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ABSTRACT

SATELLITE ORBIT ESTIMATION USING KALMAN FILTERS

�pek, Mehmet

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Umut Orguner

February 2017, 134 pages

In this thesis, satellite orbit determination problem is investigated using various
types of Kalman �lters based on several ground and space based measurement
types. First, the performance of the Gauss' method for initial orbit determi-
nation is evaluated and the measurement time separation values required for
it to give su�ciently good estimates are determined. Second, �lter initializa-
tion methods based on a few measurements are proposed for angles only (AE),
angles and range (AER), angles and Doppler (AED) and full state observation
cases and their performances are investigated. Third, comparison of the rel-
ative performances of extended Kalman �lter (EKF), unscented Kalman �lter
(UKF) and continuous-discrete EKF (CD-EKF) is carried out for the sample
scenarios assuming that AER and full state measurements are available. It is
shown that continuous-discrete EKF running with a reasonable prediction step
size, gives the best results in terms of root mean square (RMS) estimation error
and computation time. The performance of the CD-EKF is further examined by
comparing its RMS errors with posterior Cramer Rao Lower Bound (PCRLB)
for all measurement types and it is shown that CD-EKF is almost e�cient. In
addition to these, relative orbit determination performances obtained using AE,
AER and AED measurements are compared. It is shown that the use of the
Doppler measurement in addition to angles only measurements signi�cantly im-
proves the estimation performance in terms of position and velocity RMSE's.

v



Furthermore, usefulness of a second observing station (located su�ciently apart
from �rst) is studied. It is found that using a second station provides a signi�-
cant improvement in the estimation performance especially when the range and
Doppler data are not available.

Keywords: Orbit determination, low earth orbit, satellite tracking, extended
Kalman �lter, unscented Kalman �lter, continuous-discrete Kalman �lter, RTS
smoother, angles only, angles and range, angles and Doppler, initial orbit, Gauss'
method, posterior Cramer-Rao lower bound.
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ÖZ

KALMAN SÜZGEÇLER� KULLANARAK UYDU YÖRÜNGE KEST�R�M�

�pek, Mehmet

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Umut Orguner

�ubat 2017 , 134 sayfa

Bu tezde, uydu yörünge belirleme problemi, yer ve uzay kaynakl� de§i³ik öl-
çümlere dayal� çe³itli tiplerde Kalman süzgeçleri kullanarak incelenmi³tir. �lk
olarak, Gauss ba³lang�ç yörünge belirme metodunun performans� de§erlendi-
rilmi³tir ve yeterince iyi kestirimler için gerekli ölçüm zaman aral�§� de§erleri
belirlenmi³tir. �kinci olarak, birkaç ölçüme dayanan �ltre ba³latma yöntemleri,
sadece aç�lar, aç�lar ve mesafe, aç�lar ve Doppler ve tüm durum vektörü göz-
lem durumlar� için önerilmi³ ve bunlar�n performanslar� incelenmi³tir. Üçüncü
olarak, aç�lar ve mesafe ve tüm durum vektörü ölçümlerinin mevcut oldu§u
varsay�lan örnek senaryolar için, geni³letilmi³ Kalman süzgeci (EKF), kokusuz
Kalman süzgeci (UKF) ve sürekli-ayr�k Kalman süzgecinin (CD-EKF) göreceli
performans kar³�la³t�rmas� yap�lm�³t�r. Makul bir tahmin ad�m� ile çal�³t�r�lan
sürekli-ayr�k Kalman süzgecinin ortalama karekök kestirim hatas� ve hesaplama
zaman� aç�s�ndan en iyi sonucu verdi§i gösterilmi³tir. Sürekli-ayr�k Kalman süz-
gecinin performans�, ortalama karekök hatas� ile sonsal Cramer-Rao alt s�n�r�
(PCRLB) kar³�la³t�r�larak her ölçüm tipi için incelenmi³tir ve sürekli-ayr�k Kal-
man süzgecinin neredeyse etkin oldu§u gösterilmi³tir. Bunlara ek olarak, sadece
aç�lar, aç�lar ve Doppler, aç�lar ve mesafe gözlem durumlar� için elde edilen gö-
receli yörünge belirleme performanslar� kar³�la³t�r�lm�³t�r. Sadece aç�lar ölçümü-
nün yan�nda Doppler kullan�lmas�yla pozisyon ve h�z ortalama karekök hatalar�
aç�s�ndan kestirim performans�n� hayli geli³tirdi§i gösterilmi³tir. Ayr�ca, ikinci
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bir gözlem istasyonunun (ilk istasyondan yeterince uza§a yerle³tirilmi³) fayda-
l�l�§� üzerinde çal�³�lm�³t�r. �kinci bir istasyon kullanman�n, özellikle mesafe ve
Doppler verisi mevcut olmad�§�nda kestirim performans�nda kayda de§er bir iyi-
le³tirme sa§lad�§� bulunmu³tur.

Anahtar Kelimeler: Yörünge belirleme, geni³letilmi³ Kalman süzgeci, kokusuz
Kalman süzgeci, sürekli-ayr�k geni³letilmi³ Kalman süzgeci, RTS düzle³tirici,
sadece aç�lar, aç�lar ve mesafe, aç�lar ve Doppler, ba³lan�ç yörüngesi, Gauss me-
todu, sonsal Cramer-Rao alt s�n�r�.
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CHAPTER 1

INTRODUCTION

A satellite is a natural or an arti�cial object that revolves around a celestial body

and an orbit is the path followed by the satellite periodically. Orbital motion

of comets, natural satellites and planets have been studied since ancient times

[1]. However, the most signi�cant contributions were made in the last several

hundred years. Kepler and Newton are two of the greatest contributors of this

area. Kepler described the orbital motion laws and Newton explained Kepler's

ideas mathematically [2].

After the launch of �rst man made satellite [3] Sputnik in 1957, the period of

arti�cial satellites began and the number of Earth orbiting satellites has been

increasing every year since then. Now there are several thousands of man made

satellites or satellite related objects around the Earth (see Figure 1.0.1). Orbits

of the Earth orbiting satellites can be classi�ed according to their altitude and

several other properties such as inclination (angle between orbital plane and

equatorial plane), ellipticity, mission as well [5, 6]. These classi�cation criteria

do not completely distinguish one type of orbit from another. Low Earth orbit

(LEO) for altitude of under 1,500 km, medium Earth orbit (MEO) for altitude of

∼ 20, 000 km and geosynchronous orbit (GEO) for altitude of ∼ 36, 000 km are

examples of classi�cation with respect to altitude (see Figure 1.0.2). Since LEO

satellites are the main interest of this thesis, other types of orbits will not be

investigated in detail. Further information about orbit types and classi�cations

can be found in [3, 5, 6, 7, 8]. LEO satellites generally revolve in circular orbits

at altitudes between 300 and 1,500 km [3]. Altitudes below 300 km are not

1



Figure 1.0.1: Earth orbiting objects [4].

Figure 1.0.2: Earth orbiting satellites with di�erent altitudes [7].

preferred due to rapid orbital decay because of the atmospheric drag. Orbital

period changes from approximately 90 to 115 minutes for orbits at 300 and 1,500

km respectively. Due to their short period of revolution, a ground based sensor

can track the satellite for only about ten minutes while the satellite is visible

with respect to sensor. Moreover, signals transmitted from navigation satellites

are available for LEO satellites.

Orbit of a satellite is chosen or designed according to its mission which can be

communication, remote sensing, meteorological, scienti�c, navigational, intelli-

gence etc. [5]. For example, remote sensing satellites generally revolve around

polar, circular low Earth orbit because of coverage, sensor resolution and commu-

nication power requirements. Communication satellites are generally launched

into geostationary orbit (geosynchronous orbit with approximately zero inclina-

tion) due to its large and non-changing coverage. Navigational satellites (GPS,

Glonass etc.) are launched into MEO in order to satisfy the required mini-

mum number of continuously visible satellites with using fewer total number of

2



satellites.

Satellite operators or users would like to know the satellite position, velocity

and their uncertainties for di�erent purposes. For example an Earth observa-

tion satellite operator should know the position of the satellite with a few meters

of uncertainty in order to match the coordinates of the image (taken by the satel-

lite) with coordinates of the Earth correctly (geolocation). Furthermore, a laser

ranging station should know the satellite position with an accuracy of tens of

meters in order to strike the satellite with its very narrow laser beam. Moreover,

an Earth station that is used for satellite communication should accurately (re-

quired accuracy depends on the antenna beamwidth) know the pointing angles

of the antenna for signal quality. In addition, collision avoidance maneuvers and

collision probability calculations also need accurate orbit information [9].

Orbit determination has been studied for more than two hundred years but after

the launch of the �rst arti�cial satellite, orbit determination became much more

important. Kepler, Newton, Laplace and Gauss were four of early contributors

of this area [1, 2]. Gauss calculated the orbit of asteroid Ceres and played a

major role in the rediscovery of it [2]. He is also known as the inventor of

the Least Square (LS) Method for �tting observations to a best possible orbit

[2],[10].

Orbit determination is the use of mathematical techniques to calculate the po-

sition and velocity of a satellite or an orbiting object using dynamical equations

of motion and the noisy data coming from di�erent kinds of sensors [11]. Uncer-

tainty reduction for the orbit is also a responsibility of the orbit determination

process. The data to be used is generally taken from onboard sensors such as

Global Navigation Satellite System (GNSS) receivers or ground based systems

such as radar, laser tracking stations or optical telescopes. Optical telescopes

were the only sensor type to observe space objects until mid 1900s. In addi-

tion to observations, a dynamic model describing the satellite motion and the

related mathematical tools for orbit determination should be considered. Dy-

namic models can be constructed using Newton's laws of motion. In this context

accurate force modelling and taking these forces into account are key parameters
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for precise orbit determination [12].

There exist di�erent mathematical techniques for orbit determination. These

techniques can be divided into two parts: classical and modern orbit determina-

tion. In classical (deterministic) approach for orbit determination, measurement

and modelling errors are not taken into account. Unlike the classical approach,

possible errors are taken into account in the modern approach [12]. While ini-

tial orbit determination techniques are examples of the classical approach, batch

and sequential estimation are commonly used examples of the modern approach

[11]. Initial orbit determination is generally made in order to �nd a reasonable

initial condition for the recursive estimation techniques by using only few mea-

surements from the ground based tracking sensors [13]. Estimation techniques

try to reduce the observation and/or model based errors by means of statistical

methods such as batch least squares and Kalman �ltering. A batch estimator

uses a set of measurements in order to re�ne the orbit at a certain epoch. On the

other hand, a sequential estimator uses the current measurement in order re�ne

(update) the orbit at the current epoch, uses the dynamic model in order to

propagate the orbit until a new measurement arrives, then makes a re�nement

and it continues this procedure [1, 3, 11, 12]. Although, batch and sequential

estimators have been applied to orbit determination problem successfully and

both are powerful techniques [3], batch estimators are slowly being replaced by

sequential estimators [11]. In this thesis only sequential estimation techniques

(Kalman �lters) with various types of measurements for orbit determination will

be investigated.

1.1 Literature Review

In the literature, sequential orbit estimation concepts with measurements coming

from di�erent types of sensors are mentioned in several books such as [1, 3, 12].

Precise orbit determination using GNSS measurements, range measurements

coming from laser ranging systems are investigated widely with both sequen-

tial (Kalman �lters) and batch estimation techniques. These precision orbit

determination studies rely on very accurate force modelling and include the es-
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timation of the gravity �eld and drag parameters. GEO satellite tracking using

sampled data Kalman �lters using angles and range measurements produced by

several LEO satellites is investigated in [14]. In [15], range only measurements

coming from three radar stations are employed in the Kalman �lter in order to

determine the orbit. In [11], evolution of the orbit determination concepts are

summarized in terms of dynamic models, common observation systems, types

of measurements and their accuracies. For the initialization procedures, in [16],

uncertainty calculation methodology based on the unscented transform is in-

vestigated for the Gauss' method. Relative error performances of the extended

Kalman �lter (EKF) and sigma point �lters using angles and range measure-

ments, are investigated in [17]. In [17], Herrick-Gibbs method is proposed for

�lter initialization. In [18], the problem of tracking a GEO satellite by a single

LEO satellite is considered and the error performances of EKF, unscented KF

(UKF), particle �lter (PF) and the linear minimum mean square error (LMMSE)

�lter are compared both with each other and with posterior Cramer Rao lower

bound.

Compared to the aforementioned previous literature, the contributions of this

thesis can be described as follows.

• Reliability region of the Gauss' method of initial orbit determination is

studied numerically for a LEO satellite case.

• As a sequential estimator, continuous-discrete extended Kalman �lter (CD-

EKF), which is rarely used in the literature, is utilized for orbit estimation

in addition to EKF and UKF.

• Cramer-Rao lower bound (CRLB) is calculated for the continuous-discrete

orbit model.

• Evaluation of the absolute performance of the CD-EKF is carried out by

comparing the root mean square error of the estimates with the CRLB.

It should be mentioned that the CRLB is not a well-known estimator

performance criterion in orbit determination community.

Satellite orbits can be determined by using various types of sensors with certain
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accuracies. Future orbit (i.e., the state of a satellite) can be found by propagating

the current state according to the dynamic model. In this context, it should

be mentioned that the orbit determination errors increase as the propagation

time increases. In order to reduce the error caused by the propagation, space

or ground based measurements are utilized. Error reduction depends on the

number of measurements and their accuracies. For example, when one have a

precise orbit information of a satellite, ground based angles only measurements

can be useless since their accuracies are not very good.

In this thesis, �lter initialization and orbit estimation of a satellite is carried

out assuming there is no prior orbit information except the coarse knowledge of

its altitude. Moreover, physical properties (geometry and mass) of the satellite

are also assumed to be known. It should be noted that, in order to track the

satellite with ground based sensors, one should know the pointing angles of the

ground based sensors (radar, telescope and etc.) with a certain level of accuracy.

This is because satellite should lie in the �eld of view of the sensor. It is also

assumed that the satellite is initially captured and then tracked by the ground

based sensors.

1.2 Organization of the Thesis

Chapter 2 introduces the necessary models, mathematical relations and tools

for satellite orbit determination. State estimation and smoothing concepts using

Kalman �lters are presented. Cramer Rao lower bound used for the performance

evaluation of Kalman �lters is also described.

In Chapter 3, a brief review of deterministic initial orbit determination is given.

In addition, Gauss' algorithm that is used for initial orbit determination pur-

poses is explained. A reliable region is de�ned for the Gauss' algorithm where

the algorithm works well with reasonable position and velocity errors. The nec-

essary angular measurement error standard deviation and measurement time

separation for the Gauss' algorithm to remain in this reliable region are investi-

gated.
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In Chapter 4, �lter initialization methods based on a few measurements are

proposed for angles only (AE), angles and range (AER), angles and Doppler

(AED) and full state observation cases and their performances are investigated.

Comparison of the relative performances of extended Kalman �lter (EKF), un-

scented Kalman �lter (UKF) and continuous-discrete EKF (CD-EKF) is carried

out for the sample scenarios assuming that AER and full state measurements are

available. The performance of the CD-EKF is further examined by comparing

its RMS errors with posterior Cramer Rao Lower Bound (PCRLB) for all mea-

surement types. In addition to these, relative orbit determination performances

obtained using AE, AER and AED measurements are compared. Furthermore,

usefulness of a second observing station (located su�ciently apart from �rst) is

studied.

In Chapter 5, conclusions of this study are drawn and possible future approaches

that can be used in order to improve the orbit determination performance further

are listed.
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CHAPTER 2

BACKGROUND

In this chapter, necessary models and tools for satellite orbit determination are

explained. Orbit dynamic model and measurement models for di�erent types of

observations are derived. Furthermore, needed coordinate systems and transfor-

mations between these coordinate systems are also presented. Moreover, state

and parameter estimation methods for satellite orbit determination are investi-

gated. Finally, Posterior Cramer Rao Lower Bound (PCRLB) for measuring the

quality of sequential Bayesian estimators is also introduced.

2.1 State Models

In order to explain orbital motion of satellites, it is essential to express that this

motion is basically governed by two forces. First one is centripetal force due to

gravitational attraction and the second one is centrifugal force due to circular

motion (see Figure 2.1.1). The former one is not really acting on the satellite,

it just comes from Newton's third law namely action-reaction principle [7].

Combining these forces with Newton's laws, one can express this orbital motion

mathematically with di�erential equations and the resulting expression gives the

state model that will be used for orbit determination.
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Figure 2.1.1: Basic forces explaining orbital motion [7].

2.1.1 Two Body Orbit Model

In this problem, it is assumed that there exists only two bodies with spherically

symmetric mass distribution and mass of one of them is negligible with respect

to other [1]. Using this assumption and Newton's law of universal gravity, the

magnitude of the forces acting on these masses is

F =
Gm1m2

r2
(2.1.1)

where G is the universal constant of gravity, m1 and m2 are the masses of two

bodies in space and �nally r is the distance between these two bodies [2].

Figure 2.1.2: Illustration of the gravitational forces.

Furthermore, Newton's �rst and second laws of motion state that the total force

acting on a mass m is the multiplication of this mass with its acceleration −→a
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which is represented by the following equation [1].

−→
F = m−→a . (2.1.2)

It should be noted that Newton's second law requires the concept of inertial

frame. Inertial frame is a coordinate system which is non-rotating and unac-

celerated [2]. Combining Newton's law of gravitation and his �rst two laws of

motion for the earth and one of its satellites yields the following second order

di�erential equation as orbit dynamic model [19].

−̈→r = − µ

‖−→r ‖3
−→r (2.1.3)

where µ is the multiplication of gravitational constant and the mass of the

Earth, which is approximately 398, 600.44 km3

s2
[1]. −→r is the position vector of

the satellite in inertial frame and it can be expressed in vector form as follows

−→r =
[
x y z

]T
.

Similarly the velocity vector is

−̇→r =
[
vx vy vz

]T
.

2.1.2 Perturbed Orbit Model

In real life, the presence of other bodies and other forces (perturbing forces)

acting on the satellite, two body problem does not represent the reality [8]. These

forces are gravitational forces, drag forces, radiation pressure, third body e�ects,

tidal e�ects, relativistic e�ects etc. [2]. Including all of these forces in orbit

dynamic model, increases the accuracy of the orbit determination. However,

magnitudes of the perturbing forces depend on the orbit types (see Figure 2.1.3).

As an example, atmospheric drag is not very e�ective at GEO but it is one of

the major forces at LEO. After taking these disturbing forces into account, the

two body model becomes

−̈→r = − µ

‖−→r ‖3
−→r +−→a grav +−→a drag +−→a other. (2.1.4)
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In the above equation, −→a grav and
−→a drag represent the accelerations caused by

non-uniform gravity �eld of the Earth and the atmospheric drag respectively.

Here, −→a other is the acceleration component coming from all other perturbing

forces. Since the main interest of this thesis is LEO satellites, only gravitational

and drag based perturbations will be taken into account and the remaining forces

will be considered as a process noise in Kalman �ltering operations. In Fig-

Figure 2.1.3: Magnitudes of the perturbing accelerations versus altitude [20].

ure 2.1.3, GM represents the gravitational acceleration of the spherical Earth

with uniform mass distribution. J2, J4 and J6 are the zonal gravitational ac-

celerations caused by the spherical harmonics and these are described later in

this section. Moon, Sun and Planets represent the accelerations due to third

body e�ects. Other perturbing accelerations seen in the aforementioned �gure

are solar radiation pressure (caused by the photons), photons re�ected from the

Earth (albedo), relativistic e�ects and Earth tides.

For near Earth satellites, drag force is one of the largest disturbing e�ect (see

Figure 2.1.3). It is an energy dissipating e�ect and causes orbital decay. Accel-
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eration due to drag force can be represented as follows.

−→a drag =
1

2
ρCd

A

m
‖−→v ‖−→v (2.1.5)

where ρ is the air density in kg
km3 , Cd is the drag coe�cient related with the

satellite geometry, A in km2 is the satellite cross sectional area in the direc-

tion of motion, m is the mass of satellite in kg and �nally −→v =
[
vx vy vz

]T
is the velocity with respect to air in km

s
. In (2.1.5), acceleration depends on

atmospheric density, satellite geometry and velocity. Modelling of atmospheric

density is very di�cult due to its changing nature. It changes depending on the

solar activity and the Earth's magnetic �eld variations. The simplest density

model for altitudes up to 1, 000 km is the Exponential Model and it is given by

the following equation [1]

ρ = ρ0 e
−
hellp − h0

H (2.1.6)

where ρ0 is the air density andH is the scaling factor at certain reference altitude

h0. Moreover, hellp is the actual altitude de�ned as satellite height above Earth's

surface. Let the norm of satellite position vector be r =
√
x2 + y2 + z2 then

actual altitude will be

hellp = r −Re

where Re shows the Earth equatorial radius with a value of 6, 378.137 km [3].

Nominal values for ρ0 and H can be acquired from Table 2.1.1 for di�erent

reference altitudes. For example, if we consider a satellite at altitude of 650 km

then the air density can be calculated by using the model given in (2.1.6) and

values given in Table 2.1.1.

ρ = 1.454× 10−13 e
−

(650− 600)

71.835 , (
km

m3
).

There are much more complex atmospheric models both depending on time and

position. Solar activities, thermal and magnetic variations are taken into account

in these complex models. CIRA (Cospar International Reference Atmosphere),

Harris-Priester and Jachia-Roberts are the examples. Further information about

atmospheric modelling can be obtained from [1, 3, 21]. Exponential model will

be used in following sections since the consistency of the air density model is

beyond the scope of this thesis.
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Table 2.1.1: Reference values of exponential density model [1].

Gravitational disturbance acceleration due to the non-uniform mass distribution

of the Earth is another substantial e�ect and should be taken into account for

LEO satellites. It can be derived from geopotential of an arbitrary shaped body

by taking the gradient of geopotential [1]. It is better to start with potential (u)

of point mass m at distance r which is given by the following equation [3, 22].

u = G
m

r
(2.1.7)

Then, gravity potential for an arbitrary shaped body (see Figure 2.1.4) with

mass M at a point A with position vecor −→r , can be found by integrating the

potential caused by in�nitesimal mass element dm at position −→s over the entire

body as follows [23].

U = G

∫
dm

‖−→r −−→s ‖
. (2.1.8)

Let the norm (i.e., the magnitude) of the vectors −→r and −→s be r and s re-

spectively. Inverse of the distance between mass element and point A can be

represented by the series expansion of Legendre polynomials [3, 23, 24] as

1

‖−→r −−→s ‖
=

1

r

∞∑
n=1

(s
r

)n
Pn(cosψ) (2.1.9)

where, Pn(·) shows the Legendre polynomials [25] of degree n and ψ is the angle

between vectors −→r and −→s . Combining equations 2.1.8 and 2.1.9 yields
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Figure 2.1.4: Gravity potential of an arbitrary object. φ is latitude and λ is
longitude of point A.

U = G

∫
dm

r

∞∑
n=1

(s
r

)n
Pn(cosψ). (2.1.10)

Instead of an arbitrary body, if Earth is considered and if angle ψ is replaced by

the function of angles φ and λ which are the latitude and longitude of the point

A respectively then (2.1.10) becomes

U =
GMe

r

(
1 +

∞∑
n=1

n∑
m=0

(
Re

r

)n
Pnm(sinφ)(Cnm cosmλ+ Snm sinmλ)

)
(2.1.11)

where Me and Re are mass and equatorial radius of the Earth respectively.

Moreover, Pnm(·) shows the associated Legendre polynomials of degree n and

order m. Lastly, Cnm and Snm are gravitational coe�cients also called as spher-

ical harmonics [23] related with the mass distribution of the Earth and should

be somehow determined. Determination of these coe�cients is the subject of

Geodesy and generally done by using orbit information of LEO satellites (see

Figure 2.1.5). Brie�y, if the orbit of a satellite is known then these coe�cients

can be estimated. Coee�cients are directly associated with satellite position

around the Earth. Hence, in order to calculate the gravitational acceleration,

using a coordinate system that is �xed to Earth is necessary. Further information

about gravitational models can be found in [1, 3, 23, 24, 26].

Spherical harmonics can be divided into three groups such as zonal, sectorial

and tesseral depending on the segmentation type. Zonal and sectorial harmon-
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Figure 2.1.5: Earth's gravitational �eld representation [27].

ics divide the Earth in latitudinal and longitudinal directions respectively. In

addition, tesseral harmonics split in both directions and the number of divisions

depend on the numbers n and m. For tesseral harmonics n 6= m 6= 0. For

example, n = 9 and m = 6 corresponds n − m = 3 latitudinal and 2m = 12

longitudinal parts as shown in Figure 2.1.6. If it is assumed that the mass

Figure 2.1.6: Tesseral and zonal harmonics [23].

distribution of the Earth is symmetric with respect to its rotation axis namely

m = 0 then coe�cients of sectorial harmonics (i.e., Snn's) will be zero and there

exists only zonal harmonics (i.e., Cn0's) and potential equation becomes

U =
GMe

r

(
1−

∞∑
n=2

Jn

(
Re

r

)n
Pn0(sinφ)

)
(2.1.12)

where −Cn0 = Jn. Visualization of the �rst few zonal harmonics can be seen in

Figure 2.1.7. Furthermore, after C00, gravitational e�ect of C20 is the greatest

one [3] and it is approximately 1000 times higher than the other components

[24]. Neglecting other zonal components yields the following equation [26].

U =
GMe

r

(
1− J2

(
Re

r

)2
1

2
(3 sin2 φ− 1)

)
(2.1.13)
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Rewriting above equation and representing U as U = U0 +U1 gives the following

equation.

U =
µ

r︸︷︷︸
U0

− µJ2R
2
e

2r3
(3 sin2 φ− 1)︸ ︷︷ ︸
U1

.

In Section 2.1.1 it was mentioned that GMe equals to µ. Moreover, U0 shows

the gravity potential of a sphere that was already taken into account in two

body model and U1 represents the perturbing gravitational potential due to the

Earth oblateness. Finally, the unitless coe�cient J2 is given as ∼ 0.00108263 [1]

which is taken from the Joint Gravity Model 2 (JGM2) of NASA. Now, in order

to �nd the perturbing acceleration caused by the oblateness, gradient of U1 is

needed. Let the gradient of U1 be ∇U1 then it can be expressed in vector form

as follows.

∇U1 = −→a grav =



∂U1

∂x

∂U1

∂y

∂U1

∂z


.

It is known that z = r sinφ and r =
√
x2 + y2 + z2 from the relations between

spherical coordinates and Cartesian coordinates of point A (see Figure 2.1.4).

Substituting these relations in expression of U1 and taking the partial derivatives

with respect to x, y and z give the following acceleration vector [1].

−→a grav =



−3J2µR
2
e

2r5

(
1− 5z2

r2

)
x

−3J2µR
2
e

2r5

(
1− 5z2

r2

)
y

−3J2µR
2
e

2r5

(
3− 5z2

r2

)
z


. (2.1.14)

It should be noted that above vector is in Earth �xed coordinates and can

not be used in dynamic equation directly since it is not represented in inertial

frame. Using the information that, a second order di�erential equation can

be represented by two �rst order di�erential equations [2]. Taking −→r and −̇→r as
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Figure 2.1.7: First few zonal harmonics [24].

states, our dynamic model will be

˙

x

y

z

vx

vy

vz


︸ ︷︷ ︸
Ẋ

=



vx

vy

vz
−µx√

(x2 + y2 + z2)3
+ axdrag + axgrav

−µy√
(x2 + y2 + z2)3

+ aydrag + aygrav

−µz√
(x2 + y2 + z2)3

+ azdrag + axgrav


︸ ︷︷ ︸

fc(X)

+ω

where andrag and a
n
grav for n = {x, y, z} show the components of drag and gravity

based accelerations. Furthermore, ω is the 6x1 process noise vector represents

mismodelling. Above equation can be rewritten in a more compact form as

follows

Ẋ = fc(X) + ω (2.1.15)

where fc(·) represents a vector consisting nonlinear functions and subscript c

denotes that the function is in continuous time. Moreover, noise component

should be included in our dynamic model because the force modelling used

is actually a simpli�ed version of the real case. In this model only the most

signi�cant forces for LEO satellites are represented and the rest is taken as a

process noise. It should be noted that even if a precise force modelling is used,

process noise is still needed because of the remaining mismatch between the

model and reality.
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2.1.3 Numerical Integration

In order to �nd the solution of the di�erential equation which represents the

orbit dynamics, analytical or numerical techniques can be used. In the presence

of perturbation accelerations, use of analytical methods is relatively complex

[28]. Numerical integration methods are widely used since the computational

e�ort takes a minor role with the performance of today's computers [24]. Use

of numerical integration can also be considered as a discretization method for

dynamic models and this provides convenience for computer based estimation

techniques. There are several types of numerical integrators used for orbit de-

termination purposes such as Runge-Kutta, Cowell, Encke, Gauss-Jackson and

Adams-Bashforth and many others [3, 24]. These methods belong to single step

and multi step integration classes. In single step methods, every integration step

can be considered individually i.e., they do not require the results found in pre-

vious steps contrary to multi step methods and this makes single step methods

more compact and easy to use [3]. In order to choose a numerical integration

method, one should consider its accuracy, speed, complexity and storage require-

ments [2]. Furthermore, type of the orbit and the perturbations also a�ect the

choice of integration type and the required step size. In addition, Runge-Kutta

type methods (an example of single step integration) are usually used in wide

variety of problems. For insance, the simplest version of Runge-Kutta method

is based on the �rst order approximation of Taylor series expansion and this is

also known as Euler's method [3].

Fourth order Runge-Kutta (RK4) algorithm is used in this thesis due to its sim-

ple implementation, moderate error performance [29] and computational load.

Detailed information about numerical integration with applications to orbit de-

termination can be found in [1, 2, 3, 24, 30].

For a continuous time dynamic system represented by a �rst order di�erential

equation ẋ = f(x), the solution with RK4 integration will be
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xk+1 = xk +
δ

6
(k1 + 2k2 + 2k3 + k4) (2.1.16)

k1 = f (xk)

k2 = f (xk + k1δ/2)

k3 = f (xk + k2δ/2)

k4 = f (xk + k3δ)

(2.1.17)

where δ is the integration step size, ki's for i = 1, 2, 3, 4 are intermediate calcu-

lations and xk is the state at time t0 +δk. Note that smaller step sizes give more

accurate solutions but take more time to propagate. Moreover, in order to use

a numerical integration method, one needs a starting point x0 for time t0.

After implementing RK4 integration method for the continuous time orbit dy-

namic model given in (2.1.15) with an integration step size of δ, we obtain the

following discrete time model for k = 0, 1, 2, . . .

Xk+1 = fd(Xk) + ωd (2.1.18)

whereXk represents the state containing position and velocity of satellite at time

t0 + δk assuming X0 is the state at time t0, fd(·) is the discrete dynamic model

resulting from RK4 integration and ωd is the corresponding noise component in

discrete time.

2.1.4 Classical (Keplerian) Orbital Elements

Classical or Keplerian orbital elements are the commonly used parameterization

in order to de�ne the orbit of a satellite. One can easily visualize the orbit by

knowing the orbital elements. These elements describe the size, shape and the

orientation of the orbit in space and the location of the satellite in the orbit

[1, 31]. Orbital elements are given and explained as follows [1, 2, 31, 32].

• Semi-major axis (a) speci�es the size of the orbit. It is the half of the

distance between the farthest points of the orbit as seen in Figure 2.1.8.
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Table 2.1.2: Relation between the eccentricity and the shape

Eccentricity Orbit Shape

e = 0 Circular

0 < e < 1 Elliptical

e = 1 Parabolic

e > 1 Hyperbolic

• Eccentricity (e) de�nes the shape of the orbit and it can be given in a

simple form the relation below [31].

e =
c

a
(2.1.19)

where c is the half of the distance between two foci and a is the semi-

major axis (see Figure 2.1.8). The relation between the orbital shape

and the eccentricty can be seen in Table 2.1.2. Note that the parabolic

and the hyperbolic shaped orbits are open [1], in other words, they are not

periodic.

Figure 2.1.8: Representation of the orbit.

• Inclination (i) is the angle between the equatorial plane and the orbital

plane. If the motion is in the direction of the Earth's rotation then the
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inclination obeys 0◦ < i < 90◦ and 90◦ < i < 180◦ for the reverse case.

It should be mentioned that the inclination is either 0◦ or 180◦ when the

orbital plane and the equatorial planes are coincident. Inclination is 90◦

when the orbital plane is orthogonal to the equatorial plane.

• Right ascension of the ascending node (Ω) de�nes the orientation of the

orbital plane in the space. Speci�cally, it is the eastward angle between the

vernal equinox and the ascending node. Ascending node is the intersection

point of the orbit with the equatorial plane which satellite crosses from

south to north (see Figure 2.1.9). For vernal equinox one can refer to

[1, 2, 3, 12, 20, 33, 34].

• Argument of perigee (ω) indicates the orientation of the orbit in the orbital

plane. The angle between the ascending node and the perigee point in

the direction of satellite's motion. It should be noted that the perigee is

de�ned as the closest point of the orbit to the prime focus of the ellipse

(see Figures 2.1.8 and 2.1.9).

• True anomaly (ν) speci�es the location of the satellite in the orbit. It is the

angle between the perigee and the position of the satellite in the direction

of the satellite's motion. Illustration of this angle is given in Figure 2.1.8.

ν takes values from 0◦ to 360◦.

Figure 2.1.9: Representation of the right ascension and the argument of perigee.

Orbit determination algorithms used in this thesis are based on the three dimen-

sional position and velocity vectors but they can be utilized in order to calculate
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the orbital elements. Transformation between the orbital elements and the state

vector used in thesis is beyond the scope of the thesis. For further information

one can refer to [1, 2, 20, 24].

2.1.4.1 Two Line Element Set

Space objects up to altitudes approximately 8,000 km which have a radar cross

section area of above a certain level are continuously tracked by the space surveil-

lance network of the North American Aerospace Defence Command (NORAD)

[20]. The resulting orbit information is distributed through the internet in Two

Line Element (TLE) form . The information provided by the TLE is directly

related (but not identical) to the classical orbital elements[1]. In addition to

the orbital elements, some other information such as the time instant (i.e., the

epoch which the given parameters belong to), launch date, mean motion, rate

of change of the mean motion, Bstar term (drag-like parameter) etc. are also

included in the TLE. A sample TLE format which is taken from the [35] for the

weather satellite NOAA6 is represented in Figure 2.1.10. In Figure 2.1.10, left-

Figure 2.1.10: Two Line Element format and its explanation for the NOAA6
[35].

most 1 and 2 shows the line numbers. Satellite number part contains NORAD

catalog number of the satellite and the classi�cation indicator (U: unclassi�ed,

S: classi�ed). International designator part consists of the parameters of the last

two digits of the launch year, launch number and a character for the piece of the

launch. Epoch part shows the time information of the given orbit parameters
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and it includes last two digits of the year, day of the year and its fractions. The

following part shows the �rst time derivative of the half of the mean motion in

revolutions per day. In the 2nd derivative part, second time derivative of the

mean motion divided by six is given. Bstar term (drag-like parameter) is given

in the next part. Ephemeris type is related with the orbit model (i.e., the prop-

agator). However in all of the distributed TLE's ephemeris type is 0 [36]. Next,

the element number shows the count for the TLE. In the second line, some of the

orbital elements are given in degrees. Instead of true anomaly, mean anomaly

(circular orbit assumption) is given. The following part shows the mean motion

(in revolutions per day) using circular orbit assumption. Revolution number is

the count for the revolutions and �nally the checksum digits for both lines are

calculated using the numbers given in each line and it helps to check errors [36].

Explanations given above and further information about TLE format can be

found in [1, 20, 36].

Since TLE is constructed in a certain way by removing the variations in the or-

bital elements, one should take this removed variations into account in order to

make consistent predictions [37]. For this purpose, there are speci�c orbit propa-

gators which are consistent with the TLE information such as Simpli�ed General

Perturbations (SGP) for near Earth orbiting objects and Simpli�ed Deep Space

Perturbations (SDP) for the objects having a revolution period of greater than

a certain level [1, 37]. Using other orbit propagators with the TLE would prob-

ably yield bad results. For further information about the conversion between

the TLE and orbital elements and implementation of the aforementioned TLE

speci�c propagators, one can refer to [1, 20, 37].

It should be also mentioned that the TLE data does not contain accuracy infor-

mation and is not appropriate for precision orbit determination purposes [1, 20].

2.2 Measurement Models

Position or position related data about satellite orbits can be acquired from

di�erent kinds of sensors such as spaceborne GNSS receivers, active or passive
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tracking radar systems, optical telescopes, satellite laser ranging (SLR) systems

with di�erent order of accuracies. First of all, GNSS receivers provide both po-

sition and velocity data using satellite to satellite range measurements. In order

to �nd the position of the receiver and the time o�set (between a GNSS satellite

and the receiver), at least four satellites of GNSS constellation must be visible

by the receiver [20]. Global Positioning System (GPS) and GLONASS are ex-

amples of GNSS. Furthermore, radar systems usually supply range and Doppler

Figure 2.2.1: One way and two way radio tracking of satellites.

shift and they will also provide pointing angles (e.g., azimuth and elevation) if

they have tracking capabilities. Range information is extracted from round trip

time of the radio wave by looking at the phase shift between transmitted and

received signal in general (see Figure 2.2.2). Moreover, signal tracking is done

Figure 2.2.2: Basic principles of ranging via measuring phase shifts [3].

with lobe comparison techniques [38, 39]. If the tracking system is a receive

only system i.e., it does not transmit radio waves (e.g., passive radar) then it

will produce only angular and Doppler data (see Figure 2.2.1). The angular

accuracy of radio based tracking depends on the antenna beamwidth (namely,

diameter and frequency for re�ector antennas) and signal to noise ratio (SNR)
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of received signal [38, 39]. Usually, the accuracy of angular measurements are

worse than the signal based measurements [1] since they are a�ected by physical

issues such as calibration defects, thermal and mechanical distorsions and loads

[1, 3]. Also, angular measurements are less sensitive to small position changes.

It is required to have a transmitter with stable (constant) frequency source in

order to use Doppler techniques [24].

Figure 2.2.3: Satellite tracking telescope and symbolic camera image.

Optical telescopes provides only high precision angular data (and also the an-

gular rates in some cases). Use of optical telescopes has a major role in satellite

or celestial object tracking in history. Pointing angles with accuracies in the or-

der of a few arcseconds (1 arcsec = 1/3600◦) are provided by today's telescopes

(actually telescope aided digital cameras). Telescope observations can not be

obtained during daylight and they are also prone to weather conditions such as

clouds and fogs. A sample illustration of an optical telescope can be seen in

Figure 2.2.3.

Figure 2.2.4: Satellite laser ranging system [24].
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Finally, laser ranging systems give accurate range data using travelling time

of photons produced by laser transmitter. This system requires the target satel-

lite to be equipped with laser retro-re�ectors in order to re�ect incident photons

back to the station [24]. They are also weather dependent [1]. SLR systems do

not have autotracking mechanism as radars so they need high accuracy prior

orbit information in order to correctly direct the laser transmitter beam to the

satellite (see Figure 2.2.4 for laser ranging mechanism).

It should be emphasized that the ground based observation of LEO satellites

with a limited number of observing stations is problematic since visibility dura-

tions are very short [3].

In the following sections, measurement equations are investigated in the fol-

lowing form.

Yk = h(Xk) + νk (2.2.1)

where Yk is the measurement vector corresponding state Xk, function h(·) is the
mathematical relation between the states and measurements and νk is a random

vector that shows the measurement noise. Depending on the observation type

di�erent h(·)'s are utilized in measurement equations.

2.2.1 Full State Observation

If the satellite is equipped with GNSS receiver then all elements of the state can

be acquired. GNSS sensors give the state in Earth �xed coordinate system and

it should be converted to the inertial coordinate system since our dynamic equa-

tions were expressed in the inertial coordinate system. It should be mentioned

that di�erent navigation systems use di�erent reference frames (e.g., WGS84 is

used by GPS and PZ-90 is used by GLONASS [7]). Transformation between

these reference frames will be investigated in Section 2.3. Assuming Hfull is the

mapping from inertial to �xed frame, measurement equation will be

Yk = HfullXk + νk (2.2.2)
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where νk is the measurement noise of the GNSS receiver containing position and

velocity noises. For example, a usual GPS receiver for a spacecraft provides

position and velocity with a few tens of meters and a few tens of centimeters

per second uncertainty respectively [24]. This kind of sensors also supply the

quality of data with Dilution of Precision (DOP) values. One can use this quality

measures as a weighting factor for measurement noise.

2.2.2 Angles Only Observation

In general angle observations are obtained as azimuth and elevation. Azimuth

angle is de�ned as the clockwise angle from the true north and elevation is the

angle between pointing vector and local tangential plane (see Figure 2.2.5). To

Figure 2.2.5: Azimuth and elevation angles on local coordinate system.

construct measurement equations, position components of the state vector (satel-

lite position) should be converted to azimuth and elevation (see Section 2.3.3).

Yk = hae(Xk) + νk (2.2.3)

where Yk is the 2× 1 measurement vector which consists of azimuth and eleva-

tion, namely Yk =
[
Az El

]T
. Moreover, hae(·) is the vector valued function

containing transformation functions from ECI to azimuth and elevation. Lastly

the νk is the parameter representing angular measurement noise. For example,

a 10 meter Ku band (14 GHz) antenna with monopulse tracking capability can

measure pointing angles with an accuracy of approximately 3 milidegrees [3].
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2.2.3 Angles and Doppler Observation

A receive only radio based tracking system provides angular and Doppler data

related with the orbit of the satellite. Angle measurements are explained in

Section 2.2.2. One way Doppler shift, ignoring the relativistic e�ects, caused by

the relative motion of radio wave transmitter and receiver can be given as

∆f = −ft
c

dR

dt
, (2.2.4)

where ∆f is Doppler frequency shift, ft is the transmitted signal frequency, c

is the speed of light (2.99792458 × 105 km
s

[1]) and R is the distance between

transmitter and receiver. If two way tracking system is used then Doppler shift

equation should be modi�ed and following equation will be obtained

∆f = −2ft
c

dR

dt
. (2.2.5)

In order to convert (2.2.4) into a useful form which can be used in a measurement

equation, dR/dt should be written in terms of states (i.e. satellite position and

velocity components). The distance R can be written as follows [12]

R =
√

(x− xg)2 + (y − yg)2 + (z − zg)2 (2.2.6)

then, time derivative of R will be

dR

dt
=

(x− xg)(vx − vgx) + (y − yg)(vy − vgy) + (z − zg)(vz − vgz)√
(x− xg)2 + (y − yg)2 + (z − zg)2

, (2.2.7)

where x, y, z, vx, vy, vz are the components of the state vector in inertial frame

and xg, yg, zg, v
g
x, v

g
y , v

g
z show the position and velocity components of ground

station in inertial frame. Combining (2.2.4) and (2.2.7) gives us the �nal form

of Doppler measurement that can be directly used in the measurement model.

∆f = −
ft
[
(x− xg)(vx − vgx) + (y − yg)(vy − vgy) + (z − zg)(vz − vgz)

]
c
√

(x− xg)2 + (y − yg)2 + (z − zg)2
(2.2.8)

Combining angles only measurement equations with the above Doppler equation

yields

Yk = haed(Xk) + νk (2.2.9)

where Yk =
[
Az El ∆f

]T
, haed(·) is the mapping from states to azimuth,

elevation and Doppler shift and νk is the measurement noise.
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Angular uncertainties have already been mentioned in the previous sections.

In order to express the meaning of Doppler measurement uncertainty it is worth

to use a sample scenario. 1 Hz of Doppler measurement accuracy at 10 GHz

means an approximate range rate accuracy of 3 centimeters per second.

2.2.4 Angles and Range Observation

Angles only measurement equations are mentioned in Section 2.2.2 and the range

measurement equation is given in (2.2.6). If we combine these angles only and

range measurement equations, the resulting equation will be in the following

form.

Yk = haer(Xk) + νk (2.2.10)

where Yk =
[
Az El R

]T
. In the equation above, haer(·) is the mapping from

states to azimuth, elevation and range and νk is the measurement noise. This

kind of measurements are in general acquired from two way radars. Uncertainty

levels for angle measurements can be taken into account as given in the previous

sections. Range measurement uncertainties are in the order of a few tens of

meters by conventional techniques (tone ranging, code ranging).

2.3 Reference Coordinate Systems and Transformations

A coordinate system is used to describe the location of a point or to de�ne a

vector in space by using numbers. In order to characterize a coordinate system

its center, fundamental plane (x − y plane), principal direction (direction of x

axis) and direction of z axis should be speci�ed. Positive direction for a coor-

dinate system should also be de�ned [1, 2]. Right handed systems are used in

general.

Reference system and frame concepts di�er from each other. While, reference

system is a conceptual de�nition of how to construct a coordinate system such as

de�ning its origin, axes and fundamental planes, reference frame is a particular
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realization of corresponding frame with de�ning coordinates of speci�c points

that are directly accesible by observations [24, 40].

Cartesian (rectangular), spherical or oblate spheroidal coordinate systems are

used in orbit determination problem in general [41]. Since the motion of the

satellite of interest is primarily around the Earth, usually the origin of the

desired coordinate system is the center of mass (geocenter) of the Earth [24]

excluding topocentric coordinates. Cartesian coordinate system consists of an

origin and three axes which are perpendicular to each other. Secondly, the

spherical coordinate system can be de�ned as a three dimensional orthogonal

coordinate system where a point is speci�ed by a distance from origin and two

angles. Finally, oblate spheroidal coordinate system is also an orthogonal coor-

dinate system constructed by rotating an ellipse around its nonfocal axis [42].

In satellite orbit determination usually three reference coordinate frames are

widely used [33]. First one is the Earth centric inertial (ECI) frame which is

�xed in space. It is used in order to represent the orbit and it allows us the direct

use of the Newton's laws. Second one is the Earth Centric Earth Fixed (ECEF)

which is rotating with the Earth and used for de�ning the orbit in terms of ge-

ographic coordinates. The last one is the topocentric coordinate frame which is

centered at the location of the observer and basically used to de�ne the position

of the satellite with respect to the observer.

It should be noted that ECI is not a true inertial frame and ECEF is not a

true �xed frame. This is because, inertial frames are de�ned as non-rotating

and unaccelerated. However, the motion of the Earth (also the motion of ECI

system) about the sun yields a centripetal acceleration and as a result this ref-

erence frame is called "almost" or "quasi" or "approximate" inertial reference

frame [2, 3, 12, 43]. Additionally, for �xed coordinates, due to mass deformation

of Earth, movement of tectonic plates and tides, coordinates on Earth surface

may change. Consequently, ECEF is not an actual �xed frame [12, 24].
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2.3.1 Earth Centric Inertial Frame

ECI is an almost inertial frame and assumed to be �xed in space. Its origin is at

the center of mass of Earth and its fundamental plane coincides with equatorial

plane. Principal direction for this coordinate system is directed from origin

to vernal equinox Υ. More information about vernal equinox can be found in

[1, 2, 3, 12, 20, 33, 34]. The zi axis which does not belong to the fundamental

plane is along the rotation axis of the Earth. The last axis, yi is located along

90◦ eastward of the xi axis. Here the axes are named as xi, yi, zi respectively.

Illustration of ECI frame can be seen in Figure 2.3.1.

Figure 2.3.1: ECI Frame [1].

2.3.2 Earth Centric Earth Fixed Frame

ECEF is �xed to Earth and rotates. This frame is geocentric i.e., its origin is

�xed to the geocenter (center of mass of the Earth). The second descriptive fea-

ture of this frame i.e., the fundamental plane is overlapped with again equatorial

plane as it is in the ECI frame. However, its principal axis xe is directed towards

the zero degree meridian (i.e., the Greenwich meridian). Its ze axis coincides

with the rotation axis of Earth. Finally, the direction of ye axis is chosen to

make the system right handed. Furthermore, the coordinate system should be

de�ned for a certain epoch since it is rotating [1].
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2.3.3 Topocentric Coordinate Frames

This coordinate system is �xed to Earth and its origin is de�ned as the loca-

tion of the observer or sensor. Fundamental plane of the topocentric coordinate

system is formed by the local horizon [1] namely the tangential plane at the ob-

server's location. It is useful to de�ne both rectangular and spherical coordinate

systems based on this origin and fundamental plane.

Firstly, let us de�ne the rectangular coordinates. Although it is possible to

choose di�erent axes directions, East-North-Zenit (ENZ) and South-East-Zenith

(SEZ) is commonly used. Here, only the ENZ coordinates will be explained but

conversion is simple, the only thing to be done is to change the sign and order

of the axes. Origin and fundamental plane for a topocentric coordinate system

have already de�ned in previous paragraph. Moreover, x axis is directed towards

the East, y axis points north and consequently z axis points to zenith (upwards

from the local horizon) directions for ENZ coordinates. Let the axes names for

ENZ coordinate system be xt, yt, zt respectively for north, east and zenith. This

coordinate system is an intermediate step in order to relate the observer based

look angles and range with the geocentric Earth �xed frame.

Secondly, another useful topocentric system is a kind of spherical coordinate

system with the same origin and the same fundamental plane which allows us

to specify satellite position in terms of look angles and distance from observer's

site. In general, satellite position is represented in terms of azimuth and eleva-

tion angles and distance between observer and satellite.

Finally, representation of observer coordinates is another important issue for

Earth based observation case. The observer's location is commonly expressed

by geodetic latitude φ, longitude λ and altitude h. If one knows the vector from

the geocenter to observer and the vector from the observer to satellite then the

vector from the geocenter to satellite would easily be constructed by adding the

aforementioned vectors (vectors should be represented in the same coordinate

system).
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2.3.4 General Transformations

Consider a Cartesian coordinate system with origin O and axes x, y, z and a

vector v representing point P in this coordinate system (see Figure 2.3.2). If

we would like to represent this point in another coordinate system as v′ with

axes x′, y′, z′ and with same origin O, we should apply series of rotations to this

vector about its axes. Let the vector v be

v =
[
xp yp zp

]T
and let the transformed vector be

v′ =
[
x

′
p y

′
p z

′
p

]T
and let the angles α, β, γ be the required rotations about x, y, z axes respectively.

Then the relation between these vectors can be given by the equation below

[2, 24, 32, 44]. 
x

′
p

y
′
p

z
′
p

 = R1(α)R2(β)R3(γ)


xp

yp

zp

 (2.3.1)

where the rotations about x, y and z axis are given by the R1(α),R2(β) and

R3(γ) matrices which are de�ned as follows [24].

R1(α) =


1 0 0

0 cosα sinα

0 − sinα cosα

 , R2(β) =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 ,

R3(γ) =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 .
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It should be noted that the rotation order is important. Considering this issue

from vector mathematics point of view, matrix multiplication is not commutative

that is

AB 6= BA

except for some special conditions on A and B matrices [2]. Moreover, rotation

about reverse directions can be carried out by simply changing the angle term

with its negative and this corresponds to taking the transpose of the rotation

matrix (i.e., Ri(−angle) = RT
i (angle) for i = 1, 2, 3). In addition to rota-

Figure 2.3.2: Rotation of Cartesian coordinate system [24].

tion, there is also an operation called translation. It can be simply interpreted

as changing the origin of the coordinate system without any rotation (see Fig-

ure 2.3.3). This concept is relatively more straightforward than the rotation case

[34]. In order to translate a coordinate system, the only thing to do is shifting

the origin with the required amount. Assume, we have a general Cartesian coor-

dinate system represented by its origin and axes by (O;x, y, z). Let (xp, yp, zp)

shows the position of a point P in this coordinate system. If it is needed to

represent this point in a new coordinate system with origin O′ at (x1, y1, z1)

then the result will be ((xp − x1), (yp − y1), (zp − z1)).
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Figure 2.3.3: Coordinate system translation.

2.3.5 ECI - ECEF Transformation

In order to use measurement equations, conversion from ECI to ECEF is nec-

essary since the state vector is represented in ECI and measurements are rep-

resented in Earth �xed coordinates. Moreover, in order to calculate gravita-

tional perturbation acceleration which depends on the satellite location above

the Earth, both ECI to ECEF and ECEF to ECI conversion are required. This

is because the acceleration expression requires the satellite position to be repre-

sented in ECEF and the equations of motion are represented in ECI.

For the simpli�ed case, ignoring all rotational variations (precession, nutation

and polar motion that will be brie�y explained later in this section) and as-

suming that the only di�erence between these frames is the rotation about their

common axis z, transformation is simply represented by the following equation

[1]


x

y

z


ecef

= T (θ)


x

y

z


eci

(2.3.2)
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where the matrix T (θ) shows the rotation about z axis and is given by

T (θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1


and θ is the angle (at certain epoch) between the vernal equinox vector and

the vector passing through Greenwich Meridian, in other words, it is the angle

between x axes of two frames which are xi and xe (see Figure 2.3.4). This angle

is called as Greenwich Apparent Sidereal Time (GAST). Furthermore, the in-

verse rotation (i.e., the rotation from ECEF to ECI) is simply carried out by the

matrix multiplication by changing the sign of the angle θ in the transformation

matrix.

Figure 2.3.4: ECI and ECEF representation.

It is also required to convert velocity vectors. However, for this case (2.3.2) can

not be directly used simply by replacing the position vectors with velocity vec-

tors. There are extra terms coming from the di�erentiation of a position vector

in a rotating frame.

Time derivative of a position vector r with respect to inertial frame can be

written as the sum of two components. First one is the time derivative of r

with respect to rotating frame and the other is the velocity term caused by the

rotation. Assuming that the rotating frame revolves with an angular velocity of

ω =
[
ωx ωy ωz

]T
where its elements are angular velocities about x, y, z axes,
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we can write the result as follows [2].

dr

dt

∣∣∣∣
i

= vi = vr + ω × r (2.3.3)

where vi and vr are the velocity vectors represented in inertial and rotating

frames respectively. Let the position vector be reci and recef in inertial and

rotating frames respectively and let the relation between these vectors be

recef = T (θ) reci

reci = T (−θ) recef

then the velocity vectors in ECI and ECEF can be represented as follows.

vecef = T (θ) veci − ωe × T (θ) reci

veci = T (−θ) vecef + ωe × T (−θ) recef
. (2.3.4)

in (2.3.4), the term −ωe × T (θ) comes from the time derivative of T (θ) where

ωe is the angular velocity vector of the Earth (about its axis) and veci, vecef are

velocities in ECI and ECEF respectively. Simply, the angular velocity of Earth

is about z axis and the value for this angular velocity is ∼ 7.292115 × 10−5 rad
s

[24]. In vector form, we have

ωe =
[
0 0 7.292115× 10−5

]T
and the cross product operation for a vector v =

[
v1 v2 v3

]T
is de�ned as

v× =


0 −v3 v2

v3 0 −v1

−v2 v3 0

 .

In practice, the topic of ECI - ECEF conversion does not only include the regular

Earth rotation about its z axis. There are also other e�ects called precession,

nutation and polar motion. Due to equatorial bulge of the Earth, the Sun and

the Moon produce a gravitational torque and this causes luni-solar precession

(see Figure 2.3.5) with a period of ∼ 26, 000 years [1]. Moreover, the Moon also

causes a torque resulting in small variations superimposed on the pression e�ect

called nutation with a period of ∼ 18.6 years [1]. Finally, the polar motion is
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explained as the motion of the Earth's spin axis with respect to Earth �xed frame

[23]. In order to do a precise transformation these e�ects should be included.

However, in this thesis only rotation about z axis will be considered since the

most signi�cant change is caused by the Earth rotation [1]. In order to visualize

the e�ect of precession, nutation and polar motion one can refer to [45] and more

information about these e�ects can be found in [1, 2, 3, 23, 24, 40].

Figure 2.3.5: Illustration of precession and nutation [2].

2.3.5.1 Time Expressions and Their Relations

In order to �nd the transformation matrix between ECI and ECEF, GAST is

our main interest but it is useful and also necessary to mention about the time

systems and their relations.

For satellite orbit determination (especially, precise orbit determination), ac-

curate time tagging of measurements is required. This is because, the velocity

of a satellite is generally in the order of a few kilometers per second and 1

millisecond of timing uncertainty causes a few meters of position uncertainty.

Today, di�erent time systems are used for di�erent purposes and for di�erent

regions. Hence, awareness of the utilized time system (i.e., the system which

measurement time tags are given in) is required and one should know the rela-

tion between these time systems. Another reason that necessitates the relation
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between time expressions is the need for coordinate transformations. As we

mentioned earlier in Section 2.3.5 some coordinate systems are �xed while some

others are rotating in space. Transformation between these kind of coordinate

systems requires the knowledge of absolute time starting from a certain refer-

ence. This is because, the orientation of a rotational frame is known at certain

epoch and it is desired to �nd the orientation of this frame at given epoch. If

the timing is incorrect then the resulting coordinates will also incorrect.

A commonly used de�nition for time is solar day and it is de�ned as the re-

quired time of successive passes of the Sun over a reference meridian [1]. It

varies due to the apparent motion of the Sun. A less variant time de�nition is

sidereal day and it is de�ned as the time for Earth to rotate on its axis once

relative to stars [2]. In other words, sidereal time is a system of keeping the time

with respect to stars [46]. Sidereal day is approximately 4 minutes shorter than

the solar day [43]. If a local meridian is assumed as a reference it will be named

as Local Sidereal Time (LST) and if this local meridian is zero degree meridian

then it is called Greenwich Sidereal Time (GST). In this context, time refers to

the angle between a reference meridian and the vernal equinox. Since apparent

location of the stars changes due to Earth's rotational variations (precession,

nutation and polar motion), sidereal time changes a little. Considering this con-

dition, apparent and mean sidereal time concepts arises. While, the �rst one

takes true location of vernal equinox, second one uses mean location of vernal

equinox [23]. They are called Greenwich Apparent Sidereal Time (GAST) and

Greenwich Mean Sidereal Time (GMST) respectively if the observation point is

assumed to be the zero degree meridian. Another time representation system is

Universal Time (UT) which can be explained as the mean solar time of Green-

wich Meridian. For astronomical and navigational use, more accurate form of

the Universal Time is needed and it is obtained by astronomical observations

which is called UT1. Moreover, commonly used time system in everyday life

is Coordinated Universal Time (UTC). UTC is kept by several laboratories in

the world with precise atomic clocks and one second is de�ned by the atomic

transition of cesium element in certain conditions [47]. UT1 is completely iden-

ti�ed by the rotation of the Earth but UTC is a human made system and the
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di�erence between them is not allowed to exceed 0.9 seconds [47]. If one do not

need an accuracy better than one second then UTC and UT1 are replacable.

Another common time representation technique (used in ECI-ECEF coordinate

transformation) is Julian Days (JD). It is the count of the days and fractions for

the Greenwich meridian starting at 12:00, January 1st, 4713 BC [40]. A Julian

year contains exactly 365.25 Julian days by de�nition [23]. Let Y , M and D

be the numbers representing year, month and day with fractions of a certain

calendar date respectively. Then the Julian Day for this calendar date can be

calculated by using the following algorithm [48].

• IfM 6 2 replace Y = Y −1 andM = M+12, otherwise Y andM remains

unchanged

• In Gregorian Calendar A = b Y
100
c and B = 2−A+bA

4
c, in Julian Calendar

B = 0 (generally Gregorian Calendar is used)

• Day's fraction:
hours× 1440 +minutes× 60 + seconds

86400

Then, corresponding Julian Days will be calculated as

JD = b365.25(Y + 4713)c+ b30.6001(M + 1)c+D +B − 1524.5 (2.3.5)

where bxc is the �oor function that gives the greatest integer that is less than

or equal to x. After calculation of Julian Days, GMST should be calculated.

If GMST is known for a particular time t0 (say GMST (t0)) then any future

GMST at time t can be calculated by the following approach since we know the

Earth's approximate rotation velocity [2].

GMST (t) = GMST (t0) + Ω× 360×D (◦) (2.3.6)

where Ω = 1.0027279093 is the number of rotations in a solar day and D is the

time di�erence in terms of days and fractions (i.e., t − t0). GMST (t0) can be

calculated by the following expression if and only if t0 is in the form of 0hUT .

GMST (t0) = 100.460618137 + 36000.770053608T

+ 0.000387903T 2 − T 3/38710000 (◦)
(2.3.7)

41



where T is given by the following relation (JD should be calculated for t0).

T =
JD − 2451545.0

36525
.

Moreover, GMST at any given UT is further calculated by the following formula

regardless of reference time [48].

GMST (t) = 280.46061837 + 360.98564736629(JD − 2451545.0)

+ 0.000387933T 2 − T 3/38710000 (◦).
(2.3.8)

In addition, more accurate calculations can be carried out by taking the preces-

sion, nutation and polar motion into account. If all are used, the required angle

turns out to be GAST and can be calculated by the following formula [1, 3, 48].

GAST = GMST + ∆ψ cos ε (2.3.9)

where ∆ψ is the nutation in longitude and ε is the true obliquity of the ecliptic

[48]. Since we have ignored all this e�ects, GMST is used instead of GAST in

our calculations.

2.3.6 Lat-Lon-Alt to ECEF Transformation

In order to �nd an expression for the range between the satellite and the observer

it is needed to transform observer coordinates which are usually represented by

geodetic latitude (φ), longitude (λ) and altitude (h) to the ECI coordinates.

This transformation can be divided into two steps. First one is the conversion

from geodetic coordinates (φ, λ, h) to ECEF since they are both Earth �xed

frames and secondly, the transformation from ECEF to ECI which is mentioned

in Section 2.3.5.

According to [23, 24, 40, 43] the transformation between geodetic coordinates

and ECEF is given by the following equation,
x

y

z


ecef

=


(N + h) cosφ cosλ

(N + h) cosφ sinλ

[N(1− e2) + h] sinφ

 (2.3.10)
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Figure 2.3.6: Geodetic latitude φ and geocentric latitude φg on reference ellip-
soid.

where N is the radius of the curvature in the prime vertical [24] and it is given

as follows [3].

N =
Re√

1− e2 sin2 φ

In the equation above, e is the �rst eccentricity and Re is the semimajor axis

of the reference ellipsoid (i.e., the equatorial radius of the Earth). Furthermore,

the �rst eccentricity can be expressed in terms of �attening f as e =
√
f(2− f)

[12, 24, 43]. Finally, �attening of the reference ellipsoid is given by the ratio of

di�erence between semimajor axis Re and semiminor axis Rp (see Figure 2.3.6)

to Re which is given by the below relation [43].

f =
Re −Rp

Re

.

One of the commonly used ellipsoid is World Geodetic System 1984 (in short

WGS84) model and it gives the values for required the parameters as Re =

6378.137 km and f ≈ 1/298.257 [40, 43].

2.3.7 ECEF to AER Transformation

Ground based measurement equations use satellite position and velocity (i.e.,

the state vector) as an input and �nd look angles, range, range rate or Doppler

shift. It is necessary to �nd a transformation expression which converts satellite

position from ECI to azimuth (Az), elevation (El) and range (R). Furthermore,
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Figure 2.3.7: Visualization of ECEF, ENZ and geodetic coordinates [24].

in order to initialize the estimator, �rst few AER (azimuth-elevation-range) mea-

surements should be converted to a state vector form in ECI. Therefore, AER

to ECEF transformation is also needed.

Since look angles and distance are de�ned in an Earth �xed frame, the �rst

thing to be done is to convert satellite position from ECI to ECEF which has

been explained earlier. After representing the position of the satellite in ECEF,

observer coordinates usually given in terms of geodetic latitude, longitude and

altitude should also be expressed in ECEF frame. This operation was also clari-

�ed in the previous section. Afterwards, it is possible to use vector mathematics

since all vectors are represented in ECEF frame. Let the observer's position

vector be −→ρo and satellite position vector be −→ρs (see Figures 2.3.7 and 2.3.8).

Then the satellite position vector with respect to observer can be written as

below.
−→
R = −→ρs −−→ρo . (2.3.11)

In order to relate
−→
R with azimuth and elevation we should apply a transforma-

tion from ECEF to ENZ frame as follows.

−→
RENZ = TENZECEF

−→
R (2.3.12)
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Figure 2.3.8: Vector representation of observer and satellite in Earth �xed frame.

where TENZECEF is the rotation matrix from ECEF to ENZ and it is explained as

�rst rotation about z axis by 90 + λ degrees where λ is the observer's longitude

and second rotation about x axis by−φ degrees where φ is the observer's latitude
then change the sign of y axis and interchange the rows corresponding y and z

axes. This can be given by the following matrix operation.

TENZECEF =


1 0 0

0 sin(−φ) cos(−φ)

0 − cos(−φ) sin(−φ)




cos(90 + λ) sin(90 + λ) 0

− sin(90 + λ) cos(90 + λ) 0

0 0 1

 .

Carrying out the matrix multiplication shown above gives the result in closed

form [49] as

TENZECEF =


− sinλ cosλ 0

− sinφ cosλ − sinφ sinλ cosφ

cosφ cosλ cosφ sinλ sinφ

 . (2.3.13)

As a result, one can �nd the coordinate of the satellite in ENZ frame by the
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below equation letting
[
xt yt zt

]T
represents the vector form of the

−→
RENZ

−→
RENZ =


xt

yt

zt

 =


− sinλ cosλ 0

− sinφ cosλ − sinφ sinλ cosφ

cosφ cosλ cosφ sinλ sinφ




xs − xo

ys − yo

zs − zo

 (2.3.14)

where
[
xs ys zs

]T
is the vector representation of the satellite position in ECEF

(−→ρs) and
[
xo yo zo

]T
is the vector representation of the observer position in

ECEF (−→ρo).

Now, the satellite position can be represented in terms of observer look angles

and R by the following equation simply by using the spherical to rectangular

coordinate transformation, assuming R is the magnitudes of the vectors
−→
RENZ

and
−→
R . The relation between ENZ coordinates, look angles and distance will be

−→
RENZ =


xt

yt

zt

 =


R cosEl sinAz

R cosEl cosAz

R sinEl

 , (2.3.15)

hence the following expression will be obtained.
cosEl sinAz

cosEl cosAz

sinEl

 =



xt
R

yt
R

zt
R


. (2.3.16)

After making some trigonometric manipulations, formulation for azimuth and

elevation angles will be as follows.

Az = tan−1
(
xt
yt

)
,

El = sin−1
(zt
R

)
.

(2.3.17)

AER to ECEF conversion is simply the reverse of the above processes. First,
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AER to ENZ conversion is needed and this can be done by using right hand side

of (2.3.15). Then, multiplication of the position vector represented in ENZ with

the transpose of TENZECEF given in (2.3.13) from the left side will give the position

vector in ECEF.

2.3.8 Az-El to Topocentric Ra-Dec Transformation

A convenient way to represent satellite position with respect to the observer is

to use topocentric right ascension (Ra) and declination (Dec). Origin of this

coordinate system is at observer's location and it uses set of axes �xed in space

and coincide with the axes of ECI, namely it can be treated as translated version

of ECI. Ra (α) and Dec (δ) is shown in Figure 2.3.9. It is useful since the vector

operations require vectors to be represented in the same coordinate system.

Let φ and λ be the latitude and longitude of the observer's location and θLST

Figure 2.3.9: Visualization right ascension α and declination δ with ECI frame.

be the local sidereal time at the observer's longitude. θLST can be found by the

following relation.

θLST = θGAST + λ (2.3.18)

where θGAST is the Greenwich apparent sidereal time has been investigated in

Section 2.3.5. Moreover, in order to convert Az and El to topocentric Ra and

Dec, �rstly, azimuth and elevation should be projected into ENZ frame. Ap-

plying series of multiplication by rotation matrices, the relation between them
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is constructed by the following equation assuming θ = θLST [32].
cosα cos δ

sinα cos δ

sin δ

 =


− sin θ − cos θ sinφ cos θ cosφ

cos θ − sin θ sinφ sin θ cosφ

0 cosφ sinφ




sinAz cosEl

cosAz cosEl

sinEl

 . (2.3.19)

After carrying out the matrix multiplication and some trigonometric manipula-

tions right ascension and declination will be found as

α = θ − θh,

δ = sin−1 (cosφ cosAz cosEl + sinφ sinEl) ,

(2.3.20)

where θh is hour angle and de�ned as follows.

θh =


360◦ − cos−1

(
cosφ sinEl−sinφ cosAz cosEl

cos δ

)
, 0◦ < Az < 180◦

cos−1
(
cosφ sinEl−sinφ cosAz cosEl

cos δ

)
, 180◦ 6 Az 6 360◦

.

2.4 State Estimation and Smoothing

In this section, Kalman �lters for discrete time systems represented by nonlinear

equations will be considered. Moreover, an estimation algorithm for dynamic

systems which are represented by continuous time state equation and discrete

time measurement equation will also be mentioned. Finally, the smoothing con-

cept for nonlinear estimation problems will be investigated.

Estimation is the procedure of deducing the value of a variable or variables

that we would like to know by using indirect and uncertain measurements [50].

An estimator is a function of measurements which gives the values of the desired

variables. Large class of dynamic systems are described by di�erential equations

resulting from the use of physical laws and they can be represented in state space

form. If our interest is to �nd the state of a dynamic system then the procedure

is called state estimation. State estimation is carried out sequentially in general

and state can be considered as a random parameter to be estimated since it is

a�ected by random noise components. As a result, state estimation scheme is

said to be Bayesian.
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It is always desired to �nd an optimal estimator. Optimal estimators use the

measurements, models and their statistical properties in an ideal way in some

sense. Usually, a cost function based on estimation error is desired to be mini-

mized. Mean square estimation error is a common optimality criterion. More-

over, if an optimal estimator does not exist or can not be implementable, subop-

timal solutions are applied [51]. The optimal estimator in the sense of minimum

mean square error (MMSE) for the Bayesian case is the mean of the conditional

probability density function given all the available information.

A widely used state estimator is Kalman �lter. It is based on the state space

representation of linear dynamic systems and it provides optimal estimate in

the sense of mean square error in a recursive way [52]. In order to guarantee

the optimality of Kalman �lter, several conditions on the dynamic system and

noise components must be satis�ed. First, the system of interest must be lin-

ear. Then, the noise components and the initial estimate must have Gaussian

distribution and they must be uncorrelated. If the Gaussianity assumption is

not satis�ed, Kalman �lter is still the best linear estimator. Namely, it gives the

best mean square error performance when compared to other linear estimators

[50, 53]. Although Kalman �lter was originally developed for linear problems, it

can be applied to nonlinear problems by linear approximations [54]. Nonlinear

versions of Kalman �lter are examples of suboptimal estimation algorithms.

Kalman �lter utilizes both measurements and dynamic model in an optimal way.

Namely, if the measurement is bad (i.e., measurement noise is high) then the

�lter assigns more importance to the dynamic model by decreasing the Kalman

gain and in the reverse situation (i.e., modelling uncertainties are high) it in-

creases the gain. It can also be concluded that Kalman gain determines how

much of the new information (innovation) will be used.
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Let us consider the following linear, time invariant dynamic system.

xk+1 = F xk + ωk

yk = Hxk + νk
(2.4.1)

where xk and yk are n × 1 state and m × 1 measurement vectors respectively.

ωk and νk are zero mean, white Gaussian noise components with covariance

matrices Q and R. These covariance matrices are de�ned as follows

E
{
ωjω

T
k

}
=

Q, if j = k

0, otherwise

E
{
νjν

T
k

}
=

R, if j = k

0, otherwise
.

Let the superscripts ”−” and ”+” represent respectively the predicted and up-

dated forms of state vector and covariance matrix. Kalman �lter equations are

summarized in Table 2.4.1 and its update mechanism is described in Figure 2.4.1.

Figure 2.4.1: Update and prediction mechanism of Kalman �ltering.

In general, tuning of a Kalman �lter (selection of appropriate Q and R matri-

ces) is di�cult and time consuming [19]. Usually, �lter designer have much more

information about R due to the known statistical characteristics of the sensors.

However, in general there is little information about Q and a good choice of pro-

cess noise covariance depends on the �lter designers experience and knowledge

about the system dynamics [19]. After choosing a considerable Q and running

the �lter several times with di�erent choices, one may decide a good value for

Q by trial and error.
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Table 2.4.1: Equations for standard Kalman �lter.

Initialization x̂−0 and P−0

Innovations covariance Sk = HP−k H
T +R

Kalman gain Kk = P−k H
T S−1k

State update x̂+k = x̂−k +Kk

(
yk −Hx̂−k

)
Covariance update P+

k = (I −KkH)P−k

State prediction x̂−k+1 = Fx̂+k

Covariance prediction P−k+1 = F P+
k F

T +Q

Finally, di�erent implementations of Kalman �lter is used in the literature such

as information �lter, square root �lter due to computational issues. They make

computations cheaper and/or precise respectively. For example, information �l-

ter utilizes the inverse of covariance matrix (P−1) and reduces the computational

load under certain conditions [53]. Moreover, square root �lter decomposes co-

variance matrix using a factorization method and uses the resulting components

instead of the covariance matrix. This makes Kalman �lter algorithm more ro-

bust and less sensitive to numerical errors. For more information about these

implementation methods one can refer to [50, 53, 54, 55, 56].

2.4.1 Extended Kalman Filter

When the state and/or measurement equations are nonlinear, Kalman �lter

given in Table 2.4.1 can not be used directly. Instead, one can approximate

these nonlinear equations using �rst order linearization around the estimated

states and then uses standart Kalman �lter. This procedure is called Extended

Kalman Filtering (EKF). Many dynamic systems and sensors with practical

value have nonlinear characteristics but they are approximately linear for small

51



perturbations around the state [54].

EKF has remained the most popular method for nonlinear estimation prob-

lems and other estimator forms are investigated only when the EKF does not

give satisfactory results [19].

xk+1 = f(xk) + ωk

yk = h(xk) + νk
(2.4.2)

For the nonlinear dynamic system described in (2.4.2), EKF can be implemented

by using the following algorithm.

1. Initialize the �lter with prior information about the state by

x̂0, P0 = E
{
x̃0x̃

T
0

}
where x̃0 is the initial estimation error (i.e., x̃0 = x0 − x̂0). Initial con-

ditions can be considered as either updated (x̂+0 ) or predicted (x̂−0 ) states

depending on how these values are obtained and for which time interval

they are valid. If they are considered as updated states, �ltering will start

with prediction. Otherwise, the �rst thing to start the �lter is updating

the state and covariance matrix. Here, initial conditions are assumed as

predicted.

2. Calculate Kalman gain according to

Kk = P−k H
T
k

(
HkP

−
k H

T
k +R

)−1
(2.4.3)

where Hk is the Jacobian of the vector valued measurement function h(x)

evaluated at x = x̂−k . Numerical calculation of Jacobians will be mentioned

later in this section.

3. Carry out state and covariance updates by

x̂+k = x̂−k +Kk

(
yk − h

(
x̂−k
))

P+
k = (I −KkHk)P

−
k .

(2.4.4)
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4. Propagate state and covariance matrix by the following equations respec-

tively until a new measurement (yk+1) arrives.

x̂−k+1 = f
(
x̂+k
)

P−k+1 = FkP
+
k F

T
k +Q

(2.4.5)

where Fk is the Jacobian of state equations vector f(x) evaluated at x =

x̂+k .

Since propagation and update equations need Fk and Hk, namely the Jacobians

of f(x) and h(x) around the estimated and predicted state vector respectively,

partial derivatives of them are required. However, calculation of partial deriva-

tives in closed form is problematic if the elements of f(·) and h(·) are complex.

Instead of �nding partial derivatives analytically, numerical methods can be

used. For an n × 1 vector valued function
[
f1(x) f2(x) . . . fn(x)

]T
, numer-

ical partial derivative for one of its element f1(x), assuming x is scalar, can be

approximated as follows [57]

∂ f1(x)

∂ x
≈ f1(x+ ε)− f1(x− ε)

2ε
(2.4.6)

where ε is a small scalar. If x is an n dimensional vector (i.e., x =
[
x1 x2 . . . xn

]T
)

then the partial derivative of f1 with respect to xi, namely the ith element of x

can be approximated as follows.

∂ f1(x)

∂ xi
≈

f1





x1
...

xi
...

xn


+



0
...

ε
...

0




− f1





x1
...

xi
...

xn


−



0
...

ε
...

0




2ε

. (2.4.7)

It should be noted that ε is added to or subtracted from only the variable of

interest, namely xi and other components of x remain unchanged. In (2.4.6)

and (2.4.7) central �nite di�erencing method is used. For further information

about numerical di�erentiation schemes one can refer to [57, 58, 59]. In this

thesis, all the simulations (which require to take Jacobian) are carried out by

using numerical Jacobians as given in (2.4.7).
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2.4.2 Continuous-Discrete Extended Kalman Filter

State equations of most dynamical systems are originally expressed in continuous

time since they are representing real world systems which obey physical laws.

However, measurements are taken discretely depending on the sampling time of

the digital processors. In continuous-discrete EKF (CD-EKF) formulation, state

and covariance matrix prediction expressions are in di�erential equation form

and implementing this �lter by digital processors requires numerical integration

of these di�erential equations with su�ciently small integration step size. For

the following nonlinear and time invariant dynamic system and knowing that

x = x (t) and xk = x (tk)

ẋ = f(x) + ω

yk = h(xk) + νk
(2.4.8)

Kalman �ltering prediction equations for the state and covariance matrix are

given as follows [19, 60, 61].

˙̂x = f(x̂)

Ṗ = FkP + PF T
k +Qt

(2.4.9)

where x̂ is the state estimate, Fk is the Jacobian of f(·) evaluated at current

estimate (at time k), P is the covariance matrix of estimate and Qt is the

covariance matrix for the continuous time noise component ω. Summary of

CD-EKF equations are given in Table 2.4.2.

For this type of EKF, state and covariance matrix predictions requires numerical

integration with su�ciently small integration step sizes (in order to ensure that

the integration is stable) until a new measurement arrives [61, 62]. Using RK4

numerical integration scheme state prediction becomes the same as in (2.1.16).

Covariance matrix prediction is also carried out by the same approach and the
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Table 2.4.2: Equations for CD-EKF.

Initialization x̂−0 and P−0

Innovation covariance Sk = HkP
−
k H

T
k +R

Kalman gain Kk = P−k H
T
k S
−1
k

State update x̂+k = x̂−k +Kk

(
yk − h(x̂−k )

)
Covariance update P+

k = (I −KkHk)P
−
k

State prediction ˙̂x = f(x̂)

Covariance prediction Ṗ = FkP + P F T
k +Qt

equations are given as

K1 = FkPk + PkF
T
k +Qd

K2 = Fk (Pk + 0.5δK1) + (Pk + 0.5δK1)F
T
k +Qd

K3 = Fk (Pk + 0.5δK2) + (Pk + 0.5δK2)F
T
k +Qd

K4 = Fk (Pk + δK3) + (Pk + δK3)F
T
k +Qd

Pk+1 = Pk +
δ

6
(K1 + 2K2 + 2K3 +K4)

(2.4.10)

where δ is the integration step size and Ki's are the intermediate calculations of

the covariance matrix. Moreover Qd is the discrete counterpart of Qt. The rela-

tion between the process noises of continuous time and corresponding discrete

time systems can be given as

Qd = Qtδ. (2.4.11)

For further information about the relation between continuous and discrete time

covariance matrices, one can refer to [50, 54].

Continuous-discrete Kalman �lters are well suited to the problems with the

following properties [60, 63].

• High process noise; smaller prediction step size reduces the e�ects of the
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process noise.

• High nonlinearity; more frequent linearization makes the nonlinearities

easy to handle.

• Rare measurements.

2.4.3 Unscented Kalman Filter

Since most of the dynamic system representations are expressed in nonlinear

form, optimal (in the sense of MMSE) estimate of the state requires computa-

tion of conditional probability density function of the state given all the avail-

able information. Hence, standard Kalman �lter can not be directly used. In

Section 2.4.1 use of EKF was presented. Although it is not optimal, EKF gives

satisfactory results when the �rst order linearization around estimate adequately

approximates the conditional probability density function of the state [19]. This

local linear approximations may not work in problems with signi�cant nonlinear-

ities [64] and may lead to large estimation errors or sometimes divergence of the

�lter [52, 65]. In order to overcome this kind of problems Julier and Uhlmann

proposed a method called Unscented Kalman Filter (UKF) in [66].

In UKF, the distribution of the state is represented by carefully selected sam-

ple points and these sample points completely express the mean and covariance

of the distribution [65]. This procedure looks like Monte Carlo type sampling

methods but the main di�erence between them is that UKF selects samples de-

terministically [64]. Main component of UKF is "unscented transform" which

describes the propagation of the distribution of the state represented by sample

points through a nonlinear system.

Consider the discrete time nonlinear system given in (2.4.2). One can implement

UKF for this system by the following algorithm [19, 52, 53, 65, 66].

1. Initialize �lter with state estimate and covariance matrix as follows

x̂0, P0 = E
{
x̃0x̃

T
0

}
56



where x̂0 is the initial state estimate and x̃0 is the initial estimation error.

2. Generate sigma points (actually vectors) using the current state estimate

and covariance matrix.

χ0 = x̂+k

χi = x̂+k +

{√
(n+ λ)P+

k

}
i

, i = 1, . . . , n

χi = x̂+k −
{√

(n+ λ)P+
k

}
i

, i = n+ 1, . . . , 2n

where n is the dimension of state vector and λ is a scaling parameter given

below. Moreover, the notation {.}i denotes the ith column of the matrix

inside.

λ = α2(n+ κ)− n.

In the equation above, α is usually chosen in the interval [10−4, 1], de-

termines the spread of sigma points around the state estimate [52] and κ

is another scaling parameter and usually set to (3 − n) [67]. In order to

take the square root of a symmetric positive de�nite matrix one may use

Cholesky or modi�ed Cholesky decompositions [54]. Let us assume A is a

symmetric positive de�nite matrix. Then it can be factorized as

A = LDLT

where L is a lower triangular matrix and D is a diagonal matrix with posi-

tive diagonal elements. It can be concluded that square root of the matrix

A is A1/2 = LD1/2 and the square root of a diagonal matrix is simply

taken by taking the scalar square roots of diagonal elements. For more

information about matrix decompositions and square root algorithms, one

can refer to [54, 68].

3. Propagate the sigma points through the nonlinear system dynamics and

�nd the mean and covariance matrix of the transformed sigma points by
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using weights Wm
i and W c

i for ith sigma point respectively.

Wm
0 =

λ

n+ λ

W c
0 =

λ

n+ λ
+ (1− α2 + β)

Wm
i = W c

i =
0.5

n+ λ
, i = 1, . . . , 2n

(2.4.12)

where β is a parameter used for incorporating the prior distribution of the

state and for Gaussian distribution β = 2 is a good choice [19, 65]. After

adjusting the weights, state and covariance prediction is calculated as the

weighted sum of the transformed sigma points as follows.

x̂−k+1 =
2n+1∑
i=0

Wm
i f(χi)

P−k+1 =
2n+1∑
i=0

W c
i

[
f(χi)− x̂−k+1

] [
f(χi)− x̂−k+1

]T
It should be noted that this step corresponds prediction of the state and

covariance matrix.

4. Generate new set of sigma points using predicted state and covariance

matrix.

χp0 = x̂−k+1

χpi = x̂−k+1 +

{√
(n+ λ)P−k+1

}
i

, i = 1, . . . , n

χpi = x̂−k+1 −
{√

(n+ λ)P−k+1

}
i

, i = n+ 1, . . . , 2n

5. Calculate the observation prediction and its covariance matrix according

to equations below.

ŷ−k+1 =
2n+1∑
i=0

Wm
i h(χpi )

P yy
k+1 =

2n+1∑
i=0

W c
i

[
h(χpi )− ŷ−k+1

] [
h(χpi )− ŷ−k+1

]T
.
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6. Calculate the cross correlation between the predicted state (x̂−k+1) and the

predicted observation (ŷ−k+1).

P xy
k+1 =

2n+1∑
i=0

W c
i

[
f(χi)− x̂−k+1

] [
h(χpi )− ŷ−k+1

]T
.

7. Calculate Kalman gain.

Kk+1 = P xy
k+1S

−1
k+1

where Sk+1 = P yy
k+1 is the innovations covariance at time k + 1 [19].

8. Carry out state and covariance update.

x̂+k+1 = x̂−k+1 +Kk+1

(
yk+1 − ŷ−k+1

)
P+
k+1 = P−k+1 −Kk+1Sk+1K

T
k+1

9. Iterate.

For this algorithm, the selection of sigma points and their weights may cause the

covariance matrix to be non-positive de�nite. In order to �x this issue, instead of

assigning several variables (α, κ, β) related with the distribution of the state, one

can choose the �rst weights of the mean and covariance as Wm
0 = W c

0 ∈ (0, 1)

and remaining can be chosen equally to make the sum of all weights one.

There are other unscented transforms which use reduced number of sigma points

such as simplex and spherical unscented transforms. They reduce the computa-

tional complexity while sacri�cing the accuracy of estimation and/or numerical

stability. More information about these unscented transforms can be found in

[53].

2.4.4 Filter Predictions : A Toy Example

In this section, single prediction (i.e., the time update) performances of the EKF,

the UKF and the CD-EKF with di�erent prediction step sizes are compared

in terms of position and velocity prediction errors. Errors in the predicted
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covariances for the position and the velocity are also investigated. In addition,

computation times of the predictions are compared.

The following continuous time dynamic model is used in this section for the

comparison.

Ẋ = fc(X) + w

where X =
[
x y z vz vy vz

]T
is the state vector, w ∼ N (06×6, Q) is the

process noise and fc(·) is the two body orbit model given as follows.

fc(X) =



vx

vy

vz

−µx√
(x2 + y2 + z2)3

−µy√
(x2 + y2 + z2)3

−µz√
(x2 + y2 + z2)3



(2.4.13)

For the state and covariance predictions, RK4 and Euler's methods are utilized.

RK4 method is presented in Section 2.1.3. Assuming discrete time model (dis-

cretized with the RK4) is represented by fRK4
d (·), it is known that the calculation

of the fRK4
d (·) requires 4 evaluations of the fc(·).

In order to see the e�ects of di�erent numerical integration schemes, the simplest

form of numerical integration (i.e., the Euler's method) is used. Euler's method

can be given as follows for the dynamic equation given in (2.4.13).

Xk+1 = fEulerd (Xk) = Xk + δfc(Xk) (2.4.14)

where δ is the integration step size and fEulerd (·) shows the resulting discrete

time model. This method is also used to calculate the covariance prediction

for the CD-EKF. It should be noted that the covariance prediction for the CD-

EKF is originally given by the di�erential equation given in Table 2.4.2. This

di�erential equation can be discretized using the Euler's method as follows.

Pk+1 = Pk + δ(FkPk + PkF
T
k +Qd) (2.4.15)
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where Fk is the Jacobian of the fc(·) evaluated at Xk and Qd = δQ is the discrete

counterpart of the continuous time process noise covariance matrix.

For the analysis, given the state estimate (X+
k ) and its covariance (P+

k ) one

second prediction is done by using prediction relations of the aforementioned

Kalman �lters. The following parameters are utilized.

• True predictions are obtained by using CD-EKF (with RK4) with predic-

tion step size of 1 ms.

• EKF and UKF prediction step sizes are 1 second (i.e., δ = 1).

• δ = 0.5 s and δ = 0.05 s are used for CD-EKF.

• Initial estimate (in ECI) and its covariance used are given below. It should

be noted that position components are in km and velocity components are

in km/s.

X+
k =

[
7000 0 0 0.0 2.8 7.0

]T
,

P+
k =

I3×3 03×3

03×3 10−4I3×3

 .
• Process noise covariance for the continuous time model is given as follows.

It should be noted that the process noise covariance matrix should be

scaled with the δ when di�erent step sizes are used.

Q =

10−6I3×3 03×3

03×3 10−8I3×3


Prediction errors for the position and the velocity are calculated as follows.

pos. error =
√

(x−k+1 − xk+1)2 + (y−k+1 − yk+1)2 + (z−k+1 − zk+1)2,

vel. error =
√

(v−xk+1
− vxk+1

)2 + (v−yk+1
− vyk+1

)2 + (v−zk+1
− vzk+1

)2.

where
[
x−k+1 y−k+1 z−k+1 v−xk+1

v−yk+1
v−zk+1

]T
is the predicted state vector and[

xk+1 yk+1 zk+1 vxk+1
vyk+1

vzk+1

]T
is the true predicted state vector.
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For the covariance errors, Frobenius norm can be used. For an n×n symmetric

matrix A, Frobenius norm is de�ned as follows [19].

‖A‖ ,
√
trace(A2) (2.4.16)

where trace(B) represents the sum of diagonal elements of the square matrix

B. Let P−k+1 and Pk+1 be the predicted covariance and the true covariance

respectively. In order to �nd the covariance error for the position and velocity

one can use the following equations.

pos. covariance error =
√
trace(A2

p),

vel. covariance error =
√
trace(A2

v).

where the 3 × 3 matrix Ap shows the di�erence between the position related

parts of the predicted and the true covariance matrices and similarly Av (3× 3)

is the matrix found by subtraction of the velocity related parts of the predicted

and the true covariance matrices.

In order to compare the prediction times, prediction equations are run 1000

times and the avarage computaion times are calculated.

Table 2.4.3: Prediction performance comparison of the �lters using RK4 method.

EKF (1 s) UKF (1 s) CD-EKF (0.5 s) CD-EKF (0.05 s)

Pos. error (km) 1.82× 10−11 1.73× 10−11 1.73× 10−11 1.64× 10−11

Vel. error (km/s) 2.70× 10−15 2.81× 10−15 2.70× 10−15 1.78× 10−15

Pos. cov. error (km)2 2.25× 10−5 1.73× 10−6 8.67× 10−7 8.54× 10−8

Vel. cov. error (km/s)2 1.73× 10−8 1.73× 10−8 8.64× 10−9 8.49× 10−10

Number of fc(·) eval. 52 52 32 320

Avg. comp. time (ms) 0.460 0.541 0.343 3.248

The results are shown in Tables 2.4.3 and 2.4.4 for the RK4 and the Euler cases

respectively. As we expected, prediction errors for the Euler discretization are

higher and it takes less time to compute the prediction equations since this
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Table 2.4.4: Prediction performance comparison of the �lters using Euler's
method.

EKF (1 s) UKF (1 s) CD-EKF (0.5 s) CD-EKF (0.05 s)

Pos. error (km) 4.07× 10−3 4.07× 10−3 2.03× 10−3 2.03× 10−4

Vel. error (km/s) 4.38× 10−6 4.38× 10−6 2.19× 10−6 2.19× 10−7

Pos. cov. error (km)2 2.27× 10−5 3.33× 10−6 8.58× 10−5 8.58× 10−6

Vel. cov. error (km/s)2 1.73× 10−8 1.73× 10−8 8.64× 10−9 8.49× 10−10

Number of fc(·) eval. 13 13 26 260

Avg. comp. time (ms) 0.133 0.196 0.245 2.392

type of discretization is less complex. The computation time of the CD-EKF

predictions are dominated by the calculation of the dynamic equation as seen

in the tables. The di�erence between the evaluation times is basically caused

by the multiplications and the additions which are present in the prediction

equations when the number of dynamic model evaluations are the same. It can

be also said that using a smaller prediction step size reduces the e�ect of the

process noise since we scale it with the step size. It should be mentioned that,

when the dynamic model used is simple then the prediction computation times

are dominated by the number of additions and multiplications. Therefore, using

CD-EKF with a simple dynamic model would probably be slower than the other

algorithms depending on the discretization step size.

2.4.5 Nonlinear Smoothing

In �ltering, all the information coming from successive measurements up to

current time is used in order to calculate the estimate of the current state. Con-

sequently, only the last estimate uses all the data. In order to re�ne the previous

estimates, one can use all the existing data. This procedure is called smoothing.

In general, the accuracy of a smoother is better than the �lter. For linear stable

systems smoothing improves the �ltering performance in the sense of MSE at
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most by a factor of two [54].

Mathematically, it is known that the optimal estimate in the sense of MMSE is

the mean of the conditional distribution given all the available information. Let

us assume that x is the random parameter to be estimated and y is the obser-

vations. Then the optimal estimate can be written by the following conditional

expectation.

x̂ = E {x|y} . (2.4.17)

For the state estimation case, at time k, let the available measurements be

y1, . . . , yk. Then the �ltered estimate is given by the equation below.

x̂k = E {xk|y1, . . . , yk} . (2.4.18)

If it is desired to estimate the state at time r < k by using all the available

information at time k then the optimal estimator will be

x̂r = E {xr|y1, . . . , yk} . (2.4.19)

This fact is the main point of the smoothing idea and this kind of estimators are

called smoothers. In literature, smoothers are grouped into three categories [19]

which are �xed-interval, �xed-lag and �xed-point smoothers. They are classi�ed

according to which set of measurements are used in order to estimate a state

or a set of states. In Fixed-interval smoothing, all available data is utilized

to estimate all states for certain time of interest. Trajectory �tting can be an

example of �xed-interval smoothing. In �xed-lag smoothing, estimate at time k

is generated from measurements up to time k + L. Here L > 0 is the lag time.

Usually this types of smoothers run in real time but gives delayed estimates

[54]. Finally, in �xed-point smoothing, estimate for the state at certain time is

generated using all set of measurements up to current time [54]. Fixed-point

smoothers are convenient when the state at only a certain time instant is of

interest [54].

A smoother can be described as forward �lter followed by a backward �lter.

A smoothing algorithm proposed by Rauch, Tung and Striebel called RTS

smoother is probably the most widely used smoothing algorithm [19, 53]. It
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gives a closed form solution to linear Gaussian smoothing problem, i.e., it is the

smoother counterpart of Kalman �lter [64].

Although there are various types of smoothing algorithm for nonlinear appli-

cations, here only the extended version of RTS smoother will be presented. Fur-

ther information about smoothers can be found in [19, 53, 54, 64, 69]. Extended

RTS smoother uses the �rst order linear approximation of nonlinear systems so

it can be said that it corresponds to EKF for �ltering case [64]. For the nonlin-

ear model given in (2.4.2), the extended RTS smoother is given by the following

algorithm [64].

1. Run EKF normally up to time N . Let the last updated state estimate and

covariance matrix be x̂+N and P+
N . It should be mentioned that storage of

estimates x̂+k , x̂
−
k covariance matrices P+

k , P
−
k and Jacobians of the state

transition function f(·) (namely, Fk) for each time k is required for the

backward recursion.

2. Initialize the smoother as follows assuming smoothed state is ŝ and the

corresponding covariance matrix is S.

ŝN = x̂+N ,

SN = P+
N .

(2.4.20)

3. Calculate smoother gain Gk for time k.

Gk = P+
k F

T
k

(
P−k+1

)−1
. (2.4.21)

4. Iterate smoother equation backward until reaching the desired state.

ŝk = x̂+k +Gk

[
ŝ−k+1 − x̂

−
k+1

]
,

Sk = P+
k −Gk

[
P−k+1 − Sk+1

]
GT
k .

(2.4.22)

2.5 Cramer-Rao Lower Bound

In estimation theory, it is always desired to have an optimal (in some sense)

estimator. However, usually this requirement is not satis�ed especially for the
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nonlinear case [56]. Consequently, one of these suboptimal estimators should

be chosen. A commonly accepted performance criterion is the estimation error

variance and it is desired to be minimized. In order to assess the performance of

proposed estimator in terms of Mean Square Error (MSE), Cramer-Rao Lower

Bound (CRLB) is widely used. CRLB provides the theoretical lower limit on

MSE [70]. CRLB is �rst developed for classical estimation case (i.e. parameter

to be estimated is deterministic). Then it was extended to the Bayesian esti-

mation case [70], namely the estimation of random parameters, by Van Trees

in [71]. CRLB for the Bayesian case is called PCRLB. The recursive form of

PCRLB for discrete nonlinear �ltering problems was proposed in [72] which will

be used in this thesis.

Let x be the random parameter vector to be estimated, y be the measurement

vector and x̂ = g(y) be the estimator based on measurements. PCRLB states

the following inequality [71]

E
{

(x− x̂) (x− x̂)T
}
> J−1 , PCRLB (2.5.1)

where J is the Fisher information matrix consisting of the below elements at its

ith row and jth column

Jij = E

{
−∂

2 ln p(x, y)

∂ xi∂ xj

}
(2.5.2)

where p(x, y) denotes the joint probability density function of x and y.

Let us have the following discrete nonlinear system with time dependent non-

linear vector valued functions fk(·) and hk(·),

xk+1 = fk (xk, ωk)

yk = hk (xk, νk)
(2.5.3)

where xk and yk represents state (n × 1) and measurement (m × 1) vectors

respectively and ωk and νk are noise components. Then the recursive calculation

of the Fisher information matrix is given as follows [72]

Jk+1 = D22
k −D21

k

(
Jk +D11

k

)−1
D12
k (2.5.4)
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where Jk is the n × n Fisher information matrix at time k and other matrices

involved in (2.5.4) are de�ned as

D11
k = −E

{
∆xk
xk

ln p(xk+1

∣∣xk)}
D12
k = −E

{
∆xk+1
xk

ln p(xk+1

∣∣xk)}
D21
k =

[
D21
k

]T
D22
k = −E

{
∆xk+1
xk+1

ln p(xk+1

∣∣xk)}− E {∆xk+1
xk+1

ln p(yk+1

∣∣xk+1)
} (2.5.5)

For the matrices A =
[
a1 a2 . . . an

]T
and B =

[
b1 b2 . . . bm

]T
, the oper-

ator ∆B
A is de�ned as

∆B
A =



∂2

∂a1∂b1

∂2

∂a1∂b2
. . .

∂2

∂a1∂bm

∂2

∂a2∂b1

∂2

∂a2∂b2
. . .

∂2

∂a2∂bm

...
...

. . .
...

∂2

∂an∂b1

∂2

∂an∂b2
. . .

∂2

∂an∂bm


. (2.5.6)

If the noise components of above nonlinear system in (2.5.4) is assumed to be

additive Gaussian with zero mean and independent then the D matrices in

(2.5.5) which contains ∆ operator can be calculated easily due to the simple

form of the natural logarithm of Gaussian probability density function. The

resulting D matrices become

D11
k = E

{
[∇xkfk(xk)]

T Q−1k [∇xkfk(xk)]
}

D12
k = −E

{
[∇xkfk(xk)]

T
}
Q−1k

D21
k =

[
D21
k

]T
D22
k = Q−1k + E

{[
∇xk+1

hk+1(xk+1)
]T
R−1k+1

[
∇xk+1

hk+1(xk+1)
]}

(2.5.7)

where Qk and Rk represents covariance matrices for ωk and νk respectively.

Moreover, ∇x denotes the Jacobian and for an m×1 vector valued function f(·)
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with elements fi, i = 1, . . . ,m it is de�ned as follows [19].

∇xf =



∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


(2.5.8)

where x =
[
x1 x2 . . . xn

]T
. If it is further assumed that the system is lin-

ear with additive, zero mean and independent Gaussian noise components then

PCRLB recursion given above reduces to Kalman �lter covariance updates [72].

Calculation of the PCRLB recursively by using (2.5.4) requires taking the ex-

pectations of matrices involving nonlinear functions of random vectors. Taking

this expectations explicitly is impossible most of the times. Instead, the use of

Monte Carlo methods is more convenient. This methodology is based on pro-

ducing samples from the random vector according to its distribution and passing

them through nonlinear functions and then taking the expectation by averaging

the results. PCRLB algorithm for a time invariant nonlinear system for Gaus-

sian noise case with prior informations x0 and P0 can be given as follows where

M is the number of Monte Carlo runs.

1. Initialize J0 = P−10 .

2. ProduceM initial states according to its distribution as xi0, i = 1, 2, . . . ,M .

3. Propagate all the sample states according to the following state model

starting from xi0

xik+1 = f(xik) + wk.

4. Calculate Jacobians for all sample states as follows

Fi = ∇xf, evaluated atx = xik.

and

Hi = ∇xh evaluated atx = xik+1.
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5. Calculate D matrices according to (2.5.7)

D11
k =

1

M

M∑
i=1

F T
i Q

−1Fi,

D12
k = − 1

M

M∑
i=1

F T
i Q

−1,

D21
k =

[
D12
k

]T
,

D22
k = Q−1 +

1

M

M∑
i=1

HT
i R
−1Hi.

6. Calculate Fisher information Jk+1 matrix using (2.5.4).

7. Calculate PCRLB for (k + 1)th step by

PCRLBk+1 = J−1k+1.

8. Diagonal elements of PCRLB corresponds to the lower limit of MSE for

each state.

9. Return to Step 4 and iterate.

If continuous time state model is used as in the CD-EKF then the above relations

for the PCRLB can not be directly used. In [70], for the continuous time state

equation and discrete measurement equation case such as in (2.4.8), another form

of PCRLB is proposed. Fisher information matrix (J) is propagated according

to following di�erential equation until a new measurement arrives [70].

J̇ = −JF − F TJ − JQJ. (2.5.9)

In the equation above, F is the Jacobian of f(·) at the current state and Q is the

process noise covariance matrix for continuous time. When a new measurement

arrives then the Fisher information matrix is corrected using the relation below

[70].

J+
k = J−k + E

{
HT
k R

−1Hk

}
(2.5.10)

where J−k and J+
k shows the predicted and corrected Fisher information matrices

at time k respectively. Hk is the Jacobian of h(·) evaluated at state x(tk) = xk

namely, Hk = ∇xh(x)
∣∣
x=xk

which was de�ned earlier in this section.
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In order to calculate Fisher information matrix recursively by using (2.5.9) and

(2.5.10), (2.5.9) should be discretized by using numerical integration techniques

(RK4 is also applicable for this case). Utilizing (2.1.16) gives us the propagation

(or prediction) of J as follows.

K1 = −J−k F − F
TJ−k − J

−
k QdJ

−
k

K2 = −(J−k + 0.5δK1)F − F T (J−k + 0.5δK1)

− (J−k + 0.5δK1)Qd (J−k + 0.5δK1)

K3 = −(J−k + 0.5δK2)F − F T (J−k + 0.5δK2)

− (J−k + 0.5δK2)Qd (J−k + 0.5δK2)

K4 = −(J−k + δK3)F − F T (J−k + δK3)

− (J−k + δK3)Qd (J−k + δK3)

J−k+1 = J−k +
δ

6
(K1 + 2K2 + 2K3 +K4)

(2.5.11)

where δ is the step size of the numerical integration and Qd is the discrete

counterpart of Q which was de�ned in Section 2.4.2.

Detailed information, derivations and proofs about both Bayesian and non-

Bayesian CRLB can be found in [50, 51, 70, 71, 72, 73, 74].
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CHAPTER 3

INITIAL ORBIT DETERMINATION

In this chapter, orbit determination using limited number of ground based mea-

surements is reviewed. Gauss' angles only initial orbit determination algorithm

is presented. Performance of the Gauss' algorithm (in terms of resulting accu-

racy levels) is investigated.

In order to completely represent the orbit, one needs six quantities [32], these

are generally three position and corresponding three velocity components so six

independent observations are required to completely specify the orbit. However,

for example, single set of angles only measurement gives only two angles (usu-

ally azimuth and elevation). Hence, at least three sets of independent angles

only measurements are required. If range data is available as well as angles, one

needs at least two set of angles and range (corresponds position) measurements.

If there is little or no knowledge about the orbit of a satellite then results com-

ing from initial orbit determination (IOD) methods will provide a good starting

point for further analysis (starting point for statistical estimation techniques).

It should also be mentioned that Earth based sensors produce data in terms of

pointing angles, range and possibly their rates and these measurements should

be converted to state vector form for statistical analysis.

The �rst method of orbit determination from three observation is given by New-

ton in his Principia [2]. Historically, initial orbit determination has been carried

out by using angles only observations since telescopes do not provide range or

range rate data and they were the only available sensor type in those days. To-
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day, in the presence of radar systems the problem of orbit determination is much

more simpler with the aid of range information [2]. Basically, IOD calculations

are established on the following available observation types.

• Three sets of angles

• Two position vectors

• Three position vectors

Aforementioned methods are originally developed for determining the orbits of

planets or asteroids. These methods require time information that is either

the absolute time of measurements or the time between measurements. Orbit

determination using three sets of angular measurements is �rst proposed by

Laplace [2]. Although his method is not robust for near Earth orbits with

rare measurements, it is valid for interplanetary orbits [1]. For this problem,

Gauss also proposed a solution that is more robust than the Laplace's method

but has bad performance for measurements with high separation. In order to

overcome this separation problem of observations, Escobal suggested a method

called Double-r iteration. This method can handle observations that are days

apart from each other [1]. The second case of initial orbit determination from

two position vectors and time of �ight between them is usually called Lambert's

problem since the solution of this particular problem is �rst introduced by him

[1]. Apart from initial orbit determination, this method can also be utilized

in orbital transfer and interplanetary orbit problems [2, 32]. The last method

which utilizes three succesive position vectors and proposes a solution based on

geometric approach is known as Gibbs method [1]. At �rst glance three position

vectors seem to provide nine independent quantities about the orbit but this is

not true since the position vectors lie in the same plane (i.e., they are linearly

dependent) [2]. This method su�ers from too close observations and there exists

an improved version called Herrick-Gibbs that handles close observations but

it is not robust as Gibbs method. Detailed information about the mentioned

methods of initial orbit determination can be obtained from [1, 2, 32].
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3.1 Gauss' Method of Initial Orbit Determination

Gauss' method of initial orbit determination from three angles only measure-

ments is developed under certain assumptions. Firstly, all the mentioned IOD

methods give solution for two body equations of motion. Moreover, ground

based measurement vectors are supposed to lie in the same plane [1]. These as-

sumptions are not perfectly true in practice. Since there exist perturbations (see

Section 2.1.2), two body assumption is violated. Furthermore, real world obser-

vations may not lie in the same plane. However, these assumptions simplify the

problem and make the analytical solution less complex. Gauss' method works

well for near Earth satellites and when the measurements are separated by 10◦ or

less, it gives fairly good results [1]. Gauss' method uses topocentric right ascen-

sion and declination instead of azimuth and elevation since they can be directly

acquired from background stars on telescope camera image [2]. Also they rep-

resent the satellite position vector in inertial frame. Moreover, if measurements

are obtained as azimuth and elevation, conversion (presented in Section 2.3.8) to

topocentric right ascension and declination will be required. In this section it is

assumed that topocentric right ascension (α) and declination (δ) measurements

are directly available. Consider the scenario in Figure 3.1.1, where t1, t2 and

Figure 3.1.1: Scenario for the Gauss' method.

t3 are succesive measurement times and
−→
Ri's show the observer position vectors

in inertial frame (speci�cally ECI) corresponding to the observation times, −→ρi 's
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and −→ri 's represent the satellite position vectors in inertial frame with respect to

observer and geocenter respectively. It should be noted that observer location is

changing in space not on Earth. The relation between the previously mentioned

vectors can be given as

−→ri =
−→
Ri +−→ρi i = 1, 2, 3. (3.1.1)

Let ri, Ri and ρi be the magnitudes of the vectors used in (3.1.1). Then (3.1.1)

can be written as follows

−→ri =
−→
Ri + Liρi i = 1, 2, 3. (3.1.2)

where Li is the unit vector for ith observation with the corresponding right

ascension and declination (αi, δi) values and it can be given as

Li =


cosαi cos δi

sinαi cos δi

sin δi

 i = 1, 2, 3.

Gauss algorithm can be implemented as follows [32].

1. Calculate the time intervals in seconds between the measurements.

τ1 = t1 − t2

τ3 = t3 − t2

τ = t3 − t1.

2. Calculate the following cross product terms.

p1 = L2 × L3

p2 = L1 × L3

p3 = L1 × L2.

3. Calculate the dot product D0 = L1 · p1.
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4. Calculate the following scalars.

D11 =
−→
R1 · p1 D12 =

−→
R1 · p2 D13 =

−→
R1 · p3

D21 =
−→
R2 · p1 D22 =

−→
R2 · p2 D23 =

−→
R2 · p3

D31 =
−→
R3 · p1 D12 =

−→
R3 · p2 D33 =

−→
R3 · p3.

5. Calculate the following parameters.

A =
1

D0

[
−D12

τ3
τ

+D22 +D32
τ1
τ

]
B =

1

6D0

[
D12

(
τ 23 − τ 2

) τ3
τ

+D32

(
τ 2 − τ 21

) τ1
τ

]
E =

−→
R2 · L2

a = −
(
A2 + 2AE +R2

2

)
b = −2µB (A+ E) , (µ ≈ 398, 600.44

km3

s2
)

c = −µ2B2

6. Find the roots of the following eighth order polynomial. Discard the nega-

tive and complex valued roots and choose one of the most reasonable root

as r2 (magnitude of the satellite position with respect to geocenter at time

t2).

x8 + ax6 + bx3 + c = 0. (3.1.3)

Newton-Raphson iteration can be utilized in order to �nd the roots of

(3.1.3). Since the performance of the proposed algorithm depends on the

initial condition, a reasonable starting point should be chosen (if the start-

ing point is not good then the iteration may not converge or may converge

to wrong place). For LEO satellites ∼ 7, 000km can be a good initial con-

dition since the Earth radius is approximately 6, 378km at the equator.

Newton-Raphson method for the equation f(x) = 0 is expressed by the

following iteration [57].

xi+1 = xi −
f(xi)

f ′(xi)
. (3.1.4)
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7. By using the r2 found above, calculate the corresponding slant ranges

between observer and satellite for t1, t2 and t3 as follows.

ρ1 =
1

D0

6

(
D31

τ1
τ3

+D21
τ

τ3

)
r32 + µD31 (τ 2 − τ 21 )

τ1
τ3

6r32 + µ (τ 2 − τ 23 )
−D11


ρ2 = A+ µ

B

r32

ρ3 =
1

D0

6

(
D13

τ3
τ1

+D23
τ

τ1

)
r32 + µD13 (τ 2 − τ 23 )

τ3
τ1

6r32 + µ (τ 2 − τ 21 )
−D33


8. Calculate the satellite position vectors (−→ri ) for each time by using (3.1.2)

and newly found ρi's (i = 1, 2, 3).

9. Calculate satellite's velocity vector −→v2 by the following relation. It should

be noted that ‖−→v2‖ = v2.

−→v2 =
−f3−→r1 + f1

−→r3
f1g3 − f3g1

(3.1.5)

where f1, f3 and g1, g3 are Lagrange coe�cients approximately given by

f1 ≈ 1− µ τ
2
1

2r32
g1 ≈ τ1 − µ

τ 31
6r32

f3 ≈ 1− µ τ
2
3

2r32
g3 ≈ τ3 − µ

τ 33
6r32

.

Further improvement on the calculated orbit can be obtained by applying

the subsequent statements.

10. Calculate the reciprocal of the semimajor axis as follows.

α =
2

r2
− v22
µ

Semimajor axis is the half of the longest diameter of en ellipse.

11. Calculate the magnitude of the radial component of −→v2 . De�ne vr2 by the

following dot product.

vr2 = −→v2 ·
−→r2
‖−→r2‖
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12. Solve the following equations for the universal anomalies χ1 and χ3 by

using the Newton-Raphson iteration given in (3.1.4).

√
µτ1 =

r2vr2√
µ
χ2
1C(αχ2

1) + (1− αr2)χ3
1S(αχ2

1) + r2χ1 (3.1.6)

√
µτ3 =

r2vr2√
µ
χ2
3C(αχ2

3) + (1− αr2)χ3
3S(αχ2

3) + r2χ3 (3.1.7)

where for elliptical and circular orbits αχ2 > 0. Moreover, the functions

C(·) and S(·) are de�ned as

C(x) =



1− cos(
√
x)

2
, x > 0

0.5, x = 0

cosh(
√
−x)− 1

−x
, x < 0

,

S(x) =



√
x− sin(

√
x)

(
√
x)3

, x > 0

1

6
, x = 0

sinh(
√
−x)−

√
−x

(
√
−x)3

, x < 0

.

In order to solve equations (3.1.6) and (3.1.7), Newton-Raphson iteration

can be started using the following initial conditions respectively [32].

χstart1 =
√
µ|α|τ1,

χstart3 =
√
µ|α|τ3.

13. Recalculate Lagrange coe�cients by using the values χ1 and χ3 found

above as follows.

f1 = 1− χ2
1

r2
C(αχ2

1) g1 = τ1 −
1
√
µ
χ3
1S(αχ2

1)

f3 = 1− χ2
3

r2
C(αχ2

3) g3 = τ3 −
1
√
µ
χ3
3S(αχ2

3)

. (3.1.8)

14. Recalculate the slant ranges between the satellite and the observer ρ1, ρ2
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and ρ3 as

ρ1 =
1

D0

(
−D11 +

D21

c1
− c3
c1
D31

)

ρ2 =
1

D0

(−c1D12 +D22 − c3D32)

ρ3 =
1

D0

(
−c1
c3
D13 +

D23

c3
−D33

)
where c1 and c2 are de�ned as follows.

c1 =
g3

f1g3 − f3g1

c3 =
−g1

f1g3 − f3g1
15. Recalculate the satellite position vectors (−→ri ) by using (3.1.2).

16. Recalculate the satellite velocity vector −→v2 as in (3.1.5) by using newly

found Lagrange coe�cients in (3.1.8).

17. Go to Step 11 and iterate until the changes in the slant ranges (ρ1, ρ2, ρ3)

fall below a certain level of precision.

To conclude, given the three sets of angles only measurements for times t1, t2 and

t3, Gauss' algorithm gives the corresponding slant ranges between the satellite

and the observer. It also provides position and velocity vectors (i.e, the state

vector) corresponding to the middle measurement. Furthermore, it should be

mentioned that Gauss' method consists of completely analytical techniques (i.e.,

does not use a statistical approach). It requires a resonable guess of r2 in order to

�nd the roots of 8th degree polynomial given in (3.1.3) by the Newton-Raphson

iteration. For more information about Gauss' method one can refer to [1, 32,

75, 76].

3.2 Performance Evaluation of the Gauss' Method

In this section, performance evaluation of the Gauss' algorithm (given in Section

3.1) is carried out for a satellite orbit estimation scenario which is going to be de-

scribed fully in Section 4.1. As mentioned above, Gauss' algorithm takes three
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measurements and it calculates the position and the velocity estimates corre-

sponding to the second measurement and the range estimates corresponding to

all three measurements. In this section, the uncertainty (i.e., the standard devi-

ation) of the estimates given by the Gauss' algorithm are examined with respect

to the time separation between the measurements and the angular measurement

accuracy. The aim of this analysis is to �nd the required time separation and

angle measurement accuracy for obtaining a reasonable performance with the

Gauss' algorithm.

It is reasonable to assume that the uncertainties in the estimates provided by

the Gauss' algorithm are monotone functions of time separation. In other words,

as the time separation between the measurements increases, the accuracy in the

estimates provided by the Gauss' algorithm increases. Using this observation,

in this section, we use bisection algorithm [57] to determine the minimum time

separation which results in a certain estimate accuracy with Gauss' algorithm at

an angle measurement uncertainty. A total of 20 di�erent angle noise standard

deviation values, which are logarithmically uniformly spaced between 10−4 and

10−1 degrees, are used. For each angle noise standard deviation, the required

time separation between the measurements for obtaining a desired performance

level from the Gauss' algorithm is found using the bisection algorithm. For this

purpose, we need to be able to calculate the uncertainty in the estimates of the

Gauss' algorithm given a speci�c measurement time separation. This is done as

follows.

Given a measurement time separation ∆, three true measurements, i.e., Y true
t1

,

Y true
t2

and Y true
t3

where t2 − t1 = t3 − t2 = ∆, are selected from a data set which

is produced for a satellite visibility duration of 700 seconds with a period of 1

second by using Systems Tool Kit (STK). Each of Y true
ti

is composed of true

azimuth and elevation values. Then 200 noise corrupted angular measurements
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are generated by adding Gaussian noise to Y true
t1

, Y true
t2

and Y true
t3

as follows.

Y i
t1

= Y true
t1

+ vit1

Y i
t2

= Y true
t2

+ vit2

Y i
t3

= Y true
t3

+ vit3

for i = 1, . . . , 200 where vitj (j = 1, 2, 3) denote zero-mean Gaussian measurement

noise with a speci�ed standard deviation. Generated triples of noisy azimuth

and elevation values are passed through the Gauss' algorithm and covariance of

the resulting estimates is calculated (calculation method is explained in Section

4.2.3.4). Using the procedure given above, the required time separation ∆ which

gives the desired estimate uncertainty is found using the bisection algorithm for

each angle measurement noise standard deviation.

Minimum time separations required to obtain position estimates with 3-D accu-

racies of 50 km, 10 km, 5 km and 1 km can be seen in Figure 3.2.1. Minimum

time separations required to obtain velocity estimates with 3-D accuracies of 0.5

km/s, 0.1 km/s, 0.01 km/s and 0.005 km/s can be seen in Figure 3.2.2. Min-

imum time separations required to obtain range estimates with accuracies 20

km, 10 km, 2 km and 0.5 km can be seen in Figure 3.2.3. It can be concluded

from the �gures that achieving a position accuracy of better than 1 kilometer

requires measurement separations larger than 350 seconds, which means a satel-

lite visibility duration greater than 700 seconds, with an angular measurement

uncertainty of 0.01 degrees. In terms of velocity accuracy, performance of the

Gauss' algorithm seems rather good since achieving an accuracy of 5 m/s is

possible with an accurate sensor system and with a high visibility duration.

Time separation of three sets of azimuth and elevation measurements which are

used in the Gauss' method is important in order to achieve certain performance

level for the initial estimate (�nding consistent state and covariance matrix) for

sequential estimation algorithms. Since LEO satellites are our main interest

in this work, it should be noted that the maximum visibility duration of the

satellite for a ground based sensor is about 800 seconds (depending on the alti-

tude , the maximum elevation angle and the sensor type). Therefore, the time
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Figure 3.2.1: Minimum time separation to achieve a speci�ed position uncer-
tainty.

separation between three measurements which are used in the Gauss' algorithm

can not exceed 400 seconds (assuming equally spaced three measurements are

used) in our work. In addition, if optical telescopes are used then the visibil-

ity duration is shorter. In order to initialize sequential �lters when angles only

measurements are available, range information might also be used for some ap-

plications. Therefore, the uncertainty level of the initial range calculated using

the Gauss' method (i.e., ρ1) should also be considered.

It should also be mentioned that the radio wave based and optical satellite track-

ing systems provide angular measurements with a few tens of millidegrees and

a few millidegrees of accuracies respectively. Combining this information with

the approximate visibility durations, one can achieve a 3-D position accuracy

of 1 km and velocity accuracy of 5 m/s for both optical and radio wave based

sensors. In addition, range can be estimated with a standard deviation of 2 km

for both tracking systems.
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Figure 3.2.2: Minimum time separation to achieve a speci�ed velocity uncer-
tainty.

82



10-4 10-3 10-2 10-1

Angular Error (deg)

0

50

100

150

200

250

300

350

M
ea

su
re

m
en

t S
ep

er
at

io
n 

(s
)

20 km
10 km
2 km
0.5 km

Figure 3.2.3: Minimum time separation to achieve a speci�ed initial range un-
certainty.
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CHAPTER 4

ORBIT ESTIMATION USING DIFFERENT STATE

ESTIMATORS

In this chapter, the problem of orbit estimation with sequential Bayesian esti-

mators is studied. In Section 4.1 the details of the simulation scenario used in

this section are given. Initialization of sequential estimators is investigated in

Section 4.2. Comparison of estimators that are given in Sections 2.4.1, 2.4.2 and

2.4.3 will be made in terms of computational load and root mean square error

(RMSE) performances in Section 4.3. Based on the performance and compu-

tational load of the �lters, one of the algorithms will be proposed for further

study. Then, for all di�erent measurement types, the performance of the pro-

posed estimator will be compared with the PCRLB.

4.1 Data Generation and Necessary Parameters

4.1.1 True Data Generation

For orbital simulations and data generation AGI's Systems Tool Kit (STK 8) is

used. The following scenario parameters are used in STK:

• A LEO satellite at 700 km altitude and with the following physical prop-

erties is considered.

� Dimensions: Cube with a side length of 1 m.

� Mass: 100 kg
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• Orbit data is generated using STK's High Precision Orbit Propagator with

the following force modelling.

� RK4 integrator with one second step size

� 20× 20 gravity model

� Jacchia-Roberts atmospheric model (with a drag coe�cient of 2.2)

� Solar radiation pressure with a coe�cient of Cr = 1 and dual cone

shadow model.

� Earth and ocean tides

� Third body e�ects (Sun, Moon, Jupiter)

• Position and velocity samples (used as a reference to determine the RMSE)

are generated in ECI frame.

• For the Doppler data, a transmitter is placed on the satellite with a carrier

frequency of 8.15 GHz.

• Ground sensors are placed on the following coordinates in STK.

� METU campus: Lat: 39.89◦ Lon: 32.77◦ Alt: 900 m

� Gokceada: Lat: 40.23◦ Lon: 25.91◦ Alt: 200 m

• Measurements are taken in every second for all observation cases.

• For multiple station (two stations) case, it is assumed that there is perfect

time synchronization between the stations. Only the measurements when

the satellite is in the line of sight of both stations are utilized.

4.1.2 Noisy Data Generation

The noisy measurements for the simulations are generated in Matlab using the

following parameters.

• Zero mean, white Gaussian noise is generated and added to measurements

with the following standard deviations.

� Full state observations: 10 m in position and 20 cm/s in velocity.
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� Azimuth and Elevation observations: 10 millidegrees for Az and El.

� Range measurements: 50 m.

� Doppler measurements: 5 Hz.

4.1.3 Filter Parameters

Dynamic model which is used in the �lters and PCRLB calculation contains

two body model and perturbing accelerations coming from the Earth oblateness

(i.e., J2 e�ect) and drag with exponential air density described in Sections 2.1.1

and 2.1.2. Discrete form of the dynamic model is obtained using RK4 algorithm

presented in Section 2.1.3.

Measurement models used in this chapter are given below. The measurement

equations are constructed as described in Section 2.2 by using coordinate trans-

formations presented in Section 2.3.

• Full State Observation

• AER Observation

• AE Observation

• AED Observation

Jacobians are taken numerically by using central di�erencing method given in

(2.4.7). Small scalar ε is chosen as 10−8 km and 10−8 km/s for the states corre-

sponding to the position and the velocity respectively.

It should also be mentioned that, it is necessary to use consistent measurement

and process noise covariance matrices (i.e., R and Q) for Kalman �lters to work

properly. R matrices for each observation case can easily be constructed by

using the aforementioned standard deviations. Determination of Q matrix is

relatively complex since we do not exactly know the accuracy of the dynamic

model used. However, in Figure 2.1.3, the order of magnitudes of the perturbing

accelerations due to each force acting on the satellite can be seen. Let us consider
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the following dynamic model.

Xk+1 = f (Xk) + wk︸︷︷︸
Gαk

(4.1.1)

where αk represents the noise due to the perturbing accelerations with distribu-

tion N (03×1, Qα) and G is the 6× 3 coupling matrix between the state and the

process noise. Mean of this distribution is just an assumption and the covari-

ance matrix is chosen as Qα = 10−8I3×3 by taking the e�ects of unmodeled forces

into account. Since the state is in form Xk =
[
xk yk zk vxk vyk vzk

]T
, the

coupling matrix G can be written as follows.

G =



δ2

2
0 0

0
δ2

2
0

0 0
δ2

2
δ 0 0

0 δ 0

0 0 δ


. (4.1.2)

It should be noted that δ is the discretization time. Finally, the covariance

matrix Qw for the wk can be found as follows.

Qw = E
{
wkw

T
k

}
= GQαG

T . (4.1.3)

4.1.4 Error Metrics

In order to measure the performance of the estimators Monte Carlo runs are

used and RMS errors for the position and the velocities are calculated for each

time k as follows.√√√√ 1

M

M∑
i=1

{(
x̂+k (i)− xk(i)

)2
+
(
ŷ+k (i)− yk(i)

)2
+
(
ẑ+k (i)− zk(i)

)2}
(4.1.4)

√√√√ 1

M

M∑
i=1

{(
v̂+xk(i)− vxk(i)

)2
+
(
v̂+yk(i)− vyk(i)

)2
+
(
v̂+zk(i)− vzk(i)

)2}
(4.1.5)

where M is the number of the Monte Carlo runs; [x̂+k (i), ŷ+k (i), ẑ+k (i)]T and

[xk(i), yk(i), zk(i)] show the kth position estimate and the kth true position of
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the ith Monte Carlo run respectively. Similarly [v̂+xk(i), v̂+yk(i), v̂+zk(i)]T and

[vxk(i), vyk(i), vzk(i)]T show the kth velocity estimate and the kth true velocity

of the ith Monte Carlo run respectively. It should be noted that, if the random

trajectories are generated by only adding noise to the measurements then all the

state elements are same for all i's.

4.2 Filter Initialization

In Bayesian estimation, parameter to be estimated is treated as a random vari-

able and prior knowledge about the parameter is required. As a result, in order

to start a sequential �lter (which is also a Bayesian scheme), initial values for

the state and its covariance matrix based on our prior knowledge are required.

Choosing accurate initial conditions is important for convergence issues espe-

cially if full state observations are not available or they can not be deduced from

the available information.

4.2.1 Full State Observation Case

Filter initialization procedure is simplest in the full state observation case since

the measurements contain all of the information (position, velocity and their

uncertainties) to start the �lter even if they are the transformed versions of

the state and covariance matrix. Initial conditions can simply be obtained by

transforming the �rst measurement and its covariance matrix. ECEF to ECI

conversion, which is given in Section 2.3.5, is needed. This transformation is a

simple matrix multiplication (actually construction of this matrix is not simple).

Let the relation between the measurement and the state be

Y = HX (4.2.1)

where Y is the 6×1 measurement vector and X is the 6×1 state vector. H is the

transformation matrix from ECI to ECEF. It should be noted that the dimension

of the state is 6 since it contains three position and three velocity components.

Assuming that the �rst measurement is Y0 and its covariance matrix is R, the
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initial conditions for the �lter can be found as follows.

X̂0 = HT Y0 (4.2.2)

P0 = E
{

(X0 − X̂0)(X0 − X̂0)
T
}

= HTRH
(4.2.3)

where X0 is the initial state with estimate X̂0 and P0 is the corresponding initial

covariance matrix. It should be mentioned that since H is a rotation matrix,

HT shows the inverse rotation. Note that this measurement type is usually the

most accurate one and it is in general used as a reference in order to calculate

RMSE. This is because, in real life, true data is unavailable and one needs a

ground truth in order to assess the performance of the designed �lter or sensor.

4.2.2 AER Observation Case

This observation case is more complex than the full state observation case since

velocity information is not available in the measurements. Position part of the

state vector and its covariance matrix can be deduced by converting the �rst

AER measurement to ECI coordinates. For the velocity part, there are several

approaches for obtaining the initial velocity estimate and its covariance. Initial-

ization methods for tracking applications can be found in [50]. The initialization

methods proposed for AER case are given in the following subsections.

4.2.2.1 Two-Point Initialization

Two point di�erencing is one of the methods for velocity initialization and it

uses successive position measurements and the time between them to compute

an estimate of the initial velocity [50]. Another method for velocity initialization

is one point initialization. Sometimes, �lter designer have knowledge about the

bounds on the velocity of the target and he/she can use the upper and lower

bounds on velocity to form the distribution of the initial velocity estimate.

Let the initial estimate and the covariance be X̂0 and P0 respectively. They can
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be written as

X̂0 =
[
x̂0 ŷ0 ẑ0 v̂0x v̂0y v̂0z

]T
P0 =

 P p
0 03×3

03×3 P v
0


6×6

(4.2.4)

where P p
0 and P v

0 show the position and velocity part of the covariance matrix

of the initial estimate. Let us say

ˆpos0 =
[
x̂0 ŷ0 ẑ0

]T
and

v̂el0 =
[
v̂0x v̂0y v̂0z

]T
.

In order to �nd the initial estimate for the position part, uncertainty trans-

formation is needed, namely distribution of the AER measurements should be

propagated through the nonlinear AER to ECI transformation. This can be

done by representing the distribution of the �rst measurement with randomly

chosen sample points and passing them through the nonlinear function individ-

ually. Let the transformation from AER to ECI be h(·) and assume that the

�rst AER measurement is Y0 with the covariance matrix R3×3. Then, producing

M random measurements assuming that the �rst measurement has a Gaussian

distribution with mean Y0 and covariance R gives us the sampled form of its

distribution. Passing these samples through the transformation

posi0 = h(Y i
0 ), i = 1, 2, . . . ,M (4.2.5)

and then calculating the mean and the covariance matrix of the transformed

samples (posi0) gives us the position related part of the initial conditions as

follows.

ˆpos0 =
1

M

M∑
i=1

posi0

P p
0 =

1

M

M∑
i=1

(
posi0 − ˆpos0

) (
posi0 − ˆpos0

)T
.

(4.2.6)

If two point di�erencing method is used, the �rst and second AER measurements

are utilized in order to calculate the velocity estimate and its covariance matrix.
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Since the velocity vector should be represented in ECI, nonlinear transform of

the sampled distribution methodology explained above for position case should

be used. Let the �rst and second AER measurements be Y0 and Y1 with same

covariance matrix R then the initial velocity estimate and the covariance matrix

can be calculated as follows.

v̂el0 =
1

M

M∑
i=1

(
h(Y i

1 )− h(Y i
0 )

δ

)
(4.2.7)

P v
0 =

1

δ2
(P p

0 + P p
1 )

=
2HTRH

δ2

(4.2.8)

where δ is the time between two measurements Y0 and Y1. The equation for

P v
0 is directly written by using the assumption of conditionally independent

measurements and using

v̂el0 =
ˆpos1 − ˆpos0

δ
(4.2.9)

and

ˆpos1 =
1

M

M∑
i=1

h(Y i
1 ). (4.2.10)

4.2.2.2 One-Point Initialization

One point initialization method uses the same uncertainty transformation tech-

nique (as introduced earlier) to construct the position part of the initial estimate

and the covariance matrix. However, for the velocity part, this method uses the

knowledge of the �lter designer about the bounds on velocity. Since we are in-

terested in LEO satellites in this thesis, we can say that the magnitude of the

velocity of a LEO satellite can not exceed 8 km/s even for an altitude of 100 km.

As a result, elements of the velocity vector take values in the interval of (−8, 8)

km/s. Let us construct a Gaussian distribution for a component of the velocity

estimate with zero mean and standard deviation of 8/3, namely N
(
0, (8/3)2

)
.

Then it is guaranteed that the magnitudes of velocity components lie in between

-8 and 8 with probability of 0.997. In conclusion, velocity part of the covariance

matrix of the initial estimate for one point initialization case can be given as
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follows.

v̂el0 =
[
0 0 0

]T
P v
0 =

(
8

3

)2

I3×3

(4.2.11)

where I3×3 is the identity matrix of size 3× 3.

4.2.2.3 One-Point Initialization with Velocity Direction Information

For one point initialization of AER measurement case, we also have the direc-

tion information of the satellite velocity. It is known that the velocity vector

is tangential to the orbit ellipse (see Figure 4.2.1) and its uncertainty in the

direction of −→r is much smaller (can be assumed as ten times smaller) than the

uncertainties lying on the T plane.

Figure 4.2.1: Illustration of orbit ellipse, its tangent and satellite position vector.

In order to construct the velocity part of the initial covariance matrix (i.e., P v
0 )

containing aforementioned velocity direction information, matrix operations and

some properties of diagonal matrices and orthogonal vectors can be used. Let

e1, e2 and e3 be three orthogonal unit vectors where e1 is in the direction of −→r ,
and e2 and e3 are lying on the T plane. Then we can construct the covariance

matrix as follows.

P =
3∑
i=1

λieie
T
i (4.2.12)
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where λi's are corresponding to the velocity uncertainties (variances) in e1, e2, e3

directions. For orthogonal unit vectors it is also known that

3∑
i=1

eie
T
i = I3×3. (4.2.13)

Letting λ1 =
(

8
30

)2
and λ2 = λ3 =

(
8
3

)2
(4.2.12) becomes

P =

(
8

30

)2

e1e
T
1 +

(
8

3

)2 (
I3×3 − e1eT1

)
. (4.2.14)

4.2.2.4 Initialization Method Comparison

In this section, performances of the two point initialization, one point initial-

ization and one point initialization with direction information are compared.

For this purpose, the results of these initialization methods are used as initial

conditions to start EKFs and the performance of the corresponding EKFs are

compared. For the comparison, �rst, a measurement sequence of 300 true AER

measurements is generated with the parameters given in Section 4.1 for the ob-

serving station located at METU Campus. A sample true trajectory is given in

Figure 4.2.2. In order to carry out Monte Carlo simulations, 100 random trajec-

tories are generated by adding zero mean white Gaussian noise to the generated

true AER trajectory as follows.

Y i
k = Y true

k + vik, for k = 1, . . . , 300 and i = 1, . . . , 100 (4.2.15)

where Y i
k is the kth noisy AER measurement corresponding ith Monte Carlo run

and Y true
k is the true AER measurement at time k. Y i

k and Y true
k are vectors of

size 3×1. vik is the measurement noise with distributionN (03×1, R) where 03×1 is

a vector of size 3×1 with all its elements equal to zero and R is the measurement

covariance matrix formed with standard deviations given in Section 4.1, i.e., we

have

R =


(0.01)2 0 0

0 (0.01)2 0

0 0 (0.05)2

 . (4.2.16)
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The number of random samples generated for initializing the position states is

100, i.e., M = 100 in (4.2.6). The EKFs run with a prediction step size of 1

second. The process noise covariance is used as it is described in (4.1.2) with a

discretization step size of 1 second (i.e., δ = 1).

In Figure 4.2.3, the performance of the aforementioned three initialization tech-

niques for AER measurements is compared. Except the �rst few estimates, the

RMSE performances of the corresponding EKFs are approximately the same.

The di�erence in the velocity RMSE's seen in Figure 4.2.3 is completely caused

by the �rst estimate since the initial velocity estimate and its covariance are not

very good for one point initialization cases. For one point initialization case,

taking the direction information of the satellite velocity into account improves

the initial performance of the estimator. Although the initial performances of

all three initialization method di�er, they all give satisfactory results. This is

because, both position and velocity information can be deduced from the suc-

cessive measurements of AER. In other words, there is no observability problem.

As seen in the �gure, the RMS errors of all �lters converge to the same values.

One can apply on-line �ltering when AER measurements are available. Initial-

ization can be done by using the �rst two measurements. When the measurement

noise is high, initial position estimates is not very good for all of the aforemen-

tioned initialization techniques. For the two point initialization method, velocity

estimate can be very bad since it is found by di�erencing the positions. It should

be noted that di�erencing ampli�es the high frequency noise. Therefore, if the

measurement noise is low then the use two point initialization is reasonable and

if the noise is high then using one point initialization with velocity direction

information is more convenient.

4.2.3 AE Observation Case

Initialization of the �lter when angles only (i.e., azimuth and elevation) measure-

ments are available is more problematic than the AER observation case. This is

because, measurements give only the direction of the line of sight vector. Hence,

95



0 50 100 150 200 250 300
50

100

150
A

zi
m

ut
h 

(d
eg

)

0 50 100 150 200 250 300
0

20

40

E
le

va
tio

n 
(d

eg
)

0 50 100 150 200 250 300

Time (s)

0

2000

4000

R
an

ge
 (

km
)

Figure 4.2.2: A sample AER trajectory.

we should extract range data by using a few samples of azimuth and elevation

angles. The initialization methods proposed for this case are described in the

following subsections.

4.2.3.1 One Point Initialization

This method is the same as the one given in Section 4.2.2.2 except that the range

information is obtained using Gauss' method described in Section 3.1. Let us

have a sequence of angles only measurement vectors {Yk}2Lk=0 where Yk is the k
th

measurement vector consisting of azimuth and elevation. In order to �nd the

range corresponding to Y0, we need to select three of the measurements. It is

better to choose the �rst, the middle and the last measurements (i.e., Y0, YL

and Y2L) since the higher separation times yield more accurate results as seen

in Section 3.2. In order to �nd the range estimate ρ0 and its covariance, we
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Figure 4.2.3: RMSE performances of EKFs using di�erent initialization methods
(the �rst 14 samples).

generate random samples Y i
0 , Y

i
L, Y

i
2L, i = 1, . . . ,M , distributed as follows.

Y i
0 ∼ N (Y0, R) ,

Y i
L ∼ N (YL, R) ,

Y i
2L ∼ N (Y2L, R) ,

(4.2.17)

where R denotes the measurement noise covariance for the azimuth and elevation

measurements. Each of the random samples Zi , {Y i
0 , Y

i
L, Y

i
2L} are then passed

through the Gauss' algorithm as follows.

X i
L

ρi0

ρiL

ρi2L


= G

(
Zi, t0, tL, t2L, OS

)
(4.2.18)

for i = 1, . . . ,M where
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• G(·) is the function corresponding to Gauss' algorithm;

• X i
L is the 6×1 state vector corresponding to time tL containing the position

and the velocity estimates;

• ρi0, ρiL and ρi2L are ranges between the satellite and the observing station

at times t0, tL and t2L respectively;

• OS is the Earth �xed coordinates (geodetic latitude, longitude and alti-

tude) of the observing station.

After obtaining {ρi0}Mi=1, the estimate for ρ0 and its covariance Pρ0 can be calcu-

lated as follows.

ρ̂0 =
1

M

M∑
i=1

ρi0, (4.2.19)

Pρ0 =
1

M

M∑
i=1

(
ρi0 − ρ̂0

)2
. (4.2.20)

After �nding the estimate ρ̂0 and the covariance Pρ0 , the initialization problem

turns into initialization with a single AER measurement as described is Sec-

tion 4.2.2.4. The velocity estimate and its covariance are chosen as in (4.2.11).

4.2.3.2 Middle Point Initialization

This method only applies Gauss' method of initial orbit determination using

three sets of su�ciently separated angles. Since the Gauss' method supplies the

state estimate for the middle measurement of the selected azimuth and elevation

triple, the initialization is made for the middle measurement, i.e., the time stamp

of the resulting initial state corresponds to the middle measurement. Hence we

call this method as the middle point initialization. In order to �nd the initial

estimate and its covariance, the same type of samples ({Y i
0 , Y

i
L, Y

i
2L}Mi=1 ) are

generated from Y0, YL and Y2L as given in (4.2.17). The initial state X̂L and
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its covariance PL are then calculated as

X̂L =
1

M

M∑
i=1

X i
L (4.2.21)

PL =
1

M

M∑
i=1

(
X i
L − X̂L

)(
X i
L − X̂L

)T
(4.2.22)

where X i
L is de�ned in (4.2.18). Afterwards, the resulting estimate and its

covariance is used to initialize the �lters. When the angular measurement errors

and the time separation are good, it is seen that the Gauss' method gives the

estimate with 3-D position and velocity standard deviations of a kilometer and

a few meters per second. For such a small covariance matrix coming from the

uncertainty transformation given in (4.2.22), scaling of the resulting covariance

can be useful. It should be mentioned that in this method, the measurements

up to the middle measurement (i.e., Y0, . . . , YL−1) are not used in the �ltering

algorithms and this can reduce the estimation performance.

4.2.3.3 Smoother Initialization

Smoothed version of the initial estimate can also be used as an initial condition

to start the �lter. In order to �nd the smoothed estimate and its covariance,

the RTS smoother algorithm (described in Section 2.4.5) is applied. The RTS

smoother is initialized using the initial condition obtained from the one point

initialization method given in Section 4.2.3.1. The smoothed estimate is used

to initialize the �lter. The initial covariance should be scaled to that the the

3-D standard deviations for the position and the velocity should be on the order

of a kilometer and a few tens of meters per second respectively. The reason

for not using the smoother covariance directly as the initial covariance is that

the covariance of the smoothed estimate can be very small and the �lter might

not care about the future measurements if this covariance is used as the initial

covariance.
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4.2.3.4 Initialization Method Comparison

In this section, performances of the one point initialization, middle point initial-

ization and smoother initialization are compared. For this purpose, the results

of these initialization methods are used as initial conditions to start EKFs and

the performance of the corresponding EKFs are compared. For this purpose, a

measurement sequence of 601 true AE measurements (2L = 600), which corre-

sponds to satellite visibility duration of 601 seconds and sampling period of 1

second, is generated. The noisy measurements (Y0, Y1, . . . , Y600) are generated

by adding zero mean white Gaussian noise with a standard deviation of 0.01

degrees for both azimuth and elevation as described in Section 4.2.3.1. A total

of 100 Monte Carlo simulations are carried out by changing the measurement

noise realizations in each run. For each Monte Carlo run, 200 samples (i.e.,

M = 200 in (4.2.18)) are generated while applying the initialization methods.

In the simulations, the initial covariance matrix scaling factors for the one point

(γop), the middle point (γmp) and the smoother initialization (γsm) cases are

given below respectively.

γop = 5, γmp = 20, γsm = 100.

It should be noted that the scaling factor, for the one point case, is used only for

scaling the position covariance since the worst case covariance is chosen for the

velocity. Other scaling factors are applied to both the position and the velocity.

Relative performances of the initialization methods can be seen in Figure 4.2.4.

In the Figure 4.2.4, it is seen that although the middle point initialization has

smaller initial error (than the other two initialization methods), the RMS er-

rors of the EKF initialized using this initialization technique get smaller quite

slowly. There is no considerable di�erence between the estimation performances

of the one point initialization and smoother initialization. However, by chang-

ing the the scaling factors one can obtain di�erent results. Table 4.2.1 shows

the time averaged RMS estimation error performances of the three initialization

techniques, where similar observations can be made.

For the AE case initialization, collection of a long sequence of azimuth and ele-
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Figure 4.2.4: E�ect of initialization method to estimator performance for AE
measurement case.
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Table 4.2.1: Comparison of initialization techniques for the AE case by time
averaged RMSE's using last 50 estimates.

RMSE

Initialization method Position (km) Velocity (m/s)

One point init. 0.68 2.4

Middle point init. 1.43 5.2

Smoother init. 0.60 1.3

vation measurements is needed since all of the proposed initialization techniques

use Gauss' method to �nd the estimates and their covariances. Therefore, on-

line �ltering is not applicable if we do not have reasonable prior information.

Among the three initialization methods proposed, smoother initialization seems

to be the most promising one.

4.2.4 AED Observation Case

For the azimuth-elevation-Doppler (AED) measurement case, existence of Doppler

data gives extra information about the velocity of the satellite (i.e., the rate of

change of the range between the satellite and the observing station). Therefore,

initialization techniques used for AE measurement case can also be used and

work better for the AED case.

4.3 Estimator Comparison

In this section, the recursive estimation methods EKF, UKF and CD-EKF are

used for the nonlinear orbit estimation problem. Their computational com-

plexities and error performances are compared and one of them is proposed for

further analysis. In addition, the e�ects of initial uncertainties on the RMS error

102



performances are also investigated.

4.3.1 Relative Filter Performances

There are many observation types for satellite orbit determination such as full

state observation, angles only observation, angles and range observation etc.

and we know that (from Sections 2.2 and 2.3) the measurement equations are

nonlinear except the full state observation case. In order to compare �lter perfor-

mances in terms of computation times and RMSE's for both linear and nonlinear

measurement equation cases, full state and AER observations cases are chosen

as sample scenarios.

For the full state observation case, a sequence of 200 true measurements with 1

second sampling period is generated in ECI frame by using STK as described in

Section 4.1. This corresponds to the following measurement equation.

Y true
k = X true

k (4.3.1)

where X true
k is the 6× 1 state vector consisting of position and velocity compo-

nents and Y true
k is the true measurement vector. It should be mentioned that

the measurement matrix (usually represented by H) is the identity matrix of

size 6 × 6 for this case since the measurements are generated directly in ECI

frame. 200 Monte Carlo simulations are carried out for each �ltering method in

order to obtain the statistical properties of the estimation errors. In order to

make the Monte Carlo runs, 200 noisy measurement sequences are generated as

follows.

Y i
k = Y true

k + vik (4.3.2)

for i = 1, . . . , 200 and k = 1, . . . , 200 where Y i
k is the k

th noisy measurement vec-

tor of size 6×1 and vik is the measurement noise vector for the kth measurement

and ith Monte Carlo run. It should be noted that

vik ∼ N (06×1, R) (4.3.3)
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where R is the measurement covariance matrix selected as

R =

10−4I3×3 03×3

03×3 4× 10−8I3×3

 . (4.3.4)

In Figure 4.3.1, a sample sequence of true measurements of x-position and x-

velocity (in ECI frame) is shown. For AER measurement case, a sequence of 200
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Figure 4.3.1: Sample full state measurements.

true AER measurements are obtained for the same true states as in the full state

observation case (in ECI frame) are generated by using the STK with 1 second

sampling period. Similar to the full state observation case, 200 random sequences

of AER measurements are obtained by adding white noise to measurements as

in (4.3.2). In this case, the dimension of the measurement and the noise vectors
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are 3× 1 and the noise component has the following distribution.

vik ∼ N

03×1,


(0.01)2 0 0

0 (0.01)2 0

0 0 (0.05)2



 (4.3.5)

where the units of the diagonal elements of the covariance matrix are degree2

(for the �rst and second elements) and km2 (for the third element).

For both measurement cases, the initial estimates X̂0 of the �lters are chosen ran-

domly. For each Monte Carlo run the initial states of the �lters are distributed

as

X̂0 ∼ N
(
X true

0 , P0

)
(4.3.6)

where X true
0 is the true initial state and P0 is the covariance matrix of initial

estimate which is given as follows.

P0 ,

(2.5)2I3×3 03×3

03×3 (0.05)2I3×3

 . (4.3.7)

For UKF, the parameters which determine the weights of each sigma point used

for the calculation of the mean and covariance matrices are chosen as follows.

α = 1.15 ,

β = 0.3225 ,

κ = 0.

(4.3.8)

The parameters above and their meanings are explained in Section 2.4.3.

In Table 4.3.1, �lter performances in terms of computation times of 200 Monte

Carlo runs are compared. In the table, the step size shows the time between

successive predictions in seconds. It should be noted that the measurement

updates are carried out in at every second when the measurements arrive. The

following explanations can be given for the results in Table 4.3.1:

• The measurement equations of the full state measurement case are linear

while the AER measurement equations are nonlinear. Therefore, the mea-

surement prediction for the AER case takes more time to compute. For
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Table 4.3.1: Filter computation times.

Computation time (s)

Filter type Step size Full state AER

EKF 1 s 119 3111

UKF 1 s 130 5317

CD-EKF

1 s 56 2864

0.5 s 108 2945

0.1 s 511 3474

the computation times of the measurement updates, our primary interest

is the computation of the measurement functions. In the linear measure-

ment case, computation times of the state and the covariance updates are

similar for all of the �lters. In the AER measurement case, computation of

ECI to AER transformation is nonlinear and takes more time as expected.

• Let us assume that the continuous time dynamic system is represented

by fc(·) and its discretized version (with RK4) is represented by fd(·). In
CD-EKF, continuous time dynamic model is used and this actually reduces

the computational e�ort of CD-EKF compared to EKF. This is because

in EKF in order to discretize the dynamic model (i.e., in order to obtain

fd(·)), RK4 is used and this requires the computation of system function

(fc(·)) four times in each prediction step. On the other hand, in CD-EKF

fc(·) is computed only once for each prediction step which makes the EKF

slower than the CD-EKF for each prediction step.

To clarify numerically, let us assume that in the CD-EKF, prediction is

completed in two steps while in the EKF, it is done in a single step.

� In EKF,
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∗ State prediction: fd(·) is evaluated once (4 evaluations of fc(·)).
Prediction equations are given in (2.4.5).

∗ Covariance prediction requires numerical Jacobian of fd(·) . This,
for a 6th order system requires 12 evaluations of fd(·) (48 evalu-

ations of fc(·)).

� In CD-EKF (prediction step size is half of the step size used in EKF),

∗ State prediction: fd(·) is evaluated twice (8 evaluations of fc(·)).

∗ Covariance prediction: fc(·) is evaluated 24 times for the numer-

ical Jacobian.

Hence, for this example, prediction operations require 32 and 52 evalua-

tions of fc(·) in CD-EKF and EKF respectively.

Finally, it can be said that, UKF is the slowest algorithm for the AER ob-

servation case, since it propagates 2n + 1 (n = 6 for our case) sigma points

through the nonlinear state and measurement functions in every measurement

and prediction update.

Filter performances in terms of time averaged RMSE's can be seen in Tables

4.3.2 and 4.3.3. RMSE plots for the position and velocity estimates are given

in Figures 4.3.2 and 4.3.4 respectively. Since the RMSE di�erence between the

�lters can not be seen easily from Figures 4.3.2 and 4.3.4, their zoomed versions

are also given in Figures 4.3.3 and 4.3.5 respectively.

It can be concluded from the �gures that if the estimators have the same predic-

tion step sizes then they have approximately the same RMSE for both position

and velocity. Furthermore, it can be said that decreasing the prediction step

size also decreases the RMSE by looking at the Figures 4.3.5 and 4.3.3. Hence,

if the computation time is not a problem (i.e., there is no time limitation) and

if we need more accurate estimates, using CD-EKF with lower prediction step

sizes may be advantageous. However, computation time is limited for many

practical cases. As a compromise, we can say that CD-EKF with 0.5 second

prediction step size is preferable in terms of both computation time and RMSE

performance. As a conclusion of this work, we propose to use CD-EKF as the
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Table 4.3.2: Full state observation case: Time averaged RMSE performances of
last 50 estimates.

RMSE

Filter type Step size Position (m) Velocity (cm/s)

EKF 1 s 2.17 2.68

UKF 1 s 2.17 2.68

CD-EKF

1 s 2.17 2.68

0.5 s 2.13 2.29

0.1 s 2.09 2.05

Table 4.3.3: AER observation case: Time averaged RMSE performances of last
50 estimates.

RMSE

Filter type Step size Position (m) Velocity (m/s)

EKF 1 s 71.4 0.70

UKF 1 s 71.4 0.70

CD-EKF

1 s 71.4 0.70

0.5 s 68.6 0.57

0.1 s 64.5 0.43

preferred method of choice for the orbit determination problem. Selection of the

prediction step size in general has to be made by considering both the available

computation resources and allowable RMSE performance.
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Figure 4.3.2: RMSE performance of �lters with full state measurements.

4.3.2 E�ects of the Initial Uncertainties

In order to investigate the e�ects of the initial uncertainties on the estimator

performance, in this subsection, EKF and UKF are used with di�erent initial

uncertainties for the angles only (i.e., AE) measurement case. For the full state

measurement case, AER and AED observation cases, performances of EKF and

UKF are expected to be similar since the initial estimates are relatively good for

these cases. Therefore, in this section, only AE observation case is considered

since the angles only measurements give less information than the other types

of measurements mentioned in this thesis. Since the behaviour and the mecha-

nism of the CD-EKF resembles EKF, only the error performance of the EKF is

compared with the UKF in this section.

A sequence of 300 true AE measurements and true states (in ECI coordinates)

are generated by using STK, which corresponds to the satellite visibility duration

of 300 seconds with 1 second sampling time. A total of 100 Monte Carlo runs are
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Figure 4.3.3: Zoomed version of Figure 4.3.2.

made with the �lters. For this purpose, 100 random sequences of measurements

are produced by adding zero mean white Gaussian noise (with standard devia-

tion of 0.01 degrees for both azimuth and elevation) to the true measurements.

For each Monte Carlo run, a random initial estimate which is distributed with

the following distribution is used.

X̂ i
0 ∼ N

(
X true

0 , P 1
0

)
(4.3.9)

where X̂ i
0 shows the initial estimate for the ith Monte Carlo run; X true

0 is the true

initial state and P 1
0 is the covariance matrix of the initial estimates. In order to

see the e�ects of the di�erent quality initial estimates, the same Monte Carlo

procedure is carried out two more times for the initial estimate distributions

N (X true
0 , P 2

0 ) and N (X true
0 , P 3

0 ). The covariance matrices P 1
0 , P

2
0 and P 3

0 are
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Figure 4.3.4: RMSE performance of �lters with AER measurements.

given as

P 1
0 =

(20)2I3×3 03×3

03×3 (3)2I3×3

 , P 2
0 =

(50)2I3×3 03×3

03×3 (3)2I3×3

 ,

P 3
0 =

(150)2I3×3 03×3

03×3 (3)2I3×3.


For an Earth orbiting satellite, we know that the magnitude of the velocity can

not exceed 8 km/s. In Section 4.2.2, it is mentioned that the velocity part of

the initial estimate can be chosen according to the following distribution.

N

(
03×1,

(
8

3

)2

I3×3

)
.

Therefore, choosing a velocity uncertainty of 3 km/s is reasonable and it also cor-

responds to the worst case for the velocity estimate. In addition, initial position
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Figure 4.3.5: Zoomed version of Figure 4.3.4.

uncertainties used in this analysis are also much greater than the uncertainties

coming from the Gauss' method.

In Table 4.3.4, time averaged RMSE's of the EKF and UKF for the last 100

estimates are shown. It can be concluded from the table that if the position

and velocity uncertainties of the initial estimate are less then 20 km and 3 km/s

then the error performances of the EKF and UKF will be approximately the

same. However, in the case of high initial position uncertainty (corresponding to

P 3
0 ), UKF signi�cantly improves the RMSE when compared to the EKF. RMSE

performances of the �lters starting from the initial estimate with covariance

matrix P 3
0 can be seen in Figure 4.3.6. Similar observations were made before

in the literature in [17].

112



Table 4.3.4: E�ects of the initial uncertainty on the RMSE performance.

RMSE

EKF UKF

Initial Cov. pos. (km) vel. (km/s) pos. (km) vel. (km/s)

P 1
0 2.800 0.011 2.793 0.011

P 2
0 4.074 0.015 3.390 0.013

P 3
0 31.140 0.119 6.646 0.025
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Figure 4.3.6: RMSE performances of the �lters with initial covariance P 3
0 .

4.4 Estimator Performance with Respect to PCRLB

In Section 4.3.1 relative error performances of various types of estimators were

compared and CD-EKF which had good RMSE performance with relatively low
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computational complexity was proposed as the preferred estimator for the orbit

determination problem. In this section, absolute performance (comparison of

the error performance with the PCRLB) of CD-EKF will be investigated for

di�erent measurement types. In addition to this analysis, for the AE, AED and

AER measurement cases, the estimation performance gain coming from a second

observing station is also investigated.

For the PCRLB calculation,M random trajectories andM measurement realiza-

tions are generated for all of the measurement cases according to following state

and measurement equations using the discretized version of the dynamic model

given in (2.1.15).It should be noted that the states are generated by discrete

model but in two steps as in the CD-EKF prediction.

Xk+1 = f(Xk) + wk (4.4.1)

Yk = h(Xk) + vk (4.4.2)

for k = 0, . . . , 499 where wk and vk are zero mean white Gaussian noises with

covariances Q and R respectively. h(Xk) represent the measurement function

which depends on the observation type. For the simulations which contain two

observing stations, measurement equations are constructed as follows assuming

that there are perfect time synchronization between the stations.

Yk =

h1(Xk)

h2(Xk)

+

v1k
v2k

 (4.4.3)

where superscripts 1 and 2 denote the identity of the observing station. For

the two station case, measurement noise covariance is assumed to be in the

block diagonal form. Data generation starts from a random initial condition

X0 ∼ N (X true
0 , P0) where X true

0 is the true initial state (belonging to the UTC
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time of 18th November 2014 at 20 : 19 : 05) given as

X true
0 =



3852.37071681372

5415.98695792525

2433.89094306353

−0.552232478547296

−2.74067444416030

6.96295480567795



. (4.4.4)

Parameters used in the simulations in this section for di�erent measurement

types are summarized below.

• The covariance matrices of the initial states for the full state and angles

based observation cases are given below respectively.

P0 =

(0.1)2I3×3 03×3

03×3 (0.001)2I3×3

 , P0 =

(1)2I3×3 03×3

03×3 (0.05)2I3×3

 .
(4.4.5)

• Full state case:

� Number of Monte Carlo runs, M = 500.

� Process noise covariance matrix:

Q =

10−10I3×3 03×3

03×3 10−12I3×3

 . (4.4.6)

� Measurement noise covariance matrix:

R =

(0.01)2I3×3 03×3

03×3 (0.0002)2I3×3

 . (4.4.7)

• AER case:

� Number of Monte Carlo runs, M = 150.
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� Process noise covariance matrix:

Q =

10−8I3×3 03×3

03×3 4× 10−10I3×3

 . (4.4.8)

� Measurement noise covariance matrix:

R =

(0.01)2I2×2 02×1

01×2 (0.05)2

 . (4.4.9)

• AE case:

� Number of Monte Carlo runs, M = 100.

� Process noise covariance matrix:

Q =

10−8I3×3 03×3

03×3 4× 10−10I3×3

 . (4.4.10)

� Measurement noise covariance matrix:

R = (0.01)2I2×2. (4.4.11)

• AED case:

� Number of Monte Carlo runs, M = 100.

� Process noise covariance matrix:

Q =

10−8I3×3 03×3

03×3 4× 10−10I3×3

 . (4.4.12)

� Measurement noise covariance:

R =

(0.01)2I2×2 02×1

01×2 25

 . (4.4.13)

• For the two observing station cases, measurement noise covariance can be

constructed as follows assuming the noises are uncorrelated and the noise

characteristics of the stations are identical.

Rtwo =

 R 0n×n

0n×n R

 (4.4.14)

where n is the dimension of the measurement vector.
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In the following subsection, the resulting RMSE's of the CD-EKF with 0.5 sec-

onds of prediction step size is compared with the PCRLB calculated using the

parameters presented above. Note that, in CD-EKF, Q matrices given above

should be scaled with 0.5 since they are valid when the prediction step size is 1

second.

4.4.1 Absolute Filter Performances

In Figure 4.4.1 the absolute performance of the proposed estimator for the full

state measurements case can be seen. As observed in the �gure, in terms of posi-

tion errors, CD-EKF is almost e�cient (i.e., its RMSE reaches PCRLB). On the

other hand, in terms of velocity estimation, there is still a gap for improvement

since CD-EKF cannot reach PCRLB.
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Figure 4.4.1: Full state case: Comparison of the proposed estimator with
PCRLB.

Among di�erent measurement types, the second most informative measurement
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Figure 4.4.2: AER case: Comparison of the proposed estimator with PCRLB.

type is AER. This is because, AER completely de�nes the position of the satel-

lite and velocity information can be extracted by using successive AER mea-

surements. The absolute performance of the estimator with AER measurements

for single station and two station cases is shown in Figures 4.4.2 and 4.4.3 re-

spectively. As observed in the �gures, CD-EKF reaches PCRLB asymptotically

for both position and velocity estimation. Hence we can say that CD-EKF is

asymptotically e�cient for the AER case. It is seen that the availability of

the second station provides approximately 20% reduction in the position RMS

errors. However, the reduction in the velocity errors is much smaller. In our

simulations we have seen that this small reduction in the velocity errors might

be the result of the high sampling rate used in our study. In addition, we have

noticed that the errors are highly sensitive to the number of Monte Carlo runs.

Therefore, the reason for the small reduction in the velocity case might be due

to the relatively small number of Monte Carlo runs we used in this case.

When the angles only data data (i.e., azimuth and elevation) is available, the
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Figure 4.4.3: AER with two observing station: Comparison of the proposed
estimator with PCRLB.

only information is the direction of satellite with respect to observing station.

For this case, RMSE performance is expected to be worse than the AER case

(see Figure 4.4.4). The performance of the estimator for this case can be seen in

Figure 4.4.5. In the AE case, we see that similar results to AER case are obtained

in terms of PCRLB comparison. On the other hand, in this case, we see that

the improvement obtained by using a second observing station is signi�cant for

both position and velocity estimation. This result is expected because, when

a second observing station is used then the range information can be found by

using the intersection of line of sight vectors of the two stations.

In the absence of range data, Doppler shift may be added to angles only measure-

ments and it can improve the estimator performance. This extra information

also lowers PCRLB. Results are shown in Figures 4.4.6 and 4.4.7 for a single

station and two station cases.
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Figure 4.4.4: AE case: Comparison of the proposed estimator with PCRLB.

In order to clearly see how much improvement Doppler information provides us,

results obtained using one and two station AE cases and single station AED

case are compared in Figure 4.4.8. It can be seen that Doppler measurements

can reduce the estimation errors of the AE case by a factor of approximately 4

and can obtain almost half the estimation errors of two station AE case for both

position and velocity.

In order to see the summary of the relative performances for di�erent measure-

ment types with respect to each other and with respect to PCRLB, one can refer

to Table 4.4.1.

The RMS estimation errors of the EKF and the UKF are compared with the

D-PCRLB (posterior Cramer-Rao lower bound calculated by using the discrete

formulation) for the AE observation case. Simulations are carried out by using

the parameters given above in this section. According to the Figure 4.4.9, per-

formances of the EKF and the UKF seem to be almost e�cient asymptotically
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Figure 4.4.5: AE with two observing station: Comparison of the proposed esti-
mator with PCRLB.

as well. It should be noted that since the D-PCRLB corresponds to the estima-

tion problem where true data is generated with the discrete model, comparison

of the D-PCRLB and PCRLB (which is calculated for the continuous time case)

is not meaningful scienti�cally.
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Figure 4.4.6: AED case: Comparison of the proposed estimator with PCRLB.
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Figure 4.4.7: AED with two observing stations: Comparison of the proposed
estimator with PCRLB.
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Figure 4.4.8: RMSE performance comparison of the AE and AED measurement
cases.
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Table 4.4.1: Time averaged RMSE and PCRLB comparison for the last 20
samples.

RMSE PCRLB

Measurement pos. (m) vel. (cm/s) pos. (m) vel. (cm/s)

AE 425.2 195.9 320.7 145.2

AE (two station) 151.1 86.9 141.2 73.6

AED 108.8 54.4 85.2 42.4

AED (two station) 88.6 50.2 67.2 38.1

AER 42.9 52.1 41.3 40.7

AER (two station) 35.2 49.3 32.7 37.4

Full state 2.1 2.5 1.9 1.9

125



0 100 200 300 400 500

Time (s)

0

2

4

6

P
os

iti
on

 r
m

se
 (

km
)

EKF
UKF
D-PCRLB

0 100 200 300 400 500

Time (s)

0

0.05

0.1

0.15

V
el

oc
ity

 r
m

se
 (

km
/s

)

EKF
UKF
D-PCRLB

Figure 4.4.9: RMSE performances of the EKF and the UKF with respect to the
discrete PCRLB.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, satellite orbit determination with statistical methods is investi-

gated using a simpli�ed version of the orbit dynamic model and various com-

binations of measurements. For this purpose, di�erent types of Kalman �lters

are utilized and their performances are studied. Gauss' method (an example of

a deterministic method) is also presented in order to initialize Kalman �lters

when satellite position can not be measured directly. Performance of Gauss'

method is examined in terms of position and velocity accuracies with respect to

angular measurement errors and time separation between measurements. It is

shown that with a tracking equipment (should not be very precise) initial state

can be determined with a position uncertainty in the order of tens of kilometers

and with a velocity uncertainty of less than a kilometer per second.

Performances of EKF, UKF and CD-EKF are examined in terms of their RMSE's

and computational load. It has been shown that CD-EKF (with a reasonable

choice of prediction step size) gives better error characteristics with a relatively

low computational load. It is also shown that if the initial position uncertainty

is much greater than 20 km then UKF gives better estimates.

The absolute performance of the CD-EKF was investigated by comparing its

RMSE with PCRLB. Since the estimator is not completely in a discrete form,

a modi�ed version of the discrete PCRLB was also mentioned. Except velocity

estimate of the full state observation case, it has seen that, CD-EKF gives e�-

cient results. In other words, after a few hundred (depending on the observation
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type) measurement updates, RMSE of the �lter asymptotically reaches PCRLB.

It has been shown that AED measurements can reduce the estimation errors of

the AE case by a factor of 3 and can obtain half the estimation errors of two

station AE case for both position and velocity. It has also been seen that, for

AER and AED measurement cases, using a second observing station does not

provide a considerable gain especially for velocity estimates.

The use of 500 seconds of observation duration (which was used in our PCRLB

simulations) was a reasonable choice for a LEO satellite tracking system utilizing

radio waves. However, if optical tracking systems are used then it is very di�cult

(if not impossible) to achieve such a long measurement duration. This is because,

optical visibility depends on the geometry and orientation of the satellite with

respect to the observer and the sun. Weather conditions also a�ect the satellite

visibility for optical systems. Therefore, our results on this sense apply only to

LEO satellite tracking systems utilizing radio waves.

For future studies, especially for precise orbit determination purposes, more re-

alistic orbit dynamic models (accurate atmospheric model, higher order gravity

model etc.) can be used. Accurate timing and coordinate conversion can also

be used for this purpose. Time varying parameters (drag coe�cient, radiation

pressure coe�cient etc.) which appear in either the dynamic model or the mea-

surement model can be estimated adaptively by adding these parameters to the

state vector, which is known as state augmentation. Moreover, for the multi sta-

tion observation case, time tagging errors and fusion of measurements coming

from these observing sites are also possible future subjects of research.
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