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ABSTRACT 

 

 

CRITICAL BEHAVIOUR OF THE THERMODYNAMIC QUANTITIES 

CLOSE TO PHASE TRANSITIONS IN MOLECULAR CRYSTALS USING 

RAMAN DATA 

 

 

Özdemir, Hilal 

Ph.D., Department of Physics 

Supervisor : Prof. Dr. Hamit Yurtseven 

 

 

February 2017, 124 pages 

 

 

In this thesis we investigate the pressure and temperature dependence of the Raman 

frequencies for diffirent modes of benzene at ambient conditions (P=0 GPa and 

T=300 K). By using the experimental data we calculated the volume and frequency 

as a function of pressure at constant temperature and as a function of temperature at 

constant pressure, thus isothermal and isobaric mode Grüneisen parameter has been 

inferred in the diffrent modes. Our calculations show that calculated Raman 

frequencies agree well with the observed data for each mode in solid benzene. In a 

more generalized way, Raman frequencies were calculated as a function of pressure 

and temperature for different modes of solid naphthalene and anthracene. Our 

calculations are in a good agreement with the observed data.  
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Thermodynamic quantities such as heat capacity Cp, entropy S was analyzed using 

the experimental data at various temperatures and pressures through the Raman 

frequencies and crystal volume for the different modes in solid benzene, naphthalene 

and anthracene. Our results agree better with the observed data at higher pressures 

and temperatures. 

Also, quasi-harmonic approximation is used to calculate thermodynamic quantities 

for solid benzene, naphthalene and anthracene. Quasi-harmonic vibrational energy is 

defined as a function of temperature to originate of deriving other thermodynamic 

quantities of solid benzene, naphthalene and anthracene. When the experimental data 

is avalaible our calculations through the quasi-harmonic vibrational energy can be 

compared with the observed data for solid benzene, naphthalene and anthracene.  

 

Keywords: Raman frequency, Grüneisen parameter, Thermodynamic quantities, 

Phase transitions, Quasi-harmonic approximation 
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ÖZ 

 

MOLEKÜLER KRİSTALLERDE RAMAN VERİSİ KULLANARAK FAZ 

GEÇİŞLERİ YAKININDA TERMODİNAMİK NİCELİKLERİN KRİTİK 

DAVRANIŞI 

 

Özdemir, Hilal 

 

Doktora, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Hamit Yurtseven 

 

Şubat 2017, 143 sayfa 

 

Bu tezde uygun ortam koşullarında (P= 0 GPa ve T= 300 K) benzenin farklı modları 

için Raman frekanslarının sıcaklık ve basınç bağımlılıkları incelendi. Kristal hacmi 

ve frekans, deneysel veriler kullanılarak, sabit sıcaklıkta basıncın ve sabit basınçta 

sıcaklığın fonksiyonu olarak hesaplandı, böylece farklı modlar için izotermal ve 

izobarik mod Grüneisen parametleri tanımlanmış oldu. Farklı modlar için hesaplanan 

frekans değerleri deneysel verilerle uyumlu bulunmuştur. Genelleme yapılarak, 

Raman frekansları basıncın ve sıcaklığın fonksiyonu olarak farklı modlar için 

naftalin ve antrasen için de hesaplandı. Naftalin ve antrasen için yapılan 

hesaplamalar deneysel verilerle uyumlu bulunmuştur. 

Isı kapasitesi Cp, entropi S gibi termodinamik nicelikler, katı benzen, naftalen ve 

antrasene ait farklı modlar için Raman frekansları ve kristal hacmi boyunca çeşitli 

sıcaklık ve basınçtaki deney verileri kullanılarak analiz edildi. Sonuçlarımız daha 

yüksek basınç ve sıcaklıklarda gözlenen verilerle daha iyi uyuşmaktadır.  

 

Ayrıca, yarı-harmonik yaklaşım kullanılarak katı benzen, naftalin ve antrasene ait 

termodinamik nicelikler hesaplandı. Quasi harmonik titreşim enerjisi, katı benzen, 

naftalin ve antrasene ait diğer termodinamik niceliklerin basıncın ve sıcaklığın 

fonksiyonu olarak türetilmesinde kullanıldı. Literatürde deneysel veriler mümkün 



viii 
 

olduğunda, yarı harmonik titreşim enerjisiyle hesaplamalarımız, katı benzen, naftalin 

ve antrasen için gözlemlenen verilerle karşılaştırılabilir. 

Anahtar Kelimeler: Raman frekansı, Grüneisen parametresi, termodinamik nicelikler, 

faz geçişleri, yarı harmonik yaklaşım 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Hydrocarbons, as their name indicates, are known the simplest organic compounds 

containing just hydrogen and carbon atoms [1]. They are good fuels which generally 

occur naturally. Hydrocarbons have a carbon backbone which can be linear chain, 

ring or both of linear chain and ring with the attached hydrogen atoms [2]. In this 

thesis, we carried out our calculations for solid benzene, naphtalene and anthracene 

as in the same hydrocarbone groups. Hydrocarbons are commonly studied as 

aromatic compounds which require high pressures and temperatures to activate the 

reaction in aromatic rings. In this way, it is feasible to investigate the physical 

properties of hydrocarbons under a wide range of pressure and temperature. Since 

benzene, naphthalene and anthracene are composed of only hydrogen and carbon, 

they are hydrocarbons and are commonly investigated in the literature.  

 

Benzene with a molecular formula C6H6 is an organic chemical compound which 

contains a ring of six carbon atoms accompanied by one hydrogen atom bound to 

each carbon atom. In benzene as the prototype aromatic compound, pressures of 

some tenths of gigapascals and/or temperatures as high as hundreds of degrees 

Celcius are necessary for the reaction to occur [3]. Therefore, it is commonly used 

among the aromatic compounds to investigate the stability of the crystalline forms.  

 

Both experimental and theoretical studies have been conducted to reveal 

thermodynamic properties of benzene. In addition to the measurements of volume as 

a function of pressure in the liquid and solid phases of benzene [4], the heat capacity 

and thermal conductivity of the solid phases I and II of benzene have been measured 

[5]. Thermal expansivity was measured in solid benzene close to the melting point 

[6]. Molar volume as functions of pressure [7] and temperature [8] has been 
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investigated in benzene close to the melting point. Based on the experimental data 

[6], the Pippard relations [9] close to the melting point in solid benzene were also 

demonstrated in a previous study [10]. Particularly, the pressure and temperature 

dependence of the thermodynamic quantities including the heat capacity, isothermal 

compressibility and thermal expansivity was  calculated for the solid phase II of 

benzene in that study [10].As noted above, many spectroscopic studies on the phase 

transitions of the solid phases and also near the melting point in benzene have been 

reported in the literature. Raman [3,11-15] and infrared [11,16,17] studies have been 

focused on the solid phases of benzene. We have also studied the pressure 

dependence of the Raman frequencies in benzene [18]. 

 

Numerous physical characteristics of naphthalene have been widely studied and 

different techniques have been used to investigate its structure [19-23]. In addition, 

thermodynamic properties of naphthalene have been investigated experimentally 

[24,25]. Phonon frequencies of naphthalene have been widely examined through the 

spectroscopic studies [21,27-31]. The analysis of X-ray and neutron diffraction data 

has provided to study the molecular motion in crystalline naphthalene [31]. In some 

previous studies, anharmonic frequency shifts were calculated for naphthalene with 

the help of various potential models for hydrocarbons [19,32-34]. We have also 

calculated Raman frequency shifts in naphthalene [35]. It has been revealed [36] that 

crystallization of naphthalene occurs in the monoclinic system with the two 

molecules in the unit cell and its space group is C52h. This crystalline system 

contains three acoustic modes (Au + 2Bu), six Raman active librational modes (3Ag + 

3Bg) and three infrared active translational modes (2Au + Bu) [37].     

 

Anthracene (C14H10) has also been widely studied as an example of the polycene 

family [38,39] and various experimental techniques have been used to obtain its 

isothermal compressibility [40], the Hugoniot [41] and other physical properties [39] 

by means of spectroscopic data [42,43]. Temperature and pressure dependence of the 

Raman frequency shifts have been calculated in anthracene in our previous study 

[44]. 
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As benzene and naphthalene, anthracene is in the hydrocarbon group with the same 

structure. At ordinary pressure and temperature, its stable phase is monoclinic, space 

group P21/a, with the lattice parameters of a = 8.562, b = 6.038, c = 11.184 Å, β= 

124.70 and V = 475.35 Å3 at room temperature (290 K) with two molecules to the 

unit cell [45]. A new phase of anthracene has been investigated in terms of its 

structure and dynamics [46]. In addition, its low-temperature elastic properties [47] 

and the thermal motion [48] have been examined in previous studies.     

Crystal structure of anthracene [49-51] and its isothermal compressibility [52] up to 

45 kbar have been given in the literature in regarding the high pressureeffect on the 

physical properties of anthracene. The density functional theory was used to 

investigate the pressure effect on the interior molecular orientation and it has been 

calculated up to 10.2 GPa [53]. 

A number of studies correlating between quantities and the spectroscopic parameters 

for benzene, naphthalene and anthracene have been reported in the literature, as also 

stated above. Those studies have mainly focused on the correlations between the 

crystal volume and the vibrational frequencies through the mode Grüneisen 

parameter. From the temperature and pressure dependencies of the volume and 

frequency, the mode Grüneisen parameter has been determined. For various phases 

of benzene, naphthalene and anthracene, the values of the mode Grüneisen 

parameters can be determined as a function of temperature or pressure for those 

hydrocarbons. Using the temperature or pressure dependence of the mode Grüneisen 

parameters and the volume data, the frequencies can be calculated and then 

compared with the experimental measurements close to the phase transitions in 

benzene, naphthalene and anthracene. On that basis, from the variation of the 

frequency with temperature and with pressure, thermal expansion and the isothermal 

compressibility, respectively, can be predicted as functions of temperature and 

pressure through the mode Grüneisen parameter by means of the thermodynamic 

relations close to the phase transitions in those organic molecular systems. 

Additionally, entropy and the specific heat can be calculated as functions of 

temperature and pressure from the frequency shifts close to the phase transitions in 

benzene, naphthalene and anthracene. Finally, P-T (or T-P) phase diagrams of those 

crystalline systems can be constructed from the frequency (𝜗) shifts 
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spectroscopically (P𝜗T) as obtained thermodynamically (PVT) in benzene, 

naphthalene and anthracene. This is the motivation of our study given here. In this 

thesis, we investigate various physical properties of benzene, naphthalene and 

anthracene close to the phase transitions using the experimental data from the 

literature. Raman frequencies were calculated as functions of temperature and 

pressure. Thermodynamic properties of benzene, naphthalene and anthracene were 

investigated through the mode Grüneisen parameter. Consequently, those properties 

were presented in the P𝜗T system spectroscopically in relation to the PVT system 

through the volume dependence of the frequency (Grüneisen parameter). 

Calculations were carried out for a P𝜗T system by the Raman frequency shifts close 

to the phase transitions. Heat capacity and entropy were calculated through the 

Raman frequency shifts with the pressure and temperature for solid benzene, 

naphthalene and anthracene, as we have also reported for benzene in our earlier study 

[54]. Similarly, thermodynamic quantities were calculated by using the quasi-

harmonic approximation for benzene, naphthalene and anthracene through the 

Raman frequency shifts. A phase diagram between phases I and I’ was suggested by 

using the Raman frequency shifts of solid benzene. 

 

1.1 Phase Transitions 

 

A phase defines the several arrangements of the atoms, molecules or particles of a 

solid or liquid corresponding to the different properties which are uniform at the 

macroscopic level of the same solid or liquid substance. A phase transition can take 

place when a phase changes to another one. In a crystal, the phase transition is the 

consequence of the change in lattice symmetry. In other words it is a structural phase 

transition. [55]   

 

There are two common suggested phase diagrams of solid benzene in the literature 

constructed experimentally [11,12] as shown in Figures (1a) and(1b), respectively.  
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Figure 1. 1 Experimentally constructed phase diagrams of benzene, (a) [12] and (b) 

[11]. 

 

Suggested phase diagram of benzene possess five different solid phases as phases I, 

II, III [56,57], III′ and IV [3,11,12]. Benzene crystallizes at normal pressure below 

278.5 K with an orthorhombic Pbca structure (Figure 1.2a) and phase I occurs. Due 

to the discontinuities in the cell constants of phase I, Phase I′ is suggested with the 

space group Cmca. Phase I is transformed into the phase II with the monoclinic P21/c 

structure (Figure 1.2b) at 1.2 GPa at 373 K [56]. The phase transition from benzene 

II to benzene III occurs at about 4 GPa and 373 K with the P21/c crystal structure 

(Figure 1.2a). The phase transition line between phase II and III is coarsely parallel 

to the temperature axis up to the point T3 (340 0C and 5.1 GPa) (Figure1.1a) and does 

not cross the melting line at the triple point T2. Up to the point B, this line diverges 

above the higher pressures. Phase III′with the same structure of phase III exists up to 

11 GPa at 25°C. The transition line of phases III-III′ is between 11 GPa at 25°C and 

12 GPa at 410°C and it is stated that this line ends at point C (12 GPa at 410°C) [6]. 

Phase IV occurs at 24 GPa. From the existence of the triple point T2 (335°C and 2.25 

GPa) as the starting point and from this mild divergence of the equilibrium line of 

phases II and III, the point T3 takes place, which can be considered as a triple point. 

Beyond the point C, an irreversible transformation of benzene occurs and thus the 

point C is not a triple point. Except the points A, B and C, the point D is placed at 

25°C with the pressure of 24 GPa. Raman scattering [12], X-ray diffraction [11] and 
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infrared [11,58–62] were used to observe high pressure solid phases of benzene. The 

infrared spectroscopic study provided to obtain a chemical transformation of benzene 

under static pressurization to 30 GPa, as stated previously [3]. In a recent study, the 

pressure-induced phases of benzene have been examined through X-ray Raman 

spectroscopy [63]. 

 

Another phase diagram was constructed by Ciabini at al. [11] from infrared 

spectroscopy and X-ray analysis under high pressure (Figure 1b). At room 

temperature and above 0.07 GPa phase I occurs with the orthorombic Pbca structure 

(Figure 1.2a). Phase I turns into phase II with the monocilinic P21/c structure (Figure 

1.2b) at room temperature and 1.4 GPa and this phase is stable up to 20-25 GPa. 

There are three different solid phases as phase I (Pbca), phase II (P21/c) and phase IV 

as a possible variant of phase II. Phase III occurs at room temperature and 4.8 GPa 

with the P21/c structure (Figure 1.2b) and the transition between phases III and III′ 

occurs at room temperature and 11.2 GPa. A phase V was suggested through the 

higher temperatures [11]. 

 
 

Figure 1.2 Crystallographic simulation of othorombic Pbca (a) and monocilinic P21/c 

structure (b) of solid benzene [64]. 
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The difference between the two phase diagrams is originated from the technical 

improvements between the two experiments [65]. The first three phases of I, II and 

III as obtained experimentally are in good agreement with the theory. The other 

phases of solid benzene are more controversial. Phase III′may be only the distortion 

of phase III and phase IV, which can be formed with the new chemical bonds. It has 

been formed through the higher pressures. Remaining phases I′ and V requires 

further experimental study in benzene. 

 

 

1.2 Raman Effect 

 

Raman effect arises with a double transition of the three stationary levels, 

corresponding to the three levels are the initial k level, intermediate r level and final 

n level. In these levels, virtual level has an important situation to combine with other 

two levels; so if there isn’t such a virtual level, we get a forbidden transition from k 

to n levels in Raman effect [66]. 

 

In Raman effect: 

I) the vibrations of a molecule produce changes in the induced electric moment of 

the molecule active 

 

II) the symmetrical oscillations of the molecule come out most prominently. 
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Figure 1. 3 Schematic diagram for Raman scattering process [66] 

 

1.2.1 The Raman Effect on Crystals 

 

 

Figure 1. 4 Schematic diagram of Raman scattering arised with a created phonon or 

an absorbed phonon [66] 

 

The Raman scattering includes two photons which are incident and scattered 

photons. The Raman effect gives rise to create a phonon with an inelastic scattering 

from crystal. 
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For the first order Raman effect; 

 

𝑤 = 𝑤′ ± Ω                                                                                         (1.1) 

 

𝑘⃗ = 𝑘′⃗⃗  ⃗ ± 𝐾⃗⃗                                                                                             (1.2) 

 

w,𝑘⃗  and w’,𝑘′⃗⃗  ⃗ are the frequencies and wave vectors of incident and scattered 

photons. Ω and 𝐾⃗⃗   are the frequency and wave vector of the created or annihilated 

phonon. 

 

The Raman effect is possible with electronic polarizability which depends on stretch 

in lattice. 

𝛼 = 𝛼0 + 𝛼1𝑢 + 𝛼2𝑢
2 + ⋯.            (1.3) 

 

Equation (1.3) describes a series approximation of a phonon which has α-

polarization. u is the amplitude of phonon as given below: 

𝑢(𝑡) = 𝑢0𝑐𝑜𝑠Ωt        (1.4) 

 

and the  incident electric field, 

𝐸(𝑡) = 𝐸0𝑐𝑜𝑠𝑤𝑡        (1.5) 

 

Using Eqs. (1.4) and (1.5) in Eq. (1.3), we get; 

𝛼1𝐸0𝑢0𝑐𝑜𝑠𝑤𝑡𝑐𝑜𝑠Ωt =
1

2
Ω1E0u0[cos(w + Ω)t + cos (w − Ω)t]   (1.6) 
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In Equation (1.6), a phonon with the 𝜴 frequency is created as photons with the 

frequencies of  w+𝜴 and w-𝜴 frequencies. Here, photon with the w-𝜴 frequency 

appears as a Stokes line in Raman spectra, while photon with the w+𝜴 frequency 

appears as an anti-Stokes line. To make a simple choreography of the Raman effect, 

we can assume a collision that has energy conservation between a light quantum (hγ) 

and a molecule. If the incident light quantum has a loss of energy, the scattered 

radiation will appear as a Stokes line in the spectrum. Then the molecule excites to a 

higher level by taking up energy. If molecule is an excited state at first, then it can 

give its energy to the incident light quantum. It appears as an anti-Stokes line in the 

spectrum. So we can get the information about the rotational and vibrational 

frequencies of the molecule. 

 

 

1.3 Scattering Theory 

 

 

When photons scatter by a crystal inelastically, we get the Raman scattering. The 

probability of scattering by using golden rule of second order perturbation theory is 

given as, 

 

𝑤 =
2𝜋

ħ
𝜌(𝑤𝑠)|𝐻(𝑘0

⃗⃗⃗⃗ , 𝑖: 𝑘𝑠
⃗⃗  ⃗, 𝑓)|

2
𝛿(ħ𝑤0 + 𝐸𝑖 − ħ𝑤𝑠 − 𝐸𝑓)    (1.7) 

 

where Es is the energy of the initial state of crystal, Ef is the energy of final state and 

𝛒(ws) is the density of the states of photons. Incident photons have energy ħw0 with 

the momentum 𝑘0
⃗⃗⃗⃗  and the scattered photons have energy ħws with the momentum 𝑘𝑠

⃗⃗  ⃗ 

by a crystal. Hamiltonian H specifies the interaction between the photons and the 

crystal. The electric fields associated with the light almost result in Raman scattering 

cause of the sizes of atoms which are much smaller than the wavelength of the 

incident and scattered light [67]. 
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CHAPTER 2 

 

 

THEORY 

 

 

2.1. Phase Transition 

 

A phase is defined as a state of material where its chemical properties are uniform 

and the physical properties are unique at macroscopic level. A phase transition is 

described as the change of the phase from one to another and energy is generally 

absorbed by or released from the system during a phase transition. The occurrence of 

a phase transition is a result of external condition such as pressure, temperature etc. 

changes and the value of these two external conditions at which the transformation 

occurs is defined as the phase transition point. As it is well known, matter has four 

phases which are called solid, liquid, gas and plasma.  

 

2.1.1 Classificationof Phase Transitions 

 

When the phase transition occurs between two different phases , three conditions 

must be satisfied as given below: 

 

1. Temperature of the phase one (𝑇1) must be equal to the temperature of the phase 

two ( 𝑇2). 

 

𝑇1 = 𝑇2                                                       (2.1) 

 

2. Pressure of the phase one (𝑃1) must be equal to the pressure of the phase two 

( 𝑃2). 
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𝑃1 = 𝑃2                                                    (2.2) 

 

3. Chemical potential of the phase one (𝜇1) must be equal to the chemical potential 

of the phase two ( 𝜇2). 

𝜇1 = 𝜇2                                                (2.3) 

 

Under the condition of the two phases that have the same number of atoms, condition 

3 can be generalized as the Gibbs free energy of the phase I must be equal to the 

phase II. 

𝐺1(𝑇, 𝑃) = 𝐺2(𝑇, 𝑃) (2.4)         

 

1. First Order Phase Transitions: First order phase transitions are induced by the first 

order derivatives of the thermodynamic potentials (i.e. volume and entropy) which 

are discontinuous with respect to the thermodynamical variables. So, the first 

order transitions occur with a density jump and a latent heat. Solid-liquid-gas 

transititons are the mentioned transitions and called the first kind phase tran  or 

discontinuous phase transitions. 

 

𝑉 = (
𝜕𝐺

𝜕𝑃
)
𝑇
        𝑆 = − (

𝜕𝐺

𝜕𝑇
)
𝑃

                     (2.5) 

 

 

2. Second Order Phase Transitions: The second derivative of the 

thermodynamic potential (i.e.isothermal compressibility 

κ𝑇 andisobaric specific heat capacity 𝐶𝑃) is discontinuous at the transition 

point while the first derivative of the free energy is continuous [68]. 

κ𝑇 = −
1

𝑉
(
𝜕𝑉

𝜕𝑃
)
𝑇

= −
1

𝑉
(
𝜕2𝐺

𝜕𝑃2)
𝑇
 (2.6) 

𝐶𝑃 = 𝑇 (
𝜕𝑆

𝜕𝑇
)
𝑃

= −(
𝜕2𝐺

𝜕𝑇2)
𝑝
(2.7) 
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2.2 GRUNEISEN PARAMETER 

 

Grüneisen parameter as a dimensionless parameter is generally used to define the 

thermal and elastic features of solids at high pressures. Grüneisen parameter is useful 

to characterize the anharmonicity of solids in condensed matter and geophysics and 

predicting the Debye temperature for solids [69]. Grüneisen parameter has two 

definitions as macroscopic and microscopic Grüneisen parameter [70]. Macroscopic 

Grüneisen parameter is used to characterize the thermodynamic properties of solids 

with the anharmonic limitations and the microscopic Grüneisen parameter is useful 

to define in relation to the vibrational frequency of atoms in solids. Birch [71] 

presented a well known experimental research of the macroscopic Grüneisen 

parameter with the experimental thermodynamic characteristics at high temperatures 

and pressures. The microscopic Grüneisen parameter requires a comprehensive 

knowledge of the phonon dispersion spectrum of solids [71].  

 

The Grüneisen parameter, characterizes the anharmonicity of a compound, can be 

depicted as 

𝛾 =
𝑉

𝜗
.
𝜕𝜗

𝜕𝑉
                                          (2.8) 

 

where 𝜗 is the frequency and V is the crystal volume. As a function of temperature at 

the constant pressure, the isobaric mode Grüneisen parameter can be depicted as 

 

      𝛾𝑝 = −
𝑉

𝜗

(𝜕𝜗
𝜕𝑇⁄ )

𝑝

(𝜕𝑉
𝜕𝑇⁄ )

𝑝

                          (2.9) 

 

The isothermal mode Grüneisen parameter 𝛾𝑇can also be defined as a function of 

pressure at constant temperature as 

 

𝛾𝑇 =
𝑉

𝜗

(𝜕𝜗
𝜕𝑝⁄ )

𝑇

(𝜕𝑉
𝜕𝑝⁄ )

𝑇

                            (2.10) 
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when both the frequency 𝜗 and volume V depend on the pressure P at a constant 

temperature T. So, the vibrational frequency can be represented as a function of 

temperature through the definition of the isobaric mode Grüneisen parameter 

 

𝜗𝑝(𝑇) = 𝐴(𝑇) + 𝜗1 [−𝛾𝑝 ln (
𝑉𝑝(𝑇)

𝑉1
)]                   (2.11) 

 

The values of 𝜗1 and 𝑉1 at constant pressure represent the Raman frequency and the 

volume at ambient conditions, respectively. 

Similarly, the vibrational frequency can be represented as a function of pressure P 

through the definition of isothermal mode Grüneisen parameter 

𝜗𝑇(𝑝) = 𝐴(𝑝) + 𝜗1 [−𝛾𝑇 ln (
𝑉𝑇(𝑝)

𝑉1
)]                 (2.12) 

 

The values of 𝜗1 and 𝑉1 at constant temperature represent the Raman frequency and 

the volume at ambient conditions, respectively. The terms of 𝐴(𝑇) and 𝐴(𝑝) in Eqs. 

(2.11) and (2.12) can be derived from the observed data in the literature. 

 

 

2.3 ORDER PARAMETER 

 

 

A continuous phase transition involves a discontinuous change at Tc. The properties 

of the system do not change but one of their rates changes. In this situation we can 

define a new quantity as an order parameter (ɸ) that has a discontinuity in thermal 

average which vanishes on one side of the transition and moves away from the zero 

on the other side.  In particular, α, β ,γ and δ are the symbols of indicating the critical 

exponents related to the temperature, magnetic field, pressure, etc. of the thermal 

average of ɸ, as given in Table (2.1). 
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Table 2.1 Definitions of critical exponents 

 

 

 

 

 

 

 

2.4 PIPPARD RELATIONS 

 

 Using the definition of the thermal expansion αp given by, 

 

𝛼𝑝(𝑇) =  
1

𝑉𝑝(𝑇)
. (

𝜕𝑉

𝜕𝑇
)
𝑝
                                            (2.13) 

 

and substituting Equation (2.9) in Equation (2.13) gives 

 

𝛼𝑝(𝑇) = −
1

𝛾𝑝(𝑇)
.

1

𝜗𝑝(𝑇)
. (

𝜕𝜗

𝜕𝑇
)
𝑝
  (2.14) 

 

 We can use the definition of the isothermal compressibility κT, 

 

𝜅𝑇(𝑃) =  −
1

𝑉𝑇(𝑝)
. (

𝜕𝑉

𝜕𝑝
)
𝑇
                                     (2.15) 

 

Using Equation (2.10) in Equation (2.15) gives, 

 

𝜅𝑇(𝑃) =  −
1

𝛾𝑇(𝑝)
.

1

𝜗𝑇(𝑝)
. (

𝜕𝜑

𝜕𝑝
)
𝑇
             (2.16) 

Exponent Definition 

     α CB ~ α-1[(𝑇 − 𝑇𝐶)
−𝛼 − 1], T→TC, 

B=0 

     β m ~ (Tc-T)β, T→TC from below, B=0 

     γ χT ~ |𝑇 − 𝑇𝐶|
−𝛾, T=TC, B→0 

     δ m ~ B1/δ, T=TC, B→0,  
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 We can also use the thermodynamic relation, 

𝐶𝑝 = 
𝑇𝑉𝛼𝑝

2

𝜅𝑇
      (2.17) 

 

Equation (2.17) can be expressed for the heat capacity Cp in terms of the frequency 

shifts (𝜕𝜗 𝜕𝑇⁄ )𝑝 and (𝜕𝑉 𝜕𝑝⁄ )𝑇 . Inserting Equations (2.14) and (2.16) into Eq. 

(2.17) gives the heat capacity per unit volume. 

𝐶𝑝(𝑇,𝑝)

𝑉(𝑇,𝑝)
= −𝑇

𝛾𝑇(𝑝)

𝛾𝑝(𝑇)2
.

𝜗𝑇(𝑝)

𝜗𝑝
2(𝑇)

.
(𝜕𝜗 𝜕𝑇⁄ )𝑝

2

(𝜕𝜗 𝜕𝑝⁄ )𝑇
2   (2.18) 

 

Critical behaviour of the thermal expansivity 𝛼𝑝 can be described as 

𝛼𝑝(𝑇) = 𝛼0(𝑇) (
𝑇−𝑇𝑐

𝑇𝑐
)
−𝜑

    (2.19) 

 

where φ is the critical exponent for the thermal expansion, Tc is the critical 

temperature and α0 is the thermal expansion at P=0. 

Using the definition of the isobaric mode Grüneisen parameter ɣp as; 

𝛾𝑝(𝑇) = −(
𝜕𝑙𝑛𝜗(𝑇)

𝜕𝑙𝑛𝑉(𝑇)
)
𝑝

= −
𝑉𝑝(𝑇)

𝜗𝑝(𝑇)

(𝜕𝜗 𝜕𝑇⁄ )𝑝

(𝜕𝑉 𝜕𝑇⁄ )𝑝
         (2.20) 

 

the critical behaviour of the temperature –induced frequency shifts can be expressed 

as; 

1

𝜗𝑝(𝑇)
(
𝜕𝜗

𝜕𝑇
)
𝑝

=
𝛾𝑝(𝑇)

𝛾0(𝑇)

1

𝜗𝑝=0(𝑇)
(
𝜕𝜗

𝜕𝑇
)
𝑝=0

(
𝑇−𝑇𝑐

𝑇𝑐
)
−𝜑

     (2.21) 

 

Define 

𝛿𝜗0(𝑇) =
1

𝜗𝑝=0(𝑇)
(
𝜕𝜗

𝜕𝑇
)
𝑝=0

             (2.22) 

 and 

    𝛿𝜗𝑝(𝑇) =
1

𝜗𝑝(𝑇)
(
𝜕𝜗

𝜕𝑇
)
𝑝
             (2.23) 
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Then, Eq. (2.21) can be expressed by using Eqs. (2.22) and (2.23) as; 

𝛿𝜗𝑝(𝑇) =
𝛾𝑝(𝑇)

𝛾0(𝑇)
𝛿𝜗0(𝑇) (

𝑇−𝑇𝑐

𝑇𝑐
)
−𝜑

 (2.24) 

 

where 

𝛼0(𝑇) =
1

𝑉𝑝=0(𝑇)
(
𝜕𝑉

𝜕𝑇
)
𝑝=0

= −
1

𝛾0(𝑇)

1

𝜗𝑝=0(𝑇)
(
𝜕𝜗

𝜕𝑇
)
𝑝=0

  (2.25) 

 

as given in Eq. (2.19). 

 

Likewise, the critical behaviour of the pressure-induced frequency shifts, 
1

𝜗
(
𝜕𝜗

𝜕𝑝
)
𝑇
, 

can be acquired from the pressure dependence of the isothermal compressibility κT as 

given below: 

κ𝑇 = κ0(𝑝) (
𝑝−𝑝𝑐

𝑝𝑐
)
−ɸ

     (2.26) 

 

 where ɸ is the critical exponent for the isothermal compressibility, pc is the critical 

pressure and κ0(p) is the isothermal compressibility at T=300K. Using the definition 

of the isothermal mode Grüneisen parameter ɣT(p) , 

𝛾𝑇(𝑝) = (
𝜕𝑙𝑛𝜗(𝑝)

𝜕𝑙𝑛𝑉(𝑝)
)
𝑇

=
𝑉𝑇(𝑝)

𝜗𝑇(𝑝)
.
(𝜕𝜗 𝜕𝑝⁄ )𝑇

(𝜕𝑉 𝜕𝑝⁄ )𝑇
       (2.27) 

 

The pressure-induced frequency shifts can be obtained from Eq. (2.26) as, 

1

𝜗𝑇(𝑝)
(
𝜕𝜗

𝜕𝑝
)
𝑇

=
𝛾𝑇(𝑝)

𝛾𝑇=300𝐾

1

𝜗𝑇=300𝐾(𝑝)
(
𝜕𝜗

𝜕𝑝
)
𝑇=300𝐾

(
𝑝−𝑝𝑐

𝑝𝑐
)
−ɸ

  (2.28) 

 

where 

   𝜅0(𝑝) = −
1

𝜗𝑇=300𝐾(𝑝)
(
𝜕𝜗

𝜕𝑝
)
𝑇=300𝐾

            (2.29) 
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and 

   𝛿𝜗0(𝑝) = −
1

𝜗𝑇=300𝐾(𝑝)
(
𝜕𝜗

𝜕𝑝
)
𝑇=300𝐾

                      (2.30) 

 

Similarly, 

𝛿𝜗𝑇(𝑝) = −
1

𝜗𝑇(𝑝)
(
𝜕𝜗

𝜕𝑝
)
𝑇

                 (2.31) 

 

Eq. (2.30) can be written by using Eqs. (2.30) and (2.31) . 

𝛿𝜗𝑇(𝑝) =
𝛾𝑇(𝑝)

𝛾𝑇=300𝐾(𝑝)
𝛿𝜗0(𝑝) (

𝑝−𝑝𝑐

𝑝𝑐
)
−ɸ

                    (2.32) 

 

The slope dp/dT of the phase line in a p-T phase diagram can be obtained using the 

thermodynamic relation. 

𝑑𝑝

𝑑𝑇
=

𝛼𝑝(𝑇)

𝜅𝑇(𝑝)
                                       (2.33) 

 

which gives through Eqs. (2.19) and (2.26), 

𝑑𝑝

𝑑𝑇
=

𝛼0(𝑇)

𝜅0(𝑝)

(
𝑇−𝑇𝐶
𝑇𝐶

)
−𝜑

(
𝑝−𝑝𝐶
𝑝𝐶

)
−ɸ  (2.34) 

 

    Eq. (2.34) can be emphasised in terms of the ratio of the frequency shifts. 

𝑑𝑝

𝑑𝑇
=

𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=𝑜(𝑇)

𝜗𝑇=300𝐾(𝑝)

𝜗𝑝=0(𝑇)

(𝜕𝜗 𝜕𝑇⁄ )𝑝=0

(𝜕𝜗 𝜕𝑝⁄ )𝑇=300𝐾
(
𝑇−𝑇𝐶

𝑇𝐶
)
−𝜑

(
𝑝−𝑝𝐶

𝑝𝐶
)
ɸ

        (2.35) 

 

    This equation can be reduced with 𝛿𝜗0(𝑇) and 𝛿𝜗0(𝑝). 

𝑑𝑝

𝑑𝑇
= −

𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=0(𝑇)

𝛿𝜗0(𝑇)

𝛿𝜗0(𝑝)
(
𝑇−𝑇𝐶

𝑇𝐶
)
−𝜑

(
𝑝−𝑝𝐶

𝑝𝐶
)
ɸ

          (2.36) 
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The critical behaviour of the heat capacity can also be predicted according to 

𝐶𝑝(𝑇,𝑝)

𝑉(𝑇,𝑝)
= −

𝑇𝛾𝑇(𝑝)

𝛾𝑝
2(𝑇)

𝜗𝑇(𝑝)

𝜗𝑝
2(𝑇)

(𝜕𝜗 𝜕𝑇⁄ )𝑝
2

(𝜕𝜗 𝜕𝑝⁄ )𝑇
                                (2.37) 

 

The temperature dependence of the volume at a constant pressure, 𝑉𝑝(𝑇) near the 

critical temperature TC can be obtained from Eq. (2.19) by integrating 𝛼𝑝(𝑇). 

∫𝛼𝑝(𝑇)𝑑𝑇 = 𝛼0 ∫ (
𝑇′−𝑇𝐶

𝑇𝐶
)
−𝜑

𝑑𝑇′
𝑇

0
                                 (2.38) 

 

Since 𝛼𝑝(𝑇) ≡
1

𝑉𝑝(𝑇)
(
𝜕𝑉

𝜕𝑇
)
𝑝
, 𝛼0 is assumed as a constant at T=0K and p=0GPa. This 

gives, 

∫ (
𝑇′−𝑇𝐶

𝑇𝐶
)
−𝜑

𝑑𝑇′ =
𝑇𝐶

𝜑−1
[(

𝑇𝐶−𝑇

𝑇𝐶
)
1−𝜑

− 1]
𝑇

0
                     (2.39) 

and finally, 

∫
1

𝑉
(
𝜕𝑉

𝜕𝑇
)
𝑝
𝑑𝑇 = 𝑙𝑛𝑉𝑝 − 𝑙𝑛𝑉0

𝑉𝑝

𝑉0
(2.40) 

where V0is the volume at T=0K and p=0. 

 

Thus, Eq. (2.32) is reduced by substituting Eqs.(2.39) and (2.40), 

𝑉𝑝(𝑇) = 𝑉0𝑒𝑥𝑝 [𝛼0
𝑇𝐶

𝜑−1
[(

𝑇𝐶−𝑇

𝑇𝐶
)
1−𝜑

− 1]]           (2.41) 

 

This formalism can be applied to the I-II phase transition in benzene. For this 

transformation at TC=300K (room temperature) and 𝑝𝐶 ≅ 1.3𝐺𝑃𝑎 [1] by using 

Equation (2.41) in Equation (2.37), we get 

𝐶𝑝(𝑇, 𝑝) = −𝑇𝑉0𝑒𝑥𝑝 [𝛼0
𝑇𝐶

𝜑−1
[(

𝑇𝐶−𝑇

𝑇𝐶
)
1−𝜑

− 1]]
𝛾𝑇(𝑝)

𝛾𝑝
2(𝑇)

𝜗𝑇(𝑃)

𝜗𝑝
2(𝑇)

(𝜕𝜗 𝜕𝑇⁄ )𝑝
2

(𝜕𝜗 𝜕𝑝⁄ )𝑇
(2.42) 
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Euation. (2.42) can be rearranged in terms of 𝛿𝜗0(𝑝) and 𝛿𝜗0(𝑇), 

𝐶𝑝(𝑇, 𝑝) = 𝑇𝑉0𝑒𝑥𝑝 [𝛼0

𝑇𝐶

𝜑 − 1
[(

𝑇𝐶 − 𝑇

𝑇𝐶
)
1−𝜑

− 1]] 

×
𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=0
2(𝑇)

𝛿𝜗0
2(𝑇)

𝛿𝜗0(𝑝)
(
𝑇−𝑇𝐶

𝑇𝐶
)
−2𝜑

(
𝑝𝐶−𝑝

𝑝𝐶
)
ɸ

(2.43) 

 

𝐶𝑝(𝑇, 𝑝) = ∑𝑇𝑉0𝑒𝑥𝑝 [𝛼0

𝑇𝐶

𝜑 − 1
[(

𝑇𝐶 − 𝑇

𝑇𝐶
)
1−𝜑

− 1]]

𝑛

𝑖=1

 

×
𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=0
2(𝑇)

𝛿𝜗0
2(𝑇)

𝛿𝜗0(𝑝)
(
𝑇−𝑇𝐶

𝑇𝐶
)
−2𝜑

(
𝑝𝐶−𝑝

𝑝𝐶
)
ɸ

(2.44) 

 

where n is the number of modes of solid benzene for the phases I-II. 

 

Similarly, heat capacity of the phases I-II of solid benzene near the critical pressure 

can be calculated in terms of 𝛿𝜗0(𝑝), 𝛿𝜗0(𝑝) and κ0,  

𝐶𝑝(𝑇, 𝑝) = 𝑇𝑉0𝑒𝑥𝑝 [−𝜅0 [
𝑝𝐶

ɸ−1
(
𝑝𝐶−𝑝

𝑝𝐶
)
1−ɸ

− 1]]
𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=0
2(𝑇)

𝛿𝜗0
2(𝑇)

𝛿𝜗0(𝑝)
(
𝑇−𝑇𝐶

𝑇𝐶
)
−2𝜑

(
𝑝−𝑝𝐶

𝑝𝐶
)
ɸ

(2.45) 

 

Over all the total six modes Eq. (2.45) can be obtained as 

𝐶𝑝(𝑇, 𝑝) = ∑ 𝑇𝑉0𝑒𝑥𝑝 [−𝜅0 [
𝑝𝐶

ɸ − 1
(
𝑝𝐶 − 𝑝

𝑝𝐶
)
1−ɸ

− 1]]
𝑛

𝑖=1
 

×
𝛾𝑇=300𝐾(𝑝)

𝛾𝑝=0
2(𝑇)

𝛿𝜗0
2(𝑇)

𝛿𝜗0(𝑝)
(
𝑇−𝑇𝐶

𝑇𝐶
)
−2𝜑

(
𝑝−𝑝𝐶

𝑝𝐶
)
ɸ

(2.46) 
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CHAPTER 3 

 

 

CALCULATIONS AND RESULTS 

 

 

3.1.1. Calculation of the Raman Frequency as a Function of Pressure and 

Temperature for the Hydrocarbons: Benzene, Naphthalene and 

Anthracene 

 

The vibrational frequencies in the crysyalline systems can be calculated as a function 

of pressure and temperature related to the volume data through the Grüneisen 

parameter. 

 

The crystal volume as a function of pressure at constant temperature can be 

interpreted in the form of quadratic equation defined as the following: 

 

𝑉𝑇(𝑝) = 𝑎0(𝑇) + 𝑎1(𝑇)𝑝 + a2(T)p2                          (3.1) 

 

Similarly, temperature dependence of the crystalline volume can be defined in a 

quadratic form at a constant pressure. 

 

𝑉𝑝(𝑇) = 𝑏0(𝑝) + 𝑏1(𝑝)𝑇 + 𝑏2(𝑝)𝑇2                          (3.2) 

 

Also, the vibrational frequency can be expressed as a function of pressure at ambient 

temperature related to the order parameter. 

 

𝜗𝑇(𝑝) = 𝑐0(𝑇) + 𝑐1(𝑇)𝑝 + 𝑐2(𝑇)𝑝2                       (3.3) 
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The temperature dependence of the vibrational frequencies can be calculated at a 

constant pressure, 

𝜗𝑝(𝑇) =  𝑑0(𝑝) + 𝑑1(𝑝)𝑇 + 𝑑2(𝑝)𝑇2               (3.4) 

 

The coefficients 𝑎0, 𝑎1 , 𝑎2 and 𝑐0, 𝑐1, 𝑐2 in Eqs. (3.1) and (3.3) are in general 

temperature dependent at constant pressure and the coefficients 𝑏0, 𝑏1, 𝑏2 and 

𝑑0, 𝑑1, 𝑑2 are the pressure dependent at ambient temperature. 

 

 

3.1.1 Pressure Dependence of the Raman Frequencies at Ambient 

Temperature for Solid Benzene 

 

3.1.1.1 For the Modes I, II and III at Constant Temperatures in Phase II of 

Benzene 

 

In the current study, first we found the pressure dependence of the isothermal mode 

Gruneisen parameter 𝛾𝑇according to Equation (2.10) by using the observed 

frequencies of the Raman modes I, II and III [11,12,17] as the initial data and also 

the observed volume data [12] for the phaseII of benzene. In this determination, we 

applied the functional forms of V(P) (Equation (3.1)) and ϑ(P) (Equation (3.3)) with 

the coefficients a0, a1, a2 and c0, c1, c2 , respectively. The coefficients a0, a1, a2 and 

c0, c1, c2 are given in Tables 3.1 and 3.2, respectively, with the uncertainities of the 

six phonon modes for benzene. Values of the isothermalmode Grüneisen parameter 

𝛾𝑇 were acquired at various pressures for the Raman modes I and II at 300 K and for 

the mode III at 450 K using the observed frequencies [11,17] and the volume[12].  
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Figure 3.1 Raman spectra of modes I, II and III for solid benzene at 294 K studied 

from Thiery and Leger [12]. 

 

Once, we found the 𝛾𝑇 values for the Raman modes studied, then we were able to 

calculate the pressure dependence of Raman frequencies of modes I, II (at 300 K) 

and mode III (at 450 K) for the solid phase II of benzene. In Figure 3.2, the 

isothermal mode Grüneisen parameter is represented at different pressures for the 

Raman modes I and II (300 K) and mode III (450 K). This was completed through 

the pressure-dependent term A(P) whose coefficients (Eq. (2.12)) were determined 

by defining the pressure-dependent term in a quadratic form as given below: 

 

𝐴(𝑝) = 𝑎′ + 𝑏′𝑝 + 𝑐′𝑝2                                     (3.5) 

 

In order to find the coefficients 𝑎′, 𝑏′ and 𝑐′ of the pressure-dependent A(P) term, we 

used the experimental data for the crystal volume V at constant pressures of 5, 10 

and 15 GPa [12] at 300 K in Eq. (2.12). Also we used the experimental data for the 

Raman frequencies of the modes I and II at constant pressures of 5, 10 and 15 GPa at 

300 K and for the Raman frequencies of the mode III at 450 K [11,17] in Eq. (2.12). 
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The V and 𝜗 values used to determine the coefficients 𝑎′, 𝑏′ and 𝑐′ are given in 

Table 3.3.   

 

Table 3.1 Coefficients  a0, a1 and a2  as determined by Equation (3.1) for the volume 

of solid benzene with the uncertainties. 𝑉0 value is also given. 

BENZENE a0(cm3/mole) a1(cm3/mole.GPa) a2(cm3/mole.GPa2) 𝑉0 

 72.11±1.92 -2.62±0.5 0.06±0.02 72.11 

 

Table 3.2 Coefficients 𝑐0, 𝑐1 and 𝑐2which were found according to Equation (3.3) 

using the observed data [11,17] for the modes indicated with the uncertainties for the 

phase II of benzene. 𝜗0 value is also given 

Raman 

Modes 
𝑐0(𝑐𝑚

−1) 
𝑐1 (𝑐𝑚

−1

/𝐺𝑃𝑎) 

𝑐2 (𝑐𝑚
−1

/𝐺𝑃𝑎2) 
𝜗0 (𝑐𝑚

−1) 

Mode I 102.45±3.4 9.44±0.7 -0.16±0.04 102.45 

Mode II 134.13±2.4 14.10±0.5 -0.27±0.03 134.13 

Mode III 125.05±5.0 16.40±1.1 -0.31±0.06 125.05 

 

Table 3.3 Coefficients 𝑎′, 𝑏′and 𝑐′ which were determined according to Equation 

(3.5) using the observed frequencies [11] which were obtained at 300 K (modes I and 

II) and at 450 K for mode III of benzene. 

A(P) 𝑎′ (𝑐𝑚−1) 𝑏′ (𝑐𝑚−1/𝐺𝑃𝑎) 𝑐′ (𝑐𝑚−1/𝐺𝑃𝑎2) 

Mode I -21.65 7.85 -0.30 

Mode II -27.99 10.40 -0.31 

Mode III -4.95 5.98 -0.38 
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Figure 3.2 Isothermal mode Grüneisen parameter as a function of pressure (Equation 

(2.10)) for the Raman modes I, II (300 K) and III (450 K) for the phase II of solid 

benzene. 
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Figure 3.3 Calculated Raman frequencies for mode I at various pressures (T=300K) 

for phase II of  benzene. Experimental data [12] are also plotted. 
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Figure 3.4 Found Raman  frequencies of mode II at various pressures (T=300K) for 

phase II of benzene. Also the experimental data [12] are plotted. 
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Figure 3.5 Found Raman frequencies of mode III at various pressures (T=450K) for 

phase II of benzene. Also experimental data [12] are plotted. 
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Raman frequency shifts as a function of pressure were calculated (Equation (2.12)) 

for modes I, II (T= 300 K) and III (T= 450 K) in phase II of solid benzene by using 

the observed data [12] through the isothermal mode Grüneisen parameter (Equation 

(2.13)). Calculated Raman frequencies of modes I, II (T= 300 K) and III (T=450 K) 

are represented in Figures 3.3-3.5. Our calculated values are in good agreement with 

the observed data. Calculated Raman frequencies differ slightly from the observed 

Raman frequencies [12] through 12 to 13 GPa in Figure 3.3. This may be owing to 

the fact thatthe isothermal mode Grüneisen parameter 𝛾𝑇 which lowers with the 

pressure down to around 13 GPa (Figure (3.2)) where it starts increasing above that 

pressure. For the Raman mode II, agreement between the experimental data [12] and 

our calculated values is much better (Figure (3.4)). At various pressures, the 

isothermal mode Grüneisen parameter 𝛾𝑇 for this mode also decreases down to 

around 12.5 GPa as for the mode I, then it remains nearly constant with about 1.2 

value (Fig. 3.2). 

 

As the calculations of the Raman modes I and II at T = 300 K, the pressure 

dependence of the Raman frequency for mode III was also calculated at T = 450 K in 

phase II of benzene.As indicated in Figure 3.5, the calculated values agree with the 

experimental data [12]. The isothermal mode Gruneisen parameter 𝛾𝑇 for this mode 

also lowers with the pressure, which is steeper in comparison with the modes I and II 

(Figure 3.2). Possibly, it remains constant at around 15 GPa as for the Raman mode 

II. We note that we used the experimental volume data [12] at 300 K and the 

observed Raman frequency data [12,17] at 450 K for mode III (Equation (2.10)) and 

we predicted the Raman frequencies of this mode according to Equation (2.12). 

When the experimental volume data at 450 K are accessible in the literature, we need 

to recalculate the Raman frequencies of mode III by means the isothermal mode 

Gruneisen parameter (Equation (2.10)) through Equation (3.5). The Raman 

frequencies of the modes I, II and III increase with the increasing pressure, as shown 

in Figures 3.3–3.5. Their variation with the pressure is nonlinear (Equation (3.3)). 

This increase in the Raman frequencies of the modes indicate an increase in the 

ordering of the molecular orientations in the solid phase II of benzene. Change in the 

slopes of the 𝜗–P curves of the modes I, II and III as lattice modes, is significant in 
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comparison with the internal modes in benzene, as also pointed out previously [12]. 

These pressure induced shifts are directly related to the large initial compressibility 

of benzene as a typical molecular crystal [12]. It has been pointed out that under the 

pressure applied to molecular solids such as benzene, the intermolecular interactions 

can be compared in magnitude to intramolecular ones [57]. To predict the Raman 

frequencies for the three modes (I, II and III), we used the isothermal mode 

Gruneisen parameter 𝛾𝑇 at various pressures at a constant temperature (T = 300 K for 

modes I and II, T = 450 K for mode III) as stated above (Figure (3.2)). The values of 

the mode Gruneisen parameter 𝛾𝑇 decreased from 1.67 (P = 4.5 GPa) to 1.27 (P = 

15.2 GPa) for mode I, from 1.79 to 1.19 for mode II within the same pressure 

interval. Variation of 𝛾𝑇 for those two modes with the pressure (T = 300 K) is similar 

within the same pressure range in the solid phase II of benzene (Figure 3.4). For the 

lattice mode III, the 𝛾𝑇 values decrease from 2.14 (P = 3.9 GPa) to 1.01 (P = 14.5 

GPa) in this phase of benzene. Variation of the 𝛾𝑇 with the pressure (T = 450 K) is 

much larger compared to the modes I and II in phase II of benzene. This may also be 

due to two constant temperatures of 300 K (modes I and II) and 450 K (mode III), 

which we considered in our treatment. Therefore, the temperature impacts on the 

frequency shifts can change the pressure dependence of the mode Grüneisen 

parameter. 

 

In the present study, we found the uncertainties in our calculations due to the 

uncertainties in the experimental measurements [12]. It was indicated that in the X-

ray diffraction works, the pressure uncertainty was usually ±0.3 GPa with the slit 

width 1–2 𝑐𝑚−1[12]. Also, the uncertainties in the molar volume were estimated to 

be 1.5%  for the solid I–II of benzene [12]. On that basis, we found the uncertainties 

in the molar volume V, in the Raman frequencies of the modes I, II and III and also 

in the isothermal mode Gruneisen parameter 𝛾𝑇 for the phase II of benzene. 

Uncertainties in the coefficients for the molar volume V and the Raman frequency 

𝜗(for modes I, II and III) according to Equations (3.1) and (3.3)are given in Tables 

3.1 and 3.2, respectively. They are plotted for modes I, II and III in Figure 3.6. 
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Figure 3.6 Uncertainties in the Raman frequencies calculated for the modes I, II and 

III at various pressures for phase II of benzene. 

 

3.1.1.2 For Phonon Modes of Solid Benzene I at Room Temperature 

 

Pressure depedence of the volume according to Equation (3.1) was determined by 

fitting the observed data [12] and the coefficients a0, a1, a2 in Equation (3.1) were 

given in Table 3.1 in Section 3.1.1.1. The Raman frequency shifts of six phonon 

modes of solid benzene I were defined as a function of pressure in Equation (3.3) and 

the coefficients are given in Table 3.4 with the uncertainities. Then, isothermal mode 

Grüneisen parameter was calculated according to Equation (2.10) for the six phonon 

modes of solid benzene I at room temperature as plotted in Figure 3.7. Finally, the 

pressure dependence of the Raman frequency shifts were defined by using Equation 

(2. 12) for six phonon modes of solid benzene I. The coefficints 𝑎′, 𝑏′ 𝑎𝑛𝑑 𝑐′ of the 

function of A(P) (Equation (3.5)) are given in Table 3.5. 
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Table 3. 4 Coefficients 𝑐0, 𝑐1 and 𝑐2which were determined according to Eq. (3.3) 

using the observed data [12] for the phonon modes of solid benzene I . We also give 

here the uncertainties determined for the coefficients𝑐0, 𝑐1 and 𝑐2 for six phonon 

modes of solid benzene I. Calculated Raman frequency shifts are also represented at 

P= 0 GPa and T= 300 K. 

Benzene 𝑐0(cm-1) 𝑐1 (cm-1/GPa) 𝑐2 (cm-

1/GPa2) 

𝜗0 

Mode A 42.34±0.5 26.36±0.9 -4.37±0.3 42.34 

Mode B 64.83±0.5 27.17±0.6 -3.62±0.2 64.83 

Mode C 104.89±0.7 53.84±1.0 -8.10±0.3 104.89 

Mode X 53.93±0.3 24.03±0.3 -3.18±0.1 53.93 

Mode Y 79.46±0.3 34.69±0.4 -4.37±0.1 79.46 

Mode Z 90.13±0.3 37.60±0.4 -4.97±0.1 90.13 

 

 

Table 3.5 Coefficients 𝑎′, 𝑏′and 𝑐′ which were determined according to Equation 

(3.5) using the observed frequencies [12] which were obtained at 300 K for six 

phonon modes of solid benzene I. 

A(P) 𝑎′ 𝑏′ 𝑐′ 

Mode A 0. 47.50 -13.43 

Mode B 0. 50.78 -11.56 

Mode C 0. 98.92 -25.48 

Mode X 0. 44.72 -10.30 

Mode Y 0. 64.71 -14.38 

Mode Z 0. 70.30 -15.90 
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Figure 3.7 Isothermal mode Grüneisen parameter as a function of pressure (Equation 

(2.13)) for phonon modes of solid benzene I at room temperature. 

0,0 0,2 0,4 0,6 0,8 1,0

40

60

80

100

120

140

160

Mode C

Mode Z

Mode Y

Mode B

Mode X

Mode A


(c

m
-1
)

P(GPa)

 

Figure 3.8 Calculated Raman frequencies as a function of pressure at room 

temperature according to Equation (2.12) by using the observed data [12] for six 

phonon modes of solid benzene I. 
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Figure 3.9 Pressure dependence of the Raman frequencies (Equation (2.12)) at room 

temperature for solid benzene I are defined with black squares (Mode A), blue 

triangles (Mode B) and green squares (Mode C). Observed data [12] is also given 

with red circles (Mode A), purple triangles (Mode B) and navy blue triangles (Mode 

C), respectively. 

 

Figure 3.10 Pressure dependence of the Raman frequencies (Equation (2.12)) at room 

temperature for solid benzene I are defined with black squares (Mode X), grey 

triangles (Mode Y) and grey squares (Mode Z). Observed data [12] is also given with 

green circles (Mode X), green triangles (Mode Y) and navy blue triangles (Mode Z), 

respectively. 
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Crystal volume was defined as a function of pressure (Equation (3.1)) with the 

coefficients 𝑎0, 𝑎1 and 𝑎2 fitted to the experimental data [12]. To obtain the pressure 

dependence of the frequency shifts, the coefficints 𝑐0, 𝑐1 and 𝑐2 (Equation (3.3)) as 

given in Table 3.4 were calculated. Through the isothermal Grüneisen parameter 

which defines the change in frequency shifts with the change in crystal volume, the 

Raman frequencies were defined as a function of pressure for six phonon modes of 

solid benzene according to Equation (2.12) with the pressure dependence additional 

term A(P) (Table 3.5). Calculated Raman frequencies according to Equation (2.12) 

as given in Figure 3.7 for the six phonon modes of solid benzene increase with the 

increasing pressure range between 0 and 1 GPa. In Figure 3.8, we plot the calculated 

pressure dependence of the Raman frequencies of modes A, B and C with the 

experimental data [12]. There is a good agreement between the calculated Raman 

frequencies and the observed data [12]. There is a discrepancy in the range of 0 and 

0.3 GPa between calculated mode A and the observed one [12], which occurs for the 

mode C. The discrepancy becomes more obvious for mode B between the calculated 

and the observed data. For the modes X, Y and Z which represented in Figure 3.9, 

there is a good match with the experimental data [12]. Small discrepancy occurs for 

mode C between 0.5 and 0.7 GPa  pressure range and occurs at first two pressure 

values for mode X. The discrepancy between the calculated and observed data for the 

mentioned modes above can be attributed to the isothermal compressibility. Since, 

our frequency calculations (Equation (2.12)) have the volume dependency through 

the isothermal mode Grüneisen parameter, the Raman frequencies are not contributed 

by the isothermal compressibility at low pressure ranges.  

Thiery and Leger [12] calculated the values of the isothermal mode Gruneisen 

parameter (𝛾𝑇) for the lattice modes A, B and C in the orthorhombic phase I as 𝛾1 = 

3.0, 2.5 and 3.0, respectively. Also the researchers determined those values in the 

monoclinic phase II as 𝛾2 = 2.9, 3.1 and 2.6 for the lattice modes of A, B and C, 

respectively [12]. Our 𝛾𝑇 values for those modes (A, B and C) in average, fall in the 

same range as we used the same observed data [12] to find the 𝛾𝑇 values for the I–II 

transition in benzene. Our 𝛾𝑇 values for the I–II transition in benzene, can also be 

compared with the experimental values of the Gruneisen parameters for q = 0 

phonons of crystalline naphthalene. As obtained by Dows et al. [26] and Backer et al. 
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[30], the 𝛾2 and 𝛾3 values differ from 3 to 4 at 300 K, as also reported previously 

[28]. Likewise, for anthracene the observed and calculated 𝛾 values vary from 3 to 6 

for the Ag and Bg modes [26]. This shows that the values of the mode Gruneisen 

parameter lead to the similar physical features of benzene, naphthalene and 

anthracene. 

 

We determined the uncertainties in the Raman frequency calculated as a function of 

pressure (Equation  (2.10)) of the lattice modes (A,B,C and X,Y,Z) through the 

experimental data [12] at P=0 GPa which is given in Table 3.2. We used the 

uncertainties in the Raman frequency calculated as a function of pressure through the 

coefficient 𝑐0.  The pressure uncertainty for the lattice modes was usually between 

±0.3 and ±0.7 GPa with the slit width 1–2 cm-1. Also, the uncertainties in the molar 

volume were estimated to be±1.5 cm3/mol for the solid benzene [12]. On that basis, 

we determined the uncertainties in the molar volume V, in the Raman frequencies 𝜗 

of the modes, in the isothermal mode Gruneisen parameter 𝛾𝑇and also the pressure-

dependent term A(P) (P=0 GPa) for benzene I. Using the calculated terms with the 

uncertainties in Equation (2.10), the Raman frequencies of the lattice modes of solid 

benzene were calculated. Uncertainity in the mode A with for solid benzene I was 

estimated to be 1.2%  (or 0.5 cm-1 ) at zero pressure  (Figure 3.10). Similarly, 

uncertainties in the mode B and mode C for benzene were estimated to be 0.8%  (or 

0.5 cm-1 ) and 0.7%  (or 0.7 cm-1) at zero pressure (Figure 3.10). For the lattice 

modes of solid benzene, uncertainties in the Raman frequency calculated as a 

function of pressure were estimated as 0.6%  (or 0.3 cm-1) for mode X with, 0.4%  

(or 0.3 cm-1) for mode Y and 0.3%  (or 0.3 cm-1) for mode Z at zero pressure, as 

plotted in Figure 3.11. 
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Figure 3.11 Uncertainties in the calculated Raman frequencies as a function of 

pressure for lattice modes for solid benzene according to Equation (2.10). 

 

 

3.1.2 Naphtalene 

 

The coefficients 𝑎0, 𝑎1 and 𝑎2 referred to the Equation (3.1) were determined for 

volume as a function of pressure (at room temperature), as given in Table 3.6. The 

coefficients 𝑐0, 𝑐1 and 𝑐2 were also analyzed according to Equation (3.3) by using the 

observed Raman frequencies of the Ag and Bg modes [37] at room temperature for 

naphthalene as given in Table 3.7.  

 

The isobaric mode Grüneisen parameter 𝛾𝑃 of the six phonon modes of solid 

naphthalene were determined as a function of temperature at zero pressure according 

to Equations (3.2) and (3.4) by using the temperature dependence of the observed 

volume [72,73] and the observed Raman frequencies [37]. The coeffcients of the 

temperature dependent function A(P) given in Equation (3.5) were obtained through 
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Equation (2.11) for the phonon modes of naphthalene at zero pressure. Determined 

coefficients 𝑎′, 𝑏′ and 𝑐′ of A(P) for the phonon modes are given in Table 3.8.  Also, 

the Raman frequencies of the Ag and Bg modes as a function of pressure were 

calculated through Equation (2.12) by using the observed volume data [20,74] and 

the observed Raman frequencies [37]. Table 3.6 gives the values of those 

coefficients. For naphthalene, we determined the coefficients in Equations (3.1) and 

(3.3) with the uncertainties through the experimental data by recalculating the A(P) 

parameters for six phonon modes. 

 

Table 3. 6 Coefficients  a0, a1 and a2  as determined according to Equation (3.1) by 

using observed volume data [37] of solid naphthalene at room temperature. We also 

give here the uncertainties determined in the coefficients 𝑎0, 𝑎1 and 𝑎2. 

NAPHTHALENE 𝑎0 (cm-1) 𝑎1 (cm-

1/mole.GPa) 

a2(cm3/mole.GPa2) 𝑉0 

 360.18±0.4 -63.37±3.0 30.34±0.5 360.18 

 

 

Table 3. 7 Coefficients 𝑐0, 𝑐1 and 𝑐2which were found according to Eq. (3.3) using 

the observed data [37] for the modes indicated for solid naphthalene. We also give 

here the uncertainties determined for the coefficients𝑐0, 𝑐1 and 𝑐2 for six modes of 

solid naphthalene. Values of the Raman frequencies forsix modes of solid 

naphthalene at P= 0 GPa and T= 300 K, are also given here. 

NAPHTHALENE 𝑐0 (cm-1) 𝑐1 (cm-1/GPa) 𝑐2 (cm-1/GPa2) 𝜗0 

Mode Ag1 49.38±0.60 31.91±1.00 -3.86±0.30 49.38 

Mode Ag2 73.96±0.40 35.92±1.00 -3.68±0.30 73.96 

Mode Ag3 108.14±0.40 44.66±0.90 -5.59±0.30 108.14 

Mode Bg1 45.10±0.40 26.04±0.81 -2.05±0.30 45.10 

Mode Bg2 70.62±0.70 43.66±3.90 -13.32±0.40 70.62 

Mode Bg3 124.26±0.70 52.41±1.50 -6.35±0.50 124.26 
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Table 3.8 Coefficients 𝑎′, 𝑏′and 𝑐′ which were found according to Equation (3.5) 

using the observed frequencies [37] which were obtained at 300 K for six phonon 

modes of solid naphthalene. 

A(P) 𝑎′ 𝑏′ 𝑐′ 

Mode Ag1 0.14 19.59 42.56 

Mode Ag2 -0.79 68.30 -6.85 

Mode Ag3 0.55 38.27 68.88 

Mode Bg1 2.14 58.56 -6.88 

Mode Bg2 -0.54 95.00 -58.27 

Mode Bg3 -3.14 131.13 -58.29 
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Figure 3.12 The measured Raman frequencies as a function of pressure at room 

temperature for modes of symmetry Ag for solid naphthalene (filled squares) 

according to Equation (2.12) and the experimental data of Ag modes [37] for solid 

naphthalene (filled circles) is also given. 
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Figure 3.13 The measured Raman frequencies as a function of pressure at room 

temperature for modes of symmetry Bg for solid naphthalene (filled squares) 

according to Equation (2.12) and the experimental data of Bg modes [37] for solid 

naphthalene (filled circles) is also given. 

 

The Raman frequencies were estimated for the 3Ag and 3Bg modes using the 

observed volume data by determining their mode Gruneisen parameters in 

naphthalene. Increase in the Raman frequencies of six lattice modes with increasing 

pressure (Figures 3.12 and 3.13) can be ascribed to the isothermal compressibility in 

naphthalene. For the Ag and Bg modes, increase in their Raman frequencies (Figures 

3.12 and 3.13), as also observed experimentally [37], can be directly related to the 

reduction in the isothermal compressibility as the pressure increases within the 

pressure range studied here up to 0.6 GPa for the solid naphthalene. There is a 

difference between our calculated Raman frequencies of the Ag1 mode and the 

observed data [37], which also occurs for the Ag3 mode at comparatively higher 

pressures of above about 0.25 GPa (Figure 3.12). For the Bg modes, Equation (2.12) 

fits quite well to the experimental Raman frequencies [37] within the pressure range 
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of 0–0.6 GPa as for the Ag2 mode (Figure 3.13). Consider that as the volume data 

were obtained in the pressure region up to 0.6 GPa [20,48], our calculated Raman 

frequencies of the Ag and Bg modes (Equation (2.12)) were restricted to that pressure 

range.  

 

Table 3. 9 Values of the isothermal mode Gruneisen parameter 𝛾𝑇 (Equation (2.9)) 

for the Raman modes showed at constant temperatures (P = 0) for solid naphthalene. 

T(K) Mode Ag1 

(𝛾𝑇) 

Mode Ag2 

(𝛾𝑇) 

Mode Ag3 

(𝛾𝑇) 

Mode Bg1 

(𝛾𝑇) 

Mode Bg2 

(𝛾𝑇) 

Mode Bg3 

(𝛾𝑇) 

7 4.58 1.86 1.22 2.88 2.45 2.10 

79 4.66 2.62 1.67 3.88 2.77 2.14 

83 4.67 2.65 1.68 3.92 2.78 2.14 

197 5.24 3.35 2.06 5.03 3.20 2.29 

297 6.27 4.03 2.37 6.35 3.69 2.51 

 

 

Our values for the isothermal mode Gruneisen parameter 𝛾𝑇 of the Ag and Bg modes, 

which we determined at constant temperatures for zero pressure (Table 3.9), also can 

be compared with those given in the earlier works. Dows et al. [26] obtained from 

the pressure dependence of the Raman lattice modes the values of the Gruneisen 

parameters between 3.6 and 6.3 for the highest (Bg3, 125 𝑐𝑚−1) and lowest (Bg1, 46 

𝑐𝑚−1) for anthracene and naphthalene within the pressure range of 0 and 10 kbar. 

From the measurements of the Raman active lattice modes, the 𝛾 values were 

obtained as 2.9 for the Bg3 (126 𝑐𝑚−1) mode and 5.1 for the Bg1 (46 𝑐𝑚−1) mode at 

room temperature [29]. From the incoherent inelastic scattering measurements on d8-

naphthalene, it was obtained that the 𝛾 values are between 3.2 and 5.0 for the 12 

branches of the external phonon dispersion curves at 100 K [26], as also stated 

previously [31]. The 𝛾1 values were found [21] to be between 2.8 and 4.2 for the 

same phonons at 100 K (using the experimental data of Ref. [26]), 𝛾2 values between 

2.75 and 3.90 (using the data of Ref. [29]) at 300 K and the 𝛾𝑇 values between 3.85 

and 4.08 (using the data of Ref. [30]) in the solid naphthalene. Our 𝛾𝑇 values for the 

highest (Bg3 mode) and the lowest (Bg1 mode) vary from 2.5 to 6.4 at room 
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temperature (297 K) (Table 3.9), which are almost in the same interval as given by 

Dows et al. [26], which can also be compared with the values of Ref. [29], as stated 

above. 

 

Also, our 𝛾𝑇 values can be compared with the above given values of Refs. [42] and 

[75]. For the 𝛾𝑇 values which we obtained for the Ag modes (Table 3.9) of solid 

naphthalene, the comparison can be made with those 𝛾𝑜𝑏𝑠 and 𝛾𝑐𝑎𝑙 values of the Ag 

modes for anthracene [75] that is also the same hydrocarbon as naphthalene. Our 

findings of 𝛾𝑇 = 6.3, 4 and 2.4 for the Ag1, Ag2 and Ag3 modes, respectively, (T = 297 

K, Table 3.9) can then be compared with those values of 𝛾𝑜𝑏𝑠 = 6.2 (51 𝑐𝑚−1), 4.9 

(74 𝑐𝑚−1) and 3.7 (109 𝑐𝑚−1), and also 𝛾𝑐𝑎𝑙 = 5.1 (51 𝑐𝑚−1), 4.1 (74 𝑐𝑚−1) and 3.7 

(109 𝑐𝑚−1) for the lattice modes of anthracene [26]. The pressure dependence of the 

isothermal compressibility 𝛾𝑇 can be predicted from the frequency shifts at a 

constant temperature (room temperature). For a compressible crystal under pressure, 

its isothermal compressibility can then be calculated using the normal mode 

frequency shifts with pressure by knowing a constant isothermal mode Gruneisen 

parameter 𝛾𝑇 (Equation (2.10)). When the 𝛾𝑇 varies with pressure, as in the case of 

the Raman lattice modes (Ag and Bg modes), then the pressure dependence of the 

isothermal compressibility 𝛾𝑇 can be calculated from the Raman frequency shifts by 

using the initial data for 𝛾𝑇, as we worked here for naphthalene. Since the Raman 

frequency shifts (𝜕𝜗
𝜕𝑝⁄ )

𝑇
can be determined to high accuracy spectroscopically, the 

pressure dependence of the isothermal compressibility 𝜅𝑇 (Equation (2.15)), can be 

measured reasonably well. The calculated 𝜅𝑇 can then be compared with the 

experimental data for naphthalene. The temperature dependence of the isothermal 

compressibility 𝜅𝑇 (at a constant pressure) can also be estimated from the vibrational 

frequency shifts (𝜕𝜗
𝜕𝑝⁄ )

𝑇
  by means of the isothermal 𝛾𝑇 mode Gruneisen 

parameters for naphthalene.  

 

Uncertainties in the Raman frequencies calculated for the Ag and Bg modes of solid 

naphthalene were determined because of the uncertainties in the experimental 

measurements [35]. Uncertainties in the Ag mode with the frequency of ϑo =
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89 cm−1 and with ϑo = 123 cm−1for naphthalene were estimated to be 0.7%  (or 

0.61cm-1/mole.K ) and 0.5%  (or 0.6cm-1/mole.K ), respectively, at room temperature  

(Fig. 3.14). For the symmetry Bg modes of solid naphthalene, uncertainties in the 

Raman frequency calculated as a function of temperature calculations were estimated 

as 6.8%  (or 3.9 cm-1/mole.GPa) for mode Bg with ϑo = 57 cm−1, 0.4%  (or 0.3 cm-

1/mole.GPa ) for mode Bg with ϑo = 74 cm−1  and 0.7%  (or 0.98 cm-1/mole.GPa ) 

for mode Bg with ϑo = 142cm−1 at room temperature. We determined the 

uncertainties in the Raman frequency calculated as a function of pressure (Equation 

(2.12)) of the Ag and Bg modes through the experimental data [76] at P=0 GPa. We 

used the uncertainties in the Raman frequency calculatd as a function of pressure 

through the coefficient 𝑐0.  The pressure uncertainty for the Ag and Bg modes was 

usually between ±0.4 and ±0.7 GPa with the slit width 1–2 cm-1. Also, the 

uncertainties in the molar volume were predicted to be ±1.4 cm3/mol for the solid 

naphthalene [20,76]. On that basis, we determined the uncertainties in the molar 

volume V, in the Raman frequencies 𝜗 of the modes, in the isothermal mode 

Gruneisen parameter 𝛾𝑇and also the pressure-dependent term A(P) (P=0 GPa) for the 

naphthalene. Using the calculated terms with the uncertainties in Equation (2.12), the 

Raman frequencies of the Ag and Bg modes of solid naphthalene were calculated. 

Uncertainity in the Ag mode with ϑo = 49 cm−1 for naphthalene was estimated to be 

2.6%  (or 1.3cm3/mole ) at zero pressure  (Fig. 3.14). Similarly, uncertainties in the 

Ag mode with ϑo = 74 cm−1 and with ϑo = 109 cm−1 for naphthalene were 

estimated to be 1.7%  (or 1.26cm3/mole ) and 0.7%  (or 0.8cm3/mole ) at zero 

pressure (Figure 3.14). For the Bg modes of solid naphthalene, uncertainties in the 

Raman frequency calculated as a function of pressure were estimated as 3.8%  (or 

1.9 cm3/mole.GPa ) for mode Bg with ϑo = 48 cm−1, 1.5%  (or 1.1cm3/mole) for 

mode Bg with ϑo = 71 cm−1  and 1.6%  (or 1.9cm3/mole ) for mode Bg with ϑo =

123cm−1  at zero pressure, as plotted in Figure 3.15. 
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Figure 3. 1 Uncertainties in the Raman frequencies calculated for modes of 

symmetry Ag for solid naphthalene according to Equation (2.12). 

 

 

Figure 3. 2 Uncertainties in the Raman frequencies calculated for modes of 

symmetry Bg for solid naphthalene according to Equation (2.12). 
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3.1.3 Anthracene 

 

Temperature and pressure dependence of the crystalline volume was found by fitting 

Equations (3.1) and (3.3) to the observed data and the coefficientsa0, a1, a2  and c0, 

c1, c2 which were determined, are represented in Tables 3.10 and 3.11 with the 

uncertainties. The Raman frequencies of the six phonon and nine vibron modes of 

solid anthracene were obtained as a function of pressure and temperature by using 

the observed data [48,52] according to Equations (3.3) and (3.4) through the 

isothermal mode Grüneisen parameter 𝛾𝑇. The coefficients b0, b1, b2and d0, d1, d2 

in Equations (2.11) and (2.12) are given in Tables 3.12 and 3.13 with the 

uncertainities. The isothermal and isobaric mode Grüneisen parameters were 

calculated for anthracene due to Equations (2.9) and (2.10) as given in Table 3.14. 

From the definintion of the mode Grüneisen parameter, pressure and temperature 

dependence of the Raman frequency shifts of the six phonon and nine vibron modes 

of solid anthracene can be calculated through Equations (2.9) and (2.10) as 

𝜗𝑇(𝑝) = 𝜗1 [−𝛾𝑇 ln (
𝑉𝑇(𝑝)

𝑉1
)]                        (3.6) 

 

𝜗𝑝(𝑇) = 𝜗1 [−𝛾𝑝 ln (
𝑉𝑝(𝑇)

𝑉1
)](3.7) 

 

Raman frequency values and the crystal volume are represented in terms of 𝜗1 and 𝑉1 

at zero pressure and room temperature. The Raman frequency as a function of 

pressure at room temperature for the six phonon and nine vibron modes of solid 

anthracene was calculated by using the observed data [48] according to Equation 

(3.6), as plotted in Figures (3.16-3.19). Similarly, the Raman frequency as a function 

of temperature at zero pressure for the six phonon and nine vibron modes of solid 

anthracene was calculated by using the observed data [48] according to Equation 

(3.7), as plotted in.  
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Table 3.10 The a0, a1 and a2values which were found according to the Equation 

(3.1) by using the experimental volume data [52] for six phonon modes of solid 

anthracene. We also give here the uncertainties determined in the coefficients 𝑎0, 𝑎1 

and 𝑎2 for the volume of anthracene. 

ANTHRACENE 𝑎0 (cm-1) 𝑎1 (cm-1/mole.GPa) a2(cm3/mole.GPa2) 𝑉0 

 470.95±2.60 -48.95±3.60 7.05±1.00 470.95 

 

 

Table 3. 10 Coefficients 𝑐0, 𝑐1 and 𝑐2which were found according to Eq. (3.3) using 

the observed data [52] for the modes indicated for solid anthracene. We also give 

here the uncertainties determined for the coefficients𝑐0, 𝑐1 and 𝑐2 for six modes of 

solid anthracene. The values of the Raman frequencies for six modes of solid 

anthracene at P= 0 GPa and T= 300 K, are also given here. 

ANTHRACENE 𝑐0 (cm-1) 𝑐1 (cm-1/GPa) 𝑐2 (cm-1/GPa2) 𝜗0 

Ag 38.47±0.60 11.06±0.20 1.37±0.02 38.47 

 Bg 46.00±1.20 17.86±1.60 1.33±0.50 46.00 

Bg 68.19±1.00 24.13±1.50 2.28±0.50 68.19 

Ag 73.59±1.10 27.94±1.70 3.24±0.50 73.59 

Ag 122.73±1.80 38.82±2.90 4.55±0.90 122.73 

Bg 129.70±1.80 43.58±2.90 4.89±0.90 129.70 

Vibrons 𝑐0 (cm-1) 𝑐1 (cm-1/GPa) 𝑐2x10-4 (cm-1/GPa2) 𝜗0 

12Ag 396.95±2.71 0.53±0.32 19.1±0.08 396.95 

10B3g 521.94±1.80 0.17±0.19 15.8±0.05 521.95 

10Ag 754.19±3.68 0.38±0.19 8.2±0.05 754.19 

9Ag 1008.78±2.16 0.33±0.69 14.3±0.04 1008.78 

8Ag 1164.81±3.30 0.21±0.38 13.8±0.01 1164.81 

7B3g 1189.70±2.87 0.23±0.34 11.7±0.01 1189.70 

7Ag 1261.01±2.16 0.70±0.25 37.9±0.01 1261.01 

6Ag 1403.34±2.89 0.62±0.34 30.2±0.01 1403.34 

4Ag 1558.78±2.31 0.33±0.27 18.2±0.01 1558.78 
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Figure 3.16 The found Raman frequencies of six phonon modes of solid anthracene 

as a function of pressure according to Equation (2.12). 

 

Figure 3.17 The found Raman frequencies for the phonon modes as a function of 

pressure at room temperature according to Equation (3.6) for crystalline anthracene. 
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Figure 3.18 The found Raman frequencies for the phonon modes as a function of 

pressure at room temperature according to Equation (3.6) for crystalline anthracene. 

 

Figure 3.19 The found Raman frequencies of nine vibron modes of solid anthracene 

as a function of pressure according to Equation (3.6). 
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The Raman frequencies were calculated as functions of pressure with the observed 

volume data[48,52] for the six phonon and nine vibron modes of solid anthracene 

through the values of the isothermal mode Grüneisen parameterγT(P) at P = 0 for 

those modes studied (Table 3.14). It has been found experimentally [52] that the 

vibron modes exhibit almost a linear shift with pressure, but the pressure-induced 

shifts in the phonon frequencies are nonlinear. In fact, increasing with pressure in 

the Raman frequencies are more apparent for the phonon modes, as shown in 

Figure 3.16. Increasing in the Raman frequencies with the pressure are significant 

for the phonon modes (Figure 3.16) as stated above. Pressure dependence of the 

vibron modes looks almost insignificant so that they are also independent of 

pressure (Figure 3.19). 

It has been indicated that intra-molecular vibration (vibron) frequencies are 

uniformly much less pressure-sensitive, which involves the volume dependence only, 

whereas the temperature variation of the vibrational frequencies of crystal lattices 

involves both temperature and volume [48].  

In order to estimate the Raman frequencies, we determined the values of the 

isothermal mode Grüneisen parameter 𝛾𝑇 at P=0 for the six phonon and nine vibron  

modes of solid anthracene (Table 3.14).  As seen from this table, our values of the 

mode Grüneisen parameter of those modes studied, are in good agreement with the 

observed ones [52]. Notice that the values of the mode Grüneisen parameter for the 

six phonon modes (external modes) are much larger than those of the nine vibrons 

(internal modes) of the solid anthracene, as expected in general for the molecular 

solids. A small difference in crystal volume causes a big change in frequency, which 

results in a large Grüneisen parameter, in particular, for the six lattice modes of 

anthracene. This small change in the unit cell parameters results in a weaker 

rearrangement of the molecules at higher pressure, as also pointed out previously 

[50]. It has been reported that the values of the Grüneisen parameters for the Ag and 

Bg modes of anthracene, which vary from 3 to 6 are higher than those obtained for 

ionic crystals [26]. This also applies to our calculated 𝛾𝑇 and the observed 𝛾𝑇 [6] (at 

P=0) values of the mode Grüneisen parameter for the phonon modes (external 

modes) (Table 3). It has been explained that the relatively large 𝛾 values observed for 
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intermolecular phonon modes (external modes) are due to the comparatively large 

compression of the vibrational coordinate and also, comparatively small 𝛾 values 

observed for some intramolecular vibrons (internal modes) are due to the 

compression along intermolecular coordinates orthogonal to the vibron coordinate 

[43].  

Table 3. 4 Calculated isothermal mode Grüneisen parameter (Equation (2.10)) for the 

six phonon and nine vibron modes of solid anthracene (P= 0 GPa). Observed data 

[52] is also given. 

Phonon Modes 𝜗0 (cm-1) 𝛾𝑇 (Calculated) 𝛾𝑇 (Observed [52]) 

Ag 38.47 3.61 4.01 

 Bg 46.00 3.25 4.00 

Bg 68.19 3.43 2.96 

Ag 73.59 3.65 3.06 

Ag 122.73 3.04 2.78 

Bg 129.70 3.23 2.87 

Vibron Modes 𝜗0 (cm-1) 𝛾𝑇 (Calculated) 𝛾𝑇 (Observed [52]) 

12Ag 396.95 0.196 0.186 

10B3g 521.95 0.048 0.035 

10Ag 754.19 0.074 0.073 

9Ag 1008.78 0.048 0.054 

8Ag 1164.81 0.026 0.021 

7B3g 1189.70 0.043 0.042 

7Ag 1261.01 0.081 0.068 

6Ag 1403.34 0.065 0.057 

4Ag 1558.78 0.031 0.031 

 

 

Due to the uncertainties in the experimental measurements, we determined the 

uncertainties in the parameters of our calculations [41]. We also determined the 

uncertinities in the Raman frequencies calculated of the six phonon modes through 

the experimental data [41] at P=0 GPa (Table 3.11). Since we take into account the 

smallest uncertainty in the coefficients in our calculations, the physical quantities we 

calculated become more meaningful physically. Very large uncertainties in the 
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coefficients we found, increase the values of those physical quantities considerably, 

which then become incomparable with the experimental values.We used the 

uncertainties through the coefficient 𝑐0. The pressureuncertainty was usually 

between ±0.6 and ±1.8 GPa. Also, the uncertainties in the molar volume were 

predicted to be ±2.6 cm3/mol for the six phonon modes. On that basis, we 

determined the uncertainties in the molar volume V, inthe Raman frequencies 𝜗 of 

the modes andin theisothermal mode Grüneisen parameter 𝛾𝑇(P=0 GPa) for the six 

phonon modes of anthracene. Using the calculated terms with the uncertainties in 

Equation (3.6), the Raman frequencies of the six phonon modes of solid anthracene 

were calculated. We determined uncertainties in the Raman frequencies calculated at 

various pressures, as plotted for the six phonon modes of anthracene in Figures 20 

and 21. Uncertainty in the Raman frequency of the mode with ϑ0 = 39cm−1 for 

anthracene was estimated to be 1.5 %  (or 0.6cm-1/mole) at zero pressure (Figure 

3.20). Uncertainty in the Raman frequency of the mode with ϑ0 = 46 cm−1for 

anthracene was estimated to be 2.6 %  (or 1.2cm-1/mole) at zero pressure (Figure 

3.20). Uncertainty in the Raman frequency of the mode with ϑ0 = 69cm−1 for 

anthracene was estimated to be 1.4 %  (or 1.0 cm-1/mole) at zero pressure (Figure 

3.20). Uncertanity in the mode with  ϑ0 = 73cm−1 for anthracene was estimated to 

be 1.5 %  (or 1.1 cm-1/mole) at zero pressure (Figure 3.21). Uncertainty in the Raman 

frequency of the mode with ϑ0 = 120cm−1 for anthracene was estimated to be 1.5 %  

(or 1.8 cm-1/mole) at zero pressure (Figure 3.21). Uncertainty in the Raman 

frequency of the mode with ϑ0 = 128 for anthracene was estimated to be 1.4 %  (or 

1.8 cm-1/mole) at zero pressure (Figure 3.21).  Uncertainty range verifies the 

agreement between the calculated and observed data of the mentioned modes for 

anthracene.  
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Figure 3.20 Uncertainties in the Raman frequencies calculated for modes of solid 

anthracene according to Equation (3.6). 

 

Figure 3.21 Uncertainties in the Raman frequencies calculated for modes of solid 

anthracene according to Equation (3.6). 
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3.2 Calculation of the Raman Frequency as a Function of Temperature for 

the Hydrocarbons: Benzene, Naphthalene and Anthracene 

3.2.1 Benzene 

 

Temperature dependence of the volume according to Equation (3.2) was determined 

by fitting the observed data [12] and the coefficients b0, b1, b2 in Equation (3.2) are 

given in Table 3.12. The Raman frequency shifts of six phonon modes of solid 

benzene I were obtained as a function of temperature in Equation (3.4) and the 

coefficients are given in Table 3.13 with the uncertainities. Then, isothermal mode 

Grüneisen parameter was calculated according to Equation (2.10) for the six phonon 

modes of solid benzene I at zero pressure. Finally, the temperature dependence of the 

Raman frequency shifts were obtained by using Equation (3.7) for six phonon modes 

of solid benzene I. 

 

Table 3.12 Coefficients  b0, b1 and b2  as determined by Eq. (3.2) for the phonon 

modes of solid benzene.  We also give here the uncertainties determined in the 

coefficients 𝑏0, 𝑏1 and 𝑏2 for the mentioned modes of benzene. 

BENZENE b0(cm3/mole) b1x10-2(cm3/mole.K) b2x10-5(cm3/mole.K2) 𝑉0 

 69.16±0.03 4.92±0.04 8.29±0.20 78.10 
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Table 3.13 Coefficients 𝑑0, 𝑑1 and 𝑑2which were found according to Eq. (3.4) using 

the observed data [12] for the phonon modes of solid benzene I . We also give here 

the uncertainties determined for the coefficients𝑑0, 𝑑1 and 𝑑2 for six phonon modes 

of solid benzene I. Calculated Raman frequency shifts are also represented at P= 0 

GPa and T= 300 K. 

BENZENE 𝑑0(cm-1) 𝑑1 × 10−2 (cm-1/K) 𝑑2 × 10−4 (cm-1/K2) 𝜗0 

Mode A 61.42±0.1 -1.16±0.2 -2.12±0.1 38.32 

Mode B 70.44±0.2 -6.46±0.4 0.87±0.1 51.83 

Mode C 139.28±0.2 -6.58±0.4 -0.23±0.1 99.02 

Mode X 68.79±0.2 -3.15±0.01 -0.28±0.5 38.82 

Mode Y 100.30±0.3 -3.45±0.01 -2.66±0.2 66.01 

Mode Z 110.91±0.3 -3.40±0.01 -2.89±0.6 74.70 

 

 

Figure 3.22 Calculated Raman frequencies as a function of temperature at zero 

pressure according to Equation (3.7) by using the observed data [12] for six phonon 

modes of solid benzene I. 
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Figure 3. 23 Temperature dependence of the Raman frequencies (Equation (3.7)) at 

zero pressure  for solid benzene I are defined with red circles (Mode A), purple 

triangles (Mode B) and green squares (Mode C). Observed data [12] are also given 

with black squares (Mode A),blue triangles (Mode B) and green squares (Mode C), 

respectively. 

 

Figure 3. 24 Temperature dependence of the Raman frequencies (Equation (3.7)) at 

zero pressure  for solid benzene I are defined with red circles (Mode X), purple 

triangles (Mode Y) and green squares (Mode Z). Observed data [12] are also given 

with black squares (Mode X), blue triangles (Mode Y) and green squares (Mode Z), 

respectively. 
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Calculated Raman frequencies (Equation (3.7)) for the six phonon modes of solid 

benzene decrease with the increasing temperature as seen in Figure 3.22, as expected. 

Calculated data exhibits the same behaviour with the observed data [12] for all 

phonon modes in Figures 3.23 and 3.24. There is a distinct discrepancy with the 

observed data [12] for all modes of benzene. The reason of the discrepancy may be 

due to the lack of experimental graph of Raman frequencies as a function of 

temperature in the literature. In this section, a graph is suggested for the Raman 

frequencies of six phonon modes of solid benzene in solid I-II transition through the 

experimental data [12]. When a direct experimental data is available in literature, an 

accurate comparison will given between the calculated and observed data for this 

section.  

The Raman frequencies of the six phonon modes (A,B,C and X,Y,Z) were calculated 

form the volume data through the isobaric mode Grüneisen parameter 𝛾𝑃 (Table 3.) 

at zero pressure. Calculated isobaric mode Grüneisen parameters differ slightly 

around the value of 3 except mode A. Grüneisen parameter differs between 3 and 4 

for mode A. Consequently, the isobaric mode Grüneisen parameter 𝛾𝑃 seems to be 

independent of the change in this temperature range. 

Calculated uncertainties in the Raman frequencies for the lattice modes (A,B,C and 

X,Y,Z) of solid benzene were determined because of the uncertainties in the 

experimental measurements [12]. We determined uncertinities in the Raman 

frequencies found as a function of temperature (Equation (3.4)) for the modes 

through the experimental data [34] at T=293 K which is given in Table 3.13. Since 

we take into account the smallest uncertainty in the coefficients in our calculations, 

the physical quantities we calculated become more meaningful physically. Very large 

uncertainties in the coefficients we found, increase the values of those physical 

quantities considerably, which then become incomparable with the experimental 

values. We used the uncertainties in the Raman frequency as a function of 

temperature calculations through the coefficient 𝑑1. The temperature uncertainity 

range is between ±0.1 and ±0.3. Also, the uncertainties in the molar volume were 

predicted to be ±1.5 cm3/mol for the solid benzene [12]. Equation (3.2) was used 

with the uncertainties in the volume as a function of temperature to determine the 
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uncertainties in our Raman frequencies which were calculated for the lattice modes 

(A,B,C and X,Y,Z) of solid benzene as plotted in Figure 3.24. Uncertainity in the 

mode A with the frequency of ϑo = 38.32 cm−1 for naphthalene was estimated to be 

0.3%  (or 0.1 cm-1) at room temperature  (Figure 3.25). Similarly, uncertainties in the 

mode B with the frequency of ϑo = 51.83 cm−1and with ϑo = 99.02 cm−1for 

naphthalene were estimated to be 0.4%  (or 0.2 cm-1 ) and 0.2%  (or 0.2 cm-1), 

respectively, at ambient pressure (Figure 3.25). Uncertainties in the Raman 

frequency calculated as a function of temperature calculations were estimated as 

0.5%  (or 0.2 cm-1) for mode X with ϑo = 38.82 cm−1, 0.4%  (or 0.3 cm3/mole.GPa 

) for mode Y with ϑo = 66.01 cm−1  and 0.5%  (or 0.3 cm3/mole.GPa ) for mode Z 

with ϑo = 74.70 cm−1 at zero pressure. Both Figure 3.22 and Figure 3.23 have a 

discrepeancy region for the A,B,C and X,Y,Z modes for solid benzene. As we 

mentioned before, uncertainity may arise from the weak contribution of the thermal 

expansion at low temperatures. Weak contribution of the thermal expansion effect of 

undefined or overlapped modes can also be reason for the uncertainties. This 

behaviour can be partly arised from the fitting the frequencies to the experimental 

structure rather than the relaxed structure. 
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Figure 3. 25 Uncertainties in the Raman frequencies calculated for modes of solid 

benzene according to Equation (3.7). 
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using the experimental data [20,73] for volume as a function of temperature (at P= 0 

GPa), as given in Table 3.15. The coefficients 𝑑0, 𝑑1and 𝑑2 were determined (P = 0) 

by analyzing the temperature dependence of the Raman frequencies of the Ag and Bg 

modes by using the Equation (3.4) through the observed Raman frequencies [37] for 

solid naphthalene, as given in Table 3.16.  

The isothermal mode Gruneisen parameter 𝛾𝑇 as a function of pressure at room 

temperature was also determined for the Ag and Bg modes by using the observed 

volume data [20,74] and the observed Raman frequencies [37], according to 

Equation (2.10). Equation (2.11) has the pressure-dependent term A(T) whose 

coefficients were determined by defining the pressure-dependent term in a quadratic 

form as given below: 

𝐴(𝑇) = 𝑎 + 𝑏𝑇 + 𝑐𝑇2                    (3.10) 
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The coeffcients of the pressure dependent function A(T) defined in Equation (3.10) 

were defined through Equation (2.11) for the phonon modes of naphthalene at zero 

pressure. Determined coefficients a,b and c of A(T) for the phonon modes are given 

in Table 3.17.  Also, the Raman frequencies of the Ag and Bg modes as a function of 

pressure and temperature were calculated through Equations (2.11) and (2.12) by 

using the observed volume data [20,74] and the observed Raman frequencies [37].  

 

Table 3. 11 Coefficients  b0, b1 and b2  as determined according to Equation (3.2) by 

using observed data [37] of solid naphthalene at room temperature. We also give 

here the uncertainties determined in the coefficients 𝑏0, 𝑏1 and 𝑏2. 

NAPHTHALENE 𝑏0 (cm-1) 𝑏1 (cm-1/mole.K) b2x10-

4(cm3/mole.K2) 

𝑉0 

 338.89±1.4 0.03±0.02 1.39±0.38 360.4 

 

 

Table 3. 12 Coefficients 𝑑0, 𝑑1 and 𝑑2which were found according to Eq. (3.4) using 

the observed data [37] for the modes indicated for solid naphthalene. We also give 

here the uncertainties determined for the coefficients𝑑0, 𝑑 and 𝑑2 for six modes of 

solid naphthalene. Values of the Raman frequencies for six modes of solid 

naphthalene at P= 0 GPa and T= 300K, are also given here. 

NAPHTHALENE 𝑑0 (cm-1) 𝑑1 × 10−2 (cm-

1/K) 

𝑑2 × 10−4 (cm-

1/K2) 

𝜗0 

Mode Ag1 69.35±0.80 -2.82±0.01 -1.19±0.44 50.18 

Mode Ag2 88.75±0.32 -1.37±0.02 -2.64±0.71 60.88 

Mode Ag3 121.64±0.60 -1.24±0.01 -1.14±0.29 107.66 

Mode Bg1 57.36±1.10 -2.26±0.02 -0.59±0.63 45.27 

Mode Bg2 84.18±1.40 -1.79±0.02 -1.05±0.75 69.36 

Mode Bg3 142.35±3.05 -2.65±0.05 -1.19±0.16 123.69 
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Table 3. 13 The a, b and c coefficients which were found according to Equation 

(3.10) using the observed frequencies [37] which were obtained at zero pressure for 

six phonon modes of solid naphthalene. 

A(T) a bx10-2 cx10-4 

Mode Ag1 3.20 4.57 1.55 

Mode Ag2 6.29 8.10 2.48 

Mode Ag3 7.53 9.82 2.82 

Mode Bg1 3.71 4.70 1.41 

Mode Bg2 4.27 5.71 1.74 

Mode Bg3 10.37 13.71 3.75 

 

 

Figure 3. 26 The determined Raman frequencies as a function of temperature at 

atmospheric pressure for mode of symmetry Ag for solid naphthalene (filled squares) 

according to Equation (2.11) and the experimental data of Ag modes [34] for solid 

naphthalene (filled circles). 
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Figure 3. 27 The determined Raman frequencies as a function of temperature at 

atmospheric pressure for mode of symmetry Bg for solid naphthalene (filled squares) 

according to Equation (2.11) and the experimental data of Bg modes [37] for solid 

naphthalene (filled circles). 

 

The Raman frequencies were estimated for the 3Ag and 3Bg modes using the 

observed volume data by finding their mode Gruneisen parameters in naphthalene. 

As shown in Figures 3.26 and 3.27, our found Raman frequencies (Equation (2.11)) 

for the Ag and Bg modes, respectively, reduce with increasing temperature, as 

observed experimentally [37]. There is a divergence between our computed and 

observed Raman frequencies of the Ag and Bg modes at a very low temperature (7 

K) for the solid naphthalene. This is owing to the fact that decrease in the Raman 

frequencies of the six lattice modes (Ag and Bg modes) with increasing temperature 

can be ascribed to the thermal expansion in naphthalene. Subsequently we calculated 

the Raman frequencies using the volume data according to Equation (2.11), the 

Raman frequencies are not contributed by the thermal expansion at very low 

temperatures.  
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We determined the values of the isobaric mode Gruneisen parameter 𝛾𝑝(Equation 

(2.9)) for the Ag and Bg modes of solid naphthalene as a function of temperature 

within the temperature interval of ~80–325 K (Table 3.13). The average values of 

the 𝛾𝑝 which we obtained for the Ag modes, are between 5 and 7 (𝛾𝑝 = 5.3) for Ag1, 

𝛾𝑝 = 3.3 for Ag2 and 𝛾𝑝 = 2.0 for the Ag3 mode. For the Bg modes, we obtained as the 

average values, 𝛾𝑝= 3.8 for Bg1, 𝛾𝑝= 3.2 for Bg2 and 𝛾𝑝 = 2.3 for the Bg3 mode of 

solid naphthalene. The average values of the isobaric mode Gruneisen parameter 𝛾𝑝 

for the Ag and Bg modes, show that the lower Raman frequency mode has the higher 

𝛾𝑝 value for solid naphthalene. These are the 𝛾𝑝 values at zero pressure for the 

temperature interval of ~80–325 K for this crystal (Table 3.18). Our  𝛾𝑝 values can 

be compared with those determined as reported in the literature. The temperature 

dependence of the Gruneisen parameter of the Raman active external modes in d8-

naphthalene was determined as the mean values ranging from 2.7 to 3.5 for the 

temperature region 0–300 K [30]. Our average 𝛾𝑝 values for the Ag and Bg modes 

except the Ag1 mode fall in the same interval as found for the Raman external modes 

given above.  

 

Concerning the anharmonicity of a crystalline system, that gives rise to the thermal 

expansion and the deviation in frequency with temperature through the isobaric mode 

Gruneisen parameter 𝛾𝑝 (Equation (2.9)), the thermal expansion 𝛾𝑝 can be estimated 

from the Raman frequency shifts at a constant pressure (atmospheric pressure). By 

knowing a constant value of the mode Gruneisen parameter 𝛾𝑝, the thermal 

expansion 𝛼𝑝 can be computed from the normal mode frequency shifts with 

temperature, which can be measured to high accuracy spectroscopically. When the 𝛾𝑝 

varies with temperature as in the case of six lattice modes (Ag and Bg modes) for 

naphthalene, the thermal expansion can be computed from the Raman frequency 

shifts 𝛼𝑝 by using the initial data for the thermal expansion to determine the 𝛼𝑝 

values as a function of temperature for naphthalene, as we studied here. The pressure 

dependence of the thermal expansion 𝛼𝑝 (at a constant temperature) can be estimated 

from the vibrational frequency shifts (𝜕𝜗
𝜕𝑇⁄ )

𝑝
  by means of the isobaric 𝛾𝑝 mode 

Gruneisen parameter for naphthalene.  
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Table 3. 14 The isobaric mode Gruneisen parameter 𝛾𝑝 (Equation (2.9)) values for 

the Raman modes indicated as a function of temperature for solid naphthalene. 

T(K) 

(P= 0 GPa) 

Mode 

Ag1 

(𝛾𝑝) 

Mode 

Ag2 

(𝛾𝑝) 

Mode 

Ag3 

(𝛾𝑝) 

Mode Bg1 

(𝛾𝑝) 

Mode Bg2 

(𝛾𝑝) 

Mode Bg3 

(𝛾𝑝) 

79.0 4.66 2.62 1.67 3.81 2.77 2.14 

84.4 4.68 2.66 1.69 3.80 2.79 2.14 

93.3 4.70 2.72 1.73 3.76 2.82 2.15 

110.5 4.76 2.84 1.79 3.73 2.88 2.17 

118.7 4.80 2.89 1.82 3.72 2.91 2.18 

124.6 4.82 2.92 1.84 3.71 2.93 2.18 

142.9 4.91 3.03 1.90 3.70 2.99 2.21 

144.2 4.92 3.04 1.90 3.70 3.00 2.21 

157.7 4.99 3.12 1.95 3.70 3.05 2.23 

182.0 5.14 3.27 2.02 3.72 3.14 2.26 

185.1 5.16 3.28 2.03 3.72 3.15 2.27 

240.8 5.61 3.63 2.19 3.84 3.39 2.37 

273.3 5.96 3.85 2.30 3.96 3.55 2.45 

294.7 6.23 4.02 2.37 4.05 3.68 2.50 

298.3 6.28 4.04 2.38 4.06 3.70 2.51 

314.8 6.53 4.18 2.44 4.15 3.80 2.56 

325.0 6.69 4.27 2.47 4.20 3.87 2.59 

 

Uncertainties in the Raman frequencies calculated for the Ag and Bg modes of solid 

naphthalene were determined because of the uncertainties in the experimental 

measurements [37]. We determined uncertinities in the Raman frequencies found as 

a function of temperature (Equation (3.4)) for the Ag and Bg modes through the 

experimental data [76] at T=293 K which is given in Table 3.16. Since we take into 

account the smallest uncertainty in the coefficients in our calculations, the physical 

quantities we calculated become moremeaningful physically. Very large 

uncertainties in the coefficients we found, increase the values of those physical 
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quantities considerably,which then become incomparable with the experimental 

values.We used the uncertainties in the Raman frequency as a function of 

temperature calculations through the coefficient 𝑑1. The temperature uncertainity 

range is between ±0.01 and ±0.05. Also, the uncertainties in the molar volume were 

predicted to be ±0.02 cm3/mol.K for the solid naphthalene [20,74]. Equation (2.11) 

was used with the uncertainties in the Raman frequencies and the volume as a 

function of temperature to determine the uncertainties in our Raman frequencies 

calculated for the Ag and Bg modes of solid naphthalene as plotted in Figures 3.28 

and 3.29. Uncertainity in the Ag mode with the frequency of ϑo = 69 cm−1 for 

naphthalene was estimated to be 2.3%  (or 1.6 cm3/mole.K ) at room temperature  

(Figure 3.28). Both in Figure 3.28 and Figure 3.29 have a discrepeancy region 

through the lower temperatures for the Ag and Bg modes for solid naphthalene. As we 

mentioned before, uncertainity may arise from the weak contribution of the thermal 

expansion at low temperatures. Weak contribution of the thermal expansion effect of 

undefined or overlapped modes also be reason for the uncertainties. Weak 

contribution of the thermal expansion effect of undefined or overlapped modes also 

be reason for the uncertainties. This behaviour can be partly arised from the fitting 

the frequencies to the experimental structure, rather than the relaxed structure. We 

determined uncertainties in the Raman frequency found as a function of temperature 

as plotted with the uncertainities for the Ag and Bg modes of solid naphthalene in 

Figures 3.28 and 3.29. 
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Figure 3. 28 Uncertainties in the Raman frequencies calculated for modes of 

symmetry Ag for solid naphthalene according to Equation (2.11). 

 

Figure 3. 29 Uncertainties in the Raman frequencies calculated for modes of 

symmetry Bg for solid naphthalene according to Equation (2.11). 
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3.2.3 Anthracene 

 

Temperature dependence of the crystalline volume was calculated by fitting Equation 

(3.2) to the observed data and the coefficientsb0, b1, b2 are represented in Table 3.19 

with the uncertainties. The Raman frequencies of the six phonon and nine vibron 

modes of solid anthracene were obtained as a function temperature by using the 

observed data [48,52] according to Equation (3.9) through the isothermal mode 

Grüneisen parameter 𝛾𝑇. The coefficients d0, d1, d2 in Equation (3.4) are given in 

Table 3.20 with the uncertainities.  

 

The crystal volume and the Raman frequency values are represented in terms of 𝜗1 

and 𝑉1 at zero pressure and room temperature. The Raman frequency as a function of 

temperature at zero pressure for the six phonon and nine vibron modes of solid 

anthracene was calculated by using the observed data [52] according to Equation 

(3.9), as plotted in Figures 3.30 and 3.31.  

 

Table 3.15 Coefficients  b0, b1 and b2  as determined according to Equation (3.2) by 

using observed data [52] for solid anthracene at room temperature. We also give here 

the uncertainties determined in the coefficients 𝑏0, 𝑏1 and 𝑏2 for the mentioned 

modes of naphthalene. 

ANTHRACENE 𝑏0 (cm-1) 𝑏1 × 10−2 (cm-

1/mole.K) 

b2x10-

4(cm3/mole.K2) 

𝑉0 

 451.72±0.3 4.14±0.4 1.06±0.1 473.7 
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Table 3.16 Coefficients 𝑑0, 𝑑1 and 𝑑2which were found according to Eq. (3.4) using 

the observed data [52] for the modes indicated for solid anthracene. We also give 

here the uncertainties determined for the coefficients𝑑0, 𝑑 and 𝑑2 for six modes of 

solid anthracene. Values of the Raman frequencies for six modes of solid anthracene 

at P= 0 GPa and T= 300 K, are also given here. 

ANTHRACENE 𝑑0 (cm-1) 𝑑1 × 10−2 (cm-

1/K) 

𝑑2 × 10−5 (cm-1/K2) 𝜗0 

Ag 46.26±0.03 -1.76±0.03 -2.35±0.07 38.87 

Bg 53.63±0.03 -1.83±0.03 -2.57±0.07 45.83 

Bg 81.15±0.04 -2.93±0.05 -4.01±0.12 68.75 

Ag 86.76±0.04 -3.35±0.06 -4.43±0.14 72.72 

Ag 138.52±0.06 -4.39±0.07 -6.37±0.17 119.62 

Bg 149.10±0.07 -5.04±0.08 -7.11±0.20 127.58 

Vibrons 𝑑0 (cm-1) 𝑑1 × 10−2 (cm-

1/K) 

𝑑2 × 10−5 (cm-1/K2) 𝜗0 

12Ag 399.64±0.06 0.77±0.07 0.50±0.16 399.64 

10B3g 523.17±0.02 0.24±0.02 0.50±0.50 523.17 

10Ag 756.61±0.04 0.54±0.05 1.16±0.11 756.61 

9Ag 1011.26±0.04 0.48±0.05 0.98±0.14 1011.26 

8Ag 1166.13±0.02 0.22±0.02 0.56±0.06 1166.13 

7B3g 1190.35±0.04 0.45±0.04 1.20±0.11 1190.35 

7Ag 1265.75±0.09 0.97±0.09 2.19±0.24 1265.75 

6Ag 1407.31±0.06 0.92±0.07 1.84±0.17 1407.31 

4Ag 1560.26±0.04 0.47±0.05 1.02±0.12 1560.26 
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Figure 3. 30 Calculated Raman frequencies for the phonon modes as a function of 

temperature at P= 0 GPa according to Equation (3.9) for crystalline anthracene. 

 

Figure 3. 31 Calculated Raman frequencies for the nine vibron modes as a function 

of temperature at P= 0 GPa according to Equation (3.9) for crystalline anthracene. 
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The Raman frequencies were found as functions of temperature and pressure with 

the observed volume data[48,52] for the six phonon and nine vibron modes of solid 

anthracene through the values of the isothermal mode Grüneisen parameterγT(P) at 

P = 0 for those modes studied (Table 3.8). As shown in Figures 3.30 and 3.31, our 

calculated Raman frequencies for the six phonon and nine vibron modes, 

respectively, decrease with increasing temperature, due to the thermal expansion, 

whereas they increase with increasing pressure (Figures 3.30 and 3.31) as also 

observed experimentally [26,43]. As shown in Figures 3.30 and 3.31, our found 

Raman frequencies for the six phonon and nine vibron modes, respectively, reduce 

with increasing temperature, due to the thermal expansion. In fact, these decreases 

with temperature in the Raman frequencies are more apparent for the phonon 

modes, as shown in Figures 3.30 and 3.31, respectively. For vibrons, decreases in 

the Raman frequencies with temperature are very small so that the Raman 

frequencies are almost independent from the temperature within the frequency 

scale of vibrons (Figure 3.31). The temperature variation of the vibrational 

frequencies of crystal lattices involves both temperature and volume[26]. This 

indicates that flactuation in phonon frequencies with temperature is due to both the 

deterioration of the unit cell with temperature and the phonon-phonon interaction 

[31]. 

Within large values of the isothermal mode Grüneisen parameter 𝛾𝑇 (P=0) and 

relatively small 𝛾𝑇 (P=0) values which we determined for the phonon modes 

(external modes) and the vibrons (internal modes), respectively, we calculated not 

only the pressure dependence of the Raman frequencies (Equation 2.9) but also their 

temperature dependence (Equation 3.1) using the observed volume data [48,52] (and 

also the observed 𝜗𝑇(𝑝) data [43]), in anthracene, as stated above. When the Raman 

frequencies of six phonons and nine vibrons are measured experimentally as a 

function of temperature (P=0) in anthracene,then the isobaric mode Grüneisen 

parameter 𝛾𝑝(𝑇) can be determined using the volume 𝑉𝑝(𝑇) [48] according to 

Equation (2.9) at P=0. From the  𝛾𝑝(𝑇) values calculated at P=0, the temperature 

dependence of the Raman frequencies 𝜗𝑝(𝑇) of the modes studied using the observed 

volume 𝑉𝑝(𝑇) data [48] by means of Equation (3.2). By comparing with the observed 
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𝜗𝑝(𝑇) data at P=0 when available in the literature, this then examines our method of 

predicting the 𝜗𝑝(𝑇) values for the Raman modes studied in anthracene. 

By determining the Raman frequencies at different temperatures and pressures, in 

anthracene, its P-T phase diagram can be obtained, as also suggested for a P-T phase 

diagram of benzene (𝐶6𝐻6) at high pressures [20]. By measuring the Raman 

frequencies of various modes at room temperature as a function of pressure up to 25 

GPa, first order and second order phase transformations among the pressure-induced 

solid phases of benzene have been proposed and the phase boundaries have also been 

suggested in this molecular crystal [20]. 

In the case of anthracene, we calculated the Raman frequencies as functions of 

temperature (at normal pressure) and of pressure (at room temperature), as stated 

above. Thus, by predicting the Raman frequencies at different pressures (Figures 4 

and 5) on the basis of the Raman measurements at ambient temperature up to 3.1 

GPa [6], and also by predicting the Raman frequencies at different temperatures at 

normal pressure (Figures 2 and 3), various phase transformations in anthracene can 

be obtained and its P-T phase diagram can be determined from the Raman 

frequencies of the phonon modes and vibrons in this molecular crystal. 

The Raman frequencies determined at different temperatures and pressures can then 

provide same applications for pressure/temperature sensing. As the thermodynamical 

PVT system, by means of the correlations between the volume V and the Raman 

frequency 𝜗 through the mode Grüneisen parameter 𝛾, spectroscopically P𝜗T system 

can be used for various applications of the molecular crystals such as anthracene as 

examplified here. Thus, various physical properties of molecular crystals, in 

particular, of anthracene can be investigated spectroscopically through the Raman 

frequency shifts which can be measured to high accuracy as compared to the 

thermodynamic PVT measurements in the phases or close to the phase transitions. 

Therefore, temperature and pressure dependences of the thermodynamic quantities 

such as the heat capacity, thermal expansivity and the isothermal compressibility can 

be predicted from the Raman frequency shifts in anthracene or in more general for 

the molecular crystals. 
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3.3 Calculation of the Specific Heat as a Function of Temperature Using the 

Raman Frequency Shifts for Hydrocarbons 

 

3.3.1 Benzene 

 

Heat capacity as a function of temperature for each mode in the phases I-II of solid 

benzene is calculated according to Equation (2.43). Critical exponent for the thermal 

expansion φ which was obtained from Equation (2.24) was assumed to be constant 

value of 0.8 for each mode in solid phases I-II of benzene. In the same way, critical 

exponent for the thermal compressibility ɸ which was obtained from Equation (2.32) 

was assumed to be a constant value of -0.3 for the six modes of benzene. Constant 

molar volume of benzene as a function of temperature at zero pressure and as a 

function of pressure at room temperature was obtained by using the experimental 

data [12] and also constant thermal expansion in Equation (2.13) at zero pressure and 

constant isothermal compressibility in Equation (2.14) at room temperature. Isobaric 

mode Grüneisen parameter at p=0 GPa and isothermal mode Grüneisen parameter at 

T=300K were calculated using Equations (2.9) and (2.10). Then, from the 

calculations for six modes in the solid phases I-II of benzene, total heat capacity of 

six modes is calculated according to Equation (2.44). Thus, the relationship between 

total heat capacity due to the six modes in phases I-II of solid benzene as a function 

of temperature is given in Figure 3.32.  

 

Table 3. 17 Values of constant molar volume of benzene at p=0 GPa (V0) and at 

T=300 K (V0′) [12]. Values of constant thermal expansion (Equation (2.24)) at 

p=0GPa and constant isothermal compressibility (Equation (2.26)) at T=300K in the 

phases I-II of solid benzene. 

V0(cm3/mol) V0′(cm3/mol) α0x10-4(K-1) κ0x10-2(GPa-1) 

77.37 78.10 7.00 13.27 

 

 



70 
 

 

Figure 3.32 Calculated heat capacity as a function of temperature according to 

Equation (2.44) for the I-II transition (pC=0 GPa, TC=300 K) in benzene. 

The specific heat CP was determined as a function of temperature (P = 0) and also as 

a function of pressure (T = 300 K) according to Equation (2.44) for the phases I–II of 

solid benzene. For this computation, we used the observed data for the Raman 

frequencies of the six lattice modes (A, B, C and X, Y, Z) [12], which were obtained 

at various pressures (T = 300 K) for the phases I–II of benzene. Contribution to the 

total specific heat CP due to the six lattice modes was considered and also the 

observed volume data [12] were used in Equation (2.44). Table 3.8 gives the 

coefficients for the observed volume at various temperatures (P = 0) [12] from our 

analysis according to Equation (3.2) for the phases II of solid benzene. The pressure 

dependence of the observed volume at constant temperature (T = 300 K) [12] was 

also analyzed according to Equation (3.1) with the coefficients found for the solid 

phases I–II in benzene, as shown in Table 3.1. The Raman frequencies of the lattice 

modes (A, B, C and X, Y, Z), which were computed [12] as a function of pressure (T 

= 300 K) were determined using Equation (3.3). Table 3.4 shows the values of the 

coefficients which we found for the six lattice modes for the phases I–II of solid 
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benzene. The investigation of the temperature dependence of the Raman frequencies 

for the six lattice modes (P = 0) as observed experimentally [12], was also completed 

according to Equation (3.4) for the phases I–II of benzene. We represent the 

isothermal mode Grüneisen parameter (𝛾𝑇)  in Figure 3.6 (Equation (2.10)) for the 

six lattice modes studied. We then determined the temperature and pressure 

dependencies of the isobaric (𝛾𝑝) and isothermal (𝛾𝑇) mode Gruneisen parameter 

according to Equations (2.9) and (2.10), respectively, using the Raman frequency 

data [12] for the six lattice modes and also the observed volume data [12] for the 

phases I–II of solid benzene. Finally, using the temperature (P = 0) and pressure (T = 

300 K) dependence of the six lattice modes with the frequency shifts (𝜕𝜗
𝜕𝑇⁄ )

𝑃
 at P 

= 0 and (𝜕𝜗
𝜕𝑃⁄ )

𝑇
 at T = 300 K, we found the specific heat CP as a function of 

temperature (P = 0) according to Equation (2.44) for the phases I–II of benzene. For 

this calculation, we used values of 𝛾𝑝)  and 𝛾𝑇 at P = 0 and T = 300 K, respectively, 

for the six lattice modes in this equation. We plot in Figure 3.32 our found CP as a 

function of temperature (P = 0) due to the six lattice modes for the phases I–II of 

benzene. As predicted, the specific heat CP increases as the temperature increases for 

both CP vs. T (Figure 3.32) and 
𝜌𝐶𝑃

𝜌𝐶𝑃𝑚𝑎𝑥
⁄ vs. T (Figure 3.33). For the finding of 

the specific heat CP (Equation (2.44)), contributions due to the six lattice modes 

(denoted by A, B, C and X, Y, Z) were considered, for which the observed Raman 

frequency data [12] were used for the phase I–II of benzene. Our found 𝜌𝐶𝑃 values 

were compared with the observed data [12]. For this comparison, both the found and 

observed values were normalized with respect to the maximum CP value (Figure 

3.34). As given in the figure, there is a substantial discrepancy at low temperatures 

and they seem to agree as the temperature increases up to 200 K. 

 

 

3.3.1.1 Calculation of Heat Capacity at P=0.1 GPa 

 

Equation (2.45) is calculated at constant pressure of P=0.1 GPa for six modes of 

solid benzene for various temperatures, calculated the temperature reliance of the 

specific heat CP at a constant pressure of P = 0.1 GPa, as measured experimentally 
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[4] for the solid phases I–II in benzene. Our finding of the specific heat CP was 

performed by considering the contributions due to the six lattice modes (A, B, C and 

X, Y, Z) as in the CP calculation for P =0 (Figure 3.33). By determining the Raman 

frequencies of the six lattice modes studied as a function of temperature at P = 0.1 

GPa according to Equation (3.3) and using the extrapolated values of 𝛾𝑇 for those 

modes at P = 0.1 GPa , we were also able to compute CP at several temperatures (P = 

0.1 GPa) by Equation (2.44). We give in Figure (3.34), 𝜌𝐶𝑃 values (q = 1/V is the 

density for the solid I–II phases in benzene) which were normalized with respect to 

the maximum value of 𝜌𝐶𝑃𝑚𝑎𝑥, as compared with the experimental data [4] at 

several temperatures for the solid I–II phases (P = 0.1 GPa) in benzene. Behaviour of 

CP (p=0.1GPa,T) against the temperature as seen below. 

 

 

 

Figure 3. 33 Pressure dependence of heat capacity per unit volume 𝛒Cp due to total 

six modes correspond to phase I-II of solid benzene at 0.1 GPa. 
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Figure 3. 34 Calculated heat capacity per unit volume due to the total six lattice 

modes in phases I-II of solid benzene at p=0.1GPa according to Equation (2.45). 

Observed data [4] is also given here for comparison. 

 

When we found the specific heat CP using the Raman frequency shifts (Equation 

(2.44)), we used the temperature dependence of the 𝛾𝑃 and the pressure dependence 

of the 𝛾𝑇 which we found for those phonon modes (A, B, C and X, Y, Z) studied for 

the I–II transition in benzene, as stated above. The 𝛾𝑃 values of six lattice modes do 

not differ significantly with the temperature and the 𝛾𝑃 value is around 3 for all the 

modes except the mode A which has the value between 3 and 4 within the 

temperature range of 67 < T(K) < 216 (Table 5). Remarkably, the 𝛾𝑇 as a negative 

value is about 3 for the lattice modes except the mode A as for cp and the pressure 

dependence of the 𝛾𝑇 is also unimportant (Table 6). In particular, the𝛾𝑇 as a negative 

value fluctuates between 3 and 4 for the mode A. This shows that a constant 𝛾𝑃 for 

each mode can be used to estimate the frequency shifts (𝜕𝜗
𝜕𝑇⁄ )

𝑃
 from the volume 

change (𝜕𝜗
𝜕𝑇⁄ )

𝑃
  (Equation (2.20)) or a constant 𝛾𝑇 can be used to estimate 
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(𝜕𝜗
𝜕𝑃⁄ )

𝑇
 from the (𝜕𝜗

𝜕𝑃⁄ )
𝑇
 (Equation (2.20)). A constant 𝛾𝑃 or 𝛾𝑇 value for each 

mode can also be used to calculate the temperature or pressure dependence, 

respectively, of the specific heat CP according to Equation (2.44) for the I–II 

transition in solid benzene. Our calculated CP as a function of temperature at zero 

pressure (Figure 3.32) and as a function of pressure at room temperature (Figure 

3.33), can be compared with the experimental data. This then examines the validity 

of our method toward the determination of the specific heat CP from the Raman 

frequency shifts (𝜕𝜗
𝜕𝑃⁄ )

𝑇
 and (𝜕𝜗

𝜕𝑃⁄ )
𝑇

according to Equation (2.44). 

 

3.3.1.2 Temperature Dependence of the Heat Capacity for Benzene Close to the 

I-II Phase Transition 

 

Heat capacity as a function of temperature for each mode in the phases I-II of solid 

benzene is calculated according to Equation (2.54). Critical exponent for the thermal 

expansion φ which was obtained from Equation (2.24) was assumed to be constant 

value of 0.8 for each mode in solid phases I-II of benzene. In the same way, critical 

exponent for the thermal compressibility ɸ which was obtained from Equation (2.32) 

was assumed to be constant value of -0.3 for the six modes of benzene. Constant 

molar volume of benzene as a function of temperature at zero pressure and as a 

function of pressure at room temperature was obtained by using the experimental 

data [12] and also constant thermal expansion in Equation (2.13) at zero pressure and 

constant isothermal compressibility in Equation (2.15) at room temperature.  Also, 

isobaric mode Grüneisen parameter at p= 0 GPa and isothermal mode Grüneisen 

parameter at T=300K were calculated using Equations (2.9) and (2.10)  with the 

calculated values 𝛿𝜗𝑝(𝑇) (Equation (2.24)) at zero pressure and 𝛿𝜗𝑇(𝑝) (Equation 

(2.32)) at room temperature. Then, from the calculations for six modes in the solid 

phases I-II of benzene, total heat capacity of six modes is calculated according to 

Equation (2.54). Thus, relationship between total heat capacity due to the six modes 

in phases I-II of solid benzene as a function of temperature is given in Figure 3.35.  
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Figure 3. 35 Calculated heat capacity as a function of temperature according to 

Equation (2.54) for the I-II transition (pC=0 GPa, TC=300K) in benzene. 

 

Calculated heat capacity according to Equation (2.54) for six phonon modes in the 

phases I-II of solid benzene at zero pressure and room temperature increases with the 

increasing temperature range up to 220 K in Figure 3.35, as expected and exhibits the 

same behavior in Sections 3.3.1.1 and 3.3.1.2. 

 

3.3.2 Naphthalene 

 

The specific heat Cp was determined as a function of temperature at zero pressure 

according to Equation (2.44) for the six phonon modes of solid naphthalene by using 

the observed data [37]. For this calculation, we used the determined coefficients 

a0, a1 and a2 (Equation (3.1)) and b0, b1 and b2 (Equation (3.2)) at zero pressure as 

given in Tables in Section 3.1.2. To define the pressure and temperature dependence 

of the Raman frequency shifts, coefficients c0, c1 and c2 (Equation (3.3)) and 
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d0, d1 and d2 (Equation (3.4)) at room temperature represented in Table 3.9 in 

Section 3.1.2 were used in this section, too. The isobaric and isothermal mode 

Grüneisen parameters in Equations (2.9) and (2.10) were used as given in Table in 

Section 3.1.2. Finally, specific heat was calculated as a function of temeprature at P= 

0 GPa of the six phonon modes for solid naphthalene according to Equation (2.44)  

and calculated specific heat Cp (Equation (2.44)) was plotted in Figure 3.36 as a 

function of temperature. 

 

Figure 3. 36 Calculated total heat capacity of six lattice modes of solid naphthalene 

(Equation (3.44)) by using the observed data [37] as a function of temperature. 
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Figure 3. 37 Calculated heat capacity due to the total six lattice modes of solid 

naphthalene at p=0 GPa according to Equation (2.45). Observed data [25] is also 

given here for comparison. 

 

Heat capacity due to the contributions of six lattice modes of solid naphthalene was 

calculated according to Equation (2.45) by using the experimental volume data [25] 

through the isobaric (𝛾𝑝) and the isothermal (𝛾𝑇) mode Grüneisen parameter. We 

investigate the heat capacity as a function of temperature in Figure 3.36 with 

increasing values due to the increasing temperature values . Calculations were 

carried out at zero pressure and room temperature conditions.  In Figure 3.37, both 

calculated and observed [25] heat capacity of six phonon modes of solid naphthalene 

are represented for comparison. Heat capacities were normalized with respect to the 

maximum heat capacity value. Calculated data are in good agreement through the 

higher temperature values up to 350 K with the observed data [25]. Discrepancy 

between the calculated and observed [25] data can be attributed to the isobaric 

compression.  
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3.3.3 Anthracene 

 

The specific heat Cp was determined as a function of temperature at zero pressure 

according to Equation (2.44) for the six phonon modes of solid anthracene by using 

the observed data [48,52]. For this calculation, we used the determined coefficients 

a0, a1 and a2 (Equation (3.1)) and b0, b1 and b2 (Equation (3.2)) at zero pressure as 

given in Tables in Section 3.1.3. To define the pressure and temperature dependence 

of the Raman frequency shifts, coefficients c0, c1 and c2 (Equation (3.3)) and 

d0, d1 and d2 (Equation (3.4)) at room temperature represented in Table in Section 

3.1.3 were used for six phonon modes of solid anthracene in this section, too. The 

isobaric and isothermal mode Grüneisen parameters in Equations (2.9) and (2.10) 

were used as given in Table in Section 3.1.3. Finally, specific heat was calculated as 

a function of temeprature at P= 0 GPa of the six phonon modes for solid anthracene 

according to Equation (2.44)  and the calculated specific heat Cp (Equation (2.44)) 

was plotted in Figure 3.38 as a function of temperature for solid anthracene. 

 

Figure 3. 38 Heat capacity determined as a function of temperature (Equation (2.44)) 

at zero pressure (P=0 GPa) using the Raman frequencies of the total six phonon 

modes of solid anthracene. 
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Figure 3. 39 Heat capacity determined as a function of temperature at zero pressure 

(P=0 GPa) using the Raman frequencies of the total nine vibron modes of solid 

anthracene. 
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Figure 3. 40 The determined heat capacity due to the six phonon and nine vibron 

modes of solid naphthalene  (P=0 GPa) according to Equation (2.45). Observed data 

[77] are also given here for comparison. 
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Heat capacity due to the contributions of six phonon and nine vibron modes of solid 

anthracene was calculated according to Equation (2.45) by using the experimental 

volume data [48] through the isobaric (𝛾𝑝) and the isothermal (𝛾𝑇) mode Grüneisen 

parameter. We plot the heat capacity as a function of temperature in Figures 3.38 and 

3.39, which increase as the temperature increases. Calculations were carried out at 

zero pressure and room temperature conditions.  In Figure 3.40, both calculated and 

observed [77] heat capacity of six phonon and nine vibron modes of solid anthracene 

are represented for comparison. Heat capacities were normalized with respect to the 

maximum heat capacity value. Calculated data gets well agreement through the 

higher temperature values up to 300 K with the observed data [77]. Discrepancy 

between the calculated and observed [77] data can be attributed to the isobaric 

compression.  

 

 

3.4 Calculation of the Specific Heat Under Pressure by Using the Raman 

Frequency Shifts for Hydrocarbons 

 

3.4.1 Benzene 

 

Heat capacity of solid benzene under various pressures at room temperature 

(T=300K) is calculated from an integral expression as given below: 

𝐶𝑝(𝑇, 𝑝) = 𝐶𝑝(𝑇, 0) + ∫ (
𝜕𝐶𝑝

𝜕𝑝′
)
𝑇
𝜕𝑝′

𝑝

0
= 𝐶𝑝(𝑇, 0) − 𝑇 ∫ (

𝜕2𝑉

𝜕𝑇2
)
𝑝′

𝜕𝑝′
𝑝

0
        (3.11) 

Heat capacity of all six modes of solid benzene was calculated by using Equation 

(3.11) and a graph of total heat capacity of six modes versus pressure is given in 

Figure 3.41. 
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Figure 3. 41 Total heat capacity due to the six modes of solid benzene which was 

calculated at various pressures at room temperature (T=300K). 

 

The specific heat CP determined as a function of pressure at room temperature (T = 

300 K) decreases as the pressure increases (Figure 3.41). As mensioned above, the 

pressure dependence of the specific heat CP was also calculated (T = 300 K) from the 

frequency shifts (𝜕𝜗
𝜕𝑇⁄ )

𝑃
 and (𝜕𝜗

𝜕𝑃⁄ )
𝑇
 due to the contributions of the six lattice 

modes (A, B, C and X, Y, Z) according to Equation (3.11) for the phases I–II of 

benzene. 
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Phase Transition 
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assumed to be constant value of 0.8 for each mode in solid phases I-II of benzene. In 

the same way, critical exponent for the thermal compressibility ɸ which was obtained 

from Equation (2.32), was assumed to be constant value of -0.3 for the six modes of 

benzene. A constant molar volume of benzene (at zero pressure and at room 

temperature), isobaric mode Grüneisen parameter (p=0GPa) and isothermal mode 

Grüneisen parameter (T=300K) (Equations (2.9) and (2.10)) were used for this 

calculation. Finally, total heat capacity due to six modes in benzene was calculated 

close to the I-II phase transition. The heat capacity as a function of pressure for 

benzene is given in Figure 3.42. 

 

 

Figure 3. 42 Calculated heat capacity as a function of pressure according to Equation 

(2.55) for the I-II transition (pC=1.3GPa, TC=300K) in benzene. 
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critical conditions (pC=1.3GPa, TC=300K). Calculated heat capacity (Equation 

(2.55)) for the six phonon modes in the I-II transition of solid benzene decreases with 

the increasing pressure range up to 3.5 GPa. Up to our knowledge, there is no 

experimental data for the I-II transition in benzene to compare with this calculation 

in the literature. 

 

3.4.1.1  Pressure Dependence of Heat Capacity for Benzene Close to the I-II 

Phase Transition at Room Temperature 

 

Similar to Section 3.1.1.2, total heat capacity for benzene in the solid phases I-II is 

calculated at a constant temperature (T=300K) according to Equation (2.54) with a 

correction in the critical exponent ɸ for the isothermal compressibility which was 

fitted to Equation (2.32). Critical exponent for the isothermal compressibility for 

benzene was renormalized with the renormalized exponent αR according to the Fisher 

renormalized critical behavior [78], 

𝛼 = −
𝛼𝑅

1−𝛼𝑅
                                                            (3.6) 

which gives ɸR=0.23 for the I-II transition in benzene. Figure 3.43 defines the 

behavior of total heat capacity as a function of pressure. 

ɸ𝑅 = −
ɸ

1−ɸ
                                                            (3.7) 
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Figure 3. 43 Calculated total heat capacity due to the six modes of benzene using the 

critical exponent (ɸR=0.23) as a function of pressure according to Equation (2.54) at 

room temperature (T=300K). 

 

Figure 3. 44 Calculated total heat capacity Cp due to the six lattice modes as a 

function of pressure in the solid phases I-II of benzene at room temperature 

according to Equation (2.54). Observed Cp data [4] for benzene are also plotted here 

for comparison. 
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Heat capacity Cp due to the six lattice modes as a function of pressure in the solid 

phases I-II of benzene at room temperature according to Equation (2.54), was 

calculated with the renormalized critical exponents through the Grüneisen parameter. 

Pressure dependence of the calculated total heat capacity close to the I-II transition in 

solid benzene as given in Figure 3.43, showsthe decreasing values with increasing 

pressures ranging up to 0.65 GPa, as observed with the section 3.4.1.1. In Figure 

3.44, calculated and observed data close to the I-II transition in solid benzene are 

given for comparison as normalized with respect to the maximum value. Calculated 

data exhibits the same behavior with the observed data [77]. The discrepancy in 

Figure 3.44 between calculated and observed data [77] for the six phonon modes 

close to the I-II transition in solid benzene,gets sharper through the higher pressure 

ranges. This can be attributed to the lattice rearrangement in crystal close to the I-II 

transition in solid benzene. 

 

 

3.4.2 Naphthalene 

 

Heat capacity of all six modes of solid naphthalene was calculated by using Equation 

(3.11), a graph of total heat capacity of six modes versus pressure is given in Figure 

3.45. 
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Figure 3. 45 Total heat capacity due to the six modes of solid naphthalene which was 

calculated at various pressures at room temperature (T=300K). 

 

The pressure dependence of the specific heat CP was calculated from the temperature 

dependence of the crystal volume due to the contributions of the six lattice modes 

according to Equation (3.11) for solid naphthalene up to 0.2 GPa at room 

temperature. Calculated heat capacity (Equation (3.11)) for the six phonon modes of 

solid naphthalene decreases with the increasing pressure range up to 0.2 GPa. Up to 

our knowledge, there is no experimental data for mentioned modes of solid 

naphthalene to compare with this calculation in the literature. 
 

 

3.4.3 Anthracene 

 

The heat capacity CP due to the six phonon and nine vibron modes of solid 

anthracene was calculated using Equation (3.11). Graphs of the total heat capacity CP 

using the contributions of the six phonon and nine vibron modes as a function of 

pressure are given in Figures 3.46 and 3.47.  
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Figure 3. 46 Total heat capacity due to the six phonon modes of solid anthracene, 

which was found as a function of pressure at room temperature (T=300K). 

 

Figure 3. 47 Total heat capacity due to the six vibron modes of solid anthracene, 

which was found as a function of pressure at room temperature (T=300K). 
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Figure 3. 48 Change in the heat capacity CP due to the six lattice modes of solid 

anthracene as a function of pressure at room temperature (T=300 K). 

 

The pressure dependence of the specific heat CP was calculated from the temperature 

dependence of the crystal volume due to the contributions of the six phonon and nine 

vibron modes according to Equation (3.11) for solid anthracene up to 1 GPa at room 

temperature. Calculated heat capacity (Equation (3.11)) for the six phonon and nine 

vibron modes of solid anthracene decreases with the increasing pressure range up to 

1 GPa as shown in Figures 3.46 and 3.47. Calculated heat capacity agrees well with 

the observed data [79] through the higher pressures. 
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3.5 Calculation of Change in Entropy Under Temperature 

 

3.5.1 Benzene 

 

Change in entropy (∆𝑆 = 𝑆2 − 𝑆1) of the phases I-II of solid benzene due to the 

contributions of the six modes was calculated by using an integration over 

temperature from the minimum to a maximum temperature, according to: 

𝑠(𝑇, 0) = 𝑠(𝑇𝑚𝑖𝑛, 0) + ∫ 𝐶𝑝(𝑇
′, 0)𝑑𝑙𝑛𝑇′𝑇

𝑇𝑚𝑖𝑛
                       (3.12) 

Cp(T,0) is known over the temperature range from Tmin to Tmax using our earlier 

calculation in section 3.3. for six modes of the phases I-II of solid phases. Figure 

3.49 shows the behaviour of change in entropy of total six modes of solid benzene 

under different temperatures. 

 

Figure 3. 49 Change in entropy due to the total six modes of the phases I-II of solid 

benzene (Equation (3.12)) from Tmin to Tmax at various temperatures. 
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Change in entropy due to the total six phonon modes of the phases I-II of solid 

benzene was calculated according to Equation (3.12) through the heat capacity at P= 

0 GPa over a temperature integral up to 160 K. Change in entropy due to the total six 

phonon modes (Equation (3.12)) increases with the increasing temperature range up 

to 160 K, as expected. 

 

3.5.2 Naphthalene 

 

Cp(T,0) is known over the temperature range from Tmin to Tmax using our earlier 

calculation in section 3.3.2. for six modes of naphthalene. Values of ∆𝑆 were 

calculated according toEquation (3.12) and Figure 3.50 shows the behaviour of 

change in entropy of total six modes of solid naphthalene under different 

temperatures.  

 

Figure 3. 50 Change in entropy due to the total six modes of solid naphthalene 

(Equation (3.12)) from Tmin to Tmax  at various temperatures. 
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Figure 3. 51 Change in entropy due to the total six modes of solid naphthalene 

(Equation (3.12)) is given in comparison with the observed data [25]. 

 

Change in entropy due to the total six phonon modes of solid naphthalene was 

calculated according to Equation (3.12) through the heat capacity at P= 0 GPa over a 

temperature integral up to 250 K. Change in entropy due to the total six phonon 

modes (Equation (3.12)) increases with the increasing temperature range up to 250 K 

(Figure 3.50). There is a high agreement between the computed and the observed 

data [25] with the normalization due to maximum value in entropy range as seen in 

Figure 3.51. There is a discrepancy between 80 and 190 K decreasing through the 

higher temperatures up to 220 K.   
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3.5.3 Anthracene 

 

Cp(T,0) was obtained for the temperature range in our earlier calculation in section 

3.3.3 for six phonon and nine vibron modes of anthracene.  Figures 3.52 and 3.53 

show, respectively, the behaviour of the change in entropy contributed by the six 

phonon and nine vibron modes of solid anthracene as a function of temperature. 

 

 

Figure 3. 52 Change in the entropy (∆𝑆) due to the six phonon and nine vibron 

modes of solid anthracene (Equation (3.12))  at various temperatures (P=0). 
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Figure 3. 53 Change in the entropy (∆𝑆) due to the six vibron modes of solid 

anthracene (Equation (3.12))  at various temperatures (P=0). 
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Figure 3. 54 Change in the entropy calculated (Equation (3.12)) due to the total six 

modes of solid anthracene. The observed data [80] are also shown for comparison. 
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Change in the entropy due to the total six phonon and nine vibron modes of solid 

naphthalene was calculated according to Equation (3.12) through the heat capacity at 

P= 0 GPa over a temperature integral up to 200 K. Change in entropy due to the total 

six phonon modes (Equation (3.12)) increases with the increasing temperature range 

up to 200 K (Figures 3.52 and 3.53). In Figure 3.54, both calculated and observed 

data [80] are given in comparison as normalized with respect to the maximum value 

of change in entropy. There is a sharp discrepancy between the calculated and the 

observed data [80] which is decreasing through the high temperatures. 

 

3.6 Derived Thermodynamic Quantities by Quasi Harmonic Free Energy of 

Solid Benzene, Naphthalene and Anthracene as Hydrocarbon 

 

The approximation of ignoring the population driven anharmonic changes 

corresponds to the quasi-harmonic (QH) description of crystals [37]. In this section, 

theory is held for benzene, naphthalene and anthracene comparatively as 

hydrocarbons. Benzene, naphthalene and anthracene are assumed as a system of 

harmonic oscillators and the Helmhotz free energy of this system is given by 

 

𝐹 = 𝑈 + ∑
ℎ𝜗𝑖

2𝑖 + 𝑘𝐵𝑇 ∑ 𝑙𝑛 [1 − 𝑒𝑥𝑝 (−
ℎ𝜗𝑖

𝑘𝐵𝑇
)]𝑖                          (3.13) 

 

where i defines the modes of benzene, naphthalene and anthracene. kB is the 

Boltzmann constant with the value of 1.38x10-23 J/K, h is the Planck constant, 

6.63x1034 Js and U is the total potential energy . Second term denoteszero point 

energy and the last term represents the thermal energy of crystal which depends on 

frequency of crystal. The last two terms define the vibrational contribution. The last 

two terms as vibrational were calculated in sub-sections, as given by 
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𝐹𝑣𝑖𝑏 =
1

2
∑ ℎ𝜗𝑖 + 𝑘𝐵𝑇 ∑ 𝑙𝑛 (1 − 𝑒𝑥𝑝 (−

ℎ𝜗𝑖

𝑘𝐵𝑇
))𝑖𝑖                             (3.14) 

 

3.6.1 Calculation of the Vibrational Free Energy for Benzene 

Frequency as a function of temperature is fitted to experimental data [12] to define 

the constants of 𝑑0, 𝑑1 and 𝑑2 of different six lattice modes of benzene as given in 

Table 3.9 in Section 3.2.1. Using the definition of free energy as a function of 

temperature (Equations (3.13)-(3.14)), free energy of solid benzene was calculated 

for all six lattice modes and their values are close to each other due to the six modes 

in benzene. At the end, total free energy was found at various temperatures for 

benzene. Figure 3.55 represents the behaviour of free energy of solid benzene under 

temperature. 

 

Figure 3. 55 Calculated total free energy of six lattice modes (A,B,C and X,Y,Z) of 

solid benzene under temperature. 
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3.6.2 Entropy Derived from the Vibrational Free Energy for Benzene 

 

As is known from the thermodynamic relations entropy can be derived by using 

derivative of free energy (Equation (3.15)). In this section, first derivative of the 

temperature dependent free energy (Equation (3.16)) gets access to entropy of solid 

benzene. For six lattice modes total entropy of solid benzene was calculated at 

various temperature, as shown in Figure 3.56. 

 

𝑆 = −(
𝜕𝐹

𝜕𝑇
)
𝑉

                                                           (3.15) 

 

𝑆 = −
1

2
ℎ(𝑏 + 2𝑐𝑇)𝑖 +

𝑒
−

ℎ(𝑎+𝑏𝑇+𝐶𝑇2)𝑖
𝑘𝐵𝑇 𝑘𝐵𝑇 (−

ℎ(𝑏+2𝑐𝑇)𝑖

𝑘𝐵𝑇
+

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)
𝑖

𝑘𝐵𝑇2 )

1 − 𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇

 

−𝑘𝐵 ∑ 𝑙𝑛 (1 − 𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇 )𝑖                                                                          (3.16) 

 

Figure 3. 56 Total entropy (Equation (3.16)) due to the six lattice modes (A,B,C and 

X,Y,Z) of solid benzene as a function of temperature. 
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3.6.3 The Heat Capacity at Constant Volume Derived from the Vibrational Free 

Energy for Benzene 

 

It is possible to get heat capacity from the free energy using the thermodynamic 

relations as given in Equation (3.47). Using Equation (3.47) we obtained the heat 

capacity as a function of temperature as a new relation (Equation (3.48)). By using 

Equation (3.18), the heat capacity can be found as a function of temperature under 

various temperatures. Behaviour of the heat capacity of total six modes of solid 

benzene is given in Figure 3.57. 

 

𝐶𝑉 = 𝑇 (
𝜕𝑆

𝜕𝑇
)
𝑉

                                                         (3.47) 

 

𝐶𝑉 = −𝑐ℎ +
𝑒

−
ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇
𝑘𝐵𝑇(−

2𝑐ℎ

𝑘𝐵𝑇
+

2ℎ(𝑏+2𝑐𝑇)𝑖
𝑘𝐵𝑇2 −

2ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇3 )

1 − 𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇

+
2𝑒

−
ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇
𝑘𝐵(−

ℎ(𝑏+2𝑐𝑇)𝑖
𝑘𝐵𝑇

+
ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇2 )

1 − 𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇

 

+
𝑒

−
2ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇
𝑘𝐵𝑇(−

ℎ(𝑏+2𝑐𝑇)𝑖
𝑘𝐵𝑇

+
ℎ(𝑎+𝑏𝑇+𝐶𝑇2)𝑖

𝑘𝐵𝑇2 )

2

(1−𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇 )

2 +
𝑒

−
ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇
𝑘𝐵𝑇(−

ℎ(𝑏+2𝑐𝑇)𝑖
𝑘𝐵𝑇

+
ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖

𝑘𝐵𝑇2 )

2

1−𝑒
−

ℎ(𝑎+𝑏𝑇+𝑐𝑇2)𝑖
𝑘𝐵𝑇

  (3.48) 
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Figure 3. 57 Calculated total heat capacity (Equation (3.48)) of six lattice modes 

(A,B,C and X,Y,Z) of solid benzene as a function of temperature. 

 

3.6.4 Analysis of Free Energy for Naphthalene 

 

Frequency as a function of temperature was fitted to experimental data [37] to define 

the constants of 𝑑0, 𝑑1 and 𝑑2 of diffrent six lattice modes of naphthalene as given in 

Table 3.11 in Section 3.2.2. Once the frequency of crystal was defined as a function 

of temperature, it is possible to calculate vibrational free energy (Equation (3.14)) of 

solid naphthalene at various temperatures. For all six lattice modes of solid 

naphthalene were analysed identically and at the end total vibrational free energy of 

six lattice modes of solid naphthalene was found out. Behaviour of free energy of six 

lattice modes of solid naphthlane as a function of temperature under temperature is 

given in Figure 3.58. 
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Figure 3. 58 Free energy due to the six lattice modes of solid naphthalene at various 

temperatures. 

 

3.6.5 Derived Entropy by Free Energy for Naphthalene 

 

After calculation of entropy according to Equation (3.16) individually, total entropy 

of six lattice modes of solid naphthalene was found. These values of total free energy 

of naphthalene are drawn graphically in Figure 3.59. 
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Figure 3. 59 Derived total entropy (Equation (3.16)) due to the six lattice modes of 

solid naphthalene as a function of temperature. 

 

3.6.6 The Heat Capacity at Constant Volume Derived from the Vibrational Free 

Energy for Naphthalene 

 

Total heat capacity was calculated due to the six lattice modes by using Equation 

(3.48) and its graph for naphthalene is given in Figure 3.60. 
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Figure 3. 60Calculated heat capacity as a function of temperature (Equation (3.48)) 

of solid naphthalene. 

 

3.6.7 Calculation of the Vibrational Free Energy for Anthracene 

 

The vibrational frequency was fitted to experimental data [43] to determine the 

constants of 𝑑0, 𝑑1 and 𝑑2 for six lattice modes of anthracene (P=0) as given in Table 

3.14 in Section 3.2.3. 

Once the vibrational frequency of crystal was obtained as a function of temperature, 

it is possible to find the temperature dependence of the vibrational free energy 

(Equation 3.14) of solid anthracene. The six phonon and nine vibron modes of solid 

anthracene were analyzed identically and the total vibrational free energy due to the 

six phonon and nine vibron modes of solid anthracene was obtained. Behaviour of 

free energy due to the six phonon and nine vibron modes of solid anthracene is given 

as a function of temperature in Figure 3.61.  
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Figure 3. 61 Vibrational free energy due to the six phonon and nine vibron modes of 

solid anthracene as a function of temperature according to Equation (3.14). 

 

3.6.8 Entropy Derived from the Vibrational Free Energy for Anthracene 

 

Total entropy of six lattice modes of solid anthracene was calculated (Equation 

(3.16)). In this section, we derive the entropy due to the six phonon and nine vibron 

modes of solid anthracene using the vibrational free energy. These values of total 

free energy of anthracene are showngraphically in Figure 3.62. 
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Figure 3. 62 The total entropy derived (Equation 3.16) due to the six phonon and 

nine vibron modes of solid anthracene as a function of temperature. 

 

3.6.9 The Heat Capacity at Constant Volume (CV) Derived from the Vibrational 

Free Energy for Anthracene 

 

Total heat capacity was calculated due to the six phonon and nine vibron modes of 

solid anthracene by using Equation (3.48) and a graph of total heat capacity of 

anthracene is given in Figure 3.63. 

 

 

0 50 100 150 200 250 300

4,2

4,4

4,6

4,8

5,0

5,2

S
x
1

0
-2

1
(J

/K
)

T(K)



104 
 

 

Figure 3. 63 The heat capacity CV calculated as a function of temperature (Equation 

3.48) odue to six phonon and nine vibron modes of solid anthracene. 

In this section thermodynamic properties of benzene, naphthalene and anthracene 

as in the same hydrocarbon groups were calculated through the quasi-harmonic 

approximation to the experimental data as a function of temperature and pressure. 

Quasi-harmonic free energy was discussed with the vibrational contribution to 

those hydrocarbons. In this approximation, anharmonic shifts population was 

neglected in the crystals of mentioned hydrocarbons. Vibrational free energy was 

calculated according to Equation (3.14) at zero pressure through the Raman 

frequency shifts as a function of temperature (Equation (3.4), Tables 3.13, 3.16 and 

3.20). Vibrational free energy increases linearly with the increasing temperature or 

solid benzene, naphthalene and anthracene.  

We derived the vibrational entropy (Equation 3.16) and it was calculated for solid 

benzene contributed and solid naphthalene contribution due to the six phonon modes 

and solid anthracene contributited due to the six phonon and nine vibron modes. The 

entropy behaves the same as solid anthracene, naphthalene and benzene. It increases 
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with increasing temperature for both (solid naphthalene and benzene) (Figures 56 

and 59). 

 

 

Figure 3. 64 The total entropy derived (Eq. 23) due to the six phonon and nine vibron 

modes of solid anthracene as a function of temperature. Solid naphthalene and 

benzene are also given in this figure for comparison.  Squares are used for solid 

anthracene due to the six phonon and nine vibron modes, circles are used for solid 

naphthalene due to six lattice modes and triangles are used for solid benzene due to 

the six lattice modes. 

 

As an another thermodynamic quantity, the heat capacity at constant volume (CV) 

was calculated according to Equation (3.48) through the temperature dependency of 

Raman frequency shifts for solid benzene, napfthalene and anthracene by considering 

contributions due to modes studied. The total heat capacity CV of solid anthracene 

exhibits the same bahaviour as a function of temperature in solid naphthalene and 

benzene (Figures 57,60) and also behaviour of the calculated vibrational heat 

capacity (Euation (3.48)) is consistent with the calculated heat capacity.  
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Figure 3. 65 Heat capacity calculated (Equation (3.48)) as a function of temperature 

for solid anthracene, naphthalene and benzene. Squares are used for solid anthracene 

due to the six phonon and nine vibron modes, circles are used for solid naphthalene 

due to six lattice modes and triangles are used for solid benzene due to the six lattice 

modes. 

 

3.7 Application of Vinet Equation of State for Benzene at Constant 

Temperatures 

 

Vinet equation of state is used to define the equation of state of molecular crystals, as 

given below: 

 

𝑃 = 3𝐵0
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where 𝑓𝜗 = (𝑉 𝑉0
⁄ )

1
3⁄

. This equation depends on four quantities evaluated at zero 

pressure, the cell volume at ambient pressure V0, the isothermal bulk modulus B0 and 

C0 which defines the derivative of the isothermal bulk modulus with respect to the 

pressure.  

In this section, we first analyzed the observed data according to Equation (3.49). 

These data have been analyzed [11] previously for benzene at 540 K [11]. The 

observed data [11] has also been analyzed here using Vinet equation of state, as 

plotted in Figure 3.66. 

By using Vinet equation of state with the experimental values of the pressure and 

volume at 540 K [11], the fitted values were obtained for the cell volume at ambient 

pressure V0, the isothermal bulk modulus B0 and C0 which is the derivative of the 

isothermal bulk modulus with respect to the pressure. 

 

Table 3. 18Values of  the cell volume at ambient pressure V0, the isothermal bulk 

modulus B0 and C0 which is the derivative of the isothermal bulk modulus with 

respect to the pressure at 450 K. 

BENZENE 𝑉0 (𝐴03
) 𝐵0 (GPa) 𝐶0 

T= 540 K 246.49±5.40 5.40±1.11 8.62±0.36 
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Figure 3. 66 Calculated equation of state according to Equation (3.49) of crystalline 

benzene at 540 K. Calculated equation of state (Equation (3.49)) şs given with the 

solid line, experimental data [11] are given with the squares. 

 

The fitted values of  the cell volume at ambient pressure V0, the isothermal bulk 

modulus B0 and  C0 (the derivative of the isothermal bulk modulus with respect to 

the pressure) using the observed data [5] at room temperature are given in Table 

3.22. Figure 3.67 gives our fit (Equation (3.49)) to the experimental data [15]. 

 

Table 3. 19Values of  the cell volume at ambient pressure V0, the isothermal bulk 

modulus B0 and C0 (derivative of the isothermal bulk modulus with respect to the 

pressure at room temperature). 

BENZENE 𝑉0 (𝐴03
) 𝐵0 (GPa) 𝐶0 

T= 300 K 66.64±2.70 27.99±11.02 3.53±1.34 

 

 



109 
 

 

Figure 3. 67 Calculated equation of state according to Equation (3.49) of crystalline 

benzene at 300 K. Calculated equation of state (Equation (3.49)) şs given with the 

solid line, experimental data [15] are given with the squares. 

 

The change with pressure of the volume has been fitted by Vinet equation using the 

experimental data [11] at 540 K. This shows that the Vinet equation describes the 

observed [11] equation of state (P-V) for benzene at 540 K. 

Similarly, the change with pressure of the volume has been fitted by Vinet equation 

using the experimental data [15] at room temperature. There is a good match 

between the observed [15] and calculated (Eq. 35) values for benzene at room 

6temperature. 
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3.7 Suggested Phase Diagram in Phase I and Phase I′ in Solid Benzene 

 

A phase diagram is constructed through the Raman frequencies as a function of 

temperature and pressure in solid benzene between phase I and phase I′. Raman 

frequencies as a function of pressure were calculated according to Equation (3.3) at 

various pressures and similarly temperature dependence of the Raman frequencies 

were obtained according to Equation (3.4) for benzene. To define the T-P relations 

between phase I and phase I′ we used a functional form in terms of Raman 

frequencies, temperature and pressure (Equation 3.50). 

𝜗𝑝(𝑇) = ∆𝜗0 + 𝑒0𝜗𝑇(𝑃) + 𝑒1𝑇 + 𝑒2𝑃                                            (3.50) 

∆𝜗0 defines the difference between Raman frequency at zero pressure and room 

temperature. The coefficients 𝑒0, 𝑒1 and 𝑒2in Equation 3.50 are given in Table 3.23 

for six phonon modes of solid benzene. Using Equation 3.50, we calculated the 

temperature values corresponding to the various pressure ranges up to 1.48 GPa to 

describe the phase transition between phase I-I’ as given in Figure 3.68.  

 

Table 3.67 Coefficients  𝑒0,,𝑒1 and 𝑒2as determined according to Equation (3.50) by 

using observed data [12] for six phonon modes of solid benzene. We also give here 

the difference between the calculated Raman frequency at zero pressure and room 

temperature. 

BENZENE 𝑒0 𝑒1 𝑒2 ∆𝜗0 

Mode A -0.28 0.61 -155.33 4.02 

Mode B 0.73 0.25 -97.58 5.94 

Mode C -107.17 106.19 -19667.50 5.87 

Mode X 0.063 0.42 -122.35 15.11 

Mode Y 0.45 0.42 -139.80 13.45 

Mode Z 0.44 0.45 -150.91 15.43 
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Figure 3.68 Suggested phase diagram due to Equation (3.50) for six phonon modes in 

phases I-I′ in solid benzene. 

 

 

Figure 3.69 Calculated temperature as a function of pressure according to Equation 

(3.50) for six phonon modes in phases I-I′ of solid benzene. Observed data [12] is 

also given comparison in here. 
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Temperature range was investigated as a function of pressure according to Equation 

3.50 for six phonon modes (A,B,C and X,Y,Z) close to the phase transition between 

phases I and I′ in solid benzene in Figure 3.68. Temperature values increase with 

increasing pressure contrary to the expected result. This is a special case for the 

transition between phase I and phase I′, which is observed in the study of M. M. 

Thiery et. al. [12] as defined with a change in the structure of phase I upon relaxation 

0 K. Our calculations exhibit the same behaviour with the observed data [12]. There 

is an increasing discrepancy through the higher pressures between the calculated and 

observed data. This can arise from the calculations using experimental data carried 

out through the experimental structure instead of released structure. Phase I′ was 

predicted by a metadynamics method [81] and dft calculations [65] in literature 

which is in agreementwith our calculations. Phase I′ is not well-defined and it is not 

obvious that phase I′ is an established phase or not. So phase I′needs to be supported 

by the experimental studies.  
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CHAPTER 4 

 

 

CONCLUSIONS 

 

The Raman frequency shifts were determined as functions of pressure and 

temperature through the isobaric and isothermal mode Grüneisen parameters at zero 

pressure and room temperature. The observed volume data were used in this 

calculation at various pressures and temperatures (P=0) from the literature. This 

calculation was carried out for hydrocarbons of benzene, naphthalene and 

anthracene. Modes I, II (T= 300 K) and III (T= 450 K) in solid phase II of benzene 

were analyzed through the isothermal mode Grüneisen parameter at various 

pressures up to 16 GPa. The isothermal mode Grüneisen parameter decreases with 

the increasing pressure at constant temperature for phase II of benzene. Both pressure 

and temperature dependences of Raman frequencies were obtained for the six lattice 

modes (A,B,C and X,Y,Z) of solid benzene I using the volume data through the 

mode Grüneisen parameters. The isothermal mode Grüneisen parameter decreases 

with the increasing pressure for the lattice modes of solid benzene I. Six phonon 

modes (Ag and Bg modes) of solid naphthalene were obtained Raman frequency 

shifts as a function of pressure and temperature through the isobaric and isothermal 

mode Grüneisen parameters using the observed volume. The isothermal mode 

Grüneisen parameter has the value of 2.5 to 4 at room temperature whereas isobaric 

mode Grüneisen parameter is about 3 at zero pressure. The Raman frequency shifts 

were calculated through the Grüneisen parameter for six phonon and nine vibron 

modes for solid anthracene. Grüneisen parameter varies from 3 to 4 for phonon 

modes and they vary between 0.03 and 0.2 for vibron modes of solid anthracene. 

Calculated Raman frequencies as  functions of pressure increase with the icreasing 

pressure for benzene, naphthalene and anthracene, as expected. Calculated Raman 

frequencies decrease with increasing temperature for benzene, naphthalene and 

anthracene. Our calculated Raman frequencies with the pressure and temperature are 

in high agreement with the experimental data in general. Uncertainities in these 
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calculations are also given through the pressure and temperature dependence of 

observed Raman frequency shifts and volume data.Our calculating method of the 

Raman frequencies from the volume data, offers the thermal expansion 𝛼𝑝 and the 

isothermal compressibility 𝜅𝑇, which can be estimated from the Raman frequency 

shifts (𝜕𝜗
𝜕𝑇⁄ )

𝑃
 and (𝜕𝜗

𝜕𝑃⁄ )
𝑇

 for the anharmonic hydrocarbon crystals studied 

here for  as naphthalene, benzene and anthracene.  

 

Heat capacity was calculated as a function of pressure and temperature through the 

isothermal and isobaric mode Grüneisen parameters by relating crystal volume to the 

frequencies of benzene, naphthalene and anthracene. Pressure dependence of heat 

capacity for benzene was carried out for six lattice modes (A,B,C and X,Y,Z) (T= 

300 K) of solid benzene I. Calculated heat capacity contributed from the modes of 

solid benzene reduces with increasing pressure. There is a inconsistency between 

calculated and observed data through the higher pressure values. Calculated heat 

capacity can be compared with the experimental data when available in the literature 

for the phonon modes close to the I-II transition (PC=1.3 GPa and TC=300 K) for 

phonon modes of solid benzene. There is a discrepancy between the temperature 

dependence of calculated heat capacity and the observed data at low temperatures 

and at the higher temperatures calculated values almost follow the observed data. For 

the six phonon modes (Ag and Bg) of solid naphthalene, heat capacity was calculated 

as functions of pressure and temperature. Our calculated data for solid naphthalene 

has a discrepancy at lower temperature range as compared with the observed data 

and it decreases at higher temperatures. Heat capacity was calculated for the six 

phonon and nine vibron modes of solid anthracene. Calculated values also give 

discrepancy as compared with the observed data at low pressures and temperatures 

and at the higher pressure and temperature ranges, this discrepancy decreases. 

Calculated heat capacity for benzene, naphthalene and anthracene as a function of 

pressure decreases with the increasing pressure. Calculated heat capacity 

increaseswith the increasing temperature for benzene, naphthalene and anthracene. 

This indicates that heat capacity can be calculated through the Raman frequency 

shifts in relation to the crystal volume. This method of calculating the heat capacity 

can be applied to other hydrocarbons. 
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Change in entropy (∆𝑆 = 𝑆2 − 𝑆1) for benzene, naphthalene and anthracene was 

calculated by using an integration over temperatures from minimum to a maximum 

temperature. Calculated entropy increases as the temperature increases for benzene, 

naphthalene and anthracene. Calculated data are in a high agreement with the 

observed ones for the six phonon modes of solid naphthalene. There is a distinct 

discrepancy between the calculated and the observed data at low temperatures for the 

six phonon and nine vibron modes of solid anthracene and, they get closer at higher 

temperatures. Calculated data can be compared with experimental data when 

avalaible for solid benzene.  

In addition, heat capacity under various pressures at room temperature was 

calculated as an integral over pressures for benzene, naphthalene and anthracene. 

Calculated data agree well with the observed data and we find that the benzene, 

naphthalene and anthracene exhibit the same behaviour decreasing with the 

increasing pressures. This method of calculating entropy can also be applied to some 

other hydrocarbons. 

Thermodynamic properties of benzene, naphthalene and anthracene were calculated 

through the quasi-harmonic approximation using experimental data as a function of 

temperature and pressure. Quasi-harmonic free energy was discussed with the 

vibrational contribution of hydrocarbons studied. Vibrational free energy was 

calculated for benzene, naphthalene and anthracene as a function of temperature and 

we find that the vibrational free energy increases with increasing temperature. 

Entropy was derived through the vibrational energy for benzene, naphthalene and 

anthracene. Entropy derived from the vibrational frequency  exhibits an increasing 

behaviour with respect to the increasing temperature. Similarly, heat capacity was 

obtained by taking the derivative of vibrational frequency over temperatures for 

benzene, naphthalene and anthracene. Heat capacity increases with the increasing 

temperature range. We get similar behaviour in our all calculations for benzene, 

naphthalene and anthracene. When the experimental data are avalaible in the 

literature, our calculations can be compared with the observed data for benzene, 

naphthalene and anthracene. It can then be generalized to all hydrocarbons. 
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The change with pressure of the volume has been fitted by Vinet equation using the 

experimental data at different temperatures. There is a good match between the 

observed and calculated values for benzene at various temperatures. This method can 

be applied to other hydrocarbons to obtain the equation of state of different crystals. 

A phase diagram beween phases I and I′ is suggested for the six phonon modes of 

solid benzene using the pressure and temperature dependence of the Raman 

frequencies by means of the experimental data. For six phonon modes close to the 

phase transition between phase I and phase I′ of solid benzene, we find that the 

temperature increases with pressure. Phase I′ was suggested with a different structure 

(Cmca, Z=4) from phase I in the literature using the X-ray diffraction method as a 

second order phase transition. Our calculations show the same behavior as compared 

to the observed data and some other calculated data from the literature. Phase I′ is not 

well characterized phase and need more detailed study for the transformation 

between the phases I and I′. When more experimental data are avalaible in the 

literature, our calculations can be compared again. This calculations can be carried 

out for the other phase transitions in solid benzene to construct a phase diagram. 

Also, this method could be applied to some other hydrocarbons (naphthalene and 

anthracene). 

The predictions and calculations are carried out in this thesis work is adequate to 

describe the thermodynamical quantities through the Raman frequency shifts for 

solid benzene, naphthalene and anthracene. All calculations can be applied for 

various modes and also for other phases of benzene, naphthalene and anthracene. 

More generally, a similar analysis can be applied to other hydrocarbons. 
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