equations ( | · | is the magnitude of ·):

emagnitude =
||φanalytical| − |φnumerical||

|φanalytical|
(3.7)
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ephase = |arg(φanalytical)− arg(φnumerical)| (3.8)

Analytical and numerical results of the forward problem of MAET are presented and

compared in magnitude for two different inner circle (Tumor) radius. In the first

configuration, the point source is excited by 1 MHz sinusoidal wave. The model

consists of a circle of radius 6.25 mm with conductivity 2 S/m and an annulus of

radius 5 cm with conductivity 0.2 S/m. The model is acoustically homogeneous with

acoustic propagation speed of 1520 m/s and density of 980 kg/m3 (properties of fat

tissue). The flow rate of acoustic point source is chosen as 1 m2/s and the magnetic

flux density which is perpendicular to plane of Fig. 1.1, is 1 T. In COMSOL, the

domain is discretized by triangular mesh elements with maximum length of one tenth

of wavelength (λ/10). The model consists of 1, 041, 390 elements and 521, 744 nodes.

The relative errors are calculated with equations (3.7) and (3.8).

The analytical and numerical solutions of electric potential distributions for the first

case are given in Fig. 3.4. The accuracy of the numerical method is dependent on the

mesh quality and number of mesh elements. As seen in Fig. 3.4(a) and 3.4(b), the

magnitude of electric potential is maximum close to acoustic source.

To better demonstrate the differences between these solutions, the locations of points

with high relative error, in absolute value and phase difference, are presented in Fig.

3.5. The nodes with relative error above 5 % are calculated and their locations are

plotted on the geometry. The nodes with a phase difference greater than 2◦ are also

marked by an asterisk sign. It is observed that the highest errors are in the regions with

sharp changes in the electric potential. In Fig. 3.5, only 7 points out of 521, 744 points

have error higher than 5 %. Also average of relative error in magnitude for 521, 744

points is 0.14 %. The average value for phase difference of all points is 0.67◦. In

calculation of relative error, 4 points along the x = 0 line are discarded. The electric

potential is zero for these points. However since the analytical electric potential’s

magnitude is orders of magnitude less than the numerical solution’s magnitude, the

relative error becomes too large.

The separation of variables method represents the solution by a series expansion.

Here we investigate the improvement in analytical solution by adding new term to
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(a) Analytical

(b) Numerical

Figure 3.4: (a) The analytical and (b) numerical magnitude of electric potential in 2D

concentric circles. The potential is maximum close to acoustic source. The radius of

the concentric inhomogeneity is 6.25 mm.
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Figure 3.5: Location of points with relative error (electric potential’s magnitude)

greater than 5 % and phase difference of greater than 2◦. The other points of FEM

mesh have lower errors in absolute value and phase.

the solution. In Fig. 3.6, the decrease in absolute value of the relative error is visible

as more terms are added to the series expansion. The average value of relative error

is above 250 % when the electric potential distribution consists of single term. As

more terms are added to electric potential, the average error reduces to 0.14 %. Since

the current distribution has not any component above the 220th harmonic, additional

terms has no effect on the accuracy of the representation.

The second model consists of a circle of radius 3.125 mm with conductivity 2 S/m and

an annulus of radius 5 cm with conductivity 0.2 S/m. The other parameters are the

same as in the first case. In COMSOL, the domain is discretized by triangular mesh

elements with the same maximum length as in the first case. The model consists of

1, 457, 268 elements and 729, 669 nodes. The relative errors are calculated with (3.7)

and (3.8).

The analytical and numerical solutions of electric potential distributions for the sec-

ond case are given in Fig. 3.7. Similar to the first case, the magnitude of electric

potential is maximum close to acoustic source in Fig. 3.7(a) and 3.7(b).
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Figure 3.6: The average relative error in absolute value of electric potential between

the analytical and numerical solutions as a function of number of terms in series

expansion (R1 = 6.25 mm).

To assess the accuracy in solutions, the locations of points with high relative error, in

absolute value and phase difference, are presented in Fig. 3.8. Similar to the first case,

here the highest errors are in the regions where there are sharp changes in the electric

potential. In Fig. 3.5, only 9 points out of 729, 669 points have error higher than 5

%. Also average of relative error in magnitude for 521, 744 points is 0.041 %. The

average value for phase difference of all points is 0.64◦. Similar to the first case, in

calculation of relative error, 4 points along the x = 0 line are discarded. The electric

potential is zero for these points. However since the electric potentials magnitude is

orders of magnitude less than the numerical solutions magnitude, the relative error

becomes too large. Here there are more points with high relative error compared to

the first case. However the average relative error in absolute value and phase is lower.

The reason for this behaviour is the smaller tumor radius in the second case. The

mesh generator in COMSOL meshes this region, with a low error in absolute value,

finer than the first case. So the average values for the second case are lower.
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(a) Analytical

(b) Numerical

Figure 3.7: (a) The analytical and (b) numerical magnitude of electric potential in 2D

concentric circles. The potential is maximum close to acoustic source. The radius of

the concentric inhomogeneity is 3.125 mm.
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Figure 3.8: Location of points with relative error (electric potential’s magnitude)

greater than 5 % and phase difference of greater than 2◦. The other points of FEM

mesh have lower errors in absolute value and phase.
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Figure 3.9: The average relative error in absolute value of electric potential between

the analytical and numerical solutions as a function of number of terms in series

expansion (R1 = 3.125 mm).
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CHAPTER 4

SENSITIVITY ANALYSIS FOR MAET

After revealing the accuracy of analytical solutions in chapter 2, in this chapter we

drive an expression for the sensitivity of MAET, which relates the changes in conduc-

tivity contrast to changes in electric potentials. The sensitivity expression is a function

of resolution, conductivity contrast, body’s outer radius and acoustic wave number.

To do so, first we represent the Lorentz currents on the inner and outer boundaries in

terms of the acoustic boundary acceleration. Then through the boundary equations

of electric potential, we relate the Fourier series coefficients of electric potential on

outer boundary, to the Lorentz current densities inside the body. As a result, the elec-

tric potential is related to the acoustic boundary acceleration. The pair-wise relations

between sensitivity and the systems parameters are demonstrated for different cases.

Conformal mapping is implemented to describe the behaviour of MAET for eccentric

circles. The sensitivity expression of MAET is compared to EIT’s sensitivity for dif-

ferent boundary accelerations. Finally, a sensitivity expression for arbitrary boundary

excitations is derived.

4.1 Deriving the Sensitivity Expression

We derived the analytical solutions for acoustic and electrical problems of MAET

in chapter 2. Here we use those equations to relate the Fourier series of acoustic

boundary acceleration to the surface electric potential. Let an on S be represented as

a Fourier series as follows:
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an =
∞∑

m=0

γme
jmθ + δme

−jmθ (4.1)

The boundary condition of equation (2.1), relates the acoustic pressure p to the bound-

ary acceleration, an. Given the series expansion of acoustic pressure in (2.9) and (4.1),

the series coefficients of p, Am and an, γm are related as:

Am =
2ρ γm

k(Jm−1(kR2)− Jm+1(kR2))
(4.2)

For a concentric circle geometry of Fig. 1.1, only the radial component of JLorentz

changes the electric potential. Noting that B0 = B0 az, JLorentz = σv × B0 and

v = j∇p/ρω the radial component of Lorentz current is represented as:

JLorentzr = σvθB0 =
jσB0

ρω

1

r

∂p

∂θ
(4.3)

The Fourier series of radial component of Lorentz current on R1 and R2 are:

JR1 =
∞∑

m=0

ζ1me
jmθ + η1me

−jmθ (4.4)

JR2 =
∞∑

m=0

ζ2me
jmθ + η2me

−jmθ (4.5)

Then ζ1m and ζ2m can be related to γm using relations (4.2) and (4.3) as follows:

ζ1m =
2mσB0Jm(kR1)γm

ωR1k(Jm−1(kR2)− Jm+1(kR2))
(4.6)

ζ2m =
2mσB0Jm(kR2)γm

ωR2k(Jm−1(kR2)− Jm+1(kR2))
(4.7)

Now that the Fourier series of the Lorentz current is linked to the acoustic boundary

acceleration, the mentioned Fourier series is added to the electromagnetic problem

of the MAET. The electric potential in the forward problem of MAET is given in

equation (2.14). Driving Point Impedance relates the current sources on R1 and R2 to

the electric potential on R2. For MAET, it is defined as:
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zmm =
amR

m
2 + bmR

−m
2

γm
= −cmR

m
2 + dmR

−m
2

δm
(4.8)

By implementing boundary conditions of (2.14), i.e., continuity of normal component

of current density and continuity of the electric potential across boundaries, Fourier

coefficients of electric potential and current density are obtained as:

σ2(ammR
m−1
2 − bmmR−m−12 ) = ζ1m (4.9)

σ2(ammR
m−1
1 − bmmR−m−11 )− σ1(emmRm−1

1 ) = ζ2m (4.10)

amR
m
1 + bmR

−m
1 = emR

m
1 (4.11)

Using (4.9), (4.10) and (4.11), an expression for equation (4.8) is calculated as:

zmm =
−2B0

[
Jm(kR2)((α− 1)βm − (1 + α)β−m) + 2(1− α)Jm(kR1)

]

ωk(Jm−1(kR2)− Jm+1(kR2))
[
(1− α)βm − (1 + α)β−m

] (4.12)

In equation (4.12), β = R1/R2 is the resolution and α = σ1/σ2 is the conductiv-

ity contrast of MAET. Representing electric potential with respect to inner sources

and taking its derivative with respect to conductivity contrast, sensitivity expression

is obtained. Fixing the outer radius R2, R1 can be represented as βR2. Then, the

sensitivity expression is given as (Sm(α, β, k, R2) = (dφ/φ)(α/dα)):

Sm =
4α(β−mJm(kβR2)

Jm(kR2)
− 1)

Jm(kβR2)
Jm(kR2)

[
2(1− α)2βm + 2(α2 − 1)β−m

]
+ (1 + α)2β−2m − (1− α)2β2m

(4.13)

For α = 1, R2 = 5 cm and acoustic properties of the gland tissue, the sensitivity

expression of (4.13) is plotted as a function of m for different β values (Fig. 4.1(a)).

Also for β = 0.2, the sensitivity of the gland tissue is given as a function of m for

different α values (Fig. 4.1(b)).

25



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m

S

 

 

β=0.5

β=0.25

β=0.125

β=0.0625

(a)

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m

S

 

 

α=2

α=10

α=20

α=100

(b)

Figure 4.1: The sensitivity of MAET as a function ofm for different resolution values

in (a) and different conductivity contrast values in (b).
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It is observed that the sensitivity of MAET is greatest for m = 1 independent of

resolution and conductivity contrast. Also for a fixed m, the fractional change in

electric potential is greatest for β = 0.5 and α = 2 in Fig. 4.1(a) and Fig. 4.1(b)

respectively. Since the greatest change in fractional voltage occurs when m = 1, we

derive the relations between the sensitivity and the other parameters for this case.

4.2 Pair-wise Relations

Before giving the pair-wise relations for m = 1, it is important to visualize the pres-

sure and velocity distribution for such a case. The absolute value of the acoustic pres-

sure p and θ component of velocity are circularly symmetric. The one dimensional

absolute value distribution of these parameters are given along the x-axis. These dis-

tributions are obtained analytically. Note that with the definition of resolution given

above β = R1/R2, the sensitivity to smaller resolutions corresponds to the sensitivity

to smaller inhomogeneities.

4.2.1 Sensitivity-Resolution

Seagar et al. [6] has presented pair-wise relations between S, α and β for applied

current EIT. In this study, similar interrelations are obtained for MAET by adding

acoustic properties of k and R2. To relate the two parameters of interest to each

other, other parameters are fixed. First, the relation between sensitivity and resolution

is investigated for different conductivity contrast values. The outer radius is R2 =

0.05 m, acoustic attenuation is a = 8.635 Np/m, speed of sound is c = 1520 m/s,

and frequency is f = 1 MHz. Due to characteristics of the Bessel function, the

behavior of the sensitivity function is oscillatory for large arguments. This behaviour

is due to the oscillatory nature of particle velocity in MAET and consequently the

oscillatory behaviour of divergence of Lorentz current. To clarify this claim, the real

and imaginary parts of divergence of the Lorentz current and sensitivity are plotted

for m = 1. The outer radius is R2 = 5 cm and the conductivity contrast is α = 1.

This comparison is demonstrated in Fig. 4.3.

As β → 0, Bessel function of integer order can be written as [23]:
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Figure 4.2: (a) The distribution of the absolute value of acoustic pressure and (b) the

absolute value for θ component of acoustic velocity along the x axis. These distribu-

tions are radially symmetric.
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Figure 4.3: Sensitivity and divergence of Lorentz current as a function of resolution.

(a) Real components, (b) Imaginary components (α = 1, a = 8.635 Np/m andR2 = 5

cm).
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Jm(z) =
zm

2mm!
(4.14)
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Figure 4.4: The sensitivity versus resolution plot for different conductivity contrast

values. For sufficiently small resolution (β) values, sensitivity is higher when con-

ductivity contrast approaches unity (a = 8.635 Np/m and R2 = 5 cm).

With this simplifications, the slope of S − β curve for small β is obtained as:

d lnSm
d ln β

=
2m
[
β−2m(1 + α)2 − β2m(1− α)2(2εm − 1)

]

β2m(1− α)2(2εm − 1) + β−2m(1 + α)2 + 2εm(α2 − 1)
(4.15)

where εm =
(kR2)

m

m!Jm(kR2)2m
.

In Fig. 4.4, the sensitivity versus resolution plots for different conductivity contrast

values are presented. The slopes of this graphs are described by equation (4.15). For

Bessel functions in (4.15), small argument approximation is used. Consequently for

large β values, the distribution of Fig. 4.4 is not accurate. For these values the change

in sensitivity is oscillatory. This behavior is demonstrated in Fig. 4.11 for α = 1. For

small β values on the other hand, the distribution converges to true values. The small

argument approximation is utilized in order to obtain an expression for slope of the
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S − β curve. As demonstrated in Fig. 4.4, as resolution (β) decreases the slope of

sensitivity curves approaches to 2m independent of α. For m = 1, the slope of S− β
curve for MAET is the same as the one for EIT. That is an improvement of factor K2

in the sensitivity, enhances the resolution by a factor K. The sensitivity-resolution

curves for α = N and α = 1/N (N is a constant) are different for resolutions close

to unity. However, improving the resolution, sensitivity values in cases where α = N

and α = 1/N converge to the same value. The highest MAET sensitivity is obtained

for α = 1.

4.2.2 Sensitivity-Conductivity Contrast

In the next step, we investigate the interrelation between sensitivity and conductiv-

ity contrast. This behaviour is demonstrated in Fig. 4.5. The slopes of sensitivity-

conductivity contrast curves are given in (4.16) for different β values. It is observed

that for small conductivity contrast and resolution close to one the sensitivity is the

greatest.

d lnSm
d lnα

=
(α2 − 1)(β2m − β−2m − 2νmβ

m)− 2νmβ
−m(1 + α2) + 2α(βm − β2m)

(2νmβm − β2m)(1− α)2 + 2νmβ−m(α2 − 1) + β−2m(1 + α)2

(4.16)

where νm =
Jm(kβR2)

Jm(kR2)
.

For β = 1, the sensitivity of MAET is constant with the value of one. For values of β

smaller than unity, the sensitivity is lower. The slope of sensitivity curve approaches

m or −m as conductivity contrast approaches to zero or infinity. That is for m = 1,

an improvement of factor K in conductivity contrast forces a degradation in system’s

sensitivity by the same factor K. Asymmetrical behaviour of MAET is illustrated in

Fig. 4.5 for the resolutions close to unity.

4.2.3 Sensitivity-Outer Radius

Fig. 4.6 demonstrates pair-wise relation between sensitivity and outer radius R2. As

outer radius increases, the sensitivity to the changes in conductivity contrast also
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Figure 4.5: The logarithmic sensitivity versus conductivity contrast plot for different

resolution values (a = 8.635 Np/m and R2 = 5 cm).
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increases for β = 0.001. For larger β values, the sensitivity is affected by the pressure

distribution in the domain as the outer radius varies.

4.2.4 Sensitivity-Acoustic Attenuation
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Figure 4.7: The logarithmic sensitivity versus acoustic attenuation plot for different

resolution values (α = 1 and R2 = 5 cm).

The relation between acoustic attenuation and sensitivity is given in Fig. 4.7. As

acoustic attenuation increases, the sensitivity of the MAET decreases. For acoustic

attenuation values greater than 100 Np/m, the sensitivity of MAET imaging system

becomes independent of the attenuation. In this calculations, conductivity contrast is

α = 1. For attenuation values under 10 Np/m the sensitivity does not vary much.

4.2.5 Sensitivity-Frequency

In order to investigate the behavior of MAET with respect to frequency, the sensi-

tivity of imaging system is obtained for different frequency values. It is important

to identify the parameters of the imaging system that are frequency dependent. The

permittivity, electrical conductivity and acoustic attenuation of the medium are all
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frequency dependent. The frequency dependency of acoustic attenuation, a(f), can

be represented as:

a(f) = af η (4.17)

For the breast fat tissue, attenuation at 1 MHz is a = 4.3578 Np/m and material

parameter η is 1.0861 [24]. The other frequency dependent electrical parameters can

be obtained from 4 element Cole-Cole dispersion model as follows [25]:

ε
′
(f) = ε∞ +

4∑

n=1

∆εn
1 + (j2πfτn)1−αn

+
σDC
j2πfε0

(4.18)

The complex permittivity of the tissues can be extracted from (4.18). Where ε∞ is the

permittivity at frequencies where ωτ >> 1 and εs is the permittivity at frequencies

where ωτ << 1. The magnitude of dispersion, ∆εn, is εs − ε∞. τn is the nth polar-

ization constant and αn is the nth distribution parameter. Theses parameters describe

the complex permittivity of tissues at different frequency ranges. For the tumor and

breast fat tissue, the parameters of (4.18) are given in Table 4.1.

Table 4.1: Dispersion parameters for fat and blood tissue [24].

Breast fat Tumor (Blood)
ε∞ 2.5 4

∆εn 3, 15, 5× 104, 2× 107 56, 5200, 0, 0

τn 17.68 ps, 63.66ns, 8.377 ps, 132.629ns,

454.7µs, 13.26ms 159.155µs, 15.915ms

αn 0.1, 0.1, 0.1, 0 0.1, 0.1, 0.2, 0

σDC 0.01 0.7

It is observed that similar to previous cases, as the resolution (β) decreases, so does

its sensitivity to changes in conductivity contrast. In Fig. 4.8, the acoustic attenuation

causes the sensitivity to drop at higher frequencies. For β = 10−3 the sensitivity

maximum at 3.56 MHz.
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4.2.6 Resolution-Conductivity Contrast

In Fig. 4.9, the relation between resolution and conductivity contrast is given. For

small β where approximation for Bessel function is valid, the slope of β − α curve

is 1/2m. As β → 0 the slope of the curve goes to infinity. The resolution curve’s

behaviour is oscillatory for β close to unity.

4.2.7 Summary of Pair-wise Relations

Similar to [6], we define noise as dφ/φ and dα/α as accuracy of the imaging system.

The fractional change in electric potential is equated to noise to obtain the best reso-

lution and conductivity contrast values. Therefore, pair-wise relations for sensitivity,

resolution, conductivity contrast, accuracy, noise, acoustic attenuation and frequency

are defined as (m = 1):

• Improving noise by a factor K, improves accuracy by the same factor K.

• An improvement in resolution by a factor of K, degrades the sensitivity by

factor K2.

• An improvement by a factor K in conductivity contrast reduces the sensitivity

of the MAET by the same factor, K.

• An improvement by a factor K2 in conductivity contrast, degrades the resolu-

tion of the MAET by a factor K.

• Increasing acoustic attenuation degrades sensitivity.

• For β = 0.001, α = 1 and R2 = 5 cm, maximum sensitivity is obtained at 3.56

MHz.

4.3 Conformal Mapping (Eccentric Inhomogeneities)

In order to assess the performance of the MAET for inhomogeneities anywhere inside

an object, conformal mapping is used to map eccentric circular geometries to concen-

tric ones (Fig. 4.10). The expression for transforming a circular inhomogeneity of
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radius ρ and location (αc, ϕ) inside a circle of radius R2 in z-domain to concentric

circles with radii of R1 and R2 in w-domain is [16]:

w =
ze−iϕ − cR2

cze−iϕ −R2

R2 (4.19)

where c is the solution of the following equation given that |c| < 1:

αcR2c
2 − (α2

c +R2
2 − ρ2)c+ αcR2 = 0 (4.20)

R2

ρ

(αc, ϕ) w(z)

R2

R1

z-domain w-domain

Figure 4.10: Conformal mapping from z-domain to w-domain, defined by function

w(z) in (4.19).

The relation between R1, R2, αc and ρ is:

R1 =

∣∣∣∣
αc − ρ− cR2

c(αc − ρ)−R2

∣∣∣∣R2 (4.21)

Given equation (4.21), we obtained an expression relating the radii of inner circles in

z and w-domain for small inhomogeneities (ρ→ 0):

lim
ρ→0

R1

ρ
=

R2
2

R2
2 − α2

c

(4.22)

Consequently for small ρ’s, the closer the inhomogeneity is to the boundary of the

object, the greater is the imaging system’s resolution. The parameters effecting the

radius of inner circle (R1) are the offset of the inhomogeneity from origin (αc) and

radius of outer circle (R2). This information complements the equation (4.13). For

example let R2 = 1, then an inhomogeneity of radius ρ = 0.075 and an offset αc =

0.5 corresponds to a circle of radius R1 = 0.1 in concentric case. The improvement
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in the resolution is 33 %. From the summary of section 4.2.7, the improvement in the

resolution can be related to the improvement in conductivity contrast or sensitivity of

the system. This corresponds to an improvement in the conductivity contrast or the

sensitivity by 79 %.

4.4 Comparison to EIT Sensitivity

For EIT, Seagar et al. [6] derived the sensitivity expression as:

SEIT =
−4αβ2m

(1 + α)2 − (1− α)2β2m
(4.23)

In Fig. 4.11, the sensitivity expression of EIT (4.23) is compared to the sensitivity

expression of MAET (4.13). If m = 1 for the resolutions smaller than 0.6, MAET

has greater sensitivity. For m = 2 on the other hand, MAET becomes more sensitive

if the resolution is smaller than 0.2. The slope of S − β curves are 2m for small

resolutions in both EIT and MAET.

4.5 Arbitrary Periodic Boundary Excitations

The sensitivity expression for harmonic cases can be combined to represent other

periodic excitations. Given equation (4.8), the sensitivity distribution for an arbitrary

excitation consisting of m terms is as follows:

S(θ) =
V1S1 + V2S2 + ...+ VmSm

V1 + V2 + ...+ Vm
(4.24)

where Vm = zmm(γme
jmθ − δme

−jmθ). For example given the acoustic excitation

of Fig. 4.12, the sensitivity at angles θ = 0 and θ = π/3 are presented in 4.13.

The sensitivity for the arbitrary periodic case is compared to the harmonic case. It is

observed that the fractional change in the electric potential at θ = 0 is greater than

the change at θ = π/3. For the locations where the electric potential is zero, the

sensitivity is not defined.
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Figure 4.11: The sensitivity of MAET and EIT as a function of resolution for (a)

m = 1 and (b) m = 2. The conductivity contrast is unity in both cases.
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CHAPTER 5

HEAT ANALYSIS FOR MAET

In this chapter we investigate the tissue heating in MAET for a simplified 2D breast

model (Fig. 5.1). Due to acoustic excitation and induced Lorentz currents, heat

sources emerge inside the body. Acoustic absorption and resistive heating are the

mechanisms responsible for these sources. The aim of this study is to determine the

extent of tissue heating and whether it may cause any damage to the tissues or not.

First the steady state acoustic pressure distribution is evaluated for the breast model of

Fig. 5.1. The resultant acoustic velocity distribution generates Lorentz currents in the

presence of a static magnetic field. Next in the AC/DC module of the COMSOL, we

solve the differential equation for the electric potential, from which induced current,

displacement current and Lorentz currents are derived. The aforementioned currents

and the acoustic intensity are the heat sources. But before calculating the temporal

temperature in the model, first we solve for the steady state temperature distribution

where metabolic heat generation, blood perfusion and heat loss to ambient air are

the only source of heat exchange. Finally the steady state solution is set as the initial

condition to evaluate the temperature increase due to the acoustic and electric sources.

These steps are thoroughly explained in the following sections.

5.1 Acoustic Problem

The simulation for the acoustic problem is performed on the modified breast model.

The breast model of Fig. 5.1 is updated to include a 16 element linear phased array

transducer (Fig. 5.2). The acoustic properties of tissues in the simplified breast model
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Figure 5.1: A simplified 2D breast model composed of subcutaneous fat, gland, tu-

mor, muscle and thoracic muscle tissues [26].

are given in Table 5.1.

Table 5.1: The acoustic properties of breast tissue at 1 MHz [27].

Tissues Density Speed of sound Attenuation
(kg/m3) (m/s) (Np/m)

Subcutaneous fat 980 1520 4.3578

Gland 1041 1505 8.635

Muscle 1090 1588 7.1088

Tumor (blood) 1041 1564 2.3676

The length of each elements of LPA transducer is 0.65 mm and the separation between

elements is 0.35 mm. On each of the elements an inward boundary acceleration is

defined. The value for this acceleration is 3.841 × 106 m/s2. The resultant pressure

distributions peak value is 1.7 MPa which is the safety limit for acoustic pressure at

1 MHz [28]. The breast model of Fig. 5.2 is meshed with triangular elements. The

maximum length of elements is 0.3 mm which is approximately equal to one fifth of

acoustic wavelength. The Helmholtz equation is solved for the acoustic pressure in

COMSOL [29]:

∇ · (1

ρ
∇p) +

k2

ρ
p = 0 (5.1)

n · 1

ρ
∇p = p

jω

Zi
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Figure 5.2: The modified breast model with the introduction of 16 element LPA trans-

ducer. The LPA elements (blue lines) are modeled as normal boundary acceleration.

Here p (Pa) is acoustic pressure, ρ is density, k =
ω

c
− ja is wave number, a is acous-

tic attenuation, ω is angular velocity and c is speed of sound. Zi = 1.2 (kg/m3) ×
343 (m/s) is the acoustic impedance of the domain outside our model which is air in

this case. n is the unit normal vector. The resultant pressure distribution is demon-

strated in Fig. 5.3. The maximum value of acoustic intensity is right below the

transducer.

5.2 Electrical Problem

The differential equation for the electrical problem of MAET is given in chapter 2.

Equation (2.13) is modified to include the displacement currents as well. In COM-

SOL, following differential equation and boundary condition are solved for electric

potential:

∇ · (−(σ + jωeε0εr)∇φ+ σv ×B0) = 0, in Ω (5.2)

n · (−(σ + jωeε0εr)∇φ+ σv ×B0) = 0, on ∂Ω
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Figure 5.3: The steady state magnitude of acoustic pressure intensity in the simplified

2D breast model.

Here φ (V) is the electric potential, v (m/s) is acoustic velocity, B0 (T) is the magnetic

field, σ (S/m) is electrical conductivity, ωe (rad/s) is electrical angular frequency, ε0

is relative permittivity of free space and εr is relative permittivity of tissues.

The electrical properties of tissues in simplified breast model are given in Table 5.2.

Table 5.2: The electrical properties of breast tissues at 1 MHz [30–32].

Tissue Relative permittivity Electrical conductivity
(1) (S/m)

Subcutaneous fat 23.7 0.0257

Gland 1430 0.603

Muscle 1840 0.503

Tumor (blood) 3030 0.8221

The obtained electric current density is demonstrated in Fig. 5.4. This current density

is composed of Lorentz and conductive currents. Since the electrical conductivity of

the fat tissue is low, the current density is lower in this region compared to others.

Also with the conductivity of 0.8221 S/m, the blood tissue is the most conductive and

the current density is higher in this region.
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Figure 5.4: The total current density distribution in the simplified 2D breast model.

5.3 Heat Problem

In the electric problem, we have calculated the total current density distribution. Due

to resistive power dissipation, the temperature in the tissues increases. There are also

heating related to acoustic absorption in the tissues. The heat problem of MAET is

modeled by Penne’s Bioheat equation [33]:

ρCp
∂T

∂t
= ∇ · (kT∇T ) +Qbio +Q− ρbCbωb(T − Tb) (5.3)

Here T (K) is temperature, Cp (J/kg·K) is specific heat capacity, kT (W/m·K) is

thermal conductivity, Qbio (W/m3) is metabolic sources, Q (W/m3) is external heat

sources (acoustic and electrical) and ωb (1/s) is the blood perfusion rate of tissues.

The homeostatic temperature of human body is 37 ◦C. To replicate this behavior, the

exterior boundary condition of muscle tissue is set to 37 ◦C. To model the radiation

heat loss between the tissue and the exterior air of 20 ◦C, surface to ambient radiation

condition is selected [29, 34]:

n · (kT∇T ) = εσS−B(T 4
ambient − T 4) (5.4)

Where ε (1) is emissivity of the human body and σS−B (W/m2·K4) is Stefan-Boltzmann
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constant. The heat loss due to convection and evaporation at the exterior boundary is

represented by the following heat loss factor:

n · (kT∇T ) = h(Tambient − T ) (5.5)

Here h = 7.01 W/m2·K is the total heat transfer coefficient. The tissue properties in

heat problem are given in Table 5.3.

Table 5.3: Breast tissues and tumor’s thermal properties [35].

Tissues Specific heat Thermal conductivity Metabolic heat Blood perfusion
(J/kg·K) (W/m·K) (W/m3) (W/m3·K)

Subcutaneous fat 2348 0.21 400 800

Gland 2960 0.33 700 2400

Muscle 3421 0.49 700 2400

Tumor (blood) 3617 0.52 42000 48000

In this model, we first calculate the steady state heat distribution in the body in ab-

sence of external sources, i.e. acoustic and electric sources. This distribution is

demonstrated in Fig. 5.5. In this simulation, the radius of tumor is 4 mm and its

depth is 27 mm.

Figure 5.5: The steady state heat distribution in absence of electrical and acoustic

heat sources.

In Fig. 5.5 the hottest tissue in the breast is tumor due to its high metabolic heat

generation (37.45 ◦C). Because of surface radiation to a 20 ◦C ambient air, the tem-
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perature in extremities of body is lower. The temperature drops to 29.96 ◦C in these

regions.

The temperature distribution of Fig. 5.5 is set as the initial condition in the transient

heating problem of the breast tissue. The added source to Penne’s equation are elec-

trical and acoustic. The heat source due to acoustic wave absorption is given as [33]:

Qacoustic = 2aI (5.6)

Here I (W/m2) is the magnitude of acoustic intensity. The source of electrical heating

is the current density of Fig. 5.4, which is given as:

Qelectrical =
1

σ
|J|2 (5.7)

The distribution of these sources are given in Fig. 5.6. The acoustic heat generation

in the model is several orders of magnitude greater than the heat generation due to

resistive current dissipation. In Fig. 5.6(a), the highest heat generation is in the gland

tissue (a = 8.635 Np/m).

The transient heat problem is solved with the Backward Differentiation Formula

(BDF) of 5th order. The relative tolerance is 0.01 and maximum time step is 0.01

s [33]. A sinusoidal boundary acceleration of 3.841 × 106 m/s2 and frequency of 1

MHz is applied to the medium for a second. The resultant heat distribution is demon-

strated in Fig. 5.7(a). After terminating the acoustic wave, the heat redistributes inside

the body. The temperature distribution at 10 seconds is also given in Fig. 5.7(b). The

maximum temperature in Fig. 5.7(a) is 37.67 ◦C. The acoustic pressure is the main

cause of this temperature increase. After a second the sources are cut off and tissues

temperature decreases with time. It takes minutes for the tissue to obtain its steady

state distribution. In Fig. 5.8, the spatial temperature rise relative to the initial condi-

tion (Fig. 5.5) is presented at t = 1 s. The maximum value of temperature is 0.62 ◦C

in the gland tissue.

Thermal safety considerations of MAET imaging technique is investigated for the
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(a)

(b)

Figure 5.6: (a) The distribution of acoustic heat source and (b) electric heat source in

the simplified 2D breast model.
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(a) 1 second

(b) 10 seconds

Figure 5.7: The heat distribution at (a) t = 1 s and (b) t = 10 s, where the tissue is

acoustically excited for a second.
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Figure 5.8: The temperature increase in the simplified 2D breast model at t = 1 s

relative to its initial value.

simplified 2D breast model. The steady state heat distribution in the model is sim-

ulated in absence of acoustic excitation. Then the acoustic pressure is applied for 1

second and resultant temperature distribution is presented. The absorption of acoustic

waves in the tissues is the main heat source in Pennes’ Bioheat equation. There are

also heat sources due to resistive dissipation of total current density in the medium.

It is concluded that the maximum temperature increase in the tissues from these heat

sources is within the safety limits of medical applications.
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CHAPTER 6

CONCLUSION

6.1 Summary

An analytical solution for the forward problem of MAET is obtained for 2D concen-

tric bodies. Based on this solution a sensitivity expression is derived. It is the ratio

of the fractional change in electric potential to the fractional change in the conductiv-

ity contrast. The sensitivity of MAET depends on resolution, conductivity contrast,

acoustic wave number and the dimensions of the body. By implementing conformal

mapping, the sensitivity expression is modified for eccentric bodies. The sensitivity

expression for different harmonics are combined to obtain a sensitivity expression for

non-harmonic acoustic boundary accelerations distributions.

For a simplified 2D breast model, the steady state heat distribution is calculated nu-

merically. Then an acoustic excitation is applied to the body and the resultant tem-

perature change is observed. It is concluded that the temperature increase in MAET

imaging is within thermal safety limits (given that the pressure is within the safety

limits).

6.2 Discussion

The analytical solutions obtained for the acoustic and electrical problems of MAET

are compared to the numerical solutions of COMSOL Multiphysics. For each node

of the mesh, the relative error between analytical and numerical solutions where ob-

tained. The average error in absolute value for acoustic pressure is 0.064 %. For
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the electrical potential this value is 0.14 %. The overall error in both solutions are

acceptable. It is observed that the largest errors between the analytical and numer-

ical solutions are the points where electric potential or acoustic pressure is zero. In

these points both solutions are practically zero, however analytical solution is orders

of magnitude less than the numerical solution.

A sensitivity expression for MAET is derived in this thesis and its characteristic be-

haviors were examined. The expression depends on resolution, conductivity contrast,

acoustic wave number and the dimensions of the object of interest. For the tissue

properties of the gland tissue the pair-wise relation between sensitivity and other pa-

rameters are given. It is observed that a degradation of factor K in the sensitivity or

conductivity contrast of the MAET, introduces an improvement of
√
K in the resolu-

tion. Also to improve the conductivity contrast of MAET by a factor K, sensitivity

must be degraded K times. It is observed that as the acoustic attenuation of a body

increases, the sensitivity degrades independent of the resolution. The frequency of

acoustic pressure does also effect the sensitivity. As frequency increases, so does the

acoustic attenuation. Consequently the sensitivity is lower for high frequency exci-

tations. The frequency of operation also changes the steady state acoustic pressure

distribution and the conductivity contrast of the object. For the first and second har-

monic boundary excitation, it is demonstrated that the overall sensitivity of MAET

is greater than EIT. For higher frequency harmonics, the improvements in the sen-

sitivity of MAET are more dominant when they are compared to the sensitivity of

EIT. Although the sensitivity expression is derived for harmonic acoustic boundary

excitations, for arbitrary boundary excitations, the harmonic components of the peri-

odic signal are obtained and a sensitivity expression is defined for such an arbitrary

excitation.

For an imaging method to be feasible, it must not cause any harm to living tissues. In

MAET, ultrasound transducers excite the body. The amplitude of pressure distribu-

tion inside the body must be in safety limits. At an operation frequency of 1 MHz, this

value is 1.7 MPa. The other concern is the tissue heating due to absorption of acous-

tic waves and power dissipation due electrical currents. In a simplified breast model,

given a maximum pressure of 1.7 MPa, we have presented the heating characteris-

tics. For a case where the model is excited for 1 second, the maximum temperature
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increase is below the safety limit (1 ◦C).

6.3 Future Work

Here the sensitivity expression for MAET is derived for electric potential measure-

ments. The Lorentz current distribution inside a body can also be sensed by coils

(LFEIT). A sensitivity expression will be derived for the LFEIT imaging method.

For transient acoustic excitations, time dependent sensitivity expression will be cal-

culated for MAET. Since the sensitivity expression is derived for the all harmonic

excitations, given the harmonics of Lorentz current density in the boundary and the

interfaces at a specific time, a sensitivity expression will be defined for that particular

time.

3D analysis for the heat problem of MAET will be performed in COMSOL. Off plane

heat transfer characteristic and 3D heat emission effects will be contributing to the

overall temperature distribution in this model as well.
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