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ABSTRACT

SEMI-AUTOMATIC GROUND-TRUTH TRAJECTORY EXTRACTION ON
IMAGE SEQUENCES

Karabiyik, Murat
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Miibeccel Demirekler

February 2017, 77 pages

In this thesis, offline semi-automatic ground-truth trajectory extraction technique is
proposed that uses measurements of detector as basis. The unknown camera motion
of the videos used throughout the thesis makes the problem even more challeng-
ing. The camera motion is estimated by using a novel method which uses a special
Kalman filter. Background objects are discriminated from the targets and they are
used to estimate the camera motion. Two different trackers are implemented to ex-
tract the ground-truth. Measurements of the detector are tracked by using Tracker-1.
The tracks resulted from Tracker-1 are associated by using Tracker-2. The velocity
difference between the target and the camera is used both for position predictions
of Tracker-2. The user of the program gives the true target information for the first
frame. The output of Tracker-2 gives the raw ground-truth and it is smoothed via
Kalman smoother. The output of the Kalman smoother gives the ground-truth. Fi-
nally, an example tracker which is used in real time tracking problems is evaluated by
comparing the ground-truth and measurements of the tracker which is evaluated.

Keywords: Ground-truth Extraction, Camera Motion Estimation, Kalman Smoother,
Evaluation of Tracker, Offline Tracking
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GORUNTU DiZiLERINDE REFERANS TAKIP VERILERININ YARI
OTOMATIK OLARAK CIKARTILMASI

Karabiyik, Murat
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi : Prof. Dr. Miibeccel Demirekler

Subat 2017 , 77 sayfa

Bu tezde, bir dedektoriin hedef tespit dl¢iimleri kullanilarak bir ¢evrimdist yart oto-
matik referans takip datasi ¢ikarma teknigi 6nerildi. Tez boyunca kullanilan videola-
rin kamera hareketlerinin bilinmemesi problemi daha da zor hale getirdi. Kamera ha-
reketi zamana bagli degisen bir Kalman filtresi kullanilarak tahmin edildi. Arka plan
objelerinden kaynaklanan izler hedef izlerinden ayirt edilerek kamera hareketi tahmin
modeline eklendi. Iki farkl1 izleyici referans takip datas1 ¢ikarmak icin kullanild1. Tk
izleyici kullanilarak dedektorden alinan hedef tespit Ol¢timleri takip edildi. Bunun
sonucunda ortaya ¢ikan hedef takip dizileri ikinci izleyici kullanilarak birbiriyle ilig-
kilendirildi. Hedef ile kamera arasindaki hiz farki hesaplanip ikinci izleyicinin pozis-
yon tahminlerine eklendi. Hangi izin hedef oldugu bilgisi kullanici tarafindan verildi.
Ikinci izleyicinin sonucunda ham bir referans takip dizisi ortaya cikt1 ve bu dizi Kal-
man diizgeci kullanilarak diizlestirildi. Bu islem sonucunda ortaya ¢ikan dl¢iim dizisi
referans takip verisini verdi. En son olarak, gercek zamanl izleyicinin hedef takip
Olctimleri referans takip datasi kullanilarak degerlendirildi.

Anahtar Kelimeler: Referans Takip Datasi, Kamera Hizi1 Tahmini, Kalman Diizgeci,
Video Izleyici Degerlendirmesi, Cevrimdis1 Takip
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CHAPTER 1

INTRODUCTION

In a video which has got various traces, there is a need to extract true position of
the desired object that we call ‘target’. This process is called the ‘ground-truth tra-
jectory extraction’. The simplest way of obtaining the ground truth trajectory is to
mark the position of the target by hand at each frame. Marking the position of the
target requires high human labor which is not desirable. Once extracted, ground truth
trajectory is used to assess the tracking performance of any video tracking system.
Most of the video tracking systems uses two consecutive frames to associate the ob-
ject candidate(s) found in one frame to the object(s) of the previous frame [27]. In
these systems no a priory information about the possible target motion is assumed.
The use of the motion model and the predictions given by the Kalman filter or any
other filter is a nother a pproach to video objectt racking. In the last t wo decades
this approach is applied to both single and multiple video target tracking problems
[4, 15,9, 23, 20]. While using this approach usually a detector gives candidate posi-
tions of the target at each frame, called the measurements, and the tracker tracks the
object by utilizing the measurements by a simple Kalman filter or much more sophis-
ticated filters like particle filter. In the recent years there are approaches that combine
the robust tracking techniques with the stochastic filtering techniques [23, 20] or par-
ticle filters [9].

An association between the consecutive frames is necessary for all tracking tech-
niques and any association uses features obtained both from the target and the back-
ground. The features extracted consist of color, contour information, intensity etc.
Color, which is very useful in discriminating feature, cannot be used in IR applica-
tions. Shape of the target is also an important discriminating feature. For small targets

of few pixels this feature cannot be used either.



Tracking of objects in an image sequence depends on the motion of the camera. Cam-
era may be stationary, moving according to some unknown external source with un-
known aim or may try to track the target. In all different cases the motion of the target
as observed on the scene would be different. So for all these cases motion models of
the target should better be different.

The first aim of this thesis is to fully or partially automate the extraction of the true
target position on an image sequence that is already recorded. So this is an offline
operation. The second aim is to generate an evaluation system for a video tracker.
The evaluation system evaluates the tracks or track parts generated by any tracker as
true, false, unobserved etc.

The videos used in this study are IR videos. We assume that the camera that records
the image sequence is trying to track a target although not always successful. Since
the video is recorded by a tracking camera the tracked object is at the center of the
scene unless the tracking system makes a mistake.

The block diagram of the system developed in this thesis is given in Fig. 1.1. System
has a detection part which extracts possible target positions. This block extracts at
most N candidate target positions for each frame of the video. Tracker-1 is an on line
multi target tracker which uses Kalman filtering. Data association is done by Global
Nearest Neighboring method. The output of Tracker-1 is a set of tracks. A typical
output of Tracker-1 is shown in Figures 3.4 and 3.5. Tracker-2 uses the output of
Tracker-1 and mainly associates the tracks. Tracker-2 uses the estimated motion of
the camera while making associations. Tracker-2 makes off line operations for this
purpose. The final block is the smoothing block that which is again requires off line
operation is done.

In this thesis, the detection block ( Fig. 1.1: detector) is not implemented. This block
is taken as ready to use. It is designed to detect small IR targets. Although the per-
formance of this block directly affects the performance of the ground truth extraction
system in our evaluation we consider only the image sequences that the detector gives
the true target position, if available, as one of the candidates.

The camera is assumed to be a tracking camera, i.e. it tries to track the target. How-
ever the motion of the camera is assumed to be unknown. During tracking the camera
makes a smooth motion to keep the target at the center of the scene. Whenever the

camera loses the target it makes arbitrary motions that may be large. These time in-



tervals usually correspond to target occlusions. During and/or at the end of such time
intervals for the tracking system it is important to find the target again. Unknown
camera motion creates a problem for the associations made in these cases. So in this
thesis camera motion estimator is designed. Camera motion estimator uses the tracks
that are classified as background tracks. A time varying single tracker model is used
to track all the objects that belong to the background. The output of this system is
not only the trajectory of the target but also the information about the existence of the
target at all frames.

The system shortly described above is given in Fig 1.1. is called Ground Truth Ex-
traction System (GTES).
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Figure 1.1: Block Diagram of the System

The second aim of the thesis is to generate an evaluation system for the assessment of
the performance of video trackers. The ground truth extracted by the above system is
compared with the trajectory of the target produced by the tracker of a tracking sys-

tem under investigation. The assessment indicates the time intervals that the tracker



makes some decision errors like ‘wrong object is tracked’, ‘observable target is not
found’ etc. Furthermore it gives the RMS error between its smoothed output and the
output of the tracker.

We have used 7 infrared videos in this study. The length of the videos changes be-
tween 250-1000 frames (400 frames in avarage). In 5 of them the object that is tracked
is an airplane and in the other two it is a helicopter. The 7 videos are selected among
200 videos and they are the ones that are problematic in some way. All videos are
recorded by a tracking camera, i.e., while an unknown tracking system is tracking
the target. This unknown tracking system is called ‘Source of the Video (SoV)’. In
the videos,most of the time the camera turns into the direction of the target and the
target remains at a fixed position which is the center of the frame. However, there is
no guarantee that the camera moves along with the target all the time since ‘source of
the video’ has an unknown performance.

The helicopter videos are selected not because that they are not airplanes but heli-
copters release flare more than once. For such a case it is important for a tracker not
to track the flare. For the flare releasing videos some changes are made in the decision
logic.

The second aim of the thesis is to assess the performance of a tracker. The tracker
that we used to assess is an IR video tracker that is designed to track relatively small
objects in real time. This tracker is named as Real Time Tracker (RTT). RTT tracked
the targets of the 7 videos that are used in this study and its tracking performance is
evaluated.

In the literature, it is possible to evaluate a tracking system without ground-truth in-
formation [8, 24]. In [24], automatic performance evaluation technique which does
not require ground-truth is proposed. The evaluation of tracker is done according to
the changes of tracking bounding box. This method requires too much prerequisites
such as motion smoothness, direction and speed consistency, no occlusion etc. Its per-
formance degrades if the input video contains complexity. In [8], authors proposed a
method which uses synthetically constructed videos as reference. These videos can
be constructed in a complex way (contains occlusions, multiple targets, dramatically
change of speed etc.). However, it is not possible to use real world videos in this
system.

There are facilities which provide ground-truth data sets periodically. These datasets



are extracted with hand labeling [1], [2].

There are some commercial toolkits that provide ground-truth trajectory such as the
Video Performance Evaluation Resource (VIPER) [3]. For VIPER the human labor
increases proportionally as the complexity of videos increase.

In [11], authors propose semi-automatic method for ground-truth extraction. First,
moving objects are detected by foreground segmentation algorithm and they are tracked

by a tracking algorithm. Operator interferes if necessary and corrects tracks.

1.1 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 explains the camera motion estimation which is crucial for our aim since
the videos used throughout the thesis have no camera motion information. Camera
motion estimation algorithm consists of 3 parts. In the first part all tracks of the video
are computed by Tracker-1. In the second part these tracks are classified as tracks of
background objects and others. In the third part the background tracks are used to
estimate the camera motion.

In Chapter 3, the decision mechanism which used in order to extract the ground-truth
is explained. Two trackers are implemented for this purpose. They use Interactive
Multiple Model (IMM). IMM model is explained in Appendix B. The measurements
of the detector are tracked by a multi target tracker, Tracker-1. Then the true track is
initialized by a human operator. The tracks obtained as the output of Tracker-1 are
utilized to generate the correct track. This is done by associating the track outputs of
Tracker-1 to the true track whenever such an association is necessary. Camera motion
estimation is used to associate in the association process. The output of the second
tracker, Tracker-2, gives the raw ground-truth information. The raw ground-truth is
smoothed by Kalman smoother and its output ia assumed to be the ground-truth.
Chapter 5 gives the experimental results of the videos used throughout the thesis. The
evaluation of an existing tracker named as Real Time Tracker (RTT) is explained on
the examples.

Chapter 6 gives the conclusions and the future work.






CHAPTER 2

CAMERA MOTION ESTIMATION

Camera motion estimation which is close to the notion of background motion es-
timation is a well-studied subject in the literature. The need for the estimation of
the background motion is to detect the objects moving with respect to a stationary
background. The earliest works assume stationary camera and estimate the stationary
parts of the video frames by comparing the statistical representation of each pixel in
the consecutive frames [14]. In the early works of background motion estimation with
a moving camera homography is used to compensate the camera motion. However in
these works camera motion is restricted to be pan, tilt and zoom or plane background
approximation [18, 17]. Later the plane background approximation is relaxed to the
existence of a ‘dominant plane’ [13, 25].

There are few studies about the background subtraction for freely moving cameras
[19, 16] mostly done in the last decade. Use of multiple homography is also a popular
method in these studies [21, 22, 16]. [26] uses a different methodology. It estimates
the epipolar geometries induced by a moving camera. [7] generates a sparse optical
flow algorithm as an initial processing stage. Then they apply a probabilistic filter in
the post processing. In [14] a sparse model consisting of trajectories of salient fea-
tures is built. Background is subtracted by removing trajectories that lie within the
space spanned by the basis.

In this study our aim is not to work on the pixel level but to find a general motion
of the background generated by the camera motion. So we used the technique of

tracking the background objects.



2.1 Problem Statement

All infrared videos which are used as an input to the detector throughout the thesis
were recorded while an unknown tracking system tracks the target. This unknown
tracking system is called as ‘source of the video (SoV)’. The motion of the camera
of this system is unknown. To extract the ground-truth trajectory for the target it
is important to estimate the motion of the camera. Camera motion is smooth while
‘source of the video’ is in the track mode but may be quite arbitrary at the other
modes.

There are some possibilities for camera motion:

1) Source of the video is in the track mode and for that reason camera moves with
almost constant velocity. That means target remains stable at the center of the scene
but the background objects make a relative motion. Furthermore, the velocity vectors
of these objects are almost same.

2) Source of the video is in the coast mode and camera makes arbitrary movements
to search for the target or to center it after finding the target again.

3) Operator manipulates the motion of the camera.

Figure 2.1 given below shows the x(t) plot of the measurements taken by the Detector
for a real video (t is the time or equivalently the frame number). This is an example
for possibility 1. Green points correspond to the background objects which could be
the clouds, the trees, handmade objects etc. while camera is making almost constant
movement to track the target. Blue points are representing the true target and black
points are the detections that come from another object which is moving. Note that
the x positions of the true target are at almost zero since it is kept at the center of the
frame during tracking.

Figure 2.2 represents the possibilities 2 and 3. The color codes of this figure are the
same as the previous one. The figure shows the x(t) plot of the detections. Note
that when the camera makes an abrupt motion in the interval 190-220 background
objects generate parallel trajectories. However their positions change rapidly. As
a consequence of this instantaneous movement, false target’s position (black color)
also changes rapidly but in parallel to the background objects. This is because of the

negligible velocity of the moving object compared to the huge camera velocity.
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In this study, tracks are generated by the Tracker-1 which is explained in chapter 3
via tracking the measurements of the detector. Background objects are discriminated
from the moving objects by using velocities of the generated tracks. Once the tracks
belonging to the background objects are found, camera motion is estimated by aggre-

gating all background tracks.



Constant velocity model is used to track the background objects. However since all
background objects have the same velocity we have used a time varying single model

to track the background. Next section gives the details of the model that we used.

2.2 Camera Motion Estimation Model

Camera motion estimation part of this study consists of three consecutive blocks. In
the first block all possible tracks are generated by using Tracker-1. In the second
block, these tracks are classified as 1) background tracks ii) tracks that belong to a
moving object. The schematic diagram of these operations is given below. Since the
aim is to estimate the motion of the background objects the output of the classifica-
tion block is concentrated to the background tracks. The output consists of starting
and ending frame numbers of each track and the measurements associated to it. Note
that the classification is an off line process so the decisions are made by considering
the complete trajectory of a track. After the classification is done a novel background
tracking algorithm is run on the background tracks.

In the remaining part of this section we first give the details of the classification algo-

rithm then explain the background motion estimation using the background tracks.

Detector

Moasy romsenis
Tracker-1
Tracks gauoratad by Tracker-1

Classifier

Barkgromsd Track sdesdity,
star v Brame nwmbor s
Yleamrem sty

.

Figure 2.3: General Flowchart of the Camera Motion Estimation Model
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2.2.1 Classification of Tracks

Classification is an off line process. The tracks generated by Tracker-1 are classi-
fied to extract the ones that are belonging to the background objects. An example of
Tracker-1 output is given in the Figures 2.5 and 2.6. These figures show the x and
y positions of the detections with respect to time(x(t), y(t) plots). Figures are taken
from Video 1 which will be named as V1 from now on. In V1 camera motion is
mostly the x direction. Therefore x position given in Figure 2.5 is more informative
for the classification purposes. Various tracks are generated as the output of Tracker-
1. These tracks belong to either a background object or the target or another moving
object. Decisions about these categories are made by considering the velocity vectors
of tracks. Classification by velocity requires first the global decision about the cam-
era motion: Camera is tracking the true target or camera is making arbitrary abrupt
motion.

Case 1: Camera makes smooth motion

For this case the assumption is: Norms of the velocity vectors of the track belonging
to the target is close to zero and norms of the velocity vectors of the tracks belonging
to the background objects are greater than a constant value. However, there could be
other targets beside the true target. For them we made the assumption that norm of
the velocity vector of tracks belonging to the false target is not equal to zero but small
if its motion is in the same direction with the true target. However if the false target
makes an opposite direction motion compared to the true target its velocity vector
usually becomes much greater than the velocity of the background objects. These
assumptions are consistent with the observations that we made on the videos that we
have analysed.

Case 2: Camera makes abrupt movements

For this situation, we consider all of the tracks as background tracks. There are two
reasons for this decision: first the information that a track belongs to either target or
background cannot be easily extracted from the velocity since the norm of velocity
vectors of both target and background are close to each other. Second: The above
described fact at the same time allows to compute the background motion without
distinguish the target from the background since norms of velocity vectors of both

are close to each other and large.
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The pseudo code of the classification block is given in Figure 2.4. Note that the al-
gorithm classifies only the tracks with high speeds as background objects. Actually
we need not to distinguish the two cases since in the second case all of tracks are

considered as background tracks.

For esch track generated by Tradeer-1 apply the following algorithm

Input: track starting {f0) and ending {f1) frame numbers, norms of
the velocity wvectors in this interval, measurements used to generate

this track

Cutput:  classification ofthe track, f classified as baduground starting

and ending frame numbers, measuwements thsat generate the track.

1) Set HighVelocityFrameCount=0; LowVelocityFrameCount=0,
2} Repeat for =f0:f1
a. Compute the norm of the velocity vector {nw).
i I {nv = M)then discard this tadk
i. If {mv = E) then HighVelectyFrameCount=
HighWelocityFrameCount+1;
i, If not; LowVelochtyFrameCount=
LowVelscityFrameCount+1;
3} end
44 |If {HighVeloctyFrameCount> Low\eloctyFrameCount) this
track i5 Isbeled as background track.

Figure 2.4: The pseudo code of the classification algorithm
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Figure 2.5: X position vs frame number for V1
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Figure 2.6: Y position vs frame number for V1

2.2.2 Background Tracking

At the end of the classification phase background tracks are obtained. In the back-
ground tracking phase they are fused to get more reliable motion estimation. Note
that the aim of estimating the motion of the camera is tracking the true target. So very
precise algorithms, that associates all pixels of a frame to the pixels of the previous
frame are not necessary.

We have treated the background motion estimation problem as finding the position
of a dummy point in the consecutive frames by tracking it. The method used here is
adopted from [5]. In [5] the procedure explained here is used for group tracking.
The basic idea behind the motion estimation part is to model the motion of the back-
ground by a single constant velocity model and use the positions of the background
objects that exist as measurements to update the motion at each frame. The inter-
esting point here is that the number of objects change in time and the state vector
and also the measurement vector may have different sizes at each time instant. The

explanation of this novel algorithm is given below.

2.2.2.1 The Model

We assume that the camera motion, so the motion of the background objects, is

smooth so they can be tracked by a constant velocity model. At the time instances
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where the motion is abrupt, this model may not be able to track it however for these
cases, it ends the track and after ending a track it generates a new track.

Each background object is modeled by a state vector that contains the position of the
object on the image frame. The velocity of each background object is almost same
if parallax effect is not taken into consideration. So the overall state vector that is
modelling the background has the components of x-y positions of each background
object and the V, and V|, values of the common velocity. In addition to these our
model contains the position of a dummy point. The position of the dummy point is
initialized as the origin of the scene. At the end it gives the total displacement of the
origin.

The state and the observation equations have the standard forms as given below.
o Al‘k + ka (21)

yr = Cwp + Huy (2.2)

where wy, ~ N(0,Q) and vy ~ N (0, R)

The compound model is time varying and xy, Py, Ag, G, Qk, Ri, Hy, C} are modified
as the number of tracks belonging to background objects is changing.

Assume at frame k we have a set of tracks, with their indexes [i, ... ,n]. The state

vector of the background tracking system is defined as

X'
Yy

X"
= |y (2.3)
X
Ve
po
V3™

The components of the state x;, are defined as:

X, : X position of i'" track at k'* frame k'" frame
Yy : Y position of i track at k" frame k' frame

14



X" : X position of the origin of the background objects at k" frame

Yi* : Y position of the origin of the background objects at k" frame
V™ : The common velocity of background objects in X direction at k™ frame
Vi : The common velocity of background objects in Y direction at k™ frame

The state vector contains the position of each object, a single velocity component

V *IT X *T
g and a part that is shown by g which is the position of a dummy point.
Vi X

The initial position of the dummy point is the origin of the frame so it corresponds to
the overall position change estimate of the origin.

The size of the A matrix depends on the number 'n’. Example of A matrices are given
in (2.4) and (2.5). (2.4) represents the case of two background objects, while (2.5) is
the model for 3 background objects.

G matrix is given in (2.6) and (2.7) for two and three background tracks respectively.

C,Q,R,H matrices are explained in (2.8), (2.9), (2.10), (2.11) respectively.

[2 02 02 TIQ

0 I 0 TI
a— | 2 2 2 (2.4)
09 09 I TI,

) ) ) I

I, 0o 0y 0o TIo
02 I, 0, 0o T
A= 10, 0, I, 0, TI (2.5)
0, 0o 0o Iy TI
O 02 02 0O Iy

G = (2.6)




G = |(12/2)1, 2.7)
T2/2)1,
I
¢ = ](Z*trackc’ount)X(Q*trackCount) 0(2*trackCount)><(4)] (28)
02 0
Q= ) (2.9)
0 oy

R = (2.10)

(2xtrackCount) x (2xtrackCount)

H = (2.11)

|: ] (2xtrackCount) x (2xtrackCount)
2.2.2.2 Initialization of Camera Motion Estimation Model

If one or more tracks are classified as tracks that belong to the background objects,
camera motion estimation model is initialized. Assume that the i*" and j** tracks are
decided as tracks that belong to the background objects at the k" frame. At this frame
state vectors of these background objects are already estimated and the corresponding
covariance matrices are known since they are tracks. Initialization parameters of the

background motion are selected as:

® Tpk|k:

| part of the z¢ is the measurement of the " background obkect. Same rule is
Y

applied for other tracks belonging to background objects.

*

, 360
part of the x}, is selected as which is the center of the scene if no
Y, 144
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initialization is started before. Otherwise, the values where the latest camera motion
estimation model ended are taken for initialization.

Vi.™" part of the xy;, is selected as in (2.12). Same calculation is applied for V;,* as

well.
(Vi (o1, )) ™" + (" (04, o)
‘/;C*x . k UVz k k UVz k (2 12)
= : — ,
(o8, ")) + (o, )~
where
(0§m2) , : variance of V, for i’ track
Vil : Velocity of i track in x direction at k" frame

a (& 02 02
el b 0 0
[ Pk:|l<:: ? ?
09 09 0o 09
_02 02 02 C_
where
(0% 0
a -
| 0 (03 )k |
(k) 0
b o
| 0 (03 )i |
(@ 0
e 2
0 (0% i
_ L
) (04,07 + (o8, )7 0
i 2 _ i 2 —1\—
] 0 (o3, )"+ (ot D)D) 7!

;2 . . .
(0% ")  : Covariance of " track for x position at %" frame

(0% )x : Cross-Covariance between i'" and j** track for x position at k" frame

17



2.2.2.3 Tracking

Kalman filter is used for tracking the background. Kalman filter equations are given in
Appendix A. The difficulty with this model is its unconventional structure. For each
frame a new background track may enter to the model or an old one may leave it.
Both causes dimension changes in the state equation and in the observation equation.
Elimination of ended tracks is easy: one can eliminate the states corresponding to
the ended tracks from the state vector. This reduces the dimension of the state vector
by two (position of the object on the scene). . Similarly measurement vector is also
reduced by two since the position measurements of this background object no more
exists. These reductions in the state and the measurement vectors also change the
sizes of the related matrices. New matrices can be generated easily by eliminating the
parts of them corresponding to the eliminated parts of the vectors.

Adding new parts to the state vector is more difficult. If a new background track
enters into the scene its own estimations are appended to the state estimate and its
covariance. All matrices are changed accordingly. Example of these matrices are

given in Section 2.2.2.1.

2.3 Generating the Reference Data

There is a need to generate a reference data in order to measure the performance of
the camera motion estimation model. Hand labeling is applied to V1 for this purpose.
Hand labeling is the labeling of a background point throughout the video in a consis-
tent manner. For example; Figure 2.7 is the 100. frame of V1 and red circle is the
point where the operator marks a cornet of a cloud as a background object. Operator
marks the same object at frame 150 as can be seen in Figure 2.8. If the background
object that is labeled leaves the scene then operator selects another point as reference
point and continues with that one.

The hand labeled x and y positions of the selected points for V1 are shown in the Fig-
ures 2.9 and 2.10. Three red lines means 3 different reference points are selected by
the user. A Kalman filter is used to track the positions to further smooth the trajectory.

Kalman filter is started for each 3 reference points. The velocity components of state

18



vector are considered as reference velocities for camera motion estimation model.

202:12:28:58 277

Figure 2.7: 100. frame of V1

202:12:21:00.261

Figure 2.8: 150. frame of V1
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Figure 2.9: Reference X Positions for Camera Motion Estimation Model
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Figure 2.10: Reference Y Positions for Camera Motion Estimation Model

2.4 Testing the Performance of the Camera Motion Estimation Model

Camera motion estimation model is applied to V1 and V2 to evaluate its performance.
all videos used throughout the thesis. We have selected these two videos to test the

camera motion estimation since they both contain both smooth camera action as well
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as abrupt camera motion. Since the position of a background object is independent of

the position of the other but their velocities are similar we compare the velocities.

2.4.1 Results of Video-1 (V1)

V1 is achallenging video which contains arbitrary camera motion. Output of Tracker-
1 is given in Figure 3.4 and Figure 3.5 in Chapter 3. Figure 2.11 and 2.12 represents
the comparison between the reference data and camera motion estimation model re-
sults. Blue line corresponds to the velocity of the camera obtained by the camera
motion estimation model proposed here and red line corresponds to the reference
data. The positions where blue line doesn’t exist are the result of non-existence of
background tracks.

The figures show that the estimation of the background motion is quite satisfactory in
the sense that they give very similar velocities especially when we an abrupt camera
motion exits. The difference is less than 1 pixel/frame almost everywhere including

the abrupt camera motion region.
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Figure 2.11: Comparison of X velocity between camera motion estimation model and

reference data
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Figure 2.12: Comparison of Y velocity between camera motion estimation model and

reference data

2.4.2 Results of Video-2 (V2)

V2 is another challenging video which contains abrupt motion. It is different than
V1. Unlike V1, after the abrupt motion of the camera the SoV places another moving
object into the center of the scene. Figure 2.13 and 2.14 represents the comparison
of the velocities between the reference data and the camera motion estimation model
output. Blue line corresponds to the proposed model and red line corresponds to
the reference data. The positions where blue line doesn’t exist are the result of non-
existence of background tracks. The results are similar to the results obtained for V1
and less than 1 pixel/frame in most of the cases.

In both of the experiments the background extraction model seems to generate veloc-
ities with larger variances. This can be explained the relatively worse performance
of the Kalman filter when the corresponding state is not directly measurable, i.e., the

velocity for this case.
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Figure 2.13: Comparison of X velocity between camera motion estimation model and
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Figure 2.14: Comparison of Y velocity between camera motion estimation model and
reference data
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CHAPTER 3

DECISION MECHANISM

The aim of this chapter is to build a decision mechanism which extracts the ground-
truth trajectory for any video. In this study we have concentrated on the air vehicles.
There are two different types of videos that we have worked on. The first type is an
air vehicle and the other is an air vehicle that releases flare. The second one is named
as ‘spawning target’. We assume that the user of the program gives this information
as an input to the Ground-Truth Extraction System. Although there are two different
approaches for the two different cases the sub-algorithms are not much different.
Unless otherwise specified both algorithms use the same m ethods. Measurements of

the detector are used for constructing the decision mechanism.

3.1 Single Air Vehicle

Two trackers are used for this purpose. The complete information about trackers are
given in appendix B but some of details are mentioned in this section. The first tracker
which is named "Tracker-1" uses measurements of the detector to track multiple tar-
gets. Tracker-1 is an on line tracker. It uses Global Nearest Neighbor (GNN) method
for the association of the measurements to the tracks. Tracker-1 generates a set of
tracks that some belong to the true target. A continuity of the true target trajectory
is not expected. The second tracker which is named "Tracker-2" is a single target
tracker. Tracker-2 is an off line tracker which uses the future information to make
associations. Tracker-1 eliminates some of the measurements and associates the re-
maining ones to some tracks. These measurements are used by Tracker-2. Tracker-2

tracks only one target for which the related measurements are selected by the deci-
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sion mechanism. The track generated by Tracker-2 starts at the beginning of the video
stream and ends at the end even if the target is occluded in some regions.

The steps of the decision mechanism are given below. Each step of the decision mech-
anism is explained on an example video, Video-1 (V1) which is a typical example of
an airplane.

1) Measurements of the detector are tracked by Tracker-1. Associations are done by
GNN.

2) Camera motion is estimated for the whole video. The output of the camera motion
estimation system is the velocity of the background and the position of the dummy
point.

3)The user of the program gives the position of the target at the first frame. Therefore
the decision mechanism selects the true track among the tracks of Tracker-1.

4) If the true track ends there are two possibilities for the rest of the video:

a) Try to associate the tracks of Tracker-1 with the ‘true track’. If an association oc-
curs continue with the measurements of the associated track.

b) If Tracker-1 generates no tracks or no association occurs between the tracks of
Tracker-1 and the true track, no measurement update is applied to the true track.
However, the covariance matrices are restricted to a nominal value in long intervals.
5)Repeat step 4 until the end of the video.

6) Mark the target trajectory at all frames as either ‘occluded’ or ‘tracked’ frame.

7) Apply Kalman smoother to the raw ground-truth generated by Tracker-2 at the
tracked regions.

4b is the step where track associations are done. An important point here is that the
camera motion must be taken into consideration during the associations. If the cam-
era motion in this interval is almost the same as in the tracked interval we assume
that the velocity of the target is equal to the camera velocity. Otherwise, the velocity
difference between the camera and the target should be added to the position predic-
tion of the target. The time derivative of the dummy point gives the velocity of the
target. If there is no abrupt motion the x position or the y position changes almost
continuously at each frame. A huge gap between consecutive positions of the dummy
point indicates an arbitrary camera motion. A detailed explanation of step 4 is given
by the pseudo code in Figure 3.1. Assume that the tracking of Tracker-2 is stopped

at time n due to non-existing data in the interval [n,n+k]. Assume that all the tracks
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of Tracker-1 are available. Track availability is the availability of the measurements
that generate the tracks. Furthermore assume that each track of Tracker-1 is labeled

as ‘background track’ or ‘not background track’.

Inputs:;
i The last fitered value of the targets track and the
covariance of its state
i} i Al the ftacs generated by trackes-1 and their

gssociated measurements (back ground motion i
subtracted) together with ther tags of belonging or not
belznging to the background motion.

Cwutput: The identity of the tracker-1 track that & essociated to the
target’s track,

1} If the messurement of a track generated by tracker-1 is in the
gate of the target's track and if it & not a background track
then associate this track with the target’s track. If there are
maore than one association, nesrest one 5 selected a3 the
gssocisted track.

2) If a racker-1 track 5 Bssociated with the target’s track than
return back. to  ususl ftracking operstion with  the
measurements of the associsted tradh.

21 If at time t no track & associated with the target’s track than
inorease t by 1, apply no messurement update step. If the
gate size & larger than a pre specified valus keep it fived

egqual to the pre specified value.

Figure 3.1: Pseudo Code of Step 4

Example:
The x(t) and y(t) plots of measurements of the detector for video-1 (V1) are given in
Figures 3.2 and 3.3 respectively. The x(t) and y(t) plots of the tracks generated by

Tracker-1 are given in Figures 3.4 and 3.5 respectively.
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Figure 3.2: X(t) measurements of the detector for V1
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Figure 3.3: Y(t) measurements of the detector for V1

28



B P il e i b 1

T

v Tigis)
L

Treidad
Tz
Tachad
Turke®
Treciat
Tkt
Tt

-

Tt 1
Tieckst)
Fichatd
Tgimld

t il

Ticiati
Teciat?
Tuclsll

 Tciwdd

Tickal
Tiecka i
Tahe
Tachd

v ke

Figure 3.4: X(t) output of Tracker-1 for V1
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Figure 3.5: Y(t) output of Tracker-1 for V1

The x and y positions of dummy point are given in Figures 3.6 and 3.7
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Figure 3.6: X Positions of the dummy point for V1
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Figure 3.7: Y Positions of the dummy point for V1

Figure 3.8 gives the comparison between smoothed ground-truth and raw ground-
truth for V1. Cyan color represents the smoothed ground-truth and black color repre-
sents the raw ground-truth. Ground-truth is compared with hand labeled data for 400

frames and the rms error of the position is calculated as 1,3084 pixel.
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Figure 3.8: Raw ground-truth vs ground-truth

3.2 Spawning Air Vehicle

The aim of releasing flare for an air vehicle is a well-known ECM (Electronic Counter
Measure) technique. The system that realized in this study is capable of discriminat-
ing flare from the true target. However the system requires the information that the
video is a ‘flare video’. Although flare introduces some differences to the algorithm,
the generated algorithms are still almost same. For single air vehicle type, it is as-
sumed that a track generated from Tracker-1 belongs either to the target or another
moving object or a background object. However, for the spawning target videos due
to flare release tracks generated by Tracker-1 cannot be trusted. A track could belong
to the true target at the beginning but it could belong to the flare after the releasing
process. It is essential to find the moment when flare is released by the helicopter.
Then, the track belonging to the target must be determined. Figure 3.9 shows the y
positions of the tracks of V6 generated by Tracker-1 with respect to time. The two
time instances that flare is released by the helicopter are circled in the Figure 3.9.

There are two possibilities for flares.
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1) If SoV continues to track true target, y position of flares always increases (remem-
ber that y=0" means top of the scene) due to the gravity. The speeds of background
objects and moving objects don’t change. The red circled area labeled as *1’ in Figure
3.9 1s a typical example of this case.

2) If SoV starts to track the flare, the speed of both the target and background seem to
be increased dramatically. In addition, the position of flare is almost constant. In this
case, the y position of target decreases (it gets closer to the ground). The red circled

area labeled as ’2’ in Figure 3.9 is a typical example of this case.

¥ position{pixei)
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!
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Frame Nurmbgr

Figure 3.9: Y Positions of the Tracks Generated by Tracker-1

The extraction of flare release moments are explained in the pseudo code given in
3.10.

32



Parameters: framelump=20; currentFrame,;

If {there & & track which has lower y position than true track between the frames

currentFrame and curentFrame+framedumg )

If {norm of the velocity vector of other tracdks changed considerably)

IMeke the track which has lower y position true track} //Peossibilty 2 oocurs

Else
1
If {Morm of the velocity of the true ttadk = £) //Possibility 1 cccurs
{Make the track which has lower y position true treck}
Else
I Make measurement update for framelump frames]
i
K

Else

I Make measurement update for frameump frames}

Figure 3.10: Pseudo Code of Finding Flare Release Moments
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CHAPTER 4

EVALUATION OF A TRACKER

The extracted ground-truth trajectory is used for the evaluation of any tracking sys-
tem. In this chapter we first give the structure of a typical tracker. Then we explain the

mistakes that a tracker may do, finally explain the output of our evaluation program.

4.1 A Generic Model of a Tracker

Trackers usually have 3 modes: tracking mode, coast mode and track lost mode. The

flow chart of a typical tracker (TT) is given in Figure 4.1.

By the command offOperaior
Start M

'y

Consequave Coast Coont =0 Consequiive Coast Count 4+

Figure 4.1: TT Mode Transition Diagram

We assume that the initialization of the track is done correctly by some means. If TT
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loses the target it enters into the coast mode. In the coast mode, TT searches for the
target again. When a target is found, TT returns back to the track mode. However
there is no guarantee that the new target is the same as that TT tracks in the previous
track mode. There is a time constraint for the coast mode that is called the maximum
coast count. Maximum coast count is the total number of consecutive frames allowed
in the coast mode. If the target is found within maximum coast count interval TT
enters back into the track mode. Otherwise a typical tracker goes to the track lost

mode and it needs to be initialized by the user again.

4.2 Possible Modes of the Output of a Typical Tracker

A tracker system makes basically two types of mistakes: wrong association and im-
precise tracking. The second type has a meaning only if the track generated belongs
to the true target. In this thesis the precision of the so called Ground Truth is obtained
by applying Kalman smoother to the parts of the trajectory that belongs to the true
target. The first type of the mistakes that a tracker may do may be listed as: it may
jump from one track to another, it may lose the track, or it may generate a track al-
though no track exists. Based on these observations we have defined the ‘modes of
the output of a tracker’ to evaluate it. In each frame, the output could be in various
modes.

The mode definition needs the evaluation of the scene. We classify the possible scenes

as follows.

1. Desired object is in the scene,

2. Desired object is not in the scene temporarily (occluded or by some other reason),
3. Desired object leaves the scene.

Besides that there may be some other moving objects in the scene in all of the above
cases. A typical tracker may make false or true decisions, during tracking. We may
classify the track decisions as:

T1. True track: There is a track and it corresponds to the true target.

T2. False track: Target is not in the scene but the system tracks something else as the

true target.
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T3. Missed track: target is in the scene but the tracker gives no track.

T4. False target track: Target is in the scene but the system tracks something else.
T5. Occlusion/no target: Target is not in the scene; hence the tracker gives no mea-
surement. Figure 4.2 illustrates the tracking modes of TT. This figure is a simulation.
Blue line corresponds to the true target that TT tries to track and black line corre-
sponds to the false target (another moving object). The expected mode is ‘true track’
for the area specified as “T1’ because measurements shown by red color and true tar-
get position are same. Area ‘TS5’ illustrates the mode ‘occlusion’ since the true target
is occluded by clouds and there is no measurement taken from tracker. Area ‘T3’, T4’

and ‘T2’ belongs to ‘missed track’, ‘false target track’ and ‘false track’ respectively.

Mode lllustration
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Figure 4.2: Sample Mode Transition Scenario

4.3 Output of the Evaluator

The output of the evaluator gives the frame numbers where a tracker is one of the

output modes explained above. The presentations of the results are in the graphical
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form. The x(t) and y(t) plots of the target after evaluations are given in the Chapter 5
for all example videos. The graphs given there are color coded. Different colors show
different errors made by the tracker under investigation. We include here the result

obtained for Video-2 as an example.
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Figure 4.3: Output of RTT vs Output of GTES for Y Positions

Blue color in Figure 4.3b indicates that RTT track the correct target, magenta shows

the occlusion interval for the target, green region indicates that RTT tracks something

although the true target is not in the scene.
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CHAPTER 5

EXPERIMENTAL RESULTS

The aim of the study is to obtain i) the true track of a target and also ii) to evaluate a
given tracker by comparing its output with the output of the GTES. The performance
of the system is examined on 7 videos. All videos satisfy the requirements of the
system. They are recorded by a tracking IR camera. In 5 of them an airplane is the
target and in two videos the target is a helicopter that is releasing flare. The videos
are selected among 200 videos as the ones that create problems during tracking.

The system is first applied to all 7 videos to obtain the ‘ground truth’. GTES gives the
target position as the Kalman predictions on the occluded regions. It also indicates
that the region is an occlusion region. The correctness of the occlusion regions are
checked by human. No error is observed on all 7 videos. Also no obvious huge error
is observed on the target positions of all sequences. To see the evaluation part of the
GTES we have used an available tracker that is aiming to track the object in real time.
We call this tracker the Real Time Tracker (RTT).

RTT makes several decision mistakes as classified in Section 4.2. The system gener-
ated in this study must give an output that shows these mistakes. Furthermore it must
also show the difference between the trajectories generated by RTT and smoothed
trajectory of GTES for the time intervals for which the RTT’s decisions are correct.
The system GTES is applied to each video. Experimental results for video-1 are al-
ready given in the decision mechanism chapter. Experimental results of other videos
are given in this chapter. The color codes for GTES and RTT are given in Tables 5.1
and 5.2 respectively. The definitions of ’ True Track’, *Missed Track’ e tc. are given

in chapter 4.
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Table 5.1: Color Code for the evaluation

Colour Mode

Blue True Track
Red Missed Track
Black False Target Track
Magenta Occlusion
Green False Track

Table 5.2: Color code for the modes of RTT

Colour | Mode
Blue Track
Red Coast

5.1 Experimental Results of Video-2

Video-2 is the most challenging video among all the videos. It contains two targets
that are air planes. False target enters into the scene about at 300" frame. Two targets

become occluded by trees at 411"

frame and camera makes arbitrary motion during
the occlusion interval. The true target remains occluded until the end of the video.
But the false target becomes visible at 500" frame and remains visible until the end
of the video. RTT tracks false target beginning from the 520" frame until the end of
the video. There are so many trees in the scene throughout V2 and this causes many
detections. The measurements of the detector are given in the Figures 5.1 and 5.2.
The measurements of the detector are tracked by Tracker-1 throughout the whole
video. The track results are given in the Figures 5.3 and 5.4. In these figures, each
color represents a different track.

Tracker-2 is applied to the tracks generated by Tracker-1. The output of Tracker-2
is given in the Figures 5.5 and 5.6 together with the output of RTT. The comparison
of the two outputs shows the performance of RTT. Examination of V2 and its RTT
output shows that the true target disappears at 411*" frame. RTT enters into the coast
mode at this frame. It re-enters the track mode at 454" frame for a short time, goes

to the coast mode again at 474" frame returns back to the track mode and stays there

until the end of the video. However, It tracks the false target which is the second
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airplane in the last 420 frames.
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Figure 5.1: X Positions of the Measurements of the Detector for Video-2
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Figure 5.2: Y Positions of the Measurements of the Detector for Video-2
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Figure 5.6: Output of RTT vs Output of GTES for Y Positions

Figures 5.5 and 5.6 show the output of both RTT and GTES. The ‘a’ parts of the
graphs indicate the tracked target positions and the coast mode of the RTT tracker.
The cost intervals are shown by the red color. RTT gives predicted, i.e., ‘no mea-
surement update’ for these intervals. Note that since a tracking camera is used, the

claimed target is approximately at the center of the frame throughout the video. The
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‘b’ parts of the figures show the evaluation of the RTT. Blue color in the figure in-
dicates that at these frames the target is correctly tracked by RTT. Magenta color
indicates that the target is occluded and RTT is in the coast mode which is consistent
with being occluded. In this region GTES indicates the predicted target positions by
magenta color by considering the camera motion. The green region is for the part that
RTT tracks a wrong target. For this video the true target is occluded in this interval
as well but RTT cannot realize that.

V-2 is a typical example that shows the loss of target identity while tracking. After
the occlusion region RTT couldn’t be able to track the true target but tracks another
moving object which is another airplane. The green target position given by GTES is
the predicted position of the target.

The rms position error between output of GTES and output of RTT is 1,16 pixels and

it is calculated for 370 frames.

5.2 Experimental Results of Video-3

Video-3 contains two targets that are air planes. Both targets enter into the scene
about at 50" frame. True target is occluded by clouds between 119" and 159" frame.
Before occlusion ends, RTT starts to track a false target and tracks it until the end of
Video-3. There is also a huge occlusion interval between 218" and 348 frames. In
addition, there are not much background objects throughout the video and this creates
camera motion uncertainty. The measurements of the detector are given in Figures
5.7 and 5.8.

The measurements of detector are tracked by Tracker-1 throughout the whole video.
The tracks generated by Tracker-1 are given in Figures 5.9 and 5.10. In these figures,
each color represents a different track.

Tracker-2 is applied to the tracks generated by Tracker-1. The output of GTES is
given in Figures 5.11 and 5.12 together with the output of RTT. The comparison of
the two outputs shows the performance of RTT.

This identity loss made by RTT is indicated by GTES and is shown in the figure by
green color. The rms position error between output of GTES and output of RTT is

0,30 pixels and it is calculated for 60 frames.
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5.3 Experimental Results of Video-4

Video-4 contains two targets that are air planes. Both targets stay in the scene from
first frame until 160" frame where both are occluded at this frame. Speeds of the two
targets are almost same. Analysis of the V4 shows that, RTT loses the track many
times altough the target is in the scene. The reason for the loss is probably the high
maneuver of the target or the camera. Furthermore, RTT tracks false target between
105" and 146" frames. It starts to track the true target again at 146" frame. In addi-
tion, there are not much background objects throughout the video. The measurements
of the detector are given in Figures 5.13 and 5.14.

The measurements are tracked by Tracker-1 throughout the whole video. The tracks
generated by Tracker-1 are given in Figures 5.15 and 5.16.

Tracker-2 is applied to the tracks obtained by Tracker-1. The output of GTES is given
in Figures 5.17 and 5.18 together with the output of RTT. The reason that RTT cannot
track but GTES does is the use of IMM which brings flexibility to the tracking sys-
tem. Note that GTES indicates all of the decision mistakes done by RRT correctly.
The rms position error between output of GTES and output of RTT is 1,25 pixels and

it is calculated for 72 frames.
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5.4 Experimental Results of Video-5

Video-5 is simpler compared to the others. It contains one target that is an air plane.
The target stays in the scene from the beginning until 303"¢ frame. There are no
background objects so camera motion couldn’t be estimated. RTT loses the track
although the target is in the scene. The measurements of the detector are given in
Figures 5.19 and 5.20.

The measurements are tracked by Tracker-1 throughout the whole video. The tracks
generated by Tracker-1 are given in Figures 5.21 and 5.22.

Tracker-2 is applied to the tracks obtained by Tracker-1. The output of GTES is given
in Figures 5.23 and 5.24 together with the output of RTT. The comparison of the two
outputs shows the performance of RTT.

The rms position error between output of GTES and output of RTT is 0,65 and it is

calculated for 271 frames.
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5.5 Experimental Results of Video-6

Video-6 contains single target which is a helicopter. The target is almost stationary
throughout the video. Helicopter releases flares at 74" and 104" frames. SoV con-
tinues to track the target after the first release of flare, however, SoV loses the track of
the target and starts to track the flare after second release of flare. The measurements
of the detector are given in Figures 5.25 and 5.26. The measurements of the detec-
tor are tracked by Tracker-1 throughout the whole video. The tracks generated by
Tracker-1 are given in Figures 5.27 and 5.28. In these figures, each color represents a
different track.

Tracker-2 is applied to the tracks generated by Tracker-1. The output of GTES is
given in Figures 5.29 and 5.30 together with the output of RTT. The comparison of
the two outputs shows the performance of RTT.

The figures indicate that RTT cannot track the correct object after the second flare
and begins to track the flare. GTES is aware of this mistake done and indicates it by
black color.

The rms position error between output of GTES and output of RTT is 0,59 pixels and

it is calculated for 87 frames.
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Figure 5.27: X Positions of the tracks generated by Tracker-1
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5.6 Experimental Results of Video-7

Video-7 contains one helicopter target. The target is almost stationary throughout the
video. Helicopter releases flares at 154" frame. SoV loses the track of the target and
starts to track the flare after the release of flare. Flare disappears at 259" frame from
the scene. The camera makes an arbitrary motion between 267" and 279", Second
flare is released at 284" frame. The measurements of the detector are given in Figures
5.31 and 5.32.

The measurements of the detector are tracked by Tracker-1 throughout the whole
video. The tracks generated by Tracker-1 are given in Figures 5.33 and 5.34.
Tracker-2 is applied to the tracks obtained by Tracker-1. The output of GTES is given
in Figures 5.35 and 5.36 together with the output of RTT. For this video RTT tracks
the true target most of the time and it is indicated by the GTES.

The rms position error between output of GTES and output of RTT is 1,23 pixels and

it is calculated for 272 frames.
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Figure 5.31: X Positions of the Measurements of the Detector for Video-7
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Figure 5.32: Y Positions of the Measurements of the Detector for Video-7
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Figure 5.33: X Positions of the tracks generated by Tracker-1
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Figure 5.34: Y Positions of the tracks generated by Tracker-1
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CHAPTER 6

CONCLUSION

The aim of this thesis is to generate an evaluation system for video tracking systems.
Video tracking is a broad area so in our work we restricted it in several directions.
The video types are restricted as IR videos in this study. This restriction makes the
registration problem, so the tracking, more difficult since color information cannot be
used. The size of the tracked object is restricted to be small (~20 pixels). This makes
the detection of the object more difficult since additional features, like the contour of
the object, its template etc. cannot be used for the detection.

The videos that are aimed to be examined in this study are assumed to be recorded by
a tracking camera. This makes the problem a special one due to the relative motion of
the target in the scene: the target is at the center of the scene if the tracking camera is
tracking the correct object, i.e., the target. At other times the true target position de-
pends on the camera motion. Camera makes some abrupt, unpredictable movements
when it loses the target (that is called the ‘coast mode’ of the camera). The loss of the
target is caused by occlusions most of the time. At the end of this period the camera
begins to track an object again which may be the correct target or not. Finding the
correct object after the abrupt camera motion requires the estimation of the motion.
The system developed in this study called the Ground Truth Extraction System
(GTES)’ mainly generates a trajectory of the true target that is called the ‘ground
truth’, compares it with the trajectory generated by another tracking system and la-
bels the time intervals as ‘true target’, ‘false target’ etc.

Since the targets aimed are small the main tracking problem is the association of the
objects found in one frame to the true target. Target position changes very little ac-
cording to different trackers. However we have also implemented a Kalman smoother

to smooth the position of the target when it is tracked. The performance of this block
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of the GTES is assessed by extracting the hand labeled positions of the target and
comparing it with the output of the GTES. Association performance of the GTES is
assessed by examining the 7 videos that are tested.

Our system as mentioned above has a camera motion estimation part. There is a huge
literature on the camera motion estimation. However here we propose a novel al-
gorithm that is suitable for our purposes. Our aim is to make the target association
correctly after the abrupt motion of the camera. Very precise motion estimation in
the sub-pixel accuracy are not necessary. Tracker-1 tracks multiple targets for which
some correspond to background objects.. The camera motion estimator developed
here uses the tracks of the background objects to extract the camera motion. A spe-
cial Kalman filter is developed for this purpose. The special Kalman filter works on
the principle that all background objects have similar velocities and this velocity is
different than the velocities of the moving objects. It is a single Kalman filter but the
state and the measurement dimensions vary depending on the number of background
objects.

To find the trajectory of the true target, two trackers, called Tracker-1 and Tracker-2
are implemented each using the Interacting Multiple Model (IMM). Measurements
of the Detector are tracked via Tracker-1. Tracker-1 is a multi-target tracker that uses
Global Nearest Neighbor (GNN) method to associate the measurements to the true
track. Its output gives various tracks which need to be associated. Tracker-2 is used
for the association of the tracks resulted from Tracker-1 to the true target. Camera mo-
tion estimation is used while associating the tracks via Tracker-2. The output of the
second offline tracker gives the raw ground-truth. The raw ground-truth is smoothed
by using Kalman smoother which is the final block of the GTES.

Flare is another problem in for military applications. We have modified our system
so it can cope with the flare problem.

We have used 7 videos to test all parts of the system. These videos are selected among
200 videos because they are more problematic compared to the others . GTES makes
no association errors in these videos and the rms error of position of GTES is also
quite satisfactory .

For the evaluation part we have used a video tracker that is called Real Time Tracker
(RTT). The performance of RTT is evaluated by comparing the output of RTT with

the output of GTES. In two of the videos more than one flare is released to deceive
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the video tracker.

The summary of all the work done in this thesis is given below:

e Implementation of two IMM trackers, one is for multi target, the other is for single
target tracking

e Implementation of a Kalman smoother

e Generation of a novel camera motion estimation algorithm and its implementation
e Generation and implementation of an evaluation system that evaluates a given video
tracker

The system developed in this thesis can be improved in several ways. One possible
direction is to enrich the system by some other target motion models, for example
hovering helicopter, ballistic target, etc. The application of camera motion estimation
to the videos that contain parallax effect seems to be possible by developing new mo-
tion models for the background. Tracking of medium or large sized objects require

different techniques but the ideas introduced here may be adopted for them.
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APPENDIX A

KALMAN FILTER

Kalman filter is used for the purpose of tracking throughout the thesis. Kalman filter
uses measurements taken in the time interval [0 n] to generate an estimate of the state
at time n for each n [12]. One of the basic assumptions of the Kalman filter is the
Markov property of the state. This requires the noises to be independent. Kalman
filter is the optimal filter if the system is linear and measurement and process noises
are Gaussian. Under these conditions the state and the observation equations are

written below.
Tpp1 = Apzy + Grwy, (A.D)
yr = Crp + Huy, (A.2)

where w, ~ N(0,Q) , vy ~ N(0,R) and 9 ~ N(Xo, F). All of these random
variables are independent. {wy,}72, is called the process noise and {v;}72  is called
the measurement noise.

Kalman filter starts with initial state distribution that is parametrized by its mean and
covariance matrix and predicts the state and its covariance by using the equations
given in (A.3) and (A.4). Then, It uses the measurement which is ¥, to update the

filter based on the equations given in (A.6) and (A.7).[12]

Tho1e = ApTi (A.3)

Py = A PpAx” + GQLGT (A4)

Ky = Pyp1CT (CPyp1C" + HRL,HT) ™! (A.5)
Trk = Tijp—1 + Kp(yp — Cogjp—1) (A.6)
Pyjk = Prjp—1 — KpC Py (A7)
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APPENDIX B

INTERACTING MULTIPLE MODEL

Interacting Multiple Model (IMM) is a combination of more than one model to im-
prove the performance of a tracker [6]. In tracking applications usually a ‘constant
velocity’ model is used. This model assumes that the acceleration of the target is a
zero mean random process and is modelled as the process noise. If the process noise
power is small then the system cannot track maneuvering targets since maneuvers
have large accelerations compared to the flexibility introduced to the system by the
process noise. On the other hand if process noise is large then the tracking perfor-
mance of the system degrades when the target has constant velocity. A solution to this
problem is to use more than one model, usually two models. One of them models the
almost constant velocity movements with a small covariance matrix and the other is
selected with a large covariance to overcome the problems introduced by acceleration.

The two different models are defined as:
z1 = Az + Guy, (B.1)
zp ., = Az} + Guyj, (B.2)

where w;, ~ N(0,Q;) and wi ~ N(0,Q3%). Q} is chosen almost 10 times greater
than 7 so that IMM could track the arbitrary position changes.

There are different ways of using more than one model. One very efficient way is
to use Interactive Multiple Model (IMM). One cycle of the IMM algorithm is given
below.

1) Transition and mode probability matrices are written as in (B.3) and (B.4) rela-
tively.

ISERERST

§= (B.3)
521 622
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e = [ui uﬂ (B4

2) Initially we have x},, P}, =7, and P,.

3) All parameters below are calculated in order to complete interaction/mixing pro-

cess.
c' = 511#1{; + fmﬂi (B.5)
¢ = 512#1{; + 522#% (B.6)
S
= 1;1 k (B.7)
Ear i}
p= (B.8)
1
12 ISP
= (B.9)
9o Soaply
= (B.10)
Thp = 1 g+ g, (B.11)
T = 12Ty, + 0P, (B.12)

Plgﬁc = Mll(Pkl\wL(Illqk _Igfk)(%lqk _ngk)T)ﬂLMZl(P;ak*‘ (xi\k _$2|2k)($%\k —5172|2k)T)
(B.13)
Plgﬁc = Mlz(Pkl\wL(xllqk _Igllk)(xllﬂk _l‘2|1k)T)+:u22(Pk2|k+ (Ii\k —zgfk)(fi\kz —zgfk)T)

(B.14)

4) Prediction of state and covariance of both model are calculated. The equations of
one model are given in (B.15) and (B.16)

T = AT (B.15)

Phiy = APGLAT + GQ'GT (B.16)

5) Measurement estimation and its covariance are calculated as given in (B.17) and

(B.19). (B.18) is the difference between the measurement and the estimation.
yli+1|k = Oxllc+1\k (B.17)
gli+1|k = Zk+1 — yli+1|k (B.18)
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Sk = OBy C" + HRHT (B.19)

6) D matrix is defined as in (B.20).Likelihood factors are calculated as in (B.21).

Mode probability is updated by using these informations as shown in (B.22)

A0
D= (B.20)
0 A2
N 0D @) Sy Tl o
N 2r[Sh 2D
k4+1)k
prar = || Dl (B.22)

7) State and covariance estimates are calculated as shown in (B.24) and (B.25) rela-

tively. Same equations are applied for second filter.

Kli—l—l = Pkl+1\kCT(Sk’+1|k’)71 (B.23)
m11c+1|1c+1 = xllc+1|k + K;+1§11+1|k (B.24)
Pl~c1+1\k+1 = Plc1+1\k - Kli—i—lcpkl—i-uk (B.25)

8) Outputs are calculated as shown in (B.26) and (B.27).
Thtrlkr1 = M1 @hiafbrt T M1 Terajbe (B.26)

_ 1 1 1 1 T
Pk+1|k+1 - Uk+1(Pk+1\k:+1 + (xk:-i-llk—i-l - $k+1lk+1)($k+1\k+1 - 1’k+1|k+1) )+

2 2 2 2 T
P (Peiapprt T (@it — Thrter) (Togpr — Thraperr) ) (B.27)

9) Return to Step 2 and do the same calculations in order to get parameters of next

frame.
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APPENDIX C

KALMAN SMOOTHER

In the literature there are three types of smoothing methods which are fixed interval
smoothing, fixed point smoothing and fixed lag sm oothing. Fixed interval smooth-
ing which is used in this thesis uses the measurements of an interval to find better
estimations of the state also in this interval. So the aim of fixed interval smooth-
ing is to find p(z;|yo, .., yn) for all 0<<i<N for the interval [0 N]. In the literature,
two different algorithms which are Rauch,Tung, Striebel and Fraser,Potter algorithms
[10] are proposed for fixed interval s moothing . Rauch,Tung and S triebel is used
in the thesis. Rauch,Tung and Striebel smoother uses Kalman filter s tate estimate,
state prediction and covariance prediction in order to correct the Kalman filter. Per-
formance of Kalman filteris p oor for e arly frames o f m easurement s et. Kalman
smoother uses backward filtering and wipes out this drawback of Kalman filter. Stan-
dard Kalman filter equations are given in appendix A. For the time k, forward pass
SIVES Tkt Tht1)ks Dk|k> P+ 1)k Backward pass starts at time N, initializes the backward
filter with z *y= x yyand P° y= P yyand apply the backward filtering equations

which are given below [10].

K% = Pap AT (Peyap) ™" (C.D
P*p = Py — K (Prsip — Pl (K%)" (C2)
[L‘Sk = Tklk + Ksk<{I)5k+1 — xk+1|k) (C3)
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