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ABSTRACT

EFFICIENT ALGORITHMS FOR THE FRAME PACKING AND SLOT
ALLOCATION OF FLEXRAY V3.0

Çakmak, Cumhur

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ece Güran Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Schmidt

February 2017, 61 pages

Contemporary vehicles employ a large number of Electronic Control Units (ECUs),
sensors and actuators that exchange signals over an in-vehicle network (IVN). These
signals are packed in frames which are transmitted according to a precomputed sched-
ule to satisfy the stringent real time requirements of the vehicle operation. Both the
signal packing and scheduling algorithms affect the utilization and timing properties
of the IVN and hence the entire vehicle electronic system. Despite the offline com-
putation, the run-time of these algorithms might become prohibitively long as the
number of signals increases.

This thesis proposes signal packing and scheduling algorithms for the Static Seg-
ment of the FlexRay IVN standard which is dedicated to the transmission of periodic
signals. The proposed algorithms achieve high bandwidth utilization, fulfill the tim-
ing requirements and run in feasible times. To this end, the first contribution of the
thesis is an Integer Linear Program (ILP) formulation to pack signals into FlexRay
frames based on their period properties. The second contribution is a post-processing
algorithm to improve the bandwidth utilization. The third contribution is adapting
an existing scheduling algorithm to the new version FlexRay v3.0 to achieve feasi-
ble schedules under the developed packing methods. The proposed algorithms are
applied to signal sets with different properties to demonstrate their advantages com-
pared to previous work in the literature.
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Keywords: In-Vehicle Networks, FlexRay, Static Segment, Frame Packing, Integer
Linear Programming, Slot Allocation, Scheduling Algorithm
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ÖZ

FLEXRAY V3.0 İÇİN VERİMLİ ÇERÇEVE OLUŞTURMA VE DİLİM
ATAMA ALGORİTMALARI

Çakmak, Cumhur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ece Güran Schmidt

Ortak Tez Yöneticisi : Doç. Dr. Klaus Schmidt

Şubat 2017 , 61 sayfa

Günümüz araçlarında bulunan çok sayıda Elektronik Kontrol Ünitesi(EKÜ), algıla-
yıcı ve eyleyici, Araç-İçi Ağ üzerinden aralarında sinyal alışverişi yapmaktadırlar.
Araç işleyişi için gerekli olan katı gerçek-zaman gereksinimlerini sağlamak amacıyla
önceden hesaplanan çizelgeye göre gönderilen bu sinyaller, çerçeveler içine paket-
lenmiştir. Hem sinyal paketleme hem de çizelgeleme algoritmaları, Araç-İçi Ağların
kullanım ve zamanlama özelliklerini ve dolayısıyla bütün araç elektronik sistemini
etkilemektedir. Çevrimdışı hesaplamalar yapılmasına rağmen, sinyal sayısı arttıkça
bu algoritmaların işlem süresi kabul edilemez derecede uzun olabilmektedir.

Bu tez çalışmasında, periyodik sinyallerin gönderimine ayrılmış olan FlexRay Araç-
İçi Ağ Statik Dilimi için sinyal paketleme ve çizelgeleme algoritmaları sunulmaktadır.
Sunulan algoritmalar bant genişliğini verimli kullanıp, zamanlama gereksinimlerini
karşılarken aynı zamanda makul sürelerde çalışmaktadırlar. Bu tezin yaptığı öncelikli
katkı, sinyalleri periyod özelliklerine göre FlexRay çerçeveleri içine paketleyecek bir
Doğrusal Tamsayı Programlama (DTP) formülasyonu geliştirilmesidir. İkincil olarak,
bant genişliği verimini artırmak için ardıl işlem uygulayanan bir algoritma geliştiril-
miştir. Son olarak da geliştirilmiş olan paketleme yöntemleri için uygulanabilir mesaj
çizelgesi amacıyla, halihazırda var olan bir çizelgeleme algoritması yeni FlexRay 3.0
versiyonuna uyarlanmıştır. Sunulan algoritmalar, literatürde daha önceden yapılmış
olan çalışmalara göre avantajlarını göstermek amacıyla, çeşitli özelliklere sahip sin-
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yal kümeleri üzerinde uygulanmıştır.

Anahtar Kelimeler: Araç-İçi Ağlar, FlexRay, Statik Dilim, Çerçeve Oluşturma, Doğ-
rusal Tam Sayı Programlama, Bölüt Atama, Çizelgeleme Algoritması
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CHAPTER 1

INTRODUCTION

The development of electronics in the automotive industry tries to respond to the

increasing customer demands. In-vehicle network (IVN) designs are always being

improved to keep up with safety and comfort requirements. In addition, innovative

technologies in automotive electronics replace the mechanic and hydraulic systems

by X-by-wire systems. Automobile manufacturers also keep introducing new systems

such as active safety, traction control, lane-departure warning, etc [1]. Such systems

are implemented on a distributed architecture with more than 70 electronic control

units (ECUs) exchanging more than 2500 signals [2] in real-time. Transmission tim-

ings for these systems can be very critical.

Automobile manufacturers such as BMW, Audi, DaimlerChrysler and Bosch have

developed the FlexRay protocol between the years 2000 and 2010 for this purpose.

This development was made based on the observation that the CAN (Controller Area

Network) bus protocol, which is currently predominant in IVNs. In particular, CAN

cannot respond to the strict timing requirements since it is an event-triggered protocol

with relatively low data rates (below 1 Mbps) [3]. FlexRay, on the other hand, sepa-

rately reserves bandwidth dedicated to the transmission of time-triggered signals and

event-triggered signals.

FlexRay is a high-speed (up to 10 Mbps) in-vehicle network protocol. It operates in

fixed duration of communication cycles which are repeatedly executed. Each FlexRay

cycle consists of 2 segments to transmit different types of signals: One is the static

segment (SS) which is used to transmit time-triggered (periodic) signals and the other

is the dynamic segment (DS) which is used to transmit event-triggered (sporadic)

1



signals.

In this study, we focus on the scheduling of the static segment of FlexRay. The SS

is composed of a fixed number of static slots, in which the signals are transmitted

on a time division multiple access (TDMA) basis. The transmission timings for the

FlexRay signals are defined by a schedule specifying which signals are to be transmit-

ted in each slot of each FlexRay cycle. This information is computed off-line before

the network operation starts and recorded in local scheduling tables of each ECU.

Each ECU transmits its signals according to this schedule, with its own synchronized

clock. Once the schedule is set, there is neither a global control for transmission, nor

a probabilistic procedure to start transmitting. That is, the main design problem for

FlexRay is the computation of this schedule for a given IVN with its set of ECUs and

set of signals for each ECU together with their scheduling requirements: First, signals

have to meet their deadlines, i.e., each signal has to be transmitted within a certain

period of time. Secondly, there can be no overlapping of signals in the schedule.

Finally, all the signals in the system has to be scheduled.

When determining a FlexRay schedule, it is desired to utilize the network bandwidth

efficiently due to the following reasons. First, it has to be considered that the num-

ber of signals to be transmitted on FlexRay is very high. Second, it is desirable to

accommodate possible extensions on the same network such as new ECUs or signals

for new automotive applications. If a certain signal set can be scheduled occupying

a small part of the SS, there will be more room to add new signals to the schedule in

the future. In principle, the computation of SS schedules is done offline such that it

does not need to meet real-time requirements. Nevertheless, considering potentially

large signal sets, any practical FlexRay scheduling algorithm must be scalable to large

signal sets in order to avoid large waiting times in the design phase [4].

FlexRay is evolving over years and the most recent version of the standard proposes

significant changes in the protocol which are expected to affect the schedule perfor-

mance. With the introduction of FlexRay v3.0 in 2010 [5], the scheduling of periodic

signals can be implemented more efficiently.

Taking into account the stated requirements, this thesis studies the scheduling prob-

lem of the FlexRay SS using the newest version FlexRay v3.0. In analogy to the
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existing literature [4, 6, 7, 8], we assume that the set of signal periods, deadline re-

quirements and signal sizes are fixed such that the application level requirements are

separated from the schedule computation. We decompose the FlexRay scheduling

problem into two modular stages. First, signals are packed into message frames and

then the frames are assigned to static slots. We use both integer linear programming

(ILP) and hybrid (ILP + Heuristic) methods to minimize the used bandwidth and

maximize the bandwidth utilization. For the frame packing stage, we developed 2

new algorithms and implemented the existing approaches in [6] and [4] for compari-

son. For the slot allocation stage, we adapt the message scheduling ILP formulation

in [6] to the slot allocation problem for the new FlexRay v3.0 protocol. We also

implemented the formulation in [4] for comparison. Our main contributions to this

problem are:

• Design of an Integer Linear Program (ILP) formulation [9] to pack signals into

fixed frames based on the ideas in [6]. The condition on the periods of the sig-

nals to be packed in a frame is modified in order to achieve a higher bandwidth

utilization. In this newly developed FMP (Fixed Packing of Multiple Periods)

algorithm, we allow packing signals whose periods are multiples of each other,

and solve the formulation accordingly.

• Design of a heuristic post processing algorithm to improve the result of an

FMP solution. The overall approach is denoted as FMP+ (Fixed Packing of

Multiple Periods + Post Processing). FMP+ improves the bandwidth utilization

compared to FMP by filling unoccupied space of frames in FMP. This approach

promises to find solutions with higher bandwidth utilization, in smaller run-

times, than the VP (Variable Packing) algorithm in [4].

• Adaptation of the message scheduling algorithm in [6] to the problem of frame-

to-slot assignment. As a result, it is possible to benefit from the changes in

FlexRay v3.0. The modified ILP formulation finds a minimum bandwidth so-

lution in constant time and is hence considerably faster than the approach in

[4].

There has been many studies to respond the demands of SS scheduling problem.

Most of them focus on the minimization of the used static segment. ILP formulations

3



are usually preferred to find the optimal solution under certain assumptions, whereas

heuristic algorithms are preferred to decrease run-time.

The studies in [6], [4], [7] and [8] focus on the minimization of the used bandwidth

in the SS, by scheduling signals independently of the application layer requirements.

Table 1.1 shows the methods of minimization, used version of FlexRay protocol and

the addressed problem in these studies. [6] and [7] pack signals into fixed frames,

i.e., without multiplexing of signals in the same time portion of frame. Both works

optimize over the frame size, whereas the frame size is kept as a predefined constant

in [4] and [8].

Table 1.1: Comparison of approaches similar to the study presented in thesis
Heuristic / ILP FlexRay Frame Packing/Slot Allocation

[6] ILP v 2.1 Both
[4] Both v 3.0 Both
[7] Both v 2.1 Frame Packing
[8] Heuristic v 2.1 Both

[10] develops a heuristic algorithm to perform SS scheduling with minimum jitter.

[11] also defines a similar problem, where the only consideration is to perform sched-

ule synthesis so that all the signals meet their deadlines. They transform the frame

packing problem into bin packing as an intermediate step and assign packed bins to

slots. They implement their method both with heuristic algorithms and ILP formula-

tions. In [12], although the freshness constraint is taken into account, the tasks in the

application level are asynchronous with FlexRay cycles. In other words, the transmis-

sion of signals are independent of task execution orders, destination nodes etc. The

packing of signals into frames, however, is not implemented in this work. Thus, one

signal is sent in each frame, which significantly decreases the bandwidth utilization.

The authors of [6] quantify jitter, which is the delay variance of the transmission of

signals in [13]. Their work aims at minimizing jitter and used SS bandwidth at the

same time.

The works in [14], [15], [16] and [17] on the other hand, approach the problem at sys-

tem level. They consider end-to-end deadlines for signals, synchronization of signal

generations to the FlexRay communication cycle and the task precedence constraints

between task executions and signal transmissions. [17] presents an early work, in
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which a genetic algorithm is employed. The authors of [14] and [15] implement

both task and signal scheduling, using ILP formulations. [16] on the other hand,

uses heuristic methods to decrease the run-time. It is also one of the few studies that

make use of the features introduced by FlexRay v3.0. However, they implement their

algorithm with a very limited test case, which is not sufficient to demonstrate the

efficiency for real-life examples.

There are other works, which have the same goal of efficient use of bandwidth, but

approach the problem from different perspectives. Unlike the majority of the studies

on SS scheduling problem, [18] and [19] remove the constraint on signal periods to

be integer multiples of the FlexRay communication cycle duration, using response

time analysis. [20] points out the industry demands of having SS scheduling to be

flexible to changes, updates and extensions in the future. They make the definition

of extensibility, create an uncertainty model and develop their algorithms based on

these. The study in [21] presents a conceptual hardware design of a switched FlexRay

network with active star topology. The function of the switch is similar to Ethernet

switches. It can forward multiple signals that have different source and different

destination nodes. A special scheduling is applied where signals can be scheduled at

overlapping cycle of slots with the use of switches.

The outline of the thesis is as follows. In Chapter 2 the FlexRay protocol, the general

formulation of the SS scheduling problem and the performance metrics are intro-

duced. The main updates in the new version v3.0 are demonstrated and the idea of

the two stage scheduling approach is described. Existing approaches and possible

implementations for both stages are explained in Chapter 3. Chapter 4 presents the

developed ILP formulations for each stage and the heuristic post processing algo-

rithm for frame packing stage. In Chapter 5 , the test results for the implemented

algorithms of both stages are presented. The results are compared with the ones in

[4] to demonstrate the obtained improvements. Chapter 6 draws conclusions on the

overall performance of the implemented algorithms. In addition, the obtained results

are discussed and possible future work is presented.
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CHAPTER 2

PRELIMINARIES AND FORMAL PROBLEM DEFINITION

2.1 FlexRay Protocol

FlexRay is a communication bus protocol in which the time is decomposed into fixed

size communication cycles. Each cycle is divided into 4 segments, namely Static

Segment (SS), Dynamic Segment (DS), Symbol Window (SW) and Network Idle

Time (NIT). SS and DS are used to transmit signals from the ECUs of the distributed

system, whereas SW and NIT are used for internal protocol related communication

to exchange control information. The periodic signals are transmitted in SS of each

cycle, whereas the sporadic ones are transmitted in DS. SS is the focus of this study,

so no further details will be given on DS.

The SS in each FlexRay cycle is divided into a certain number of equal size static slots

(STS). The operation is on TDMA basis, which means that a single frame (group

of signals from a certain ECU) is transmitted in a single slot of a single FlexRay

cycle and another can be transmitted in the same slot of a different FlexRay cycle,

depending on the frame period. Each frame is assigned to a static slot named with a

frame identifier (FID), and repeated once every rf cycles, where rf is the repetition

period of a frame. rf is imposed by the periods of signals to be transmitted in that

frame. The signals in the system have to be scheduled for transmission, i.e. a certain

time duration has to be explicitly reserved for each signal. Since the signals are

periodic, the scheduling has to be done within a scheduling window, set by a a number

k.

Fig. 2.1 illustrates the FlexRay operation. As the example suggests, frame B is to be
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Figure 2.1: FlexRay Operation

transmitted in Slot 1 of Cycle 1. Assume that frame B has a repetition period rf = 4.

Then Slot 1 of Cycles 5, 9, 13, 17... also have to be allocated for frame B. All k

cycles are programmed in this manner, i.e. the frames in each slot in each cycle is

determined in the design process. Then this schedule of k cycles is repeated one after

the other, in continuous time. This k cycle schedule, is kept in all local ECUs. They

transmit their signals according to this schedule, without any other network control.

2.2 Differences Between v2.1 and v3.0

The recently introduced version of FlexRay is v3.0 [5]. The changes introduced in this

version allows a more flexible scheduling of signals into slots. In this work, we point

out to two major differences from previous version v2.1, which are (1) multiplexing

of slots among multiple ECUs and (2) possibility of having a different cycle number

other than 64.

(1) In the previous versions of FlexRay, each node (ECU) is assigned a number of

unique frame identifiers (FIDs) corresponding to slots in the static segment, so that

in each FlexRay cycle, only the signals from that specific node can be transmitted

in that frame. In other words, each slot is owned by only one node. With such an

exclusive allocation of static slots to nodes, the bandwidth would not be used very

efficiently since it is not allowed to fill the empty cycles of one slot with messages of

other nodes. The FlexRay bus does not transmit anything during that period, resulting

to a waste of bandwidth. In v3.0, this limitation is removed. With the new version,

8



any two message frame can be assigned to the same slot, regardless of their ECUs.

This allows a more efficient use of the FlexRay bus. Fig. 2.2 illustrates the difference

explained above.
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Figure 2.2: In FlexRay 2.1, message frames ofECU1 {f1, f2, f3}andECU2 {f4} had

to be in separate slots, causing empty spaces in each slot. In the new version, all the

message frames can be scheduled in the same slot.

(2) In FlexRay version 2.1, the entire static segment schedule repeats every 64 cycles

where the repetition periods rns of the signals are restricted to {1, 2, 4, 8, 16, 32, 64}.

Signals having a different repetition would have to be scheduled as a signal with a rate

from this given set. This restriction introduces more jitter to the signal transmission

times and/or more bandwidth demand than actually required. In FlexRay v3.0 on the

other hand, the static segment can be scheduled for any scheduling period k between

1 and 64 and the repetition periods rns of the signals can be selected from the larger

set of {1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 50, 64}. This gives more flexibility to the

designer to choose a different scheduling period depending on the signal set. For a

set of signals having 1,2 and 40 as repetition periods as in SAE benchmark [22] set

for instance, Choosing cycle number as 40 for this case could possibly give a more

efficient and jitter-free result than a cycle number of 64.

The parameters of the FlexRay protocol such as maximum bandwidth C = 10 Mbit/s,

bit time gdBit = 0.1 µs, minimum and maximum values of macrotick duration TMT=

(1 µs, 6 µs) remain unchanged in this new version.

2.3 General Requirements of Static Segment Scheduling Problem

In the problem of static segment scheduling, we are given a set of nodes N with a

set Sn of periodic signals for each sending node n. Each signal sns has a period pns , a

9



number of bits bns and a deadline dns in which it must be transmitted. We assume the

macrotick duration TMT , bit time gdBit and bandwidth C parameters of the FlexRay

bus are given. The requirement is to find a k-cycle scheduling of this signal set for

a given FlexRay bus which would fit into the static segment (2) and which would

satisfy the deadline requirements of all signals (1).

Other requirements such as the order of task executions or destination nodes of sig-

nals are out of our scope in static segment scheduling. It is assumed a successful

transmission if all the signals meet their deadlines.

We set FlexRay cycle TC as a constant parameter. It is chosen as the greatest common

divisor of all signal periods. Upon this choice, all signal periods can be represented

as an integer multiple of TC i.e. the repetition period rns . For the sake of simplicity,

the repetition periods of signals will be referred to as signal periods throughout this

thesis. In other words, pns = rns is used rather than the actual value pns = rns · TC .

Then the total duration of the static segment Tc,SS is set. TC is limited to 16 ms. A

single static slot is limited to 664 macroticks. Max number of static slots is 1023.

Depending on the application (DS demand, TMT selection etc.), a Tc,SS is chosen

within those boundaries. TC and Tc,SS will be assumed to be predefined constants

throughout this work.

(1) Each signal sns has a deadline dns , stating the maximum delay from the time the

signal is ready until it is transmitted to the FlexRay bus. The propagation and delay

and other delays in the software stack are not taken into consideration within the

scope of this work. For periodic signals, the deadline requirements are satisfied if

they are transmitted within their periods, so it can be written as dns = pns .

(2) As stated in Section 2.1, the static segment is composed of a number of static

slots each having an equal duration of TSTS seconds. There are NSTS = TSS/TSTS

static slots in total. The data is transmitted as frames in the static segment, which are

simply groups of signals plus overhead. One frame is transmitted in each static slot

of a FlexRay cycle. TSTS is determined with respect to frame size b, represented as

T b
STS . The calculation is as follows:

T b
STS =

⌈
b · 20bit +OF

TMT · C

⌉
·TMT (2.1)

10



There are b 2-byte words in a frame, thus there can be a maximum of b · 16 data bits

in a frame 1. The framing overhead according to [5] is b · 4 + OF bits where OF is

90 bits. The value of b and an according TSTS are to be determined, which have to be

the same for all slots. The scheduling of periodic signals is done by assigning each

message frame to a static slot 2. Each used static slot has a frame identifier FIDi. As

the requirement states, the obtained schedule has to fit in the static segment. So the

number of possible FIDs is limited by the number of available static slots.

FIDtot ≤ NSTS (2.2)

2.4 Performance Metrics

Other than the general SS scheduling requirements, we have additional goals in static

segment scheduling problem, as described in Section 1. A decent SS scheduling

algorithm has to find an applicable SS schedule which:

1. Use the bandwidth with maximum efficiency

2. Use the minimum possible amount of bandwidth

3. Is scalable to large signal sets and large number of nodes

In order to measure the performance of the implemented algorithms, the following

metrics are defined :

2.4.1 Bandwidth Utilization (U):

The utilization metric demonstrates how efficiently FlexRay bus is used. U is formu-

lated as the ratio of the bandwidth demand of all periodic signals (D) to the bandwidth

allocated to these signals in static segment (A):

U :=
D

A
(2.3)

1 The lower and upper limits on the number of 2-byte words in a frame is specified by FlexRay protocol to be
2 and 127, respectively.

2 This, however, is not a 1:1 assignment. Although a message frame can be assigned to one and only one slot,
a slot can be allocated to multiple message frames. Thus, the maximum number of FIDs is limited by the number
of message frames.

11



We define D and A in Section 2.5.1. The aim of this work is to develop a scheduling

algorithm that would minimize U for any given signal set. Demand is defined by

the problem itself, since the deadline requirements and the number of data bits of the

signals are already given in the signal set and they cannot be modified. Thus, we seek

ways to decrease the bandwidth allocated to signals, which depends on the the frame

size and the packing of signals in frames. Calculation of D and A will be explained

in details in Section 2.5.1, where frame packing problem is described.

2.4.2 Used Static Segment (USS)

The used region in static segment in units of time (seconds). An STS is marked as

used if there is at least one message frame assigned to it, i.e. data is transmitted in at

least one cycle of that static slot. The total number of used slots is FIDtot and the

duration of a single slot is TSTS , therefore the used amount of static segment is:

USS := FIDtot · TSTS (2.4)

The aim is to minimize USS in SS schedule, in order to have an extensible static

segment, i.e. to make it possible to add extra signals to the FlexRay configuration

after the first design phase in the factory. As the signals are not transmitted on the bus

individually, they are not directly assigned to slots. The signals are rather assigned to

frames and the frames are assigned to slots. Thus, the minimization of USS is taken

care of in slot allocation stage, after the frames are packed. The details are given in

Section 2.5.2

It must be noted that USS depends highly on U . Having a higher bandwidth al-

location for a certain signal set inherently means that there is a need for a higher

number of slots. That is, a slot allocation algorithm can find the optimal solution only

if the frame packing algorithm comes up with the optimal packing of frames (with

minimum U ). Thus, it can be stated that the first stage of the problem also aims at

decreasing USS.
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2.4.3 Scalability

This metric is trivial: The algorithm must have feasible run-times for large signal sets,

which is the case in real-life problems.

2.5 Two Stages of SS Scheduling

The given signal set, FlexRay configuration and requirements of the SS scheduling

problem are described in Section 2.3 and the performance metrics are defined in Sec-

tion 2.4. The task is composed of two subproblems: (1) signal-to-frame assignment

and (2) frame-to-slot assignment. In the first stage, signals are packed into frames

with maximum efficiency and in the second stage frames are assigned to static slots

so that minimum number of slots is used. The two stages are independent from each

other, which means that different algorithms can be implemented for the two stages

of a single SS scheduling problem. The performance of the second stage; though,

may depend on the performance of the first stage.

2.5.1 Frame Packing Problem

The first subproblem will be referred to as frame packing, where all the signals in the

given signal set Sn are assigned into a set of frames Fn. A frame fn
f is the set of

signals sns ∈ Sn
f transmitted in one slot duration of a FlexRay cycle, meaning a signal

s of a node n is assigned to a frame f . The size bnff of frames is equal to b · 16 bits +

overhead, where b is the maximum number of data bits that can be sent in TSTS .

The period of a frame is pnff . In the approach we use, frame period is set to be the

gcd of all the signals in Sn
f , so that no jitter is introduced at this stage. As described

in FlexRay protocol in section 2.1, in frame fn
f , only the signals of node n can be

transmitted.

The assignment of signals to message frames can be either fixed or variable: At each

repetition of a frame, the same set ∀sns ∈ Sn
f (fixed) or a different set of signals

∃sns ∈ Sn
f (variable) can be transmitted. Fig. 2.3 illustrates fixed and variable frame
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packing (Please note that the overhead bits are omitted). In the illustrated schedule,
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(a) Fixed Packing
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(b) Variable Packing

Figure 2.3: Fixed vs Varaible Packing

it is assumed that there is only one message frame3, which isfn
1 in Slot 1 and it has a

period pnf1 = 1. In (a), the set of signals in frame fn
1 is {s1, s2, s3}, with periods 1, 2

and 6. In this scheme, s1, s2 and s3 can be transmitted at every FlexRay cycle (if they

are ready to be sent). s2 and s3 can be ready once every 2 and 6 cycles, respectively,

and no other signal is transmitted in the empty spaces in those cycles. No y-offset

assignment of signals is required here since every signal has its own private region at

every cycle, i.e. no interference by other signals. x-offset assignment is also trivial:

Placing the signals next to each other is enough. In variable packing on the other

hand, the set of signals in fn
1 is {s1, s2, s3, s4}. s4 shares the region of s2 and s3, as

can be seen in (b). x and y-offset assignment is required this time in order to prevent

collisions.

The size limitations on fixed and variable packed frames also differ slightly from each

other. For a fixed packed frame, one can easily write:∑
sns∈Sn

f

bns ≤ b · 16 for ∀f, n (2.5)

whereas for the variable packed frames one must consider all cycles and write the

above equation for each cycle separately.

Together with the definition of a frame, we can formulate the bandwidth demand of

a signal and the bandwidth allocation for a frame, as described in Section 2.4. The

fraction of bandwidth that is demanded by a signal is:

Dn
s :=

bns
pns · TC · C

(2.6)

3 Indeed, no other frames than fn
1 can be assigned to this slot, since the period is 1, i.e. the frame is repeated

every cycle
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where C is in bps, bns is in bits, TC is in seconds and pns is unitless.

The fraction of bandwidth that is allocated to a frame is:

An
f :=

bnff
pnff · TC · C

(2.7)

bnff is the number of bits that can be transmitted in one slot, whose duration is TSTS

so we can replace the above equation to:

An
f :=

bnff
pnff · TC · C

=
TSTS · C
pnff · TC · C

=
TSTS

pnff · TC
(2.8)

The total bandwidth demand of all signals:

D :=
N∑

n=1

Sn∑
s=1

Dn
s (2.9)

The total bandwidth allocation for all frames:

A :=
N∑

n=1

Fn∑
f=1

An
f (2.10)

2.5.2 Slot Allocation Problem

In slot allocation stage, signals ar no more taken into consideration. We are given the

set of frames from all nodes as input:

F = F0 ∪ F1 ∪ · · · FN (2.11)

The nodes of the frames in the given set is not important anymore, thanks to the

change (1) in FlexRay v3.0 (Section 2.2). Thus we can eliminate the node index from

the notation of message frame variable ff .

Our task is to assign each ff ∈ F to a static slot with FIDt and set the y-offset to

form an SS schedule. Each frame can be assigned to one and only one slot, but a slot

can be allocated for multiple frames. y-offset defines the base cycle of the frame, i.e.

the first cycle it is transmitted. This is required to avoid any conflict. A frame ff is

repeated once every pff cycles in its assigned slot with the slot identifier FIDt. Since

all the frame sizes are equal to the number of bits that can be transmitted in one TSTS ,
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only one frame can be assigned to a single cycle of a slot, i.e. no slot multiplexing

within a cycle.

Fig. 2.4 shows an example result of a frame to slot assignment for a given frame set

of {f1, f2, f3, f4} with periods being {2, 6, 1, 6}. The resulting schedule for each

frame is represented with a tuple (FID, offset): {(1,0),(1,1),(2,0),(1,3)}. This gives

the actual schedule to be implemented on the system.
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Figure 2.4: Frames assigned to slots

The performance metric in slot allocation problem is the number of FIDs used. The

frames are formed in the first stage and the frame size (b · 20 + OF bits) is set. Ac-

cordingly, TSTS is also set by equation 2.1. Thus, finding the minimum number of

FIDs is sufficient to find the minimum bandwidth used in static segment (USS) from

equation 2.4. For the example in Fig. 2.4, USS = 2 · TSTS .
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CHAPTER 3

EXISTING FRAME PACKING AND SLOT ALLOCATION

ALGORITHMS

3.1 Motivation

The communication on FlexRay bus is done by the transmission of groups of signals

in frames of the SS. The signals have to be packed in frames and the frames have

to be assigned to static slots. Theoretically the signals can be assigned directly to

slots and pack the signals in each slot as frames by adding the transmission over-

heads. However, it is not a feasible approach to this problem, as shown in [4]. In

their work, they construct a general ILP formulation which solves the two stages of

the problem together. Signals are directly assigned to certain cycles of certain slots,

rather than being packed into frames in a separate stage. The objective function of the

formulation is to minimize the number of used slots (FIDs). Although this approach

does not guarantee maximum efficiency, it finds solutions with significantly high uti-

lization and with optimal USS. However, the downside of this solution is that the

algorithm is not applicable to realistic problems, since it tries to solve a formulation

in which all cycles of all slots are processed together with all the signals. The ILP is

solved basically for all possible variables without any pre-processing, which results

to impractical run-times.

This leads us to give up on single-shot approaches and go over other algorithms which

deal with the two subproblems separately.
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3.1.1 Frame Packing

The studies presented here have similar approaches to the frame packing problem:

(a) The authors of [4] divided the problem into two stages as described in Section

2.5. In this approach, the first stage is also divided into N separate problems,

one ILP for each node. Such a division was possible due to the FlexRay re-

striction which prevents signals from different ECUs to be transmitted within

the same cycle of the same slot. For each n ∈ N , a separate ILP is solved.

These ILPs are very similar to the general one-step formulation above. At each

ILP(n), all sns ∈ Sn are assigned to certain cycles of certain slots from the set

of all slots ( NSTS slots in total), as if there are no other signals from other

nodes. The objective of each formulation is to minimize number of FIDs for

each node. However, it is not the actual signal-to-slot assignment, it is rather

a temporary assignment of signals into virtual slots to later pack frames. This

algorithm uses variable-type packing, as illustrated in Fig. 3.1.
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(a) Frames of Node 0
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(b) Frames of Node 1

Figure 3.1: Signals packed into frames

In this example signal set, Node 1 has signals S1 = {s1, s2, s3}, which are

packed into frames f1 and f2. Please note that the content of f1 is different

in different cycles. Node 2 has signals S2 = {s4, s5}, which are packed into

frames f3 and f4.

The idea of dividing the general formulation into smaller formulations brings

the run-time down to feasible values, but it is still very high. (Up to several

days for real-life examples).

18



(b) The algorithms and ILP solutions presented in [6] are implemented for FlexRay

version 2.1, but the approach is similar. For each node n ∈ N , all the signals

in Sn are first packed into signals with an ILP formulation. The objective of

the formulation is to minimize bandwidth utilization U . Since the frames are

formed independently for each node, the very same frame packing approach

would as well work for FlexRay v3.0 protocol. The formulation is simpler

than the one in [4]: Only signals with equal periods are allowed to be packed

together in the same frame, thus:

pnff = pni = pnj = ... for ∀sni , snj ∈ Sn
f (3.1)

Due to this packing of signals with the same period, the frames are identical at

each cycle. We can state that this method is a fixed-type packing by its nature.

As shown in Fig. 3.2, frame fn
1 consisting of s1 and s2 has period 2. s1 and s2

are transmitted at every repetition of fn
1 .
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Figure 3.2: Signals packed with Schmidt Packing, fixed set of signals are repeated at

each cycle

(c) The authors in [7] focuses on the frame packing stage of the problem only.

They implement fixed packing of frames, based on the ideas in [6]. Rather than

packing signals with same periods only, they propose a method to pack signals

with different periods into fixed frames, using both ILP and heuristic methods.

However, their ILP formulation is not consistent with the algorithm described

in the paper. It is not clear which signals are allowed together into the same

frame and how this is guaranteed. Thus, we skip this approach.

The approaches (a) and (b) (VP and FP, namely) are implemented in our study, as de-

scribed in sections 3.2.1 and 3.2.2, respectively. The evaluation results are presented

in Chapter 5 .
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3.1.2 Slot Allocation

The studies presented here have similar approaches to the slot allocation problem:

(a) The study in [4], which is also referenced for their frame-packing algorithm in

Section 3.1.1, employs an ILP formulation to find the optimal solution which

gives the schedule with minimum number of FIDs. The formulation in this

stage is very similar to their approach in the first stage. Instead of signals,

frames ff ∈ F are assigned to slots this time. Message frames from all nodes

are processed together with all cycles of all available slots.

This approach, however, has no pre- or post-processing, it rather uses brute

force to do the scheduling. The ILP formulation tries to place any frame into

any cycle of any available slot at the same time. All the frames are processed

together to make use of FlexRay version 3.0 which allows slot multiplexing

among different ECUs. So the formulation has basically all possible variables

in the formulation, which would lead to a high run-time. The implementation

of this approach is explained in details in Section 3.3.1.

(b) Study in [6] also uses ILP to solve the slot allocation. In contrast to the free,

unconstrained formulation of [4], this algorithm generates an ILP with a more

refined search space, without any drop on the performance. The authors make

use of frame periods for this. The idea is to differentiate slots with respect

to frame periods and book each different slot exclusively for those groups of

frames. The ILP formulation does not assign frames into slots, it rather calcu-

lates how many slots are needed for each differentiated group and how many

frames will be in group. This algorithm has been developed and implemented

for FlexRay v2.1. An ILP is solved and the minimum number of FIDs is found

for each node. Summing them up gives the total number of FIDs in static seg-

ment. The same approach is adapted for v3.0 and the modified ILP formulation

is implemented as described in Section 4.2.2.
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3.2 Formulation of Frame Packing Algorithms

3.2.1 Variable Frame Packing ILP (VP)

In the approach by the authors of [4], variable frame packing is implemented via ILP

formulation (This algorithm will be referred to as VP, throughout thesis). For each

subproblem, a set of signals of a node is given as sns ∈ Sn. There are a total of N

subproblems, each to be solved independently. Thus we can omit index n in constants

and variables of individual ILPs. Each ILP is used to assign signals into certain cycles

of certain slots (virtual slots indeed). The following set of constants is given:

• v ∈ V = {1, 2 · · · , NSTS}: Virtual slot index v

• s ∈ Sn: Index for signals ss of node n

• c ∈ C = {0, 1, · · · , k−1}: Cycle numbers cwithin scheduling window, defined

by scheduling period k.

• cb ∈ C: Base cycle numbers (y-offsets). Defines the first cycle a signal is

transmitted.

• bs: Length of signal ss, i.e. the number of bits in a signal.

• b: Slot length (Frame size). The number of 2-byte words transmitted within a

frame 1.

• ps: Period of signal ss.

The variables in ILP formulation are defined as follows:

• z(s,v,cb): Binary variable which indicates whether signal s is assigned to base

cycle cb of virtual slot v or not.

• yv: Binary variable to mark if virtual slot v is used or not.

1 Although the actual frame size is bf , here we use the term "frame size" here to refer to the sum of signal
bits in the frame, which is b · 16 bits maximum
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Using the above constants and variables, ILP constraints to satisfy the frame packing

problem can be written as:

∀s ∈ Sn :
∑
v∈V

ps−1∑
cb=0

z(s,v,cb) = 1 (3.2a)

∀v ∈ V , c ∈ C :
∑

cb=cmod(ps)

∑
s∈Sn

z(s,v,cb) · bs ≤ b · 16 (3.2b)

∀v ∈ V , s ∈ Sn :

ps−1∑
cb=0

z(s,v,cb) ≤ yv (3.2c)

and the objective function is to minimize the number of used virtual slots for node n:

min
x

∑
v∈V

yv (3.2d)

Constraint 3.2b guarantees that each signal is assigned to one and only one frame (i.e.

to a base cycle of a virtual slot). Constraint 3.2c states that the sum of all signal bits

in a frame is not greater than the frame size. Finally, constraint 3.2c ensures that a

virtual slot v is marked as used if there is any signal is assigned to it.

The solution of the above formulation states a tuple (v, cb) for each signal, stating the

virtual slot and base cycle it is assigned to. The assignment to base cycles can be

expanded to assignment into cycles by making use of the period of the signals. This

gives the set of signals to be transmitted at each FlexRay cycle for each virtual slot.

Two signals are in the same frame’s signals set if they are transmitted in at least one

cycle. With this information, frames ff are formed with the set of signals shown by

Sf , shown by the following expression:

∃c ∈ C : (z(i,v,cb) = 1) ∩ (z(j,v,cb) = 1) =⇒ si, sj ∈ Sf (3.3)

where cb = cmod(ps).

After the set of signals in each frame (Sf ) is determined, an x-offset computation

is required to set the transmission times of individual signals within frames, which

is only needed to set the system properties. In other words, it does not affect the

performance metrics. Thus it is not implemented in the scope of this work.

Since the frames are packed, the percentage of allocated bandwidth for all frames can
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be calculated from Equation 2.10. Frame period is set to the gcd of all signal periods

in that frame. This is necessary not to introduce any jitter in this stage.

The frame size b needs to be constant inside ILP formulations presented here. The

designers of the approach [4] have kept frame size as constant (b = 21) outside

ILPs, too. However, utilization metric depends on the choice of frame size since it is

highly effective on how the signals can be packed into frames. To find the optimal

solution, the whole packing algorithm has to be executed for each possible value of

b. Algorithm 1 describes the method used in this work for this purpose.

Algorithm 1 Iterating Frame Packing ILP Over Frame Size
1: optimal_A = High

2: optimal_b = 0

3: for all 2 ≤ b ≤ 127 do

4: Solve ILP

5: if A < optimal_A then

6: optimal_A = A

7: optimal_b = b

8: end if

9: end for

The number of variables for each ILP(n) for each frame size b is formulated as:

(k · Sn + 1) ·NSTS (3.4)

The number of constraints is:

(k + Sn) ·NSTS + Sn (3.5)

3.2.2 Fixed Frame Packing ILP (FP)

The idea introduced in [6] is to pack signals with equal periods into fixed frames, with

the objective of maximum bandwidth utilization (The approach will be called FP in

short). Since the signals from different ECUs cannot be packed into same frames, the

problem can be divided into N subproblems each to be solved with independent ILP

formulations, similar to the first stage approach in [4].
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The frame size b is again kept constant in ILP formulations. The frame periods are

also fixed due to the packing of equal period signals. Consequently, the only way to

decrease bandwidth allocation (Equation 2.10) is to have as few frames as possible.

A maximum of of F n = Sn frames are defined initially, i.e. one frame for each signal.

A signal can be placed in any of the frames whose period pff is equal to its period

ps. Let node n has the set of signals {s1, s2, s3} with periods {1, 2, 2}. The set of

possible frames is then {f1, f2, f3} with periods {1, 2, 2}. s1 can be placed in f1 only.

On the other hand, s2 and s3 can be packed in either f2 or f3. With the observation

here, we can define set of signals allowed and set of messages for each period. The

following sets are defined as follows:

• Pn: Set of periods p of the signals in Sn

• Sn
p : Set of all signals s ∈ Sn with period p

• Fn
p : Set of all frames f ∈ Fn with period p

Since each subproblem is solved independently, node index n can be omitted in the

ILP formulations. The following constants are given:

• s = 1, · · · , S: Signal index

• f = 1, · · · , F : Frame index

• bs: Signal bits of s

• b: Frame size, i.e. the number of 2-byte words

Following variables are defined for the formulation:

• x(s,f): Binary variable indicating whether signal s is packed in frame f or not

• yf : Binary variable indicating whether frame f is used or not

The constraints of the ILP are:

∀p ∈ P , s ∈ Sp :
∑
f∈Fp

x(s,f) = 1 (3.6a)

∀p ∈ P , f ∈ Fp :
∑
s∈Sp

x(s,f) · bs ≤ yf · b · 16 (3.6b)
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and the objective is to minimize the bandwidth allocation:

min
x

∑
p∈P

∑
f∈Fp

yf · T b
STS

p · Tc
(3.6c)

Constraint 3.6b ensures that each signal is assigned to exactly one frame. The total

number of bits in a frame is limited by frame size with constraint 3.6b.

The frames are packed once the ILPs of all nodes are solved. y-offset assignment

is not needed since the frames are fixed to the same group of signals at every cycle.

x-offset assignment is done simply by placing each signal next to each other within

frame.

Each ILP solution gives the minimum possible bandwidth allocation for the packing

of equal period signals. The total bandwidth allocation (obtained by adding up all N

results) is still optimal.

The number of variables in FP is in the range of [Sn,(Sn)2)], depending on the signal

set. The minimum case is when all signals have different periods and the maximum

case is when all signals have the same period. The number of constraints is always

equal to 2 · Sn.

The same procedure described in Algorithm 1 is used to find the optimal result among

possible frame sizes.

3.3 Formulation of Slot Allocation Algorithms

3.3.1 Integration ILP (ISA)

The slot allocation approach in [4] uses an ILP formulation which is very similar

to their frame packing approach presented in Section 3.2.1. This algorithm will be

referred to as "Integration Slot Allocation" (ISA). The differences are as follows:

• Variable size signals are assigned to virtual slots in frame packing, whereas

fixed size frames are assigned to real slots in slot allocation. This is imple-
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mented by changing the signal variables and indices to frame variables:

s→ f

ps → pff

bs → removed

z(s,v,cb) → z(f,v,cb)

virtual slot→ real slot

• In frame packing, N separate ILPs are solved for of each node; whereas in slot

allocation a single ILP is solved for all frames.

The formulation is therefore:

∀f ∈ F :
∑
v∈V

pff−1∑
cb=0

z(f,v,cb) = 1 (3.7a)

∀v ∈ V , c ∈ C :
∑

cb=cmod(pff )

∑
f∈F

z(f,v,cb) ≤ 1 (3.7b)

∀v ∈ V , f ∈ F :

pff−1∑
cb=0

z(f,v,cb) ≤ yv (3.7c)

and the objective function is to minimize the number of used slots in SS:

min
x

∑
v∈V

yv (3.7d)

Constraint 3.2b guarantees that each frame is assigned to one and only one base cycle

of a slot. Constraint 3.2c asserts that a maximum of one frame is assigned to a base

cycle of a slot. Finally, constraint 3.2c ensures that a slot v is marked as used if there

is any frame assigned to it.

This formulation is theoretically able to find a solution (if there is any) with minimum

slot allocation for any given signal set. The calculation of the problem size is also

similar to VP algorithm. Replacing Sn with F in equations 3.4 3.5 gives the number

of constraints and variables in Integration ILP.
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CHAPTER 4

DEVELOPED ALGORITHMS

In this chapter, we describe the algorithms we have developed for both frame packing

and slot allocation problems. FMP algorithm is an improved version of FP in [6], to

increase the bandwidth utilization. FMP+ algorithm uses the output of FMP solution

and applies a heuristic post-processing on it to transform the fixed frames into variable

frames. SSA is an adaptation of message scheduling ILP in [6] to use in minimum

slot allocation problem for FlexRay v3.0.

4.1 Frame Packing

4.1.1 Motivation

The ILP solutions presented in Section 3.2 can be used to solve frame packing prob-

lem. The optimal solution would pack the frames such that the bandwidth utilization

is at its maximum possible value. Nevertheless, they have some shortcomings which

can be improved further to achieve a higher bandwidth utilization.

Each of the N ILP solutions in the algorithm implemented in Section 3.2.1 manages

to pack signals into frames such that a minimum number of FIDs is required for each

single node. However, FlexRay v3.0 allows frames from different ECUs to be placed

in the same static slot. The frames formed in virtual nodes in separate ILP solutions

can be combined in the same slot in the resulting SS schedule. Therefore, less number

of FIDs will be needed:
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FIDtot ≤
N∑

n=1

FIDn

Although the utilization VP algorithm is very high (See Section 5), the optimal solu-

tion is not guaranteed. That is because the objective of subproblems do not build up

to the objective of the overall problem. While packing the frames of one node, the

fact that the frames from other nodes can also be scheduled in the same slot at the

end is neglected. This may increase the allocated bandwidth for a frame where the

packed signals’ periods are not integer multiples of each other. This is illustrated by

an example in Fig. 4.1

Consider the signals s1, s2 ∈ S1, s3 ∈ S2 and s4 ∈ S3 of 3 nodes on a FlexRay

network. The periods of the signals are p1 = 2, p2 = 5, p3 = 2 and p4 = 5. A possible

solution of frame packing is shown in (a). Please note that the objective is to minimize

the number of virtual FIDs for each node. s1 and s2 are placed in the same virtual

slot and they are packed in the same frame since they are transmitted in same frame

in Cycle 6. The frame period of f1 is therefore gcd(2,5) = 1. From Equation 2.10, the

percentage of bandwidth allocation of the solution is
(
1
1
+ 1

2
+ 1

5

)
· TSTS

Tc
= 1.7 · TSTS

Tc
.

If the slot allocation stage is applied to this set of frames, the result would look like

the one in (b), in which a total of 3 FIDs are used.

If the frame packing problem for the same signal set had been solved with the objec-

tive of minimum bandwidth allocation for each node, then s1 and s2 would have been

placed in separate frames. The result would have looked like the one in Fig. 4.2.

The bandwidth allocation A becomes
(
1
2
+ 1

5
+ 1

2
+ 1

5

)
· TSTS

Tc
= 1.4 · TSTS

Tc
for the

optimal solution. If a slot allocation stage is applied to this set of frames, a total of

2 FIDs are used, as shown in (b). Thus, the solution found from the variable frame

packing ILP proposed by Sagstetter et. al. is not optimal in terms of neither U nor

USS. A better approach would be to use the maximum utilization as an objective

function in the problem formulation for single nodes.

In addition to that, even if there was only a single node, this approach still would

not pack the frames with the optimal utilization, since there is no such optimization

for that in VP [4]. Assume that there are two possible solutions, both using the same
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Figure 4.1: The frames are packed as in (a), and the resulting optimal slot allocation

is shown in (b)

number of virtual nodes, but one of them leading to a higher utilization. This approach

would pick any of them, regardless of the utilization.

The FP implementation by Schmidt [6], on the other hand, aims at minimizing the

bandwidth allocation for the given signal set for each ECU. The result of each ILP(n)

has direct impact on the overall outcome. That is, the solution of one ILP is not

affected by solutions of other ILPs:

Atot =
N∑

n=1

An

Although the optimal solution can be found, the performance would not always be

as high as other approaches since this method of only packing signals with equal

periods is not a very flexible method. The number of possible combination of signals
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Figure 4.2: The frames are packed as in (a), and the resulting optimal slot allocation

is shown in (b)

in frames is very limited.

⇒ Our motivation is to come up with an algorithm that targets high utilization for

each node, and is also more flexible than Schmidt’s FP [6]. In addition, it is intended

to keep the problem set small. The approach is described in Section 4.1.2, which is

developed by modifying FP.

4.1.2 Fixed Frame Packing With Multiple Periods (FMP)

FP in [6] packs signals into fixed frames, where all the signals have equal periods.

Our algorithm, referred to as Fixed, Multiple Period Packing (FMP) is very similar

to FP. The idea of FMP is to pack signals into fixed frames as in FP, but also to allow

signals with different periods to be in the same frame. The condition for a signal to
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be packed in a frame is that the signal period ps has to be an integer multiple of the

frame period pff .

Similar to [6], a separate ILP for each node is solved independently. For each ILP, a

maximum of of F n = Sn frames are defined initially, i.e. one frame for each signal.

The following sets are defined as follows:

• Pn: Set of periods p of the signals in Sn

• Sn
p : Set of all signals s ∈ Sn with period ps = p

• Fn
p : Set of all frames f ∈ Fn whose period is an integer divider of p:

Fn
p = {f ∈ Fn | pfmod p = 0}

Fn
p represents the set of frames in which a signal swith period p can be packed. Since

an ILP can run for each node independently, the index n can be omitted in the ILP

formulation. The rest of the formulation is similar to FP in Section 3.2.2. The list of

constants are:

• s = 1, · · · , S: Signal index

• f = 1, · · · , F : Frame index

• bs: Signal bits of s

• b: Frame size, i.e. the number of 2-byte words

The following variables are defined for the formulation:

• x(s,f): Binary variable indicating whether signal s is packed in frame f or not

• yf : Binary variable indicating whether frame f is used or not

The constraints of the ILP are:

∀p ∈ P , s ∈ Sp :
∑
f∈Fp

x(s,f) = 1 (4.1a)

∀p ∈ P , f ∈ Fp :
∑
s∈Sp

x(s,f) · bs ≤ yf · b · 16 (4.1b)
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and the objective is to minimize the bandwidth allocation:

min
x

∑
p∈P

∑
f∈Fp

yf · T b
STS

p · Tc
(4.1c)

Although the formulation is similar to FP, the impact on the solution is significant.

Since there are more possible frames a signal can be packed into, the frame packing

is more flexible to achieve higher bandwidth utilization.

The range on the number of variables and constraints is the same as in FP. This time

the average number of variables is higher; though, leading to a bigger problem set

and longer run-times than FP.

4.1.3 FMP and Post Processing (FMP+)

The ILP approaches to the frame packing problem can find optimal solutions, how-

ever they have higher problem sets, thus longer run-times. Heuristic approaches on

the other hand are very fast, but they do not guarantee optimal solution. The Fixed

Frame Packing ILP With Multiple Periods + Post Processing (FMP+) algorithm pre-

sented here employs both methods together.

Variable frame packing as demonstrated in 2.5.1 provides the most free assignment

possible. Making use of this method can be advantageous to increase bandwidth

utilization. As it is illustrated in Fig. 2.3 in Section 2.5.1, variable packing allows

more signals to be packed in frames, which decreases the number of frames and

allocation. Yet, variable frame packing implementation as ILP creates a huge problem

set, making the solution impractical.

To implement variable frame packing in a practical method, we have developed FMP+

algorithm. This algorithm performs a heuristic post-processing on the solution of

FMP method in Section 4.1.2 to convert the fixed frames into variable frames by

adding more signals to them. After this conversion is applied, some frames become

redundant. Hence they are removed from the set of frames, decreasing the total band-

width allocation of the solution. Fig. 4.3 illustrates this conversion. Consider an

example set of signals {s1, s2, s3} ∈ Sn with p1 = 1 and p2, p3 = 2. The ILP solution

of FMP method packs signals into f1 with pf1 = 1 and pf2 = 2 as shown in (a). At
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every second instance of frame f1, no signal is transmitted in the time allocated ex-

clusively for s2, i.e. the bandwidth is wasted. We apply a post-processing that checks

all the signals in other frames to see if they can fit into this empty space. The signals

satisfying the condition are placed into the frame. After all the frames are processed,

some of the frames can be left without any signals in them. Then they are discarded

from the set of frames Fn.
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Figure 4.3: The resulting frames f1, f2 of (a) FMP and (b) FMP+. s3 is placed in f1

with post processing

As a result of this post-processing step, the frames are not fixed anymore since the

allocated times for signals in a SS are overlapping now. The post-processing is ap-

plied after each ILP(n), independent of the other ILPs, as always. The pseudo code

of the overall algorithm is given in Algorithm 2. First the frames are sorted w.r.t their

periods (2). Then iteratively for each nonempty frame, the frame period is calculated

again and an "empty map" E(f,r) is created (4-7). E(f,r) shows the amount of empty

bits in each repetition r of frame f , as illustrated in Fig. 4.4. (4,5) are necessary

because some signals of frame f may have been taken and placed in other frames

in previous iterations. If all the signals are taken, f is deleted (22). Then for each

signal that is not in f and that can be placed in frame f 1 (8-9), we look for suitable

spaces in the empty map E(f,r) (10-11). If such space is found, the signal is placed

in f (12), the empty map is updated (13-14) and the program moves on to the next

signal (17). Consider the example in 4.4 where signals s1, s2, s3 with periods s1 = 2,
1 This algorithm is implemented only for scheduling period of k = 64, 32, 16 etc where the only prime

multiplier of the period is 2. Therefore, if pf ≤ ps, then s can be packed in f , no other condition is needed
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s2 = 4, s3 = 16 are packed in frame f1 with pf 1 =. Assume that the scheduling

period is k = 16. If assigned to a slot, f1 is to be transmitted once every 2 cycles. The

transmitted data at each instance of f1 is shown on the left. At each repetition r of f1,

there will be a certain amount of empty space, which is represented with E(f1,r). The

resulting empty map is shown on the right.
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Figure 4.4: Creation of Empty Map E(f,r) for f1

FMP+ algorithm is only implemented for scheduling period of k = 2x. When all the

signal periods is a power of 2, there is very little restriction on signals to be packed

in other frames, since the prime period is the same. The possibility of finding other

signals to fill the empty bits is easier. In other words, the effect of post processing

is expected to be more significant in this case, compared to other scheduling periods.

The results presented in Section 5 supports this expectation. Nevertheless, a generic

design of FMP+ will be implemented as a future work.
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Algorithm 2 FMP+: Post Processing on FMP
1: for all n ∈ N do

2: Solve ILP(n) as in FMP

3: Generate a list Ln s.t. f ∈ Fn are sorted w.r.t pf in increasing order

4: for all f ∈ Ln do

5: if Sn
f 6= ∅ then

6: pf ← gcd (∀s ∈ Sn
f )

7: Create E(f,r)

8: for 1 ≤ s ≤ Sn do

9: if (s /∈ Sn
f ) and (pf ≤ ps) then

10: for 0 ≤ r ≤ ps
pf
− 1 do

11: if bs ≤ E(f,r) then

12: Sn
f ← Sn

f ∪ s
13: for 0 ≤ i ≤ ps − 1 do

14: E(f, r+i· ps
pf

) ← E(f, r+i· ps
pf

) − bs
15: end for

16: end if

17: break

18: end for

19: end if

20: end for

21: else

22: Fn ← Fn − f
23: end if

24: end for

25: end for
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4.2 Slot Allocation

4.2.1 Motivation

The Integration ILP of Sagstetter et. al. described in Section 3.3.1 is capable of

finding the optimal solution, however the problem set of the formulation is huge,

which leads to impractical run-time. Shortcomings of the formulation in [4] are:

• Frames with the same properties (repetition) are enumerated explicitly. How-

ever, from the scheduling perspective, only the number of frames with a certain

repetition is relevant (such frames can be arbitrarily exchanged).

• FIDs are explicitly enumerated. However, from the scheduling perspective,

the exact placement of FIDs is not needed, only the number of used FIDs is

essential.

• Slot allocation is explicitly computed, which is unnecessary. It is only necces-

sary to determine the type of frames to be assigned in an FID together.

The message scheduling algorithm in [6] formulates an ILP which finds the minimum

frame allocation for a single node. We found that the same formulation can be used for

interleaving frames of different nodes in v3.0. The algorithm guarantees the minimum

slot allocation. Besides, it has very few variables and constraints in the formulation

which doesn’t even depend on the signal set.

⇒ Our motivation is to adapt the ILP formulation in [6] to v3.0. The method is

expected to find the optimal solution in small time.

4.2.2 Schmidt Scheduling ILP for v3.0 (SSA)

As proved in [6], frames that are not multiples of each other cannot be scheduled in

the same slot. The idea they proposed is to rewrite frame periods as multiplication of

prime numbers and group them in slots accordingly.The following example illustrates

their approach.
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Example: Let us have frames f1 and f2 with periods pf1 = 2 and pf2 = 5. They

cannot be put together, thus have to be scheduled in separate slots. f1 fills up half(
1
2

)
of slot FID1 and f2 fills up one fifth

(
1
5

)
of slot FID2. This can be expressed

as: "A frame with period pf can fill 1
pf

of a (1) group or all of a (pf ) group, where

pf is a prime number. A (pf ) group represents a partition of a slot where a frame is

transmitted every pf cycles. If we had a frame f3 with p = 8, it could fill 1
8

of a (1)

group, 1
4

of a (2) group, 1
2

of a (2,2) group or all of a (2,2,2) group.

The reason of naming groups as (2,2) instead of (4) can be understood better if we add

frame f3 to the above example, with pf3 = 10. f3 can be in group (2,5) or (5,2), which

are composed of different groups of frames. If we choose it to be in (2,5) group, it

would end up filling 1
5

of a (2) group in FID1, as shown in Fig. 4.5 (a). If we choose

it to be in (5,2) group, on the other hand, it would fill half of a (5) group in FID2, as

shown in Fig. 4.5 (b).

(a) (b)

Figure 4.5: In (a), f3 is labeled as (2,5) group, so it fills one fifth of a (2) group. In

(b), it is labeled as (5,2) group, it covers half of a (5) group.

Let us add f4 with pf4 = 20 to the example set. We now have to decide whether

it will be in group (2,2,5), (2,5,2) or (5,2,2). If we choose the first group, it can be

placed together with frame f1 only and would fill 1
5

of a (2,2) group. If we choose

the second, it can be placed with f1 and possibly f3 (depending on the choice of it).

If we choose the third option, it can be scheduled in the same slot with f2 and again,

possibly with f3. We can arrive at the following conclusions from this observation:
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• The impact of the choice for one frame on the overall solution highly depends

on the choice for other frames, too. Therefore, a sequential process would not

guarantee an optimal solution. An ILP is required.

• The possible selection of slots for a frame is limited by the choice of groups for

frames. This significantly reduces the problem set, which is neglected in [4].

• An ILP can be written to determine the groups of frames first. The objective in

this decision would be to use minimum number of slots.

• The number of used slots is also set once these decisions are made, because

there would be no more variables left in the problem.

This approach that is originally developed for the frame allocation on FlexRay v2.1

is adapted to the slot allocation on FlexRay v3.0 in this thesis. It is done rather than

running a separate ILP for each node, we now have to run a single ILP for all frames

to find the optimal solution. This algorithm will be referred to as "Schmidt Slot

Allocation" (SSA).

Writing a generic ILP formulation would be a complex, time consuming job due to

the nature of the approach. On the other hand, writing an application specific ILP

would be much easier since there are very few variables and constraints. In addition,

this formulation only depends on the scheduling period, which can take a very limited

number of different values2. Thus, we have preferred developing the ILP directly for

the test cases in this work, where k = 40 and k = 64 are used. A scheduling period of

64 would not require any ILP solution, indeed. Since all the frame periods are powers

of 2, all signals can be scheduled together in the same slot, if possible. It means that

the groups of frames are already set, hence no variables to decide on. For k = 40, the

allowed frame periods is {1,2,4,5,8,10,20,40}

The objective function is to minimize the number of FIDs:

min
x

(nFID(1) + nFID(2) + nFID(5)) (4.2)

where nFID(p) is the number of FIDs allocated for (p) group. nFID(1) is equal to the

number of frames with pff = 1, so it is already fixed. The terms are written as:
2 For the latest FlexRay protocol, there are only 12 different scheduling periods, 7 of which do not require

any ILP formulation with this approach. Thus, writing 5 different formulations is enough
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The variables n(2,2), n(2,5,2) , n(5,2,2,2) etc. represent the number of frames in each

related group. Frames with pf = 40, for instance, can be in either of four different

groups. If we have 10 such frames, n(5, 2, 2, 2) of them will be in group (5,2,2,2),

and the remaining 10 - n(5, 2, 2, 2) will be in other available groups. The number of

frames in all groups will be set once the ILP formulation is solved. Table 4.1 lists all

variables and explains the corresponding group properties. n(2,2,5), for instance is the

number of frames with pf = 20 in group (2,2,5); each such frame fills one-fifth of a

(2,2) group.

Table 4.1: Group Properties

Variable pf Comment

n(2) 2 Fills 1
2

of a full slot
n(5) 5 Fills 1

5
of a full slot

n(2,5) 10 Fills 1
5

of a (2) group
n(5,2) 10 Fills 1

2
of a (5) group

n(2,2,5) 20 Fills 1
5

of a (2,2) group
n(2,5,2) 20 Fills 1

2
of a (2,5) group

n(5,2,2) 20 Fills 1
2

of a (5,2) group
n(2,2,2,5) 40 Fills 1

5
of a (2,2,2) group

n(2,2,5,2) 40 Fills 1
2

of a (2,2,5) group
n(2,5,2,2) 40 Fills 1

2
of a (2,5,2) group

n(5,2,2,2) 40 Fills 1
2

of a (5,2,2) group

The constraints are as follows:

• n(40) = n(2,2,2,5) + n(2,2,5,2) + n(2,5,2,2) + n(5,2,2,2)
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• n(20) = n(2,2,5) + n(2,5,2) + n(5,2,2)

• n(10) = n(2,5) + n(5,2)

meaning that the total number of frames with period pf must be equal to the number

of frames in each possible group for this pf .

The constants are: n(2), n(5), n(2,2), n(2,2,2), n(2,2,2,2), n(10), n(20) and n(40). Please

note that the number of frames with pf = 2,4,5 and 8 are constants, since there is

only a single possible group for each.

The ceiling operators in the objective function makes the formulation nonlinear. A

linearization can be done on this nonlinear program by replacing all the ceiling oper-

ators with linear expressions. Two new variables are introduced for each substitution:⌈n(2,5,2,2)

2

⌉
−→ K(2,5,2,2) · 2 = k(2,5,2,2) + n(2,5,2,2)

The whole formulation is transformed as such and all the constraints and variables

are obtained. There are 16 constraints and 35 variables in total.

Once the grouping of all frames is determined, these frames are assigned to allocated

slots. The slots are filled with the frames from each group, starting from the smallest

group 3, as in [23]. This stage is only to display the schedule of the system. It does

not effect the performance, thus it is skipped in our work.

3 Groups which cannot be filled with other groups are called smaller. (2,2,5,2) is one of the smallest groups,
for instance, since there are no frames with period 200 or 80 to fill a portion of that group.
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CHAPTER 5

PERFORMANCE EVALUATION

We present the evaluation methods we used and the results of the algorithms im-

plemented in this study. The algorithms are compared with each other in terms of

the defined performance metrics. Based on the observations, the discussions and the

planned future works are mentioned, as well.

5.1 Environment

We have conducted all the experiments on an Intel i5 5200U CPU with 8 GB RAM

and with Windows 10 OS. All the algorithms are programmed on MATLAB environ-

ment version R2015b [24]. TOMLAB / CPLEX optimization tool v12.1 [25] is used

as ILP solver. The size of the matrices created for ILP formulations are very large so

they can consume up to hundreds of gigabytes of memory. Since these matrices are

very sparse (i.e. most of the values are zero), we were able to define them as sparse

matrices, which decreased the memory requirements down to kb~mb range for each.

CPLEX has numerous options to improve the performance of the ILP solver. While

testing the algorithms, we have observed that the run-time of the ILP solutions in-

crease exponentially with the number of signals per node. Even for the smallest set

where there are 10 signals per node, the tests can last more than a day for a single

node. We set EPGAP to 0.01 (default = 10−4) meaning that the CPLEX solver can

stop if it finds a solution proved to be within 1% of the optimal solution. This causes

the solutions to be suboptimal, but it also helps to quickly get that result. In addition,

we set TILIM to 10, which forces the solver to stop running after 10 ms. This limits
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the time for each solution. For all frame packing algorithms, an ILP is employed for

each node and the whole process is repeated for each TSTS . There are 84 possible val-

ues of TSTS , thus the run-time of the algorithm is limited to N · 84 · 10ms (excluding

other steps of the program), which is 10 hours at max. The utilization, though, is not

effected very much by this time limit. For a set of 900 signals, the utilization differed

only by 1% for TILIM = 10 and 100 cases. Putting a time limitation is a must, indeed,

since the solution may take significantly long times for certain inputs, which are not

predictable.

We assume that the following configuration of FlexRay bus is given: TMT = 3µs,

gdBit = 1 and OF = 90 bits. We assumed that all the signal periods are multiples of

5 ms, thus Tc = 5 ms, and Tc,SS is taken as 3162 µs, to be consistent with the study in

[4].

The algorithms related to the two stages of SS scheduling problem are evaluated

separately in sections 5.2 and 5.3.

5.2 Frame Packing

We have implemented four different algorithms for frame packing stage (VP, FP, FMP

and FMP+) and evaluated the results according to U , USS (equations 2.3 and 2.4)

and run-time. run-time is defined as the total time spent in frame packing stage of

an algorithm for a single test case For computing USS, we use SSA, which gives

optimal result as discussed in Section 4. Note that we are only interested in the result

of USS here. We perform a comparison of different algorithms for computing the

optimal USS in Section 5.3.

In fact USS cannot be calculated in this stage, it is rather determined in slot allocation

stage. However, we will discuss this metric in frame packing part since it depends

highly on this stage. In addition to that, the algorithms used in second stage are

capable of finding the optimal slot allocation for all cases (Both can do it theoretically,

one of them can always find it in feasible run-time, as shown in Section 5.3). Thus

we can interpret this metric as: "Using x algorithm for y case, the minimum possible

amount of used static segment is z. You can implement either of the two algorithms
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(ISA or SSA) to find this value". For practical reasons, we picked SSA algorithm to

find the minimum possible USS value for each different frame packing algorithm.

All the algorithms here are tested under scheduling period k = 40 and k = 64 as

scheduling period, except for FMP+ algorithm, which is only implemented for k = 64

case. Among possible scheduling periods, we picked 40 since it is the period that

allows the largest number of different signal periods to be scheduled together (1, 2, 4,

5, 8, 10, 20, 40). This makes the frame packing more diverse and flexible. We have

conducted simulations with five different types of test cases:

5.2.1 Test Case 1:

The number of nodes is fixed to N = 30 while the number of signals per node (Sn)

is increased for each synthetic test case. The algorithms are tested for 300, 600, 900,

1200 and 1500 signals in total. For each number, 5 test cases are randomly generated

with the probabilistic distributions of the signal periods and the number of signal bits

given in Fig. 5.1 and the average of the results are recorded. The used distributions

are from an automotive case study, retrieved from the [4].
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Figure 5.1: Distribution of signal periods and signal sizes [4]. These distributions are

used in test case 2 and test case 3, too.

The total bandwidth demand D (Equation 2.9) for the signals in these test cases are

shown in Fig. 5.2. D is equal for different scheduling periods since the demand is set

by the input, not on the algorithm.

The bandwidth utilization graphs are shown in Fig. 5.3. It must be noted that these
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Figure 5.2: N = 30, Sn = 10, 20, 30, 40, 50
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Figure 5.3: Utilization for fixed N = 30

are not the optimal results to be found by these algorithms, due to the two control

options we used in the ILP solver, as described in Section 5.1.

For all tests FP gives the lowest utilization as expected. Since very few signals can

be packed, frames have large empty spaces in them. FMP, as the improved version of

FP, finds better solutions with the increased possibilities for packing signals together.

It can even compete with variable packing of frames for k = 40. cases. For k = 64

case on the other hand, almost all the signals can be combined, thus VP outperforms

the algorithms in which the frames are fixed. Although FMP+ is not supposed to find

the optimal solution (has a heuristic stage), it still has higher utilization than VP. That

is because VP is also not optimal, since the objective function used for each separate

sub ILP solution does not contribute to the overall solution independent of the other

solutions. For all the algorithms, the utilization increases with increasing Sn. As there
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Figure 5.4: run-time for fixed N = 30

are more signals in each ILP, the diversity of the signals increase, thus the packing

possibilities also increase. It is less likely now to waste space in frames.

The run-times of the simulations are presented in Fig. 5.4. More than 99% of the run-

time is spent during ILP solution, as observed by MATLAB Profiler, which depends

highly on the size of the problem set.

The problem size of each ILP(n) formulation in VP approach can be calculated from

equations 3.4 and 3.5. In our test cases, the scheduling period k is (40 or 64), number

of signals for each node Sn is between [1,50] and the number of static slots NSTS

ranges from 15 to 264 for different values of b. It means that there can be up to

844,800 variables 30,000 in the problem set 1. Thus, the constraint matrix can be as

large as 25 billion units. This makes the algorithm unfavorable in terms of scalability.

The calculation of the problem size of ILP formulations in FP,FMP and FMP+ (see

Section 3.2.2) are exactly the same. The number of constraints can be as large as 100

and the number of variables is between [50, 2500]. For FMP and FMP+ algorithms,

the number of variables has always been between 1450-1550. Even the maximum

size (250,000) of the problem is much smaller than the one in VP. The solution does

not scale to very large theoretical values, but it can be used for practical examples of

current IVNs.

Although the run-time is expected to increase exponentially with Sn, we observe a

1 The number of static slots is limited to 1023, according to the FlexRay protocol standards [5]
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linear graph after a certain limit in Fig. 5.4. This is due to the TILIM option of 10

ms.

5.2.2 Test Case 2:

Unlike test case 1, the number of signals per node is fixed Sn = 30 and the number

of nodes is increased this time. The algorithms are tested for 300, 600, 900, 1200 and

1500 signals in total. The distribution of signal periods, sizes and the number of test

cases are the same as in test case 1.

The total demanded bandwidth D for the signals in these test cases are shown in Fig.

5.2.
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Figure 5.5: Sn = 30, N = 10, 20, 30, 40, 50

The bandwidth utilization graphs are shown Fig. 5.6.
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Figure 5.6: Utilization for fixed Sn = 30
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The comparison between algorithms w.r.t. U is similar to the results of test case 1.

Variable packing approaches outperform fixed approaches.

For FP, FMP and FMP+, the utilization remains pretty much unaffected from the

number of nodes. Except for VP, in which the objective function is to minimize the

number for used slots for a single node. The utilization in VP solution has a slight

tendency to decrease with increasing N , in Fig. 5.6. If there was a single node,

then the result would be the optimal in terms of USS, and also better in terms of

U , intuitively. When the number of nodes starts increasing, then the disturbance on

the overall result also goes up, even though the individual ILP solutions still perform

optimally, w.r.t their objective functions.
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Figure 5.7: Run-time for fixed Sn = 30

The run-times of the simulations are presented in Fig. 5.7. Since each ILP(n) is solved

separately, the complexity of individual ILP formulations do not depend on N . The

complexity of each ILP(n) is the same, thus the run-times are also similar. Number

of nodes only effects the total run-time:

Total run-time ∼= N · tILP (n)

This is the case when the algorithm is solved sequentially for each node. If all ILP(n)

are processed in parallel is used, the run-time of the algorithm would be equal to the

run-time of a single ILP. It can be stated that all the algorithms are scalable to number

of signals S, if Sn is not increased.
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5.2.3 Test Case 3:

The distribution of signal periods and signal sizes are the same as in test cases 1 and

2. This time, Sn is not the same for all n. Sn is randomly picked for each node,

using the distribution given in Fig. 5.8. This will be used as a benchmark to show the

performance of the algorithms from different perspectives.
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Figure 5.8: Distribution of Signals to Nodes for test case 3

The selection of possible Sn values are taken from real life cases, by taking SAE

benchmark set [22] as a sample and by extending it so as to have a total of 900 ~1000

signals. 10 test cases are generated of this type. The average number of signals

is calculated as 932 2. The average results obtained from these 10 test cases are

presented in Table 5.1.

Table 5.1: Benchmark Results

k = 40 k = 64

VP FP FMP VP FP FMP FMP+

Utilization (%) 45.1 37.1 44.2 51.3 37.8 44.4 52.9
USS (us) 3241 3928 3310 2847 3858 3294 2776

Run-time (s) 4003 34 362 4328 33 650 659

Bandwidth utilization of the solutions are consistent with the ones in test case 1 and

2. The amount of SS used is in accordance with U , confirming our statement that the

optimal value of USS is also set by optimal U . The maximum U gives the minimum

USS (FMP+ algorithm, k = 64). The run-times again, follow the same behavior as

2 There are 932 signals in the benchmark set of [4]. Although we wanted to test under similar sizes, it is
coincidental that the average size of our set is also 932.
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explained in test case 1 and test case 2.

We can compare the simulation results obtained from a similar test case by Sagstet-

ter et. al. in [4] with the one presented here, for k = 64 case (Since they did not

experiment with k = 40) in Table 5.2.

Table 5.2: Comparison of Results from Two Different Works

VP VP in [4]

USS (us) 2847 3519
Run-time (s) 4328 907

The run-time of VP found here is much higher than the study in [4]. This is due to

two reasons:

• The computation capacity of their hardware is higher than the one used in our

work

• The measurement of run-time is different. The frame size is fixed in [4] to 42

and accordingly TSTS to 51 µs, whereas we have found the best solution for

all possible TSTS values. The run-time defined in our work is the sum of all 84

different runs. In addition to that, we used a time limit option on ILP solvers,

which decreases the actual run-time of the algorithm.

One can discuss the need for iteration over frame size. Table 5.3 shows the duration

of static slots which give the solution with minimum utilization among all 84 possible

values. As the table shows, the optimal TSTS value is not always 51 µs, which proves

that it necessary to iterate over frame size. TheUSS value in Table 5.2 also shows that

the solution obtained for this single TSTS value may not be feasible (Tc,SS = 3162µs)

while there are feasible solutions for other values of it. Though, the range of possible

values can be limited, based on the observations.

5.2.4 Test Case 4:

To observe the effect of the distribution of ps and bs over the performance for large

sets, we generated 10 test cases of test case 4. This time, the probability of signal

49



Table 5.3: TSTS of Optimal Solutions

k = 40 k = 64

TSTS (us) VP FP FMP VP FP FMP FMP+

avg 57 43 51 55 43 51 67
min 51 42 51 51 42 45 51
max 66 51 51 63 51 57 81

periods and signal sizes are distributed randomly over the set of values in Fig. 5.1.

The distribution of Sn is the same as in Fig. 5.8. The results are very similar to the

ones in test case 3, as shown in Table 5.4.

Table 5.4: Performance of Frame Packing for Uniform Distribution of ps and bs

k = 40 k = 64

VP FP FMP VP FP FMP FMP+

Utilization (%) 45.6 36.5 44.69 51.2 37.3 44.6 52.8
USS (us) 3671 4583 3754 3278 4486 3770 3188

Run-time (s) 4739 53 590 5015 49 742 948

5.2.5 Test Case 5:

To observe the effect of ps and bs in a more extreme example, we used SAE bench-

mark set [22] and extended it to have a set as large as 932 signals by generating a large

set with the same distributions as in [6] and [7]. The signal periods are taken only as

1, 2 and 40 with probabilities 0.5, 0.125 and 0.375, respectively. All the signals in

this set has 8 bits of data. Since all the signals are schedulable within k = 40, we also

have the chance to observe the effect of k being other that 64, for such a signal set.

The results presented in Table 5.5, however, states that even for a test case so suitable

to schedule within 40 cycles, the performance is barely higher than for k = 64 case

(For the other types of test cases, k = 64 always gives better performance). Thus, this

feature of v3.0 is questionable in terms of efficiency3.

3 It can be effective in terms of jitter, though, which is not in the scope of this study.
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Table 5.5: SAE Benchmark

k = 40 k = 64

VP FP FMP VP FP FMP FMP+

Utilization (%) 37.4 28.8 35 37.3 28.6 34.8 37.3
USS (us) 1147 1482 1215 1147 1488 1230 1149

Run-time (s) 1663 39 57 1816 39 57 70

5.2.6 Test Case 6:

A further performance metric that can be considered is jitter, i.e. the delay variance

in transmission times. Jitter is not the focus of this thesis, however application layer

protocols may have jitter requirements. We excluded the solutions where some jitter is

introduced to the transmission of signals, since we intended to develop our algorithms

so as to make it suitable for most applications. Nevertheless, we perform a small

experiment here to compare the performance of two versions of VP implementation:

with and without jitter.

Although the authors of [4] do not define jitter as a performance metric, they actually

allow it in their implementation of VP. The ILP formulation does not change w.r.t

jitter allowance, only the resulting frame period is changed, which effects the overall

result. Consider two frames s1 and s2 with periods p1 = 2 and p2 = 5. If these signals

are packed in the same variable frame, the frame period will have to be gcd(p1, p2) =

1 to have zero jitter. However, it can also be set to min(p1, p2) = 2. In this case, the

time between two instances of s2 transmissions will be different every time. As an

extended study, we also implemented VP as described in [4].

Table 5.6: Variable Packing with Jitter

VP with jitter k =40 k=64

Utilization (%) 55.8 51.5
USS (us) 2676 2897

Run-time (s) 4066 4402

The utilization of the solution increases significantly in this case, as shown in Table

5.6. The solutions presented here are obtained for the test cases of test case 3. A

comparison of these results with the ones in Table 5.1 shows that FMP+ algorithm
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outperforms "VP with jitter" in all metrics, even though FMP+ packing has limited

possibilities for packing since it does not allow jitter. For k = 40 case we did not

implement any other variable packing algorithm than VP. FMP+ will also be imple-

mented for this case as future work to analyze the results in terms of both utilization

and jitter.

The evaluation of these 4 (VP, FP, FMP and FMP+) frame packing algorithms have

shown that the variable frame packing provides a high utilization of bandwidth, if

formulated with a well defined ILP. The ILP in VP approach of [4] does not guarantee

the optimal result since the objective function does not target the optimal result. In

addition, it has larger run-times since the problem size is bigger. FP, FMP and FMP+

has similar ILP formulations, which all have much smaller problem sizes (Table 5.7).

The run-time of an algorithm with ILP formulation greatly depends on the size of

the matrices for the ILP. Thus, we measure the complexity in matrix size. Let S be

the maximum number of signals of any node n. Whereas VP has a complexity of

O(S2 · NSTS
2), the other algorithms have a complexity of O(S3), in terms of the

number of signals and the number of static slots. S is in the order of NSTS (usually

smaller), thus the complexity of fixed packing algorithms are smaller than VP.

FP and FMP do not perform as good as VP. However with FMP+, one can not only

benefit the small problem size of fixed packing approach’s ILP but also the high band-

width utilization of variably packed frames.

Table 5.7: ILP Problem Size of Frame Packing Algorithms

# of constraints # of variables Max Size

VP (k + S) ·NSTS + S (k · S + 1) ·NSTS 25 · 109
FP, FMP, FMP+ 2 · S [S , S2] 25 · 104

5.3 Slot Allocation

The evaluation of the methods used for the second stage is executed as a seperate test

procedure. ISA and SSA algorithms are implemented after the frames are packed in

FMP, FMP+ and VP algorithms. The algorithms are tested under 10 cases of test case

3.
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Both algorithms are supposed to find the optimal solution, which is the minimum

USS. However, the ILP formulation of ISA is very large, hence it can have very high

run-times. The run-time depends highly on the number of frames. The number of

frames (F ), though, is not known before the frame packing stage. For each algorithm,

F can get very different values, which affects the run-time. Table 5.8 shows the

number of generated frames after a frame packing stage.

Table 5.8: Number of Frames Created

k = 40 k = 64

# of frames VP FP FMP VP FP FMP FMP+

avg 133 427 264 191 412 266 114
min 88 338 247 152 329 224 79
max 178 469 283 224 457 326 172

The minimum (79) and maximum (469) number of frames define the boundaries of

the size of the constraints matrix of ISA. We can calculate the range of NSTS from

Table 5.3 as 50 ~60, usually. Using these values, we can calculate the range of the

problem size using equations 3.4 and 3.5 which is from 1.3 to 55 billion units. This

is even larger than the ILP sizes in frame packing stage. Such large problems could

lead to very high run-times and very large memory requirements as well. Thus we

have to put time limits on ILP solver again, possibly leading to suboptimal results.

The SSA algorithm, on the other hand, has very small problem size, which is pre-

sented in Section 4.2.2. For the case of k = 40 the ILP constraints matrix has only

16 constraints and 35 variables, resulting in a constant ILP problem size of 560 units.

For k = 64 case, there are no variables in the algorithm, thus no ILP is needed.

It is practical to find the optimal results of SSA and try to achieve the same results with

ISA, using different time limits. Table 5.9 shows how many of the found solutions

can actually fit into SS (USS ≤ Tc,SS). As it can be seen, ISA can also find all

possible feasible solutions in 100 seconds. However the USS values are still not

always optimal, as Table 5.10 suggests.

If we increase the number of frames, we would need more static slots. If we have

more static slots, then the run-time of ISA would increase more. We experimented

both algorithms under different numbers of frame with NSTS = 600. Table 5.11
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Table 5.9: Feasibility of Solutions

k = 40 k = 64

# of feasible
solutions (out of 10)

VP FP FMP VP FP FMP FMP+

ISA (TILIM = 10s) 2 - - 6 - - 10
ISA (TILIM = 100s) 3 - 3 10 - 3 10

SSA 3 - 3 10 - 3 10

Table 5.10: USS of Feasible Solutions

k = 40 k = 64

Average USS (s)
of feasible solutions

VP FP FMP VP FP FMP FMP+

ISA (TILIM = 100s) 3049 - 3043 2859 - 3013 2781
SSA 3049 - 3026 2847 - 3013 2776

shows the average results of these 5 tests for each case. After the number of frames

goes past 150, the problem size gets huge and the ILP solver does not manage to find

even a single solution in 100 seconds.

Table 5.11: The Run-times and Used FIDs for NSTS = 600

# of frames 20 50 100 150 200 250 500 1000

# of FIDs (ISA) 10 25.4 49.6 508.8 - - - -
# of FIDs(SSA) 10 24.6 48.8 68.4 93 116.8 230.8 460.2
Run-time(s) (ISA) 45 101 102 105 102 102 102 105
Run-time(s) (SSA) 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02

The run-time of SSA is always in the order of miliseconds, while in ISA it can theo-

retically go up to several days or weeks of simulation. Both algorithms are able to find

the optimal results. So there is no advantage of using ISA in any way. We can even

further suggest that there can be no other improvements for slot allocation problem.

ISA does the job optimally, in practically no time.

Similar to frame packing stage, the complexity of the algorithms can be defined with

the matrix size of the ILP formulation. The size of the problem formulation can be

calculated with the same formula in VP with equations 3.4 and 3.5 just by replacing S

term with F . From Table 5.12, we can write the complexity of ISA as O(F 2 ·NSTS
2).

For practical examples, this number can go op to the order of trillions of data units,
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whereas the implementation of SSA for any scheduling period would have constant

complexity of O(1)4.

Table 5.12: ILP Problem Size of Slot Allocation Algorithms

# of constraints # of variables Max Size

ISA (k + F ) ·NSTS + F (k · F + 1) ·NSTS 1012

SSA 16 35 560

4 If we had formulated a general ILP for SSA, the complexity would not have been constant. However, since
the number of possible scheduling periods is very limited by FlexRay protocol standards, there is no need for a
general formulation
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CHAPTER 6

CONCLUSION

The topic of this thesis is the development of scheduling algorithms for the FlexRay

static segment (SS) with the aim of a high bandwidth utilization and a low usage of

the available bandwidth in the SS. In addition, the particular properties of the new

version FlexRay v3.0 are taken into account. The developed algorithms are based on

a two stage approach which makes it possible to compute FlexRay schedules with

high bandwidth utilization in practicable run-times.

For the frame packing stage, different algorithms can be used for different problem

sets and different requirements. When the signal sets get very large the variable pack-

ing (VP) algorithm from the recent literature becomes impractical to solve. Although

the proposed FMP+ algorithm has a high complexity of O(S3) , this theoretical com-

putation time is not reflected in our experiments with real life problem sizes. It is

found that FMP+ gives the best performance both in bandwidth utilization and run-

time.

In our experiments, it is observed that the distribution of signals to nodes has a large

effect on the performance of frame packing. For a node with a large set of signals,

the utilization and run-time of all algorithms is high, whereby FMP+ gives the best

results. When there are few signals, on the other hand, the utilization is low and all

algorithms run fast. For signal sets where the distribution of signals to nodes has a

high variance, a hybrid algorithm can be implemented, where different algorithms are

used for different nodes. This is possible since the frame packing of each node is in-

dependent from the others. In fact, the overall run-time for a frame packing algorithm

would be equal to the run-time for a single node, by using parallel computation.
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Among the two algorithms implemented in the slot allocation stage, SSA (Schmidt

Slot Allocation) outperforms ISA (Integration Slot Allocation) by far, in both perfor-

mance metrics. On the one hand, the SSA solution is indeed the global optimum,

where the used bandwidth gets the minimum possible value under the condition that

the frames are packed with highest possible utilization. Furthermore, it runs in con-

stant time, which is the minimum possible time complexity.

In the literature, jitter is also introduced as a performance metric for FlexRay schedul-

ing. In a future work, it is intended to quantify jitter so that the scheduling algorithms

can be compared with jitter as a performance metric. In our simulations, we also

observed the effect of using scheduling periods other than 64 cycles. In our experi-

ments, it turned out that there is no quantifiable effect on the bandwidth utilization.

It is however expected that the choice of the scheduling period affects jitter. With

an extensive study where jitter is measured as a performance metric, this feature of

FlexRay v3.0 can be better understood. We finally note that the current version of

FMP+ is implemented for a FlexRay scheduling period of 64 cycles, since this is the

most frequently encountered case. In future work, FMP+ will also be implemented

for other possible scheduling periods such as 40 cycles. Since FMP, which is the basic

version of FMP+, performs almost as good as VP for that case, FMP+ is expected to

outperform VP for other scheduling periods as well.
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