
 

 

FINITE ELEMENT MODELING OF SCATTERING FROM 

OBJECTS IN RECTANGULAR WAVEGUIDES 

 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF  

MIDDLE EAST TECHNICAL UNIVERSITY 

 

BY 

HÜSEYİN GÜLBAŞ 

 

 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

 

 

JANUARY 2017 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Approval of the thesis: 

 

FINITE ELEMENT MODELING OF SCATTERING FROM OBJECTS IN 

RECTANGULAR WAVEGUIDES 

 

submitted by HÜSEYİN GÜLBAŞ in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronics Engineering Department, 

Middle East Technical University by, 

 

Prof. Dr. Gülbin Dural Ünver 

Dean, Graduate School of Natural and Applied Sciences 

Prof. Dr. Tolga Çiloğlu 

Head of Department, Electrical and Electronics Engineering 

Prof. Dr. Mustafa Kuzuoğlu 
Supervisor, Electrical and Electronics Engineering Dept., METU           

Assoc. Prof. Dr. Özlem Özgün 
Co-Supervisor, Electrical and Electronics Engineering Dept.,  

Hacettepe University     

 

Examining Committee Members: 
 

Prof. Dr. Gönül Turhan Sayan    

Electrical and Electronics Engineering Dept., METU 

 

Prof. Dr. Mustafa Kuzuoğlu     

Electrical and Electronics Engineering Dept., METU 

 

Prof. Dr. Gülbin Dural Ünver    

Electrical and Electronics Engineering Dept., METU 

 

Prof. Dr. Adnan Köksal    

Electrical and Electronics Engineering Dept., Hacettepe University 

 

Assoc. Prof. Dr. Egemen Yılmaz  

Electrical and Electronics Engineering Dept., Ankara University 

 

                        Date: 30.01.2017 





iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work.  

 

Name, Last Name: Hüseyin GÜLBAŞ 

                                                                           

                                                                Signature            : 

  



v 

 

ABSTRACT 

FINITE ELEMENT MODELING OF SCATTERING FROM OBJECTS IN 

RECTANGULAR WAVEGUIDES 

 

Gülbaş, Hüseyin 

M.S. Department of Electrical and Electronics Engineering 

Supervisor       : Prof. Dr. Mustafa Kuzuoğlu 

Co-Supervisor : Assoc. Prof. Dr. Özlem Özgün 

 

                                                 January 2017, 112 pages 

 

Numerical analysis of scattering parameters of split ring resonators which are one of 

the microwave circuit elements is performed by the Finite Element Method in this 

thesis. The fundamentals of the model and analysis method will be discussed firstly. 

Afterwards, the basics of Finite Element Method including weak variational form of 

the wave equation, 3D formulations and application to scattering parameters will be 

presented. The concepts of Perfectly Matched Layer and resonators will be examined 

in detail. The accuracy of the method will be tested and the effects of different design 

parameters on the scattering parameters of split ring resonators will be investigated. 

These design parameters will be slit width, side width, and operation frequency. 

Moreover, reflection and transmission from the dielectric surfaces will be discussed. 

Additionally, each result will be compared with the ones achieved by using CST 

(Computer Simulation Technology) simulation software.   

 

Keywords: Scattering Parameters, Finite Element Method, Waveguide, Split Ring 

Resonators, 
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ÖZ 

DİKDÖRTGEN DALGA KILAVUZLARI İÇİNDEKİ CİSİMLERDEN 

SAÇILMANIN SONLU ELEMANLARLA MODELLENMESİ  

 

Gülbaş, Hüseyin 

 Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

                                Tez Yöneticisi         : Prof. Dr. Mustafa Kuzuoğlu 

                                Ortak Tez Yöeticisi : Doç. Dr. Özlem Özgün 

 

Ocak 2017, 112 sayfa 

 

 

 

Bu tezde açık halka rezonatörlerin saçılma parametreleri sayısal olarak analiz 

edilmiştir ve yöntem olarak da Sonlu Elemanlar Yöntemi kullanılmıştır. Öncelikle, 

analiz yönteminin temelleri incelenecektir. Sonrasında, Sonlu Elemanlar Yöntemi 

dalga denkleminin zayıflatılmış formu, üç boyutlu modelleme ve bunların saçılma 

parametlerine uygulanması sunulacaktır. Daha sonra, Tamamen Eşlenmiş Katman ve 

rezonatörlerin prensipleri detaylıca anlatılacaktır. Yöntemin doğruluğunu içeren test 

sonuçları ve çeşitli tasarım parametrelerinin saçılma parametrelerine olan etkileri 

sunulacaktır. Bu tasarım parametreleri, yarık genişliği, kenar genişliği ve çalışma 

frekansıdır. Ayrıca, yalıtkan yüzeylerden yansımalar ve iletimler de incelenecektir. 

Her bir test sonucu CST (Computer Simulation Technology) yazılımıyla elde 

edilenlerle karşılaştırılacaktır. 

 

Anahtar Kelimeler: Saçılma Parametreleri, Sonlu Elemanlar Yöntemi, Dalga 

Kılavuzu, Açık Halka Rezonatörler,     
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CHAPTER 1 

INTRODUCTION 

Maxwell’s equations describe the behavior of electromagnetic waves. They become in 

their simplest form when the waves propagate in unbounded medium with no 

scatterers. But, this case can be described as ideal and in practice it may not be possible 

to have such a medium. Scatterers always exist and people make use of the scattered 

fields reflected from them in their applications, like radar cross section calculations, 

medical imaging, and optics. In addition to these, scattering parameters calculations 

are one of the main applications found from scattered fields. Scattering parameters 

measure the signals that are reflected or transmitted by objects and networks. Under 

steady state conditions, they give an idea about the productivity and how the design 

meets the needs. For microwave circuits and components, they are one of the most 

important methods to identify the characteristics. For complex geometries, it is 

difficult to calculate scattering parameters of microwave components analytically, and 

hence, they have to be found by network analyzers after production or with the help of 

some simulation programs. This thesis provides a numerical solution approach for the 

problem of calculation of scattering parameters of structures with different shapes and 

also metamaterial resonators. 

Finite element method is one of the most powerful numerical methods for 3D 

structures. It allows us to investigate structures with complicated shapes and 

geometries by reducing the solutions to subdomains without doing any simplifications 

in the geometries. Moreover, it can be easily applied when they composed of different 

materials with complicated features. In addition to these, applications of boundary 

conditions are easy to handle and by generalizing mathematically, the same model can 
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be used to solve different problems. Also, it requires less memory usage and CPU 

thanks to having sparse matrices. 

Metamaterials are artifical structures that have unnatural properties. The main purpose 

in their designs is to reach some features not found in nature like negative permittivity, 

permeability, and refractive index. In the applications, they consist of periodic 

structures whose shapes, sizes and other physical properties provide the main function 

of metamaterials [1]. This groundbreaking invention has been the subject of many 

studies over the past decades. Antennas, absorbers, superlenses, cloaks, sensors, and 

phase compensators are some application areas of metamaterials. Furthermore, they 

commonly used in design of a kind of resonators named as split ring resonator. Due to 

their properties mentioned above, they designate fundamental principles of the 

resonators. In detail, when the resonators are manufactured to manage the 

metamaterials’ specifications, they have the characteristics of magnetic dipoles where 

the rings and the gaps between them act as inductors and capacitors respectively [2].  

In general, resonators are mechanical or electrical devices that transmit and/or 

strengthen the signals at a certain frequency by vibrations. As they can be 

manufactured by ordinary components, it is possible to produce them to generate 

metamaterial properties by reconsidering the details in their designs. It was mentioned 

that metamaterials have negative permittivity and negative permeability values. 

Negative permittivity was achieved thanks to thin wire strings. Besides this, split ring 

resonators were used to get negative permeability and Shelby combined them ([3]-[4]). 

After this novel approach was brought forward, academic and industrial studies were 

come to light to use them in more effective manner. Due to having periodic structure, 

the resulting styles of split ring resonators or the others can be very large. Also, 

reaching the optimum and desired design features may be difficult and repeated 

experiments might be needed. On such an occasion, costs increase and waste of time 

is unavoidable. In these circumstances, instead of doing the tests on the whole design, 

taking a piece from the periodic structure and performing the measurements on this 

small part can be possible.  
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In this thesis, by making use of the advantages of finite element method, the main aim 

is to calculate the scattering parameters of structures having complex geometries and 

split ring resonator is chosen for this kind of a structure. The method that takes a single 

cell from the periodic structure and collecting results just by analyzing the single cell 

is developed. In order to achieve this, the single cell is put in a rectangular waveguide 

whose dimensions are arranged to fit it inside and have only fundamental mode of 

electrical field. This problem is analyzed by finite element method by paying attention 

to different parts of the geometry, like waveguide walls, resonator structure, vacuum 

region, and absorbing layers at the open ends of waveguide. The simulations are 

performed by starting with a simple rectangular prism. The final geometry is design 

step by step by changing this simple geometry. Also, the tests are performed with 

commercial simulation software, CST, and compared with the results of the finite 

element method.  

Waveguides are microwave circuit components with conductor boundaries that carry 

electromagnetic waves from one end to other. According to their shapes and sizes the 

carried signal may vary and they can be used for different microwave applications. 

Analytic solutions of waveguide can be found easily if there are no obstacles inside, 

and in Chapter 2 these solutions are provided in detail. However, for arbitrary 

obstacles, numerical methods are needed. Many researchers were interested in 

discontinuity problems and their solutions by finite difference method and finite 

element method. They solved some problems involving dielectric structures inside 

waveguides that are loaded with different types of material. Also, for the solution of 

eigenvalue problems via finite element method, there are several publications in the 

literature ([5]-[8]). In this study, the waveguide problem containing a PEC resonator 

structure inside was solved using finite element method by considering the TE10 mode. 

Also in Chapter 2, the design parameters and properties of split ring resonators are 

discussed by referring to the studies performed in the past. Earlier research was mainly 

about resonance frequency and the factors that affect it, such as the dimensions of the 

split ring resonator. This thesis examines how scattering parameters are affected by 

design parameters. The open ends of the waveguide are terminated by Perfectly 
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Matched Layer (PML) absorbers. The details of numerical method and the use of 

absorbing layer are presented in Chapter 3 and Chapter 4, respectively.   

The test results are presented in Chapter 5. Moreover, information about the accuracy 

of MATLAB code and effects of sizes of structure, element and design parameters on 

scattering parameters can be found. Also, the comparison of results of PEC and 

dielectric obstacles are presented. The problem is also analyzed by changing the 

frequency. Furthermore, the results are commented and compared with those of the 

past studies and CST.            
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CHAPTER 2 

BACKGROUND INFORMATION  

2.1. MAXWELL’S EQUATIONS 

James Clerk Maxwell, who was a physicist and a mathematician, studied on and 

reviewed the equations that describe the relations between electric and magnetic fields 

and also their relations between charges and currents. He came up with four famous 

equations called Maxwell’s equations. These underpin not only electromagnetic theory 

and communication theory but also important principles of electrical systems. These 

can be expressed into two forms namely integral form and differential form and all are 

given below. 

 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 (2.1) 

∇ ×𝑯 = 𝑱 + 
𝜕𝑫

𝜕𝑡
  (2.2) 

∇ ∙ 𝑫 =  𝜌 (2.3) 

∇ ∙ 𝑩 = 0 (2.4) 

 

The equations above are Maxwell’s equations in differential form and below are the 

ones in integral from.  

 

∮𝑬 ∙ 𝑑𝒍 =  −
𝑑

𝑑𝑡
∬𝑩 ∙ 𝑑𝑺 (2.5) 
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∮𝑩 ∙ 𝑑𝒍 =  ∬𝑱 ∙ 𝑑𝑺 + 
𝑑

𝑑𝑡
∬𝑫 ∙ 𝑑𝑺 (2.6) 

∯𝑫 ∙ 𝑑𝑺 =  ∭𝜌𝑑𝑽      (2.7) 

∯𝑩 ∙ 𝑑𝑺 = 0 (2.8) 

where  

E is electric field intensity, V/m 

H is magnetic field intensity, A/m 

D is electric flux density, C/m2 

B is magnetic flux density, Wb/m2 

J is electric current density, A/m2 

ρ is charge density, C/m3 

The first, second, third and fourth equations are also known as Faradays law of 

induction, Ampere’s circuital law, Gauss’s law, and Gauss’s law for magnetism, 

respectively.  

Another equation, called continuity equation, can be derived by using Ampere’s 

circuital law and Gauss’s law. The continuity equation, derived below, allows us to 

know the relation between current that enters and leaves a specific volume. 

 

∇ ∙ ∇ × 𝑯 = ∇ ∙ (𝑱 + 
𝜕𝑫

𝜕𝑡
) = 0 

𝜕∇ ∙ 𝑫

𝜕𝑡
=  −∇ ∙ 𝑱  

∇ ∙ 𝑫 = 𝜌 ⇒    
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                      ∇ ∙ 𝑱 = −
𝜕𝜌

𝜕𝑡
 (2.9) 

2.2. CONSTITUTIVE RELATIONS 

Electric field intensity, E, and magnetic field intensity, H, have relations with electric 

flux density, D, and magnetic flux density, B. By the constitutive relations, these 

relationships are established. They depend on the properties of the medium or the 

material that electric field or magnetic field exists.  

The simplest forms of the constitutive relations are expressed in vacuum. 

 

𝑫 = 𝜀0𝑬 (2.10) 

𝑩 = 𝜇0𝑯 (2.11) 

 

ε0  and μ0 are called permittivity of vacuum and permeability of vacuum respectively.  

In addition, speed of light in vacuum, c0, and intrinsic impedance of vacuum, η0, are 

associated with ε0  and μ0 by some mathematical operations. 

 

𝑐0 =
1

√𝜀0𝜇0
 (2.12) 

𝜂0 = √
𝜀0
𝜇0

 (2.13) 

 

 

Numerical values of c0 and η0 are 3×108 m/s and 377 Ω respectively where  

ε0  = 8.854×10-12 F/m 
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μ0 = 4π×10-7 H/m 

Here, F stands for Farad, C/V, and H stands for Henry, Wb/A.  

When the material has magnetic or dielectric properties, the constitutive relations turn 

into more involved forms.  

𝑫 = 𝜀𝑬 (2.14) 

𝑩 = μ𝑯 (2.15) 

 

where  

𝜀 = 𝜀0(1 + Ӽ𝑒) 

𝜇 = 𝜇0(1 + Ӽ𝑚) 

 

As the formulas above are stated, permittivity and permeability of materials depend on 

susceptibilities, Ӽe and Ӽm.  They change according to the material properties, electric 

polarization and magnetic polarization.  

At this stage, the wavenumber, k, can be expressed in terms of c and angular frequency 

ω=2πf. Physically, wavenumber shows electromagnetic field’s number of full wave 

period in per unit distance. 

 

𝑘 =
𝜔

𝑐
    𝑎𝑛𝑑    𝑐 =

1

√𝜀𝜇
 ⇒ 

𝑘 = 𝜔√𝜀𝜇 (2.16) 

 

Ohm’s law is another constitutive relation, used to derive waveguide equations, and 

expressed in terms of current density, J, electric field intensity, E, conductivity, σ. 
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𝑱 = 𝜎𝑬 (2.17) 

 

2.3. HELMHOLTZ EQUATION 

Helmholtz equation is a linear partial differential equation and named after Hermann 

von Helmholtz, a German physicist. It is derived by using Maxwell’s equations, the 

constitutive relations mentioned in previous sections, and vector identities.   

The first step to derive the equation is taking the curl of first Maxwell’s equation. 

 

∇ × ∇ × 𝑬 =  −∇ × (
𝜕𝑩

𝜕𝑡
)    where    𝑩 = μ𝑯 

∇ × ∇ × 𝑬 = −𝜇∇ × (
𝜕𝑯

𝜕𝑡
) (2.18) 

 

Next, using the vector identity given below in (2.19) and the second Maxwell’s 

equation (2.2) the above equation is rewritten as: 

 

∇ × ∇ × 𝑨 = ∇(∇ ∙ 𝑨) − ∇2𝑨 (2.19) 

⇒ ∇ × ∇ × 𝑬 = ∇(∇ ∙ 𝑬) − ∇2𝑬 (2.20) 

 

and in a source free region   ρ = 0 ⇒ ∇ ∙ 𝑬 = 0  

 

⇒  ∇ × ∇ × 𝑬 = −∇2𝑬 = −𝜇∇ × (
𝜕𝑯

𝜕𝑡
) (2.21) 
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−𝜇∇ × (
𝜕𝑯

𝜕𝑡
) = −𝜇 (

𝜕∇ × 𝑯

𝜕𝑡
) (2.22) 

∇ × 𝑯 = 𝑱 + 
𝜕𝑫

𝜕𝑡
 ⇒  −𝜇∇ × (

𝜕𝑯

𝜕𝑡
) = −𝜇 (

𝜕

𝜕𝑡
(𝑱 + 

𝜕𝑫

𝜕𝑡
)) (2.23) 

⇒ −𝜇∇ × (
𝜕𝑯

𝜕𝑡
) = −𝜇 (

𝜕𝑱

𝜕𝑡
+
𝜕2𝑫

𝜕𝑡2
) (2.24) 

⇒ −∇2𝑬 = −𝜇 (
𝜕𝑱

𝜕𝑡
+
𝜕2𝑫

𝜕𝑡2
) (2.25) 

 

After that, taking account of the fact that D=εE and the region is source free, J=0, the 

above equation (2.26) below is obtained   

 

∇2𝑬 = 𝜇𝜀
𝜕2𝑬

𝜕𝑡2
 (2.26) 

 

Lastly, the derivation can be taken a step further by writing its time-harmonic case 

while the time dependence is ejωt. 

 

∇2𝑬 = −𝜔2𝜇𝜀𝑬 (2.27) 

 

and defining the wave number, k, as 𝜔√𝜖𝜇,  Helmholtz equation for E takes its final 

form as follows 

 

∇2𝑬 + 𝑘2𝑬 = 0 (2.28) 

 

Similarly, Helmholtz equation for H is derived: 
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∇ × ∇ × 𝑯 = 𝛻 × (𝑱 + 
𝜕𝑫

𝜕𝑡
)   where   𝑫 = 𝜀𝑬   and in a source free region 

              ∇ × ∇ × 𝑯 =
𝜕∇ × 𝑬

𝜕𝑡
 (2.29) 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 ⇒     

∇ × ∇ × 𝑯 = −
𝜕2𝑩

𝜕𝑡2
   and  ∇ × ∇ × 𝑯 = −∇2𝑯 ⇒ 

           ∇2𝑯 =
𝜕2𝑩

𝜕𝑡2
 (2.30) 

 

Taking the time dependence as ejωt and k as 𝜔√𝜖𝜇, we obtain: 

 

∇2𝑯+ 𝑘2𝑯 = 0. (2.31) 

2.4. BOUNDARY CONDITIONS 

Boundary conditions are important to have a unique solution to partial differential 

equations. They are used to solve Maxwell’s equations for fields applied between two 

media with different permittivity and permeability values. 

 

Figure 2.1: Boundary between two different media [9] 
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Figure 2.1 pictures two different media where E1, H1, D1, B1, ε1, µ1, σ1 are field 

intensities, flux densities and constitutive parameters of medium-1 and E2, H2, D2, B2, 

ε2, µ2, σ2 are field intensities, flux densities and constitutive parameters of medium-2.  

Without existence a perfect conductor medium, if charge and current densities are 

present, the boundary conditions for field intensities and field densities are defined in 

the following formats. 

 

−𝒏 × (𝑬2 − 𝑬1) = 𝑴𝒔 (2.32) 

𝒏 × (𝑯2 −𝑯1) = 𝑱𝒔 (2.33) 

𝒏 ∙ (𝑫2 −𝑫1) = 𝜌𝑒𝑠 (2.34) 

𝒏 ∙ (𝑩2 − 𝑩1) = 𝜌𝑚𝑠 (2.35) 

 

where Ms is magnetic current density, Js is surface electric current density, ρes is 

electric surface charge density, and ρms is magnetic surface charge density. 

2.5. DERIVATION OF WAVEGUIDE EQUATIONS 

 

Figure 2.2: Rectangular waveguide [9] 
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Rectangular waveguides are microwave circuit components that guide electromagnetic 

waves as much as possible without losing energy. Only transverse electric (TE) and 

transverse magnetic (TM) wave can propagate inside hollow rectangular waveguides. 

The reason why transverse electromagnetic waves cannot propagate is that the 

structure includes only one conductor and therefore the boundary conditions cannot be 

satisfied. 

2.5.1. TE Mode  

According to Figure 2.2, the waveguide lies on a rectangular coordinate system and 

the dimension along x-axis is a and dimension along y-axis is b, z being the 

longitudinal component.   

In order to find the expression for TE mode waves with Ez=0, the starting point is to 

solve Helmholtz equation for magnetic field intensity.  

 

∇2𝑯+ 𝑘2𝑯 = 0 (2.36) 

 

with boundary conditions 

 

𝜕𝐻𝑧(0, 𝑦, 𝑧)

𝜕𝑥
= 0 (2.37.a) 

𝜕𝐻𝑧(𝑎, 𝑦, 𝑧)

𝜕𝑥
= 0 (2.37.b) 

𝜕𝐻𝑧(𝑥, 0, 𝑧)

𝜕𝑦
= 0 (2.37.c) 

𝜕𝐻𝑧(𝑥, 𝑏, 𝑧)

𝜕𝑦
= 0 (2.37.d) 
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and the general solution with e-jβz z-dependence is 

 

𝐻𝑧(𝑥, 𝑦, 𝑧) = 𝐴𝑚𝑛𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.38) 

where  

propagation constant, 𝛽 = √𝑘2 − 𝑘𝑐
2  

cutoff wavenumber, 𝑘𝑐 = √(
𝑚𝜋

𝑎
)
2

+(
𝑛𝜋

𝑏
)
2

 

 𝐻𝑧(𝑥, 𝑦, 𝑧) =  ℎ𝑧(𝑥, 𝑦)𝑒
−𝑗𝛽𝑧   and   ℎ𝑧(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 

which is an assumption to solve Helmholtz equation with method of separation of 

variables.  

Amn is the mode amplitude. In the equation above m and n can take natural numbers 

but the point to take into consideration is that m and n cannot be zero at the same time. 

Assuming that the waveguide has a source free region, Maxwell’s equations can be 

written in frequency domain as follows; 

 

∇ × 𝑬 = −𝑗𝜔𝜇𝑯    where    𝑩 = 𝜇𝑯 (2.39) 

∇ × 𝑯 = 𝑗𝜔𝜀𝑬    where    𝑫 = 𝜀𝑬 (2.40) 

 

x, y and z components are stated as 

  

𝜕𝐸𝑧
𝜕𝑦

+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇𝐻𝑥 (2.41.a) 
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𝜕𝐸𝑧
𝜕𝑥

+ 𝑗𝛽𝐸𝑥 = 𝑗𝜔𝜇𝐻𝑦 (2.41.b) 

𝜕𝐸𝑦

𝜕𝑦
−
𝜕𝐸𝑥
𝜕𝑦

= −𝑗𝜔𝜇𝐻𝑧 (2.41.c) 

𝜕𝐻𝑧
𝜕𝑦

+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜀𝐸𝑥 (2.41.d) 

𝜕𝐻𝑧
𝜕𝑥

+ 𝑗𝛽𝐻𝑥 = −𝑗𝜔𝜀𝐸𝑦 (2.41.e) 

𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥
𝜕𝑦

= 𝑗𝜔𝜀𝐸𝑧 (2.41.f) 

 

Then, x, and y components of E and H are expressed in terms of Hz  where Ez=0 as 

 

𝐸𝑥 = −𝑗
𝜔𝜇

𝑘𝑐
2

𝜕𝐻𝑧
𝜕𝑦

 (2.42.a) 

𝐸𝑦 = 𝑗
𝜔𝜇

𝑘𝑐
2

𝜕𝐻𝑧
𝜕𝑥

 (2.42.b) 

𝐻𝑥 = −𝑗
𝛽

𝑘𝑐
2

𝜕𝐻𝑧
𝜕𝑥

 (2.42.c) 

𝐻𝑦 = −𝑗
𝛽

𝑘𝑐
2

𝜕𝐻𝑧
𝜕𝑦

  (2.42.d) 

 

Finally, by inserting the general solution into the above equations, field equations for 

TE mode can be found. 

 

𝐸𝑥 = 𝑗
𝜔𝜇𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 

 

(2.43.a) 

 

𝐸𝑦 = −𝑗
𝜔𝜇𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.43.b) 

 (2.43.c) 
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𝐻𝑥 = 𝑗
𝛽𝑚𝜋

𝑘𝑐
2𝑎
𝐴𝑚𝑛𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 

 

 

𝐻𝑦 = 𝑗
𝛽𝑛𝜋

𝑘𝑐
2𝑏
𝐴𝑚𝑛𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 

 

 (2.43.d) 

2.5.2. TM Mode 

Helmholtz equation for E in TM modes will be solved using: 

  

𝛻2𝑬 + 𝑘2𝑬 = 0 

 

(2.44) 

with the boundary conditions given as: 

𝐸𝑧(0, 𝑦, 𝑧) = 0, 𝐸𝑧(a, 𝑦, 𝑧) = 0, 𝐸𝑧(x, 0, 𝑧) = 0, and 𝐸𝑧(x, 𝑏, 𝑧) = 0 

 
(2.45.a,b,c,d) 

 

where Ez can be stated with 𝑒−𝑗𝛽𝑧 z-dependence as  

𝐸𝑧(𝑥, 𝑦, 𝑧) =  𝑒𝑧(𝑥, 𝑦)𝑒
−𝑗𝛽𝑧 

ez(x,y) has to be solved by the method of separation of variables with a general 

assumption ez(x,y)=X(x)Y(y) 

 

Then, the general solution is obtained as   

 

𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.46) 

 

where m and n can take positive integers. 
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The equations for Ex, Ey, Hx, and Hy in terms of Ez where Hz=0 are 

 

 

𝐸𝑥 = −𝑗
𝛽

𝑘𝑐
2

𝜕𝐸𝑧
𝜕𝑥

 

 

(2.47.a) 

𝐸𝑦 = −𝑗
𝛽

𝑘𝑐
2

𝜕𝐸𝑧
𝜕𝑦

 

 

(2.47.b) 

𝐻𝑥 = 𝑗
𝜔𝜀

𝑘𝑐
2

𝜕𝐸𝑧
𝜕𝑦

 

 

(2.47.c) 

𝐻𝑦 = −𝑗
𝜔𝜀

𝑘𝑐
2

𝜕𝐸𝑧
𝜕𝑥

 

 

 (2.47.d) 

 

By using the general expression of Ez in the above equations (2.47), TM mode 

equations are derived as  

 

𝐸𝑥 = −𝑗
𝛽𝑚𝜋

𝑘𝑐
2𝑎
𝐴𝑚𝑛𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.48.a) 

𝐸𝑦 = −𝑗
𝛽𝑛𝜋

𝑘𝑐
2𝑏
𝐴𝑚𝑛𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.48.b) 

𝐻𝑥 = 𝑗
𝜔𝜀𝑛𝜋

𝑘𝑐
2𝑏

𝐴𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧 (2.48.c) 

𝐻𝑦 = −𝑗
𝜔𝜀𝑚𝜋

𝑘𝑐
2𝑎

𝐴𝑚𝑛𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) 𝑒−𝑗𝛽𝑧  (2.48.d) 

 

2.5.3. Cutoff Frequency 

For a rectangular waveguide, the propagation constant, β, is represented in terms of 

wavenumber, k, and cutoff wavenumber, kc, as 
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𝛽 = √𝑘2 − (
𝑚𝜋

𝑎
)
2

−(
𝑛𝜋

𝑏
)
2

 (2.49) 

 

The equation above holds for both TE and TM mode waves. Assuming that the 

waveguide is loaded with a lossless material, the propagation constant vanishes at the 

wavenumber, which is called as cutoff wavenumber of the mn mode and this is given 

as: 

 

𝑘 = (𝑘𝑐)𝑚𝑛 = √(
𝑚𝜋

𝑎
)
2

+(
𝑛𝜋

𝑏
)
2

 (2.50) 

 

The modes are considered as propagation mode, cutoff mode and evanescent mode in 

terms of their frequencies or wavenumbers. In order for the wave to be a propagation 

mode, the condition is k>(kc)mn. If this condition is not valid, the wave is either in 

cutoff mode, k=(kc)mn, or in evanescent mode, k<(kc)mn. 

 

𝛽 = √𝑘2 − (𝑘𝑐)𝑚𝑛2     𝑤ℎ𝑒𝑟𝑒    𝑘 = 2𝜋𝑓√𝜀𝜇, 𝑘𝑐

= 2𝜋𝑓𝑐√𝜀𝜇    𝑎𝑛𝑑    𝑓𝑐  𝑖𝑠 𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝑗𝛽 = {

𝑗√𝑘2 − (𝑘𝑐)𝑚𝑛2     ; 𝑘 > (𝑘𝑐)𝑚𝑛 

0                             ; 𝑘 = (𝑘𝑐)𝑚𝑛

√(𝑘𝑐)𝑚𝑛2 − 𝑘2    ; 𝑘 > (𝑘𝑐)𝑚𝑛

 (2.51) 

 

and 
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𝑗𝛽 =

{
 
 
 

 
 
 
𝑗𝑘√1 − (

𝑓𝑐
𝑓⁄ )

2

   ; 𝑓 > 𝑓𝑐

0                               ; 𝑓 = 𝑓𝑐

𝑘𝑐√1 − (
𝑓
𝑓𝑐
⁄ )

2

  ; 𝑓 > 𝑓𝑐

 
(2.52) 

 

where 

 

(𝑓𝑐)𝑚𝑛 =
(𝑘𝑐)𝑚𝑛

2𝜋√𝜀𝜇
 ⇒ 

                      (𝑓𝑐)𝑚𝑛 =
1

2𝜋√𝜀𝜇
√(𝑚 𝑎⁄ )2 + (𝑛 𝑏⁄ )

2

 (2.53) 

 

The cutoff wavelength, λc, can also be written in terms of cutoff frequency and it is 

represented as  

 

(𝜆𝑐)𝑚𝑛 =
𝑐
(𝑓𝑐)𝑚𝑛
⁄  ⇒ 

                   (𝜆𝑐)𝑚𝑛 =
1

√𝜀𝜇(𝑓𝑐)𝑚𝑛
 (2.54) 

where 

𝑐 = 1
√𝜀𝜇
⁄  
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2.5.4. Fundamental and Degenerate Modes 

The mode having the lowest cutoff frequency is called as the fundamental mode. It 

also depends on the geometry of a rectangular waveguide such that for TE modes, if 

a≥b, then the fundamental mode is TE10, if vice versa, then TE01 is accepted as the 

fundamental mode. 

The modes with the same propagation constants or cutoff frequency but having 

different field patterns are named as degenerate modes. For example, except that TE0n 

and TMmn modes, since m or n cannot be zero for TM modes, TEmn and TMmn are 

degenerate modes because of the fact that the definitions of cutoff frequency for those 

are same. 

 

2.6. RESONATORS 

Metamaterials are one of the most famous research areas for scientists interested in 

electromagnetics in recent years. One reason why metamaterials are very attractive to 

them is that they have properties cannot be found in the nature and in ordinary 

materials. The materials found in nature have positive permittivity and positive 

permeability values. However, with appropriate design of the microwave circuits, 

which are composed of dielectric materials and conductors, and under suitable 

frequencies negative values of permittivity and permeability can be reached [10]. This 

allows us to design waveguides, antennas, and various microwave circuits elements 

like filters with smaller sizes. In addition to these, at certain frequencies, left-handed 

propagation was observed with the materials that have negative permittivity and 

permeability [11].  Also the materials showing these artificial properties can be called 

as left-handed materials and their properties produce a left-handed coordinate system. 

Additionally, another property that is negative for such material is index of refraction. 

The important results of this are having direction of propagation opposite to direction 
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of energy flow which means direction of the two velocities, group and phase velocity, 

are reversed [12]. 

Split ring resonators (SRRs) are the designs showing magnetic resonance, which is the 

situation when magnitude of the capacitive reactance equals to magnitude of the 

inductive reactance, properties at specific frequency values [13]. They are composed 

of two interwoven rings with splits or slits positioned on opposite directions of the 

rings. These splits and the space between the rings provide high capacitive effects and 

thanks to this, the conduction can be achieved. Also, thanks to these, magnetic 

resonance is observed and the resonant wavelengths, which are much larger than the 

size of SRRs, can be obtained. The rings are made from metals that have nonmagnetic 

properties on top of dielectric materials like FR-4 where the FR stands for flame 

retardant. Moreover, researchers and scientist use SRRs under gigahertz frequencies 

but for some experiments and applications they can be designed to operate at terahertz 

frequency bands.  

 

2.6.1. Equivalent Circuit Model and Types of SRRs 

In the literature there are several models for the SRRs and the simplest equivalent 

model of SRRs is an LC circuit. It can be a parallel LC circuit, whose property is that 

capacitance increases when the inductance decreases, or a series LC circuit, whose 

working principle is opposite to the parallel LC circuits.    

 

(a)                                                      (b) 

Figure 2.3: Series and parallel LC circuit [13] 
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The resonant frequency for these circuits can be found by the following formula. 

 

𝑓 =
1

2𝜋√𝐿𝐶
 (2.55) 

 

In addition to these, the models in Figure 2.3.a can be the equivalent circuit model of 

the SRRs, whose shapes can be circular or square, in Figure 2.3.a. When the SRRs 

have two rings the equivalent model can be the one in Figure 2.3.b. In Figure 2.3.b, 

there are two different capacitances one is Co, distributed capacitance due to rings, and 

the other is Cg, the capacitances due to the splits. 

 

Figure 2.4: (a) Circular SRR with single ring, (b) square SRR with two rings 

The most general type of SRRs is circular one with a single ring shown in Figure 2.4.a 

or the two concentric one. The difficulty for those is controlling the coupling between 

the circles. Thanks to the rectangular SRRs, people overcome this problem and 

besides, appropriate inner couplings are achieved [14].  

2.6.2. Effects of Design Parameters of SRRs 

2.6.2.1. Effects on Electric and Magnetic Fields 

Pendry et al presented the SRR design and this design as mentioned before, consists 

of two concentric metallic rings. Also they have splits and separated by a gap. The 

reason why split and separation gap exist in the design is that the magnetic resonance 

is generated by them [15]. In Figure 2.5, the metal width, w, the split width, s, and the 

separation distance, t, can be seen.   
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Figure 2.5: General model of a square SRR 

There are capacitance effects that occur due to the existence of splits and the gap. The 

current flows through the metallic structure by the mutual capacitance of the gap while 

the capacitances by the splits are trying to block the current flow [15].   

When the SRRs are used to form an array, then at the resonance frequency or at the 

frequencies close to it, the negative permeability is observed. Moreover, at resonance 

frequencies, current loops are induced around the metallic part of the SRRs by applied 

uniform and time-varying magnetic field. Also the behavior of oscillation of LC circuit 

exists by the rings and due to current loop’s being closed through the capacitance by 

the gaps, the LC circuit resonator effect is seen. Like the magnetic field, current loops 

are also generated by electric field. This electric field is perpendicular to the surface 

that the slits are on and it lies in the particle’s plane [16]. 

2.6.2.2. Effects on Resonance Frequency 

In this section, it will be presented how the resonance frequency is affected by changes 

in the design parameters. Many researchers probed this topic and their publications 

shed light on the design principles of SRRs in order to achieve perfection and design 

the SRRs truthfully and according to the needs. 

Castro et al set up and experiment and studied the effect of slit widths on resonance 

frequency. For this study, SRRs with different slit widths are manufactured. After that, 

a rectangular waveguide was loaded with the manufactured SRRs. Then, the 
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experimental setups were connected to a network analyzer and for the dominant mode, 

TE10, changes in resonance frequencies were monitored. Also these experiment results 

were compared with a simulation program’s output and verified. As a conclusion it 

was stated that increase in slit width increases the resonance frequency since the 

capacitance and mutual inductance decrease [17].    

In addition to these, in Pradeep’s et al work, manufactured SRRs was placed on a 50 

Ω transmission line and by using significates of the S21, the behavior of resonance 

frequency was determined. Again, the setup was connected to a network analyzer and 

the system was excited with signal at fundamental mode. They showed that due to the 

effects of inductive and capacitive variations, increase in metal widths makes the 

resonance frequency also increase [16]. Additionally, another important result 

obtained was similar to the Castro’s et al that the resonance frequency was slightly 

affected by the change of the slit width in the same manner. 

Furthermore, Aydin et al published a more detailed article than the ones mentioned 

above. Their study was again based on the effects of design parameters on the magnetic 

resonance frequency. Differently, the SRRs were placed between two monopole 

antennas and the electromagnetic waves are tried to be measured. On top of changing 

the slit and metal widths, how the resonance frequency influenced by the change in the 

gap between the metallic wires was examined. The experiments and the simulations at 

the same frequency presented that the larger the gap distance, the larger the resonance 

frequency. This effect was results of decrease in the mutual inductance and capacitance 

between the metallic wires. Moreover, in this article, not only the geometrical structure 

of SRRs was changed but also additional capacitances effects were studied. By 

integrating capacitors with different capacitances, the transmission was measured. The 

outcome of measurements showed that the resonance frequency decreases with 

increasing additional capacitance [12].    

In addition to the studies mentioned above, the concern of this thesis was to investigate 

s-parameters of SRRs with the change of their design parameters. In MATLAB, in 

order to achieve to code PEC structure, the boundary condition on its surface was 

chosen as incident field equaled to scattered field. Also, the elements inside SRR were 
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excluded from the matrix. Therefore, hollow, 3D, and PEC structure were designed 

and elements on its surface became 2D triangular elements. The details of the 

experiments conducted concerning SRR were shared in chapter 5.              

Since metamaterials and their applications are popular research areas nowadays, many 

more papers and dissertations are being published concerning the SRRs. Different 

types, designs and implementations of them are being dealt. The answers of questions 

about SRRs are being brought to light day by day. 
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CHAPTER 3 

3D FINITE ELEMENT IMPLEMENTATION 

3.1. BASICS OF FINITE ELEMENT METHOD 

Finite Element Method (FEM) is a numerical technique to get approximate solutions 

of partial differential equations (PDE). FEM is a powerful variational method used in 

various engineering disciplines and science fields. Thanks to FEM, any structure or 

domain having any geometry can be modeled without requiring high CPU load and 

memory since the matrices that will be solved are sparse.    

In this method, the entire domain is divided into smaller subdomains which are called 

elements. After that, these elements are connected in a systematical way at the nodes 

which are the connection points of the elements in order to model the domain. Then it 

can be imagined that all the structures are combinations of the elements. In other 

words, by these procedures, the domains are discretized and meshes are achieved. This 

subdivision helps us to represent the solution in an easy way, to find an accurate 

solution while having complex structures, and to take into account different materials 

with different properties if there is any. The types of finite elements are selected by 

considering the number of dimensions of the entire domain, the shape of the structure, 

and the tolerance of accuracy of result. Also choice of the size of elements is very 

important because while the size decreases the memory usage and the cost increase 

although elements with smaller sizes provide more accurate results. Some examples 

of finite elements are shown in Figure 3.1 and they are classified according to the 

dimension of the structure.  
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  3.1.a          3.1.b       3.1.c      3.1.d         3.1.e 

Figure 3.1: 1D, 2D, and 3D finite elements types 

 

Here, 3.1.a is 1D linear element, 3.1.b and 3.1.c are 2D triangular and quadrilateral 

elements respectively, and 3.1.d and 3.1.e are 3D tetrahedral and hexahedral elements, 

respectively..  

Mesh quality is an important criterion that must be taken into account during mesh 

generation. The aspect ratio which is ratio of longest edge to shortest edge, skew angle, 

and the amount of how elements diverge from ideal elements are important subjects 

for element quality.  The length of an edge must be small enough as mentioned before 

and this distance can be chosen as λ/10. 

After the choice of the type of finite element and the discretization of the domain by 

using the elements, one can proceed to the next step that is specifying the shape 

functions. They are also named as basis functions that interpolate the solution within 

the finite elements. The equations 3.1, 3.2 and 3.3 state the mathematical formulations 

of examples of 1D, 2D and 3D shape functions respectively. In equations 3.2 and 3.3, 

ai, bi, ci and di are the coefficients to be calculated.  

 

𝑁1(𝑥) =
𝑥2 − 𝑥

𝑥2 − 𝑥1
 , 𝑁2(𝑥) =

𝑥 − 𝑥1
𝑥2 − 𝑥1

 (3.1) 

𝑁𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦,    𝑖 = 1, 2 𝑜𝑟 3 (3.2) 

𝑁𝑖 = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦 + 𝑑𝑖𝑧,    𝑖 = 1, 2, 3 𝑜𝑟 4 (3.3) 
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Variational calculus is an analysis used to maximize and minimize the functionals 

which are mostly defined as themselves and their derivatives in definite integrals. 

While applying finite element analysis, the PDEs are transformed into their functionals 

and the variational calculus is the way to get their functional forms. A common 

variational method is the Method of Weighted Residuals, where the PDE is multipled 

with weight functions and integrated over the domain. Here, if the weight functions 

are chosen to be equal to the shape functions, this method is known as Galerkin 

method. Then, by use of integration by parts and the boundary conditions related to 

the PDEs, the weak variational form of the PDE is found. Rayleigh-Ritz method is 

another variational method to solve the PDEs. The scope of Rayleigh-Ritz method is 

to reach solution by finding the extreme values of the known functional. It is better to 

make use of this method if the functionals related to the PDEs are known.  

Finally, the solutions for each element in region of interest are assembled in matrices 

and solved with appropriate matrix solvers.  

Up to now, the main idea and steps of FEM are discussed, and the mathematical 

formulations related to those are presented in the rest of this section.  

Let u be an unknown function and f be a known function. Then, a boundary value 

problem (BVP) can be described as  

 

ℒ𝑢 = 𝑓   

 

where ℒ is a linear operator which is positive-definite and self adjoint. And the 

vector space of shape function for elements can be expressed as 

 

𝑵𝑒 = [

𝑁1
𝑒

𝑁2
𝑒

⋮
𝑁𝑁
𝑒

]  
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and the solution for each element can be assumed as 

 

𝒖𝑒 =∑𝑁𝑖
𝑒

𝑛

𝑖

𝑢𝑖
𝑒 

where ui
e and Ni

e are value of the unknown function and shape function respectively 

and the vector space of ue can be 

 

 𝒖𝑒 = [

𝑢1
𝑒

𝑢2
𝑒

⋮
𝑢𝑁
𝑒

] 

 

The main aim is to solve matrix equation, [A]u=b in which [A] is a result of assembling 

of local element matrices, [Ae] and b, includes bes, is an unknown vector to be found. 

In general, the expression of functionals for elements which depends on unknown 

functions, local element matrices and unknown vectors can be written as  

 

𝑭𝒆 = [𝐴𝑒]𝒖𝒆 − 𝒃𝒆 

  

And for an element, the functional can expressed in terms of BVP and element shape 

functions in an integral form. 

 

𝐹𝑖
𝑒 = ∫(ℒ𝒖𝒆 − 𝑓)𝑁𝑖

𝑒𝑑𝛺 

By substituting the expression of solution for each element into the above equation, a 

detailed one can be stated as  
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𝐹𝑖
𝑒 = 𝒖𝒆∫𝑁𝑖

𝑒ℒ(𝑵𝒆)𝑇𝑑𝛺 −∫𝑓𝑁𝑖
𝑒 𝑑𝛺 

where     ∑ 𝑁𝑖
𝑒𝑛

𝑖 𝑢𝑖
𝑒 = (𝑵𝒆)𝑇𝒖𝒆 

 

This statement gives us the expressions for local element matrices and unknown 

element vectors as follows 

 

𝐴𝑖𝑗
𝑒 = ∫𝑁𝑖

𝑒ℒ(𝑵𝒆)𝑇𝑑𝛺     𝑎𝑛𝑑     𝑏𝑖 = ∫𝑓𝑁𝑖
𝑒 𝑑𝛺 

 

Lastly, after assembling the local element matrices and vectors, the boundary 

conditions are imposed and the system of matrix equation given below is solved. 

 

𝑭 =∑[𝐴𝑒]𝒖𝒆 − 𝒃𝒆
𝐸

1

= 0    ⇒ 

[𝐴]𝒖 = 𝒃 

  

where the range of e is 1 to E which is the number of total elements in the 

computational domain. 
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3.2. WAVE EQUATION AND ITS WEAK VARIATIONAL FORM 

The wave equation can be derived simply by taking curl of the first Maxwell equation 

in frequency domain and substituting the second Maxwell equation in frequency 

domain in right hand side of the resulted equation. When a scatterer exists in a medium, 

the wave equation, E, is written as the sum of the incident field and the scattered field.  

Also a BVP can be derived for the scattered field with boundary condition including 

the incident field. And the derivation of the BVP is given as 

   

∇ × ∇ × 𝑬 = −𝑗𝜔𝜇∇ × 𝑯 ⇒ 

∇ × ∇ × 𝑬 = 𝜔2𝜀𝜇𝑬 ⇒ 

∇ × ∇ × 𝑬 − 𝑘2𝑬 = 0 

 

(3.4) 

where E =Ei+Es and Ei is the incident field and Es is scattered field 

∇ × ∇ × 𝑬𝒔 = 𝑘2𝑬𝒔 

where  𝒏 × 𝑬𝒔 + 𝒏 × 𝑬𝒊 = 0  

 

In free space, Ωfs, the inner product of the wave equation and weight function is taken 

as mentioned in section 3.1 and let this function be W. 

 

∫(∇ × ∇ × 𝑬𝒔) ∙ 𝑾𝑑𝛺 = 𝑘2∫𝑬𝒔 ∙ 𝑾𝑑𝛺 

 
(3.5) 

 

Using the divergence theorem formulated in Equation 3.7 and the vector identity in 

equation 3.8, the weak variational form of the wave equation can be written as  
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∫(∇ × 𝑬𝒔) ∙ (∇ ×𝑾)𝑑𝛺 − 𝑘2∫𝑬𝒔 ∙ 𝑾𝑑𝛺 = 0 

 

(3.6) 

where  

∯𝑭 ∙ 𝑑𝑺 =∭∇ ∙ 𝑭𝑑𝑉 ;     𝑭 = 𝑬𝒔 ×𝑾 and ∭𝑑𝑉 = ∫𝑑𝛺 (3.7) 

(∇ × 𝑬𝒔) ∙ 𝑾 = 𝑬𝒔 ∙ (∇ ×𝑾) + ∇ ∙ (𝑬𝒔 ×𝑾) (3.8) 

 

3.3. 3D FEM FORMULATION  

After finding the weak variational form of the wave equation, it can be solved using 

FEM and as the element type tetrahedral elements, in Figure 3.1.d, are going to be 

used.  

 

3.2.a    3.2.b 

Figure 3.2: Tetrahedral finite element in original and transformed coordinate systems 

In order to simplify the calculations, the original rectangular coordinate system is 

transformed to a new coordinate system whose axes are ξ, η, and ζ as shown in figure 

3.2 [18].  

Then, recalling equation 3.3, the new shape functions can be expressed considering 

the transformed coordinate system as follows. 
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𝑁1(𝜉, 𝜂, 𝜁) = 1 − 𝜉 − 𝜂 − 𝜁 (3.9.a) 

𝑁2(𝜉, 𝜂, 𝜁) = 𝜉 (3.9.b) 

𝑁3(𝜉, 𝜂, 𝜁) = 𝜂 (3.9.c) 

𝑁4(𝜉, 𝜂, 𝜁) = 𝜁 (3.9.d) 

 

Also, the general form of the shape functions at the edges of elements for transformed 

coordinate system, equation 3.10, and the shape functions for each six edges, equations 

3.11.a-3.11.f, from equation 3.10 can be stated as 

 

𝑵𝒊(𝜉, 𝜂, 𝜁) = (𝑁𝑖1∇𝑁𝑖2 − 𝑁𝑖2∇𝑁𝑖1)𝑙𝑖  (3.10) 

 

where li is the length of the edge, i1 and i2 are the nodes of the edge and Ni1 and 

Ni2 are shape functions for the nodes of the edge 

 

𝑵𝟏(𝜉, 𝜂, 𝜁) = (∇𝜉(1 − 𝜂 − 𝜁) + 𝜉∇𝜂 + 𝜉∇𝜁)𝑙1 (3.11.a) 

𝑵𝟐(𝜉, 𝜂, 𝜁) = (∇𝜂(1 − 𝜉 − 𝜁) + 𝜂∇𝜉 + 𝜂∇𝜁)𝑙2 (3.11.b) 

𝑵𝟑(𝜉, 𝜂, 𝜁) = (∇𝜁(1 − 𝜂 − 𝜉) + 𝜁∇𝜂 + 𝜁∇𝜉)𝑙3 (3.11.c) 

𝑵𝟒(𝜉, 𝜂, 𝜁) = (𝜉∇𝜂 + 𝜂∇𝜉)𝑙4 (3.11.d) 

𝑵𝟓(𝜉, 𝜂, 𝜁) = (𝜁∇𝜉 + 𝜉∇𝜁)𝑙5 (3.11.e) 

𝑵𝟔(𝜉, 𝜂, 𝜁) = (𝜂∇𝜁 + 𝜁∇𝜂)𝑙6  (3.11.f) 

 

In addition to these, gradients of 𝜉, η, and 𝜁 are calculated by taking the inverse of the 

matrix whose expression is given in equation 3.15. The first column of the inverse 
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matrix gives the gradient of 𝜉, the second column gives the gradient of η, and from the 

entries of last column the gradient of 𝜁 is obtained. 

The Jacobian matrix, which involves first order partial derivatives of x, y and z in 

equations 3.13, according to 𝜉, η, and 𝜁, can be written by rewriting the points of the 

original coordinate system in terms of points of the transformed coordinate system.  

 

𝐽 =

[
 
 
 
 
𝜕𝑥

𝜕𝜉
⋯

𝜕𝑧

𝜕𝜉
⋮ ⋱ ⋮
𝜕𝑥

𝜕𝜁
⋯

𝜕𝑧

𝜕𝜁]
 
 
 
 

 

 

(3.12) 

In general x, y and z can be expressed as 

 

𝑥 =∑𝑥𝑖

4

𝑖=1

𝑁𝑖(𝜉, 𝜂, 𝜁) (3.13.a) 

𝑦 =∑𝑦𝑖

4

𝑖=1

𝑁𝑖(𝜉, 𝜂, 𝜁) (3.13.b) 

 

𝑧 =∑𝑧𝑖

4

𝑖=1

𝑁𝑖(𝜉, 𝜂, 𝜁) (3.13.c) 

 

By taking the equation a step further and doing some algebraic manipulations, x, y and 

z in equation 3.13 can be restated as  
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𝑥 = 𝑥1 + (𝑥2 − 𝑥1)𝜉 + (𝑥3 − 𝑥1)𝜂 + (𝑥4 − 𝑥1)𝜁 (3.14.a) 

𝑦 = 𝑦1 + (𝑦2 − 𝑦1)𝜉 + (𝑦3 − 𝑦1)𝜂 + (𝑦4 − 𝑦1)𝜁 (3.14.b) 

𝑧 = 𝑧1 + (𝑧2 − 𝑧1)𝜉 + (𝑧3 − 𝑧1)𝜂 + (𝑧4 − 𝑧1)𝜁 (3.14.c) 

 

Using equations 3.12 and 3.14.a-3.14.c, the Jacobian matrix is expressed as 

 

𝐽 = [

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑦4 − 𝑦1
𝑥4 − 𝑥1 𝑦4 − 𝑦1 𝑧4 − 𝑧1

] (3.15) 

 

Now, using the weak variational form of the wave equation in 2.6 and the expression 

of scattered field for edges of each element in equation 3.16, the local matrices, aij
e  

and bj
e,  can be calculated. Here, the weight function, W, is chosen to be equal to the 

shape functions that is the Galerkin approach is preferred. 

 

𝑬𝒔,𝒆 =∑𝑵𝒊𝐸𝑖
𝑒

6

𝑖=1

 (3.16) 

where Ni is the shape function and Eie is the tangential field, is an unknown to be 

found,  along the ith edge 

 

The LHS of the obtained equation after substituting equation 3.16 into equation 3.6 

gives aij
e, which is a 6x6 matrix and while getting bj

e, a 6x1 matrix and whole entries 

are equal to zero, from the RHS of the equation.    

In free space; 
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𝑎𝑖𝑗
𝑒 = ∫(∇ × 𝑵𝒊). (∇ × 𝑵𝒋)𝑑𝛺 − 𝑘

2∫𝑵𝒊𝑵𝒋𝑑𝛺 (3.17.a) 

𝑏𝑗
𝑒 =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 (3.17.b) 

where 

∇ × 𝑵𝟏(𝜉, 𝜂, 𝜁) = 2(∇𝜉 × ∇𝜂 + ∇𝜉 × ∇𝜁)𝑙1 (3.18.a) 

∇ × 𝑵𝟐(𝜉, 𝜂, 𝜁) = 2(∇𝜂 × ∇𝜉 + ∇𝜂 × ∇𝜁)𝑙2 (3.18.b) 

∇ × 𝑵𝟑(𝜉, 𝜂, 𝜁) = 2(∇𝜁 × ∇𝜂 + ∇𝜁 × ∇𝜉)𝑙3 (3.18.c) 

∇ × 𝑵𝟒(𝜉, 𝜂, 𝜁) = 2(∇𝜉 × ∇𝜂)𝑙4 (3.18.d) 

∇ × 𝑵𝟓(𝜉, 𝜂, 𝜁) = 2(∇𝜉 × ∇𝜁)𝑙5 (3.18.e) 

∇ × 𝑵𝟔(𝜉, 𝜂, 𝜁) = 2(∇𝜂 × ∇𝜁)𝑙6 (3.18.f) 

 

The expressions for 𝛻𝜉, 𝛻𝜂, and 𝛻𝜁 in the equations 3.18.a-3.18.f can be calculated 

according to the information given before. 

3.4. SCATTERING PARAMETERS CALCULATION 

Scattering parameters (S-parameters) are the parameters that define the behavior of 

linear electric circuits under steady state conditions. The properties of networks such 

as reflection coefficient, transmission coefficient, and gain can be written in terms of 

S-parameters. 
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Figure 3.3: 2-port network defined by S-parameters 

In order to model an n-port network by S-parameters, incident power waves (a1, a2, 

a3,…, an) and reflected power waves (b1, b2, b3,…, bn) must be defined. Figure 3.3 

shows a 2-port network whose S-parameter definition is given by 

 

[
𝑏1
𝑏2
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] [
𝑎1
𝑎2
] (3.19) 

 

In addition, complex power waves are written in terms of input/output currents and 

voltages and constant characteristic reference impedances at the input and output (Zo1, 

Zo2). 

 

𝑎1 =
𝑉1 + 𝐼1𝑍𝑜1

2√𝑍𝑜1
 (3.20.a) 

𝑎2 =
𝑉2 + 𝐼2𝑍𝑜2

2√𝑍𝑜2
 (3.20.b) 

𝑏1 =
𝑉1 − 𝐼1𝑍𝑜1

2√𝑍𝑜1
 (3.20.c) 

𝑏2 =
𝑉2 − 𝐼2𝑍𝑜2

2√𝑍𝑜2
 (3.20.d) 
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Furthermore, reflection coefficient and transmission coefficient are equal to S11 and 

S21 respectively when the output is perfectly matched to characteristic reference 

impedance Zo2.  In general, the equations for these can be stated as 

𝑅 = 𝑆11 +
𝑆12𝑆21𝛤𝐿
1 − 𝑆22𝛤𝐿

 (3.21.a) 

𝑇 = 𝑆21 +
𝑆12𝑆21𝛤𝐿
1 − 𝑆22𝛤𝐿

 (3.21.b) 

 

In equations 3.21.a and 3.21.b, ΓL is the reflection coefficient at the load and equals to 

zero when the load is perfectly matched. 

For an object in a waveguide, like in figure 3.4, in which the wave propagates in TE10 

mode, reflection coefficient and transmission coefficient are calculated by applying 

the following formulas respectively. Scattering parameters are found by considering 

the surfaces at the both sides of the waveguide. Reflection coefficient (S11 or R), is 

calculated by using the scattered fields, Es, on the surface, S1, that is designated at the 

side the incident wave is coming towards the object while for the transmission 

coefficient (S21 or T), the total fields, Et, become a part of the calculation at the surface, 

S2, which is specified at the other side of the object [19].  

  

 

Figure 3.4: An object in a rectangular waveguide [19] 
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𝑆11 =
|𝑬𝑠|𝑚𝑎𝑥
|𝑬𝑖|𝑚𝑎𝑥

 (3.22.a) 

𝑆21 =
|𝑬𝑡|𝑚𝑎𝑥
|𝑬𝑖|𝑚𝑎𝑥

 (3.22.b) 
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CHAPTER 4 

PERFECTLY MATCHED LAYER (PML) 

In numerical solutions of partial differential equations (PDE), truncation of the 

computational domain is needed. Except solutions of periodic structures and some 

structures whose solutions decay with admissible speeds naturally, artificial regions 

have to be in consideration in order to be able to truncate the domain properly.  

The solutions of wave equations decay slowly e.g. the decay rate is  1
(√𝑟)(𝑑−1)
⁄   when 

the distance that the waves decay is r in d dimensions. The decay rate problem is 

overcome by regarding absorbing boundary conditions (ABC). In this technique, 

structure is considered to be extended to infinity. Projecting from the given data which 

is inside points at the edges is the main idea of ABC. However, ABC is useful when 

the computational domain is one dimensional. For 2D or 3D problems having 

inhomogeneous medium, applications of ABC become very complex and difficult.   

A more efficient method for mesh truncation is to use an artificial absorbing layer 

known as  perfectly matched layer (PML). One of the most important properties of 

PML is that the waves, coming and hitting the PML, do not reflect but all of them 

transmitted into the layer. Additionally, the transmitted waves attenuate and decay. At 

the outer boundary of the PML region, ΩPML, the waves vanish, and hence totally 

absorbed by the PML region. 

In this thesis, the locally-conformal PML method is presented. This method depends 

on complex coordinate transformations. Thanks to complex coordinate stretching, the 

transformations of elements from real coordinate system to complex coordinate system 

are performed [20]. 
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4.1. LOCALLY-CONFORMAL PML METHOD 

This method was presented by Ozgun and Kuzuoglu ([21]-[22]). Its underlying 

concept is complex coordinate transformation. In the design, there are some conditions 

that have to be satisfied namely transmitting of all waves in the ΩPML, decaying of 

waves in ΩPML and on the surface of ΩPML the magnitudes of the waves have to be 

insignificant [20]. Assuming that, like in figure 4.1, the computation region is union 

of ΩPML and ΩPHY, which is a physical region that can be composed of different types 

of materials like vacuum, and the time dependence is ejwt, the mapping from real 

coordinates of r to complex coordinates of rı is done by applying the following 

formulas [23].    

 

Figure 4.1: Modelling of implementation of the method 

 

𝒓𝚤 = 𝒓 +
1

𝑗𝑘
𝑓(𝒓)𝒏(𝒓) (4.1) 

 

where k is wavenumber while absorption vector is denoted by n(r), f(r) represents the 

absorption function and they are written as 
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𝒏(𝒓) =
𝒓 − 𝒓𝑖𝑛
‖𝒓 − 𝒓𝑖𝑛‖

 (4.2) 

𝑓(𝒓) =
𝑎‖𝒓 − 𝒓𝑖𝑛‖

𝑚

𝑚‖𝒓𝑜𝑢𝑡 − 𝒓𝑖𝑛‖𝑚−1
 (4.3) 

 

In formula 4.3, a is a positive parameter and m is a positive integer. Also, the distance 

between rout and rin (||rout - rin||) can be denoted by dPML.  Moreover, by means of a, 

proper rate of decay of the waves in ΩPML are ensured [20]. Here, rin is found by 

minimizing the following 

 

min
𝒓𝑖𝑛∈𝑅

‖𝒓 − 𝒓𝑖𝑛‖  
(4.4) 

 

Furthermore, the PML width, which mainly depends on wavelength, must be chosen 

properly e.g. they cannot be too long or too short since ill-conditioning and absorption 

troubles may occur [24]. In general, the PML thickness can be chosen in the range /4-

/2. .   

4.2. FEM IN 3D COMPLEX SPACE 

Given the expression of electric field in PML region like in (4.5), electric field, 

magnetic field and Jacobian tensor equations are derived as in (4.6.a), (4.6.b) and (4.7) 

respectively. 

 

𝑬𝒄 = 𝒂𝒑𝑒
−𝑗𝑘𝒂𝒌.𝒓 (4.5) 

 

where ap is a unit vector that denotes the polarization and ak must satisfy ak.n(r)>0. 
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∇̃ × 𝑬𝒄 = −𝑗𝜔𝜇𝑜𝑯
𝒄 (4.6.a) 

∇̃ × 𝑯𝒄 = 𝑗𝜔𝜀𝑜𝑬
𝒄 (4.6.b) 

𝐽 ̿ =
𝜕(𝑥,̃ 𝑦̃, 𝑧̃)

𝜕(𝑥, 𝑦, 𝑧)
=

[
 
 
 
 
 
 
𝜕𝑥̃

𝜕𝑥

𝜕𝑥̃

𝜕𝑦

𝜕𝑥̃

𝜕𝑧
𝜕𝑦̃

𝜕𝑥

𝜕𝑦̃

𝜕𝑦

𝜕𝑦̃

𝜕𝑧
𝜕𝑧̃

𝜕𝑥

𝜕𝑧̃

𝜕𝑦

𝜕𝑧̃

𝜕𝑧]
 
 
 
 
 
 

 (4.7) 

Starting from Maxwell’s equation in (4.6.a), weak variational form of the wave 

equation in complex space is written as in (4.9). 

 

∇̃ × ∇̃ × 𝑬𝒄 − 𝑘2𝑬𝒄 = 0 (4.8) 

∫(∇̃ × 𝑬𝒄). (∇̃ ×𝑾𝒄)𝑑𝛺𝑃𝑀𝐿 − 𝑘
2∫𝑬𝒄𝑾𝒄. 𝑑 𝛺𝑃𝑀𝐿 = 0 (4.9) 

 

where  ∇̃ is nabla operator and Wc is weighted residual in complex space [20]. 

 

Figure 4.2: Transformation of 3D tetrahedral elements to complex space [20] 

Figure 4.2 shows how to map the elements to complex elements. Using the weak 

variational form of the wave equation in 4.9 and the expression of scattered field for 

edges of each element in equation 4.10, the local matrix, aij
e,  can be calculated. Here, 
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the weight function, Wc, is chosen to be equal to the shape functions that is the Galerkin 

approach is preferred. 

 

𝑬𝒄,𝒆 =∑𝑵𝒊𝐸𝑖
𝑐,𝑒

6

𝑖=1

 (4.10) 

where Ni is the shape function and Eic,e is the tangential field, is an unknown to 

be found,  along the ith edge 

The LHS of the obtained equation after substituting equation 4.10 into equation 4.9 

gives aij
e, which is a 6x6 matrix, from the RHS of the equation [20].    

In the complex space; 

𝑎𝑖𝑗
𝑒 = ∫(∇̃ × 𝑵𝒊). (∇̃ × 𝑵𝒋)𝑑𝛺 − 𝑘

2∫𝑵𝒊𝑵𝒋𝑑𝛺 (4.11) 

 

From now, the expression of unknown electric field can be calculated by using the 

information mentioned in chapter 3. The formulas, (3.9.a-d), (3.10) and (3.13.a-d), also 

holds for the complex space. However, changing ∇  with  ∇̃ , x, y, z with 𝑥̃, 𝑦̃, 𝑧̃ 

respectively in these equations and by using the figure 3.2, unknown electric field in 

PML region and 𝑎𝑖𝑗
𝑒  in terms of 𝜉, 𝜂, and 𝜁, can be written as [23] 

 

𝑬𝒄,𝒆(𝜉, 𝜂, 𝜁) =∑𝑵𝒊(𝜉, 𝜂, 𝜁)𝐸𝑖
𝑐,𝑒

6

𝑖=1

 (4.12) 

𝑎𝑖𝑗
𝑒 = ∫(∇̃ × 𝑵𝒊(𝜉, 𝜂, 𝜁)). (∇̃ × 𝑵𝒋(𝜉, 𝜂, 𝜁))𝑑𝛺

− 𝑘2∫𝑵𝒊(𝜉, 𝜂, 𝜁)𝑵𝒋(𝜉, 𝜂, 𝜁)𝑑𝛺 

(4.13) 

where 𝑑𝛺 = 𝑑𝜉𝑑𝜂𝑑𝜁 
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Also the Jacobian matrix expression become 

 

𝐽 = [

𝑥̃2 − 𝑥̃1 𝑦̃2 − 𝑦̃1 𝑧̃2 − 𝑧̃1
𝑥̃3 − 𝑥̃1 𝑦̃3 − 𝑦̃1 𝑧̃4 − 𝑧̃1
𝑥̃4 − 𝑥̃1 𝑦̃4 − 𝑦̃1 𝑧̃4 − 𝑧̃1

]  (4.14) 
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CHAPTER 5 

APPLICATION OF FEM IN SCATTERING PARAMETERS 

CALCULATION 

The scope of this thesis is to calculate scattering parameters of split ring resonators by 

FEM. For modelings and simulations MATLAB (Matrix Laboratory) was used and 

the results are compared with those obtained by CST (Computer Simulation 

Technology). The studies were begun with design of a rectangular waveguide in 

MATLAB. The 3D structure was placed on the rectangular coordinate system and the 

mesh was generated. As 3D elements tetrahedron elements were preferred. Two open 

ends of the waveguide were considered as PML regions where the resonator was 

positioned at the middle (like in figure 3.4). After that, x, y, and z coordinates of 

elements, elements’ nodes, and middle points of edges and elements’ surface were 

individually found and saved for PML region, waveguide surface, inside of the 

waveguide and resonator, and resonator surface. Also, information of which edge and 

surface belongs to which element was noted down. Then, boundary conditions on 

waveguide and resonator surfaces were imposed according to TE10 mode incident 

wave and, complex coordinate transformations in PML regions were implemented. 

Later on, by taking surface integrals numerically, the scattered, reflected and total 

fields from resonator were summed up on the two surfaces at the both sides of 

resonator and also between the PML regions and resonator. Lastly, by means of field’s 

summation on the surfaces, scattering parameters were calculated.               

The MATLAB code was tested by changing different parameters in the design 

comparing with CST outcomes and also with the knowledge of TE10 mode fields 

appear as half sinusoidal. Initially, a simple structure, a rectangular prism, was placed 

in waveguide and by enlarging and reducing the size of the structure, change of 
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reflected and transmitted electric fields was tried to be observed. The expectations 

from the trials were to observe an increase in the reflected field and decrease in the 

transmitted filed, as the size gets larger. When the size of the structure is enlarged, the 

reflection surface gets larger. Also when it was reduced, the expectations were vice 

versa. The outputs satisfied not only the expectations but also the CST results. Taking 

the frequency as 3 GHz, results of two structures with sizes, in terms of wavelength, 

on x, y and z coordinates 0.1λ, 0.1λ, 0.1λ and 0.5λ, 0.3λ, 0.1λ respectively were 

considered where the waveguide sizes were 0.6λ, 0.4λ and 2.1λ. The results were in 

terms of their magnitudes, not in dB.  

 

 

Figure 5.1: CST model of structure with sizes 0.1λx0.1λx0.1λ  

 

 

Figure 5.2:  S11 of structure with sizes 0.1λx0.1λx0.1λ in CST 

PEC structure waveguide 
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  Figure 5.3:  S21 of structure with sizes 0.1λx0.1λx0.1λ in CST 

 

 

Figure 5.4: Reflected waves from structure with sizes 0.1λx0.1λx0.1λ in MATLAB 
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Figure 5.5: Transmitted waves from structure with sizes 0.1λx0.1λx0.1λ in 

MATLAB 

 

 

Figure 5.6: CST model of structure with sizes 0.5λx0.3λx0.1λ  
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Figure 5.7:  S11 of structure with sizes 0.5λx0.3λx0.1λ in CST 

 

 

 

Figure 5.8:  S21 of structure with sizes 0.5λx0.3λx0.1λ in CST 
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Figure 5.9: Reflected waves from structure with sizes 0.5λx0.3λx0.1λ in MATLAB 

 

Figure 5.10: Transmitted waves from structure with sizes  

0.5λx0.3λx0.1λ in MATLAB 
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The element size was chosen as λ/20 in MATLAB design. The distance of surfaces to 

structure and PML surfaces was 0.75λ. Figures 5.1-5.10 show that when the structure 

size was increased, magnitudes of reflected electric fields were also increased and 

magnitudes of transmitted electric fields were decreased. These were the expected 

results mentioned above.   

 

Table 5.1: Comparison of MATLAB code and CST results according to change of 

structure 

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

0.1λx0.1λx0.1λ 0.27 0.22 0.94 0.98 

0.5λx0.3λx0.1λ 0.94 0.95 0.25 0.31 

 

 

The results from MATLAB code and CST were similar but in order to make them 

better, the element size was decreased to λ/40 from λ/20 and they were presented in 

oncoming sections. 

Another experiment is performed to observe the effect of place of the surfaces on 

scattered parameters. The answer to the question how close the surfaces could be to 

the structure was looked for. Since larger waveguide sizes result in more elements and 

this increases the memory usage, its size had to be minimized. Taking the surfaces so 

close to structure caused to have higher order mode fields. Therefore, it was a must 

that searching for an optimum surface distance to structure. The distance was changed 

from 0.05λ to 1.45λ and seven samples were taken for the structure with size 

0.5λx0.3λx0.1λ. 
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Figure 5.11: Reflected waves from structure when distance is 0.05 λ 

 

Figure 5.12: Transmitted waves from structure when distance is 0.05 λ 
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Figure 5.13: Reflected wave from structure when distance is 0.05 λ  

(a single half sinusoid) 

 

Figure 5.14: Transmitted wave from structure when distance is 0.05 λ  

(a single half sinusoid) 
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Figure 5.15: Reflected waves from structure when distance is 0.5 λ 

 

Figure 5.16: Transmitted waves from structure when distance is 0.5 λ 
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Figure 5.17: Reflected wave from structure when distance is 0.5 λ  

(a single half sinusoid) 

 

Figure 5.18: Transmitted wave from structure when distance is 0.5 λ  

(a single half sinusoid) 
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Figure 5.19: Reflected waves from structure when distance is 1.45 λ 

 

Figure 5.20: Transmitted waves from structure when distance is 1.45 λ 
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Figure 5.21: Reflected wave from structure when distance is 1.45 λ  

(a single half sinusoid) 

 

Figure 5.22: Transmitted wave from structure when distance is 1.45 λ  

(a single half sinusoid) 
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How the higher order modes effect the fields can be seen from figures 5.11-5.14. The 

sinusoidal shapes of the fields were disrupted. Magnitude of reflected field increases 

and transmitted filed decreases remarkably by those. As moving away from structure, 

the sinusoids and field values converged their levels as they should be. Figures of three 

samples were presented and data from other four samples can be found from Table 

5.2. It can be inferred that choosing the surface distance as 0.5λ is enough to get correct 

results. Thanks to this inference the size of waveguide was shorten as 1λ in total. Also, 

these provided less memory usage.      

   

Table 5.2: Change of scattering parameters with change of surface distance  

  0.05λ 0.25λ 0.5λ 0.75λ 1.0λ 1.25λ 1.45λ 

S11 (MATLAB) 0.98 0.98 0.94 0.94 0.95 0.95 0.94 

S21 (MATLAB) 0.20 0.28 0.28 0.26 0.25 0.26 0.26 

 

 

Smaller element sizes give more accurate outputs unless the element quality was 

disrupted [25]. As mentioned before, reducing element size makes the results from 

MATLAB code closer to results from CST since the element number was increased. 

However, with greater number of elements increased the memory usage and the 

compiling time. Besides, thanks to smaller waveguide size, these negative effects were 

reduced to acceptable limits. The structure size and surface distance was chosen as 

0.5λx0.3λx0.1λ and 0.45λ respectively.  
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Figure 5.23: CST model of structure with sizes 0.5λx0.3λx0.1λ and  

short waveguide length 

 

Figure 5.24:  S11 of structure with sizes 0.5λx0.3λx0.1λ and short waveguide length 

in CST 

 

Figure 5.25:  S21 of structure with sizes 0.5λx0.3λx0.1λ and short waveguide length 

in CST 
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Figure 5.26: Reflected waves from structure with λ/40 

 

Figure 5.27: Transmitted waves from structure with λ/40 
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Figure 5.28: Reflected wave from structure with λ/40 (a single half sinusoid) 

 

Figure 5.29: Transmitted wave from structure with λ/40 (a single half sinusoid) 
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Table 5.3: Change of scattering parameters with change of element size and 

comparison MATLAB code with CST (with size of 0.5λx0.3λx0.1λ) 

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

λ/20 element size 0.94 0.95 0.25 0.31 

λ/40 element size 0.93 0.94 0.32 0.31 

 

Furthermore, structure size was changed to 0.4λx0.2λx0.1λ to be sure that smaller 

element size allowed us to have more accurate results. Table 5.4 and figures 5.30-5.37 

present the associated outputs. 

 

  Table 5.4: Change of scattering parameters with change of element size and 

comparison MATLAB code with CST (with size of 0.4λx0.2λx0.1λ) 

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

λ/20 element size 0.78 0.74 0.61 0.66 

λ/40 element size 0.74 0.74 0.65 0.66 

 

 

 

Figure 5.30: CST model of structure with sizes 0.4λx0.2λx0.1λ and  

long waveguide length 

 



65 

 

 

Figure 5.31:  S11 of structure with sizes 0.4λx0.2λx0.1λ and long waveguide length in 

CST 

 

Figure 5.32:  S21 of structure with sizes 0.4λx0.2λx0.1λ and long waveguide length in 

CST 

 

Figure 5.33: CST model of structure with sizes 0.4λx0.2λx0.1λ and  

short waveguide length 
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Figure 5.34:  S11 of structure with sizes 0.4λx0.2λx0.1λ and short waveguide length 

in CST 

 

 

 

Figure 5.35:  S21 of structure with sizes 0.4λx0.2λx0.1λ and short waveguide length 

in CST 
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Figure 5.36: Reflected wave from structure with λ/40 (with size of 0.4λx0.2λx0.1λ) 

 

Figure 5.37: Transmitted wave from structure with λ/40  

(with size of 0.4λx0.2λx0.1λ) 
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5.1.  S-PARAMETERS OF SRRS VIA FEM 

Before calculation of S-parameters of SRRs, the MATLAB code was tested by altering 

design parameters and CST results. After being sure that the program provided correct 

outputs, the simple structure was replaced with SRR structure. Since the surface of 3D 

structure was considered as PEC, the elements inside were excluded. Due to the shapes 

of SRRs, the excluded elements, except inside PEC ring, were taken into consideration 

again. Also, the regions where the PEC boundary conditions imposed changed. As a 

result of this, they were rearranged. Anew, in order to verify that the algorithm was 

developed in a correct way, initially, a rectangular piece of the structure was replaced 

with vacuum i.e. the rectangular prism was replaced with a rectangular ring and, the 

process mentioned was applied. The structure, whose shape was given in Figure 5.38, 

was designed with sizes as 0.4λx0.2λx0.025λ with sides’ thicknesses of 0.05λ. The 

thickness was considered to contain only one element along z-axis, which was 0.025λ 

since in practice, the thicknesses of SRRs were very short compared with their widths 

and heights.    

 

 

Figure 5.38: CST model of ring structure with sizes 0.4λx0.2λx0.025λ  
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Figure 5.39:  S11 of ring structure with sizes 0.4λx0.2λx0.025λ  

 

 

 

Figure 5.40:  S21 of ring structure with sizes 0.4λx0.2λx0.025λ  
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Figure 5.41: Reflected wave from ring structure (a half sinusoid) 

 

Figure 5.42: Transmitted wave from ring structure (a half sinusoid) 
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Figure 5.43: Reflected waves from ring structure  

 

Figure 5.44: Transmitted waves from ring structure  
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SRRs composed of two rings and two slits on the rings as mentioned before. One step 

before testing the real design of SRRs, one more experiment was carried out and the 

width of slit was taken as 0.05λ by taking a slit into consider on top of ring.  

 

Figure 5.45: CST model of ring structure with slit 

 

Figure 5.46:  S11 of ring structure with slit 

 

Figure 5.47:  S21 of ring structure with slit 



73 

 

 

Figure 5.48: Reflected wave from ring structure with slit (a half sinusoid) 

 

Figure 5.49: Transmitted wave from ring structure with slit (a half sinusoid) 
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Figure 5.50: Reflected waves from ring structure with slit 

 

Figure 5.51: Transmitted waves from ring structure with slit 
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Table 5.5: S-parameters comparison of MATLAB code and CST results of ring 

structure and ring structure with slit 

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

Ring Structure 0.71 0.70 0.68 0.71 

Ring Structure with Slit 0.70 0.71 0.69 0.71 

 

As can be seen from figures 5.38-5.51 and also Table 5.5, MATLAB code’s results 

matched up with CST’s. As a result, the inference can be made that the post code was 

correct and calculations of s-parameters can be performed. The SRRs were designed 

as the height (on x-axis), width (on y-axis) and thickness (on z-axis) of the exterior slit 

ring to be 0.55λ, 0.35λ, and 0.025λ respectively while for the interior slit ring those 

lengths were 0.35λ, 0.15λ, and 0.025λ. The slit’s widths were 0.05λ which equals to 

sides’ thickness. 

 

 

 

 

Figure 5.52: CST model of SRR 
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Figure 5.53:  S11 of SRR 

 

 

 

Figure 5.54:  S21 of SRR 
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Figure 5.55: Reflected wave from SRR (a half sinusoid) 

 

 Figure 5.56: Transmitted wave from SRR (a half sinusoid) 
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Figure 5.57: Reflected waves from SRR 

 

Figure 5.58: Transmitted waves from SRR 
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5.1.1. Effects of change of slit width on s-parameters 

The designers were curious about how the resonant frequency affected by changing 

the slit widths and a good few of papers were published concerning this topic. In this 

thesis, under favor of CST, its influences on s-parameters were examined. For this 

purpose, the slit width was increased to 0.10λ and the outcomes were noted down. S11 

was decreased but S21 was increased and these were expected results. Since the surface 

area of PEC region was decreased due to enlargement of slits.  

 

 

Figure 5.59: CST model of SRR with enlarged slit 

 

 

Figure 5.60:  S11 of SRR with enlarged slit 
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Figure 5.61:  S21 of SRR with enlarged slit 

 

 

Figure 5.62: Reflected wave from SRR with enlarged slit (a half sinusoid) 
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Figure 5.63: Transmitted wave from SRR with enlarged slit (a half sinusoid) 

 

Figure 5.64: Reflected waves from SRR with enlarged slit 
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Figure 5.65: Transmitted waves from SRR with enlarged slit 

5.1.2. Effects of change of side width on s-parameters 

Like mentioned in section 5.1.1, another design concern for researchers was sides’ 

width and they were interested in its effect on resonance frequency. On top of these 

studies, it was investigated how s-parameters affected when the sides’ with was 

changed. The slit width was decreased to 0.025λ and the results were submitted in 

figures 5.66-5.72. 

 

Figure 5.66: CST model of SRR with minified sides 
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Figure 5.67:  S11 of SRR with minified sides 

 

 

 

Figure 5.68:  S21 of SRR with minified sides 
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Figure 5.69: Reflected wave from SRR with minified sides (a half sinusoid) 

 

Figure 5.70: Transmitted wave from SRR with minified sides (a half sinusoid) 
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Figure 5.71: Reflected waves from SRR with minified sides 

 

Figure 5.72: Transmitted waves from SRR with minified sides 
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When the widths of sides were shortened, the distance between the metals increased 

as a result of these two changes, the capacitance in the equivalent model is increased 

([19] and [23]). Knowing that equivalent circuit model of SRRs with two coincident 

rings are parallel LC circuits; increase in equivalent capacitance makes the 

characteristic impedance decrease. Also by interpreting equations 3.20-3.21 and 

combining with this knowledge, the obtained results verified the theoretical 

information. In order to compare the changes of s-parameters with changes of slits’ 

and sides’ widths easily, the outputs were tabulated and presented below. 

 

  Table 5.6: Change of scattering parameters with change of slits’ and sides’ widths 

and comparison MATLAB code with CST  

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

SRR 0.32 0.31 0.94 0.95 

SRR with enlarged slits 0.21 0.22 0.97 0.98 

SRR with minified sides 0.42 0.41 0.90 0.91 

   

5.1.3. Effects of change of operating frequency on s-parameters 

So far the experiments were performed for 3 GHz frequency. By altering frequency 

from 2.9 GHz to 3.1 GHz and taking five samples, influences on s-parameters were 

observed. The design parameters were kept constant and only changes were done for 

frequency. For the model, the SRR, whose results were given in figures 5.52-5.58, 

without enlarged slits and minified sides was chosen. 
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Figure 5.73:  S11 of SRR when frequency is 2.9 GHz 

 

 

 

Figure 5.74:  S21 of SRR when frequency is 2.9 GHz 
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Figure 5.75: Reflected wave from SRR when frequency is 2.9 GHz (a half sinusoid) 

 

Figure 5.76: Transmitted wave from SRR when frequency is 2.9 GHz  

(a half sinusoid) 
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Figure 5.77: Reflected waves from SRR when frequency is 2.9 GHz 

 

Figure 5.78: Transmitted waves from SRR when frequency is 2.9 GHz 
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Figure 5.79:  S11 of SRR when frequency is 2.96 GHz 

 

 

 

Figure 5.80:  S21 of SRR when frequency is 2.96 GHz 
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Figure 5.81: Reflected wave from SRR when frequency is 2.96 GHz (a half sinusoid) 

 

Figure 5.82: Transmitted wave from SRR when frequency is 2.96 GHz  

(a half sinusoid) 
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Figure 5.83: Reflected waves from SRR when frequency is 2.96 GHz 

 

Figure 5.84: Transmitted waves from SRR when frequency is 2.96 GHz 
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Figure 5.85:  S11 of SRR when frequency is 3.06 GHz 

 

 

 

Figure 5.86:  S21 of SRR when frequency is 3.06 GHz 



94 

 

 

Figure 5.87: Reflected wave from SRR when frequency is 3.06 GHz (a half sinusoid) 

 

Figure 5.88: Reflected wave from SRR when frequency is 3.06 GHz (a half sinusoid) 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X: 0.03

Y: 0.3363

Reflected Wave (on Edges of Surface-1)

x-axis of Surface-1, m

R
e
fl
e
c
te

d
 W

a
v
e
, 

(V
/m

)

0 0.01 0.02 0.03 0.04 0.05 0.06
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 0.03

Y: 0.9399

Transmittted Wave (on Edges of Surface-2)

x-axis of Surface-2, (m)

T
ra

n
s
m

it
te

d
 W

a
v
e
, 

(V
/m

)



95 

 

 

Figure 5.89: Reflected waves from SRR when frequency is 3.06 GHz 

 

Figure 5.90: Transmitted waves from SRR when frequency is 3.06 GHz 
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Figure 5.91:  S11 of SRR when frequency is 3.1 GHz 

 

 

 

Figure 5.92:  S21 of SRR when frequency is 3.1 GHz 
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Figure 5.93: Reflected wave from SRR when frequency is 3.1 GHz (a half sinusoid) 

 

Figure 5.94: Transmitted wave from SRR when frequency is 3.1 GHz  

(a half sinusoid) 
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Figure 5.95: Reflected waves from SRR when frequency is 3.1 GHz 

 

Figure 5.96: Transmitted waves from SRR when frequency is 3.1 GHz 
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Table 5.7: Change of scattering parameters with change frequency and comparison 

of MATLAB code with CST  

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

SRR with 2.9 GHz frequency 0.34 0.35 0.94 0.94 

SRR with 2.96 GHz frequency 0.33 0.28 0.94 0.96 

SRR with 3 GHz frequency 0.32 0.31 0.94 0.95 

SRR with 3.06 GHz frequency 0.33 0.33 0.94 0.94 

SRR with 3.1 GHz frequency 0.33 0.35 0.94 0.94 

 

Approximately %3.3 frequency change did not affect s-parameters in an enormous 

amount since the wavelength did not change considerably. At first appearance, CST 

graphs made us think that this change would have a significant impact on s-parameters. 

Since CST’s solver is a kind of time domain solver, s-parameters were shown by CST 

graphs as if they would be influenced by a small amount of change of frequency. In 

other words, s-parameters can be commented in terms of frequency change just by 

looking at a single graph in CST, but for every frequency change, the simulation has 

to be renewed by taking the new frequency as center frequency.   

5.2. REFLECTION AND TRANSMISSION FROM DIELECTRIC 

STRUCTURE 

All the results provided so far were belonged to reflected and transmitted properties of 

PEC structures. However, dielectric materials are also very widely used ones in 

electromagnetic applications due to their scattering properties. In order to determine 

which type of materials have stronger reflection and transmission properties and 

compare them for dielectric structures, a dielectric model was designed in MATLAB 

and CST. The structure size was 0.4λ, 0.2λ, and 0.1λ on x, y, and z axis respectively 

like in one of the PEC structures whose results were shared before. The element size 

was taken as λ/20 in MATLAB since the problem of a great number of increases in 
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element number was encountered. In order to avoid, increase in memory requirements 

and completion period of MATLAB code, this kind of a solution was preferred. 

 

Figure 5.97: CST model of dielectric structure 

 

Figure 5.98:  S11 of dielectric structure 

 

 

Figure 5.99:  S21 of dielectric structure 
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Figure 5.100: Reflected wave from dielectric structure (a half sinusoid) 

 

 

Figure 5.101: Transmitted wave from dielectric structure (a half sinusoid) 
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Figure 5.102: Reflected waves from dielectric structure 

 

Figure 5.103: Transmitted waves from dielectric structure 
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Table 5.8: Change of scattering parameters with change of material type and 

comparison MATLAB code with CST  

  S11 (MATLAB) S11 (CST) S21 (MATLAB) S21 (CST) 

PEC structure (λ/20 element size) 0.78 0.74 0.61 0.66 

PEC structure (λ/40 element size) 0.74 0.74 0.65 0.66 

Dielectric structure 0.11 0.11 0.99 0.99 

 

For dielectric materials, transmission coefficients are greater than reflection 

coefficients. Also compared to the PEC structures, there are differences between the 

scattering properties that affect some application results like RCS ([26]-[28]). In this 

study, figures 5.30-5.37, figures 5.97-5.103 and Table 5.8 show that scattering 

properties of PEC structure differ from those of dielectric structures. Additionally, 

when dielectric structure was considered itself, it was confirmed that S11 had smaller 

values than S22’s. Also, this was demonstrated with different software.  

 

 

 

 

 

 



104 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

CHAPTER 6 

CONCLUSION 

Computation of scattering parameters of an object by FEM was proposed by Jin in his 

book. However given formulas were not so effective for precise calculations. For this 

reason instead of Jin’s direct formula, conventional FEM procedures were preferred to 

calculate of scattered fields on the surfaces and to decide the optimum distances 

between the object and them. Also, regarding open boundaries in the system and 

including PMLs took the computation a step further.  

Metamaterials and their applications are very popular research topics due to their 

remarkable properties. In microwaves, many systems are being designed by taking 

advantages of metamaterials and, SRRs are one of the most important system elements 

that have their properties. In literature, there are many researches about effects of split 

widths, metal widths, and gaps between the rings on resonance frequency.  Scattering 

parameters are very important for microwave designs as well as the design parameters 

mentioned above. It is a deficiency that having no such studies combining these two 

important subjects.  

This thesis, not only inform one of s-parameters of structures with different shapes and 

the SRRs but also of optimum waveguide size and surface distances. Thanks to these, 

memory and CPU requirements decrease significantly. Additionally, studies about 

how the changes in design parameters of SRRs affect the s-parameters were presented 

in detail. Furthermore, for better results, elements’ sizes were changed and their effects 

were investigated. Moreover, the effect of incident field frequency was examined. 

Comparison of the scattering properties from dielectric and PEC surfaces takes part of 

the content. Also, all the outputs acquired from MATLAB code were checked against 

those of the CTS. Thereby, accuracy of the solution method and its outcomes 

demonstrated. 



106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

 

REFERENCES 

[1] Sabah, C. "Multi-resonant metamaterial design based on concentric V-shaped 

magnetic resonators." Journal of Electromagnetic Waves and Applications 

26.8-9 (2012): 1105-1115. 

[2] Kaushal Gangwar, Paras, R.P.S. Gangwar, Metamaterials: Characteristics 

Process and Applications, vol. 4, no. 1, pp. 97-106, 2014, Research India 

Publications, ISSN 2231-1297. 

[3] Pendry, John B., et al. "Magnetism from conductors and enhanced nonlinear 

phenomena." IEEE transactions on microwave theory and techniques 47.11 

(1999): 2075-2084. 

[4] Shelby, Richard A., David R. Smith, and Seldon Schultz. "Experimental 

verification of a negative index of refraction." science 292.5514 (2001): 77-79. 

[5] Reddy, C. J., et al. "Finite element method for eigenvalue problems in 

electromagnetics." (1994). 

[6] Ise, Kiyoshi, Kazuhiro Inoue, and Masanori Koshiba. "Three-dimensional 

finite-element solution of dielectric scattering obstacles in a rectangular 

waveguide." IEEE Transactions on Microwave Theory and Techniques 38.9 

(1990): 1352-1359. 

[7] Pontoppidan, Knud. "Numerical solution of waveguide problems using finite 

difference methods." 1st European Microwave Conference. 1969. 

[8] Clarricoats, P. J. B., and K. R. Slinn. "Numerical solution of waveguide-

discontinuity problems." Electrical Engineers, Proceedings of the Institution of 

114.7 (1967): 878-886. 

[9] Constantine A. Balanis, Advanced Engineering Electromagnetics, Second 

Edition, John Wiley & Sons, pages 13 and 106.  



108 

 

[10] Veselago V. G., The Electrodynamics of Substances With Simultaneously 

Negative Values of ε and μ, Soviet Physics Uspekhi, 10(4), s. 509-514, 1968. 

[11] Ozbay, Ekmel, Kaan Guven, and Koray Aydin. "Metamaterials with negative 

permeability and negative refractive index: experiments and simulations." 

Journal of Optics A: Pure and Applied Optics 9.9 (2007): S301. 

[12] Aydin, Koray, et al. "Investigation of magnetic resonances for different split-

ring resonator parameters and designs." New journal of physics 7.1 (2005): 

168. 

[13] Jabita, Abdul-Nafiu Abiodun. "Design of singly split single ring resonator for 

measurement of dielectric constant of materials using resonant method." 

(2013). 

[14] Fan, Jun-Wa, Chang-Hong Liang, and D. D. D. Li. "Design of cross-coupled 

dual-band filter with equal-length split-ring resonators." Progress In 

Electromagnetics Research 75 (2007): 285-293. 

[15] Pendry, J. B., et al. "Low frequency plasmons in thin-wire structures." Journal 

of Physics: Condensed Matter 10.22 (1998): 4785. 

[16] Pradeep, Anju, S. Mridula, and P. Mohanan. "Design of an Edge-Coupled 

Dual-Ring Split-Ring Resonator." IEEE Antennas and Propagation Magazine 

53.4 (2011): 45-54. 

[17] Castro, Pedro J., Joaquim J. Barroso, and Joaquim P. Leite Neto. "Experimental 

Study on Split-Ring Resonators with Different Slit Widths." Journal of 

Electromagnetic Analysis and Applications 5.9 (2013): 366. 

[18] Institute for Microelectronics, 

http://www.iue.tuwien.ac.at/phd/orio/node48.html, last accessed date: 06 

December 2016.  

[19] Jin, Jian-Ming, The Finite Element Method in Electromagnetics, Second 

Edition, John Wiley & Sons, pages 308-311. 



109 

 

[20] Özgün, Ö., Finite Element Modeling of Electromagnetic Radiation/Scattering 

Problems by Domain Decomposition, PhD. Thesis, Middle East Technical 

University, 2007. 

[21] Ozgun, Ozlem, and Mustafa Kuzuoglu. "Near-field performance analysis of 

locally-conformal perfectly matched absorbers via Monte Carlo simulations." 

Journal of computational Physics 227.2 (2007): 1225-1245.  

[22] Ozgun, Ozlem, and Mustafa Kuzuoglu. "Non-Maxwellian locally-conformal 

PML absorbers for finite element mesh truncation." IEEE transactions on 

antennas and propagation 55.3 (2007): 931-937. 

[23] Beriot, Hadrien, and Michel Tournour. "On the locally-conformal perfectly 

matched layer implementation for Helmholtz equation." NOVEM Noise and 

Vibration: Emerging Methods 20093 (2009). 

[24] Collino, Francis, and Peter B. Monk. "Optimizing the perfectly matched layer." 

Computer methods in applied mechanics and engineering 164.1 (1998): 157-

171. 

[25] More, Shashikant T., and R. S. Bindu. "Effect of Mesh Size on Finite Element 

Analysis of Plate Structure." 

[26] Faircloth, Daniel L., et al. "Investigation of reflection and transmission 

properties of dielectric slabs randomly doped with conducting objects." 

Microwave and optical technology letters 48.1 (2006): 83-86. 

[27] Donepudi, Kalyan C., Jian-Ming Jin, and Weng Cho Chew. "A higher order 

multilevel fast multipole algorithm for scattering from mixed 

conducting/dielectric bodies." IEEE Transactions on Antennas and 

Propagation 51.10 (2003): 2814-2821. 

 

 



110 

 

[28] Chen, Yikai, and Chao-Fu Wang. "Scattering analysis for PEC and dielectric 

bodies using characteristic modes." 2015 IEEE International Symposium on 

Antennas and Propagation & USNC/URSI National Radio Science Meeting. 

IEEE, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

 

Appendix A: MATLAB CODE SIMULATION PARAMETERS  

 

As mentioned before, for the simulations MATLAB codes are developed. For each 

design in Chapter 5, different FEM parameters namely number of element (NoEl), 

number of node (NoN), number of edge (NoEd), and mesh generation time (MGT) 

result in. In this Appendix, numerical values of these parameters can be found. 

 

Table A.1: Simulation parameters for structure with sizes 0.1λx0.1λx0.1λ 

NoEl NoN NoEd MGT (sec) 

44880 9242 57456 55.20 

 

Table A.2: Simulation parameters for structure with sizes 0.5λx0.3λx0.1λ   

NoEl NoN NoEd MGT (sec) 

20116 4284 26114 27.09 

 

Table A.3: Simulation parameters for structure with sizes 0.4λx0.2λx0.1λ (λ/40 

element size)  

NoEl NoN NoEd MGT (sec) 

20352 4685 27756 42.23 

 

Table A.4: Simulation parameters for structure with sizes 0.4λx0.2λx0.1λ (λ/20 

element size) 

NoEl NoN NoEd MGT (sec) 

162816 30107 200500 259.77 

 

Table A.5: Simulation parameters for ring structure   
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NoEl NoN NoEd MGT (sec) 

158496 29750 194773 160.57 

Table A.6: Simulation parameters for ring structure with a slit  

NoEl NoN NoEd MGT (sec) 

158520 29750 194778 161.81 

 

Table A.7: Simulation parameters for SRR structure   

NoEl NoN NoEd MGT (sec) 

157872 29750 194467 264.868 

 

Table A.8: Simulation parameters for SRR structure with enlarged slits   

NoEl NoN NoEd MGT (sec) 

157968 29750 194515 255.663 

 

Table A.9: Simulation parameters for SRR structure with minified sides   

NoEl NoN NoEd MGT (sec) 

158400 29750 194823 271.785 

 

Table A.10: Simulation parameters for dielectric structure   

NoEl NoN NoEd MGT (sec) 

21888 4563 28162 24.193 

 

    

 

 

 


