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ABSTRACT

SPONTANEOUS SYMMETRY BREAKING AND HIGGS MECHANISM

Kahraman, Işınsu

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Ismail Turan

January 2017, 62 pages

The relevance of Higgs mechanism to nature has been verified recently by two ex-

periments, CMS and ATLAS at Large Hadron Collider. Therefore, a detailed under-

standing of the mechanism is important more than ever.The details of Higgs potential,

its stability and mass generation mechanism are going to be explored and the Higgs

particle which is the quantum fluctuation of the field will be discussed within the

sponteneous symmetry breaking notion. The one-loop corrections to the effective po-

tential for various toy models as well as the Standard model are discussed within two

different methods.

Keywords: Spontaneous Symmetry Breaking, Higgs Mechanism, Effective Potential
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ÖZ

KENDİLİĞİNDEN SİMETRİ KIRILMASI VE HIGGS MEKANİZMASI

Kahraman, Işınsu

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Ismail Turan

Ocak 2017 , 62 sayfa

Higgs mekanizmasının doğayla olan ilgisi günümüzde büyük hadron çarpıştırıcısında

yapılan CMS ve ATLAS adlı iki deney tarafından doğrulanmıştır. Bu yüzden, bu

mekanizmayı anlamak herzamankinden daha önemli bir hale gelmiştir. Higgs po-

tansiyelinin ayrıntıları, stabilizasyonu ve kütle kazanımı mekanizması kendiliğinden

kırılma mekanizması çerçevesinde incelendi. Etkin potansiyele bir ilmek mertebe-

sinde katkılar bazı basit modeller ve Standart model için iki ayri metod ile tartışldı.

Anahtar Kelimeler: Kendiliğinden Simetri Kırılması, Higgs Mekanizması, Etkin Po-

tansiyel
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CHAPTER 1

INTRODUCTION

The symmetry principle in physics plays very elegant and profound role to unleash

the secrets of nature at the subatomic scale. Nature seems to obey certain symme-

try principles and in particle physics they turn out to be one of the most powerful

guiding criteria in especially model building business. One of such examples is the

gauge symmetry principle whose presence is right at the core of the so-called Stan-

dard Model (SM) [1–3].

The SM is the best model we have in order to describe the interactions among the

fundamental particles in the subatomic world. Despite its remarkable achievements

to predict vast number of experimental findings, for obvious reasons, the SM has been

considered to be incomplete and must be a low energy manifestation of a fundamental

theory. Therefore, the efforts for unveiling the mystery of the so-called new physics

have been the prime subject of both experimental and theoretical programs.

Large Hadron Collider (LHC) at CERN in Geneva is the leading on-going collabo-

ration to test the SM and to search for new physics signals. The machine has been

operational for about seven years and the discovery of the first spinless fundamental

scalar, the Higgs boson, had been discovered in 2012 [4], which is not considered part
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of new physics but rather completes the SM. After that, nothing has come out as far

as new physics is concerned. While, as is, it is a troublesome for popular new physics

scenarios on the table, the current situation may be considered that the best we have

is still the SM. Thus, better understanding of the SM is really vital.

The mathematical construct of the SM relies on its gauge symmetry formulation.

It is described by the gauge group SU(3)C × SU(2)L × U(1)Y . So, any term in

the Lagrangian density must be invariant under the gauge transformations of these

groups. The pitfall is adding the mass terms for fermions and bosons, which break the

gauge symmetry explicitly [5, 6]. The need for the so-called Higgs mechanism [7, 8]

comes as a remedy to overcome this problem.

The mechanism envisages Higgs doublet interacting with the SM particles in a gauge

invariant manner but once the doublet gets a non-zero vacuum expectation value

(VEV), the fermions and vector bosons acquire mass as the symmetry gets broken

spontaneously. That is, SU(2)L × U(1)Y → U(1)em. For the mechanism to work

certain conditions need to be satisfied. The scalar potential, self interactions of the

Higgs doublet, should be of the form allowing spontaneous symmetry breaking in true

minimum. Various corrections to the scalar potential like one-loop contributions, im-

provements from Renormalization Group Equations (RGE), thermal corrections etc.

would be essential to discuss [9, 10].

On the other hand, there are still loopholes in the mechanism. the Higgs particle

must have a mass whose origin remains not addressed. Why its mass should be at

the electroweak scale is another issue. For the fermion masses, what determines the

hierarchy among the Yukawa couplings is still definitely a valid question even after

2012. Anyhow, the Higgs particle has been found with a mass mh ' 125 GeV and the
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mechanism becomes part of reality.1 Therefore, in-dept exploration of the mechanism

is another mission that seems timely to pursue.

In this study, we first discuss the idea of symmetry in general. They are going to be

classified as global and local symmetries, together with their comparison [11]. Their

link with the gauge symmetry is mentioned. Then, within an abelian gauge theory,

the idea behind breaking the global and local symmetries will be presented separately

with a clear instructive toy model, namely the so-called ϕ4 theory. A brief discussion

of the Goldstone theorem is also included. The Higgs mechanism as a spontaneously

broken local symmetry is just motivated and the above ideas are extended to a non-

abelian framework.

In the next part, as a way to reach the Higgs sector of the Electroweak theory (also

known as the Glashow-Weinberg-Salam (GWS) Model [1–3],We), the realization of

the mechanism has been summarized in abelian and non-abelian cases one at a time

and as an illustration the so-called Georgi-Glashow model is put at the spot, taking us

a step closer to the GWS framework. At the end, the relevant part of GWS model, the

Higgs sector, is expanded to show the mass generation as well as the scalar potential

etc.

In the last part of the study, we concentrate on the scalar potential, V (Φ), of the

GWS model and follow the path to calculate one-loop corrections. There are two

main approach to carry out the computation; one is the method by Coleman and

Weinberg (let us call it Coleman-Weinberg method [12]), and the other one by Lee and

Sciaccaluga (call it Lee-Sciaccaluga method). The former involves the computation

Feynman diagrams involving all number of external legs at one loop, which is rather

1 The Higgs boson is being the second heaviest particle after the top quark in the SM.
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cumbersome. On the other hand, The latter with a mathematical trick allows to get the

result by only computing one-loop tadpole diagrams, which is a lot faster and simpler.

The only price to pay is the find out the modified masses, vertices ans propagators

under the scalar field shift and at the end an additional integration is required, both of

which are, however, straightforward procedures. Therefore, we prefer to concentrate

on the Lee-Sciaccaluga approach.

Again, in order to gain some experience first, some toy models are used. It is well

known that loop corrections in quantum field theory have ill-defined behavior, result-

ing in infinities from the loop momenta integrals. The workaround is the renormal-

ization procedure together with a method of regularization. We have discussed two

independent regularization methods, the cut-off regularization and the dimensional

regularization (see for example [13]). Again the final calculation is done in the di-

mensional regularization since it is more attractive. For the renormalization scheme,

the so-called modified Minimal Subtraction (MS) scheme [14] is used. At the end a

conclusion is included.

4



CHAPTER 2

SYMMETRIES

The discussion of symmetries in particle physics content is a good starting point on

the way to construct the Higgs sector of the Glashow-Weinberg-Salam model. They

can be classified as global and local symmetries.

2.1 Global and Local Symmetries

A global symmetry is defined by a constant parameter throughout space-time. At

every space-time point there is same amount of transformation. The rotational sym-

metry of a stick could be considered an example of global symmetry: the stick is

symmetric under a rotation being the same at every point and time. The fields un-

der this rotation relates are physically distinct; the orientation of a field becomes a

measurable quantity.

On the other hand, the local symmetry is the one described a parameter which is both

space and time dependent. That is at every single point and time we do a different

transformation. Another difference between the global and local symmetries is that

the global one is deterministic while the local one is indeterministic. This is to do
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with the time dependence of the transformation parameter. Local symmetry indeed

relates the physically equivalent states which enforce the local symmetry as a gauge

symmetry. To get unique results from a theory one has to settle one of these physically

equivalent situations, known as the gauge-fixing procedure. Spontaneous symmetry

breaking does indeed break the gauge invariance.

2.2 Spontaneously Broken Symmetries

The problem of breaking the gauge symmetry explicitly by including mass terms

for the SM fermions and vector bosons motivates the idea of spontaneous symmetry

breaking as a favorable mechanism. That is, introducing gauge-invariant interactions

among a new scalar and the SM particles and then through a nonzero VEV of the

scalar field one can induce mass terms. Let us now explore the idea through simple

examples.

2.2.1 Spontaneously Broken Global U(1) Symmetry:

For the discussion of global symmetry breaking, a simple massless φ4 theory with the

U(1) symmetry can be used. For the scalar field φ, one can write

φ = φ1 + iφ2

φ → φ′ = eiαφ (2.1)

where α is the constant of the global symmetry. Then the Lagrangian is

L = ∂µφ(∂
µφ)∗ − V (φ)

V (φ) = (φφ∗)2 = |φ|4 (2.2)
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Then under the global symmetry Eqn. (2.1), the Lagrangian transforms as

L(φ, ∂µφ) → L(eiαφ, ∂µeiαφ) = ∂µ(e
iαφ) (∂µeiαφ)∗︸ ︷︷ ︸

e−iα(∂µφ)∗

−[eiαφ(eiαφ)∗]2

= eiαe−iα(∂µφ)(∂
µφ)∗ − [eiαe−iαφφ∗]2

= L(φ, ∂µφ)

This shows that the massless φ4 theory has a global U(1) symmetry.

A similar discussion can be carried out for the massive φ4 theory with the potential

V (φ) = −1
2
µ2|φ|2 + 1

4
λ|φ|4. I set the derivative of the potential to zero. The extrema

of the potential can be analyzed based on µ2 parameter:

Figure 2.1: The Mexican hat-shaped potential in the (φ1, φ2) plane.

• For the case with µ2 > 0, the minimum is found to be at |φ| = 0, and we have

a paraboloid-shaped potential in the (φ1, φ2) plane. Since in the unbroken case

the ground state is thus at |φ| = 0, perturbations around this ground state are

expressed in small values of the field φ. The situation is however different if

the symmetry is broken in the ground state. There is a unique ground state at

|φ| = 0, sharing the U(1) symmetry of the Lagrangian.

• For the case µ2 < 0, the configuration |φ| = 0 describes now a local maxi-

mum, rather than a minimum. The ground state (minimum) of this system is
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degenerate which means there are multiple states with the same vacuum energy.

The different orientations in the complex plane define different states and each

ground state is asymmetric under the U(1) symmetry of the Lagrangian. That

is, applying the U(1) transformation to any of the vacuum states will rotate it

to a different orientation that describes a different physical state. For this case

we have a so-called Mexican hat-shaped potential, like in Fig. 2.1. The details

will be discussed later.

There is an important point to remind here. Once a global symmetry is broken spon-

taneously, there are massless bosons, known as Goldstone bosons, that appear in the

theory, the situation summarized within the so-called Goldstone theorem.

2.2.1.1 Goldstone Theorem

The Goldstone theorem claims the existence of massless bosons in a theory with

a spontaneously broken global symmetry. In other words, it states that for every

broken continuous global (not gauge) symmetry there must be a massless particle.

The most general proof of the Goldstone theorem is formulated in the domain of

quantum mechanics.

To see why this always happens, let us take a theory with a number of fields ϕi

with the Lagrangian which involves some terms with derivatives of ϕi and a potential

V (ϕi). The derivative terms would be zero if the fields are taken to be constant,

that is, the kinetic part becomes irrelevant and the Lagrangian will only contain the

potential V (ϕi). If the minimization condition at ϕi = ϕi
0 is used,[

∂V (ϕi)

∂ϕi

]
ϕi=ϕi

0

= 0.
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Then, by expanding the potential V (ϕi) about its minimum in Taylor series, one gets

V (ϕ) = V (ϕ0) +

[
∂V (ϕi)

∂ϕi

]
ϕ0

(ϕi − ϕi
0) +

1

2
(ϕ− ϕ0)

i(ϕ− ϕ0)
j

[
∂2V

∂ϕi∂ϕj

]
ϕ0

+ ...

Here since the first derivative of the potential vanishes, the leading term involves

m2
ij =

[
∂2V

∂ϕi∂ϕj

]
ϕ0

which defines a symmetric matrix, being the elements of the mass square matrix of

the fields. The masses of the fields are given by the eigenvalues of this symmetric

matrix. Now it is possible to show that every continous symmetry of V (ϕi) which is

not a symmetry of the ground state ϕ0, will make one of eigenvalues of the mass term

of the fields go to zero.

If V (ϕi) has a continuous symmetry, it means that it will be invariant under the trans-

formation;

ϕi −−→ ϕi + βF i(ϕ)

where β is an infinitesimal parameter and F i is a function of all the fields. This means

that V (ϕi) satisfies;

V (ϕi) = V (ϕi + βF i) ,

βF iV (ϕi + βF i)− V (ϕi)

βF i
= βF i ∂V

∂ϕi
= 0 .

I will take the derivative of this with respect to ϕj ;

∂

∂ϕj

[
F i ∂V

∂ϕi

]
= 0 ,

F i

ϕj

∂V

∂ϕi
+ F i ∂2V

∂ϕj∂ϕi
= 0 ,

and by setting ϕi = ϕi
0, we get[
∂F i

∂ϕj

∂V

∂ϕi

]
ϕ=ϕ0

+ F i(ϕ0)

[
∂2V

∂ϕi∂ϕj

]
ϕ=ϕ0

= 0
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where the first term is zero since at ϕi = ϕi
0 there is a minimum of V. That is;

[
∂V

∂ϕi

]
ϕi=ϕi

0

= 0 .

Then we get;

F i(ϕ0)

[
∂2V

∂ϕi∂ϕj

]
ϕ0

= F i(ϕ0)m
2
ij(ϕ0) = 0 .

At this point, there are two cases to discuss;

(1) If ϕi
0 obey the continuous symmetry of V (ϕ) for all i. That is,

ϕi → ϕi + βF i(ϕ) = ϕ
′i.

Then, it means ϕ′i = ϕi
0 . From here since β 6= 0 , F i(ϕ0) = 0. Therefore, under this

condition it is trivially satisfied.

(2) If otherwise is true, that is, ϕi
0 breaks the symmetry of V (ϕ) for some i, then

F i(ϕ0) 6= 0 to guarantee the spontaneous breaking of the symmetry. Then there

exists at least one term with a non-zero F i(ϕ0). Hence its coefficient m2
ij(ϕ0) should

vanish. In the mass-square matrix, the corresponding row is totally null, giving a

vanishing eigenvalue, which is one of the masses. This is indeed the promise of the

Goldstone theorem in simple terms.

Higgs mechanism will now be presented as the spontaneous breaking of a gauge

symmetry.1

1 The Goldstone bosons that appeared upon the breaking of a global symmetry in the last section will not be
found for spontaneously broken gauge symmetry: the Goldstone theorem breaks down.
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2.3 Spontaneously Broken Local U(1) Symmetry

Again let us take the massless complex φ4 theory (with φ = φ1 + iφ2). Under the

local U(1) transformation

φ → φ′ = eiαφ

where α is now a spacetime varying function, that is, α = α(x). Then the potential

transforms as

V (φ) = (φφ∗)2 → V (φ′) = V (eiα(x)φ)

V (eiα(x)φ) = [eiα(x)φ (eiα(x)φ)∗︸ ︷︷ ︸
e−iαφ∗

]2

= [eiα(x)e−iα(x)φφ∗]2

= (φφ∗)2

= V (φ) (2.3)

The Kinetic term transforms in the following manner

Kinetic Term , KT (φ) : (∂µφ) (∂
µφ)∗

U(1)

−−−−−−→ (∂µφ
′)︸ ︷︷ ︸

∂µeiα(x)φ

(∂µφ′)
∗︸ ︷︷ ︸

∂µe−iα(x)φ∗

(∂µφ
′)(∂µφ′)∗ = (∂µe

iα(x)φ)︸ ︷︷ ︸
i(∂µα)eiα(x)φ+eiα(x)(∂µφ)

(∂µeiα(x)φ)∗

= eiα(x)[i(∂µα(x))φ+ ∂µφ] (e
iα(x)[i(∂µα(x))φ+ ∂µφ])∗︸ ︷︷ ︸

e−iα[−i(∂µα)φ∗+∂µφ∗]

= (∂µφ+ iφ∂µα)(∂
µφ∗ − iφ∗∂µα)

KT (φ′) = KT (φ) + iφ(∂µα)(∂
µφ∗)− iφ∗(∂µα)∂

µφ+ φφ∗∂µα∂
µα

6= KT (φ) (2.4)
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Even though the potential V (φ) is invariant under local U(1) transformation, the same

does not hold for the kinetic energy part so that we have overall the Lagrangian is not

invariant, L(φ, ∂µφ) 6= L(φ′, ∂µφ′).

The common practice to restore the local symmetry is to introduce a new vector field,

known as the gauge field. Let us call the gauge field Aµ(x) such that under the above

transformation is extended as;

Aµ → A′
µ = Aµ +

1

q
∂µα(x) ,

φ → φ′ = eiα(x)φ . (2.5)

Here the parameter q is known as the coupling constant. For later convenience, let us

define the so-called covariant derivative Dµ;

Dµ = ∂µ − iqAµ .

Under the U(1) local symmetry given in (2.5), the derivative of the scalar field trans-

forms

∂µφ
′ = ∂µ(e

iα(x)φ)

= eiα(x)(∂µφ) + ieiα(x)φ(∂µα(x))

6= eiα(x)(∂µφ)

However, once the usual derivative is replaced with the covariant derivative we get

(Dµφ)
′ = ∂µφ

′ − iqA′
µφ

′

= ∂µe
iα(x)φ− iq(Aµ +

1

q
(∂µα(x)))e

iα(x)φ

= eiα(x)∂µφ+ ieiα(x)φ∂µα(x)− iqeiα(x)Aµφ− ieiα(x)φ(∂µα(x))

= eiα(x) (∂µφ− iqAµφ)︸ ︷︷ ︸
Dµφ

= eiα(x)(Dµφ) .
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The above calculation shows that, unlike the ∂µ derivative of φ, the covariant deriva-

tive Dµ of the scalar field φ transforms same as the scalar field itself under the gauge

transformation in (2.5). Thus the kinetic term gives

KT (φ,Aµ) = (Dµφ)(D
µφ)∗ → KT (φ′, A′

µ) = (Dµφ)
′(Dµφ)′∗

= eiα(x)(Dµφ)[e
iα(x)(Dµφ)]

∗

= eiα(x)e−iα(x)(Dµφ)(D
µφ)∗

= (Dµφ)(D
µφ)∗

= KT (φ,Aµ) .

After having discussed the individual parts of the Lagrangian for the scalar field φ,

there is also the kinetic energy of the gauge field Aµ, given as KT (Aµ) ≡ −1
4
FµνF

µν .

Here Fµν = ∂µAν − ∂νAµ is called the field strength tensor. The Lagrangian can be

expressed as L = −1
4
FµνF

µν +Dµφ(D
µφ)∗ − V (φ). The only part that has not been

tested under the gauge transformation is the kinetic term of Aµ. Let us start with the

transformation of the field strength tensor Fµν :

Fµν → F ′
µν = ∂µA

′
ν − ∂νA

′
µ

= ∂µAν +
1

q
∂να(x)− ∂νAµ +

1

q
∂µα(x)

= ∂µAν − ∂νAµ +
1

q
∂µ∂να(x)−

1

q
∂ν∂µα(x)

= Fµν .

Together with this at hand, we now safely say that the Lagrangian of the U(1) gauged

massless scalar theory is gauge invariant. There is also a very important massage to

take at this point. It is simply the fact that none of the free theories is gauge invariant.
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What are these interactions? Let us check the kinetic term of the scalar field

(Dµφ)(D
µφ)∗ = (∂µ − iqAµ)φ[(∂

µ − iqAµ)φ]∗

= (∂µφ− iqAµφ)(∂
µφ∗ + iqAµφ∗)

= (∂µφ)(∂
µφ)∗ + iq [(∂µφ)φ

∗Aµ − (∂µφ
∗)φAµ]︸ ︷︷ ︸

3-point interaction

+ q2AµA
µφφ∗︸ ︷︷ ︸

4-point interaction

Thus, gauge invariance dictates not only interaction but also the form of interactions

among the fields. For the example at hand, we get φ−φ−Aµ as well as φ−φ−Aµ−Aν

types of 3-point and 4-points interactions with a unique vertex factors, respectively.

Note also that we have assumed the gauge field Aµ massless since the mass term,

1
2
m2

AAµA
µ, indeed violates the gauge invariance explicitly. That is;

1

2
m2

AA
′
µA

µ′ =
1

2
m2

A

[
Aµ +

1

q
∂µα(x)

] [
Aµ +

1

q
∂µα(x)

]
=

1

2
m2

A

[
AµA

µ +
1

q
Aµ∂

µα(x) +
1

q
Aµ∂µα(x)

+
1

q2
∂µα(x)∂

µα(x)

]
=

1

2
m2

A(AµA
µ +

2

q
Aµ∂

µα(x) +
1

q2
∂µα(x)∂

µα(x))

6= 1

2
m2

AAµA
µ .

We understand that if one is willing to formulate a theory with massive gauge bosons,

a mechanism is needed not to break the gauge invariance explicitly. It is rather needed

to do this spontaneously. Hence the idea of spontaneous symmetry breaking and the

Higgs mechanism come to the rescue here.

To grasp the idea behind the spontaneous symmetry breaking, let us now take a mas-

sive scalar field φ being symmetric under a discrete symmetry (Z2) φ → −φ, rather

than a continuous symmetry. The scalar potential becomes V (φ) = −1
2
µ2φ2 + β

4
φ4

with the mass of φ, m2 = −µ2. V (φ) is clearly invariant under φ → −φ.
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Now the minima of V (φ) can be found

[
∂V (φ)

∂φ

]
φ=φ0

= −1

2
2φ0µ

2 + 4
β

4
φ3
0 = −φ0µ

2 + βφ3
0 = φ0 (−µ2 + βφ2

0)︸ ︷︷ ︸
=0

= 0

−µ2 + βφ2
0 = 0

φ2
0 =

µ2

β

|φ0| = ± µ√
β
= ±v (2.6)

where v is the vacuum expectation value (VEV) of the field φ. If one expands φ(x)

about its minimum;

φ(x) = v + σ(x),

The Lagrangian in terms of the so-called fluctuation field σ(x) becomes;

L =
1

2
(∂µφ)

2 +
1

2
µ2φ2 − β

4
φ4

=
1

2
(∂µ(v + σ))2 +

1

2
µ2(v + σ)2 − β

4
(v + σ)4

=
1

2
((∂µv) + (∂µσ))

2 +
1

2
µ2(v2 + 2vσ + σ2)

−β

4
(v4 + 4v3σ + 6v2σ2 + 4vσ3 + σ4)

=
1

2
((∂µv)

2 + (∂µσ)
2 + 2(∂µv)(∂µσ)) +

1

2
µ2v2 + µ2vσ +

1

2
µ2σ2

−β

4
(v4 + 4v3σ + 6v2σ2 + 4vσ3 + σ4)

=
1

2
(∂µσ)

2 +
1

2
µ2v2 + µ2vσ +

1

2
µ2σ2 − β

4
(v4 + 4v3σ + 6v2σ2 + 4vσ3 + σ4)

=
1

2
(∂µσ)

2 +
1

2
µ2(v2σ2) + µ2vσ − βv4

4
− 4βv3σ

4︸ ︷︷ ︸
=βv3σ

− 6βv2σ2

4︸ ︷︷ ︸
= 3βv2σ2

2

− 4βvσ3

4︸ ︷︷ ︸
=βvσ3

−βσ4

4

=
1

2
(∂µσ)

2 − βσ4

4
− µ2σ2 −

√
βµσ3 +

µ4

4β
(2.7)

where in the last line the relation from (2.6) is used to eliminate the VEV of φ field.

The last term can be dropped since it is not dynamical.
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As seen from (2.7) that the initial symmetry φ → φ has been observed by the fluctua-

tion field (odd power of σ has been induced). The new Lagrangian is the Lagrangian

of a simple scalar field σ with mass
√
2µ together with additional self interactions like

σ3 and σ4 types. By expanding the Lagrangian around the minimum, the new field σ

does not have Z2 symmetry and indeed there is no external effect to break, thus the

breaking becomes spontaneous. The symmetry of the system as whole remained but

it was ”hidden” by the ground state. The current example has two possible vacua,

|φ0| = ±v but in the general case there are infinitely many possibilities.

Let us finalize this chapter by generalizing our earlier discussion about the gauge

symmetry in abelian case to an nonabelian one.2

To deal with non-abelian transformations in the gauge symmetry invariance is rather

cumbersome. To simplify the discussion an explicit group like SU(2) will be used.

Let us tackle the problem as follows. If Tj is the generator of group SU(2) and obeys

the commutation relation [Tj, Tk] = iεjklTl. If Lj are the n× n matrices representing

SU(2) generators and αj(x)(j = 1, 2...N) are arbitrary functions of spacetime, then

ϕ(x) −→ ϕ′(x) = e−iL·αϕ(x)

= U(α)ϕ(x)

where U(α) = eiL·α

∂µϕ(x) −→ ∂µϕ
′(x) = U(α)∂µϕ(x) + [∂µU(α)]ϕ(x)

Dµϕ(x) −→ D′
µϕ

′(x) = U(α)Dµϕ(x)

where Dµ is the covariant derivative expressed as

Dµϕ(x) = [∂µ + igL ·Wµ(x)]ϕ(x)

2 The discussion of the global symmetry case in the nonabelain group is rather straightforward and we skip it.
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Here W i
µ(x) , i = 1, 2, 3 are the nonabelian vector gauge fields.

D′
µϕ

′(x) = [∂µ + igL ·W ′

µ(x)]ϕ
′(x)

= ∂µϕ
′
(x) + igL ·W ′

µ(x)ϕ
′
(x)

= U(α)∂µϕ(x) + [∂µU(α)]ϕ(x) + igL ·W ′

µ(x) ϕ
′
(x)︸ ︷︷ ︸

U(α)ϕ(x)

= U(α)∂µϕ(x) + [∂µU(α)]ϕ(x) + igL ·W ′

µ(x)U(α)ϕ(x)

D′
µϕ

′(x) = U(α)Dµϕ(x) = U(α)[∂µ + igL ·Wµ(x)]ϕ(x) .

Using the followings

U(α)[∂µ + igLWµ(x)]ϕ(x)∂µ − igW a
µT

aU(α)∂µϕ(x)

= U(α)∂µϕ(x) + U(α)igL ·Wµϕ(x)− [∂µU(α)]ϕ(x) + igL ·W ′

µ(x)U(α)ϕ(x)

[∂µU(α)]ϕ(x) + ig · LW ′

µ(x)U(α)ϕ(x) = U(α)igL ·Wµ(x)ϕ(x)

and by multiplying each term in this equation with i
g

we do the following steps

i

g
[∂µU(α)]ϕ(x) +

i

g
igL ·W ′

µ(x)U(α)ϕ(x) =
i

g
U(α)igL ·Wµ(x)ϕ(x)

i

g
[∂µU(α)]ϕ(x)− L ·W ′

µ(x)U(α)ϕ(x) = −U(α)L ·Wµ(x)ϕ(x)

i

g
[∂µU(α)]ϕ(x) + U(α)L ·Wµ(x)ϕ(x) = L ·W ′

µ(x)U(α)ϕ(x)

LW
′

µ(x)U(α)ϕ(x) =
i

g
[∂µU(α)]ϕ(x) + U(α)L ·Wµ(x)ϕ(x)

L ·W ′

µ(x)U(α) =
i

g
[∂µU(α)] + U(α)L ·Wµ(x)

By multiplying each term in this equation with the inverse matrix U−1(α) one gets

L ·W ′

µ(x) = U(α)[
i

g
U−1(α)(∂µU(α)) + L ·Wµ(x)]U

−1(α)

To see the effect of transformation on the W j
µ more directly, let us take an infinitesimal
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transformation U(α) = 1− iL · α +O(α2);

L ·W ′

µ(x) = (1− iL · α
[
(L ·Wµ(x))(1 + iL · α)︸ ︷︷ ︸

=L·Wµ+i(L·Wµ)L·α−i(L·α)(L·Wµ)

+
i

g
(∂µU(α))︸ ︷︷ ︸

=∂µ(1−iL·α)=−iL·∂µα

]
(1 + iL · α)

L · (W ′

µ −Wµ) = i[L ·Wµ, L · α] + 1

g
L.∂µα

L · δWµ = iαjW
k
µ [Lk, Lj] +

1

g
Lj∂µαj

LkδW
k
µ = cklmαlW

m
µ Lk +

1

g
Lk∂µαk

δW j
µ(x) = cjklαk(x)W

l
µ(x) +

1

g
∂µαj(x)

The kinetic energy of the nonabelian gauge fields is −1
4
Gj

µνG
j,µν where Gj

µν =

∂µW
j
ν − ∂νW

j
µ + gcjklW

k
µW

l
ν is the generalized field strength tensor. cjkl = (cj)kl is

a tensor with [cj, ck] = cjklcl obeying the algebra [cj, ck] = cjklcl. The change in the

field strength tensor is δGj
µν = cjklαkG

l
µν .

The non-abelian gauge fields Wµ are self-coupled through the term Gj
µνG

j,µν which

appears in the Lagrangian. As in the abelian case (the photon case), however, mass

terms for the W j
µ can not be tolerated since Wµ · W µ is not gauge invariant. The

Lagrangian can be summarized as L → L′ = L+ Lint

[
ϕj, (∂µ + igL ·Wµ)ϕ

j
]
.
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CHAPTER 3

THE HIGGS MECHANISM

The spontaneous symmetry breaking has been discussed in the previous chapter for

various cases. In this chapter we concentrate on the mass generation through the

Higgs mechanism. We split the discussion into the abelian and non-abelian cases.

3.1 The Mechanism in Abelian Gauge Theories

To construct the gauge invariant Lagrangian first replace the ordinary four derivative

with the covariant derivative in the kinetic terms and introduce a massless gauge field

Aµ as we did it in the previous chapter.

L =
1

2
|(∂µ + iqAµ)ϕ|2 +

1

2
µ2|ϕ|2 − β

4
|ϕ|4 − 1

4
F µνFµν

where ∂µ+iqAµ = Dµ is the usual covariant derivative. Then expanding the complex

field ϕ around its local minimum, v = µ√
β

, we get

ϕ =
µ√
β
+ σ + iπ .

Here σ is the Charge Conjugation and Partiy (CP) even scalar boson while π is the CP-

odd one which appears to be a Goldstone boson. Plugging this into the Lagrangian,
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gives

L =
1

2

∣∣∣∣(∂µ + iqAµ)(
µ√
β
+ σ + iπ)

∣∣∣∣2 + 1

2
µ2

∣∣∣∣ µ√
β
+ σ + iπ

∣∣∣∣2 − β

4

∣∣∣∣ µ√
β
+ σ + iπ

∣∣∣∣4
+Kinetic Terms .

There is a problem with this Lagrangian. The Goldstone boson π which emerges as a

consequence of Goldstone theorem. In this case, it represents a unphysical particle, so

it should not appear in the final result. It means that it should disappear in a suitable

gauge. Let us examine it here. If we impose the Lagrangian to be invariant under the

gauge transformation ϕ → eiθ(x)ϕ together with the following choice for θ

θ = −tan−1(
ϕ2

ϕ1

)

Then, the complex field ϕ becomes real. That is, ϕ → (cos θ + i sin θ)ϕ and further

it is rewritten

(cos θ + i sin θ)ϕ =
ϕ1 − iϕ2√
ϕ2
1 + ϕ2

2

(ϕ1 + iϕ2)

=
√
ϕ2
1 + ϕ2

2 .

When the complex field ϕ becomes a real field, the imaginary part of ϕ, which is

precisely the Goldstone boson π, vanishes in this particular gauge (known as the

unitary gauge).
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Let us go back to the Lagrangian and expand all the terms including the kinetic parts;

L =
1

2

[
(∂µσ)

2 + (∂µπ)
2
]
− 1

4
F µνFµν −

1

2
(2µ2)σ2 +

1

2

[(qµ)2
β

]
(Aµ)

2

+q

[
(∂µπ)σ − (∂µσ)π +

µ√
β
(∂µπ)

]
Aµ +

q2

2
(σ2 + π2 +

2µ√
β
σ)(Aµ)

2

−β

4
(σ4 + π4)− β

2
(σπ)2 − µ

√
β(σ3 + σπ2)

=
1

2
(∂µσ)

2 − 1

4
F µνFµν −

1

2
(2µ2)σ2 +

1

2

[
(qµ)2

β

]
(Aµ)

2 +
q2

2
σ2(Aµ)

2

+
q2

2

2µ√
β
σ(Aµ)

2 − β

4
σ4 − µ

√
βσ3

=
1

2
(∂µσ)

2 − 1

4
F µνFµν − µ2σ2 +

1

2

[
(qµ)2

β

]
(Aµ)

2 +
q2

2
σ2(Aµ)

2

+
q2

2

2µ√
β
σ(Aµ)

2 − β

4
σ4 − µ

√
βσ3

=
1

2
(∂µσ)

2 − 1

4
F µνFµν −

1

2
(2µ2)σ2 +

1

2

[
(qµ)2

β

]
(Aµ)

2 +
q2

2
σ2(Aµ)

2

+
q2

2
(σ2 +

2µ√
β
σ)(Aµ)

2 − β

4
σ4 − µ

√
βσ3 .

The massive scalar σ is actually the Higgs particle and Aµ is the massive gauge field

with 3 degrees of freedom. Addition to the 2 transverse degrees of freedom, the lon-

gitudinal polarization comes out as the third degree of freedom since the gauge field

Aµ absorbs the Goldstone boson, thus acquiring a mass giving a longitudinal mode

as the third degree of freedom. This is the Abelian example of the Higgs mechanism.

However, what is now commonly referred to as the Higgs mechanism is its general-

ization to non-abelian gauge case and indeed extending it to the gauge group of the

Standard Model would be possible.

3.2 The Mechanism in Non-Abelian Gauge Theories

One now can apply the Higgs mechanism to a non-abelian gauge symmetry [12].

Given a system of scalar field .ϕ, which are invariant under the transformation; ϕi −→
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(1+ iαata)ijϕi It is shown that by imposing local gauge symmetry and by expanding

the field ϕi about the vacuum expectation values, the gauge bosons will gain mass.

If the fields ϕi are taken to be real, then the matrices ta will be pure imaginary and

written as taij = iT a
ij where T a are real and antisymmetric. The covariant derivative

in the real ϕ case becomes

Dµϕ = (∂µ − igAa
µt

a)ϕ = (∂µ + gAa
µT

a)ϕ

The kinetic energy term of the fields;

1

2
(Dµϕi)

2 =
1

2
(∂µϕi)

2 + gAa
µ(∂µϕiT

a
ijϕj) +

1

2
g2Aa

µA
bµ(T aϕ)i(T

bϕ)i

where the last term has the structure of a gauge boson mass;

1

2
m2

abA
a
µA

bµ

If the fields ϕi are expanded about their vacuum expectation values 〈ϕi〉 = 〈ϕi
0〉, the

mass matrix will be m2
ab = g2(T aϕ0)i(T

bϕ0)i. All diagonal elements of this mass

matrix will have the form;

m2
aa = g2(T aϕ0)

2

This means that, all gauge bosons will acquire a positive mass. T a, the generator of

the symmetry group will not influence the vacuum expectation value, thereby leaving

the initial symmetry unbroken. In this case, the generator T a will not contribute to

the mass term and the corresponding gauge boson will remain massless.

3.2.0.1 An Example: The Georgi-Glashow Model

Before discussing the Higgs mechanism in reality, as a illustrative simpler example,

let us discuss the so-called Georgi-Glashow model, proposing a framework which
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explore the Higgs mechanism to create both massive and massless bosons, for the

weak and electromagnetic interactions. In the theory, an SU(2) gauge field coupled

to a scalar field ϕ which transforms as a vector of SU(2). First, we will consider the

case that all three gauge bosons end up being massive and the gauge field transforms

as a spinor. The covariant derivative is;

Dµϕ = (∂µ − igAa
µT

a)ϕ

where T a = σa

2
. In order to find the mass term, we will first compute the kinetic

energy;

1

2
(Dµϕi)

2 =
1

2
(|∂µϕ− igAa

µT
aϕ||∂µϕ− igAbµT bϕ|)

=
1

2
(|∂2

µϕ
2 − ∂µϕigA

bµT bϕ− igAa
µT

aϕ∂µϕ+ i2g2Aa
µA

bµT aT bϕ2|)

=
1

2
(∂µϕ)

2 +
1

2
ig∂µϕ(A

bµT b + Aa
µT

a)ϕ+
1

2
g2Aa

µA
bµT aT bϕ2

=
1

2
(∂µϕ)

2 +
1

2
ig(∂µϕ) (A

bµT b + Aa
µT

a)︸ ︷︷ ︸
=2Aa

µT
a

ϕ+
1

2
g2Aa

µA
bµT aT bϕ2︸ ︷︷ ︸

=the mass term

Vacuum expectation value of ϕ is

〈ϕ〉0 =
1√
2

 0

v

 .

The mass term =
1

2
g2Aa

µA
bµT aT b

(
1√
2
v

)2

=
1

4
g2Aa

µA
bµT aT bv2
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Using [T a, T b] = 1
2
δab and for a = b [T a, T b] = 1

2
,

The mass term =
1

4
g2Aa

µA
aµ1

2
v2

=
1

8
g2v2Aa

µA
aµ

=
1

8
(gv)2Aa

µA
aµ

=
1

2
(
1

2
gv)2Aa

µA
aµ

=
1

2
m2

aaA
a
µA

aµ

Here the mass term, maa becomes maa = ma =
1
2
gv.

The three fields all acquire the same mass. This means that the vacuum expectation

value breaks the symmetry of all generators T a. Now, I will consider the case that a

real-valued field ϕ transforms as a vector of U(2) and only 2 gauge bosons end up

being massive and the third one remains massless. The covariant derivative is;

(Dϕ)a = ∂µϕa + gεabcA
b
µϕc

The kinetic energy term is;

(Dϕ)2a =
1

2
((∂µϕa + gεabcA

b
µϕc)(∂µϕa + gεabcA

b
µϕc))

=
1

2
((∂µϕa)

2 + (∂µϕagεabcA
b
µϕc) + (gεabcA

b
µϕc∂µϕa) + (gεabcA

b
µϕc)

2)

=
1

2
(∂µϕa)

2 +
1

2
2gεabcA

b
µϕc(∂µϕa) +

1

2
(gεabcA

b
µϕc)

2

=
1

2
(∂µϕa)

2 + gεabc(∂µϕa)A
b
µϕc +

1

2
g2(eabcA

b
µϕc)

2︸ ︷︷ ︸
the mass term

The vacuum expectation value of the field ϕa is;

〈ϕa〉 = 〈ϕ0〉a = vδa3

24



The mass term =
1

2
g2(eabcA

b
µV δc3)

2

=
1

2
g2V 2 (eabcA

b
µδc3)

2︸ ︷︷ ︸
=(eab3Ab

µ)
2

=
1

2
(gV )2(eab3A

b
µ)

2

=
1

2
(gV )2[(A1

µ)
2 + (A2

µ)
2] .

This mass term shows that two gauge bosons will acquire the mass;

m1 = m2 = gV

and the other boson remains massless. The allowed vacuum states of the Georgi-

Glashow model lie on the sphere. If the vacuum state ϕ0 points in the z-direction, it

will transform under rotations in x and y direction but it will remain invariant under

rotations about the z-axis. Therefore, ϕ0 will remain invariant under the generator T 3

(unbroken) while breaking the symmetry of T 1 and T 2, meaning that the correspond-

ing gauge fields will remain massless. At the beginning, this model was considered as

a serious candidate for electroweak interactions since it involves two massive bosons

which are W-bosons and a massless one which is a photon. However, now it is known

that the theory, which gives the most experimentally correct description of the weak

interactions, is the Glashow-Weinberg-Salam Model.

3.3 The Scalar Sector of the GSW Model

Glashow, Weinberg and Salam introduced a model describing electroweak interac-

tions, which experiments later proved to be correct up to very high precision. Addi-

tion to the same kind of SU(2) gauge symmetry which have introduced in the Georgi-

Glashow model, U(1) gauge symmetry is also introduced in this model. If the scalar
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field has charge +1
2

under this U(1) symmetry, its complete gauge transformation will

be given by;

ϕ → eiα
aTa

e
iβ
2 ϕ

where T a = αa

2
. Due to gauge invariance requirements the Higgs field needs to be a

doublet under the SU(2) and the vacuum expectation value of the field is;

〈ϕ〉 = 1√
2

 0

v

 .

There will be only one linear combination of generators that does not break the sym-

metry, leading to a massless gauge boson, that is;

α1 = α2 = 0 , α3 = β

The vacuum expectation value remains invariant under this transformation;

〈ϕ〉 −→ 1√
2
eiβT

z

e
iβ
2 〈ϕ〉 =

1√
2
e

iβ
2

 e
iβ
2 0

0 e
−iβ
2


 0

v



=
1√
2

 eiβ 0

0 1


 0

v



=
1

2

 0

v

 .

The covariant derivative is;

Dµϕ = (∂µ − igAa
µT

a − 1

2
ig′Bµ)ϕ
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The kinetic energy term is;

1

2

∣∣Dµϕ
∣∣2 =

1

2
(Dµϕ)

†(Dµϕ)

=
1

2

(
0 v

)
(∂µ + igAa

µT
a +

1

2
ig′Bµ)(∂

µ + igAbµT b +
1

2
ig′Bµ)

 0

v


=

1

2

(
0 v

)[
g2Aa

µA
bµT aT b +

1

2
gg′Aa

µT
aBµ

+
1

2
gg′AbµT bBµ +

1

4
g′2B2

µ + ...
] 0

v


=

v2

8

[
g2(A1

µ)
2 + g2(A2

µ)
2 + g2(A3

µ)
2 − 2gg′A3

µB
µ + g′2B2

µ + ...
]

=
v2

8

[
g2(A1

µ)
2 + g2(A2

µ)
2 + (−gA3

µ + g′Bµ)
2 + ...

]
=

[gv
2

]2
(W±

µ )2 +
1

2

[
v
√

g2 + g′2

2

]2
(Z0

µ)
2 + ...

where W±
µ = 1√

2
(A1

µ ± iA2
µ) and Z0

µ =
gA3

µ−g′Bµ√
g2+g′2

. These are the three vector bosons

which acquire the masses mW = gv
2

and mZ = v
2

√
g2 + g′2. The fourth vector field

which remains massless is

Aµ =
g′A3

µ + gBµ√
g2 + g′2

.

We will identify the three massive gauge bosons as the weak force carriers W± and

Z0, and the massless field Aµ as the photon. Now, we will relate the masses mW

and mZ to the electron charge e and the weak mixing angle θw. To do this, we will

consider the coupling of the vector fields to fermions. Let us start with the covariant

derivative of a fermion belonging to an SU(2) representation with U(1) charge Y

Dµ = ∂µ − igAa
µT

a − ig′
Y

2
Bµ
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We will express this in terms of W±
µ , Zµ and Aµ

Dµ = ∂µ −
ig√
2
(W+

µ T+ +W−
µ T−)− i√

g2 + g′2
Zµ(g

2T 3 − g′2
Y

2
)

− igg′√
g2 + g′2

Aµ(T
3 +

Y

2
) .

Last term shows clearly that Aj
µ couples to the gauge generator (T 3 + Y

2
), which is

the one that remains unbroken, leaving the photon massless. If I identify Aµ as the

electromagnetic field then the coefficient of the last term should be the electron charge

e;

e =
gg

′√
g2 + g′2

.

Now, we will define the weak mixing angle θw;

cos θw =
g√

g2 + g′2
,

sin θw =
g

′√
g2 + g′2

The gauge boson masses become;

mW = mZ cos θw ,

mA = 0 .

The electric charge is e = g sin θW . W± and Z bosons were first observed in CERN in

1983, confirming the GWS model. The GWS model also known as the unified elec-

troweak model, combined with quantum chromodynamics constitutes the Standard

Model of particle physics.

In conclusion, the Higgs mechanism allows the massless gauge field to become mas-

sive. The GWS model, has an application of the Higgs mechanism to an SU(2)XU(1)

gauge theory which allows for the weak force carriers W± and Z to acquire masses,

28



while leaving the photon massless. The Higgs particle associated with the Higgs field

was observed that two CERN experiments which independently arrived at the same

discovery of a new particle, Higgs boson, in June 2012.
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CHAPTER 4

THE EFFECTIVE POTENTIAL

The aim of this chapter is to compute the scalar potential of various theories up to

one-loop order, including massless and massive φ4 theory as well as the GWS model

[1–3]. The minimum of the potential is expected to be stable in order to be a useful

theory to consider. For that matter, the loop corrections turn out to be significant.

It is also known that loop corrections give divergent integrals, resulting infinities.

However, it has been shown that the theories we consider are renormalizable. That is,

one can observed these infinities into the paramaters of the model, which are known

to be finite experimentally. To make the infinities obvious, different regularization

methods are used. In this chapter we follow two different methods; the cut-off regu-

larization method and the dimensional regularization method [13].

There are also two main approaches to compute one-loop corrections. The one by

Coleman and Weinberg (call it the Coleman-Weinberg method) and one by Lee and

Sciaccaluga (call it the Lee-Sciaccaluga method). After a brief mention of the Coleman-

Weinberg method, we will concentrate on the Lee-Sciaccaluga method since it is pre-

sumably a lot simpler and faster to get the result.
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4.1 The Coleman-Weinberg Method

The details are given in the original paper [12] and in [9] as well. In short, suppose

a single real scalar field φ, the generating functional of one particle irreducible (1PI)

diagrams is written such that the so-called effective action for the classical field φc

can be written as

Γ(φc) =
∞∑

m=1

1

m!

∫
Γ(m)(x1, ...xm)d

4x1...d
4xm φc(x1)...φc(xm) (4.1)

where Γ(m)(x1, ...xm) are the sum of all 1PI Feynman diagrams with m number of

external legs. Clearly, since m runs from 1 to ∞, the method has the burden of

calculating diagrams with all possible number of external legs, turning into a sum of

infinite number of terms.

It is further possible to show that

Γ(φc) = −
∫ [

V (φc)−
1

2
Z(∂µφ)

2
]
d4x . (4.2)

Here V (φc) is defined to be the effective scalar potential and Z is the normalization

constant. If we express the effective potential in terms of the effective action we get

V (φc) = −
∞∑

m=1

1

m!
φm
c Γm(pi = 0) (4.3)

where φi is the momenta of the external legs and for the calculation of the effective

potential what we need is to calculate the 1PI Feynman diagrams with pi 6= 0 and

then set them to be zero at the end. The disadvantage of the method is that if one

needs especially loop corrections higher than one-loop, it gets so cumbersome since

it involves all possible diagrams with arbitrary number of external legs.
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4.2 The Lee-Sciaccaluga Method

The idea is to do the following trick [9,10,15]. Instead of expanding the action around

φc = 0, think of doing it around a non-zero arbitrary point shifted φc = ω. Then, if

the shifted potential is called V ′(φc), we get

V ′(φc) = −
∞∑

m=1

1

m!
(φc + ω)mΓm(pi = 0)

= −
∞∑

m=1

1

m!
φm
c Γ

′m(ω)

where Γ
′m(ω) is nothing but the 1PI of the Feynman diagrams for the shifted theory

with zero external momenta. Like in the previous method, the effective potential

V ′(φc) can further be expressed as

V ′(φc) = −
∞∑
k=0

1

k!

(
∞∑

m=0

1

m!
Γ′
m(0)

m!

(m− k)!
wm−k

)
︸ ︷︷ ︸

=Γ′
k(ω)

φk
c

where Γ′
1(w) is 1PI tadpole diagrams of the shifted theory. Then finally one writes

∫ φc

0

dωΓ′
1(w) =

∞∑
m=0

1

m!
Γ′
m(0)m

∫ φc

0

dωωm−1︸ ︷︷ ︸
=ωm

m

=
∞∑

m=0

1

m!
Γ′
m(0)φ

m
c︸ ︷︷ ︸

=−V (φc)

V (φc) = −
∫ φc

0

dωΓ′
1(ω)

As compared to the previous method one needs an additional integral to get V but one

only need 1PI tadpole diagrams, nothing else. In that calculation, the shifted vertex

factors, masses etc should be used.

To summarize the procedure;
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(1) Determine the masses, propagators and the vertex factors of the shifted theory.

(2) Evaluate the tadpole diagrams to find Γ′
1(ω) of the shifted theory.

(3) Integrate Γ′
1(ω) with respect to ω and then set ω = φc to get the minus of

effective potential at one-loop.

4.3 One-loop Effective Potential with Cut-off Regularization

Let us consider the Lagrangian for a single, massless real scalar field [9]

L =
1

2
(∂µφ)

2 − gφn

n!︸︷︷︸
zero-loop potential

. (4.4)

The effective potential through one loop is;

V =
1

n!
gφn

c + i

∫
d4k

(2π)4

∞∑
r=1

1

2r

(
gφn−2

c /(n− 2)!

k2 + iε

)r

. (4.5)

By rotating this to the Euclidean space;

V =
1

n!
gφn

c +
1

2

∫
d4k

(2π)4
ln

(
1 +

gφn−2
c

(n− 2)!k2

)
. (4.6)

For the general polynomial potential in the Lagrangian, U(φ), the one loop potential

is;

V (φc) = U(φc) +
1

2

∫
d4k

(2π)4
ln

(
1 +

U ′′(φc)

k2

)

Since the integral is divergent at large k values, impose cut-off at k2 = Λ2;

Vloop =
1

2

∫
d4k

(2π)4
ln

(
1 +

U ′′(φc)

k2

)
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where d4k = k3dkdω = 2π2k3dk and k3dk = k2kdk = 1
2
k2dk2 so d4k = 2π2 1

2
k2dk2 =

π2k2dk2

Vloop =
π2

(2π)4

∫ Λ

0

k2dk2︸ ︷︷ ︸
=d( k

4

2
)

ln

(
1 +

U ′′(φc)

k2

)

=
1

32π2

∫
d(k4) ln

(
1 +

U ′′(φc)

k2

)
︸ ︷︷ ︸

=dk4 ln
(
1+

U′′(φc)
k2

)
−k4 d

[
ln

(
1 +

U ′′(φc)

k2

)]
︸ ︷︷ ︸

−U′′/k4
1+U′′/k2

dk2

=
1

32π2

[
k4 ln

(
1 +

U ′′(φc)

k2

)]
+

∫
dk2 U ′′

1 + U ′′/k2︸ ︷︷ ︸
=II[

k4 ln
(
1 + U ′′(φc)

k2

) ]Λ2

0
= Λ4 ln

(
1 + U ′′(φc)

k2

)
− 0 since k4 goes to zero faster than

ln
(
1 + U ′′(φc)

k2

)
.

Vloop =
1

32π2

[
Λ4 ln

(
1 +

U ′′(φc)

k2

)
+ II

]

II =

∫
dk2 U ′′

1 + U ′′/k2

= U ′′
∫

dk2 k2

k2 + U ′′

= U ′′
∫

dy
y − U ′′

y

=

U ′′y − (U ′′)2
∫

dy
1

y︸ ︷︷ ︸
=ln |y|


where k2 + U ′′ = y and dk2 = dy Then;

II = [U ′′y − (U ′′)2 ln y]

= [U ′′(k2 + U ′′)− U ′′2 ln(|k2 + U ′′|)]

= Λ2U ′′ + (U ′′)2 − (U ′′)2 (ln(Λ2 + U ′′)− lnU ′′)︸ ︷︷ ︸
=ln

(
Λ2

U′′+1
)
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So;

Vloop =
1

32π2
Λ4 ln

(
1 +

U ′′(φc)

k2

)
+ Λ2U ′′ + (U ′′)2 − (U ′′)2 ln

(
Λ2

U ′′ + 1

)
︸ ︷︷ ︸

= ln

(
Λ2

U ′′

(
1 +

U ′′

Λ2

))
︸ ︷︷ ︸

=ln Λ2

U′′ +ln

(
1+U′′

Λ2

)

=
1

32π2
[Λ4 − (U ′′)2] ln

(
1 +

U ′′

Λ2

)
− (U ′′)2 ln

(
Λ2

U ′′

)
︸ ︷︷ ︸
=− ln

(
U′′
Λ2

)
+Λ2U ′′ + (U ′′)2

Expanding ln(1 + x) around x = 0;

ln(1 + x) = +x− x2

2
+

x3

3
− x4

4
... = +x− x2

2
+ h.o.t

Then;

Vloop =
1

64π2

[Λ
4 − (U ′′)2]︸ ︷︷ ︸

=Λ4
(
1− (U′′)2

Λ4

)
(
U ′′

Λ2
− 1

2

(
U ′′

Λ2

)2
)

︸ ︷︷ ︸
=

2Λ2U′′−(U′′)2
2Λ4

+Λ2U ′′ + U ′′2 + (U ′′)2 ln

(
U ′′

Λ2

)


=
1

64π2

[
2Λ2U ′′ − (U ′′)2

2︸ ︷︷ ︸
=Λ2U ′′− 1

2
(U ′′)2

−1

2

2Λ2(U ′′)3

Λ4︸ ︷︷ ︸
h.o.t

− (U ′′)4

Λ4︸ ︷︷ ︸
h.o.t


+Λ2U ′′ + (U ′′)2 + (U ′′)2 ln

(
U ′′

Λ2

)]

=
1

64π2

[
2Λ2U ′′ +

1

2
(U ′′)2 + (U ′′)2 ln

(
U ′′

Λ2

)]
=

1

32π2
Λ2U ′′ +

1

64π2

[
(U ′′)2 ln

(
U ′′

Λ2

)
+

1

2
(U ′′)2

]

Finally, we find;

Vloop(φc) = U(φc) +
Λ2

32π2
U ′′ +

(U ′′)2

64π2

[
ln(U ′′/Λ2)− 1

2

]
. (4.7)

For example the massive case with φ4 theory (n = 4) from the above result can be
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deduced as

V (φc) = U(φc) +
Λ2

32π2
U ′′ +

(U ′′)2

64π2

[
ln

(
U ′′

Λ2

)
− 1

2

]
︸ ︷︷ ︸

=Vloop

Vloop =
Λ2

32π2
U ′′ +

(U ′′)2

64π2

[
ln

(
U ′′

Λ2

)
− 1

2

]
=

Λ2

32π2
(µ2 + 3λφ2

c) +
(µ2 + 3λφ2

c)
2

64π2

[
ln

(
µ2 + 3λφ2

c

Λ2

)
− 1

2

]

where the potential explicitly are

U(φc) =
1

2
µ2φ2

c +
λ

4
φ4
c

U(φc)
′ = µ2φc + λφ3

c

U(φc)
′′ = µ2 + 3λφ2

c

For the massive φ4 theory, the Lagrangian of a self-interacting scalar theory is

L =
1

2
(∂µφ)

2 − 1

2
µ2φ2 − λφ4

4

V (φ) =
1

2
µ2φ2 +

λφ4

4

The renormalization procedure is that one has to absorb the divergent part into the

parameters of the model, µ2, λ and φ itself. The renormalization conditions are;

µ2
R = −Γ2(pi = 0) =

[
d2V

dφ2
c

]
φc=0

λR =

[
d4V

dφ4
c

]
φc=0

,[
∂Γ(2)

∂p2

]
p2=m2

= 1

where µ2
R is renormalized mass-squared and λR is the renormalization coupling.
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4.4 The φ4 Theory in the Lee-Sciaccaluga Method with Cut-Off

To find the effective potential, firstly we need to evaluate the tadpole diagram. The

potential is;

V0(φc) =
1

2
µ2φ2

c +
1

4
λφ4

c

We will take its derivative with respect to φc

∂V0

φc

= µ2φc + λφ3
c

= (µ2 + λφ2
c)φc

= 0

To satisfy this; µ2 + λφ2
c = 0 From this;

φc = 0

or

φ2
c = −µ2

λ

The shifted potential is;

V0(φc − w) =
1

2
µ2(φc − w)2 +

1

4
λ(φc − w)4

=
1

2
µ2(φ2

c + w2 − 2wφc)

+
1

4
λ(φ4

c + w4 + 2w2φ2
c + 4w2φ2

c − 4wφ3
c − 4w3φc)

=
1

2
µ2φ2

c +
1

4
λφ4

c︸ ︷︷ ︸
=V0(φc)

−µ2wφc +
1

2
µ2w2 +

1

4
λw4︸ ︷︷ ︸

=constant

+
1

4
λ6w2φ2

c − λwφ3
c − λw3φc

=
1

2
(µ2 + 3λw2)φ2

c − (µ2 + λw2)︸ ︷︷ ︸
=0

wφc − λwφ3
c +

1

4
λφ4

c

=
1

2
(µ2 + 3λw2)φ2

c − λwφ3
c +

1

4
λφ4

c
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The original mass squared term µ2 will be replaced by (µ2 + 3λw2). Here we have

3-point term (−λwφ3
c) and the vertex is (−3!iλw). Firstly, we will write the one-loop

tadpole diagram;

1

2

∫
d4k

(2π)4
i

k2 −m2
(−3!iλw) =

1

2

∫
d4k

(2π)4
i

k2 − µ2 − 3λw2
(−3!iλw)

=
1

2

∫
id4kE
(2π)4

i

−(k2
E + µ2 + 3λw2)

(−3!iλw)

= − i

2

∫
d4k

(2π)4
3!λw

(k2 + µ2 + 3λw2)

Secondly, we will multiply the tadpole diagram with i;

i

(
− i

2

∫
d4k

(2π)4
3!λw

k2 + µ2 + 3λw2

)
=

1

2

∫
d4k

(2π)4
3!λw

k2 + µ2 + 3λw2

Next, we will integrate this with respect to w;∫ (
1

2

∫
d4k

(2π)4
3!λw

k2 + µ2 + 3λw2

)
dw =

1

2

∫
d4k

(2π)4

(∫
6λwdw

k2 + µ2 + 3λw2

)
︸ ︷︷ ︸

=ln(k2+µ2+3λw2)

Finally, we will set this to w = φc;

1

2

∫
d4k

(2π)4
ln(k2 + µ2 + 3λw2) =

1

2

∫
d4k

(2π)4
ln(k2 + µ2 + 3λφ2

c)

If one allows massless vector bosons introduced to the theory: we will first find the

kinetic term. From the kinetic term, we will find the mass-squared and the vertex

point;

L =
1

2
(Dµφc)(D

µφc)− V (φ)

Dµ = ∂µ + ieAµ

K.E =
1

2
(Dµφc)(D

µφc)

=
1

2
(∂µφc + ieAµφc)(∂

µφc + ieAµφc)

=
1

2
∂µ∂

µφcφc +
1

2
∂µφcieA

µφc +
1

2
ieAµφc∂

µφc +
1

2
ieAµφcieA

µφc

=
1

2
∂µ∂

µφcφc +
1

2
∂µieA

µφcφc +
1

2
ieAµ∂

µφcφc −
1

2
e2AµA

µφcφc
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φ′
c = φc − w

K.E =
1

2
∂µ∂

µφcφc +
1

2
∂µieA

µφcφc +
1

2
ieAµ∂

µφcφc −
1

2
e2AµA

µ (φ′
c + w)(φ′

c + w)︸ ︷︷ ︸
(φ′2

c +w2+2wφ′
c)

=
1

2
∂µ∂

µφcφc +
1

2
∂µieA

µφcφc

+
1

2
ieAµ∂

µφcφc −
1

2
e2AµA

µφ′2
c − 1

2
e2AµA

µw2 − 1

2
e2AµA

µ2wφ′
c

=
1

2
∂µ∂

µφcφc +
1

2
∂µieA

µφcφc +
1

2
ieAµ∂

µφcφc

− 1

2
e2AµA

µφ′2
c︸ ︷︷ ︸

scalar-vector interaction term

− 1

2
e2w2AµA

µ︸ ︷︷ ︸
m2

A

− e2wAµA
µφ′

c︸ ︷︷ ︸
scalar-vector-vector vertex

After the shift φ′
c = φc − w, the scalar-vector interaction term 1

2
e2φ′2

c A
µAµ acquire a

scalar-vector-vector vertex −ie2wgµν and the photon acquires a mass-squared given

by e2w2. Now, we will write the tadpole diagram by using this mass-squared and this

vertex point which I found above;

dVvect

dw
= i

∫
d4k

(2π)4
(−ie2wgµν)

−i

k2 −m2

(
gµν − kµkν

k2

)
= i4︸︷︷︸

=1

(−1)

∫
d4kE
(2π)4

e2w

k2
E + e2w2

(
gµνg

µν − gµνk
µkν

−k2
E

)
︸ ︷︷ ︸

−2−1=−3

=

∫
d4k

(2π)4
3e2w

(k2 + e2w2)

where k2 = k2
0−k′2 = −(kE)

2 d4k = id4kE and kµkν = −k2
E Next, we will integrate

it with respect to w;∫ (∫
d4k

(2π)4
3e2w

(k2 + e2w2)

)
dw =

∫
d4k

(2π)4
3

(∫
e2wdw

(k2 + e2w2)

)
︸ ︷︷ ︸

= 1
2
ln(k2+e2w2)

=
3

2

∫
d4k

(2π)4
ln(k2 + e2w2)

Finally, we will set it to w = φc;

Vvect =
3

2

∫
d4k

(2π)4
ln(k2 + e2φ2

c)
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The equation;

V =
1

2
µ2φ2

c +
1

4
λφ4

c +
(µ2 + 3λφ2

c)
2

64π2
ln(µ2 + 3λφ2

c) + aφ2
c + bφ4

c

The solution of this equation;

V =
1

4
λRφ

4
c +

9λ2
R

64π2
φ4
c

[
ln

(
φ2
c

M2

)
− 25

6

]
By using this solution, we will find the effective potential of the vector boson.

3λR = e2

λR =
e2

3

The equation becomes;

0 + 3
9

64π2

(
e2

3

)2

φ4
c

[
ln

(
φ2
c

M2

)
− 25

6

]
= 3

9

64π2

e4

9
φ4
c

[
ln

(
φ2
c

M2

)
− 25

6

]
=

3e4

64π2
φ4
c

[
ln

(
φ2
c

M2

)
− 25

6

]
=

3e4

64π2
φ4
c ln

(
φ2
c

M2

)
This is the equation of effective potential of the vector boson.

Additionally, if we allow fermions to couple: From the Yukawa Lagrangian, we will

find the tadpole diagram contribution. We will find the tadpole diagram. The Yukawa

Lagrangian is;

Lyuk = −gyukφ
′
cϕ

′ϕ+ gyukwϕ
′ϕ

Then, the tadpole diagram is;

i

∫
d4k

(2π)4
(−igyuk)

iT r[(k +mf )]

k2 − (gyukw)2
(−1) = i

∫
(id4kE)

(2π)4
(−igyuk)

i4gyukw

−(k2
E + g2yukw

2)
(−1)

= −i

∫
id4k

(2π)4
(−igyuk)

4igyukw

−(k2 + g2yukw
2)

= −
∫

d4k

(2π)4
4g2yukw

(k2 + g2yukw
2)
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dVfermion

dw
= −

∫
d4k

(2π)4
4g2yukw

(k2 + g2yukw
2)

We will take the integral with respect to w to find the effective potential of the fermion

loop contribution;

Vfermion = −
∫

d4k

(2π)4
2

∫
2g2yukwdw

(k2 + g2yukw
2)︸ ︷︷ ︸

=ln(k2+g2yukw
2)

= −2

∫
d4k

(2π)4
ln(k2 + g2yukw

2)

Now we will use the following equation to find the solution of this equation;

V =
(U ′′)2

64π2
ln

(
φ2
c

M2

)

U ′′ = g2yukw
2 = g2yukφ

2
c

Then the effective potential of the fermion loop is;

Vfermion = (−4)

(
(g2yukφ

2
c)

2

64π2

)
ln

(
φ2
c

M2

)
= − 1

16
g4yukφ

4
c ln

(
φ2
c

M2

)

Additionally depending on the gauge used, there will be Goldstone contributions.

V0 =
1

2
µ2φ2

c +
1

4
λφ4

c

=
1

2
µ2φcφ

∗
c +

1

4
λ(φcφ

∗
c)

2

φcφ
∗
c = (φc − w + iG)(φc − w − iG)

= (φc − w)2 +G2 − i(φc − w)G+ i(φc − w)G

(φcφ
∗
c)

2 = [(φc − w)2 +G2]2

= (φc − w)4 +G4 + 2G2(φc − w)2

42



V0(φc → φc − w) =
1

2
µ2[(φc − w)2 +G2]2 +

1

4
λ(φc − w)4 +

1

4
λG4 +

1

2
λG2(φc − w)2

=
1

2
µ2(φc − w)2 +

1

4
λ(φc − w)4

+
1

2
µ2G2 +

1

4
λG4 +

1

2
λG2(φ2

c − 2wφc + w2)︸ ︷︷ ︸
VGoldstone

VGoldstone =
1

2
µ2G2 +

1

4
λG4 +

1

2
λG2(φ2

c − 2wφc + w2)

=
1

2
(µ2 + λw2)G2 +

1

4
λG4 +

1

2
λG2φ2

c − λwG2φc

m2
G = µ2 + λw2

Vertex Factor = −3i(−λw) = 3iλw

”3” factor comes for counting permutations.

dVGoldstone

dw
= i

∫
id4kE
(2π)4

(3iλw)
−i

−k2
E −m2

G

kE = k

VGoldstone = 3

∫
d4k

(2π)4

∫
dw

(
λw

k2 + µ2 + λw2

)
=

3

2

∫
d4k

(2π)4
ln(k2 + µ2 + λw2)

We know that;

V (φc) = U(φc) +
A2

32π2
U ′′ +

(U ′′)2

64π2

[
ln

(
U ′′

A2

)
− 1

2

]
The result is;

V =
1

4
λRφ

4
c +

9λ2
R

64π2
φ4
c

[
ln

(
φ2
c

M2

)
− 25

6

]
We can use this to find the solution of equation.

U ′′ = 3λw2 = 3λφ2
c
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Finally;

VGoldstone = 3
(λφ2

c)
2

64π2
ln

(
φ2
c

M2

)

To sum up;

V = V0 + VScalar + VBoson + VFermion + VGoldstone

V0 =
1

2
µ2φ2

c +
1

4
λφ4

c

VScalar =

VBoson =
3e4

64π2
φ4
c ln

(
φ2
c

M2

)

VFermion = − 1

16
g4yukφ

4
c ln

(
φ2
c

M2

)

VGoldstone = 3
(λφ2

c)
2

64π2
ln

(
φ2
c

M2

)

So adding them all up, the final result is;

V =
1

2
µ2φ2

c +
1

4
λφ4

c +
3e4

64π2
φ4
c ln

(
φ2
c

M2

)
− 1

16
g4yukφ

4
c ln

(
φ2
c

M2

)
+ 3

(λφ2
c)

2

64π2
ln

(
φ2
c

M2

)
.

4.5 The φ4 Theory in the Lee-Sciaccaluga Method with Dimensional Regular-

ization

Again doing similar steps first:

V (φ) =
1

2
m2φ2 +

1

4
λφ4
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V ′(φ) = V (φ+ w)

=
1

2
m2(φ+ w)2 +

1

4
λ(φ+ w)4

= (m2w + λw3)φ︸ ︷︷ ︸
tree level tadpole interaction

+
1

2
(m2 + 3λw2)φ2︸ ︷︷ ︸

mass term

+ λwφ3︸ ︷︷ ︸
cubic term

+
1

4
λφ4︸ ︷︷ ︸

quartic term

where Γ′
1,tree(w, 0) = −(m2w + λw3)

Vtree(φc) = −
∫ φc

0

dwΓ′
1,tree(w, 0)

= m2w
2

2
+ λ

w4

4

At φc = w this equation becomes;

Vertex Factor = −3λw

Vtree(φc) =
1

2
m2φ2 +

1

4
λφ4

Propagator =
i

k2 −m2

=
i

k2 −m2 − 3λw2

where m2 → m2 + 3λw2

Γ1,loop(w, 0) = −3iλw

∫
ddk

(2π)d
1

k2 −m2 − 3λw2

−3iλw

∫
ddk

(2π)d
1

k2 − (m2 + 3λw2)︸ ︷︷ ︸
=m′2(w)

=

∫
ddk

(2π)d
1

k2 −m′(w)2

Identity; ∫
ddk

(2π)d
1

(l2 − δ)n
=

(−1)ni

(4π)d/2
Γ(n− d/2)

Γ(n)

(
1

δ

)n−d/2

In our case n = 1 and δ = m′2(w) Thus;∫
ddk

(2π)d
1

k2 −m′(w)2
=

−i

(4π)d/2
Γ(1− d/2)

Γ(1)

(
1

m′2(w)

)1−d/2
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where d = 4− 2ε so;

−i

(4π)d/2
Γ(1− d/2)

Γ(1)

(
1

m′2(w)

)1−d/2

=
−i

(4π)2−/epsilon
Γ(ε− 1)

(
1

m′2(w)

)ε−1

Γ(n) = (n− 1)Γ(n− 1)

Γ(ε) = (ε− 1)Γ(ε− 1)

Γ(ε− 1) =
1

ε− 1
Γ(ε)

Expanding Γ(ε) around ε = 0;

Γ(ε) =
1

ε
− γ +O(ε)

Γ(ε− 1) = −(1 + ε+O(ε2))

(
1

ε
− γ +O(ε)

)
= −1

ε
+ γ − 1 +O(ε)

= −1

ε
− 1 + γ +O(ε)

aε = eε ln a

= 1 + ε ln a+O(ε2)

(
1

m′2

)ε−1

= (m′2)1−ε

= m′2(m′2)−ε

= m′2e−ε ln(m′2)

= m′2(1− ε ln(m′2) +O(ε))

Γ(ε− 1)

(
1

m′2

)ε−1

=

(
−1

ε
− 1 + γ +O(ε)

)
(m′2(1− ε ln(m′2)) + ...)

= m′2
[
−1

ε
+ ln(m′2) + (γ − 1)− ε(γ − 1) ln(m′2) + ...

]
= m′2

[
−1

ε
− 1 + γ + ln(m′2) +O(ε)

]
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∫
ddk

(2π)d
1

k2 −m′(w)2
= − i

(4π)2
(1 + ε ln(4π))(−m′2)

(1
ε
+ 1− γ

− ln(m′2) +O(ε)
)

=
im′2

(4π)2

[
1

ε
+ 1− γ − ln(m′2) + ln(4π) +O(ε)

]

Γ′
1,loop = −3λwi

im′2

(4π)2︸ ︷︷ ︸
3λwm′2
(4π)2

1
ε
+ 1− γ︸︷︷︸

ln(e−γ)

− ln

(
m′2

4π

)
+O(ε)



=
3λw(m2 + 3λw2)

(4π)2

[
1

ε
− ln

(
m′2

4πe−γ

)
+ 1 +O(ε)

]
As we did before λ → λµ−2ε;

µ−2ε = (µ2)−ε

= e−ε ln(µ2)

= 1− ε ln(µ2)

Γ′
1,loop =

3λw(m2 + 3λw2)

(4π)2
µ−2ε︸︷︷︸

1−ε ln(µ2)

[
1

ε
− ln

(
m′2

4πe−γ

)
+ 1 +O(ε)

]

=
3λw(m2 + 3λw2)

(4π)2
1

ε
− ln

(
m′2

4πeγ

)
+ 1 +O(ε)− ln(µ2) +O(ε)

We got;

Γ′
1,loop =

3λw(m2 + 3λw2)

(4π)2

[
1

ε
− ln

(
m2 + 3λw2

4πe−γµ2

)
+ 1

]
Then one-loop potential is;

V1(φc) = −
∫ φc

0

dwΓ′
1,loop(w, 0)

= − 3λ

(4π)2

∫ φc

0

dw

[
w(m2 + 3λw2)

[
1

ε
− ln

(
m2 + 3λw2

4πe−γµ2

)
+ 1

]]
Define µ′2 = 4πε−γµ2;

Vtot = Vcl + V1 + δV ms
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Define m2 → m2 + δm2 and λ → λ+ δλ;

Vcl =
1

2
m2φ2

c +
1

4
λφ4

c

V1 = V finite
1 + V div

1

Vtot = Vcl + V finite
1 + V div

1 + δV ms︸ ︷︷ ︸
= 1

2
δm2φ2

c+
1
4
δλφ4

c

Vtot = Vcl + V ms
1

V ms
1 = V finite

1 + V div
1 +

1

2
δm2φ2

c +
1

4
δλφ4

c

V div
1 = − 3λ

(4π)2

∫ φc

0

dw
w(m2 + 3λw2)

ε

= − 3λ

(4π)2

∫ φc

0

wdw
m2

ε︸ ︷︷ ︸
=

φ2c
2

m2

ε

− 3λ

(4π)2
3λ

∫ φc

0

w3dw

ε︸ ︷︷ ︸
= 1

4
φ4
c
1
ε

+
1

2
φ2
cδm

2 +
1

4
φ4
cδλ

=
1

2

[
δm2 − 3

2

λ

(4π)2
m2

ε

]
︸ ︷︷ ︸

=0

+
1

4
φ4
c

[
δλ− 9λ2

(4π)2
1

ε

]
︸ ︷︷ ︸

=0

= 0

δm2 = 3λ
m2

(4π)2
1

ε

δλ = 9λ2 1

(4π)2
1

ε

V ms
1 = V fin

1

= +
3λ

(4π)2

∫ φc

0

dw

[
w(m2 + 3λw2) ln

(
m2 + 3λw2

µ′2

)
− 1

]
By taking this integral by Mathematica;

V ms
1 =

1

64π2
(m2 + 3λφ2

c)
2

[
ln

(
m2 + 3λφ2

c

µ2

)
− 3

2

]
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4.6 One-loop Effective Potential of the GWS Model

Higgs Doublet;

ϕ =

 G±

1√
2
(H + iG0)



=
1√
2

 ϕ1 + iϕ2

ϕ3 + iϕ4


Classical Potential;

V0 = m2ϕ†ϕ+ λ(ϕ†ϕ)2

= m2 1

2
+

(
φ1 − iφ2 φ3 − iφ4

) ϕ1 + iϕ2

ϕ3 + iϕ4


︸ ︷︷ ︸

=A

λA2

=
1

2
m2φiφi +

1

4
λ(φiφi)

2

V ′
0 = V0(φj → φj + wj)

=
1

2
m2 (φi + wi)(φi + wi)︸ ︷︷ ︸

φ2
i+w2

i+2wiφi

+
1

4
λ (φi + wi)

2︸ ︷︷ ︸
φ2
i+w2

i+2wiφi

(φj + wj)
2︸ ︷︷ ︸

φ2
j+w2

j+2wjφj

=
1

2
m2w2

i +m2wiφi +
1

4
λ(w2

i 2wjφj + w2
j2wiφi) +

1

2
m2φ2

i

+
1

4
λ(w2

jφ
2
i + w2

i φ
2
j + 4wiwjφiφj) +

1

4
λ(2wjφjφ

2
i + 2wiφiφ

2
j)

= m2wiφi + λw2
iwjφj︸ ︷︷ ︸

=φjwj(m2+λw2)

+
1

2
λ(w2

i φ
2
j + 2wiwjφiφj)︸ ︷︷ ︸

= 1
2
[(m2+λw2)δij+2λwiwj ]φiφj

+λwiφiφ
2
j +

1

4
λ(φiφi)

2

= φjwj(m
2 + λw2) +

1

2
[(m2 + λw2)δij + 2λwiwj]φiφj + λwiφiφ

2
j +

1

4
λ(φiφi)

2

where w2 = w2
1 + w2

2 + w2
3 + w2

4

Let us list different Contributions in the GWS model at One-loop as
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V1 = Vs + Vv + Vf

At the end since 〈φ3〉 6= 0 only, set w1 = w2 = w4 = 0 and w3 6= 0

Masses;

m(φi) = m2 + λw2
3 for i = 1, 2, 4

m(φi) = m2 + 3λw2
3 for i = 3

Vertices;

Vs = Vs(φ = φ3)︸ ︷︷ ︸
=V ms

1 (φ=φc)

+3 Vs(φ = φ1,2,4)︸ ︷︷ ︸
=V ms

1 (φ=φc,λ→λ
3
)

V ms
s =

1

64π2
(m2 + 3λφ2

c)
2

[
ln

(
m2 + 3λφ2

c

µ2

)
− 3

2

]
+

3

64π2
(m2 + λφ2

c)
2

[
ln

(
m2 + λφ2

c

µ2

)
− 3

2

]

Now the vector boson part;

Vertices come from the kinetic term (Dµϕ)†(Dµϕ) where Dµϕ = (∂µ − igWµ.
T
2
−

ig′ Y
2
Bµ)ϕ

Since the result is gauge-invariant, let us consider unitary gauge for simplicity;

ϕ =
1√
2

 ϕ1 + iϕ2

ϕ3 + iϕ4

→ 1√
2
eiT.θ(x)

 0

ϕ3


With θ(x) = 0, we have

ϕ =
1√
2

 0

ϕ3


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in the unitary gauge.

ϕ(φi → φi + w3)︸ ︷︷ ︸
=ϕ′

=
1√
2

 0

ϕ3 + w3


where Y (ϕ) = 0

Dµϕ
′ =

1√
2


 0

∂µϕ3

− i
1

2

 gW 3
µ + g′Bµ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −gW 3
µ + g′Bµ


 0

ϕ3 + w3




=
1√
2

 0

∂µϕ3

− i

2
√
2

 (φ3 + w3)(W
1
µ − iW 2

µ)

(φ3 + w3)(−gW 3
µ + g′Bµ)


(Dµϕ

′)† =
1√
2

(
0 ∂µφ3

)
+

i

2
√
2
(φ3 + w3)

(
W 1

µ + iW 2
µ −gW 3

µ + g′Bµ

)

Instead of using Dµ in this form, lets express it first in terms of mass eigenstates of

the gauge bosons.

Dµ = ∂µ − igWµ.
T
2
− ig′ Y

2
Bµ

Then, one can write Dµ as;

Dµ = ∂µ − i
g√
2
(W+

µ T+ +W−
µ T−)− i

g

cos θw
Zµ(T

3 − sin2 θwQ)− ieQAµ

T± =
1

2
(σ1 ± iσ2) = σ±

e =
gg′√
g2 + g′2

sin θw =
e

g

cos θw =
e

g′

σ+ =

 0 1

0 0



σ− =

 0 0

1 0


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Since Q = 0 for φ3

Dµϕ
′ =

[
∂µ − i

g√
2
(W+

µ T+ +W−
µ T−)− i

g

cos θw
T 3Zµ

]
ϕ′

=

 ∂µ − ig
2 cos θw

Zµ
−ig√

2
W+

µ

−ig√
2
W−

µ ∂µ +
ig

2 cos θw
Zµ

 1√
2

 0

w3 + φ3



=
1√
2

 −ig√
2
(w3 + φ3)W

+
µ

∂µφ3 +
ig

2 cos θw
(w3 + φ3)Zµ



(Dµϕ
′)† =

1√
2

(
ig√
2
(w3 + φ3)W

−
µ ∂µφ3 − ig

2 cos θw
(w3 + φ3)Zµ

)

(Dµϕ
′)†(Dµϕ

′) =
1

2

[g2
2
(w3 + φ3)

2W+
µ W−µ + (∂µφ3)

2

− ig

2 cos θw
(∂µφ3)(w3 + φ3)Z

µ

+
ig

2 cos θw
(∂µφ3)(w3 + φ3)Z

µ +
g2

4cosθ2w
(w3 + φ3)

2ZµZ
µ
]

=
1

2
(∂µφ3)

2︸ ︷︷ ︸
=K.T

+
1

4
g2(w3

2 + φ3
2 + 2w3φ3)W

+
µ W−µ

+
g2

4 cos θ2w
(w3

2 + φ3
2 + 2w3φ3)ZµZ

µ

= KT +
1

4
g2w3

2︸ ︷︷ ︸
=m2

W

W+
µ W−µ +

g2

4 cos θ2w
w3

2︸ ︷︷ ︸
= 1

2
m2

Z

ZµZ
µ

+
1

2
g2w3φ3W

+
µ W−µ +

1

2

g2

4 cos θ2w
w3φ3ZµZ

µ

+
1

4
g2φ3

2W+
µ W−µ +

1

4

g2

4 cos θ2w
φ3

2ZµZ
µ

Before we proceed let us clarify a point about the mass term of W±
µ . For the original

(W µ
1 ,W

µ
2 ,W

µ
3 ) fields,the mass term as usual is of the form (for only W µ

1 and W µ
2 ) is

−1
2
M2

1W1µW
µ
1 − 1

2
M2

2W2µW
µ
2 one can show that starting from (Dµϕ)

†Dµϕ, M2
1 =

M2
2 = M2 = 1

4
g2w2

3 Now we can check the masses of the physical fields W±
µ . In
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terms of the original fields Then;

MT = −1

2
M2

1W1µW
µ
1 − 1

2
M2

2W2µW
µ
2

= −1

4
M2[(W+

µ +W−
µ )(W+µ +W−µ)− (W+

µ −W−
µ )(W+µ −W−µ)︸ ︷︷ ︸

=2W+
µ W−µ+2W−

µ W+µ=4W+
µ W−µ

]

= − M2︸︷︷︸
=M2

W

W+
µ W−µ

M2
W = M2 = 1

4
g2w2

3

Vertex Factor of W± for φ3 = i
g2w3

2
gµν

Vertex Factor of Z for φ3 =
1

2︸︷︷︸
Identical Z bosons

ig2w3

2 cos θw
gµν

Propagators of W and Z in Landau gauge;

Dµν =
i

k2 −m2
v

(
−gµν +

kµkν

k2

)

Γ
′(w)
1 (w3, 0) = i

∫
ddk

(2π)d
−ig2w3

2
gµν

i

k2 −m2
w(w3)

(
−gµν +

kµkν

k2

)

=
g2w3

2

∫
ddk

(2π)d
i

k2 −m2
w(w3)

− gµνgµν︸ ︷︷ ︸
=d

+
kµkνgµν

k2︸ ︷︷ ︸
=1


= i

g2w3

2
(1− d)

∫
ddk

(2π)d
1

k2 −m2
W (w3)

= µ2ε︸︷︷︸
=4−d

g2w3

2(4π)d/2
(1− d)Γ(1− d/2)

(m2
W (w3))ε−1

=
1

2

g2w2
3

w3︸ ︷︷ ︸
=

4m2
w(w3)
w3

m2
W (w3)

µ2εΓ(ε− 1)(1− d)

(4π)d−2︸ ︷︷ ︸
=(4π)2(4π)−2ε

m2ε
W (w3)

=
2m4

w(w3)

w3(4π)2

[
µ2(4π)

m2
w(w3)

]ε
Γ(ε− 1)(1− d)

=
2m4

w(w3)

w3(4π)2

(
1 + ε ln

[
µ̄2

m2
w(w3)

])
(3− 2ε)(

1

ε
+ 1)︸ ︷︷ ︸

= 3
ε
+1

=
2m4

w(w3)

w3(4π)2

[
3

ε
+ 1 + 3 ln

[
µ̄2

m2
w(w3)

]]
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After MS substraction;

Γ′
1MS(w3) =

2m4
W (w3)

w3(4π)2

(
1− 3 ln

[
m2

W (w3)

µ̄2

])

Then,

V MS
W (φc) =

∫ φc

0

dw3Γ
′
1MS(w3)

=
3

2

1

(4π)2
m4

W (φc)

[
ln

(
m2

W (φc)

µ̄

2
)

− 5

6

]

In the case of Z-boson in the loop mw(φc) → mZ(φc). Also while Wµ − Wν − φ3

vertex is 2m2
W (w3)gµν

w3
, the Zµ − Zν − φ3 vertex is m2

Z(w3)gµν
w3

.Thus, in addition to the

above substitution, there is an additional factor of 1
2

in the Z-exchange case.

V MS
Z (φc) =

1

2
V MS
W (mW (φc) → mZ(φc))

The last part is due to fermions in the loop. Yukawa Lagrangian in the lepton sector;

Llep
yuk = −yl(L̄ϕR + R̄ϕ†L)

where R = lR and yl is the yukawa coupling. One can show that Llep
yuk is invariant

under SU(2)LXU(1)Y transformation. Since

ϕ =

 0

l√
2
(φ3 + w3)

 ,

Llep
Y uk becomes;

Llep
Y uk = − yl√

2
(φ3 + w3)(l̄RlL + l̄LlR)

= − yl√
2
(φ3 + w3)l̄l

= −ml l̄l −
yl√
2
φ3l̄l
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where ml = 1√
2
ylw3 and the neutrinos remain massless. In the quark sector, the

down-type quarks behave like exactly the charged leptons. Hence,

Ldown
Y uk = − yd√

2
(φ3 + w3)(d̄LdR + d̄RdL)

= mdd̄d−
yd√
2
φ3d̄d

The case with the up-sector is slightly different. If the same Higgs doublet is used,

one gets the wrong combination, namely ūRdL + d̄LuR. In the representation used

so far the hypercharge of ϕ is Y (ϕ) = 1. However, one can also use the charge

conjugated ϕ, ϕ̃, as ϕ̃ = iτ2ϕ∗ =

 φ3 − iφ4

−(φ1 − iφ2)

 with Y (ϕ̃) = −1. Here one

can show that ϕ̃ can be transformed as ϕ under SU(2)LXU(1)Y . Therefore, it should

also exists in the Lagrangian and we have;

Lup
Y uk = −yuQ̄Lϕ̃UR + h.c.

where ϕ̃ = 1√
2

 φ3 + w3

0


Then;

Lup
Y uk = − yu√

2

= −yu(φ3 + w3)√
2

(ŪLUR + h.c.)

= muŪU

where mu = yu√
2
w3.Thus, we can summarize the mass and the vertex term as;

Lfer
Y uk = −

∑ yf√
2
(φ3 + w3)f̄f

where φ3 − f − f factor is −imf (w3)

w3
. Fermion propagator is −i

k−mf (w3)
since ytop = 1
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and the largest, we keep top loop only;

Γ′top
1 (w3) = i

∫
ddk

(2π)d
−imf (w3)

w3

−iT r(k +mf (w3))

k2 −m2
f (w3)

(−1)

= 3
imf (w3)

w3

∫
ddk

(2π)d
4mf (w3)

k2 −m2
f (w3)

where 3 comes from the color sum in the top loop.

Γ′top
1 (w3) =

12im2
f (w3)

w3

µ4−d

∫
ddk

(2π)d
1

k2 −m2
f (w3)︸ ︷︷ ︸

=I

where d = 4− 2ε

I =
−i

(4π)2(4π)−ε

Γ(ε− 1)

Γ(1)
µ2ε(m2

f (w3))
(1− ε)

Γ′top
1 (w3) =

12m4
t (w3)

(4π)2w3

µ2εΓ(ε− 1)

(
m2

f (w3)

4π

)−ε

= −
12m4

f (w3)

(4π)2w3

(
1

ε
+ 1

)(
4πµ2e−γE

m2
f (w3)

)ε

= −
12m4

f (w3)

(4π)2w3

[
1

ε
+ ln

[
µ̄2

m2
f (w3)

]
+ 1 +O(ε)

]

Again;

Γ′
1MS = −

12m4
f (w3)

(4π)2w3

[
1− ln

(
m2

f (w3)

µ̄2

)]

V MS
top (φc) =

∫ φc

0

12m4
f (w3)

(4π)2w3

[
1− ln

(
m2

f (w3)

µ̄2

)]
dw3

With the help of Mathematica, we get;

V MS
top (φc) = −3

m4
f (φc)

(4π)2

[
ln

(
m2

f (φc)

µ̄2

)
− 3

2

]

V MS
loop (φc) = V h

loop(φc) + V Golds
loop (φc) + V W±

loop (φc) + V Z
loop(φc) + V top

loop(φc)

V h
loop(φc) =

1

(8π)2
m4

h(φc)

[
ln

(
m2

h(φc)

µ̄2

)
− 3

2

]
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V Golds
loop (φc) =

3

(8π)2
m4

G(φc)

[
ln

(
m2

G(φc)

µ̄2

)
− 3

2

]

V W±

loop (φc) =
6

(8π)2
m4

W (φc)

[
ln

(
m2

W (φc)

µ̄2

)
− 5

6

]

V Z
loop(φc) =

1

2
V W
loop(mW (φc) → mZ(φc))

V top
loop(φc) =

−12

(8π)2
m4

t (φc)

[
ln

(
m2

t (φc)

µ̄2

)
− 3

2

]
Thus the total final result can be expressed in a compact form as

V MS
loop (φc) =

Nt

(8π)2

∑
(−1)2sp(1 + 2sp)m

4
p(φc)

[
ln

(
m2

p(φc)

µ̄2

)
− ap

]
Here the parameters are

sp = 0 for h,G

sp =
1

2
for fermions

sp = 1 for W±, Z bosons .

For sp = 0 for h,G, 1
2

for fermions, and 1 for vector bosons. The parameter ap =

a = 3
2

for scalar and fermions and ap = a− 1
a
= 5

6
for vector bosons. Also Nt = 12

for top quark(but 4 for charged leptons) and Nt = 1 for all scalar and vector bosons.
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CHAPTER 5

CONCLUSION

The role of symmetries in particle physics can not be undeniable for the progress in

especially developing/improving theories. Especially after the discovery of the Higgs

particle, taken as the evidence of the presence of the Higgs mechanism, breaking the

local gauge symmetry invariance spontaneously fits very well with the mechanism.

Hence, these recent advances put all of these symmetry-related arguments into more

central position.

Motivated from this, we have discussed the global and local symmetries and their

spontaneous breaking both in abelian and non-abelian frameworks with various toy

models like ϕ4 theory, the Georgi-Glashow model etc. Later the Higgs sector in

these frameworks have been explored and at the end the Higgs sector of the Glashow-

Weinberg-Salam model is presented.

Calculating the one-loop corrections to the scalar potential of the Higgs sector is an

important business and it is worth spending time on it. First the discussion has been

exercised in various simplified frameworks. Two alternative methods, the Coleman-

Weinberg and the Lee-Sciaccaluga methods, are compared. The regularization and

renormalization methods have been implemented to get the effective form of one-
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loop corrected scalar potential.

Concentrating on the scalar potential of the GWS model, the one-loop corrections

have been computed within the dimensional regularization method together with the

MS renormalization scheme. The one-loop tadpole diagrams in the GWS model have

the following particles in the loop; scalars (Higgs and Goldstones), vector bosons

(W±, Z) and the fermions (all charged leptons and quarks in principle but the top

quark mainly due to its large Yukawa coupling). After getting the analytical form

of the potential, a qualitative discussion about its the stability is given. For the dis-

cussion make sense, one should also include the RGE improvements, temperature

corrections etc, which are all beyond the scope of the present study. However, it can

be considered to be the first step along these lines. Additionally, having one doublet

at hand, everybody wonders whether there are other scalar doublets and/or singlets in

nature. Such extensions will definitely take the current study as a starting point.
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