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ABSTRACT

ENERGY CONSCIOUS SCHEDULING IN A TWO-MACHINE
ROBOTIC CELL

Akhlaghi, Vahid Eghbal

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Sinan Gürel

Co-Supervisor : Assoc. Prof. Dr. Hakan Gültekin

February 2017, 103 pages

Robotic cells usually operate under time pressure to minimize time related ob-

jectives such as cycle time, makespan, and tardiness. Robot moves constitute

a signi�cant portion of cycle time. Also, robots consume signi�cant amount of

energy determined by the speeds and distances of their moves. We study the

tradeo� between the cycle time and energy consumption of a robot in a two

machine �exible robotic cell which processes identical parts. In this system, the

loading and unloading of machines are made by a robot. Each machine performs

a di�erent operation on each part and the robot moves linearly along a track.

There are alternative cyclic schedules for such a cell and each cycle involves a

number of di�erent robot moves. Energy consumption of a robot can be formu-

lated as a convex function of its speed, since the energy consumption increases

with the speed. Given a cycle time, we �nd optimal speeds for di�erent robot

moves in robotic cell cycles. We determine the best cyclic schedule and the op-

timal robot speeds that minimize the total energy consumption. Furthermore,
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we generate e�cient frontier for energy consumption and cycle time objectives

for a number of examples.

Keywords: Scheduling, Flexible manufacturing, Robotic cells, Robot speed,

Nonlinear optimization
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ÖZ

�K� MAK�NEL� ROBOT�K ÜRET�M HÜCRELER�NDE ENERJ�
TABANLI Ç�ZELGELEME

Akhlaghi, Vahid Eghbal

Yüksek Lisans, Endüstri Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Sinan Gürel

Ortak Tez Yöneticisi : Doç. Dr. Hakan Gültekin

�ubat 2017 , 103 sayfa

Robotik hücreler; çevrim zaman�, toplam tamamlanma zaman� ve gecikme ile

ilgili amaç fonksiyonlar�n� en küçüklemek için zaman k�s�t� alt�nda çal�³�rlar. Ro-

bot hareketleri, çevrim zaman�n�n önemli bir k�sm�n� olu³turur. Ayr�ca, robotlar

kendi hareketleri aras�ndaki uzakl�k ve h�zla belirlenen yüksek miktarlarda enerji

tüketirler. Bu sistemlerde, makinelerin yüklenmesi ve bo³alt�lmas� robotlar ta-

raf�ndan yap�l�r. Her makine, her parça üzerinde farkl� bir operasyon yapar ve

robot do§rusal bir hat üzerinde hareket eder. Bu tip bir hücrede alternatif çev-

rimsel çizgeler vard�r ve her çevrim farkl� robot hareketlerini içerir. Bir robotun

enerji tüketimi, robotun h�z� ile artt�§� için, enerji tüketimi h�z�n d�³bükey bir

fonksiyonu olarak modellenebilir. Robot üretim hücrelerindeki farkl� robot ha-

reketleri ve verilen bir çevrim zaman� için en iyi h�zlar� bulduk. En iyi çevrimsel

çizelgeyi ve toplam enerji tüketimini en küçükleyen en iyi robot hareketlerini

belirledik. Ayr�ca, enerji tüketimi ve çevrim zaman� amaçlar�n� etkin çözümler
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türettik.

Anahtar Kelimeler: Çizelgeleme, Esnek imalat sistemleri, Robotik hücreler, Ro-

bot h�z�, Do§rusal olmayan optimizasyon
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CHAPTER 1

INTRODUCTION

Industrial �rms attempt to achieve the schedules of good quality, in terms of op-

erational e�ciency and custom-related objectives. Some of the most prominent

objectives especially in mass production systems, are the cycle-time which is

de�ned as the long-run average time to produce one part, the makespan which

is de�ned as the completion time of all the parts, and the tardiness which is

de�ned as the di�erence between the completion time and the due date. All of

these terms allude to the amount of time it takes to get from a distinct starting

point to a distinct ending point in a schedule.

Looking at the �rst-level supervisors, optimization in scheduling has mostly been

done focusing on the system's cycle time, as mentioned by Panek et al. [1] and

Kobetski and Fabian [2]. Whereas, in recent years, the energy consumption

optimization became a major area of interest in industrial automation as part

of the global trend, where the society is putting a growing e�ort for omitting

the greenhouse gases and reaching an environmentally sustainable future [3, 4].

In the UK, the manufacturing industry's energy consumption accounts for 16%

of the total amount. This is equal to 194 million metric tons of CO2. In other

words, it corresponds to greenhouse gas emissions from 451 million barrels of oil

[5]. Generally, the industrial �rms contribute to 36% of global CO2 emissions [6].

This awareness moves high-level supervisors' attention from the optimization

of the time-related objectives to the identi�cation of a trade-o� between the

time-related and the energy consumption related objectives. The manufacturing

energy consumption in the industrial sector has been reducing since 1998. For
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instance, in the US the manufacturing energy consumption decreased by 20%

from 2002 to 2005 [3] and 17% from 2002 to 2010 [7]. However, an unnecessary

use of energy equal to 20-40% may still be found [8]. Also in the EU, energy

sustainability for industrial �rms has become a major area of research and a

concern for many manufacturing companies [4].

Several number of these industrial �rms use automated material handling equip-

ments in their manufacturing processes. This research focuses on a particular

kind of manufacturing system called a robotic cell that utilizes a robot as a

material handling equipment. The cell consists of an input device, a series of

(m) processing stages (M1, M2, ..., Mm), an output device, and a material

handling robot that can hold only one part at a time. Similarly, mechatronic

industries usually apply the industrial robots as the leading component in their

systems, especially for handling and processing. The repeatability, precision,

speed, adaptability, as well as the e�ciency of the robots are the main pur-

poses for that decision [9]. By employing industrial robots, an industry is able

to decrease the costs and increase the productivity. Recently, due to the cur-

rent policy guidelines concerning greenhouse gases emissions and due to the rise

of the energy prices, reducing the energy consumption of industrial robots is

highly desired [10�13]. This is important due to the fact that about 8% of the

total electrical energy consumption in manufacturing systems belongs to the in-

dustrial robots [14]. Hence, diminishing the energy consumption of industrial

robots will automatically reduce operating costs. On the other hand, a huge

potential for energy saving is within robotic cells [15�17]. Robotic cells are

highly complex systems, resulting from a deep interaction between industrial,

mechanical, control, and software engineering [18, 19]. Thus, an e�ective energy

optimization method should be used to connectively exploit all of these �elds.

The performance of such manufacturing systems, including energy consumption

rates, result from the integration of all di�erent research �elds entailed [19].

In this study, we consider a two-machine robotic cell as illustrated in Figure 1.1.

The robot moves linearly along a track (linear layout) and the system follows

the �ow shop assumption which means that each part goes through the same

sequence of machines (M1−M2). However, the sequence of robot activities may
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be di�erent. One of the decisions is to �nd the sequence of these robot activi-

ties. In this problem, a cycle is speci�ed by a repeatable sequence of robot moves

that consists of loading/unloading of the machines and part transfers between

the machines. In a cyclic production approach, the robot starts from an initial

position with a given state of the machines (loaded or unloaded) and follows a

sequence of moves. At the end, the position of the robot as well as the machine

states returns to the initial status. This �xed sequence of robot activities is

called a cycle. Since the initial and the �nal states are the same, a cycle can be

repeated inde�nitely. If k parts are produced in a single repetition of a cycle,

then it is called a k-unit cycle. 1-unit cycles derived special attention in the

literature since they are simple, practical, easy to control and implement [20].

Furthermore, 1-unit cycles are optimal, i.e. give the minimum cycle time, for

two-machine and three-machine robotic cells [20, 21] producing identical parts.

They perform e�ciently in larger robotic cells [22]. Moreover, the cyclic produc-

tion provides a variety of advantages, such as shorter change-over times, higher

line speeds, reliable production, reliable deliveries, etc. [23].

Figure 1.1: A single gripper robotic cell with two machines

In theory and practice of robotic cell scheduling problems, it is often assumed

that a robot performs the operations at its maximal speed in order to achieve

the maximum throughput (minimum cycle time). However, this may not be

the most e�cient energy consumption policy; at its maximum speed, the energy

consumption is also at its maximum. On the other hand, the robot may need

to wait in front of some machines to unload them because of reaching them

3



earlier than necessary (before the processing is completed). Accordingly, there

is a considerable potential for energy saving [24]. Reducing these losses can be

accomplished by developing energy-e�cient alternative equipments or introduc-

ing new energy saving technologies. However, energy consumption can also be

reduced by just rethinking how energy is used to perform the operations, which

is the focus of this thesis.

In many manufacturing systems, e.g. robotic cells, the consumption can be

classi�ed as �process energy� or �auxiliary energy� [25]. The process energy,

is the energy directly used in the manufacturing, such as casting, fabrication,

and assembly (welding, soldering or other fastening methods). The auxiliary

energy is the energy required by the operations that allow the accomplishment

of the process, such as the energy consumption of the robot moves. This paper

considers the minimization of auxiliary energy consumption which deserves to

be studied [8]. In our cell, the robot does not perform any industrial process,

whereas the transportation of the parts and loading/unloading of the parts are

performed by the robot. Barili et al. [26] described the concept of controlling

the speeds to save energy for a mobile robot. Our study includes studying the

permutation of robot activities in robotic cells as well as a set of optimal speeds

in the schedule. However, the former work considered the path plan of robots

that should travel from a source to one or more destinations and did not discuss

the relationship between path planning and speed control. To take into account

both energy and business objectives (e.g. cycle time, makespan, etc.) at the

same time, a multi-objective optimization approach might be helpful.

The present work handles a bicriteria �ow shop scheduling problem for optimiz-

ing the cycle time and energy consumption of the robot at the same time. We

compare the energy consumption of di�erent cycles with each other to determine

the best in terms of both objectives. The subject is to schedule industrial robot

moves, i.e. analysis of energy consumption corresponding to the speeds of di�er-

ent robot moves within a given cycle time upper bound. The rest of the thesis

is organized as follows. Chapter 2 reviews the relevant literature. Chapter 3 de-

velops the mathematical model and presents the proposed solution procedure.

The experimental study followed by the discussion of the results are presented

4



in Chapter 4. For given ranges of cycle times, we plot the pareto frontier with

the set of non-dominated solutions for di�erent cases and present the average

percentage of energy consumption reduction through our computational study.

Finally, Chapter 5 concludes the work and identi�es future studies.
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CHAPTER 2

LITERATURE REVIEW

As we described in the previous chapter, our robotic cell has a single robot that

moves linearly and can hold only one part at a time. Also, we have only one

machine per stage and no bu�er for intermediate storage among them. However,

there is a variety of di�erent cell con�gurations or characteristics for machine

environments. Therefore, before reviewing the problems considered in the lit-

erature, we need to brie�y introduce all di�erent classi�cations for robotic cell

environments.

Robotic Cell Environments

Robotic cells can be classi�ed in to three categories depending on the number

of machines, number of robots and their types, pickup criterion and travel-time

metric of the corresponding manufacturing system, as well as the number of

part-types. In the following subsections, we describe all di�erent robotic cell

classi�cations that are suggested by Dawande et al. [27].

Number of Machines

If each processing stage has only one machine, the robotic cell is called a simple

robotic cell. Such a cell contrasts with a robotic cell including parallel machines,

in which at least one of the workstations has two or more identical machines.

The scheduling of �ow shops including parallel machines referred to as the hybrid

�ow shop as well. In our problem, each stage has only one machine and as it is

shown in Figure 1.1, the input and output devices are on the opposite sides of

7



the cell. Whereas, in some implementations, the input and output devices are

at the same place.

Number of Robots

Manufacturers may utilize additional robots to increase the throughput rate of

the cell by increasing the material handling capacity. Cells with a single robot

are called single-robotic cells, while a cell with more than one robot is called a

multiple-robotic cell. In this case, the robot moves must be selected in order to

avoid a collision. In this study, we focus on a single-robotic cell environment.

Types of Robots

A single-gripper robot can hold only one part at a time. In contrast, a dual-

gripper robot can hold two parts simultaneously. On the other hand, a self-

bu�ered robot has a single gripper but can utilize its own bu�er space to trans-

port multiple parts. In our case, in which a bu�erless single-gripper robot is

employed, the robot cannot unload a part from machineMi, ∀i = 0, ...,m (where

m is the total number of machines. The input and output bu�ers are denoted

by 0 and m + 1 respectively), unless the next machine Mi+1 is empty. There

is another type of robot called a dual arm robot that has two arms in opposite

directions moving simultaneously and a single gripper on both arms.

Pickup Criterion

As mentioned before, we focus on bu�erless robotic cells. For such cells, all parts

must be either on the input/output bu�er, on one of the machines, or with the

robot. Based on the pickup criterion, robotic cells are classi�ed into three types:

free pickup (blocking), no-wait, and interval. In this study, we consider the free

pickup criterion, in which after the processing on a machine is completed, the

part can wait on the machine inde�nitely. Whereas in no-wait cells, a part must

be removed from a machine as soon as the machine completes processing that

part. This type of manufacturing is typical of steel manufacturing or plastic

molding, where the materials should stay in a certain temperature. No-wait

cells are also typical of food canning to assure freshness [28�33]. For interval

robotic cells, there is a processing time window for each machine on which a part

can be processed. Namely, the robot has a speci�c interval of time to unload a
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part after the machine �nishes processing.

Travel-Time Metric

The robot's travel time between machines greatly in�uences a cell's performance.

One common model often applies when the machines are arranged in numeric

order in a line (as shown in Figure 1.1). The robot's travel time between any

two machines Mi and Mj, 0 ≤ i < j ≤ m + 1, denoted d(Mi,Mj), equals

d(Mi,Mi+1) + d(Mi+1,Mi+2) + ...+ d(Mj−1,Mj). This type of robot travel time

is called the additive travel time. However, if the travel time between all adjacent

machines Mi−1 and Mi are identical and equals δ, the travel time between any

two machinesMi,Mj is d(Mi,Mj) = |i−j|δ which is called the identical distance
case. Another type of travel time type considers a constant (δ) time value

between any pair of machines. Finally, the general type, which is considered

in this thesis, is neither additive nor constant. In other words, the robot travel

times between any two machinesMi andMj is equal to speci�c value δij. For this

case, it can be assumed that the triangular equality holds. That is δij ≤ δik +δkj

∀k ∈ {0, 1, ...,m+ 1}. In the most general case, this assumption is also relaxed.

In this thesis, our numerical studies consist of both of the cases, with or without

this assumption.

Number of Part-Types

A cell producing identical parts is referred to as a single-part-type cell. In

this case, there is no part sequencing problem and the only decision is the

sequence of robot moves. In contrast, a multiple-part-type cell processes lots

that contain di�erent types of parts. Generally, these di�erent parts require

di�erent processing times on a given machine. In multiple-part production under

cyclic scheduling assumption, the parts are produced as a Minimal Part Set

schedule (MPS). An MPS is the smallest possible set of production parts that

jointly match, in proportion, the total product sales mix [34]. The cell under

consideration of this work processes identical parts.
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Robotic Cell Scheduling Literature

The majority of studies on robotic cells have been performed since 1990. Some

of the most bene�cial and comprehensive surveys are done by Crama et al. [35],

Hall and Sriskindarajah [31], and Dawande et al. [36].

In one of the earliest studies, Baumann et al. [37] derived models to analyze

resource utilization for an application in which machines are served by a robot.

Multiple robotic cells subject is studied by Medeiros et al. [38] and Nof and

Hannah [39]. A large number of early studies applied simulation approaches to

handle time-related objectives. By the use of simulation, Kondoleon [40] studied

the e�ects of di�erent layout con�gurations on the cycle time. Claybourne [41]

analyzed the e�ects that sequencing robot activities has on throughput.

In the next section, we introduce the two possible 1-unit cycles (S1 and S2) in a

two-machine cell and explain them in details. These cycles are constructed by

Blazewicz et al. [42]. They presented an analytical approach to derive cycle time

formulas for robotic cells. Later, Sethi et al. [20] provided analytical solutions

to robot move sequencing concerning two or three-machine cells that produce

identical parts. Logendran and Sriskandarajah [43] generalized this work to three

di�erent robotic cell layouts: the robot-centered cell, the mobile-robot cell, and

the in-line robot cell. In the robot-centered cell, the machines are set in the

arc of a circle and the robot will be incorporated at the center of the circle. In

the mobile-robot cell, a transportation mean, such as �oor-mounted or overhead

rail system, is provided to help the robot move along a linear track. In an in-

line robot cell, the robot is placed along an in-line material transport system.

Brauner and Finke [44�47] performed several studies to compare di�erent 1-unit

cycles in robotic cells. Crama and van de Klundert [21] studied the cycles in an

additive travel-time single-gripper robotic cell and proved that the robot move

sequencing problem in a �owshop, which produces identical parts, is NP-hard.

Dawande et al. [22] and Brauner et al. [48] proved the same for constant travel-

time and general travel-time robotic cells, respectively. However, in all of these

studies, they only consider the identical part-type cell in which all of the parts

are same and the focus is on the robot move sequence. Hall et al. [49, 50] and
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Sriskandarajah et al. [51] studied part sequencing problems in multiple part-

type robotic cells. The majority of these works focused on blocking cells. They

analyzed the complexity of the problem and provided exact (if possible) and

heuristic approaches.

Akturk et al. [52] studied the two-machine blocking robotic cell scheduling

problem in which the processing times are decision variables. They determined

the parameter regions and corresponding robot move cycles that minimize the

cycle time. Gultekin et al. [53] considered the same problem with tooling

constraints in which some operations can only be executed on the �rst machine

while some others only on the second machine. Consequently, the problem

was assigning the remaining operations and �nding the optimal robot move

cycle. They proved that the optimal solution is either a 1-unit or a 2-unit

robot move cycle. Levner et al. [33] proposed an algorithm to �nd the optimal

cycle-time in a no-wait identical part-type robotic cell. Agnetis [28] worked on

no-wait cells with two or three machines. For a three machine case, Agnetis

and Pacciarelli [29] studied the complexity of part sequencing problem in a no-

wait cell. They proved that two cycles out of the six feasible ones are unary

NP-complete. Lei and Wang [54] developed a branch and bound algorithm for

interval robotic cells. Chen et al. [55] and Chen et al. [56] applied branch and

bound, linear programming, and bi-valued graphs to �nd the optimal 1-unit

cycles, and multi-unit cycles, respectively. In short, for a two-machine robotic

�owshop, the robot move sequencing problem is solvable in polynomial time [20].

For a three-machine cell producing identical parts, the problem is polynomial.

However, for a three-machine case producing multiple parts, it is strongly NP-

hard [49]. On the other hand, in an m-machine �owshop, where m ≥ 2, part

sequencing problems associated with exactly 2m−2 of the m! given robot cycles

are polynomially solvable, while the remaining cycles are unary NP-hard [51].

In identical parts, 1-unit cycles are optimal for two and three-machine cells.

Finding the best 1-unit cycles in an m-machine cell is polynomial-time solvable

[20].

According to the literature, it is easy to see that robotic cells are typically

designed under time pressure with the only optimization criterion to satisfy the
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production cycle time. However, while concentrating on minimizing the cycle

time, they pay no attention to the speed of the robot. Often, they set the robots

to run at their maximum speed which is undesirable since it tends to increase

energy consumption. Improvement of this situation as well as the cycle time

minimization are the main concerns of this work.

Robot Speed Energy Consumption Literature

In the last decade, caused by recognition of necessity in reducing energy con-

sumption as a result of energy shortage and its cost rise, the number of researches

on e�ective energy management and energy-e�cient scheduling in manufactur-

ing environments has increased.

The importance of the energy consumption reduction in robotic operations is

accentuated by Rehman et. al. [57]. They handle the optimal placement of

a path in the robot workspace so that the energy consumption is minimized

coping with geometric, kinematic, and dynamic constraints. Bryan et. al. [58]

de�ned a method to �nd the optimal robot speed and acceleration while moving

from a starting point to a target point to reduce the energy consumption in the

desired time. Likewise, the e�ect of robot movement parameters on energy con-

sumption is presented, focusing on robot's optimal speed, acceleration, and jerk

by Smetanova [59]. A more comprehensive study is done by Meike and Ribickis

[60] with reference to the automobile industry, where the energy consumed by

the robotic application is about 8%. In this approach, several strategies to save

energy for industrial payload robots are presented. All of the mentioned studies

in this paragraph focus on the path planning programming, usually a point-to-

point movement, to decrease the energy consumption from a mechatronics point

of view. However, in our study, we consider di�erent robot move schedules and

try to minimize the energy consumption by reducing the robot speeds through

the prede�ned moves in each cyclic schedule.

Another energy saving study in motion planning is presented by Pellicciari et.

al. [61] for pick-and-place robots. In this study, they concentrate on reducing
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the total energy consumption by means of constant time scaling, starting from

pre-scheduled trajectories. Vergnano et. al. [62] presented an evolution for

this paper by minimizing the energy consumption in cooperative multi-robot

manufacturing systems. The system contains multiple robots at workstations

that each of them performs a set of operations on the part. The robots are

synchronized through the variation of the speeds as well as acceleration along

a prede�ned path. The task execution sequence is dynamic while moving on

the path, i.e. it changes according to the minimization criterion. likewise the

previous paragraph, these two studies propose algorithms for the point-to-point

path planning. Kobetski and Fabian [63], proposed two methods to reduce the

speeds and accelerations of mobile robots in their operations in a multi-robot

manufacturing system, similar to the previous paper, by eliminating the idle

times in each schedule. The methods take advantage from an overall system

perspective to reduce the components wear, while the schedule is derived without

concerning the energy consumptions. In comparison to our study, they reduce

the energy consumption in a given working schedule, without compromising

cycle time optimality.

There is a large number of energy concerned studies, considering di�erent man-

ufacturing settings such as parallel machines [64�67], �ow shop [68�70] and hy-

brid �ow shop [71�74]. However, they all contemplate a single energy concerned

objective, whereas the focus of this thesis is a bicriteria optimization problem

considering both the energy concerned and time-related objectives at the same

time. Moreover, none of those studies are in the robotic cell environment. Due

to these di�erences, we do not go into details of their results and refer to two

surveys by Gahm et al. [75] and Giret et al. [76]. In the next section, we

concentrate more on the review of the works that are closer to our study, i.e.,

energy concerned studies considering the scheduling criteria at the same time.
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Bicriteria Optimization Literature in Time and Energy Related Ob-

jectives

There are several studies in the literature that re�ect both time and energy re-

lated objectives simultaneously. Fang and Lin [77] studied a parallel machine

scheduling problem that minimizes tardiness penalties and power consumption

costs. They determined the allocation of jobs to machines and the optimal

frequency for each machine-to-job pairing. Mansouri et al. [68] studied a two-

machine �ow shop problem. They introduced the concept of green scheduling

and developed a heuristic for an optimal trade-o� between the makespan and

energy consumption. For the hybrid �ow shop, Du et al. [78] proposed an ant

colony algorithm to minimize completion time and improve the energy e�ciency

at the same time. Dai et al. [79] developed a hybrid meta-heuristic approach

combining genetic algorithm and simulated annealing algorithm to minimize

the energy consumption within a jobshop. Subai et al. [80] investigated energy

reduction in the Hoist Scheduling Problem (HSP) of the surface treatment pro-

cesses. HSP is the scheduling problem of hoists which transport parts between

tanks in automated electroplating lines. By keeping the system productivity at

the same level, they minimized the hoist idle time. Zhang et al. [81] proposed

a goal programming approach, which reduces the energy consumption and im-

proves the scheduling e�ciency at the same time in a �exible manufacturing

system. Mouzon and Yildirim [82] considered a bi-objective single machine

problem to minimize the total tardiness and total energy consumption. Later,

Yildirim and Mouzon [83] focused on the same problem but minimizing the

energy consumption and the makespan. Liu et al. [84] investigated a single ma-

chine scheduling problem to minimize the total makespan and the total carbon

dioxide emission. Nonetheless, for the �rst time in the robotic cell scheduling

literature, as a bicriteria problem, Gultekin et al. [85] minimized the manu-

facturing cost subject to a given cycle time where the processing times of the

machines are controllable. They assumed the robot speeds are not controllable.

However, in this thesis, we assume the speed of the robot can be controlled and

the objective is to minimize the total energy consumption subject to a given
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cycle time. In another bicriteria problem, Gultekin et al. [86] considered the

cycle time and manufacturing cost optimization in a two-machine robotic cell.

They could minimize the manufacturing cost by optimizing the cycle time. Ak-

turk and Ilhan [87] described a single CNC machine scheduling with controllable

processing times to minimize the total tardiness, tooling and machining costs at

the same time. Uruk et al. [88], considered a two-machine robotic cell and found

the optimal operations assignment and the processing time for each operation,

so that the total manufacturing cost and makespan are minimized.

To summarize, there is no study in the literature that considers maximization of

throughput (minimization of cycle time) and minimization of energy consump-

tion in terms of robot's speed at the same time in a robotic cell manufacturing

system. In the next chapter we develop the mathematical model and present

our solution procedure to deal with this bicriteria problem.

15



16



CHAPTER 3

PROBLEM DEFINITION AND SOLUTION

PROCEDURE

In this chapter, we �rst de�ne the problem and its preliminaries. Then, we

develop mathematical programming formulations for the problem. Finally, we

give the proposed solution procedure. There are two objectives to minimize in

this problem. One is the cycle time and the other one is the robot's energy

consumption.

The two objectives are con�icting; i.e. they negatively in�uence each other.

In other words, improving one of them will sacri�ce the other one and further

achievement on cycle time (energy consumption) can only be accomplished at

the expense of higher energy consumption (cycle time).

In order to handle this bicriteria problem, we will use the ε-constraint method,

in which one of the objectives is written as a constraint with an upper bound

on its value. By utilizing di�erent upper bounds, di�erent non-dominated so-

lutions are generated. In this study, we consider the cycle time objective as a

constraint. Therefore, the problem becomes the minimization of the total energy

consumption subject to a given upper bound for cycle time.

In the following sections, the cycle time and the robot energy consumption

functions will be described in detail. There are two 1-unit cycles (S1 and S2)

in a two machine robotic cell. The cycle time of each cycle can be calculated

separately. For each cycle, in some of the robot moves, the gripper of the

robot is empty. Whereas, in other moves, the gripper is full and the robot is
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carrying a part to load it on a machine. Therefore, the total energy consumption

during one cycle is formulated as the sum of the energy consumptions for every

full and empty robot moves in the cycle multiplied by energy constants that

correspond to the weight and friction forces for the robot moves per unit distance.

While satisfying robot move sequence in each cycle, we want to decide the speed

of robot for each move. Finally yet importantly, the upper bounds for both

robot's practical speed and cycle time should be satis�ed. Before introducing

our functions and developing the mathematical model, we present the notation

of the problem.

Notation

Sets and parameters:

i, j ∈ {0, 1, 2, 3}: Index for machines (M), where 0 and 3 refer to the input and

output bu�er respectively

h ∈ {e, f}: Index to indicate the state of the robot: empty (e) and full (f)

robot moves

ε : Loading/unloading time of the machines

di,j,h : Traveled distance by the robot fromMi toMj (i 6= j), in state h ∈ {e, f}
1

Ce : A constant for energy consumption function. It corresponds to the weight

and friction forces for the empty robot moves per unit distance

Cf : A constant for energy consumption function. It corresponds to the weight

and friction forces for the full robot moves per unit distance

Pi : Processing time of a part on machine i ∈ {1, 2}

wi : Robot waiting time in front of machine i ∈ {1, 2}

Ct : Upper bound for the cycle time

1 It should be noted that the distance from Mi to Mj is always �xed and does not depend on the

gripper's status (i.e., empty or full). Nevertheless, for making the equations easier to understand, we

used the third index h for this parameter.
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LB/UB : Lower/upper bound for robot speeds

Decision Variables:

vi,j,h : Speed of robot while moving from Mi to Mj (i 6= j), in state h ∈ {e, f}

Now, by the help of the proposed notation, we can de�ne the problem functions

and the mathematical models presented in the next sections.

Cycle Time Calculation in a Two-machine Robotic Cell

To begin with, let us see how we can instruct the robot to feed the machines,

assuming that the cycle always starts from the input bu�er. Since we consider

cyclic scheduling, this assumption does not yield loss of generality. We consider

1-unit cycles in this study and there are two 1-unit cycles (S1 and S2) in a two-

machine robotic cell (Sethi et. al [20]). Below, we give the time for each robot

move in parenthesis.

S1: The robot picks up a part from the input bu�er (ε), moves to M1

(
d01f

v01f

)
,

loads the part on M1 (ε), waits until the part has been processed (P1), unloads

the part from M1 (ε), moves to M2

(
d12f

v12f

)
, loads the part on this machine (ε),

waits in front of M2 until the part is �nished (P2), unloads the part (ε), moves

to the output bu�er

(
d23f

v23f

)
, drops the part (ε) and moves back to the input

bu�er by an empty gripper

(
d30e

v30e

)
. Therefore, we have totally four robot travel

times that are shown in Figure 3.1 according to their order in the cycle.

Figure 3.1: The sequence of S1 cycle
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As a result, the cycle time of S1 cycle is

CtS1 = 6ε+ P1 + P2 +
d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

(3.1)

It can be asserted that the set of distance indices for full and empty moves are

Df
1= {(01f), (12f), (23f)} and De

1={(30e)} respectively. Therefore, the set of
indices for all distances passed by the robot is D1={(01f), (12f), (23f),(30e)}.
Later on, we will use these sets in our formulations.

S2: In this cycle, the second machine (M2) is full at the beginning of the cycle,

i.e. at the end of each cycle, the second machine is occupied by a part. In

this case, the robot picks up another part (say part 2) from M0 (ε), moves to

M1

(
d01f

v01f

)
, loads part 2 on machine M1 (ε), moves (by empty gripper) to M2(

d12e

v12e

)
, if necessary waits at M2 until the previous part (part 1) is �nished

(w2), unloads part 1 (ε), moves to the output bu�er

(
d23f

v23f

)
, drops part 1 (ε),

moves (by empty gripper) to M1

(
d31e

v31e

)
, if necessary waits at M1 until part 2

has been processed (w1), unloads part 2 (ε), moves to M2

(
d12f

v12f

)
, loads part

2 on M2 (ε), moves (by empty gripper) to M0

(
d20e

v20e

)
to pick up a new part

(say part 3). Therefore, we have totally six robot travel times that are shown

in Figure 3.1 according to their order in the cycle.

Figure 3.2: The sequence of S2 cycle

Subsequently, the computation of cycle time is di�erent from the S1 cycle. Since,

after loading each part, the robot waits in front of the machine until the end of

its processing time, it can be observed that the robot has full waiting times in

front of M1 and M2 in S1 cycle which take P1 and P2 time units respectively.
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However, in S2 cycle, the robot leaves the machine after loading a part on it to

perform some other operations. As a result, we can compute the cycle time for

S2 as follows:

CtS2 = 6ε+
d01f

v01f

+
d12e

v12e

+ w2 +
d23f

v23f

+
d31e

v31e

+ w1 +
d12f

v12f

+
d20e

v20e

(3.2)

where w1 and w2 are the robot waiting times in front ofM1 andM2, respectively.

It should be noticed that the processing time of the �rst machine (P1) starts

after robot travels d01f and loads a part (ε) on M1. If the processing time is not

�nished when the robot again reaches M1 by d31e, then robot waits in front of

M1. Otherwise, it is equal to zero. Therefore, w1 is calculated as follows:

w1 = max

{
0, P1 −

d12e

v12e

− w2 − ε−
d23f

v23f

− ε− d31e

v31e

}
(3.3)

Similarly, when the robot loads a part on M2 by d12f + ε, P2 starts and we may

have a waiting time if P2 is not �nished when the robot comes back at M2 by

d12e. Then

w2 = max

{
0, P2 −

d20e

v20e

− ε− d01f

v01f

− ε− d12e

v12e

}
(3.4)

It can be seen that the set of indices for full and empty robot moves are Df
2=

{(01f), (12f), (23f)} and De
2= {(12e), (31e), (20e)} respectively. Hence, the

set of total indices for S2 cycle can be declared as D2= {(01f), (12e), (23f),

(31e), (12f), (20e)}.

In each cycle, the robot returns to the same position after completing all activi-

ties and the cell returns to its initial state as well. Therefore, it can be repeated

inde�nitely. Starting the cycles from a di�erent activity does not change the

cycle time. Therefore, for straightforwardness, we always assume that the robot

starts the cycle by unloading a part from the input bu�er and loading it on

the �rst machine. To �nd out which of S1 and S2 cycles provides the optimal

solution, the corresponding objective functions should be calculated and com-

pared with each other. In our problem, since we have two objectives, we have

to compare the cycles in terms of both objectives. For a given cycle time value,

one cycle is better than the other one if it provides a smaller energy consump-

tion value. The problem is to determine the robot speeds which minimizes total

energy consumption.
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Robot Energy Consumption Function

The energy consumption is evaluated according to the traveled distance by the

robot. The robot travels from one machine to another along a linear track as

shown in Figure 1.1. We assume that once determined, the robot travel speed

between any pair of machines is constant (acceleration and deceleration are

negligible). However, the speed between one pair of machines can be di�erent

from the speed between another pair of machines. The loading/unloading energy

consumptions are negligible. The total robot energy consumption is the sum of

energy needed for all robot moves. In some of these cases, the robot holds a part

with its gripper, whereas in some others it is empty. Depending on the weight

of the part, the energy consumption of empty and full moves can be di�erent.

In this study, we consider this general case. To clarify, the energy consumed at

each move is calculated by the expression:

F (v) = Cdvk (3.5)

Where C is a constant corresponding the weight and friction forces. We will

use Ce and Cf for empty and full movements, respectively. d is the traveled dis-

tance, v is the correlated speed and k is a constant that represents the relation

between the speed of the robot and energy loss which depends on the type and

the model of the robot. Namely, k can have a di�erent value for di�erent kinds of

robots. By forcing the robot to move faster, it consumes more energy. Because

it requires more energy to increase the speed. In Figure 3.3, the behavior of this

function is shown. In this study, we consider k ≥ 1. As shown in Figure 3.3,

convexity holds for this function with respect to k ≥ 1. Next, we give the math

formulation for the problem and our approach is same for both linear (k = 1)

and nonlinear objective (k > 1) functions.
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Figure 3.3: Robot energy consumption versus cycle time

Mathematical Model

The general model that we are dealing with is written as follows:

min EC (Robot Energy Consumption)

min Ct (Cycle Time)

Subject to

Ct=min(CtS1 ,CtS2)

CtS1 = 6ε+ P1 + P2 +
d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

CtS2 = 6ε+ w1 + w2 +
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

LB ≤ vijh ≤ UB ∀(ijh) ∈ D1 ∪ D2
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The minimum and the maximum values for CtS1 and CtS2 occur when all of

the speed values are equal to UB and LB respectively. Also, it can be seen

that Ct (cycle time) is equal to the minimum of CtS1 and CtS2 values. Notice

that if any of the speeds equals zero, the corresponding cycle time will be equal

to in�nity, which is not feasible. Consequently, we must have LB > 0. In

order to solve this bi-criteria problem, we apply ε-constraint approach. This

consists minimizing a one of the objectives and expressing the other objective

in the constraint part of the model and in the form of inequality constraints.

By parametrical modi�cation in the right-hand side of the constrained objective

function (cycle time upper bound), we can �nd the e�cient solutions. Now by

applying the ε-constraint approach, we can revise the general model for each

cycle as follows:

S1 Model:

min Robot Energy Consumption

Subject to

6ε+ P1 + P2 +
d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

≤ Ct

LB ≤ vijh ≤ UB ∀(ijh) ∈ D1

S2 Model:

min Robot Energy Consumption

Subject to

6ε+ w1 + w2 +
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

≤ Ct

LB ≤ vijh ≤ UB ∀(ijh) ∈ D2

Since the objectives are con�icting, it is clear that by increasing Ct we can

decrease the energy consumption. On the other hand, we know that the speed of

the robot is limited by its lower and upper bounds. Therefore the minimum and

the maximum amount of energy consumption will occur in these two points and

the other feasible solutions will exist between this range (Figure 3.4). However,

they may be dominated by other solutions which can provide a smaller amount

of energy consumption, satisfying the same cycle time. For instance, if the speed

of the robot is set at its maximum value but there is a waiting time in front of
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a machine, we can reduce the speed of the robot to be in front of the machine

later. As a result, we reduce the energy consumption that correspond to that

move and consequently the total robot energy consumption. In this chapter,

we will see how the robot can perform the operations by slower moves while

satisfying the same cycle time in a number of problems.

Figure 3.4: Robot energy consumption versus cycle time

As mentioned before, we have only two cycles (S1 and S2) in a two-machine

robotic cell and it is proved by Sethi et. al. [20] that they are the only two

possible cycles for this problem. Also, they proved that 1-unit cycles are optimal

for two-machine cells producing identical parts. Since the set of distances in each

cycle is di�erent, two models are developed separately. In the following section,

we will consider S1 cycle.

Mathematical Model for the S1 Cycle:

As mentioned in the previous section, the cycle time of S1 is calculated as 6ε+

P1+P2+
d01f
v01f

+
d12f
v12f

+
d23f
v23f

+ d30e
v30e

. The formulation that minimizes the total energy

consumption with respect to a given cycle time upper bound can be developed

as follows:

25



Formulation 1 (S1 Model)

Minimize Cf

[
d01fv

k
01f + d12fv

k
12f + d23fv

k
23f

]
+ Ce

[
d30ev

k
30e

]
Subject to

6ε+ P1 + P2 +
d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

≤ Ct (3.6)

LB ≤ vijh ≤ UB ∀(ijh) ∈ D1 (3.7)

The objective function is derived from formula (3.5). The full and empty moves

are separated due to their corresponding constants Ce and Cf . According to the

ε-constraint approach, the calculated cycle time, should be less than or equal to

the cycle time upper bound (Ct) which is satis�ed by the �rst constraint (3.6).

Also, all of the speeds should be within their bounds (3.7). We assume speed

bounds are the same for all moves.

Note that, if Ct value in constraint (3.6) is smaller than a threshold value de-

pending on ε, P1, and P2, this constraint can never be satis�ed. In other words,

Ct > 6ε+P1 +P2 must hold. Otherwise, there is no feasible solution in S1 cycle.

On the other hand, the lower and upper bounds of speeds depend on technolog-

ical constraints. It is not possible to increase the speeds inde�nitely. Meaning

that there must be an upper bound. In this study, we assume LB = 0. Never-

theless, it should be noticed that if any of the speeds equals to zero, the cycle will

not be completed at all, which is infeasible. As a consequence of the nonlinear

objective and nonlinear constraints, this is a Nonlinear Programming Problem

(NLP). In order to solve this, the Karush�Kuhn�Tucker (KKT) conditions are

applied. We will �rst construct the Lagrangian function as follows:

L(vijh, µ) = Cf

[
d01fv

k
01f + d12fv

k
12f + d23fv

k
23f

]
+ Ce[d30ev

k
30e]

+µ1

[
6ε+ P1 + P2 +

d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

− Ct
]

Here, we initially ignore the bounds of the speeds and consider them later in

section 3.4. As a consequence of the KKT conditions, either constraint (3.6)

is tight and the corresponding Lagrangian multiplier µ1 ≥ 0, or it is loose and

µ1 = 0. In the optimal solution, for the speed of every robot move, we must
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have
∂L

∂vi,j,h
= 0. So:

∂L

∂v01f

= kCfd01fv
k−1
01f − µ1

d01f

v2
01f

= 0 (3.8)

∂L

∂v12f

= kCfd12fv
k−1
12f − µ1

d12f

v2
12f

= 0 (3.9)

∂L

∂v23f

= kCfd23fv
k−1
23f − µ1

d23f

v2
23f

= 0 (3.10)

∂L

∂v30e

= kCed30ev
k−1
30e − µ1

d30e

v2
30e

= 0 (3.11)

The equations (3.8) to (3.11) represent the �rst set of KKT conditions called

stationary condition. We also have the following KKT optimality conditions.

Primal feasibility:

6ε+ P1 + P2 +
d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

≤ Ct

Dual feasibility:

µ1 ≥ 0

Complementary slackness:

µ1

[
6ε+ P1 + P2 +

d01f

v01f

+
d12f

v12f

+
d23f

v23f

+
d30e

v30e

− Ct
]

= 0

We know that a di�erentiable function is convex on an interval if and only if

its derivative is monotonically non-decreasing there. Also, a twice di�erentiable

function is convex on an interval if and only if its second derivative is non-

negative on that interval. Since in this problem we consider k ≥ 1 and the

variables are in the interval (0, UB], the objective functions are convex. The

reason is that its �rst derivative is non-decreasing and second derivative in non-

negative in the interval (0, UB]. Also, the summation of a number of convex

functions is a convex function as well. As a result, since the constraints are

additively separable and each separable part (
dijh
vijh

, ∀vijh ∈ (0, UB]) de�nes a

convex set, the constraints are also convex. Due to the convexity of the problem,

the KKT conditions yield the global optimum solution.

As mentioned before, when all of the speed values are equal to UB, we will

achieve the minimum possible cycle time value (Ctmin). Conversely, if they are
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equal to LB, we will have the maximum possible cycle time value (Ctmax) for

the problem. By the help of this explanation, the following lemma proves that

the �rst constraint of Formulation 1 is always tight.

Lemma 1. If Ctmin ≤ Ct ≤ Ctmax, i.e. Formulation 1 has a feasible solution,

then the optimal cycle time is equal to Ct and constraint (3.6) is tight.

Proof. If constraint (3.6) is not tight, then µ1 = 0 must hold. When µ1 = 0,

equations (3.8)-(3.11) yield all speeds to be 0. However, this solution does not

satisfy constraint (3.6), therefore it is infeasible.

In reality, we mostly possess di�erent energy constants for empty and full moves

(Cf > Ce) of the robot. For di�erent constants, di�erent results may appear. It

is important to consider both identical and di�erent cases in optimal situations.

In the following theorem, we prove that the only empty robot move of the cycle

is faster than or as fast as the full moves when Cf ≥ Ce.

Theorem 1. If Cf ≥ Ce, then in the optimal solution we have v30e ≥ v01f =

v12f = v23f and the optimal speeds are

v∗01f = v∗12f = v∗23f =

∑
(ijh)∈Df

1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

k+1
√
kCf (Ct− 6ε− P1 − P2)

v∗30e =

∑
(ijh)∈Df

1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

k+1
√
kCe(Ct− 6ε− P1 − P2)

Proof. By considering
∂L

∂v01f

= 0 in (3.8) we have

kCfd01v
k−1
01f = µ1

d01

v2
01f

, then

vk+1
01f =

µ1

kCf

, or v01f = k+1

√
µ1

kCf

By the same method, the value of all other speeds will be as follows:

v∗01f = v∗12f = v∗23f = k+1

√
µ1

kCf

(3.12)

v∗30e = k+1

√
µ1

kCe

(3.13)
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Since Cf ≥ Ce, from equations (3.12) and (3.13) we can conclude that v30e ≥
v01f = v12f = v23f .

In order to simplify �nding the value of µ1, we can de�ne z =
1

k+1
√
µ1

. Then, by

putting z in constraint (3.6), we have:

z

 ∑
(ijh)∈Df

1

dijh
k+1
√
kCf

+ z

 ∑
(ijh)∈De

1

dijh
k+1
√
kCe

 = Ct− 6ε− P1 − P2, or

z

 ∑
(ijh)∈Df

1

dijh
k+1
√
kCf +

∑
(ijh)∈De

1

dijh
k+1
√
kCe

 = Ct− 6ε− P1 − P2 then

z =
Ct− 6ε− P1 − P2∑

(ijh)∈Df
1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

,

Finally µ1 can be found as follows:

µ1 =

(∑
(ijh)∈Df

1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

Ct− 6ε− P1 − P2

)k+1

Now, by �nding µ1 and substituting its value in equations (3.12) and (3.13), the

optimal speed values are achieved and this theorem is proven. Since our problem

is convex and the solution satis�es KKT conditions, there is no doubt about the

optimality of the ascertained speed values in this theorem.

In some practical situations, the e�ect of the weight of the produced parts is

negligible. Therefore, the following corollary considers Cf = Ce case. However,

the general case is always Cf ≥ Ce, so we do not consider the other situation

out of this condition (i.e., Cf < Ce). Also, the following corollary asserts that

we do not need to �nd the value of µ1, if Ce = Cf .

Corollary 1. If Ce = Cf , at optimality, we have v01f = v12f = v23f = v30e.

That is, the speed of the robot is the same through the cycle for all of the moves.

Proof. In equations (3.12) and (3.13), if we consider Cf = Ce = C, we have

v∗01f = v∗12f = v∗23f = v∗30e = k+1

√
µ1

kC
(3.14)
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In this situation, the speeds of all robot moves are equal. Since their energy

constant coe�cients are the same in the objective function and there is no re-

striction for moving of the robot from the beginning to the end of the cycle time.

From equation (3.14), by putting k+1

√
µ1

kC
in constraint (3.6), we have

∑
(ijh)∈D1

dijh

k+1

√
µ1

kC

= Ct− 6ε− P1 − P2, therefore

v∗01f = v∗12f = v∗23f = v∗30e = k+1

√
µ1

kC
=

∑
(ijh)∈D1

dijh

Ct− 6ε− P1 − P2

(3.15)

Needless to calculate µ1, equation (3.15) yields identical speed values for all

robot moves.

In this section, we achieved the optimal speed values for the S1 cycle. In the

next section, we start to study the S2 cycle.

Mathematical Model for the S2 Cycle:

In this section, at �rst we develop a mathematical model for the S2 cycle. Then,

by utilizing the KKT conditions, we analyze di�erent situations and determine

the optimal speed values for each robot move in the S2 cycle.

By utilizing (3.3) and (3.4) in (3.2), we obtain

6ε+
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

+ max

{
0, P1 −

d12e

v12e

− ε− d23f

v23f

− ε− d31e

v31e

,

P2 −
d20e

v20e

− ε− d01f

v01f

− ε− d12e

v12e

}
≤ Ct (3.16)

In the mathematical model, we will minimize the total energy consumption

subject to the constraint that the cycle time given in equation (3.16) is less than

or equal to the upper bound of the cycle time. However, in order to linearize
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the max term in this equation, we write three separate constraints as follows:

6ε+
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

≤ Ct

P1 + 4ε+
d01f

v01f

+
d12f

v12f

+
d20e

v20e

≤ Ct

P2 + 4ε+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

≤ Ct

Now, the mathematical model can be written as follows:

Formulation 2 (S2 Model):

Minimize Cf [d01fv
k
01f + d23fv

k
23f + d12fv

k
12f ] + Ce[d12ev

k
12e + d31ev

k
31e + d20ev

k
20e]

Subject to

6ε+
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

≤ Ct (3.17)

P1 + 4ε+
d01f

v01f

+
d12f

v12f

+
d20e

v20e

≤ Ct (3.18)

P2 + 4ε+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

≤ Ct (3.19)

LB ≤ vijh ≤ UB∀(ijh) ∈ D2 (3.20)

In the objective function, the energy consumption function of each move is multi-

plied by the corresponding energy constant. Constraints (3.17)-(3.19) are the lin-

earized version of the cycle time upper bound and the bounds of the variables are

considered in the last constraint (3.20). Not that Ct > max{6ε, P1+4ε+P2+4ε}
must hold. Otherwise, there is no feasible solution in S2 cycle.In order to solve

this NLP, we will again develop the Lagrangian function as follows:

L(vijh, µ) =

Cf

[
d01fv

k
01f + d23fv

k
23f + d12fv

k
12f

]
+ Ce

[
d12ev

k
12e + d31ev

k
31e + d20ev

k
20e

]
+µ1

[
6ε+

d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

− Ct
]

+µ2

[
P1 + 4ε+

d01f

v01f

+
d12f

v12f

+
d20e

v20e

− Ct
]

+µ3

[
P2 + 4ε+

d23f

v23f

+
d31e

v31e

+
d12f

v12f

− Ct
]

For each constraint, if it is tight then the corresponding µ value must be greater

than or equal to zero, but if it is loose then the corresponding µ must be zero.
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Since there are three constraints, we have a total of eight situations (23) for

constraints being tight (µ ≥ 0) and loose (µ = 0). Notice that for each constraint

i ∈ {1, 2, 3}, µi ≥ 0 means the feasibility of dual variable. For our problem,

where we have eight situations (subsequently we will prove that four of them

are infeasible), each situation must be examined along with the feasibility of the

dual variable as well as the primal. With equality of each constraint, values of

primal variables and µi's (dual variables) are obtained.

In the optimal solution, for every variable we must have
∂L

∂vi,j,h
= 0. So,

∂L

∂v01f

= kCfd01fv
k−1
01f − µ1

d01f

v2
01f

− µ2
d01f

v2
01f

= 0 (3.21)

∂L

∂v12e

= kCed12ev
k−1
12e − µ1

d12e

v2
12e

= 0 (3.22)

∂L

∂v23f

= kCfd23fv
k−1
23f − µ1

d23f

v2
23f

− µ3
d23f

v2
23f

= 0 (3.23)

∂L

∂v31e

= kCed31ev
k−1
31e − µ1

d31e

v2
31e

− µ3
d31e

v2
31e

= 0 (3.24)

∂L

∂v12f

= kCfd12fv
k−1
12f − µ1

d12f

v2
12f

− µ2
d12f

v2
12f

− µ3
d12f

v2
12f

= 0 (3.25)

∂L

∂v20e

= kCed20ev
k−1
20e − µ1

d20e

v2
20e

− µ2
d20e

v2
20e

= 0 (3.26)

The equations (3.21) to (3.26) give the stationary condition. Other than these,

we also have:

Primal feasibility:

6ε+
d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

≤ Ct

P1 + 4ε+
d01f

v01f

+
d12f

v12f

+
d20e

v20e

≤ Ct

P2 + 4ε+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

≤ Ct

Dual feasibility:

µi ≥ 0 ∀i ∈ {1, 2, 3}
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Complementary slackness:

µ1

[
6ε+

d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

− Ct
]

= 0

µ2

[
P1 + 4ε+

d01f

v01f

+
d12f

v12f

+
d20e

v20e

− Ct
]

= 0

µ3

[
P2 + 4ε+

d23f

v23f

+
d31e

v31e

+
d12f

v12f

− Ct
]

= 0

The following lemma shows that the �rst constraint of Formulation 2 is always

tight.

Lemma 2. If there is a feasible solution to Formulation 2, then the optimal

cycle time is equal to Ct, i.e. constraint (3.17) is tight.

Proof. If constraint (3.17) is not tight, then µ1 = 0 must hold. However, when

µ1 = 0, equation (3.22) yields v12e = 0, which is infeasible. Since otherwise the

cycle time will be in�nite.

In order to �nd the optimal solution for the S2 model, we need to consider

the tightness and looseness of the constraints. As a consequence of Lemma

2, we know that constraint (3.17) is always tight. Consequently, all the four

situations in which this constraint is not tight is diminished. Then, there remain

4 situations to be considered to determine the optimal solution. In subsequent

sections of this chapter, we consider each of these situations one by one.

Situation 1: The second and the third constraints ((3.18) and (3.19))

are loose (µ2 = µ3 = 0)

In this section, we consider Situation 1 where only constraint (3.17) is binding.

The following theorem determines the optimal speed values and also shows that

the empty movements are faster than the full movements if Cf ≥ Ce.

Theorem 2. If Cf ≥ Ce, in the optimal solution we have v12e = v31e = v20e ≥
v01f = v23f = v12f and the optimal speed values can be achieved by the following
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equations:

v∗01f = v∗12f = v∗23f =

∑
(ijh)∈Df

1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

k+1
√
kCf (Ct− 6ε)

v∗12e = v∗31e = v∗20e =

∑
(ijh)∈Df

1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

k+1
√
kCe(Ct− 6ε)

Proof. By considering
∂L

∂v01f

= 0 in equation (3.21) and setting µ2 = µ3 = 0 we

have:

kCfd01v
k−1
01f = µ1

d01

v2
01f

, then

vk+1
01f =

µ1

kCf

, or v01f = k+1

√
µ1

kCf

By the same method, all of the speed values will be as follows:

v01f = v23f = v12f = k+1

√
µ1

kCf

(3.27)

v12e = v31e = v20e = k+1

√
µ1

kCe

(3.28)

(3.27) and (3.28) result in the inverse relation between the speed of the robot and

its energy constant. Since Cf ≥ Ce, then v12e = v31e = v20e ≥ v01f = v23f = v12f .

By substituting the achieved speed values in constraint (3.17) we have:

∑
(ijh)∈Df

2
dijh

k+1

√
µ1

kCf

+

∑
(ijh)∈De

2
dijh

k+1

√
µ1

kCe

= Ct− 6ε, therefore

k+1

√
µ1

kCf

=

k+1

√
µ1

kCe

∑
(ijh)∈Df

2
dijh

k+1

√
µ1

kCe

(Ct− 6ε)−
∑

(ijh)∈De
2
dijh

(3.29)

Using (3.29), we obtain µ1 value and the vijh's as well. In order to simplify

�nding the value of µ1, we can de�ne z =
1

k+1
√
µ1

. Then, by putting z in
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constraint (3.17), we have:

z
∑

(ijh)∈Df
1

dijh
k+1
√
kCf + z

∑
(ijh)∈De

1

dijh
k+1
√
kCe = Ct− 6ε, or

z

 ∑
(ijh)∈Df

1

dijh
k+1
√
kCf +

∑
(ijh)∈De

1

dijh
k+1
√
kCe

 = Ct− 6ε then

z =
Ct− 6ε∑

(ijh)∈Df
1
dijh k+1

√
kCf +

∑
(ijh)∈De

1
dijh

k+1
√
kCe

,

and

µ1 =

(∑
(ijh)∈Df

2
dijh k+1

√
kCf +

∑
(ijh)∈De

2
dijh

k+1
√
kCe

Ct− 6ε

)k+1

Now by putting the value of µ1 in equations (3.27) and (3.28), we get the speed

values.

Although Theorem 2 provides general formulas to �nd optimal speed values, the

following corollary shows an easier calculation to �nd optimal speed values when

Ce = Cf .

Corollary 2. If Ce = Cf , at optimality, the speed of the robot is the same

through the cycle for all of the moves as follows:

v∗01f = v∗23f = v∗12f = v∗12e = v∗31e = v∗20e =

∑
(ijh)∈D2

dijh

Ct− 6ε
.

Proof. In equations (3.27) and (3.28), if we consider Cf = Ce = C, we have

v01f = v23f = v12f = v12e = v31e = v20e = k+1

√
µ1

kC

By putting k+1

√
µ1

kC
in the �rst constraint (3.17), we have∑

(ijh)∈D2
dijh

k+1

√
µ1

kC

= Ct− 6ε, therefore

v∗01f = v∗23f = v∗12f = v∗12e = v∗31e = v∗20e = k+1

√
µ1

kC
=

∑
(ijh)∈D2

dijh

Ct− 6ε
(3.30)

Needless to calculate µ1, equation (3.30) yields identical speed values for all

robot moves.
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As mentioned above, we can have di�erent situations depending on Pi values,

in which one or both of the constraints 2 and 3 (constraints (3.17) and (3.18))

in the Formulation 2 are tight along with the �rst constraint. These situations

are discussed as follows:

Situation 2: The second constraint ((3.18)) is binding and the third

constraint ((3.19)) is loose (µ3 = 0)

In this section, we consider the second situation, where only constraint (3.19) is

not binding. In the following theorem, we �nd the optimal speed values for this

situation.

Theorem 3. If Cf ≥ Ce, at optimality we have v20e ≥ v01f = v12f and v12e =

v31e ≥ v23f . In addition, the optimal speed values are as follows:

v∗01f = v∗12f =
(d01f + d12f ) k+1

√
kCf + d20e

k+1
√
kCe

k+1
√
kCf

(
Ct− 4ε− P1

) (3.31)

v∗20e =
(d01f + d12f ) k+1

√
kCf + d20e

k+1
√
kCe

k+1
√
kCe

(
Ct− 4ε− P1

) (3.32)

v∗12e = v∗31e =
P1 − 2ε

k+1
√
kCe

(
(d12e + d31e)

k+1
√
kCe + d23f

k+1
√
kCf

) (3.33)

v∗23f =
P1 − 2ε

k+1
√
kCf

(
(d12e + d31e)

k+1
√
kCe + d23f

k+1
√
kCf

) (3.34)

Proof. By setting µ3 = 0 in equations (3.21) to (3.26), we can achieve the

following values:

v∗01f = v∗12f = k+1

√
µ1 + µ2

kCf

(3.35)

v∗20e = k+1

√
µ1 + µ2

kCe

(3.36)

v∗12e = v∗31e = k+1

√
µ1

kCe

(3.37)

v∗23f = k+1

√
µ1

kCf

(3.38)

Since µ1 and µ2 are nonnegative and Cf ≥ Ce, we can say v01f = v12f ≤ v20e

and similarly v23f ≤ v12e = v31e. Therefore, in this situation, we can always say
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that the robot, while passing d20e (d12e and d31e) moves faster than or as fast as

the times passing d01f and d12f (d23f ). µ1 and µ2 values can be calculated by

putting the achieved values for the speeds from equations (3.35) through (3.38)

in the �rst and second constraints (equations (3.17) and (3.18)).

First constraint (3.17):

d01f + d12f

k+1

√
µ1 + µ2

kCf

+
d20e

k+1

√
µ1 + µ2

kCe

+
d12e + d31e

k+1

√
µ1

kCe

+
d23f

k+1

√
µ1

kCf

= Ct− 6ε (3.39)

Second constraint (3.18):

d01f + d12f

k+1

√
µ1 + µ2

kCf

+
d20e

k+1

√
µ1 + µ2

kCe

= Ct− 4ε− P1 (3.40)

In order to simplify the equations (3.39) and (3.40), we set z1 =
1

k+1
√
µ1 + µ2

and z2 =
1

k+1
√
µ1

. By substituting z1 and z2 in equation (3.39), we have:

(d01f + d12f ) k+1
√
kCfz1 + d20e

k+1
√
kCez1 + (d12e + d31e)

k+1
√
kCez2

+d23f
k+1
√
kCfz2 = Ct− 6ε, or

z1

(
(d01f + d12f ) k+1

√
kCf + d20e

k+1
√
kCe

)
+z2

(
(d12e + d31e)

k+1
√
kCe + d23f

k+1
√
kCf

)
= Ct− 6ε (3.41)

Also, by substituting z1 and z2 in equation (3.40), we have:

z1

(
(d01f + d12f ) k+1

√
kCf + d20e

k+1
√
kCe

)
= Ct− 4ε− P1, then

z1 =
Ct− 4ε− P1

(d01f + d12f ) k+1
√
kCf + d20e

k+1
√
kCe

(3.42)

Now, we have two equations (3.41) and (3.42) with two unknowns z1 and z2.

So, by substituting z1 from equation (3.42) into equation (3.41) we can �nd z2

as follows:

z2 =
P1 − 2ε(

(d12e + d31e)
k+1
√
kCe + d23f

k+1
√
kCf

)
By substituting z1 and z2 values into equations (3.35) to (3.38), we can �nd

equations (3.31) to (3.34).
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Although Theorem 3 provides the optimal solution for the general case of Situa-

tion 2, the following corollary provides an easier and simpler formula to achieve

the optimal solution when Cf = Ce = C for the identical distance case.

Corollary 3. If Cf = Ce = C and P1 > 2ε, at optimality we have v01f = v12f =

v20e ≥ v12e = v23f = v31e and the optimal speed values for the robot moves are as

follows:

v∗01f = v∗12f = v∗20e =
d01f + d12f + d20e

Ct− 4ε− P1

v∗12e = v∗23f = v∗31e =
d12e + d23f + d31e

P1 − 2ε

Proof. By putting the parameter of C in equation (3.35) to (3.38) instead of Cf

and Ce we have

v01f = v12f = v20e = k+1

√
µ1 + µ2

kC
(3.43)

v12e = v23f = v31e = k+1

√
µ1

kC
(3.44)

Since µ2 ≥ 0, it is obvious that v01f = v12f = v20e ≥ v12e = v23f = v31e. For this

situation, we can always say that the robot never moves slower while passing

d01f , d12f , and d20e than d12e, d23f , and d31e.

By putting the values of k+1

√
µ1 + µ2

kC
and k+1

√
µ1

kC
(from equations (3.43) and

(3.44)) in the �rst and second constraints (equations (3.17) and (3.18)), µ1 and

µ2 can be calculated as follows:

Equation (3.17):

d01f + d12f + d20e

k+1

√
µ1 + µ2

kC

+
d12e + d23f + d31e

k+1

√
µ1

kC

= Ct− 6ε (3.45)

Equation (3.18):

d01f + d12f + d20e

k+1

√
µ1 + µ2

kC

= Ct− 4ε− P1,

by revising this equation we will have

k+1

√
µ1 + µ2

kC
=
d01f + d12f + d20e

Ct− 4ε− P1
(3.46)

38



Now, according to equation (3.46), we have

µ1 + µ2 = kC

(
d01f + d12f + d20e

Ct− 4ε− P1

)k+1

(3.47)

According to equation (3.46), by putting the value of k+1

√
µ1 + µ2

kC
in the �rst

constraint (3.45), we can issue

Ct− 4ε− P1 +
d12e + d23f + d31e

k+1

√
µ1

kC

= Ct− 6ε, or

k+1

√
µ1

kC
=
d12e + d23f + d31e

P1 − 2ε
(3.48)

Finally, from equation (3.48) we can �nd the value of µ1. Consequently, µ2 will

be calculated from (3.47). However, from equations (3.46) and (3.48), it can be

seen that in order to �nd the speed values we don't need to calculate µ1 and µ2

in this case. In other words, just by substituting the equations (3.46) and (3.48)

in equations (3.44) and (3.43), the corollary is proven.

The following proposition proves that if we are solving a problem where Ce = Cf ,

the distances between any pair of adjacent machines is identical and P1 ≤ P2,

then de�nitely the optimal solution cannot be Situation 2. In other words, we do

not need to consider Situation 2. Alternatively, solving the other three situations

will provide the global optimum for us.

Proposition 1. If Ce = Cf and the distances between any pair of adjacent

machines are equal (additive distance case), at optimality, a KKT point can be

found in situation 2 only if P1 ≥ P2.

Proof. The Situation 2 can be feasible whenever P1 ≥ P2 and this is obvious,

since for higher P1 values, v12e, v23f and v31e can be slower than the rest because

the robot has more time for doing its other activities during P1 and less time in

the rest of the cycle, in which the �rst machine is idle.

As we concluded before (in Corollary 5), we have

v01f = v12f = v20e = k+1

√
µ1 + µ2

kC
≥ v12e = v23f = v31e = k+1

√
µ1

kC
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On the other hand, from equations (3.46) and (3.48), we know that

k+1

√
µ1 + µ2

kC
=
d01f + d12f + d20e

Ct− 4ε− P1
, and

k+1

√
µ1

kC
=
d12e + d23f + d31e

P1 − 2ε

Since we are in the additive distance case, the nominators of these two equations

are equal. Therefore, the only way to have

d01f + d12f + d20e

Ct− 4ε− P1
≥ d12e + d23f + d31e

P1 − 2ε

is that, by comparing their denominators, we should have

Ct− 4ε− P1 ≤ P1 − 2ε

In other words

Ct ≤ 2P1 + 2ε =⇒ P1 ≥
Ct− 2ε

2
(3.49)

Additionally, in the third constraint (equation (3.19), we have

P2 + 4ε+
d23f + d31e

k+1

√
µ1

kC

+
d12f

k+1

√
µ1 + µ2

kC

− Ct ≤ 0 (3.50)

From equations (3.46) and (3.48) we can revise (3.50) as follows:

P2 + 4ε+
(P1 − 2ε) (d23f + d31e)

d12e + d23f + d31e

+

(
Ct− 4ε− P1

)
(d12f )

d01f + d12f + d20e

− Ct ≤ 0 (3.51)

By simplifying (3.51) we have

P2 ≤
Ct− 2ε

2
(3.52)

Finally, comparing (3.49) by (3.52), we are able to prove P1 ≥ P2.

Situation 3: The second constraint ((3.18)) is loose and the third con-

straint ((3.19)) is binding (µ2 = 0)

In this situation, instead of the second constraint, the third constraint is binding.

So the most of the �ndings are similar to the Situation 2.
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Theorem 4. If Cf ≥ Ce, at optimality we have v20e = v12e ≥ v01f and v23f =

v12f ≤ v31e. In addition the optimal speed values are as follows:

v∗01f =
P2 − 2ε

k+1
√
kCf

(
(d12e + d20e)

k+1
√
kCe + d01f

k+1
√
kCf

)
v∗12e = v∗20e =

P2 − 2ε
k+1
√
kCe

(
(d12e + d20e)

k+1
√
kCe + d01f

k+1
√
kCf

)
v∗31e =

(d23f + d12f ) k+1
√
kCf + d20e

k+1
√
kCe

k+1
√
kCe

(
Ct− 4ε− P2

)
v∗12f = v∗23f =

(d23f + d12f ) k+1
√
kCf + d20e

k+1
√
kCe

k+1
√
kCf

(
Ct− 4ε− P2

)
Proof. By setting µ2 = 0 in equation (3.21) to (3.26), we can achieve the follow-

ing values:

v∗01f = k+1

√
µ1

kCf

(3.53)

v∗12e = v∗20e = k+1

√
µ1

kCe

(3.54)

v∗31e = k+1

√
µ1 + µ3

kCe

(3.55)

v∗12f = v∗23f = k+1

√
µ1 + µ3

kCf

(3.56)

Since Cf ≥ Ce and µ3 ≥ 0, the �rst statement of this theorem is proven. As in

Situation 2 (Theorem 3), in order to �nd µ1 and µ3 values, we should put vijh

values in binding constraints (equations (3.17) and (3.19)). Then, by considering

z1 =
1

k+1
√
µ1

and z2 =
1

k+1
√
µ1 + µ3

, we have:

z1

(
d01f

k+1
√
kCf + (d12e + d20e)

k+1
√
kCe

)
+z2

(
(d12f + d23f ) k+1

√
kCf + d31e

k+1
√
kCe

)
= Ct− 6ε

and

z2

(
(d23f + d12f ) k+1

√
kCf + d31e

k+1
√
kCe

)
= Ct− 4ε− P2

These two equations help us to �nd two unknowns z1 and z2, and consequently µ1

and µ3. Since z1 =
1

k+1
√
µ1

and z2 =
1

k+1
√
µ1 + µ3

, after substituting their values

in equations (3.53) to (3.56), this theorem is also proven. Due to the similarity

of the computations with Theorem 3 we don't issue them here again.
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The next corollary develops an easier formula to compute the optimal speed

values when the energy constants for the full and empty moves are identical.

Corollary 4. If Cf = Ce = C and P1 > 2ε, at optimality we have v01f = v12e =

v20e ≤ v12f = v23f = v31e and the optimal speed value for each move is as follows:

v∗01f = v∗12e = v∗20e =
d01f + d12f + d20e

Ct− 4ε− P1
(3.57)

v∗12f = v∗23f = v∗31e =
d12e + d23f + d31e

P1 − 2ε
(3.58)

Proof. By substituting the parameter C in equation (3.53) to (3.56) instead of

Cf and Ce we get

v∗01f = v∗12e = v∗20e = k+1

√
µ1

kC

v∗12f = v∗23f = v∗31e = k+1

√
µ1 + µ3

kC

Since µ3 ≥ 0, it is obvious that v01f = v12e = v20e ≤ v12f = v23f = v31e.

Similar to Corollary 5, by putting the calculated speed values from (3.57) and

(3.58) in the �rst and third constraints (equations (3.17) and (3.17)), this corol-

lary can be proved as well. Like the second situation, by using the same proce-

dure, µ1 and µ3 can be calculated. Nonetheless, it can be seen that we do not

need to calculate µ1 and µ3 values for this case.

The following proposition proves that if we are solving a problem where Ce = Cf ,

the distances between any pair of adjacent machines is identical and P1 ≥ P2,

then de�nitely the optimal solution cannot be Situation 3. In other words, we do

not need to consider Situation 3. Alternatively, solving the other three situations

will provide the global optimum for us.

Proposition 2. If Ce = Cf and the distances between any pair of the adjacent

machine are equal (additive distance case), at optimality, a KKT point can be

found in Situation 3 only if P1 ≤ P2.

Proof. By the same calculations as in the proof of Proposition 2, it can be

shown that for feasibility of this situation we should have P2 ≥
Ct− 2ε

2
and
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P1 ≤
Ct− 2ε

2
≤ P2. Due to the similarity of the calculations with Proposition

4, they are not indicated here.

Situation 4: All of the constraints (equation (3.17) to (3.19)) are bind-

ing

In this situation, all of the constraints are binding. Therefore, by revising equa-

tions (3.21) to (3.26), we achieve the following values for the speeds:

v∗01f = k+1

√
µ1 + µ2

kCf

(3.59)

v∗20e = k+1

√
µ1 + µ2

kCe

(3.60)

v∗12e = k+1

√
µ1

kCe

(3.61)

v∗23f = k+1

√
µ1 + µ3

kCf

(3.62)

v∗31e = k+1

√
µ1 + µ3

kCe

(3.63)

v∗12f = k+1

√
µ1 + µ2 + µ3

kCf

(3.64)

Before �nding the value of Lagrangian multipliers, let us �rst consider the opti-

mal solution for the case when Cf = Ce = C in the following two corollaries.

Corollary 5. If Cf = Ce = C, at optimality we have v12f ≥ v01f = v20e, v23f =

v31e ≥ v12e.

Proof. By putting the parameter C, instead of Cf and Ce in the equations (3.59)

to (3.64), we have:

v∗01f = v∗20e
k+1

√
µ1 + µ2

kC
(3.65)

v∗12e = k+1

√
µ1

kC
(3.66)

v∗23f = v∗31e = k+1

√
µ1 + µ3

kC
(3.67)

v∗12f = k+1

√
µ1 + µ2 + µ3

kC
(3.68)
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Again, considering µ1, µ2, µ3 ≥ 0, it is clear that the statement of the proposition

is true.

Corollary 6. If we consider the additive distance case and Cf = Ce = C besides

P1 = P2, we have v01f ≥ v01f = v20e = v23f = v31e ≥ v12e.

Proof. According to the equations (3.65) to (3.68), we can say that if P1 =

P2, then v01f , v20e, v23f and v31e have to be identical. The reason is that their

corresponding distances (their nominators in equations (3.18) and (3.19)) are

the same in the additive distance case. Therefore, the only remained unknowns

(their speeds) should have the same value. This results in µ2 = µ3. Notice that,

if µ2 = µ3 = 0, we have the same situation as Situation 1.

Generally, if we consider the additive distance case and set Cf = Ce = C, the

following statements can be concluded for the S2 cycle:

• If P1 ≥ P2, then µ2 ≥ µ3. In this case, we are either in Situation 1 or 2,

where µ2 = µ3 = 0 or µ2 > µ3 = 0 respectively (which depends on the

value of P1).

• If P2 ≥ P1, then µ3 ≥ µ2. So, we are either in Situation 1 or 3, where

µ2 = µ3 = 0 or µ3 > µ2 = 0 respectively (which depends on the value of

P2 in this case).

• If P1 = P2, we are either in Situation 1 or 4, which results in µ2 = µ3 = 0 or

µ2 = µ3 > 0 respectively. This case depends on the values of both P1 and

P2 at the same time.

• Whenever µ2 = µ3, we have v01f = v20e = v23f = v31e and whenever µ2 =

µ3 = 0, all of the vij's obtain the same value.

In Situation 4, µ1, µ2, and µ3 values can be found by inserting equations (3.59)-

(3.64) in the constraints (equations (3.17)-(3.19)). In order to simplify the cal-
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culations, we set

z1 =
1

k+1
√
µ1 + µ2

(3.69)

z2 =
1

k+1
√
µ1

(3.70)

z3 =
1

k+1
√
µ1 + µ3

(3.71)

z4 =
1

k+1
√
µ1 + µ2 + µ3

(3.72)

Then, we can rewrite the constraints as follows:

First constraint (3.17):

6ε+
(
d01f

k+1
√
kCf + d20e

k+1
√
kCe

)
z1 + d12e

k+1
√
kCez2

+
(
d23f

k+1
√
kCf + d31e

k+1
√
kCe

)
z3 + d12f

k+1
√
kCfz4 = Ct

Second constraint (3.18):

P1 + 4ε+
(
d01f

k+1
√
kCf + d20e

k+1
√
kCe

)
z1 + d12f

k+1
√
kCfz4 = Ct

Third constraint (3.19):

P2 + 4ε+
(
d23f

k+1
√
kCf + d31e

k+1
√
kCe

)
z3 + d12f

k+1
√
kCfz4 = Ct

Now, we possess three nonlinear equations and four unknowns (z1, ..., z4). Then,

if we consider z4 as a constant and try to �nd z1, z2, and z3 values in terms of

z4, we will �nd the following equations:

z1 =
Ct− P1 − 4ε− d12f

k+1
√
kCf · z4

d01f
k+1
√
kCf + d20e

k+1
√
kCe

(3.73)

z2 =
P1 + P2 + 2ε− Ct+

(
d12f

k+1
√
kCf

)
· z4

d12e
k+1
√
kCe

(3.74)

z3 =
Ct− P2 − 4ε− d12f

k+1
√
kCf · z4

d23f
k+1
√
kCf + d31e

k+1
√
kCe

(3.75)

On the other hand, according to the equations (3.69)-(3.72), we know that(
1

z1

)k+1

+

(
1

z3

)k+1

=

(
1

z2

)k+1

+

(
1

z4

)k+1

(3.76)

Now, by putting the equations (3.73)-(3.75) into equation (3.76), we will have

a nonlinear function (let us call it h(z4)) with the power of k + 1, in which the
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root of this function is the value of z4 where h(z4) = 0.

h(z4) =

(
1

z1

)k+1

+

(
1

z3

)k+1

−
(

1

z2

)k+1

−
(

1

z4

)k+1

(3.77)

By substituting the value of z4 in equations (3.73)-(3.75), we can �nd z1, z2,

and z3. Then, µi, i ∈ {1,2,3} values can be calculated easily by equations

(3.69)-(3.72). Subsequently, optimal vijh values will be calculated by equations

(3.59)-(3.64).

However, �nding the root of this function is not straightforward. The main

reason is that according to the value of the parameters, the function can have

a di�erent behavior. Later by looking at the �rst derivative of our function

(h(z4)) in equation (3.78) we can see that whenever k is odd, the function can

be monotonically increasing or decreasing with regard to the other parameters.

On the other hand, by looking at the second derivative at (3.79), whenever k is

even, the function can be convex, concave or none of them. So, there may be

more than one root for this function. we can use a simple algorithm and utilize

the well-known methods in the literature to �nd all of the roots for this function.

If the number of roots that generate a feasible solution for Formulation 2 is more

than one, we will calculate the objective function for each of them and the root

that generates the smallest objective function value will be selected. Notice that

we know the lower and upper bounds of v12f (LB and UB). Then, according

to equations (3.68) and (3.72), we can �nd the bounds of z4 as well. Since it is

equal to:

z4 =
1

v12f
k+1
√
kCf

,

then

1

UB k+1
√
kCf

≤ z4 ≤
1

LB k+1
√
kCf

,

Finally, by calculating a range for the values of z4 we can utilize available meth-

ods in the literature, such as Bisection or Newton-Raphson (NR) methods in

our algorithm to �nd the roots of the function. The algorithm of our proposed

approach is given in Algorithm 1. In this algorithm we applied NR method. In

the standard NR method, we start with a function (f), its derivative (f ′), and
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an initial solution (x0) as a guess for the root of the function. If the function

satis�es the assumptions made in the derivation of the formula and the initial

guess is close, then a better approximation x1 is

x1 = x0 +
f(x)

f ′(x)

The process is repeated for consequent xn and xn+1, until a su�ciently accurate

value is reached.

Algorithm 1: Finding the roots of function h(z4)

Data: ε: a very small number as a step-size, LBz4 and UBz4 (which are

the bounds of z4), h(z4) = (
1

z1

)k+1 + (
1

z3

)k+1 − (
1

z2

)k+1 − (
1

z4

)k+1

Result: roots of the function
1 x← LBz4 ;
2 Calculate h(x);
3 do
4 x1 = x+ ε;
5 Calculate h(x1);
6 if h(x) · h(x1) < 0 then
7 Start NR algorithm for [x, x1] and display the root;
8 x← x1;
9 h(x)← h(x1);

10 else
11 x← x1;
12 h(x)← h(x1);
13 end
14 while x1 ≤ UBz4 ;

In order to apply NR method, we need to use both the function and its derivative.

To calculate the derivative of equation (3.77), let us �rst de�ne the constants

a1, a2, a3, b, c1, c2, and c3 as follows:

a1 = Ct− P1 − 4ε

a2 = P1 + P2 + 2ε− Ct

a3 = Ct− P2 − 4ε

b = d12f
k+1
√
kCf

c1 = d01f
k+1
√
kCf + d20e

k+1
√
kCe

c2 = d12e
k+1
√
kCe

c3 = d23f
k+1
√
kCf + d31e

k+1
√
kCe
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Now we can rewrite the equations (3.73) through (3.75) and de�ne the equation

(3.77) as a function of z4.

z1 =
a1 − b · z4

c1

z2 =
a2 + b · z4

c2

z3 =
a3 − b · z4

c3

h(z4) =

(
c1

a1 − b · z4

)k+1

+

(
c3

a3 − b · z4

)k+1

−
(

c2

a2 + b · z4

)k+1

−
(

1

z4

)k+1

Consequently, the �rst derivative of this function is

h
′
(z4) =

(k + 1)b · ck+1
1

(a1 − b · z4)k+2
+

(k + 1)b · ck+1
3

(a3 − b · z4)k+2
+

(k + 1)b · ck+1
2

(a2 + b · z4)k+2
+

(k + 1)

zk+2
4

(3.78)

Also, the second derivative is

h
′′
(z4) =

(k + 2)(k + 1)b2 · ck+1
1

(a1 − b · z4)k+3
+

(k + 2)(k + 1)b2 · ck+1
3

(a3 − b · z4)k+3

−(k + 2)(k + 1)b2 · ck+1
2

(a2 + b · z4)k+3
− (k + 2)(k + 1)

zk+3
4

(3.79)

The whole proposed approach of this thesis is coded in C++ in a way that

we can �nd the optimal solution for both S1 and S2 cycles. Also, the optimal

situation of the S2 cycle. In the following section, we show an example of the

results of our algorithm.

Example 1. In this example, assume the set of parameters are given as follows:

d01f = d12e = d23f = d12f = 1, d31e = d20e = 2, k = 3, ε = 1, Cf = 4, Ce = 2 and

Ct = 40, P1 = 13 and P2 = 11.

The results of this example after solving the problem is shown in Table 3.1.

As it is shown in the Table 3.1, the only feasible situation for the S2 cycle is

Situation 1. According to the KKT approach, only one of the four situations

is feasible. Therefore, we can stop the algorithm after �nding the �rst feasi-

ble situation. On the other hand, S1 cycle provides a feasible solution as well.
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Table 3.1: Results for Example 1

Cycle Situation Lagrange multipliers results
v01f = 0.552

v12f = 0.552

S1 - µ1= 1.116 v23f = 0.552

v30e = 0.657

objective function=3.721
v01f = 0.212

v12f = 0.212

v23f = 0.212

S2 1 µ1= 0.024 v12e = 0.252

v31e = 0.252

v20e = 0.252

objective function=0.274
S2 2 µ1= 0.126, µ2= -0.118 Infeasible
S2 3 µ1= 0.282, µ3= -0.276 Infeasible
S2 4 No feasible root Infeasible

Whenever both cycles provide a feasible solution, we should compare their solu-

tions (objective functions) and choose the minimum of them, which is S2 in this

example. In another set of parameters, the optimal solution can be in another

cycle or situation. For instance, if we keep all of the parameters same but reduce

the cycle time upper bound by 14 seconds
(
Ct = 26

)
, the results can completely

change as shown in Table 3.2. In this example (Example 2), the second situation

of S2 is optimal.
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Table 3.2: Results for Example 1 (cont.)

Cycle Situation Lagrange multipliers results
Infeasible

S1 - -
(constraint is not satis�ed)

Infeasible
S2 1 µ1= 0.202

(constraints are not satis�ed)
v01f = 0.409

v12f = 0.409

v23f = 0.320

S2 2 µ1 = 0.126, µ2 = 0.209 v12e = 0.381

v31e = 0.381

v20e = 0.486

objective function=1.471
S2 3 µ1= 0.282, µ3= -0.131 Infeasible (µ3 is negative)
S2 4 µ1= 0.155, µ2= 0.191 µ3= -0.036 Infeasible (µ3 is negative)

So far, we applied KKT analysis and the optimal situations in each feasible

state are interpreted analytically when the speeds are unbounded. A set of

theorems are proposed that can help us to �nd the optimal solution to each

speci�c situation for each cycle. In the next section, we will describe how to

deal with bounded speed case by applying a heuristic algorithm. After next

section, we will provide the complete algorithm of our proposed procedure in

this thesis.

Dealing With Robot Speed Upper Bounds

In this section, we present a greedy heuristic algorithm to deal with the case

where robot speeds are bounded from above. Our reason for not considering the

speed upper bound in the �rst step of solving problems is to reduce the number

of calculations and complexity of the problems. If we consider all of the speeds

less than or equal to UB at the beginning of our solution procedure, we should

consider six more constraints in our analysis. Namely, six new equations should

be inspected in complementary slackness condition and six new Lagrangian mul-
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tipliers in dual feasibility condition. As shown before, in the S2 cycle, we already

have three constraints corresponding to the cycle time upper bound. Since each

constraint can be either tight or loose, by adding six new constraints the num-

ber of situations will be (29) which is drastically larger than (23). In this case,

implementing KKT analysis might not be a suitable method for this problem2.

Therefore, we solve the problem without considering the upper bound for the

decision variables and after �nding the optimal solution for the unconstrained

speeds, we check whether they are within their bounds or not. If they are within

their bounds, we are done. Otherwise, we solve the problem with a heuristic

algorithm that is developed in this section.

Our algorithm is inspired by the greedy heuristic algorithm for solving the knap-

sack problem proposed by George Dantzig [89]. In this algorithm, the items are

sorted in a non-increasing order of value per unit of weight (
vi
wi

). Each decision

variable has a weight wi in the constraint and a value vi in the objective func-

tion, along with a maximum weight capacity W . Next, the algorithm greedily

selects items in the achieved order. Provided that there is an in�nite supply of

each item, if m is the maximum value of items that �t into the sack, then the

greedy algorithm is guaranteed to achieve at least a value of m/2. In this thesis,

we developed an algorithm by applying the same logic.

In our algorithm, at �rst we set vijh = UB (for all (ijh) ∈ D1 and D2). As

shown before, in Formulation 1 we have only one constraint that corresponds

to the cycle time upper bound and we proved that in the optimal solution, it is

always tight. On the other hand, in Formulation 2, we have three constraints

that correspond to the cycle time upper bound. Similarly, we proved that in

the optimal solution, the �rst constraint is always tight (Lemma 1 and Lemma

2). Therefore, similar to the Dantzig's greedy heuristic algorithm, we start

decreasing the speed values step by step until making these constraints tight.

At each step, the decision variable that contributes the most to the objective

function is selected (the speed which its value per unit of weight is greater

than other speeds). Namely, we calculate the following equation for all of the

2 Since we proved that half of the situations are infeasible, due to the tightness of the �rst

constraint, then the numbers 29 and 23 will shrink to 28 and 22
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variables: ∣∣∣∣∣∣
∂fijh(vijh)

∂vijh

∂gijh(vijh)

∂vijh

∣∣∣∣∣∣ ∀(ijh) ∈ D1 and D2 (3.80)

where fijh is the part of the objective function that corresponds to the move (ijh)

and gijh is the part of each constraint that corresponds to the move (ijh). It

should be noticed that, in both Formulation 1 and Formulation 2, the objective

functions and the constraints are additively separable and each separable part

corresponds to a di�erent decision variable. In the S1 formulation, there is

only one constraint. On the other hand, in the S2 formulation, there are three

constraints. But the coe�cient of each decision variable is the same through all

of the constraints. As a result, considering any constraint of the S2 cycle, we will

achieve the same solution from equation (3.80). After calculating equation (3.80)

for all of the decision variables, the one with the maximum value is selected to

be reduced. We apply this formula in each step and after selecting a variable,

we reduce its value by a small step length (∆). We continue this approach until

reaching the stopping criteria, which is making the �rst constraint binding (for

both S1 and S2). The whole procedure of our algorithm is presented below:

The procedure:

Step 1. Set vijh = UB,∀(ijh) ∈ D1.

Step 2. If the �rst constraint of S1 is tight, report the solution for S1 cycle and

Go to Step 6. Else, Go to Step 3.

Step 3. Choose speed v∗ijh = argmax

∣∣∣∣∣
∂fijh(vijh)

∂vijh
∂gijh(vijh)

∂vijh

∣∣∣∣∣ ,∀(ijh) ∈ D1.

Step 4. Set v∗ijh = v∗ijh −∆.

Step 5. If the �rst constraint of S1 is tight, report the solution for S1 cycle and

Go to Step 5. Else, Go to Step 3.

Step 6. Set vijh = UB,∀(ijh) ∈ D2.

Step 7. If the �rst constraint of S2 is tight, report the solution for the S2 cycle

and STOP; Else, Go to Step 8.
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Step 8. Choose speed v∗ijh = argmax

∣∣∣∣∣
∂fijh(vijh)

∂vijh
∂gijh(vijh)

∂vijh

∣∣∣∣∣ ,∀(ijh) ∈ D2.

Step 9. Set v∗ijh = v∗ijh −∆.

Step 10. If the �rst constraint of S2 is tight, report the solution for the S2 cycle

and STOP; Else, Go to Step 11.

Step 11. If the second or the third constraint of S2 is tight, set v∗ijh = argmax

∣∣∣∣∣
∂fijh(vijh)

∂vijh
∂gijh(vijh)

∂vijh

∣∣∣∣∣
such that (ijh) is not in the binding constraint and Go to Step 9. Else,

Go to Step 8.

The algorithm is coded in C++ and its pseudo code is provided in Algorithm

2. Tables 3.3 and 3.4 shows the e�ect of di�erent ∆ values on the solution and

CPU time for solving S1 and S2, respectively. The solutions are compared with

General Algebraic Modeling System (GAMS) using CONOPT nonlinear solver.

It can be seen that after ∆ = 0.0001, the achieved solutions by the proposed

algorithm is almost equal to the provided solution by CONOPT (GAMS) and

the CPU time is negligible. Therefore, ∆ = 0.0001 is selected for conducting

our numerical studies in Chapter 4.

It should be noticed that, if only one of the decision variables exceeds the upper

bound value and the rest of the speeds be within the bound, we don't need

to solve the problem by our heuristic algorithm; we can only substitute its

value by UB and solve the problem again with a reduced number of decision

variables with the presented exact approach in the previous section. If after

solving this new problem, we achieve all of the speeds within the bound, we

are done. Otherwise, we need to solve it by the proposed heuristic algorithm.

In order to understand this speci�c situation better, we consider a parametric

example.

Since in Situation 4 of the S2 cycle all of the optimal speed values can be di�erent

from each other, we consider our example in this situation. Therefore, assume

the optimal solution, after solving a problem, is in situation 4 and all of the

optimal speed values are di�erent from each other. At that point, we may see
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Algorithm 2: Greedy heuristic algorithm for �nding the optimal robot

speed values

Data: ε, P1, P2, Ct, UB, and the set of distances dijh∀(ijh) ∈ D1 and D2

Result: The optimal speed values (v∗ijh) and the optimal objective

function (OPT) when the speeds are bounded

1 v∗ijh ← UB, ∀(ijh) ∈ D1;

2 while equation (3.1)<Ct do

3 Choose speed v∗ijh = argmax

∣∣∣∣∣
∂fijh(vijh)

∂vijh
∂gijh(vijh)

∂vijh

∣∣∣∣∣ ,∀(ijh) ∈ D1 ;

4 v∗ijh = v∗ijh −∆;

5 end

6 v∗ijh = v∗ijh + ∆;

7 Report OPT and v∗ijh for the S1 cycle;

8 v∗ijh ← UB, ∀(ijh) ∈ D2;

9 while equation (3.17)<Ct do

10 Choose speed v∗ijh = argmax

∣∣∣∣∣
∂fijh(vijh)

∂vijh
∂gijh(vijh)

∂vijh

∣∣∣∣∣ ,∀(ijh) ∈ D2 ;

11 v∗ijh = v∗ijh −∆;

12 if equation (3.18) or (3.19) does not hold then

13 v∗ijh = v∗ijh + ∆;

14 Remove the corresponding (ijh) from the argmax and don't select

it anymore;

15 end

16 end

17 v∗ijh = v∗ijh + ∆;

18 Report OPT and v∗ijh for the S2 cycle;
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Table 3.3: Evaluating the performance of the heuristic algorithm by di�erent ∆ values for solving S1 with

UB = 3.2

Solution Approach

CONOPT Greedy Approximation Algorithm

∆ - 0.3 0.1 0.01 0.001 0.0005 0.0001 0.00005
Obj. Func. 157.108 160.973 157.8 157.321 157.117 157.117 157.108 157.108
Time (s) 0 0 0.008 0.005 0.033 0.067 0.326 0.556

Table 3.4: Evaluating the performance of the heuristic algorithm by di�erent ∆ values for solving S2 with

UB = 2

Solution Approach

CONOPT Greedy Approximation Algorithm

∆ - 0.2 0.1 0.01 0.001 0.0005 0.0001 0.00005
Obj. Func. 53.703 54.64 54.04 53.717 53.706 53.706 53.704 53.704
Time (s) 1.07 0.002 0.004 0.02 0.17 0.353 1.7 3.059

that one of the speeds is greater than UB. Let us assume v12f is the only decision

variable that exceeds the upper bound while the rest are less than or equal to

UB. Then, the Lagrangian function for the modi�ed problem is as follows:

L(vijh, µ) =

Minimize Cf

[
d01fv

k
01f + d23fv

k
23f + d12fv

k
12f

]
+ Ce

[
d12ev

k
12e + d31ev

k
31e + d20ev

k
20e

]
+µ1

[
6ε+

d01f

v01f

+
d12e

v12e

+
d23f

v23f

+
d31e

v31e

+
d12f

v12f

+
d20e

v20e

− Ct
]

+µ2

[
P1 + 4ε+

d01f

v01f

+
d12f

v12f

+
d20e

v20e

− Ct
]

+µ3

[
P2 + 4ε+

d23f

v23f

+
d31e

v31e

+
d12f

v12f

− Ct
]

+µ4 [v12f − UB]

Now, we want to solve this new problem. Earlier, we proved that we have four

feasible situations for the S2 cycle. Conversely, we will have eight situations

concerning the new constraint that can be either tight (µ4 ≥ 0) or loose (µ4 = 0)

now. However, if the added constraint is not binding (i.e., µ4 = 0), the problem

renovates to its previous format with three Lagrangian multipliers and we have

to continue the same approach as we did before which yields again an infeasible

speed for v12f . Consequently, the variable that exceeds the upper bound has to

be equal to UB. In this case, we set v12f equal to UB. In other words, we act

with it as a parameter and solve the problem with a reduced number of decision
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variables. After solving the adapted problem, we check the newly computed

values for the speeds. If they are all less than or equal to UB, we are done.

However, if we �nd another decision variable greater than UB, this approach is

not helpful anymore and we cannot continue with �xing the value of the new

infeasible speed to UB again. In addition, this approach is not applicable if

the number of speeds that are higher than UB is greater than 1. The reason is

that by reducing the value of the speed which is higher than UB, the value of a

number of other speeds may decrease as well. We show this situation through

an example:
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Example 2. The set of parameters for this example are given as follows:

d31e = d12e = d23f = d12f = 1, d01f = d20e = 2, k = 3, ε = 1, Cf = 4, Ce = 2 and

Ct = 30, P1 = 22 and P2 = 22.

At �rst, the problem is solved without considering any speed upper bound. The

results are shown in the �rst row of Table 3.5 as Problem 1. Now, assume that

for this problem UB = 1.3. Therefore, v20e exceeds the upper bound value.

Then, we add the corresponding constraint (v20e ≤ UB) to the problem and

solve the problem again. As it is proved before, in the optimal solution, we have

v20e = UB. However, we can see that by reducing the value of v20e, two other

speeds, v23f and v31e that are underlined in the table, decrease as well. In order

to be sure that there is no alternative solution that can avoid reducing other

decision variables as well, we restrict those two speeds to be greater than or

equal to their values in the �rst problem (Problem 1). That is, the following

constraints are added to the problem:

1- v23f ≥ 0.569

2- v31e ≥ 0.716

As the results show in the last row of Table 3.5 (Problem 3), after adding these

constraints and resolving the problem, the objective function value is increased.

So, there cannot be an alternative solution.

Table 3.5: Results for Example 2

Problem v01f v12f v23f v31e v12e v20e Obj. Func.

1 1.137 1.183 0.569 0.716 0.059 1.433 26.481
2 1.206 1.245 0.561 0.707 0.06 1.3 26.862
3 1.219 1.219 0.569 0.716 0.059 1.3 26.911

By the help of this example, we understand that by decreasing one of the decision

variables, another decision variable(s) can do likewise. So, for instance, if two of

the speeds exceed the UB, we cannot set both of them equal to UB. Because by

reducing only one of them, the other one may decrease as well and be less than

UB. The problem will be more complicated if we have more variables greater

than UB. Another situation that can happen is when after solving a problem,
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only one of the speeds, say v1, be greater than UB, but after setting it equal

to UB and solving the problem again, another speed, say v2, exceeds the upper

bound value. In this situation, we cannot decrease v2 and set it equal to UB and

keep the previous variable v1 = UB as well. The reason is that by decreasing v2,

v1 may decrease as well and v1 = UB will not be optimal anymore. As a result,

if the number of decision variables that exceed the upper bound is more than

one, we cannot set all of them equal to UB. Instead, we will use our proposed

heuristic algorithm.

As mentioned before, applying the greedy heuristic algorithm for this problem

is much easier than solving it with considering all of the upper bounds at the

starting point of the approach. Next, we give the steps of our general procedure

for solving an energy-conscious scheduling problem in a two-machine robotic

cell. The pseudo code of this algorithm (Algorithm 3), which is coded in C++,

is shown in the Appendix.

Step 1. Start solving the S1 cycle.

Step 2. Solve S1 without considering speed upper bounds.

Step 3. If there is only one speed greater than UB, set it to UB, solve the

problem again and Go to Step 4. If there are more than one speeds greater

than UB, Go to step 5. Else, Go to Step 6.

Step 4. If there is another speed greater than UB, Go to Step 5. Else, Go to

Step 6.

Step 5. Solve the problem by the developed greedy heuristic algorithm.

Step 6. Start solving the S2 cycle.

Step 7. Solve S2 without considering speed upper bounds.

Step 8. If there is only one speed greater than UB, set it to UB, solve the

problem again and Go to Step 9. If there are more than one speeds greater

than UB, Go to step 10. Else, Go to Step 11.

Step 9. If there is another speed greater than UB, Go to Step 10. Else, Go to

Step 11.
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Step 10. Solve the problem by the developed greedy heuristic algorithm.

Step 11. Compare the objective function of S1 with S2 and choose the best

one.
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CHAPTER 4

NUMERICAL RESULTS AND ANALYSIS

In this section, we study the numerical results derived by comparing the con-

trolled and uncontrolled speed systems; in an uncontrolled system, we can not

modify the robot's speed and its value is �xed at UB, while the speeds in the con-

trolled system are adjustable and can be achieved according to the approaches

proposed in Chapter 3. 288 instances are designed to evaluate the bene�ts of

using the controlled speed systems. Later, we will explain that, while comparing

controlled and uncontrolled systems, there is no energy saving in S1 cycle, in

which we cannot have any improvement in energy consumption reduction. We

show via numerical results that our proposed approach can signi�cantly reduce

the robot energy consumption inside a robotic cell manufacturing system with-

out increasing the cycle time value. Also, we analyze the e�ect of di�erent levels

of parameters on the behavior of the optimal solution.

Comparison of Controlled and Uncontrolled Speed Systems

As described in Chapter 2 (Section 2.1), there are di�erent cases for the robot

move distances. Therefore, four levels of distance cases are determined for each

problem: additive-identical, additive-general, constant, and general. To have a

credible comparison among the distance cases, the summation of all distances

that the robot should travel in a cycle is considered the same for all instances.

To clarify, in our instances for the additive-identical distance case, the values

of distances are d01f = d12f = d23f = d12e = 1.5, d31e = d20e = 3, and for the

constant case we have d01f = d12f = d23f = d12e = d31e = d20e = 2. It can be
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seen that the distance value between any pair of machines is di�erent in each

case, whereas the summation of them is equal to 12 in both cases. In addition,

�ve di�erent sets of values for distances in the general case and another �ve

di�erent sets of values for the additive-general case are generated randomly.

As shown in Table 4.1, three levels (small, medium, and large) of processing time

values are considered. Furthermore, we have two levels for energy constants.

In one of them the constants corresponding to the empty and full moves are

identical and in the other case, they are di�erent. But the summation of them

is considered the same for each case. As mentioned before, the speed upper

bound of the robot is diverse according to the type and the model of the robot.

However, by looking at some of the papers in the literature [59, 90, 91], we

can distinguish a range for the robot speed from 0.0 5m
s
to 2.2 m

s
. As a result,

we determined two levels for UB equal to 1 and 2. Similarly, an even value

besides an odd value are de�ned for the value of k. All of the levels are shown

in Table 4.1. It can be seen that 2 levels are de�ned for each of the k, UB, and

Ch parameters. Also, 3 levels for Pm and 4 cases for distances are considered.

As a result, we have (23) × 3 × 4 or 96 di�erent sets of parameters, which the

corresponding results are shown in 4 di�erent tables (Tables 4.3 to 4.6).

Table 4.1: The level of parameters

Parameters Levels

k 2 3

UB 1 2

Ch Ce = Cf = 3 Ce = 2, Cf = 4

Pi P1 = 1, P2 = 3 P1 = P2 = 10 P1 = 22, P2 = 19

Distances Constant Additive-general Additive-identical

General

The algorithm is coded and compiled with Microsoft Visual Studio C++. Since

the algorithm solution time is less than a second, the e�ect of time is not shown

in the computational results.
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The objective function or the energy consumption values are calculated for both

of the controlled and uncontrolled systems. To investigate the bene�ts of using

the speed controlled system instead of setting all of the speeds at their upper

bound, at �rst we solve each problem by considering all of the speeds equal to

UB and achieve the corresponding cycle time and energy consumption values.

Next, we set Ct equal to the achieved cycle time and then, by the help of our

proposed algorithm, we solve the problem again through controlling the robot

speeds (speed controlled system). If we can satisfy the cycle time upper bound

with a lower energy consumption, it means that in at least one of the moves

the robot can move slower than its upper bound value. Consequently, a better

objective function can be reached.

The de�ned distance sets are shown in Table 4.2. Notice that, as mentioned

before, the summation of distances in all de�ned sets is equal to 12. In Table

4.3, the robot traveled distances are in the additive identical case and Table

4.4 is dedicated to the constant case. As shown in Table 4.2, for each of these

cases, only one set of parameters is de�ned. The last columns of Tables 4.3 and

4.4 show the percentage of the deviation (improvement) between the objective

function values and represents the percentage of the energy saving amount for

each instance.

Tables 4.5 and 4.6 show the results for the general and additive-general dis-

tance cases, respectively. For each of these cases, we have generated 5 sets of

distances randomly (table 4.2). The cycle time, waiting times and energy con-

sumption columns represent the average of these 5 replications. The last two

columns, show the average and the maximum deviation (improvement) (energy

consumption reduction) value derived from those �ve sets.

As shown in Tables 4.3 through 4.6, we have two columns w1 and w2 that show

waiting times of the robot in front ofM1 andM2, respectively. The waiting times

are related to the uncontrolled system that the robot moves at its maximum

speed (UB). It can be seen that for the cases that the summation of w1 and w2

is equal to zero, there is no energy saving. The reason is that either the optimum

cycle is S1, or there is no waiting time in S2 cycle. We should notice that if the
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Table 4.2: The sets of distance values (given in meters) for each distance case

Distance Set d01f d12e d23f d31e d12f d20e

Constant 1 2 2 2 2 2 2
Additive-identical 1 1.5 1.5 1.5 3 1.5 3

Additive-general

1 2 1 2 3 1 3
2 1 2 1 3 2 3
3 1 1 3 4 1 2
4 3 1 1 2 1 4
5 0.5 2.5 0.5 3 2.5 3

General

1 1 1 3 1 5 1
2 2 2 2 3 2 1
3 4 1 2 1 2 2
4 0.5 2 0.5 2 0.5 6.5
5 1 3 1.5 3.5 2.5 0.5

optimal solution is in S1 cycle, we can never achieve the same cycle time by

reducing the speed values. Since the cycle time is equal to the summation of

the full processing times plus the travel time of the robot which is done at its

maximum speed. Therefore, by reducing the speed of the robot, it is impossible

to reach the same cycle time. On the other hand, for S2 cycle, we can reduce the

robot speed if there is a waiting time. In other words, the robot does not need

to travel at its maximum speed in order to reach a machine and wait there until

�nishing the part processing time. This yields excessive energy consumption.

However, if the waiting times are equal to zero and the robot never waits in

front of any machine, the achieved cycle time cannot be satis�ed by a set of

smaller robot speeds.
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Table 4.3: Comparison of controlled and uncontrolled systems in additive identical distance case

P1 P2 Ce Cf UB k CtS1 CtS2 w1 w2 US* CS** Improv. (%)

10 10

3 3

1
2 38 20 0 2 36 32.3 10.2

3 38 20 0 2 36 31.9 11.5

2
2 32 17 0 5 144 126.3 12.3

3 32 17 0 5 288 252.1 12.5

2 4

1
2 38 20 0 2 33 30.6 7.4

3 38 20 0 2 33 30.2 8.4

2
2 32 17 0 5 132 120.2 8.9

3 32 17 0 5 264 240.1 9.1

1 3

3 3

1
2 22 18 0 0 36 36.0 0.0

3 22 18 0 0 36 36.0 0.0

2
2 16 12 0 0 144 144.0 0.0

3 16 12 0 0 288 288.0 0.0

2 4

1
2 22 18 0 0 33 33.0 0.0

3 22 18 0 0 33 33.0 0.0

2
2 16 12 0 0 132 132.0 0.0

3 16 12 0 0 264 264.0 0.0

22 19

3 3

1
2 59 32 3 11 36 22.9 36.3

3 59 32 3 11 36 20.9 41.9

2
2 53 29 3 14 144 82.0 43.1

3 53 29 3 14 288 152.5 47.0

2 4

1
2 59 32 3 11 33 22.2 32.7

3 59 32 3 11 33 20.5 37.9

2
2 53 29 3 14 132 80.5 39.0

3 53 29 3 14 264 151.2 42.7

Avg: 120.75 99.3 16.7

*Uncontrolled System (US) energy consumption
**Controlled System (CS) energy consumption
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Table 4.4: Comparison of controlled and uncontrolled systems in constant distance case

P1 P2 Ce Cf UB k CtS1 CtS2 w1 w2 US* CS** Improv. (%)

10 10

3 3

1
2 38 20 0 2 36 31.5 12.5

3 38 20 0 2 36 30.8 14.6

2
2 32 17 0 5 144 120.7 16.2

3 32 17 0 5 288 240.2 16.6

2 4

1
2 38 20 0 2 36 33.0 8.3

3 38 20 0 2 36 32.5 9.7

2
2 32 17 0 5 144 128.4 10.8

3 32 17 0 5 288 256.1 11.1

1 3

3 3

1
2 22 18 0 0 36 36.0 0.0

3 22 18 0 0 36 36.0 0.0

2
2 16 12 0 0 144 144.0 0.0

3 16 12 0 0 288 288.0 0.0

2 4

1
2 22 18 0 0 36 36.0 0.0

3 22 18 0 0 36 36.0 0.0

2
2 16 12 0 0 144 144.0 0.0

3 16 12 0 0 288 288.0 0.0

22 19

3 3

1
2 59 32 3 11 36 22.1 38.7

3 59 32 3 11 36 20.3 43.7

2
2 53 29 3 14 144 79.8 44.6

3 53 29 3 14 288 150.2 47.9

2 4

1
2 59 32 3 11 36 23.9 33.7

3 59 32 3 11 36 22.2 38.5

2
2 53 29 3 14 144 87.5 39.3

3 53 29 3 14 288 165.9 42.4

Avg: 126 102.2 17.9

*Uncontrolled System (US) energy consumption
**Controlled System (CS) energy consumption
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Table 4.5: Comparison of controlled and uncontrolled systems in general distance case

P1 P2 Ce Cf UB k CtS2 w1 w2 US* CS** Avg.* Max.*

10 10

3 3

1
2 21.8 1.3 3.2 36 27.2 24.4 25.6

3 21.8 1.3 3.2 36 25.6 29.0 31.5

2
2 17.9 0.75 6.3 144 101.3 29.7 34.5

3 17.9 0.75 6.3 288 194.5 32.5 36.7

2 4

1
2 21.8 1.3 3.2 35.8 28.0 22.1 25.5

3 21.8 1.3 3.2 35.8 26.6 26.2 30.6

2
2 17.9 0.75 6.3 143.2 106.7 26.3 33.6

3 17.9 0.75 6.3 286.4 205.8 29.0 35.9

1 3

3 3

1
2 18 0 0 36 36.0 0.0 0.0

3 18 0 0 36 36.0 0.0 0.0

2
2 12 0 0 144 144.0 0.0 0.0

3 12 0 0 288 288.0 0.0 0.0

2 4

1
2 18 0 0 35.8 35.8 0.0 0.0

3 18 0 0 35.8 35.8 0.0 0.0

2
2 12 0 0 143.2 143.2 0.0 0.0

3 12 0 0 286.4 286.4 0.0 0.0

22 19

3 3

1
2 32.4 3.1 13.8 36 25.6 29.0 35.5

3 32.4 3.1 13.8 36 24.5 32.0 37.0

2
2 29.2 3 17.1 144 87.8 39.0 47.9

3 29.2 3 17.1 288 165.2 42.7 54.3

2 4

1
2 32.4 3.1 13.8 35.8 27.0 25.4 35.1

3 32.4 3.1 13.8 35.8 25.9 28.4 36.6

2
2 29.2 3 17.1 143.2 94.4 34.5 39.4

3 29.2 3 17.1 286.4 179.0 37.8 45.0

Avg: 125.7 97.9 20.3 24.4

*The average of the improvement in the �ve distance sets
**The maximum of the improvement in the �ve distance sets

67



Table 4.6: Comparison of controlled and uncontrolled systems in general additive distance case

P1 P2 Ce Cf UB k CtS2 w1 w2 US* CS** Avg.* Max.*

10 10

3 3

1
2 20.8 0.8 2.0 36.0 29.9 16.9 25.0

3 20.8 0.8 2.0 36.0 28.9 19.6 29.2

2
2 17.4 0.4 5.0 144.0 114.7 20.3 28.6

3 17.4 0.4 5.0 288.0 225.6 21.7 31.4

2 4

1
2 20.8 0.8 2.0 33.0 28.3 14.1 22.3

3 20.8 0.8 2.0 33.0 27.6 16.3 25.9

2
2 17.4 0.4 5.0 132.0 109.8 16.8 25.2

3 17.4 0.4 5.0 264.0 216.4 17.9 27.6

1 3

3 3

1
2 18.0 0.0 0.0 36.0 36.0 0.0 0.0

3 18.0 0.0 0.0 36.0 36.0 0.0 0.0

2
2 12.0 0.0 0.0 144.0 144.0 0.0 0.0

3 12.0 0.0 0.0 288.0 288.0 0.0 0.0

2 4

1
2 18.0 0.0 0.0 33.0 33.0 0.0 0.0

3 18.0 0.0 0.0 33.0 33.0 0.0 0.0

2
2 12.0 0.0 0.0 132.0 132.0 0.0 0.0

3 12.0 0.0 0.0 264.0 264.0 0.0 0.0

22 19

3 3

1
2 32.2 3.2 11.0 36.0 24.2 32.7 40.8

3 32.2 3.2 11.0 36.0 22.7 36.9 45.3

2
2 29.0 3.0 14.0 144.0 87.8 39.0 45.9

3 29.0 3.0 14.0 288.0 164.3 42.9 48.5

2 4

1
2 32.2 3.2 11.0 33.0 23.6 28.6 34.1

3 32.2 3.2 11.0 33.0 22.4 32.4 38.1

2
2 29.0 3.0 14.0 132.0 86.0 35.0 38.9

3 29.0 3.0 14.0 264.0 162.2 38.6 43.4

Avg: 120.8 97.5 17.9 22.9

*The average of the improvement in the �ve distance sets
**The maximum of the improvement in the �ve distance sets
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The average percentage of energy saving which is calculated by the average of

the last column numbers is equal to 18.73%. Also, the maximum percentage of

energy saving is equal to 54.30%. However, to look at the e�ect of the di�erent

levels for each parameter, we show the results separately in a distinct table

(Table 4.7). It can be seen that for small processing times the energy saving

is nil, but for larger processing times, the percentage of energy saving becomes

larger. By looking at Tables 4.3-4.6, it can be seen that the reason is related

to the waiting times. Namely, for bigger processing times, the probability of

having waiting times is higher than the instances with smaller processing times.

Consequently, when we have larger waiting times, we can have slower robot

speeds.

Further, the energy consumption reduction is smaller when the energy constants

are not identical for full and empty moves (Ce = 2 and Cf = 4). The reason

is that in half of the instances, we consider an additive distance case (either

additive-identical or additive-general), in which the summation of empty moves

is larger than the summation of full moves. In addition, in the constant case,

the summations are equal to each other. Therefore, in 75% of the instances, the

summation of distances for empty moves are greater than or equal to the full

moves. As a result, one unit of increase in the energy constant of empty moves

(Ce = 2 to Ce = 3) has a greater in�uence on energy saving in comparison with

a unit of decrease in the energy constant of full moves (Cf = 4 to Ce = 3).

Similarly, by the same logic, it can be explained why in the general distance

case, the percentage of energy saving is higher than other cases. Since this is

the only case that the summation of full moves can be higher than empty moves

and we always have Cf ≥ Ce, the amount of energy saving can be higher for this

situation and the numerical studies provide us the expected result.

On the other hand, it is obvious that for a robot that its maximum speed is

very large, the policy of applying it at its maximum speed is not economical.

Consequently, if we use the controlled speed system approach for a robot that

has the capability to move at higher speeds, we can save a more signi�cant

amount of energy.
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Finally yet importantly, having a bigger value for k does not mean a bigger

objective function value. The reason was related to the value of the speeds that

can be either less than, equal or bigger than 1. In any of these cases, we can have

a di�erent result by using a bigger k value. However, when k is bigger, there is

more improvement in energy saving, because energy consumption becomes more

sensitive to the reduced amount of speeds. In Section 4.2, we analyze the e�ect

of di�erent levels of k on the optimal solution in more detail.

.

Table 4.7: Numerical results

Levels Energy saving (%)
Small processing times 0.00
Medium processing times 20.65
Large processing times 35.53
Ce = Cf = 3 20.08
Ce = 2, Cf = 4 17.38
UB = 1 16.97
UB = 2 20.49
k = 2 17.71
k = 3 19.75
Constant 18.86
Additive-identical 16.71
Additive-general 17.91
General 20.13

In this section, we understood that we can have a di�erent amount of energy

saving percentages according to our problems and their parameters. Evidently,

the minimum amount of energy saving is equal to zero. But this question may

arise that how much is the maximum amount of energy saving in a two-machine

robotic cell scheduling problem. In the following, we show the maximum possible

amount of energy saving for this problem.

Proposition 3. For a two-machine robotic cell scheduling problem, the maxi-

mum possible amount of energy saving can be calculated by the following equa-

tion:

Maximum energy saving percentage =
UBk − LBk

UBk
× 100 (4.1)

70



Proof. In order to compute the energy saving percentage, we have to calculate

the di�erence between the objective function of the uncontrolled and controlled

speed systems divided by the objective function of the uncontrolled system. In

the uncontrolled system, we substitute all of the speeds by UB. Therefore, the

objective function is equal to

Obj. func. = Cf

 ∑
(ijh)∈Df

1 orD
f
2

dijh · UBk

+ Ce

 ∑
(ijh)∈De

1orD
e
2

dijh · UBk


= UBk

Cf ·
∑

(ijh)∈Df
1 orD

f
2

dijh + Ce ·
∑

(ijh)∈De
1orD

e
2

dijh

 (4.2)

Now, assume that by applying our proposed approach in this thesis, we can �nd

the same cycle time by substituting all of the speeds at their lower bounds. Since

the robot cannot move slower than LB, we know that this is the best possible

case that can happen. Consequently, the objective function will be similar to

equation 4.2, but we have LB instead of UB inside of the equation.

Obj. func. = Cf

 ∑
(ijh)∈Df

1 orD
f
2

dijh · LBk

+ Ce

 ∑
(ijh)∈De

1orD
e
2

dijh · LBk


= LBk

Cf ·
∑

(ijh)∈Df
1 orD

f
2

dijh + Ce ·
∑

(ijh)∈De
1orD

e
2

dijh

 (4.3)

Therefore, by subtracting the two objective functions and dividing it by the

objective function of the uncontrolled system (equation 4.2), we achieve

Maximum energy saving percentage =

(UBk − LBk)

[
Cf ·

∑
(ijh)∈Df

1 orD
f
2

dijh + Ce ·
∑

(ijh)∈De
1orD

e
2

dijh

]

UBk

[
Cf ·

∑
(ijh)∈Df

1 orD
f
2

dijh + Ce ·
∑

(ijh)∈De
1orD

e
2

dijh

] (4.4)

Since we are comparing the uncontrolled and controlled speed objective functions

of the same problem, the values inside of the brackets are equal and we can omit

them from the fraction. Then, we get the same equation as 4.1.
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Sensitivity Analysis on Parameters

Our optimization models developed in the previous chapter have mutual and

di�erent parameters. The mutual ones are Ct, ε, k, P1, and P2. On the other

hand, the sets of the robot moves (D1 and D2) are di�erent for S1 and S2 cycle.

We provided a number of theorems, lemmas, propositions and corollaries in

chapter 3 and achieved several formulas that show the optimal speed values for

di�erent situations. According to the provided formulas and equations, we can

easily analyze the e�ect of some of the parameters on energy consumption and

the optimal solution behavior. For instance, any modi�cation to the value of

UB is known for us. If there are a number of speeds that their values are equal

to UB, by decreasing the UB those speed values will be smaller as well and

the other speeds will be larger. Therefore, the objective function will increase.

In addition, if the loading/unloading time (ε) plus the distances become larger,

the robot should move faster to �nish the cycle within the prede�ned cycle

time upper bound. As a result, performing more analysis on those parameters

does not bring any new observation for us. Therefore, in this section, we only

focus on the analysis of other parameters (Ct, k and Pi) that can provide new

observations and novel results to this work.

Numerical Results for Di�erent Levels of Ct

In order to assess the e�ect of di�erent levels of Ct on the optimal solution, we

consider the rest of the parameters constant, which their values are as follows:

d01f = 1d12e = d23f = d12f = 1, d31e = d20e = 2, k = 3, ε = 1, Cf = 4, Ce = 2,

P1 = 13 and P2 = 11.

S1 cycle:

We consider a sample feasible range for cycle time upper bound (Ct=[38,48]).

The achieved objective function and the optimal speed values for each Ct value

are given in Table 4.8 and �nally, the set of non-dominated solutions (Pareto

frontier) that corresponds to the selected Ct values is shown in Figure 4.1. It
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can be seen that all of the speeds are decreasing while the cycle time upper

bound is increasing.

Table 4.8: Numerical results of Ct on S1 cycle

Ct Obj.func. v01f v12f v23f v30e

38 7.27 0.69 0.69 0.69 0.82
39 5.10 0.61 0.61 0.61 0.73
40 3.72 0.55 0.55 0.55 0.66
41 2.80 0.50 0.50 0.50 0.60
42 2.15 0.46 0.46 0.46 0.55
43 1.69 0.43 0.43 0.43 0.51
44 1.36 0.39 0.39 0.39 0.47
45 1.10 0.37 0.37 0.37 0.44
46 0.91 0.35 0.35 0.35 0.41
47 0.76 0.33 0.33 0.33 0.39
48 0.64 0.31 0.31 0.31 0.37

Figure 4.1: The Set of Non-dominated solutions for S1 cycle corresponding Ct = [38, 48]

It is clear that by increasing the cycle time the energy consumption will decrease.

Namely, the robot can move slower and consume less amount of energy to satisfy

the cycle time upper bound. But the set of non-dominated solutions will provide

additional insights for the decision makers that can be used to select the best-

preferred solution.

S2 cycle:

Most of the results for S2 cycle is similar to S1 cycle. The achieved objective

function and the optimal speed values for Ct=[20,30] are given in Table 4.9 and
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the set of non-dominated solutions that corresponds to the selected Ct values is

shown in Figure 4.2.

Table 4.9: Numerical results of Ct on S2 cycle

Ct Obj.func. v01f v12e v23f v31e v12f v20e Situation

20 30.04 1.22 0.15 0.64 0.76 1.22 1.45

4

21 13.23 0.91 0.17 0.54 0.65 0.94 1.09
22 7.03 0.73 0.19 0.47 0.56 0.76 0.87
23 4.21 0.61 0.22 0.42 0.50 0.64 0.72
24 2.75 0.52 0.26 0.37 0.45 0.55 0.62
25 1.93 0.46 0.32 0.34 0.40 0.48 0.54

26 1.47 0.41 0.38 0.32 0.38 0.41 0.49
227 1.20 0.37 0.38 0.32 0.38 0.37 0.44

28 1.02 0.34 0.38 0.32 0.38 0.36 0.40

29 0.89 0.31 0.37 0.31 0.37 0.31 0.37
1

30 0.78 0.30 0.36 0.30 0.36 0.30 0.36

Figure 4.2: The Set of Non-dominated solutions for S2 cycle

If we look at Table 4.9 we can see that when the cycle time upper bound is

smaller, the optimal solution is in Situation 4 and by increasing Ct, we will

move to Situation 2 and �nally to Situation 1. The reason that we never meet

Situation 3 is that P1 > P2 (it was proved in Section 3). If P2 was greater than

P1, instead of being in Situation 2, we would have Situation 3 besides situations

1 and 4.
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Table 4.10: Comparison of S1 and S2 Cycles

Ct S1 obj. func. S2 obj. func.
84 0.024 0.023
85 0.022 0.021
86 0.021 0.021
87 0.02 0.02
88 0.019 0.02
89 0.018 0.019
90 0.017 0.018

Figure 4.3: The e�ect of the Ct on the optimal cycle

An important question that may arise is that which cycle is optimal according

to the di�erent values of Ct. In Table 4.10 and Figure 4.3, we show that after a

certain value the optimal cycle will change from S2 to S1. The reason is related

to the number of moves in each cycle. In S1 cycle, we have only 4 moves (3 full

moves and one empty move). Whereas, in S2 cycle, there are 6 moves (3 full

moves and 3 empty moves). When the cycle time upper bound is very large, the

speeds are very small and the robot can satisfy the cycle time upper bound with

lower speed values. Consequently, the cycle with a smaller number of moves

requires a smaller amount of energy to �nish a cycle.

As it is shown, after Ct=87, S2 is not optimal anymore. This critical point can

happen earlier when P1 and P2 are smaller. Then Ct can be smaller as well

to meet this critical point when S1 can provide a better solution instead of S2.

As an example, if we keep all of the parameters with the same values and only

change P1 = 1 and P2 = 2, this can happen at Ct=15, as shown in Figure 4.4.
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Figure 4.4: The e�ect of the Ct on the optimal cycle

In the following section, we will study the e�ects of P1 and P2 in more details.

Numerical Results for Di�erent Processing Time Levels

In this section, we consider all of the parameters as same as the previous section.

In S1 cycle, we have only one constraint containing both P1 and P2. Then, by

increasing either P1 or P2, it is clear that the right-hand side of the constraint

(Ct − 6ε − P1 − P2) will be smaller and all of the speeds should be increased

to keep the constraint feasible. As an instance, three levels for processing time

values (P1 +P2 = 6, P1 +P2 = 8, and P1 +P2 = 10) are selected and the results

are shown in Figure 4.5. Three di�erent sets of non-dominated solutions are

achieved according to the di�erent P1 and P2 values.

On the other hand, in S2 cycle, P1 and P2 are in di�erent constraints and dealing

with di�erent variables; we have no processing time in the �rst constraint, but

P1 and P2 appear in the second and third constraints, respectively. Therefore,

we can have di�erent speed behaviors in this cycle. At �rst, we plot the e�ect

of the processing times on the achieved pareto frontier or set of non-dominated

solutions for S2 cycle that correspond to the selected Ct values (Figure 4.6).

Again three di�erent levels for processing time values are selected and it can be

seen that for smaller Pm values, energy consumption values are smaller as well.

76



Figure 4.5: The e�ect of the processing time values on the energy consumption pareto frontier in S1 cycle

Furthermore, we consider the e�ect of any change in any of the processing times.

For instance, assume P2 = 12. By increasing P1 from 1 to 25 we can achieve the

objective function and the optimal speed values as shown in Table 4.11.

Figure 4.6: The e�ect of the processing time values on the energy consumption pareto frontier in S2 cycle

It can be seen that for small P1 values, there is no change in objective function,

since the minimum speed values that keep the �rst constraint tight satisfy the

other two constraints and by increasing P1, still they are loose. However, when

P1 reaches a value that makes the second constraint tight as well as the �rst

constraint (Situation 2), the variables that are in the second constraint start to
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Table 4.11: Numerical results of Ct on S2 cycle

P1 Obj. func v01f v12e v23f v31e v12f v20e Situation

1 0.27 0.21 0.25 0.21 0.25 0.21 0.25

1

2 0.27 0.21 0.25 0.21 0.25 0.21 0.25
3 0.27 0.21 0.25 0.21 0.25 0.21 0.25
4 0.27 0.21 0.25 0.21 0.25 0.21 0.25
5 0.27 0.21 0.25 0.21 0.25 0.21 0.25
6 0.27 0.21 0.25 0.21 0.25 0.21 0.25
7 0.27 0.21 0.25 0.21 0.25 0.21 0.25
8 0.27 0.21 0.25 0.21 0.25 0.21 0.25
9 0.27 0.21 0.25 0.21 0.25 0.21 0.25
10 0.27 0.21 0.25 0.21 0.25 0.21 0.25
11 0.27 0.21 0.25 0.21 0.25 0.21 0.25
12 0.27 0.21 0.25 0.21 0.25 0.21 0.25
13 0.27 0.21 0.25 0.21 0.25 0.21 0.25
14 0.27 0.21 0.25 0.21 0.25 0.21 0.25
15 0.27 0.21 0.25 0.21 0.25 0.21 0.25
16 0.27 0.21 0.25 0.21 0.25 0.21 0.25
17 0.27 0.21 0.25 0.21 0.25 0.21 0.25
18 0.27 0.21 0.25 0.21 0.25 0.21 0.25

19 0.27 0.22 0.25 0.21 0.25 0.22 0.26

2

20 0.29 0.23 0.23 0.20 0.23 0.23 0.27
21 0.31 0.25 0.22 0.19 0.22 0.25 0.29
22 0.34 0.26 0.21 0.18 0.21 0.26 0.31
23 0.40 0.28 0.20 0.17 0.20 0.28 0.34
24 0.48 0.31 0.19 0.16 0.19 0.31 0.36
25 0.60 0.33 0.18 0.15 0.18 0.33 0.40

be increased to keep the constraint feasible. Consequently, the other speeds can

be smaller to compensate the added cost. Nevertheless, the energy consumption

still increases by increasing P1 in Situation 2. The behavior of the variables is

shown in Figure 4.7.

Same results will occur if we keep P1 �xed and modify P2. The only di�erence

is that, by increasing P2, after Situation 1, we will meet the optimal solution

in Situation 3 instead of Situation 2. Due to similarity, we do not consider this

case. However, we are interested to see what will happen if we increase both P1

and P2 simultaneously. A similar instance is shown in Table 4.12. In this case,
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Figure 4.7: The e�ect of the P1 on the optimal speed values for S2 cycle

we increase both P1 and P2 from 1 to 25 seconds.

As we proved in Section 3, if we are in additive identical distance case and

P1=P2, the optimal solution is either in Situation 1 or 4. When P1 and P2 are

very small numbers, we are in Situation 1 and by increasing their values we

will shift to Situation 4. Through the Situation 1, there is no change in speeds

and objective function values. Since the achieved optimal speeds are necessary

to keep the �rst constraint tight and we cannot have smaller values for them.

However, after a point, we meet the optimal solution at Situation 4 that all of

the constraints are binding. Therefore, in all of the moves correlated to P1 and

P2 in the second and third constraints the robot has to be faster in order to

satisfy the cycle time upper bound. Whereas, the v12e which is the only variable

that is not dealing with P1 and P2 in second and third constraints can be reduced

to compensate a partial cost contributed from the rise of the other variables.

Figure 4.8: The e�ect of the P1 and P2 on the optimal speed values for S2 cycle
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Table 4.12: Numerical results of Ct on S2 cycle

P1 & P2 Obj. func. v01f v12e v23f v31e v12f v20e Situation

1 0.27 0.21 0.25 0.21 0.25 0.21 0.25

1

2 0.27 0.21 0.25 0.21 0.25 0.21 0.25
3 0.27 0.21 0.25 0.21 0.25 0.21 0.25
4 0.27 0.21 0.25 0.21 0.25 0.21 0.25
5 0.27 0.21 0.25 0.21 0.25 0.21 0.25
6 0.27 0.21 0.25 0.21 0.25 0.21 0.25
7 0.27 0.21 0.25 0.21 0.25 0.21 0.25
8 0.27 0.21 0.25 0.21 0.25 0.21 0.25
9 0.27 0.21 0.25 0.21 0.25 0.21 0.25
10 0.27 0.21 0.25 0.21 0.25 0.21 0.25
11 0.27 0.21 0.25 0.21 0.25 0.21 0.25
12 0.27 0.21 0.25 0.21 0.25 0.21 0.25
13 0.27 0.21 0.25 0.21 0.25 0.21 0.25
14 0.27 0.21 0.25 0.21 0.25 0.21 0.25
15 0.27 0.21 0.25 0.21 0.25 0.21 0.25
16 0.27 0.21 0.25 0.21 0.25 0.21 0.25
17 0.27 0.21 0.25 0.21 0.25 0.21 0.25
18 0.27 0.21 0.25 0.21 0.25 0.21 0.25

19 0.28 0.21 0.23 0.21 0.25 0.23 0.25

4

20 0.31 0.22 0.17 0.22 0.26 0.26 0.26
21 0.37 0.24 0.13 0.24 0.28 0.28 0.28
22 0.45 0.25 0.11 0.25 0.30 0.30 0.30
23 0.56 0.27 0.09 0.27 0.32 0.32 0.32
24 0.71 0.29 0.08 0.29 0.35 0.35 0.35
25 0.93 0.32 0.07 0.32 0.38 0.38 0.38

Similar to the previous section (analysis of Ct), we can see that in smaller P1

and P2 values, S1 is optimal but for greater P1 and P2 values, S2 provides the

optimal solution (Figure 4.9).
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Figure 4.9: The e�ect of the P1 and P2 on the optimal cycle

Numerical Results for Di�erent k Levels

At the �rst glance, we may assert that increasing the value of k will increase

the energy consumption as well. However, the numerical studies show that any

modi�cation on k could have a di�erent e�ect on the objective function. In the

following example, we increase the value of k from 2 through 6. For S1 cycle, we

set P1 = P2 = 3. But three di�erent levels are selected for the cycle time upper

bound to show that the e�ect of any change in the value of k is not consistent;

the consequent change in energy consumption can be monotonically increasing,

decreasing or constant. The rest of the parameters are same with the mentioned

values at the beginning of the Section 4.1.1. The change in the amount of energy

consumption in S1 cycle is shown in Table 4.13 and Figure 4.10. It can be seen

that by considering three di�erent levels for Ct equal to 17, 18, and 19, the

behavior of the diagram can be completely dissimilar.

A more important �nding is that as k increases, energy consumption function

becomes more sensitive to the value of Ct. In Table 4.13, for k = 2, it can

be seen that when Ct = 17, the energy consumption value is about two times

greater than the energy consumption value when Ct = 19. Whereas, for k = 6,

when Ct = 17, it is about 7.5 times greater than the energy consumption value

when Ct = 19.

We can see the same results for S2 cycle in Table 4.14 and Figure 4.11.

The reason for having di�erent behaviors for di�erent cycle times is that for
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Table 4.13: Numerical results of k on S1 cycle under di�erent policies for Ct

Energy Consumption

k Ct = 17 Ct = 18 Ct = 19

2 24.93 17.31 12.72
3 29.77 17.23 10.85
4 35.62 17.18 9.27
5 42.65 17.14 7.93
6 51.11 17.12 6.79

Figure 4.10: The e�ect of k on the energy consumption pareto frontier under di�erent values for Ct in S1

cycle

Table 4.14: Analytical results of k on S2 cycle under di�erent policies for Ct

Energy Consumption

k Ct = 17 Ct = 18 Ct = 19

2 34.40 19.38 12.44
3 45.63 19.26 9.87
4 60.69 19.21 7.87
5 80.80 19.17 6.28
6 107.61 19.15 5.02

smaller cycle times, the robot should go faster and consequently the speeds are

greater. If the values of the speeds are greater than 1, then the power k will

increase their values drastically. On the other hand, if their values are very
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Figure 4.11: The e�ect of k on the energy consumption pareto frontier under di�erent values for Ct in S2

cycle

close to 1, there is no signi�cant change in their values if we multiply them k

times. Finally, by increasing the value of k, the energy consumption will decrease

when the speed values are less than 1. In other words, the value of k can have

an inverse e�ect on the energy consumption if the speed values are very small

(< 1).
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORKS

The thesis addresses a �ow shop robotic cell scheduling problem consisting two

machines, each of which performs a di�erent operation on each part, plus an

input and output bu�er, and one robot that moves linearly along a track to

transport the parts through the machines. We deal with a bicriteria �ow shop

scheduling problem for optimizing the cycle time and energy consumption of

the robot at the same time. We compare the energy consumption of di�erent

cycles (at di�erent speeds). The objective function is formulated as the sum of

the energy consumptions for every full and empty robot move in the system.

The decision variables are the speeds of every robot activity. The approach

is to derive the schedule from an energy consumption criterion according to

the desired cycle time. To this e�ect, we look at the robot energy consumption

optimization by optimizing the speed of the robot in each movement. Leveraging

the variable speed of robot activities leading to di�erent energy consumption

levels under a considered upper bound for cycle time, we explore the potential

for energy saving in two-machine robotic cells. In order to do this, we applied

KKT analysis and the optimal situations in each feasible state are interpreted

analytically for the unbounded case.

We developed the mathematical models for both S1 and S2 cycles. By the help

of a controlled speed system, in which the speed of the robot is controllable, the

models aim to minimize the energy consumption and cycle time which are two

con�icting objectives. A set of theorems, lemmas, propositions and corollaries

are proposed that can help us to �nd the optimal solution (speed values) to
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each speci�c situation for each cycle. Second, we presented an approximation

algorithm to deal with robot speed upper bounds. Third, we combined both of

the approaches corresponding to the bounded and unbounded cases and devel-

oped an algorithm that runs within a second and provides the optimal speed

values in a two-machine robotic cell. Moreover, a number of pareto frontiers are

o�ered in several instances for which correspond to the selected range of cycle

time upper bound. Pareto frontiers can help the production planners to make a

trade-o� between the cycle time and energy consumption criteria. Additionally,

the key observations with regard to the changes in parameters that might a�ect

the behavior of the decision variables and the optimal solution are explained.

By means of the proposed approach of this thesis, which applies a controlled

speed system instead of an uncontrolled system, we can get not only an economic

return but also an environmental bene�t through reducing carbon emissions by

decreasing the need for electric power across the manufacturing sector.

This thesis has provided an overview about the green scheduling in a two-

machine single gripper robotic cell producing identical parts. Here, we list the

main areas that are still open.

• Determine multiple part-type case instead of producing identical parts.

• Compare the energy consumption between single and dual-gripper robotic

cells.

• Re�ect robot move acceleration.

• Re�ect the energy consumption of the machines.

• Determine three-machine and m-machine cases.
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Algorithm 3: Finding the optimal robot speed values in a two-machine
robotic cell
Data: ε, k, P1, P2, Ct, LB, UB, Ce, Cf , and the set of distances

dijh∀(ijh) ∈ D1 and D2

Result: The optimal speed values (v∗ijh) and the optimal objective
function (OPT)

1 OPT ← A big value (e.g. 1,000,000,000);
2 Check the feasibility of S1 constraint by substituting all of the variables

by UB;
3 if If equation (3.6) holds then
4 Goto Algorithm 4
5 else
6 S1 cycle is inf.;
7 end
8 Check the feasibility of S2 constraints by substituting all of the variables

by UB;
9 if equations (3.17), (3.18), and (3.19) hold then
10 Find µ1 for Sit. 1;
11 if µ1 > 0 then
12 Goto Algorithm 5;
13 else
14 Sit. 2 is inf.;
15 end
16 Find µ1 and µ2 for the Sit. 2;
17 if µ1 > 0 and µ2 ≥ 0 then
18 Goto Algorithm 6;
19 else
20 Sit. 2 is inf.;
21 end
22 Find µ1 and µ3 for the Sit. 3;
23 if µ1 > 0 and µ3 ≥ 0 then
24 Goto Algorithm 7;
25 else
26 Sit. 3 is inf.;
27 end
28 Calculate LBz4 , UBz4 and h(z4);
29 Goto Algorithm 1;
30 Find µ1, µ2, and µ3 for the Sit. 4;
31 if µ1 > 0 and µ2, µ3 ≥ 0 then
32 Goto Algorithm 8;
33 else
34 Sit. 4 is inf.;
35 end
36 else
37 S2 cycle is inf.;
38 end
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Algorithm 4: Finding the optimal robot speed values in S1 cycle
1 Find µ1;
2 if µ1 > 0 then
3 Find vijh∀(ijh) ∈ D1;
4 if any of the speeds is greater than UB then
5 Consider the bounded speed case for S1 and solve the problem;
6 Find µ1;
7 if µ1 > 0 then
8 Find vijh∀(ijh) ∈ D1;
9 v∗ijh ← vijh∀(ijh) ∈ D1;

10 Calculate the obj. func.;
11 OPT ← obj. func.;
12 else
13 S1 cycle is inf.;
14 end
15 else
16 v∗ijh ← vijh∀(ijh) ∈ D1;
17 Calculate the obj. func.;
18 OPT ← obj. func.;
19 end
20 else
21 S1 cycle is inf.;
22 end
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Algorithm 5: Finding the optimal robot speed values in Situation 1 of S2

cycle
1 Find vijh∀(ijh) ∈ D2;
2 if any of the speeds is greater than UB then
3 Consider the bounded speed case and solve the problem;
4 Find µ1;
5 if µ1 > 0 then
6 Find vijh∀(ijh) ∈ D2;
7 Calculate the obj. func.;
8 if obj. func. < OPT then
9 v∗ijh ← vijh∀(ijh) ∈ D2;
10 OPT ← obj. func.;
11 Stop Algorithms 5 and 3;
12 else
13 Stop Algorithms 5 and 3;
14 end
15 else
16 Sit. 2 is inf.;
17 end
18 else
19 v∗ijh ← vijh∀(ijh) ∈ D2;
20 Calculate the obj. func.;
21 if obj. func. < OPT then
22 v∗ijh ← vijh∀(ijh) ∈ D2;
23 OPT ← obj. func.;
24 Stop Algorithms 5 and 3;
25 else
26 Stop Algorithms 5 and 3;
27 end
28 end
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Algorithm 6: Finding the optimal robot speed values in Situation 2 of S2

cycle
1 Find vijh∀(ijh) ∈ D2;
2 if any of the speeds is greater than UB then
3 Consider the bounded speed case and solve the problem;
4 Find µ1 and µ2;
5 if µ1 > 0 and µ2 ≥ 0 then
6 Find vijh∀(ijh) ∈ D2;
7 Calculate the obj. func.;
8 if obj. func. < OPT then
9 v∗ijh ← vijh∀(ijh) ∈ D2;

10 OPT ← obj. func.;
11 Stop Algorithms 6 and 3;
12 else
13 Stop Algorithms 6 and 3;
14 end
15 else
16 Sit. 2 is inf.;
17 end
18 else
19 v∗ijh ← vijh∀(ijh) ∈ D2;
20 Calculate the obj. func.;
21 if obj. func. < OPT then
22 v∗ijh ← vijh∀(ijh) ∈ D2;
23 OPT ← obj. func.;
24 Stop Algorithms 6 and 3;
25 else
26 Stop Algorithms 6 and 3;
27 end
28 end

101



Algorithm 7: Finding the optimal robot speed values in Situation 3 of S2

cycle
1 Find vijh∀(ijh) ∈ D2;
2 if any of the speeds is greater than UB then
3 Consider the bounded speed case and solve the problem;
4 Find µ1 and µ3;
5 if µ1 > 0 and µ3 ≥ 0 then
6 Find vijh∀(ijh) ∈ D2;
7 Calculate the obj. func.;
8 if obj. func. < OPT then
9 v∗ijh ← vijh∀(ijh) ∈ D2;
10 OPT ← obj. func.;
11 Stop Algorithms 7 and 3;
12 else
13 Stop Algorithms 7 and 3;
14 end
15 else
16 Sit. 3 is inf.;
17 end
18 else
19 v∗ijh ← vijh∀(ijh) ∈ D2;
20 Calculate the obj. func.;
21 if obj. func. < OPT then
22 v∗ijh ← vijh∀(ijh) ∈ D2;
23 OPT ← obj. func.;
24 Stop Algorithms 7 and 3;
25 else
26 Stop Algorithms 7 and 3;
27 end
28 end
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Algorithm 8: Finding the optimal robot speed values in Situation 4 of S2

cycle
1 Find vijh∀(ijh) ∈ D2;
2 if any of the speeds is greater than UB then
3 Consider the bounded speed case and solve the problem;
4 Find µ1, µ2,and µ3;
5 if µ1 > 0 and µ2, µ3 ≥ 0 then
6 Find vijh∀(ijh) ∈ D2;
7 Calculate the obj. func.;
8 if obj. func. < OPT then
9 v∗ijh ← vijh∀(ijh) ∈ D2;

10 OPT ← obj. func.;
11 Stop Algorithms 8 and 3;
12 else
13 Stop Algorithms 8 and 3;
14 end
15 else
16 Sit. 4 is inf.;
17 end
18 else
19 v∗ijh ← vijh∀(ijh) ∈ D2;
20 Calculate the obj. func.;
21 if obj. func. < OPT then
22 v∗ijh ← vijh∀(ijh) ∈ D2;
23 OPT ← obj. func.;
24 Stop Algorithms 8 and 3;
25 else
26 Stop Algorithms 8 and 3;
27 end
28 end
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