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ABSTRACT

FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED
RECTANGULAR NANO-PLATES CONSIDERING SPATIAL VARIATION

OF THE NONLOCAL PARAMETER

ALIPOUR GHASSABI, ATA
M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Serkan Dağ

Co-Supervisor : Assoc. Prof. Dr. Ender Ciğeroğlu

January 2017, 57 pages

This study presents a new nonlocal elasticity based analysis method for free vibra-
tions of functionally graded rectangular nano-plates. The method allows taking into
account spatial variation of the nonlocal parameter. Governing partial differential
equations and associated boundary conditions are derived by employing the varia-
tional approach and applying Hamilton’s principle. All required material properties
are assumed to be functions of thickness coordinate in the derivations. Displacement
field is expressed in a unified way to be able to produce numerical results pertaining to
three different plate theories, namely Kirchhoff, Mindlin, and third-order shear defor-
mation theories. The equations are solved numerically by means of the generalized
differential quadrature method. Proposed procedures are verified through compar-
isons made to the results available in the literature. Further numerical results are
generated by considering functionally graded simply-supported and cantilever nano-
plates undergoing free vibrations. These findings demonstrate influences of factors
such as dimensionless plate length, plate theory, nonlocal parameter ratio, and power-
law index upon natural vibration frequencies.

Keywords: Nonlocal elasticity, Free vibration, Higher order shear deformation plate
theory, Functionally graded material, Generalized differential quadrature method
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ÖZ

LOKAL OLMAYAN PARAMETRENIN UZAYSAL DEĞİŞİMİNİ GÖZ
ÖNÖNDE BULUNDURARAK FONKSIYONEL DERECELENDİRİLMİŞ

DIKDÖRTGEN NANO-PLAKLARIN SERBEST TİTREŞİM ANALİZLERİ

ALIPOUR GHASSABI, ATA
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Serkan Dağ

Ortak Tez Yöneticisi : Doç. Dr. Ender Ciğeroğlu

Ocak 2017 , 57 sayfa

Bu çalışma fonksiyonel derecelendirilmiş dikdörtgen nano-plakların serbest titreşim-
leri analizi için yeni lokal olmayan elastisite teorisi bazında bir analiz yöntemini sun-
maktadır. Bu yöntem lokal olmayan parametrenin uzaysal değişiminin göz önünde
bulundurulmasına imkan tanımaktadır. Yönetici kısmı diferansiyel denklemler ve il-
gili sınır koşulları varyasyonel yaklaşım kullanılarak ve Hamilton prensibi uygula-
narak türetilmiştir. Derivasyonda gereken tüm malzeme özelliklerinin kalınlık koor-
dinatı fonksiyonları olmaları varsayılmaktadır. Kirchhoff, Mindlin, ve üçüncü dere-
ceden kesme deformasyon teorisi adlarında üç farklı plak teorileri ile ilgili sayısal
sonuçları üretebilmek için yerdeğiştirme alanı birleştirilmiş bir yöntem ile ifade edil-
miştir. Denklemler genelleştirilmiş diferansiyel kare yapma metodu ile sayısal olarak
çözülmüştür. Önerilen yöntemler literatürde mevcut sonuçlar ile yapılan karşılaştır-
malar vasıtasıyla doğrulanmıştır. Daha fazla sayısal sonuçlar serbest titreşim altında
basit mesnetli ve ankastre fonksiyonel derecelendirilmiş nano-plaklar göz önünde bu-
lundurularak üretilmiştir. Bu sonuçlar boyutsuz plak uzunluğu, plak teorisi, lokal ol-
mayan parametre oranı, ve üstel indeks gibi faktörlerin doğal titreşim frekanslar üze-
rinde etkilerini göstermektedir.
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Anahtar Kelimeler: Lokal olmayan elastisite teorisi, Serbest titreşim, Yüksek merte-
beden kesme deformasyon plak teorisi, Fonksiyonel derecelendirilmiş malzeme, Ge-
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Design of small scale structures as a key step in development of micro electrome-

chanical systems (MEMS) and nano electromechanical systems (NEMS) has recently

attracted the attention of scientific community. Nano-scale particles, beams, plates

and tubes are examples of such structures. Nano-surgery, drug delivery, design of

non-rejectable artificial organs and diagnosis are some of the applications for micro-

and nanoscale structures and devices in medicine. These small scale devices are also

used in nano-computers and biotechnology applications such as genome synthesis

[1]. Micro- and nano-scale structures, devices, and systems have other specific appli-

cations in high frequency resonators [2], actuators [3] and sensors [4]. The aircraft

and space vehicles can be controlled by displacing the control surfaces as well as

by changing the geometry of wing and control surfaces. For example, ailerons, el-

evators, canards, fins, flaps, rudders, stabilizers and tips of advanced aircraft can be

controlled by micro-scale actuators. Furthermore, micro- and nano-scale sensors can

be used to measure the aerodynamic loads, vibrations, temperature, pressure, veloc-

ity, acceleration and noise. For comprehensive and accurate design of small-scale

devices, structural characteristics of micro and nano-scale structures should be exam-

ined in detail. Free vibration analysis and computation of natural frequencies play an

important role in design and optimization of micro and nano-scale devices such as

sensors, resonators and oscillators. One of many different factors that can lead to bias

in micro-mechanical gyroscopes [5, 6] is sensitive element and its dynamic behavior.

Vibrations that occur at the excitation frequency is an example of such interferences.
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The understanding of the mechanical response of small scale plates as a branch of

small scale structures with two-dimensional shape is an important subject from design

perspective of small scale devices. Design of a micro-valve for micro-fluidic applica-

tions [7], nano-plate resonator [8] and an oscillator based on a Graphene-Aluminum

Nitride nano plate resonator [9] are examples of technological applications for MEMS

and NEMS devices made of micro and nano-scale plates. Classical continuum theo-

ries fail to predict the size effect observable at small-scales and molecular dynamics

based simulations need to confront an immense computational effort. Furthermore,

experimental study of nano-scale structures is quite difficult due to problems rising

in small scales for controlling each and every parameter. Consequently, higher or-

der continuum theories have been commonly utilized to examine behavior of small-

scale elements. Among such theories, nonlocal elasticity [10, 11], strain gradient

[12, 13, 14], and couple stress [15, 16] theories are prevalent. In structural study

of nano-scale plates, nonlocal elasticity theory is combined with plate deformation

theories to obtain the governing equations and associated boundary conditions.

The main objective of this study is to present a nonlocal elasticity based method for

free vibration of functionally graded rectangular nano-plates. Eringen’s differential

form of the nonlocal constitutive equation is used to consider the size effect in for-

mulation. The method allows taking into account the spatial variation of nonlocal

parameter.

1.2 Previous Works

Nonlocal elasticity theory along with different beam theories, has been widely used to

investigate the small-scale effects on free vibration, bending and buckling of homoge-

neous nano-beams. Using the differential form of the nonlocal constitutive equation,

Reddy [17] reformulated the Euler–Bernoulli, Timoshenko and Reddy beam theo-

ries. Bending solutions are proposed by Wang et al. [18] based on Eringen’s nonlocal

elasticity theory and Timoshenko beam theory. Aydogdu [19] proposed a generalized

nonlocal beam theory to study bending, buckling and free vibration of nanobeams. A

new higher order nonlocal shear deformation beam theory is presented by Thai [20]

to study static and free vibration problems of nanobeams. In another work, Thai et
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al. [21] put forward a sinusoidal shear deformation beam theory for nonlocal free vi-

bration and static analysis of nano-beams. Natural vibration frequencies of a rotating

nonuniform cantilever nanobeam is investigated by Ruiz et al. [22]. Ritz method is

used by Ghannadpour et al. [23] to solve the nonlocal static and free vibration prob-

lems of Euler–Bernoulli nano-beams. Studies on nonlinear models for bending [24]

and buckling [25] of classical and shear deformable nano-beams involve the consid-

eration of von Karman nonlinear strains in the formulation. Moreover, A nonlocal

finite element model for Euler–Bernoulli beams is developed by Sciarra [26].

Investigation of small scale effects on static and free vibration analysis of homo-

geneous nano-plates is carried out by many research groups combining the nonlocal

elasticity theory with different shear deformation plate theories. Using the differential

form of the nonlocal constitutive equation, Lu et al. [27] reformulated the Kirchhoff

and the Mindlin plate theories. In a similar manner, Aghababaei et al. [28] used

third-order shear deformation plate theory along with nonlocal theory to solve static

and free vibration problems of a rectangular nano-plate. The works by Wang et L.

[29], Alzahrani et al. [30] and Alibeigloo et al. [31] are examples of studies on static

bending of homogeneous rectangular nano-plates utilizing nonlocal elasticity theory

to capture the size effects. In various studies on the nonlocal natural frequencies

of homogeneous nano-plates, first order [32] and two-variable refined plate theories

[33] are also used to incorporate the effect of shear deformation in the formulation.

In another study on small scale plates, nonlocal vibration under uniaxial pre-stressed

conditions is investigated by Murmu et al. [34]. In a similar manner, nonlocal plate

theories are utilized in different studies on buckling analysis of nanoplates possessing

constant [35, 36, 37, 38] and variable thicknesses [39], thermal effects [40, 41] and

linearly varying in-plane load [42].

Functionally graded materials (FGMs) are a special class of composites, which pos-

sess smooth spatial variations in the volume fractions of the constituent phases. They

find applications in a wide variety of technological fields including thermal barrier

coatings, solid oxide fuel cells, high performance cutting tools, and biomedical mate-

rials. Deployment of functionally graded components in small-scale systems has re-

cently become feasible with advances in fabrication technologies such as magnetron

sputtering [43], chemical vapor deposition and plasma enhanced chemical vapor de-

3



position [44], and modified soft lithography [45]. These developments are accom-

panied by theoretical and computational studies directed towards understanding me-

chanical behavior of small-scale FGM composite structures.

Nonlocal elasticity theory has been widely used to investigate the small-scale effects

on free vibration, bending and buckling of small-sized FGM beams and plates. Fi-

nite element approaches, based on the Euler–Bernoulli beam theory are presented by

Eltaher et al. [46, 47] to solve for free vibration, bending and buckling of nonlocal

FGM nano-beams. Nonlocal free vibration [48], bending [49] and buckling [50] of

FGM nano-scale beams are also investigated using Timoshenko beam theory. Finite

element analysis for bending and buckling of small-scale FGM beams based on the

nonlocal Timoshenko beam theory is also conducted by Eltaher et al. [51]. Rahmani

et al. [52] studied buckling of FGM nano-beams using nonlocal Reddy beam the-

ory. Reddy et al. [53] put forward a nonlinear finite element approach based on the

Euler–Bernoulli and Timoshenko beam theories for structural analysis of nano-scale

FGM beams. Nonlocal nonlinear free vibration of FGM Euler–Bernoulli nano-beams

is examined by Nazemnezhad et al. [54] and Hosseini-Hashemi et al. [55] intro-

duced the surface effects into the same problem. Forced vibration [56] and thermo-

mechanical vibration [57] analyses are also considered using nonlocal elasticity the-

ory.

In nonlocal free vibration analysis of small-scale FGM rectangular plates, Kirchhoff,

Mindlin, second order and third-order shear deformation theories are respectively

used by Zare et al. [58], Natarajan et al. [59], Nami et al. [60] and Daneshmehr

et al. [61]. An analytical approach is proposed by Salehipour et al. [62] to solve

three dimensional nonlocal elasticity problem of small-scale plates in free vibration.

Nonlocal third order plate theory is utilized in buckling analysis of nano-scale FGM

plates under mechanical [63] and thermal loads [64]. Moreover, nonlocal bending

problem is considered for plates embedded under distributed nano-particles [65] and

rested on a Winkler-Pasternak elastic foundation [66]. A computational approach

based on isogeometric analysis [67] and a differential quadrature-based method [68]

are also introduced to solve for bending and free vibration of these structures.
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1.3 Motivation and Scope of Study

In all work mentioned in the previous section, the nonlocal parameter of the non-

local elasticity theory is assumed to be constant. However, the nonlocal parameter

is essentially a material property and thus varies as a function of spatial coordinates

in a functionally graded composite structure. The primary objective in this study, is

to reveal the influence of the spatial variation of the nonlocal parameter upon free

vibration behavior of small-scale rectangular functionally graded plates.

In Chapter 2, a set of governing partial differential equations and boundary conditions

are derived by employing the nonlocal elasticity theory and variational principles. All

material properties, including the nonlocal parameter, are assumed to be functions

of the thickness coordinate in the derivations. Displacement field is expressed in a

unified way to be able to produce numerical results for Kirchhoff, Mindlin, and third-

order plate theories.

In Chapter 3, generalized differential quadrature method (GDQM) is introduced. The

governing equations and related boundary equations are solved numerically by means

of the generalized differential quadrature method. MATLAB software is used to de-

velop necessary computer programs to implement the numerical solutions.

In Chapter 4, Developed procedures are verified through comparisons made to the

findings available in the literature. Simply-supported and cantilever nano-plates are

considered in parametric analyses. Results presented for these configurations illus-

trate influences of material and geometric parameters upon natural vibration frequen-

cies.
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CHAPTER 2

FORMULATION

2.1 Problem Definition

In this study, a functionally graded rectangular nano-plate is considered to examine

the small-scale and shear deformation effects on natural frequencies of the system.

The geometry of the rectangular nano-plate is depicted in Figure 2.1. The plate is of

thickness h and assumed to possess property variations in thickness direction.

Figure 2.1: The geometry of the functionally graded rectangular nanoplate
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2.2 Shear Deformation Plate Theories

The classical plate theory is based on the Kirchhoff hypothesis. This theory neglects

the effect of transverse shear deformation. On the other hand, higher order shear

deformation plate theories take into consideration the effect of transverse shear de-

formation by relaxing some of the restrictions imposed by Kirchhoff hypothesis on

classical plate theory. In this study, displacement field of the nano-plate is expressed

in a unified manner to be able to generate results according to different plate theories.

The generalized form of the displacement field is given as:

u(x, y, z, t) = u0(x, y, t)− zw,x + f(z)(φx + w,x), (2.1)

v(x, y, z, t) = v0(x, y, t)− zw,y + f(z)(φy + w,y), (2.2)

w(x, y, z, t) = w0(x, y, t), (2.3)

In this representation u, v and w are displacement components in x, y and z direc-

tions, respectively; u0, v0 and w0 are displacements of a point on the mid-plane; φx

and φy are the rotations of a transverse normal about y and x axes, respectively; and

a comma stands for differentiation. The function f(z) represents the shape function

determining the distribution of the transverse shear stress and strain through the thick-

ness of the plate. The shape functions f indicating Kirchhoff, Mindlin and third order

plate theories are defined as:

Kirchhoff plate theory: f(z) = 0 (2.4)

Mindlin plate theory: f(z) = z (2.5)

Third order plate theory: f(z) = z

(
1− 4z2

3h2

)
(2.6)

Suitable shape functions f should approximately satisfy parabolic shear deformation

distribution. Additionally, the boundary conditions should be satisfied on the bottom

and top surfaces of the plate. According to theory of elasticity, strain field corre-

sponding to these displacements is then found in the form:

εxx =
1

2
(
∂u

∂x
+
∂u

∂x
) = u0,x − zw,xx + f(φx,x + w,xx), (2.7)

εyy =
1

2
(
∂v

∂y
+
∂v

∂y
) = v0,y − zw,yy + f(φy,y + w,yy), (2.8)
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εzz =
1

2
(
∂w

∂z
+
∂w

∂z
) = 0, (2.9)

εxy =
1

2
(
∂u

∂y
+
∂v

∂x
) =

1

2
{(u0,y + v0,x)− 2zw,xy + f(φx,y + 2w,xy + φy,x)} , (2.10)

εyz =
1

2
(
∂v

∂z
+
∂w

∂y
) =

1

2
f ′(φy + w,y), (2.11)

εxz =
1

2
(
∂u

∂z
+
∂w

∂x
) =

1

2
f ′(φx + w,x). (2.12)

According to this generalized form of the strain field, zero and constant shear strains

are obtained for Kirchhoff and Mindlin plate theories, respectively. The reason for

using cubic terms in displacement field of the third order plate theory is to have

quadratic variation of the transverse shear strains through the thickness of the plate.

2.3 Nonlocal Elasticity Theory

In nonlocal elasticity theory, stress at a point is expressed as a function of the strain

field in the material domain as follows:

σij =

∫∫∫
V

α(|x′ − x| , τ)tij(x
′) dV (x′) (2.13)

where α is the nonlocal modulus or kernel function, |x′ − x| represents the distance,

τ is a material property that depends on internal and external characteristic lengths

(such as the lattice spacing and wavelength); σij and tij stand for nonlocal and local

stress tensors, respectively. Eringen [69] proposed an equivalent differential form of

the nonlocal constitutive equation in the form:

(1− µ∇2)σij = tij (2.14)

In this equation, µ is the nonlocal parameter defined by

µ = (e0l)
2, (2.15)

where l is internal characteristic length and e0 is a material property found through

experimental characterization. Because of its dependence on l and e0, µ is a material

property [70] and should be expressed as a function of the z-coordinate as well. In

this study, all material properties including the nonlocal parameter are functions of

9



the thickness coordinate and their spatial variations along the thickness direction are

described by

E(z) = EcVc(z) + EmVm(z), (2.16)

ν(z) = νcVc(z) + νmVm(z), (2.17)

ρ(z) = ρcVc(z) + ρmVm(z), (2.18)

µ(z) = µcVc(z) + µmVm(z). (2.19)

The subscripts c and m stand for ceramic and metallic phases; Vc and Vm are volume

fractions. E, ν and ρ are respectively modulus of elasticity, Poisson’s ratio and mass

density. Spatial variations of the volume fractions are represented according to the

power law as follows:

Vc(z) = (
1

2
+
z

h
)n, (2.20)

Vm(z) = 1− Vc(z). (2.21)

The power-law index n is a non-negative variable parameter which defines property

distribution profiles. When n is less than 1 the nano-plate is ceramic-rich, whereas if

n is greater than unity plate has a metal-rich profile.

The relation between local stress tensor tij and strain tensor εij is expressed by

txx

tyy

txy

txz

tyz


=



Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q66 0

0 0 0 0 Q66





εxx

εyy

2εxy

2εxz

2εyz


, (2.22)

where,

Q11 = Q22 =
E(z)

1− ν(z)2 (2.23)

Q12 = Q21 =
E(z)υ(z)

1− ν(z)2 (2.24)

Q66 =
E(z)

2(1 + ν(z))
(2.25)
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2.4 Derivation of the Governing Equations of Nano-plate Using Nonlocal Bal-

ance Law

According to nonlocal balance law:

σij,j + fi = ρüi i, j = x, y, z (2.26)

fi and ui are respectively body force and displacement in i direction. In order to

obtain equations of motion in the absence of body forces, fi is set to be zero. Multi-

plying both sides of the Equation 2.26 by nonlocal operator, we have:

tij,j = (1− µ∇2)ρüi (2.27)

For i = x, using Equations 2.1-2.3 and integrating the balance Equation 2.27 through

the thickness of the plate and simplifying, first governing equation of the nano-plate

is derived as:

∂Nxx

∂x
+
∂Nxy

∂y
=

{
I0
∂2u0

∂t2
− I1

∂3w

∂t2∂x
+ I3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L0
∂2u0

∂t2
− L1

∂3w

∂t2∂x
+ L3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

} (2.28)

For i = y, using Equations 2.1-2.3 and integrating the balance Equation 2.27 through

the thickness of the plate and simplifying, second governing equation of the nano-

plate is derived as:

∂Nyy

∂y
+
∂Nxy

∂x
=

{
I0
∂2v0

∂t2
− I1

∂3w

∂t2∂y
+ I3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L0
∂2v0

∂t2
− L1

∂3w

∂t2∂y
+ L3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

} (2.29)

For i = x, using Equations 2.1-2.3 and multiplying both sides of the Equation 2.27

by f(z) and integrating through the thickness of the plate and using integration by

parts, third governing equation of the nano-plate is derived as:

∂Pxx
∂x

+
∂Pxy
∂y
−Rxz =

{
I3
∂2u0

∂t2
− I4

∂3w

∂t2∂x
+ I5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L3
∂2u0

∂t2
− L4

∂3w

∂t2∂x
+ L5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

} (2.30)

For i = y, using Equations 2.1-2.3 and multiplying both sides of the Equation 2.27

by f(z) and integrating through the thickness of the plate and using integration by
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parts, forth governing equation of the nano-plate is derived as:

∂Pyy
∂y

+
∂Pxy
∂x
−Ryz =

{
I3
∂2v0

∂t2
− I4

∂3w

∂t2∂y
+ I5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L3
∂2v0

∂t2
− L4

∂3w

∂t2∂y
+ L5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

} (2.31)

For i = z, using Equations 2.1-2.3 and integrating the balance Equation 2.27 through

the thickness of the plate and simplifying:

∂Nxz

∂x
+
∂Nyz

∂y
= I0

∂2w

∂t2
−∇2L0

∂2w

∂t2
(2.32)

For i = x, using Equations 2.1-2.3 and multiplying both sides of the Equation 2.27

by z and integrating through the thickness of the plate and using integration by parts:

∂Mxx

∂x
+
∂Mxy

∂y
−Nxz =

{
I1
∂2u0

∂t2
− I2

∂3w

∂t2∂x
+ I4(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L1
∂2u0

∂t2
− L2

∂3w

∂t2∂x
+ L4(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

} (2.33)

For i = y, using Equations 2.1-2.3 and multiplying both sides of the Equation 2.27

by z and integrating through the thickness of the plate and using integration by parts:

∂Myy

∂y
+
∂Mxy

∂x
−Nyz =

{
I1
∂2v0

∂t2
− I2

∂3w

∂t2∂y
+ I4(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L1
∂2v0

∂t2
− L2

∂3w

∂t2∂y
+ L4(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

} (2.34)

Combining Equations 2.32-2.34 and using Equations 2.30-2.31, fifth governing equa-

tion of the nano-plate is derived as:

∂2Mxx

∂x2
+
∂2Myy

∂y2
+ 2

∂2Mxy

∂x∂y
− ∂2Pxx

∂x2
− ∂2Pyy

∂y2
− 2

∂2Pxy
∂x∂y

+
∂Ryz

∂y
+
∂Rxz

∂x
=

I0
∂2w

∂t2
+ (I1 − I3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
) + (−I2 + 2I4 − I5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
)

+ (I4 − I5)(
∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)−∇2

{
L0
∂2w

∂t2
+ (L1 − L3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
)

}
−∇2

{
+(−L2 + 2L4 − L5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
) + (L4 − L5)(

∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)

}
(2.35)

In the governing equations, Nαβ , Mαβ , Pαβ , Nαz and Rαz are stress resultants defined

by the following equations
Nαβ

Mαβ

Pαβ

 =
∫ h/2
−h/2 tαβ


1

z

f

 dz, α = x, y, β = x, y, (2.36)
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 Nαz

Rαz

 =
∫ h/2
−h/2 tαz

 1

f ′

 dz, α = x, y, (2.37)

Coefficient terms in the governing equations of the nano-plate are defined as

I0

I1

I2

I3

I4

I5


=

∫ h/2

−h/2
ρ(z)



1

z

z2

f

zf

f 2


dz, (2.38)



L0

L1

L2

L3

L4

L5


=

∫ h/2

−h/2
µ(z)ρ(z)



1

z

z2

f

zf

f 2


dz. (2.39)

2.5 Derivation of Governing Equations and Boundary Conditions for Free Vi-

bration of Nano-plate Using Hamilton’s Principle

For an FGM composite nano-plate undergoing free vibrations, Hamilton’s principle

requires that

δ

t2∫
t1

(K − U)dt = 0, (2.40)

where U is strain energy and K is kinetic energy. Variations of the energy terms are

written as:

δU =

∫∫∫
V

(σxxδεxx + σyyδεyy + 2σxyδεxy + 2σxzδεxz + +2σyzδεyz) dV (2.41)

δK =

∫∫∫
V

ρ(z)(u̇δu̇+ v̇δv̇ + ẇδẇ) dV (2.42)
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Using Equations 2.1-2.3, 2.7-2.12, 2.14, 2.40, 2.41-2.42 and variational principles,

governing partial differential equations are derived as follows:

∂Nxx

∂x
+
∂Nxy

∂y
=

{
I0
∂2u0

∂t2
− I1

∂3w

∂t2∂x
+ I3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L0
∂2u0

∂t2
− L1

∂3w

∂t2∂x
+ L3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

} (2.43)

∂Nyy

∂y
+
∂Nxy

∂x
=

{
I0
∂2v0

∂t2
− I1

∂3w

∂t2∂y
+ I3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L0
∂2v0

∂t2
− L1

∂3w

∂t2∂y
+ L3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

} (2.44)

∂2Mxx

∂x2
+
∂2Myy

∂y2
+ 2

∂2Mxy

∂x∂y
− ∂2Pxx

∂x2
− ∂2Pyy

∂y2
− 2

∂2Pxy
∂x∂y

+
∂Ryz

∂y
+
∂Rxz

∂x
=

I0
∂2w

∂t2
+ (I1 − I3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
) + (−I2 + 2I4 − I5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
)

+ (I4 − I5)(
∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)−∇2

{
L0
∂2w

∂t2
+ (L1 − L3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
)

}
−∇2

{
+(−L2 + 2L4 − L5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
) + (L4 − L5)(

∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)

}
(2.45)

∂Pxx
∂x

+
∂Pxy
∂y
−Rxz =

{
I3
∂2u0

∂t2
− I4

∂3w

∂t2∂x
+ I5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L3
∂2u0

∂t2
− L4

∂3w

∂t2∂x
+ L5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

} (2.46)

∂Pyy
∂y

+
∂Pxy
∂x
−Ryz =

{
I3
∂2v0

∂t2
− I4

∂3w

∂t2∂y
+ I5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L3
∂2v0

∂t2
− L4

∂3w

∂t2∂y
+ L5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

} (2.47)

These equations are the same as those obtained in Section 2.4 using nonlocal balance

law. In order to solve the equations numerically, they should be written in terms of

displacements as follows:

A0
∂2u0

∂x2
+C0

∂2u0

∂y2
+(B0+C0)

∂2v0

∂x∂y
+(A3−A1)

∂3w

∂x3
+(B3−B1−2C1+2C3)

∂3w

∂x∂y2

+A3
∂2φx
∂x2

+C3
∂2φx
∂y2

+(B3+C3)
∂2φy
∂x∂y

=

{
I0
∂2u0

∂t2
− I1

∂3w

∂t2∂x
+ I3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L0
∂2u0

∂t2
− L1

∂3w

∂t2∂x
+ L3(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
, (2.48)
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C0
∂2v0

∂x2
+A0

∂2v0

∂y2
+(B0+C0)

∂2u0

∂x∂y
+(A3−A1)

∂3w

∂y3
+(B3−B1−2C1+2C3)

∂3w

∂y∂x2

+C3
∂2φy
∂x2

+A3
∂2φy
∂y2

+(B3+C3)
∂2φx
∂x∂y

=

{
I0
∂2v0

∂t2
− I1

∂3w

∂t2∂y
+ I3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L0
∂2v0

∂t2
− L1

∂3w

∂t2∂y
+ L3(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
, (2.49)

(A1−A3)(
∂3v0

∂y3
+
∂3u0

∂x3
)+(2A4−A2−A5)(

∂4w

∂x4
+
∂4w

∂y4
)+(A4−A5)(

∂3φx
∂x3

+
∂3φy
∂y3

)

+(B1−B3+2C1−2C3)(
∂3v0

∂x2∂y
+
∂3u0

∂x∂y2
)+2(2B4−B2−B5+4C4−2C2−2C5)

∂4w

∂x2∂y2

+(B4−B5 +2C4−2C5)(
∂3φy
∂x2∂y

+
∂3φx
∂x∂y2

)+C6(
∂φx
∂x

+
∂φy
∂y

)+C6(
∂2w

∂x2
+
∂2w

∂y2
) =

I0
∂2w

∂t2
+ (I1 − I3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
) + (−I2 + 2I4 − I5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
)

+ (I4 − I5)(
∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)−∇2

{
L0
∂2w

∂t2
+ (L1 − L3)(

∂3u0

∂t2∂x
+

∂3v0

∂t2∂y
)

}
−∇2

{
+(−L2 + 2L4 − L5)(

∂4w

∂t2∂x2
+

∂4w

∂t2∂y2
) + (L4 − L5)(

∂3φx
∂t2∂x

+
∂3φy
∂t2∂y

)

}
,

(2.50)

A3
∂2u0

∂x2
+C3

∂2u0

∂y2
+(B3+C3)

∂2v0

∂x∂y
+(A5−A4)

∂3w

∂x3
+(B5−B4−2C4+2C5)

∂3w

∂x∂y2

+ A5
∂2φx
∂x2

+ C5
∂2φx
∂y2

+ (B5 + C5)
∂2φy
∂x∂y

− C6φx − C6
∂w

∂x
={

I3
∂2u0

∂t2
− I4

∂3w

∂t2∂x
+ I5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
−∇2

{
L3
∂2u0

∂t2
− L4

∂3w

∂t2∂x
+ L5(

∂2φx
∂t2

+
∂3w

∂t2∂x
)

}
, (2.51)

C3
∂2v0

∂x2
+A3

∂2v0

∂y2
+(B3+C3)

∂2u0

∂x∂y
+(A5−A4)

∂3w

∂y3
+(B5−B4−2C4+2C5)

∂3w

∂y∂x2

+ C5
∂2φy
∂x2

+ A5
∂2φy
∂y2

+ (B5 + C5)
∂2φx
∂x∂y

− C6φy − C6
∂w

∂y
={

I3
∂2v0

∂t2
− I4

∂3w

∂t2∂y
+ I5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
−∇2

{
L3
∂2v0

∂t2
− L4

∂3w

∂t2∂y
+ L5(

∂2φy
∂t2

+
∂3w

∂t2∂y
)

}
. (2.52)
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in which, the coefficient terms are given as

A0

A1

A2

A3

A4

A5


=

∫ h/2

−h/2
Q11



1

z

z2

f(z)

zf(z)

(f(z))2


dz (2.53)



B0

B1

B2

B3

B4

B5


=

∫ h/2

−h/2
Q12



1

z

z2

f(z)

zf(z)

(f(z))2


dz (2.54)



C0

C1

C2

C3

C4

C5

C6



=

∫ h/2

−h/2
Q66



1

z

z2

f(z)

zf(z)

(f(z))2

(f ′(z))2



dz (2.55)

The main advantage of Hamilton’s principle is that the governing equations and the

boundary conditions can be found simultaneously. The boundary conditions are ob-

tained as:

u0 = 0, or Nxxnx +Nxyny = 0, (2.56)

v0 = 0, or Nxynx +Nyyny = 0, (2.57)

φx = 0, or Pxxnx + Pxyny = 0, (2.58)

φy = 0, or Pxynx + Pyyny = 0, (2.59)

∂w
∂x

= 0, or (Mxx − Pxx)nx + (Mxy − Pxy)ny = 0, (2.60)

∂w
∂y

= 0, or (Mxy − Pxy)nx + (Myy − Pyy)ny = 0, (2.61)
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w = 0, or

(
∂Mxx

∂x
+
∂Mxy

∂y
−∂Pxx

∂x
−∂Pxy

∂y
+Rxz)nx+(

∂Myy

∂y
+
∂Mxy

∂x
−∂Pyy

∂y
−∂Pxy

∂x
+Ryz)ny ={

(I1 − I3)
∂2u0

∂t2
+ (−I2 + 2I4 − I5)

∂3w

∂x∂t2
+ (I4 − I5)

∂2φx
∂t2

}
nx

+

{
(I1 − I3)

∂2v0

∂t2
+ (−I2 + 2I4 − I5)

∂3w

∂y∂t2
+ (I4 − I5)

∂2φy
∂t2

}
ny

−∇2

{
(L1 − L3)

∂2u0

∂t2
+ (−L2 + 2L4 − L5)

∂3w

∂x∂t2
+ (L4 − L5)

∂2φx
∂t2

}
nx

−∇2

{
(L1 − L3)

∂2v0

∂t2
+ (−L2 + 2L4 − L5)

∂3w

∂y∂t2
+ (L4 − L5)

∂2φy
∂t2

}
ny, (2.62)

where nx and ny are the components of the unit outward normal vector.

2.6 Derivation of Governing Equations for Bending and Buckling

Considering the exact elasticity solution for static problems of plates, time-dependent

terms are set to be zero in the governing equations found in Section 2.4. Addition-

ally, boundary conditions associated with the bending and buckling loads should be

treated as traction type of boundary conditions in the solution. In order to overcome

this complexity of a full three-dimensional elasticity solution, two-dimensional equi-

librium equations are used in the literature to solve the static problems of plates. In

order to transform the initial three-dimensional elastic problem in a two-dimensional

one, the distribution of the nonlocal stresses along the thickness of the plate has been

replaced with the resulting nonlocal internal actions defined on the reference surface.

Using this method, the equations of equilibrium for bending and buckling of nano-

plate are obtained as:
∂Nnl

xx

∂x
+
∂Nnl

xy

∂y
= 0 (2.63)

∂Nnl
yy

∂y
+
∂Nnl

xy

∂x
= 0 (2.64)

∂2Mnl
xx

∂x2
+
∂2Mnl

yy

∂y2
+ 2

∂2Mnl
xy

∂x∂y
− ∂2P nl

xx

∂x2
− ∂2P nl

yy

∂y2
− 2

∂2P nl
xy

∂x∂y

+
∂Rnl

yz

∂y
+
∂Rnl

xz

∂x
+ q + Txx

∂2w

∂x2
+ Tyy

∂2w

∂y2
= 0 (2.65)

17



∂P nl
xx

∂x
+
∂P nl

xy

∂y
−Rnl

xz = 0 (2.66)

∂P nl
yy

∂y
+
∂P nl

xy

∂x
−Rnl

yz = 0 (2.67)

In which, q is distributed bending force, Txx and Tyy are buckling loads. Nonlocal

stress resultants are defined by:
Nnl

αβ

Mnl
αβ

P nl
αβ

 =
∫ h/2
−h/2 σαβ


1

z

f

 dz, α = x, y, β = x, y, (2.68)

 Nnl
αz

Rnl
αz

 =
∫ h/2
−h/2 σαz

 1

f ′

 dz, α = x, y, (2.69)

Only the local stress resultants can be written in terms of displacements. Therefore, in

order to be able to solve the governing equations for bending and buckling, we need

to express the equations in terms of local stress resultants. For this purpose, assum-

ing a constant nonlocal parameter through the thickness of the plate, the following

equations can be obtained using Equations 2.14,2.36,2.37,2.68,2.69:
Nαβ

Mαβ

Pαβ

 = (1− µ∇2)


Nnl

αβ

Mnl
αβ

P nl
αβ

 , α = x, y, β = x, y, (2.70)

 Nαz

Rαz

 = (1− µ∇2)

 Nnl
αz

Rnl
αz

 , α = x, y, (2.71)

Multiplying both sides of the equilibrium Equations 2.63-2.67 by nonlocal operator

and using Equations 2.70-2.71, nonlocal governing equations for bending and buck-

ling of nanoplate are described in terms of local stress resultants as follows:

∂Nxx

∂x
+
∂Nxy

∂y
= 0 (2.72)

∂Nyy

∂y
+
∂Nxy

∂x
= 0 (2.73)

∂2Mxx

∂x2
+
∂2Myy

∂y2
+ 2

∂2Mxy

∂x∂y
− ∂2Pxx

∂x2
− ∂2Pyy

∂y2
− 2

∂2Pxy
∂x∂y

+
∂Ryz

∂y
+
∂Rxz

∂x
+ (1− µ∇2)(q + Txx

∂2w

∂x2
+ Tyy

∂2w

∂y2
) = 0 (2.74)
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∂Pxx
∂x

+
∂Pxy
∂y
−Rxz = 0 (2.75)

∂Pyy
∂y

+
∂Pxy
∂x
−Ryz = 0 (2.76)

Equations 2.72-2.76 are only valid under the assumption of constant nonlocal pa-

rameter. If one wants to solve bending and buckling problems assuming a variable

nonlocal parameter, equilibrium equations given by Equations 2.63-2.67 need to be

considered. But these equations contain nonlocal stress resultants and they could

not be written in terms of displacements. In order to solve these equations, another

method needs to be developed which is out of the scope of this study.
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CHAPTER 3

NUMERICAL SOLUTION

In this chapter, numerical solution technique is described in details. Generalized dif-

ferential quadrature method is used to solve the governing partial differential equa-

tions and associated boundary conditions. MATLAB software is used to generate

necessary computer programs to implement the numerical solutions.

3.1 Generalized Differential Quadrature Method (GDQM)

In some complex problems, analytical solutions of governing equations are unattain-

able. In such cases, a numerical method is used to solve the governing system of

equations. As a result, adopting a suitable numerical technique plays a crucial role in

approaching different engineering problems. GDQM is a powerful numerical tech-

nique for solving the governing partial differential equations of the systems with sin-

gle and regular shape domains, like rectangular plates. This method is applicable to

wide variety of problems with different boundary conditions using a small number of

grid points which makes GDQM a powerful approach with respect to time efficiency

and versatility.

Bellman and Casti [71] proposed DQM for evaluating the global and partial deriva-

tives of any smooth function. According to this method, derivatives of a function g

are approximated in a neighborhood of a point of its domain using a weighted linear

sum of the values assumed by the same function in all the points of the domain along
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the direction of derivation:

∂ng(x,t)
∂xn

|xi =
N∑
j=1

c
(n)
ij g (xj, t), i= 1, 2,...,N (3.1)

where c(n)
ij are weighting coefficients for the nth-order derivative and N is the num-

ber of nodes. Shu [72] proposed a generalized approach of calculating weighting

coefficients using Lagrange interpolating polynomials. This method of weighting co-

efficients calculation is based on a recursive formula which eliminates the need for

solving any algebraic system. The following equations can be used to calculate the

coefficients for the derivatives of first and higher orders:

c
(1)
ij = M(1)(xi)

(xi−xj)M(1)(xj)
, i 6= j (3.2)

c
(1)
ii = M(2)(xi)

2M(1)(xi)
, i=j (3.3)

c
(m)
ij = m

(
c

(m−1)
ii cij −

c
(m−1)
ij

xi−xj

)
, i 6= j,i,j= 1, 2,...,N,m= 2, 3,...,N − 1 (3.4)

c
(m)
ii = −

N∑
j=1,j 6=i

c
(m)
ij , i= 1, 2,...,N (3.5)

Where M is defined by

M(x) =
N∏
j=1

(x− xj) = (x− x1)(x− x2)...(x− xN) (3.6)

3.2 Numerical Solution for Simply-supported and Cantilever Nano-plates

In parametric analyses, we consider two different types of nano-plate configurations:

A nano-plate simply-supported over all edges; and a cantilever nano-plate fixed at

x = 0. When the interpolants are algebraic polynomials [73, 74], as N → ∞,

effective nodal point distributions should satisfy the density condition given by

density ∼ N

π
√

1− x2
(3.7)

This means that the points are clustered near x = ±1. In this study, for both simply-

supported and cantilever nano-plates, nodal points are identified as Chebyshev-Gauss-

Lobatto points, which are given by

xi = 1
2

{
1− cos

(
π(i−1)
N−1

)}
, i= 1, 2,...,N. (3.8)
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This set of nodal grid points satisfies the condition given by Equation 3.7. More

discussion on the accuracy of polynomial interpolation and choice of grid points is

given in References [73, 74].

Applying the representation in Equation 3.1 to the differential operators, series forms

of the governing equations are derived as:

A0

Nx∑
k=1

cik
(2)u0k,j + C0

Ny∑
k=1

cjk
(2)u0i,k + (B0 + C0)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)v0k,m

+(A3 − A1)
Nx∑
k=1

cik
(3)wk,j

+(B3 −B1 − 2C1 + 2C3)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)wk,m + A3

Nx∑
k=1

cik
(2)φxk,j

+C3

Ny∑
k=1

cjk
(2)φxi,k + (B3 + C3)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φyk,m = I0ü0

+(I3 − I1)
Nx∑
k=1

cik
(1)ẅk,j + I3φ̈x − L0

Nx∑
k=1

cik
(2)ü0k,j

−(L3 − L1)
Nx∑
k=1

cik
(3)ẅk,j − L3

Nx∑
k=1

cik
(2)φ̈xk,j − L0

Ny∑
k=1

cjk
(2)ü0i,k

−(L3 − L1)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)ẅk,m − L3

Ny∑
k=1

cjk
(2)φ̈xi,k ,

(3.9)

C0

Nx∑
k=1

cik
(2)v0k,j + A0

Ny∑
k=1

cjk
(2)v0i,k + (B0 + C0)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)u0k,m

+(A3 − A1)
Ny∑
k=1

cjk
(3)wi,k

+(B3 −B1 − 2C1 + 2C3)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)wk,m + C3

Nx∑
k=1

cik
(2)φyk,j

+A3

Ny∑
k=1

cjk
(2)φyi,k + (B3 + C3)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φxk,m = I0v̈0

+(I3 − I1)
Ny∑
k=1

cjk
(1)ẅi,k + I3φ̈y − L0

Nx∑
k=1

cik
(2)v̈0k,j

−(L3 − L1)
Ny∑
k=1

cjk
(3)ẅi,k − L3

Nx∑
k=1

cik
(2)φ̈yk,j − L0

Ny∑
k=1

cjk
(2)v̈0i,k

−(L3 − L1)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)ẅk,m − L3

Ny∑
k=1

cjk
(2)φ̈yi,k ,

(3.10)
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(A1 − A3)(
Ny∑
k=1

cjk
(3)v0i,k +

Nx∑
k=1

cik
(3)u0k,j) + (2A4 − A2 − A5)(

Nx∑
k=1

cik
(4)wk,j

+
Ny∑
k=1

cjk
(4)wi,k) + (A4 − A5)(

Nx∑
k=1

cik
(3)φxk,j +

Ny∑
k=1

cjk
(3)φyi,k)

+(B1 −B3 + 2C1 − 2C3)(
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)v0k,m +

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)u0k,m)

+2(2B4 −B2 −B5 + 4C4 − 2C2 − 2C5)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(2)wk,m

+(B4 −B5 + 2C4 − 2C5)(
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)φyk,m +

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)φxk,m)

+C6(
Nx∑
k=1

cik
(1)φxk,j +

Ny∑
k=1

cjk
(1)φyi,k) + C6(

Nx∑
k=1

cik
(2)wk,j +

Ny∑
k=1

cjk
(2)wi,k) =

I0ẅ + (I1 − I3)(
Nx∑
k=1

cik
(1)ü0k,j +

Ny∑
k=1

cjk
(1)v̈0i,k)

+(−I2 + 2I4 − I5)(
Nx∑
k=1

cik
(2)ẅk,j +

Ny∑
k=1

cjk
(2)ẅi,k)

+(I4 − I5)(
Nx∑
k=1

cik
(1)φ̈xk,j +

Ny∑
k=1

cjk
(1)φ̈yi,k)− L0

Nx∑
k=1

cik
(2)ẅk,j

−(L1 − L3)(
Nx∑
k=1

cik
(3)ü0k,j +

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)v̈0k,m)

−(−L2 + 2L4 − L5)(
Nx∑
k=1

cik
(4)ẅk,j +

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(2)ẅk,m)

−(L4 − L5)(
Nx∑
k=1

cik
(3)φ̈xk,j +

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)φ̈yk,m)

−L0

Ny∑
k=1

cjk
(2)ẅi,k − (L1 − L3)(

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)ü0k,m +

Ny∑
k=1

cjk
(3)v̈0i,k)

−(−L2 + 2L4 − L5)(
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(2)ẅk,m +

Ny∑
k=1

cjk
(4)ẅi,k)

−(L4 − L5)(
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)φ̈xk,m +

Ny∑
k=1

cjk
(3)φ̈yi,k),

(3.11)

A3

Nx∑
k=1

cik
(2)u0k,j + C3

Ny∑
k=1

cjk
(2)u0i,k + (B3 + C3)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)v0k,m

+(A5 − A4)
Nx∑
k=1

cik
(3)wk,j + (B5 −B4 − 2C4 + 2C5)

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)wk,m

+A5

Nx∑
k=1

cik
(2)φxk,j + C5

Ny∑
k=1

cjk
(2)φxi,k + (B5 + C5)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φyk,m

−C6φx − C6

Nx∑
k=1

cik
(1)wk,j = I3ü0 + (I5 − I4)

Nx∑
k=1

cik
(1)ẅk,j + I5φ̈x

−L3

Nx∑
k=1

cik
(2)ü0k,j − (L5 − L4)

Nx∑
k=1

cik
(3)ẅk,j − L5

Nx∑
k=1

cik
(2)φ̈xk,j

−L3

Ny∑
k=1

cjk
(2)ü0i,k − (L5 − L4)

Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)ẅk,m − L5

Ny∑
k=1

cjk
(2)φ̈xi,k ,

(3.12)
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C3

Nx∑
k=1

cik
(2)v0k,j + A3

Ny∑
k=1

cjk
(2)v0i,k + (B3 + C3)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)u0k,m

+(A5 − A4)
Ny∑
k=1

cjk
(3)wi,k + (B5 −B4 − 2C4 + 2C5)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)wk,m

+C5

Nx∑
k=1

cik
(2)φyk,j + A5

Ny∑
k=1

cjk
(2)φyi,k + (B5 + C5)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φxk,m

−C6φy − C6

Ny∑
k=1

cjk
(1)wi,k = I3v̈0 + (I5 − I4)

Ny∑
k=1

cjk
(1)ẅi,k + I5φ̈y

−L3

Nx∑
k=1

cik
(2)v̈0k,j − (L5 − L4)

Ny∑
k=1

cjk
(3)ẅi,k − L5

Nx∑
k=1

cik
(2)φ̈yk,j

−L3

Ny∑
k=1

cjk
(2)v̈0i,k − (L5 − L4)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)ẅk,m − L5

Ny∑
k=1

cjk
(2)φ̈yi,k .

(3.13)

Nx and Ny above are number of nodal points in x- and y-directions, respectively.

For a simply-supported nano-plate, boundary conditions at y = 0 and y = b read:

u0 = v0 = w = φx = 0, (3.14)

A3

Ny∑
k=1

cjk
(1)v0i,k + (A5 − A4)

Ny∑
k=1

cjk
(2)wi,k + A5

Ny∑
k=1

cjk
(1)φyi,k = 0, (3.15)

A1

Ny∑
k=1

cjk
(1)v0i,k + (A4 − A2)

Ny∑
k=1

cjk
(2)wi,k + A4

Ny∑
k=1

cjk
(1)φyi,k = 0, (3.16)

and at x = 0 and x = a, we have

u0 = v0 = w = φy = 0, (3.17)

A3

Nx∑
k=1

cik
(1)u0k,j + (A5 − A4)

Nx∑
k=1

cik
(2)wk,j + A5

Nx∑
k=1

cik
(1)φxk,j = 0, (3.18)

A1

Nx∑
k=1

cik
(1)u0k,j + (A4 − A2)

Nx∑
k=1

cik
(2)wk,j + A4

Nx∑
k=1

cik
(1)φxk,j = 0. (3.19)

For the cantilever nano-plate fixed at x = 0, boundary conditions at the cantilever

edge are:

u0 = v0 = w = φx = φy =
∂w

∂x
= 0. (3.20)

The conditions at x = a are derived as:

A0

Nx∑
k=1

cik
(1)u0k,j + (A3 − A1)

Nx∑
k=1

cik
(2)wk,j + A3

Nx∑
k=1

cik
(1)φxk,j

+B0

Ny∑
k=1

cjk
(1)v0i,k + (B3 −B1)

Ny∑
k=1

cjk
(2)wi,k +B3

Ny∑
k=1

cjk
(1)φyi,k = 0,

(3.21)
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C0(
Ny∑
k=1

cjk
(1)u0i,k +

Nx∑
k=1

cik
(1)v0k,j) + 2(C3 − C1)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)wk,m

+C3(
Ny∑
k=1

cjk
(1)φxi,k +

Nx∑
k=1

cik
(1)φyk,j) = 0,

(3.22)

A3

Nx∑
k=1

cik
(1)u0k,j + (A5 − A4)

Nx∑
k=1

cik
(2)wk,j + A5

Nx∑
k=1

cik
(1)φxk,j

+B3

Ny∑
k=1

cjk
(1)v0i,k + (B5 −B4)

Ny∑
k=1

cjk
(2)wi,k +B5

Ny∑
k=1

cjk
(1)φyi,k = 0,

(3.23)

C3(
Ny∑
k=1

cjk
(1)u0i,k +

Nx∑
k=1

cik
(1)v0k,j) + 2(C5 − C4)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)wk,m

+C5(
Ny∑
k=1

cjk
(1)φxi,k +

Nx∑
k=1

cik
(1)φyk,j) = 0,

(3.24)

(A1 − A3)
Nx∑
k=1

cik
(2)u0k,j + (−A2 + 2A4 − A5)

Nx∑
k=1

cik
(3)wk,j

+(A4 − A5)
Nx∑
k=1

cik
(2)φxk,j + (B1 −B3)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)v0k,m

+(−B2 + 2B4 −B5)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)wk,m

+(B4 −B5)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φy

k,m

+(C1 − C3)(
Ny∑
k=1

cjk
(2)u0i,k +

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)v0

k,m
)

+2(−C2 + 2C4 − C5)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)wk,m

+(C4 − C5)(
Ny∑
k=1

cjk
(2)φxi,k +

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φy

k,m
)

+C6(φx +
Nx∑
k=1

cik
(1)wk,j) = (I1 − I3)ü0

+(−I2 + 2I4 − I5)
Nx∑
k=1

cik
(1)ẅk,j + (I4 − I5)φ̈x

−(L1 − L3)
Nx∑
k=1

cik
(2)ü0k,j − (−L2 + 2L4 − L5)

Nx∑
k=1

cik
(3)ẅk,j

−(L4 − L5)
Nx∑
k=1

cik
(2)φ̈xk,j − (L1 − L3)

Ny∑
k=1

cjk
(2)ü0i,k

−(−L2 + 2L4 − L5)
Ny∑
m=1

cjm
(2)

Nx∑
k=1

cik
(1)ẅk,m

−(L4 − L5)
Ny∑
k=1

cjk
(2)φ̈xi,k ,

(3.25)
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(A1 − A3)
Nx∑
k=1

cik
(1)u0k,j + (−A2 + 2A4 − A5)

Nx∑
k=1

cik
(2)wk,j

+(A4 − A5)
Nx∑
k=1

cik
(1)φxk,j + (B1 −B3)

Ny∑
k=1

cjk
(1)v0i,k

+(−B2 + 2B4 −B5)
Ny∑
k=1

cjk
(2)wi,k + (B4 −B5)

Ny∑
k=1

cjk
(1)φyi,k = 0.

(3.26)

And, the conditions at y = 0 and y = b are of the forms:

C0(
Ny∑
k=1

cjk
(1)u0i,k +

Nx∑
k=1

cik
(1)v0k,j) + 2(C3 − C1)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)wk,m

+C3(
Ny∑
k=1

cjk
(1)φxi,k +

Nx∑
k=1

cik
(1)φyk,j) = 0,

(3.27)

B0

Nx∑
k=1

cik
(1)u0k,j + (B3 −B1)

Nx∑
k=1

cik
(2)wk,j +B3

Nx∑
k=1

cik
(1)φxk,j

+A0

Ny∑
k=1

cjk
(1)v0i,k + (A3 − A1)

Ny∑
k=1

cjk
(2)wi,k + A3

Ny∑
k=1

cjk
(1)φyi,k = 0,

(3.28)

C3(
Ny∑
k=1

cjk
(1)u0i,k +

Nx∑
k=1

cik
(1)v0k,j) + 2(C5 − C4)

Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)wk,m

+C5(
Ny∑
k=1

cjk
(1)φxi,k +

Nx∑
k=1

cik
(1)φyk,j) = 0,

(3.29)

B3

Nx∑
k=1

cik
(1)u0k,j + (B5 −B4)

Nx∑
k=1

cik
(2)wk,j +B5

Nx∑
k=1

cik
(1)φxk,j

+A3

Ny∑
k=1

cjk
(1)v0i,k + (A5 − A4)

Ny∑
k=1

cjk
(2)wi,k + A5

Ny∑
k=1

cjk
(1)φyi,k = 0,

(3.30)

27



(B1 −B3)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)u0k,m

+(−B2 + 2B4 −B5)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)w

k,m

+(B4 −B5)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φxk,m

+ (A1 − A3)
Ny∑
k=1

cjk
(2)v0i,k

+(−A2 + 2A4 − A5)
Ny∑
k=1

cjk
(3)wi,k + (A4 − A5)

Ny∑
k=1

cjk
(2)φyi,k

+(C1 − C3)(
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)u0k,m

+
Nx∑
k=1

cik
(2)v0k,j)

+2(−C2 + 2C4 − C5)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)wk,m

+(C4 − C5)(
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(1)φxk,m

+
Nx∑
k=1

cik
(2)φyk,j)

+C6(φy +
Ny∑
k=1

cjk
(1)w

i,k
) = (I1 − I3)v̈0

+(−I2 + 2I4 − I5)
Ny∑
k=1

cjk
(1)ẅ

i,k
+ (I4 − I5)φ̈y

−(L1 − L3)
Nx∑
k=1

cik
(2)v̈0k,j

−(−L2 + 2L4 − L5)
Ny∑
m=1

cjm
(1)

Nx∑
k=1

cik
(2)ẅk,m

−(L4 − L5)
Nx∑
k=1

cik
(2)φ̈yk,j

−(L1 − L3)
Ny∑
k=1

cjk
(2)v̈0i,k − (−L2 + 2L4 − L5)

Ny∑
k=1

cjk
(3)ẅ

i,k

−(L4 − L5)
Ny∑
k=1

cjk
(2)φ̈yi,k ,

(3.31)

(B1 −B3)
Nx∑
k=1

cik
(1)u0k,j + (−B2 + 2B4 −B5)

Nx∑
k=1

cik
(2)wk,j

+(B4 −B5)
Nx∑
k=1

cik
(1)φxk,j + (A1 − A3)

Ny∑
k=1

cjk
(1)v0i,k

+(−A2 + 2A4 − A5)
Ny∑
k=1

cjk
(2)wi,k + (A4 − A5)

Ny∑
k=1

cjk
(1)φyi,k = 0.

(3.32)

The series form of the governing equations and boundary conditions given above can

be used to numerically solve the free vibration problem of rectangular nano-plate.

In what follows below, we provide the matrix form of the governing equations and

boundary conditions for plates undergoing free vibrations. In this case, displacement

vector d is defined as

d = d∗eiΩt (3.33)
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where Ω is natural frequency and d∗ is mode shape vector expressed as

d∗ =
{
{ui∗}T , {vi∗}T , {wi∗}T , {φxi∗}

T , {φyi∗}
T
}T
, i = 1, 2, ..., Nx ×Ny. (3.34)

By substituting Equation 3.33 into governing equations and boundary conditions, one

can obtain:

Dbd
∗e +Ddd

∗i − Ω2Md∗i = 0 (3.35)

Bbd
∗e +Bdd

∗i = 0 (3.36)

In equations above, Db and Bb are coefficient matrices associated with exterior points

of the domain, whereas Dd and Bd are related to interior nodes. d∗i is the mode shape

vector for interior points where the governing equations are applied and d∗e is the

mode shape vector for exterior nodes where the boundary equations are applied. For

both simply-supported and cantilever nano-plates, governing equations and boundary

conditions are consolidated into the following matrix form:

(K − Ω2M)d∗i = 0, (3.37)

where M is the mass matrix and K is the stiffness matrix given by

K = −DbBb
−1Bd +Dd (3.38)

Equation 3.37 is solved to determine natural frequencies and the corresponding mode

shape vectors. In order to implement the numerical method described in this chapter,

a computer program is developed using MATLAB software. In the following chapter,

we give detailed results for free vibration of simply supported and cantilever nano-

plates.
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CHAPTER 4

RESULTS

In parametric analyses, we examine free vibrations of ceramic-metal functionally

graded composite nano-plates, whose constituents are silicon nitride (Si3N4) and

stainless steel. Properties for this material pair are given by

Ec = 348.43GPa,νc = 0.3, ρc = 2370kg/m3, (4.1)

Em = 201.04GPa,νm = 0.3, ρm = 8166kg/m3. (4.2)

Nonlocal parameter of the metallic phase is taken as µm = 2nm2 which is a reference

value adopted in various studies in the literature [59, 61]. The degree of variation in

the nonlocal parameter is quantified by the ratio µc/µm. When the nonlocal parameter

is assumed to be constant, µc/µm is equal to unity, whereas when µ varies across

the thickness µc/µm 6= 1. We set µc/µm as 2 in a number of parametric analyses.

In remaining cases, it is varied to be able to assess the influence of the nonlocal

parameter variation.

4.1 Comparison Results

To be able to verify theoretical and computational developments provided in previous

chapters, comparison results are provided in Tables 4.1 and 4.2. In Table 4.1, com-

parison results are given for dimensionless natural frequencies of a homogeneous

plate according to different plate theories. It can be seen that the results of this study

are in good agreement with those provided by Aghababaei et al. [28]. In Table 4.2

we provide comparisons to the results given in the article by Zare et al. [58]. This
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article presents an analytical method for obtaining results regarding the free vibra-

tions of functionally graded rectangular nano-plates under the assumption of constant

nonlocal parameter. Material properties used in [58] are the same as those given by

Equations 4.1 and 4.2. Comparisons of first three dimensionless natural frequencies

of a simply-supported functionally graded nano-plate are given in Table 4.2. Dimen-

sionless natural frequency is defined as

ω = Ωh

√
2 (1 + νc) ρc

Ec
. (4.3)

Table 4.1: Comparisons of dimensionless natural frequencies calculated for a simply-
supported homogeneous nano-plate. a = 10nm, a/h = 10, a/b = 1, ν = 0.3,
E = 30× 106, Nx = Ny = 11.

µc = µm = µ Plate Theory ω11 ω22 ω33

0

TSDT
Present study 0.0934 0.3448 0.6947
Aghababaei et al. [28] 0.0935 0.3458 0.7020

MPT
Present study 0.0921 0.3395 0.6811
Aghababaei et al. [28] 0.0930 0.3414 0.6889

KPT
Present study 0.0955 0.3831 0.8665
Aghababaei et al. [28] 0.0963 0.3853 0.8669

Table 4.2: Comparisons of dimensionless first three natural frequencies calculated
for a simply-supported functionally graded nano-plate possesing a constant nonlocal
parameter µ. n = 5, a = 10nm, a/h = 20, Nx = Ny = 11.

a/b
µc = µm = µ

(nm2)
ω1 ω2 ω3

1

0
Present study 0.0114 0.0285 0.0285
Zare et al. [58] 0.0114 0.0281 0.0281

1
Present study 0.0104 0.0233 0.0233
Zare et al. [58] 0.0104 0.0230 0.0230

4
Present study 0.0085 0.0165 0.0165
Zare et al. [58] 0.0085 0.0165 0.0165

2

0
Present study 0.0285 0.0454 0.0732
Zare et al. [58] 0.0281 0.0443 0.0704

1
Present study 0.0233 0.0340 0.0484
Zare et al. [58] 0.0230 0.0330 0.0466

4
Present study 0.0165 0.0223 0.0296
Zare et al. [58] 0.0165 0.0218 0.0286
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Both our results and those provided in [58] are generated by using Kirchhoff plate

theory. Natural frequencies computed in the present study are in very good agreement

with those given by Zare et al. [58]. Different solution methods that are employed to

obtain frequency results is the source of small differences found between the results

of present study and those given by Zare et al. [58]. It can be seen that by increasing

the nonlocal parameter, natural frequencies decrease. This is due to the softening

effect of the nonlocal elasticity theory on nano-scale structures. The symmetry of the

problem in case of a/b = 1 results in the same second and third natural frequencies

for a given configuration of the simply-supported nano-plate.

4.2 Free Vibration Results

In Figures 4.1-4.14 and Tables 4.4-4.7, results of our parametric analyses for func-

tionally graded rectangular nano-plates are provided taking into consideration the

spatial variation of nonlocal parameter through the thickness of plate. In Table 4.3,

the results of convergence study on dimensionless first natural frequencies of simply-

supported and cantilever nano-plates are provided. It can be seen that the first dimen-

sionless natural frequency converges at Nx = Ny = 11 for simply-supported nano-

plate. However, for cantilever nano-plate, more number of grid points are needed

for better accuracy and the frequencies converge at Nx = Ny = 13. Based on this

convergence study, for generating all of the following results in this section with the

exception of figures for the mode shapes of nano-plates, the number of grid points

for simply-supported and cantilever nano-plates are chosen as Nx = Ny = 11 and

Nx = Ny = 13, respectively. To be able to generate smooth mode shapes of nano-

plates, Nx = Ny = 33 is adopted as the number of grid points for generating Figures

4.3 and 4.4.

Table 4.3: Convergence study on dimensionless first natural frequencies of simply-
supported and cantilever nano-plates. a/

√
µm = 10, a/b = 1, a/h = 20, n = 2,

µm = 2nm2, µc/µm = 2.

N = Nx = Ny 9 11 13 15
Simply-supported 0.0112 0.0113 0.0113 0.0113
Cantilever 0.00220 0.00223 0.00225 0.00225
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Figure 4.1 depicts dimensionless first natural frequencies of simply-supported and

cantilever nano-plates as a function of the dimensionless plate length a/
√
µm. Dimen-

sionless natural frequency is defined by Equation 4.3. The frequencies are calculated

for three different plate theories, namely, Kirchhoff plate theory (KPT), Mindlin plate

theory (MPT), and third-order shear deformation theory (TSDT). For both simply-

supported and cantilever nano-plates, ω1 increases with a corresponding increase in

a/
√
µm and approaches a constant at larger values of dimensionless plate length. The

constants are equal to the dimensionless natural frequencies of the plate computed in

accordance with the classical continuum theory by setting µc = µm = 0. As expected,

size effect is more dominant for smaller values of the ratio a/
√
µm. Differences of the

results predicted by different plate theories seem to be larger for cantilever nano-plate

compared to those found for simply-supported one. This is due to different scales

that need to be used in preparation of these figures. When the percentage differences

are calculated, it is revealed that the differences for simply-supported nano-plate are

greater. The higher degree of constraint in boundaries results in the larger differences

found for the simply-supported plate. Cantilever plate contains one clamped and three

free edges, but the simply-supported plate is constrained from all sides which leads

to larger shear effect. This is the fundamental reason behind the differences found

between the predictions of different plate theories.

Similar trends can be observed regarding the curves obtained for second natural fre-

quencies of the simply-supported and cantilever plates as given in Figure 4.2. Com-

prehensive examination of Figures 4.1 and 4.2 reveals the fact that differences be-

tween the predictions of plate theories get larger as mode number increases. This is

the result of different assumptions on through-the-thickness distribution of transverse

shear deformation for different plate theories. The effects of transverse shear defor-

mation and rotary inertia are more influential in higher modes which causes larger

differences between the results obtained for different plate theories. It is mathemat-

ically proved by Wang et al. [75] that the differences in plate theories increase for

the higher modes of vibration. Third-order shear deformation theory produces more

accurate results due to its quadratic transverse shear strain distribution.
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Figure 4.1: Dimensionless first natural frequency ω1 as a function of a/
√
µm for three

different plate theories: (a) Simply-supported nano-plate; (b) cantilever nano-plate.

a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2, n = 2.
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Figure 4.2: Dimensionless second natural frequency ω2 as a function of a/
√
µm for

three different plate theories: (a) Simply-supported nano-plate; (b) cantilever nano-

plate. a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2, n = 2.

The first and second mode shapes of simply-supported and cantilever nano-plates

are provided in Figure 4.3. Moreover, third and forth mode shapes for the same

configuration of the plates are given in Figure 4.4. In the generation of the mode

shapes and the remaining sets of results presented in this section, third-order shear
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deformation plate theory is used for higher degree of accuracy.

Figure 4.3: First two mode shapes of simply-supported and cantilever nano-plates:

(a) First mode shape of simply supported nano-plate, ω1 = 0.015, (b) second mode-

shape of simply-supported nano-plate, ω2 = 0.027, (c) first mode shape of cantilever

nano-plate, ω1 = 2.451 × 10−3, (d) second mode shape of cantilever nano-plate,

ω2 = 6.774 × 10−3. a/
√
µm = 10, a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2,

n = 2.
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Figure 4.4: Third and fourth mode shapes of simply-supported and cantilever nano-

plates: (a) third mode shape of simply supported nano-plate, ω3 = 0.035, (b) fourth

mode-shape of simply-supported nano-plate, ω4 = 0.043, (c) third mode shape of

cantilever nano-plate, ω3 = 1.439× 10−2, (d) fourth mode shape of cantilever nano-

plate, ω4 = 2.166 × 10−2. a/
√
µm = 10, a/b = 4/3, a/h = 20, µm = 2nm2,

µc/µm = 2, n = 2.

Figures 4.5-4.8 depict the influence of the nonlocal parameter ratio µc/µm on natural

frequencies ω1, ω2, ω3 and ω4, respectively. It can be seen that for both simply-

supported and cantilever nano-plates, nonlocal parameter ratio has a significant im-

pact on the dimensionless natural frequency. These results prove the fact that variation

of the nonlocal parameter needs to be taken into account to be able to produce more

accurate numerical results regarding the structural behavior of FGM nano-plates. All

of the dimensionless natural frequencies get smaller as the ratio µc/µm is increased

from 0.5 to 4.0. Natural frequencies merge at a single value as the dimensionless plate

length a/
√
µm increases. This constant value is the frequency obtained by applying

the classical continuum theory and setting µc = µm = 0.
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Figure 4.5: Dimensionless first natural frequency ω1 versus a/
√
µm according to

different nonlocal conditions: (a) Simply-supported nano-plate; (b) cantilever nano-

plate. a/b = 4/3, a/h = 20, µm = 2nm2, n = 2.
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Figure 4.6: Dimensionless second natural frequency ω2 versus a/
√
µm according to

different nonlocal conditions: (a) Simply-supported nano-plate; (b) cantilever nano-

plate. a/b = 4/3, a/h = 20, µm = 2nm2, n = 2.
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Figure 4.7: Dimensionless third natural frequency ω3 versus a/
√
µm according to

different nonlocal conditions: (a) Simply-supported nano-plate; (b) cantilever nano-

plate. a/b = 4/3, a/h = 20, µm = 2nm2, n = 2.
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Figure 4.8: Dimensionless fourth natural frequency ω4 versus a/
√
µm according to

different nonlocal conditions: (a) Simply-supported nano-plate; (b) cantilever nano-

plate. a/b = 4/3, a/h = 20, µm = 2nm2, n = 2.
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Further results regarding the influence of µc/µm on dimensionless natural frequencies
ω1 and ω2 are provided in Tables 4.4-4.7. Dependence on µc/µm is examined by
considering different values of dimensionless plate length a/

√
µm and aspect ratio

a/b. In all cases, dimensionless frequencies are decreasing functions of nonlocal
parameter ratio µc/µm. Note that in Tables 4.4 and 4.5 power law index is set to be
n = 2, but in Tables 4.6 and 4.7, it takes the value n = 5.

Table 4.4: Dimensionless first natural frequencies of simply-supported and cantilever
nano-plates. a/h = 20, n = 2, µm = 2nm2.

a/b µc/µm
Simply-supported nano-plate Cantilever nano-plate
a/
√
µm = 5 a/

√
µm = 10 a/

√
µm = 5 a/

√
µm = 10

1/2

0.5 6.6127e-3 7.5184e-3 1.9457e-3 1.9575e-3
1 6.4742e-3 7.4665e-3 1.9454e-3 1.9574e-3
2 6.2215e-3 7.3657e-3 1.9450e-3 1.9573e-3
4 5.7938e-3 7.1757e-3 1.9444e-3 1.9570e-3

1

0.5 9.7128e-3 1.1667e-2 2.2529e-3 2.2547e-3
1 9.4402e-3 1.1545e-2 2.2526e-3 2.2546e-3
2 8.9575e-3 1.1314e-2 2.2522e-3 2.2545e-3
4 8.1795e-3 1.0889e-2 2.2514e-3 2.2541e-3

2

0.5 1.8897e-2 2.6108e-2 2.4577e-3 2.4597e-3
1 1.8094e-2 2.5561e-2 2.4574e-3 2.4596e-3
2 1.6754e-2 2.4562e-2 2.4569e-3 2.4594e-3
4 1.4778e-2 2.2871e-2 2.4561e-3 2.4590e-3

Table 4.5: Dimensionless second natural frequencies of simply-supported and can-
tilever nano-plates. a/h = 20, n = 2, µm = 2nm2.

a/b µc/µm
Simply-supported nano-plate Cantilever nano-plate
a/
√
µm = 5 a/

√
µm = 10 a/

√
µm = 5 a/

√
µm = 10

1/2

0.5 9.6723e-3 1.1618e-2 3.2856e-3 3.3026e-3
1 9.4009e-3 1.1497e-2 3.2825e-3 3.3018e-3
2 8.9204e-3 1.1267e-2 3.2764e-3 3.3001e-3
4 8.1457e-3 1.0844e-2 3.2649e-3 3.2968e-3

1

0.5 1.8760e-2 2.5917e-2 5.3673e-3 5.4606e-3
1 1.7963e-2 2.5374e-2 5.3502e-3 5.4561e-3
2 1.6634e-2 2.4383e-2 5.3165e-3 5.4471e-3
4 1.4673e-2 2.2706e-2 5.2510e-3 5.4291e-3

2

0.5 2.5295e-2 3.7799e-2 9.1438e-3 9.3824e-3
1 2.4063e-2 3.6737e-2 9.1006e-3 9.3708e-3
2 2.2058e-2 3.4858e-2 9.0159e-3 9.3476e-3
4 1.9203e-2 3.1828e-2 8.8526e-3 9.3018e-3
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Table 4.6: Dimensionless first natural frequencies of simply-supported and cantilever
nano-plates. a/h = 20, n = 5, µm = 2nm2.

a/b µc/µm
Simply-supported nano-plate Cantilever nano-plate
a/
√
µm = 5 a/

√
µm = 10 a/

√
µm = 5 a/

√
µm = 10

1/2

0.5 5.9650e-3 6.8347e-3 1.8325e-3 1.8535e-3
1 5.9076e-3 6.8129e-3 1.8313e-3 1.8485e-3
2 5.7974e-3 6.7698e-3 1.8308e-3 1.8460e-3
4 5.5943e-3 6.6861e-3 1.8305e-3 1.8448e-3

1

0.5 8.6895e-3 1.0541e-2 1.9299e-3 1.9368e-3
1 8.5773e-3 1.0490e-2 1.9295e-3 1.9352e-3
2 8.3655e-3 1.0391e-2 1.9293e-3 1.9344e-3
4 7.9851e-3 1.0201e-2 1.9292e-3 1.9340e-3

2

0.5 1.6674e-2 2.3319e-2 1.9612e-3 1.9736e-3
1 1.6348e-2 2.3093e-2 1.9605e-3 1.9706e-3
2 1.5751e-2 2.2660e-2 1.9601e-3 1.9692e-3
4 1.4729e-2 2.1863e-2 1.9600e-3 1.9685e-3

Table 4.7: Dimensionless second natural frequencies of simply-supported and can-
tilever nano-plates. a/h = 20, n = 5, µm = 2nm2.

a/b µc/µm
Simply-supported nano-plate Cantilever nano-plate
a/
√
µm = 5 a/

√
µm = 10 a/

√
µm = 5 a/

√
µm = 10

1/2

0.5 8.6631e-3 1.0508e-2 2.9891e-3 3.0061e-3
1 8.5514e-3 1.0458e-2 2.9878e-3 3.0057e-3
2 8.3403e-3 1.0359e-2 2.9852e-3 3.0050e-3
4 7.9612e-3 1.0170e-2 2.9800e-3 3.0036e-3

1

0.5 1.6580e-2 2.3186e-2 4.7770e-3 4.8635e-3
1 1.6257e-2 2.2961e-2 4.7700e-3 4.8616e-3
2 1.5663e-2 2.2532e-2 4.7564e-3 4.8580e-3
4 1.4649e-2 2.1740e-2 4.7293e-3 4.8507e-3

2

0.5 2.2246e-2 3.3636e-2 8.1831e-3 8.4087e-3
1 2.1748e-2 3.3200e-2 8.1652e-3 8.4038e-3
2 2.0845e-2 3.2375e-2 8.1297e-3 8.3942e-3
4 1.9131e-2 3.0895e-2 8.0599e-3 8.3750e-3

In Figures 4.9-4.12, ω1, ω2, ω3 and ω4 are presented as functions of the power-law

index n and dimensionless plate length a/
√
µm. The index n controls the variation

of the ceramic volume fraction as indicated by Equation 2.20. The nano-plate is

ceramic-rich if n < 1, and metal-rich if n > 1. All of the dimensionless natural
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frequencies decrease as the exponent n is increased from 0.5 to 8. Thus, ceramic-

rich functionally graded nano-plates possess larger natural frequencies. This is the

expected result since the ceramic phase of the FGM composite nano-plate has larger

modulus of elasticity and lower density compared to the metallic phase. In all cases,

the constant values obtained for larger values of dimensionless plate length are equal

to the frequencies predicted by the classical continuum theory.
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Figure 4.9: Dimensionless first natural frequency ω1 versus a/
√
µm for various values

of the power-law index n: (a) Simply-supported nano-plate; (b) cantilever nano-plate.

a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2.

Further numerical results regarding the effects of the power-law index n and the non-

local parameter ratio µc/µm on the first four dimensionless natural frequencies of a

simply-supported FGM nano-plate are presented in Figures 4.13 and 4.14. Curves

obtained for different values of n show the fact that as the power-law index n gets

smaller, the natural frequencies increase. Due to differences in the properties of the

metallic and ceramic phases, ceramic-rich functionally graded nano-plates possess

larger natural frequencies than the metal-rich nano-plates. Nonlocal parameter ratio

µc/µm is also shown to have important effect on natural frequencies. Sensitivity of

the frequencies to the change in the nonlocal parameter ratio points to the fact that

nonlocal parameter variation should be taken into account in dynamic analysis of

FGM nano-scale plates.
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Figure 4.10: Dimensionless second natural frequency ω2 versus a/
√
µm for various

values of the power-law index n: (a) Simply-supported nano-plate; (b) cantilever

nano-plate. a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2.
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Figure 4.11: Dimensionless third natural frequency ω3 versus a/
√
µm for various

values of the power-law index n: (a) Simply-supported nano-plate; (b) cantilever

nano-plate. a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2.
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Figure 4.12: Dimensionless fourth natural frequency ω4 versus a/
√
µm for various

values of the power-law index n: (a) Simply-supported nano-plate; (b) cantilever

nano-plate. a/b = 4/3, a/h = 20, µm = 2nm2, µc/µm = 2.
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Figure 4.13: Dimensionless natural frequencies of a simply-supported nano-plate as

functions of n and µc/µm: (a) First natural frequency ω1; (b) Second natural fre-

quency ω2. a/
√
µm = 5, a/b = 4/3, a/h = 20, µm = 2nm2.
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Figure 4.14: Dimensionless natural frequencies of a simply-supported nano-plate as

functions of n and µc/µm: (a) Third natural frequency ω3; (b) Fourth natural fre-

quency ω4. a/
√
µm = 5, a/b = 4/3, a/h = 20, µm = 2nm2.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, a nonlocal elasticity based method for free vibration analysis of func-

tionally graded rectangular nano-plates is presented. Eringen’s differential form of

the nonlocal constitutive equation is employed in order to account for the effects

observable in small scales. The novelty of this study is the consideration of spa-

tial variation of the nonlocal parameter in free vibration formulation of functionally

graded rectangular nano-plates. Hamilton’s principle is applied to derive governing

equations and associated boundary conditions. In this derivation, all material proper-

ties, including the nonlocal parameter, are assumed to be functions of the thickness

coordinate. The variation of these properties is computed according to the power law.

In order to generate results for three different plate theories, generalized displace-

ment field is used in the formulation. This method is capable of producing results for

both classical and shear deformation plate theories, namely, Kirchhoff, Mindlin, and

third order shear deformation theories. Generalized differential quadrature method is

employed to solve governing partial differential equations. For this purpose, series

forms of the governing equations and boundary conditions are obtained by means of

differential quadrature method. For discretizing the rectangular domain of the prob-

lem, Chebyshev-Gauss-Lobatto points are used as nodal points along the length and

width of the plate. In order to implement this numerical method, computer programs

are developed in MATLAB software. Proposed procedure is verified through com-

parisons made to the results available in the literature for free vibration analysis of a

functionally graded rectangular nano-plate possessing a constant nonlocal parameter

along the thickness direction. Numerical results for simply-supported and cantilever

nano-plates are provided to be able to investigate the effects of shear deformation,
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dimensionless plate length, nonlocal parameter ratio, and power-law index upon the

natural frequencies.

Analysis of natural frequencies calculated according to three different plate theories

show the effect of transverse shear deformation on the stiffness of the plate. It can

be seen that Kirchhoff plate theory overpredicts natural frequencies. This shows the

fact that in the analysis of relatively thick plates, it is crucial to take into account the

effect of shear strains by employing shear deformation plate theories.

For all cases, it can be seen that the softening effect of nonlocal theory is dominant for

smaller plate length. As dimensionless plate length is increased, vibration frequencies

increase and then approach constant values. The constant value obtained at large

values of a/
√
µm is equal to the natural frequency values computed for a plate by

means of the classical continuum theory. Therefore, in free vibration analysis of

nano-plates, it is necessary to employ higher order continuum theories to capture the

size effect observable in small scales.

The spatial variation of nonlocal parameter is quantified by the nonlocal parameter

ratio µc/µm. The influence of the nonlocal parameter ratio on the natural frequencies

of nano-plate is revealed to be significant. An increase in nonlocal parameter ratio

produces softening effect and the dimensionless natural frequencies decrease. This

shows the fact that assuming a constant nonlocal parameter along the thickness of

the plate, can reduce the accuracy of results for natural frequencies of the nano-plate.

Thus, reliable results regarding the free vibration of functionally graded rectangular

nano-plates can be produced by taking into account the spatial variation of nonlocal

parameter. The method presented in this work could be useful in design and opti-

mization of functionally graded nano-scale plates.

In the literature on nano-structures, nonlocal theory has been successfully applied to

different problems of nano-beams and plates. However, this theory is highly depen-

dent on the optimized value of small-scale parameter. Except for a few studies on

evaluation of nonlocal parameter by matching the results obtained from molecular

dynamic simulations, the exact value of nonlocal parameter for many problems and

materials is unknown. To be able to generate more accurate results for design and

development of functionally graded nano-structures, it is necessary to conduct more
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research on the determination of the exact value of nonlocal parameter for different

materials.

In some applications, vibrational energy is dissipated by damping effect of fluid or air

phases. The dissipation of energy by damping elements changes the response of the

system under vibration. For accurate estimation of the response of a system, damping

effect should be considered in mathematical modeling and analysis.

Free vibration study of nano-structures plays an important role in design and develop-

ment of essential components for MEMS and NEMS, nano-machines, nano-sensors,

resonators and oscillators. The method developed in this study can be used to produce

more accurate results regarding the free vibration of functionally graded rectangular

small-scale plates.
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