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ABSTRACT 

OVERLAPPING LATTICE MODELING FOR CONCRETE FRACTURE 

SIMULATIONS USING SEQUENTIALLY LINEAR ANALYSIS 

Aydın, Beyazıt Bestami 

M.S., Department of Civil Engineering 

Supervisor: Prof. Dr. Barış Binici  

Co-advisor: Prof. Dr. Kağan Tuncay 

January 2017, 81 pages 

Estimation of the crack location and width in concrete structures is important due to 

the sustained damage in structures as a result of extreme loads and aging. The location 

and width of cracks are the most influential parameters for making decisions on the 

structure service life. Despite significant developments, the computational modelling 

of concrete fracture initiation and propagation are still challenging tasks.  

Many different numerical approaches, most of them based on finite element analysis, 

have been used in the past employing the smeared or discrete cracking approaches. 

Such models lack the ability to capture local nature of cracking, the direction of crack 

propagation and require incorporating ad hoc approaches with extensive calibrations 

with tests. Recent studies in the last decade have focused on using particle based 

simulation methods (such as the discrete element method, the lattice-based methods, 

smoothed particle hydrodynamics, etc) to capture the local character of fracture 

phenomenon. Among these approaches, lattice modeling and particle based method of 
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peridynamics have been used as non-local fracture simulation tools. Peridynamics can 

be viewed as an overlapping lattice approach in which continuum is discretized using 

pin connected bar elements extending over a predefined horizon. The advantages of 

these tools are the relative ease of modeling and the simulation of crack propagation 

using a few key parameters with the ability to bridge various scales from micro to 

macro levels. In this work, an overlapping lattice approach is proposed, where the 

continuum is discretized using truss elements extending over a predefined horizon 

similar to the concept used in peridynamics with the sequentially linear analysis (SLA) 

technique which is a non-iterative direct solution technique for nonlinear problems. 

The key difference of our application from the literature is the use of a classical 

structural analysis with SLA for the simulations as opposed to a particle based 

approach and a novel calibration of the constitutive model parameters using tension 

test results. Simulation results for several reinforced concrete (RC) and unreinforced 

concrete tests focusing on the influence of the mesh size, horizon and the softening 

functions on the sensitivity of results demonstrate the ability of accurately predicting 

the direction of crack propagation and the crack widths with the proposed modeling 

approach with a rather simple and intuitive method. 

Keywords: Concrete, fracture, peridynamic modeling, direct tension 
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ÖZ 

SIRALI LİNEER ANALİZ İLE BETON ÇATLAMA SİMÜLASYONLARI 

İÇİN ÜST ÜSTE BİNDİRİLMİŞ KAFES MODELİ 

Aydın, Beyazıt Bestami 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Barış Binici  

Ortak Tez Yöneticisi: Prof. Dr. Kağan Tuncay 

Ocak 2017, 81 sayfa 

Beton yapılarda çatlak yerinin ve genişliğinin tahmin edilmesi, aşırı yüklerin ve 

yıpranmanın sonucu olarak yapılarda sürekli hasarın olması nedeniyle önemlidir. 

Çatlakların yeri ve genişliği, yapı ömrü hakkında karar vermek için en etkili 

parametrelerdir. Önemli gelişmelere rağmen, betonun kırılmaya başlamasının ve 

çatlağın yayılımının bilgisayar modellemesi hala zorlu görevlerdir. 

Çoğu sonlu elemanlar analizine dayanan birçok farklı sayısal yaklaşım, geçmişte 

dağınık ve ayrık çatlama yaklaşımıyla kullanılmıştır. Bu tür modeller, çatlamanın yerel 

doğasını, çatlak yayılımının yönünü yakalamada eksiktir ve testlerle gerçekleştirilecek 

kapsamlı kalibrasyonlar ile geçici yaklaşımlar gerektirir. Son on yıldaki çalışmalar, 

kırık olgusunun yerel karakterini yakalamak için parçacık tabanlı simülasyon 

yöntemlerini (ayrık elemanlar yöntemi, kafes tabanlı yöntemler, düzleştirilmiş 

parçacık hidrodinamiği, vb.) kullanmaya odaklanmıştır. Bu yaklaşımlar arasında, yerel 
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olmayan kırılma simülasyon araçları olarak kafes modellemesi ve parçacık tabanlı 

peridinamik yöntem kullanılmıştır. Peridinamik, önceden tanımlanmış bir evrende 

uzanan pim bağlantılı çubuk elemanları kullanılarak sürekliliğin ayrıklaştırıldığı üst 

üste binmiş kafes yaklaşımı olarak görülebilir. Bu araçların avantajı, birkaç önemli 

parametre ile çatlak yayılımı simülasyonu ve modellemesinin nispeten kolay olması 

ve mikrodan makroya çeşitli ölçeklere köprü kurma yeteneğidir. Bu çalışmada, sıralı 

doğrusal analiz (SLA) tekniği ile peridinamikte kullanılan konsepte benzer şekilde 

önceden tanımlanmış bir evrende uzanan bağ elemanları kullanılarak, devamlılığın 

ayrıştırıldığı üs üste binmiş bir kafes yaklaşımı önerilmiştir. Uygulamamızın 

literatürdeki en önemli farkı, bir parçacık tabanlı yaklaşımın aksine simülasyonlar için 

SLA ile klasik bir yapısal analizin kullanılması ve gerilme testi sonuçlarını kullanarak 

kurucu model parametrelerinin yeniden kalibrasyonunun yapılmasıdır. Kafes 

büyüklüğü, evren ve yumuşama fonksiyonlarının sonuçların hassasiyeti üzerindeki 

etkisine odaklanan birkaç betonarme ve donatısız beton testi için simülasyon sonuçları, 

önerilen modelleme yaklaşımı ile oldukça basit ve sezgisel bir yaklaşım sunan çatlak 

yayılım yönlerini ve genişliklerini doğru olarak tahmin etme yeteneği göstermektedir. 

Anahtar Kelimeler: Beton, Yırtılma, Peridinamik Model, Yalın Çekme 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General 

 

The concrete industry, which uses 12.6 billion tons (11.4 billion tonnes) of raw 

materials each year, is the largest user of natural resources in the world (Mehta 2002).   

Despite its widespread use, a detailed understanding of concrete mechanics is still not 

available. The modeling and the prediction of the performance of concrete structures 

are controversial due to its heterogeneous nature as a consequence of the highly 

complex microstructure. The determination of the crack initiation and propagation 

should provide information on structural weaknesses and retrofit regions. This makes 

it mandatory to understand the behavior of concrete in tension from an engineering 

point of view. Cracking of concrete in reinforced concrete structures is an evidence of 

increasing steel stresses owing to the bond between two materials. On the other hand, 

cracking in plain concrete structures may occur depending on the load pattern, aging 

or settlement. According to the locations of crack and patterns, assessment of existing 

structures should be conducted for a well-sustained built environment. 

 

According to a 2013 Report Card for America’s infrastructure from ASCE (2013), the 

infrastructure is in poor grade for USA so that the cost to repair/replace deterioration 

of infrastructure is estimated to be about 3.6 trillion dollars by 2020. Also, Michael 

Groschek, Transport Minister of North Rhine-Westphalia of Germany, mentioned that 

80% of inspected 100 bridges are in desperate need to be repaired and maintained and 

it was estimated that some 4.2 billion euros must be invested (Der Spiegel website). 

Most of the damage in existing structures are somehow related to concrete cracking 

due to extreme repeated loads, environmental loads, corrosion or chemical attack. 

Hence, the prediction of damage, which means understanding and simulating the 

behavior of concrete in tension, is crucial for the next generation infrastructures. 
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Infrastructure problems will also accelerate for developing countries in the 21st century 

such as Turkey and China as the most of the structures such as bridges, railways etc. 

have started to be built by 1980s and 1990s. In this regard, finding the most suitable 

procedures for design and assessment plays a significant role for these structures in the 

short/long term. 

 

Concrete is a complicated material due to the following reasons: 1- It is a 

heterogeneous material, 2- It does not follow mixture rules (Mehta 1993), 3- It exhibits 

significant variability. These properties make it extremely difficult to accurately track 

cracks. Micro cracks are dormant cracks and they usually cannot be observed in 

experiments. They may or may not be the cause of the main cracks and affect the load 

carrying capacity, durability and water tightness of concrete. The main reason for 

initiation of these cracks is the region surround the aggregate and cement paste (Figure 

1.1). These interface regions, called as the interfacial transition zone (ITZ), are the 

weak zones due to higher porosity as a result of higher water/cement ratio. The 

available knowledge on concrete strength of ITZ is still insufficient making it 

extremely difficult to model concrete. Also, representation of concrete at different 

scales is shown in Figure 1.1.  

 

 

Figure 1.1. Concrete at Different Scales 
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1.2 Literature Review 

 

Physical explanation of the tensile resistance of concrete is highly complicated. 

Foundation of (crack) fracture mechanics was developed by the pioneering work of 

Griffith (1920) by observing and describing the rupture of glass. Subsequently, Irwin 

(1958) explained the fracturing from the point of strain energy release rate and 

combined the idea with the Weibull’s (1939) statistical approach for fracture strength. 

This fracture theory was incapable of describing the fracture of concrete because of 

the heterogeneous nature of concrete leading to a quasi-brittle response. Linear elastic 

fracture mechanics (Figure 1.2.a) assumes that stress suddenly drops to zero at the 

crack tip and this cannot be used for concrete materials (Figure 1.2.b) as concrete can 

still carry tensile load at the crack tip, a phenomenon introduced for the first time by 

Kesler et al (1971). This is mainly because of the softening phenomenon in concrete 

as a result of the distributed and localized cracking in order to describe the fracture of 

concrete, Hillerborg et al (1976) proposed a new theory named as the Fictitious Crack 

Model (Figure 1.2.c). He and his co-workers stated that after concrete reaches its 

tensile strength, stress transmitted in the cracked region can still carry tension, however 

with a decreasing amount in the crack surface (Figure 1.2.d). The area under the stress-

crack width at Figure 1.2.d was stated as the energy absorbed for the unit area of crack. 

Bazant and Oh (1983) later proposed their fracture process zone approach that led to 

the inclusion of the stress-displacement models to describe tensile behavior with using 

fracture energy and characteristic length concept in numerical simulations. This 

approach was adopted to reduce mesh dependency of computational results.  

 

Starting from 1960s, concrete finite element simulations were conducted in two 

mainstream directions. The first approach was done by adjusting the material stiffness 

matrix (i.e., smeared crack concept) introduced by Rashid (1968). Then this approach 

was modified to incorporate size effects following the Hillerborg model by Rots 

(1988). A two-dimensional nonlinear finite element model was used by Vecchio 

(1989) for monotonic simulations and by Palermo and Vecchio (2003) for cycling 

loading scenarios. There are essentially two methods for smeared crack models, i.e., 

the rotating (Rots 1988, Vecchio and Collins 1986) and fixed crack models (Willam 

et al 1987, deBorst and Nauta 1985) to estimate the crack initiation and propagation 

directions. Names refer to the concept on the orientation of the crack. For the fixed 
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smeared crack model, the orientation of the crack remains fixed in the direction of the 

first crack during all steps. On the other hand, gradual re-orientation of the crack is 

permitted for the rotational crack model. The main drawback of the continuum based 

finite element modeling whether using fixed or rotating crack models, is the inability 

to represent the actual separation due to cracking and operating with average strains 

across a gauge length rather than the reporting actual crack openings.  

 

 

Figure 1.2. Fracture Mechanics: (a); (b) Fracture Process Zone (F), linear zone (L), 

nonlinear zone (N); (c); (d) Fictitious Crack Model by Hillerborg (1976) 

 

Discrete crack models were developed to overcome the situation about the physical 

representation of cracking. The main idea was to discretize the element edges with 

special discontinuity elements at possible crack locations in the structure. Ngo and 

Scordelis (1967), who implemented such interface elements for the first time, placed 

links within the concrete for single reinforced concrete beams by using linear elastic 

analysis with predefined crack patterns. Later, Ingraffea and Saouma (1985) 

mentioned the deficiencies of this primitive discrete approach criticizing the difficulty 

of having to know the crack locations a priori. They developed a computer program 

(a) Linear Fracture (b) Concrete 

(c)Proposed model (d) Stress-crack width 
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with a discrete crack approach and remeshing capabilities after each crack. Moreover, 

to enhance the discrete crack approach, Blaauwendraad (1985) proposed a technique 

where cracks can go into finite elements to eliminate difficulties about changing the 

topology of meshes. The performance of the interface elements was investigated for 

the cyclic behavior of concrete by Oliveira and Lourenço (2004). According to them, 

interface elements are essential to capture nonlinear behavior for micro-modeling of 

masonry structures. Koutromanos and Shing (2012) extended this approach for 

concrete and masonry structures under cyclic loads by using the discrete crack 

approach with a plasticity based constitutive model for the interfaces. Despite the 

apparent advantages of modeling the cracks via discrete elements explicitly, the issues 

of identifying crack locations a priori, remeshing, pre- and post-processing, and the 

necessity of defining different constitutive models for the cracks and continuum parts 

are the key disadvantages of discrete crack models. 

 

Prior to the development of the finite element-based approaches, many researchers 

attempted to explain the force flow and load carrying capacity mechanisms in 

structural members. The most basic way could be thought as defining a structure by 

using truss networks.  The pioneer of truss models, Ritter (1899), proposed the model 

for shear design for reinforced concrete beams. He noticed that the occurrence of 

cracks due to the diagonal tensile stresses, compression diagonals inclined at 45 degree 

as shown in Figure 1.3.a describe the load carrying mechanism through parallel chords. 

In parallel to this idea, Mörsch (1909) proposed his famous truss analogy for the shear 

transfer in reinforced concrete beams (Figure 1.3.b). Later, Mörsch (1920,1922) 

introduced that the angle can be different than 45 degree and employed his idea for 

torsion resistance of reinforced concrete beams. About the same time, Wagner (1929) 

presented the tension field theory to explain the behavior of thin metal webs in carrying 

shear in excess of their initial buckling loads. Although developed for steel plate 

structures, the key idea was similar to that of Mörsch (1922). 

 

In light of the truss analogy as mentioned above, an alternative approach to discretize 

the continuum system was proposed by Hrennikoff (1941) by using a simple lattice 

truss network model (Figure 1.4.a) in the time that finite element method was not 

available. He calibrated the parameters for the truss elements so that the continuum 

has approximately similar elastic properties compared to a plane stress. This is 
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demonstrated in Figure 1.4.b where a shell element representing the elastic continuum 

and the equivalent lattice under generalized plane stress is shown. For determining the 

geometrical properties of the lattice members, three loading cases (pure tension in the 

x and y directions and pure shear) must be considered (Figure 1.4.c). Upon applying 

the equivalent nodal forces on the lattice network, two set of equations can be found; 

First Set: 

                                                           A1=lw
c2-ν

4ν(1+ν)c
                                                (1.1) 

                                                            A2=lw
2-c2+3ν

4(1+ν)
                                                (1.2) 

Second Set: 

                                                          A1=lw
2c2-1+3νc2

4(1+ν)c
                                              (1.3) 

                                                            A2=lw
1-νc2

4ν(1+ν)
                                                (1.4) 

Where l=l1 , c=l2/l1 , w is the thickness and ν is the Poisson’s ratio. It can be shown 

that the lattice network is unique only for a Poisson’s ratio of 1/3. Also, he mentioned 

that the results from structural analysis of the unit size were quite close to the exact 

solution in terms of stresses and deformations. If unit sizes were smaller, more 

reasonable results were taken. It was the first attempt to create a gridwork approach 

for continuum.  

 

 

Figure 1.3. Truss Models in Early Ages 

 

(a) Ritter (1899) 

(b) Mörsch (1909) 
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Figure 1.4. (a) Lattice Model and Deformation; (b) Shell Element and Equivalent 

Truss Lattice; (c) Three Loading Cases [Hrennikoff (1941)] 

 

These remarkable early works inspired the later developments for analysis and design 

using trusses for RC structural members. For example, Mitchel and Collins (1974) 

established a new method called the Compression Field Theory (CFT). In this theory, 

using compatibility of the angle of the diagonal compression regions mentioned as 

Wagner (1929), use of equilibrium and constitutive equations for the trusses enabled 

to define the full range load deflection behavior of reinforced concrete. The basics of 

Compression Field Theory is shown in Figure 1.5. It can be observed that it was 

envisioned as a fully rotating smeared crack model. Principle strain direction was taken 

as same with principle stress direction by compromising from actual compatibility. 

Stress-strain model was employed in the principle stress direction as an orthotropic 

model. Then Vecchio and Collins (1986) validated this idea by conducting a number 

of experiments and finalized the Modified Compression Field Theory (MCFT) for both 

in shear and torsion.  Around the same time, Hsu et al (1987) proposed his softened 

truss model. They performed a vast number of tests to understand the constitutive laws 

for the compression struts. Softened compression stress-strain relations and tensile 

(a) Deformation 

of Lattice Model 

(b) Shell and Equivalent lattice 

(c) Loading Cases 
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behavior of concrete and steel embedded in concrete were defined. The softened-truss 

model was developed with a systematic and unified manner and the response of 

membrane elements were simulated by using both as rotating angle softened truss 

model (RA-STM) (Hsu 1988) and fixed angle softened truss model (FA-STM) (Pang 

and Hsu 1996). In this way, the behavior of cracked concrete in shear was better 

described without violating compatibility.  

 

 

Figure 1.5. Fundamentals of CFT 

 

As mentioned above, explaining the force flow in design is quite important as it 

provides the engineers an intuitive approach. If the flow can be described by using 

simple components that can carry compression and tension, a handy design tool could 

be revised. A very intelligent approach along this line came from Schlaich et al (1987), 

who established a detailed design procedure named as the Strut and Tie Model (STM). 



9 

 

They employed the well-known truss model such that it can be used for every part (B 

and D-region) of the structure. The model was simple to understand because the main 

goal was to distribute the load applied the structure by using compression and tension 

members and nodes connecting them. The procedures were based on the separating 

the sections whether they have Bernoulli hypothesis of linear strain distribution (B-

regions) or nonlinear strain distribution (D-regions). Definition of these regions were 

based on stress trajectories in the structure (Figure 1.6.a). An example of STM after 

determined stress trajectories is given in Figure 1.6.b.  

 

These developments encouraged further seeking of such truss based models to 

simulate the concrete fracture. Simple lattice network that was composed of central 

force Hookean springs was conducted by Meakin et al (1989). The two dimensional 

triangular lattice model was inspired from the crack propagation model of Louis and 

Guinea (1987).  According to them, the bond breaking probability was proportional 

with the strain of bond. A particle model with random generation of the system for 

aggregate or fiber composites was developed by Bazant et al (1990). Particles were 

connected with trusses and the softening stress-strain relationship was implemented at 

contact layers of the matrix based on the fracture energy approach. Problems due to 

material inhomogeneities were encountered during the simulations. For the fracture 

modeling, the softening of the particles were studied in detail. Substantially, their 

model was similar to Burt and Dougill (1977)’s random truss model. The trusses were 

constructed with nodes with randomly generated circular particles as can be shown in 

Figure 1.7.a-b. The lengths were determined by the two interaction circles as Li = ri 

and Lj = rj where taken as 0.9 empirically and the two dimensional cross sectional 

areas of the truss were taken as 2 min (ri , rj). The softening behavior was defined in 

the region of the matrix within a circle with the length of Lm. The employed triangular 

stress strain relationship is given Figure 1.7.c. For the relationship, the fracture energy 

concept was used with Gf
m. The main idea was to make the area under the triangular 

stress-displacement curve constant for every length because energy dissipation must 

be same with regard to fracture energy concept. This was done by calibrating the strain 

value (f) of the complete crack. 
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Figure 1.6. (a) Stress trajectories for B and D-regions and (b) an example of elastic 

stress trajectories, elastic stresses and strut-and-tie-model [Schlaich et al 1987] 

 

(a) Stress Trejectories 

(b) An example of STM 



11 

 

 

Figure 1.7. (a) Different Neighboring Circles and Their Truss Member; (b) 

Randomly Generated Specimen and Its Meshes; (c) Constitutive Law for Contact 

Region [Bazant et al 1990] 

 

Jirasek and Bazant (1995) developed a particle model for quasibrittle fracture of solids 

with zones of distributed cracking and applied this model for ice with brittle and highly 

heterogeneous nature. The model incorporated the heterogeneity of sea ice which can 

be thought to be analogous to heterogeneity observed in concrete. They developed the 

model at the micro level by using a micro truss network. Due to the lack of data on the 

distribution of ice heterogeneity, the particle sizes were same for the model and a 

simple lattice geometry was used (Figure 1.8.a). In the micro level, a constitutive law 

(a) Construction of a truss member (b) Generated system 

(c) Softening Stress-Strain Diagram 
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for ice particles were used to simulate the interaction between the ice floe and rigid 

particles. A three parameter force displacement model was defined for the elements as 

shown in Figure 1.8.b. where tensile threshold Sp, element stretching at peak stress ep 

and element stretching at forming complete crack ef were needed. Strength and fracture 

properties of the four principle and two diagonal elements were adjusted to provide 

optimum approximation of isotropy. The idea was to hold the maximum force per unit 

length fixed in each direction of cracking. It was needed to overcome the directional 

bias of crack propagation in the model. Explicit integration for the solution of the 

equation of motion was used. It was concluded that using a regular lattice network 

gave directional prejudice through the line that had lattice elements. Providing 

different strength values of the elements could not solve this type of problem regarding 

cracking whereas randomly generated particles gave reasonable agreement in terms of 

the isotropic fracturing.  

 

 

Figure 1.8. (a) Basic Lattice of Square Pattern; (b) Constitutive Law for Regular 

Lattices [Jirasek and Bazant 1995] 

 

A regular lattice network modeling approach was studied by Schlangen and Van Mier 

(1992). Direct tension experiments with single edge notches based on the work of 

Herrmann (1988) was used for validation. The model constituted a triangular lattice 

model (Figure 1.9.a) with brittle breaking beams. The analysis process was conducted 

by removing beam elements from the mesh when it reached its maximum tensile 

strength computed based on beam theory. The heterogeneity of concrete was defined 

(a) Lattice Geometry (b) Stress-Displacement Curve 
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by providing a distribution for the bar strength and stiffness. Another alternative 

considered was to generate numerical grain distribution either manually or using 

statistical tools so that strength and stiffness of the beams would be assigned (Figure 

1.9.b). The beams were assigned three different properties representing aggregate 

particles, binding matrix and the interface between the matrix and the aggregate 

(Figure 1.9.c). The simulation result are presented in Figure 1.9.d demonstrating the 

crack propagation around aggregates.  

 

 

Figure 1.9. (a)Triangular Lattice Model [Schlangen and Van Mier 1992]; (b) The 

Model Projected on the Grain Skeleton; (c) Definiton of Beams and (d) Crack Pattern 

at Crack Width of 80 m 

 

Schlangen and Garboczi (1996) proposed a 2D lattice model by using beam elements 

to simulate shear test conducted by Nooru-Mohammed (1993). The beam elastic 

properties were determined based on the calculation of the elastic energy stored within 

a unit cell of the lattice. The effect of orientation of the lattice geometry was also 

investigated. Influence of the element types (i.e., spring elements, spring and shear 

elements and beam elements with regular triangular networks) was studied and use of 

beam elements due to necessity of the elements with three degree of freedom in 

complex crack patterns. A random lattice model was also studied to simulate 

heterogeneity. Regular lattice network caused different crack patterns but the random 

mesh enabled the objectivity at the crack propagation. The main reason of the inability 

(a) Lattice Model (b) Grain Distribution 

(c) Beam names (d) Simulation Result 



14 

 

of the demonstration of the actual crack pattern was the high directional constraint of 

regular lattice networks occurring naturally.  

 

All of the lattice networks explained above employed beam or trusses for the lattice 

models. Cusatis et al (2003) argued that models calibrated according to only mode 1 

fracturing (i.e., tensile cracking) were incapable of predicting other modes of fracture. 

A three dimensional lattice was used for their simulations by defining the response 

separately in tensile and compression. The elements were connected between adjacent 

aggregates which were distributed randomly. The model was different than the 

previous models as the particles were connected with both axial and shear springs. 

Cusatis et al (2003) argued that bending of beam like lattice networks (as in Schlangen 

and Van Mier 1992) could not reflect the real physics at the micro structures. ITZ 

region affects the properties of concrete at the macroscale. Thus; in mesoscale, 

discretization of this region was not implemented because it caused a high increase in 

the number of unknowns and expensive computations. The interaction of ITZ and 

mortar interaction was considered by using two elements coupled in series providing 

an indirect simulation. Behavior of ITZ and of mortar (or cement paste) was considered 

with common constitutive law of the element that connect particles. The experiment 

conducted by van Vliet and van Mier (1995) was used to calibrate the parameters of 

the model (Figure 1.10.a-b.) Results with these calibrated parameters of this model are 

shown in Figure 1.10.c-d. Two bounds of the experiments and numerical simulations 

were about the frictional stresses at the end of the specimens. According to this stress 

value, both peak stress and post peak load deflection response were influenced. Results 

from the numerical solution were in good agreement with the experiments. 

 

A lattice model approach was implemented by Van Mier (2013) recently at the 

mesoscale. He modeled concrete explicitly by modeling aggregates, cement paste and 

ITZ separately with different material constants. Hence, the lattice network was 

described as a multi-scale approach for concrete simulations. This approach was 

successful for simulations of experiments but it was computationally expensive. 
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Figure 1.10. (a) Used Aggregate Distribution; (b) Corresponding Elements [Cusatis 

et al 2003a,b] and Results for (c) 100 mm Long and (d) 200 mm Long Specimen 

 

Nonlocal and continuum aspects of numerical models have been investigated by many 

researchers. Silling (2000) mentioned that the main problem in solid mechanics was 

the discontinuity resulting from cracking. Classical approaches used partial derivatives 

arising from relative displacement and forces. The main advantage of his proposed 

model so called bond-based peridynamics (PD) was the integration rather than 

differentiation to determine the forces for a material particle by using the Newton’s 

second law of motion applied for every infinitesimally small particle at a specific 

region. Accordingly, by using the relative displacement of two adjacent particles, a 

pairwise force function was proposed. The idea of the particle interactions was that a 

particle can interact with other particles within a specific distance creating the model 

nonlocality. This distance was called as the “material horizon (” (Figure 1.11.a). 

Horizon was the most important parameter determining the nonlocality of the system, 

meaning that higher fine horizon corresponds to more nonlocal interactions. The 

original formulation for PD is shown in Eq. 1.5; 

(a) Particle Distribution (b) Mesh 

(c) 100 mm Long (d) 200 mm Long 
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                      L⃗⃗⃗(x⃗⃗,t)= ∫ f⃗(u⃗⃗(xj⃗⃗⃗,t)-u⃗⃗
R

(xi⃗⃗⃗,t), xj⃗⃗⃗-xi⃗⃗⃗)dVj      ∀x⃗⃗ ∈ R,  t≥0.                    (1.5) 

More concisely, 

                                  L⃗⃗⃗(x⃗⃗)= ∫ f⃗(uj⃗⃗⃗
R

-ui⃗⃗⃗, xj⃗⃗⃗-xi⃗⃗⃗)dVj     on  R                                       (1.6) 

Where f⃗ is the pairwise force function arising from each pair of particle interaction, 

L⃗⃗⃗(x⃗⃗) is the force per unit reference volume due to interaction with other particles, u⃗⃗ is 

the displacement field, t is time, V is particle volume and x⃗⃗ is the location of the 

particle. The PD equation of motion was used as Eq. 1.7; 

                                            ⍴ü⃗⃗=L⃗⃗⃗+b⃗⃗      on  R,     t≥0.                                             (1.7) 

Where b⃗⃗ is some prescribed loading force density, ⍴ is the mass density, L⃗⃗⃗ is the 

resultant force of a particle within . 

 

There were restrictions on the Poisson’s ratio due to the fundamental mathematical 

background of preliminary PD model Silling (2000). In the bond-based PD model, the 

Poisson’s ratio was limited to 1/3 and 1/4 for the two- and three-dimensional problems, 

respectively.  Restrictions on the Poisson’s ratio for homogeneous deformations of 

linear isotropic materials could be eliminated with some adjustments. It would require 

fundamental changes of L⃗⃗⃗(x⃗⃗). The main alteration was the modification of the macro-

elastic energy density as given in Eq. 1.8; 

                                                        W(x)̅̅ ̅̅ ̅̅ ̅=W(x)+e(ϑ(x))                                        (1.8) 

where  

                                                        ϑ(x)= ∫ j(|Ɛ|)|Ɛ+ƞ| dV
'
     on R                          (1.9) 

ƞ is the relative displacement vectors, Ɛ is the relative position vectors, the value of ϑ 

is a weighted average of the extension of all the springs connecting x with all the other 

particles in the body, e is the function of a volume dependent strain energy term and j 

is scalar valued function. Poisson’s ratio was restricted if only for the bond between 

two particles interactions was thought. However; adjustment of the original PD models 

was done by changing the idea of the calculation of the strain energy density from the 

interaction of just two particles to include local volume change (Macek and Silling 

2007). In other words, bond properties depend on stretch of all neighboring particles 

to overcome the restriction of Poisson ratio. 
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As the internal length approached zero for a problem with no damage, the method 

converged to results obtained with classical continuum mechanics. PD was capable of 

representing linear theory of elasticity if the response function was used with the 

vanishing length scale (Silling et al 2003).  PD could be thought as springs or trusses 

connected between particles in the material horizon according to Silling (2000) (Figure 

1.11.b). For brittle materials that exhibited no tension softening, after a bond broke, 

points at the ends of the bond were disconnected from each other. Damage was 

incorporated in the pairwise force function by allowing bonds to break when 

elongation was exceed. Wave propagation in solid mechanic was also studied by using 

PD. A PD formulation was developed to understand behavior of an infinite bar 

subjected to a self-equilibrated load distribution by Silling et al (2003). According to 

the study, the model had two main advantages: i-Discontinuities were included without 

any special treatment or as a priori, ii- Thanks to material horizon concept, forces could 

be transferred within a long range of particles. 

 

 

Figure 1.11. (a) Interaction of Particles in Specific Distance (); (b) Brittle Behavior 

for Elements of Connecting Particles [Silling 2000] 

 

The PD of Silling works on multiple scale of modeling and did not need any stress-

strain concepts. Gerstle and Sau (2004) used this model to simulate concrete for the 

first time. Simulations of plain and reinforced concrete was proposed by using the 

EMU (Silling 2000) a molecular dynamics code. A micro elastic PD model was used 

for concrete which connected particles as shown in Figure 1.11.b. The modeling of a 

specimen in uniaxial tension and an anchor pullout problem were conducted and the 

tensile fracture was simulated (Figure 1.12.). 

(a) Interaction in horizon ()  (b) Brittle behavior 
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Figure 1.12. Result of EMU for Concrete [Gerstle and Sau 2004] 

 

Constitutive models in PD was discussed by many other researchers in 2000s. For 

example, Silling and Bobaru (2005) proposed a constitutive model for the tearing and 

stretching of rubbery sheets to simulate membranes. PD was capable of simulating 

bond softening/breakage and the resulting load redistribution was calculated with the 

solution of the equation of motion. This enabled the method to simulate autonomous 

multi-crack initiation, interaction, and propagation, and the consequential anisotropy. 

When the bonds were represented with lines, the bond-based PD can be viewed as an 

overlapping lattice model (OLM) as defined in the title of this work. Silling and Askari 

(2005) attempted to find critical stretch value, so (shown in Figure 1.9.b. as u*). First, 

the required energy released rate, G0, to break all the bonds per unit fracture area was 

found by Eq. 1.10; 

                                                        G0=
π2𝑐𝑠s0

2δ
5

10
                                                             (1.10) 

                                                   cs=
18K

πδ
4                                                              (1.11) 

where cs is the spring constant, K is the bulk modulus. Solving these two equations for 

the critical stretch value, Eq. 1.12 is obtained; 

                                                        s0=√
5G0

9Kδ
                                                             (1.12) 

Moreover, the horizon could be thought as the interaction between the atoms or 

molecules in nanoscale. However, for PD in macroscale, horizon was recommended 

as three times the grid spacing. A horizon longer than the recommended value is shown 

to create excessive wave dispersion while requiring very expensive computations 

(Silling and Askari 2005). Gerstle et al (2005) employed PD for plain and reinforced 

(a) Uniaxial Tension  (b) Anchor pullout  
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concrete elements subjected to different loadings. A zeroth-order micro elastic damage 

(i.e., brittle response) was used. For materials that exhibited tension softening, the 

bond force could be a nonlinear function of elongation. They also determined breaking 

stretch, so (shown in Figure 1.9.b. as u*), with objectively by using fracture energy 

concept for their brittle constitutive model with the Eq. 1.13;  

                                              S0= 
2

δ
2 √

Gf

ct
         for 2D                                                          (1.13) 

where  is the material horizon, c is a micro elastic constant. 

 

In order to overcome the limitation on the Poisson’s ratio (i.e., 1/3 in 2D, 1/4 in 3D), 

a number of approaches were developed. Silling et al (2007) enhanced the PD model 

with the idea of a state concept which was called later as “State-Based Peridynamic 

Model”. The model was a generalization of the bond based PD augmented by the 

deformation and force states by using the principle of virtual work. In state-based PD, 

the response of material points was dependent on the deformation of a region. 

Collective behavior of all the points was used to determine the material response.  

 

The bond based PD model was generalized for concrete and other quasibrittle 

structures by Gerstle et al (2007). The model was called as “micro-polar peridynamic 

model”. The main idea was to implement extra moment density with a pairwise force 

density. They changed the “micro-truss” model to a “micro-beam” one with both axial 

and bending stiffness. In Figure 1.13.b, i and j represent adjacent particles and dVi and 

dVj are volumes of the particles. Classical approach already had ui and uj which are 

displacements of the particles whereas in the micro-polar model, rotational degree of 

freedom (i, j) was added. Obviously, the moment densities (m) and the force 

densities (f) were combined (Figure 1.13.c). The first order micro elastic damage 

model (Figure 1.13.a) was implemented as a constitutive model by Gerstle et al (2007). 

In order to decrease the computational cost, the model was implemented in a finite 

element framework by using implicit solution algorithm for parallel processing. Then 

the micro-polar PD model was enhanced by Gerstle and coworkers (Gerstle et al 

2007a, Gerstle et al 2007b, Gerstle et al 2009). Different constitutive models for the 

bonds which connect two close particles within the horizon were conducted to 

represent the fracture mechanics of concrete. An example of using micropolar 

constitutive model for concrete proposed by Gerstle et al (2007b) are shown in Figure 
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1.14.a. This model was used for uniaxial specimen. Discretized model of this specimen 

is shown in Figure 1.14.b. The response from simulation and damages are shown in 

Figure 1.14.c with the color coding presented in constitutive model curve. Blue curve 

represents the results of the micropolar peridynamic simulation; red curve represents 

a typical laboratory response. 

 

Researchers have chosen different models for PD. For example, after proposed micro-

polar PD model, Mitchell (2011) developed a state-based model as a nonlocal ordinary 

perfect plasticity model. Also, in 2013, Beckmann et al used bond based PD model by 

using trusses to model of the system under thermal load. The PD model with increasing 

horizon ensured the increase of directions reducing the grid-dependency of results 

commonly observed in lattice models. The model could be used for flow problems 

using general state based PD formulations as well. (Katiyar et al 2014).  

 

 

Figure 1.13. (a) First Order Micro Elastic Damage Model [Gerstle et al 2005; 

Gerstle et al 2007]; Interaction of Two Adjacent Particles in (b) Kinematics;            

(c) Kinetics Terminology [Gerstle et al 2007] 

(a) First Order Model  (b) Kinematics Terminology   

(c) Kinetics Terminology   
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Figure 1.14. (a) Micropolar Constitutive Model; (b) Discretized Model of Uniaxial 

Tension/Compression Specimen and (c) Computed Uniaxial Stress-Strain Curve 

[Gerstle 2007b] 

(a) Micropolar Constitutive Model  

(b) Uniaxial Specimen  

(c) Computed Stress-Strain Curve  
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In order to solve the nonlinear response for crack propagation simulations, methods 

such as Newton-Raphson, arc length methods etc are commonly employed. Such 

algorithms are prone to convergence problems due to severe softening and snap-back 

response that can be observed in the simulation of quasi-brittle materials. In order to 

overcome these limitations, the load deformation response of the system modeled with 

an overlapping lattice approach in this study was solved by using the Sequentially 

Linear Analysis (SLA) as proposed by Rots (2001). It is a solution method for 

nonlinear problems and offers a simple to a nonlinear problem as there is no 

convergence problems due to the softening or snapback phenomena. This provides an 

important advantage over other solution strategies. 

 

A similar approach based on an element removal algorithm was successfully used by 

Schlangen and van Mier (1992) as explained before. Rots (2001) used SLA approach 

to solve structural mechanic problems within a finite element framework for the first 

time. Instead of removing elements, a softening function was used with a fracture 

mechanics framework by Rots (2001) (Figure 1.15.). The main procedure can be 

outlined as follows; 

 External force is applied to the system as a unit load 

 Linear elastic analysis is performed 

 Critical element which has the highest value of current stress divided by its 

current strength is found 

 Load factor,  that is the ratio of the strength and stress level is the scale value 

by which unit load elastic solutions are multiplied 

 The stiffness and strength of critical element is reduced according to its 

constitutive model 

 The procedure is repeated in a damage controlled manner 

 

This procedure represented a saw-tooth curve. In SLA, the analysis sequence was 

controlled by the damage imposed on the most critically stressed element as opposed 

to direct force or displacement control. Series of linear elastic solution were always 

implemented rather than working with negative incremental slopes. This type of 

solution method always converges. 
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Fracture energy which was taken as the area under the stress displacement curve was 

used to determine the ultimate strain, u in Eq. 1.14;  

 

                                                     Ɛ𝑢 =
2∗𝐺𝑓

𝑓𝑡∗ℎ
                                               (1.14) 

where Gf is the fracture energy, ft is the tensile strength and h is the crack band width. 

Modulus of elasticity of the critical element was reduced with arbitrary reduction 

factor, . Afterwards, new strength was found by using this new Young’s modulus 

and constitutive diagram. A saw-tooth curve was proposed for an initial Young's 

modulus E of 38000 N/mm2, initial tensile strength ft of 3 N/mm2, fracture energy Gf 

of 0.06 N/mm, crack band width h of 5 mm and a reduction factor  of 1/2 with 10 

steps by Rots (2001) as shown in Figure 1.15.a.u was found as 0.008 by using Eq. 

1.14. The result of an analysis of a notched beam conducted with a very fine mesh is 

also shown in Figure 1.15.b. 

 

DeJong et al (2008) further extended this method for non-proportional loads within a 

finite element framework. SLA is easy to program as it only requires elastic analysis 

with no iterations and is capable of obtaining the response even with a snapback 

behavior. The analysis results are usually jagged as given in Figure 1.15.b due to the 

sequential elastic nature of the analysis and the solution obtained is accepted as the 

envelope of the response curve. 

 

 

Figure 1.15. (a) Softening Stress-Strain Diagram (dashed) and Saw-tooth 

Approximation (drawn) and (b) Result for Very Fine Mesh [Rots 2001] 

 

(a) Saw-tooth  (b) Load-Displacement Curve 

Experiment 
Numerical 



24 

 

There are some alternative robust SLA models proposed by Rots (2008) to solve other 

structural problems in the literature. Revised and first implemented models were 

compared. The main reason for the requirement to construct revised model was to 

employ the actual fracture energy in the stress strain response. In the previous 

approach, the energy dissipation observed in constitutive model was taken from the 

area under saw tooth curve and it was different than the actual fracture energy 

depending on the chosen reduction factor for the modulus of elasticity. Thus, the new 

model was conducted to overcome this misrepresentation. A constitutive model was 

constructed according to the given fracture energy with Eq. 1.14. The graphical 

representation on the previous and the updated models are shown in Figure 1.16. In 

the revised version, the energy dissipation could be matched to the actual fracture area 

defined by the model if the tensile strength of the curve was taken as slightly more 

than the actual one. 

 

 

Figure 1.16. Comparing SLA Models 

 

These studies demonstrate that the fracture energy concept for concrete and its 

simulation techniques are recently shifting from the finite elements to particle and 

lattice based methods. The main concern for this direction is to obtain a good 

prediction of the actual crack patterns and response of the structures. Classical 

structural analysis technique has not been implemented into the lattice framework 

including the horizon concept of the PD by any researchers. Combining these two 

concepts leads to a decrease in the computational efforts to solve full structural 

problems. In addition, we could not find published research on calibration of the 

(a) First Implementation (Rots 2001) (b) Revised Implementation (Rots 2008) 



25 

 

softening response observed in average length of the concrete for microscale in the 

literature until this time.  

 

1.3 Objective and Scope 

 

This study provides a new computational approach named as the overlapping lattice 

model to simulate the autonomous fracture initiation and propagation in concrete 

media. It follows the truss network analogy to model the concrete and borrows the idea 

of using different horizon distances in connecting nodes from peridynamics. The study 

is conducted at the mesoscale (i.e., few millimeters of mesh resolution), however the 

concrete continuum is treated as a single phase medium to preserve engineering 

practicality. In contrast to the approaches presented in the literature, a new calibration 

approach is presented while retaining the grid size objectivity. The sequentially linear 

analysis (SLA) technique is employed for all simulations. The success of the proposed 

approach and its potential in simulating structural problems is discussed. The 

objectives of the study are:  

 To propose an overlapping  lattice model along with the appropriate 

constitutive models and their calibrations 

 To validate the overlapping lattice model for crack propagation and response 

in unreinforced concrete 

 To validate the overlapping lattice model for the prediction of the response of 

reinforced concrete. 

 

The details of the overlapping lattice model are explained in Chapter 2. In this chapter, 

the calibrations of element constitutive model are also presented. In Chapter 3, the 

validation of the Overlapping Lattice Model for several structural experiments in 

literature for both the plain and reinforced concrete cases is presented. Finally, in 

chapter 4, some conclusions and future works are drawn. 
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CHAPTER 2 

 

2 OVERLAPPING LATTICE MODELING 

 

2.1 General 

 

In this chapter, the overlapping lattice model (OLM) is explained. Afterwards, the 

constitutive model is presented along with the Sequentially Linear Analysis (SLA) 

used for the nonlinear solutions. Calibration of softening parameters for constitutive 

models is conducted by simulating uniaxial tension tests along with numerical 

experiments. 

 

2.2 Overlapping Lattice Model Approach (OLM) 

 

In the proposed OLM, each node interacts with points within a predetermined distance 

called horizon () to account for the nonlocal effects. For the two-dimensional 

problems defined with uniformly distributed particles separated by a grid spacing, d, 

in x, y directions, a particle located away from its neighboring elements is connected 

to 8 and 28 nodes for of 1.5d and 3.01d, respectively (Figure 2.1.a-b). To consider 

the optimum horizon, was commonly taken slightly more than three times d in the 

previous studies (Silling and Askari 2005). With such a horizon, the number of 

elements connected to a node within the  can better represent the formation of cracks 

at various directions despite the use of a structured grid. The horizon (3.01d) is chosen 

slightly larger than 3d in order to take all the nodes including those at a distance of 3d. 

Using a horizon size longer than 3.01d may lead to take very large computational times 

due to exponential increase in the number of elements. For example, the simulation 

time of the direct tension test discussed in Section 2.4.1 for a grid size of 3 mm, 10202 

total number of elements and 1.5d horizon is 168 seconds. The computation time 

increases to 1800 seconds upon increasing the model to 3.01d horizon with 34702 

elements. On the other hand, computational time increases to 25922 seconds when the 

grid size is reduced from 3 mm to 1 mm for a 1.5d horizon. Simulations were 

conducted with Intel Core i7-4720 HQ processor and 16 GB ram. A classical structural 

analysis approach to treat the interaction forces between nodes was used for 
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simulations as opposed to the explicit integration commonly used in the particle based 

approach. This approach was confirmed to be valid by Macek and Silling (2007).  

 

The slope of the linearly elastic segment EAt (modulus of elasticity times cross 

sectional area of truss elements) can be obtained from simple energy principles. First, 

a deformation field introduced to estimate the elastic properties of elements in OLM 

(for example x=constant, y=0). x is taken as an arbitrary constant by giving 

deformation in the x direction i.e., multiplying every node only x location (i.e., 1+x). 

Then, the total elastic energy, Energyoriginal, stored in the original geometry is computed 

using the modulus of elasticity as shown in Eq. 2.1 for the plane stress problems. 

Appropriate modifications should be made for plane strain problems. 

                                                Energy
original

=
E*Ɛx

2*w*A

2*(1-ν2)
                                     (2.1) 

Above E is the modulus of elasticity, x is strain in the x direction, w is the thickness 

of the system, A is the volume per unit thickness area into the page (i.e., multiplying 

w and A give the volume of the system), ν is the Poisson’s ratio taken as 1/3 for 2D, 

1/4 for 3D.  

 

 

Figure 2.1. Lattice Model for (a)  = 1.5d and (b)  = 3.01d 

 

(a)  = 1.5d (b)  = 3.01d 

8 nodes 28 nodes 
d 

d 

1.5d 

d 

d 

3.01d 
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The deformation field from the OLM obtained by summing all the energy from lattice 

elements gives the total elastic energy, EnergyOLM. While computing EnergyOLM, EAt 

was taken as 1. The elastic energy of a truss element is calculated by Eq. 2.2 due to the 

induced deformation field;  

                                                     Energy
OLM

=
N2L

2
                                               (2.2) 

where N is element force and L is length of the element. The stored energy was 

proportional to the total elastic energy computed as the sum of all individual truss 

elements multiplied by EAt. Therefore, EAt can be computed as the ratio of original 

energy in the elastic system subjected to the deformation field by the energy of the 

lattice network with EAt=1 as given in Eq. 2.3; 

                                                 EAt=
Energyoriginal

∑ EnergyOLM
                                              (2.3) 

The same procedure is repeated for the deformation field in the y direction by using y 

instead of x in Eq. 2.1. Total elastic energy was computed by Eq. 2.2. EAt value was 

then found by using Eq. 2.3. It is concluded that Energyoriginal and EnergyOLM values 

are close to each other for both directions as anticipated due to isotropy of the system. 

 

Stiffnesses of all trusses in OLM were taken constant as EAt, which can also be viewed 

as the slope of the force-strain diagram. It should be noted that EAt computed above is 

the product of modulus of elasticity of concrete and At , which is a pseudo area that 

enforces the system to dissipate elastic energy similar to the energy in the elastic 

continuum. The modulus of elasticity for tension and compression are taken the same 

due to the assumed isotropy of the system.  

 

The proposed OLM employs a multilinear softening force deformation response for 

truss elements. As concrete exhibits tension softening, beyond a critical strain (or 

cracking strain, cr), the element can transfer further tension described with the 

softening function as shown in Figure 2.2. Nonlinear tension softening function is 

assumed to be in the form of a stepwise linear softening. The force-strain diagram is 

used for the structural analysis (instead of a stress displacement response), as EAt is 

already available from the previous energy calibration. As can be seen in Figure 2.2, 

there are five material model parameters which are multipliers of critical force (b1 and 

b2) and strain (a1, a2 and a3), Fcr, and cr. The material model parameters for the tension 
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behavior of the truss elements are calibrated by using the approach presented below. 

Concrete in compression is assumed to be elastic as the focus of this research is the 

failure due to cracking or steel yielding. Compression performance of OLM is not 

studied within the scope of this thesis. It should be mentioned that compression failure 

in concrete is also related with cracking in different directions. However; detailed 

studies focusing on compressive failure simulations are needed in order to generalize 

the proposed OLM. 

 

In order to minimize the mesh size dependency, a fracture energy regularization is 

proposed. The parameters of the softening functions are determined for the element 

with the smallest length (i.e., orthogonal elements in Figure 2.1) to avoid brittle 

behavior of the longer elements as explained later in detail. For other elements, strain 

values in the softening part are decreased in proportion to the ratio of lengths (i.e., 

d/L). The fracture energy is the energy required to open a unit area of crack surface 

and it is taken as a material property independent from the size of the structure. This 

energy is the area under the stress-displacement response of the concrete. According 

to CEB-FIB Model Code 1990, fracture energy is related to maximum aggregate size 

and compressive strength of concrete. So, for truss elements with lengths other than 

the minimum length of an element (d), a1, a2 and a3 values are multiplied by d/L so 

that the area under the force-displacement response for each truss member is 

approximately the same as illustrated in Figure 2.2.  

 

 

Figure 2.2. Constitutive Model for Overlapping Lattice Models for Different 

Element Lengths 

 

The length scaling procedure described above is also applied for different grid sizes, 

(d' shown in Figure 2.3), different than the grid size d to ensure the incorporation of 
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size effect. The fracture energy concept is applied similarly for a different grid size by 

ensuring same stress-displacement curve for all member sizes. It should be noted that 

for a grid size different than d, Fcr value can be different (Figure 2.3.a) because of a 

different EAt value computed from energy balance. cr is taken a material property and 

is computed from fcr/E. However, At may change depending on the grid size which can 

result in a different force-displacement response as shown in Figure 2.3.a. Fcr value 

can be computed as fcr* At. To conclude, for all members regardless of their grid size 

or mesh size, critical stress and strain values, fracture energy and stress-displacement 

curves are same in the proposed OLM. 

 

 

Figure 2.3. Element Constitutive Diagrams (a) Force-Strain for Different Grid Sizes; 

Corresponding (b) Stress-Strain Diagram and (c) Stress-Displacement Diagram 
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The proposed approach outlined above is a mesoscale approach (i.e., elements in the 

order of few millimeters). This requires modeling of the force displacement response 

of the concrete ingredients to relate the meso- and macro-scale response instead of 

taking ITZ, cement paste and aggregates separately. However, an engineering 

approach, where the truss elements have similar force-deformation response curves, a 

homogenized continuum was assumed in this study. In this way, the number of 

parameters was kept to a minimum while providing a global match of the force-

deformation response along with the crack propagation pattern. 

 

When long elements exist in the OLM, then there is a potential of snap-back behavior 

for force-strain response. For this case, brittle behavior was assumed i.e., sharp drop 

is employed for that element as seen in Figure 2.4. For reinforced concrete simulations, 

steel elements are assumed to have elastic perfectly plastic load-strain response (Figure 

2.5.a.). Elements connecting steel and concrete nodes must also be calibrated. For 

steel-concrete connecting elements, studies indicate that all connecting elements could 

be assumed to carry at least 70% of the tensile critical force of concrete (fcr) ensure 

perfect bond. Accordingly, an elastic perfectly plastic load-strain response is assigned 

to elements connecting to steel and concrete nodes (Figure 2.5.b). This requirement is 

found to be necessary to stop pullout of steel from concrete. In addition, strain 

hardening was not considered for steel elements as the conducted simulations for RC 

structures in this study do not experience strain values beyond the onset of strain 

hardening. 

 

 

Figure 2.4. Brittle Behavior for Long Elements 
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Figure 2.5. Force-Strain Diagram of Elements for (a) Steel Elements; (b) Links 

Connecting Steel and Concrete Particles 

 

2.3 Sequentially Linear Analysis and The OLM Simulator 

 

SLA is chosen as the solution algorithm in this study. SLA has the following 

advantages; 

i- SLA ensures that results are obtained even for snapback type response 

ii- SLA is easy to implement and run 

iii- SLA is quite suitable for the calibration of constitutive model with steep 

softening function 

In this thesis, the 2001 version of SLA was used (Rots 2001). The main object is not 

to enhance the state of the art of SLA, but rather use it as a simulation tool. Illustration 

of the saw-tooth curve for the constitutive law can be seen in Figure 2.6 for concrete 

and steel elements. The reduction factor of modulus of elasticity,is taken as 0.995 

in all the simulations. This step reduction is much smaller than the number used by 

Rots (2001). The reason of selecting such a small is for accuracy with a reasonable 

computation time. After EAt reaches to EAt*10-3,  is taken as 0.8. In this way, EAt is 

reduced faster for completely failed elements to increase the efficiency of the 

computational method.. In reinforced concrete simulations, the reduction of EAt for 

steel is taken as 0.9.  

 

A computer program was developed to automatically create the OLM with a 

predetermined element size and , to conduct SLA steps with a preconditioned 
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conjugate gradient iterative solver for the solution of the algebraic set of equations. 

The code was slightly different compared to the earlier SLA implementations. For 

example, force ratios to determine load factor were used instead of using stress ratios 

as discussed in Rots (2001).  Algorithm of the code is given in Appendix A. 

 

The provided essential input needed for the overlapping lattice simulations are E, 

tensile strength (fcr) and the fracture energy (Gf) obtain from traditional material tests. 

In addition, the multilinear softening function parameters (a1,a2,a3 and b1,b2) of the 

truss elements are also required for the calibration of the constitutive model (Figure 

2.6.a). 

 

 

Figure 2.6. Illustration of the SLA with Saw-Tooth Behavior 
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2.4 Calibration of The Constitutive Model Parameters 

 

The preliminary simulations revealed that the softening function of truss elements, 

when selected from the available softening models in the literature, cannot provide 

accurate tensile response predictions mainly due to the local nature of the OLM. It is 

well known that all available softening models were derived from average 

displacement measurements from tension tests and cannot reflect the meso-scale 

response of concrete in tension. An example to explain the local nature of the OLM 

can be given from stretching the OLM model in the Figure 2.1.a. When the overlapping 

trusses are stretched in one direction, series of two diagonal and one orthogonal 

members are in tension. Combining the responses of these members give the total 

response of the specimen. Thus, assigning total response of the specimen in a gauge 

length as a member response can be a misrepresentation. Therefore, the fracture energy 

concept for explaining the stress displacement response of concrete in tension cannot 

be related with the individual lattice members directly. Furthermore, the softening 

parameters cannot be directly taken from a typical tension test due to the absence of 

reliable test data with densely located local displacement measurements similar to the 

overlapping lattice grid. Therefore, tensile stress-average displacement (within a 

specific gauge length) curves can be employed to calibrate the multilinear softening 

function parameters. For different grid sizes, the length scale can then use to adjust the 

input stress-strain function similar to the approach used in the mesh regularization in 

finite element simulations (Bažant and Oh 1983). Afterwards, structural member 

simulations are performed by using the input material properties and calibrated 

softening function parameters. 

 

The first set of calibrations were performed by using the tension test results of 

Gopalaratnam and Shah (1985) (GS), and Cornelissen et al (1986) (COR). In order to 

consider a larger notch for the model, a numerical test simulation was conducted. GS 

and COR simulation results were compared with their experiment results. Thus, for 

numerical experiments due to the lack of experimental data, the stress-displacement 

model of Cornelissen et al (1986) (Figure 2.7.a) given in Eq. 2.4. was employed as the 

“representative” test result for the softening part and the calibration of the input 

parameters conducted based on those results.  
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f(u)

fcr
= {

(1+ (c1
u

uult
)

3

 ) exp (-c2
u

uult
) -

u

uult
(1+c1

3)exp(-c2),   0<u<uult

0,  uult<u<∞
              (2.4) 

where  

                                                         uult=5.136* 
Gf

fcr
                                                 (2.5) 

fcr is the uniaxial tensile strength, and c1 and c2 values are the constants. uult is the 

ultimate crack width, Gf is the fracture energy and u is the average crack displacement 

within the gauge length. Cornelissen et al (1986) conducted these experiments using 

both lightweight and normal weight concretes. In this study, normal weight concrete 

considered so c1 and c2 constants were taken as 3 and 6.93, respectively. The accuracy 

of this equation is shown in Figure 2.7.b by comparing it with test results. Elastic part 

was added to Figure 2.7.a in order to obtain full stress-displacement plot. Gf and tensile 

strength, fcr, parameters are the necessary parameters to construct the stress 

displacement plot. Finally, the measurement length and the net cross section area of 

specimen (i.e., notch region) are needed to obtain results for a given gauge length. GS 

and COR experimental results and predictions from Eq. 2.4 and 2.5 are compared in 

Figure 2.8.a-b. The results are in very good agreement stating that this formulation can 

be used as “representative” test results. 

 

Three uniaxial direct tension tests were simulated by using OLM to calibrate the 

multilinear softening function parameters. Two of them are from experiments (GS and 

COR) and the other from numerical experiments. The simulations were conducted for 

different  (1.5d and 3.01d) and grid sizes. 

 

 

Figure 2.7. (a) Stress-Displacement Curve of Cornelissen et al (1986); (b) Stress-

Crack Width Curve Compared with Experiments 

(b) Stress-Crack Opening Relation (a) Stress-Displacement Curve 
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Figure 2.8. Comparison Formulation and Experiments (a) Stress-Displacement for 

Gopalaratnam and Shah (1985); (b) Cornelissen et al (1986) 

 

2.4.1 Gopalaratnam and Shah (1985) (GS) 

 

A specimen was tested to observe softening response of plain concrete in direct tension 

by GS (1985). The rectangular prism specimen had dimensions of 76 mm x 19 mm x 

305 mm. The test specimen is shown in Figure 2.9. Notches at both side had heights 

of 13 mm and width of 3 mm. E, fcr, and Gf values are taken as 29.1 GPa, 3.41 MPa, 

0.054 kN/m from test results. The measurement gauge length of the experiment was 

reported as 83 mm. In the comparisons of simulation results, the closest points to the 

measurement length used in the experiment were used. The displacement differences 

between these two points were calculated to determine the change in length. For 

uniaxial tension test simulations, average changes in the lengths of the left end, right 

end, and midpoint were recorded. 

 

The test specimen was modeled with a grid spacing, d, of 1 mm. Afterwards, the 

optimum parameters for a1, a2, a3, b1, and b2 that minimized the difference between the 

reported and computed fracture energies were determined with a tolerance of 10% 

(difference between the areas under stress-displacement responses of experiment and 

simulations). Simulations were also conducted for grid spacing of 3 mm, 5 mm and 15 

mm in  of 1.5d. In addition, 1 mm and 3 mm grid spacings were used with for  of 

3.01d in the simulations. Whenever an OLM analysis was performed with an initial 

spacing other than 1 mm for GS, a1, a2 and a3 values were computed with the ratio of 

the length scales (a1, a2 and a3 decreased proportional with increasing element length) 
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as explained in Section 2.2. Therefore, the smallest grid size for a given  always 

dictated the selection of a1, a2 and a3. Simulations showed that the best match was 

obtained when b1 and b2 values were kept constant as explained later.  

 

 

Figure 2.9. Test Specimen [Gopalaratnam and Shah 1985] 

 

 

Figure 2.10. Force-Deformation Curves with (a) =1.5d; (b) =3.01d [Gopalaratnam 

and Shah 1985] 
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The comparisons of the experimental and analysis results for stress-deformation 

responses are presented in Figure 2.10 for =1.5d, =3.01d. The damage patterns at 

the end of simulations (i.e., changes in length are at 5.5*10-5 mm) are shown in Figure 

2.11 for =1.5d. In all uniaxial tension damage patterns, color legend denotes the strain 

value of elements ranging from 0.00012 to 0.02. Amplification factor for the 

deformation field presented for the notch region is 20 for illustration purposes. Only 

notch region of the specimens is shown. Furthermore; for coarse grids whose length 

exceeded the notch height, the elements that were in the notch region were weakened 

by multiplying cr value with an appropriate small number for =1.5d (i.e., 4.6*10-9 

and 3.5*10-5 were used for d of 5 mm and 15 mm, respectively for GS, 9.5*10-5 was 

used for d of 20 mm for COR) to account for the notch geometry. 

 

Multilinear function parameters optimized with tension test results are shown in Table 

1. The analysis results upon increasing the  is shown in Figure 2.12 for =3.01d. It 

should be noted that the use of a longer  required the change of only a1 among all 

parameters as shown in Table 1 in order to match accurately the tension test results. 

The results for the  of 3.01d results have different crack patterns compared to 1.5d 

cases as the cracks tended to extend beyond the notch region. This was due to the 

increasing nonlocal effects, which tended to diffuse the crack beyond the notch region. 

The key reason for this situation is the presence of long diagonal elements connected 

from the notch region to the region outside the notch. This is believed to spread the 

cracking and misrepresentation of the nonlocal damage interactions. 

 

A close agreement between the test and simulation results were observed even with 

significantly large grid spacings. It is interesting to note that the mesh regularization 

by scaling the softening function seemed to provide objective results while slight 

differences in the response estimations stemmed from the inability of placing the notch 

accurately when the mesh sizes are larger than the notch depth. 
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Figure 2.11. Damage Patterns with Different Initial Spacing with =1.5d 

 

 
Figure 2.12. Damage Patterns with Different Initial Spacing with =3.01d 

 

2.4.2 Cornelissen et al (1986) (COR) 

 

COR conducted uniaxial tension tests to understand fracturing of concrete subjected 

to tension. The specimen dimensions were 250 mm x 60 mm x 50 mm (Figure 2.13). 
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Saw-cut notches at both sides had heights and widths of 5 mm, which reduced the net 

cross section to 50 mm x 50 mm. E, fcr, and Gf values were taken as 21.0 GPa, 3.47 

MPa, 0.1 kN/m from test results. LVDTs that were used to measure the displacements 

within a gauge length of 35 mm. 

 

 

Figure 2.13. View of Test Specimen and Testing Equipment 

 

This experiment was modeled first with a grid spacing of 2.5 mm. Then the length 

scaling was reflected on the force strain curve for other grid sizes and element lengths. 

Calibrated parameters a1, a2, a3 for different specimens and horizons are presented in 

Table 1 for a grid spacing (d) of 2.5 mm. Simulations were conducted for d values of 

2.5 mm, 5 mm and 25 mm for  of 1.5d, and 2.5 mm and 5 mm for  of 3.01. The 

comparisons of the experimental and analysis results for stress-deformation responses 

are presented in Figure 2.14 for both =1.5d, =3.01d. 

 

 

Figure 2.14. Force Deformation Curves for (a) =1.5d and (b) =3.01d [Cornelissen 

et al 1986] 
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The results of simulations are in good agreement with the test results in terms of force 

deformation response. Also, mesh regularization which is the size effect corrections 

using fracture energy for different grid sizes gave objective results for this simulation 

(i.e., mesh independent). The damage patterns at the end of simulations (i.e., changes 

in length are at 9.5*10-5 mm) are shown in Figure 2.15 for =1.5d. The damage 

patterns after simulations with increasing the  for 2.5 mm and 5 mm grid spacing are 

shown in Figure 2.16 for =3.01d. Again, the only problem was the spread of the 

cracks beyond the notch. The reason was thought to be the long diagonal elements 

connected from the notch region to the region outside the notch causing a 

misrepresentation of the nonlocal damage interactions as explained before. In order to 

objectively observe the effect of  on the tension test results, a numerical experiment 

was conducted on a specimen with a relatively large notch in the next section.  

 

 

Figure 2.15. Damage Patterns with Different Initial Spacing with =1.5d 
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Figure 2.16. Damage Patterns with Different Initial Spacing with =3.01d 

 

2.4.3 Numerical Experiments 

 

A relatively large notched numerical specimen was prepared properly to observe the  

effect objectively. This specimen was prepared with a height of 208 mm, width of 64 

mm and thickness of 32 mm. The notch height and width were taken as 16 mm which 

made the specimen net area 32x32 mm. With this larger notch, it was ensured to have 

a sufficiently dense mesh within the notch region with a reasonable element size. The 

prepared specimen (NES) can be shown in Figure 2.17.a. E, fcr, and Gf, and gauge 

length values were taken as 27.0 GPa, 3.1 MPa, 0.07 kN/m, and 48 mm for NES, 

respectively. The stress displacement model given Eq. 2.4 and 2.5 was used as the 

“representative” result which were assumed as an experimental result. Simulations 

were done for d of 2 and 4 mm for =1.5d and =3.01d. The stress-deformation results 

were represented in Figure 2.18 for both .  

 

The damage patterns are presented in Figure 2.19 for both . Only notch region of the 

specimen is shown. The cracks are shown for change in length value at 7*10-5 mm. 

Color legend denotes the strain value of elements ranging from 0.00012 to 0.02. 

Amplification factor for the deformation field presented for the notch region is 20 for 

illustration purposes. 

 

Two new numerical specimens named as S1 and S2 were created as shown in Figure 

2.17.b-c. The notch sizes on these two specimens were selected as even multiples of 

the selected grid size of 5 mm which was later used in structural element simulations. 
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In this way, a uniform grid could be used for calibrations in the absence of tension 

tests. In addition, a 5 mm grid size for S1 and S2 were selected such that the diagonal 

elements remain within the notch region. Simulations from S1 and S2 are used as 

benchmark results of tension tests needed for structural simulations described in 

Chapter 3. 

 

 

Figure 2.17. (a) Numerical Experiment Specimen; for Other Structural Problems, (b) 

Specimen 1 and (c) Specimen 2 (all units in mm) 

 

 

Figure 2.18. Force Deformation Curves for (a) =1.5d and (b) =3.01d for 

Numerical Tests. 
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Figure 2.19. Damage Patterns for  of (a) 1.5d and (b)3.01d 
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similar as the thickness used for the validation problems. Heights of S1 and S2 were 

taken as 305 mm and 315 mm respectively (Figure 2.17.b-c). For both S1 and S2, the 

strain gauge value was taken as 45 mm. In order to ensure mesh objectivity, S1 was 

simulated with =1.5d and S2 was simulated with =3.01d.  
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N/m. Finally, parameters of the tension stiffening test (Gijsbers and Hehemann 1977) 

were computed (Table 1). With using S1 and S2 and material properties provided from 

experiments, series of direct tension tests were implemented. Results from simulations 

are represented in Figure 2.20 for =1.5d and Figure 2.21 for 3.01d. Errors of the area 

under the curves are also presented in the same figures. In the response curves of 

numerical experiments, Eq. 2.4 calculation results are represented as ‘experiment’. 

 

The optimum parameters of OLM for a grid size of 2 mm for NES and 5 mm for S1 

and S2 are shown in Table 1. It must be noted that initial stiffness of global response 

of the systems is always in agreement with the “representative” solution for all 

simulations so it can be concluded that the energy balance approach is quite 

satisfactory for the linear elastic regime.  

 

In summary, optimum a1, a2 and a3 were determined for the smallest grid size in 

=1.5d. For =3.01d, only a1 value was investigated for the best match with correct 

stress-deformation curve and other grid size parameters was taken as the parameters 

from =1.5d as can be seen in Table 1. Interestingly, the values of b1 and b2 were found 

as 0.6 and 0.2, respectively, regardless of the fracture energy,  or mesh size. 

Collecting responses of all elements within the damage zone provide the global 

response of the specimen to tension force as described in Section 2.4. Simulations 

show that rather than the values of a1, a2 and a3, slopes play an important role in the 

response. As seen in Figure 2.2, there are three slopes in the softening part of 

constitutive model in OLM. The first descending slope in softening part influences 

both the capacity and the softening slope of the global response. The second and third 

slopes are of secondary importance and they affect the global response for high strains. 

All parameters that give these curves are represented in Table 1 with the smallest grid 

size. 

 

These numerical experiments revealed three important conclusions: i- the increase of 

the  seem to provide a better match of the softening part resulting in a better 

representation of the coalescence of cracks. ii- The mesh regularization upon scaling 

the input softening function for different mesh sizes seem to be successful for larger 

horizons similar to the lattice results as long as sufficiently small mesh size are used 
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to account for the geometry of the notch. iii- Thanks to the larger notch length, the 

crack was contained within the notch region for the numerical experiments. These 

results provided confidence on the ability of estimating cracks for concrete in tension 

tests while accurately modeling the average stress-displacement response with the 

overlapping lattice approach. 

 

 

Figure 2.20. Stress-Change in Length Curves for Series of Direct Tension with 

=1.5d 
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Error = %1.77 
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Error = %8.22 

(d) Dam for Gf=100 N/m             

Error = %4.09 

(e) Dam for Gf=150 N/m             

Error = %6 
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Figure 2.21. Stress-Change in Length Curves for Series of Direct Tension with 

=3.01d 

 

Table 1. Multilinear Function Parameters and Properties of Specimens 
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Table 1. (continued) 

Notched 

Beam 

Gf=124 

1.5 40 240 3.1 40 240 

5 

30.0 3.33 
124, 

150 
50 

Notched 

Beam 

Gf=150 

1.5 50 280 3.1 50 280 

Dam           

Gf=60 
3 6 60 4 6 60 

10.5 2.90 

60,  

100, 

150 

200 
Dam 

Gf=100 
2.5 12 100 3.5 12 100 

Dam 

Gf=150 
2 25 130 3.1 25 130 

Tension 

Stiffening 

Gf=60 

- - - 3.1 30 200 28.0 2.50 60 68 

*: Dimensions for E, fcr, Gf , w and d are GPa, MPa, N/m ,mm and mm respectively 
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CHAPTER 3 

 

3 VALIDATION OF OLM 

 

3.1 General 

 

In this chapter, OLM is employed for the nonlinear static analysis of unreinforced and 

reinforced concrete problems. First, three point bending test for a notched beam is 

modelled with OLM. Then, a gravity dam test is simulated. Tension stiffening and four 

point bending beam tests were studied to explore the performance of OLM to predict 

reinforced concrete behavior. Detailed parametric studies are conducted. Effect of  is 

investigated in the studied examples. In the structural simulations, effect of fracture 

energy on the global response is studied at the member level. The response and crack 

pattern of all conducted validations of OLM examples are presented and discussed in 

detail. 

 

3.2 Notch Beam Test 

 

Three point bending experiment was performed by Petersson (1981) to determine the 

fracture energy of beams. This beam test was simulated in order to assess the 

performance of the overlapping lattice approach for a bending induced crack 

propagation problem. The geometry of the specimen can be seen in Figure 3.1. The 

notch height was half the width of the beam i.e., 100 mm. Notch geometry information 

was not provided in the conducted experiment report. So, a 5 mm notch width was 

assumed. E, fcr, and Gf values were taken from the test results as 30.0 GPa, 3.33 MPa, 

0.124 kN/m, respectively. The thickness of the beam was 50 mm as can be seen in 

Table 1. First, the parameters required for the lattice elements were determined such 

that the numerical direct tension test results (for S1 and S2) of stress-average 

displacement matched with the response function in Eq. 2.4. The calibrated model 

parameters are prevented in Table 1.  
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Figure 3.1. Experiment Geometry [Petersson 1981] 

 

As can be seen Figure 3.1, a point load was applied at middle of the specimen, where 

two ends of the beam were restrained against to translations. The transverse deflection 

was monitored under the loading point at the middle of specimen in the experiment. 

The load was applied as a distributed load over 5 mm spanning to two elements as the 

actual loading plate width was not reported. 

 

The OLM was constructed for the beam test by using the parameters (modified 

according to length scale) obtained from the uniaxial tension test for a grid size of 5 

mm. The load deflection curve results and obtained crack patterns are shown in Figure 

3.2 where the two black lines represent the experimental values obtained by Petersson 

(1981), the blue line (=1.5d), and the red line (=3.01d) represent the computational 

predictions. The damage pattern of the selected around the notch is shown as a square 

region in Figure 3.1.b for =1.5d and Figure 3.2.c for =3.01d. The color contours in 

the damage figures show the strain values in the elements (i.e., cr ranging from 

0.00012 to 0.02). Amplification factor for the deformation field presented for the notch 

region was taken as 10 for illustration purposes. All crack patterns were reported for 

the end of the simulations.  

 

In the performed tests, six beams were tested. The fracture energy of these beams 

exhibited some variations. The mean fracture energy value of these beams was 

reported as 124 N/m. Considering the uncertainty in the experimental data, 

computational results seem to be in reasonable agreement with the bounds of the 

experimental results. The increasing  caused a slight underestimation of the capacity 

computed to =1.5d.  
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Figure 3.2. Force Deflection Curve and Damage Patterns for Gf=124 N/m [Petersson 

1981] 

 

In order to observe the influence of the fracture energy on simulation results, OLM 

simulations were repeated by keeping all the parameters same while assuming a 

fracture energy of 0.15 kN/m. In the experiment, the highest and lowest fracture 

energies value of the tested six beams were reported as 0.137, 0.115 kN/m, 

respectively. Direct tension test for this fracture energy was re-conducted and 

calibrated parameters are shown Table 1. The force deflection curve and corresponding 

damage pattern for both =1.5d and 3.01d are shown in Figure 3.3.  

 

It can be observed that increased fracture energy resulted in an enhanced capacity and 

better estimation of the load deformation response. As such, uncertainty in the fracture 

energy, which is usually uncovered by conducting a number of tests, can affect the 

computational estimations by using the OLM.  
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Figure 3.3. Force Deflection Curve and Damage Patterns for Gf=150 N/m [Petersson 

1981] 

 

The crack pattern was in agreement with expected crack propagation starting from the 

top of the notch opened in the upward direction. The crack did not spread outside the 

notch region for =1.5d. It was a zipper type crack. In the simulations conducted for 

both Gf values, increasing the  resulted in a slight capacity reduction compared to the 

capacity obtained for =1.5d. The damage patterns in simulations (i.e., the crack width 

and length) were observed to be in a better agreement with the experimental results for 

larger . 

 

3.3 Scaled Dam Test 

 

Aldemir et al (2015) conducted a pseudo dynamic and static conventional concrete 
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scaled ground motions were applied to the dam by using the pseudo-dynamic testing 

technique. Then, the pushover experiment was also conducted. The original setup 

enabled the use of only the bottom half of the dam section and the inertial and 

hydrodynamic load effects were simulated using a lateral hydraulic actuator.  The 

geometry and loading of the model is presented in Figure 3.4. The vertical dead load 

was applied to mimic the gravitational actions on the prototype dam. 

 

 

Figure 3.4. Experiment Geometry [Aldemir et al 2015] 

 

The OLM was constructed by using a 25 mm grid size to observe the performance 

estimation for a continuum unreinforced concrete structure. A similar procedure as 

discussed above for the notched beam simulation was conducted initially to estimate 

model parameters by using a numerical uniaxial tension test since a laboratory uniaxial 

tension test was not available. The calibrated parameters for the softening function are 

given in Table 1 for the d of 5 mm. For the OLM of the dam appropriate length scaling 

was performed due to the smaller element length in the tension test simulation. 

 

As no information regarding the fracture energy value of the specimen was available 

Gf values of 60 N/m, 100 N/m and 150 N/m were used in the simulations to investigate 

response predictions over a wide range of Gf. E, fcr, and w values were taken as 10.5 

GPa, 2.9 MPa and 200 mm, respectively, as reported in the test (Table 1) for these 

simulations. In addition, the elements within the top 300 mm, equipped with a specially 

designed threaded steel plate in the test to enable safe load transfer on the specimen, 
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were assumed to remain elastic. For this reason, Fcr as Fthreshold and stiffness of the top 

300 mm of the lattice elements in this region were taken as 100 times of critical force, 

Fcr, and 10 times of EAt.  

 

First, the vertical load was applied (400 kN) and this loading was assumed as the initial 

stress condition. Afterwards, the specimen was loaded from the upstream direction 

gradually (Figure 3.4) in a damage controlled manner with SLA. A slight modification 

was conducted to incorporate initial stresses as explained in the original computer code 

in Appendix B. In the experiment, first, the hydrostatic loading was applied. The 

following earthquake loading patterns were operational based earthquake (OBE), 

maximum design earthquake (MDE) and maximum characteristic earthquake (MCE). 

After these loads, the pushover loading was applied. The crack patterns forming on the 

test specimen are shown in Figure 3.5. 

 

LVDTs was placed at the top of the specimen. Similarly, displacement of the middle 

node was observed as the tip displacement in the simulations. For all Gf values and  

of 1.5d and 3.01d, the SLA results were compared with the experimental results found 

by combining the consecutive PsD and pushover test results as shown in Figure 3.6.  

 

Envelopes of the response results of simulation are shown in the base shear and tip 

displacement curves for good representation. It can be observed that the initial stiffness 

estimation of the specimen was perfect whereas the estimation of lateral load capacity 

was about 20% lower than the test capacity. The deformation of the specimen was 

predicted in a reasonable manner with some drop of load carrying capacity around 1.5 

mm. In addition, the results for =1.5d and =3.01d in terms of force deflection 

response of the specimen were quite similar. However, a smoother response curve was 

obtained when the larger  is used (i.e., suddenly drop at the point tip displacement is 

about 1.7). The marked three points on the load tip displacement curve were used to 

compare damage patterns in this tip displacement value. It is interesting to note that 

variation of fracture energy seemed to affect the response in a limited manner. Using 

a 20% larger fracture energy value gave again a capacity enhancement of 1%. 
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Figure 3.5. Cracks in Experiments [Aldemir 2016] 

 

(a) Hydrostatic Loading 

(b) OBE 

  

  

  

  

  

(c) MDE 

(d) MCE 

  

(e) Pushover Experiment 
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Figure 3.6. Load-Tip Displacement Response of OLM 

 

The crack patterns and lengths are shown in the Figure 3.7 around 3.5 mm tip 

displacement as the points at Figure 3.6 for both =1.5d and =3.01d and for different 

fracture energy value as mentioned. The color contours show the strain value in the 

element ranging from 0.00012 to 0.05. Amplification factor was taken as 45 to 

observed deflected shape well. As can be seen in the experiment geometry, x axis range 

is from 0 to 1.36 m which is the bottom width of the specimen while y axis range is 

from 0 to 1.08 m. 
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Figure 3.7. Damage Patterns and Crack Lengths at Specific Points for Gf  of 

60,100,150 N/m for (a) =1.5d and (b) =3.01d 
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In the experiment, the crack length was measured as 1.05 m for both end of MCE 

loading (i.e., tip displacement is around 1.1 mm) and pushover experiment (i.e., end 

of curve). However, the cracks at the bottom of the specimens already existed in the 

experiments. Thus, the crack lengths of Gf of 60,100,150 N/m were observed as 1.056, 

1.060 and 1.065 m for =1.5d and 1.049, 1.056 and 1.070 m, respectively. The crack 

pattern observed from the test seemed to agree well with the base cracking shown in 

Figure 3.5. There existed some split cracking at the downstream of the dam for =1.5d 

due to compressive loading. However, this problem was not observed for =3.01d. 

This shows that using a larger  is also beneficial to model compression in concrete. 

Crack length at the bottom of the dam was observed in a better agreement with the 

experiment results for larger . In short, it can be stated that the employed SLA 

overlapping lattice simulation was found to reproduce the test results in a reasonable 

manner.  

 

3.4 Tension Stiffening Test 

 

In order to test the ability of the overlapping lattice approach in estimating the force 

transfer between steel reinforcement and concrete, first the basic test of tension 

stiffening test was simulated. In this test, steel reinforcement with concrete cast around 

it was subjected to uniaxial tension by applying a force only on the steel bar. In this 

way, the ability of force transfer from steel to concrete including the axial tensile load-

deformation response of concrete and associated crack spacing can be deduced. The 

test experiment carried out by Gijsbers and Hehemann (1977) was used for the 

numerical simulations. In their experiment, the concrete bar had 600 mm length and a 

cross section of 68 mm x 68 mm with a 8 mm rebar at the center. Half of the 

experiment was modeled to get computational efficiency as shown in Figure 3.8. E, 

fcr, and Gf values were taken as 28.0 GPa, 2.5 MPa, 0.06 kN/m, respectively (Table 1). 

Modulus of elasticity, Es and yield stress, fyield, of steel were 192.3 GPa and 400 MPa, 

respectively. The load was applied from steel and elongation of steel was observed. In 

order to satisfy the symmetry conditions, roller supports were placed at the top 

boundary, and a pin support was placed at the left end of the rebar. 

 

OLM was constructed by using a 5 mm grid size and =3.01d. The value of EAt for 

the truss elements representing the steel rebar were taken as a half of the modulus of 
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elasticity times cross sectional area of steel (EsAs/2). Here, As was half of the area of 

8 mm bar. The softening parameters are given in Table 1 for this simulation. Moreover, 

load was applied from top right point of the specimen and displacement of this point 

was taken as the elongation value. The load was multiplied with 2 because of 

symmetry condition to draw total load elongation response. In addition, there are three 

types of elements, including concrete, bond and steel represented in purple, red and 

green respectively in the Figure 3.9.  

 

 

Figure 3.8. Half of the Experiment Geometry 

 

 

Figure 3.9. Different types of elements for both  
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after reaching bond strength with the same stiffness of the concrete members, the stress 

level was kept constant). The load elongation responses and crack patterns at the end 

of simulation are shown in Figure 3.10 and Figure 3.11. In comparison with test results, 

response of =1.5d gave inaccurate result in terms of the ascending part after main 

cracks initiated. Crack propagation was also observed to be unrealistic because three 

main cracks was took place in the experiment. If the bond strength was taken too high, 

cracks initiated just below the level where bond elements end. If the bond strength was 

chosen too low, some sliding (i.e., pullout) region between concrete and steel was 

observed. Both of these choices yielded inaccurate simulation results. Thus, it was 

realized that there must be a range for bond strength. In addition, choosing small 

horizons (=1.5d) did not produce acceptable simulation results.  In order to avoid 

bond failure of the RC structures, the higher  must be used. In the following 

simulations, was taken as 3.01d and the bond strength was taken as 40%, 70%, 100% 

and 130% of the tensile strength of concrete elements. The responses and crack 

patterns at the end of simulations are shown in Figure 3.12 and Figure 3.13. Color 

contours denote the strain values ranging from 0.00012 to 0.005. 

 

 

Figure 3.10. Load Elongation Responses for =1.5d with Different Bond Strengths 
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Figure 3.11. Crack Patterns for =1.5d with Different Bond Strengths 

 

 

Figure 3.12. Load Elongation Curves for =3.01d with Different Bond Strengths 
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Figure 3.13. Crack Patterns for =3.01d with Different Bond Strengths 
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final damage pattern. For point 4, three main cracks in addition to some minor cracks 

were observed. The spacing between first and second crack was determined to be 

around 100 mm, whereas the spacing between the final cracks was around 40 mm in 

OLM. The crack pattern observed from simulation of Rots et al (2008) is also shown 

in Figure 3.15(e). 

 

 

Figure 3.14. Load Elongation [Gijsbers and Hehemann 1977]. (Crack Pattern at 

Points Identified by Numbers are shown in Figure 3.15) 

 

 

Figure 3.15. Damage Patterns at Specific Points (shown in Figure 3.14) and Crack 

Pattern by Rots (2008) 
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These results encourage the use of the overlapping lattice approach to model reinforced 

concrete structural members under loading, which is investigated with the next 

validation study. 

 

3.5 Reinforced Concrete Beam Test 

 

As the last validation study, the reinforced beam experiment tested by Walraven 

(1978) was simulated by OLM. This experiment was a four point bending test for a 

reinforced concrete beam. Half of the experiment specimen can be shown in Figure 

3.16. E, fcr, and Gf values were taken as 25.0 GPa, 2.5 MPa, 0.06 kN/m, respectively 

from the reported results (Table 1). The beam thickness was 200 mm. The beam had a 

height of 150 mm and length of 2300 mm with 210+18 mm longitudinal rebars 

whose modulus of elasticity and yield stress were taken as 210.0 GPa and 440 MPa 

respectively. Force was applied at the point shown in Figure 3.16 and displacement 

value was measured at the middle point of the test specimen.  

 

 

Figure 3.16. Half of the Experiment Geometry (all units are in mm) 
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tension stiffening were used in these simulations (Table 1). Displacement was taken 

from right top corner of the specimen. 

 

In the preliminary studies, =3.01d was chosen to overcome bond failure in RC 

structures. By using a =3.01d, in order to observe effect of bond strength on the results 

as the tensile strength of lattice elements connected to steel bars taken as 40%, 70%, 

100% and 130% of the tensile strength of concrete elements, respectively. Elastic 

perfectly plastic load-strain response was assigned (i.e., after reaching bond strength, 

the stress level was kept constant). The responses and crack patterns are shown in 

Figure 3.17 and Figure 3.18. Color contours denote the strain values ranging from 

0.00012 to 0.0008. An amplification factor of 3 was chosen. 

 

If the bond strength was taken lower than 70% the concrete tensile strength, the steel 

reinforcement pulled out from the concrete as can be seen in Figure 3.17.a and Figure 

3.18.a. The structure could not reach the capacity due to the pullout failure upon 

increasing the strength of bond elements to %70 capacity of tensile strength of concrete 

with elastic perfectly plastic behavior. If the bond strength was increased above 70% 

of the concrete tensile strength, it can be observed in Figure 3.17 that both stiffness 

and strength were overestimated. These results seem to demonstrate optimum bond 

strength for OLM simulations to be 0.7*Fcr.   

 

The model was capable of capturing the initial cracking load with a reasonable 

accuracy (Figure 3.19). The cracked stiffness of the specimen was slightly 

overestimated up until 5 mm of midspan deflection, afterwards the load deflection 

curve from numerical simulations followed the result from the test. Ultimate capacity 

of the test specimen was about 30 kN, which was in perfect agreement with the test 

result. In short, it can be stated that OLM is quite successful in estimating the load-

deformation response of a beam failing in flexural mode.  
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Figure 3.17. Load Deflection Response for Different Bond Strengths 

 

 
Figure 3.18. Crack Patterns for Different Bond Strengths 
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Figure 3.19. Load Deflection at Midspan Curve 
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Figure 3.20. Damage Patterns at Specific Points 
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It can be observed that the flexural cracks were spaced at about 10 cm spacing. The 

only shortcoming of the simulation result, if to mention one was obtaining slightly 

diffused crack patterns rather than discretely spaced flexural cracks. 
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CHAPTER 4 

 

4 CONCLUSION 

 

4.1 Conclusion 

 

A novel approach was proposed to simulate concrete fracture integrating OLM and 

sequentially linear analysis. Numerical simulations have shown that the approach has 

a great potential to estimate the spatial distribution and widths of cracks in both plain 

and reinforced concrete. The horizon distance, tensile softening function and its 

regularization for different mesh densities were investigated in detail. Following key 

conclusions can be drawn based on these results: 

 The overlapping lattice modeling is a highly nonlocal approach. This 

necessitates the calibration of tensile stress-deformation response at the meso-scale 

in order to successfully match the macro-scale response. In other words, one needs 

to calibrate three softening function input parameters for its members by using a 

computational direct tension test. The tensile force-deformation response is found 

to be sensitive to the softening function input parameters requiring an objective 

calibration strategy. 

 When the tensile force-deformation response of a tension test is calibrated, other 

crack propagation problems can be tackled with a reasonable level of accuracy and 

a lower sensitivity to the input parameters. 

 Increasing the horizon in the OLM provides smoother force-deformation 

response with a more realistic crack pattern. However, it requires a finer mesh to 

account for the geometric irregularities.  

 Existence of reinforcing bars requires higher horizon values in order to overcome 

bond failure of RC structure.  

 Analysis of the tension stiffening and RC beam problem suggests that the 

force/strain curve for steel-concrete interface elements are different than 

concrete/concrete elements. A close match with tension stiffening and RC beam 

problems was obtained using elastoplastic steel-concrete interface elements with 

70% of tensile strength of concrete-concrete elements. 
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 SLA provided a robust framework to analyze severely softening problems with 

no convergence issues favoring the use of it for quasi-brittle problems. 

 

4.2 Future Work 

 

Although, the PD is being widely applied to study crack propagation problem, its 

application to heterogeneous materials like concrete is quite limited as a consequence 

of the need for calibration. In this work, a methodology was developed to calibrate for 

concrete in the context of the OLM. Many research opportunities exist to further 

advance the OLM. Some of the opportunities are: 

 The constitutive model of bond elements could further be studied to describe the 

bond response more realistically. To this end, the constitutive model could be 

calibrated with bond failure tests in literature by using OLM simulations. 

 Shear and compression experiments could be simulated in order to understand 

the response of members in OLM other than tensile force (i.e., mode 1 crack). 

 Dynamic loading could be incorporated in the OLM procedure so as to observe 

the response of OLM while modeling the impact/blast type loadings. 

 The presented procedure of OLM for RC simulations could be more meaningful 

if 3D space was considered. In this way, the effect of reinforcements would be 

simulated accurately. 

 The Strut and Tie Model could be combined with the OLM procedure. 

 The effect of mesh size and type on the performance of the OLM simulations 

could be investigated by using different meshes. In addition, a random distribution 

of nodes and elements could be used to examine the effect of them on the global 

response. 

 The fracture models to describe the compression failure would be implemented 

in the OLM method. 
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APPENDIX A 

 

A. SEQUENTIALLY LINEAR ANALYSIS CODE 

 

The coordinates of grid nodes and according to , the elements were determined by 

specified the nodes as steel which was inputted with its cross sectional area (As) or 

concrete particles. Modulus of elasticity of concrete, E, and steel if exist, Es, critical 

strain values corresponding to their strength of the concrete, cr, and steel if exist, yield, 

and thickness, w, were obtained from experiments. Parameters (a1,a2,a3 and b1,b2) were 

added for the smallest member. Finally, boundary and load points were defined and 

the points at which displacement value would be liked were determined in simulation. 

 

First, EAt values from energy balance was computed. Afterward, stiffness matrix was 

assembled by assigning EAt of 1 for all elements. The displacements in the nodes were 

assigned by multiplying 1.001 with x-coordinates of them so the strain value in x 

direction was taken as 0.001 with fixed strain in y direction as zero (i.e., x=0.001, 

y=0). All forces and their corresponding energies were determined by using simple 

truss solver algorithm. Finally, EAt value was found by stored energy over this energy 

(described in Chapter 2). Force strain response of the elements from input file was 

defined. All initial stiffness and threshold force value, Fthreshold, as Fcr of the truss 

elements were assigned (i.e., EAt*cr for concrete, Es*As*yield for steel members). For 

the reinforced concrete, there are three type of elements which were concrete, steel and 

bond which connected steel and concrete nodes. Threshold force value was assigned 

for bond members as %70 of threshold force value of concrete members. 

 

The steps in iteration part were;  

 Unit load was applied to the system 

 Linear elastic analysis was performed 

 Strains corresponding to their displacements were observed 

 The forces were found for all members 
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 Critical element which has the lowest load factor, min i.e., = Fthreshold/current 

force) was found 

 min is the scale value by which unit load elastic results was multiplied. These 

results was the point at global response such as load deflection at specified 

node 

 Other elements which have value so close to determined min (i.e., -

min<1.0e-05*min) were found and assigned as critical elements 

 Fthreshold (if concrete member) and EAt of critical elements was reduced 

according to their constitutive model by using current  

 

Fthreshold was found by using new EAt of the element and small triangular similarities 

like Rots (2001) for concrete members. There was no need to evaluate Fthreshold for 

other types of element due to assume elastic perfectly plastic response. Deflection in 

any point or deflection differences in two points which is the definition of strain gauge 

used in experiments corresponding to the force could be printed. 
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APPENDIX B 

 

B. SEQUENTIALLY LINEAR ANALYSIS CODE WITH INITIAL LOADING 

 

All explained procedures in Appendix A until iteration part was conducted likewise. 

Then, before starting iteration part, the following steps were implemented for dam 

OLM simulation;  

 400 kN was distributed to the top grids uniformly (i.e., for 25 mm grid size, 

16.67 kN is distributed to the 24 nodes) as a fixed load 

 Linear elastic analysis was performed 

 Strains corresponding to their displacements were calculated 

 The forces (Fv) for all elements were found 

 Iteration part started due to horizontal increment load 

 Unit load was applied to the system 

 Linear elastic analysis was performed 

 Strains corresponding to their displacements were calculated 

 The forces (Fh) were found for all members 

 Critical element which has the lowest load factor, min i.e., = (Fthreshold-

Fv)/Fh) was determined 

 min is the scale value by which unit load elastic results was multiplied. These 

results is the point at global response such as load deflection at specified node. 

 Other elements which have value so close to determined min (i.e., -

min<1.0e-05*min) were searched 

 Fthreshold (if concrete member) and EAt of critical elements was reduced 

according to their constitutive model by using current  

All other things were same with the code in Appendix A. 

 

 

 

 




