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ABSTRACT

META ANALYSIS OF ALZHEIMER’S DISEASE AT THE GENE
EXPRESSION LEVEL

İZGİ, HAMİT
M.S., Department of Biology

Supervisor : Assoc. Prof. Dr. Mehmet Somel

February 2017, 119 pages

In this study, publicly available microarray gene expression datasets are used to in-
vestigate common gene expression changes in different postmortem brain regions
in Alzheimer’s Disease (AD) patients compared to control subjects, and to find pos-
sible functional associations related to these changes. The hypothesis is that patho-
genesis of the disease converges into common patterns of dysregulation/alteration
or dysfunction in molecular pathways across different brain regions in AD. In total,
I studied 13 datasets, one of which was excluded from the analysis in quality
checks, resulting in 12 datasets spanning 7 different brain regions. Instead of us-
ing the standard approach to identify differentially expressed genes in each dataset
independently, I used an alternative scheme, focusing on shared trends across all
datasets, and testing their significance using cross-dataset structured permutations.
Among more than 8000 common genes in all 12 datasets, I identified those showing
shared upregulated (631) or downregulation (580) trends in AD across all datasets,
which was highly significant compared to permutations. I then performed GO Bio-
logical Process enrichment analysis on both gene sets. There were 343 GO BP
categories enriched for upregulated genes and 94 GO BP categories enriched for
downregulated genes. Among 343 GO categories enriched for upregulated genes,
the most noticeable ones include protein modification, differentiation, and the cell
cycle. Furthermore, cell-cell signaling, synaptic activity and energy metabolism
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related pathways are enriched in downregulated genes. These findings are in line
with the effects of pathological changes in AD and suggests that different brain
regions share common pathways deregulated by AD.

Keywords: Alzheimer’s Disease, gene expression, microarray, brain
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ÖZ

ALZHEIMER HASTALIĞININ GEN ANLATIMI DÜZEYİNDE META
ANALİZİ

İZGİ, HAMİT
Yüksek Lisans, Biyoloji Bölümü

Tez Yöneticisi : Doç. Dr. Mehmet Somel

Şubat 2017, 119 sayfa

Bu çalışmada, yayınlanmış mikrodizin gen ifade veri setleri kullanılarak, kontrol
gruplarına kıyasla Alzheimer hastalarının postmortem beyin bölgelerindeki ortak
gen ifade değişiklikleri araştırılmış ve bu ortak değişimlerin muhtemel fonksiyonel
sonuçları saptanmaya çalışılmıştır. Çalışmadaki hipotezimiz, Alzheimer hastalığı
gelişimi sırasında farklı beyin bölgelerinde ortak bir şekilde moleküler yolaklarda
dengenin bozulmasına, değişmesine ve işlevsel bozukluğa neden olmasıdır. Top-
lamda 13 veri seti incelenmiş, bir tanesinin kalite kontrolü sonucu çalışmadan çı-
karılması suretiyle 7 farklı beyin bölgesini kapsayan 12 veri seti analiz edilmiştir.
Çalışmada, ayrı ayrı her bir veri setinde farklı gen ifadesi gösteren genlerin tespiti
şeklindeki standart yaklaşım yerine, veri setleri arasındaki ortak gen ifadesi de-
ğişimi eğilimlerinin tespiti ve bunların istatistiksel anlamının yapılandırılmış per-
mütasyonlar yoluyla belirlenmesi yöntemi kullanılmıştır. Veri setleri arasında or-
tak 8000’in üzerindeki gen arasından Alzheimer’de anlatımı ortak biçimde artma
eğilimi gösteren 631 tane ve anlatımı azalma eğilimi gösterene 580 tane gen tes-
pit edilmiş ve bunların istatistiksel olarak yüksek derecede anlamlı olduğu belir-
lenmiştir. Daha sonra bu genler kullanılarak, GO Biyolojik İşlev zenginleştirme
analizi yapılmış ve anlatımı artan genlerin 343 GO kategorisinde, anlatımı azalan
genlerin ise 94 GO kategorisinde zenginleştiği bulunmuştur. 343 GO kategorisi
arasında en dikkat çekici olanlar, protein modifikasyonu, farklılaşma ve hücre dön-
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güsüdür. Aynı zamanda, hücre-hücre sinyali, sinaptik aktivite ve enerji metaboliz-
masıyla ilişkili yolakların ise anlatımı azalan genlerde zenginleştiği gösterilmiştir.
Bu çalışma, Alzheimer hastalığındaki patolojik değişikliklerin etkileriyle molekü-
ler değişikliklerin aynı doğrultuda olduğu göstermekte ve farklı beyin bölgelerinin
aslında benzer şekilde hastalıktan etkilendiğine işaret etmektedir.

Anahtar Kelimeler: alzheimer hastalığı, gen anlatımı, mikrodizin, beyin
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CHAPTER 1

INTRODUCTION

1.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a complex and heterogeneous neurodegenerative dis-
ease that involves problems with memory, thinking and behavior, and is the most
common form of dementia. Disease progression starts with mild symptoms and
become severe in later stages. Prevalence of AD is constantly increasing in age-
ing populations worldwide (Barnes & Yaffe, 2011). Currently, there is no cure for
AD but there are treatments that can reduce or slow down symptoms and improve
quality of life. Meanwhile, an increasing amount of research on AD worldwide is
being done to understand and find treatment for AD.

1.1.1 Discovery of Alzheimer’s Disease

Alzheimer’s Disease, or Alzheimer’s, was discovered by German psychiatrist Alois
Alzheimer, in 1906. He is the first in publishing the histological alterations in brain
pathology of a 51-year-old woman who had symptoms of short-term memory loss
and other strange behavioral symptoms (e.g. aggressiveness, crying and progress-
ive confusion). After the patient’s death, Alzheimer performed an autopsy to in-
vestigate the patient’s brain and found histological alterations later described as
plaques and neurofibrillary tangles. His findings did not get much attention in the
German psychiatrists congress in 1906 but he did not give up his research. Three
other cases were reported between 1906 and 1909 by Alzheimer and his colleague.

Kraepelin, a coworker of Alzheimer, introduced the term Alzheimer’s Disease in
new edition of her textbook in 1910 (Hippius & Neundorfer, 2003). Since that
time, the term has been generally used. Because the disease was very rare, findings
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of Alzheimer did not get much attention in the following years until 1970s. Later in
1976, Alzheimer’s Disease was recognized as the most common cause of dementia
by neurologist Robert Katzman (Katzman et al., 1976).

1.1.2 Signs and Symptoms

One of the biggest challenges for the diagnosis of AD is that damage in the brain
starts years before the symptoms appear. In these early stages, people continue their
everyday lives without any observable cognitive and memory problems. However,
amyloid plaques and neurofibrillary tangles gradually accumulate in the brain. Ini-
tial damage starts to take place in hippocampus region of the brain, responsible
for the formation of memories. As the disease progresses, other brain regions are
affected too. Eventually, neurons become unable to function and lose connection
with other neurons and die.

In the early stages, the first cognitive symptom that appears is memory problems,
although this is variable from person to person. For the majority of people with AD,
short-term memory loss starts interfering with daily life. Since hippocampus is the
first affected brain region and it is responsible for day-to-day memory, long-term
memories are unaffected at this stage. Memory loss increasingly interferes with
daily life as the disease progresses. Planning and problem solving skills become
challenging. Visual skills are also affected. Reading a page and judging distance
gets harder. In moderate stages, memory loss and other cognitive difficulties be-
come more severe. Daily tasks become more challenging to perform. The patients
may have difficulties to recall family and friends. Speaking difficulties arise due to
inability to recall memory. Finally, in the late stages of the disease, people become
completely dependent on others. They cannot perform very simple tasks on their
own. Language drops to simple phrases and words. Amyloid plaques and neurofib-
rillary tangles spread over the brain in this stage. Brain tissue shrinks significantly.

1.1.3 Pathophysiological Changes in AD

Although the whole brain is affected by AD at later stages, several regions are es-
pecially vulnerable starting from the very early stages. That is, disease progression
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is not uniform throughout the brain. AD pathology starts in brain regions related to
learning, memory and perception. Hippocampus, amygdala, entorhinal and cingu-
late cortices are the main regions initially affected by AD (Braak & Braak, 1991;
Hampel et al., 2008; Loring, Wen, Lee, Seilhamer & Somogyi, 2001) As the disease
progresses, several other brain regions start to display metabolic and pathological
differences including frontal cortex, visual cortex, temporal cortex and cerebellum
(Brewer & Barton, 2014; DeKosky & Scheff, 1990).

Neuronal and synaptic loss are the characteristics of Alzheimer’s Disease in cortex
and other certain regions of the brain. Pathological hallmarks of AD are amyloid
plaques deposited in extracellular matrix and neurofibrillary tangle (NFT) forma-
tion in cell body. Amyloid plaques are formed by heterogeneous amyloid-β pep-
tides, which are the products of proteolytic cleavage of amyloid precursor protein
(APP). Through cleavage by secretases at different sites, APP yields two species of
amyloid-β peptides, which are the major constituents of amyloid plaques; Aβ1−40

and Aβ1−42. Aβ1−42, more hydrophobic and amyloidogenic, is the major compon-
ent and aggressive form of amyloid peptide (Selkoe, 1998). Mechanism of APP
processing and formation of amyloid-β variants are discussed below (See Section
1.2.2).

The second hallmark of AD is the intracellular neurofibrillary tangle formation,
which is not specific to AD. Several other neurodegenerative diseases, known as
tauopathies, also involve NFT. The major component of NFT is the tau protein.
Its physiological function is to stabilize and assemble microtubules (Weingarten,
Lockwood, Hwo & Kirschner, 1975). Abnormal hyperphosphorylation and aggreg-
ation of tau protein leads to self-assembly and the formation of fibrillary tangles
(Alonso 2001).This intracellular fibrillary structure prevents normal function of
tau leading to impairment in microtubule integrity, which in turn results in neural
dysfunction and cell death (Duckley 2006).

1.2 Causes of AD

The underlying mechanism of AD is not fully understood. The causes of AD are
suggested to be combinations of genetic and environmental factors (Bird, 1993).
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Genetically, Alzheimer’s Disease is divided into three categories; chromosomal,
familial and sporadic. Chromosomal type refers to only the Down Syndrome, or
trisomy 21. Chromosome 21 contains the APP gene, which has essential role in
Alzheimer’s Disease (Section 1.2.2). Sporadic AD is the most common form of
AD accounting for approximately 75% of the cases. It contains all the cases with
non-familial AD, excluding chromosomal case. Familial AD is the form of the
disease when at least two AD cases occur in a family. It can be either early-onset
or late-onset, depending on the age of the patient when the disease appears (Bird,
1993).

Figure 1.1: Percentages of AD according to GeneReviews in NCBI Bookshelf,
updated in 2015 (Bird, 1993)

1.2.1 Chromosomal Cause

Down syndrome (DS) is a genetic disorder caused by trisomy of chromosome 21.
Chromosome 21 carries the APP gene which plays a vital role in AD neuropatho-
logy. Therefore, the vast majority of people with DS, being trisomic for APP, de-
velop AD pathology after 40 years of age (Bird, 1993). It has been shown that APP
over-expression might lead to accumulation of amyloid-β in the brains of children
with DS (Leverenz & Raskind, 1998). In addition, there can be other factors con-
tributing to development of AD pathology in DS. It is suggested that other genes in
chromosome 21 might also play role. The trisomy of oxidative stress-related gene
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located in chromosome 21, superoxide dismutase, may be related to dysfunction
of oxidative damage repair in DS and thus might contribute to development of AD
pathology (Lott & Head, 2001).

The association between AD and DS is assumed to be the lifelong over-expression
of APP, which results in overproduction of amyloid-β protein in brains of DS pa-
tients who are trisomic for APP gene. This hypothesis is supported by a study
which states that no neuropathological evidence of AD was observed in a 78 year-
old woman who carried a partial copy of chromosome 21, not including the APP

gene (Prasher et al., 1998).

1.2.2 Familial AD

Familial AD (FAD) refers to the cases where at least two people in a family have
been diagnosed with AD. About 25% of AD cases are familial, which are further
divided into early-onset and late-onset types. If several members of a family are
diagnosed as AD before mean age 65, it is referred as early-onset familial AD
(EOFAD). But the age of onset threshold is a somewhat arbitrary decision. Some
studies use 60 years or 70 years to diagnose EOFAD. However, age of onset in
many cases classified as EOFAD is younger than 60 years. Approximately, 60%
of early-onset AD cases, which accounts for 1%-6% of all AD, are familial (Cam-
pion et al., 1999). Mutations of three genes are well documented for EOFAD (see
below). Late-onset familial AD (LOFAD) is more common, accounting for ap-
proximately 25% of all AD cases. LOFAD is a complex disease involving several
susceptible genes. The APOE-ε4 allele is a well characterized gene associated with
LOFAD.

Early-Onset Familial AD

Early-onset familial AD (EOFAD) refers to AD cases where age of onset is before
65 years through generations in a family. It is inherited in an autosomal dominant
manner. Mutations in three genes, APP, PSEN1 and PSEN2, are associated with
early-onset familial AD. More than 30 APP mutations, 179 PSEN1 and 14 PSEN2

mutations have been discovered in early-onset, autosomal dominant AD (O’Brien
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& Wong, 2010). However, other autosomal dominant early-onset AD cases, in
which those three genes do not carry mutations, have also been reported. Thus,
there might be mutations in additional genes that play role in AD.

APP

APP, the amyloid precursor protein, is a large gene located on the long arm of chro-
mosome 21. It spans about 240kb and contains 18 exons (Yoshikai, Sasaki, Doh-
ura, Furuya & Sakaki, 1990). It is a highly conserved gene, coding for a single pass
transmembrane protein with a large extracellular domain (Tharp & Sarkar, 2013)
(Figure 1.2a). It is expressed in many tissues and concentrated on synapses of
neurons. APP has several alternative splicing isoforms ranging from 365 to 770
aminoacids and some of them are preferentially expressed in neurons. The reason
and functional importance behind this tissue-specific alternative splicing of APP is
not well understood.
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Figure 1.2: Structure of APP (a) and the Aβ production process (c) (Amyloid Pre-
cursor Protein Processing and Alzheimer’s Disease (O’Brien & Wong, 2010).

APP is subject to extensive post-translational modifications including glycosyla-
tion, phosphorylation and proteolytic processing. Full length APP is proteolytic-
ally cleaved by three proteinase enzymes called α-, β- and γ- secretases via two
pathways. In nonamyloidogenic pathway, APP is first cut by α-secretase inside
the amyloid-β (Aβ) peptide region. This cleavage results in two fragments, one of
which is released as large secreted extracellular domain (sAPP-α) (Figure 1.2b).
The other fragment is cut by γ-secretase to release two peptides, which are de-
graded rapidly. sAPP production through α-secretase cleavage is a constitutive
process (Esch et al., 1990). ADAM10 (a disintegrin and metalloproteinase) is
one of the three predicted α-secretases (Lammich et al., 1999). Overexpression of
ADAM10 increases the production of sAPP protein while decreasing Aβ produc-
tion and plaque formation. Likewise, production of mutant ADAM10 proteins can
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increase Aβ pathology (Lammich et al., 1999). One of the pathological hallmarks
of AD is the accumulation of the Aβ peptide. Aβ is produced via the amyloido-
genic pathway (Figure 1.2c). Cleavage of APP by sequential β- and γ-secretases
yields a mixture of Aβ peptides with different lengths. There are two main Aβ spe-
cies AB1−40 (%90) and AB1−42(%10), the latter being more aggregation-prone and
predominantly present in amyloid plaques in brains of AD patients (Van Cauwen-
berghe, Van Broeckhoven & Sleegers, 2016). Majority of the mutations of APP

gene favors production of aggressive-prone AB1−42 peptide. Nonetheless, there is
no clear association between cognitive decline and amyloid plaque load. A study
reports that amyloid plaque deposition does not correlate with cognitive impair-
ment (Giannakopoulos et al., 2003).

Although some of them are speculative, several functions are attributed to APP. It
has been shown that the extracellular domain of APP binds to a neuronally secreted
glycoprotein, F-spondin and regulates amyloid-β production and downstream sig-
naling (Ho & Südhof, 2004). More evidence exists for the function of APP as a cell
adhesion protein. In vivo studies in mouse show homo- and heterodimerization of
APP family proteins, suggesting a role in trans-cellular adhesion (Soba et al., 2005).
In addition, colocalization of APP and integrins in rat primary culture neurons sup-
ports this possible function (Yamazaki, Koo & Selkoe, 1997). Another important
function attributed to APP is its role in neurite growth and synaptogenesis. In cell
culture studies, expression of APP is shown to be upregulated in neuronal differ-
entiation (Hung, Koo, Haass & Selkoe, 1992). Furthermore, upregulation of APP
after traumatic brain injury has been shown in mammalian and Drosophila brain
(Leyssen et al., 2005; Van den Heuvel et al., 1999) suggesting a repair role. In line
with these observations, other studies have shown that APP plays an important role
in neuron viability and synaptic activity (Hérard et al., 2006; Perez, Zheng, Van der
Ploeg & Koo, 1997). The important roles assigned to the intracellular domain of
APP are notably axonal transport, cell signaling and synapse remodeling. Changes
in the ratio of isoforms expressed in neurons as well as the phosphorylation sites
of APP protein are associated with Alzheimer’s Disease (Matsui et al., 2007). APP
can be phosphorylated at multiple sites. Specifically, Thr668 phosphorylated APP
is shown to increase in AD compared to control subjects suggesting that APP phos-
phorylation may regulate Aβ production and eventually contribute to AD pathogen-
esis (Lee et al., 2003).
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PSEN1 and PSEN2

Since the discovery of mutations in PSEN genes in early onset familial AD (Sher-
rington et al., 1995), many studies have focused on FAD-linked mutations and
biology of these genes. PSEN1 and PSEN2, highly homologous genes, code for
presenilin-1 and presenilin-2 proteins in humans, respectively. The PSEN1 gene is
located on chromosome 14 and PSEN2 is located on chromosome 1. While PSEN2

mutations are rare, PSEN1 mutations are very frequent in autosomal dominant AD.

Both presenilin-1 and presenilin-2 proteins are components of the γ-secretase com-
plex, which is a multi-subunit, integral membrane protein (Vetrivel, Zhang, Xu &
Thinakaran, 2006). γ-secretase catalyzes the cleavage of single-pass membrane
proteins, including Notch and APP. As mentioned above (in the APP section),
γ-secretase plays a role both in non-amyloidogenic and amyloidogenic pathways
of APP. In amyloidogenic pathway, β-secretase produces a short APP fragment,
which is further cleaved by γ-secretase to produce Aβ peptides in different lengths.

Mutations in PSEN1 and PSEN2 genes alter the proteolytic activity of γ-secretase
resulting in an increased ratio of Aβ1−42 to Aβ1−40. PSEN1 mutations are respons-
ible for the most severe forms of familial AD. All these mutations associated with
AD are autosomal dominant, which means mutation in one allele is sufficient to
shift development of AD to earlier ages. Mechanistically, these mutations do not
interfere with assembly of γ-secretase complex, which means it is proteolytically
active. However, complete loss of function mutations in PSEN1 and PSEN2 genes
cause severe disorders but have no relation to neurodegeneration or AD (Wang et
al., 2010). Although mutations in the APP gene have role in Aβ pathogenesis,
proteolytic cleavage of APP by γ-secretase (which includes presenilin proteins in
its multi-subunit structure) is the most important step affecting Aβ deposition such
that mutations in PSEN genes alters γ-secretase activity by increasing the ratio of
Aβ1−42 to Aβ1−40 (Cruts & Van Broeckhoven, 1998).

To sum up, early-onset familial AD is associated with mutations in three genes,
APP, PSE1 and PSE2. Mutations in the PSEN1 gene are the most common cause,
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followed by those in the APP gene. Mutations in the PSEN2 gene, associated with
early-onset familial AD, are rare. However, there are also rare cases of EOFAD that
cannot be associated with one of these three genes. Thus, there might be mutations
in other genes involved in EOFAD.

Late-Onset Familial AD

Familial AD accounts for approximately 25% of all AD cases and more than 75%
of them are late-onset. Late-onset AD is a more complex form of AD that is multi-
factorial and may involve multiple genes. There is not a gene identified where dom-
inant mutations cause late-onset familial AD, as in the case in early-onset familial
AD. Still, the APOE-ε4 allele is the well-described and most studied risk factor
for late-onset AD. Nonetheless, APOE-ε4 allele is also considered to be risk factor
for early-onset AD shifting age of onset to early ages (Khachaturian, Corcoran,
Mayer, Zandi & Breitner, 2004). Although early-onset and late-onset forms of AD
are defined separately, the only distinction between them is the age of onset. How-
ever, this distinction is vague in real life because AD is a complex disease, which
develops through a continuous accumulation of pathological and physiological pro-
cesses with the patient’s age. Moreover, a study reports that about 25% of families
with late-onset AD also have a relative with early-onset AD (Brickell et al., 2006).
Therefore, AD is accepted as a one single disease apart from the differences in ge-
netic cause and age of onset.

The APOE-ε4 allele is associated with late-onset familial and sporadic forms of
AD. Although, the link between positive family history and presence of APOE-ε4
allele is very high, there was no evidence of transmission of AD though APOE

gene within families (Jarvik, Larson, Goddard, Schellenberg & Wijsman, 1996).
The role of APOE allelic variants and other genes susceptible in late-onset AD are
discussed below.

1.2.3 Sporadic AD

Individuals with AD who have no family history are called sporadic cases. Sporadic
AD can occur both in early and late ages and accounts for majority of all AD cases.
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It is a complex and heterogeneous disease suggested to be the result of combin-
atorial effects of ageing, genetic and environmental factors. While familial AD is
frequently characterized by mutations in APP, PSEN1 or PSEN2, there is no exact
pathogenesis of sporadic AD. Although the genetic backgrounds of familial and
sporadic AD are different, they are clinically indistinguishable. APOE-ε4 allele is
the main characterized risk factor for AD. However, more than 40% of AD cases
are reported not to carry the APOE-ε4 allele (Mayeux et al., 1998). The presence
of APOE-ε4 allele is neither necessary, nor sufficient for the diagnosis of late-onset
AD.

Apolipoprotein E

The Apolipoprotein E (APOE) gene is located on chromosome 19 and consists of
four exons. It encodes for a 299 aminoacid long protein, which is a component of
lipoproteins. ApoE is an essential protein in lipid homeostasis and acts by medi-
ating lipid and cholesterol transport. It is expressed in many tissues, with highest
expression in the liver followed by the brain. Upon neuronal degeneration, apoE
collects remaining lipids and redistributes them to cells in need of lipids for mem-
brane repair or myelination of new axons (Huang, 2006). The main cell type that
expresses apoE in the brain is astrocyte, and to some extent microglia (Grehan, Tse
& Taylor, 2001). Neurons in transgenic mouse models also express human apoE at
low levels in response to excitotoxic injury (Xu et al., 2006).

APOE is a polymorphic gene containing four different isoforms (or alleles), three
of them common. These three, APOE-ε2, APOE-ε3 and APOE-ε4 differ from
each other by one aminoacid residue. Different isoforms display specific activities.
APOE-ε3 and APOE-ε2 are suggested to be effective in maintenance and repair of
neuronal cells while APOE-ε4 may have an opposite effect (Mahley, Weisgraber &
Huang, 2006). APOE-ε3 secreted from astrocytes also stimulates neurite growth
and extension in mice hippocampus but APOE-ε4 has no such effect (Sun et al.,
1998).

The APOE-ε4 allele is the major risk factor for both familial and sporadic late-
onset AD but it is not sufficient alone to cause AD (Saunders et al., 1993). Gene

11



dose of APOE-ε4 allele has also important effect on age of onset. While the risk
for AD is estimated to be three-fold higher for heterozygous carriers (APOE-ε3/ε4)
than non-carriers, it is fifteen-fold for homozygous carriers (APOE-ε4/ε4) (Corder
et al., 1993). Unlike ε4, ε2 allele has a protective effect against AD and delays age
of onset. Risk of AD is estimated to be lowest in individuals bearing ε2/ε3 alleles
(Corder et al., 1994).

Amyloid-β plaque deposition is one of the two main pathological hallmarks of
AD. Its relation with apoE protein is well-studied. ApoE protein binds to amyloid-
β peptide in an isoform-specific manner. ApoE2, apoE3 and apoE4 can bind to
amyloid-β peptide to form stable complexes. However, apoE4 is shown to bind
to amyloid-β more rapidly and aggressively, while apoE2 shows the least binding
(Ma, Yee, Brewer, Das & Potter, 1994). This is consistent with the observation that
increased amyloid plaque deposition in individuals with APOE-ε4 genotype.

Genome Wide Association Studies of Alzheimer’s Disease

To find risk factors other than the APOE-ε4 genotype, Genome Wide Association
Studies (GWAS) of AD have been conducted by multiple laboratories. A GWAS
done on more than 2,000 AD and control subjects found two loci associated with
AD risk: APOJ (encoding for apolipoprotein J) and CR1 (encoding for a comple-
ment component), which may have role in clearance of amyloid-β peptide (Lam-
bert et al., 2009). Two other GWAS also report APOJ and CR1 loci as risk factors
for AD, together with novel loci they identified, including PICALM and BIN1 (Har-
old et al., 2009; Seshadri et al., 2010). However, none of the loci found in GWAS
have a risk effect that can be comparable to that of APOE-ε4. Still, these studies
reveal important findings on pathophysiological pathways related to AD. For in-
stance, genes found in GWAS were clustered in three main pathways; cholesterol
and lipid metabolism, inflammatory response and endosomal vesicle cycling (Van
Cauwenberghe et al., 2016).
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1.3 Transcriptome Change in Brain with AD

Transcriptome studies in AD have been drawing growing attention for nearly two
decades. Most of these studies are aimed at discovering pathogenesis of the dis-
ease, biomarkers and cellular pathways correlated to AD progression by focusing
on affected brain regions individually. One of the important limitations of these
transcriptome studies is that technical artifacts, as well as cellular heterogeneity
and other sources of uncontrolled biological or environmental variability between
samples can influence the results. Despite such confounding and stochastic factors,
their differences in the selection of tissue type or brain region, and frequently hav-
ing small sample sizes, each study has provided significant results in their own
context.

One of the earliest expression profiling studies was done in 2000 by Ginsberg and
colleagues on AD patients bearing NFT in their CA1 neurons of hippocampus re-
gion. They compared relative expression of mRNAs in control and AD samples for
∼18,000 expressed sequence tags. They reported that compared to control, hippo-
campal neurons of AD patients have significantly reduced relative mRNA levels,
some of which are implicated in AD pathology including synaptic proteins and
phosphatases/kinases (Ginsberg, Hemby, Lee, Eberwine & Trojanowski, 2000).

Another transcriptome study was conducted on hippocampal CA1 tissue using 6
AD and 6 control samples (Colangelo et al., 2002). Authors reported that they
analyzed 12,633 genes in two groups and found functional enrichment for both
downregulated and for upregulated genes. They showed that among downregulated
genes, there were signaling elements involved in synaptic plasticity, as reported be-
fore, and transcription factors. They also claimed that apoptotic and neuroinflam-
matory genes were activated in hippocampal CA1 neurons in the AD brain.

In another study published in 2009, the authors focused on the temporal cortex,
which is among affected brains region in AD (Tan et al., 2010). They investigated
temporal cortex expression profiles from 25 AD and 16 control subjects. They re-
ported more than 5000 genes differentially expressed in AD. Functional analysis of
these genes further supported the previous findings, as the authors showed enrich-
ment in functional groups associated with AD including synaptic function, neuro-
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transmission and neuroinflammation.

To investigate the relationship between severity of AD and gene expression change,
a study conducted on 9 control and 22 AD subjects at different stages with AD (Bla-
lock et al., 2004). They classified AD cases as incipient, moderate and severe using
the MiniMental Status Examination (MMSE) and NFT scores. They showed that
thousands of genes were correlated with MMSE and NFT measures, while a relat-
ively small proportion of these genes were correlated with only control and incip-
ient cases. Among genes correlated with incipient AD, they performed functional
analysis and identified upregulation of transcription factors and signaling genes in-
volved in proliferation, differentiation and tumor suppressors, as well as apoptosis
and inflammation. This interesting finding supports the report of another previously
published study which showed the activation of mitogenic signaling molecules in
neurons of AD patients (Arendt et al., 2000). The latter study hypothesized that de-
regulation and/or activation of mitogenic molecules might lead neurons to attempt
to re-enter cell cycle and dedifferentiate which eventually results in cell death.

Glucose metabolism in cerebral cortex is also associated with AD. Progressive de-
crease in metabolic rate of glucose is well-established in AD patients using regional
positron emission tomography (PET) (Alexander, Chen, Pietrini, Rapoport & Re-
iman, 2002). The motivation that metabolic change in cortex might start before
the onset of AD pathology and appearance of clinical features has led a group of
scientists to investigate metabolically affected brain regions in AD patients, which
could provide new insights into the pathogenesis of AD (Liang et al., 2008). Us-
ing normal and AD cases, they analyzed 6 brain regions vulnerable to metabolic
change in glucose including cingulate cortex, middle temporal gyrus, hippocam-
pus, entorhinal cortex, visual cortex and frontal cortex. They showed that AD
cases had significantly decreased expression in 70% of nuclear genes encoding
mitochondrial electron transport chain subunits in cingulate cortex, followed by
65% and 61% of those in middle temporal gyrus and hippocampus, respectively.
They concluded that nuclear genes encoding mitochondrial energy metabolism are
downregulated in neurons of AD cases, particularly in the cingulate cortex region.

Insulin is an important regulatory hormone in glucose metabolism. The fact that
glucose metabolism is associated with AD raises the possibility that diabetes mel-
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litus (DB) might also be risk factor for AD. A transcriptome study, published in
2014, investigated the association of AD-related gene expression changes with DB-
related changes (Hokama et al., 2014). In this study, the authors analyzed microar-
ray data from frontal cortex, temporal cortex and hippocampus in AD and control
samples. They showed that hippocampus has the most significant gene expression
alteration in AD patients. Also, they reported that expression of genes involved in
DB and obesity also changed significantly in AD cases. They concluded that the
decreased insulin signaling in the brain is a result of AD pathology.

Another study investigated the regional vulnerability in AD, specifically the CA1
and CA3 regions of hippocampus (Miller, Woltjer, Goodenbour & Horvath, 2013).
CA1 neurons are severely affected in early stages of AD while CA3 neurons are less
affected although they are structurally similar. The authors performed differential
expression and co-expression analyses using the weighted gene co-expression net-
work approach. They reported consistent results with previous findings and showed
a link between disease status and brain region. Consistent with the observed patho-
logical and region specific vulnerability, they found that the CA3 region has less
abnormal expression compared to CA1. They also showed that genes downregu-
lated in AD progression tend to be enriched in the CA3, region suggesting a link
between transcriptome profile and a brain region’s vulnerability to disease.

An interesting study investigating sporadic and familial early-onset AD was pub-
lished by Antonell and colleagues in 2013. They investigated the expression profile
of posterior cingulate brain region in early-onset sporadic and early-onset familial
AD caused by PSEN1 mutations using 7 patients for each type and 7 control sub-
jects (Antonell et al., 2013). They reported 3183 and 3350 differentially expressed
genes in these two types of AD, respectively, out of which 1916 genes were com-
mon. Interestingly, they did not find any differentially expressed gene between
sporadic and familial cases. Performing functional analysis on differentially genes,
they reported similar functional groups enriched in both AD cases including intra-
cellular signaling pathways, axon guidance and synaptic plasticity. They suggested
that although etiologies of these two groups of early-onset AD are different, the
underlying mechanisms with different pathways might converge in a common final
stage of the disease.
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Network-based approaches to investigate molecular changes at transcriptome level
could provide additional information about molecular interactions of complex dis-
ease nature. Two widescale independent studies, published in 2013 and 2014, re-
spectively, employed gene regulatory networks to characterize molecular changes
associated with late-onset AD (Narayanan et al., 2014; Zhang et al., 2013). In the
former study, the authors showed that specific network structures were remodeled
in AD and identified the key regulators of these networks. They reported TYROBP

in immune/microglia module as a key regulator, which is thought to be involved in
amyloid-b turnover and neuronal damage. The latter study focused on global al-
terations in co-regulation of genes in both AD and Huntington’s Disease. They re-
ported that networks of differentially co-expressed gene pairs showed increased or
decreased correlation in AD compared to control. They claimed that increased cor-
relation in these networks were more dominant than decreased correlations. They
also identified a subnetwork enriched in chromatin organization and neural differ-
entiation. Such network-based studies in the future may reveal further insights into
molecular mechanisms in AD.

Almost all of the transcriptome studies focuses on a specific brain region. Integrat-
ing multiple datasets in a study to identify mutual and/or distinctive patterns among
different brain regions might provide new insights about AD. A meta analysis of
transcriptome study conducted on only hippocampus region investigated gene ex-
pression signatures in AD (Wruck, Schröter & Adjaye, 2016). The authors used
hippocampus biopsies and iPSC-derived neurons using hierarchical clustering ana-
lysis. They showed over-representation of response to stress, regulation of cellular
metabolic process and reactive oxygen species as well as two gene regulatory net-
works, FOXA1 and FOXA2, in the etiology of AD. However, the scope of this
study was restricted to one brain region. Another meta analysis study was conduc-
ted by Puthiyedth N. and colleagues in 2016 using 6 different brain regions with
AD (Puthiyedth, Riveros, Berretta & Moscato, 2016). They investigated the dif-
ferentially expressed genes in each brain region and also identified common genes
related to AD across all the regions. They found AD-related genes consistent with
existing studies and also new candidate genes not previously related to AD. On the
other hand, this study was performed using 6 datasets of a published transcriptome
study (Liang et al., 2008), representing 6 different brain regions which share several
samples from same individuals. Also, the total number of samples was not large
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(44 samples). Thus, the common patterns across different brain regions might not
have been reflected thoroughly in the study.

1.4 Research Objectives

As summarized above, there are several transcriptome studies on specific brain re-
gions to elucidate the mechanisms underlying AD pathology, focusing on altered/
deregulated molecular pathways. Although each study provides valuable informa-
tion about disease mechanisms in specific brain regions, none of them focuses on
global changes across brain regions with AD. Thus, it remains unclear how much
the same set of genes may be affected in their expression across the brain. A scan
for shared gene expression patterns across different studies will thus be biologic-
ally interesting. Meanwhile, published transcriptome studies may also differ with
respect to technical factors, such as the microarray platform type used, and may
be affected by sampling error due to small sample sizes. Therefore, using a meta-
analysis approach to integrate these datasets and to study common gene expression
changes in AD might be a useful approach to reduce the effects of confounding
factors and technical noise. As I mentioned above (See Section 1.3), previous
meta-analysis studies were either restricted to only one brain region or their results
might have been affected by small small size.

Here I used publicly available microarray gene expression datasets to investigate
common gene expression changes in different postmortem brain regions in AD pa-
tients compared to control subjects, and to find possible functional associations
related to these changes. Although the vulnerability levels of brain regions to
AD is different and some regions are especially affected by AD, pathological and
clinical findings, amyloid plaques and neurofibrillary tangles, are similar between
them. I hypothesized that genetic risk factors, increased susceptibility with age and
other unknown pathogenesis of the disease converge into a common dysregula-
tion/alteration or dysfunction in molecular pathways among different brain regions
affected by AD.
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CHAPTER 2

MATERIAL AND METHOD

2.1 Datasets

This study was conducted using 9 different datasets published in the NCBI Gene
Expression Omnibus (GEO) database ( https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSExxx, GEO accession numbers are given in Table 2.1. Throughout
my thesis, I will refer to the datasets after the first author and the publication year
(Table 2.1). All gene expression datasets were microarray experiments produced
using 3 major platform types: Affymetrix, Illumina Beadchip and Rosetta/Merck.
Five Affymetrix datasets, Liang2007, Blalock2004, Hisayama2014, Tan2012 and
Antonell2015, were analysed starting from the raw data (.CEL) files, which is pos-
sible using the free R packages “affy” (Gautier, Cope, Bolstad & Irizarry, 2004)
or “oligo” (Carvalho & Irizarry, 2010). The four other datasets, Narayanan2014,
Durrenberger2011, Miller2013 and Zhang2013, were not Affymetrix-based and the
analysis of raw data from these experiments require commercial software; these
were therefore analysed using from the processed “series matrix files” directly
downloaded from GEO. In total, there were 856 samples spanning 6 brain re-
gions (excluding the Durrenberger2011 dataset; (Table 2.1). The age distribu-
tions of control and AD-patients were visually compared to ensure they roughly
match in each dataset, in order to avoid confounding between age-related and
AD-related changes. To avoid such possible confounding, one young sample (22
years old) from Narayanan2014 and two young samples (22 and 25 years old) from
Zhang2013 datasets were removed from analysis. Remaining samples in all data-
sets were above mean age 70 except Antonell2015, which had mean age 56.

Analysis of all datasets was performed in the R programming environment.
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2.2 Preprocessing of Gene Expression Datasets

Preprocessing refers to converting the raw signal data from a microarray’s scanned
image into quantitative estimates of gene expression level. Affymetrix microar-
rays are the most widely used platforms for gene expression studies. There are
freely available R packages (also called libraries) for preprocessing of these arrays.
For the datasets produced using Affymetrix microarray platforms, I used the raw
data (.CEL) files, which contain light intensity information of each probe for each
sample. I conducted the preprocessing using either the “oligo” or the “affy” pack-
age, according to the specific platform.

The Liang2007 and Blalock2004 datasets were preprocessed with the “affy” lib-
rary. CEL files were loaded to R with the “ReadAffy” function to create an “affy”
R object. Hokama2014, Tan2012 and Antonell2015 datasets were preprocessed
with the “oligo” library. The “read.celfiles” function was used to read CEL files.
Then the robust multi-array average (RMA) correction was performed using “rma”
function in the “affy” or “oligo” libraries (See 2.2.1).

The four other datasets, Miller2013, Durrenberger2011, Narayanan2014 and Zhang
2013, are based on the Rosetta/Merck and Illumina beadchip arrays. These are less
commonly used and there are no free R packages to conduct their preprocessing
steps. Therefore, I used the “series matrix files” published in GEO for these data-
sets, which were already preprocessed by the authors. I continued analysis of all
these 9 datasets with quantile normalization using “preprocessCore” package (See
2.2.4).

2.2.1 RMA

RMA (Robust Multi-Array Average) is a correction method for microarray exper-
iments. There is a function in both “oligo” and “affy” R libraries to perform this
correction. The “rma” function includes four steps, background correction, log
transformation, normalization and summarization. Background correction removes
noise and local artefacts from chip scan data, so that light intensities of probes are
not affected by neighboring probe measurements (Gautier et al., 2004). Then, the
function takes log2 values of light intensities and performs quantile normalization
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(See 2.2.4). In the summarization step, intensity levels of multiple probes are com-
bined into one probeset intensity, which represent gene expression levels for each
transcript defined by the platform. The output of the “rma” function is an Expres-
sionSet object. Using the “exprs” function, ExpressionSet object is converted to a
matrix where columns represent each sample and rows are probeset IDs.

R libraries “affy” and “oligo” were used for RMA correction of “HG-U133_plus
_2” and “HG-U133A” platforms, and “HuGene-1_0-st”, “HuEx-1_0-st” gene and
“HuGene-1_1-st” platforms, respectively, as recommended by the package authors.

2.2.2 Probeset to Gene Conversion

In order to compare different datasets and perform functional analysis, probeset
expression intensities should be converted (summarized) into a single gene expres-
sion intensity; thus a probeset should be mapped to a single gene ID. In many
platforms, probeset to gene conversion is not always one-to-one. A probeset might
correspond to more than one gene and multiple probesets might correspond to one
gene. Here, probesets corresponding to more than one gene were removed from
analysis (Table 2.2) since having multiple genes with the same expression value
(represented by only one probeset value) would create a pseudoreplication prob-
lem. For multiple probesets corresponding to the same gene, for each sample, I
took the mean expression level of those probesets to represent the corresponding
gene. Alternatively, one of the multiple probesets could also be chosen to represent
a gene; for instance, one could choose the probeset with the maximum average ex-
pression level across individuals in each dataset. The problem with this approach
would be that the maximum to represent the genes individuals in a datasetr.e ID
Bioconductorn. ama irsinsoftwareprobeset value chosen in one platform might not
be present in other platforms at all. The probeset chosen might also differ from
dataset to dataset. Therefore, choosing one probeset could potentially increase in-
consistency between platforms and/or datasets.

For the Liang2007 and Blalock2004 datasets, biomaRt (Durinck et al., 2005) gene
annotation data “hgu133plus2.db” and “hgu133a.db” (Carlson M, n.d.) were used
respectively, while for the rest of the datasets biomaRt annotation data were not
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available. Therefore, I used the platform-specific annotation file (called a GPL file)
of each platform deposited in the GEO database (Edgar, Domrachev & Lash, 2002).
GPL files of Narayanan2014, Durrenberger2011, Miller2013 and Zhang2013 data-
sets contain only Entrez Gene annotations. For those datasets, probeset IDs were
first converted to Entrez Gene IDs, and then using biomaRt (version 84), Entrez
Gene IDs were converted to Ensembl Gene IDs. Number of probesets and En-
sembl Gene IDs in different platforms are summarized in Table 2.2.

It can be expected that for the same datasets, each subdataset (each brain region
from the same publication) should have the same number of genes, since they
are processed using the same platform. However, the “series matrix files” for
Zhang2013, Narayanan2014, Miller 2013 and Durrenberger2011 datasets, which
were downloaded from GEO as preprocessed by the authors, contained missing
values. These genes I removed from each dataset, leading to different numbers of
genes in the three Zhang2013 subdatasets (Table 2.2 and 3.1).

2.2.3 Log2 Transformation

Logarithmic conversion is widely used in transcriptome data analysis. The reasons
are as follows: The bulk of light intensities obtained from microarray experiments
are very low values, but there also exist fewer measurements of very high mag-
nitudes. In addition, there is usually a strong linear relationship between mean and
variance per gene. It is not convenient to perform analysis on such data, includ-
ing visualization, or differential expression analysis using parametric models, such
as ANOVA, which assume normality and equal variances among groups. Trans-
forming all data to base-log2 brings values to similar orders of magnitude. It also
removes the dependence between mean and variance. Usually, in datasets where
there are values between 0 and 1, the value 1 is added to all data and then log2
transformation is done, to avoid minus values.

2.2.4 Quantile Normalization

Normalization has become a standard and essential step in preprocessing of mi-
croarray data. Technical variation is introduced during experimental steps and can-
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not be avoided completely. Normalization techniques, such as quantile normal-
ization, reduce technical and unwanted biological variation among samples that
might lead to misinterpretation and false positive results. Quantile normalization
assumes that expression levels across genes in all biological samples must have
the same distribution, and global differences among samples (e.g. systematically
higher expression levels or higher variance across the transcriptome) arise due to
technical variations.

The principle of quantile normalization is as follows: gene expression levels in
each sample are ranked (to be used in last step) and the original expression level
data are sorted from lowest to highest. In the sorted data, for each quantile (gene or
probeset), the corresponding expression levels across samples is taken, averaged,
and the original values are substituted by this average. This ensures that all samples
have the same distribution of expression values (but not the same expression level
for each gene).

Quantile normalization was performed using “normalize.quantiles” function in “pre-
processCore” R library (Bolstad, 2001).

2.3 PCA Analysis

Aside from technical variation, there can be biological variations that can interfere
with results. For example, one individual might have had a different disease back-
ground, which could lead to dissimilar gene expression profile for that individual
from the rest of the samples. Principle Component Analysis (PCA) is an efficient
method to identify such differences. PCA is a dimension reduction technique which
uses orthogonal transformation to convert multiple variables into linearly uncor-
related principle components, which are ordered by the amount of variance they
explain (e.g. the first principle component explains the largest possible variance).
PCA is a common method to analyse gene expression data since it is easier to rep-
resent each sample by a few principle components instead of using thousands of
variables (number of genes).

I used the built-in R function “prcomp” with the “scale” argument to calculate prin-
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ciple components (PCs). Then, I plotted first and second PCs against each other to
visually inspect and identify outlier samples (Figure 2.1 and Figure 2.2).

According to the PCA analyses the following samples were removed from analysis:
- Liang2007: "GSM119676", "GSM119666"

- Blalock2004: "GSM21205", "GSM21207"
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Figure 2.1: PCA analysis of the Liang2007 dataset before and after outlier removal.
AD is for Alzheimer’s Disease and ND is for not-dementia (control). Red coloured
samples were identified as outliers and removed.
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Figure 2.2: PCA analysis of Blalock2004 dataset before and after outlier removal.
AD is for Alzheimer’s Disease and ND is for not-dementia (control). Red coloured
samples were identified as outliers and removed.

2.4 Differential Expression Test

To identify differentially expressed genes in Alzheimer’s Disease (AD), I used the
non-parametric Spearman’s rank correlation test. The advantage of using a non-
parametric test is that it is not affected by outliers, and does not assume a bivari-
ate normal distribution. The correlation test statistic also facilitates comparison of
AD-related changes with age-related expression changes (which is not part of this
study, but will be conducted in the future). I used Spearman’s rho value as a meas-
ure of differential expression under AD, i.e. to assess a gene whether its expression
increased/decreased in AD compared to control. The range of rho value can be
between -1 and 1 and its absolute magnitude shows the strength of association. If
the rho value is positive, it means the gene expression increased in AD. Contrarily,
if rho value is negative, it means the gene expression decreased in AD.

Each dataset has comparable number of AD and age-matched control samples for
proper comparison. I used these two groups to calculate Spearman’s rank correla-
tion rho for each gene using the “cor.test” built-in R function, with the “method =

‘spearman’” argument.
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Genes differentially expressed in AD were identified using two different approaches.
(1) Using the Spearman rank correlation test p-values, corrected by the Benjamini
& Yekutieli method for multiple testing (See 2.4.1), and (2) identifying genes chan-
ging in the same direction, either increasing or decreasing in all datasets, and using
a permutation test to assess significance and the false discovery rate (See 2.6).

2.4.1 Multiple Test Correction

Dealing with the results of thousands of statistical tests in each dataset brings with
it the accumulation of false positives. This is known as the multiple comparison
or multiple testing problem. The false discovery rate is the inferred proportion of
false positives among all significant results. To overcome the effect of accumu-
lating false positives due to multiple testing, p-values should be adjusted to keep
false discovery rate (FDR) under control. There are several methods to control the
false discovery rate. Benjamini and Hochberg (BH) method is the standard method
to control the FDR. However, BH procedure loses FDR control with increasing
positive dependence. The more conservative one is Benjamini and Yekutieli (BY)
method, which is a two stage procedure, and can control FDR even with increasing
positive dependence (Benjamini & Yekutieli, 2001). Therefore, I used the “Ben-
jamini & Yekutieli" method to adjust p-values with “p.adjust” built-in R function
using the “BY” argument. I applied a q<0.1 cutoff to the resulting values.

I performed multiple testing correction to Spearman’s rank correlation p-values to
find differentially expressed genes in each dataset. As I explain in following Res-
ults section, there were few, if any genes passing multiple testing correction in most
datasets. I then continued with the second approach to find shared differentially ex-
pressed genes across all datasets (See 2.6).

2.5 Correlation Across Datasets and Data Selection

To assess the correlation across datasets and brain regions, I used the Spearman’s
rank correlation test without using any significance cutoff. Each dataset was com-
pared to all others in pairwise manner. By this way, common genes only between
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the paired datasets were considered. For these comparisons, I used the Spearman’s
rank correlation using “cor” R built-in function with the argument “spearman”.

I used the “corrplot.mixed” function in the R “corrplot” library to visualize pair-
wise correlations across datasets. One dataset, Durrenberger2011, was removed
from further analysis since its correlations with all other datasets were very low
compared to correlations among all other pairs (See Section 3.2).

Using another approach to compare gene expression correlations across datasets,
PCA analysis was applied. I used Spearman rho values to calculate principle com-
ponents using “prcomp” function with scaling argument.

2.6 Permutation Test

After performing multiple testing correction, there were datasets in which any of
the genes could not pass the significance cutoff (q < 0.1). Therefore, I was unable
to obtain common genes across all datasets that change in same direction using
a significance cutoff. For this reason, I implemented an alternative approach, by
determining genes that change in all AD datasets in the same direction. Further, I
used a permutation test to determine the statistical significance of the result.

For those datasets having only one brain region and thus one sample from one indi-
vidual, AD and control samples were mixed with the built-in R function “sample”,
such that each individual was assigned randomly to the AD or control groups, keep-
ing the group sample size fixed. Then, the same differential expression test (Spear-
man correlation) was applied and the results recorded. This procedure was repeated
1000 times.

However, those datasets with multiple brain regions include the same individual’s
samples, from more than one brain region. It is important to keep this dependence
of samples (a type of “individual effect”), when conducting the permutation test.
Otherwise, the similarity we find among datasets (our alternative hypothesis) could
be due to similarity of individuals, insteaf of AD-control differences. Therefore, for
those datasets, the permutation test was applied the same way as explained above,
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while making sure that if one individual has been assigned to the AD group in one
brain region, it was also assigned to the AD group in other brain regions for that
permutation.

This random permutation process was applied 1000 times to all datasets. In each
permutation step, the number of genes changing in the same direction across all
datasets (hereafter “consistent genes”) were calculated. I considered increasing
and decreasing genes separately and obtained two null distributions. The false dis-
covery rate for the consistent gene number was calculated as:

FDR = Nobserved / Nexpected,
where Nexpected representing the random expectation for the number of consistent
genes, calculated as the median of the null distribution based on permutations, and
Nobserved is the observed number of consistent genes. The p-value was calculated
by the number of permutations having the same or higher number of observations
of real data divided by total number of permutations.

2.7 Functional Analysis

Functional analysis was performed using the Gene Ontology (GO) database (Ash-
burner et al., 2000). GO is a hierarchical database describing gene functions in
three main categories; biological process, molecular function and cellular compon-
ent. For the analysis, I used GO Biological Process (BP) categories downloaded
from the GO database at 03/26/2016 (Dönertas, 2016). There were 631 and 580
consistent up- and down-genes, respectively. The number of these genes having
functional annotation in GO BP categories were 600 and 545, respectively. I per-
formed the Fisher’s Exact Test (FET) for up- and down-genes by employing a cutoff
to GO groups to ensure that each GO group contains minimum number of 10 genes.
There were 1877 GO groups passing this cutoff. I used the “fisher.test” R function,
using the following contingency table (Table 2.3). This test gives odds ratio (OR)
and the associated p-value.

Here OR>1, indicates enrichment of GO groups in terms of up-genes (gene expres-
sion increasing in AD) while OR<1 indicates enrichment of GO groups in terms of
down-genes (gene expression decreasing in AD). Statistical significance of these
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values were calculated using FET. However, the multiple comparison problem
arises here again since FET was applied thousands of times. Therefore, p-values
obtained with FET for 1877 GO groups were adjusted using “p.adjust” function
with “BY” method (Section 2.4.1). Using q<0.1 as significance cutoff, enriched
GO groups for up- and down-genes were identified.

2.7.1 Summarization of GO Categories with REVIGO

The outcome of GO enrichment analysis can be a long list of GO categories, which
are highly redundant and cumbersome to interpret. As a result of the enrichment
test, I obtained 343 GO BP categories enriched in upregulated genes and 96 GO
BP categories enriched in downregulated genes in AD. To overcome this problem, I
used the REVIGO software that summarizes long lists of redundant GO categories
based on their semantic similarity which means the degree of shared genes among
categories (Supek et al., 2011). REVIGO reduces the redundancy within list of
GO categories calculating “uniqueness” and “dispensability”. Dispensability is a
measure of semantic similarity of two categories while uniqueness represents the
negative similarity of a category to all other categories. Similar categories are
clustered together using these measures. To visualize the REVIGO result, I used
“treemap” R package (Martijn, 2017). Each rectangle in treemap is a representative
cluster of summarized GO categories. The size of the rectangles is defined by
the uniqueness of the categories. Similar clusters having same colours are joined
together to form superclusters.
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Table 2.2: Number of Probesets for Each Platform and Final Number of Genes
After Summarization Step. Initial Probeset is the initial number of probesets when
expression matrix is created with “exprs” function. “with ENSG” is the number of
probesets having corresponding Ensembl Gene IDs. “>1 ENSG” is the number of
probesets corresponding to more than one Ensembl Gene ID. Please note that when
“>1 ENSG” is subtracted from “with ENSG”, the outcome does not match “Total
Probeset” since multiple probesets can correspond to multiple Ensembl Gene IDs
which may also overlap. “Total Probeset” is the number of probesets after remov-
ing probesets corresponding to more than one Ensembl Gene ID. “Total ENSG” is
the number of Ensembl Gene IDs after taking mean of multiple probesets corres-
ponding the same Ensembl Gene ID. For the second part of the table, I used the
same approach. First, I converted probesets to Entrez Gene IDs and then Entrez
IDs to Ensembl Gene IDs.

Dataset # PS
# PS
with
ENSG

#PS
>1
ENSG

Final # PS Total ENSG

Liang2007 54675 40333 1671 38662 18163

Blalock2004 22283 19571 903 18668 11653

Hisayama2014 33297 27040 10296 23651 22962

Tan2012 22011 17392 5120 14540 14356

Antonell2015 33297 27040 10296 23651 22962

# PS Entrez # >1 ENSG − Total ENSG
Miller2013 48803 27388 21 − 17782

Durrenberger2011 20589 18052 5 − 16305

Narayanan2014 38759 21299 18 − 17119

Zhang2013_PFC 39005 25787 26 − 17867

Zhang2013_VCX 37185 24923 26 − 17388

Zhang2013_CRB 39084 25839 26 − 17897

Table 2.3: Contingency Table for Fisher’s Exact Test. GO-X is the one GO category
to be tested. Other GOs includes the all other GO categories to be tested.

Up-genes Down-genes
GO-x a b

Other GOs c(600-a) d(545-b)
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CHAPTER 3

RESULTS

3.1 Gene Expression Change in AD in Each Dataset

I downloaded and preprocessed 13 transcriptome datasets from 9 different pub-
lications, representing 8 different brain regions, as described in Methods (Table
2.2). Each contained expression data calculated from postmortem brain samples
of individuals diagnosed with AD and from roughly age-matched controls, with
total sample sizes ranging from 14 to 466. The number of genes quantified in
each dataset ranged from ∼11,000 to ∼23,000 (Figure 3.1). The least number of
genes, 11653, was in Blalock2004 dataset and the most number of genes was in
Hisayama2014 dataset.
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Figure 3.1: Number of Genes in Each Dataset

As I explain in Methods, I used alternative approaches to identify differentially ex-
pressed genes. First, I calculated the Spearman’s rank correlation coefficient, or
rho values of expression level change between two groups, AD and control, for
each gene, in each dataset. The rho statistic ranges from -1 to 1, and here it is used
as a measure of effect size, giving information about the strength and direction of
gene expression change related to AD. I choose the first group being control and
the second one AD, such that if the rho value is positive, that means the expression
of a gene is increased in AD with respect to control, and vice versa. The higher the
absolute value of rho, the more the expression of a gene has changed in AD com-
pared to control. The significance of this change is given by p-value of this test.
After doing multiple testing correction using the “Benjamini & Yekutieli” (BY)
method, I calculated the proportion of genes showing significant change in AD,
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using q<0.1 as cutoff. However, it was not surprising to find some datasets having
no differentially expressed genes (no genes passing the cutoff), while others having
thousands of differentially expressed genes (Figure 3.2). One reason is related to
the sample size of the groups compared, AD and control; in other words, differ-
ences in statistical power among datasets. Datasets with small sample sizes had
low or no differentially expressed genes, whereas datasets with large sample size
(hundreds of samples in both groups) had high number of differentially expressed
genes.
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Figure 3.2: Number of differentially expressed genes in each dataset after multiple
testing correction. Significance cutoff was set as q<0.1.

Second, I considered only the sign of rho values as an indicator of expression
change, without employing a significance cutoff. I then calculated number of genes
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showing upregulation and downregulation trends in AD. Out of 12 datasets, 10
datasets had more genes having increased expression in AD than genes with de-
creased expression (Wilcoxon signed rank test, p-value: 0.021) (Figure 3.3). This
suggests that there is a tendency toward transcriptional upregulation in AD. How-
ever, whether the same genes across datasets change their expression in the same
direction is not clarified by this approach.
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Figure 3.3: Gene expression change in AD compared to control. Legend: up:
increased gene expression in AD compared to controls (i.e. rho value is positive),
down: decreased gene expression in AD (i.e. rho value is negative).

3.2 Gene Expression Correlation Across Datasets

There were 13 datasets in total from 8 different brain regions. In order to assess the
similarity among datasets in terms of AD-related gene expression change, I used
the Spearman’s rank correlation coefficient, or rho values calculated for each gene,
as described above (Section 3.1). Then, between each dataset, across all overlap-
ping genes, I calculated the pairwise correlation of correlation coefficients, and thus
constructed the correlation matrix, again using Spearman’s rank correlation.
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Overall, the pairwise correlations between datasets were modest (Figure 3.4). The
highest correlation was between prefrontal cortex (PFC) region of Zhang2013 data-
set and PFC region of Narayanan2006 dataset (rho=0.98). Although it is tempt-
ing to claim that this might be due to the high similarity of transcription change
between these two datasets, their similarity is more likely to be explained by the
dominant effect of the platforms used, as Narayanan2006 and Zhang20013 datasets
were both performed on Rosetta/Merck platform. Also, the correlation of visual
cortex (VCX) region of Zhang2013 dataset with PFC region of Zhang2013 and
PFC region of Narayanan2006 datasets was very high. This further supports the
dominant platform effect for the similarity between these two datasets. Alternat-
ively, Zhang2013 subdatasets (VCX and PFC) might also show high correlation
due to their common laboratory of origin, and use of the same individuals. Inter-
estingly, correlations among the three brain regions of the Hisayama2014 dataset
are not as high as the ones among Zhang2013 subdatasets.

Correlation between AD-related expression change rho values in the Durrenber-
ger2011 dataset with those from all other datasets was very low. The maximum
correlation coefficient was ∼0.2 with the Narayanan2006 and Zhang2013 datasets,
and went down to 0.1 (Figure 3.4). Overall, these numbers are conspiciously lower
than the correlations among other datasets. There can be three possible reasons for
this:

1. The Durrenberger2011 dataset represents AD-related change in the EC brain
region, and it is the only dataset representing this region. It is possible that
EC might have different transcriptome profile change in AD than other re-
gions.

2. There may be technical issues related to this dataset. Experimental condi-
tions might be different that might have led to technical bias, resulting in low
correlation with other datasets in terms of gene expression change in AD.

3. Microarray platforms of datasets analysed in this study are not all the same.
Durrenberger2011 and Miller2013 datasets were produced using the Illumina
Beadchip platform. The gene expression distribution of these two datasets
were more strongly right skewed than the other datasets (data not shown). It
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is possible that the platform effect led to decrease in correlation with other
datasets.

Because of one or a combinatorial effect of these possible reasons, I decided to
exclude Durrenberger2011 from the analysis, which aims to identify convergent
genes and pathways affected by AD.
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Figure 3.4: Correlation plot for gene expression change estimates (Spearman’s rho
values) in AD among all brain regions. Upper and lower panels are the different
representation of the same result. The lower panel shows the exact Spearman cor-
relation of correlations between two datasets, across all overlapping genes (min:
9535, max: 22962 overlapping genes). Upper panel shows the same result but us-
ing circles. The size of the circles and the density of the colour change with the
magnitude of the correlation coefficient between two datasets. The datasets are
ordered using hierarchical clustering of correlation coefficients between datasets.
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To further investigate the brain region and platform effect on the AD-related ex-
pression change estimates among datasets, I performed PCA analysis with the 8704
common genes among all datasets, using the AD-related expression change (Spear-
man’s rho) values per gene (not expression levels) of Spearman correlation test. In
general, expression level distributions are strongly influenced by microarray plat-
form type (data not shown). But, as the PCA plot in Figure 3.5 shows, the type of
microarray platform appaeared to have only modest effect on AD-related expres-
sion change estimates. More interestingly, we could observe no clustering among
the datasets according to brain regions. According to the PCA, for example, a PFC
dataset can show a more similar transriptome-wide AD response with a hippocam-
pus (HC) dataset, than with another PFC dataset.
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Figure 3.5: PCA of brain regions based on gene expression change in AD. Gene-ST
is for HuGene-1_0-st, HuGene-1_1-st and HuEx-1_0-st platforms; U133 is for HG-
U133_plus_2 and HG-U133A platforms; Ill. beadchip is for Illumina humanHT-
12 V3.0 and Illumina humanRef-8 v2.0 beadchip platforms; Roset/Merck is for
Human 44k 1.1 platform.
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3.3 Common AD-Related Gene Expression Change Across Datasets

As the next step, I investigated common gene expression changes across datasets.
For this purpose, I used Spearman’s rank correlation rho value, as previously ex-
plained. As it was described in Section 3.1, after multiple testing correction with
the BY method, no genes passing the significance cutoff q<0.1 were left, in half of
datasets. Therefore, I did not employ any significance cutoff.

Instead, I concentrated on the set of common genes changing in the same direction
in AD across all datasets. There were 631 such genes showing increased expres-
sion and 580 genes showing decreased expression in AD compared to controls. To
test the significance of finding such number of common genes, I used a permuta-
tion scheme to establish the null distribution, representing the null hypothesis of no
common AD effect among datasets. I thus randomized AD and control groups and
calculated the Spearman’s rho in each dataset, and recorded the common genes hav-
ing increased/decreased expression in AD across all datasets in the permutations; I
then used these numbers to construct the null distribution, representing 1000 ran-
dom permutations. I then compared the observed values with the null distributions.
As a result of this permutation test, the observed number of common genes were
significant for both upregulated and downregulated genes among the 12 datasets
(Figure 3.5). The full list of both gene groups are given in Appendix A and B.
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Permutation Test for Common Up Genes in AD
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Permutation Test for Common Down Genes in AD
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Figure 3.6: Permutation test for common upregulated/downregulated genes (up-
genes and down-genes) across datasets. The left panel is for up-genes and right
panel is for down-genes in AD. The figures show the distribution of the number
of common genes among the 12 datasets in each permutation, which was done by
randomizing AD and control groups in each dataset, calculating the Spearman’s
correlation rho for each gene, and determining if the rho values had the same sign
across all 12 datasets. Dashed red lines show the observed results (“obs. result”).

3.4 Functional Analysis of Gene Expression Change Related to AD

Using the Biological Process (BP) category of GO database, which is most easy to
physiologically interpret, I performed functional analysis to find biological import-
ance of AD-related gene expression change observed commonly among all brain
regions. Previously, I found consistently 631 genes to be upregulated and 580 genes
to be downregulated in AD (Section 3.3). I searched for the enrichment of upreg-
ulated genes compared to downregulated ones (odds ratio>1) and vice versa (odds
ratio <1) in each GO Biological Process category. Then, I performed Fisher’s ex-
act test to assess the significance of enrichments for each category. To address the
multiple testing problem, I adjusted the p-values using BY correction method and
considered only significantly enriched GO categories (q<0.1).
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3.4.1 GO BP Enrichment for Up Genes

As a result of the enrichment analysis, 343 GO Biological Process categories were
found to be enriched in genes upregulated in AD compared to downregulated ones.
The result was summarized using REVIGO interactive website algorithm (Section
2.7.1) and visualized as a treemap in (Figure 3.7). The full list of GO groups is
given in the Appendix C.
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REVIGO summarized the 343 GO Biological Process enriched in upregulated com-
mon genes to 116 clusters, which were further joined into 7 superclusters of loosely
related terms. It should be noted that the name of the supercluster is defined by the
uniqueness of the GO categories in that supercluster. It does not necessarily rep-
resent the all GO categories. There weare mainly 7 superclusters and other small
clusters summarized by REVIGO:

Peptydyl-tyrosine modification: This supercluster includes GO categories mostly
involved in protein phosphorylation, nucleic acid metabolism, macromolecule bio-
synthetic process and RNA metabolic process. The most interesting GO categories
in this supercluster are the ones associated with protein modification. The APP pro-
tein undergoes extensive post-translational modification and its deregulation results
in amyloid-β deposition in AD. Moreover, the hyperphosphorylation of tau protein
leads to the formation of NFT, which is the second hallmark of AD (See Intro-
duction). Gene expression change in protein modification categories could cause
disruptive alterations of regulation in post-translational mechanisms, which can be
associated with amyloid-β and NFT pathogenesis.

Response to wounding: The GO categories in this supercluster mainly involve
response to wounding/external stimulus/stress and signal transduction and its reg-
ulations. Abnormal accumulation of extracellular amyloid-β peptides and intracel-
lular NFT disrupt cellular homeostatis and create cellular stress, which can result
in expression change of stress-related genes. The “response to wounding” category
contains several child terms including response to axon injury and wound heal-
ing. Although this category does not seem to be directly related to AD, it may
be associated with damage response, as the neuronal cells might recognize NFTs
as damage in cells. Neuronal cells also experience damage due to a variety of
factors associated with oxidative stress, metabolic imbalances or genetic perturba-
tions, which have accumulated throughout lifetime. These factors together might
activate wound healing mechanisms. Several signal transduction pathways are also
enriched in upregulated genes. For example, I-κB kinase signaling pathway is in-
volved in inflammation. Together with other small clusters, e.g. “immune effector
process” and “immune system process” (Figure 3.7), we see that immune system-
related GO categories show enrichment in upregulated genes in AD. This result is
consistent with previous findings that show upregulation of immune response genes

46



and regulatory regions (Bertram, Lill & Tanzi, 2010; Gjoneska et al., 2015)).

Molting cycle: All categories in this supercluster are developmental process-related
categories including digestive system development, embryonic limb morphogen-
esis, skin development and ossification. These categories seem to be irrelevant to
the brain tissue. However, it is possible that the regulators of these pathways over-
lap, and what we are observing is the outcome of an upregulation of these regulat-
ory genes, resulting in the enrichment of developmental pathways. Several studies
previously showed activation of mitotic proteins in AD (Arendt et al., 2000), in-
cluding cell cycle markers, cyclin E (Nagy, Esiri, Cato & Smith, 1997), cyclin
D, and cdk4 in the AD hippocampus region, but not in control subjects (Busser,
Geldmacher & Herrup, 1998). It was hypothesized that neuronal cells attempt to
re-enter the cell cycle, and induction of dedifferentiation leads to cell death pos-
sibly through apoptotic mechanisms. Indeed, supporting this hypothesis, I found
the following GO categories enriched among upregulated genes in AD: cell cycle,
cell proliferation, growth, death and apoptotic process.

Homeostasis of number of cells and maintenance of cell number: These two
superclusters include noteworthy GO categories including stem cell differentiation,
regulation of cell cycle, cell fate commitment, regulation of biological process, cell
number maintenance and other development-related categories. Enrichment in dif-
ferentiation and cell cycle-related categories further supports the above-explained
hypothesis that neuronal cells might lose their terminally differentiated state and
eventually die. Dividing cells have to adjust their number in tissue microenviron-
ment to maintain homeostatis. Activation of cell cycle mechanisms in brain tissue
can further initiate pathways related to these pathways, even though neurons actu-
ally will not divide. Also, the category “regulation of biological process” refers to
many distinct cellular processes. Pathophysiological changes in AD and possible
re-entry of neurons to cell cycle might trigger many biological processes.

Cytoskeleton organization: The tau protein is an important regulator of microtu-
bules and hence affects cytoskeleton dynamics in neurons. Phosphorylation of tau
protein is tightly regulated through dynamic activation/deactivation of tau kinases
and tau phosphatases in normal neuronal cells (Gong & Iqbal, 2008). Aberrant
upregulation of upstream genes, which are related to cytoskeleton organization,
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due to various stochastic reasons, might lead to hyperphosphorylation of tau pro-
tein. Other GO categories in this supercluster are extracellular structure organiz-
ation and cell junction organization. Enrichment in the extracellular organization
category might be a cause or result of amyloid-β plaques. Expression change in
extracellular matrix-related genes might contribute to deposition of amyloid-β pro-
tein. Alternatively, to overcompensate aberrant amyloid-β plaques in extracellular
matrix, the neuronal cells might attempt to adapt to this impaired environment by
changing expression of extracellular matrix-related genes. Lastly, enrichment in
the category “cell junction organization and assembly” is explained below, together
with cell adhesion-related GO categories.

Cell adhesion: The GO categories in this supercluster are all related to cell adhe-
sion and its regulation. Several studies have established the relevance of cell ad-
hesion molecules (CAMs) with AD pathology, especially with amyloid-β protein
(Nielsen & Wennström, 2012). Synaptic CAMs interact with amyloid-β protein, as
well as the enzymes involved in amyloid-β formation, which affects the expression
and synaptic localization of CAMs (Leshchyns’Ka & Sytnyk, 2016). Upregula-
tion of genes in these categories may change the cell junction organization and
alter synaptic transmission, which will eventually result in degeneration of neur-
onal networks in AD.

Protein localization to nucleus: There are two main GO categories in this super-
cluster; one is about cell localization and the other one is about protein import into
nucleus. The former one might seem to be irrelevant to a brain tissue. However,
datasets I analyzed in this study are not from a single cell type, they represent a
whole tissue. Also, microglia have been shown to have altered motility in AD (Gy-
oneva, Swanger, Zhang, Weinshenker & Traynelis, 2016). Enrichment of genes
in GO categories related to locomotion and cell localization may represent im-
mune cells activated in AD brain. The latter one includes protein localization to
nucleus, nuclear transport and protein import. Intracellular alterations and patholo-
gical hallmarks of AD may lead to disruption of subcellular localization of proteins
and alterations in nuclear transport proteins.
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3.4.2 GO BP Enrichment for Down Genes

There are 94 GO Biological Process categories that are enriched in the 545 down-
regulated genes in AD compared to upregulated ones. The result is summarized
using the REVIGO algorithm and visualized in Figure 3.8. The full list of GO
groups is given in Appendix D.
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REVIGO summarized the 94 GO Biological Process categories to into 38 clusters,
which were further joint into superclusters of loosely related terms. There are
mainly 8 superclusters and other small clusters summarized by REVIGO:

Vesicle localization: The GO categories in this supercluster are related to cellu-
lar trafficking and vesicular transport. Vesicle localization is important in normal
neuronal function. Ion transport and cation transport are related to action potential
in neuronal cells. Neurotransmitter transport mechanism is an important feature of
neurons to communicate with each other and establish neuronal networks. Peptides
are also essential molecules secreted by neurons to communicate with each other.
Downregulation of genes involved in these categories suggests impairment of neur-
onal function in AD.

Electron transport chain: This supercluster contains GO categories involved in
energy metabolism. Previously, the downregulation of genes involved in mito-
chondrial energy metabolism has been shown See Introduction. Electron trans-
port chain, mitochondrial ATP synthesis coupled electron transport categories are
enriched among downregulated genes. These result supports the previous findings
about alterations in energy metabolism in AD.

Mitochondrion organization: This supercluster contains two categories; mito-
chondrion organization and mitochondrial translation. Downregulation of genes in
these categories also affects cellular energy metabolism.

Regulation of synapse structure or activity: The GO categories in this super-
cluster are related to synaptic transmission. Establishment of membrane potential
is crucial for action potential. Neurotransmitters and synapse structure are self ex-
planatory in their importance of synaptic transmission. Downregulation of genes
in these categories may lead to synaptic loss and cognitive decline in AD.

Cell-cell signaling: This supercluster is also related to synaptic transmission and
communication between cells. Downregulation of genes in these categories may
contribute to impairments in communication between neurons and neuronal net-
works in AD.
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Organonitrogen compound metabolism: Nitrogen and phosphate are important
molecules in nucleotide metabolism. GO categories related to their metabolic pro-
cess show downregulation in AD. Purine-containing compound metabolic process
and nucleoside monophosphate metabolic process are enriched in downregulated
genes. These results may indicate dysfunction in DNA and RNA biosynthetic pro-
cesses in AD.

Translational elongation: This supercluster involves pathways related to trans-
lation and protein metabolic processes. Translational elongation contains several
child terms including regulation of translation. Modification-dependent catabolic
process and proteolysis involved in cellular protein catabolic process are other cat-
egories in this supercluster. Downregulation of genes in these categories may result
in alterations in protein homeostasis from protein synthesis to proteolysis of pro-
teins, which may contribute to AD pathogenesis.

Other categories enriched in downregulated genes are cofactor metabolism, single-
organism behavior, oxidoreductase coenzyme metabolism, generation of precursor
metabolites and energy and behavior.
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CHAPTER 4

DISCUSSION

In this study, I investigated the gene expression changes associated with AD in dif-
ferent regions of the human brain. In total, I used 13 datasets, one of which was
excluded from the analysis, leaving me with 12 datasets spanning 7 regions of the
cerebral cortex, HC, SFG, TC, PFC, PC, and VCX, and also the cerebellum (CRB).
I aimed to find common patterns associated with AD across these diverse brain re-
gions, which are distinct both in their architecture, in their function, and in their
known associations with AD progression.

First, I started analysis with raw datasets from Affymetrix microarrays. There were
four different Affymetrix platforms, and three of them are commonly used plat-
forms in microarray experiments: HuGene, HuEx, and HG-U133. I used publicly
available R packages, “oligo” and “affy”, to analyze datasets from these platforms.
However, there was no freely available R package for the analysis of other two plat-
forms; Illumina Beadchip and Rosetta/Merck. Therefore, I used the authors’ pre-
processed data, the “series matrix files” uploaded in the GEO database, to analyze
these datasets (Miller2013, Durrenberger2011, Zhang2013 and Narayanan2006)
from these platforms. One problem with using preprocessed data is that the ana-
lysis pipeline may not be the same across all datasets. I tried to compensate this
drawback by normalising the preprocessed datasets in the same way as the others,
using quantile normalization, at least to achieve the same normalisation in each
datasets.

At the end of the preprocessing, I obtained gene annotations for each gene in each
dataset. The Blalock2004 dataset had the lowest number of genes among all data-
sets. However, there were more than 10,000 genes in each of the datasets, which
was enough to continue with the analysis. Number of genes across datasets ranged
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from 11,000 to 23,000 (Figure 3.1). It is possible that the high variance in the
number of genes among datasets can affect identification of common gene expres-
sion change patterns. In other words, the dataset with the fewest genes might be
precluding identification of certain common expression change patterns. To ad-
dress this problem, I performed the analysis excluding the dataset with the lowest
gene number (Blalock2004). However, in the enrichment analysis, I found that the
GO categories are extremely similar (data now shown).

Then, I studied gene expression change patterns in AD, in each dataset separately.
For this I calculated the Spearman’s rank correlation coefficient for expression
change in AD vs. controls. Out of 12 datasets, 10 datasets had more genes up-
regulated in AD than downregulated ones (Figure 3.3). The difference appeared
significant in a Wilcoxon signed rank test; however this approach does not take
into account dependence among some of the datasets. I may in the future perform
a permutation-based test to establish the significance of this observation. Taken at
face value, this result may suggest that there is a trend for increased gene expres-
sion pattern in AD, and that this is shared across diverse brain regions.

As a next step, I calculated pairwise correlations between datasets using Spear-
man’s rank correlation coefficient estimated for each gene in each dataset. This re-
vealed a number of interesting observations: First, one dataset, Durrenberger2011,
had particularly low correlations with all other datasets. The possible reasons for
the very low correlation of this datasets were discussed in the Results section
(Result 3.2): The cause could be biological, this being the only EC dataset, but
it could also be technical. Assuming that a technical bias is more likely, in order to
avoid unnecessary power loss in the analysis (since my aim is to find the common
gene expression change patterns among datasets), I decided to exclude this dataset
from the analysis.

Second, it was not possible to decide from the PCA analysis whether the type of
microarray platform had a strong effect on AD-related gene expression change es-
timates. Thus, it is possible technical biases were limited for AD-related expression
change calculations, and there is no prominent technical bias among datasets (per-
haps Durrenberger2011 being an exception).
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Third, and most importantly, the correlations between same brain regions were not
higher than the other brain regions. For example, while the correlation of HC re-
gions of Hisayama2014 and Blalock2004 datasets was 0.43, the correlation of HC
regions of Hisayama2014 with PFC region of Narayanan2006 dataset was 0.49. In
PCA analysis, it can likewise be seen that datasets do not group together according
to the brain regions.

Next, I identified genes with common AD-related trends across all 12 datasets.
Among over 8000 shared genes, there were 631 increasing and 580 decreasing
genes in common. Since there was no significance cutoff, type II error rate is re-
strained by this way. To test the significance of these common genes, I used a ran-
dom permutation procedure. Indeed, the result was highly significant for both up-
regulated (p<0.001) and downregulated (p<0.001) genes (Figure 3.6). Moreover,
the advantage of using permutation approach to find common AD-related patterns
across datasets is that the sample size variance among datasets is not a concerned
issue.

As a next step, it is intriguing to ask whether these genes are enriched in particular
GO BP categories. To test this, I performed enrichment analysis and found prom-
ising results. There were 343 GO BP categories enriched for upregulated genes
and 94 GO BP categories enriched for downregulated genes. I summarized these
results using REVIGO.

Among 343 GO categories enriched for upregulated genes, there are 7 main clusters,
which appear generally highly relevant to pathophysiological changes in AD. The
categories include protein modification pathways and extracellular matrix organ-
isation. APP and tau proteins are the most important proteins in AD pathogen-
esis. Aberrant cleavage and post-translational modification of APP protein leads
to accumulation of amyloid-β protein in extracellular matrix. Moreover, deregu-
lated phosphorylation of tau protein results in intracellular neurofibrillary tangles
(See Introduction). Enrichment of protein modification and extracellular matrix
organisation categories in upregulated genes in AD may thus suggest a common
dysfunction in pathways related to amyloid-β and tau protein modifications across
brain regions.
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Another interesting observation is that GO categories including cell cycle, apop-
tosis and death are enriched in upregulated genes in AD. Several studies have pre-
viously hypothesized the dedifferentiation of neurons and their possible attempt
to re-entry to cell cycle in AD (Busser et al., 1998; Nagy et al., 1997) (See also
Section 3.4.1). There are also GO categories enriched in stem cell differentiation,
regulation of cell cycle and cell fate commitment in upregulated genes (Figure
3.7) while synaptic structure-related GO categories are enriched in downregulated
genes (See also Section 3.8). It is tempting to argue that neuronal dedifferentiation
might be a general phenomenon in AD, which leads neurons to possibly enter the
cell-cycle, at least partly. Then, neurons can be arrested in cell cycle, which may
lead to apoptosis. This phenomenon might explain the neuronal and synaptic loss
in AD.

Notable GO categories enriched in downregulated genes in AD are related to neuron
function, cell-cell signaling and cellular energy metabolism. Downregulation of
genes in pathways related to ion transport, peptide secretion and neurotransmitter
transport may impair communication between neurons. Moreover, a previous study
has shown that energy metabolism related genes are downregulated predominantly
in cingulate cortex region in AD brain (Liang2008). Possibly the same energy
metabolism pathways may be downregulated in other regions as well, although
perhaps not as dramatically as that in the cingulate cortex.

4.1 Limitations of the Study

1. Technical biases: I could not use the raw data for the analysis of datasets
from the Rosetta/Merck and Illumina Beadchip arrays. Instead, I used pre-
processed data from these arrays, which may introduce differences among
datasets due to normalization and summarization methods. I tried to com-
pensate this by normalizing these datasets using quantile normalization, but
still, the expression level distributions from different platforms look distinct,
strongly indicating the persistence of biases.

2. I excluded one dataset from this analysis, Durrenberger2011. It was the only
dataset representing EC brain region. It was not possible to deduce whether
very low correlation of this dataset with others is due to a technical bias
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related to this dataset or that EC brain region has completely different tran-
scription profile in AD. In the future, I could search for additional datasets
representing this brain region to address this problem.

3. Some of the brain regions are represented only by one dataset in this analysis.
I could extend the list of datasets to include in the analysis so that there should
be multiple datasets representing each brain region.

4. All datasets I used in this analysis represent the late stages of AD. For some
of the datasets, authors did not specify the stage of AD at all. The lack of
exact AD stage specifications and the lack of early stage AD samples are
another limitations of this study.

5. Except two datasets (Blalock2004 and Liang2007, which represent laser cap-
tured neuronal cell populations), all datasets are from whole tissue samples
meaning that they represent transcription profiles not only from neurons but
also other cells in the tissue including astrocytes and glia cells. I could per-
form cell type analysis to establish relative contribution of cell types ratio
shifts to the transcription profile.

6. For the functional analysis, I only considered biological processes to invest-
igate biological relevance of common genes across datasets. I could also
include trans-regulators; miRNAs and transcription factors to find regulatory
components of these genes.

7. All datasets included in this study are from microarray experiments. A more
recent technology, RNA-seq, could be included in analysis. It could be pos-
sible to detect novel transcripts which might be attributed to AD. Also, the re-
producibility between technical and biological replicates are higher in RNA-
seq analysis which gives higher statistical power.

8. The common AD-related up and downregulated genes found in this study
should be confirmed with other approaches such as experimental procedures.
Genes showing the biggest changes according to their rho values could be
confirmed using RT-PCT in a future study.
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CHAPTER 5

CONCLUSION

Transcriptome studies on AD provide valuable information about the underlying
molecular mechanisms of the disease. The availability of several published data-
sets focusing on AD-related gene expression changes in different brain regions
have made it possible to perform meta-analyses, which can help both to increase
sensitivity, to increase specificity, and to study common expression patterns among
different brain regions. In this study, using published microarray datasets, I in-
vestigated the gene expression profiles from different brain regions affected by AD
and searched for biological relevance of the common patterns among them. The
outcomes of this study are as follows:

• There are hundreds of genes that are commonly affected by AD across all
datasets and brain regions. I showed that we cannot expect to see these
changes randomly by using permutation test. Interestingly, the effect of AD
on hippocampus, frontal cortex and visual cortex converge into similar bio-
logical alterations suggesting that the differences in brain regions might be
insignificant at least at this later stages of AD.

• Processes related to genes upregulated in AD include protein modification,
protein localization, differentiation, cell cycle and apoptotic process. These
findings point the dysfunction in protein modification pathways, which may
affect the APP and tau protein homeostasis in neurons as well as the possible
loss of differentiation and death of neurons.

• Processes related to genes downregulated in AD include cell-cell signal-
ing, synaptic structure regulation and vesicle localisation. Communication
between neurons is impaired by extracellular amyloid plaques while intra-
cellular trafficking is affected by neurofibrillary tangles. These findings are
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in line with the effects of pathological changes in AD and suggests that dif-
ferent brain regions share common pathways deregulated by AD.

60



REFERENCES

Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I. & Reiman, E. M. (2002,
may). Longitudinal PET evaluation of cerebral metabolic decline in demen-
tia: A potential outcome measure in Alzheimer’s disease treatment stud-
ies. American Journal of Psychiatry, 159(5), 738–745. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/11986126 doi: 10.1176/appi.ajp.159
.5.738

Antonell, A., Lladó, A., Altirriba, J., Botta-Orfila, T., Balasa, M., Fernández, M.,
. . . Shen, J. (2013, jul). A preliminary study of the whole-genome expression
profile of sporadic and monogenic early-onset Alzheimer’s disease. Neurobi-

ology of aging, 34(7), 1772–8. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/23369545 doi: 10.1016/j.neurobiolaging.2012.12.026

Arendt, T., Holzer, M., Stöbe, A., Gärtner, U., Lüth, H. J., Brückner, M. K. &
Ueberham, U. (2000). Activated mitogenic signaling induces a process of
dedifferentiation in Alzheimer’s disease that eventually results in cell death.
Annals of the New York Academy of Sciences, 920, 249–255. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/11193159 doi: 10.1111/j.1749-6632
.2000.tb06931.x

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M.,
. . . Sherlock, G. (2000, may). Gene Ontology: tool for the unification of
biology. Nature Genetics, 25(1), 25–29. Retrieved from http://www.ncbi
.nlm.nih.gov/pubmed/10802651 doi: 10.1038/75556

Barnes, D. E. & Yaffe, K. (2011, sep). The projected effect of risk factor reduc-

tion on Alzheimer’s disease prevalence (Vol. 10) (No. 9). NIH Public Ac-
cess. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21775213 doi:
10.1016/S1474-4422(11)70072-2

Benjamini, Y. & Yekutieli, D. (2001). The Control of the False Discovery Rate in

61

http://www.ncbi.nlm.nih.gov/pubmed/11986126
http://www.ncbi.nlm.nih.gov/pubmed/23369545
http://www.ncbi.nlm.nih.gov/pubmed/23369545
http://www.ncbi.nlm.nih.gov/pubmed/11193159
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://www.ncbi.nlm.nih.gov/pubmed/21775213


Multiple Testing Under Dependency. The Annals of Statistics, 29(4), 1165–
1188.

Bertram, L., Lill, C. M. & Tanzi, R. E. (2010). The Genetics of Alzheimer Disease:
Back to the Future. Neuron, 68(2), 270–281. Retrieved from http://www.ncbi
.nlm.nih.gov/pubmed/19679070 doi: 10.1016/j.neuron.2010.10.013

Bird, T. D. (1993). Alzheimer Disease Overview. University of Washington,
Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20301340

Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markes-
bery, W. R. & Landfield, P. W. (2004, feb). Incipient
Alzheimer’s disease: microarray correlation analyses reveal major tran-
scriptional and tumor suppressor responses. Proceedings of the National

Academy of Sciences of the United States of America, 101(7), 2173–8.
Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
357071{&}tool=pmcentrez{&}rendertype=abstract doi: 10.1073/pnas
.0308512100

Bolstad, B. (2001). Probe Level Quantile Normalization of High Density Oligo-
nucleotide Array Data.

Braak, H. & Braak, E. (1991). Acta H ’ pathologica Neuropathological stage-
ing of Alzheimer-related changes. Acta Neuropathol, 82(4), 239–259. Re-
trieved from http://www.ncbi.nlm.nih.gov/pubmed/1759558 doi: 10.1007/
BF00308809

Brewer, A. A. & Barton, B. (2014). Visual cortex in aging and Alzheimer’s disease:
changes in visual field maps and population receptive fields. Frontiers in

Psychology, 5(February), 74. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/24570669 doi: 10.3389/fpsyg.2014.00074

Brickell, K. L., Steinbart, E. J., Rumbaugh, M., Payami, H., Schellenberg, G. D.,
Van Deerlin, V., . . . Bird, T. D. (2006, sep). Early-onset Alzheimer disease in
families with late-onset Alzheimer disease: a potential important subtype of
familial Alzheimer disease. Arch Neurol, 63(9), 1307–1311. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/16966510 doi: 10.1001/archneur.63
.9.1307

Busser, J., Geldmacher, D. S. & Herrup, K. (1998, apr). Ectopic cell cycle
proteins predict the sites of neuronal cell death in Alzheimer’s disease
brain. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 18(8), 2801–7. Retrieved from http://www.ncbi.nlm.nih.gov/

62

http://www.ncbi.nlm.nih.gov/pubmed/19679070
http://www.ncbi.nlm.nih.gov/pubmed/19679070
http://www.ncbi.nlm.nih.gov/pubmed/20301340
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=357071{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=357071{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/1759558
http://www.ncbi.nlm.nih.gov/pubmed/24570669
http://www.ncbi.nlm.nih.gov/pubmed/24570669
http://www.ncbi.nlm.nih.gov/pubmed/16966510
http://www.ncbi.nlm.nih.gov/pubmed/9525997
http://www.ncbi.nlm.nih.gov/pubmed/9525997


pubmed/9525997
Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M.,

. . . Frebourg, T. (1999, sep). Early-onset autosomal dominant Alzheimer
disease: prevalence, genetic heterogeneity, and mutation spectrum. American

journal of human genetics, 65(3), 664–70. Retrieved from http://www.ncbi
.nlm.nih.gov/pubmed/10441572 doi: 10.1086/302553

Carlson M. (n.d.). Affymetrix Human Genome U133 Plus 2.0 Array annotation

data (chip hgu133plus2). R package version 3.2.3.

Carvalho, B. S. & Irizarry, R. A. (2010, oct). A framework for oligonuc-
leotide microarray preprocessing. Bioinformatics, 26(19), 2363–2367. Re-
trieved from https://academic.oup.com/bioinformatics/article-lookup/doi/10
.1093/bioinformatics/btq431 doi: 10.1093/bioinformatics/btq431

Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G. & Lukiw, W. J.
(2002, nov). Gene expression profiling of 12633 genes in Alzheimer hip-
pocampal CA1: Transcription and neurotrophic factor down-regulation and
up-regulation of apoptotic and pro-inflammatory signaling. Journal of Neur-

oscience Research, 70(3), 462–473. Retrieved from http://doi.wiley.com/
10.1002/jnr.10351 doi: 10.1002/jnr.10351

Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E.,
Gaskell, P. C., . . . Schmader, K. E. (1994, jun). Protective effect of apolipo-
protein E type 2 allele for late onset Alzheimer disease. Nature genetics, 7(2),
180–184. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7920638
doi: 10.1038/ng0694-180

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell,
P. C., Small, G. W., . . . Pericak-Vance, M. A. (1993, aug). Gene dose of
apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late
onset families. Science (New York, N.Y.), 261(5123), 921–923. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/8346443 doi: 10.1126/science
.8346443

Cruts, M. & Van Broeckhoven, C. (1998). Presenilin mutations in Alzheimer’s
disease. Human Mutation, 11(3), 183–190. Retrieved from http://www.ncbi
.nlm.nih.gov/pubmed/9521418 doi: 10.1002/(SICI)1098-1004(1998)11:
3<183::AID-HUMU1>3.0.CO;2-J

DeKosky, S. T. & Scheff, S. W. (1990, may). Synapse loss in frontal cortex
biopsies in Alzheimer’s disease: Correlation with cognitive severity. Annals

63

http://www.ncbi.nlm.nih.gov/pubmed/9525997
http://www.ncbi.nlm.nih.gov/pubmed/9525997
http://www.ncbi.nlm.nih.gov/pubmed/10441572
http://www.ncbi.nlm.nih.gov/pubmed/10441572
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq431
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq431
http://doi.wiley.com/10.1002/jnr.10351
http://doi.wiley.com/10.1002/jnr.10351
http://www.ncbi.nlm.nih.gov/pubmed/7920638
http://www.ncbi.nlm.nih.gov/pubmed/8346443
http://www.ncbi.nlm.nih.gov/pubmed/9521418
http://www.ncbi.nlm.nih.gov/pubmed/9521418


of Neurology, 27(5), 457–464. Retrieved from http://doi.wiley.com/10.1002/
ana.410270502 doi: 10.1002/ana.410270502

Dönertas, M. (2016). Meta-Analysis of Gene Expression Reversals in Ageing
Brain.

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A. &
Huber, W. (2005, aug). BioMart and Bioconductor: A powerful link between
biological databases and microarray data analysis. Bioinformatics, 21(16),
3439–3440. Retrieved from https://academic.oup.com/bioinformatics/article
-lookup/doi/10.1093/bioinformatics/bti525 doi: 10.1093/bioinformatics/
bti525

Edgar, R., Domrachev, M. & Lash, A. E. (2002, jan). Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository. Nucleic Acids

Res, 30(1), 207–210. Retrieved from https://academic.oup.com/nar/article
-lookup/doi/10.1093/nar/30.1.207 doi: 10.1093/nar/30.1.207

Esch, F. S., Keim, P. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf,
T., . . . Ward, P. J. (1990, jun). Cleavage of amyloid beta peptide during
constitutive processing of its precursor. Science (New York, N.Y.), 248(4959),
1122–1124. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2111583
doi: 10.1126/science.2111583

Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. (2004, feb). affy–analysis
of Affymetrix GeneChip data at the probe level. Bioinformatics, 20(3),
307–315. Retrieved from https://academic.oup.com/bioinformatics/article
-lookup/doi/10.1093/bioinformatics/btg405 doi: 10.1093/bioinformatics/
btg405

Giannakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kövari, E., Perl,
D. P., . . . Hof, P. R. (2003, may). Tangle and neuron numbers, but not amyl-
oid load, predict cognitive status in Alzheimer’s disease. Neurology, 60(9),
1495–500. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12743238
doi: 10.1212/01.WNL.0000063311.58879.01

Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H. & Trojanowski, J. Q.
(2000, jul). Expression profile of transcripts in Alzheimer’s disease tangle-
bearing CA1 neurons. Annals of neurology, 48(1), 77–87. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/10894219

Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.-H.
& Kellis, M. (2015, feb). Conserved epigenomic signals in mice and hu-

64

http://doi.wiley.com/10.1002/ana.410270502
http://doi.wiley.com/10.1002/ana.410270502
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bti525
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bti525
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.1.207
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/2111583
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btg405
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btg405
http://www.ncbi.nlm.nih.gov/pubmed/12743238
http://www.ncbi.nlm.nih.gov/pubmed/10894219


mans reveal immune basis of Alzheimer’s disease. Nature, 518(7539), 365–
369. Retrieved from http://dx.doi.org/10.1038/nature14252 doi: 10.1038/
nature14252

Gong, C.-X. & Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated
protein tau: a promising therapeutic target for Alzheimer disease. Current

medicinal chemistry, 15(23), 2321–8. Retrieved from http://www.ncbi.nlm
.nih.gov/pubmed/18855662

Grehan, S., Tse, E. & Taylor, J. M. (2001, feb). Two distal downstream enhancers
direct expression of the human apolipoprotein E gene to astrocytes in the
brain. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 21(3), 812–822. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/11157067 doi: 21/3/812[pii]

Gyoneva, S., Swanger, S. A., Zhang, J., Weinshenker, D. & Traynelis, S. F.
(2016, aug). Altered motility of plaque-associated microglia in a model of
Alzheimer’s disease. Neuroscience, 330, 410–420. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/27288150 doi: 10.1016/j.neuroscience
.2016.05.061

Hampel, H., Bürger, K., Teipel, S. J., Bokde, A. L. W., Zetterberg, H. & Blennow,
K. (2008, jan). Core candidate neurochemical and imaging biomarkers of

Alzheimer’s disease (Vol. 4) (No. 1). Retrieved from http://www.ncbi.nlm
.nih.gov/pubmed/18631949 doi: 10.1016/j.jalz.2007.08.006

Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L.,
. . . Williams, J. (2009, oct). Genome-wide association study identifies vari-
ants at CLU and PICALM associated with Alzheimer’s disease. Nature ge-

netics, 41(10), 1088–93. Retrieved from http://www.nature.com/doifinder/
10.1038/ng.440 doi: 10.1038/ng.440

Hérard, A. S., Besret, L., Dubois, A., Dauguet, J., Delzescaux, T., Hantraye, P., . . .
Moya, K. L. (2006, dec). siRNA targeted against amyloid precursor pro-
tein impairs synaptic activity in vivo. Neurobiology of Aging, 27(12), 1740–
1750. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16337035 doi:
10.1016/j.neurobiolaging.2005.10.020

Hippius, H. & Neundorfer, G. (2003, mar). The discovery of Alzheimer’s disease.
Dialogues in Clinical Neuroscience, 5(1), 101–108. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/22034141 doi: 10.1055/s-2008-1026558

Ho, A. & Südhof, T. C. (2004, feb). Binding of F-Spondin to Amyloid-β

65

http://dx.doi.org/10.1038/nature14252
http://www.ncbi.nlm.nih.gov/pubmed/18855662
http://www.ncbi.nlm.nih.gov/pubmed/18855662
http://www.ncbi.nlm.nih.gov/pubmed/11157067
http://www.ncbi.nlm.nih.gov/pubmed/11157067
http://www.ncbi.nlm.nih.gov/pubmed/27288150
http://www.ncbi.nlm.nih.gov/pubmed/27288150
http://www.ncbi.nlm.nih.gov/pubmed/18631949
http://www.ncbi.nlm.nih.gov/pubmed/18631949
http://www.nature.com/doifinder/10.1038/ng.440
http://www.nature.com/doifinder/10.1038/ng.440
http://www.ncbi.nlm.nih.gov/pubmed/16337035
http://www.ncbi.nlm.nih.gov/pubmed/22034141
http://www.ncbi.nlm.nih.gov/pubmed/22034141


Precursor Protein: A Candidate Amyloid-β Precursor Protein Ligand that
Modulates Amyloid-β Precursor Protein Cleavage. Proceedings of the Na-

tional Academy of Sciences, 101(8), 2548–2553. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/14983046 doi: 10.1073/pnas.0308655100

Hokama, M., Oka, S., Leon, J., Ninomiya, T., Honda, H., Sasaki, K., . . . Na-
kabeppu, Y. (2014, sep). Altered expression of diabetes-related genes
in Alzheimer’s disease brains: The Hisayama study. Cerebral Cortex,
24(9), 2476–2488. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
23595620 doi: 10.1093/cercor/bht101

Huang, Y. (2006, sep). Molecular and cellular mechanisms of apolipoprotein E4
neurotoxicity and potential therapeutic strategies. Current opinion in drug

discovery & development, 9(5), 627–41. Retrieved from http://www.ncbi
.nlm.nih.gov/pubmed/17002223

Hung, A. Y., Koo, E. H., Haass, C. & Selkoe, D. J. (1992, oct). Increased
expression of beta-amyloid precursor protein during neuronal differenti-
ation is not accompanied by secretory cleavage. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 89(20), 9439–
43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1409654 doi:
10.1073/pnas.89.20.9439

Jarvik, G., Larson, E. B., Goddard, K., Schellenberg, G. D. & Wijsman, E. M.
(1996, jan). Influence of apolipoprotein E genotype on the transmission of
Alzheimer disease in a community-based sample. American journal of hu-

man genetics, 58(1), 191–200. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/8554056

Katzman, R., Katzman R, K. T., RD, N., Neumann MA, C. R., Tomlinson BE,
Blessed G, R. M., Blessed G, Tomlinson BE, R. M., . . . ER, P. (1976,
apr). The Prevalence and Malignancy of Alzheimer Disease. Archives of

Neurology, 33(4), 217. Retrieved from http://archneur.jamanetwork.com/
article.aspx?doi=10.1001/archneur.1976.00500040001001 doi: 10.1001/
archneur.1976.00500040001001

Khachaturian, A. S., Corcoran, C. D., Mayer, L. S., Zandi, P. P. & Breitner,
J. C. S. (2004, may). Apolipoprotein E epsilon4 count affects age at on-
set of Alzheimer disease, but not lifetime susceptibility: The Cache County
Study. Archives of general psychiatry, 61(5), 518–524. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/15123497 doi: 10.1001/archpsyc.61.5.518

66

http://www.ncbi.nlm.nih.gov/pubmed/14983046
http://www.ncbi.nlm.nih.gov/pubmed/14983046
http://www.ncbi.nlm.nih.gov/pubmed/23595620
http://www.ncbi.nlm.nih.gov/pubmed/23595620
http://www.ncbi.nlm.nih.gov/pubmed/17002223
http://www.ncbi.nlm.nih.gov/pubmed/17002223
http://www.ncbi.nlm.nih.gov/pubmed/1409654
http://www.ncbi.nlm.nih.gov/pubmed/8554056
http://www.ncbi.nlm.nih.gov/pubmed/8554056
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.1976.00500040001001
http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.1976.00500040001001
http://www.ncbi.nlm.nih.gov/pubmed/15123497
http://www.ncbi.nlm.nih.gov/pubmed/15123497


Lambert, J.-C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., . . .
Amouyel, P. (2009, oct). Genome-wide association study identifies vari-
ants at CLU and CR1 associated with Alzheimer’s disease. Nature genetics,
41(10), 1094–1099. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
19734903 doi: 10.1038/ng.439

Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., . . .
Fahrenholz, F. (1999, mar). Constitutive and regulated alpha-secretase cleav-
age of Alzheimer’s amyloid precursor protein by a disintegrin metallopro-
tease. Proceedings of the National Academy of Sciences of the United States

of America, 96(7), 3922–3927. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/10097139 doi: 10.1073/pnas.96.7.3922

Lee, M. S., Kao, S. C., Lemere, C. A., Xia, W., Tseng, H. C., Zhou, Y., . . .
Tsai, L. H. (2003, oct). APP processing is regulated by cytoplasmic phos-
phorylation. Journal of Cell Biology, 163(1), 83–95. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/14557249 doi: 10.1083/jcb.200301115

Leshchyns’Ka, I. & Sytnyk, V. (2016). Synaptic Cell Adhesion Molecules in

Alzheimer’s Disease (Vol. 2016). Hindawi Publishing Corporation. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/27242933 doi: 10.1155/2016/
6427537

Leverenz, J. B. & Raskind, M. A. (1998, apr). Early amyloid deposition in the me-
dial temporal lobe of young Down syndrome patients: a regional quantitative
analysis. Experimental neurology, 150(2), 296–304. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/9527899 doi: 10.1006/exnr.1997.6777

Leyssen, M., Ayaz, D., Hébert, S. S., Reeve, S., De Strooper, B. & Hassan, B. A.
(2005, aug). Amyloid precursor protein promotes post-developmental neurite
arborization in the Drosophila brain. The EMBO journal, 24(16), 2944–
2955. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16052209 doi:
10.1038/sj.emboj.7600757

Liang, W. S., Reiman, E. M., Valla, J., Dunckley, T., Beach, T. G.,
Grover, A., . . . Stephan, D. A. (2008, mar). Alzheimer’s dis-
ease is associated with reduced expression of energy metabolism
genes in posterior cingulate neurons. Proceedings of the National

Academy of Sciences of the United States of America, 105(11), 4441–6.
Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2393743{&}tool=pmcentrez{&}rendertype=abstract doi: 10.1073/pnas

67

http://www.ncbi.nlm.nih.gov/pubmed/19734903
http://www.ncbi.nlm.nih.gov/pubmed/19734903
http://www.ncbi.nlm.nih.gov/pubmed/10097139
http://www.ncbi.nlm.nih.gov/pubmed/10097139
http://www.ncbi.nlm.nih.gov/pubmed/14557249
http://www.ncbi.nlm.nih.gov/pubmed/14557249
http://www.ncbi.nlm.nih.gov/pubmed/27242933
http://www.ncbi.nlm.nih.gov/pubmed/9527899
http://www.ncbi.nlm.nih.gov/pubmed/9527899
http://www.ncbi.nlm.nih.gov/pubmed/16052209
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2393743{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2393743{&}tool=pmcentrez{&}rendertype=abstract


.0709259105
Loring, J. F., Wen, X., Lee, J. M., Seilhamer, J. & Somogyi, R. (2001). A gene

expression profile of Alzheimer’s disease. DNA & Cell Biology, 20(11), 683–
695.

Lott, I. T. & Head, E. (2001, aug). Down syndrome and alzheimer’s dis-

ease: A link between development and aging (Vol. 7) (No. 3). Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/11553933http://doi.wiley.com/
10.1002/mrdd.1025 doi: 10.1002/mrdd.1025

Ma, J., Yee, A., Brewer, H. B., Das, S. & Potter, H. (1994, nov). Amyloid-

associated proteins α1-antichymotrypsin and apolipoprotein E promote as-

sembly of Alzheimer β-protein into filaments (Vol. 372) (No. 6501). Re-
trieved from http://www.ncbi.nlm.nih.gov/pubmed/7969426 doi: 10.1038/
372092a0

Mahley, R. W., Weisgraber, K. H. & Huang, Y. (2006, apr). Apolipoprotein
E4: a causative factor and therapeutic target in neuropathology, including
Alzheimer’s disease. Proceedings of the National Academy of Sciences of

the United States of America, 103(15), 5644–51. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/16567625 doi: 10.1073/pnas.0600549103

Martijn, T. (2017). Treemap Visualization.
Matsui, T., Ingelsson, M., Fukumoto, H., Ramasamy, K., Kowa, H., Frosch, M. P.,

. . . Hyman, B. T. (2007, aug). Expression of APP pathway mRNAs and
proteins in Alzheimer’s disease. Brain Research, 1161(1), 116–123. Re-
trieved from http://www.ncbi.nlm.nih.gov/pubmed/17586478 doi: 10.1016/
j.brainres.2007.05.050

Mayeux, R., Saunders, A. M., Shea, S., Mirra, S., Evans, D., Roses, A. D., . . .
Phelps, C. H. (1998, feb). Utility of the apolipoprotein E genotype in the
diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium
on Apolipoprotein E and Alzheimer’s Disease. The New England journal

of medicine, 338(8), 506–511. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/9468467 doi: 10.1056/NEJM199802193380804

Miller, J. A., Woltjer, R. L., Goodenbour, J. M. & Horvath, S. (2013). Genes and
pathways underlying regional and cell type changes in Alzheimer’s disease.
Genome medicine, 5(5), 48. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/23705665 doi: 10.1186/gm452

Nagy, Z., Esiri, M. M., Cato, A. M. & Smith, A. D. (1997, jul). Cell cycle markers

68

http://www.ncbi.nlm.nih.gov/pubmed/11553933http://doi.wiley.com/10.1002/mrdd.1025
http://www.ncbi.nlm.nih.gov/pubmed/11553933http://doi.wiley.com/10.1002/mrdd.1025
http://www.ncbi.nlm.nih.gov/pubmed/7969426
http://www.ncbi.nlm.nih.gov/pubmed/16567625
http://www.ncbi.nlm.nih.gov/pubmed/16567625
http://www.ncbi.nlm.nih.gov/pubmed/17586478
http://www.ncbi.nlm.nih.gov/pubmed/9468467
http://www.ncbi.nlm.nih.gov/pubmed/9468467
http://www.ncbi.nlm.nih.gov/pubmed/23705665
http://www.ncbi.nlm.nih.gov/pubmed/23705665


in the hippocampus in Alzheimer’s disease. Acta neuropathologica, 94(1),
6–15. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9224524

Narayanan, M., Huynh, J. L., Wang, K., Yang, X., Yoo, S., McElwee, J., . . . Zhu, J.
(2014, jan). Common dysregulation network in the human prefrontal cortex
underlies two neurodegenerative diseases. Molecular systems biology, 10,
743. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi
?artid=4299500{&}tool=pmcentrez{&}rendertype=abstract

Nielsen, H. & Wennström, H. M. (2012, jul). Cell adhesion molecules in
Alzheimer’s disease. Degenerative Neurological and Neuromuscular Dis-

ease, Volume 2, 65. Retrieved from http://www.dovepress.com/cell-adhesion
-molecules-in-alzheimer39s-disease-peer-reviewed-article-DNND doi: 10
.2147/DNND.S19829

O’Brien, R. J. & Wong, P. C. (2010). Amyloid Precursor Protein Processing
and Alzheimers Disease. Annual review of neuroscience, 34(March), 183–
202. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21456963 doi:
10.1146/annurev-neuro-061010-113613

Perez, R. G., Zheng, H., Van der Ploeg, L. H. & Koo, E. H. (1997, dec). The beta-
amyloid precursor protein of Alzheimer’s disease enhances neuron viability
and modulates neuronal polarity. The Journal of neuroscience : the official

journal of the Society for Neuroscience, 17(24), 9407–9414. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9390996

Prasher, V. P., Farrer, M. J., Kessling, A. M., Fisher, E. M. C., West, R. J., Barber,
P. C. & Butler, A. C. (1998, mar). Molecular mapping of Alzheimer-
type dementia in Down’s syndrome. Annals of Neurology, 43(3), 380–
383. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9506555http://
doi.wiley.com/10.1002/ana.410430316 doi: 10.1002/ana.410430316

Puthiyedth, N., Riveros, C., Berretta, R. & Moscato, P. (2016). Iden-
tification of differentially expressed genes through integrated study of
Alzheimer’s disease affected brain regions. PLoS ONE, 11(4), e0152342.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27050411http://www
.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4822961 doi: 10
.1371/journal.pone.0152342

Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-
Vance, M. A., Joo, S. H., . . . Alberts, M. J. (1993, aug). Association
of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic

69

http://www.ncbi.nlm.nih.gov/pubmed/9224524
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4299500{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4299500{&}tool=pmcentrez{&}rendertype=abstract
http://www.dovepress.com/cell-adhesion-molecules-in-alzheimer39s-disease-peer-reviewed-article-DNND
http://www.dovepress.com/cell-adhesion-molecules-in-alzheimer39s-disease-peer-reviewed-article-DNND
http://www.ncbi.nlm.nih.gov/pubmed/21456963
http://www.ncbi.nlm.nih.gov/pubmed/9390996
http://www.ncbi.nlm.nih.gov/pubmed/9506555http://doi.wiley.com/10.1002/ana.410430316
http://www.ncbi.nlm.nih.gov/pubmed/9506555http://doi.wiley.com/10.1002/ana.410430316
http://www.ncbi.nlm.nih.gov/pubmed/27050411http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4822961
http://www.ncbi.nlm.nih.gov/pubmed/27050411http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4822961


Alzheimer’s disease. Neurology, 43(8), 1467–1472. Retrieved from http://
www.ncbi.nlm.nih.gov/pubmed/8350998 doi: 10.1212/WNL.43.8.1467

Selkoe, D. J. (1998, nov). The cell biology of beta-amyloid precursor protein
and presenilin in Alzheimer’s disease. Trends in cell biology, 8(11), 447–
53. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9854312 doi: 10
.1016/S0962-8924(98)01363-4

Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V.,
Boada, M., . . . EADI1 Consortium (2010, may). Genome-wide analysis
of genetic loci associated with Alzheimer disease. JAMA, 303(18), 1832–
40. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20460622 doi:
10.1001/jama.2010.574

Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda,
M., . . . St George-Hyslop, P. H. (1995, jun). Cloning of a gene bear-
ing missense mutations in early-onset familial Alzheimer’s disease. Nature,
375(6534), 754–60. Retrieved from http://www.nature.com/doifinder/10
.1038/375754a0 doi: 10.1038/375754a0

Soba, P., Eggert, S., Wagner, K., Zentgraf, H., Siehl, K., Kreger, S., . . . Beyreuther,
K. (2005, oct). Homo- and heterodimerization of APP family mem-
bers promotes intercellular adhesion. The EMBO journal, 24(20), 3624–
3634. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16193067 doi:
10.1038/sj.emboj.7600956

Sun, Y., Wu, S., Bu, G., Onifade, M. K., Patel, S. N., LaDu, M. J., . . . Holtzman,
D. M. (1998, may). Glial fibrillary acidic protein-apolipoprotein E (apoE)
transgenic mice: astrocyte-specific expression and differing biological ef-
fects of astrocyte-secreted apoE3 and apoE4 lipoproteins. The Journal of

neuroscience : the official journal of the Society for Neuroscience, 18(9),
3261–3272. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9547235

Supek, F., Bošnjak, M., Škunca, N., Šmuc, T., Rivals, I., Personnaz, L., . . .
Törönen, P. (2011, jul). REVIGO Summarizes and Visualizes Long Lists
of Gene Ontology Terms. PLoS ONE, 6(7), e21800. Retrieved from
http://dx.plos.org/10.1371/journal.pone.0021800 doi: 10.1371/journal.pone
.0021800

Tan, M. G., Chua, W. T., Esiri, M. M., Smith, A. D., Vinters, H. V. & Lai, M. K.
(2010). Genome wide profiling of altered gene expression in the neocortex
of Alzheimer’s disease. Journal of Neuroscience Research, 88(6), 1157–

70

http://www.ncbi.nlm.nih.gov/pubmed/8350998
http://www.ncbi.nlm.nih.gov/pubmed/8350998
http://www.ncbi.nlm.nih.gov/pubmed/9854312
http://www.ncbi.nlm.nih.gov/pubmed/20460622
http://www.nature.com/doifinder/10.1038/375754a0
http://www.nature.com/doifinder/10.1038/375754a0
http://www.ncbi.nlm.nih.gov/pubmed/16193067
http://www.ncbi.nlm.nih.gov/pubmed/9547235
http://dx.plos.org/10.1371/journal.pone.0021800


1169. Retrieved from http://doi.wiley.com/10.1002/jnr.22290 doi: 10.1002/
jnr.22290

Tharp, W. G. & Sarkar, I. N. (2013, apr). Origins of amyloid-β. BMC Genomics,
14(1), 290. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23627794
doi: 10.1186/1471-2164-14-290

Van Cauwenberghe, C., Van Broeckhoven, C. & Sleegers, K. (2016, may). The ge-
netic landscape of Alzheimer disease: clinical implications and perspectives.
Genetics in medicine : official journal of the American College of Medical

Genetics, 18(5), 421–430. Retrieved from http://www.nature.com/doifinder/
10.1038/gim.2015.117 doi: 10.1038/gim.2015.117

Van den Heuvel, C., Blumbergs, P. C., Finnie, J. W., Manavis, J., Jones, N. R.,
Reilly, P. L. & Pereira, R. A. (1999, oct). Upregulation of amyloid pre-
cursor protein messenger RNA in response to traumatic brain injury: an
ovine head impact model. Experimental neurology, 159(2), 441–450. Re-
trieved from http://www.ncbi.nlm.nih.gov/pubmed/10506515 doi: 10.1006/
exnr.1999.7150

Vetrivel, K. S., Zhang, Y.-w., Xu, H. & Thinakaran, G. (2006, jun). Pathological
and physiological functions of presenilins. Molecular neurodegeneration,
1, 4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16930451 doi:
10.1186/1750-1326-1-4

Wang, B., Yang, W., Wen, W., Sun, J., Su, B., Liu, B., . . . Zhang, X.
(2010, nov). γ-Secretase Gene Mutations in Familial Acne Inversa. Sci-

ence, 330(6007), 1065–1065. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/20929727 doi: 10.1126/science.1196284

Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. (1975,
may). A protein factor essential for microtubule assembly. Proceedings of the

National Academy of Sciences of the United States of America, 72(5), 1858–
62. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1057175 doi: 10
.1073/pnas.72.5.1858

Wruck, W., Schröter, F. & Adjaye, J. (2016, feb). Meta-Analysis of Tran-
scriptome Data Related to Hippocampus Biopsies and iPSC-Derived
Neuronal Cells from Alzheimer’s Disease Patients Reveals an As-
sociation with FOXA1 and FOXA2 Gene Regulatory Networks.
Journal of Alzheimer’s Disease, 50(4), 1065–1082. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/26890743http://www.medra.org/

71

http://doi.wiley.com/10.1002/jnr.22290
http://www.ncbi.nlm.nih.gov/pubmed/23627794
http://www.nature.com/doifinder/10.1038/gim.2015.117
http://www.nature.com/doifinder/10.1038/gim.2015.117
http://www.ncbi.nlm.nih.gov/pubmed/10506515
http://www.ncbi.nlm.nih.gov/pubmed/16930451
http://www.ncbi.nlm.nih.gov/pubmed/20929727
http://www.ncbi.nlm.nih.gov/pubmed/20929727
http://www.ncbi.nlm.nih.gov/pubmed/1057175
http://www.ncbi.nlm.nih.gov/pubmed/26890743http://www.medra.org/servlet/aliasResolver?alias=iospress{&}doi=10.3233/JAD-150733
http://www.ncbi.nlm.nih.gov/pubmed/26890743http://www.medra.org/servlet/aliasResolver?alias=iospress{&}doi=10.3233/JAD-150733


servlet/aliasResolver?alias=iospress{&}doi=10.3233/JAD-150733 doi:
10.3233/JAD-150733

Xu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R. W. & Huang, Y.
(2006, may). Profile and regulation of apolipoprotein E (ApoE) expression
in the CNS in mice with targeting of green fluorescent protein gene to the
ApoE locus. The Journal of neuroscience : the official journal of the Society

for Neuroscience, 26(19), 4985–94. Retrieved from http://www.ncbi.nlm.nih
.gov/pubmed/16687490 doi: 10.1523/JNEUROSCI.5476-05.2006

Yamazaki, T., Koo, E. H. & Selkoe, D. J. (1997, feb). Cell surface amyloid beta-
protein precursor colocalizes with beta 1 integrins at substrate contact sites
in neural cells. The Journal of Neuroscience, 17(3), 1004–1010. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/8994055

Yoshikai, S.-i., Sasaki, H., Doh-ura, K., Furuya, H. & Sakaki, Y. (1990,
mar). Genomic organization of the human amyloid beta-protein precursor
gene. Gene, 87(2), 257–263. Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/2110105 doi: 10.1016/0378-1119(90)90310-N

Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., McElwee, J., Podtelezhnikov, A. A.,
. . . Emilsson, V. (2013, apr). Integrated systems approach identifies genetic
nodes and networks in late-onset Alzheimer’s disease. Cell, 153(3), 707–
720. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23622250 doi:
10.1016/j.cell.2013.03.030

72

http://www.ncbi.nlm.nih.gov/pubmed/26890743http://www.medra.org/servlet/aliasResolver?alias=iospress{&}doi=10.3233/JAD-150733
http://www.ncbi.nlm.nih.gov/pubmed/26890743http://www.medra.org/servlet/aliasResolver?alias=iospress{&}doi=10.3233/JAD-150733
http://www.ncbi.nlm.nih.gov/pubmed/16687490
http://www.ncbi.nlm.nih.gov/pubmed/16687490
http://www.ncbi.nlm.nih.gov/pubmed/8994055
http://www.ncbi.nlm.nih.gov/pubmed/2110105
http://www.ncbi.nlm.nih.gov/pubmed/2110105
http://www.ncbi.nlm.nih.gov/pubmed/23622250


APPENDIX A

LIST OF AD-RELATED GENES SHOWING
UPREGULATION TREND

Table A.1: List of genes showing significant upregulation trend across datasets.
M-rho is the median rho value of a gene among datasets.

ENSG ID Gene Name M-rho
ENSG00000143772 ITPKB 0.672
ENSG00000176046 NUPR1 0.663
ENSG00000173039 RELA 0.642
ENSG00000119950 MXI1 0.64
ENSG00000138193 PLCE1 0.637
ENSG00000183864 TOB2 0.635
ENSG00000112851 ERBIN 0.632
ENSG00000173530 TNFRSF10D 0.63
ENSG00000133789 SWAP70 0.624
ENSG00000162909 CAPN2 0.621
ENSG00000003989 SLC7A2 0.619
ENSG00000129116 PALLD 0.615
ENSG00000119900 OGFRL1 0.614
ENSG00000067182 TNFRSF1A 0.608
ENSG00000134324 LPIN1 0.604
ENSG00000026508 CD44 0.604
ENSG00000125733 TRIP10 0.602
ENSG00000111783 RFX4 0.599
ENSG00000162889 MAPKAPK2 0.597
ENSG00000141232 TOB1 0.597
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Table A.1 (continued)
ENSG00000106624 AEBP1 0.593
ENSG00000129675 ARHGEF6 0.589
ENSG00000111907 TPD52L1 0.586
ENSG00000134531 EMP1 0.586
ENSG00000105855 ITGB8 0.583
ENSG00000113916 BCL6 0.582
ENSG00000172493 AFF1 0.582
ENSG00000152661 GJA1 0.582
ENSG00000091436 AC013461.1 0.581
ENSG00000152137 HSPB8 0.58
ENSG00000116729 WLS 0.579
ENSG00000101849 TBL1X 0.578
ENSG00000183255 PTTG1IP 0.577
ENSG00000159176 CSRP1 0.577
ENSG00000125398 SOX9 0.576
ENSG00000168309 FAM107A 0.573
ENSG00000173926 MARCH3 0.572
ENSG00000111961 SASH1 0.571
ENSG00000170525 PFKFB3 0.571
ENSG00000135063 FAM189A2 0.57
ENSG00000069702 TGFBR3 0.567
ENSG00000148175 STOM 0.565
ENSG00000175215 CTDSP2 0.564
ENSG00000130254 SAFB2 0.564
ENSG00000164949 GEM 0.563
ENSG00000137693 YAP1 0.562
ENSG00000131626 PPFIA1 0.561
ENSG00000137198 GMPR 0.559
ENSG00000060138 YBX3 0.559
ENSG00000144909 OSBPL11 0.554
ENSG00000174306 ZHX3 0.554
ENSG00000010810 FYN 0.552
ENSG00000164877 MICALL2 0.551
ENSG00000099875 MKNK2 0.551
ENSG00000065526 SPEN 0.549
ENSG00000124942 AHNAK 0.549
ENSG00000172380 GNG12 0.549
ENSG00000164050 PLXNB1 0.549
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Table A.1 (continued)
ENSG00000221869 CEBPD 0.546
ENSG00000011304 PTBP1 0.546
ENSG00000162733 DDR2 0.545
ENSG00000124570 SERPINB6 0.543
ENSG00000018408 WWTR1 0.543
ENSG00000114698 PLSCR4 0.542
ENSG00000155324 GRAMD3 0.542
ENSG00000136436 CALCOCO2 0.541
ENSG00000185650 ZFP36L1 0.54
ENSG00000069974 RAB27A 0.54
ENSG00000128585 MKLN1 0.539
ENSG00000176783 RUFY1 0.538
ENSG00000068697 LAPTM4A 0.537
ENSG00000150907 FOXO1 0.536
ENSG00000056972 TRAF3IP2 0.535
ENSG00000123096 SSPN 0.535
ENSG00000166483 WEE1 0.534
ENSG00000092531 SNAP23 0.534
ENSG00000103710 RASL12 0.533
ENSG00000147027 TMEM47 0.531
ENSG00000132470 ITGB4 0.531
ENSG00000138434 SSFA2 0.528
ENSG00000182541 LIMK2 0.527
ENSG00000179604 CDC42EP4 0.527
ENSG00000178209 PLEC 0.526
ENSG00000089159 PXN 0.526
ENSG00000110651 CD81 0.524
ENSG00000137193 PIM1 0.523
ENSG00000105854 PON2 0.523
ENSG00000187091 PLCD1 0.523
ENSG00000100906 NFKBIA 0.523
ENSG00000122786 CALD1 0.522
ENSG00000241839 PLEKHO2 0.522
ENSG00000092820 EZR 0.521
ENSG00000125753 VASP 0.519
ENSG00000115325 DOK1 0.518
ENSG00000172201 ID4 0.518
ENSG00000117592 PRDX6 0.518
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Table A.1 (continued)
ENSG00000165029 ABCA1 0.518
ENSG00000083168 KAT6A 0.516
ENSG00000152518 ZFP36L2 0.516
ENSG00000162413 KLHL21 0.516
ENSG00000140497 SCAMP2 0.516
ENSG00000100441 KHNYN 0.515
ENSG00000165175 MID1IP1 0.515
ENSG00000163132 MSX1 0.514
ENSG00000170876 TMEM43 0.514
ENSG00000131446 MGAT1 0.513
ENSG00000132669 RIN2 0.513
ENSG00000132329 RAMP1 0.513
ENSG00000152558 TMEM123 0.511
ENSG00000197256 KANK2 0.51
ENSG00000124782 RREB1 0.51
ENSG00000198604 BAZ1A 0.51
ENSG00000163346 PBXIP1 0.509
ENSG00000182718 ANXA2 0.509
ENSG00000011243 AKAP8L 0.509
ENSG00000007372 PAX6 0.507
ENSG00000154188 ANGPT1 0.506
ENSG00000168610 STAT3 0.505
ENSG00000115594 IL1R1 0.505
ENSG00000082781 ITGB5 0.504
ENSG00000177595 PIDD1 0.503
ENSG00000182149 IST1 0.503
ENSG00000061273 HDAC7 0.502
ENSG00000185432 METTL7A 0.502
ENSG00000116044 NFE2L2 0.502
ENSG00000169604 ANTXR1 0.501
ENSG00000070404 FSTL3 0.501
ENSG00000182253 SYNM 0.5
ENSG00000116478 HDAC1 0.498
ENSG00000173991 TCAP 0.497
ENSG00000165458 INPPL1 0.496
ENSG00000049323 LTBP1 0.496
ENSG00000131459 GFPT2 0.495
ENSG00000147065 MSN 0.495
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Table A.1 (continued)
ENSG00000141469 SLC14A1 0.494
ENSG00000140575 IQGAP1 0.493
ENSG00000143815 LBR 0.493
ENSG00000118482 PHF3 0.493
ENSG00000136451 VEZF1 0.492
ENSG00000126777 KTN1 0.492
ENSG00000183943 PRKX 0.492
ENSG00000154803 FLCN 0.492
ENSG00000100811 YY1 0.491
ENSG00000115468 EFHD1 0.49
ENSG00000092969 TGFB2 0.49
ENSG00000071967 CYBRD1 0.489
ENSG00000197442 MAP3K5 0.489
ENSG00000182158 CREB3L2 0.488
ENSG00000067141 NEO1 0.488
ENSG00000153914 SREK1 0.488
ENSG00000113732 ATP6V0E1 0.487
ENSG00000157191 NECAP2 0.487
ENSG00000142227 EMP3 0.487
ENSG00000006831 ADIPOR2 0.487
ENSG00000177575 CD163 0.486
ENSG00000198960 ARMCX6 0.485
ENSG00000151491 EPS8 0.484
ENSG00000007384 RHBDF1 0.483
ENSG00000149489 ROM1 0.483
ENSG00000170638 TRABD 0.483
ENSG00000113140 SPARC 0.482
ENSG00000132256 TRIM5 0.482
ENSG00000155368 DBI 0.481
ENSG00000115107 STEAP3 0.481
ENSG00000143819 EPHX1 0.48
ENSG00000173473 SMARCC1 0.479
ENSG00000091409 ITGA6 0.479
ENSG00000133131 MORC4 0.479
ENSG00000127603 MACF1 0.477
ENSG00000168056 LTBP3 0.477
ENSG00000104324 CPQ 0.477
ENSG00000005893 LAMP2 0.476
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Table A.1 (continued)
ENSG00000100242 SUN2 0.476
ENSG00000134294 SLC38A2 0.476
ENSG00000140750 ARHGAP17 0.476
ENSG00000064961 HMG20B 0.475
ENSG00000113594 LIFR 0.475
ENSG00000132424 PNISR 0.474
ENSG00000182326 C1S 0.473
ENSG00000163083 INHBB 0.473
ENSG00000073712 FERMT2 0.472
ENSG00000198917 SPOUT1 0.472
ENSG00000154175 ABI3BP 0.472
ENSG00000167191 GPRC5B 0.472
ENSG00000092621 PHGDH 0.47
ENSG00000105281 SLC1A5 0.47
ENSG00000182492 BGN 0.47
ENSG00000185591 SP1 0.47
ENSG00000100014 SPECC1L 0.47
ENSG00000163110 PDLIM5 0.468
ENSG00000128602 SMO 0.468
ENSG00000047457 CP 0.467
ENSG00000173905 GOLIM4 0.466
ENSG00000146648 EGFR 0.466
ENSG00000009830 POMT2 0.466
ENSG00000102125 TAZ 0.465
ENSG00000168994 PXDC1 0.465
ENSG00000135744 AGT 0.465
ENSG00000065883 CDK13 0.464
ENSG00000113658 SMAD5 0.463
ENSG00000005243 COPZ2 0.462
ENSG00000033030 ZCCHC8 0.462
ENSG00000107779 BMPR1A 0.461
ENSG00000079308 TNS1 0.461
ENSG00000178252 WDR6 0.46
ENSG00000171456 ASXL1 0.46
ENSG00000145012 LPP 0.459
ENSG00000131051 RBM39 0.459
ENSG00000148700 ADD3 0.458
ENSG00000000003 TSPAN6 0.457
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Table A.1 (continued)
ENSG00000133639 BTG1 0.457
ENSG00000135365 PHF21A 0.457
ENSG00000067955 CBFB 0.457
ENSG00000168077 SCARA3 0.457
ENSG00000139644 TMBIM6 0.456
ENSG00000055070 SZRD1 0.456
ENSG00000079335 CDC14A 0.456
ENSG00000129667 RHBDF2 0.456
ENSG00000104365 IKBKB 0.455
ENSG00000171940 ZNF217 0.455
ENSG00000140299 BNIP2 0.454
ENSG00000006327 TNFRSF12A 0.453
ENSG00000102699 PARP4 0.453
ENSG00000143514 TP53BP2 0.452
ENSG00000163884 KLF15 0.452
ENSG00000148737 TCF7L2 0.451
ENSG00000138119 MYOF 0.451
ENSG00000172037 LAMB2 0.451
ENSG00000087077 TRIP6 0.449
ENSG00000104881 PPP1R13L 0.449
ENSG00000164111 ANXA5 0.448
ENSG00000137145 DENND4C 0.448
ENSG00000112773 FAM46A 0.448
ENSG00000174718 KIAA1551 0.447
ENSG00000172530 BANP 0.447
ENSG00000101680 LAMA1 0.447
ENSG00000021300 PLEKHB1 0.445
ENSG00000205213 LGR4 0.445
ENSG00000011198 ABHD5 0.444
ENSG00000105939 ZC3HAV1 0.443
ENSG00000103449 SALL1 0.443
ENSG00000111321 LTBR 0.443
ENSG00000106538 RARRES2 0.443
ENSG00000171100 MTM1 0.442
ENSG00000163565 IFI16 0.442
ENSG00000172943 PHF8 0.441
ENSG00000104419 NDRG1 0.441
ENSG00000169504 CLIC4 0.441
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Table A.1 (continued)
ENSG00000178878 APOLD1 0.441
ENSG00000120690 ELF1 0.441
ENSG00000124749 COL21A1 0.44
ENSG00000097007 ABL1 0.439
ENSG00000156304 SCAF4 0.439
ENSG00000135111 TBX3 0.439
ENSG00000145555 MYO10 0.439
ENSG00000132274 TRIM22 0.439
ENSG00000122863 CHST3 0.438
ENSG00000113300 CNOT6 0.437
ENSG00000008282 SYPL1 0.437
ENSG00000178764 ZHX2 0.437
ENSG00000170370 EMX2 0.436
ENSG00000143418 CERS2 0.436
ENSG00000139218 SCAF11 0.436
ENSG00000079134 THOC1 0.435
ENSG00000054598 FOXC1 0.435
ENSG00000160789 LMNA 0.434
ENSG00000161638 ITGA5 0.434
ENSG00000205403 CFI 0.433
ENSG00000168884 TNIP2 0.433
ENSG00000057252 SOAT1 0.433
ENSG00000154734 ADAMTS1 0.433
ENSG00000129151 BBOX1 0.433
ENSG00000087903 RFX2 0.433
ENSG00000168906 MAT2A 0.432
ENSG00000100813 ACIN1 0.431
ENSG00000129250 KIF1C 0.431
ENSG00000132613 MTSS1L 0.431
ENSG00000106404 CLDN15 0.43
ENSG00000166833 NAV2 0.43
ENSG00000123374 CDK2 0.43
ENSG00000186350 RXRA 0.43
ENSG00000090530 P3H2 0.429
ENSG00000140961 OSGIN1 0.428
ENSG00000135837 CEP350 0.428
ENSG00000170348 TMED10 0.427
ENSG00000100599 RIN3 0.427
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Table A.1 (continued)
ENSG00000116747 TROVE2 0.426
ENSG00000104375 STK3 0.426
ENSG00000102908 NFAT5 0.426
ENSG00000106565 TMEM176B 0.426
ENSG00000134574 DDB2 0.425
ENSG00000160862 AZGP1 0.425
ENSG00000149131 SERPING1 0.424
ENSG00000171206 TRIM8 0.424
ENSG00000117360 PRPF3 0.423
ENSG00000138029 HADHB 0.422
ENSG00000102710 SUPT20H 0.422
ENSG00000099860 GADD45B 0.422
ENSG00000114439 BBX 0.422
ENSG00000028137 TNFRSF1B 0.421
ENSG00000141736 ERBB2 0.421
ENSG00000140262 TCF12 0.421
ENSG00000110324 IL10RA 0.419
ENSG00000114353 GNAI2 0.419
ENSG00000148411 NACC2 0.419
ENSG00000143416 SELENBP1 0.417
ENSG00000106333 PCOLCE 0.417
ENSG00000166743 ACSM1 0.417
ENSG00000135929 CYP27A1 0.417
ENSG00000168710 AHCYL1 0.416
ENSG00000163820 FYCO1 0.416
ENSG00000119688 ABCD4 0.416
ENSG00000130309 COLGALT1 0.415
ENSG00000010327 STAB1 0.415
ENSG00000111642 CHD4 0.415
ENSG00000070214 SLC44A1 0.415
ENSG00000124214 STAU1 0.415
ENSG00000134802 SLC43A3 0.414
ENSG00000105355 PLIN3 0.414
ENSG00000156639 ZFAND3 0.413
ENSG00000061936 SFSWAP 0.413
ENSG00000074047 GLI2 0.413
ENSG00000181722 ZBTB20 0.412
ENSG00000149658 YTHDF1 0.412
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Table A.1 (continued)
ENSG00000100234 TIMP3 0.412
ENSG00000073614 KDM5A 0.411
ENSG00000165494 PCF11 0.411
ENSG00000139832 RAB20 0.411
ENSG00000157110 RBPMS 0.411
ENSG00000160271 RALGDS 0.411
ENSG00000196924 FLNA 0.411
ENSG00000108691 CCL2 0.408
ENSG00000185499 MUC1 0.408
ENSG00000117280 RAB29 0.408
ENSG00000129219 PLD2 0.408
ENSG00000167978 SRRM2 0.407
ENSG00000250722 SELENOP 0.407
ENSG00000089327 FXYD5 0.407
ENSG00000117523 PRRC2C 0.406
ENSG00000159403 C1R 0.405
ENSG00000173889 PHC3 0.404
ENSG00000117298 ECE1 0.404
ENSG00000100697 DICER1 0.403
ENSG00000076716 GPC4 0.403
ENSG00000138696 BMPR1B 0.403
ENSG00000133321 RARRES3 0.401
ENSG00000177469 PTRF 0.401
ENSG00000168938 PPIC 0.401
ENSG00000118762 PKD2 0.401
ENSG00000161011 SQSTM1 0.4
ENSG00000056998 GYG2 0.4
ENSG00000135473 PAN2 0.4
ENSG00000006747 SCIN 0.4
ENSG00000130147 SH3BP4 0.399
ENSG00000140836 ZFHX3 0.399
ENSG00000184481 FOXO4 0.399
ENSG00000160200 CBS 0.397
ENSG00000101109 STK4 0.397
ENSG00000075234 TTC38 0.396
ENSG00000154380 ENAH 0.396
ENSG00000136205 TNS3 0.396
ENSG00000083312 TNPO1 0.395
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Table A.1 (continued)
ENSG00000047644 WWC3 0.395
ENSG00000168899 VAMP5 0.393
ENSG00000078246 TULP3 0.393
ENSG00000188783 PRELP 0.393
ENSG00000145685 LHFPL2 0.393
ENSG00000129654 FOXJ1 0.392
ENSG00000132155 RAF1 0.392
ENSG00000126458 RRAS 0.392
ENSG00000110719 TCIRG1 0.391
ENSG00000106351 AGFG2 0.389
ENSG00000144579 CTDSP1 0.389
ENSG00000135686 KLHL36 0.389
ENSG00000084207 GSTP1 0.388
ENSG00000146425 DYNLT1 0.387
ENSG00000166801 FAM111A 0.387
ENSG00000168003 SLC3A2 0.387
ENSG00000183580 FBXL7 0.385
ENSG00000165792 METTL17 0.385
ENSG00000152049 KCNE4 0.384
ENSG00000109906 ZBTB16 0.382
ENSG00000132561 MATN2 0.382
ENSG00000135862 LAMC1 0.382
ENSG00000187554 TLR5 0.382
ENSG00000134851 TMEM165 0.382
ENSG00000197724 PHF2 0.382
ENSG00000164190 NIPBL 0.381
ENSG00000122862 SRGN 0.381
ENSG00000120693 SMAD9 0.38
ENSG00000152284 TCF7L1 0.38
ENSG00000197405 C5AR1 0.38
ENSG00000127241 MASP1 0.378
ENSG00000147421 HMBOX1 0.378
ENSG00000126070 AGO3 0.378
ENSG00000090382 LYZ 0.378
ENSG00000125952 MAX 0.378
ENSG00000124762 CDKN1A 0.377
ENSG00000114857 NKTR 0.376
ENSG00000120885 CLU 0.376
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Table A.1 (continued)
ENSG00000087086 FTL 0.376
ENSG00000137269 LRRC1 0.376
ENSG00000113721 PDGFRB 0.376
ENSG00000112561 TFEB 0.376
ENSG00000101017 CD40 0.375
ENSG00000018280 SLC11A1 0.374
ENSG00000133884 DPF2 0.374
ENSG00000173801 JUP 0.373
ENSG00000087206 UIMC1 0.373
ENSG00000100427 MLC1 0.373
ENSG00000078061 ARAF 0.371
ENSG00000111666 CHPT1 0.37
ENSG00000111450 STX2 0.369
ENSG00000101367 MAPRE1 0.369
ENSG00000065978 YBX1 0.369
ENSG00000063127 SLC6A16 0.368
ENSG00000134744 ZCCHC11 0.368
ENSG00000141519 CCDC40 0.368
ENSG00000171766 GATM 0.366
ENSG00000169249 ZRSR2 0.366
ENSG00000139842 CUL4A 0.365
ENSG00000060237 WNK1 0.365
ENSG00000167601 AXL 0.365
ENSG00000136938 ANP32B 0.364
ENSG00000106397 PLOD3 0.364
ENSG00000134815 DHX34 0.364
ENSG00000172936 MYD88 0.363
ENSG00000124145 SDC4 0.362
ENSG00000160712 IL6R 0.362
ENSG00000089472 HEPH 0.362
ENSG00000165959 CLMN 0.362
ENSG00000182185 RAD51B 0.362
ENSG00000172830 SSH3 0.361
ENSG00000097033 SH3GLB1 0.361
ENSG00000136997 MYC 0.36
ENSG00000128604 IRF5 0.36
ENSG00000142173 COL6A2 0.36
ENSG00000130821 SLC6A8 0.36
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Table A.1 (continued)
ENSG00000131748 STARD3 0.359
ENSG00000130055 GDPD2 0.359
ENSG00000011600 TYROBP 0.357
ENSG00000177051 FBXO46 0.357
ENSG00000186204 CYP4F12 0.357
ENSG00000013364 MVP 0.357
ENSG00000126803 HSPA2 0.357
ENSG00000151322 NPAS3 0.357
ENSG00000108773 KAT2A 0.356
ENSG00000070778 PTPN21 0.356
ENSG00000158186 MRAS 0.355
ENSG00000167491 GATAD2A 0.355
ENSG00000020633 RUNX3 0.352
ENSG00000166333 ILK 0.352
ENSG00000159140 SON 0.352
ENSG00000167994 RAB3IL1 0.352
ENSG00000113269 RNF130 0.35
ENSG00000138080 EMILIN1 0.35
ENSG00000154217 PITPNC1 0.348
ENSG00000155926 SLA 0.348
ENSG00000169403 PTAFR 0.347
ENSG00000084754 HADHA 0.347
ENSG00000100852 ARHGAP5 0.347
ENSG00000103202 NME4 0.346
ENSG00000100393 EP300 0.345
ENSG00000120896 SORBS3 0.345
ENSG00000128591 FLNC 0.345
ENSG00000128274 A4GALT 0.345
ENSG00000168476 REEP4 0.345
ENSG00000083857 FAT1 0.344
ENSG00000042493 CAPG 0.344
ENSG00000171700 RGS19 0.344
ENSG00000125347 IRF1 0.343
ENSG00000136732 GYPC 0.343
ENSG00000108846 ABCC3 0.342
ENSG00000120594 PLXDC2 0.341
ENSG00000077238 IL4R 0.341
ENSG00000066468 FGFR2 0.341
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Table A.1 (continued)
ENSG00000165025 SYK 0.34
ENSG00000184113 CLDN5 0.34
ENSG00000133488 SEC14L4 0.339
ENSG00000141458 NPC1 0.339
ENSG00000118557 PMFBP1 0.339
ENSG00000102265 TIMP1 0.339
ENSG00000144677 CTDSPL 0.338
ENSG00000076685 NT5C2 0.338
ENSG00000086288 NME8 0.338
ENSG00000100918 REC8 0.338
ENSG00000167995 BEST1 0.337
ENSG00000141510 TP53 0.337
ENSG00000165424 ZCCHC24 0.337
ENSG00000162231 NXF1 0.337
ENSG00000114904 NEK4 0.335
ENSG00000008294 SPAG9 0.335
ENSG00000132024 CC2D1A 0.334
ENSG00000105137 SYDE1 0.334
ENSG00000072121 ZFYVE26 0.334
ENSG00000154240 CEP112 0.333
ENSG00000184014 DENND5A 0.333
ENSG00000184557 SOCS3 0.333
ENSG00000100227 POLDIP3 0.333
ENSG00000133574 GIMAP4 0.332
ENSG00000106100 NOD1 0.331
ENSG00000114331 ACAP2 0.331
ENSG00000130669 PAK4 0.329
ENSG00000114796 KLHL24 0.329
ENSG00000107968 MAP3K8 0.329
ENSG00000148400 NOTCH1 0.328
ENSG00000012983 MAP4K5 0.327
ENSG00000198088 NUP62CL 0.327
ENSG00000151748 SAV1 0.326
ENSG00000180447 GAS1 0.324
ENSG00000136861 CDK5RAP2 0.324
ENSG00000102359 SRPX2 0.324
ENSG00000130164 LDLR 0.324
ENSG00000188269 OR7A5 0.323
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Table A.1 (continued)
ENSG00000134548 SPX 0.322
ENSG00000126246 IGFLR1 0.321
ENSG00000064393 HIPK2 0.319
ENSG00000180353 HCLS1 0.317
ENSG00000005339 CREBBP 0.317
ENSG00000166387 PPFIBP2 0.316
ENSG00000010292 NCAPD2 0.316
ENSG00000090554 FLT3LG 0.316
ENSG00000188404 SELL 0.315
ENSG00000107731 UNC5B 0.315
ENSG00000123066 MED13L 0.315
ENSG00000141934 PLPP2 0.314
ENSG00000127483 HP1BP3 0.314
ENSG00000112936 C7 0.312
ENSG00000114315 HES1 0.312
ENSG00000174799 CEP135 0.311
ENSG00000162407 PLPP3 0.311
ENSG00000172164 SNTB1 0.31
ENSG00000105698 USF2 0.309
ENSG00000132825 PPP1R3D 0.308
ENSG00000072778 ACADVL 0.308
ENSG00000141756 FKBP10 0.308
ENSG00000104894 CD37 0.308
ENSG00000113328 CCNG1 0.306
ENSG00000071626 DAZAP1 0.304
ENSG00000155465 SLC7A7 0.303
ENSG00000164776 PHKG1 0.303
ENSG00000115085 ZAP70 0.303
ENSG00000138376 BARD1 0.302
ENSG00000120733 KDM3B 0.301
ENSG00000166224 SGPL1 0.301
ENSG00000105372 RPS19 0.3
ENSG00000134222 PSRC1 0.3
ENSG00000131669 NINJ1 0.3
ENSG00000107902 LHPP 0.299
ENSG00000185043 CIB1 0.298
ENSG00000173805 HAP1 0.296
ENSG00000115648 MLPH 0.296
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Table A.1 (continued)
ENSG00000105229 PIAS4 0.296
ENSG00000164199 ADGRV1 0.295
ENSG00000110057 UNC93B1 0.295
ENSG00000173068 BNC2 0.293
ENSG00000118503 TNFAIP3 0.292
ENSG00000118523 CTGF 0.292
ENSG00000146859 TMEM140 0.292
ENSG00000128284 APOL3 0.288
ENSG00000136826 KLF4 0.288
ENSG00000175826 CTDNEP1 0.286
ENSG00000099998 GGT5 0.286
ENSG00000126016 AMOT 0.284
ENSG00000167766 ZNF83 0.284
ENSG00000146247 PHIP 0.284
ENSG00000012223 LTF 0.283
ENSG00000072694 FCGR2B 0.281
ENSG00000049540 ELN 0.28
ENSG00000101605 MYOM1 0.28
ENSG00000151726 ACSL1 0.278
ENSG00000172340 SUCLG2 0.276
ENSG00000131634 TMEM204 0.274
ENSG00000105366 SIGLEC8 0.274
ENSG00000143344 RGL1 0.273
ENSG00000114166 KAT2B 0.271
ENSG00000157637 SLC38A10 0.271
ENSG00000163694 RBM47 0.27
ENSG00000156150 ALX3 0.269
ENSG00000101336 HCK 0.268
ENSG00000150048 CLEC1A 0.267
ENSG00000121361 KCNJ8 0.267
ENSG00000138379 MSTN 0.267
ENSG00000125730 C3 0.265
ENSG00000171606 ZNF274 0.262
ENSG00000031823 RANBP3 0.261
ENSG00000021826 CPS1 0.257
ENSG00000120458 MSANTD2 0.256
ENSG00000040531 CTNS 0.256
ENSG00000177084 POLE 0.253
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Table A.1 (continued)
ENSG00000176485 PLA2G16 0.253
ENSG00000175591 P2RY2 0.248
ENSG00000154553 PDLIM3 0.248
ENSG00000091527 CDV3 0.247
ENSG00000081377 CDC14B 0.247
ENSG00000021355 SERPINB1 0.243
ENSG00000168685 IL7R 0.242
ENSG00000105383 CD33 0.242
ENSG00000068079 IFI35 0.237
ENSG00000111837 MAK 0.234
ENSG00000170891 CYTL1 0.233
ENSG00000016602 CLCA4 0.23
ENSG00000166888 STAT6 0.229
ENSG00000099139 PCSK5 0.228
ENSG00000108405 P2RX1 0.227
ENSG00000175793 SFN 0.222
ENSG00000171962 DRC3 0.217
ENSG00000135547 HEY2 0.217
ENSG00000033327 GAB2 0.214
ENSG00000082996 RNF13 0.209
ENSG00000197093 GAL3ST4 0.205
ENSG00000011422 PLAUR 0.204
ENSG00000139292 LGR5 0.204
ENSG00000198000 NOL8 0.198
ENSG00000147257 GPC3 0.197
ENSG00000145779 TNFAIP8 0.196
ENSG00000010671 BTK 0.195
ENSG00000100784 RPS6KA5 0.192
ENSG00000108848 LUC7L3 0.192
ENSG00000132702 HAPLN2 0.187
ENSG00000078674 PCM1 0.186
ENSG00000110079 MS4A4A 0.182
ENSG00000180644 PRF1 0.171
ENSG00000074356 NCBP3 0.17
ENSG00000070759 TESK2 0.167
ENSG00000135720 DYNC1LI2 0.163
ENSG00000137731 FXYD2 0.16
ENSG00000102580 DNAJC3 0.147

89



Table A.1 (continued)
ENSG00000106012 IQCE 0.088
ENSG00000142864 SERBP1 0.08
ENSG00000161202 DVL3 0.072
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APPENDIX B

LIST OF AD-RELATED GENES SHOWING
DOWNREGULATION TREND

Table B.1: List of genes showing significant dowregulation trend across datasets.
M-rho is the median rho value of a gene among datasets.

ENSG ID Gene Name M-rho
ENSG00000124785 NRN1 -0.663
ENSG00000175426 PCSK1 -0.656
ENSG00000144834 TAGLN3 -0.641
ENSG00000135119 RNFT2 -0.631
ENSG00000131100 ATP6V1E1 -0.63
ENSG00000111652 COPS7A -0.629
ENSG00000100983 GSS -0.623
ENSG00000110148 CCKBR -0.619
ENSG00000198932 GPRASP1 -0.617
ENSG00000032389 TSSC1 -0.613
ENSG00000165704 HPRT1 -0.602
ENSG00000149269 PAK1 -0.601
ENSG00000089123 TASP1 -0.6
ENSG00000117152 RGS4 -0.599
ENSG00000156395 SORCS3 -0.598
ENSG00000021645 NRXN3 -0.597
ENSG00000164600 NEUROD6 -0.597
ENSG00000089199 CHGB -0.594
ENSG00000053372 MRTO4 -0.591
ENSG00000086717 PPEF1 -0.591
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Table B.1 (continued)
ENSG00000232859 LYRM9 -0.589
ENSG00000163032 VSNL1 -0.589
ENSG00000068615 REEP1 -0.587
ENSG00000003147 ICA1 -0.587
ENSG00000132434 LANCL2 -0.582
ENSG00000159720 ATP6V0D1 -0.582
ENSG00000175352 NRIP3 -0.58
ENSG00000162975 KCNF1 -0.578
ENSG00000181991 MRPS11 -0.578
ENSG00000114279 FGF12 -0.577
ENSG00000136261 BZW2 -0.576
ENSG00000185518 SV2B -0.576
ENSG00000156298 TSPAN7 -0.575
ENSG00000187601 MAGEH1 -0.575
ENSG00000117069 ST6GALNAC5 -0.575
ENSG00000174938 SEZ6L2 -0.574
ENSG00000105171 POP4 -0.574
ENSG00000082458 DLG3 -0.572
ENSG00000162188 GNG3 -0.572
ENSG00000125166 GOT2 -0.57
ENSG00000133318 RTN3 -0.569
ENSG00000148481 FAM188A -0.569
ENSG00000171617 ENC1 -0.568
ENSG00000198836 OPA1 -0.567
ENSG00000079841 RIMS1 -0.565
ENSG00000136827 TOR1A -0.563
ENSG00000143198 MGST3 -0.561
ENSG00000103316 CRYM -0.561
ENSG00000111669 TPI1 -0.559
ENSG00000116141 MARK1 -0.558
ENSG00000119866 BCL11A -0.556
ENSG00000172348 RCAN2 -0.556
ENSG00000102312 PORCN -0.556
ENSG00000164885 CDK5 -0.556
ENSG00000091972 CD200 -0.555
ENSG00000213626 LBH -0.555
ENSG00000132305 IMMT -0.555
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Table B.1 (continued)
ENSG00000145708 CRHBP -0.553
ENSG00000133083 DCLK1 -0.552
ENSG00000100554 ATP6V1D -0.552
ENSG00000104435 STMN2 -0.552
ENSG00000078328 RBFOX1 -0.551
ENSG00000136928 GABBR2 -0.551
ENSG00000105409 ATP1A3 -0.55
ENSG00000103056 SMPD3 -0.55
ENSG00000173726 TOMM20 -0.55
ENSG00000137815 RTF1 -0.55
ENSG00000050748 MAPK9 -0.549
ENSG00000198954 KIF1BP -0.548
ENSG00000173465 SSSCA1 -0.546
ENSG00000179222 MAGED1 -0.546
ENSG00000086300 SNX10 -0.545
ENSG00000165916 PSMC3 -0.545
ENSG00000006116 CACNG3 -0.545
ENSG00000157895 C12orf43 -0.544
ENSG00000135750 KCNK1 -0.544
ENSG00000010256 UQCRC1 -0.544
ENSG00000157152 SYN2 -0.543
ENSG00000139180 NDUFA9 -0.543
ENSG00000022355 GABRA1 -0.542
ENSG00000169599 NFU1 -0.54
ENSG00000174446 SNAPC5 -0.538
ENSG00000123178 SPRYD7 -0.538
ENSG00000013016 EHD3 -0.537
ENSG00000136521 NDUFB5 -0.537
ENSG00000176697 BDNF -0.537
ENSG00000123297 TSFM -0.536
ENSG00000132932 ATP8A2 -0.536
ENSG00000163875 MEAF6 -0.536
ENSG00000104738 MCM4 -0.534
ENSG00000100216 TOMM22 -0.534
ENSG00000172115 CYCS -0.533
ENSG00000014824 SLC30A9 -0.533
ENSG00000079785 DDX1 -0.532
ENSG00000165152 TMEM246 -0.532
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Table B.1 (continued)
ENSG00000159199 ATP5G1 -0.532
ENSG00000187678 SPRY4 -0.531
ENSG00000147852 VLDLR -0.53
ENSG00000127445 PIN1 -0.53
ENSG00000170899 GSTA4 -0.529
ENSG00000213190 MLLT11 -0.528
ENSG00000099341 PSMD8 -0.528
ENSG00000129636 ITFG1 -0.528
ENSG00000113327 GABRG2 -0.527
ENSG00000130638 ATXN10 -0.526
ENSG00000091483 FH -0.525
ENSG00000153233 PTPRR -0.524
ENSG00000172575 RASGRP1 -0.524
ENSG00000126970 ZC4H2 -0.523
ENSG00000198794 SCAMP5 -0.523
ENSG00000133627 ACTR3B -0.523
ENSG00000040341 STAU2 -0.522
ENSG00000143499 SMYD2 -0.521
ENSG00000148798 INA -0.521
ENSG00000124659 TBCC -0.521
ENSG00000172336 POP7 -0.52
ENSG00000088812 ATRN -0.519
ENSG00000125354 SEPT6 -0.518
ENSG00000169139 UBE2V2 -0.518
ENSG00000112186 CAP2 -0.517
ENSG00000143158 MPC2 -0.517
ENSG00000171951 SCG2 -0.517
ENSG00000204856 FAM216A -0.516
ENSG00000113068 PFDN1 -0.515
ENSG00000120053 GOT1 -0.515
ENSG00000107518 ATRNL1 -0.515
ENSG00000161203 AP2M1 -0.515
ENSG00000174684 B4GAT1 -0.515
ENSG00000004779 NDUFAB1 -0.515
ENSG00000156253 RWDD2B -0.514
ENSG00000149809 TM7SF2 -0.514
ENSG00000118971 CCND2 -0.514
ENSG00000091640 SPAG7 -0.514
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Table B.1 (continued)
ENSG00000152495 CAMK4 -0.514
ENSG00000108384 RAD51C -0.514
ENSG00000102078 SLC25A14 -0.513
ENSG00000132639 SNAP25 -0.513
ENSG00000158560 DYNC1I1 -0.512
ENSG00000143106 PSMA5 -0.512
ENSG00000139637 C12orf10 -0.512
ENSG00000127252 HRASLS -0.511
ENSG00000128683 GAD1 -0.511
ENSG00000125962 ARMCX5 -0.511
ENSG00000104643 MTMR9 -0.511
ENSG00000168546 GFRA2 -0.51
ENSG00000082213 C5orf22 -0.51
ENSG00000153558 FBXL2 -0.509
ENSG00000180543 TSPYL5 -0.509
ENSG00000196876 SCN8A -0.508
ENSG00000105393 BABAM1 -0.508
ENSG00000102003 SYP -0.508
ENSG00000010818 HIVEP2 -0.506
ENSG00000118276 B4GALT6 -0.505
ENSG00000165629 ATP5C1 -0.504
ENSG00000154723 ATP5J -0.504
ENSG00000181929 PRKAG1 -0.504
ENSG00000131473 ACLY -0.503
ENSG00000175906 ARL4D -0.503
ENSG00000109158 GABRA4 -0.503
ENSG00000103723 AP3B2 -0.502
ENSG00000145730 PAM -0.501
ENSG00000168032 ENTPD3 -0.501
ENSG00000136750 GAD2 -0.5
ENSG00000061918 GUCY1B3 -0.5
ENSG00000101654 RNMT -0.5
ENSG00000188690 UROS -0.5
ENSG00000157064 NMNAT2 -0.499
ENSG00000171703 TCEA2 -0.499
ENSG00000166257 SCN3B -0.499
ENSG00000130540 SULT4A1 -0.498
ENSG00000138663 COPS4 -0.498
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Table B.1 (continued)
ENSG00000138757 G3BP2 -0.498
ENSG00000107105 ELAVL2 -0.497
ENSG00000006128 TAC1 -0.496
ENSG00000189159 HN1 -0.496
ENSG00000139405 RITA1 -0.495
ENSG00000085415 SEH1L -0.493
ENSG00000109738 GLRB -0.493
ENSG00000136950 ARPC5L -0.492
ENSG00000085377 PREP -0.492
ENSG00000159082 SYNJ1 -0.492
ENSG00000130558 OLFM1 -0.491
ENSG00000125863 MKKS -0.491
ENSG00000114405 C3orf14 -0.491
ENSG00000175182 FAM131A -0.491
ENSG00000145632 PLK2 -0.489
ENSG00000182220 ATP6AP2 -0.489
ENSG00000163399 ATP1A1 -0.489
ENSG00000114948 ADAM23 -0.489
ENSG00000103769 RAB11A -0.488
ENSG00000214517 PPME1 -0.488
ENSG00000089818 NECAP1 -0.488
ENSG00000013392 RWDD2A -0.487
ENSG00000147416 ATP6V1B2 -0.487
ENSG00000167515 TRAPPC2L -0.487
ENSG00000116106 EPHA4 -0.486
ENSG00000105223 PLD3 -0.486
ENSG00000112695 COX7A2 -0.486
ENSG00000066382 MPPED2 -0.486
ENSG00000156411 C14orf2 -0.486
ENSG00000127561 SYNGR3 -0.486
ENSG00000110429 FBXO3 -0.485
ENSG00000104112 SCG3 -0.484
ENSG00000175175 PPM1E -0.483
ENSG00000060982 BCAT1 -0.483
ENSG00000183520 UTP11 -0.483
ENSG00000112367 FIG4 -0.483
ENSG00000152556 PFKM -0.483
ENSG00000114021 NIT2 -0.483
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Table B.1 (continued)
ENSG00000136854 STXBP1 -0.483
ENSG00000065609 SNAP91 -0.482
ENSG00000134809 TIMM10 -0.482
ENSG00000105696 TMEM59L -0.482
ENSG00000104093 DMXL2 -0.482
ENSG00000101247 NDUFAF5 -0.481
ENSG00000171303 KCNK3 -0.48
ENSG00000144645 OSBPL10 -0.48
ENSG00000138207 RBP4 -0.479
ENSG00000198961 PJA2 -0.479
ENSG00000174437 ATP2A2 -0.479
ENSG00000152214 RIT2 -0.479
ENSG00000071553 ATP6AP1 -0.479
ENSG00000167863 ATP5H -0.478
ENSG00000075340 ADD2 -0.478
ENSG00000122873 CISD1 -0.478
ENSG00000131779 PEX11B -0.478
ENSG00000110931 CAMKK2 -0.477
ENSG00000162377 COA7 -0.477
ENSG00000137547 MRPL15 -0.476
ENSG00000101079 NDRG3 -0.476
ENSG00000134375 TIMM17A -0.475
ENSG00000152092 ASTN1 -0.475
ENSG00000128654 MTX2 -0.475
ENSG00000060709 RIMBP2 -0.475
ENSG00000151806 GUF1 -0.474
ENSG00000171208 NETO2 -0.474
ENSG00000040933 INPP4A -0.474
ENSG00000100276 RASL10A -0.474
ENSG00000168438 CDC40 -0.474
ENSG00000170445 HARS -0.474
ENSG00000171189 GRIK1 -0.473
ENSG00000077522 ACTN2 -0.473
ENSG00000182013 PNMAL1 -0.472
ENSG00000147669 POLR2K -0.471
ENSG00000179091 CYC1 -0.471
ENSG00000100897 DCAF11 -0.47
ENSG00000110427 KIAA1549L -0.47
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Table B.1 (continued)
ENSG00000169213 RAB3B -0.469
ENSG00000137996 RTCA -0.469
ENSG00000087095 NLK -0.469
ENSG00000060140 STYK1 -0.468
ENSG00000072832 CRMP1 -0.468
ENSG00000116459 ATP5F1 -0.468
ENSG00000073803 MAP3K13 -0.467
ENSG00000123415 SMUG1 -0.466
ENSG00000164258 NDUFS4 -0.466
ENSG00000133026 MYH10 -0.466
ENSG00000116918 TSNAX -0.466
ENSG00000176871 WSB2 -0.466
ENSG00000162735 PEX19 -0.465
ENSG00000144635 DYNC1LI1 -0.462
ENSG00000006625 GGCT -0.461
ENSG00000091157 WDR7 -0.461
ENSG00000107758 PPP3CB -0.461
ENSG00000055163 CYFIP2 -0.461
ENSG00000006468 ETV1 -0.46
ENSG00000173692 PSMD1 -0.459
ENSG00000166669 ATF7IP2 -0.459
ENSG00000150768 DLAT -0.459
ENSG00000075945 KIFAP3 -0.457
ENSG00000054356 PTPRN -0.457
ENSG00000138028 CGREF1 -0.457
ENSG00000220205 VAMP2 -0.456
ENSG00000102226 USP11 -0.455
ENSG00000104381 GDAP1 -0.455
ENSG00000095002 MSH2 -0.454
ENSG00000101638 ST8SIA5 -0.454
ENSG00000143786 CNIH3 -0.453
ENSG00000047249 ATP6V1H -0.453
ENSG00000120875 DUSP4 -0.452
ENSG00000115828 QPCT -0.452
ENSG00000140284 SLC27A2 -0.451
ENSG00000145725 PPIP5K2 -0.45
ENSG00000155959 VBP1 -0.45
ENSG00000175602 CCDC85B -0.45
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Table B.1 (continued)
ENSG00000096092 TMEM14A -0.45
ENSG00000137055 PLAA -0.448
ENSG00000101266 CSNK2A1 -0.448
ENSG00000140945 CDH13 -0.448
ENSG00000136718 IMP4 -0.448
ENSG00000047597 XK -0.447
ENSG00000172020 GAP43 -0.446
ENSG00000151690 MFSD6 -0.446
ENSG00000132423 COQ3 -0.446
ENSG00000170290 SLN -0.446
ENSG00000049759 NEDD4L -0.446
ENSG00000145242 EPHA5 -0.445
ENSG00000114573 ATP6V1A -0.445
ENSG00000184672 RALYL -0.445
ENSG00000153823 PID1 -0.445
ENSG00000127463 EMC1 -0.445
ENSG00000198689 SLC9A6 -0.444
ENSG00000067715 SYT1 -0.443
ENSG00000138311 ZNF365 -0.443
ENSG00000166902 MRPL16 -0.443
ENSG00000114023 FAM162A -0.443
ENSG00000168291 PDHB -0.442
ENSG00000108528 SLC25A11 -0.442
ENSG00000184076 UQCR10 -0.442
ENSG00000150787 PTS -0.442
ENSG00000128656 CHN1 -0.442
ENSG00000008277 ADAM22 -0.441
ENSG00000159259 CHAF1B -0.441
ENSG00000136463 TACO1 -0.44
ENSG00000154162 CDH12 -0.44
ENSG00000168538 TRAPPC11 -0.44
ENSG00000104888 SLC17A7 -0.439
ENSG00000162374 ELAVL4 -0.439
ENSG00000068366 ACSL4 -0.438
ENSG00000073670 ADAM11 -0.438
ENSG00000076554 TPD52 -0.437
ENSG00000181852 RNF41 -0.436
ENSG00000118402 ELOVL4 -0.434
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Table B.1 (continued)
ENSG00000182636 NDN -0.434
ENSG00000213619 NDUFS3 -0.434
ENSG00000157087 ATP2B2 -0.434
ENSG00000131507 NDFIP1 -0.434
ENSG00000186462 NAP1L2 -0.433
ENSG00000103034 NDRG4 -0.432
ENSG00000141367 CLTC -0.431
ENSG00000112290 WASF1 -0.431
ENSG00000017427 IGF1 -0.431
ENSG00000183715 OPCML -0.43
ENSG00000164129 NPY5R -0.43
ENSG00000145916 RMND5B -0.43
ENSG00000115840 SLC25A12 -0.429
ENSG00000126214 KLC1 -0.429
ENSG00000112146 FBXO9 -0.427
ENSG00000109670 FBXW7 -0.427
ENSG00000077348 EXOSC5 -0.426
ENSG00000091140 DLD -0.425
ENSG00000109832 DDX25 -0.425
ENSG00000165678 GHITM -0.425
ENSG00000145293 ENOPH1 -0.425
ENSG00000133135 RNF128 -0.424
ENSG00000138686 BBS7 -0.424
ENSG00000075089 ACTR6 -0.423
ENSG00000104723 TUSC3 -0.422
ENSG00000004897 CDC27 -0.422
ENSG00000186487 MYT1L -0.422
ENSG00000163577 EIF5A2 -0.42
ENSG00000157542 KCNJ6 -0.419
ENSG00000141030 COPS3 -0.419
ENSG00000102678 FGF9 -0.418
ENSG00000107242 PIP5K1B -0.418
ENSG00000163618 CADPS -0.417
ENSG00000163624 CDS1 -0.417
ENSG00000106341 PPP1R17 -0.416
ENSG00000136243 NUPL2 -0.416
ENSG00000198356 ASNA1 -0.416
ENSG00000112237 CCNC -0.414
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Table B.1 (continued)
ENSG00000180875 GREM2 -0.414
ENSG00000078369 GNB1 -0.414
ENSG00000121769 FABP3 -0.413
ENSG00000184408 KCND2 -0.413
ENSG00000128245 YWHAH -0.412
ENSG00000147571 CRH -0.412
ENSG00000183036 PCP4 -0.411
ENSG00000087470 DNM1L -0.411
ENSG00000196482 ESRRG -0.409
ENSG00000162989 KCNJ3 -0.409
ENSG00000175110 MRPS22 -0.409
ENSG00000108684 ASIC2 -0.408
ENSG00000169255 B3GALNT1 -0.408
ENSG00000101977 MCF2 -0.407
ENSG00000134440 NARS -0.407
ENSG00000196290 NIF3L1 -0.407
ENSG00000172209 GPR22 -0.405
ENSG00000013561 RNF14 -0.405
ENSG00000112992 NNT -0.403
ENSG00000114544 SLC41A3 -0.402
ENSG00000109919 MTCH2 -0.402
ENSG00000013503 POLR3B -0.401
ENSG00000138095 LRPPRC -0.399
ENSG00000164209 SLC25A46 -0.399
ENSG00000170456 DENND5B -0.398
ENSG00000155966 AFF2 -0.398
ENSG00000177971 IMP3 -0.398
ENSG00000100095 SEZ6L -0.398
ENSG00000065154 OAT -0.397
ENSG00000170522 ELOVL6 -0.397
ENSG00000023330 ALAS1 -0.395
ENSG00000112293 GPLD1 -0.395
ENSG00000085365 SCAMP1 -0.394
ENSG00000118432 CNR1 -0.394
ENSG00000139719 VPS33A -0.394
ENSG00000164815 ORC5 -0.394
ENSG00000179915 NRXN1 -0.393
ENSG00000139910 NOVA1 -0.392
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Table B.1 (continued)
ENSG00000110435 PDHX -0.392
ENSG00000117245 KIF17 -0.391
ENSG00000091844 RGS17 -0.39
ENSG00000119812 FAM98A -0.39
ENSG00000121897 LIAS -0.39
ENSG00000115233 PSMD14 -0.39
ENSG00000139874 SSTR1 -0.389
ENSG00000166197 NOLC1 -0.389
ENSG00000126950 TMEM35A -0.389
ENSG00000118939 UCHL3 -0.388
ENSG00000104442 ARMC1 -0.386
ENSG00000124140 SLC12A5 -0.386
ENSG00000156515 HK1 -0.384
ENSG00000121871 SLITRK3 -0.383
ENSG00000161204 ABCF3 -0.383
ENSG00000184867 ARMCX2 -0.383
ENSG00000125827 TMX4 -0.382
ENSG00000183665 TRMT12 -0.38
ENSG00000129625 REEP5 -0.38
ENSG00000170231 FABP6 -0.379
ENSG00000123352 SPATS2 -0.379
ENSG00000174405 LIG4 -0.379
ENSG00000162694 EXTL2 -0.377
ENSG00000136045 PWP1 -0.377
ENSG00000100823 APEX1 -0.376
ENSG00000124194 GDAP1L1 -0.376
ENSG00000145681 HAPLN1 -0.376
ENSG00000154277 UCHL1 -0.375
ENSG00000170791 CHCHD7 -0.371
ENSG00000196277 GRM7 -0.371
ENSG00000065665 SEC61A2 -0.37
ENSG00000151500 THYN1 -0.369
ENSG00000090263 MRPS33 -0.369
ENSG00000005249 PRKAR2B -0.369
ENSG00000168824 NSG1 -0.369
ENSG00000100271 TTLL1 -0.368
ENSG00000105568 PPP2R1A -0.367
ENSG00000174842 GLMN -0.366
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Table B.1 (continued)
ENSG00000152642 GPD1L -0.366
ENSG00000119723 COQ6 -0.366
ENSG00000134265 NAPG -0.366
ENSG00000006740 ARHGAP44 -0.366
ENSG00000114520 SNX4 -0.366
ENSG00000198554 WDHD1 -0.365
ENSG00000123091 RNF11 -0.365
ENSG00000108176 DNAJC12 -0.365
ENSG00000106976 DNM1 -0.364
ENSG00000180720 CHRM4 -0.364
ENSG00000147650 LRP12 -0.364
ENSG00000165495 PKNOX2 -0.364
ENSG00000164163 ABCE1 -0.364
ENSG00000186081 KRT5 -0.362
ENSG00000144136 SLC20A1 -0.362
ENSG00000204262 COL5A2 -0.36
ENSG00000157193 LRP8 -0.36
ENSG00000105778 AVL9 -0.357
ENSG00000109255 NMU -0.357
ENSG00000113161 HMGCR -0.353
ENSG00000153310 FAM49B -0.351
ENSG00000113360 DROSHA -0.35
ENSG00000151247 EIF4E -0.349
ENSG00000083750 RRAGB -0.349
ENSG00000188021 UBQLN2 -0.346
ENSG00000155511 GRIA1 -0.346
ENSG00000136738 STAM -0.346
ENSG00000178896 EXOSC4 -0.345
ENSG00000198825 INPP5F -0.345
ENSG00000106013 ANKRD7 -0.344
ENSG00000138069 RAB1A -0.344
ENSG00000168496 FEN1 -0.343
ENSG00000137274 BPHL -0.342
ENSG00000102144 PGK1 -0.342
ENSG00000166848 TERF2IP -0.341
ENSG00000113312 TTC1 -0.341
ENSG00000181789 COPG1 -0.34
ENSG00000090932 DLL3 -0.34
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Table B.1 (continued)
ENSG00000104231 ZFAND1 -0.339
ENSG00000133119 RFC3 -0.337
ENSG00000147642 SYBU -0.336
ENSG00000186310 NAP1L3 -0.335
ENSG00000143774 GUK1 -0.334
ENSG00000165672 PRDX3 -0.331
ENSG00000101132 PFDN4 -0.331
ENSG00000125629 INSIG2 -0.33
ENSG00000169760 NLGN1 -0.33
ENSG00000167862 MRPL58 -0.328
ENSG00000101856 PGRMC1 -0.327
ENSG00000100934 SEC23A -0.327
ENSG00000135250 SRPK2 -0.326
ENSG00000137252 HCRTR2 -0.326
ENSG00000090266 NDUFB2 -0.325
ENSG00000101746 NOL4 -0.325
ENSG00000101365 IDH3B -0.324
ENSG00000198369 SPRED2 -0.324
ENSG00000106537 TSPAN13 -0.323
ENSG00000067842 ATP2B3 -0.323
ENSG00000112697 TMEM30A -0.322
ENSG00000121964 GTDC1 -0.32
ENSG00000092108 SCFD1 -0.32
ENSG00000006210 CX3CL1 -0.319
ENSG00000108389 MTMR4 -0.315
ENSG00000156471 PTDSS1 -0.315
ENSG00000108924 HLF -0.314
ENSG00000139505 MTMR6 -0.314
ENSG00000097046 CDC7 -0.314
ENSG00000146476 ARMT1 -0.311
ENSG00000066777 ARFGEF1 -0.311
ENSG00000011083 SLC6A7 -0.309
ENSG00000162630 B3GALT2 -0.308
ENSG00000163947 ARHGEF3 -0.307
ENSG00000141404 GNAL -0.307
ENSG00000047621 C12orf4 -0.307
ENSG00000170633 RNF34 -0.306
ENSG00000113643 RARS -0.306
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Table B.1 (continued)
ENSG00000126243 LRFN3 -0.306
ENSG00000117155 SSX2IP -0.305
ENSG00000113100 CDH9 -0.304
ENSG00000104863 LIN7B -0.303
ENSG00000198046 ZNF667 -0.299
ENSG00000164068 RNF123 -0.297
ENSG00000100567 PSMA3 -0.296
ENSG00000050438 SLC4A8 -0.296
ENSG00000164100 NDST3 -0.296
ENSG00000243147 MRPL33 -0.294
ENSG00000115365 LANCL1 -0.294
ENSG00000106683 LIMK1 -0.294
ENSG00000198648 STK39 -0.29
ENSG00000144711 IQSEC1 -0.288
ENSG00000172331 BPGM -0.288
ENSG00000120437 ACAT2 -0.287
ENSG00000072041 SLC6A15 -0.286
ENSG00000100749 VRK1 -0.285
ENSG00000177733 HNRNPA0 -0.285
ENSG00000151835 SACS -0.284
ENSG00000134318 ROCK2 -0.284
ENSG00000067829 IDH3G -0.282
ENSG00000105364 MRPL4 -0.281
ENSG00000082482 KCNK2 -0.281
ENSG00000106355 LSM5 -0.28
ENSG00000180530 NRIP1 -0.278
ENSG00000182134 TDRKH -0.278
ENSG00000123983 ACSL3 -0.275
ENSG00000126247 CAPNS1 -0.275
ENSG00000141098 GFOD2 -0.275
ENSG00000163541 SUCLG1 -0.273
ENSG00000147124 ZNF41 -0.273
ENSG00000119705 SLIRP -0.272
ENSG00000198300 PEG3 -0.271
ENSG00000154040 CABYR -0.269
ENSG00000025772 TOMM34 -0.269
ENSG00000003137 CYP26B1 -0.264
ENSG00000149182 ARFGAP2 -0.261
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Table B.1 (continued)
ENSG00000204843 DCTN1 -0.261
ENSG00000168952 STXBP6 -0.26
ENSG00000198898 CAPZA2 -0.26
ENSG00000149575 SCN2B -0.249
ENSG00000139597 N4BP2L1 -0.246
ENSG00000160948 VPS28 -0.243
ENSG00000102109 PCSK1N -0.243
ENSG00000204764 RANBP17 -0.243
ENSG00000113851 CRBN -0.24
ENSG00000120820 GLT8D2 -0.239
ENSG00000164252 AGGF1 -0.237
ENSG00000152669 CCNO -0.23
ENSG00000075239 ACAT1 -0.222
ENSG00000172172 MRPL13 -0.22
ENSG00000136003 ISCU -0.22
ENSG00000149100 EIF3M -0.218
ENSG00000159363 ATP13A2 -0.211
ENSG00000167005 NUDT21 -0.211
ENSG00000100285 NEFH -0.21
ENSG00000029534 ANK1 -0.21
ENSG00000211460 TSN -0.208
ENSG00000161281 COX7A1 -0.197
ENSG00000198131 ZNF544 -0.196
ENSG00000127588 GNG13 -0.192
ENSG00000101843 PSMD10 -0.188
ENSG00000151876 FBXO4 -0.18
ENSG00000089050 RBBP9 -0.157
ENSG00000117419 ERI3 -0.127
ENSG00000087085 ACHE -0.12
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APPENDIX C

LIST OF GO BIOLOGICAL PROCESS CATEGORIES
ENRICHED IN UPREGULATED GENES

Table C.1: List of significant GO BP Categories having OR>1 for upregulated vs.
downregulated common genes across datasets. OR is the odds ratio calculated by
FET. p-adj is the BY adjusted p value.

GO ID GO Term OR p-adj
GO:0000122 negative regulation of transcription fro.. 4.71 0
GO:0001501 skeletal system development.. 3.74 0.003
GO:0001503 ossification.. 4.28 0.004
GO:0001525 angiogenesis.. 3.61 0.011
GO:0001568 blood vessel development.. 4.66 0
GO:0001655 urogenital system development.. 6.75 0
GO:0001656 metanephros development.. 12.98 0.044
GO:0001657 ureteric bud development.. 7.91 0.036
GO:0001701 in utero embryonic development.. 4.53 0.002
GO:0001763 morphogenesis of a branching structure.. 6.87 0.018
GO:0001775 cell activation.. 2.32 0.026
GO:0001816 cytokine production.. 4.04 0
GO:0001817 regulation of cytokine production.. 4.22 0
GO:0001819 positive regulation of cytokine producti.. 3.41 0.05
GO:0001822 kidney development.. 8.88 0
GO:0001823 mesonephros development.. 8.39 0.024
GO:0001890 placenta development.. 13.93 0.027
GO:0001892 embryonic placenta development.. Inf 0.026
GO:0001932 regulation of protein phosphorylation.. 1.88 0.026
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Table C.1 (continued)
GO:0001934 positive regulation of protein phosphory.. 2.14 0.018
GO:0001942 hair follicle development.. Inf 0.016
GO:0001944 vasculature development.. 4.21 0
GO:0002009 morphogenesis of an epithelium.. 3.51 0.004
GO:0002064 epithelial cell development.. 11.29 0.001
GO:0002221 pattern recognition receptor signaling p.. 9.35 0.01
GO:0002224 toll-like receptor signaling pathway.. 7.43 0.057
GO:0002237 response to molecule of bacterial origin.. 4.33 0.009
GO:0002250 adaptive immune response.. 4.69 0.027
GO:0002252 immune effector process.. 2.91 0.002
GO:0002253 activation of immune response.. 3 0.014
GO:0002376 immune system process.. 2.66 0
GO:0002520 immune system development.. 4.03 0
GO:0002521 leukocyte differentiation.. 2.75 0.088
GO:0002682 regulation of immune system process.. 3.07 0
GO:0002683 negative regulation of immune system pro.. 8.88 0
GO:0002684 positive regulation of immune system pro.. 3 0
GO:0002697 regulation of immune effector process.. 3.31 0.029
GO:0002764 immune response-regulating signaling pat.. 2.64 0.024
GO:0003002 regionalization.. 6.12 0.008
GO:0003006 developmental process involved in reprod.. 2.85 0.026
GO:0003007 heart morphogenesis.. 4.39 0.019
GO:0003158 endothelium development.. 15.84 0.011
GO:0006366 transcription from RNA polymerase II pro.. 3.01 0
GO:0051726 regulation of cell cycle.. 2.23 0.018
GO:0006952 defense response.. 2.2 0.001
GO:0006606 protein import into nucleus.. 4.39 0.019
GO:0007010 cytoskeleton organization.. 2.08 0.032
GO:0006915 apoptotic process.. 2.53 0
GO:0007155 cell adhesion.. 2.37 0.001
GO:0007165 signal transduction.. 1.49 0.041
GO:0035556 intracellular signal transduction.. 1.65 0.028
GO:0007178 transmembrane receptor protein serine/th.. 4.18 0.013
GO:0016570 histone modification.. 4.3 0.062
GO:0006325 chromatin organization.. 3.1 0.036
GO:0006351 transcription, DNA-templated.. 2.69 0
GO:0006355 regulation of transcription, DNA-templat.. 2.97 0
GO:0006357 regulation of transcription from RNA pol.. 4 0
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Table C.1 (continued)
GO:0006468 protein phosphorylation.. 1.79 0.024
GO:0006950 response to stress.. 1.88 0
GO:0006954 inflammatory response.. 2.68 0.013
GO:0006955 immune response.. 2.66 0
GO:0006959 humoral immune response.. 13.93 0.027
GO:0007049 cell cycle.. 1.86 0.02
GO:0040007 growth.. 2.14 0.011
GO:0007166 cell surface receptor signaling pathway.. 1.86 0.001
GO:0007229 integrin-mediated signaling pathway.. 15.84 0.011
GO:0007249 I-kappaB kinase/NF-kappaB signaling.. 4.04 0.018
GO:0007275 multicellular organismal development.. 1.74 0.001
GO:0009653 anatomical structure morphogenesis.. 1.7 0.011
GO:0009790 embryo development.. 2.91 0
GO:0007389 pattern specification process.. 4.33 0.009
GO:0009887 organ morphogenesis.. 4.36 0
GO:0009888 tissue development.. 3.02 0
GO:0007423 sensory organ development.. 2.59 0.056
GO:0007498 mesoderm development.. 12.98 0.044
GO:0007507 heart development.. 3.07 0.006
GO:0043066 negative regulation of apoptotic process.. 2.68 0.002
GO:0008219 cell death.. 2.58 0
GO:0012501 programmed cell death.. 2.51 0
GO:0008283 cell proliferation.. 2.97 0
GO:0008284 positive regulation of cell proliferatio.. 2.82 0.003
GO:0008285 negative regulation of cell proliferatio.. 2.61 0.005
GO:0008544 epidermis development.. 4.89 0.019
GO:0008630 intrinsic apoptotic signaling pathway in.. 13.93 0.027
GO:0009058 biosynthetic process.. 1.52 0.027
GO:0009059 macromolecule biosynthetic process.. 2.1 0
GO:0009605 response to external stimulus.. 1.6 0.064
GO:0009607 response to biotic stimulus.. 3.03 0.001
GO:0009611 response to wounding.. 2.23 0.006
GO:0051707 response to other organism.. 2.92 0.001
GO:0009617 response to bacterium.. 3.72 0.007
GO:0009792 embryo development ending in birth or eg.. 3.2 0.003
GO:0009889 regulation of biosynthetic process.. 2.48 0
GO:0009890 negative regulation of biosynthetic proc.. 2.96 0
GO:0009891 positive regulation of biosynthetic proc.. 3.18 0
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Table C.1 (continued)
GO:0009892 negative regulation of metabolic process.. 1.89 0.002
GO:0009893 positive regulation of metabolic process.. 2.35 0
GO:0009952 anterior/posterior pattern specification.. 9.83 0.006
GO:0009966 regulation of signal transduction.. 1.87 0.002
GO:0009967 positive regulation of signal transducti.. 2.5 0
GO:0010033 response to organic substance.. 1.57 0.044
GO:0010467 gene expression.. 1.87 0
GO:0010468 regulation of gene expression.. 2.73 0
GO:0010556 regulation of macromolecule biosynthetic.. 2.75 0
GO:0010557 positive regulation of macromolecule bio.. 3.49 0
GO:0010558 negative regulation of macromolecule bio.. 3.34 0
GO:0010562 positive regulation of phosphorus metabo.. 1.87 0.06
GO:0010604 positive regulation of macromolecule met.. 2.41 0
GO:0010605 negative regulation of macromolecule met.. 2.09 0
GO:0010628 positive regulation of gene expression.. 3.18 0
GO:0010629 negative regulation of gene expression.. 3.89 0
GO:0010647 positive regulation of cell communicatio.. 1.74 0.05
GO:0048646 anatomical structure formation involved .. 2.17 0.01
GO:0010941 regulation of cell death.. 2.54 0
GO:0010942 positive regulation of cell death.. 2.44 0.035
GO:0014031 mesenchymal cell development.. 12.98 0.044
GO:0016070 RNA metabolic process.. 2.03 0
GO:0045935 positive regulation of nucleobase-contai.. 3.24 0
GO:0016265 death.. 2.58 0
GO:0042981 regulation of apoptotic process.. 2.6 0
GO:0016477 cell migration.. 3.15 0
GO:0045893 positive regulation of transcription, DN.. 3.71 0
GO:0045892 negative regulation of transcription, DN.. 4.64 0
GO:0016568 chromatin modification.. 4.33 0.009
GO:0016569 covalent chromatin modification.. 4.3 0.062
GO:0017038 protein import.. 3.02 0.094
GO:0018108 peptidyl-tyrosine phosphorylation.. 3.41 0.05
GO:0018130 heterocycle biosynthetic process.. 2.17 0
GO:0018212 peptidyl-tyrosine modification.. 3.41 0.05
GO:0019219 regulation of nucleobase-containing comp.. 2.51 0
GO:0019222 regulation of metabolic process.. 2.04 0
GO:0019438 aromatic compound biosynthetic process.. 2.24 0
GO:0019827 stem cell population maintenance.. 5.63 0.019

110



Table C.1 (continued)
GO:0022404 molting cycle process.. Inf 0.016
GO:0022405 hair cycle process.. Inf 0.016
GO:0022414 reproductive process.. 2.42 0.005
GO:0022603 regulation of anatomical structure morph.. 2.16 0.04
GO:0022610 biological adhesion.. 2.43 0.001
GO:0070887 cellular response to chemical stimulus.. 1.62 0.029
GO:0023056 positive regulation of signaling.. 1.7 0.076
GO:0030097 hemopoiesis.. 3.58 0
GO:0030099 myeloid cell differentiation.. 3.48 0.079
GO:0030154 cell differentiation.. 1.84 0
GO:0030155 regulation of cell adhesion.. 3 0.021
GO:0030198 extracellular matrix organization.. 6.68 0
GO:0030278 regulation of ossification.. 6.54 0.018
GO:0030323 respiratory tube development.. 4.49 0.042
GO:0030324 lung development.. 4.11 0.095
GO:0030326 embryonic limb morphogenesis.. 7.43 0.057
GO:0030334 regulation of cell migration.. 3.08 0.015
GO:0030335 positive regulation of cell migration.. 3.28 0.072
GO:0030509 BMP signaling pathway.. 13.93 0.027
GO:0030855 epithelial cell differentiation.. 7.1 0
GO:0030856 regulation of epithelial cell differenti.. 16.8 0.007
GO:0031323 regulation of cellular metabolic process.. 2 0
GO:0031324 negative regulation of cellular metaboli.. 1.97 0.002
GO:0031325 positive regulation of cellular metaboli.. 2.49 0
GO:0031326 regulation of cellular biosynthetic proc.. 2.4 0
GO:0031327 negative regulation of cellular biosynth.. 2.99 0
GO:0031328 positive regulation of cellular biosynth.. 3.06 0
GO:0031401 positive regulation of protein modificat.. 1.98 0.026
GO:0031589 cell-substrate adhesion.. 6.08 0.001
GO:0032101 regulation of response to external stimu.. 2.13 0.056
GO:0032270 positive regulation of cellular protein .. 1.93 0.014
GO:0032496 response to lipopolysaccharide.. 4.18 0.013
GO:0032501 multicellular organismal process.. 1.67 0.002
GO:0032502 developmental process.. 1.8 0
GO:0032774 RNA biosynthetic process.. 2.61 0
GO:0032835 glomerulus development.. Inf 0.043
GO:0034329 cell junction assembly.. 4.23 0.027
GO:0034330 cell junction organization.. 4.39 0.019
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Table C.1 (continued)
GO:0034504 protein localization to nucleus.. 5.04 0.001
GO:0034645 cellular macromolecule biosynthetic proc.. 2.09 0
GO:0034654 nucleobase-containing compound biosynthe.. 2.29 0
GO:0035107 appendage morphogenesis.. 9.35 0.01
GO:0035108 limb morphogenesis.. 9.35 0.01
GO:0035113 embryonic appendage morphogenesis.. 7.43 0.057
GO:0035239 tube morphogenesis.. 3.41 0.021
GO:0035295 tube development.. 3.49 0
GO:0040011 locomotion.. 1.71 0.067
GO:0040012 regulation of locomotion.. 2.54 0.036
GO:0042060 wound healing.. 2.13 0.062
GO:0042127 regulation of cell proliferation.. 2.95 0
GO:0042303 molting cycle.. Inf 0.006
GO:0042325 regulation of phosphorylation.. 1.86 0.029
GO:0042327 positive regulation of phosphorylation.. 2.11 0.019
GO:0042476 odontogenesis.. Inf 0.026
GO:0042633 hair cycle.. Inf 0.006
GO:0042692 muscle cell differentiation.. 3.31 0.029
GO:0042733 embryonic digit morphogenesis.. Inf 0.026
GO:0043009 chordate embryonic development.. 3.35 0.001
GO:0043062 extracellular structure organization.. 6.68 0
GO:0043065 positive regulation of apoptotic process.. 2.54 0.036
GO:0043067 regulation of programmed cell death.. 2.63 0
GO:0043068 positive regulation of programmed cell d.. 2.6 0.027
GO:0043069 negative regulation of programmed cell d.. 2.72 0.001
GO:0043122 regulation of I-kappaB kinase/NF-kappaB .. 4.56 0.013
GO:0043123 positive regulation of I-kappaB kinase/N.. 5.63 0.019
GO:0043170 macromolecule metabolic process.. 1.55 0.016
GO:0043207 response to external biotic stimulus.. 2.92 0.001
GO:0043588 skin development.. 5.38 0.027
GO:0043900 regulation of multi-organism process.. 3.24 0.045
GO:0044093 positive regulation of molecular functio.. 1.76 0.049
GO:0044249 cellular biosynthetic process.. 1.56 0.016
GO:0044260 cellular macromolecule metabolic process.. 1.46 0.054
GO:0044271 cellular nitrogen compound biosynthetic .. 1.9 0
GO:0044702 single organism reproductive process.. 2.42 0.011
GO:0044707 single-multicellular organism process.. 1.69 0.001
GO:0044744 protein targeting to nucleus.. 4.39 0.019
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Table C.1 (continued)
GO:0044767 single-organism developmental process.. 1.77 0
GO:0045087 innate immune response.. 2.29 0.021
GO:0045165 cell fate commitment.. 6.22 0.027
GO:0045446 endothelial cell differentiation.. 12.98 0.044
GO:0045595 regulation of cell differentiation.. 2.59 0
GO:0045596 negative regulation of cell differentiat.. 3.52 0.001
GO:0045597 positive regulation of cell differentiat.. 2.3 0.009
GO:0045765 regulation of angiogenesis.. 6.54 0.018
GO:0045785 positive regulation of cell adhesion.. 4.23 0.027
GO:0045934 negative regulation of nucleobase-contai.. 3.07 0
GO:0045937 positive regulation of phosphate metabol.. 1.87 0.06
GO:0045944 positive regulation of transcription fro.. 4.7 0
GO:0048513 organ development.. 2.82 0
GO:0048514 blood vessel morphogenesis.. 3.86 0.001
GO:0048518 positive regulation of biological proces.. 2.1 0
GO:0048519 negative regulation of biological proces.. 1.95 0
GO:0048522 positive regulation of cellular process.. 1.97 0
GO:0048523 negative regulation of cellular process.. 1.94 0
GO:0048534 hematopoietic or lymphoid organ developm.. 3.64 0
GO:0048565 digestive tract development.. 6.87 0.018
GO:0048568 embryonic organ development.. 4.66 0.001
GO:0048583 regulation of response to stimulus.. 1.96 0
GO:0048584 positive regulation of response to stimu.. 2.48 0
GO:0048598 embryonic morphogenesis.. 2.7 0.018
GO:0048608 reproductive structure development.. 3.8 0.008
GO:0048705 skeletal system morphogenesis.. 6.95 0.091
GO:0048729 tissue morphogenesis.. 3.82 0
GO:0048731 system development.. 1.66 0.004
GO:0048732 gland development.. 5.22 0.002
GO:0048736 appendage development.. 6.87 0.018
GO:0048754 branching morphogenesis of an epithelial.. 6.22 0.027
GO:0048762 mesenchymal cell differentiation.. 12.98 0.044
GO:0048856 anatomical structure development.. 1.68 0.002
GO:0048863 stem cell differentiation.. 20.67 0.001
GO:0048864 stem cell development.. 12.98 0.044
GO:0048869 cellular developmental process.. 1.76 0.001
GO:0048870 cell motility.. 2.92 0
GO:0048872 homeostasis of number of cells.. 8.39 0.024
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Table C.1 (continued)
GO:0050673 epithelial cell proliferation.. 3.62 0.054
GO:0050776 regulation of immune response.. 3.14 0
GO:0050778 positive regulation of immune response.. 2.78 0.011
GO:0050789 regulation of biological process.. 1.71 0.003
GO:0050793 regulation of developmental process.. 2.64 0
GO:0050794 regulation of cellular process.. 1.62 0.009
GO:0050867 positive regulation of cell activation.. 4.11 0.095
GO:0050896 response to stimulus.. 1.56 0.015
GO:0050900 leukocyte migration.. 9.83 0.006
GO:0051090 regulation of sequence-specific DNA bind.. 3.69 0.012
GO:0051093 negative regulation of developmental pro.. 3.52 0
GO:0051094 positive regulation of developmental pro.. 2.25 0.003
GO:0051147 regulation of muscle cell differentiatio.. 9.83 0.006
GO:0051148 negative regulation of muscle cell diffe.. Inf 0.076
GO:0051169 nuclear transport.. 2.69 0.076
GO:0051170 nuclear import.. 4.39 0.019
GO:0051171 regulation of nitrogen compound metaboli.. 2.19 0
GO:0051172 negative regulation of nitrogen compound.. 2.79 0
GO:0051173 positive regulation of nitrogen compound.. 3.06 0
GO:0051216 cartilage development.. 5.9 0.042
GO:0051239 regulation of multicellular organismal p.. 2.03 0
GO:0051240 positive regulation of multicellular org.. 1.88 0.021
GO:0051241 negative regulation of multicellular org.. 2.49 0.002
GO:0051246 regulation of protein metabolic process.. 1.72 0.012
GO:0051247 positive regulation of protein metabolic.. 1.95 0.009
GO:0051252 regulation of RNA metabolic process.. 2.88 0
GO:0051253 negative regulation of RNA metabolic pro.. 4.08 0
GO:0051254 positive regulation of RNA metabolic pro.. 3.79 0
GO:0051272 positive regulation of cellular componen.. 3.53 0.035
GO:0051674 localization of cell.. 2.92 0
GO:0051704 multi-organism process.. 1.94 0.002
GO:0051716 cellular response to stimulus.. 1.48 0.045
GO:0070848 response to growth factor.. 2.15 0.02
GO:0055123 digestive system development.. 5.14 0.043
GO:0060173 limb development.. 6.87 0.018
GO:0060255 regulation of macromolecule metabolic pr.. 2.2 0
GO:0060429 epithelium development.. 3.59 0
GO:0060485 mesenchyme development.. 6.22 0.027
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Table C.1 (continued)
GO:0060541 respiratory system development.. 4.3 0.062
GO:0060548 negative regulation of cell death.. 2.6 0.002
GO:0060562 epithelial tube morphogenesis.. 3.11 0.042
GO:0060993 kidney morphogenesis.. 13.93 0.027
GO:0061005 cell differentiation involved in kidney .. Inf 0.076
GO:0061061 muscle structure development.. 2.35 0.076
GO:0061138 morphogenesis of a branching epithelium.. 6.87 0.018
GO:0061326 renal tubule development.. 6.95 0.091
GO:0061458 reproductive system development.. 3.8 0.008
GO:0065007 biological regulation.. 1.74 0.004
GO:0071216 cellular response to biotic stimulus.. 9.83 0.006
GO:0071219 cellular response to molecule of bacteri.. 8.87 0.016
GO:0071222 cellular response to lipopolysaccharide.. 8.87 0.016
GO:0071310 cellular response to organic substance.. 1.71 0.018
GO:0071363 cellular response to growth factor stimu.. 2.02 0.042
GO:0071559 response to transforming growth factor b.. 4.49 0.042
GO:0071772 response to BMP.. 13.93 0.027
GO:0071773 cellular response to BMP stimulus.. 13.93 0.027
GO:0071902 positive regulation of protein serine/th.. 3.65 0.025
GO:0072001 renal system development.. 7.91 0
GO:0072006 nephron development.. 9.83 0.006
GO:0072009 nephron epithelium development.. 8.39 0.024
GO:0072073 kidney epithelium development.. 5.38 0.027
GO:0072163 mesonephric epithelium development.. 7.91 0.036
GO:0072164 mesonephric tubule development.. 7.91 0.036
GO:0072358 cardiovascular system development.. 3.26 0
GO:0072359 circulatory system development.. 3.26 0
GO:0080090 regulation of primary metabolic process.. 2.05 0
GO:0080134 regulation of response to stress.. 2.22 0.001
GO:0090100 positive regulation of transmembrane rec.. 12.98 0.044
GO:0090304 nucleic acid metabolic process.. 1.91 0
GO:0097190 apoptotic signaling pathway.. 2.35 0.035
GO:0097659 nucleic acid-templated transcription.. 2.67 0
GO:0098542 defense response to other organism.. 3.09 0.024
GO:0098602 single organism cell adhesion.. 2.32 0.054
GO:0098727 maintenance of cell number.. 4.49 0.042
GO:0098773 skin epidermis development.. Inf 0.016
GO:1901342 regulation of vasculature development.. 6.87 0.018
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Table C.1 (continued)
GO:1901362 organic cyclic compound biosynthetic pro.. 2.15 0
GO:1901576 organic substance biosynthetic process.. 1.54 0.023
GO:1902106 negative regulation of leukocyte differe.. Inf 0.043
GO:1902531 regulation of intracellular signal trans.. 1.7 0.076
GO:1902533 positive regulation of intracellular sig.. 2.32 0.006
GO:1902593 single-organism nuclear import.. 4.39 0.019
GO:1902679 negative regulation of RNA biosynthetic .. 4.21 0
GO:1902680 positive regulation of RNA biosynthetic .. 3.6 0
GO:1903506 regulation of nucleic acid-templated tra.. 2.93 0
GO:1903507 negative regulation of nucleic acid-temp.. 4.15 0
GO:1903508 positive regulation of nucleic acid-temp.. 3.71 0
GO:1903706 regulation of hemopoiesis.. 4.89 0.006
GO:1903707 negative regulation of hemopoiesis.. Inf 0.002
GO:2000026 regulation of multicellular organismal d.. 2.23 0
GO:2000112 regulation of cellular macromolecule bio.. 2.76 0
GO:2000113 negative regulation of cellular macromol.. 3.76 0
GO:2000145 regulation of cell motility.. 2.74 0.02
GO:2000147 positive regulation of cell motility.. 3.28 0.072
GO:2000736 regulation of stem cell differentiation.. 13.93 0.027
GO:2001141 regulation of RNA biosynthetic process.. 2.93 0
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APPENDIX D

LIST OF GO BIOLOGICAL PROCESS CATEGORIES
ENRICHED IN DOWNREGULATED GENES

Table D.1: List of significant GO BP Categories having OR<1 for upregulated vs.
downregulated common genes across datasets. OR is the odds ratio calculated by
FET. p-adj is the BY adjusted p value.

GO:0019941 modification-dependent protein catabolic.. 0.31 0.033
GO:0042787 protein ubiquitination involved in ubiqu.. 0.13 0.058
GO:0001505 regulation of neurotransmitter levels.. 0.17 0.012
GO:0002790 peptide secretion.. 0.25 0.059
GO:0002791 regulation of peptide secretion.. 0.2 0.066
GO:0007267 cell-cell signaling.. 0.32 0
GO:0023061 signal release.. 0.24 0.001
GO:0006091 generation of precursor metabolites and .. 0.28 0.001
GO:0022904 respiratory electron transport chain.. 0.04 0.001
GO:0006119 oxidative phosphorylation.. 0.07 0.027
GO:0022900 electron transport chain.. 0.04 0.001
GO:0006163 purine nucleotide metabolic process.. 0.32 0.007
GO:0042278 purine nucleoside metabolic process.. 0.31 0.015
GO:0006414 translational elongation.. 0.08 0.079
GO:0051603 proteolysis involved in cellular protein.. 0.37 0.061
GO:0006511 ubiquitin-dependent protein catabolic pr.. 0.31 0.033
GO:0006732 coenzyme metabolic process.. 0.22 0.007
GO:0006733 oxidoreduction coenzyme metabolic proces.. 0.15 0.026
GO:0006753 nucleoside phosphate metabolic process.. 0.3 0.001
GO:0006810 transport.. 0.69 0.079
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Table D.1 (continued)
GO:0006811 ion transport.. 0.48 0.003
GO:0006812 cation transport.. 0.51 0.049
GO:0006818 hydrogen transport.. 0.08 0.002
GO:0006836 neurotransmitter transport.. 0.22 0.018
GO:0007005 mitochondrion organization.. 0.4 0.027
GO:0007215 glutamate receptor signaling pathway.. 0 0.009
GO:0007268 synaptic transmission.. 0.16 0
GO:0007269 neurotransmitter secretion.. 0.19 0.043
GO:0007270 neuron-neuron synaptic transmission.. 0.07 0
GO:0050877 neurological system process.. 0.36 0.001
GO:0007610 behavior.. 0.43 0.013
GO:0007611 learning or memory.. 0.21 0.005
GO:0007612 learning.. 0.16 0.041
GO:0009108 coenzyme biosynthetic process.. 0.12 0.035
GO:0009116 nucleoside metabolic process.. 0.31 0.015
GO:0009117 nucleotide metabolic process.. 0.31 0.002
GO:0009119 ribonucleoside metabolic process.. 0.31 0.015
GO:0009123 nucleoside monophosphate metabolic proce.. 0.22 0.004
GO:0009126 purine nucleoside monophosphate metaboli.. 0.22 0.004
GO:0009141 nucleoside triphosphate metabolic proces.. 0.25 0.01
GO:0009144 purine nucleoside triphosphate metabolic.. 0.27 0.02
GO:0009150 purine ribonucleotide metabolic process.. 0.32 0.007
GO:0009161 ribonucleoside monophosphate metabolic p.. 0.22 0.004
GO:0009167 purine ribonucleoside monophosphate meta.. 0.22 0.004
GO:0009199 ribonucleoside triphosphate metabolic pr.. 0.27 0.02
GO:0009205 purine ribonucleoside triphosphate metab.. 0.27 0.02
GO:0009259 ribonucleotide metabolic process.. 0.32 0.007
GO:0009914 hormone transport.. 0.28 0.047
GO:0010498 proteasomal protein catabolic process.. 0.33 0.079
GO:0015672 monovalent inorganic cation transport.. 0.33 0.002
GO:0015980 energy derivation by oxidation of organi.. 0.3 0.006
GO:0015992 proton transport.. 0.08 0.002
GO:0016358 dendrite development.. 0.2 0.066
GO:0019637 organophosphate metabolic process.. 0.53 0.072
GO:0019693 ribose phosphate metabolic process.. 0.32 0.007
GO:0030072 peptide hormone secretion.. 0.21 0.027
GO:0032543 mitochondrial translation.. 0 0.009
GO:0034220 ion transmembrane transport.. 0.38 0.001
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Table D.1 (continued)
GO:0035249 synaptic transmission, glutamatergic.. 0.08 0.079
GO:0042391 regulation of membrane potential.. 0.12 0
GO:0042773 ATP synthesis coupled electron transport.. 0.08 0.079
GO:0042775 mitochondrial ATP synthesis coupled elec.. 0.08 0.079
GO:0043161 proteasome-mediated ubiquitin-dependent .. 0.32 0.091
GO:0043632 modification-dependent macromolecule cat.. 0.31 0.033
GO:0043648 dicarboxylic acid metabolic process.. 0 0.009
GO:0044281 small molecule metabolic process.. 0.59 0.023
GO:0044708 single-organism behavior.. 0.25 0
GO:0044765 single-organism transport.. 0.64 0.025
GO:0045333 cellular respiration.. 0.06 0
GO:0046034 ATP metabolic process.. 0.21 0.005
GO:0046128 purine ribonucleoside metabolic process.. 0.31 0.015
GO:0046879 hormone secretion.. 0.29 0.07
GO:0046883 regulation of hormone secretion.. 0.17 0.012
GO:0048167 regulation of synaptic plasticity.. 0.05 0.002
GO:0050803 regulation of synapse structure or activ.. 0.11 0.002
GO:0050804 modulation of synaptic transmission.. 0.11 0
GO:0050806 positive regulation of synaptic transmis.. 0.12 0.035
GO:0050890 cognition.. 0.23 0.007
GO:0051186 cofactor metabolic process.. 0.2 0.003
GO:0051188 cofactor biosynthetic process.. 0.1 0.014
GO:0051648 vesicle localization.. 0.29 0.07
GO:0051932 synaptic transmission, GABAergic.. 0.08 0.079
GO:0055085 transmembrane transport.. 0.46 0.003
GO:0055086 nucleobase-containing small molecule met.. 0.35 0.004
GO:0070125 mitochondrial translational elongation.. 0 0.027
GO:0072521 purine-containing compound metabolic pro.. 0.38 0.031
GO:0090087 regulation of peptide transport.. 0.27 0.091
GO:0090276 regulation of peptide hormone secretion.. 0.2 0.066
GO:0098655 cation transmembrane transport.. 0.28 0
GO:0098660 inorganic ion transmembrane transport.. 0.29 0
GO:0098662 inorganic cation transmembrane transport.. 0.27 0
GO:1901564 organonitrogen compound metabolic proces.. 0.54 0.01
GO:1901657 glycosyl compound metabolic process.. 0.31 0.015
GO:1902578 single-organism localization.. 0.67 0.054
GO:1902600 hydrogen ion transmembrane transport.. 0.09 0.005
GO:1903052 positive regulation of proteolysis invol.. 0.13 0.058
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