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ABSTRACT 

 

 

ANALYSIS OF SPHERICAL-RECTANGULAR PRINTED ANTENNAS AND 

ANTENNA ARRAYS USING CAVITY MODEL 

 

 

 

Demir, Oğuz 

M.S., Department of Electrical and Electronics Engineering 

         Supervisor    : Prof. Dr. Gülbin Dural 

 

 

February 2017, 108 pages 

 

Printed antennas are commonly used since these antennas are preferred in many ap-

plications due to their advantageous properties. In order to employ these antennas in 

such applications, a thorough investigation and analysis are generally required. Alt-

hough this can be implemented with fully numerical methods for the sake of high 

accuracy, the complex calculations required in the process lead to heavy computa-

tional load, hence generally demands high quality simulation software. In this thesis, 

the spherical-rectangular antennas mounted on a conducting sphere are analyzed by 

employing the cavity model as the basic analysis method, and the equivalent magnet-

ic currents are derived. The radiation of equivalent currents in the presence of the 

conducting sphere is modeled by means of spherical wave harmonics, and their coef-

ficients are obtained in the spectral domain. The approach is applied to both single 

element and array structures and resulting radiation patterns are examined and com-

pared with commercial software simulations. In addition, vector rotation and coordi-

nate mapping techniques are employed to extend the study to arrays consisting of 

elements with equal geometry and feeding.  

 

Keywords: Spherical Antennas, Spherical Antenna Arrays, Cavity Method, Spherical 

Wave Harmonics, Vector-Legendre Transform  
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ÖZ 

 

 

KÜRESEL-DİKDÖRTGENSEL BASKI ANTEN VE ANTEN DİZİLERİNİN 

KOVUK YÖNTEMİYLE ANALİZİ  

 

 

 

Demir, Oğuz 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

           Tez Yöneticisi    : Prof. Dr. Gülbin Dural 

 

 

Şubat 2017, 108 sayfa 

 

Çeşitli mikroşerit baskı antenlerin kullanımı, avantajlı özellikleri ve dolayısıyla 

birçok uygulamada kullanılıyor olmaları sebebiyle elektro-manyetik endüstrisinde 

farklı alanlarda sıklıkla karşılaşılan ihtiyaçlardan biridir. Antenlerin bu alanlarda 

kullanımını sağlamak için doğru şekilde incelenmeleri bir gereksinim olmaktadır. Bu 

inceleme, çok kesin sonuçlar veren tamamen numerik yöntemlerle yapılabilse de, bu 

süreçte gerekli olan karmaşık işlemler yüksek hesaplama yükü oluşturur; bu nedenle 

kaliteli bir benzetim yazılımına ihtiyaç duyulur. Bu tez çalışmasında, iletken bir 

kürenin üzerine oturtulmuş küresel-dikdörtgensel mikroşerit baskı anten ve anten 

dizilerinin temel olarak kovuk yöntemiyle analizi üzerine yoğunlaşılmış ve küre 

üzerinde meydana gelen eşdeğer manyetik akım yoğunlukları elde edilmiştir. 

Akımların kürenin varlığında yarattıkları yayılım, küresel dalga harmonikleri ile 

modellenmiş ve harmoniklerin katsayıları bulunmuştur. Aynı yaklaşım küresel anten 

dizisi için de uygulanmış, elde edilen radyasyon desenleri incelenmiş ve benzetim 

sonuçlarıyla karşılaştırılmıştır. Ek olarak, vektör çevirimi ve kordinat eşleme tekni-

kleri ile eş elemanlı ve eş beslemeli anten dizilerinin analizi de mümkün kılınmıştır. 

 

Keywords: Küresel Antenler, Küresel Anten Dizileri, Kovuk Yöntemi, Küresel   

Dalga Harmonikleri, Vektör-Legendre Dönüşümü  
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CHAPTER 1 

 

 

 

 

1INTRODUCTION 

 

 

 

 

 

 

1.1.    Microstrip Printed Antennas 

Microstrip device technology is employed on many microwave circuit elements such 

as transmission lines, resonators, filters and antennas. Among these devices, mi-

crostrip patch antennas are commonly used type of antennas in wide range of appli-

cations. Even though these antennas are poor radiators with low bandwidth and effi-

ciency, they are usually preferred due to their attractive properties such as having 

light weight, conformable structure, low profile and low fabrication costs [1]. These 

unique properties clarify the reason why these antennas have more popularity among 

many other antenna types.  

Some of the applications in which microstrip antennas have priority are spacecraft 

and aircraft applications [2]-[4] due to their low profile and conformable characteris-

tics. Their mounting on the surface of airships does not deteriorate the special aero-

dynamic properties they must have in order to ensure the safety of flights. Biological 

implantation and telemetry [5], [6] are other application areas of microstrip antennas 

due to their compact, small and thin structures. Lately, microstrip antenna concept is 

also preferred in implementation of wearable antennas and embroidered antennas [7]. 

These applications require light weight, flexible and conformable antenna types 

which are a few of the unique properties of microstrip antennas. 

The microstrip antennas can be utilized in various geometries because of their con-

formable structure. Planar, cylindrical and spherical antennas are the most common 
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printed antenna geometries that are implemented in the industry. Despite their geo-

metrical diversity, the same analysis methods are applicable to each one of them. 

There are several methods to analyze these antennas. Some methods are immitance 

approach [8] and generalized transmission line method [9], [10] both of which are 

preferred mainly for stratified microstrip printed patch structures but are also appli-

cable to ordinary printed patch antennas. Another one of them is a numerical ap-

proach, namely full wave (spectral domain or method of moments) analysis, which 

requires complex calculations and formulations [11], [12], [50] and it is usually im-

plemented by commercial software programs designed for this particular solution 

approach. Another widely used method is the cavity model approach which also re-

quires completely analytical solution process [13]-[15]. All of these methods provide 

solutions with different level of accuracy, insight and computation load, hence they 

should be chosen depending on the needs. 

The radiation pattern characteristic of a printed patch antenna is an important con-

cern for antenna engineers. Methods that give reliable, accurate and quick results for 

patterns are desired in such a case. Due to the high accuracy level of the solutions, 

full wave analysis is the most common approach, despite its requirement for heavy 

computation processes. Nevertheless, the cavity method can provide comparable 

accuracy levels to some extent for certain type of far-field pattern problems without 

complex algorithms or formulations, hence with faster results. Therefore, it remains 

as a similarly accurate and practical way of approaching applications regarding an-

tenna radiation patterns. 

 

1.2.    Spherical Antenna Arrays 

It is recognized that microstrip antennas have some disadvantageous properties such 

as narrow bandwidth, low efficiency and large beamwidth. There are a few methods 

to compensate for these drawbacks one of which is increasing dielectric thickness for 

narrower beamwidth [16], but this attempt results in a drop in the efficiency. As seen, 

the trade-off between these properties forces the degradation of some antenna fea-
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tures while improving some others. Therefore, microstrip antennas are better utilized 

by means of various antenna array formations and phased array algorithms [17].  

When the hemispherical or spherical radiation coverage is required, spherical mi-

crostrip antennas are primary choice in applications. The spherical arrays are pre-

ferred form of antenna systems for applications such as satellite communications 

[18]. The analysis of spherical antenna arrays are generally performed by full-wave 

analysis approach [19]-[21] since the process includes significant effects such as mu-

tual coupling that may degrade the array performance completely once ignored. Nev-

ertheless, the analytical methods like cavity model can also be applied on this type of 

array structures in many cases as long as aforementioned effects have minimal im-

pact on the results. In literature, there are cavity method analyses on various antenna 

types [22]-[26], however, there are quite a few studies about the application of this 

method on spherical antennas in an array format. Although it is known that cavity 

method provides comparable results with respect to the full-wave analysis regarding 

the radiation pattern characteristics, the comparison of results for array structures still 

needs evaluation. 

Direction finding and beam forming are other branches of antenna array applications. 

These implementations require many processes like detection, filtering, signal pro-

cessing etc. When direction finding is considered, the detection part is realized by 

creating narrow beams that are able to span the space of interest around the antenna 

system. The methods to generate such patterns include mechanical rotation of anten-

nas or the phased array structures where various antenna types can be utilized includ-

ing microstrip printed antennas. There have been quite a lot of studies about these 

applications that cover geometries like planar [27] and cylindrical [28] arrays. On the 

other hand, the spherical antenna geometry usage for such studies is still in develop-

ment stage; therefore, it seems necessary to make a mention of their possible imple-

mentation in the future studies. 
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1.3.    Thesis Motivation 

In this thesis, cavity model is employed to analyze the characteristics of a spherical-

rectangular microstip antenna and antenna arrays. The outcome of this model is uti-

lized by means of spherical wave harmonic expansions of field vectors and Vector-

Legendre transformation. The aim of the study is to derive the far-field radiation pat-

terns of a spherical-rectangular printed antenna, then extending the work to different 

spherical antenna geometries and array structures. Comparison of the outcomes with 

the computer simulated results is also intended. 

 

1.4.    Thesis Outline 

In this thesis, a brief introduction to microstrip antenna and antenna arrays and pos-

sible analysis methods are given in Chapter 1. The methods to analyze a planar mi-

crostrip antenna are deeply described in Chapter 2 in which the main focus is the 

cavity model approach. Next, the application of cavity model on spherical-

rectangular microstrip antennas and antenna arrays by utilizing both the spherical 

wave harmonic expansion method and Vector-Legendre transformation for forcing 

boundary conditions in the spectral domain is presented in Chapter 3. The analytical 

results of cavity model are demonstrated and compared with computer simulations in 

Chapter 4 for various types of antenna elements and array structures. Finally, the 

conclusions regarding the strength of the cavity method are made in Chapter 5 along 

with possible future work.    
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CHAPTER 2 

 

 

 

 

2THEORY AND ANALYSIS OF MICROSTRIP ANTENNAS 

 

 

 

 

 

 

2.1.    Introduction: 

In this chapter, the theory behind the microstip antennas and main analysis methods 

are given. The section 2.2 covers some background on microstrip antennas. Sections 

2.3 and 2.4 give general information about the feeding and analysis techniques re-

spectively. In section 2.4, the detailed analysis of cavity model for planar microstrip 

antennas is also presented. 

 

2.2.    Microstrip Patch Antennas: 

A patch antenna mainly consists of a ground plane and a metallic patch placed over 

the ground plane with a very thin dielectric slab between them as shown in Figure 

2.1. Their simplicity is the main reason they are used in many antenna engineering 

applications.  They are light and easy-to-fabricate structures which can be conformed 

on various types of surface. Despite such advantages, these antennas are naturally 

poor radiators. Their bandwidth is narrow and beamwidth is quite large. Further-

more, they have lower efficiency compared to many antenna types in this industry. 

Nevertheless, these negative properties do not prevent the widespread use of patch 

antennas.  
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Figure 2.1:  A typical rectangular microstrip antenna 

 

The conducting patch is generally preferred to be copper. Its geometrical dimensions 

and shape determines the basic antenna parameters and its operation consequently. 

The dielectric material under the patch has significant importance also, considering 

its effects on loss tangent, operation bandwidth, resonance frequency and beamwitdh 

of the radiation. For example, the radiation efficiency of patch antenna drops as the 

loss of the dielectric increases. However, the bandwidth of the antenna widens at the 

same time. Therefore, application of such antennas requires a good comprehension of 

the effects caused by the dielectric substrate and patch geometries and materials they 

are made of. 

The printed patches can be in various shapes such as rectangular, circular, triangular 

etc. as depending on the application requirements. Some typical shapes are indicated 

in Figure 2.2. 
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Figure 2.2:  Various microstrip antenna shapes 

 

The radiation of printed patch antennas is highly dependent on the shape of the patch 

element. The radiation essentially develops due to the fringing fields occurring be-

tween the patch edges and the ground plane. As the edges are in different geometries, 

the expected performances of these antennas are also different. 

The patch thickness of these antennas is quite small compared to the total thickness 

of the element.  Their low profile structure allows them to be used in areas where 

aerodynamics is a significant concern such as aircraft, spacecraft and missile applica-

tions. These antennas are also preferred in telemetry and communication applications 

such as cellular phones as embedded antennas due to their small size and robustness. 

The physical structure of printed patch antennas can be modeled as a resonator with a 

very high quality factor (Q). This is problematic considering the effect of high Q-

factor on the operation bandwidth. These antennas have considerably low operation 

bandwidth. Furthermore, their radiation efficiency is quite low due to losses caused 

by dielectric and conduction losses together with surface wave losses. The surface 

waves are developed on the patch surfaces and degrades the performance of the an-

tenna by absorbing the power fed to the antenna element. However, there are some 
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precautions for this phenomenon such as keeping the dielectric thickness sufficiently 

small which improves the efficiency overall. 

All patch antenna elements are passive structures and must be excited by an external 

power source. They need a feeding mechanism so that they radiate a specific amount 

of power delivered to them directly proportional to their radiation efficiency. 

 

2.3.    Feeding Structures of Patch Antennas: 

The feed types that are commonly used for the excitation of patch antennas are mi-

crostrip line feed, coaxial probe, aperture coupling and proximity coupling. Depend-

ing on the patch geometry and application, appropriate one of these antenna feed 

types can be utilized. All the feeding techniques have the purpose of delivering the 

power to the patch antenna and forcing it to radiate. The feeding mechanism must be 

as efficient as possible or it may degrade the antenna performance due to losses. 

Therefore, it is necessary to note that feed of an antenna plays an essential role in its 

effective operation. 

 

2.3.1.    Microstrip Line Feed: 

The conformable nature of printed patch antennas has significant advantage in many 

industrial applications. Microstrip line feeding does not affect the conformability in a 

negative way which can be considered as a beneficial aspect of this feeding type. In 

this structure, printed antenna is fed by a microstrip line from an appropriate side of 

the patch as in Figure 2.3. The line is at the same level as the printed patch, therefore, 

the fabrication is also quite simple and modeling is easy. Nevertheless, thickness of 

the substrate should be kept small and width of the line should be narrow enough to 

prevent unwanted emissions, bandwidth deterioration and surface waves. 
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The microstrip feeding line has the same properties as the patch. However, it is nar-

rower in width and it has different impedance from the edge of the patch. Generally, 

the patch impedances are very high at the edges, because current flow at these re-

gions is almost non-existent. Consequently, the impedance values at the side-edges 

of the patch antennas are quite high. The impedance of feeding line and the patch can 

be matched only if the feed is set further into the patch where voltages and currents 

provide lower impedance. The technique is called inset feeding and the inset cuts are 

employed to enable feeding at a more suitable location in the patch. Such a structure 

is also observed in Figure 2.3. The inset cut length and width changes depending on 

the impedance to be matched, frequency of operation and patch geometry and calcu-

lations steps are given in [29]. 

 

 

Figure 2.3:  A microstrip patch antenna with line feed 

 

The inset cut structures do not weaken the radiation if the cut is placed with neces-

sary caution. The currents fed to the antenna flow in the same direction as the feed-

ing direction throughout the patch area if the fundamental mode operation is consid-

ered and feeding is applied from the short edge of the patch. The electric fields gen-

erated at the edges also follow the same direction as depicted in Figure 2.4. There-

fore, the inset cuts do not prevent the flow of energy through the antenna as long as 

they are not badly scaled. Otherwise, current directions are distorted and unwanted 

radiations are possibly exist which degrades the performance. 
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Figure 2.4:  Cross-section view of a microstrip antenna demonstrating the 

fundamental mode (TM01) E-field distribution 

 

Although microstrip line feeding is preferable due to its simplicity, its use is restrict-

ed to rectangle shaped patch antennas. There are various types of shapes such as cir-

cular, ring, triangular and sector etc. to implement microstrip antennas. Therefore, 

impedance matching becomes more difficult with line feeding option. Application of 

other feeding techniques can be more practical and accurate in such cases. 

 

2.3.2.    Coaxial Line Feed: 

The feeding of patch antennas can be difficult if microstrip line feed is implemented 

in various circumstances. Coaxial line feeding is an applicable alternative and a 

common technique for microstrip antennas. The coaxial line feeds patch antennas in 

the configuration depicted in Figure 2.5. The outer conductor of the coaxial cable is 

soldered directly to the ground plane of the antenna. The inner conductor on the other 

hand penetrates the dielectric substrate all the way up to the patch element and feeds 

the antenna. Although the fabrication is slightly more complex compared to the mi-

crostrip line feeding, it is a preferable technique in the antenna industry for its simple 

fabrication process. 
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Figure 2.5: Circular patch antenna with a coaxial feed 

 

The matching in this structure is implemented by connecting the line to an optimal 

location on the patch. The process does not require inset cuts placements on antenna 

which is an advantageous property. Furthermore, this feeding technique can be ap-

plied to rectangular patches as well as many other patch shapes. The accurate posi-

tion for the feeding point is calculated by impedance formulations. 

One of the problematic aspects of the coaxial feeding is its interaction with the die-

lectric substrate of the patch antenna. The connection line produces additional in-

ductance for thick substrates generally making the matching a more complicated pro-

cess. Another one is that the soldering requirement of the coaxial cable reduces the 

structure reliability. In addition, the modeling of a coaxial line feed is more difficult 

compared to the microstrip line feeding.  
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2.3.3.    Aperture Coupled Feed: 

The microstrip line and coaxial line feed techniques require that the feeding element 

makes a connection with the patch antenna directly. However, this structure usually 

ends up with spurious radiations to some extent. These unwanted emissions can be 

avoided with coupling concept introduced in this method. As the Figure 2.6 exhibits, 

the feeding microstrip line and the radiating patch are separated by a ground plane. 

The only interaction between the patch and the feed is maintained by the slot on the 

ground plane. Two dielectric layers exist with different dielectric constant and thick-

ness. Energy flowing on the feed is coupled to the patch through the ground slot. 

The matching of the feeding element depends on the aperture geometry and scale. 

Furthermore, the substrate dielectric constant and thickness can be adjusted to 

achieve better radiation. 

 

 

Figure 2.6: Aperture coupled feed structure 

 

The fabrication of this feeding is quite difficult due to the large dielectric thickness. 

The bandwidth of such antennas is also narrow due to the natural behavior of the 

feeding aperture.  
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2.4.    Analysis Methods: 

Microstrip printed antennas can be analyzed by applying one of three most common 

techniques depending on the requirement of precision, accuracy and insight. These 

methods are the transmission line model, full wave analysis and the cavity method. 

Each one have their advantages and disadvantages making them quite useful for dif-

ferent cases.  

The simplest of the aforementioned methods is the transmission line model. The 

patch antenna is modeled as a transmission line and its radiation behavior is derived 

analytically. It is easy to apply and gives a lot of insight; however, the solution has 

low accuracy. Full wave analysis is the most complex and strongest method based on 

the solution of field integral equations by means of moment method. Its high versatil-

ity and accuracy are compensated by the computation weight and low insight. The 

last approach is the cavity method which models the patch antenna as a dielectric 

loaded cavity. It is also an analytical approach with raised accuracy and insight with 

low versatility. 

 

2.4.1.    Transmission Line Model: 

Transmission line model approach represents the microstrip antenna as a transmis-

sion line of width W and length L as depicted in Figure 2.7. The main idea is that the 

radiation is assumed to be emitted from two thin slots of height h with a separation of 

L forming a two element aperture array.  
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Figure 2.7: Modeling of a rectangular patch antenna as a microstrip line 

 

A significant phenomenon in this model is the behavior of fringing effects taking 

place at the edges of the antenna patch. Naturally, the fields at the edge tend to fol-

low an indirect route to the ground because of the discontinuity of the patch conduc-

tor. This effect is called the fringing effect which is actually the main cause of the 

radiation from microstrip printed antennas. The electric field lines that emerge from 

the patch do not follow a smooth path to the ground though, due to the substrate ma-

terial placed between the patch and ground conductors as indicated in Figure 2.8. As 

the waves travel on the path, they are exposed to two different materials that have 

different dielectric constants. Consequently, refraction takes place when the fields 

travel from one dielectric to the other.  

 

 

Figure 2.8: Behavior of the E-field lines at the air-dielectric boundary 

 

The aforementioned behavior of fields prevents the total confinement of electric 

fields inside the dielectric substrate. The fields in these two different layers have dif-



15 
 

ferent phase velocities as a result. This causes the waves travelling on the transmis-

sion line to be qTEM (quasi transverse electric magnetic) waves instead of pure TEM 

waves. For the sake of simplicity, this effect can be accounted for using an equiva-

lent parameter called effective dielectric constant (ϵeff). Its value is lower than the 

dielectric constant of the substrate because some of the fields are exposed to the die-

lectric constant of air. This parameter can be calculated by [30]: 
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where ϵr is the dielectric constant of the substrate, W and h are the geometrical pa-

rameters as given in Figure 2.7 and ϵeff is the effective dielectric constant when the 

second layer is air. The final equivalent view of the patch antenna is depicted in Fig-

ure 2.9.  

 

 

Figure 2.9: The equivalent microstrip line structure immersed in a substrate with ϵeff 

 

Another important aspect of the fringing fields is that they follow a route a little 

longer than they normally would as in the case of uniform dielectric environment. 

The refraction of fields at the dielectric boundary causes them to reach further loca-

tions on the ground as indicated in Figure 2.8. Since the radiation of the patch anten-

nas stem from this curvy locus, the electrical length of the antenna becomes larger 

than its physical length. As mentioned before, the sources of radiation are modeled to 

be the two opposite slots of the microstrip antenna. The fringing effects can be as-

sumed to add a particular distance (2.ΔL) to the length of the patch as in Figure 2.10.  
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Figure 2.10: Top and side views of a microstrip patch antenna 

 

The electrical length of antennas gives essential information on the radiation charac-

teristics such as radiation frequency. Therefore, difference in the length must be cal-

culated to obtain an effective length Leff to continue the analysis [31], [32]. 

As the fundamental mode operation is excited at the wavelength of twice the electri-

cal length of antenna, its electrical expansion must be taken into account to obtain the 

resonant frequency. The same expansion is applicable to all modes of operations af-

fecting their frequencies as well. The operation frequencies for all modes can be de-

rived using the formulation in [33] and the further improvement of the efficiency of 

microstrip antennas by adjusting the width of the patch area is exemplified in [34]. 

To sum up, the characteristics of microstrip antennas can be modeled as a transmis-

sion line which requires the calculation of significant parameters such as effective 

dielectric constant and effective antenna length to account for the effects of fringing 

fields. Furthermore, the model has a strong physical insight along with moderate 

accuracy. Even though it is a straightforward and easy method to follow, its area of 

application is restricted to the rectangular microstrip antennas. Therefore, the model 

is insufficient in analyzing printed antennas with any other shape. 
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2.4.2.    Full Wave Analysis: 

Full wave solution is a numerical approach that can be applied for the analysis of 

microstrip antennas. In this method, the planar surface of the patch and the volume 

inside the dielectric substrate are modeled with meshes. The aim of the method is to 

make use of the field-current relationships to approximate the fields and currents at 

every mesh point. The approximation precision is dependent on the choice of func-

tions that are used to imitate the distribution of fields and currents.  

The relationship between source and radiated fields are generally represented by in-

tegral equations called EFIE (Electric Field Integral Equation) or MFIE (Magnetic 

Field Integral Equation) which can have different forms depending on the problem 

[35]. These equations are quite difficult to solve using analytical formulations. 

Therefore, a numerical procedure is applied using the method of moments approach 

[36]. This approach is strong in problems where the complex interaction between 

source and load cannot be clearly defined. 

The main purpose in the method of moments is to develop a formulation to solve the 

equation given below: 

   xgxLf          (2.2) 

where L is a known linear operator applied on an unknown function resulting in the 

excitation  function g which is also known since the source is explicit. The unknown 

function f represents the fields or currents to be obtained at the end of the formula-

tion. 

In order to find the unknown function, it is expanded so that it is represented as the 

linear combination of N known functions called basis functions as in (2.3): 
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where αn is the unknown coefficient of each basis function fn. The reason there are N 

basis functions is that it is assumed that there is a total of N meshes both on the con-

ducting surface and in the dielectric volume together. The basis functions are applied 

on each of these meshes so that the problem is considered as a whole.  

The number of meshes and the choice of basis functions to use are significant param-

eters affecting the accuracy of the method. There are various types of basis functions 

such as rectangular pulse, triangular, piecewise sinusoidal, truncated cosine etc. 

(Figure 2.11) 

 

 

Figure 2.11: Common basis function types 
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The expanded version of unknown function is then substituted to (2.3) which yields: 
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As it is known that L is a linear operator, the following equation is derived: 
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(2.5) implies that the operator is now applied on known basis functions instead of an 

unknown function although the coefficients are still required to be found. The next 

step is to develop a residual error concept to derive an approximation to these coeffi-

cients. A residual error function is defined such that: 
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         (2.6) 

The minimization of (2.6) is necessary to ensure the high accuracy of the method. In 

order to achieve this, weighting (testing) functions are introduced. The generally pre-

ferred type of functions are impulse or pulse functions, however, types of functions 

can be the same as the chosen basis functions which is a procedure called Galerkin’s 

method [37].  

Weighting functions are chosen in a way that the main equation (2.2) is satisfied at 

every sample point. Furthermore, any singularities that rise due to the integral equa-

tion of interest are removed or reduced if a proper weighting function is applied.  

The process requires that the inner products weighting functions with basis and 

source functions are calculated and the resulting residual error in (2.6) is equated to 

zero. This step yields: 
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where wm denotes the weighting functions. The inner product operator can be defined 

as: 




 duvvu *,             (2.8) 

such that the integration of complex conjugate multiplication over the domain Ω is 

performed.  

The implication of (2.7) is that each basis and source function is interacted with each 

weighting function so that the whole field current relationships of each mesh are con-

sidered and included in the formulation. In addition, the accuracy of this interaction 

model is quite high since the residual error function is minimized to zero. 

The set of equations given in (2.7) can be transformed to matrix form as follows: 
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I, α and g are MoM (Method of Moments) matrix, coefficient matrix and source ma-

trix respectively. Finally, the coefficients are obtained by means of the (2.12) if 

MoM matrix is non-singular. 
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As a result, the unknown function of currents or fields in (2.3) can be explicitly writ-

ten. As mentioned before, the choice of basis and testing functions depending on the 

geometry of the problem and the number of meshes created on the structure of inter-

est are main parameters that affect the accuracy of this method. Carelessly chosen 

weighting functions may fail in handling the singularities and leads to high residual 

error values. Besides, a proper meshing of the elements which form the problem is a 

must if highly accurate solution is aimed.  

To conclude, the full wave analysis is a numerical approach to analyze microstrip 

antennas. It has extreme accuracy compared to analytical methods in approximating 

the field and currents in the system. In addition, it is a versatile method which can be 

applied to printed antennas of arbitrary shapes. Nevertheless, it has a high computa-

tion load and low insight. 

 

2.4.3.    Cavity Model: 

Cavity model approach is an analytical method which represents the microstrip an-

tenna as a dielectric loaded cavity. In this section, theory and analysis of cavity mod-

el is presented. 

 

2.4.3.1.    Theory: 

The main idea is that a microstrip antenna with very thin dielectric substrate can be 

assumed to be a cavity which is bounded by perfect electric and magnetic conductor 

walls. Also, the fields inside the thin dielectric layer are considered not to be chang-

ing much in value in the normal direction to the patch ground. The equivalent cur-
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rents developed by this cavity space confining fields in itself are utilized to derive the 

radiation behavior of the microstrip antenna. 

 

 

Figure 2.12: Charge distribution and movements on a microstrip patch 

 

The charge distribution of an arbitrary rectangular microstrip antenna in operation 

can be observed in Figure 2.12. The positive and negative charges on the patch tend 

to flow in the direction depicted while the antenna is fed with power if the dielectric 

layer height h is large enough. The reason is that the similar charges on the ground 

and patch surfaces repel each other. Likewise, opposite charges cause attractive forc-

es at the other end of the patch. As a result, a surface current flow Js is supported on 

the antenna from the bottom surface of the patch to the top surface as discussed in 

[38]. 

 

 

Figure 2.13: Charge distribution of a microstrip patch with thin dielectric substrate 
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If the dielectric substrate height is reduced to a much lower size keeping the printed 

patch electrically very close to the ground plane while keeping the patch width W 

constant, the charge behaviors start to change. The attractive forces between the op-

posite charges on the patch and ground become overwhelming. The electrical forces 

that cause the surface current flow on the patch are dominated by this attraction and 

cannot effectively support the flow any more as indicated in Figure 2.13. Therefore, 

the current on the surface of patch greatly drops. The boundary conditions at the edge 

of the patch demands that magnetic fields cannot emerge at the sides of antenna due 

to this minimized value of current flow. Finally, knowing that the sides of the anten-

na cannot support magnetic fields, these side planes can be assumed to be PMC (Per-

fect Magnetic Conductor) walls. Considering the PEC (Perfect Electric Conductor) 

top and bottom walls of the microstrip antenna and its four PMC side walls, a dielec-

tric loaded cavity is assumed to be formed as in Figure 2.14 by the effects explained 

in this part.  

 

 

Figure 2.14: Equivalent structure of the sides of a dielectric loaded microstrip cavity 

 

A cavity modeled with perfect elements such as lossless conductors and dielectric 

substrate cannot radiate energy, instead, it behaves more like a resonator. Its input 

impedance becomes purely reactive and the energy delivered to the antenna is totally 

reflected back to the source. Therefore, the losses must be considered and included in 

the models as a resistance as depicted in Figure 2.15. The resistance represents con-

ductor losses, dielectric losses and radiation losses of the antenna system. 
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Figure 2.15: The equivalent circuit model of a microstrip antenna 

 

The antenna properties of the lossy cavity are described by the effective loss tangent, 

δeff. As mentioned in [39], the effective loss tangent can be calculated from following 

equation: 

rcdT

eff
QQQQ

1111


          (2.13) 

where Qd, Qc, Qr and QT are quality factors for the dielectric substrate,  the conduc-

tors, radiation and the total system respectively. 

To sum up, cavity model is a straightforward, simple analytical approach with high 

level of insight where the microstrip antenna is modeled as a dielectric loaded cavity. 

The effective loss tangent is also considered in the method to ensure the radiation 

behavior of the antenna is included in the analysis. The following section explains 

the procedure for the utilization of boundary conditions on the side walls to derive 

the fields inside cavity and the equivalent current densities to obtain the properties of 

the antenna such as radiation pattern and input impedance. 
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2.4.3.2.    Analysis: 

As mentioned in the previous section, the microstrip antenna can be represented as a 

dielectric loaded cavity with PMC side walls and PEC top and bottom walls. The 

fields that are confined in the dielectric inside this structure can be obtained by solv-

ing Helmholtz equation. It is important to note at this point that TEz (transverse elec-

tric to z) modes cannot be supported in the structure given in Figure 2.16.  

 

 

Figure 2.16: Dimensions of a rectangular microstip antenna with line feed 

 

The patch of the antenna is in close proximity with the ground plane and both are 

PEC walls. TEz mode has z directed magnetic field components, that is, normal to the 

PEC ground. According to the image theory, magnetic fields normal to PEC walls 

are negated by their image [29] and become non-effective as Figure 2.17 points out. 
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Figure 2.17: Summary of the image theory for PEC and PMC boundaries 

 

The supported modes in the dielectric region are therefore TMz (transverse magnetic 

to z) modes. The modes must satisfy the Helmholtz equation for planar structures 

[40]: 

  zJjEk
z
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                      (2.14) 

By neglecting their z components due to thin dielectric layer, wave functions and 

wave numbers for each resonant mode can be represented as: 
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where (2.15) is the solution for homogeneous part of Helmholtz equation in (2.14). 

The solution procedure that makes use of only the homogeneous part does neglect 

the feed concept. Therefore, effect of the excitation is added to the solution by calcu-

lating its effect on each orthogonal resonant mode and summing them up for the final 

wave function as in the equations (2.17) and (2.18) respectively [14]: 
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where * denotes the complex conjugate. There seems to be a problematic part in 

(2.17) at first glance considering that the denominator of the expression blows when 

the contribution of the operation mode is evaluated. Because, wave function parame-

ters becomes equal at resonance frequency maintaining the equality k
2 

- km
2
=0. This 

would be the case if the cavity were a lossless structure and due to its resonance, en-

ergy would be infinite for that mode of operation where any other mode would be 

negligible. However, the antenna has lossy elements such as the dielectric substrate; 

thus, the dielectric loss tangent parameter must be taken into account [40]. As the 

most effective loss contribution comes from the dielectric, considering only its effect 

is sufficient: 
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then (2.18) turns out to be, 
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If a more accurate solution is required, dielectric loss tangent parameter can be re-

placed by the effective loss tangent as suggested in [55] since field lines also travel in 

the air region: 
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The electric field confined inside the cavity is expressed in (2.25). Since the side 

walls are perfect magnetic conductors, boundary conditions can be utilized to derive 

equivalent magnetic currents that cause the radiation of energy: 

wallsideeachat
st MEn

___
ˆ


          (2.26) 

An important point in (2.26) is that the currents are doubled due to the infinite 

ground approximation. The radiation analysis proceeds as if the antenna and its ele-

ments were removed and only the calculated magnetic current densities existed. The 

solution with this approximation is valid for the upper half space of the infinite 

ground.  

There are four side walls; therefore, there are also four magnetic current elements 

around the structure. However, it should be noted that the field distribution in fun-

damental frequency is such that two of these currents cancel the far-field radiation 

effects of each other since they are in opposite directions and in very close proximity. 

The effective current elements, on the other hand, have additive far-field radiation 

effect due to their similarity in direction and magnitude. Depending on the mode of 

operation, the field distribution varies and so does the equivalent magnetic current 

distribution on the periphery of the patch. This phenomenon is depicted in Figure 

2.18 and Figure 2.19.  
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Figure 2.18: E-field distributions for different mode of operations: a) TM01 b) TM10 

c) TM02 d) TM20 

 

 

 

 

Figure 2.19: The equivalent magnetic current distributions for different mode of 

operations: a) TM01 b) TM10 c) TM02 d) TM20 
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The radiation characteristic of the microstrip antenna can be derived by making use 

of the magnetic current distributions obtained in (2.26). The currents are assumed to 

be radiating in free-space without the presence of the antenna. Continuing the formu-

lation steps with (2.27) to (2.29) results in the far-field radiation expression which 

concludes the far-field analysis:  
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then, 
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In addition to far-field radiation characteristics, the input impedance of the antenna 

can be calculated by means of the analysis so far. It is known that the total power 

delivered to the antenna from the feed is either radiated to space or dissipated by the 

lossy dielectric and conductor elements. (2.30) and (2.31) calculates the radiated 

power and the dissipated power in the antenna respectively [14]: 

 




    



 

ddrHEHEP
r

  sin Re 2**
2

0

2

0
           (2.30) 

dsHRdsEhP

s s

dd

2
2

2  
          (2.31) 

where Eθ, Eϕ are far region radiated fields, E, H are fields inside the cavity and, 

dd
n 

0

2         (2.32) 

c

R




2
      (2.33) 
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where R is the skin-effect surface resistance of the conductor with conductivity σc 

and σd is the conductivity of the dielectric with loss tangent δd . The voltage at the 

feed can also be obtained by integrating the electric field at the insertion point as in 

(2.34) with the parameters given in Figure 2.16: 





d

c
feedatzavgz

dlE
cd

h
EhV

  
    (2.34) 

Finally, the input conductance and susceptance can be calculated from [14]: 

2

V

PP
G dr


        (2.35) 

V

I
jB         (2.36) 

where 

 cdJI                    (2.37) 

As observed in equations from (2.30) to (2.37), input impedance is affected by the 

position of the feed and the type of materials that form the antenna. Besides, it is a 

mode dependent parameter and must be calculated each time the operation mode is 

changed because of frequency variation. 

The analysis discussed in this section can also be applied to microstrip antennas with 

various simple shapes such as a disk antenna. Only difference is the proposed ex-

pression for the solution of Helmholtz equation. The rest of the steps are quite similar 

and straightforward until the input impedance calculations. Since circular or disk 

type antennas are preferred to be fed by a coaxial line instead of a microstrip line due 

to ease of fabrication, careful adjustments must be made to the impedance calculation 

steps to take any difference into account. 
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CHAPTER 3 

 

 

 

 

3ANALYSIS OF SPHERICAL RECTANGULAR MICROSTRIP ANTENNAS 

 

 

 

 

 

 

3.1.    Introduction 

In this chapter, a brief presentation of spherical microstrip antennas is given in sec-

tion 3.2. The thorough cavity model analysis of spherical-rectangular patch antennas 

and the methods to derive radiation pattern characteristics are given in details in sec-

tion 3.3 and its subsequent sections. 

 

3.2.    Spherical Rectangular Patch Antennas: 

Printed antennas are conformable to spherical structures as mentioned in the previous 

section. There are quite a few types of spherical antenna geometries such as wrapa-

round, annular ring, circular disk, triangular and rectangular antennas (Figure 3.1). 

As the symmetrical type antennas are easier to cope with using cavity method analy-

sis, there is more literature work on these geometries [41]-[44]. Due to the finite 

structure of rectangular antennas, the required cavity analysis is more challenging, 

thus they attract much less attention. The focus of this section is centered on the 

analysis of spherical rectangular antennas.  
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Figure 3.1: Different shapes of spherical microstrip antennas:                                          

a) Rectangular, b) Wraparound, c) Triangular, d) Circular disk, e) Annular ring 

 

The fields excited under the spherical rectangular patch are formulated by using cavi-

ty method approach and applying the boundary conditions accordingly. Later, the 

radiating current density elements are found by careful examination. Both the un-

bounded radiation and true radiation of these currents are calculated and compared. 

Furthermore, the input impedance of the rectangular antenna which depends on the 

excitation is observed.  
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3.3.    Cavity Method Analysis: 

The cavity field theory requires the field under the patch to be found so that equiva-

lent current densities on the patch edges could be evaluated. These current densities 

will again be magnetic currents as in the planar patch case because radially directed 

magnetic currents cannot be supported by the system due to the perfect electric walls 

on the top and bottom of cavity. Consequently, the field generated inside cavity be-

comes dominantly TMr mode while TEr mode is highly attenuated.  

The radial magnetic vector potential inside cavity must satisfy the scalar Helmholtz 

equation (3.1): 

  0 22 
rd

k              (3.1) 

where  

rdk  000
         (3.2) 

and 

 rr 
22 

        (3.3) 

In spherical case, Helmholtz equation is not satisfied by only Ψr because the laplaci-

an of a scalar potential is not equal to the laplacian of a vector potential (3.3) as in 

[53]. Therefore, the expression Ar/r is proposed as the solution of spherical Helm-

holtz equation: 

  022 
r

A
k r

d

      (3.4) 
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such that  

    )(cos)(cos )(ˆ)(ˆ  m

n

m

ndndnmnA

mn

r dQcPrkYbrkJa
r

A









  

  mfme sincos.     (3.5) 

The general expression for radial magnetic vector potential is (3.5), which needs to 

be forced by boundary conditions to eliminate the unknown coefficients [52]. This 

expression is formed by considering the volume under the antenna patch as a radially 

directed sectoral waveguide as depicted in Figure 3.2. The terms in the expression 

such as 
nĴ  and 

nŶ  are Schelkunoff type Bessel functions of order n. Although, it 

was mentioned before that the thickness of the dielectric material under the patch 

should be quite thin for an accurate cavity model analysis, the corresponding radial 

Bessel functions are still considered for the sake of completeness. Also, m

nP  and m

nQ  

are the associated Legendre functions [54] of first and second kind respectively, with 

order m and degree n. Bessel functions are chosen to be of Schelkunoff type [45]  

because they are more useful when the analysis is made on spherical structures.  
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Figure 3.2: Dimensions of a spherical-rectangular microstrip antenna 

 

Figure 3.2 depicts an arbitrarily positioned rectangular patch on the sphere of radius 

r1. The patch antenna occupies a space between azimuthal angles of ϕ1 and ϕ2, and 

between elevation angles of θ1 and θ2. The thickness of the dielectric material is t and 

the distance of patch surface to the center of sphere is r2. Similar to analysis of planar 

patch antennas, the dielectric volume between the patch and the sphere are consid-

ered as a cavity.  

It is necessary to pinpoint that the Bessel and Legendre function types included in the 

solution (3.5) are chosen depending on position of the rectangular patch on the 

sphere. Both first and second kind associated Legendre functions are included since 

θ=0 and θ=180° are out of the solution region. Furthermore, both type-I and type-II 

Bessel functions are required for the center of the sphere is outside the solution space 

similarly.  

After the determination of the magnetic vector potential expression, boundaries must 

be taken into account. There are six boundaries to be applied on the expression: the 

PEC walls at r = r1 and r = r2, the PMC walls at ϕ = ϕ1 and ϕ = ϕ2, and finally the oth-

er couple of PMC walls located at θ = θ1 and θ = θ2. These boundaries, once applied 
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on the potential expression, eliminate the unknown coefficients. Furthermore, a se-

ries of equations for the solution of propagation constant and for the mode numbers 

of cavity will emerge. 

Ar
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
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The boundary conditions are not forced on the electric vector potential expression. 

Spherical electric and magnetic field modes generated by the magnetic vector poten-

tial ΨA must be considered since it is the dominant potential and ΨF is negligible. In 

other words, only TMr modes exist inside the cavity as mentioned in the previous 

chapter. Therefore, substituting (3.5) in the spherical mode equations (3.6) to (3.11) 

and neglecting ΨF yields the expressions (3.12) to (3.17) which will have to satisfy 

boundary conditions on the cavity geometry. 
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Figure 3.3: Boundary conditions for PMC side walls at θ=θ1 and θ=θ2 

 

The coefficients of associated Legendre functions are determined by applying 

boundary conditions on Hϕ at θ=θ1 and θ=θ2 as depicted in Figure 3.3.  

Only the θ dependent part of (3.5) is considered to formulate the first part of solution 

for the sake of simplicity: 

    coscos)( m

n

m

n
dQcPB              (3.18) 
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The resulting expressions can be reformed such that a matrix with trivial solution is 

obtained: 
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The solution of the matrix equation (3.21) is dependent on two dummy variables c 

and d, therefore, one of these can be chosen arbitrarily and the other one takes its 

value accordingly. For simplicity, they are chosen as follows: 
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As a result, the θ dependent part of the magnetic potential expression is explicitly 

written: 
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There is another equation that can be extracted from this solution process as well. If 

(3.19) and (3.20) are solved simultaneously, the resulting equation is derived as: 
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(3.25) is implicit in nature and cannot be sold thoroughly without numerical ap-

proach. It includes the information about the mode parameters that will be used to 

find mode frequencies and wave functions. Solution of this equation will be dis-
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cussed in the following sections. Furthermore, as mentioned before, the (3.24) gives 

the θ dependent part of the wave function. In order to obtain total expression, the 

other two orthogonal parts must be evaluated as well. 

 

 

Figure 3.4: Boundary conditions for PEC top and bottom walls at r = r1 and r = r2 

 

The coefficients of Bessel functions are determined by applying boundary conditions 

on Eϕ at r = r1 and r = r2 as depicted in Figure 3.4. Next step is to derive the r de-

pendent part of the (3.5). 
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The resulting expressions can again be reformed such that a matrix with trivial solu-

tion is obtained: 


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Then, the solution of the matrix equation (3.29) is dependent on two dummy varia-

bles a and b, therefore, one of these can be chosen arbitrarily and the other one takes 

its value accordingly. For simplicity, they are chosen as follows: 

 1
ˆ rkYka dnd




          (3.30) 

 1
ˆ rkJkb dnd


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           (3.31) 

Consequently, the r dependent part of the magnetic potential expression is explicitly 

written as: 
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The other equation that can be extracted from this solution process is obtained if 

(3.27) and (3.28) are solved simultaneously. The resulting equation is then given as: 

       
1221
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             (3.33) 

(3.33) is also implicit in nature like (3.25) and cannot be solved thoroughly without 

numerical approach. Again, the solution of this equation will be considered in the 

following sections. Finally, the (3.34) gives the ϕ dependent part of the wave func-

tion. In order to obtain total expression, the last orthogonal part must be derived. 
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Figure 3.5: Boundary conditions for PMC side walls at ϕ=ϕ1 and ϕ=ϕ2 

 

The coefficients of sinusoidal functions of (3.5) are determined by applying bounda-

ry conditions on Hθ at ϕ=ϕ1 and ϕ=ϕ2 as depicted in Figure 3.5.  
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The resulting expressions can again be reformed such that a matrix with trivial solu-

tion is obtained: 
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Then, the solution of the matrix equation (3.37) is dependent on two dummy varia-

bles c and d, therefore, one of these can be chosen arbitrarily and the other one takes 

its value accordingly. For simplicity, they are chosen as follows: 

1
cos mme            (3.38) 

1
sin mmf             (3.39) 

Consequently, the ϕ dependent part of the magnetic potential expression is explicitly 

written as: 

   mmmmC sinsincoscos
11

      (3.40) 

The other equation that can be extracted from this solution process is obtained if 

(3.35) and (3.36) are solved simultaneously. The resulting equation is then given as: 

1221
cossincossin  mmmm                (3.41) 

By utilizing trigonometric identities, (3.40) and (3.41) are reformed to the equations 

below:  

    
1

cos   mC                  (3.42) 

     0 sinsin
12

  mm                  (3.43) 

then, 








 p
m     ,    ,.....3,2,1,0p                 (3.44) 

Unlike others, (3.44) is explicit and, therefore it is the starting point of mode finding 

process. (3.40) gives the ϕ dependent part of the wave function. Finally, as all the 

unknown coefficients are eliminated, the total expression for the wave function is 

given in (3.45): 
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The parameters in (3.45) such as m, n and kd are calculated by solving the transcen-

dental equations that were obtained in the solution process [57]. To summarize the 

process, the equations to be solved for mode parameters can be listed again as fol-

lows: 
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(3.47) and (3.48) are in closed form and thus it is quite difficult to construct an ex-

plicit solution for the parameters. Therefore, the parameters are calculated by a 

commercial software where a long sequence of values are inserted in the expressions 

and the precision of the equations are observed at each specific value. First, parame-

ter m values are found from (3.46) and inserted to (3.47). Then, the parameter n val-

ues that satisfy the (3.47) are determined. Although there are infinitely many solu-

tions for these parameters, only a few of them are generally enough to continue the 

analysis. Because, high order parameters refer to higher order spherical TM modes 

which have little to no effect on the fundamental mode operation. For each parameter 

n value obtained in (3.47), there are also infinitely many kd parameters coming from 

(3.48). These parameters are propagation constant values of each mode existing in-

side cavity. Extraction of the resonance frequency of each mode from these constants 

once they are obtained is completely straightforward using (3.2). 
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Figure 3.6: The spherical-rectangular patch geometry with parameters:  r1=0.1 m, 

ϕ1=-π/12, ϕ2=π/12, θ1=2π/12, θ2=5π/12, δr=4.5mm 

 

The mode parameters that belong to an arbitrarily chosen geometry of spherical 

patch antenna as in Figure 3.6 are listed in Table 3.1. The groups of extracted param-

eters from equations (3.46) to (3.48) are listed according to the parameter orders. The 

fundamental frequency occupies the first row of the table along with the parameters 

belonging to it. As mentioned in the previous chapter, fundamental operation occurs 

when the half-wavelength of the signal is close to the largest dimension of the anten-

na; which, in this example, is the θ directed dimension of the patch. The length of the 

dimension is approximately 78.5 mm and the wavelength of the fundamental fre-

quency (f = 0.92 GHz) is 157 mm according to the cavity analysis as given in Table 

3.1. To sum up, the results from the analysis so far are in good agreement with the 

practical expectations. 
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Table 3.1: The resonant frequencies of the patch given in Figure 3.6 

p = 0 

n = 3.65 
kd = 40.34 

f = 0.92 GHz 

kd = 699.2 

f = 16.1 GHz 

n = 7.58 
kd = 78.92 

f = 1.81 GHz 

kd = 702.5 

f = 16.2 GHz 

p = 1 

n = 6.55 
kd = 68.79 

f = 1.58 GHz 

kd = 701.51 

f = 16.1 GHz 

n = 9.12 
kd = 94.07 

f = 2.16 GHz 

kd = 704.44 

f = 16.2 GHz 

 

Considering the resonant frequencies of modes of the cavity given in Table 3.1, it is 

notable that their wavelength values are almost directly proportional to the multiples 

of patch dimensions. Even though, the method applied so far gives correct numerical 

results for the resonant frequencies of the modes, the excitation of these modes have 

not yet been considered. A spherical patch antenna of such simple geometry can be 

excited to radiate at any desired mode frequency if the appropriate excitation is em-

ployed. The requirements for an accurate excitation in terms of positioning and 

alignment were discussed in the previous chapter for planar patch structures. The 

same necessities apply to the spherical patch antennas as well, thus the excitation 

methods and their analysis will not be detailed here. For the following analysis of 

wave function, micro-strip line type feed is assumed unless otherwise specified. 

The feed mechanism determines the current and voltage distribution on the patch 

surface and the fields inside cavity take shape accordingly. As mentioned in the pre-

vious chapter, the wave function is affected by these excitation currents. The expres-

sion for the final wave function, or magnetic vector potential in other words, is de-

termined by summing the orthogonal magnetic potentials of the cavity modes which 

can be referred to as modal expansion. Magnetic potentials of each mode have a co-
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efficient that can be basically evaluated by taking the inner product of the wave func-

tion and the excitation respectively [51]. 


d

ddM 
     (3.49) 

*
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           (3.50) 

where 


s

dd
dsJJ   , **            (3.51) 


v

dddd
dv  , **           (3.52) 

such that Ψd represents the wave functions of modes listed in Table 3.1 and Md is the 

coefficients of each mode contributing to the total wave function Ψ. 

 

 

Figure 3.7: A spherical-rectangular patch antenna with a line feed 
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Figure 3.8: Detailed dimension description of a spherical-rectangular patch with a 

line feed 

 

The orthogonal wave function coefficients are highly dependent on the geometry of 

the patch and feed structure. This dependence can be observed in (3.51) and (3.52) 

where volume and surface integration is applied. Figure 3.7 and Figure 3.8 depict a 

spherical patch antenna excited with a micro-strip line. The integration domains of 

the mentioned equations are clearly noticeable in the latter figure. 

The term kd
2 - k2 in the denominator of (3.50) is the main factor in determining the 

strength of each modal coefficient. The wave number kd of fundamental mode is 

evaluated at the fundamental frequency. As the wave number k is dependent on fre-

quency of operation, the coefficient of the fundamental mode rises to infinity for 

lossless dielectric assumption. Therefore, it can be mistakenly deduced that this ana-

lytical solution for finding the contribution of the high order modes is unnecessary 

and their coefficients will be finite and negligible at the fundamental frequency oper-

ation. Nevertheless, it is not enough to solve the homogeneous Helmholtz equation 

without considering the feed effect since dielectric has its loss mechanism in reality 

and the loss tangent parameter must be included in the analysis. Therefore, it is nec-

essary to refer to the previous chapter where this analysis step is explained in detail. 

On the other hand, as the following analytical solution steps will prove, the modal 

coefficients of magnetic vector potentials of higher modes are less effective on the 
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normalized radiation pattern compared to the fundamental mode and their calculation 

may be ignored if very high accuracy is required. Another point is that the modal 

coefficients are quite significant if the input impedance of the patch antenna is con-

sidered. The coefficients are determined at a large frequency interval around the fre-

quency of operation. Therefore, it is possible to have comparable values for the mag-

netic vector potential coefficients at each sample frequency. Evaluating the fields at 

these sample frequencies and making the calculations for input impedance can give 

an accurate insight to the matching status of the feed to the microstrip patch even 

though it introduces extra effort to the analytical computation. However, it is avoida-

ble if normalized radiation pattern is the purpose of a study. In this study, only the 

radiation pattern characteristic analysis is conducted for certain spherical rectangular 

patch antennas. 

The total magnetic vector potential expression obtained in (3.49) includes both geo-

metrical properties of the patch antenna and the feed effect. In order to continue to 

the cavity analysis, electric field confined under the spherical patch must be found by 

utilizing this magnetic potential. 

 

3.3.1.    Electric Fields Inside Cavity: 

The radiation of the patch antenna is caused by the equivalent magnetic current vec-

tors at the edges of the patch. These magnetic currents originate from the electric 

fields present under the patch and fringing fields at the edges as mentioned in the 

previous chapter. Same rules apply to the spherical patch antennas. 
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Figure 3.9: Fringing electrical fields and the induced magnetic currents 

 

The Figure 3.9 depicts the trend of the fields close to the edges of patch structure. 

These fields follow a semicircular path in the air and the dielectric outside the patch 

and this behavior of the electric fields causes magnetic currents in the center of their 

locus. As a result, the patch radiation occurs.  

Although the fringing fields are the true nature of the radiation concept of the patch 

antennas, cavity method analysis does not include such behavior in the formulation. 

Instead, regarding the radially directed fields inside the cavity to evaluate the equiva-

lent magnetic currents is enough to model the behavior of the antenna. 

The radially directed electric fields inside the cavity can be determined by using 

(3.53). 
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The (3.53) requires that the second order radial derivatives 22

r
  of the Bessel func-

tions  rÂ  in (3.54) are evaluated. Since Bessel functions are highly oscillatory func-

tions, their second order derivatives can introduce error into the results if numerical 

derivation is preferred. Another way to evaluate the derivatives is making use of an 

identity of the Schelkunoff type Bessel functions. The expression can be simplified 

to eliminate derivation using the (3.55) as in [49]: 
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substituting (3.56) into (3.53) yields 
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The electric fields inside cavity are subjected to the boundary conditions at each 

PMC side walls of the cavity. Application of boundary conditions will give equiva-

lent magnetic currents at the edges of the path which cause radiation. 

 

3.3.2.    Equivalent Magnetic Currents: 

The dominating radially directed electric fields were derived as (3.57). In order to 

find the radiated fields, equivalent magnetic currents must be found using the follow-

ing equation at each PMC side wall of the cavity: 

wallsPMC

r

r
req
drEnM

 

2

1

ˆ 


    (3.58) 
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At this point, it is necessary to note that the magnetic currents determined at each 

side wall are not necessarily radiating. Because, depending on the mode of operation, 

the magnetic current distributions are strictly related to electric field distribution in-

side the cavity. As mentioned in previous chapters, the radiation of fundamental 

mode occurs if the largest dimension of the patch is half of the wavelength of opera-

tion frequency. This is because of the electric field distribution of the fundamental 

mode. 

 

 

Figure 3.10: E-field distribution of the fundamental mode TM01 

 

 

Figure 3.11: Equivalent magnetic current distribution on the patch for the 

fundamental mode TM01 

 

The electric field distribution of the fundamental mode inside spherical cavity is in-

dicated in Figure 3.10. When this distribution is considered together with the (3.58), 
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it is not difficult to recognize that the equivalent magnetic current vectors at the side 

walls can be in different directions. This phenomenon is also observable in Figure 

3.11. The currents at the left and right sides of the patch 
3M


 to 

6M


 are in opposite 

directions whereas the ones at the top and bottom 1M


and 2M


 are in same directions. 

This opposite current case occurs on the sides with larger dimensions. Therefore, 

their contribution to the radiation of the antenna is almost completely ignorable. The 

other two sides have parallel magnetic currents and they are the reason for the radia-

tion of the antenna. It is necessary to mark that this phenomenon is valid for basic 

shaped antennas such as rectangular patch. Patches with complex geometries must be 

analyzed more thoroughly. 

 

 

Figure 3.12: Equivalent magnetic current distribution for different patch dimensions 

 

The equivalent magnetic currents on each side of the wall are all effectively radiating 

if patch has a quasi-square geometry. In this case, the current vectors are in parallel 

directions with the ones at opposite sides and they do not cancel each other as seen in 

Figure 3.12. This occurs because two modes are concentric at the same fundamental 

frequency. 

Since the equivalent magnetic currents are derived using the cavity model theory, it 

is now possible to find the corresponding radiation fields. In planar patch case, the 

radiating fields are easily evaluated using image theory and unbounded radiation 

concept. Because, the ground plane can be assumed to be infinitely long which 

makes the solution relatively simpler. Nevertheless, this procedure cannot be fol-

lowed due to the finite dimension sphere. Neither the ground is planar nor is it infi-
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nitely long. Therefore, magnetic currents found by (3.58) must be utilized using an-

other approach. The spherical Helmholtz equation outside the sphere can be satisfied 

by the vector potentials which are expressed in terms of spherical harmonics [45]. 

The summation of these harmonics gives the total vector potentials. Then, the far-

fields related to these vector potentials are derived. As a result, the radiation expres-

sion of equivalent magnetic currents in the presence of the finite sized conducting 

sphere can be evaluated analytically. 

 

3.3.3.    Spherical Wave Harmonics Approach: 

The problem of electromagnetic radiation caused by magnetic current elements close 

to the surface of a conducting sphere can be solved efficiently by employing spheri-

cal harmonics method. The spherical structure is divided into layers and magnetic 

and electric potentials at each layer are represented by infinitely many spherical har-

monics with suitable coefficients. The types of these harmonics are strictly based on 

the geometry of the sphere and the layers of interest. Because the aim is that the pro-

posed harmonic expressions must be finite and convergent at any point in the space. 

In order to find the electric and magnetic potentials, the spherical functions that form 

the harmonics must be determined. The harmonic expressions consist of ϕ, θ and r 

dependent spherical functions. The type of these functions is selected depending on 

the spherical structure. Figure 3.13 indicates the type of spherical structures and their 

corresponding spherical functions for travelling waves. Since the evaluation of radi-

ated fields will be the next step, the accurate choice of these harmonic types has an 

essential role in the progress [48]. 
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Figure 3.13: Spherical wave harmonic expressions for different layers 

 

Considering the information given in the Figure 3.13, the harmonic expression for 

the problem discussed in this study, which is the radiation in the existence of a closed 

conducting sphere, can be written as follows: 
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These potentials exist at the inner region which is between patch and the sphere. It 

should be noted that the free-space wavenumbers are inserted into the equations 

since the contribution of the dielectric was included in the cavity field analysis be-

fore. The dielectric is removed at this point of the procedure. In addition, for outer 

region which is outside the patch, equations can be written as: 
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The equations (3.59) and (3.60) represent the harmonics that exist inside dielectric 

layer. Legendre and exponential functions are due to the closed nature of the sphere. 

The Schelkunoff Hankel functions of first and second kinds are required to model the 

behavior of the waves inside the dielectric layer. Inward and outward travelling 

waves exist at the same time at this layer because there are reflections at the air-

dielectric boundary. Likewise, (3.61) and (3.62) represent the wave harmonics exist-

ing outside the sphere in the air. This outermost layer hosts only outward travelling 

waves, thus the second type of Hankel functions is preferred.  

The solution procedure requires that the coefficients of spherical harmonics in the 

derived magnetic and current potentials to be determined. In order to obtain the coef-

ficients A(n), B(n), C(n), D(n), E(n), F(n) in the equations (3.59) to (3.62), the 

boundary conditions in the structure must be utilized. However, it is necessary to 

note that the obtained field and current vectors are all in spatial domain. As a result, 

the boundary condition equations derived from these spatial fields and currents will 

have to be satisfied in every single point in space. This approach completely fails 
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even if the boundary conditions are forced on a group of arbitrarily chosen points on 

boundary surfaces because such an attempt results in large scaled matrices and 

strongly ill-conditioned solution matrix. Although there are some methods to im-

prove the matrix condition in such cases at the cost of accuracy of the result, the so-

lution remains highly unstable. A small change in the problem parameters produces 

significant changes in the final result. 

A more reliable approach to force the boundary conditions on the fields derived so 

far is the spectral domain method. The fields and currents can be transferred to the 

spectral domain and operations can be made here. In this domain, the point matching 

of boundary conditions over the surfaces of sphere is not necessary in contrast to 

spatial domain approach. Therefore, it is a more preferable procedure to simplify the 

analytical complexity and to attain a result with high stability. 

 

3.3.4.    Spectral Domain Approach: 

Spectral domain approach is a well-known solution procedure widely preferred for 

electromagnetic problems where spatial domain approach is not practical for applica-

tion. Even though spatial domain gives more insight on the procedure, it is coordi-

nate-dependent nature increases the complexity of the solution. On the other hand, 

spectral domain is easier to employ and coordinate independent to some extent. In 

fact, expressions in spectral domain for spherical coordinate systems have only radial 

direction dependence along with the frequency making this approach attractive in 

problems with complex spatial nature. 

The application of the spectral domain method is limited by the geometry of the 

structure of interest. As mentioned before, the spectral expressions in spherical coor-

dinate systems have radial dependence. Therefore, the layers of the spherical struc-

ture must be homogeneous in θ and ϕ directions [46] as also depicted in the Figure 

3.14c. Otherwise, the spectral expressions of fields and currents in this domain be-

come inaccurate and the solution fails.  
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Figure 3.14: Patch antenna structures with different dielectric substrate alignments:                  

a) Discontinuity in θ direction, b) Discontinuity in ϕ direction, c) Continuity in θ and 

ϕ direction 

 

The problem of interest in this work is the radiation behaviors of patch antennas only 

on simple closed spherical structure surfaces; therefore, discontinuous-substrate an-

tennas and spheres some of which are indicated in Figure 3.14 are out of scope of 

this thesis work.  

In order to utilize the aforementioned spherical harmonics method, the current ele-

ments and fields must be written in spectral domain which can be easily accom-

plished by using Vector-Legendre transform. This transformation is the essential part 

in the spectral domain operations and provides significant opportunity to utilize 

boundary conditions on the fields radiated. 
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3.3.5.    Vector-Legendre Transformation: 

The operations in spectral domain in many cases can be implemented more efficient-

ly in the spectral domain. However, all spatial vector elements must be transformed 

to spectral domain by means of Vector-Legendre transformation [56]. The transfor-

mation is applied by taking the Fourier transform of spatial vectors and normalizing 

them by a particular term depending on their harmonic number which is shown in 

(3.63): 
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and the inverse transform is: 
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lastly, the normalization factor is given by: 
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The parameters n and m define the corresponding number of each spherical harmon-

ic. The transformation equations given in (3.63) and (3.64) are applicable to spherical 

closed structures only. The transformation expressions for spherical sector structures 

can be found in [47]. 

As the implied in the equations, the spectral components are dependent on wave 

number and radial distance from the center of the sphere. The ϕ and θ dependent 

terms are eliminated; therefore, this allows the problem to become sufficiently sim-

ple so that boundary conditions can be applied easily. 

 

3.3.6.    Application of Spectral Domain Method: 

The radiation characteristics of spherical rectangular antennas can be derived by us-

ing spherical harmonics and applying boundary conditions in the spectral domain. 

The spherical harmonic types differ with respect to the layer of interest. In Figure 

3.15, there are two layers which are below and above the infinitely thin microstrip 

patch antenna. The choice of spherical harmonic expressions was discussed in previ-
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ous sections and it was decided that (3.59) and (3.60) are suitable for inner region 

and (3.61) and (3.62) are appropriate for the outer region.  

 

 

Figure 3.15: The cross section of spherical-rectangular antenna and the regions of 

interest 

 

The boundary conditions are applied on the electric and magnetic fields, therefore 

(3.6) to (3.11) must be used to derive the fields from the potential expressions given 

in (3.59) to (3.62). Then, the field expressions for the inner region are as follows: 
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and the fields in the outer layer are: 
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The derived field expressions are all in spatial format and they must be transferred to 

the spectral domain for smooth progression of the solution. The Vector-Legendre 

transformation given in (3.63) is employed on the fields for this purpose. The trans-

formation matrix in the equation (3.65) requires that the field expressions must be in 

3x1 matrix format. However, as the transformation in radial direction is not required 

for this particular case, the transformation matrix and the field or source matrices 

will be in the form as follows:  
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Applying the (3.63) on the (3.72)-(3.79) yields the spectral domain matrices: 
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for the inner layer; then,  the matrices for the outer layer are: 
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The magnetic current densities obtained via cavity model do have θ and ϕ compo-

nents. However, both of these currents may be dominant and effective on the shape 

of radiation pattern if dimensions of the patch antenna form a quasi-square structure 

as in Figure 3.12. Therefore, it is necessary to represent the current equation in a 

general format as: 
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Consider a particular case in which the equivalent currents are dominant in the θ di-

rection on relevant sides of the patch antenna: 
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In (3.85), the parameters ϕ1, ϕ2 and θ1, θ2 are the dimensional borders of the patch in 

spherical coordinates. When (3.63) is applied to the current elements to transform it 

into the spectral domain, the following equation is obtained: 
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(3.87) 

It is necessary to note that even though there is no spatial ϕ component of currents as 

in (3.86), the spectral domain currents include an azimuthal current due to the effect 

of the transformation matrix. In addition, these azimuthal components have effects 

on the result comparable to the other component; therefore, ignoring this term en-

sures the failure of the analysis. 

Since all the necessary field and current expressions were transformed to the spectral 

format, boundary conditions can be forced to proceed. There are three conditions; 

one on the surface of conducting sphere and two others on the air-air boundary as 

depicted in Figure 3.16. 
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Figure 3.16: Spectral domain boundary conditions 

 

and the boundary condition equations in spectral form are: 

0
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  MEEa
r

~~~
ˆ

12


 (at the boundary of regions I and II, r = b)     (3.90) 

where the radius of the conducting sphere and the distance of the patch to center of 

the sphere are assumed to be α and b respectively. The purpose of applying these 

conditions is to eliminate the unknown coefficients existing in the spectral domain 

field expressions. There are six of these coefficients A(n), B(n), C(n), D(n), E(n), 

F(n) and the number of conditions is three where matrix elements are of size 2x1, 

generating six equations in total. Under these circumstances, all coefficients can be 

evaluated precisely. 

The (3.88) determines the behavior of the electric field inside dielectric layer on con-

ducting surfaces. Substituting (3.81) into (3.88) yields: 
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The solution of this equation (3.91) gives rise to the following expressions: 
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As indicated in (3.92) and (3.93), the unknowns B(n) and D(n) are eliminated at this 

step. The second boundary condition in (3.89) refers to the continuity of the tangen-

tial magnetic fields on the dielectric-dielectric boundaries. This condition can be ful-

filled by substituting (3.82) and (3.84) into (3.89): 
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likewise, the solution of this equation results in the following relations: 
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After the elimination of unknowns A(n) and C(n), third boundary condition is con-

sidered. The remaining unknowns are derived by making use of spectral current den-

sities at this step. This boundary condition implies that the difference between tan-

gential electric fields on each side of a dielectric-dielectric boundary is compensated 

by a magnetic current element on the border. It is significant to note that the thick-

ness of the micro-strip patch antenna at this boundary is assumed to have an infinite-

ly small thickness. The interpretation of (3.88) in terms of mathematical equations is 

as follows as stated in [41]: 
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Then, the final equations are obtained by substituting (3.99) in the equation below: 
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Since the current terms were founded before, the unknowns E(n) and F(n) can be 

determined by utilizing the (3.100). These coefficients are dependent on harmonic 

number n, therefore there are infinitely many coefficients and each one of these coef-

ficients must be evaluated if the total solution is to be obtained. Nevertheless, the 

harmonics of higher orders become excessively small and are not effective on the 

field calculations. To conclude, sufficiently many harmonics are enough to continue 

with the analysis. At this point, all unknown coefficients were determined and the 

field expressions can now be clearly expressed.  
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3.3.7.    Far-Field Radiation Pattern: 

The expressions for electric and magnetic fields caused by magnetic currents on the 

spherical surface are given by (3.76) to (3.79) and the required steps to evaluate the 

unknown coefficients of these equations were discussed in the previous section. 

However, these field expressions are applicable to general distance problems and the 

concept of radiation pattern of an antenna is actually logical for fields at very large 

distances. Therefore, the electric and magnetic potential expressions in (3.61) and 

(3.62) must be adjusted accordingly. 

The radial distance of fields from the antenna is the variable of Schelkunoff Hankel 

functions. This means that these special spherical functions must be revised and 

changed so that the true far field behavior of fields is observed. By making use of 

power series representation of Schelkunoff Bessel functions and taking the term kor 

sufficiently large, the following approximations become accurate: 
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Then the far-field expressions in (3.76) to (3.79) which are used for the radiation 

pattern applications become: 
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The normalized radiation patterns can be observed by evaluating the total fields and 

normalizing them with respect to their maximum values and visualizing them in the 

logarithmic scale.  
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10,

       (3.108) 

The radiation patterns of specific examples will be discussed in following chapters. 

 

3.3.8.    Input Impedance Calculation: 

The calculation of input impedance for spherical patches is not very different from 

the planar patch case.  The same concept mentioned in the previous chapter can be 

adapted to the spherical domain and applied accordingly. The radiated power and the 

dissipated power of the patch antenna are always equal to the power delivered by the 

feed network. The conservation of power can be summarized by the following equa-

tion: 

emrad
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PPP
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V


2

    (3.109) 

The radiated power is denoted by Prad, dissipated electric and magnetic energies are 

Pe and Pm respectively. The voltage across the feeding point and the ground is calcu-

lated by taking the integral of the radial field inside the cavity: 
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drEV

           (3.110) 
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The input impedance of the antenna at a given frequency is then determined by uti-

lizing (3.109) and (3.110). The resulting impedance value must be close to the im-

pedance of the feeding network for an effective power transmission to the antenna so 

that the antenna radiation efficiency increases. Otherwise, the power delivered to 

antenna is stored in the imaginary impedance of the printed patch and radiated real 

power drops significantly. In this situation, making use of an inset-fed structure like 

in the planar case as depicted in the Figure 3.17 or changing the end-fed position 

helps in adjusting and matching the input impedance to the feed impedance. 

 

 

Figure 3.17: CST model of a spherical-rectangular microstrip antenna mounted on a 

dielectric coated conducting cylinder 

 

3.3.9.    Spherical Antennas in Array Formations: 

The cavity method provides sufficient information to analyze the behavior of a 

spherical microstrip antenna in terms of radiation pattern and input impedance as 

explained in this section so far. Throughout the analysis process of a single spherical 

antenna, it is possible to stay in the analytical domain which makes this approach 

preferable compared to numerical ones. When a spherical array is considered, it 
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could be assumed at first that the analysis becomes more difficult as number of an-

tenna elements increased in the array system. Nevertheless, this is not the case be-

cause analytical model allows the superposition principle to be applied on the anten-

na elements to derive the total effect. 

The characteristic of an array depends on three parameters: the type of antennas 

forming the array, the number and formation of antennas and the feeding configura-

tions of antenna elements. All three aspects of an array must be regarded to obtain 

the overall response of the system. Cavity method is quite sufficient to take all these 

parameters into account easily to some extent. Since it is possible to superpose the 

responses of antennas, adjusting the characteristics of each antenna element is 

enough to obtain their contributions to the system. For example, phase and magni-

tude information of the feeds can be inserted to the cavity field expressions derived 

in this section. Position and shape information of the antennas are also included in 

the cavity method analysis; therefore, repeating the same analysis for each antenna 

element is required. The radiated fields generated by all elements are summed at the 

end to obtain the fields at every point at space which makes it possible to draw the 

radiation pattern of the array. 

Although the cavity method proves to be a useful method in analyzing the spherical 

antennas in single and array configuration, some drawbacks can be observed for par-

ticular situations. It is a method that makes use of certain approximations; therefore, 

the results for a single antenna are not totally accurate. Superposition of antenna re-

sponses for the analysis of arrays may seem a simple and faster method. However, 

each element has its own error residual and this accumulates as more and more an-

tennas are included in the system. Depending on the residual error level, the number 

of antennas must be kept as low as possible to prevent the method from leading to 

inaccurate results. Another factor that may contribute to the error accumulation is the 

concept of mutual coupling. As the cavity model with superposition method for array 

problems that is presented in this chapter does not include any information about the 

interactions of the antennas constructing the array, mutual coupling effects are com-

pletely neglected. This effect rises in magnitude as antennas are kept electrically 
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closer to each other eventually causing resonance frequency shifts due to input im-

pedance variations and distortions in radiation pattern.  

The example simulations exhibit that the possible aforementioned drawbacks of cavi-

ty method application on antenna arrays can be avoided considerably when the ele-

ment separations (Δx) depicted in Figure 3.18 are kept large enough. 

 

 

Figure 3.18: Three element rectangular patch array mounted on a conducting sphere 

 

3.3.10.    Comments on Direction Finding and Beam Forming Applications: 

The smooth analysis and design capability of cavity method when applied on spheri-

cal antenna arrays allows the utilization of the approach on various applications such 

as beam forming and the detection part of direction finding. These applications re-

quire a piece or pieces of beam to be aligned in a way that they point to the desired 

locations or directions in space.  

The radiation pattern of an antenna array depends on the type of antenna elements, 

their position formations and feeding of each element. Furthermore, some applica-

tions require the scanning of space which can be handled by mechanical rotation or 

more preferably by phased array algorithms where phase or magnitude of antenna 
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elements are adjusted to form an aimed pattern at each sampling instance. Phased 

array algorithms are carefully constructed because a poorly calculated design may 

lead to resolution drop, rise of undesired side beams or complete failure of the ex-

pected pattern. Therefore, a complicated procedure may be required to understand, 

analyze and design these antenna applications. However, a spherical antenna array 

located on a spherical structure proves to be useful in easing the calculation process 

due to its natural geometry. A uniformly distributed array constructed on a spherical 

structure as in Figure 3.19 can generate beams that can span the space without resort-

ing to complex phased array algorithms. On/off switching of the array elements with 

a calculated configuration is sufficient to generate a narrow beam targeting any di-

rection in space at any instance.  

 

 

Figure 3.19: A dense array presentation of rectangular patches mounted on a 

dielectric coated conducting sphere 

 

The advantage of spherical antenna arrays in simple direction finding and beam 

forming applications may prove to be quite significant. Obviously, the incorporation 

of phased array algorithms in these antenna systems provides much stronger beam 

forming abilities. However, it is certain that the space-spanning-geometry of antenna 
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elements on spherical structures will not only cause an improvement on the charac-

teristic features of the system but it will decrease the calculation complexity as well.  

Knowing that the spherical shapes further increase beam forming capabilities and 

decrease calculation weight, it is necessary to mention here the contribution of cavity 

method to the analysis simplicity. As the previous section points out, cavity model is 

a strong model that can quite precisely estimate the radiation patterns of spherical 

arrays without experiencing complex calculations. It adds up the responses of each 

element in the antenna array to reach the total response whether there are 

phase/amplitude differences between antennas or not. Therefore, preferring the cavi-

ty method for the analysis and design of such structures may prove to be more advan-

tageous as long as the aforementioned restrictions caused by high element density are 

carefully avoided. 

 

3.3.11.    Improvement of Cavity Method by Coordinate Transformation of Ar-

ray Elements: 

The cavity model provides a smooth analysis approach to spherical-rectangular an-

tenna elements and arrays. Nevertheless, the analysis steps require that all the ele-

ments be bounded by the spherical coordinate grids on the surface of the sphere they 

are mounted on. As a result, elements may have different geometrical structures 

which can affect the impedance matching and resonance frequencies, if not the radia-

tion patterns. In other words, a rectangular-spherical antenna array may require a 

design where the feed structure of each element is considered separately and the res-

onance frequencies diverge as the shape distortion increases. As a result, the addi-

tional work load is introduced. The geometrical effect of positioning is demonstrated 

in Fig. 3.20. As the elements recede from the equator, the grid deformation level also 

rises. Another point to mention is that the positioning of the elements at the poles of 

a sphere becomes impossible with the investigated method in this work. To sum up, 

an additional technique should be introduced to overcome such difficulties and to 

contribute to the completion of the spherical-rectangular array modeling. 
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Figure 3.20: An arbitrary spherical-rectangular printed antenna array aligned with 

respect to the spherical coordinate grids 

 

A spherical-rectangular printed array of equal elements can be realized with the use 

of consecutive vector transformation techniques. The far-field expressions of each 

element can be derived and transformed in space according to the position of each 

element with respect to a reference element. In this study, a rectangular antenna 

mounted on a specific point at the equator of the sphere (θ=π/2, ϕ= π/2) where grid 

deformation is at minimal levels is considered as the reference element. The trans-

formation effect each array element is exposed to can be applied to the field expres-

sion of this particular reference element in order to derive the radiated fields of all 

antennas. Finally, the fields are superposed to obtain the total effect of the array 

which consists of equal rectangular elements without grid distortions. 
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Figure 3.21: The reference and displaced elements forming a spherical-rectangular 

antenna array centered at ϕ= 90°   

 

The field transformations can be implemented by utilizing the vector rotation matri-

ces given in [58]. These matrix expressions apply a rotation to vectors in Cartesian 

format around a specified axis where the reference frame stands still. It is necessary 

to note, however, that the Cartesian vectors rotate with respect to their local origins 

and the keep their spatial positions. Therefore, application of this rotation matrix is 

not enough to derive the fields of a relocated antenna with respect to a reference po-

sition as the fields need to rotate along with it. Fig. 3.21 depicts the relocation of the 

reference element in θ direction. This relocation causes the rotation of all radiated 

fields about x-axis as well. The corresponding rotation matrix is: 


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and the rotated fields can be evaluated by:  










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




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z

y

x

R

E

E

E

RE  )(
     (3.112) 

where ER represents the rotated fields in Cartesian form. Another step must be taken 

in order to introduce the new location of the antenna to the expressions of rotated 

fields. For this purpose, the position vectors of the field vectors are also rotated using 

(3.112) and by switching back to spherical coordinate system, a mapping between 

the new and old locations of rotated fields are obtained. The patterns in desired 

planes are derived afterwards with careful implementation of this mapping of coordi-

nates. An example of this transformation employed on an array structure of spheri-

cal-rectangular printed antennas is also given in chapter 4.  

Even though the transformation technique explained in this section is basically inde-

pendent of the cavity method analysis, it is an essential part to mention for the sake 

of completeness. Transformation of antennas provides the possibility for an array 

application of equal elements and for antenna positioning independent of spherical 

grid format. 
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CHAPTER 4 

 

 

 

 

4NUMERICAL RESULTS AND APPLICATIONS 

 

 

 

 

 

 

4.1.    Introduction 

The utilization of cavity model on spherical-rectangular antennas was explained in 

the previous chapters. The derivation of field equations in spatial domain and con-

struction of radiation patterns for an array format were presented in detail. 

This chapter focuses on the possible applications of the method proposed in this 

study. The radiation pattern of various types of antennas and phased arrays are ana-

lyzed and compared with the computer simulated counterparts. Further comments are 

included to discuss the strength of the cavity method in providing solutions for direc-

tion finding and beam forming applications. 

 

4.2.    Radiation Field Characteristics of a Spherical-rectangular Microstrip An-

tenna Mounted on a Conducting Sphere:  

As discussed in chapter 3, cavity model is a powerful method for determining the 

radiation patterns of microstrip antennas. In this section, a particular spherical-

rectangular antenna described in Table 4.1 is considered for the realization of the 

cavity method. 
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Table 4.1: The parameters of a particular spherical-rectangular patch antenna 

Antenna Parameters 

r1 0.1 m ffund 1.46 GHz 

δr 4.5 mm Єr 4.3 

θ1 π/4 ϕ1 4π/9 

Δθ π/6 Δϕ π/9 

 

A simple CST model of the patch antenna on a sphere is given in Figure 4.1 for the 

sake of comprehensive visualization. The red mark on the patch points the position 

of the port where the antenna is fed. The resulting radiation pattern of the antenna is 

depicted in Figure 4.2. 

 

 

Figure 4.1: The CST model of the antenna with the given parameters in Table 4.1 
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Figure 4.2: yz-plane radiation pattern comparison of calculated and simulated results 

for spherical-rectangular antennas 

 

As demonstrated in Figure 4.2, the pattern derived by the cavity method is in agree-

ment with the CST simulated results. Especially, the main beam is in complete coin-

cidence with the simulation which is expected because cavity model is stronger in 

estimating the main lobes rather than the side lobes. Another reason for the discrep-

ancies between two curves may be the numerical calculation errors that arise when 

the calculation of Legendre functions and their derivatives are made. Furthermore, 

the feed line of the patch also generates radiation that is included in the simulated 

result but not in the analytical one. However, despite all these sources of error, the 

method still provides an accurate result with error factor of 1 dB at most. 

 

4.3.    Radiation Field Characteristics of a Spherical-disk Microstrip Antenna 

Mounted on a Conducting Sphere:  

The spherical-disk antennas are in subdomain of spherical-rectangular antennas. The 

same approach and analysis steps can be applied to obtain the radiation pattern char-

acteristics. Due to matching considerations and simplicity in manufacturing, these 
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antennas are preferred to be fed by a coaxial line instead of microstrip line. There-

fore, the analytical estimations and simulations are carried out for this type of feed-

ing configuration. The physical structure of the antenna is described in Table 4.2 and 

the CST model is demonstrated in Figure 4.3. 

 

Table 4.2: The parameters of a particular spherical-disk patch antenna 

Antenna Parameters 

r1 0.1 m ffund 510 MHz 

δr 4.5 mm Єr 4.3 

θ1 0 ϕ1 0 

Δθ π/4 Δϕ 2π 

θf π/9   

 

 

 

Figure 4.3: The CST model of the antenna with the given parameters in Table 4.2 
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Figure 4.4: yz-plane radiation pattern comparison of calculated and simulated results 

for spherical-disk antennas 

 

Circular type antennas may seem different from rectangular ones; however, analyti-

cal approach is still the same. The cavity fields confined under the patch can be re-

placed by equivalent magnetic currents in azimuthal direction which are located at 

the patch edges. In the fundamental mode, these currents radiate in the presence of 

the conducting sphere in such a way that a large main lobe and a smaller back lobe 

occurs in the pattern (Figure 4.4). As mentioned in the previous section, cavity model 

is quite accurate to estimate these radiation characteristics, especially the main lobes. 

 

4.4.    Radiation Field Characteristics of a Two-element Array of Spherical-

rectangular Microstrip Antennas Mounted on a Conducting Sphere:  

It was shown that cavity model provides close estimations in evaluating the radiation 

patterns. The same can be claimed for the estimation of the patterns of arrays. In or-

der to derive the total fields, two spherical-rectangular antennas described in Table 

4.1 are positioned in the opposite sides of the conducting sphere. The field contribu-

tion of each antenna are then evaluated and superposed to obtain the final field dis-

tribution of the space. Another point to note is that the antennas are fed in three dif-

ferent configurations: in phase, quadrature phase and inverse phase excitations. 
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Therefore, the results of a phased array operation are also derived. The Figure 4.5 

gives an idea of how the antennas are located on the conducting sphere and Table 4.3 

describes the excitation methods of each configuration in Figure 4.6. 

 

Table 4.3: The excitation configurations for each case presented in Figure 4.6 

Excitation Configurations 

 Antenna I Antenna II 

Case a Mag=1 ,  Phase=0° Mag=1 ,  Phase=0° 

Case b Mag=1 ,  Phase=0° Mag=1 ,  Phase=90° 

Case c Mag=1 ,  Phase=0° Mag=1 ,  Phase=180° 

 

 

 

Figure 4.5: The CST model of the two element antenna array with elements placed 

180° apart 
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Figure 4.6: yz-plane radiation patterns for excitation configurations of a) in-phase,                       

b) quadrature-phase, c) inverse-phase 

 

It is apparent in Figure 4.6 that the analytical model is in agreement with the CST 

simulated radiation patterns. Any type of excitation configuration of phased arrays 

can be analyzed by means of cavity method without abundant error. The excitation 

choices can be extended by adjusting the magnitude ratios of the feeds, but the re-

sults will keep matching.  

 

4.5.    Radiation Field Characteristics of a Four-element Array of Spherical-

rectangular Microstrip Antennas Mounted on a Conducting Sphere:  

In this section, the results of a four-element array are shared to investigate if the 

number of antennas included in the analysis affects the accuracy of the analytical 
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evaluation. The antennas are placed with quadrature (90 degree) spacing as depicted 

in Figure 4.7. The antenna characteristics are as given in Table 4.4. The order of an-

tennas is different from the one in the previous section in such a way that they are 

located in a different alignment and the feed lines are in azimuthal direction. The 

element excitations are equal. 

 

Table 4.4: The parameters of another spherical-rectangular patch antenna 

Antenna Parameters 

r1 0.1 m ffund 1.5 GHz 

δr 4.5 mm Єr 4.3 

θ1 4π/9 ϕ1 5π/12 

Δθ π/9 Δϕ π/6 

 

 

 

Figure 4.7: The CST model of the four element antenna array with elements placed 

90° apart 
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Figure 4.8: yz-plane (a) and xy-plane (a) radiation patterns for equally excited      

elements 

 

The coincidence of radiation pattern curves of analytical and simulated results in 

Figure 4.8 is an evidence for the strength of the cavity method in evaluating patterns 

of antenna arrays of multiple elements. These results encourage the utilization of the 

method for various array structures, especially for the arrays used in applications 

such as direction finding and beam forming. Although numerical methods are pre-

ferred mostly for these applications, cavity method may still prove to be a useful and 

fast approach for simple-element-arrays which were discussed in this study.   

 

4.6.    Investigation on the Beam Forming Capability of a Twelve-element Array 

of Spherical-rectangular Microstrip Antennas Mounted on a Conducting 

Sphere:  

In this section, twelve antenna elements with the given properties in Table 4.5 are 

ordered in azimuthal direction with equal intervals as indicated in Figure 4.9. Instead 

of activating all the elements, only a few can are excited to observe the resulting ra-
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diation patterns. The equal excitation of antennas in particular groups can allow the 

formation of directive beams.  

 

 

Figure 4.9: The CST model of the twelve element antenna array with equally       

distributed elements 

 

 

 

Figure 4.10: xy-plane radiation patterns obtained by activating the antennas located 

at a) ϕ=180°, ϕ=210°, ϕ=240°, b) ϕ=90°, ϕ=120°, ϕ=150° 
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Activating the arrays in an on-off manner causes the antennas to concentrate their 

beam in a specific direction. The Figure 4.10 gives some examples of beam forming 

capability of azimuthally aligned antennas. All feeds have the same phase and mag-

nitude and activated elements are depicted in red circles. In this example, the main 

beam is directed to a desired location by exciting only a quarter of the number of 

antennas. The back lobes are at least 12 dB lower than the main beam. However, the 

main beam is quite large, thus the directivity of the array can be improved further by 

introducing the phased array application. Another example is given in Figure 4.11 

where more of the elements are activated to form two beams. 

 

 

Figure 4.11: xy-plane radiation patterns obtained by activating the antennas located 

at ϕ=90°, ϕ=120°, ϕ=150°, ϕ=180°, ϕ=270°, ϕ=300°, ϕ=360° 

 

The excitation of eight elements in the order given in Figure 4.11 enables the for-

mation of two equal sized beams. In this configuration, both the front and back of the 

spherical structure are illuminated by the antenna beams which can be a beneficial 

attribute regarding the direction finding applications. The ordered switching of these 

activated antennas can also allow the scanning of space in the azimuthal direction 

without making use of phased array algorithms. 
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The advantageous aspect of the spherical structures as shown in this section is that 

their surface area faces the whole space. Therefore, an antenna array aligned on the 

surface of a sphere can form beams that span entire space without any mechanical 

movement or the phased array concept; but only by using on-off algorithm. The extra 

contribution of phased array systems may improve the capability of the arrays in ap-

plications such as beam forming and in the detection part of direction finding appli-

cations.  

Although the flexibility of spherical antenna arrays is apparent and the capability of 

cavity model in evaluating the radiation patterns is evident, the dense distribution of 

array elements may cause certain problems as mentioned in the previous chapter. The 

cavity model is an approximation itself; therefore, the superposition of the field dis-

tribution of each element in the array contributes to the error magnitude. If the num-

ber of array elements is abundant, then the accuracy of the overall solution drops. 

Another source of error is the mutual coupling between the array elements. The an-

tennas in close proximity start to affect each other by introducing an impedance shift 

for each other and their behavior may differ considerably. Therefore, one must pay 

attention to the electrical distance between antennas and keep them sufficiently dis-

persed. It can be said in our case that distances larger than 10  seems enough to 

avoid such a phenomenon. The Figure 4.12 shows the effects of densely distributed 

antennas on the radiation pattern of each element. In this configuration, fifteen ele-

ments are densely positioned in azimuthal alignment with intervals of 15 . The 

antennas forming the array were described in Table 4.1. 

 

4.7.    Investigation on the Beam Forming Capability of a Twelve-element Array 

of Spherical-rectangular Microstrip Antennas Mounted on a Conducting 

Sphere:  

In this section, twelve antenna elements with the given properties in Table 4.5 are 

ordered in azimuthal direction with equal intervals as indicated in Figure 4.9. Instead 
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of activating all the elements, only a few can are excited to observe the resulting ra-

diation 

 

Figure 4.12: a) Radiation pattern comparison of calculated and simulated results for a 

single antenna in a dense (fifteen element) array, b) Fundamental frequency shift due 

to the effects of dense array formation 

 

The dashed line in Figure 4.12a shows the result of the cavity model for a single an-

tenna. Obviously, the analytical cavity model does not include effects of mutual cou-
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pling. Nevertheless, continuous line which is the CST simulation result demonstrates 

the effect of mutual coupling with a slightly distorted pattern. The Figure 4.12b was 

also added to show that the resonance frequency of antennas also shift due to the load 

impedance introduced by the antennas in close proximity as shown in Table 4.5. The 

effect of error accumulation due to the high quantity of antennas in the array was not 

given in these figures, yet it stands as another significant source of error that de-

grades the accuracy, and thus the attractiveness of the cavity model. 

 

Table 4.5: The effect of antenna separations on the fundamental frequency 

Antenna Separations 
Fundamental Mode   

  Frequency (GHz) 
Shift in Frequency 

λo/2 1.4656 0.00 % 

λo/10 1.4671 0.10 % 

λo/15 1.4760 0.70 % 

λo/30 1.5022 2.50 % 

 

4.8.    Comparison of Spherical-Rectangular Antenna Arrays Consisting of   

Elements that are Bounded and Unbounded by the Spherical Grids:  

In this section, the effects of spherical grids on both radiation pattern and input im-

pedances of spherical-rectangular antennas are investigated. Fig. 4.13 depicts the 

elements bounded and unbounded by the spherical grids at the same coordinates. The 

grid bounded element changes its shape as it approaches to the pole. On the other 

hand, the transformed element preserves its original rectangularity despite its posi-

tion. 



93 
 

 

Figure 4.13: Demonstration of the nongrid (a) and grid (b) rectangular antennas 

along with the reference element centered at φ = 90° with parameters: θ1=80°, 

Δφ=16°, Δθ=20°, r1=10cm, δr=4.5mm, ϵr=4.3 

 

The change in their shapes causes the grid bounded elements to be handled cautious-

ly since they may suffer from poor feeding. Furthermore, the distortion in their 

shapes gives rise to a shift in their frequency response. The Fig. 4.14 and 4.15 indi-

cates the radiation pattern and s11 comparisons between two antenna geometries that 

have the same angular dimensions Δθ and Δφ.  
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Figure 4.14: Comparison of normalized E-plane radiation patterns of grid-bounded 

and nongrid rectangular antennas in Fig. 4.13 

 

 

Figure 4.15: Comparison of reflection coefficients of grid-bounded and nongrid 

rectangular antennas in Fig. 4.13 

 

Fig. 4.14 shows that the normalized radiation patterns do differ negligibly for this 

particular case. However, their reflection coefficients are completely different which 
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means that there is a shift in resonance frequency and there is a need for reposition-

ing of the feeding point in order to ensure efficient radiation.  

 

 

Figure 4.16: Demonstration of a three-element-array formed by the reference element at 

equator with φ = 90° and its transformed counterparts with displacement angle ϕ=30° 

 

 

Figure 4.17: Normalized E-plane radiation patterns obtained by the cavity model 

analysis and CST simulations for the rectangular array in Fig. 4.15 
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In order to validate the transformation technique explained in Chapter 3, a three-

element spherical-rectangular antenna array depicted in Fig. 4.16 is also formed and 

analyzed. The comparison of the normalized radiation pattern results from analytical 

model and CST simulations are given in Fig. 4.17 where a strong coincidence be-

tween each plot can be observed. Therefore, it is appropriate to conclude that the 

analytical model can be made capable of handling array elements that do not fit the 

spherical grid format by means of careful field transformations.     

 

4.9.    Investigation of Curvature Effect on Radiation Pattern Characteristics: 

In this section, the effect of curvature is observed by changing the radius of curvature 

of the printed antenna. Fig. 4.18 demonstrates the differences of E-plane radiation 

patterns on a rectangular patch with a side length of 3.5 cm. As the curvature in-

creases, the far-field pattern starts to create larger side and back lobes even though 

the main lobe remains almost the same. The case with the largest radial dimension 

shows similarities to characteristics of planar printed antennas as the back lobes are 

quite small at this configuration and the main beam becomes the dominant radiation. 

Consequently, the curvature degree has important effects on the radiation pattern 

characteristics of printed antennas. Therefore, spherical antennas cannot be examined 

with analysis methods of planar antennas as the planar approach begins to fail as 

curvature increases. 
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Figure 4.18: E-plane normalized radiation patterns of a particular spherical-

rectangular printed antenna (3.5cm x 3.5 cm) with different spherical radii 
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CHAPTER 5 

 

 

 

 

5CONCLUSION 

 

 

 

 

 

 

5.1.    Summary and Conclusions: 

In this thesis, spherical microstrip antenna and antenna arrays were investigated by 

employing the cavity model as the basic analysis approach. The main idea was de-

termining the magnetic equivalent currents flowing at each side of the patch so that 

the patch and dielectric structure could be ignored and the problem of interest turned 

into the radiation of magnetic currents in the presence of a conducting sphere. The 

radiated fields were modeled by spherical wave harmonic functions. The field ex-

pressions were transformed to spectral domain by means of the Vector-Legendre 

transformation in order that the boundary conditions could be applied on them more 

efficiently. Finally, the field expressions were configured to obtain far-field charac-

teristics of the antennas and radiation pattern were derived. For antenna array struc-

tures, the analytical results of each antenna were superposed to have overall pattern 

characteristics. 

The analysis steps in this study remains in the analytical domain due to the nature of 

cavity model. The steps that lead to the determination of fields are straightforward 

and do not require a solution process of any complex numerical equation or any 

complex calculation. Furthermore, it gives a physical insight since the solution pro-

cess carried in an explicit manner that does not cause confusion throughout the study 

due to clear cause-effect relations. Last but not least, the obtained results are reason-

able and mostly accurate if requirements of cavity model analysis are met correctly. 
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The strength of the approach is apparent in the radiation pattern results of various 

antennas and various antenna array formations. 

The reliability of the method was vindicated for different antenna types and arrays. 

The radiation field characteristics for each case presented in this study were com-

pared with the simulated results in the CST (Computer Simulation Technology) 

software design environment. The results showed little difference between these pat-

tern plots ensuring the effectiveness of the cavity model. Although this model is not 

efficiently applicable to microstrip patch types of arbitrary shapes which seems as its 

disadvantage against full-wave analysis methods, its accuracy and simplicity proves 

it to be a strong solution model for such antenna problems. 

Another outcome of the study can be summarized as the employment possibilities of 

spherical printed antenna arrays for direction finding and beam forming applications. 

The radiation pattern results in this study provoke the idea that the physical structure 

of such antenna arrays can be utilized to have narrow beams in various directions 

without resorting to complicated phased array algorithms; hence these structures may 

become an alternative way to solve difficult direction finding problems. 

 

5.2.    Future Work 

This study can be extended in various directions that still require further examina-

tions: 

 The input impedance calculations using cavity model for different feeding 

networks for spherical microstrip printed antennas and their comparisons with 

computer simulations 

 Cavity model analysis of spherical microstrip printed antennas with multiple 

dielectric substrate layers 
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 The cavity model analysis of spherical microstrip printed antenna arrays that 

includes the mutual coupling effect between elements 

 Investigation of the spherical microstrip printed antenna arrays for applica-

tions of direction finding and/or beam forming 
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