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ABSTRACT

THE SLOPE INEQUALITY FOR LEFSCHETZ FIBRATIONS

Çengel, Adalet

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Korkmaz

January 2017, 51 pages

In this thesis, we produce Lefschetz fibrations over the two-sphere which have smaller
slope compared to known examples. The study is motivated by a conjecture of Hain
saying that every Lefschetz fibration over the two-sphere with slope λf satisfies the
slope inequality 4 − 4/g ≤ λf . Monden recently constructed Lefschetz fibrations
with slope which violate this lower bound. In the thesis, we establish new examples
having slope less than these. The total spaces of our Lefschetz fibrations are simply-
connected. Finally, we try to obtain Lefschetz fibrations with even smaller slope.

Keywords: Lefschetz Fibrations, Slope Inequality, Mapping Class Groups
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ÖZ

LEFSCHETZ LİF DEMETLERİ İÇİN EĞİM EŞİTSİZLİĞİ

Çengel, Adalet

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mustafa Korkmaz

Ocak 2017 , 51 sayfa

Bu tezde, bilinen örneklere nazaran eğimi daha küçük olan iki boyutlu küre üzerinde
Lefschetz liflemeleri ürettik. Bu çalışma Hain’in bir sanısından motive olmuştur, öyle
ki iki boyutlu küre üzerinde eğimi λf olan her Lefschetz liflemesi eğim eşitsizliğini
4 − 4/g ≤ λf sağlar. Monden yakınlarda eğimi bu alt sınırı sağlamayan Lefschetz
liflemeleri inşa etmiştir. Bu tezde, eğimi bunlardan daha küçük olan yeni örnekler
kurduk. Lefschetz liflemelerimizin uzayı basit bağlantılıdır. Son olarak, daha küçük
eğimi olan Lefschetz liflemeleri elde etmeye çalıştık.

Anahtar Kelimeler: Lefschetz Liflemeleri, Eğim Eşitsizliği, Gönderim Sınıfları Grup-
ları
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Çamoğlu for endless support all my life. Especially to my mother for providing me
the best. Also I wish to thank Nalan Çalışkan and Gözde Vardar for their lovely
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CHAPTER 1

INTRODUCTION

The topological perspective of Lefschetz fibrations on 4-manifolds was enlightened

by Matsumoto in [36]. Although Lefschetz’s original work on pencils in [31] was

mainly topological, they are mostly studied in the realm of algebraic geometry such

that pencil of curves on algebraic surfaces can be blown up at their base points to

obtain Lefschetz fibrations. In low dimensional topology, Lefschetz fibrations are

very important as they have relations with several distinct subbranches. Therefore,

this enables us to approach a problem from distinct aspects at the same time.

In this respect, the most useful relation is between Lefschetz fibrations and symplec-

tic 4-manifolds which is shown by the works of Donaldson and Gompf. In the late

1990s, Donaldson [10, 11] showed that for every closed symplectic 4-manifold X,

there exists a Lefschetz pencil structure on it whose closed fibers are symplectic sub-

manifolds so that by blowing it up at its base points, we get a Lefschetz fibration over

the two-sphere. Thereby, Lefschetz fibrations can be used as a tool to study topology

of symplectic 4-manifolds. On the other hand, Gompf [21, 49] showed that if a closed

oriented 4-manifold X admits a Lefschetz pencil or a Lefschetz fibration of genus g

(over a Riemann surface) provided that the homology class of the generic fiber is

nontrivial, it has a symplectic structure on it so that the fibers are symplectic sub-

manifolds. In fact, if the fiber genus g > 1, the homology class of a generic fiber of

the Lefschetz fibration is not torsion in H2(X;Z), so such an X admits a symplectic

structure with symplectic fibers.

The other relation of Lefschetz fibrations with mapping class groups is through a

combinatorial aspect. Indeed, this is a way to describe symplectic 4-manifolds in
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terms of mapping class groups. That is, for a given Lefschetz fibration over the two-

sphere, there exists an associated product consisting of positive Dehn twists which is

equal to identity of the mapping class group of generic fiber. Conversely, a product

of positive Dehn twists gives a Lefschetz fibration over two-disk. If this product is

equal to the identity, then it gives a Lefschetz fibration over S2. We can explicitly

construct a Lefschetz fibration over the two-sphere with assigned vanishing cycles

for such a given positive factorization of the identity. Moreover, we can change this

factorization by using relations in mapping class groups so that the associated 4-

manifold is changed topologically. A famous one for this is lantern substitution which

topologically corresponds to a rational blow-down [2, 14].

Besides these, there are results on the commutator lengths of some elements in the

mapping class group of oriented genus-g(≥ 1) surfaces by using properties of sym-

plectic 4-manifolds admitting Lefschetz fibrations and algebraic structure of mapping

class groups [15, 28]. Furthermore, by using a relation in mapping class groups, it

is deduced that the number of (irreducible) singular fibers in a genus one Lefschetz

fibration must be divisible by 12. It will be interesting to find a global invariant for

Lefschetz fibrations by means of mapping class group factorizations. More questions

related to this issue can be found in [5]. A last result to mention here is as follows:

For every finitely presented group G, there exists a Lefschetz fibration of genus g ad-

mitting G as the fundamental group of its total space [10, 20]. Korkmaz [29] defined

genus ofG to be the minimal genus of the Lefschetz fibration with fundamental group

G.

Basically, a Lefschetz fibration is a smooth map from a 4-manifold onto a Riemann

surface with finitely many critical points. In this thesis, we only deal with Lefschetz

fibrations whose base space is the two-sphere. There are several ways to examine

Lefschetz fibrations. A classification of Lefschetz fibrations over the two-sphere was

made by Harer [22] in which he used Hatcher-Thurston’s presentation of the mapping

class group. In the thesis, we focus on geography problem of Lefschetz fibrations

over S2 which has been inspired by that for complex surfaces fibered over curves

from which the slope inequality is derived.

The very beginning of the study for the slope inequality goes back to the Severi in-
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equality. Pardini stated the Severi inequality in [46] as follows: if S is a smooth mini-

mal complex projective surface of maximal Albanese dimension, then K2
S ≥ 4χ(OS)

holds. S is a surface having maximal Albanese dimension means that the image of its

Albanese map is a surface. Likewise, if K2
S < 4χ(OS) holds, then S is fibered over a

curve of genus b1(S)/2 [62, 41].

In 1932, Severi [53] stated the second case as a theorem but his proof was not correct

[8]. After the statement was raised as a conjecture by Reid [50] and Catanese [8] inde-

pendently; Reid [50], Horikawa [23] and Xiao [63] proved the inequality with some

own restrictions and assuming that the surfaces are double covers of ruled surfaces.

In 1987,Xiao solved the conjecture for more general surfaces, i.e., not admitting such

double covers but having relatively minimal genus-g(≥ 2) fibrations f : S → B onto

a smooth curve with positive genus b and connected fibres. That is, if f : S → B

is a holomorphic fibration of genus g over a curve B of positive genus b satisfying

K2
S < 4χ(OS)) + 4(b − 1)(g − 1) (i.e.,λ(f) < 4) then b = b1(S)/2. In 1990, the

conjecture was proved by Manetti [34] assuming that the surface has ample canoni-

cal bundle. Finally, Pardini [46] proved the conjecture by using slope inequality for

holomorphic fibrations over CP1.

In complex geometry, the slope of a fibration is defined as follows [62] :

For a relatively minimal fibration f : S → B of genus g with g ≥ 2, let f∗ωS|B be

a locally free sheaf of rank g and of degree χ(OS) − (b − 1)(g − 1). Every locally

free quotient of f∗ωS/B has a non-negative degree and if f is not locally trivial then

χf := degf∗ωS/B > 0. Let KS/B ≡ KS − f ∗KB be a relative canonical divisor on S

then the slope of f is defined by

λ(f) =
K2
S/B

χf

where

K2
S/B = K2

S − 8(b− 1)(g − 1),

χf = χ(OS)− (b− 1)(g − 1).

It was first found by Horikawa [23] and Persson [48] for hyperelliptic pencils and

proved by Xiao [62] for general case. Xiao concluded that 4(g − 1)/g ≤ λ(f) ≤ 12

3



and 4 − 4/g ≤ λ(f) is called the slope inequality. He also said λ(f) is the unique

number which satisfies

K2
S = λ(f)χ(OS) + (8− λ(f))(b− 1)(g − 1).

A common procedure to obtain sharper bounds for the slope inequality to put restric-

tion on the general fiber [16]. For example, if g = 3 and f is a non-hyperelliptic

fibration then K2
S/B ≥ 3χf holds while the slope inequality says for the lower bound

is 8/3 [4]. Also, it was claimed by Xiao that fibrations on the lower bound are hyperel-

liptic ones especially with only nonseperating vanishing cycles whereas on the upper

bound are non-hyperelliptic. Hence the lower bound for the slope of non-hyperelliptic

fibrations is bigger [4]. Upper bound can be shown by using Noether condition.

Conjecture 1.0.1 ([62]). If λ(f) = 4− 4/g, then f is hyperelliptic.

Xiao also mentioned in [62] that he could not obtain a non-hyperelliptic fibration with

λ(f) < 4 and g ≥ 6.

In Chapter (4), we construct non-hyperelliptic Lefschetz fibrations over the two-

sphere with slope less than 4 − 4/g. Monden has examples in [41] which are also

non-hyperelliptic.

The slope inequality for relatively minimal Lefschetz fibrations of genus g over the

two-sphere is defined in a similar manner to the complex case. By using the numerical

invariants χf and K2
f which are basically depend on the Euler characteristic e and the

signature σ of the corresponding Lefschetz fibration, the slope λf can be calculated.

A conjecture on the slope inequality for Lefschetz fibrations over the two-sphere was

raised by Hain and in [3], it is stated that it is a symplectic version of Moriwaki

inequality which is called a sharper slope inequality [42]. Then, Endo and Nagami

restated the conjecture as follows:

Conjecture 1.0.2 ([16, Conjecture 4.12]). Every smooth Lefschetz fibration f : X → S2

of genus g ≥ 2 over the two-sphere satisfies the slope inequality λf ≥ 4− 4/g.

If the answer is affirmative, there will be restriction on the factorization of identity
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which defines a Lefschetz fibration. For our constructed Lefschetz fibrations not sat-

isfying the slope inequality, the number of singular fibers so that the length of the

factorization is increased.

Research Results

In [41], Monden gave examples of Lefschetz fibrations over the two-sphere violat-

ing the slope inequality. We improve his result by exhibiting different examples of

Lefschetz fibrations with smaller slope.

Theorem 4.2.1 For each g ≥ 2, there exists a Lefschetz fibration of genus g over S2

with slope

λf = 4− 4

g
− 4(g − 2)

g(g + 2)
.

The associated 4-manifold is simply-connected.

If we consider odd and even cases separately, we can get Lefschetz fibrations with

smaller slopes.

Theorem 4.2.4 For g ≥ 4 and even, there exists a Lefschetz fibration of genus g over

S2 with slope

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)
.

Theorem 4.2.6 For g ≥ 5 and odd, there exists a Lefschetz fibration of genus g over

S2 with slope

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 11)
.

If we compare the Lefschetz fibrations in terms of their slopes, we obtain the follow-

ing observation :

Conclusion. For even g ≥ 4;

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)

and for odd g ≥ 5;

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 11)

5



are the smallest known slopes for Lefschetz fibrations of genus g over S2.

This thesis is organized as follows:

In Chapter 2, we give the basic definitions and necessary facts about mapping class

groups. This will be followed by the relations among mapping classes.

In Chapter 3, in addition to basics of Lefschetz fibrations, we introduce the signature

cocyle which is defined with second cohomology class of mapping class group of the

fiber and it is used to compute the signature of the constructed Lefschetz fibrations.

In Chapter 4, we first state the results of Monden. Then we present our theorems and

expain how we construct our Lefschetz fibrations to prove them.

In Chapter 5, we review geography problem of symplectic 4-manifolds. Since the

total spaces of Lefschetz fibrations provide examples of symplectic 4-manifolds, we

combine our results to the geography of related symplectic 4-manifolds.

6



CHAPTER 2

MAPPING CLASS GROUPS

In this chapter, we review the definition and basic facts of mapping class groups. We

exhibit some relations among Dehn twists which are building blocks for our results.

For more details of the content, one can consult [17, 27].

2.1 Basic Definitions and Facts

Let Σg be a closed oriented connected smooth surface of genus g ≥ 2 and c0, c1, . . . ,

cn be a sequence of simple closed curves on this surface as in Figure (2.1).

...

c

c2
c2g

1

cc2h

c2h+1

c
0

c

c

3

4

...

2h+2

Figure 2.1: A surface of genus g.

Definition 2.1.1. Let f and h be two self-diffeomorphisms of Σg. We say that f and

h are homotopic if there is a continuous function F : [0, 1]× Σg → Σg satisfying

F (0, x) = f(x) and F (1, x) = h(x) for all x ∈ Σg.

An isotopy is a homotopy F such that the map ft : Σg → Σg defined by ft(x) =

F (t, x) is a diffeomorphism for each t ∈ [0, 1].

Definition 2.1.2. Let Diff+(Σg) denote the group of all orientation-preserving self-

diffeomorphisms of Σg and Diff+
0 (Σg) be the normal subgroup of Diff+(Σg) con-
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sisting of elements which are isotopic to the identity. The mapping class group of Σg

is

Mod(Σg) = Diff+(Σg)/Diff
+
0 (Σg).

In other words, Mod(Σg) is the group of all isotopy classes of orientation-preserving

self-diffeomorphisms of Σg. Indeed, Mod(Σg) can be defined in different ways de-

pending on purpose. For an example, one can consider homeomorphisms instead of

diffeomorphisms or homotopy classes instead of isotopy classes with some additional

restrictions.

The surface in Figure (2.1) may have boundary components or marked points. Let

Σn
g,r denote the surface with r boundary components and n marked points. Then the

corresponding mapping class group Mod(Σn
g,r) is the group consisting of the isotopies

fixing each marked point and the points on the boundary.

In the following, we introduce a diffeomorphism which is building block in the theory

of mapping class groups.

Definition 2.1.3. Let a be a simple closed unoriented curve on Σg. We first cut the

surface Σg along a and twist one of the boundary components by 360 degrees to the

right. After gluing it back, we get a self-diffeomorphism of the surface. The isotopy

class of such a diffeomorphism is called a positive (or right-handed) Dehn twist. On

the other hand, if we use rotation about left side, the diffeomorphism will be called as

left-handed Dehn twist.

A positive Dehn twist about a is denoted by ta and determined by the isotopy class

of a. In general, we denote the diffeomorphism and its isotopy class by the same

notation. So ta is also an element of Mod(Σg). Similarly, a simple closed curve and

its isotopy class are denoted by the same letter. Sometimes a Dehn twist along a curve

a can be represented by A instead of ta. We use this notation in Chapter (4).

Indeed, the group of self-diffeomorphisms of a compact connected surface is a topo-

logical group with compact open topology and it is an infinite dimensional group. If

we consider them up to isotopy, we obtain the mapping class group of the surface

which is a finitely generated (discrete) group. After works of Dehn and Lickorish,

Humphries [24] showed that Mod(Σg) is generated by 2g + 1 Dehn twists all of

8



which are about nonseparating curves in Figure (2.1). Also, he showed that Mod(Σg)

can not be generated by 2g or less Dehn twists. More details are given by Korkmaz

in [30].

b
... ...

...
...

a

... ...

b

... ...

at

cut

twist

glue

ta

Figure 2.2: Effect of a positive Dehn twist about a nonseparating curve a.

Most of the properties of Dehn twists are studied by their action on simple closed

curves. In this sense, we give the following example.

Example 2.1.4. Let a and b are two nonseparating curves on Σg. The image of b

under ta is showed in Figure (2.2). First, we choose a regular neighborhood of a,

then apply Dehn twist on this neighborhood and extend ta to the remaining of the

surface as identity. Here, we perform Dehn twist once but it can be applied several

times since Dehn twists have infinite order in Mod(Σg).

Note that in the above example, a and b intersect each other only once. For instance,

if the curve a is separating that we apply Dehn twist about, the picture of a Dehn

twist may look like as in Figure (2.3). Recall that a curve on a surface is called

nonseparating if we cut the surface along that curve, it is still connected. Otherwise,

the curve is separating.

b

a
b

a
t

Figure 2.3: Effect of a positive Dehn twist about a separating curve a.

Now, we can mention about topological type of simple closed curves on Σg. It follows

from classification of surfaces that there exists an orientation-preserving diffeomor-

9



phism taking one simple closed curve to another if and only if the corresponding cut

surfaces are diffeomorphic. A cut surface is a surface obtained from Σg cutting along

a curve a so that it has two boundary components corresponds to a. The diffeomor-

phism between two different cut surfaces defines an equivalence relation on simple

closed curves called topological type. If both a and b are nonseparating curves, the

two cut surfaces have the same Euler characteristic and number of boundary compo-

nents where each have two boundary components a and b, respectively. Thus, there

is only one nonseparating simple closed curve on a surface up to diffeomorphism. So

that the topological type for nonseparating curves is unique whereas for separating

curves there are [
g

2
] different types. It is determined by how the curve separates the

surface.

Fact 2.1.5. Let f : Σg → Σg be a diffeomorphism and a be a simple closed curve on

Σg. Then

ftaf
−1 = tf(a). (*)

If a and b are nonseparating simple closed curves on Σg, then by (*), it can be deduced

that ta and tb are conjugate in Mod(Σg).

... ...

Figure 2.4: Hyperelliptic involution is a rotation by π about the indicated axis.

Definition 2.1.6. The hyperelliptic mapping class group Hg of Σg is the subgroup

of Mod(Σg) consisting of all mapping classes commuting with the isotopy class of a

hyperelliptic involution ı : Σg → Σg.

For g = 1, 2 ; Mod(Σg) = Hg.

Convention. The composition tctd for two diffeomorphisms tc and td means that first

we apply td and then tc.

10



2.2 Relations in the Mapping Class Group

In the following, we review relations which are important for the presentation of the

mapping class groups. For our purpose, it is an interesting issue to see the topological

meaning of them in the low dimensional topology. We will use some of these relations

to obtain new examples of Lefschetz fibrations. More details can be found in [16, 17,

30].

• Commutativity relation: Let a and b be two disjoint simple closed curves on

Σg. Then,

tatb = tbta.

a b

......

Figure 2.5: Dehn twists about disjoint curves commute.

To prove the above equality, consider a curve b on Σg disjoint from a. So, we

can determine the support of the Dehn twist ta not containing b. Then we have

ta(b) = b. By the equality (*), we have

tatb = tatbt
−1
a ta = tta(b)ta = tbta.

Indeed, the converse is also true. Then one can deduce from this, if f leaves the

curve c invariant, then

tcf = ftc.

• Braid relation: If a and b are two simple closed curves intersecting trans-

versely at one point, then

tatbta = tbtatb.

By using the proof in Figure (2.6) which is a part of Σg, the equality

tatbta = tatbtat
−1
b t−1a tatb = ttatb(a)tatb = tbtatb

is satisfied.

11



a

b

isotopic

b

bt

t tba a

a

...

...

...

...

Figure 2.6: The proof of tatb(a) = b.

• Chain relation:

A chain of length n is an ordered n-tuple (c1, . . . , cn) of simple closed curves

on Σg satisfying the followings :

(i) ci and ci+1 intersect transversely at one point for 1 ≤ i ≤ n− 1;

(ii) ci and cj are disjoint if |i− j| > 1.

If the length of the chain is even, say n = 2h, a tubular neighborhood of c1 ∪
c2∪· · ·∪c2h is a genus-h subsurface Σ of Σg and has one boundary component.

Let d be a simple closed curve parallel to the boundary component of Σ. The

relation

(tc1 · · · tc2h)4h+2 = td

is called even chain relation [61].

...

c

c2 c2g

1

cc2h

c

c

3

4

...

2h+2

2g+1
cc

c

2g-1

2g-2

d

cc2h-1 2h+3

Figure 2.7: Curves in the even chain relation.

If the length of the chain is odd, say n = 2h + 1, a tubular neighborhood of

c1∪c2∪· · ·∪c2h+1 is a genus-h subsurface Σ of Σg and has two boundary com-

ponents. We denote simple closed curves parallel to two boundary components

12



by d1 and d2. The relation

(tc1 · · · tc2h+1
)2h+2 = td1td2

is called odd chain relation [61].

...

c

c2
c2g

1

c2h

c

c4

...

2g+1
cc

c

2g-1

2g-2

d

cc
3 2h-1 2h+1

d

1

2

Figure 2.8: Curves in the odd chain relation.

If h = 1, the chain relations have special names: one-holed torus relation and

two-holed torus relation, respectively.

• Hyperelliptic Relation: Consider all curves in the chain (c1, . . . , c2g+1) on Σg

in Figure (2.8). The relation

(tc1 · · · tc2gt2c2g+1
tc2g · · · tc1)2 = 1

or

(tc2g+1 · · · tc2t2c1tc2 · · · tc2g+1)
2 = 1

is called hyperelliptic relation [6].

For the proofs of the last three relation, we may use Alexander Lemma. That

is, we cut the surface along a set consisting of arcs and simple closed curves

whose complement is a union of two-disks. If the action of the two sides of

the relation are isotopic on this set (preserving orientation of curves and arcs),

then they are equal. Recall that Alexander Lemma says if a diffeomorphism

D2 → D2 is identity on ∂D2, then it is isotopic to the identity.

• Lantern Relation:

Let Σ4
0 denote a sphere with 4 boundary components. Let d1, d2, d3, d4 be the

curves parallel to these boundaries and x1, x2, x3 interior curves as in Figure

(2.9). Then in Mod(Σ4
0), the Dehn twists satisfy the lantern relation

td1td2td3td4 = tx1tx2tx3 .

13



Since each di is disjoint from each other, corresponding Dehn twists can be

written in any order. Note that

tx1tx2tx3 = tx2tx3tx1 = tx3tx1tx2 .

If Σ4
0 is embedded in Σg, we can see these curves in Σg. This relation first

discovered by Dehn [9] and rediscovered by Johnson [25].

x

d

1 2

3

4

d

d

1

2

x

x

3
d

Figure 2.9: Curves for lantern relation.

The proof again follows from Alexander Lemma [30, 17].
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CHAPTER 3

LEFSCHETZ FIBRATIONS

In this chapter, we give the definition and the most basic properties of Lefschetz fi-

brations. We then show that how Lefschetz fibrations can be descibed topologically.

This will be followed by the explanation of the relationship between Lefschetz fibra-

tions and mapping class groups. For more details of the content one can see [39, 49]

among many others.

3.1 Basics for Lefschetz Fibrations

First, we introduce the definition of a Lefschetz fibration on 4-manifolds.

Definition 3.1.1. Let X be a closed connected oriented smooth 4-manifold. A Lef-

schetz fibration on the 4-manifold X is a smooth surjective map f : X → S2 with

finite set of critical values P = {p1, . . . , pn} such that around each critical point

ci ∈ f−1(pi) and critical value pi, there are local orientation-preserving complex

coordinate charts on which f is of the form f(z1, z2) = z21 + z22 .

Indeed in the Definition (3.1.1), X may have boundary and S2 can be replaced by any

compact oriented genus-g surface. But some extra conditions must be added to the

definition. On the other hand, assumption for orientation-preserving charts above is

crucial to consider symplectic structure on the 4-manifold on which Lefschetz fibra-

tion is defined.

A regular or generic fiber of a Lefschetz fibration is a smooth closed connected ori-

ented genus-g surface Σg whose genus is called the genus of the Lefschetz fibration
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Figure 3.1: An overview for construction of Lefschetz fibrations.

and we call f a Lefschetz fibration of genus g or a genus-g Lefschetz fibration.

Each critical point ci is called vanishing cycle which corresponds to an embedded

circle in a nearby regular fiber. The singular fiber is obtained by collapsing ci to a

point. On the local model (z1, z2) 7→ z21 + z22 , a singular fiber Σ0 = {z21 + z22 = 0}
is obtained from the regular fiber Σε = {z21 + z22 = ε}(ε > 0) by collapsing the

vanishing cycle {(x1, x2) ∈ R2, x21 + x22 = ε} = Σε ∩ R2 [5]. Up to diffeomorphism,

the topology of a neighborhood of a singular fiber is determined by that vanishing

cycle .

We will assume that f is injective on critical points, that is, each singular fiber con-

tains only one critical point. We can always have this property by a slight perturbation

of f .

It follows that removing critical values and corresponding singular fibers, Lefschetz

fibration turns into a smooth fiber bundle over a connected base space S2 − P with

fibers diffeomorphic to Σg. Thus a Lefschetz fibration has all but finitely many fibers

with the same diffeomorphism type.

The singular fiber f−1(pi) is called reducible or irreducible depending on the corre-

sponding vanishing cycle separates (homologically trivial) or does not separate (ho-

mologically nontrivial) the generic fiber. The number of irreducible singular fibers

and reducible singular fibers with different topological types gives the combinatorial

data of the concerned Lefschetz fibration.
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In this study, we only consider relatively minimal Lefschetz fibrations which means

that no fiber contains (−1)-sphere (a 2-sphere with self intersection number −1). In

other words, we ignore fibrations with homotopically trivial vanishing cycles. Other-

wise, we can blow down the (−1)-sphere while the rest of the fibration structure is

preserved.

As a topological operation we mean by blowing up of X at a point x ∈ X taking

out a 4-ball around x and instead we glue a regular neighborhood of the exceptional

sphere (i.e. smoothly embedded sphere with self-intersection -1) in CP2, so we obtain

X]CP2. Similarly, if X contains an exceptional sphere M , we may replace a tubular

neighborhood of M by a 4-ball, so that X = Y ]CP2.

3.2 Monodromy of a Lefschetz Fibration over S2

We can describe Lefschetz fibrations by using their monodromy representations. The

monodromy representation determines a Lefschetz fibration f up to isomorphism for

g ≥ 2 [5, 36, 43].

Let P = {p1, . . . , pn} denotes the set of critical values as before. For a fixed base

point p ∈ S2 − P , we fix an identification for the regular fiber f−1(p) with Σg. Let

γ : [0, 1] → S2 be an arc with γ([0, 1]) = δi where δi is a loop based at the base

point p on S2 and surrounds only pi. The restriction of f to the preimage of this

loop is a Σg-bundle over S1 with monodromy a positive Dehn twist tdi along the

corresponding vanishing cycle di. If we perform this step for all critical values, we

get the monodromy representation of a Lefschetz fibration f : X → S2

ϕ : π1(S2 − P )→ Mod(Σg).

More precisely, we choose a set of sufficiently small disjoint loops δ1, . . . , δn and

each encircling only one pi positively. The loops are ordered cyclically by travelling

counterclockwise around the basepoint p and any two of them intersect only at p. The

set δ1, . . . , δn generates the free group π1(S2 − P ) and we have the presentation

〈δ1, . . . , δn|δ1δ2 · · · δn = 1〉

of π1(S2 − P ).
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Figure 3.2: A choice of basis for π1(S2 − P ).

This can be seen from the handlebody decompositon as follows [19]: Consider S2 as a

union of two two-disks D2 and put all the critical values in one of these hemispheres.

We start with Σg × D2 and attach 2-handles with framing −1 to the neighborhood of

the generic fiber along the vanishing cycles in distict Σg fibers relative to the product

framing in Σg × ∂D2 [26]. If the corresponding monodromy on the boundary of D2

is isotopic to identity, we glue Σg × D2 so that we have a Lefschetz fibration over

S2. The extension is unique if g ≥ 2 and as a result we get a closed manifold. The

monodromy of the Lefschetz fibration is tdn · · · td2td1 = 1 where ϕ(δi) = tdi . Note

that the map ϕ given by ϕ(δi) = tdi is an antihomomorphism since in π1(S2 − P )

elements are read from left to right but in Modg(Σg) vice versa.

The choice of the loops δi in π1(S2−P ) is not unique, so any two choices differ by a

sequence of Hurwitz moves which means to change consecutive factors:

. .

.

i

i+1

.

i

i+1

x

x

x

x

xx

x

x

δ

δ

δ

δ

Figure 3.3: Hurwitz moves.

δ1, . . . , δi, δi+1, . . . , δn ∼ δ1, . . . , δi+1, δ
−1
i+1δiδi+1, . . . , δn.

δ1, . . . , δi, δi+1, . . . , δn ∼ δ1, . . . , δiδi+1δ
−1
i , δi, . . . , δn.
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The picture in Modg(Σg) is

tdn · · · tdi+1
tdi · · · td1 ∼ tdn · · · ttdi+1

(di)tdi+1
· · · td1 .

tdn · · · tdi+1
tdi · · · td1 ∼ tdn · · · tditt−1

di
(di+1)

. . . td1 .

Although the vanishing cycles depend on the choice of paths δi, their topological

type does not depend on this choice. We say that two factorizations are Hurwitz

equivalent if one is obtained from the other by applying Hurwitz moves. Since at the

beginning, we identify the regular fiber with any Σg, to eliminate this dependence,

we see the Dehn twists in Mod(Σg) of any abstract genus-g surface. This gives us

another equivalence relation on the set of factorizations, called global conjugation:

tdn · · · td2td1 ∼ tφ(dn) · · · tφ(d2)tφ(d1)

for all φ ∈ Mod(Σg).

We may also cyclically permute the δi’s and have the same fibration.

A factorization % = tdn · · · td2td1 = 1 is called positive relator and determines the

topology of the associated Lefschetz fibration f : X → S2. Conversely, such a

positive relator determines a Lefschetz fibration over S2 with the vanishing cycles

d1, d2, . . . , dn.

Definition 3.2.1. Let fi : Xi → S2 (i = 1, 2) be two genus-g Lefschetz fibrations. We

say that f1 and f2 are isomorphic if there are orientation-preserving diffeomorphisms

g : X1 → X2 and g
′
: S2 → S2 such that the diagram

X1
g //

f1
��

X2

f2
��

S2

g′
// S2

commutes, i.e. f2g = g′f1.

For g ≥ 2, there is a one-to-one corresponce between the isomorphism classes of

Lefschetz fibrations over S2 and the positive relators up to Hurwitz equivalences and

global conjugations [26, 36]. Namely, we have:

Theorem 3.2.2 ([36, Theorem 2.4]). Let f : X → B and f
′

: X
′ → B

′
be two Lef-

schetz fibrations of genus g (≥ 2) over connected bases. Then they are isomorphic if
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and only if one is obtained from the other by a finite sequence of Hurwitz equivalences

and global conjugations.

The correspondence holds for g ≥ 2 because Teichmuller theory implies that the

identity component of Diff+(Σg) is contractible and the extension of fibration from

base D2 to S2 is unique.

Theorem 3.2.3 ([12]). For g ≥ 2, the components of Diff+(Σg) are contractible. If

g = 1, the identity component of Diff+(T 2) contains T 2 as a deformation retract.

3.3 Some Useful Definitions and Properties

Definition 3.3.1. A section of a Lefschetz fibration f : X → S2 is a map s : S2 → X

satisfying fs =idS2 .

We will use the same notation for the map section s and its image s(S2).

From the definition of a section, we see that if a Lefschetz fibration admits a section,

the point of the fiber which has intersection with the section must be fixed. Thus, we

have a lift π1(S2 − P ) → Mod(Σ1
g), where Mod(Σ1

g) is the mapping class group of

a surface with one marked point. Moreover, there exists a canonical homomorphism

from Mod(Σg,1) to Mod(Σ1
g) where Mod(Σg,1) is the mapping class group of a sur-

face with one boundary component. The kernel of this homomorphism is isomorphic

to Z generated by tδ where δ is a simple closed curve parallel to the boundary. Con-

versely, if we have such a lift, the Lefschetz fibration has a section. If the product

of positive Dehn twists is equal to tnδ in Mod(Σg,1), this section has self intersection

−n [39]. This is negative because of a theorem which says that for a genus-g (> 0)

Lefschetz fibration over S2 with section s, the homological self-intersection of s sat-

isfies [s(S2)]2 < 0 [57, 58]. Moreover by using sections, it is deduced that a product

of positive Dehn twists in Mod(Σg,1) can not be equal to the identity [39].

It is an open question whether every Lefschetz fibration of genus g over S2 has a

section or not. If g = 1, Lefschetz fibrations have sections and there are some partial

results for g = 2 [59]. On the other hand, if we obtain a Lefschetz fibration from
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Lefschetz pencil by blowing up, it has at least one section depending on the number

of blow ups.

Sections are important for Lefschetz fibrations because they are useful for the calcu-

lation of their fundamental groups.

Lemma 3.3.2 ([49, page 398]). Let f : X → S2 be a Lefschetz fibration of genus

g with global monodomy td1td2 · · · tdn = 1. Assume that f has a section. Then the

fundamental group ofX is isomorphic to the fundamental group of Σg divided out by

the normal closure of the simple closed curves d1, d2, . . . , dn considered as elements

in π1(Σg).

On the other hand if it is not clear from the monodromy of a Lefschetz fibration

whether it has a section or not, π1(X) has the presentation as in Lemma (3.3.2) with

possible one more nontrivial relation [40].

As we mentioned in the introduction, there are several ways to obtain Lefschetz fi-

brations such as blowing up Lefschetz pencils or construction from a given positive

factorization of the identity in Mod(Σg). The following operation is another way to

obtain new Lefschetz fibration from the given ones.

Definition 3.3.3. Let fi : Xi → S2 (i = 1, 2) be two Lefschetz fibrations of genus g

with regular fiber Σg. Choose a regular point bi ∈ S2 (i = 1, 2) from each base space

and identify tubular neighborhoods νΣg of each f−1i (bi) ∼= Σg with D2 × Σg in each

Xi. Let ψ : (X1 − νΣg) → (X2 − νΣg) be a fiber-preserving, orientation-reversing

diffeomorphism of the boundaries. Then the fiber sum of X1 and X2 is defined as

follows:

f1]ψf2 : X1]ψX2 → S2,

where X1]ψX2 = (X1 − νΣg)
⋃
ψ(X2 − νΣg).

In the Definition (3.3.3), if ψ is the identity map, the fiber sum is called trivial fiber

sum and we dropped it from the notation. For different diffeomorphisms ψ, we get

different Lefschetz fibrations. Indeed there are examples in [45] for X1]ψX2 having

different first homologies.

Definition 3.3.4 ([44]). Let f : X → S2 be a Lefschetz fibration of genus g with
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global monodromy tc1tc2 · · · tcn = 1. Then f is called a hyperelliptic Lefschetz fi-

bration of genus g iff there exists φ ∈ Mod(Σg) such that φtciφ
−1 ∈ Hg for all i,

1 ≤ i ≤ n.

So for g = 1 and 2, all Lefschetz fibrations are hyperelliptic.

Definition 3.3.5 ([39]). A Lefschetz fibration f : X → S2 is called holomorphic if X

is a complex surface and for a suitable complex structure on S2, f is a holomorphic

map.

Fiber sums of holomorphic Lefschetz fibrations need not to be holomorphic.

Now, we will give two invariants which are crucial to identify Lefschetz fibrations:

the Euler characteristic and the signature. It is a fact that for fiber bundles Euler

characteristic is multiplicative.

Theorem 3.3.6. Let f : X → S2 be a Lefschetz fibration of genus g and n be

the number of its singular fibers. If Σg is the regular fiber of f , then the Euler

characteristic of X is

e(X) = 4− 4g + n.

Proof. If we remove n critical values from S2 and corresponding n singular fibers

from X , we have the following surface bundle:

X −
n⋃
i=1

f−1(pi)→ S2 −
n⋃
i=1

pi.

Then since the Euler characteristic is multiplicative on surface bundles, we have

e(X −
n⋃
i=1

f−1(pi)) = e(Σg) · e(S2 −
n⋃
i=1

pi) = e(Σg) · (e(S2)− n).

Thus,

e(X)−
n∑
i=1

e(f−1(pi)) = e(Σg) · e(S2)−
n∑
i=1

e(Σg).

As we stated that the handlebody construction of a Lefschetz fibration is obtained by

attaching 2-handles hi ≈ D2 × D2 to the total space of the trivial fibration Σg × D2

along the vanishing cycles di. In other words, to obtain singular fibers we attach the
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boundary of D2 to Σg along di. Thus, we have e(f−1(pi)) = e(Σg∪D2) = e(Σg)+1.

Then

e(X)−
n∑
i=1

(e(Σg) + 1) = e(Σg) · e(S2)−
n∑
i=1

e(Σg)

implies that e(X) = e(Σg) · e(S2) + n. Substituting e(Σg) = 2 − 2g and e(S2) = 2,

we get e(X) = 4− 4g + n.

Unlike the Euler characteristic, the signature depends on fibration itself and its calcu-

lation is not so easy.

3.4 Signature of Lefschetz Fibrations over S2

If a Lefschetz fibration is over the two-sphere, Özbağcı [44] and Smith [54] gave for-

mulas for the signature of the Lefschetz fibration. Özbağcı uses direct computations

whereas Smith uses properties of Lefschetz fibrations. For hyperelliptic Lefschetz

fibrations Endo [13] gave a local signature formula which is a generalization of the

σ-number [35] and the fractional signature [36]. Recently, Endo and Nagami [16]

showed that the signature of a Lefschetz fibration over the two-sphere can be calcu-

lated by using the signatures of relations contained in its monodromy. We use this

method to calculate the signatures of our Lefschetz fibrations.

3.4.1 Signature Cocycle

In the following, we give some theorems and definitions relavent to the signature

calculation. More details can be found in [16].

Let S be the set consisting of all isotopy classes of simple closed curves on Σg and F
be the free group generated by the set S.

Definition 3.4.1 ([16]). There exists a homomorphism

$ : F → Mod(Σg)

which sends the isotopy class of a simple closed curve a to the positive Dehn twist

ta. The homomorphism $ is onto. Each element of the kernel of $ is denoted by

Ker$ = R and called as a relator in the generators S of Mod(Σg).
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Luo [33] showed that R is normally generated by all comutativity, all braid, all 2-

chain and all lantern relations [16].

By using the evaluation map H2(Mod(Σg)) → Z for the cohomology class of a 2-

cocycle of Mod(Σg), a signature of a relator can be defined as follows.

Let τg : Mod(Σg)×Mod(Σg)→ Z be the signature cocycle of Mod(Σg) satisfying

τg(c, 1) = τg(1, c) = τg(c, c
−1) = 0

for all c ∈ Mod(Σg). Then there is a homomorphism cg : R → Z which induces the

homomorphism H2(Mod(Σg))→ Z.

Definition 3.4.2 ([16]). Let % ∈ R be a relator. The signature of % is defined by the

function

Ig(%) := −cg(%)− s(%)

where s(%) is the sum of the total exponent of separating simple closed curves in the

relator %. Note that, Ig is a function from the set of relators to Z.

From now on for convenience, we use the definition of a relator as follows.

Definition 3.4.3. A product of Dehn twists % = tε1d1 · · · t
εn
dn

in Mod(Σg) is a relator if

% = 1, where ei = ±1. Note that, if e1 = · · · = en = +1, then % is called the positive

relator as we defined before.

Definition 3.4.4 ([1]). Let d1, d2, . . . , dn and e1, e2, . . . , em be simple closed curves

on Σg and the Dehn twists about them in Mod(Σg) satisfy the following relation:

te1te2 · · · tem = td1td2 · · · tdn .

Let % = U · td1td2 · · · tdn · V be a positive relator where U and V are product of

(positive) Dehn twists. Then, we obtain a new positive relator as follows:

%
′
= U · te1te2 · · · tem · V.

If R = te1te2 · · · temt−1dn · · · t
−1
d2
t−1d1 (= 1), we say that %′ is obtained by applying a R-

substitution to %. Moreover, this definition can be defined on surfaces with boundary

components.
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In [14], it is stated that substitution for commutativity and braid relation do not change

the associated manifold while 2-chain and lantern relation do change the associated

manifold.

Definition 3.4.5. Let % = tε1d1 · · · t
εn
dn

be a positive relator. If there exists an orientation-

preserving homeomorphism f : Σg → Σg such that %
′

= tε1f(d1) · · · t
εn
f(dn)

, we say %

and %
′

are topologically equivalent or have the same topological type.

Lemma 3.4.6 ([16, Lemma 3.5]). In Mod(Σg), the signature Ig of relators has the

following properties:

1. Ig(%−1) = −Ig(%),

2. Ig(W%W−1) = Ig(%),

3. Ig(%1%2) = Ig(%1) + Ig(%2),

4. Ig(ς
′
) = Ig(ς) + Ig(%) if ς

′
is obtained by applying a %-substitution to ς ,

5. Ig(%
′
) = Ig(%) if % and %

′
are topologically equivalent,

where %, %1, %2, ς, ς ′ are relators and W is a product of Dehn twists.

Theorem 3.4.7 ([16, Theorem 4.2]). Let f : X → S2 be a Lefschetz fibration of

genus g with monodromy td1 · · · tdn = 1. Then the signature of X is

σ(X) = Ig(td1 · · · tdn).

Theorem 3.4.8 ([16, Theorem 4.3]). Let f : X → S2 and f ′ : X ′ → S2 be Lef-

schetz fibrations of genus g with positive relators ς, ς ′, respectively. Assume that a

%-substitution to ς gives ς ′ for some relator %. Then we have

σ(X ′) = σ(X) + Ig(%).

3.4.2 Signature of Some Relators in Mapping Class Group

We do not give the details of the calculations. More about these are in the paper of

Endo and Nagami in [16, Section 3].
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1. Hyperelliptic Relator: Let (c1, . . . , c2g+1) be a chain of curves on Σg as in

Figure (3.4). Then

hg := (tc1tc2 · · · tc2gt2c2g+1
tc2g · · · tc2tc1)2 = 1

is called the hyperelliptic relator. The signature of hg is Ig(hg) = −4(g + 1).

...

c

c2
c2g

1

cc2h

c2h+1 cc

c

3

4

...

2h+2

2g+1

Figure 3.4: The curves c1, ..., c2g+1.

2. Odd Chain Relator: Let (c1, . . . , c2h+1) be a chain of curves on Σg as in Figure

(3.5). Then

C2h+1 := (tc1 · · · tc2h+1
)2h+2t−1d1 t

−1
d2

= 1

is called odd chain relator. The signature of C2h+1 is Ig(C2h+1) = −2h(h+ 2).

In a monodromy, we may replace td1td2 by (tc1 · · · tc2h+1
)2h+2 and call this op-

eration a C2h+1-substitution.

...

c

c2
c2g

1

c2h

c

c4

...

2g+1
cc

c

2g-1

2g-2

d

cc
3 2h-1 2h+1

d

1

2

Figure 3.5: The curves d1 and d2.

In particular, Ig(C3) = −6.

3. Even Chain Relator: Let (c1, . . . , c2h) be a chain of curves on Σg as in Figure

(3.6). Then

C2h := (tc1 · · · tc2h)4h+2t−1d = 1

is called even chain relator. The signature of C2h is Ig(C2h) = −4h(h+ 1) + 1.

Interchanging td by (tc1 · · · tc2h)4h+2 in a relator is called a C2h-substitution.

In Section 2.2 we gave the braid and lantern relations. Let T and L denote the relators

for braid and lantern respectively. Then Ig(T ) = 0 and Ig(L) = +1.
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...

c

c2 c2g

1

cc2h

c

c

3

4

...

2h+2

2g+1
cc

c

2g-1

2g-2

d

cc2h-1 2h+3

Figure 3.6: The curves c1, ..., c2g+1 and d.

3.5 The Slope Inequality for Lefschetz Fibrations over S2

LetX be a closed oriented smooth 4-manifold and f : X → S2 (g ≥ 2) be a (nontriv-

ial) relatively minimal genus-g Lefschetz fibration. We denote the Euler characteristic

ofX by e(X) and the signature ofX by σ(X). IfX is a symplectic manifold, it is en-

dowed with an almost complex structure which gives to its tangent bundle a complex

vector bundle structure. Thus, Chern classes cj(X) ∈ H2j(X;Z) ∼= Z for j = 1, 2

can be defined [7]. Then these Chern classes give us two Chern numbers

c21(X) := 〈c1(X) ∪ c1(X), [X]〉 and c2(X) := 〈c1(X), [X]〉 .

It is well known that c2(X) is e(X) since top Chern class is always equal to Euler

characteristic. By using Hirzebruch signature theorem, the equality c21(X) = 2e(X)+

3σ(X) can be shown. According to calculations in [7]; in dimension 4, Hirzebruch

signature theorem says that

3σ(X) = 〈p1(TX), [X]〉

where p1(TX) is the first Pontrjagin class ofX . Since Pontrjagin classes of a complex

vector bundle S are determined by its Chern classes:

p1(S) = c21(S)− 2c2(S).

So,
3σ(X) = 〈p1(TX), [X]〉

=
〈
c21(X), [X]

〉
− 2 〈c2(X), [X]〉

=
〈
c21(X), [X]

〉
− 2e(X)

which gives

c21(X) = 2e(X) + 3σ(X).
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Note that both Chern numbers are topological invariants. Moreover by using σ(X)

and e(X), the ratio (σ(X)+e(X))/4 is defined and called holomorphic Euler charac-

teristic χh(X) and since X is a symplectic manifold, χh(X) ∈ Z (It is a well defined

integer even for an almost complex manifold- proved by Noether formula). Then the

slope λf is defined by the quotient

λf =
K2
f

χf
,

whereK2
f := c21(X)+8(g−1) and χf := χh(X)+(g−1). The inequality 4−4/g ≤ λf

is called the slope inequality.

Conjecture 3.5.1 (Hain [16, Conjecture 4.12]). The slope inequality λf ≥ 4 − 4/g

is satisfied by every smooth Lefschetz fibration f : X → S2 of genus g ≥ 2 over the

two-sphere.

Indeed in [3], this conjecture is stated as a question (Question5.10) which is a sym-

plectic version of the Moriwaki inequality. According to calculations in [54],[56] and

[43],

χf > 0, K2
f ≥ 4g − 4 and λf ≤ 10.

It is shown that if f is a holomorphic Lefschetz fibration then λf ≥ 4 − 4/g holds

[62]. Also, hyperelliptic Lefschetz fibrations satisfy the slope inequality. This can be

proved by using signature formula for genus-g Lefschetz fibrations which is shown

by Matsumoto [36, 35] for g = 1, 2 and by Endo [13] for g ≥ 3. So, any genus-

g Lefschetz fibration for g = 1, 2 satisfies the slope inequality. Indeed, the slope

of any hyperelliptic Lefschetz fibration with only nonseparating vanishing cycles is

equal to 4 − 4/g [41]. Moreover, Monden [41] obtained lower bounds for the slope

of Lefschetz fibrations with b+2 = 1.

Actually, it is interesting to find non-holomorphic Lefschetz fibrations which imply

the difference between the geography of complex surfaces fibered over curves and

that of Lefschetz fibrations. Özbağcı and Stipsicz [45] obtained examples of non-

holomorphic genus-2 Lefschetz fibrations by fiber summing the holomorphic genus-

2 Lefschetz fibration which is constructed by Matsumoto [36]. Moreover, Fintushel

and Stern [18] constructed non-holomorphic symplectic Lefschetz fibrations which
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also does not satisfy the Noether inequality. More examples for non-holomorphicity

are in [16, 41].

Remark 3.5.2. In [38] Miyachi and Shiga constructed Lefschetz fibrations over Σg

having slope a negative rational number.
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CHAPTER 4

CONSTRUCTION OF LEFSCHETZ FIBRATIONS

In this section, we establish and prove our main theorems. We construct Lefschetz

fibrations f : X → S2 of genus g that do not satisfy the slope inequality. Then by

using this structure, we give examples of minimal symplectic 4-manifolds admitting

Lefschetz fibrations with small slope. Finally, we present some results of Lefschetz

fibrations with even smaller slopes.

4.1 Background

A common way to find a lower bound for the slope is to put restriction on the genus

of regular fiber. However, Monden releases this dependence.

Theorem 4.1.1 ([41, Theorem 3.1]). For each g ≥ 3, there exists a genus-g Lefschetz

fibration f over S2 with slope λf = 4 − 4/g − 1/(3g) such that the total space is

simply connected.

For the proof, first he takes fiber sum of some chosen Lefschetz fibrations. Then he

follows substitution technique in the associated monodromy representation. Applying

this procedure several times, he obtaines the following results:

Corollary 4.1.2 ([41, Corollary 3.6]). For each g ≥ 3 and nonnegative integers m

and l, there exists a genus-g Lefschetz fibration fm,l : Xm,l → S2 with slope

λfm,l
= 4− 4/g − 1/((m+ 3)g)

such that the symplectic 4-manifold Xm,l is simply connected. Moreover, if (m, l) 6=
(0, 0), then Xm,l is minimal.
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Corollary 4.1.3 ([41, Corollary 3.7]). For each g ≥ 3, m ≥ 1 and l ≥ 0, there exists

a genus-g Lefschetz fibration f
′

m,l : Ym,l → S2 with slope

λf ′m,l
= 4− 4/g − 1/(2g) + 1/(2 · 3m−1g)

such that the symplectic 4-manifold Ym,l is simply connected. Moreover, if l ≥ 1, then

Ym,l is minimal.

The Lefschetz fibrations fm,l (m ≥ 0) and f ′m,l (m ≥ 2) constructed to prove above

corollaries are non-holomorphic. This is because of the following proposition due to

Xiao [62]:

Proposition 4.1.4 ([41, Proposition 4.1]). If a Lefschetz fibration f : X → S2 is

holomorphic, then it satisfies the slope inequality λf ≥ 4− 4/g.

4.2 Main Results and Their Proofs

We go one step further than Monden; that is, we cover the case of genus g = 2.

However, since all Lefschetz fibrations for g = 1, 2 are hyperelliptic, they already

satisfy the slope inequality.

Theorem 4.2.1. For each g ≥ 2, there exists a Lefschetz fibration f : X → S2 of

genus g with slope

λf = 4− 4

g
− 4(g − 2)

g(g + 2)

such that the 4-manifold X is simply connected.

Proof. Consider the curves shown on the genus-g surface Σg,1 illustrated in Figure

(4.1). For 1 ≤ i ≤ 2g + 1, let Ci (resp. C ′2g+1) denote the Dehn twist about the

curve ci (resp. c′2g+1). Then the Dehn twist δ about the boundary parallel curve can

be written as

δ = (C1ΨC1)
2 (4.1)

where Ψ = C2C3 · · ·C2gC2g+1C
′
2g+1C2g · · ·C3C2. By conjugating both sides with C1

and C−11 , we rewrite the equality in (4.1) as

δ = (C1ΨC1)
2 = (ΨC2

1)2 = (C2
1Ψ)2.
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Note that, the product C1ΨC1 gives a hyperelliptic involution ı when the boundary

of Σg,1 is capped off. If we cap off ∂Σg,1, we get a homomorphism Mod(Σg,1) →
Mod(Σg) from which we obtain a positive factorization of the identity in Mod(Σg).

Thus, the relation in (4.1) is a lift of hyperelliptic relation (C1ΨC1)
2 = 1 from

Mod(Σg) to Mod(Σg,1). Here, a curve on Σg,1 and its image on Σg after capping

off are denoted by the same letter.

Let e1 and e2 be the boundary components of a regular neighborhood of c1 ∪ c2 ∪ c3.

Then consider the diffeomorphism in Mod(Σg,1)

φi = UEiC1U,

sending c1 to ei for i = 1, 2, where U is the Dehn twist about the simple closed curve

u intersecting each one of c1, e1 and e2 transversely only once. We assume each φi

fixes the boundary component pointwise. Note that, we have Cφi
1 = Ei.

...

c

c2

c2g

1

c

c

c

3

4

...

e

e
1

2
2g+1

u

c

2g+1

'

Figure 4.1: The curves c1, . . . , c2g+1, c
′
2g+1, e1 and e2.

Let H = (C1ΨC1)
2 and Hφi = φiHφi

−1 be the conjugation of H with φi, so that

δ = Hφi . Then a factorization δ2 in Mod(Σg,1) is given as follows:

δ2 = Hφ1Hφ2

= (ΨC2
1ΨC2

1)φ1(C2
1ΨC2

1Ψ)φ2

= Ψφ1E2
1Ψφ1E2

1E
2
2Ψφ2E2

2Ψφ2

= Ψφ1Ψ(E2
1φ1)E4

1E
4
2Ψ(E−2

2 φ2)Ψφ2 ,

which may be written as

δ2 = E4
1E

4
2Ψ(E−2

2 φ2)Ψφ2Ψφ1Ψ(E2
1φ1). (4.2)
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On the other hand in Mod(Σg,1), the relation (C1C2C3)
4 = E1E2 holds. That is,

C3 := (C1C2C3)
4E−11 E−12 . We apply this C3-substitution four times in (4.2) and get

δ2 = (C1C2C3)
16Ψ(E−2

2 φ2)Ψφ2Ψφ1Ψ(E2
1φ1).

Capping off the boundary component gives the following factorization of the identity

in Mod(Σg).

1 = (C1C2C3)
16Ψ(E−2

2 φ2)Ψφ2Ψφ1Ψ(E2
1φ1). (4.3)

The corresponding Lefschetz fibration f : X → S2 of genus g admits a (−2)-section.

Note that the number of vanishing cycles of f is 16g + 48. The Lefschetz fibration

f : X → S2 has the following topological invariants:

By using Theorem (3.3.6), the Euler characteristic of X is

e(X) = 2(2− 2g) + 16g + 48 = 12g + 52.

By using Theorem (3.4.7) and Theorem (3.4.8), the signature of X is computed as

σ(X) = 2Ig(H
φi) + 4Ig(C3)

= 2(−4(g + 1)) + 4(−6)

= −8g − 32.

It follows that

K2
f = c21(X) + 8(g − 1) = 3σ(X) + 2e(X) + 8(g − 1) = 8g,

χf = χh(X) + (g − 1) =
σ(X) + e(X)

4
+ (g − 1) = 2g + 4.

Thus one computes the slope as

λf = 4− 4

g
− 4(g − 2)

g(g + 2)
.

We now show that X is simply connected.
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In (4.3), the product Ψφi contains the Dehn twists about the following set of vanishing

cycles;

V1 = {φi(c2), c3, φi(c4), φi(c5), c6, c7, . . . , c2g+1, c
′
2g+1}.

Similarly, the products Ψ(E1
2φ1) and Ψ(E−2

2 φ2) have the following sets of vanishing

cycles;

V2 = {E2
1(φ1(c2)), c3, E

2
1(φ1(c4)), E

2
1(φ1(c5)), c6, c7, . . . , c2g+1, c

′
2g+1}

and

V3 = {E−22 (φ2(c2)), c3, E
−2
2 (φ2(c4)), E

−2
2 (φ2(c5)), c6, c7, . . . , c2g+1, c

′
2g+1}

respectively.

Since the Lefschetz fibration f with fiber Σg has a section, we may use Lemma (3.3.2)

to compute the fundamental group of the total space X; that is, π1(X) is isomorphic

to the group π1(Σg) divided out by the normal closure of the vanishing cycles

V = V1 ∪ V2 ∪ V3 ∪ {c1, c2, c3}.

Thus the group π1(X) has a presentation with generators a1, b1, a2, b2, . . . , ag, bg and

relations

• Πg
i=1[ai, bi] = 1;

• v = 1 for each vanishing cycle v ∈ V .

We show that all generators are trivial in π1(X).

...
...

a a
1

b
b

1

2

2

b

ag

g

Figure 4.2: The choice of basis for the fundamental group of X .
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Since the curves c6, c8, c10, . . . , c2g in V1 are in the free homotopy class of a3, a4, a5, . . . , ag,

we have

a3 = a4 = a5 = · · · = ag = 1

in π1(X).

For 7 ≤ i = 2k + 1 ≤ (2g − 1), the vanishing cycle ci ∈ V1 is freely homotopic to

b−1k ak+1bk+1a
−1
k+1. It follows that bk = bk+1, and hence

b3 = b4 = b5 = · · · = bg.

On the other hand, since c2g+1 ∈ V1 is freely homotopic to bg, we have bg = 1. Thus,

b3 = b4 = b5 = · · · = bg = 1.

The vanishing cycles c1 and c2 are freely homotopic to b1 and a1 respectively. Thus,

b1 = a1 = 1.

Also since c3 is freely homotopic to b−11 a2b2a
−1
2 , we get

b2 = 1.

Finally, φ1(c2) ∈ V1 is freely homotopic to a1b1a−11 a2, which implies a2 = 1, con-

cluding that X is simply connected.

...

Figure 4.3: The vanishing cycle φ1(c2).

Remark 4.2.2. The Lefschetz fibration f has slope λf = 4 − 4/g if g = 2 and

violates the slope inequality, that is, λf < 4 − 4/g if g ≥ 3. If we compare the

slope λf we found above with the slopes of the Lefschetz fibrations constructed by

Monden in [41], λf is smaller than all: i.e., λf < 4 − 4g − 1/(3g) and λf <

4− 4/g − 1/(2g) + 1/(2 · 3m−1g) for g ≥ 3 and for all m.
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Remark 4.2.3. If we apply C3-substitution three times to the factorization in (4.2),

the slope of the corresponding Lefschetz fibration becomes λ = 4 − 14/(2g + 3). If

the C3-substitution is applied twice, we get the slope λ = 4− 6/(g + 1) and for once

C3-substitution the slope is λ = 4− 10/(2g + 1). The Lefschetz fibrations with these

slopes do not satisfy the slope inequality. Also their slopes are less than the ones

constructed by Monden in [41].

For g ≥ 2, if we apply Hurwitz moves and global conjugations to the monodromy

of a genus-g Lefschetz fibration, its isomorphism class does not change by results of

Kas and Matsumoto [26, 36]. Thus, the Euler characteristic and the signature of the

associated 4-manifold are unaffected under these modifications. On the other hand,

if we take fiber sum of two Lefschetz fibrations, these invariants are changed so that

the slope can be calculated as follows [41].

Lemma 4.2.4. Let g ≥ 2 and let f1 : X1 → S2 and f2 : X2 → S2 be two nontrivial

relatively minimal genus-g Lefschetz fibrations with regular fiber Σg. Then any fiber

sum f : X1]X2 → S2 of f1 and f2 has slope λf = (K2
f1

+K2
f2

)/(χf1 + χf2).

Proof. The Euler characteristic and the signature of the total space of fiber sum are

e(X1]X2) = e(X1) + e(X2) + 4(g − 1) and

σ(X1]X2) = σ(X1) + σ(X2)

respectively. It follows that the slope λf is K2
f/χf where

K2
f = c21(X1]X2) + 8(g − 1)

= 3σ(X1]X2) + 2e(X1]X2) + 8(g − 1)

= 3[σ(X1) + σ(X2)] + 2[e(X1) + e(X2) + 4(g − 1)] + 8(g − 1)

= 3σ(X1) + 2e(X1) + 8(g − 1) + 3σ(X2) + 2e(X2) + 8(g − 1)

= K2
f1

+K2
f2

χf = χh(X1]X2) + (g − 1)

=
σ(X1]X2) + e(X1]X2)

4
+ (g − 1)

=
σ(X1) + σ(X2) + e(X1) + e(X2) + 4(g − 1)

4
+ (g − 1)

=
σ(X1) + e(X1)

4
+ (g − 1) +

σ(X2) + e(X2)

4
+ (g − 1)

= χf1 + χf2
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The lemma follows.

Corollary 4.2.5. Let g ≥ 2 and let f1 : X1 → S2 and f2 : X2 → S2 be two nontrivial

relatively minimal Lefschetz fibrations of genus g with same slope λ = λf1 = λf2 .

Then any fiber sum f : X1]X2 → S2 of f1 and f2 has slope λ.

Next theorem is shown by Stipsicz in [56].

Theorem 4.2.6. Let f : X → S2 be a relatively minimal nontrivial Lefschetz fibration

of genus g. Then the total space X]X of the fiber sum f]f : X]X → S2 of f with

itself is a minimal symplectic 4-manifold.

Now, by using these results we give an example of minimal symplectic 4-manifold

on which we build genus-g Lefschetz fibration with small slope.

Corollary 4.2.7. For every g ≥ 2, there exists a minimal symplectic 4-manifold ad-

mitting a genus-g Lefschetz fibration with slope

λ = 4− 4

g
− 4(g − 2)

g(g + 2)
.

Proof. Let f be the Lefschetz fibration with the slope

λf = 4− 4

g
− 4(g − 2)

g(g + 2)

given in Theorem (4.2.1). Then by Theorem (4.2.6), the total space of a fiber sum of

f with itself is a minimal symplectic 4-manifold with slope λ.

Remark 4.2.8. One can obtain infinitely many Lefschetz fibrations of genus g by

taking fiber sum of those in Corollary (4.2.7) so that all have the same slope as above.

Now, our aim is to obtain Lefschetz fibrations even with smaller slopes than those

given in Theorem (4.2.1).

4.2.1 The case of even genus g

Theorem 4.2.9. For g ≥ 4 and even, there exists a Lefschetz fibration f : M → S2

of genus g with slope

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)
.
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Proof. Let g = 2r. Consider the factorization

H = (C1C2C3 · · ·C2gC
2
2g+1C2g · · ·C3C2C1)

2, (4.4)

where the Dehn twists are about the curves on Σg illustrated in Figure (4.4). Note that

H is a factorization of the identity. Let φ3 be a diffeomorphism on the surface such

that

φ3 =



c1 7→ d1,

c3 7→ d2,

...

c2i−1 7→ di,

...

c2g−3 7→ dg−1,

c2g−1 7→ dg.

For instance, one can take

φ3 = C2D1C1C2 · C4D2C3C4 · · ·C2g−2Dg−1C2g−3C2g−2 · C2gDgC2g−1C2g.

...

c1
c

3

...

e
e

1

2

dd d
d

ee

1
2

r

r

c
c

r+1

r+1

d d d

ee e

g-2

g-2

g-1

g-1
g

g
d

e

3

3

g
g+2

c c2g-12g-3
c

2g+1

Figure 4.4: The curves c1, c3, ..., c2g−1 , d1, ..., dg and e1, ..., eg.

By conjugating H by φ3 and applying Hurwitz moves, we may write

Hφ3 = (D1D2 · · ·DrDr+1 · · ·Dg)
4L1.

Moreover, by conjugating Hφ3 by the hyperelliptic involution ı, mapping di to ei, we

get

H ıφ3 = (E1E2 · · ·ErEr+1 · · ·Eg)4L2.
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Note that each Li (i = 1, 2) is a product of (4g + 4) positive Dehn twists. Then by

appyling more Hurwitz moves, we have a relator as follows:

Hφ3H ıφ3 = (D1E1)
4(D2E2)

4 · · · (DrEr)
4(Dr+1Er+1)

4 · · · (Dg−1Eg−1)
4(DgEg)

4L
′

1L2.

For 1 ≤ i ≤ r − 1, we replace Di+1Ei+1 by (C1C2 · · ·C2i+1)
2i+2 four times. Note

that this is a C2i+1-substitution. Similarly, for 1 ≤ j ≤ r − 1 we replace Dg−jEg−j

by (C2g+1C2g · · ·C2(g−j)+1)
2j+2 four times. This is a C2j+1-substitution.

The number of (nonseparating) positive Dehn twists in the new relator is

2(4g + 4) + 16 +
r−1∑
i=1

(
4(2i+ 1)(2i+ 2)

)
+

r−1∑
j=1

(
4(2j + 1)(2j + 2)

)
.

Let f : M → S2 be the Lefschetz fibration corresponding to this new relator. Then

we compute the following topological invariants:

The Euler characteristic of M is

e(M) = −4(g − 1) +
[
2(4g + 4) + 16 +

r−1∑
i=1

(
4(2i+ 1)(2i+ 2)

)
+

r−1∑
j=1

(
4(2j + 1)(2j + 2)

)]
= (4g3 + 6g2 + 8g + 36)/3.

The signature of M is

σ(M) = Ig(H
φ3) + Ig(H

ıφ3) +
r−1∑
i=1

4Ig(C2i+1) +
r−1∑
j=1

4Ig(C2j+1)

= −8(g + 1) +
r−1∑
i=1

4(−2i(i+ 2)) +
r−1∑
j=1

4(−2j(j + 2))

= (−2g3 − 6g2 − 4g − 24)/3.
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The slope is then computed as

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)
.

4.2.2 The case of odd genus g

Theorem 4.2.10. For g ≥ 5 and odd, there exists a Lefschetz fibration f : N → S2

of genus g with slope

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 11)
.

Proof. Let g = 2g + 1. Similar to the even case, we start with the factorization

H = (C1C2C3 · · ·C2gC
2
2g+1C2g · · ·C3C2C1)

2, (4.5)

where the Dehn twists are about the curves on Σg illustrated in Figure (4.5). Let φ3 be

a diffeomorphism satisfying φ3(c2i−1) = di for 1 ≤ i ≤ g, as in the proof of Theorem

(4.2.9).

...

c1
c

3

...

ee
1

2

d
d d d

e
e

1
2

r

r

cc

r+1

r+1

d d

e e

g-1

g-1
g

gd

e

g g+2 c2g-1

r+2

r+2

c2g+1

Figure 4.5: The curves c1, c3, ..., c2g−1 , d1, ..., dg and e1, ..., eg.

By conjugating H by φ3 and applying Hurwitz moves, we obtain

Hφ3 = (D1D2 · · ·DrDr+1Dr+2 · · ·Dg−1Dg)
4S1.

Furthermore, by conjugating Hφ3 by the hyperelliptic involution ı, we get

H ıφ3 = (E1E2 · · ·ErEr+1Er+2 · · ·Eg−1Eg)4S2.

Each Si (i = 1, 2) is a product of (4g + 4) positive Dehn twists. Then by applying

more Hurwitz moves, we have the following relator:
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Hφ3H ıφ3 = (D1E1)
4(D2E2)

4 · · · (DrEr)
4(Dr+1Er+1)

4(Dr+2Er+2)
4 · · · (Dg−1Eg−1)

4

(DgEg)
4S
′
1S2.

For 1 ≤ i ≤ r, we replace Di+1Ei+1 by (C1C2 · · ·C2i+1)
2i+2 four times. Note that

this is a C2i+1-substitution. Similarly, for 1 ≤ j ≤ r − 1 we replace Dg−jEg−j by

(C2g+1C2g · · ·C2(g−j)+1)
2j+2 four times. This is a C2j+1-substitution.

The number of (nonseparating) positive Dehn twists in the new relator is

2(4g + 4) + 16 +
r∑
i=1

(
4(2i+ 1)(2i+ 2)

)
+

r−1∑
j=1

(
4(2j + 1)(2j + 2)

)
.

Then the last Lefschetz fibration f : N → S2 which is obtained after substitutions

has the following topological invariants:

The Euler characteristic of N

e(N) = −4(g − 1) +
[
2(4g + 4) + 16 +

r∑
i=1

(
4(2i+ 1)(2i+ 2)

)
+

r−1∑
j=1

(
4(2j + 1)(2j + 2)

)]
= (4g3 + 6g2 + 20g + 42)/3.

The signature of N

σ(N) = Ig(H
φ3) + Ig(H

ıφ3) +
r∑
i=1

4Ig(C2i+1) +
r−1∑
j=1

4Ig(C2j+1)

= −8(g + 1) +
r∑
i=1

4(−2i(i+ 2)) +
r−1∑
j=1

4(−2j(j + 2))

= (−2g3 − 6g2 − 10g − 30)/3.

Then the slope is

λf = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 11)
.
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Corollary 4.2.11. For g ≥ 4, there exists a minimal simply connected symplectic

4-manifold X admitting a Lefschetz fibration of genus g with slope

λ1 = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)

if g is even, and

λ2 = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 11)
.

if g is odd.

Proof. Suppose first that g is even. Consider the Lefschetz fibration f : M → S2

with slope

λ1 = 4− 4

g
− 8(g − 2)(g − 1)

g(g2 + 8)

given in Theorem (4.2.9). If we denote by V the corresponding monodromy factor-

ization, all ci, except c2r, c2r+1, c2r+2, are vanishing cycles. It follows that all bi and

ai, except ar, ar+1, are trivial in π1(M).

Let φ be a diffeomorphism of Σg with φ(c1) = c2r and φ(c2g+1) = c2r+2, and let X

be the Lefschetz fibration with monodromy factorization V V φ.

Now, it follows that the 4-manifold X is simply connected, and minimal by Theorem

(4.2.6). Note also that its slope is equal to λ1 by Corollary (4.2.5).

The case where g is odd is proved similarly.

43



44



CHAPTER 5

GEOGRAPHY PROBLEM

Lefschetz fibrations provide many examples in the class of symplectic 4-manifolds.

Since these manifolds have fibering structure on them, we can get results on their

diffeomorphism types.

An even dimensional smooth manifold X is called a symplectic manifold together

with a closed nondegenerate 2-form ω on it. A symplectic 4-manifold X is called

minimal if it does not contain any (−1)-sphere.

Given for any topological coordinates (c21, χh), the existence of a simply-connected

closed oriented smooth 4-manifold with additional structure, for an example sym-

plectic structure, is called geography problem.

The geography problem for symplectic 4-manifolds introduced by McCarthy and

Wolfson [37]. Gompf improved this work in [21]. Indeed, it is the symplectic version

of the geography problem for complex surfaces of general type which was raised by

Persson [48]. Since a simply connected complex surface is Kähler and so symplectic,

the region occupied by complex surfaces are already covered by some symplectic 4-

manifolds. However, there exist some symplectic 4-manifolds outside the prescribed

region for complex surfaces. Indeed, there are examples not satisfying the Noether

inequality (2χh − 6 ≤ c21) [55, 21, 47]. Since 12|c21 + c2 holds for an almost complex

manifold, it also holds for symplectic manifolds. From this, b+2 is odd for simply

connected symplectic manifolds (A closed simply connected smooth 4-manifold ad-

mits an almost complex structure iff b+2 is odd). Also the existence of a symplectic

structure implies that b+2 > 0 without assuming simply connectedness. For simply
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connected case χh ≥ 1 and a remarkable result of Taubes shows that minimal simply

connected symplectic 4-manifolds satisfy c21 ≥ 0 [60, 32].

In the geography problem for symplectic 4-manifolds, they are considered being min-

imal. Although many of the Lefschetz fibrations are not minimal, Fintushel and

Stern’s example is so. In [51], Sato showed that the geography of non-minimal rel-

atively minimal genus-2 Lefschetz fibrations is finite by using the theory of pseudo-

holomorphic curves and the Taube’s structure theorem on the Gromov invariants. He

gave the possible number of (ir)reducible singular fibers [52]. Korkmaz and Baykur

constructed genus-2 Lefschetz fibrations having this number of singular fibers [40].

Fintushel and Stern construct Lefschetz fibrations in [18] that do not satisfy the

Noether inequality. On the other hand, no example of a Lefschetz fibration violat-

ing the Bogomolov-Miyaoka-Yau (BMY) inequality (c21 ≤ 9χh) has been found.

Our constructed Lefschetz fibrations and the associated symplectic manifolds in Corol-

lary (4.2.7) are minimal and simply-connected. They have the following invariants:

e = 28g + 100,

σ = −16g − 64,

c21 = 8g + 8,

χh = 3g + 9,

b+2 = 6g + 17.

x
h

c
1

2

BMY line

Noether line

3

Figure 5.1: The BMY line is c21 = 9χh and the Noether line is c21 = 2χh − 6.

Thus, they are in the region which is bounded by the BMY line and the Noether line.
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