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ABSTRACT

STABILITY ANALYSIS OF NEURAL NETWORKS WITH PIECEWISE
CONSTANT ARGUMENT

Karacaören, Meltem
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

January 2017, 90 pages

Last several decades, an immense attention has been paid to the construction and
analysis of neural networks since it is related to the brain activity. One of the most
important neural networks is Hopfield neural network. Since it is obtained from the
direct modeling of neuron activity, the results of the research have effective conse-
quences for the modern science. Dynamical analysis of Hopfield neural networks
concerns to the method of qualitative theory of differential equations. In particular, it
relates to the existence and stability of oscillatory solutions, equilibrium, periodic and
almost periodic solutions. Due to the significance of the Hopfield neural networks,
one must modernize the models to satisfy the present and potential applications in
neuroscience and other fields of the modern research. This is why in the present
thesis, we have developed the Hopfield’s model by inserting piecewise constant argu-
ment of generalized type which is started to be considered in the theory of differential
equations several years ago in 2005. The new models contain piecewise constant ar-
gument and constant delays. We investigate the sufficient conditions for existence and
uniqueness of solutions, global exponential stability of equilibrium points for these
neural networks. By means of Lyapunov functionals, the conditions for stability and
linear matrix inequality method have been obtained.
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Keywords: Hopfield neural network, stability, piecewise constant argument, delay,
linear matrix inequality
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ÖZ

PARÇALI SABİT ARGÜMANLI SİNİR AĞLARININ KARARLILIK
ANALİZİ

Karacaören, Meltem
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Ocak 2017 , 90 sayfa

Son on yılda, beyin faaliyetiyle ilişkili olduğu için sinir ağlarının modellenmesi ve
analizine büyük önem verilmiştir. En önemli sinir ağlarından biri Hopfield sinir ağı-
dır. Nöronların etkinliklerinin doğrudan modellenmesinden elde edildiğinden, araştır-
manın sonuçlarının modern bilim için etkili sonuçları vardır. Hopfield sinir ağlarının
dinamik analizi, diferensiyel denklemlerin nitel teorisi yöntemiyle yani özellikle bu
ağların salınımlı çözümlerinin, denge noktasının ve periyodik çözümlerinin varlığı
ve kararlılığı ile ilgilidir. Sinirbiliminin ve modern araştırmanın diğer alanlarındaki
mevcut ve potansiyel uygulamaların seviyesine erişebilmek için Hopfield modelle-
rinin modernize edilmesi gereklidir. Bu nedenle, bu tezde, sabit bir gecikme terimi
ve 2005 yılında yani birkaç yıl önce diferensiyel denklemler teorisinde göz önüne
alınmaya başlanılan genelleştirilmiş tipteki parçalı sabit argüman eklenerek, Hopfield
modeli geliştirilmiştir. Bu sinir ağları için denge noktalarının küresel üstel kararlılığı
ve çözümlerin varlığı ve tekliği için yeterli koşulları araştırılmıştır. Lyapunov fonksi-
yonelleri ve doğrusal matris eşitsizliği yöntemi ile kararlılık için gerekli koşullar elde
edilmiştir.

Anahtar Kelimeler: Hopfield sinir ağları,kararlılık, parçalı sabit argüman, gecikme,
lineer matris eşitsizliği
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could not be realized. My heart felt regard goes to my mother-in-law İlknur Kara-
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

In this thesis, we study on neural networks. Our main aim is to develop a new ap-

proach to investigate the existence and uniqueness of the equilibrium, stability of

neural networks.

Neural networks were derived by inspiring from the organization of the human brain.

The main purpose of artificial neural networks is to simulate the intelligent behavior

of humans. Artificial neural network models have been improved in the expectation

of creating a system such that behaving like a human brain. They are mathematical

models, actually, they are simplified models of neural processing in the brain, which

include processing units which are called artificial neurons. A neuron is a processing

unit which receives information from the environment by its receptors. It stores the

information and after processing gives an output. There are so many usage areas of

neural networks such as pattern recognition, optimization, medicine, image process-

ing, civil engineering, music and financial analysis [164].

Roughly speaking, neural networks have attracted the attention of the different disci-

plines such as biology, engineering, mathematics, physics and medicine. The scien-

tists from all these disciplines, have different views and approaches to study neural

networks. Biologists aim to understand the processes in a real neuron. Engineers

intend to build artificial neurons, which have learning abilities and simulate the real

neurons. From the mathematical view, the qualitative analysis and behaviors of these

dynamical systems are attractive.

In the Conference on Differential and Difference Equations at the Florida Institute of

Technology, 2005, M. Akhmet proposed to consider nonlinear differential equations
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with a more general type of piecewise constant argument, and equivalent integral

equations, as the basis of investigation. This development provided a new path for

this theory. Instead of the reduction method, they proposed to construct an equivalent

integral equation. This method facilitate the way of analysis in many sense.

In the papers [9, 12, 14, 15, 16, 20, 21, 22, 24, 25], neural network models with

piecewise constant argument of generalized type were taken into account. However

these studies do not include constant delay terms. In this thesis, we pay attention to

examine the neural networks with piecewise constant argument of generalized type

and delay. We obtained our results by using linear matrix inequalities and Lyapunov’s

method. This is the novelty of our study. It is obvious that linear matrix inequalities

are very powerful instruments for investigating the stability properties of the neural

networks. Best of our knowledge, it is the first time that linear matrix inequalities are

used in neural networks which contain both piecewise constant argument and delay.

In this thesis, we combine piecewise constant argument of generalized with constant

delays. We obtain some sufficient criteria for stability of Hopfield neural networks in

terms of Lyapunov stability theory and linear matrix inequalities.

1.1 Differential equations with piecewise constant argument (EPCA)

1.1.1 EPCA as derivative of the greatest integer function

Differential equations with piecewise constant argument have been a popular research

area due to the interesting applications of this theory since they were introduced.

Firstly, Busenberg and Cooke constructed a first-order linear differential equation

with piecewise constant argument [43]. This study was about a biomedical prob-

lem. Then the studies of K. Cooke, S. Busenberg, J. Wiener and S. Shah followed

it [68, 69, 70, 171, 196]. Step by step, too much progress has been made on this

field. The existence and uniqueness of solutions, oscillations, stability and so on.

have been intensively discussed. They reduced the equations to discrete equations for

investigating the qualitative properties of them. Also for several studies, one can see

[6, 76, 114, 131, 147, 148, 195], and the references therein.

2



Typical differential equations with piecewise constant arguments considered by K.

Cooke and his coauthors are of the form

dx(t)

dt
= f(t, x(t), x([t])), (1.1.1)

The retarded type t − n and advanced type t + n of differential equations were con-

sidered and their stability, oscillatory, existence and uniqueness problems were in-

vestigated in [2, 69]. In many real world problems such as mechanical and biolog-

ical systems, some actions on the systems can be considered as piecewise constants

[123, 195, 207, 222]. So, they have been applied and realized widely in many papers

and consequently became common. The presence of piecewise constant argument in

dynamical systems brings about some uncommon outcomes because they have more

complex structure than the classical dynamical systems. The investigations on them

have been attractive for the researchers due to the course of actions of piecewise

constant systems. In [211], they studied for the existence of almost periodic solutions

of retarded differential equations with piecewise constant argument. They established

some theorems on the existence of almost periodic solutions by using the Razumikhin

technique. In [154], existence, uniqueness and asymptotic behavior of the solutions

of a fuzzy differential equation with piecewise constant argument were studied. Some

results for the oscillation of a differential equation with fractional delay and piecewise

constant argument were acquired in [191]. Also, there is a book [75] which aims to

give an introduction to the subject of nonlinear dynamics of piecewise constant sys-

tems. It provides principal concepts and theoretically and practically strong tools for

researchers in the subject of piecewise constant system. In this book, the deficiency

of a systematic investigation on the modeling and properties of the physical problems

in the dynamics of piecewise constant systems was pointed out. In [26], systems of

nonlinear differential equations with piecewise constant argument were formulated.

They evolved a comparison principle. Lyapunov-function method was used to ob-

tain stability results. Additionally, they indicated that piecewise constant arguments

contribute to stabilizing unstable systems of ordinary differential equations.

The piecewise constant systems contain the characteristic of differential and differ-

ence equations, because the theory of them was based on the reduction principle to

discrete equations. Their complete solutions usually based on the continuity of the

3



systems at the intervals which excludes the switching points. For example, an initial

value problem with the piecewise constant argument [t] was examined in each of the

intervals of unit length.

1.1.2 Differential equations with piecewise constant argument of generalized

type (EPCAG)

In [17], it was proposed a more general type of piecewise constant argument. In

this study, a new method was introduced for investigating the differential equations

with piecewise constant argument. This method, the construction of the equivalent

integral equation, was different from the pointed out above. Instead of the reduction

method, they proposed to construct an equivalent integral equation [73, 74]. This

method was more efficient than the previous one. Because they got rid of the extra

assumptions on the reduced discrete equations. The concept of differential equations

with piecewise constant argument has been generalized in [5, 6, 7, 17]. In the book

[18], there are interesting results and applications of this theory. They considered the

linear and quasi-linear systems with piecewise constant argument and the reduction

principle for systems with piecewise constant argument. They showed that the set of

all solutions of the linear homogeneous equation was a finite-dimensional linear space

under certain conditions. The fundamental matrix of solutions was constructed. For

quasilinear systems, the integral representation formula was defined. Basic concepts

of stability theory were provided for these equations. This theory was improved for

the neural networks in the studies [8, 9, 10, 12, 14, 15, 16], [20]-[26], [36, 60, 76,

157, 189, 199, 210].

Now we will give the descriptions about this theory. The basic terminology used

in this dissertation will follow the book [18]. They especially investigated the two

systems which contain β and γ type arguments in [18]. The following differential

equation includes β argument.

x′ = f(t, x(t), x(β(t))), (1.1.2)

where β(t) = θi, i ∈ Z, if θi ≤ t < θi+1, θi is strictly increasing real numbers

sequence such that |θi| → ∞ as |i| → ∞, x ∈ Rn, t ∈ R and f : R×Rn×Rn → Rn.

4



The illustration of β(t) function is given in Fig.1.1.

Figure 1.1: The graph of argument β(t) [18].

The following differential equation includes γ argument.

x′ = f(t, x(t), x(γ(t))), (1.1.3)

where γ(t) = ζi, i ∈ Z, if θi ≤ t < θi+1, θi, ζi are strictly increasing real numbers

sequence such that θi ≤ ζi < θi+1 and |θi → ∞| as |i → ∞|, x ∈ Rn, t ∈ R and

f : R× Rn × Rn → Rn. The illustration of γ(t) is given in Fig. (1.2).

The system (1.1.3) includes the function γ(t). This function is mixed type. Because,

for fix k ∈ N if θk ≤ t < ζk, then γ(t) > t and the equation (1.1.3) is advanced. If

ζk < t < θk+1, then γ(t) < t and the equation (1.1.3) is delayed.

Definition 1.1.1 [18] A function x(t) is a solution of a differential equation with

piecewise constant arguments on an interval J ⊆ R, if

1. x(t) is continuous on J;

2. the derivative x′(t) exists for t ∈ J with the possible exception of the points

5
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Figure 1.2: The graph of argument γ(t) [18].

θi, i ∈ A, A is an interval of Z, where one sided derivatives exist; where one-

sided derivatives exist;

3. the equation (1.1.2) ((1.1.3)) is satisfied by x(t) on each interval (θi, θi+1), i ∈
A, and it holds for the right derivative of x(t) at the points θi, i ∈ A.

In [18], they started to examine the most simple linear systems with differential equa-

tions with piecewise constant argument. They considered the following equations

y′(t) = A0(t)y(t) + A1(t)y(γ(t)) (1.1.4)

and

y′(t) = A0(t)y(t) + A1(t)y(γ(t)) + f(t, y(t), y(γ(t)), (1.1.5)

where y ∈ Rn, t ∈ R. They assumed that the following assumptions were hold:

(H1) A0, A1 ∈ C(R) are n× n real valued matrices;

(H2) f(t, u, v) ∈ C(R× Rn × Rn) is an n× 1 real valued function;

6



(H3) f(t, u, v) satisfies the condition

||f(t, u1, v1)− f(t, u2, v2|| ≤ L(||u1 − v2||+ ||u1, v2||)),

for some positive constant L, and satisfies the condition

f(t, 0, 0) = 0, t ∈ R;

(H4) matrices A0, A1 are uniformly bounded on R;

(H5) infR ||A1(t)|| > 0;

(H6) there exists a number θ̄ > 0 such that θi+1 − θi ≤ θ̄, i ∈ Z;

(H7) there exists a number θ > 0 such that θi+1 − θi ≥ θ, i ∈ Z;

(H8) there exists a positive real number p such that

lim
t→∞

i(t0, t)

t− t0
= p

uniformly with respect to t0 ∈ R, where i(t0, t) denotes the number of points

θi in the interval (t0, t).

One can easily see that equations (1.1.4) and (1.1.5) have the form of functional dif-

ferential equations

y′(t) = A0(t)y(t) + A1(t)y(ζi)

and

y′(t) = A0(t)y(t) + A1(t)y(ζi) + f(t, y(t), y(ζi),

respectively, if t ∈ [θi, θi+1), i ∈ Z. They wrote that "these systems had the structure

of a continuous dynamical system within the intervals [θi, θi+1), i ∈ Z".

Definition 1.1.2 [202] A continuous function z(t) is a solution of (1.1.4) and (1.1.5)

on R, if

1. the derivative y′(t) exists at each point t ∈ R with the possible exception of the

points θi, i ∈ Z, where one sided derivatives exist;

7



2. the equation is satisfied by z(t) on each interval (θi, θi+1), i ∈ Z, and it holds

for the right derivative of y(t) at the points θi, i ∈ Z.

Let I be an n × n identity matrix. Denote X(t, s), X(s, s) = I, t, s ∈ R, the funda-

mental matrix of solutions of the system

x′(t) = A0(t)x(t) (1.1.6)

which is associated with systems (1.1.4) and (1.1.5).

(H9) For every fixed i ∈ Z, det[Mi(t)] 6= 0 for every t ∈ [θi, θi+1],

where

Mi(t) = X(t, ζi) +

∫ t

ζi

X(t, s)A1(s)ds, i ∈ Z. (1.1.7)

Theorem 1.1.1 [18] If (H1) is fulfilled, then for every (t0, y0) ∈ R×Rn, there exists

a unique solution y(t) = y(t, t0, y0), y(t0) = y0 of (1.1.6) in the sense of definition

(1.1.2) if and only if condition (H9) is valid.

Theorem 1.1.2 [18] Suppose that (H1) is fulfilled, and a number t0 ∈ R, θi ≤ t0 <

θi+1, is fixed. For every y0 ∈ Rn there exists a unique solution y(t) = y(t, t0, z0),

y(t0) = y0 of (1.1.4) in the sense of definition (1.1.2) such that y(t0) = y0 if and only

if det[Mj(t0)] 6= 0 for t = θj, θj+1, j ∈ Z.

(H10) 2M̄L(1 +M)θ̄ < 1 where m,M and M̄ are positive constants such that

m ≤ ||Z(t, s)|| ≤M, ||X(t, s)|| ≤ M̄ for t, s ∈ [θi, θi+1], i ∈ Z.

(H11) 2M̄Lθ̄κ(L)(1 +M) < m where κ(L) =
MeM̄L(1+M)θ̄

1− M̄L(1 +M)θ̄eM̄L(1+M)θ̄
.

Lemma 1.1.1 [18] Suppose that (H1) − (H7) and (H9) − (H10) hold, and fix i ∈
Z. Then, for every (ξ, z0) ∈ [θi, θi+1] × Rn, there exists a unique solution y(t) =

y(t, ξ, y0) of (1.1.6) on [θi, θi+1].
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Theorem 1.1.3 [18] Suppose that (H1) − (H7) and (H9) − (H10) are fulfilled.

Then, for every (t0, y0) ∈ R×Rn, there exists a unique solution y(t) = y(t, t0, y0) of

(1.1.5) in the sense of definition (1.1.2).

This new concept of theory was improved in the papers [9, 12, 14, 15, 16, 20, 21,

22, 23, 24, 25]. In the paper [21], by using the concept of differential equations with

piecewise constant arguments of generalized type, a neural network model was con-

sidered. They used the Lyapunov-Razumikhin technique to obtain sufficient criteria

for uniform asymptotic stability of equilibrium and Lyapunov functions for global

exponential stability. In [20], they operated the method of Lyapunov functions for

recurrent neural networks with piecewise constant argument of generalized type. The

model contained both advanced and delayed arguments. In [12], retarded functional

differential equations with piecewise constant argument were studied. The existence

and exponential stability of almost periodic solutions were explored. In [9], they con-

sidered differential equations with piecewise constant argument of generalized type

and explored their stability with the second Lyapunov method. It was stated that

"a generalized type of piecewise constant argument was one of the various kinds of

‘memory’ effects of the phase variable and the distances between the moments may

be very variable" in [21]. For this reason, the generalized type of piecewise constant

argument is exactly suitable for neural networks. An existence and uniqueness the-

orem for the classical relativistic model of two electrons in one-dimensional motion

with half-retarded-half-advanced interactions was studied By Driver in [81]. Accord-

ing to this paper, the existence of retarded interactions between charged particles

implies the existence also of advanced interactions. Therefore, utilizing mixed type

of deviation argument i.e piecewise constant argument of generalized type for neural

networks improves the models in a positive manner.

They also proposed the following differential equations in [19],

y′(t) = A0(t)y(t) + A1(t)y(γ(t)) + f(t, yt, yγ(t)),

yt(s) = y(t+ s),

yγ(t)(s) = y(γ(t) + s), s ∈ [−τ, 0],

where t ∈ R, x ∈ Rn. The function γ(t) = ζi. If t satisfies θi ≤ t < θi+1, then

γ(t) > t and it is of advanced type. Also ζi < t < θi+1, then γ(t) < t and it is of
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delayed type.

(A1) A0, A1 ∈ C(R) are n× n real valued matrices;

(A2) f(t, u, v) ∈ C(R× Rn × Rn) is an n× 1 real valued function;

(A3) f(t, u, v) satisfies the condition

||f(t, u1, v1)− f(t, u2, v2)|| ≤ L(||u1 − v2||+ ||u1, v2||)),

for some positive constant L, and satisfies the condition

f(t, 0, 0) = 0, t ∈ R;

(A4) matrices A0, A1 are uniformly bounded on R;

(A5) infR ||A1(t)|| > 0;

(A6) there exists a number θ̄ > 0 such that θi+1 − θi ≤ θ̄, i ∈ Z;

(A7) there exists a number θ > 0 such that θi+1 − θi ≥ θ, i ∈ Z.

Lemma 1.1.2 Suppose that conditions (A1)-(A7) hold true. Then for every (σ,Φ,Ψ) ∈
[θi, θi+1]×C×C, there exists a unique solution y(t) = y(t, σ,Φ,Ψ), t ≥ σ, of (1.1.8)

and it satisfies the integral equation

y(t) = Z(t, σ)[Φ(σ) +

∫ ζj

σ

Y (σ, s)f(s, ys, yγ(s))ds]

+

j−1∑
k=i

Z(t, θk+1

∫ ζk+1

ζk

Y (θk+1, s)f(s, ys, yγ(s)))ds+

+

∫ t

ζj

Y (t, s)f(s, ys, yγ(s)))ds (1.1.8)

where θi ≤ σ ≤ θi+1 and θj ≤ σ ≤ θj+1, i < j.

1.2 Biological and artificial neural networks

For many years, researchers have accumulated so much detailed information about

the structure of the human brain. It has not been fully figured out up to now although
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there have been numerous studies on it. Let us first start with some basic knowledge

about the neurons and neural system. Human brain consists of approximately 1011

neurons and more glial cells [27, 86, 93, 107, 109, 172, 178, 179, 183]. Glial cells

assist and maintain the neurons. But they do not conduct nerve impulses. Neurons

are the conducting cells of the nervous system. They contain a cell body, dendrites

and axon. The cell body contains the organelles. The axon’s function is to transport

the information from the cell body to synaptic terminals. There is a junction which

is called a synapse between an axon of one neuron and a dendrite of another neuron.

There are two types of synapses. They called as electrical and chemical. At electrical

synapses, two neurons are physically connected to one another through gap junctions.

At chemical synapses, an action potential arrives at a synapse. Finally, the dendrites

render service to receive information from the other neurons.

Several artificial neural network models have been developed over time [99]. Firstly,

Mcculloch and Pitts created a simple mathematical model for neurons [142]. It is a

neuron of a set of inputs and one output. They used simple binary threshold functions.

Sum =
n∑
i=1

xiWi,

y = f(Sum)

where x1, · · · , xn were a set of inputs, W1, · · · ,Wn were weights and y was the out-

put. The inputs could be either a zero or a one. And the output was a zero or a one.

If this final sum is less than some value (threshold), then the output is zero. Other-

wise, the output is a one. There is the graphic of the model in Fig.1.3. Donald Hebb

introduced the Hebb’s learning rule in his book [101]. According to the this rule,

a neuron can achieve learning by repeated activation of another neuron. He wrote:

"When one cell repeatedly assists in firing another, the axon of the first cell devel-

ops synaptic knobs (or enlarges them if they already exist) in contact with the soma

of the second cell. According to Hebb’s principle, "The weight between two neu-

rons increases if the two neurons activate simultaneously, and reduces if they activate

separately. Rosenblatt developed perceptron model which is the first artificial neural

network [168]. The perceptron of Rosenblatt is based on the neuron model of Mc-

Culloch and Pitts. In this study, McCulloch and Pitts made an affort to understand

how the brain could generate complex patterns by using many basic cells that are
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Figure 1.3: McCulloch-Pitts Model of Neuron [77].

connected together. In addition to McCulloch and Pitts model, the perceptron model

added an extra input that represents bias. The equation was represented as follows:

Sum =
n∑
i=1

xiWi + b,

y = f(Sum)

where b denoted the bias value.

A comparison between human brain and artificial neural networks is given in Table

(1.1).

Table 1.1: Comparison between human brain and artificial neural networks

Human Brain Artificial
Neuron Processing unit
Dendrites Input unit
Axons Output unit
Cell body Processing function
Synapse Weights

As time goes by more and more artificial neural network models have been devel-

oped. Some popular neural networks have been introduced such as Hopfield, Cohen-

Grossberg, Bidirectional associative memory, shunting inhibitory cellular neural net-

works, etc. [41, 66, 103, 119]. In 1982, Hopfield introduced a different type of neural
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network called Hopfield neural network [103]. The main difference of this network

from the earlier networks was its recurrent feature of feedback between neurons. It

has been modified and improved by many authors [46, 48, 49, 61, 62, 63, 64, 88, 92,

104, 105, 125, 129, 134, 163, 181, 192, 208, 213, 215, 216, 220].

1.3 Biological neuron structure

The biological neural networks consist of neurons as in Fig. (1.4) and a neuron can be

separated into three distinct parts, called dendrites, cell body, and axon. Firstly, the

dendrites receives the signals from other neurons and transmits them to the cell body.

The cell body is the processing unit that performs an important non-linear processing

step: If the total input exceeds a certain threshold, then an output signal is generated.

The output signal is taken over by the axon, which delivers the signal to other neurons.

The junction between two neurons is called a synapse. A neuron sends a signal across

a synapse. A presynaptic cell and postsynaptic cell refer to the sending neuron and

the receiving neuron, respectively. A neuron processes and transmits information

Figure 1.4: Biological neuron

electrically and chemically. Each neuron has a voltage. During an action potential,

ion channels open and the cell depolarizes. Each open channel allows ions to move

from one side of the membrane to the other. The cell membrane is a thin layer which

isolates the cell from the environment. The signal is then propagated along the axon
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and conduction ends at axon terminals. And the cell gives the information as an

output. After the conduction the cell begins to re-polarize. This information can

be transmitted to the other cells by synapses. Various types of neurotransmitters are

unleashed and they pass the cell membrane into the synaptic gap between neurons.

The Fig.(1.5) represents the interconnection of two neurons.

Figure 1.5: Interconnection of two neurons [78]

1.4 Artificial neural network models

Artificial neural networks are information processing structures which are intercon-

nected by weighted connections and composed of processing elements. They were

developed by inspiring of the human brain [71, 99, 107]. They consist of artificial

neurons, which are basic buildings of artificial neural networks. Each artificial neu-

ron receives as sets of inputs. Each input is multiplied by a weight. After the sum-

mation of all weighted inputs, these weighted inputs are added together and if they

overlap a threshold value, the sum is processed by an activation function and the neu-

ron sparks. In any other case the neuron does not fire. The activation function can

be a sigmoid function, a hyperbolic tangent function or a step function. They are

all advantages and disadvantages according to the different cases. For continuous

and discontinuous cases, the neural networks can be represented by differential equa-

tions and difference equations, respectively. The neural networks can be used for
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classification, clustering, vector quantization, patter recognition, forecasting, func-

tion approximation, control applications and optimizations [164]. They have become

increasingly important based on successes in many practical applications. Some pop-

ular artificial neural network models are, Hopfield neural network, Cohen-Grossberg

neural network, shunting inhibitory cellular neural network and bidirectional associa-

tive memory neural network [103, 119]. The detailed information about them will be

given in the following subsections.

1.4.1 Hopfield neural network model

This model was first proposed by Hopfield [103]. It has attracted a great deal of

attention in the literature [46, 48, 49, 61, 62, 63, 64, 88, 92, 104, 105, 125, 129,

134, 163, 181, 192, 208, 213, 215, 216, 220]. In this model, each neuron works in

accordance with the information which comes from other neurons. Hopfield networks

are a kind of recurrent neural networks that can be used as an associative memory.

Associative memory is known as content-addressable memory. The main task of

content-addressable memory is to revoke a pattern stored in memory. It responses

the demands of completing an incomplete pattern or clearing up a noisy version of

the pattern. Associative memory is one of the fundamental functions of the brain. It

associates a broad range of concrete or intangible things. For example, it associates

the addresses with names, letters with colors, voices with smell, etc. Associative

memories can be implemented either by using the feed forward or recurrent neural

networks. Among all the autoassociative networks, the Hopfield network is the most

widely known. The associative memory property refers to the fact that if the weights

are chosen appropriately input states that are close to one of the memory patterns will

be mapped to output states that are even closer to that memory pattern.

The Hopfield network was classified in two categories: continuous and discrete. The

continuous model was based on an additive model and the discrete one was based

on the McCulloch-Pitts model. The continuous Hopfield neural network model has

similarities with an electrical circuit model. It can be described by the following

differential equations:
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Ci
dvi(t)

dt
= −vi(t)

Ri

+
n∑
j=1

Tijgj(vj(t)) + Ii, i = 1, 2, · · · , n, (1.4.9)

where Ci is the input capacitance of the cell membrane, Ri is the transmembrane

resistance, Tij represents the connection strength between the neurons i and j, vi(t)

stands for the state vector of the ith unit at time t, gj(vj(t)) denote the activation

function corresponding to the unit j at time t and Ii is the external constant input to

neuron i. This model’s structure was based on Kirchoff rule and OHM’s law. In a

biological system, vi will be tardy the abrupt outputs vj of the other cells because

of the input capacitance C of the cell membranes, the transmembrane resistance R,

and the finite impedance T−1
ij between the output Vj and the cell body of cell i. The

Fig.1.6 and Fig.1.7 are a representation of the model (1.4.9).

Figure 1.6: An electrical circuit for a neuron in the Hopfield model [187]

All the nodes in a Hopfield neural network are not only inputs but also outputs. It

means that each node is an input to all other nodes in the network. The network is fully

connected and weights are determined by the Hebbian principle. The connections are

symmetric and there is no unit with itself. These symmetric connections guarantee the

energy function decreases monotonically. In a neural network, stability has a major

importance. Cohen and Grossberg [66] showed that the recurrent neural networks are

stable if Tij = Tji for i 6= j and Tii = 0 for all i.

Hopfield introduced a continuous energy function E which measures the total energy

of the network. The energy function was given as below,
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Figure 1.7: Electrical circuit that corresponds to Hopfield neural network model [103]

E = −1

2

N∑
j=1

N∑
i=1

TijViVj +
N∑
i=1

1

Ri

∫ Vi

0

g−1(V )dV −
N∑
i=1

IiVi. (1.4.10)

"The convergence of the neuronal state of the model to its stable states was depended

on the existence of an energy function that directs the flow in state space "[103]. From

the definition of the energy function, it was bounded. The energy function was a Lya-

punov function of the model. The model was stable in accordance with Lyapunov’s

stability theorem. Also the function E of the Hopfield network was monotonically

decreasing. Then the Hopfield network was globally asymptotically stable.

1.5 Cohen-Grossberg neural networks

One of the most popular models of artificial neural networks is Cohen-Grossberg

neural networks [66], which is the generalization of well-known Hopfield neural net-

works. While Cohen-Grossberg neural networks is memorizing the information, it

uses content addressable memory. In the real life it is possible to have delays while the
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information transferring. So for a good approach, utilizing differential equations with

piecewise constant delay is very useful. It is a desiring situation that these networks

have a unique equilibrium point which is globally exponentially stable for mathe-

maticians and engineers. For example, if a neural network is used for solving some

optimization problems, it is appealing for the neural network to have a unique glob-

ally stable equilibrium point. Therefore, the problem of stability analysis of Cohen-

Grossberg neural networks have received great interest. Many results on this topic

have been reported in the literature and papers cited therein [52].

x′i(t) = −ai(xi(t))

[
bi(xi(t))−

n∑
j=1

cijgj(xj(t))− Ii

]
, (1.5.11)

where n ≥ 2 is the number of neurons in the network, ui represents the state vari-

able associated with the ith neuron, ai stands for an amplification function, bi is an

appropriately behaved function and (cij) stands for the connection strengths between

neurons. The activation function gj shows how neurons respond to each other.

1.6 Shunting inhibitory neural networks

Shunting inhibitory cellular neural networks was introduced by Bouzerdoum and Pin-

ter [41]. They have been widely studied in the recent years due to the existence of

too many application areas such that speech, perception, robotics, pattern recognition,

etc. The original form of shunting inhibitory cellular neural networks is given in the

following equation

x′ij(t) = −aijxij(t)−
∑

Ckl∈Nr(i,j)

Ckl
ij f(xkl(t))xij(t) + Lij(t) (1.6.12)

where i = 1, · · · , n, j = 1, · · · ,m; Cij is the cell at the (i, j) position of the lattice,

the r−neighborhood Nr(i, j) of Cij is

Nr(i, j) = {Ckl : max(|k − i|, |l − j|) ≤ r; 1 ≤ k ≤ n; 1 ≤ l ≤ m}; (1.6.13)

xij represents the activity of the cell Cij; Lij(t) represents the external input to Cij ,

the constant aij(t) > 0 is the passive decay rate of the cell activity, Ckl
ij (t) 6= 0
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is the connection strength of postsynaptic activity of the cell transmitted to the cell

Cij , the activity function f(xkl(t)) is a positive continuous function representing the

output or firing rate of cell Ckl. If we simplify the explanation about this model, there

is an excitatory external input and the other weighted terms, which become from the

procession of the inputs from the r-neighborhood cells by activation function, behaves

as inhibitory inputs.

1.7 Applications of neural networks

Neural networks help us to provide solutions to real life problems. There are plenty

of studies on applications of neural networks. One can find about current works on

the neural networks in [1, 3, 28, 31, 59, 82, 87, 98, 100, 104, 110, 117, 120, 122,

130, 143, 156, 161, 200, 214] and an overview of them in the paper [161]. Also we

refer to the book [164] for real life applications of neural networks. There is a broad

range of usage areas of neural networks. The reason for the popularity of the neural

networks is based on the special properties of them such as estimation, prediction and

classification. Some usage areas of such networks will be given in the following part

separately.

1.7.1 Control theory

Control theory is an interdisciplinary research area of engineering and mathematics.

The problems studied in control theory include dynamical systems. Mainly, there

must be a controlled system and a controller. One of the most important applica-

tion areas for neural networks is control. The main aim of control is to influence the

behavior of dynamical systems [175]. There are major restrictions on designing con-

trols processes such as complexity, nonlinearity, and uncertainty. The architecture of

neural networks presents solutions to the these restrictions and as a matter of course

they have been properly used in control theory. Several types of neural networks

have been appeared to use in control theory. Multi-layered neural network, recurrent

neural networks such as Hopfield, the content-addressable memory and the gaussian

node network can be given as examples [182]. The autopilots in aircraft, the point-
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ing mechanisms of space telecommunication antennas, air traffic, speed regulators of

machines are some examples of control systems.

1.7.1.1 Aircraft control

There are many different studies which are based on neural networks for aircraft

[44, 150]. One of the most prominent applications of neural networks is its use in

damage-adaptive aircraft control. There are some results such that a neural network

can control an aircraft successfully in a emergency case [109]. Also artificial neu-

ral networks can help to detect and estimate aircraft unit fault diagnosis, real time

assessment of engine conditions and so on. Also in [116], two major applications

of artificial neural networks on aircraft design optimization were presented: a non-

linear input-output mapping for system optimization, and pattern classification and

recognition for system monitoring.

1.7.1.2 Air traffic control

The air traffic control systems used by airports have complex structures. They have

been depending on systems and algorithms which were developed almost forty years

ago. The nature of this field includes complex decisions such as take-off, landing,

etc. are carried out by air traffic controllers [165]. The controllers are stick to sev-

eral parameters. They used back propagation network for decision making in [165].

Moreover they stated that by incorporating neural networks onto the air traffic work-

load on air traffic can be decreased highly. In [86], scheduling the arrival of aircraft

was formulated as an optimization problem in terms of Hopfield neural networks.

They proved that Hopfield network can be used as predicting targets in [102].

1.7.2 Civil engineering

Artificial neural networks have widely used in modeling of civil engineering prob-

lems in the last two decades. For instance, hydrology, tide level prediction, runoff

prediction, reservoir operation, etc. with the view of estimating and predicting char-
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acteristics of neural networks [115]. For example, by using multi layered feed forward

network with Back Propagation algorithm an artificial neural networks technique was

applied to rainfall-runoff modelling [115]. This kind of methods have been extended

to reservoir operation, streams flow prediction, soil water storage, flood routing, clas-

sification river basins, etc.

1.7.3 Financial analysis

The characteristics of neural networks provides an alternating instrument for recog-

nition, classification, and forecasting in the field of finance. The properties of them

such as accuracy, adaptability, robustness, and efficiency are useful in solving finan-

cial problems. There are so many suitable areas to use neural networks in finan-

cial analysis such as bankruptcy prediction of firms/banks, bond trading, commercial

loan application analysis, bond rating, credit evaluation, loan evaluation, stock mar-

ket volatility forecasting, future options hedging, future options pricing, interest rate

prediction, insurance problem examination, financial statement analysis and inter-

pretation, mortgage prepayment rate prediction, mortgage-backed security portfolios

management and so on [197]. Neural networks not only accumulate, store, and recog-

nize patterns of knowledge based on experience, but also constantly reflect and adapt

to new environmental situations while they are performing predictions by constantly

retraining and relearning. As a result, they are more robust and accurate, with lower-

prediction risks and less variance in their errors than the other statistical techniques.

1.7.4 Medical diagnosis

Artificial neural networks have played a key role for many important developments in

medicine and healthcare since they are capable of learning the relationships between

the input-output data [38]. Some of the application areas contain analysis of electro-

cardiography (ECG), electromyography (EMG) and electroencephalography (EEG)

[38]. There are plenty of different fields within the biomedical fields where neural

networks have been utilized. Some of them can be listed as medical image diagno-

sis, low back pain diagnosis, glaucoma diagnosis, medical decision support systems,
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cardiology, gynecology and breast cancer diagnosis, etc. In [89], a model of dengue

fever for the Cuban case was investigated. In this work, the introduction of delay

differential equations to the system constitutes an interesting setting for estimation.

They designed a test estimator in terms of Hopfield neural networks. In [149], they

accomplished with Hopfield network to diagnose the liver disorders with the accu-

racy of 88.2% and Fuzzy Hopfield network with the accuracy of 92%. In [146], they

solved the binary constraint satisfaction problem by using Hopfield model.

1.7.5 Time series forecasting

Time series analysis has the following aims: forecasting, modeling and characteriza-

tion. Some examples of time series are electrical demand for a city, number of births

in a community, air temperature in a building and so on. In time series forecasting,

the past is used for predicting the present. With this view, it has similarities with

artificial neural networks. Also from a statistical aspect, artificial neural networks

are very useful for time series forecasting because of their predictive technique [67],

[198]. They are proper for forecasting with their nonlinear learning and noise toler-

ance capabilities. They have been utilized for a wide range of applications, where

statistical methods are traditionally employed.

1.7.6 Automotive

Neural networks have been used for fuel consumption, fuel injection control and

recognition of misfiring in diesel engines [162], etc. In [180], they gave a proce-

dure for using neural networks to identify the nonlinear dynamic model of the intake

manifold and the throttle body processes in an automotive engine. There are several

types of applications of neural networks in this area in [152, 180].

1.7.7 Power systems

Neural networks have been used for various problems in design and development of

power systems since the 1990’s. There are some literature reviews in [34, 37]. Some
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neural network applications to power systems are load forecasting, fault diagnosis,

economic dispatch, security assessment and transient stability. Multi-layer percep-

trons, Hopfield networks, and Kohonen neural networks were the three major models

for power systems.

Epidemiology, game-playing and decision making, visualization, biological mod-

elization, and image processing are other application areas which the neural networks

are used in frequently. Additionally, there are some studies on applications of neural

networks on music [40, 193]. Especially the performance of Hopfield neural net-

work in solving optimization problems are by far better than other neural networks

[86]. Hopfield and Tank initiated to utilize the neural networks in solving optimiza-

tion problems [106]. They worked on a traveling salesman problem. The studies

for the adaptation of Hopfield neural networks to the real world problems have been

extended until today [4, 32, 89, 149, 194, 102].

1.8 Chaotic neural networks

In the papers [11, 13, 22, 85], chaos in shunting inhibitory cellular neural networks

was studied. In [198], they examined the dynamical analysis of retarded shunting

inhibitory cellular neural networks with Li-Yorke [124] chaotic external inputs and

outputs. They proved the presence of generalized synchronization in coupled retarded

shunting inhibitory cellular neural networks, and confirm it in terms of the auxiliary

system approach. In [13], they took into account shunting inhibitory cellular neural

networks with inputs and outputs that are chaotic in a modified Li-Yorke sense. It

was the first time in the theory of neural networks that the Ott-Grebogi-Yorke control

method was utilized to stabilize almost periodic motions. The techniques of them

provided to investigate chaotic dynamics in human brain, communication security,

combinatorial optimization problems and control of legged robots. They considered

the dynamics of shunting inhibitory cellular neural networks with impulsive effects

in [85]. We give a mathematical description of the chaos for the multidimensional

dynamics of impulsive shunting inhibitory cellular neural networks, and prove its ex-

istence rigorously by taking advantage of the external inputs. The Li-Yorke definition
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of chaos is used in our theoretical discussions. In [22] it was presented that shunting

inhibitory cellular neural networks behave chaotically. The analysis was on the basis

of the Li-Yorke definition of chaos.

1.9 Delay differential equations

In delay differential equations, the derivative of the unknown function at a certain

time is given in terms of the values of the function at previous times. They are also

called time delay systems. In ordinary differential equations, the unknown function

and its derivatives are considered at the same time variable t. But in delay differ-

ential equations, they are also evaluated at t and at earlier instants differently from

the ordinary differential equations. The application areas of them range from biol-

ogy, economics, physiology, mechanical systems to neural networks. One can see

[39, 79, 80, 84, 95, 96, 97], for the theory of delay differential equations.

Many scientists, including neuroscientists, engineers, and biologists have done a lot

of research on dynamical system with time delay [90, 121, 174]. Dynamical systems

with time delay exist extensively in practical systems. For example, they arises in

population growth models. One of the most popular delay differential equation is Lo-

gistic equation. According to the logistic equation, the organism’s birth rate depends

immediately on changes in population size [184]. Logistic equation with delay which

was proposed by Hutchinson [113] as below

dx

dt
= rx(t)

(
1− x(t− τ)

K

)
, (1.9.14)

where r > 0 was the intrinsic growth rate, K > 0 was the carrying capacity of the

population and τ > 0 was the time unit from the egg formation to hatching. Also

time delays come out in immunology and epidemic diseases. "The delays are used

in immunology to represent the time needed for immune cells to divide, or become

destined to die. In epidemic models, delays arise as a result of the time spent in each

stage of the disease, e.g. when someone becomes infected with a disease they do not

recover instantaneously but only after some period of time" [45].

General form of delay differential equations is represented as follow:
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y′(t) = f(t, y(t− τ1, · · · , y(t− τn)), t ≥ t0,

y(t) = ϕ(t), t ≤ t0,

where ϕ ∈ C and time delays τ1, · · · , τn are always non-negative.

Now, let us consider the time delays in neural networks. Our brain consists of mil-

lions of cells. Each of these cells behaves as a complex system in itself. Every

cell continually sends electrical signals to other cells and there are tens of thousands

of connections between these cells. These connections are chemical synapses and

electrical gap junctions. Information, comes from a neuron, is accepted as input by

another neuron. And after processing, it gives an output. During all of these steps

i.e. transferring or processing of the information, time delays or discontinuities may

occur. Time delays occur in the course of propagation of information along the cell

and transmission of information to the other cells [33, 65, 81]. Their presence may

depend on conduction velocity, axon length, membrane structure and chemical kinet-

ics. These delays might cause the changes of the dynamics of neural networks. In

the past few years, there has been intensive studies on the analysis of neural networks

with time delay [29, 30, 35, 47, 50, 52, 53, 55, 56, 57, 72, 91, 92, 94, 125, 126, 129,

134, 136, 144, 145, 176, 188, 201, 202, 209, 212, 213, 215, 216, 218, 219, 220, 221].

There are several types of delays such as constant, time variable, distributed, interval

time-varying and multiple which have been added to neural network models [35, 53,

54, 128, 129, 132, 133, 134, 153, 176, 177, 185, 192, 221]. In many models, the time

delays are fixed. However, there are studies with time-varying and distributed delays

for a more realistic approach. The time varying delays include time dependence, and

distribution of delays, represents the case where the delay occurs in some range of

values with some associated probability distribution [45, 68, 169, 190].

In [141], time delay has been introduced a neural network model firstly. They con-

sidered the effects of delayed response in a continuous-time neural network. In the

stability analysis of the systems, they assumed that the delays and gains of all neurons

are identical. Global stability of equilibrium in a Hopfield-type network with discrete

time delays or gamma distributed time delays were investigated in [2]. Multiple de-

lays are introduced to Cohen Grossberg neural networks and qualitative properties
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of the model were studied in [209]. In [192], generalized neural networks with dis-

crete and distributed time delays were studied. In [133], they have firstly considered

the problem of robust stability analysis for generalized neural networks with both

multiple discrete and multiple distributed delays. In both [133] and [192], they used

Lyapunov-Krasovski functional method and linear matrix inequality technique to ob-

tain a sufficient condition for the global robust stability of generalized neural networks

with discrete and distributed delays. In [216], a new sufficient condition for the global

stability of the unique equilibrium point of delayed Hopfield neural networks was ob-

tained, which was dependent on the magnitude of delays. In the literature, there

are investigations on neural networks with delay based on delay-independent and

delay-dependent conditions. The delay-independent results are simpler than delay-

dependent results. In the literature although there are several results depend on the

delay terms, the results of the studies on delayed Hopfield networks are generally in-

dependent of the delay term [215]. For example, they gave a new sufficient condition

for the asymptotic stability on condition that the delays do not pass over sufficiently

small bounds in [215]. In [188], they obtained some sufficient conditions for the

globally asymptotic stability of a unique equilibrium for the Cohen-Grossberg neural

network with multiple delays. They used activation functions which were not mono-

tone and differentiable. Also there was no symmetry restriction for interconnections.

They utilized Lyapunov functionals and functions with the Razumikhin technique.

They labeled the delays as harmless because the results were all independent of the

size of the delays.

In [202], sufficient conditions for the global exponential stability of the unique equi-

librium of the neural networks with time-varying delays. The activation functions

were supposed to be globally Lipschitz continuous and a linear matrix inequality was

developed for the investigation. In [52], some sufficient criteria were given for the

global asymptotic stability and exponential stability of the equilibrium point of a class

of delayed Cohen-Grossberg neural networks. They used the linear matrix inequality

approach with Lyapunov-Krasovskii functional method and Halanay inequality tech-

nique. In [129], Hopfield neural networks which included continuously distributed

delays were studied. They derived some sufficient conditions for the existence and

exponential stability of the almost periodic solutions for the system. The results were
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obtained by using the fixed point theorem and differential inequality techniques. In

[216], Zhang et al. obtained some results on global asymptotic stability by using

the Lyapunov functional and the linear matrix inequality method for Hopfield neu-

ral networks with delay. In [176], they assumed that the activation functions were

not Lipschitzian and time-varying delays were not differentiable. By using Lyapunov

function, M-matrix theory and inequality technique, new sufficient conditions were

considered for the qualitative properties of Cohen-Grossberg neural network which

contained time-varying and continuously distributed delays.

To sum up, there are so many alternative results which depend on the characteristics

of activation functions, type and size of delays and the methods for examining the

dynamical features of the neural networks which include time delays are under in-

vestigation. In the literature, the most of existing outcomes for the stability of neural

networks are based on the Lyapunov’s direct method and Lyapunov Krasovskii func-

tional method. Also some linear matrix inequalities, Halanay technique and M-matrix

theory supports these methods.

1.10 Linear matrix inequalities

Linear matrix inequalities are very popular instruments for the investigation of the sta-

bility of dynamical systems because of their efficiency. In fact, they can be classified

as optimization problems. These problems are inevitably arises in many areas such as

mechanical and biological systems, signal processing, image verification, economics,

and so on. These problems can be arranged using linear matrix inequalities. In the

control problems, it was preferred that converting the problem to a linear matrix in-

equality to instead of finding an analytic solution for it, because solving linear matrix

inequalities is easy, feasible and fast. In the light of this information we used a linear

matrix inequality to obtain sufficient conditions for the stability of our system.

The history of LMIs in the analysis of dynamical systems started with the study of

Lyapunov [140]. In his study, he showed that the following equation

x′(t) = Ax(t) (1.10.15)

is stable if and only if there exists a positive definite matrix P such that ATP +PA <
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0. In 1940’s, they had discovered that it could be useful to apply Lyapunov’s methods

for some control engineering problems [139]. But these problems did not contain big

size LMIs. So they solved the problems by hand. The solution of the LMIs that arose

in the problem of Lur’e [139] was reduced to simple graphical criteria by using the

positive-real lemma [138, 158, 159, 160, 203, 204, 205, 206]. Then, the positive-real

lemma and extensions were deeply considered. In the early 1980’s, it was proposed

that many LMIs could be solved by computer via convex programming. In 1984,

N. Karmarkar introduced a new linear programming algorithm [118]. Then a new

method, called as interior-point method, was introduced. It could be applied directly

to problems involving LMIs. In the book [42], they used the sentences "It is fair to

say that Yakubovich is the father of the field and Lyapunov the grandfather of the

field." for describing the main developments of the LMIs. A linear matrix inequality

can be defined as follows [42]

F (x) := F0 +
m∑
i=1

xiFi, (1.10.16)

where x ∈ Rm and the n× n symmetric matrices Fi are given.

Some properties of linear matrix inequalities can be stated as follows. This LMI

is equivalent to n polynomial inequalities. So (1.10.16) is equivalent the following

polynomial inequalities

F0,11 +
m∑
i=1

xi,11Fi,11 > 0,


F (x)11 · · · F (x)1k

... · · · ...

F (x)k1 · · · F (x)kk

 > 0,

...

det(F (x)) > 0

where F (x)ij is the ijth element of F (x), i, j = 1, · · · , n.

Many problems in linear algebra can be converted into problems of solving some

LMIs, for example eigenvalue minimization, matrix norm minimization, Schur sta-

bilization. In the book [83], developing processes of linear matrix inequalities were
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summarized as follows; routing period, growth period and flourishing period. They

indicated that there were more than 250 papers on linear matrix inequalities, each

year between 2000-2013 [83]. Linear matrix inequalities have so many advantages.

Firstly they can be solved numerically efficiently, whether or not their size is very

large. Also there are so many software packages like MATLAB LMI toolbox for

solving problems in terms of linear matrix inequalities.

Now we will give some linear matrix inequalities.

Lemma 1.10.1 [159] For arbitrary scalars a, b and δ > 0, the following inequality

hold

2ab ≤ δa2 +
1

δ
b2.

Lemma 1.10.2 [159] Let U, V ∈ Rm×n, P > 0, and δ > 0 be a scalar then

UTPV + V TPU ≤ δUTPU + δ−1V TPV.

When U = u and V = v are vectors, it becomes to

2uTPv ≤ δuTPu+ δ−1vTPv.

Lemma 1.10.3 [159] Let U ∈ Rm×n, U ∈ Rn×m. Then for arbitrary δ > 0 be a

scalar, the following inequality is true

USV + V TSTUT ≤ δUUT + δ−1V TV, for every S ∈ F,

where F =
{
S|S ∈ R, STS ≤ I

}
.

Lemma 1.10.4 [42] Given any real matrices U1, U2, W of appropriate dimensions

and a scalar ε > 0 such that 0 < W = W T , then the following matrix inequality is

true:

UT
1 U2 + UT

2 U1 ≤ εUT
1 WU1 +

1

ε
UT

2 W
−1U2. (1.10.17)
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Lemma 1.10.5 [159] For arbitrary nonzero vectors, u, v ∈ Rn, there holds

max
S∈F

(uTSv)2 = (uTu)(vTv),

where F =
{
S|S ∈ Rn×n, STS ≤ I

}
.

They represented a set of nonlinear inequalities as a linear matrix inequality by the

following lemma.

Lemma 1.10.6 [42] The linear matrix inequality Q(x) S(x)

ST (x) R(x)

 > 0, (1.10.18)

is equivalent to the following condition:

R(x) > 0, Q(x)− S(X)R−1(X)ST (x) > 0

where Q(x) = QT (x), R(x) = RT (x), and S(x) depend affinely on x.

Lemma was generalized to nonstrict inequalities as follows:

Lemma 1.10.7 [42] Suppose Q and R are symmetric. The condition Q S

ST R

 ≥ 0,

is equivalent to

R ≥ 0, Q− SR+ST ≥ 0, S(I −RR+) = 0

where R+ the Moore-Penrose inverse of R.

Many researchers have taken the advantage of linear matrix inequalities [58, 112,

126, 127, 151, 155, 167, 170, 186, 202, 217]. In [166], the exponential stability

and periodic solution of high-order neural networks with time delay were consid-

ered. They used Lyapunov method and LMI technique. In [186], by employing

Lyapunov functional and the linear matrix inequality approach, several new suffi-

cient conditions in LMI form were acquired for the global exponential stability of
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the equilibrium point for the bidirectional associative memory neural networks with

both time-varying delays and general activation. Bidirectional associative memory

neural networks with constant or time-varying delays were studied in [112]. Their

approach contained the Lyapunov–Krasovskii functionals in combination with linear

matrix inequality for investigating the exponential stability of the networks. The ro-

bust stability analysis of delayed Cohen–Grossberg neural networks were considered

in [167]. They got the results in terms of Lyapunov stability theory and linear matrix

inequality technique. In [135], new delay-dependent asymptotic stability conditions

for delayed Hopfield neural networks were given by using a linear matrix inequal-

ity. Some linear matrix inequality based criteria for the uniqueness and global robust

stability of the equilibrium point of Hopfield-type neural networks with delay were

given in [173]. They examined a generalized model of high-order Hopfield-type neu-

ral networks with time-varying delays. Some global stability criteria of the system

were derived by using Lyapunov method, linear matrix inequality and analytic tech-

nique in [137]. The paper [51] was about the global robust stability of equilibrium

for interval neural networks with time delays. In [111], stability analysis for the gen-

eralized Cohen Grossberg neural networks with inverse Lipschitz neuron activations

was considered by utilizing nonsmooth analysis approach, linear matrix inequality

technique, topological degree theory and Lyapunov-Krasovskii function method. The

stability analysis of Hopfield neural networks with delays and impulsive perturbations

was worked in [125].

1.11 Some useful definitions and theorems

Definition 1.11.1 [108] A symmetric n× n real matrix M is said to be positive def-

inite if the scalar zTMz is positive for every non-zero column vector z of n real

numbers. Here zT denotes the transpose of z.

1.11.1 Lyapunov Stability

The state-space equation is given as follows

d

dt
x(t) = f(x(t)), (1.11.19)

31



where f is nonlinear vector valued function.

A function V (x) is positive definite, if it satisfies the following conditions [99]

1. The funciton V (x) has continuous partial derivatives with respect to the element

of the state x.

2. V (x∗) = 0.

3. V (x) > 0 if x ∈ N− x∗

where N is a small neighborhood around x̄.

Lyapunov’s theorems on the stability and asymptotic stability of the state-space equa-

tion (1.11.19), describing an autonomous nonlinear dynamic system with state vector

x(t) and equilibrium state x̄, were stated as follows:

Theorem 1.11.1 [99] The equilibrium state x∗ is stable if, in a small neighborhood

of x∗, there exists a positive-definite function V(x) such that derivative with respect to

time is negative semidefinite in that region.

Theorem 1.11.2 [99] The equilibrium state x∗ is asymptotically stable if, in a small

neighborhood of x∗, there exists a positive-definite function V(x) such that derivative

with respect to time is negative definite in that region.

1.12 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we study a model including both

delays and piecewise constant argument. It is the first time that global exponential sta-

bility of equilibrium of Hopfield neural networks model with both delays and piece-

wise constant argument is considered. The existence and uniqueness of the equation

(2.2.12)-(2.2.13) are considered step by step on intervals [θi, θi+1), i ∈ Z. We assume

without loss of generality that θi ≤ σ ≤ θi+1 and i = 0. We examine the solution

x(t), which satisfies the equation x(t) = ϕ(t) for [σ − τ, σ] and consider the all dif-

ferent cases that can be varied according to the place of the ζi in the time intervals.

32



The main challenge of our study is to establish a relation between the constant delay

and β type piecewise constant argument like in the previous studies. But it can not be

possible to find it, so we look for another approach to investigate the stability proper-

ties of our system. This is linear matrix inequality method. A linear matrix inequality

method has been used to obtain the global exponential stability of equilibrium point

of the system because of its efficiency. The presence of fast linear matrix inequality

solvers has increased the usage of this method. In the control problems, it is preferred

that converting the problem to a linear matrix inequality to instead of finding an an-

alytic solution for it. Because solving linear matrix inequalities is easy, feasible and

fast.

In Chapter 3, the existence and uniqueness of the equation (2.2.12)-(2.2.13) are con-

sidered step by step on intervals [θi, θi+1), i ∈ Z. We assume without loss of gener-

ality that θi ≤ σ ≤ θi+1 and i = 0. We examine the solution x(t), which satisfies the

equation x(t) = ϕ(t) for [σ−τ, σ] and consider the all different cases that can be var-

ied according to the place of the ζi in the time intervals. The crucial point about this

chapter is that an LMI method has been extended to a multi-compartmental structure

to investigate the stability of the system. In the literature, some of the papers con-

sider only delays, some consider only piecewise constant argument. It is important to

emphasize that this is the first time that both delay and piecewise constant argument

involved in the models and this requests the development of LMI method to multi-

compartmental case. The last chapter is allocated to consequences and possible future

plans.
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CHAPTER 2

STABILITY OF HOPFIELD NEURAL NETWORKS WITH

DELAY

2.1 Introduction

The formulation of continuous Hopfield neural networks [103] is represented by the

following equations:

Ci
dui(t)

dt
= −ui(t)

Ri

+
n∑
j=1

Tijgj(uj(t)) + Ii,

i = 1, 2, · · · , n, (2.1.1)

where Ci is the input capacitance of the cell membrane, Ri is the transmembrane

resistance, Tij stands for the connection strength between the neurons i and j, ui(t)

stands for the state vector of the ith unit at time t, gj(uj(t)) denote the activation

function corresponding to the unit j at time t and Ii is the external constant input

to neuron i. Also the original Hopfield neural network model can be formulated as

follows:

y′i(t) = −aiyi(t) +
n∑
j=1

bijfj(yj(t)), (2.1.2)

for i = 1, · · · , n, where ai ≥ 0, yj is the state variable, bij interconnection weights

from neuron j to neuron i and fj denotes the activation functions.

Up to know this model has been modified in numerous studies [46, 48, 49], [61]-[64],

[88, 92, 104, 105, 125, 129, 134, 163, 181, 192, 208, 213, 215, 216, 220]. For ex-

ample, several kinds of time delays were added to the models. The following system

35



with constant delays was introduced by Marcus and Westervelt [141]

y′i(t) = −ai(t)yi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

bijfj(yj(t− τj)), (2.1.3)

for i = 1, · · · , n.

Mohamad and Gopalsamy considered the following model [144]:

y′i(t) = −aiyi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

cijfj(yj(t− τij)) + Ii, (2.1.4)

for i = 1, · · · , n. They used Lyapunov functionals then obtained delay independent

conditions for the stability of the network.

Neural networks with time varying delays were studied deeply in recent years. Expo-

nential stability, asymptotic stability, existence and uniqueness of solutions of them

have been analyzed by many authors. Further studies were taken about the following

model with time variable delay [33, 81, 145, 202, 213, 215]

y′i(t) = −ai(t)yi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

bijfj(yj(t− τj(t))), (2.1.5)

for i = 1, · · · , n.

Furthermore distributed time-delays, have begun to attract the researchers’ attention.

In [181], an application of distributed time delay was given by Tank and Hopfield.

There have been so many results on the stability analysis of various neural net-

works with distributed time-delays, such as recurrent neural networks, bidirectional

associative memory networks, Hopfield neural networks, cellular neural networks

[45, 68, 92].

In [192], they worked on the robust global stability analysis for generalized neural

networks with both discrete and distributed delays. The model was represented by

the following equations

y′(t) = −Ky(t) + AF (y(t− τ1)) +B

∫ t

t−τ1
H(y(s))ds, (2.1.6)

where τ1, τ2 > 0, y(t) = (y1(t), · · · , yn(t))T ∈ Rn was the state variable, K =

diag(k1, · · · , kn) is a diagonal matrix (ki > 0), A = (aij)n×n and B = (bij)n×n
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were connection weight matrices. The activation functions were F (y(t − τ1)) =

(f1(y1(t− τ1)), · · · , fn(yn(t− τ1)))T and H(y(t)) = (h1(y1(t)), · · · , hn(yn(t)))T .

In [133], generalized neural networks which include multiple discrete delays and mul-

tiple distributed delays were investigated and they were represented as the following

equations.

y′(t) = −Ay(t) +
r∑

k=1

B(k)f(y(t− τk(t))) +

+

q∑
m=1

C(m)

∫ t

t−τ̄m(t)

g(y(s))ds+ I, (2.1.7)

where τk(t) and τ̄m(t) were time-varying delays. A = (diag(a1, · · · , an) was positive

diagonal matrix, B(k) = (bij
(k))n×n and C(m) = (cij

(m))n×n were connection weight

matrices. y(t) denoted state variable, f(y(t−τk)) = (f1(y1(t−τk(t))), · · · , fn(yn(t−
τk(t)))) and g(y(t)) = (g1(y1(t)), · · · , hn(yn(t)))T denoted activation functions. I =

[I1, · · · , In] was constant external input.

In both [133] and [192], the activation functions satisfied a more general assumption

in place of Lipschitz condition. Also they used Lyapunov stability and a linear matrix

inequality to obtain sufficient criteria for global robust stability.

Recently, the differential equations with piecewise constant argument have been stud-

ied in many papers [26, 76, 114, 154, 191, 195, 207, 211, 222]. The main idea of

differential equation with piecewise constant argument is combining the continuous

and discrete dynamical systems. With this view, it is important for the modeling the

biological and computer sciences problems. This type of differential equations have

been under investigation since 1980s. Busenberg and Cooke firstly introduced the

piecewise constant argument in 1982 [43]. Cooke and Wiener, Wiener, Shah and

Wiener have studied the type of differential equations [68, 69, 70, 171, 196]. This

theory was improved for the neural networks in the studies [9, 12, 15, 16, 20, 21, 25,

26, 60, 157, 189, 199, 210]. Neural networks with piecewise constant argument have

been introduced into the following form [21]

y′i(t) = −aiyi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

cijgj(yj(β(t))) + di, (2.1.8)
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for i = 1, · · · , n where ai > 0, bij , cij were connection weights, di was external

input, fj(yj(t))) and gj(yj(β(t))) were activation functions. Qualitative properties of

this neural network system, such that existence and uniqueness of solutions, stability

of equilibrium, existence and stability of periodic solutions were investigated.

In implementation of neural network models to real world problems, stability of them

has a primary importance. So, the stability analysis of neural network systems is

crucial. The linear matrix inequalities have been frequently used for the stability

analysis of the neural networks as well as they have been used for dynamical systems.

Many stability criteria based on LMI have been derived in the literature for different

Hopfield neural network models because of the efficiency of this method [135, 173].

Also this technique has been used in control theory [42, 159].

In this chapter, we study on a model including both delays and piecewise constant

argument. It is the first time that global exponential stability of equilibrium of Hop-

field neural networks model with both delays and piecewise constant argument is

considered.

2.2 Preliminaries

Let N and R+ denotes the natural and nonnegative real numbers, respectively. The

notation X > 0 (or X < 0) denotes that X is a symmetric and positive definite

(or negative definite) matrix. The notations XT and X−1 refer, respectively, the

transpose and the inverse of a square matrix X. λmax(X) and λmin(X) represent

the maximal eigenvalue and minimal eigenvalue of X, respectively. The norm ‖ ·‖

means either one-norm: ‖x‖1 =
n∑
i=1

|xi|, x ∈ Rn or the induced matrix 2-norm:

‖X‖2 =
√
λmax(XTX). Let θi, and ζi, denote two fixed real-valued sequences such

that θi < θi+1, θi ≤ ζi ≤ θi+1 for all i ∈ N, with θi →∞ as i→∞. Throughout the

paper, we assume that there exists a positive constant θ̄ such that θi+1−θi ≤ θ̄, i ∈ N.

In this section, we will consider the description of the following neural network with

piecewise argument and constant delay:

y′(t) = −Ay(t) +Bg(y(t)) + Cg(y(β(t))) +Dg(y(t− τ)) + E, (2.2.9)
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where β(t) = θk if t ∈ [θk, θk+1), k ∈ N, t ∈ R+, y = [y1, · · · , yn]T ∈ Rn is

the neuron state vector, g(y(t)) = [g1(y1(t)), · · · , gn(yn(t))]T ∈ Rn is the activation

function of neurons, E = [E1, · · · , En]T is an external input vector.

Additionally, we have A = diag(a1, · · · , an) where ai > 0, B = (bij)n×n, C =

(cij)n×n, D = (dij)n×n, denote the connection weight matrices.

(A1) The activation function g satisfies g(0) = 0;

(A2) There exists Lipschitz constant

L = diag(L1, · · · , Ln) > 0,

such that

|gi(u)− gi(v)| ≤ Li|u− v|,

for all u, v ∈ Rn, i = 1, 2, . . . , n;

(A3) The activation function g is bounded, i.e. for some constantM > 0, |g(y(t))| <
M , for all t ∈ R and y ∈ R;

(A4) θ̄ < τ .

Consider the equilibrium point, y∗ = (y∗1, · · · , y∗n)T , of the system (2.2.9).

Theorem 2.2.1 Suppose that the assumptions (A1), (A2) and (A3) are fulfilled. If

ai > Li

n∑
j=1

(|bji|+ |cji|+ |dji|), i = 1, 2, . . . , n, (2.2.10)

then system (2.2.9) has a unique equilibrium point.

Proof. Step 1: Existence:If y∗ = (y∗1, y
∗
2, · · · , y∗n) is an equilibrium point of the

system (2.2.9), then each y∗i satisfies the following equation:

y∗i =
1

ai

[
n∑
j=1

bijgj(y
∗
j ) +

n∑
j=1

cijgj(y
∗
j ) +

n∑
j=1

dijgj(y
∗
j )

]
+
Ei
ai
, i = 1, 2, · · · , n.
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Consider a mapping H(y) = (H1(y), H2(y), · · · , Hn(y))T . Denote

y∗i = Hi(y
∗) =

1

ai

n∑
j=1

[(bij + cij + dij)] gj(y
∗
j ) +

Ei
ai
, i = 1, 2, · · · , n.

Thus, y∗ is a fixed point of the map H : Rn → Rn. The i-th component of the

function H(y) satisfies the following inequality

|Hi(y
∗)| = | 1

ai

n∑
j=1

[(bij + cij + dij)] gj(y
∗
j ) +

Ei
ai
|

≤ 1

ai

n∑
j=1

| [(bij + cij + dij)] ||gj(y∗j )|+ |
Ei
ai
|

≤ 1

ai

n∑
j=1

| [(bij + cij + dij)] |M +
|Ei|
ai

,

where y∗ = (y∗1, y
∗
2, · · · , y∗n)T . Then we have

|Hi(y
∗)| ≤ max

1≤i≤n

1

ai

n∑
j=1

| [(bij + cij + dij)|]M +
|Ei|
ai

, for i = 1, 2, · · · , n.

H : Rn → Rn is bounded for all y ∈ Rn. Also we can easily say thatH is continuous.

From Brouwer’s fixed point theorem, H has at least one fixed point.

Step 2: Uniqueness: Suppose that there exists another fixed point denoted z∗. Then

ai(y
∗
i − z∗i ) =

n∑
j=1

(bij + cij + dij)(gj(y
∗
j )− gj(z∗j )).

From conditions (A1)-(A3) and a > 0,

ai|y∗i − z∗i | −
n∑
j=1

(|bij|+ |cij|+ |dij|)Lj|y∗j − z∗j | ≤ 0, i ∈ I,

and hence
n∑
i=1

{
ai −

n∑
j=1

(|bij|+ |cij|+ |dij|)Lj

}
|y∗i − z∗i | ≤ 0. (2.2.11)

Consequently from (2.2.10) we obtain y∗i = z∗i . So there exists a unique equilibrium.

The theorem is proved.
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Now, we will consider the following initial value problem

y′(t) = −Ay(t) +BG(y(t)) + CG(y(β(t))) +DG(y(t− τ)) + E, (2.2.12)

y(t) = ϕ(t), σ − τ ≤ t ≤ σ, (2.2.13)

where β(t) = θk if t ∈ [θk, θk+1), k ∈ N, t ∈ R+ and ϕ(t) is a continuous function.

Theorem 2.2.2 Assume that the conditions (A1) − (A4) are hold. Then for every

(σ, ϕ) ∈ R+×Rn, there exists a unique solution y(t) = y(t, σ, ϕ) of (2.2.12)-(2.2.13),

such that y(σ) = ϕ(σ) on R+.

Proof. Existence: Equation (2.2.12)-(2.2.13) can be investigated step by step on

intervals [θi, θi+1), i ∈ Z. We assume without loss of generality that θi ≤ σ ≤ θi+1

and i = 0. We are looking for the solution x(t), which satisfies the equation y(t) =

ϕ(t) for [σ − τ, σ]. Consider the following cases:

(a) Assume that there exists an integer j such that θj ≤ σ+ τ < θj+1, j > 1. We will

show that there exists a unique solution on the interval [σ, σ+ τ). For t ∈ [σ, θ1), y(t)

satisfies the following equation

y′(t) = −Ay(t) +BG(y(t)) + CG(ϕ(σ)) +DG(ϕ(t− τ)) + E. (2.2.14)

Since the equation is quasilinear, with Lipschitzian nonlinear part, the solution exists,

unique and is continuable to θ1. For each i < j, y(t) satisfies the following equation

y′(t) = −Ay(t) +BG(y(t)) + CG(y(θi)) +DG(y(t− τ)) + E.

on the interval [θi, θi+1]. Consequently, repeating the discussion for the first interval,

one can continue the solution till θj. Now, consider t ∈ [θj, σ + τ). Again, similarly

to the previous intervals one can show that the solution exists on [θj, σ + τ).
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(b) Now, assume that σ + τ < θ1 < σ + 2τ . Consider the interval [σ, σ + τ), then

y(t) satisfies the following quasilinear differential equation

y′(t) = −Ay(t) +BG(y(t)) + CG(ϕ(σ)) +DG(ϕ(t− τ)) + E.

It is obvious that the solution exists and is unique on the interval [σ, σ + τ). Now for

t ∈ [σ + τ, θ1), y(t) satisfies the following equation;

y′(t) = −Ay(t) +BG(y(t)) + CG(y(σ + τ)) +DG(y(t− τ)) + E.

The above equation is a quasilinear ordinary differential equation, since y(σ+ τ) and

y(t− τ) are known from the previous step. So, there exists a solution on [σ + τ, θ1).

One can see that by combination of the two cases, (a) and (b) the solution is continu-

able uniquely on the interval [σ,∞).

The theorem is proved.

Definition 2.2.1 The equilibrium y = y∗ of (2.2.9) is globally exponentially stable if

there exist positive constants α1 and α2 such that

||y(t)|| ≤ α1e
−α2t sup

−τ≤ξ≤0
||y(ξ)||.

If we use the transformation u(t) = y(t)− y∗, system (2.2.9) can be written as

u′(t) = −Au(t) +BG(u(t)) + CG(u(β(t))) +DG(u(t− τ)), (2.2.15)

where Gj(uj(t)) = gj(uj(t) + y∗i )− gj(y∗j ), with gj(0) = 0.

It is trivial that the stability of the zero solution of (2.2.15) is equivalent to that of the

equilibrium x∗ of (2.2.9). So, we will consider the stability of the zero solution of

(2.2.15).
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Lemma 2.2.1 [42] Given any real matrices U1, U2, W of appropriate dimensions

and a scalar ε > 0 such that 0 < W = W T , then the following matrix inequality is

true:

UT
1 U2 + UT

2 U1 ≤ εUT
1 WU1 +

1

ε
UT

2 W
−1U2.

2.3 Stability of equilibrium

Theorem 2.3.1 Let the assumptions (A1)-(A4) hold true. The equilibrium y∗ of (2.2.15)

is globally exponentially stable, if there exist matrices P > 0, Q > 0 and two diago-

nal matrices R > 0, S > 0 such that the following LMI holds;


AP + PA− PBRBTP − L(R−1 +Q+ S)L −PC −PD

−CTP S 0

−DTP 0 Q

 > 0.(2.3.16)

Proof. Firstly we choose a functional candidate for system (2.2.15) as below

V (ut) = uT (t)Pu(t) +

∫ t

t−τ
GT (u(ξ))QG(u(ξ))dξ +

∫ t

β(t)

GT (u(ξ))SG(u(ξ))dξ.

Then we will find the time derivative of V (ut) along the trajectories of system (2.2.15)

for t 6= θi,
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V̇ (ut) = u̇T (t)Pu(t) + uT (t)Pu̇(t) +GT (u(t))QG(u(t))−

−GT (u(t− τ))QG(u(t− τ)) +GT (u(t))SG(u(t))−

−GT (u(β(t)))SG(u(β(t)))

= [−Au(t) +BG(u(t)) + CG(u(β(t))) +DG(u(t− τ))]T Pu(t) +

+uT (t)P [−Au(t) +BG(u(t)) + CG(u(β(t))) +DG(u(t− τ))] +

+GT (u(t))QG(u(t))−GT (u(t− τ))QG(u(t− τ)) +

+GT (u(t))SG(u(t))−GT (u(β(t)))SG(u(β(t)))

= −uT (t)(ATP + PA)u(t) +GT (u(t))BTPu(t) +

+GT (u(β(t)))CTPu(t) +G(u(t− τ))DTPu(t) +

+uT (t)PBG(u(t)) + uT (t)PCG(u(β(t))) +

+uT (t)PDG(u(t− τ)) +GT (u(t))QG(u(t))−

−GT (u(t− τ))QG(u(t− τ)) +

+GT (u(t))SG(u(t))−GT (u(β(t)))SG(u(β(t))). (2.3.17)

It follows from Lemma (2.2.1),

uT (t)PBG(u(t)) +GT (u(t))BTPu(t) ≤ uT (t)PBRBTPu(t) +GT (u(t))R−1G(u(t)).

(2.3.18)

Substituting (2.3.18) into (2.3.17), we have

V̇ (u(t), G(u(β(t))), G(u(t− τ))) ≤ uT (t)(−AP − PA+ PBRBTP +

+L(R−1 +Q+ S)L)u(t) +

+GT (u(β(t)))CTPu(t) + uT (t)PCG(u(β(t))) +

+GT (u(t− τ))DTPu(t) + uT (t)PDG(u(t− τ)) +

−GT (u(β(t)))SG(u(β(t)))

−GT (u(t− τ))QG(u(t− τ)).
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Then we obtain

V̇ (ut) ≤ −η(t)ΣηT (t), (2.3.19)

where η(t) =
[
uT (t) GT (u(β(t))) GT (u(t− τ))

]
, and

Σ =


AP + PA− PBRBTP − L(R−1 +Q+ S)L −PC −PD

−CTP S 0

−DTP 0 Q

 .

Now we will prove the global exponential stability of the solution. Note that ` =

max
1≤i≤n

{Li} for i = 1, · · · , n and

V (ut) ≤ λmax(P )||u(t)||2 +

+λmax(Q)`2

∫ t

t−τ
||u(ξ)||2dξ + λmax(S)`2

∫ t

β(t)

||u(ξ)||2dξ.

From (2.3.16) and (2.3.19), one can see that there exists a scalar m > 0 such that


AP + PA− PBRBTP − L(R−1 +Q+ S)L−mI −PC −PD

−CTP S 0

−DTP 0 Q

 > 0.

Then we can obtain easily the following equation for any scalar c > 0,

d

dt
(ectV (ut)) = ect[b(V (ut)) + V̇ (ut)]

≤ ect
[
(cλmax(P )−m)||u(t)||2 + cλmax(Q)`2

∫ t

t−τ
||u(ξ)||2dξ+

+λmax(Q)`2

∫ t

β(t)

||u(ξ)||2dξ
]

≤ ect
[
(cλmax(P )−m)||u(t)||2 + 2cλmax(Q)`2

∫ t

t−τ
||u(ξ)||2dξ

]
.

By intergating two sides from 0 to T > 0, we obtain

ecTV (uT )− V (u0) ≤ (cλmax(P )−m)

∫ T

0

ect||u(t)||2dt+

+2cλmax(Q)

∫ T

0

∫ t

t−τ
ect||u(ξ)||2dξdt.
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One can see that easily∫ T

0

∫ t

t−τ
ect||u(ξ)||2dξdt ≤ τ

∫ T

−τ
ec(t+τ)||u(t)||2dt

≤ τecτ
∫ 0

−τ
||u(t)||2dt+

+τecτ
∫ T

0

ect||u(t)||2dt.

Then we obtain

ecTV (uT ) ≤ (cλmax(P )−m+ 2cλmax(Q)`2τecτ )

∫ T

0

ect||u(t)||2dt+

+2cλmax(Q)`2τecτ
∫ 0

−τ
||u(t)||2dt+ V (u0)

By choosing a scalar c > 0 such that m = cλmax(P ) + 2cλmax(Q)`2τecτ , we have

ecTV (uT ) ≤ 2cλmax(Q)`2τecτ
∫ 0

−τ
||u(t)||2dt+ V (u0) (2.3.20)

We know from definition of the V (ut), V (u0) satisfies the following inequality

V (u0) ≤ λmax(P )||u0||2 + λmax(Q)`2

∫ 0

−τ
||u(ξ)||2dξ (2.3.21)

Substituting (2.3.21) into (2.3.20), we have

ecTV (uT ) ≤ (2cλmax(Q)`2τ 2ecτ + λmax(P ) + λmax(S)`2τ) sup
−τ≤ξ≤0

||u(ξ)||2.

Also we know from (2.3.20), λmin(P )||u(T )||2 ≤ V (uT ).

Consequently, we have

||uT )|| ≤

√
2cλmax(Q)`2τ 2ecτ + λmax(P ) + λmax(S)`2τ

λmin(P )
e−cT/2 sup

−τ≤ξ≤0
||u(ξ)||2.

The theorem is proved.
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2.4 An Illustrative Example

Consider the system with piecewise constant argument.

x
′
(t) = −

 0.1 0

0 0.1

 x1(t)

x2(t)

+

 0.01 0.02

0.03 0.01

 tanh(x1(t))

tanh(x2(t))


+

 0.01 0.02

0.02 0.03

 tanh(x1(β(t)))

tanh(x2(β(t)))

 . (2.4.22)
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Figure 2.1: Time response of x1(t) with piecewise constant arguments

Here the coefficients of the delay terms in the main model has been chosen zero. If

L1 = 0.1 and L2 = 0.1, it can be shown easily that (2.4.22) satisfies the condition

of Theorem 2.1. So there exists a unique equilibrium of (2.4.22) such that y∗ =

[0.4372, 0.6623]T . For

P =

 1.5 1

1 1.5

 , Q =

 2 0

0 2

 , R =

 3 0

0 3

 , S =

 2 0

0 2

 ,

the condition of the Theorem 4.1 is satisfied. So, the equilibrium of the system

(2.4.22) is globally exponentially stable. In Fig.2.1 and Fig.2.2, the simulation shows

that the trajectory with initial point [1, 2]T approaches to the equilibrium [0.4372, 0.6623]T

as time increases.
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Figure 2.2: Time response of x2(t) with piecewise constant arguments

2.5 Conclusion

In this chapter, the Hopfield neural network with piecewise constant argument and

constant delay has been considered. Up to now, various kinds of delays were intro-

duced to the Hopfield neural network systems such that constant delays, single time

delays, time varying delays and distributed delays. Also the Hopfield neural networks

model with piecewise constant argument were studied in the paper [20]. But it is the

first time that Hopfield neural networks model with both piecewise constant argu-

ment and constant delay is considered. This combination provided a more realistic

approximation to the real life problems. The existence and uniqueness of the equa-

tion (2.2.12)-(2.2.13) are considered step by step on intervals [θi, θi+1), i ∈ Z. We

assume without loss of generality that θi ≤ σ ≤ θi+1 and i = 0. We examine the

solution x(t), which satisfies the equation x(t) = ϕ(t) for [σ − τ, σ] and consider the

all different cases that can be varied according to the place of the ζi in the time inter-

vals. The main challenge of our study is to establish a relation between the constant

delay and β type piecewise constant argument like in the previous studies. But it can

not be possible to find it, so we look for another approach to investigate the stability

properties of our system. This is linear matrix inequality method. A linear matrix

inequality method has been used to obtain the global exponential stability of equilib-

rium point of the system because of its efficiency. The presence of fast linear matrix
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inequality solvers has increased the usage of this method. In the control problems,

it is preferred that converting the problem to a linear matrix inequality to instead of

finding an analytic solution for it. Because solving linear matrix inequalities is easy,

feasible and fast. In the light of this information we use a linear matrix inequality and

a Lyapunov functional to obtain sufficient conditions for the stability of our system.

Finally, we give an example and it’s simulation to illustrate our results.
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CHAPTER 3

A HOPFIELD NEURAL NETWORK WITH

MULTI-COMPARTMENTAL ACTIVATION

3.1 Introduction

Hopfield neural network’s [103] characteristics such as exponential stability, period-

icity, almost periodicity, domain of attraction and convergence rate have been deeply

investigated in the papers [46, 48, 49, 61, 62, 63, 64, 88, 105] and references therein.

The following equations represents the model:

Ci
dui(t)

dt
= −ui(t)

Ri

+
n∑
j=1

Tijgj(uj(t)) + Ii,

i = 1, 2, · · · , n, (3.1.1)

where Ci is the input capacitance of the cell membrane, Ri is the transmembrane

resistance, Tij stands for the connection strength between the neurons i and j, ui(t)

stands for the state vector of the ith unit at time t, gj(uj(t)) denote the activation

function corresponding to the unit j at time t and Ii is the external constant input to

neuron i. The improvements on this network model have been boosted for many years

[91, 125, 126, 145, 202, 213, 215]. Time delays often come upon in various types of

systems such as mechanical systems, population models, neural networks etc. They

affect the qualitative properties of the systems such as stability and oscillation. In

neural systems, they can occur during propagation of the action potential along the

axon or transmission of the electrical signal across the synapse [33, 65, 81]. So time

delays are directly linked with conduction velocity, axon length, membrane structure

and chemical kinetics.
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Marcus and Westervelt, took into account a system with a single delay [141]. They

analyzed the dynamics of continuous-time analog networks with delay and consider

the following system:

Ci
dui(t)

dt
= −ui(t)

Ri

+
n∑
j=1

Tijgj(uj(t− τ)) + Ii,

i = 1, 2, · · · , n. (3.1.2)

Mohamad and Gopalsamy considered the following model:

y′i(t) = −aiyi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

cijfj(yj(t− τij)) + Ii, (3.1.3)

for i = 1, · · · , n. In [144], they used Lyapunov functionals then obtained delay

independent conditions for the stability of the network.

Neural networks with time varying delays were studied deeply in recent years. Expo-

nential stability, asymptotic stability, existence and uniqueness of solutions of them

have been analyzed by many authors. Further studies were taken about the following

model with time variable delay [145]-[33]

y′i(t) = −ai(t)yi(t) +
n∑
j=1

bijfj(yj(t)) +
n∑
j=1

bijfj(yj(t− τj(t))), (3.1.4)

for i = 1, · · · , n.

In [192], they worked on the robust global stability analysis for generalized neural

networks with discrete and distributed delays. The model was presented by the fol-

lowing equations.

˙y(t) = −Ky(t) + AF (y(t− τ1)) +B

∫ t

t−τ1
H(y(s))ds, (3.1.5)

where τ1, τ2 > 0, y(t) = (y1(t), · · · , yn(t))T ∈ Rn was the state variable, K =

diag(k1, · · · , kn) is a diagonal matrix (ki > 0), A = (aij)n×n and B = (bij)n×n

were connection weight matrices. The activation functions were F (y(t − τ1)) =

(f1(y1(t− τ1)), · · · , fn(yn(t− τ1)))T and H(y(t)) = (h1(y1(t)), · · · , hn(yn(t)))T .

In [133], they studied on the generalized neural networks. These networks included

multiple discrete delays and multiple distributed delays. They were represented as
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the following equations.

y′(t) = −Ay(t) +
r∑

k=1

B(k)f(y(t− τk(t))) +

+

q∑
m=1

C(m)

∫ t

t−τ̄m(t)

g(y(s))ds+ I, (3.1.6)

where τk(t) and τ̄m(t) were time-varying delays. A = (diag(a1, · · · , an) was positive

diagonal matrix, B(k) = (bij
(k))n×n and C(m) = (cij

(m))n×n were connection weight

matrices. y(t) denoted state variable, f(y(t−τk)) = (f1(y1(t−τk(t))), · · · , fn(yn(t−
τk(t)))) and g(y(t)) = (g1(y1(t)), · · · , gn(yn(t)))T denoted activation functions. I =

[I1, · · · , In] was constant external input.

In both [133] and [192], the activation functions satisfied a more general assumption

in place of Lipschitz condition. Also they used Lyapunov stability and a linear matrix

inequality to obtain sufficient criteria for global robust stability. The range of time

delays diversified the modification of the model [29, 30, 94, 129, 133, 134, 192, 220].

In these studies, they give some conditions ensuring existence, uniqueness, and global

asymptotic stability or global exponential stability of the equilibrium point of Hop-

field neural network models with delays. Also Hopfield neural networks, Cohen-

Grossberg neural networks and Bidirectional Associative Memory with delay are

common in the literature [53, 54, 55, 56, 92, 136, 176, 209, 218, 219, 217]. Dif-

ferential equations with piecewise constant argument have been under investigation

for many years [195]. In many real world problems such as mechanical and biolog-

ical systems, some actions on the systems can be considered as piecewise constants

[17, 18, 207, 222]. Also piecewise constant argument represents both difference and

differential equations. The notion of differential equations with piecewise constant

argument of generalized type (EPCAG) is introduced in [17]. It was developed in the

papers [19, 21, 25, 26, 42, 144, 157]. There are many interesting results and appli-

cations of this theory in [18]. Let us now consider reasons for the involvement of

piecewise constant argument. It is important that piecewise constant argument is a

deviated one [17]. It is seen, if we present γ(t) = t − [t − γ(t)]. Then t − γ(t) is

a deviation from t. Moreover, it is seen in Fig.(3.1) that deviated argument of alter-

nating type that is delayed and advanced. This is why the biological reasons which

are mentioned for delays inherit for the piecewise constant argument because of its
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Figure 3.1: The graph of argument γ(t) [18]

specificity. One can give more reasons to apply piecewise constant argument such

as the discreteness of chemical processes in neurons. This discreteness relates to the

threshold type dynamics in neural activity and sigmoid type activation function in the

models.

In [195], recurrent neural networks which contain piecewise constant argument have

been firstly introduced. Sufficient conditions are obtained for global exponential sta-

bility of the equilibrium point by using Lyapunov function technique for the following

model:

x′i(t) = −aixi(t) +
n∑
j=1

bijgj(xj(t)) +

+
n∑
j=1

cijgj(xj(γ(t))) + Ii, (3.1.7)

for i = 1, · · · , n. In this chapter, we take into account the Hopfield neural networks

with both the delay and piecewise constant argument of generalized type. It is the

first time that Hopfield neural networks with a constant delay and piecewise constant

argument of generalized type are considered. In the model of neural networks, we

may assume that the values of the voltage can not only be evaluated by a neural
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network continuously but fixed in some discrete moments of time. This may occur in

the evolution of the brain during the practical activity.

We also use Lyapunov function theory to get the stability criteria in terms of LMIs.

The LMI method is an efficient and popular method for studying for the stability of

neural networks [112, 126, 151, 170, 186, 217]. In [133] and [192], LMI method

was considered with several constant delays. In this chapter, we consider a different

case when activation depends on a constant delay and piecewise constant argument.

So we extended the LMI technique and developed the method for a more complex

situation. In our LMI, there is a 3× 3 matrix and its corresponding vectors including

the activation function with time t, time delay and the piecewise constant argument.

This multi-compartmental structure in the inequality may facilitate the analysis of the

qualitative properties of the more complex neural network systems.

3.2 Preliminaries

Let N and R+ denote the sets of natural and nonnegative real numbers, respectively.

The notation X > 0 (or X < 0) means that X is a symmetric and positive definite

(or negative definite) matrix. The notations XT and X−1 represent, respectively, the

transpose and the inverse of a square matrix X. λmax(X) and λmin(X) represent

the maximal eigenvalue and minimal eigenvalue of X, respectively. The norm ‖ ·‖

denotes either one-norm: ‖x‖1 =
n∑
i=1

|xi|, x ∈ Rn or the induced matrix 2-norm:

‖X‖2 =
√
λmax(XTX). Let θi, and ζi, denote two fixed real-valued sequences such

that θi < θi+1, θi ≤ ζi ≤ θi+1 for all i ∈ N, with θi →∞ as i→∞. Throughout the

paper, we assume that there exists a positive constant θ̄ such that θi+1−θi ≤ θ̄, i ∈ N.

Consider the description of the following neural network with piecewise constant
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argument of generalized type and constant delay:

x′i(t) = −aixi(t) +
n∑
j=1

bijgj(xj(t)) +

+
n∑
j=1

cijgj(xj(γ(t))) +

+
n∑
j=1

dijgj(xj(t− τ)) + Ei,

i = 1, · · · , n, (3.2.8)

where γ(t) = ζk if t ∈ [θk, θk+1), k ∈ N, t ∈ R+, xi(t) is the neuron state vector,

gj(xj(t)) is the activation function of neuron j at time t and E = [E1, · · · , En]T is an

external constant input vector.

Additionally, we have ai > 0 and bij , cij , dij are real constants, denote the connection

weights. The equations in (3.2.8) have the three compartmental activation with co-

efficients bij , cij and dij respectively. In the first compartment, the activation utilizes

values of x at the present time t. In the second, the argument is piecewise constant.

In the third one, it is delayed.

(A1) The activation functions gi satisfies gi(0) = 0 for each i = 1, 2, . . . , n;

(A2) There exists Lipschitz constant L = diag(L1, · · · , Ln) > 0, such that |gi(u)−
gi(v)| ≤ Li|u− v|, for all u, v ∈ Rn, i = 1, 2, . . . , n;

(A3) The activation function gi is bounded, i.e. for some constantMi > 0, |gi(xi(t))| <
Mi, for all t ∈ R, x ∈ R and i = 1, 2, . . . , n;

(A4) θ̄ < τ .

Our brain consists of billions of cells. Each of these cells behaves as a complex

system in itself. Every cell continually sends electrical signals to other cells and there

are tens of thousands of connections between these cells. Building a model which

represents the complex connections between the neurons may not be possible. But

the main aim is to make the closest approach to the human brain structure. Because

of the numerous numbers of cells and variety of connections, we have to say about

multi-compartmental structure. We consider each sum which is located on the right
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hand side of the main equation as a compartment. The compartments differ from

each other since of the different types of arguments in x(.). Thus in our paper the

multi-compartmental activation consists of the three sums. The activation function

is used to determine the multi-compartmental activation. We apply this concept of

multi-compartmental model to describe the variety of types of arguments in activation

functions in a short way. The number of the compartments can be increased to any

natural.

System (3.2.8) is a developed version of the Hopfield model by introducing a piece-

wise constant argument as well as a constant delay. Reasons for the development

have been stated in [19, 20]. In a word, piecewise constant argument combines the

continuous and discrete dynamical systems. One can suggest to investigate more gen-

eral equations with functional dependence on the piecewise constant argument for the

Hopfield model [103]. But this generalization makes the analysis far from the appli-

cations [103].

Denote the equilibrium point, x∗ = (x∗1, · · · , x∗n)T , of the system (3.2.8).

Theorem 3.2.1 Let the assumptions (A1), (A2) and (A3) are fulfilled. If

ai > Li

n∑
j=1

(|bji|+ |cji|+ |dji|), i = 1, 2, . . . , n, (3.2.9)

then system (3.2.8) has a unique equilibrium point.

Proof. Step 1: Existence: If x∗ = (x∗1, x
∗
2, · · · , x∗n) is an equilibrium point of the

system (3.2.8), then each x∗i satisfies the following equation:

x∗i =
1

ai

[
n∑
j=1

bijgj(x
∗
j) +

n∑
j=1

cijgj(x
∗
j) +

n∑
j=1

dijgj(x
∗
j)

]
+
Ei
ai
, i = 1, 2, · · · , n.(3.2.10)

Consider a mapping H(x) = (H1(x), H2(x), · · · , Hn(x))T . Denote

x∗i = Hi(x
∗) =

1

ai

n∑
j=1

[(bij + cij + dij)] gj(x
∗
j) +

Ei
ai
, i = 1, 2, · · · , n.
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Thus, x∗ is a fixed point of the map H : Rn → Rn. The i-th component of the

function H(x) satisfies the following inequality

|Hi(x
∗)| = | 1

ai

n∑
j=1

[(bij + cij + dij)] gj(x
∗
j) +

Ei
ai
|

≤ 1

ai

n∑
j=1

| [(bij + cij + dij)] ||gj(x∗j)|+ |
Ei
ai
|

≤ 1

ai

n∑
j=1

| [(bij + cij + dij)] |M +
|Ei|
ai

,

where x∗ = (x∗1, x
∗
2, · · · , x∗n)T . Then we have

|Hi(x
∗)| ≤ max

1≤i≤n

1

ai

n∑
j=1

| [(bij + cij + dij)|]M +
|Ei|
ai

, for i = 1, 2, · · · , n.

H : Rn → Rn is bounded for all x ∈ Rn. Also we can easily say thatH is continuous.

From Brouwer’s Fixed Point Theorem, H has at least one fixed point.

Step 2: Uniqueness: Suppose that there exists another fixed point denoted y∗. Then

ai(x
∗
i − y∗i ) =

n∑
j=1

(bij + cij + dij)(gj(x
∗
j)− gj(y∗j )).

From conditions (A1)-(A3) and a > 0,

ai|x∗i − y∗i | −
n∑
j=1

(|bij|+ |cij|+ |dij|)Lj|x∗j − y∗j | ≤ 0, i ∈ I,

and hence

n∑
i=1

{
ai −

n∑
j=1

(|bij|+ |cij|+ |dij|)Lj

}
|x∗i − y∗i | ≤ 0. (3.2.11)

Consequently from (3.2.9) we obtain x∗i = y∗i . So there exists a unique equilibrium.

The theorem is proved.
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Now consider the following initial value problem

x′i(t) = −aixi(t) +
n∑
j=1

bijgj(xj(t)) +

+
n∑
j=1

cijgj(xj(γ(t))) +

+
n∑
j=1

dijgj(xj(t− τ)) + Ei, (3.2.12)

xi(t) = ϕi(t), σ − τ ≤ t ≤ σ, (3.2.13)

for i = 1, · · · , n, where γ(t) = ζk, if t ∈ [θk, θk+1), k ∈ N, t ∈ R+ and ϕi(t) is a

continuous function.

The initial value problem (3.2.12)-(3.2.13) admits a unique solution x(t, σ, ϕ) on in-

terval [σ, ζi] under the assumptions (A1)− (A4). The initial moment, σ, is such that

θi ≤ σ < ζi < θi+1, for some i ∈ Z [19].

Definition 3.2.1 The equilibrium x = x∗ of (3.2.8) is globally exponentially stable if

there exist positive constants K and α such that

||x(t)− x∗|| ≤ Keαt sup
−τ≤ξ≤0

||x(ξ)− x∗||.

We will substitute x(t) = u(t) + x∗, then the system (3.2.8) can be simplified as

u′i(t) = −aiui(t) +
n∑
j=1

bijGj(uj(t)) +

+
n∑
j=1

cijGj(uj(γ(t))) +

+
n∑
j=1

dijGj(uj(t− τ)),

i = 1, · · · , n, (3.2.14)

where Gj(uj(t)) = gj(uj(t) + x∗j)− gj(x∗j), with gj(0) = 0.

A trivial verification shows that the stability of the zero solution of (3.2.14) is equal

to that of the equilibrium x∗ of (3.2.8). So, we take into account the stability of the

zero solution of (3.2.14).
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Lemma 3.2.1 [114] Given any real matrices U1, U2, W of appropriate dimensions

and a scalar ε > 0 such that 0 < W = W T , then the following matrix inequality is

true:

UT
1 U2 + UT

2 U1 ≤ εUT
1 WU1 +

1

ε
UT

2 W
−1U2.

3.3 Main Result

Theorem 3.3.1 Let assumptions (A1)-(A4) hold. The equilibrium u∗ of (3.2.14) is

globally exponentially stable, if there exist matrices P > 0, Q > 0 and two diagonal

matrices R > 0, S > 0 such that


Ω −PC −PD

−CTP S 0

−DTP 0 Q

 > 0, (3.3.15)

where Ω = AP + PA − PBRBTP − L(R−1 + Q + S)L, A = diag(a1, · · · , an);

ai > 0, B = (bij)n×n, C = (cij)n×n, D = (dij)n×n are connection weight matrices.

Proof. Firstly we choose a functional candidate for the system (3.2.14) as below

V (ut) = uT (t)Pu(t) +

∫ t

t−τ
GT (u(ξ))QG(u(ξ))dξ

+

∫ t

γ(t)

GT (u(ξ))SG(u(ξ))dξ.

Then we will find the time derivative of V (ut) along the trajectories of system (3.2.14)

60



for t 6= θi,

V̇ (ut) = u̇T (t)Pu(t) + uT (t)Pu̇(t) +GT (u(t))QG(u(t))−

−GT (u(t− τ))QG(u(t− τ)) +GT (u(t))SG(u(t))−

−GT (u(γ(t)))SG(u(γ(t)))

= [−Au(t) +BG(u(t)) + CG(u(γ(t))) +DG(u(t− τ))]T Pu(t) +

+uT (t)P [−Au(t) +BG(u(t)) + CG(u(γ(t))) +DG(u(t− τ))] +

+GT (u(t))QG(u(t))−GT (u(t− τ))QG(u(t− τ)) +

+GT (u(t))SG(u(t))−GT (u(γ(t)))SG(u(γ(t)))

= −uT (t)(ATP + PA)u(t) +GT (u(t))BTPu(t) +

+GT (u(γ(t)))CTPu(t) +G(u(t− τ))DTPu(t) +

+uT (t)PBG(u(t)) + uT (t)PCG(u(γ(t))) +

+uT (t)PDG(u(t− τ)) +GT (u(t))QG(u(t))−

−GT (u(t− τ))QG(u(t− τ)) +GT (u(t))SG(u(t))−

−GT (u(γ(t)))SG(u(γ(t))). (3.3.16)

It follows from Lemma (3.2.1),

uT (t)PBG(u(t)) +GT (u(t))BTPu(t) ≤ uT (t)PBRBTPu(t) +

+GT (u(t))R−1G(u(t)).

(3.3.17)

Substituting (3.3.17) into (3.3.16), we have

V̇ (u(t), G(u(γ(t))), G(u(t− τ))) ≤ uT (t)Ωu(t) +

+GT (u(γ(t)))CTPu(t) + uT (t)PCG(u(γ(t))) +

+GT (u(t− τ))DTPu(t) + uT (t)PDG(u(t− τ)) +

−GT (u(γ(t)))SG(u(γ(t)))

−GT (u(t− τ))QG(u(t− τ)).

Then we obtain

V̇ (ut) ≤ −η(t)ΣηT (t), (3.3.18)
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where η(t) =
[
uT (t) GT (u(γ(t))) GT (u(t− τ))

]
, and

Σ =


Ω −PC −PD

−CTP S 0

−DTP 0 Q

 .

Now we will prove global exponential stability of the system (3.2.14). Note that

` = max
1≤i≤n

{Li} for i = 1, · · · , n and

V (ut) ≤ λmax(P )||u(t)||2 +

+λmax(Q)`2

∫ t

t−τ
||u(ξ)||2dξ +

+λmax(S)`2

∫ t

γ(t)

||u(ξ)||2dξ.

(3.3.19)

From (3.3.15) and (3.3.18), one can see that there exists a scalar m > 0 such that
Ω−mI −PC −PD
−CTP S 0

−DTP 0 Q

 > 0.

Then we can obtain easily the following equation for any scalar c > 0,

d

dt
(ectV (ut)) = ect[c(V (ut)) + V̇ (ut)]

≤ ect
[
(cλmax(P )−m)||u(t)||2+

+cλmax(Q)`2

∫ t

t−τ
||u(ξ)||2dξ +

+λmax(S)`2

∫ t

γ(t)

||u(ξ)||2dξ
]
.

γ(t) is a function of the alternate constancy. If θk ≤ t < ζk, then γ(t) > t. Similarly,

if ζk ≤ t < θk+1, then γ(t) < t. One can obtain γ(t) > t − τ , for all t ∈ R by

applying (A4). Then one can find that

d

dt
(ectV (ut)) ≤ ect

[
(cλmax(P )−m)||u(t)||2+

+cϑ`2

∫ t

t−τ
||u(ξ)||2dξ

]
. (3.3.20)
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where ϑ = λmax(Q) +λmax(S). By integrating two sides from 0 to T > 0, we obtain

ecTV (uT )− V (u0) ≤ (cλmax(P )−m)
∫ T

0
ect||u(t)||2dt+

+cϑ
∫ T

0

∫ t
t−τ e

ct||u(ξ)||2dξdt. (3.3.21)

One can see easily that∫ T

0

∫ t

t−τ
ect||u(ξ)||2dξdt ≤ τ

∫ T

−τ
ec(t+τ)||u(t)||2dt

≤ τecτ
∫ 0

−τ
||u(t)||2dt+

+τecτ
∫ T

0

ect||u(t)||2dt.

Then we obtain

ecTV (uT ) ≤ (cλmax(P )−m+

cϑ`2τecτ )

∫ T

0

ect||u(t)||2dt+

+cϑ`2τecτ
∫ 0

−τ
||u(t)||2dt+ V (u0).

By choosing a scalar c > 0 such as m = cλmax(P ) + cϑ`2τecτ , we have

ecTV (uT ) ≤ cϑ`2τecτ
∫ 0

−τ
||u(t)||2dt+ V (u0). (3.3.22)

V (u0) satisfies the following inequality from the definition of V (ut)

V (u0) ≤ λmax(P )||u0||2 + ϑ`2

∫ 0

−τ
||u(ξ)||2dξ. (3.3.23)

Substituting (3.3.23) into (3.3.22), we have

ecTV (uT ) ≤ (cϑ`2τ 2ecτ+

+ λmax(P ) + ϑ`2τ) sup
−τ≤ξ≤0

||u(ξ)||2.
(3.3.24)

Also we know from (3.3.19), λmin(P )||u(T )||2 ≤ V (uT ).

Consequently, we have

||uT )|| ≤ κe−cT/2 sup
−τ≤ξ≤0

||u(ξ)||2.
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where κ =

√
cϑ`2τ 2ecτ + λmax(P ) + ϑ`2τ

λmin(P )
.

The theorem is proved.

3.4 Examples and numerical simulations

In this section, we give two examples.

Example 3.4.1 Consider the following model

dx(t)

dt
= −

 0.1 0

0 0.1

 x1(t)

x2(t)


+

 0.01 0.02

0.03 0.01

 tanh(x1(t))

tanh(x2(t))


+

 0.01 0.02

0.02 0.03

 tanh(x1(γ(t)))

tanh(x2(γ(t)))


+

 0.01 0.01

0.01 0.01

 tanh(x1(t− 2))

tanh(x2(t− 2))

 .

(3.4.25)

If L1 = 0.1 and L2 = 0.1, it can be shown easily that (3.4.25) satisfies the conditions

for the existence of a unique equilibrium of (3.4.26). For

P =

 1.5 1

1 1.5

 , Q =

 2 0

0 2

 ,

R =

 3 0

0 3

 , S =

 2 0

0 2

 ,

the condition of the Theorem 1 is satisfied. So, the unique equilibrium x∗ = [0.0064, 0.0084]T

of the system (3.4.25) is globally exponentially stable. Also the phase portrait in

Fig.3.3 demonstrates the existence of the equilibrium point of the system (3.4.25). In

Fig. 3.3, one can see by the simulation that the trajectory with initial point [2.8, 2]T

approaches to the equilibrium [0.0064, 0.0084]T as time increases.
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Figure 3.2: Time response of x1(t) and x2(t) with piecewise constant argument in

Example (3.4.25).
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Figure 3.3: The phase portrait of the system in Example (3.4.25).

Example 3.4.2 Consider the following model

dx(t)

dt
= −

 20 0

0 15

 x1(t)

x2(t)


+

 1 2

3 1

 tanh(x1(t))

tanh(x2(t))


+

 1 2

2 3

 tanh(x1(γ(t)))

tanh(x2(γ(t)))


+

 1 1

1 1

 tanh(x1(t− 2))

tanh(x2(t− 2))

 .

(3.4.26)

Here we choose the Lipschitz constants such that L1 = 1 and L2 = 1. The parameters

are chosen large to show the influence of the piecewise constant argument. In this

example, we want to illustrate the non-smoothness, although the condition of Theorem

1 is not satisfied with these coefficients and Lipschitz constants. The Fig.3.4 makes

clear the non-smoothness of the solution with the initial point [2.8, 2]T at the switching

points θk; k ∈ N. We conclude that the small parameters prevent to see the non-

smoothness, precisely. The solution converges to the unique equilibrium such that

x∗ = [0.0115, 0.0239]T .
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Figure 3.4: Time response of x1(t) and x2(t) with piecewise constant argument in

Example (3.4.26).
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3.5 Conclusion

In this chapter, a new Hopfield neural network with piecewise constant argument

of generalized type and constant delay has been studied. Up to now, various kinds

of delays were introduced to the Hopfield neural network systems such that con-

stant delays, single time delays, time varying delays and distributed delays. But it is

the first time that a Hopfield neural network with both piecewise constant argument

of generalized type and constant delay is considered. The crucial point about this

chapter is that an LMI method has been extended to a multi-compartmental structure

to investigate the stability of the system. In the literature some of the papers con-

sider only delays, some consider only piecewise constant argument. It is important

to emphasize this is the first time that both delay and piecewise constant argument

involved in the models and this requests the development of LMI method to multi-

compartmental case. If one consider equation (3.2.8), it is considered as more general

than those discussed by our predecessors. Because if coefficients dij are equal to zero

for all i, j then the system (3.1.7) will be obtained, that is, neural networks with

piecewise constant argument. Otherwise if cij are equal to zero for all i,j, then the

differential equation with constant delay will be obtained, considered in the papers

[30, 52, 65, 91, 126, 202, 213, 215]. This is why we conclude that the system (3.2.8)

is more general then the system (3.1.7) and the systems analyzed previously in the

papers [17, 18, 21, 29, 30, 52, 65, 91, 126, 141, 202, 207, 213, 215, 220, 222]. We

consider each sum which is located on the right hand side of the main equation as a

compartment. The compartments differ from each other since of the different types

of arguments. Thus in our study the multi-compartmental activation consists of the

three sums. Two examples and their simulations are given to illustrate our results.
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CHAPTER 4

CONCLUSIONS

Building a model which represents the complex connections between the neurons

may not be possible. But the aim of the all scientists from different disciplines is to

establish a structure which can behave as a human brain. This aim clarifies the large

amount of the studies on the neural networks. Artificial neural networks have been

attracted much attention in the past two decades. Our goal is to develop models of

artificial neural network. In this context, the outcomes obtained in the second and

third chapter of the present thesis contribute to the development of neural networks

theory.

In Chapter 2, we acquired sufficient conditions for the existence and uniqueness of

equilibrium and stability of Hopfield neural networks with constant delay and piece-

wise constant argument. It is the first time that constant delay and piecewise constant

argument are combined in a Hopfield neural network. Also the most important nov-

elty of our thesis is using LMIs for investigating the stability. When the existence

and uniqueness of the equilibrium is considered, we apply the methods of step. This

method provide us to establish a relation between the constant delay and piecewise

constant argument. Because the main challenge is to consider all cases between them.

Because of the numerous number cells various of connections in the human brain, we

have to say about multi-compartmental structure. In our model we consider that com-

plex interconnections may support the multi-compartmental structure in Chapter 3.

We added time delay and piecewise constant argument to our model to reflect the

possible delay and discontinuity effects during the transferring and processing the

information. We study on the stability of Hopfield neural networks with constant de-
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lay and piecewise constant argument of generalized type. As far as we know, this

is the first time that Hopfield neural networks with a constant delay and piecewise

constant argument of generalized type are considered. In the model of neural net-

works, we may assume that the values of the voltage can not only be evaluated by

a neural network continuously but fixed in some discrete moments of time. This

may occur in the evolution of the brain during the practical activity. We use Lya-

punov function theory to get the stability criteria in terms of LMIs. The LMI method

is an efficient and popular method for studying for the stability of neural networks

[112, 126, 151, 170, 186, 217]. In [133] and [192], LMI method was considered with

several type of constant delays. In this thesis, we consider a different case when acti-

vation depends on a constant delay and piecewise constant argument. So we extended

the LMI technique and developed the method for a more complex situation. In our

LMI, there is a 3 × 3 matrix and its corresponding vectors including the activation

function with present time t, time delay and the piecewise constant argument of gen-

eralized type. This multi-compartmental structure in the inequality may facilitate the

analysis of the qualitative properties of the more complex neural network systems.

So we have further developed the models of our predecessors by using linear matrix

inequalities. Our method about exponential stability may be utilized in the chaotic

neural networks and control of chaos. Moreover, this method can be applied to the

other types of neural networks. This will provide new aspects for the analysis and ap-

plications of neural networks. Furthermore, the method improved in this paper may

be extended to study more complex systems, such as neural networks with multiple

piecewise constant argument and multiple delays, piecewise constant argument and

distributed delays, piecewise constant argument and time-varying delays, stochastic

neural networks with piecewise constant argument, etc. We can summarize our future

plan as below:

• Applying our method to the other common neural networks and their modifica-

tions with piecewise constant argument and delay.

• Adding different type of compartments like impulsive, integral-type activations

and perturbations.
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