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   ABSTRACT 

DRUG SELECTION FOR MALIGNANT MELANOMA
USING BIOMARKERS GENERATED

BY
WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS (WGCNA)

ALPSOY, SEMİH

M.S., Bioinformatics Program

Supervisor: Assist. Prof. Dr. Aybar Can Acar

Co-supervisor: Assoc. Prof. Dr. Ali Osmay Güre

January 2017, 163 pages

Chemotherapy is one of the widely applied treatment choices for cancer patients; however, it 
might not be effective in the majority of patients due to the inability of foreseeing which 
patients respond to which chemotherapeutic agents. In order to ascertain appropriate 
chemotherapy for patients, thus, drug biomarkers predicting the response of the patients to 
chemotherapy should be discovered and translated into clinical practice to decide the ideal 
chemotherapeutic agents in a patient-centric manner. In this way, it might be possible to 
tackle cancer disease more effectively, extend the life expectancy of the patients, and 
economize health expenditures substantially. In addition, discovering drug biomarkers might 
pave the way for drug target identification, drug discovery process, and eludicating drug 
mechanism of actions. Because of all these reasons, a systems biology based network 
approach known as Weighted Gene Co-Expression Network Analysis (WGCNA) is utilized 
in this study to discover candidate biomarkers for anti-cancer drugs profiled in two large 
pharmacogenomics studies, the Cancer Cell Line Encyclopedia (CCLE) and the Cancer 
Genome Project (CGP). In the study, malignant melanoma is selected as a model disease, 
and only the common anti-cancer drugs between the two pharmacogenomics studies 
screened against human malignant melanoma cell lines are considered. Both gene 
expression and drug sensitivity data available in the studies are integrated to identify 
candidate biomarkers for these common anti-cancer drugs. Next, support vector machine 
regression (SVR) machine learning algorithm is employed to assess the predictive ability of 
the identified candidate biomarkers both individually and in combinations. For that purpose, 
the CCLE expression data of the candidate biomarkers and the CCLE drug sensitivity data 
are trained in the first step. Predictive ability of these candidate biomarkers is tested in an 
independent CGP dataset later on. Thereby, in-silico validation of several candidate 
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biomarkers could be accomplished. In conclusion, this thesis shows that the WGCNA 
methodology is a powerful approach for identifying gene expression-based candidate drug 
biomarkers for malignant melanoma. The thesis also shows that proper combinations of the 
candidate biomarkers generated by the WGCNA methodology improve anti-cancer drug 
sensitivity prediction significantly, and only a few gene combinations are sufficient to 
predict anti-cancer drug sensitivity powerfully.

Keywords: Malignant Melanoma, Weighted Gene Co-Expression Network Analysis, 
Biomarker Discovery, Drug Selection, Personalized Medicine
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ÖZ

AĞIRLANDIRILMIŞ GEN KO-EKSPRESYON AĞ ANALİZİNİNDEN (WGCNA) 
ELDE EDİLEN BİYOBELİRTEÇLERİN KULLANILMASIYLA MALİGN 

MELANOMDA İLAÇ SEÇİMİ

ALPSOY, SEMİH

Yüksek Lisans, Biyoenformatik Programı

Danışman: Yar. Doç. Dr. Aybar Can Acar

Eş Danışman: Doç. Dr. Ali Osmay Güre

Ocak 2017, 163 sayfa

Kemoterapi, kanser hastalarında en yaygın kullanılan tedavi seçeneklerinden biri olmasına 
karşın hastaların hangi kemoterapötik ajanlara yanıt vereceği öngörülemediğinden hastaların 
önemli bir kısmında etkili olamayabilmektedir. Bu nedenle, hastalara uygun kemoterapiyi 
belirlemek için hastaların kemoterapiye yanıtını tahmin edebilen ilaç biyobelirteçleri 
keşfedilmeli ve hastaya özgü en ideal kemoterapötik ajanlara karar verilmesi adına 
biyobelirteçler klinik uygulamaya dönüştürülmelidir. Bu sayede, kanser hastalığıyla daha 
etkili mücadele etmek, hastaların yaşam süresini uzatmak ve sağlık harcamalarınden önemli 
derecede tasarruf sağlamak mümkün olabilir. Dahası, ilaç biyobelirteçlerinin keşfedilmesi 
ilaç hedeflerinin bulunmasına, ilaç keşfi işlemine ve etki mekanizmasının anlaşılmasına ön 
ayak olabilir. Tüm bu nedenlerden ötürü, bu çalışmada Ağırlandırılmış Gen Ko-Ekspresyon 
Ağ Analizi (WGCNA) olarak bilinen ağ tabanlı sistem biyolojisi yaklaşımı iki büyük çaplı 
farmakogenomik çalışma olan Kanser Hücre Hattı Ansiklopedisi (CCLE) ve Kanser Genom 
Projesi (CGP)’ nde profillenmiş ilaçların biyobelirteçlerinin keşfedilmesi amacıyla  
kullanılmaktadır. Çalışmada, malign melanom bir model hastalık olarak seçilmekte ve 
sadece iki farmakogenomik çalışmada insan malign melanom hücre hatlarına uygulanmış 
ortak anti-kanser ilaçları göz önünde bulundurulmaktadır. Bu ortak anti-kanser ilaçların 
potansiyel biyobelirteçlerinin belirlenmesi için iki farmakogenomik çalışmadaki gen 
ekspresyon ve ilaç hassasiyet verileri entegre edilmektedir. Sonrasında, destek vektör 
makinesi regresyon (SVR) makine öğrenme algoritması aday biyobelirteçlerin tek başına ve 
kombinasyonlar halinde tahmin edebilme gücünü incelemek amacıyla çalıştırılmaktadır. Bu 
amaçla, ilk aşamada aday biyobelirteçlerin CCLE çalışmasındaki gen ekspresyon ve ilaç 
hassasiyet verileri eğitilmektedir. Daha sonra, bu biyobelirteçlerin tahmin gücü bağımsız 
CGP verisetinde test edilmektedir. Böylece, bazı biyobelirteç adaylarının in-siliko 
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doğrulaması yapılmaktadır. Sonuç olarak, bu tez malignant melanoma için gen ekspresyon 
tabanlı ilaç biyobelirteç adaylarını tespit etmesi bakımından WGCNA metodolojisinin 
kuvvetli bir yaklaşım olduğunu göstermektedir. Tez ayrıca WGCNA metodu ile elde edilen 
uygun biyobelirteç kombinasyonlarının önemli bir miktarda anti-kanser ilaç hassasiyet 
tahminini iyileştirdiğini ve  sadece birkaç gen kombinasyonunun güçlü bir şekilde anti-
kanser ilaç hassasiyetini tahmin edebildiğini göstermektedir.

Anahtar Kelimeler: Malign Melanom, Ağırlandırılmış Gen Ko-Ekspresyon Ağ Analizi, 
Biyobelirteç Keşfi, İlaç Seçimi, Kişiselleştirilmiş Tıp
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CHAPTER 1

INTRODUCTION

1.1.  Motivation

Tailoring of treatment as to the genetic background of each patient has been regarded 
invaluable to assure effective therapeutic interventions for disease progression in complex 
diseases having a genetic basis such as neurodegeneration and cancer. Personalized 
medicine (or precision medicine), emerged as a demand to tailor patient-specific treatment, 
became an outstanding field to explain the underlying molecular mechanism of these 
diseases as it might identify the most effective therapeutic options for patients according to 
their genetic backgrounds, lifestyles, and environments.

The popularity of personalized medicine has increased due to striking advancements in 
science and technology, which enabled the invention of high throughput medical devices 
profiling genome fast and accurate. These devices resulted in the accumulation of massive 
amount of data to be utilized in clinics; however, medical decisions could not solely been 
made according to the output of results. There was a need for tools, tests, or devices that 
could interpret the data to give a clinicially valueable decision. For this purpose, various 
computational tools and tests have been developed. In addition, powerful devices having 
ability to sequence of human genome fastly and accurately have been invented.

One of the major topics of the personalized medicine is pharmacogenomics, which is the 
study of transcriptomics variations as to drug response. Scientists interested in  
pharmacogenomics primarily aim to discover drug biomarkers so as to predict drug 
effectiveness. As such biomarkers give information about the mechanism of action, safety, 
and efficacy of a drug, they are becaming an essential part of drug development. 
Conventional drug development approaches have not been able to satisfy the drug industry 
owing to the fact that most of the drugs entering phase trials fail in efficacy, so drugs are 
hardly approved. So considering huge amount of expenditures and increasing costs to 
develop drugs, they have turned their interest into drug biomarker discovery. Drug 
biomarkers are also invaluable to understand heterogenous response of patients to 
chemotherapy. Clinicians mostly do not know whether a drug is effective in one patient is 
also effective in another. A “one-dose-fits-all” approach is mostly followed, but every 
patient responds the drug treatment with different doses. Thus, eliminating “trial-and-error” 
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approach in clinics is quite crucial to achieve effective treatment outcomes as it might 
minimize toxicities of drugs and adverse drug reactions when the drugs are combined in 
therapy. Thereby, those patients who do not respond the chemotherapy can be guided to 
alternative treatments that are more suitable for their genetic backgrounds.

Several computational approaches have been developed to identify drug biomarkers. 
However, most of them could not achieve to discover reliable biomarkers. This ordinarily 
stems from the underperformance of conventional reductionist methods. Conventional 
approaches have a drawback of focusing on a single scale that hinders complete 
understanding of the system. Thereby, the lack of systems based approaches mostly elicits 
underperformance in prediction. In addition, conventional approaches are incompetent in 
identifying the association between genomics and pharmacological entities. The general 
trend is to fit a model assuming that association of selected genomic features with 
pharmacological data is linear. However, it is commonly observed the association is non-
linear. When feature selection approaches are taken into account to be the driving tool in 
performance evaluation of models, and they are mostly ineffective, conventional approaches 
usually crash in biomarker discovery. However, systems approaches behaving functional 
units in the model as the systems are excellent alternatives to compensate insufficiency of 
conventional methods. In spite of focusing on single scale, systems approaches focus on 
multi-scales enabling more robust predictions. Therefore, systems-based approaches in place 
of reductionist approaches are gaining popularity in biomarker research; nevertheless, there 
is still need for highly competent and outperforming systems approaches that could be 
successfully applied in biomarker studies.           

Weighted Gene Co-Expression Network Analysis (WGCNA), a systems biology based co-
expression network approach, is a widely used powerful approach for biomarker discovery. 
The WGCNA has the potential to identify therapeutic targets that can be regarded as the 
biomarkers. Constructing a model that inputs such candidate biomarkers obtained from the 
WGCNA may reveal their predictive power for drug sensitivity. For this purpose, utilizing 
highly efficient machine learning algorithms such as SVM and random forest could be 
applied to test the performances of candidate biomarkers coming from the WGCNA. 
Thereby, in-silico validation of candidate biomarkers might be accomplished accurately and 
powerfully. Subsequent to in-silico validation, these candidate biomarkers could be 
validated by in-vitro and in-vivo pre-clinical studies, so that they might be translated in 
clinics to decide the ideal drugs for each patient. In this respect, the WGCNA, along with 
machine learning approaches, holds a great promise to discover biomarkers. And so, they 
might be applied to determine the most effective chemotherapy for the patients as to their 
genetic backgrounds. 

1.2.  Scope and goal

The primary goal of this study is to show that proper combinations of the candidate 
biomarkers determined by the WGCNA method are more powerful in drug sensitivity 
prediction than single candidate biomarkers. In this respect, the study aims to demonstrate 
proper biomarker combinations might be highly effective in drug sensitivity prediction even 
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though single candidate biomarkers have poor predictive power. So it would be possible to 
show that combinations of candidate biomarkers are more likely to be validated in clinical 
studies. In addition, this study aims to show that combinations of only a few candidate 
biomarkers are sufficient to predict anti-cancer drug sensitivity powerfully.  

The first step of analysis must construct a co-expression network by the WGCNA 
methodology after gene expression data of the 38 malignant melanoma (MM) cell lines 
gathered from the Cancer Cell Line Encyclopedia (CCLE) is normalized, and the most 
varying 8000 genes is selected for the analysis to ensure technical variability is less than 
biological variability. The second step should give a list of genes (candidate drug 
biomarkers) which have been identified in the literature as associated with the MM. The 
association indicates the WGCNA methodology is effective in identifying the MM related 
genes or already approved MM biomarkers, so that the rest of the genes is likely to be 
regarded as the candidate biomarkers. The last step should demonstrate that gene features 
(candidate drug biomarkers) obtained by the WGCNA analysis have high potential to 
predict anti-cancer drug sensitivity when models trained by the CCLE gene expression and 
drug sensitivity data are shown to be validated in an independent Cancer Genome Project 
(CGP) study.

The specified purposes above utilize two different large pharmacogenomics studies, the 
CCLE and the CGP. The CCLE is a data source which includes expression profiles of more 
than thousand human cancer cell lines. There are 61 MM cell lines expression profiles of 
which are profiled in the CCLE study. It also includes sensitivity profiles of the 24 anti-
cancer drugs screened against 479 cell lines. Apart from the CCLE, the CGP is another data 
source which contains both gene expression and drug sensitivity data of the 139 anticancer 
drugs screened against 53 cancer cell lines. There are 42 MM cell lines screened by these 
anti-cancer drugs in the CGP study. In contrast to the CCLE study, each of the 139 anti-
cancer drugs was screened against varying numbers of MM cell lines. Both of the studies 
share 29 MM cell lines and 15 anti-cancer drugs, so it is possible to validate trained models 
in the CGP test data using expression profiles of the shared MM cell lines and sensitivity 
profiles of the shared anti-cancer drugs between the studies. 

     
1.3.  Contribution

The major two contributions of this thesis are to show that in-vitro anti-cancer drug 
sensitivity can be predicted by basal gene expression profiles of candidate biomarkers 
identified by the WGCNA systems biology approach, and proper combinations of identified 
candidate biomarkers predict anti-cancer drug sensitivity more powerfully than single 
candidate biomarkers. Another contribution is to reveal that the models developed in this 
study can make accurate predictions for anti-cancer drug sensitivity with only a few features 
although the majority of computational models requires tens or hundreds of features to 
construct high performance models. It is also pointed the two pharmacogenomics studies, 
the CCLE and the CGP, have inconsistent drug sensitivity data that precludes model efficacy 
in predicting anti-cancer drug sensitivity. However, it is demonstrated that predictive ability 
of models is powerful when gene expression data of common MM cell lines between the 
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CCLE and the CGP studies is utilized with only the CCLE drug sensitivity data. This 
improved prediction is shown to be resulted from high consistency between gene expression 
profiles of the cell lines between the studies even though different platforms are used for 
measuring gene expression levels. As a final word, it is the first time demonstrated in this 
thesis that support vector machine regression (SVR) machine learning algorithm could 
powerfully be utilized to validate models trained by the CCLE data in an independent CGP 
data. 

1.4.  Outline of thesis

This thesis is composed of 6 major chapters, which includes background and related works, 
methodology, results, discussion, and conclusion and future studies. In Chapter 2, 
background information about basics of cancer, biology of the MM, workflow and 
principles of the WGCNA methodology, basics of support vector machine algorithm, and 
data repositories are given. In Chapter 3, the data repositories at which expression and drug 
sensitivity data of the MM cell lines are available and methods to analyze them in order to 
predict drug sensitivity of various anti-cancer drugs are described. The detailed explanation 
of the WGCNA methodology such as used similarity and adjacency matrices, soft 
thresholding approach, test of scale freeness, topological overlap matrix based dissimilarity 
measure inputted in hierarchical clustering is also explained and presented via visuals and 
flowcharts explicitly. In Chapter 4, the results of the WGCNA identifying candidate 
biomarkers to predict anti-cancer drug response of the drugs in MM and their predictive 
performances both individually and in combinations by the SVR method are presented. In 
Chapter 5, the success of the WGCNA methodology in identifiying candidate biomarkers 
for anti-cancer drug sensitivity, the assessment of predictive power of candidate biomarker 
combinations with the SVR method, and limitations of the study are discussed. Possible 
improvements contibuting to identify more powerful candidate biomarkers are also 
discussed in this chapter. In Chapter 6, finally, conclusions are expressed, and future studies 
that could be conducted for achieving to identify more powerful candidate biomarkers 
having potential to predict sensitivity of anti-cancer drugs with low therapeutic index are 
mentioned.    
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CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1.  Cancer

Cancer can be defined as a group of diseases that emerges due to the development of 
uncontrolled cell division and spreading of the uncontrolled division to the other parts of the 
body. As abnormal cell division continues, cancer cells outnumber the normal cells. This 
results in the development of possible signs and symptoms such as fatigue, unintended 
weight changes, difficulty in swallowing, hoarseness, unexpected muscle pains, bleeding or 
bruising, and unexplained fevers (Mayo Clinic, 2015). It is one of the most commonly 
observed diseases that leads to morbidity and mortality worldwide. According to National 
Cancer Institute (2015), tobacco is the leading risk factor for cancer that brings about 20% 
of global deaths. In addition, one-third of the cancer deaths have resulted from high body 
mass index, low fruit and vegetable intake, lack of physical activity, tobacco, and alcohol 
use. The GLOBOCAN project held by the International Agency for Research on Cancer  
(2014) shows that new cases diagnosed for cancer is approximately 14.1 million, and cancer 
puts the death 8.2 million people worldwide. 57% of the total new cases is diagnosed in less 
developed regions, and 5% of the global total dies in this less developed regions. Figure 2.1 
presents the data of the GLOBOCAN project showing the number of cancer cases and 
deaths worldwide for both less developed regions and more developed regions. The 
GLOBOCAN project also reports that lung cancer is the most deadly cancer accounting for 
1.6 million deaths. Liver cancer and stomach cancer follow the lung cancer as a cause of 
death with 745.000 and 723.000 deaths, respectively (See Figure 2.2).

Genetic changes via mutations to the DNA within cells as a result of the interaction with 
physical, chemical, and biological carcinogens are the primary causes of cancer. Figure 2.3 
shows some of these most severe environmental factors accompanying mutations that may 
lead to carcinogenesis. Genes inside the DNA give instructions to the cell to perform regular 
cellular activities such as division and growth. However, errors made in the instructions are 
likely to disrupt the regulation, so that normal cells may become cancerous. Mayo Clinic 
(2015) declares that gene mutations can instruct the normal cells in 3 ways: rapid growth 
allowance, failure in stopping the uncontrolled cell growth, and mistakes made when 
repairing DNA errors. These are the most common types of mutations observed in cancer 
cells although several other types are also known, but they are less frequent. As age 
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progresses, the mutations inherited directly from parents, and the mutations acquired 
throughout the life accumulate in cells cause to cancer.

Figure 2.1: Barplot of the new cancer cases and deaths worldwide in 2012 as to the 
regions grouped into either less developed or more developed (International Agency for 
Research on Cancer, 2014)

Figure 2.2: Piechart of the most common cancers worldwide in 2012 (International 
Agency for Research on Cancer, 2014)

The mortality of cancer can be lessened provided that patients are detected early and the 
right treatment starts immediately. Early diagnosis is pretty favorable if there is no available 
screening method to detect cancer. Unless these patients are diagnosed in early stages, there 
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might be no potent treatment option to cure it since in later stages it can metastasize and 
invade the other parts of the body in such a way that no treatment effort could improve the 
opportunity of recovery. Screening, which is the second method of detecting cancer early, is 
powerful in identifying the individuals who are likely to develop a specific type of cancer or 
the patients who have already developed a specific type of cancer when the individuals do 
not show any signs or symptoms. However, it may not be affordable or accessible for the 
majority of the population. 

Figure 2.3: Piechart of identifiable and/or potentially preventable factors estimated to 
cause cancer (American Association for Cancer Research, 2012)

The most common treatment options used in cancer are surgery, chemotherapy, radiation 
therapy, targeted therapy, immunotherapy, and stem cell transplantation (National Cancer 
Institute, 2015). Surgery is generally the most effective option in the treatment of patients 
who are diagnosed in the early stages of cancer since cancer has not invaded other parts of 
the body. Chemotherapy is the medication that the patients are prescribed to take anti-cancer 
drugs to erase cancer cells. Though high cytotoxicity of anti-cancer drugs frightens the vast 
majority of the patients, it is commonly accepted that drug treatment kills rapidly dividing 
cancer cells in the expense of killing normal cells such as cells in the bone marrow, 
digestive tract, and hair follicles. Radiation therapy destroys cancer cells by high-energy 
particles or waves. It is one of the most appealed treatment options in cancer. Targeted 
therapy intervenes in blocking the growth and invasion of cancer with molecular targets 
identified as having roles in the development of cancer. Thus, it aims to destroy only the 
cancer cells without harming the normal cells. Immunotherapy is the use of body’s immune 
response to treat cancer by augmenting the attack to the cancer cells as stimulating immune 
system further and giving immune system components such as artificial proteins functioning 
in the immune system. Stem cell transplantation, lastly, is the treatment strategy to 
compensate the destroyed cells in the bone marrow by replacing them with stems cells that 
have the ability to produce healthy cells.
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2.2.  Malignant melanoma

Malignant melanoma (MM) is a type of skin cancer that emerges due to malignancy of 
pigment-producing melanocytes in the skin, iris, and rectum. It is pointed to be the most 
dangerous skin cancer. The characteristic genetic alterations leading to the development of 
the MM has been identified; however, it still accounts for the majority of deaths that occur 
as a result of skin cancers. The most common type is cutaneous melanoma, which develops 
in the skin and is responsible for 75% of the deaths resulted from skin cancers although 
there are several rare non-skin melanomas (Schadendorf et al., 2015). 

2.2.1.  Epidemiology

The MM mainly develops in white populations because of intense ultraviolet radiation (UV) 
penetrating the fair skin easily, while low incidence rated acral and mucosal melanomas 
develop in pigmented populations from Africa and Asia. Different populations exhibit 
varying degrees of incidence rates for the MM worldwide, but Australia and New Zeland are 
the two countries that have been reported to have the highest incidence rates approaching 60 
cases per 100.000 inhabitants per year. The incidence rate is nearly 20 cases per 100.000 
inhabitants per year in Europe and is nearly 30 cases per 100.000 inhabitants per year in the 
United States. However, the incidence rate is 1 case per 100.000 inhabitants per year in 
dark-skinned populations of Africa and Asia. Individuals whose ages are between 40 and 60 
constitute clinically the highest risk group for the MM; nevertheless, it can occur adults and 
older peoples greater than 80. Furthermore, it is one of the most common type of cancers 
that can be observed among adults aged between 20 and 29, and the median age of diagnosis 
is 57 (Schadendorf et al., 2015).

American Cancer Society (2015) estimates that about 76,380 new melanoma cases 
consisting of 46,870 men and 29,510 women will be diagnosed in the United States in 2016. 
Unfortunately, it is expected that approximately 10,130 people consisting of 6750 men and 
3380 women will die at the end of the year. Schadendorf et al. (2015) show the incidence 
rate of the MM increased 17-fold in men and 9-fold in women from 1950 to 2007. They also 
show it increased with similar folds in Australia, Central Europe, and Scandinavia. The rate 
is still increasing due to the sun exposure, sunburns, and rise of longevity in these areas. 

2.2.2.  Histological subtypes

Histological classification of the MM has been an intense topic to identify patient groups 
that could gain benefit from obtaining appropriate therapy choices. After rigorous studies 
have been conducted to elucidate the subtypes of melanoma, clinicians could be able to 
classify it into four broad subtypes (Smoller, 2006):

a) Superficial spreading melanoma
b) Nodular melanoma
c) Lentigo maligna and lentigo maligna melanoma
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d) Acral lentiginous melanoma

Superficial spreading melanoma: Neoplasms displaying this histological pattern constitute 
nearly 75% of all melanomas (Smoller, 2006). Outward and flat growth on the surface of the 
skin occurs in early phase. This phase is called as the radial growth phase that may last  
years; however, melanoma alters the growth direction to the inward at the end of early 
phase, so that it enters the vertical growth phase in which a bump-shaped appearance is 
observed above the skin. 

Nodular melanoma: It is the second most common type of melanomas following 
superficial spreading melanoma. Neoplasms of this histological pattern emerge mostly in 
middle-aged adults. It shares several histological features with superficial spreading 
melanomas, but sharp circumscription is typical unlike superficial spreading melanomas 
show poor circumscription. In addition, it does not have any radial growth phase. After 
neoplasms invade the epidermis, they are likely to enter a vertical growth phase which leads 
to aggressive downward growth (Smoller, 2006).

Lentigo maligna and lentigo maligna melanoma: Lentigo maligna is observed in elderly 
people whose heads and necks expose to sun damage. There is no available incidence rates 
for the subtype, yet it is evident that the rate increases dramatically. Lentigo maligna 
melanoma, which is the least common subtype of melanoma, emerges from lentigo 
melanoma by invading the dermis and has a long lasting radial growth phase (Tung and 
Vidimos, 2010). 
        
Acral lentiginous melanoma: It is the rearest subtype of melanoma observed on acral 
surfaces. The areas of the skin without hair such as palms, soles, and nails are the potent 
sites for development. It may spread more quickly than previously mentioned melanomas 
(Tung and Vidimos, 2010). 

2.2.3.  Signs and symptoms

The MM is extremely heterogenous, so signs and symptoms vary from one patient to 
another. However, it is generally observed that new spots appear on the skin, or size, shape, 
or color of an existing mole changes. The “ABCDE” rule is pretty useful in assessing the 
signs. Even though it is not valid for all cases as nodular melanoma, the guideline works 
perfectly for the majority of melanomas (Melanoma Action Coalition, n.d.). “ABCDE” is an 
abbreviation of the words listed: asymmetry, border irregularity, color, diameter, and 
evolution (See Figure 2.4).

a) Asymmetry: Irregular shaped moles are typical.
b) Border irregularity: The edges of some melanomas are irregular, blurred, rough, or 

notched.
c) Color: Changes in shade or distribution of mole color are frequent.
d) Diameter: The width is greater than six millimeters.
e) Evolution: Asymmetry, border irregularity, color, and diameter changes over time.
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Symptoms of the MM may include;

 Persistent sore
 New growth
 Itchiness, tenderness, or pain
 Spread of pigmentation and swelling to the outside the border of spot
 Change in the surface of a mole

Figure 2.4: The ABCDE guideline used in clinics for early detection of melanoma 
(Melanoma Action Coalition, n.d.)

2.2.4.  Causes and risk factors

The MM develops as a result of complex interplay of genetic and environmental factors. It 
is shown that continuous exposure to the UV originating from sunlight can induce 
melanocyte tumorigenesis. Apart from the UV irradiation, mutation or deletion of 
CDKN2A, a tumor suppressor gene in cell cycle regulation, is a genetic factor in the MM 
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development. Moreover, the BRAF mutation activating the RAF/MEK pathway is crucial in 
both the MM development and metastasis (Gruber et al., 2008). Genes which encode 
proteins related to pigmentation, DNA repair, cell growth, and differentiation or 
detoxification of metabolites also contribute. For example, MC1R, a pigmentation gene, is 
known to increase the susceptibility of individuals who carry the CDKN2A mutations 
(Hayward, 2003). 

It is significant to detect individuals who have the predisposition to the MM or risk factors 
triggering the MM development. Thereby, individuals can avoid the chance of developing 
the disease. Nevertheless, having a risk factor does not suggest the disease always appear as 
it is known that some individuals may have no risk factors, but they might get the disease. 
American Cancer Society (2016) establishes risk factors as follows;

a) The UV light exposure  
b) Moles
c) Fair skin, freckling, and light hair
d) Family history
e) Personal history
f) Weakened immune system
g) Older age
h) Male gender
i) Xeroderma pigmentosum  

The UV light exposure: The UV radiation is the main factor in damage to skin due to the 
disruption of regulation in genes that control skin cell growth. Especially, intermittent 
exposure to the sun may give rise to sunburns that are likely to contribute to the risk of 
developing the MM. It triggers the appearance of many melanocytes in the skin since cells 
express genes interacting with a protein named interferon-gamma (IFN-g). These changes 
do not occur in non-melanoma cells, suggesting that IFN-g is essential in the MM 
development after the UV exposure (NIH, 2011). Figure 2.5 depicts how exposure the sun 
may lead to the MM development.

Moles: A mole or nevus is a kind of benign pigmented tumor that can appear innate or a 
certain time elapsed. Moles normally do not give any harm to the body, but a person who 
has more than one mole is likely to develop the MM (American Cancer Society, 2016).

Fair skin, freckling, and light hair: Whites are more prone to develop the MM than 
blacks. Whites with red or blond hair, blue or green eyes, or fair skin that freckles or burns 
easily are at greater risk (American Cancer Society, 2016).

Family history: 10% of the MM patients has the family history. Both genetic and 
environmental factors account for the familial background. Mutations run in a family, and 
lifestyle of frequent sun exposure has a direct effect on the appearance of the disease 
(American Cancer Society, 2016).

11



Personal history: Individuals who suffered from the MM before have a higher risk of 
developing it. Furthermore, those who have basal or squamous skin cell cancers are at 
greater risk group (American Cancer Society, 2016).

Weakened immune system: Immune system is useful in fighting with agents that may 
result in skin cancers. Individuals whose immune systems are deficient, thus, are more prone 
to the MM (American Cancer Society, 2016).  

Older age: Individuals who are older than 30 are more likely to develop the MM than 
younger individuals. However, individuals who have family history develops the disease in 
younger ages (American Cancer Society, 2016). 

Male gender: In the United States, males older than 45 are at a greater risk than women 
older than 45, whereas males younger than 45 are at a lower risk than women younger than 
45 (American Cancer Society, 2016). 

Xeroderma pigmentosum: Xeroderma pigmentosum (XP) is a condition that skin cells 
might not repair damage occurred to the DNA. Thus, the XP individuals are in a risk group 
especially in younger ages (American Cancer Society, 2016).

Figure 2.5: Ultraviolet light is a modulator in malignant melanoma development (Walker 
and Hacker, 2011)

2.2.5.  Treatment

The type of treatment varies from patient to patient since the MM is a heterogenous disease, 
so the most appropriate therapy is decided according to stage and location of the disease. 
Early stage melanomas are not severe. It is not necessary to take any further treatment after 
they are surgically removed. Surgical operation is the only treatment in early stages. 
However, the MM can spread to the other parts of the body in later stages (American Cancer 
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Society, 2016). In addition to surgical operation, there are several treatment options that can 
be applied:

 Surgery to remove affected lymph nodes
 Chemotherapy
 Radiation therapy 
 Immunotherapy
 Targeted therapy

Surgery to remove affected lymph nodes: Surgical operations may be necessary provided 
that the MM spread to the lymph nodes. However, when the MM spreads to the distant parts 
of the body such as organs, surgery is not a feasible option (Mayo Clinic, 2016).  

Chemotherapy: Anti-cancer drugs are administered into either mouth or vein. After intake, 
drugs travel throughout bloodstream to attack cancer cells. This therapy option is 
recommended for advanced MM patients. However, chemotherapy is not an effective 
treatment option in the MM. It is used only to relive symptoms or extend survival of 
patients. American Cancer Society (2015) lists dacarbazine, temozolomide, paclitaxel, 
carmustine, cisplatin, carboplatin, and vinblastine that might be useful in treatment. 
Depending on the overall health of the patient, some of the drugs may be given in 
combination to enhance therapeutic efficacy. Nevertheless, combination strategy may lead 
to serious side effects such as hair loss, nausea, vomitting, loss of appetite, and increased 
risk of infection.

Radiation therapy:  High-powered energy beams such as X-rays or particles are used to 
eradicate the MM in radiation therapy after surgical operation to remove lymph nodes is 
accomplished. The procedure is applied to relieve symptoms of the MM, so that it may not 
spread to the other parts of the body (Mayo Clinic, 2016).  

Immunotherapy: It is a type of biological therapy that uses substances naturally made by 
body to help immune system for finding and destroying the MM cells. There are six main 
categories for immunotherapy approaches in the MM currently: checkpoint inhibitors, 
oncolytic virus therapies, cancer vaccines, adoptive T cell therapy, monoclonal antibodies, 
and cytokines. The typical agents for the MM administered in clinics are ipilimumab, 
pembrolizumab, and nivolumab (Cancer Research UK, 2016). 

Targeted therapy: It is an approach to develop agents which are effective in destroying 
cancer cells but not normal cells. These agents interfere with specific molecules in specific 
pathways that are responsible for growth and spread of tumor to prevent associated side 
effects more effectively than chemotherapy or radiation therapy since they directly attack to 
the targets. Melanoma Research Foundation (n.d.) proposes there are five broad approved 
targeted therapy options;

a) Vemurafenib
b) Trametinib
c) Dabrafenib
d) Vemurafenib + cobimetinib
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e) Dabrafenib + trametinib

2.3.  Weighted gene co-expression network analysis (WGCNA)

2.3.1.  Description

Weighted gene co-expression network analysis (WGCNA), also known as the weighted 
correlation network analysis, is a data mining method that constructs a gene co-expression 
network using correlation patterns among genes (Langfelder and Horvath, 2008). It is 
regarded to be a powerful network approach in analyzing high-dimensional biological data. 
It can be used for data reduction, clustering, feature selection, data integration, and data 
exploration. Network approach is intuitive to most biologists, and software implementation 
is simple, user-friendly, and comprehensive; thus, the WGCNA has gained a great popularity 
since its release. Although it can be applied to various types of biological problems, 
statisticians have widely used it in genomic applications mostly to identify candidate 
biomarkers or therapeutic targets. 

2.3.2.  Analysis goals

The WGCNA methodology is established majorly based on correlation networks, which are 
constructed on the basis of correlations between variables (Langfelder and Horvath, 2008). 
Correlation network methodology allows statisticians to use network language to extract 
pairwise relationships between network nodes. Thereof, many biological analyses required 
to identify key drivers in biological networks can be accomplished. For this purpose, the 
WGCNA method can be used for the following list of analyses:

 Distinct clusters (modules) of interconnected nodes can be identified.
 Higly connected hub genes, representative genes of the specific modules in which it 

is located centrally, can be identified to focus on a few biologically interesting 
modules instead of focusing thousand of genes. Thanks to this data reduction, 
multiple testing problems can be alleviated.

 Identification of significant modules can be achieved to relate these modules to 
external data.

 Annotation of network modules by defining a measure for module membership can 
be created to show which modules are more closely related to the identified 
modules.

 Network neighborhood can be defined to identify highly connected nodes to a given 
set of nodes in order to find interacting nodes that might be interesting.

 Screening nodes as to node significance or network topological property such as 
high connectivity can be achieved.

 Differential network analysis that contrasts one network to another network can be 
used to identify changing network parameters such as shape, size, and pattern 
among networks. 
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 Consensus module analysis can be used to obtain shared modules among many 
networks. These modules can be regarded building blocks of networks that are 
essential for the specific biological process.  

2.3.3.  Methodology

Defining a gene co-expression similarity measure is the first step in network construction. 
Pairwise correlation of genes is used to get this similarity measure. It is denoted by a pair of 
genes i and j such that;

                                                            sij = |cor (xi, xj)|                                                        (2.1) 

where sij is the measure of similarity, xi and xj are the measures of expression of genes i and j 
across multiple samples. This measure is called as unsigned co-expression similarity. Most 
of the co-expression network approaches use the unsigned measure; however, it raises 
serious problems since absolute value ignores relevant biological information such as 
activation or repression (Langfelder and Horvath, 2008). 

The similarity measure is necessary to define the network, but it gives no information about 
how strongly genes are connected to each other. Thus, an adjacency matrix A =[aij ] is 
defined to quantify connectedness after similarity measure is transformed to connection 
strength. There are two possible ways to transform similarity measure into connection 
strength: 

a) Hard thresholding
b) Soft thresholding

Hard thresholding

The similarity measure is transformed into network adjacency such that adjacency 
aij = 1 if sij ≥ t and 0 otherwise. Here, t is a threshold constant that can take any values 

between 0 and 1. Gene connections take discrete values when hard thresholding is used. It,  
however, may result in loss of information as to threshold choice. For example, if t is equal 
to 0.9, then the values below than 0.9 are encoded as non-connected, whereas the values 
higher than or equal to 0.9 are encoded as connected. In this case, 0.89 is a high similarity 
value, but hard thresholding classifies it as non-connected. This is a serious problem for 
interpretation of connectedness. Since there is no weight between nodes, the network 
constructed by hard thresholding is called as the unweighted network (Langfelder and 
Horvath, 2008).
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Soft thresholding 

Instead of using hard thresholding approach, the WGCNA has an alternative approach 
named soft thresholding. It preserves continuous values in order not to lose any information 
of gene connectedness. In this case, there is a weight between nodes, so the network 
constructed by soft thresholding is called as the weighted network (Langfelder and Horvath, 
2008). The WGCNA uses following power function to assess connection strength;

                                                               aij =(sij)
β                                                         (2.2)

where β is the soft thresholding parameter. β = 6  is the default value for unsigned 
networks. Scale free criterion, which assumes that degree distribution of a network decays 
by a power law, is optionally applied to find the best β values for thresholding (Langfelder 
and Horvath, 2008). Scale free networks consist some nodes that have many more 
connections called as hubs compared to most of the nodes in the network. Most biological 
networks are considered to be scale free since it is known that only a few nodes are hubs,  
and the rest is much less connected (Barabasi and Bonabeau, 2003). Therefore, provided 
that approximate scale free topology is reached, the smallest value of β can be chosen to 
construct a weighted network. 

The advantage of power function is that it relates co-expression similarity to weighted 
network adjacency linearly on a logarithmic scale as log (aij) = βlog (sij) . This equation 
simply suggests higher β values transforms high similarities into high adjacencies. 
Nevertheless, it approximates 0 as similarity decreases.  

The next step in the analysis is to identify distinct modules, which are composed of highly 
interconnected genes. One needs to define a network proximity measure in order to produce 
the modules. The WGCNA uses the topological overlap matrix (TOM) as the proximity 
measure though there are several measures available since it is a great approach to find 
biologically meaningful modules (Langfelder and Horvath, 2008). The proximity of a pair 
of genes in the modules takes values between 0 and 1. The values which are closer to 1 is 
said to be highly interconnected. The TOM measure includes both the adjacency of genes 
and the connection strengths these genes share with other genes. Since it considers shared 
neighbours, network proximity measure is highly robust when compared to available 
methods (Langfelder and Horvath, 2008). This measure is an input for module detection 
methods to produce modules. However, the default method is hierarchical clustering. When 
the clustering analysis is complete, the output of modules is summarized with a value 
known as module eigengene that represents the genes inside of a given module (Langfelder 
and Horvath, 2008). It is a weighted average of the standardized module gene expression 
data that makes it the first principal component of the standardized expression profiles 
(Langfelder and Horvath, 2008). Accordingly, every module has a unique module eigengene 
value. This results in a reduction of hundreds or thousands of expression profiles of genes to 
single module eigengene value. Thus, instead of dealing with a number of genes, it is 
possible to use the eigengene value when relating the module to external data. However, 
before relating it to external data, one should check for the functionality of the modules. It is 
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wise to apply gene ontology information to test whether the modules are biologically 
meaningful as some modules may reflect noise in place of a true signal. 

Figure 2.6:  The workflow of the WGCNA to identify centrally located intramodular hub 
genes which are the representatives of the modules obtained by hierarchical clustering  
(Langfelder & Horvath, 2008)

The final step is to relate functional modules to the biological trait of interest. It can be 
achieved by correlating the module eigengene value of modules to external data. This gives 
rise to eigengene significance measure that can be used in the selection of modules for 
further analysis. Moreover, one can construct eigengene modules to deduct the relationships 
of modules with each other. The ones which show greater similarity in their eigengene 
values can be merged to obtain more functional modules, so that they can be subsequently 
related to external data. After selection of modules, it is essential to identify key drivers in 
each module. The WGCNA has two connectivity measures, module membership and 
intramodular connectivity for this task (Langfelder and Horvath, 2008). Module 
membership correlates module eigengene value with individual expression of genes inside a 
given module, whereas intramodular connectivity is the value of the sum of adjacencies with 
respect to module genes although they are equivalent in practice (Langfelder and Horvath, 
2008). The genes connectivity values of which are greatest in the modules are regarded as 
the intramodular hub genes that explain the expression profile of modules greatly. This gives 
an opportunity to represent each module with an only single gene which collects the highest 
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variance. Figure 2.6 shows the workflow of the WGCNA in identifying such intramodular 
hub genes.   

    
2.4.  Support vector machine

2.4.1.  Description

Support vector machine (SVM) is a machine learning algorithm that uses supervised 
learning approach to perform classification and regression analysis (Burges, 1998). It 
classifies samples in two groups by finding a hyperplane that can separate them as wide as 
possible in classification case. The vectors which define the hyperplane is called as support 
vectors (Fletcher, 2009). In addition to classification, a function that has the ability to 
predict the value of interest can be generated for regression tasks. As it occurs in 
classification, regression analysis requires a loss function penalizing the values outside of an 
interval from actual values (Lanlan et al., 2015). Provided that the best parameters are 
chosen for optimization task in model construction, it may have an outstanding predictive 
ability in classification and regression problems. However, it needs data have already been 
labeled as it can not perform unsupervised clustering. Therefore, an extension of SVM, 
support vector clustering, was developed to improve the algorithm (Ben-Hur et al., 2001). 
The major applications of the SVM used in real life include time series forecasting, 
handwriting recognition, text categorization, bankruptcy prediction, face identification and 
recognition, and biological and medical aid (Gaspar et al., 2012).

2.4.2.  Theory behind the SVM

The idea behind the SVM is to find a hyperplane which separates two classes by 
maximizing the distance between them in order to build a classifier that divides data into 
training and test sets. Values in the training data labeled for each class are used to produce a 
model that can predict the labeled values of the test data provided that only the test data 
features are applied. For instance, Figure 2.7 visualizes that some positively and negatively 
labeled samples could be divided into two groups by maximum-margin hyperplanes after 
optimal hyperplane is determined.

The SVM could also be applied for regression tasks by defining a loss function that tolerates 
errors within a certain distance from the actual value. This error tolerating region is called as 
the epsilon intensive zone, and variables outside of the zone determine the cost of errors on 
the training points. Figure 2.8 depicts a hypothetical case for linear regression task that 
could be performed by Support Vector Regression (SVR), which is a name given for 
regression task.
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2.4.2.1.  The linear case

The SVM is used to find a hyperplane that separates training data into two classes. 
However, it is not always possible to find a hyperplane. In this case, a hinge loss function is 
introduced to separate samples into two classes. In this respect, linear SVM could perform 
classification task in two possible ways:

a) Linearly separable case (Hard margin)
b) Linearly non-separable case (Soft margin)

Figure 2.7: Visual representation of classification task by the SVM (Fernandes-Lozano et  
al., 2014)

The linearly separable case

Given that N points exist in the training data {(x1, y1),(x2, y2),(x3, y3),…,(xN, yN)}, where xi ∈ 
Rd and  yi  ∈ {-1, +1}, a hyperplane classifier can be built. It should be noted the data 
satisfies the following constraints;

                       w . x i +b ≥ 1,   y i=1      &     w . xi +b ≤ −1,   yi=−1                       (2.3) 

where w is normal to the hyperplane, |b| / ||w|| is the distance from the hyperplane to the 
origin, and ||w|| is the Euclidean norm of vector w. The following equation can be obtained 
after these two constraints are combined together

                                           yi (w . xi +b ) ≥ 1 ,   ∀ i                                                 (2.4)
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Two hyperplanes, H1 and H2, can be determined for points lying on Equation 2.3. The 
margin m is extracted as the distance between H1 and H2. 

                                    m =
|1 − b|
||w||

−
|− 1 − b|

||w||
= 2

||w||
                                             (2.5)

From the Equation 2.5, the hyperplane that separates two classes maximally can be 
obtained after the following optimization problem;

           Minimize(w , b )
1
2

||w||2      subject to yi (w . x i+ b) ≥ 1,      ∀ i                 (2.6)

The minimization formula can be derived after Lagrange multiplier αi ≥ 0 is introduced for 
each constraints in Equation 2.6 such that;

             Maximize L ( b , w , α )=1
2
||w||2 − ∑

i=1

N

a i yi (w . xi − b )+∑
i=1

N

α i                    (2.7)

Equation 2.7 is maximized with respect to w and b. In this step, derivatives of  L (b, w, α) 
with respect to all the α disappear.

Figure 2.8: Visual representation of regression task by the SVR (Clarke et al., 2003)

The linearly non-separable case

In the case of perfectly separable margin, it is not possible that any observation lies on the 
boundary of the margin. In this scenario, classification function can linearly separate the 
classes safely due to the maximization of the margin. This is known as hard margin. 
However, classes may not be separated perfectly in some cases. In this case, the SVM 
formulation can not find a solution since classification error precludes the existence of 
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hyperplanes in this non-perfectly separable case. What is more, the classifier may overfit 
when it looks for a hyperplane that separates the margin perfectly although the data is 
linearly separable. The presence of outliers, for example, may be the cause of mentioned 
overfitting. Thus, a soft margin approach was developed for the SVM. A slack variable εi is 
introduced in Equation 2.3 and Equation 2.4 to allow classification errors at the expense of 
a cost proportional to the value of εi . Thus, the new constraints with slack variables become;

                                    ∀i  {w .xi+b ≥+1− ϵ i     yi=+1
w. xi+b≤ −1 − ϵi     yi=−1

ϵi ≥ 0

                                        (2.8)

Equation 2.8 permits some instances to be placed into another class. This, however, reduces 
the effect of outliers. Large value of εi  is not desirable since it may lead to trivial or sub-
optimal solutions. Therefore, misclassification error has to be adjusted introducing the slack 
variable to Equation 2.6.

                                          Minimize (w , ϵ )
1
2
||w||2

+C∑
i=1

n

ϵ i                                             (2.9)

Equation 2.9 is subject to the constraints in Equation 2.8. Here, C is the cost coefficient 
used for misclassification penalty.  So, the solution of Equation 2.9 can be written as;

                                        
∂ L p

∂ w
=0     ⇔     w=∑

i

αi y i xi                                         (2.10)

where αi > 0 are the support vectors of the SVM solution. Now, maximization formula can 
be obtained and solved as the function is maximized with respect to α and minimized with 
respect to b and w.

Maximizeα LD=∑
i

α i −
1
2 ∑

i , j

αi α j yi y j K (xi .x j )     subject to    ∀ i  {∑i

α i yi=0

   C ≤α i ≤ 0
  (2.11)

2.4.2.2.  The non-linear case

Linear SVM has linear decision boundaries; however, the SVMs can be extended to more 
general decision boundaries. Nevertheless, the kernel trick can be used to have non-linear 
boundaries thanks to dot product of vectors in Equation 2.12. Given that a kernel function 
exists as a dot product in feature space such that,

                                                K (x i , x j )=f (xi ) . f (x j )                                               (2.12)
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The dot product in Equation 2.13 can be replaced with new kernel function K. The final 
equation becomes

   Maximizeα LD=∑
i

α i −
1
2 ∑

i , j

α i α j yi y j K (xi .x j )     subject to    ∀ i  {∑i

α i y i=0

   C ≤ αi ≤0
    (2.13)

Non-linear SVMs transform the training data into a higher dimensional feature space to 
obtain a hyperplane with maximum margin that separates the classes. Kernel functions are 
applied to find such a hyperplane. The most widely used kernel functions are;

a) Polynomial kernel (homogenous): K (x i , x j )= (xi . x j )
d

b) Polynomial kernel (inhomogenous): K (x i , x j )= (xi . x j +1)d

c) RBF kernel: K (x i , x j )=exp (- ||x − y||2

2 σ2 )
d) Sigmoid kernel: K (x i , x j )= tanh (γ (x i , x j) − ϕ )

2.4.3.  Parameter optimization

Finding a hyperplane maximizing the distance between two classes is an optimization 
problem. A training procedure using variables to separate distinct classes is, thus, required to 
extract the optimum parameters in model construction, so that the SVM can learn the rule of 
function to make accurate decisions about which group it will classify the new sample. An 
improvement in performance can be basically accomplished with tuning the slack variables 
penalty weight (C) to identify the best tradeoff while generalizing model by allowing 
misclassification errors (Gaspar et al., 2012). Misclassification errors are penalized with 
large C values; therefore, the hyperplane obtained by the soft margin SVM strongly avoids 
misclassification errors while sacrificing generalization (Chen et al., 2004). As C approaches 
infinity, a hard margin SVM behavior appears. However, low C values slightly penalize the 
misclassification errors, giving rise to failure in accurate separation. Since it is independent 
of kernel choice, minimization of the value is easily adjusted. The Linear kernel only 
requires C should be tuned appropriately; however, additional parameters should also be 
tuned when using other kernels. The most common choice is to use radial basis function 
(RBF) kernel, which includes sigma and epsilon parameters to be tuned accordingly with the 
C parameter. In addition to the RBF, there are several different kernel choices that are highly 
popular such as polynomial and sigmoid kernels. These kernels are optimized in a similar 
manner, but the RBF has an advantage due to its flexibility in fitting the data when 
compared to other kernel methods (Gaspar et al., 2012).

The SVM is powerful in separating the classes by classification or predicting the actual 
values by regression when an appropriate choice of kernel is chosen and the SVM 
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parameters are fine tuned. However, data itself is also important as the SVM algorithm 
strictly depends on data to plot each training example in a high dimensional space. Although 
the kernel is responsible for the translation of high dimensional space, the separation is 
mostly related to the available feature set. Features are extremely important in determining 
the separability of data into two classes since correlation of each future to its class affects 
the process (Chang and Lin, 2013). What is more, some features may contribute negatively 
to the classification process. Thus, it is essential to select the best features for the SVM to be 
able to generalize the model. That explains why numerous optimization strategies give 
importance to feature selection process (Czarnecki et al., 2015).

In optimization task, the efficacy of the SVM is generally dependent on four strategies:

a) Correct kernel choice
b) Optimal kernel parameters
c) Misclassification penalty choice
d) Feature selection

The strategies mentioned can improve performance significantly. Huang and Wang (2006), 
for instance, pointed in their study that when C and gamma parameters are considered 
together in optimization with the RBF kernel choice and Grid search are used for feature 
selection, the performance of model increases superficially. However, a vast majority of the 
efforts focuses on specific kernel choices and optimization of parameters, while ignoring the 
comparison of different kernels as parameters are optimized. The study of Huang and Wang 
is a supportive evidence that simultaneous feature selection and parameter optimization 
indeed improve the performance of the classifier. Thereof, different kernel choices with 
optimized parameters combined with appropriate feature selection methods should be 
assessed together to improve the performance of classifier further.

2.5.  Related works

2.5.1.  Previous works applied the WGCNA methodology

Xue et al. (2013) studied the transcriptome changes from oocyte to morula in human and 
mouse embryos. The WGCNA identified functional modules for each developmental stage. 
In addition, they observed that nearly all of the human stage-specific modules were 
conserved, but developmental specificity and timing differed between these two species. 
They also determined several key genes that might be important in mammalian pre-
implantation development.

Levine et al. (2013) investigated the genes responsible for dysregulation in individuals with 
the HIV-association neurocognitive disorder (HAND). They used gene expression data 
derived from brains of the HIV+ patients to illuminate the pathogenicity of the HAND. The 
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WGCNA approach found TNPO3 gene associated with neurocognitive impairment. 
Moreover, they used these data, along with gene expression data derived from Alzheimer’s 
Disease (AD) patients, to identify shared pathways for pathogenesis. Cytoplasm, energy, 
mitochondrion, tricarboxylic acid cycle, transit peptide, and synaptic vesicle pathways were 
suppressed in both diseases, whereas cell differentiation, activator, repeat, cell 
communication, regulation of transcription, and phosphorylation pathways were increased. 
They also observed that CTDSP2, CASC3, PGF, SASH1, HIPK2 genes were upregulated in 
both groups.

De Jong et al. (2012) applied the WGCNA method to identify genetic factors of 
schizophrenia. They used transcriptome data obtained from schizophrenia patients and 
healthy controls. As a result of their analysis, they identified modules including brain-
expressed genes. The central gene in this module, ABCF1, was regulated by the MHC 
complex; thus, they concluded the MHC complex might give rise to schizophrenia.

Miller et al. (2008) explored the molecular targets for Alzheimer’s disease (AD) with the 
WGCNA approach. They identified distinct functional modules most of which were related 
to disease progression. They also investigated the impact of gene expression changes to the 
progression of the AD and normal aging to compare module conservation. Two modules, the 
module related to mitochondrial processes such as energy metabolism and the module 
related to synaptic plasticity, emerged to conserve between two conditions. They identified 
CDK5, YWHAZ and PSEN1 genes were central in both the AD and aging, suggesting they 
have roles in the progression of the disease.

Gong et al. (2007) inquired the effect of ambient air pollution to cardiovascular mortality 
and morbidity. They explored the diesel exhaust particles (DEP) and oxidized 1-palmitoyl-
2-arachidonyl-sn-glycero-3-phosphorylcholine (OX-PAPC) on genome-wide gene 
expression by using human microvascular endothelial cells (HMEC). The WGCNA 
approach indicated both the DEP extract and ox-PAPC co-regulated many genes. They 
enriched the identified modules and observed the modules were relevant to vascular 
inflammation. Their in-vivo experimentation study with hypercholesterolemic mice also 
demonstrated these particles resulted in upregulation of HO-1, XBP1, and ATF4 genes in the 
module related to the liver.

Horvath et al. (2006) studied to identify new molecular targets for glioblastoma that may 
give rise to targeted therapy options. They used two independent datasets of clinical tumor 
samples for the WGCNA methodology and identified a module downstream of the mutant 
epidermal growth factor receptor, EGFRvIII. They indicated Erlotinib, which is an 
epidermal growth factor tyrosine kinase inhibitor, could inhibit this receptor. In addition, 
they identified ASPM gene in the module to be a candidate molecular target in glioblastoma 
after they inhibited the gene to demonstrate that ASPM is essential in tumor cell and neural 
stem cell proliferation.

Ghazalpour et al. (2006) applied the WGCNA methodology to identify genetic regulatory 
loci associated with mouse weight. For this purpose, they used liver gene expression data of 
female mice and genetic marker data from an F2 mouse intercross. After identifying several 
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modules were strongly related to weight, they investigated the genes which have a strong 
correlation with body weight in these modules and demonstrated QTL2, QTL5, QTL10, and 
QTL19 are key loci which coordinately regulate the modules.

Gargalovic et al. (2006) used gene expression profiling of endothelial cells to construct a co-
expression network with the WGCNA approach. They observed that the genes in some 
identified modules were significantly enriched for known pathways. Moreover, they 
validated genes in the modules enriched for an unfolded protein response (UPR) by the 
siRNA and the UPR inducer tunicamycin. They predicted a gene of unknown function 
(CHAC1) present in the module and is a target for the UPR transcriptional activator ATF4.

Oldham et al. (2006) investigated the molecular bases of brain organization between human 
and chimpanzee brains using gene expression measure for network construction. They 
produced distinct modules correspond to the different brain regions and analyzed the 
conservation of the modules between the species. They identified the module associated 
with cerebral cortex was weakly conserved than the module associated with subcortical 
brain regions. Furthermore, they identified LDOC1, EYA1, LECT1, and  PGAM2 genes had 
significantly changed in human - chimpanzee evolution. 

2.5.2.  Previous works applied the SVM for drug response prediction

Dong et al. (2015) constructed an in-silico model that could predict anti-cancer drug 
response from gene expression and drug sensitivity data available in the Cancer Cell Line 
Encyclopedia (CCLE). They constructed the model with Support Vector Machine (SVM) 
and a recursive feature selection tool. After checking the robustness of the model with cross-
validation, they tested the predictive ability in an independent Cancer Genome Project 
(CGP) dataset. The performance of their model was great for most of the drugs profiled in 
the CCLE. However, when they used the CGP data as test data, only three drugs out of 
eleven drugs shared between the CCLE and the CGP achieved a satisfactory performance. 
They suggested genomic features were powerful in anti-cancer drug response prediction and 
concluded their model could be effective in personalized medicine due to its high predictive 
ability in drug response prediction for certain drugs. 

Hejase and Chan (2015) applied non-linear SVM to predict the drug response of breast 
cancer cell lines. They integrated proteomic, gene expression, RNA-seq, DNA methylation, 
and DNA copy number variation data to increase the predictive ability of their model. 
Although they also used different machine learning algorithms other than the SVM, it 
appeared top three performing ensemble approaches were the SVM family of supervised 
learning methods with weighted probabilistic c-index scores 0.562, 0.554, and 0.549.

Jang et al. (2014) assessed different modeling approaches to compare model efficacy in drug 
sensitivity prediction. They used gene expression, copy number, and mutation data in the 
CCLE and the CGP studies to construct their models. They observed the SVM was one of 
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the most powerful algorithms for drug sensitivity prediction. They also noted that the 
efficiency of the SVM increased when the data were integrated.

Kovalev et al. (2013) examined the predictive ability of machine learning methods such as 
the SVM, Naive Bayesian, Logistic Regression and Linear Discriminant Analysis in 
tuberculosis drug response using X-ray and CT images of tuberculosis patients. They 
observed the highest classification accuracy of drug response was 75% and the SVM was 
the top performing method. 

Ruderfer et al. (2009) tried to predict small-molecule perturbagen (SMP) response from 
gene expression data of yeasts measured in an SMP-free medium. They used the SVM for 
classification task that divided the yeast populations into sensitive or resistant to SMP. In 
this way, they could identify drug response over 70% accuracy.
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CHAPTER 3

METHODOLOGY

3.1.  Overview

In this chapter, two large pharmacogenomics studies containing molecular and drug 
sensitivity data of human cancer cell lines are introduced. The pre-processing steps of gene 
expression and drug sensitivity data of malignant melanoma (MM) cell lines subsetted from 
these studies is explained, and the workflow of the WGCNA methodology used for 
identification of gene expression-based candidate drug biomarkers is presented. In addition, 
in-silico validation process of identified biomarkers is explained in detail, and the results of 
the validation are illustrated with visuals and tables.  

3.2.  Data sources

In the study, two large pharmacogenomics studies, the Cancer Cell Line Encyclopedia and 
the Cancer Genome Project, are used as the data sources.

3.2.1.  Cancer Cell Line Encyclopedia

The CCLE is a pharmacogenomics study conducted to understand the genetic 
characterization of various human cancer cell lines. The Broad Institute of MIT & Harvard 
collaborated with the Novartis Institutes for Biomedical Research and its Genomics Institute 
of the Novartis Research Foundation to complete this project. It includes gene expression, 
chromosomal copy number variation, and massively parallel sequencing data of the 947 
human cancer cell lines. In addition, pharmacological profiles of the 24 anti-cancer drugs 
screened against the 479 cell lines are available in the CCLE study. Human cancer cell lines 
were obtained from 36 different tumor types and characterized by several genomic 
technology platforms. Targeted massively parallel sequencing was used to determine the 
mutational status of more than 1,600 genes. Mass spectrometric genotyping identified 392 
recurrent mutations affecting 33 known cancer genes. High-density single nucleotide 
polymorphism arrays (Affymetrix SNP.0) were used for DNA copy number measurement. 
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Affymetrix U133 plus 2.0 arrays quantified the mRNA expression levels for each of the cell 
lines (Barretina et al., 2012).

There are 61 MM cell lines for which gene expression was profiled in the CCLE study. 
However, not all the cell lines were screened against the 24 anti-cancer drugs. Thus, the 
sensitivity profile of each drug was constructed with the varying number of cell lines 
screened.  At this point, it should be noted that none of the drugs profiled in the CCLE study 
has been currently administered in the treatment of the MM in clinics, but it is assumed that 
they may have a significant cytotoxic activity that has not been identified yet.

The CCLE study reports the sensitivity data with 4 different parameters for all drugs: IC50, 
EC50, Amax, and Activity Area. 

IC50: The concentration of a drug required for 50% inhibition of desired activity in in-vitro 
studies is defined as IC50. It is also known as the half-maximum inhibitory concentration.

EC50: The concentration at which a drug produces 50% of the maximal possible effect in 
in-vitro studies is defined as EC50. It is also known as the half maximal effective 
concentration.

Amax: The maximal effect level of a drug is defined as Amax.

Activity Area:  The area above the dose-response curve is defined as Activity Area.

3.2.2.  Cancer Genome Project

The CGP is an effort, similar to the CCLE, that aims to identify molecular causes of cancer 
and discover therapeutic biomarkers which could influence significantly the design, cost, 
and success of anti-cancer drug development. The project was funded by the Wellcome 
Trust Sanger Institute and the National Institute of Health. It includes human cancer cell 
lines which were subjected to exome sequencing of the 64 commonly mutated cancer genes, 
genome-wide analysis of copy number gain and loss using Affymetrix SNP.0 microarrays, 
and expression profiling of the 14,500 genes using Affymetrix HT-U133A microarrays. In 
addition, it contains pharmacological profiles of the 139 anti-cancer drugs (Garnett et al, 
2012). 

The CGP study includes expression profile of 42 MM cell lines, which is less than the 
CCLE study profiling 61 MM cell lines. However, the 139 anti-cancer drugs were not 
screened against all the cell lines. None of these drugs has been approved for the MM 
treatment as it in the case of the anti-cancer drugs profiled in the CCLE study.

The CGP study reports the sensitivity data with 2 different parameters, IC50 and AUC, for 
all the drugs. IC50 is the common drug parameter measure used in both the CCLE and the 
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CGP studies, while AUC parameter, which is the area under the dose-response curve, is only 
available in the CGP study.

3.3.  Data pre-processing

Both the gene expression and drug sensitivity data available in the CCLE and the CGP 
studies are pre-processed before implementing the WGCNA methodology to identify 
candidate drug biomarkers. 

3.3.1.  Pre-processing of gene expression data

The CCLE and the CGP studies contain basal gene expression profiles of the MM cell lines 
analyzed by the DNA microarray technology. However, the expression profiles were 
obtained by two different platforms even though both studies used Affymetrix technology. 
The CCLE study used Affymetrix Human Genome U133 Plus 2.0 Array, while the CGP 
study used Affymetrix Human Genome U133A Array (Haibe-Kains et al., 2013). Thereby, 
the two data contain different number of genes. The CCLE data profiled expression of 
19,178 genes; on the other hand, the CGP data profiled expression of 12,153 genes. 12,153 
genes are common between the two studies. Figure 3.1 shows count of genes expressions of 
which were profiled in a venn diagram.

Figure 3.1: Count of the genes profiled in the CCLE and the CGP studies (Oliveros, J.C.,  
2007 - 2015)

Apart from different platform choice, the MM cell lines used in the studies mostly differ. 
The CCLE and the CGP studies used 61 and 42 MM cell lines, respectively. Nevertheless, 
only 29 of the cell lines are shared between the studies. Figure 3.2 shows count of the MM 
cell lines investigated in the studies.  
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Figure 3.2: Count of the malignant melanoma cell lines examined in the CCLE and the  
CGP studies (Oliveros, J.C., 2007 - 2015)

Raw gene expression data (Affymetrix .CEL files) of the 61 MM cell lines investigated in 
the CCLE study is downloaded from Gene Expression Omnibus (GEO) website with 
GSE36133 accession code. However, only the data of the 38 MM cell line samples in the 
study is selected for statistical analyses since the fifteen common drugs between the CCLE 
and the CGP studies were screened against only these cell lines. In addition, the raw gene 
expression data (Affymetrix .CEL files) of the 42 MM cell lines investigated in the CGP 
study is downloaded from ArrayExpress website with E-MTAB-783 accession code. As in 
the case of the CCLE study, the CGP study did not screen the drugs against all the malignant 
melanoma cell lines. So only the screened malignant melanoma cell lines are selected for 
the analyses.

R programming language is used to perform all pre-processing steps of the gene expression 
data. ‘affyPLM’ package is used to inspect images of the arrays for quality control (Bolstad 
et al., 2005). Using the same package, density distribution plots are produced as diagnostic 
plots to show whether arrays required normalization. ‘ggplot2’ package is used to plot 
boxplots of samples to identify expression levels of the arrays before normalization 
(Wickham, 2009). After carefully inspecting images of the arrays for quality control and 
producing density distribution plots along with boxplots of the arrays, RMA normalization 
is performed to calculate a single expression value for a transcript from a set of values, such 
that it removes background chip effects and normalizes intensity values. ‘affy’ package is 
used for normalization procedure (Gautier et al., 2004). Lastly, ‘sva’ package is applied to 
combine and homogenize cell lines between the CCLE and the CGP studies. A uniform 
model is generated to remove batch effects and unwanted variation in gene expression data 
by using the package (Leek et al., 2016). Thereby, gene expression levels of the arrays in the 
CCLE and the CGP studies, which use different platforms for gene expression profiling, are 
set on the same scale. A boxplot of all the arrays in the two studies is also produced to show 
that noise is properly removed.
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3.3.1.  Pre-processing of drug sensitivity data

The CCLE study identified pharmacological profiles of the 24 anti-cancer drugs against the 
61 MM cell lines, while the CGP study identified pharmacological profiles of the 139 anti-
cancer drugs against the 42 MM cell lines. 15 anti-cancer drugs are common between the 
two studies (Barretina et al., 2012; Garnett et al., 2012). Count of the drugs used in the 
studies is visualized as a venn diagram in Figure 3.3. Names of the shared drugs is also 
given in Table 3.1. 

Figure 3.3: Count of the anti-cancer drugs screened against the malignant melanoma 
cell lines (Oliveros, J.C., 2007 - 2015)

Table 3.1: Names of anti-cancer drugs shared between the CCLE and the CGP studies  

Drug Name Target(s)

17-AAG HSP90

AZD0530 SRC, ABL1

AZD6244 MEK1/2

Erlotinib EGFR

Lapatinib EGFR, ERBB2

Nilotinib ABL

Nutlin-3 MDM2

TAE684 ALK

Paclitaxel Microtubules

PD0325901 MEK1/2

PD0332991 CDK4/6
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Table 3.1 (Continued)

Drug Name Target(s)

PF2341066 cMET, ALK

PHA665752 MET

PLX4720 BRAF

Sorafenib PDGFRA, PDGFRB, KDR, KIT, FLT3

The drug sensitivity data of the common drugs profiled in the CCLE study is downloaded 
from the CCLE (http://www.broadinstitute.org/ccle/) website. In addition, the drug 
sensitivity data of the common drugs used in the CGP study is downloaded from the CGP 
(http://www.cancerrxgene.org/downloads/) website. Subsequent analyses are restricted to 
the common drugs between the two studies. However, these drugs were not screened against 
all the malignant melanoma cell lines in both of the studies. Count of malignant melanoma 
cell lines investigated in the both studies for sensitivity profiling is tabulated in Table 3.2. 

Table 3.2: Count of malignant melanoma cell lines investigated for sensitivity profiling

Drug Name Count (CCLE) Count (CGP)

17-AAG 40 41

AZD0530 40 18

AZD6244 40 36

Erlotinib 40 16

Lapatinib 40 16

Nilotinib 33 41

Nutlin-3 40 41

Paclitaxel 40 18

PD0325901 40 39

PD0332991 40 35

PF2341066 40 18

PHA665752 40 18

PLX4720 40 41

Sorafenib 40 18

TAE684 40 18
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3.4.  Identification of gene expression-based candidate drug biomarkers

Before implementing the WGCNA method, the most varying 8000 genes in the CCLE study 
are selected among 19,178 genes expressions of which were profiled by Affymetrix 
microarray technology. In addition, the 38 MM cell lines screened by all the common drugs 
between the CCLE and the CGP studies except Nilotinib are selected to apply the WGCNA 
method. Nilotinib is intentionally disregarded because it was screened against less MM cell 
lines. Only the probesets which have the greatest variation for the genes across the 38 
samples are determined and picked for the analysis since multiple probesets were used for a 
particular gene in the microarray experiments. The final expression dataset, thereby, consists 
the 8000 most varying genes across the 38 MM cell lines. 

R programming language is used to apply the WGCNA methodology to identify candidate 
biomarkers. ‘WGCNA’ package is employed to construct a co-expression network, cluster 
genes into network modules, relate modules to drug sensitivity data, and identify centrally 
located intramodular hub genes regarded as candidate biomarkers (Langfelder and Horvath, 
2008). 

In the first step of the identification of candidate biomarkers, the pair-wise correlation 
patterns among the 8000 genes across the 38 MM cell lines are described to construct a co-
expression network. After the co-expression network is constructed, highly co-expressed 
genes are clustered into network modules by hierarchical clustering. A network plot is 
generated by Cytoscape to investigate the statistics of the constructed network such as node 
and edge count, clustering coefficient, network density, and average number of neighbours. 
Clusters are produced by a dynamic tree cut approach, which clusters the modules according 
to the shape of the clusters. The obtained modules are summarized with eigengene values, 
which can be considered as the weighted average of the expression profiles of the genes 
inside the modules. Next, module enrichment analysis is performed by the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) tool to check whether 
hierarchical clustering produces cohesive and functional modules (Huang et al., 2008). 
Afterwards, an eigengene network, which is the co-expression network between module 
eigengenes, is constructed to merge the modules for which eigengene values are at least 
70% similar. In this way, highly co-expressed genes are grouped into one big module. Then, 
eigengene values of the merged modules are re-calculated, and module enrichment analysis 
is repeated to identify functional modules. Only significantly enriched modules are selected 
for the rest of the analysis. Thereafter, drug sensitivity data (IC50) is integrated to the 
expression data by correlating sensitivity profiles of the drugs to the eigengene values of the 
significantly enriched modules. The modules which have significant correlations (P-value < 
0.05) are selected to identify intramodular hub genes. As the last step, intramodular 
connectivity values greater than 0.70 are determined within the significantly enriched and 
correlated modules. Individual expression of these hub genes is correlated to sensitivity 
profiles of each drug, and the hub genes having significant correlations (P-value < 0.05) are 
regarded as the candidate drug biomarkers. The workflow for identifying gene expression 
based candidate drug biomarkers by the WGCNA methodology is given in Figure 3.4.
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Figure 3.4: The workflow depicting identification of gene expression-based candidate  
drug biomarkers by utilizing the WGCNA method 
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3.5.  In-silico validation of identified candidate drug biomarkers

The identified candidate drug biomarkers are investigated to determine how well they could 
predict anti-cancer drug sensitivity. For this purpose, the expression data of the MM cell 
lines and sensitivity profiles of anti-cancer drugs shared between the CCLE and the CGP 
studies are used to construct in-silico models by a machine learning method, support vector 
regression (SVR). However, only the candidate biomarkers (hub genes) having the highest 
correlation scores (top 5) within each pharmacologically significant module identified for 
each anti-cancer drug are selected for statistical modeling. In the first step of the model 
construction, the gene expression data of the selected candidate biomarkers and drug 
sensitivity data of the cell lines (IC50) in the CCLE study are trained both individually and 
in combinations. Leave-one-out cross validation (LOOCV) technique is performed as model 
validation technique to assess how the predictions could be generalized to independent data 
sets. The best model having the optimal parameters for the SVR is obtained by grid search 
in the range of cost: {21, 22, ….., 29} and epsilon: {0.01, 0.02, 0.03,……, 0.2}. Next, the 
predicted sensitivity values are compared to the actual values in the CCLE by Pearson and 
Spearman correlations, and the predictive ability of the models is assessed by Root Mean 
Square Error (RMSE) measure, which measures the difference between the values predicted 
by a model and value actually observed. After comparison, the predictive ability of the 
candidate biomarkers both individually and in combinations is evaluated in the CGP data by 
the same SVR models generated by the CCLE data. In this step, only the probesets shared 
between the CCLE (the most varying 8000 genes) and the CGP expression data are selected 
since these two studies used different microarray platforms. If there is no shared probeset 
between the two expression data, then only the shared genes are selected from these 
expression data without considering probeset information. On the other hand, non-shared 
genes are discarded as the predictive ability of these genes could not be assessed in the CGP 
data. Thus, only the genes shared between the studies are regarded as candidate biomarkers 
in the study. For testing the predictive ability, both the expression profiles of the candidate 
biomarkers and sensitivity profiles of the anti-cancer drugs (IC50 and AUC) in the CGP 
study are used to predict anti-cancer drug sensitivity after logarithmic IC50 values are 
transformed to actual IC50 values by taking inverse logarithm and AUC values are 
transformed to Activity Area values by dividing AUC values to the number of drug 
concentrations as Haibe-Kains et al. (2013) performed. Furthermore, IC50 values are 
processed in three different ways, and anti-cancer drug sensitivity is predicted for the 
following three different cases: 

1. The CGP IC50 values exceeding the fixed maximum screening concentration (8 
µM) in the CCLE study are censored to 8 µM.

2. The CGP IC50 values of each drug exceeding the maximum screening  
concentration of each drug in the CGP study, which differs across the drugs, are 
censored to the maximum screening concentration of the relevant drug.

3. The IC50 values equal or greater than the maximum screening concentration of each 
drug in the CCLE and the CGP studies are excluded from drug sensitivity data.  
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Figure 3.5: The workflow which illustrates the assessment of the predictive ability of the  
candidate drug biomarkers both individually and in combinations

Activity Area value does not require further processing since it can be measured in any 
screening concentrations. So Activity Area values are used for anti-cancer drug sensitivity 
prediction after the CGP AUC values are transformed to Activity Area values.

After predictions are performed, the predicted CGP sensitivity values are compared to the 
actual CGP values similar to the comparison of the CCLE predictions. RMSE scores are 
used for comparing the predictive power of the models generated with the data in the two 
studies. The RMSE scores are transformed to percent error in prediction by dividing the 
subtraction of the actual and predicted drug sensitivity values to the concentration range and 
multiplying the resultant with 100. In the final part, the predictions obtained by the CCLE 
and the CGP data are compared, and the best single candidate biomarkers and biomarker 
combinations are determined according to the RMSE scores. Figure 3.5 illustrates all the 
steps of identification of the best candidate biomarkers both individually and in 
combinations. 

Although anti-cancer drug sensitivity prediction was performed for the common drugs 
between the CCLE and the CGP studies, predictive ability of the candidate biomarkers is 
poor due to the inconsistency in sensitivity profiles of the drugs in the two studies (Haibe-
Kains et al., 2013). So instead of using the sensitivity data of the two studies, only the 
CCLE sensitivity data is chosen to assess the predictive ability of the candidate biomarkers. 
In this way, it is aimed to show that the candidate biomarkers could predict anti-cancer drug 
sensitivity powerfully provided that drug sensitivity data were consistent. In addition, only 
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the shared cell lines between the two studies are selected to assess the performance of the 
candidate biomarkers for sensitivity prediction. IC50 values are also processed in three 
different ways as in the case of IC50 prediction performed before excluding the CGP drug 
sensitivity data. Figure 3.6 depicts the final workflow in which only the CCLE drug 
sensitivity data is used as the drug sensitivity data.

Figure 3.6: The workflow which illustrates the assessment of the predictive ability of the  
candidate drug biomarkers both individually and in combinations after the CGP drug 
sensitivity data is excluded
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CHAPTER 4

RESULTS

4.1.  Quality control and data pre-processing

Two large pharmacogenomics studies, the CCLE and the CGP, are used as the data sources 
in this study. Both of these studies include microarray gene expression profiles of the MM 
cell lines and sensitivity profiles of various anti-cancer drugs applied to these cell lines. It is 
assumed that using gene expression and drug sensitivity data available in the two studies 
could be significant to identify gene expression-based candidate drug biomarkers. However, 
one should control the quality of microarray samples to start data analysis. Thus, the quality 
of images is controlled before data analysis. Figure A. 1 shows that the quality of the CCLE 
microarray sample images is fine. Similarly, Figure A. 2 shows that the quality of the CGP 
microarray sample images is also fine. So there is no need to remove any array samples.

Once image analysis is complete, RMA normalization is performed to remove unwanted 
variation arising from technical artifacts. To control how well the normalization is 
performed, density distribution plots and boxplots of microarray samples are created before 
and after RMA normalization. Density distribution plots before RMA normalization produce 
varying density curves for each sample, whereas density distribution plots after RMA 
normalization produce a consensus curve for all samples (See Figure A. 3 & Figure A. 4). 
These plots imply that normalization is performed to the two microarray data successfully.

In addition, boxplots before and after RMA normalization are plotted to show that 
normalization sets the average expression values of the microarray samples to a common 
scale (See Figure A. 5 & Figure A. 6). Thereby, boxplots, along with density distribution 
plots, confirm that RMA normalization efficiently adjusts the microarray expression data for 
effects which arise from technical variations rather than biological variations.

The gene expression levels of the samples in the CCLE and the CGP expression data are 
also set to the same scale to compare the predictive ability of the identified candidate 
biomarkers. For this purpose, two boxplots are generated to identify how well the samples 
are set to the same scale as to their expression levels. Figure A. 7 visualizes the gene 
expression levels of all the MM cell lines investigated in both the CCLE and the CGP 
studies, while Figure A. 8 visualizes the gene expression levels of the common MM cell 
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lines investigated between the CCLE and the CGP studies. It is observed that the gene 
expression levels are leveraged in both cases. This shows that the technical variability (batch 
effects) is achieved to be removed.

4.2.  WGCNA

4.2.1.  Construction of gene co-expression network

The gene expression profile of the CCLE MM cell lines is used to construct a gene co-
expression network. Although 19,178 genes are profiled, here only the most varying 8000 
genes are selected for network construction. In this way, the genes which have significant 
biological variation are determined, and technical variation resulted from experimental 
protocols & procedures is minimized. In addition, construction of a network restricted to 
8000 genes is computationally more efficient. 

After selection of the most varying 8000 genes, the measure of similarity between the gene 
expression profiles is identified. This similarity measure is important since it is a measure of 
concordance between gene expression profiles across the experiments. Values of the 
similarity measure lies between -1 and 1. However, connection measures of genes can not 
get negative values, so the similarity matrix is transformed into an adjacency matrix by soft 
thresholding. Optimal β value for soft thresholding is determined by the scale-free topology 
criterion. A linear regression model fitting index R2 is used to observe whether the network 
satisfies the scale-free topology. In the study, R2 and connectivity values for different 
threshold β choices are determined (See Table 4.1). 

β = 6 is chosen for soft thresholding since R2 > 0.8 and mean connectivity is high enough. 
Figure 4.1 plots scale independence and mean connectivity. It can be seen from the plot that 
R2 is greater than 0.80 when β = 6, and mean connectivity value is sufficiently high (greater 
than 1) at this β value. Different β values ensuring the above conditions could also be 
selected since soft thresholding approach is highly robust for different threshold choices. 
However, as β values increase, mean connectivity decreases towards 0. So β values ensuring 
mean connectivity values sufficiently high should be preferred.

Table 4.1:  Scale free fitting index R2  and connectivity values for different β choices 

Power R2 Mean Connectivity Median Connectivity Maximum Connectivity

1 7.56 x 10-5 1431.92 1417.42 2242.69

2 0.24 400.16 381.22 906.13

3 0.60 141.88 127.16 433.81
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Table 4.1 (Continued)

Power R2 Mean Connectivity Median Connectivity Maximum Connectivity

4 0.79 59.11 48.50 250.12

5 0.86 27.81 20.49 163.83

6 0.91 14.42 9.36 114.56

7 0.95 8.11 4.56 83.90

8 0.97 4.88 2.36 63.73

9 0.98 3.11 1.28 52.39

10 0.98 2.09 0.72 46.73

12 0.96 1.08 0.25 38.78

14 0.98 0.64 0.09 33.41

16 0.97 0.42 0.04 29.47

18 0.94 0.30 0.01 26.43

20 0.95 0.22 0.01 24.00

Figure 4.1: Scale independence and mean connectivity plots

In order to check whether the network is scale-free, a scale-free plot is generated for β = 6 
(See Figure 4.2). Scale-free fitting index R2 value is sufficiently high, so the network is 
pointed to be scale-free. This implies very few genes have high connectivities, while most of 
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the genes have low connectivities. Thus, it is shown that there must be existing hub genes in 
the network.

Figure 4.2: Frequency distribution and scale free plots

A network plot for the most varying 8000 genes is also generated (See Figure 4.3). 
However, only adjacencies between genes higher than 0.10 are selected for visualizing the 
network since Cytoscape could not visualized the 34,699,000 edges obtained in network 
construction when all adjacencies between genes are considered. It is not surprising that 
there are so many edges in the network because soft thresholding approach does not allow to 
lose weak connections as opposed to hard thresholding approach. Choosing 0.10 as an 
adjacency threshold produces a network including 5609 nodes (genes) and 67,374 edges 
(connections) between the genes.  Detailed network statistics are also shown in Figure 4.4.

4.2.2.  Identification of network modules

Once the network is constructed, subsets of nodes which are highly connected to each other 
are detected. In network terminology, these subsets of nodes are called as modules. As 
opposed to traditional dissimilarity measures such as Euclidean distance and Manhattan 
distance, topological overlap dissimilarity measure is used as an input to hierarchical 
clustering for module detection. Furthermore, modules are produced by dynamic tree cut 
approach which adaptively cuts branches of the dendrogram depending on their shapes. In 
this way, more coherent modules are obtained compared to the modules which are produced 
by a traditional dissimilarity measure and constant height cutoff value. In this study, 49 
distinct modules are obtained after hierarchical clustering. Figure 4.5 visualizes the 
hierarchical clustering dendrogram plot illustrating the identified modules depicted with 
different colors.
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Figure 4.3: Network plot generated by the most varying 8000 genes

Each of the produced modules is represented by a module eigengene value. The module 
eigengene value could be regarded as the weighted average of the expression profiles of the 
genes inside a given module. In other words, module eigengenes are the first principal 
components of the modules that explain the greatest variation among genes in the modules. 
By using these module eigengenes, an eigengene network, which is the co-expression 
network of module eigengenes, is constructed to identify how well the modules are related 
to each other. Figure 4.6 shows the clustering dendrogram of the module eigengenes that 
explains how modules are related to each other. However, the modules which have at least 
70% eigengene value similarity to the other modules are merged together in order to 
produce more coherent and functional modules. Figure 4.6 also shows the clustering 
dendrogram of the module eigengenes after similar modules are merged.

Figure 4.4: Network statistics obtained form the network constructed by the most varying 
8000 genes
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Figure 4.5: Hierarchical clustering dendrogram of the most varying 8000 genes

Figure 4.6: Cluster dendrogram of module eigengenes before and after merging similar  
modules
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When similar modules are merged, the number of modules decreases from 49 to 37. 
Hierarchical clustering dendrogram visualizing the modules before and after merging is 
given in Figure 4.7. In addition, count of the genes in each module before and after merging 
similar modules is given in Figure 4.8.

In order to determine whether these modules are distinct and functional, module enrichment 
analysis is performed by the Database for Annotation, Visualization and Integrated 
Discovery (DAVID) tool (Huang et al., 2008). The 15 modules among the total 37 modules 
are significantly enriched for a known biological process, so these modules are considered 
to be functional and pharmacologically significant. The significantly enriched modules 
along with gene ontology terms and p-values are tabulated in Table 4.2. Furthermore, 
barplot of the gene ontology terms as to their significance is given in Figure 4.9. For the rest 
of the analyses, only these significantly enriched modules are selected for identifying gene 
expression-based candidate drug biomarkers. 

Figure 4.7: Hierarchical clustering dendrogram of the most varying 8000 genes before  
and after merging the similar modules

Heatmap plots for the significantly enriched modules are also created. In the plots, rows are 
the genes in the modules, and columns are the CCLE malignant melanoma cell lines. 
Figures B. 1 – B. 15 visualize the heatmap plots of each significantly enriched module. The 
modules which include highly co-expressed genes should show characteristic band 
structures. Indeed, the heatmap plots of the significantly enriched modules exhibit these 
band structures, so it is clear that these modules contain highly co-expressed genes.

45



Figure 4.8: Barplot of the gene counts in the modules before and after merging the  
similar modules

Table 4.2: Gene ontology terms of the significantly enriched modules and their p-values 

Modules GO Term P-value P-value (Benjamini )

Saddlebrown Regulation of transcription 1.9 x 10-35 3.4 x 10-33

Darkslateblue Nucleosome assembly 1.4 x 10-19 9.0 x 10-18

Darkolivegreen Calcium dependent cell adhesion 8.4 x 10-16 1.7 x 10-13

Darkmagenta Inflammatory response 6.4 x 10-13 2.7 x 10-10

Green Intracellular transport 1.5 x 10-12 5.2 x 10-9

Purple Blood vessel development 4.3 x 10-8 1.1 x 10-4

Darkturquoise DNA replication 1.6 x 10-7 2.9 x 10-4

Skyblue Antigen processing and presentation 3.0 x 10-7 1.1 x 10-4

Magenta Tube development 3.1 x 10-7 4.5 x 10-4

Darkgreen Response to virus 4.4 x 10-7 3.8 x 10-4

Darkorange Cell adhesion 9.2 x 10-7 9.0 x 10-4
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Table 4.2 (Continued)

Modules GO Term P-value P-value (Benjamini )

Brown Regulation of cell morphogenesis 2.1 x 10-6 6.4 x 10-3

Blue Cell adhesion 3.5 x 10-6 8.2 x 10-3

White Cell cycle phase 5.8 x 10-6 1.1 x 10-2

Lightcyan Glycoprotein biosynthesis pathway 4.8 x 10-5 4.6 x 10-2

Black Regulation of cell migration 2.3 x 10-5 4.9 x 10-2

4.2.3.  Relating modules to drug sensitivity

After identifying distinct and functional modules by hierarchical clustering, the logical next 
step is to relate them to external information. In this study, modules are related to drug 
sensitivity data of the anti-cancer drugs shared between the CCLE and the CGP studies. As a 
sensitivity measure, IC50 value is selected for determining related modules. In order to 
relate the modules, the module eigengene values of each functional modules are correlated 
to the CCLE IC50 values of the anti-cancer drugs, and significantly correlated modules are 
determined for each of the fifteen anti-cancer drugs. The CCLE data but not the CGP data is 
used in this step since drugs are applied to wider concentrations than the drugs profiled in 
the CGP. In addition, the CCLE study includes more MM cell lines screened by these drugs, 
and the CCLE IC50 values are not extrapolated when screening concentrations do not reach 
an IC50 value.  

Figure 4.9: Barplot of the gene ontology terms for significantly enriched modules
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Correlation analysis determines significant modules for the nine anti-cancer drugs among 
the fifteen anti-cancer drugs. Thus, only these drugs are selected for identifying candidate 
biomarkers. List of these anti-cancer drugs, along with their targets, class, and organizations, 
are tabulated in Table 4.3. In addition, Pearson correlation score and p-values of the 
significantly correlated modules to the IC50 values of the nine drugs are given in Table C. 
1. The drugs which do not show significant correlations are regarded to have poor cytotoxic 
activity in the MM cell lines, and it is assumed that there might not be MM specific gene 
expression-based biomarkers for these ineffective drugs.

Table 4.3: List of anti-cancer drugs for which the WGCNA could identify candidate  
biomarkers

Drug Name Target(s) Class Organization

AZD0530 Src, Abl/Bcr-Abl Kinase inhibitor AstraZeneca

AZD6244 MEK Kinase inhibitor AstraZeneca

Erlotinib EGFR Kinase inhibitor Genentech

Lapatinib EGFR, HER2 Kinase inhibitor GlaxoSmithKline

PD0325901 MEK Kinase inhibitor Pfizer

PF2341066 c-MET/ALK Kinase inhibitor Pfizer

PLX4720 RAF Kinase inhibitor Plexxikon

Sorafenib Raf Kinase B/C Kinase inhibitor Bayer

TAE684 ALK Kinase inhibitor Novartis

4.2.4.  Identification of candidate drug biomarkers

Identification of the pharmacologically significant modules for each of the nine anti-cancer 
drugs is significant since there might be key gene drivers in these modules having the ability 
to predict anti-cancer drug sensitivity. To find these key drivers, attention is focused on the 
hub genes which have the greatest connectivity to the other genes in a given module. Now 
that the hub genes are the central players in the modules, they may be regarded as 
representative genes of the modules they are located. Thus, only using a few representative 
genes for each module is sufficient to explain the biological activity of the modules. In this 
way, one can reduce the number of genes significantly and do not need to consider hundreds 
or thousands of genes in the analysis. This greatly alleviates multiple comparison problems. 
From this aspect, the approach is considered to be highly robust. In this analysis, the genes 
which have at least 0.70 intramodular connectivity values are regarded to be hub genes. In 
addition, only the hub genes whose individual gene expression values show significant 
correlations to the IC50 values (P-value < 0.05) are selected as candidate biomarkers. All of 
the identified hub genes for each nine anti-cancer drug are given in Table C. 2. Figure 4.10 
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also visualizes the distribution of the identified candidate biomarkers for the nine drugs as to 
the modules they belong.

Figure 4.10: Count of identified candidate biomarkers per modules for each of the nine 
anti-cancer drugs

4.3.  Predictive ability of candidate biomarkers

The WGCNA method identifies gene expression-based candidate biomarkers for the nine 
anti-cancer drugs among the fifteen anti-cancer drugs shared between the CCLE and the 
CGP studies. However, predictive ability of these candidate biomarkers for drug sensitivity 
can not be determined by the WGCNA method. Thus, a machine learning algorithm, the 
SVR, is applied to determine how well the candidate biomarkers predict drug sensitivity. In 
the study, predictive ability is investigated both individually and in combinations for drug 
sensitivity. The reason why the SVR is preferred is that it is effective and superior in 
extracting the non-linear relations between gene expression and drug sensitivity. In addition, 
it can perform powerful predictions in small sample sizes. 
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4.3.1.  Predictive ability of single candidate biomarkers

Predictive ability of the single candidate biomarkers is assessed by using gene expression 
and drug sensitivity data. In the study, IC50 and Activity Area are used as the sensitivity 
measures since both the CCLE and the CGP studies report drug sensitivities with these two 
common measures. In addition, at most three genes having the greatest intramodular 
connectivity and correlation scores among each pharmacologically significant module for 
the nine drugs are selected for assessing the predictive ability of the candidate biomarkers 
for drug sensitivity since there are tens of intramodular hub genes in some of the modules. 

In the first step, the CCLE gene expression data of the single candidate biomarkers is trained 
along with the CCLE IC50 values of the nine drugs in a non-linear SVR model. Next, the 
CCLE IC50 values are predicted for each drug by the generated model. The RMSE values 
determined for the best performing single candidate biomarkers among the top three single 
candidate biomarkers selected for each drug are inspected and tabulated in Table 4.4. These 
top performing candidate biomarkers are regarded as having the highest predictive ability 
for IC50 prediction (See Table D. 1). Then, the predicted CCLE IC50 values are correlated 
to the actual CCLE IC50 values. The results show that only Pearson correlation score of 
RNF125 gene determined for PD0325901 is significant, and only Spearman correlation 
score of NAV3 gene determined for Lapatinib is significant. Table C. 3 also tabulates the 
correlation scores of all the top performing single candidate biomarkers for the nine drugs as 
the CCLE data is used to predict IC50. 

Table 4.4: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE IC50 prediction

Gene Name Module Name Drug Name RMSE (CCLE) Error in 
Prediction (%)

TSPAN13 Darkorange AZD0530 1.41 17.63

SLC23A2 Brown AZD6244 3.33 41.63

C8orf4 Blue Erlotinib 1.18 14.75

PAOX Blue Lapatinib 1.54 19.25

RNF125 Lightcyan PD0325901 2.67 33.38

CLCN7 Lightcyan PF2341066 1.25 15.63

SAMM50 Brown PLX4720 3.09 38.63

MPRIP Purple Sorafenib 0.59 7.38

MFSD12 Lightcyan TAE684 2.07 25.88

In the following step, IC50 prediction is performed by excluding the censored CCLE IC50 
values from the CCLE drug sensitivity data. However, only AZD6244, PD0325901, and 
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PLX4720 remain to have sufficient IC50 values, so only these drugs are considered in 
prediction. Table 4.5 tabulates the top performing single candidate biomarkers for these 
three drugs. This table clearly indicates error in prediction lowers for AZD6244, 
PD0325901, and TAE684. This shows that excluding censored CCLE IC50 values from the 
CCLE drug sensitivity data improves the predictive ability of the single candidate 
biomarkers determined for the three drugs.

Table 4.5: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE IC50 prediction after removing the censored IC50 values

Gene Name Module Name Drug Name RMSE (CCLE) Error in Prediction (%)

DAAM1 Lightcyan AZD6244 0.75 14.88

RNF125 Lightcyan PD0325901 1.50 21.99

NTF3 Black PLX4720 1.58 21.76

The actual CCLE IC50 values are also correlated to the predicted CCLE IC50 values in 
order to grasp which single candidate biomarkers are good at prediction (See Table C. 4). 
The results show that both Pearson and Spearman correlation scores of DAAM1 gene 
determined for AZD6244 is significant and only Pearson correlation score of NTF3 gene 
determined for PLX4720 is significant. However, neither Pearson nor Spearman correlation 
of RNF125 gene determined for PD0325901 is significant.

After IC50 prediction, Activity Area is predicted for the shared nine drugs between the 
CCLE and the CGP studies. Activity Area has an advantage over IC50. It generally gives 
more accurate measurements than IC50 because Activity Area can always be measured 
irrespective of drug screening concentration. In IC50 measurement, however, drug screening 
concentration is significant. Indeed, the CCLE study screened all the drugs till 8 micro 
molars (µM), and IC50 could not be generated in the given concentration interval for a 
portion of the drugs. So the IC50 values are censored to 8 µM for the drugs which do not  
reach an IC50 value till the maximum concentration value. These censored values affect 
negatively the performance of the models in prediction as the models confuse in predicting 
IC50 values due to the repeating censored values. Thereby, Activity Area is expected to give 
more reliable results than IC50.

Similar to IC50 prediction, Activity Area prediction is performed for the drugs after the 
single candidate biomarkers are trained by the CCLE data. The RMSE values of the best 
performing single candidate biomarkers among the top three candidate single biomarkers 
selected for each drug are inspected and tabulated in Table 4.6. This table shows that 
Activity Area prediction error is lower than IC50 prediction error. So it can be considered 
that Activity Area is more powerful in assessing predictive ability of the single candidate 
biomarkers than IC50.

The actual CCLE Activity Area values are also correlated to the predicted CCLE Activity 
Area values. The top performing candidate biomarker of each drug is selected to investigate 
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correlation scores. Table C. 5 tabulates the correlation scores as the CCLE Activity Area 
values are used to predict drug sensitivity. The results show that both Pearson and Spearman 
correlations of relevant single candidate biomarkers for the drugs except PF2341066 are 
significant. However, only Pearson correlation score of CLCN7 is significant for 
PF2341066. These results strongly imply that Activity Area prediction is performed more 
powerfully than IC50 prediction. So Activity Area could be regarded as a better indicator of 
drug sensitivity in this case.

Table 4.6: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE Activity Area prediction

Gene Name Module Name Drug Name RMSE (CCLE) Error in Prediction (%)

FLJ42627 Lightcyan AZD0530 0.054 5.43

PAOX Blue AZD6244 0.12 11.72

LRP5 Blue Erlotinib 0.029 2.89

NAV3 Purple Lapatinib 0.050 5.02

PAOX Blue PD0325901 0.16 15.67

CLCN7 Lightcyan PF2341066 0.036 3.60

APOD Lightcyan PLX4720 0.098 9.82

ETHE1 Purple Sorafenib 0.038 3.82

PROS1 Brown TAE684 0.070 7.05

Predictive ability of the single candidate biomarkers is assessed in an independent CGP 
study after training with the CCLE data. Before the assessment, the common genes between 
the most varying 8000 genes selected from the CCLE gene expression data and the genes 
profiled in the CGP study are determined as to the probeset ID of the genes. So only these 
common genes are selected to assess the predictive ability of the single candidate 
biomarkers. In some cases, however, genes are selected as to the gene names without 
inspecting probeset IDs when there is no shared probeset between the two gene expression 
data. In addition, the gene expression levels of the samples profiled in the CCLE and the 
CGP studies are set to common scale because different microarray platforms are used to 
measure gene expression profiles of the MM cell lines. After these adjustments, the CGP 
drug sensitivity is predicted in two different ways;

1. Both the CGP gene expression data of all the MM cell lines and the CGP drug 
sensitivity data of the nine common drugs are considered in drug sensitivity 
prediction.

2. Only the CGP gene expression data of the MM cell lines shared between the CCLE 
and the CGP studies are considered in drug sensitivity prediction.
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4.3.1.1. Anti-cancer drug sensitivity prediction using the CGP gene expression 
data of all the MM cell lines and the CGP drug sensitivity data of the nine 
common drugs

Predictive ability of the best performing single candidate biomarkers determined by the 
CCLE data is tested in the CGP data by using the gene expression profiles of all the MM 
cell lines and the sensitivity profiles of the nine common drugs in the CGP study. For this 
purpose, the CGP IC50 and Activity Area values are separately used in drug sensitivity 
prediction. 

4.3.1.1.1.  IC50 prediction results

The CGP IC50 values are used in drug sensitivity prediction after processing the values in 
three different ways:

1. The extrapolated CGP IC50 values are censored to the maximum screening 
concentration of the drugs (8 µM) profiled in the CCLE study.

2. The extrapolated CGP IC50 values are censored to the maximum screening 
concentration of the drugs (differs among drugs) profiled in the CGP study.

3. The extrapolated CGP IC50 values are excluded from the CGP drug sensitivity 
data.

Censoring the extrapolated CGP IC50 values to the maximum screening 
concentration of the drugs profiled in the CCLE study

The extrapolated CGP IC50 values are censored to the maximum screening concentration of 
the drugs (8 µM) profiled in the CCLE study. It is observed that most of the cell lines 
screened against the nine drugs could not reach their actual IC50 values, so they are 
extrapolated. For example, none of the cell lines screened against AZD0530, Erlotinib, and 
PF2341066 has IC50 values lower than 8 µM, and some of the cell lines screened against 
AZD6244, Lapatinib, PD0325901, PLX4720, Sorafenib, and TAE684 have IC50 values 
lower than 8 µM. Only the IC50 values of PD0325901 are completely lower than 8 µM. 
Table 4.7 tabulates the count of cell lines having IC50 values lower than 8 µM for each drug 
in the CGP study.

Since there are only three drugs (AZD6244, PD0325901, PLX4720) having sufficiently 
large number of IC50 values, they are selected to assess the predictive ability of the single 
candidate biomarkers. Otherwise, the CGP IC50 values of the rest of the drugs would be 
transformed to majorly repeating numbers that might impede the assessment of the 
predictive power. For assessment, the RMSE values determined for the best performing 
single candidate biomarkers of the three drugs determined by the CCLE data are inspected 
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and tabulated in Table 4.8. When the error in prediction obtained from the CGP data is 
compared to that of the CCLE data, the predictive ability of the single candidate biomarkers 
seems to be amply lower for the CGP case. This indicates that censoring the CGP IC50 
values to the maximum screening concentration of the drugs profiled in the CCLE study 
does not improve the predictions. 

Table 4.7: Count of all the malignant melanoma cell lines profiled in the CCLE study

Drug Name Count of Cell Lines Count of Cell Lines 
(IC50 values lower than 8 µM)

AZD0530 14 -

AZD6244 31 16

Erlotinib 12 -

Lapatinib 12 -

PD0325901 34 34

PF2341066 14 -

PLX4720 36 18

Sorafenib 13 1

TAE684 14 5

Table C. 6 also shows that neither Pearson nor Spearman correlation of any three drugs is 
significant.

Table 4.8: The RMSE values determined for the best performing single candidate 
biomarkers when the extrapolated CGP IC50 values are censored to the maximum 
screening concentration of the drugs in the CCLE study

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

DAAM1 Lightcyan AZD6244 4.40 55.00

PAOX Blue PD0325901 0.94 11.75

BAMBI Lightcyan PLX4720 3.44 43.00

Predictive ability of the single candidate biomarkers is poor as expected since the IC50 
values are highly inconsistent between the CCLE and the CGP studies (Haibe-Kains et al., 
2013). Indeed, as the CCLE IC50 values are correlated to the CGP IC50 values after 
censoring and common malignant melanoma cell lines in the two studies are considered, 
correlation scores and R2 are determined to be poor (See Figure 4.11 a). This inconsistency 
between the two studies impairs the assessment of the predictive performance significantly. 
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Censoring the extrapolated CGP IC50 values to the maximum screening 
concentration of the drugs profiled in the CGP study

In the first approach, the extrapolated CGP IC50 values are censored to the maximum 
screening concentration of the drugs (8 µM) profiled in the CCLE study, so that sensitivity 
profiles of the drugs in the studies could be comparable in similar scale. However, the 
inconsistency in drug sensitivity data between the studies in this scale impedes adversely the 
predictive performance of the models. Thus, it is assumed that censoring the extrapolated 
CGP IC50 values of each drug to the maximum screening concentrations of the relevant 
drugs profiled in the CGP study. In this way, the predictive performances might be 
determined more reliably. For this reason, all the extrapolated CGP IC50 values of each drug 
are censored to the maximum concentrations of the relevant drugs as shown in Table 4.9.

Table 4.9: Maximum screening concentration of drugs along with count of malignant 
melanoma cell lines screened against these drugs in the CGP study

Drug
Name

Maximum Screening 
Concentration (µM)

Count of Cell 
Lines

Count of Cell Lines (IC50 values 
lower than max. screening conc.)

AZD0530 2 14 -

AZD6244 4 31 17

Erlotinib 2 12 -

Lapatinib 2 12 -

PD0325901 0.25 34 31

PF2341066 2 14 -

PLX4720 10 36 22

Sorafenib 4 13 3

TAE684 2 14 3

All the malignant melanoma cell lines screened against AZD0530, Erlotinib, Lapatinib, and 
PF2341066 have IC50 values greater than the maximum screening concentrations of each 
corresponding drug. In addition, the IC50 values of the cell lines screened against Sorafenib 
and TAE684 are mostly larger than the maximum screening concentration of the drugs. So 
these drugs are not considered in IC50 prediction. Thereby, only the IC50 values of 
AZD6244, PD0325901, and PLX4720 are predicted.

Since there are only three anti-cancer drugs (AZD6244, PD0325901, PLX4720) having 
sufficiently large numbers of measured IC50 values after selecting IC50 values lower than 
the maximum screening concentration of the drugs profiled in the CGP study, these drugs 
are selected to assess the predictive ability of the single candidate biomarkers. 
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The RMSE values determined for the best performing single candidate biomarkers of the 
three drugs are inspected and tabulated in Table 4.10. The table shows that predictive ability 
of the single candidate biomarkers is extremely poor when the CGP IC50 values of the 
drugs are censored to the maximum screening concentrations of these drugs profiled in the 
CGP study. This suggests that all the extrapolated or censored IC50 values should be 
removed from the CGP drug sensitivity data in order to perform reliable IC50 predictions. 

Table 4.10: The RMSE values determined for the best performing single candidate 
biomarkers when the extrapolated CGP IC50 values are censored to the maximum 
screening concentration of the drugs in the CGP study

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

PAOX Blue AZD6244 1.86 23.25

APOE Brown PD0325901 0.44 176.00

BAMBI Lightcyan PLX4720 4.57 45.70

Table C. 7 shows neither Pearson nor Spearman correlation of any three drugs is again 
significant.

Predictive ability of the single candidate biomarkers is poor as in the case of censoring the 
IC50 values to the maximum screening concentration of the drugs profiled in the CCLE 
study since the IC50 values are highly inconsistent between the studies. When the CCLE 
IC50 values are correlated to the CGP IC50 values after censoring and common malignant 
melanoma cell lines between the two studies are considered, correlation scores and R2 are 
determined to be poor (See Figure 4.11 b).  

Removing the extrapolated CGP IC50 values from the CGP drug sensitivity 
data

Instead of using extrapolated or censored values in IC50 prediction, it is assumed that using 
only measured experimental IC50 values of the MM cell lines might improve the predictive 
performance of the models. Since there is a reasonable amount of cell lines having IC50 
values lower than the maximum screening concentrations of AZD6244, PD0325901, and 
PLX4720, IC50 prediction is performed only for these three drugs after the extrapolated or 
the censored IC50 values are removed from both the CCLE and the CGP drug sensitivity 
data. Table 4.11 tabulates the count of malignant melanoma cell lines left after removing the 
extrapolated or the censored IC50 values. Next, IC50 prediction is performed after training 
the selected CCLE IC50 values, along with the CCLE expression data of the single 
candidate biomarkers, and testing the selected CGP IC50 values along with the CGP 
expression data of the single candidate biomarkers.
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Table 4.11: Count of the malignant melanoma cell lines remaining after all the  
extrapolated and censored IC50 values are removed from drug sensitivity data

Drug Name Count of Cell Lines (CCLE) Count of Cell Lines (CGP)

AZD0530 5 -

AZD6244 26 17

Erlotinib 4 -

Lapatinib 8 -

PD0325901 33 31

PF2341066 14 -

PLX4720 24 22

Sorafenib 10 3

TAE684 22 3

The RMSE values of the best performing single candidate biomarkers of the three drugs 
when all the extrapolated and the censored IC50 values are removed from the drug 
sensitivity data are inspected and tabulated in Table 4.12. The table shows that predictive 
ability of the single candidate biomarkers is still extremely poor. This implies that excluding 
non-measured IC50 values from the drug sensitivity data is not effective since the 
inconsistency between the two drug sensitivity data again precludes accurate assessment of 
predictive power.

Table C. 8 shows that neither Pearson nor Spearman correlation of any three drugs is 
significant. The CCLE and the CGP IC50 values of the common malignant melanoma cell 
lines between the studies are also correlated. The results show that only Spearman 
correlation of PLX4720 shows a significant increase among the three drugs (See Figure 
4.11 c). However, there is still inconsistency in IC50 values between the studies. This shows 
that it is not possible to perform powerful predictions when IC50 is used as drug sensitivity 
measure. 

4.3.1.1.2.  Activitiy area prediction results

Now that the CCLE and the CGP IC50 values are highly inconsistent, IC50 is regarded to be 
not a reliable estimator to assess the predictive ability of the single candidate biomarkers. So 
Activity Area is decided to be used as an alternative to IC50 in drug sensitivity prediction. 
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Table 4.12: The RMSE values determined for the best performing single candidate 
biomarkers when both the extrapolated and censored IC50 values in the drug sensitivity  
data are excluded

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

PAOX Blue AZD6244 0.55 28.95

SCUBE2 Brown PD0325901 0.27 22.88

BAMBI Lightcyan PLX4720 0.98 16.39

As opposed to IC50, Activity Area is neither censored nor extrapolated in the CCLE and the 
CGP studies. Since measuring the area of a dose-response curve is possible in all screening 
concentrations, Activity Area is obtained for all the drugs profiled in the studies. So it has an 
advantage over IC50 in this manner. In addition, the absence of censored or extrapolated 
values give the opportunity to perform more efficient predictions as predictive ability of a 
model is more powerful when non-repeating and measured values exist in the data.  

After the CGP Activity Area values (AUC is transformed to Activity Area) of the drugs are 
tested along with the CGP gene expression data of the single candidate biomarkers with the 
same model obtained by the CCLE data, the CGP Activity Area values are predicted for all 
the nine drugs profiled both in the CCLE and the CGP studies. The RMSE values 
determined for the best performing single candidate biomarkers of all the nine drugs are 
inspected and tabulated in Table 4.13. The table shows that predictive ability of the single 
candidate biomarkers is extremely poor as in the case of IC50 prediction. This again shows 
how inconsistency between the two drug sensitivity data ruins accurate assessment of 
predictive performance (See Figure 4.11 d).

Table 4.13: The RMSE values determined for the best performing single candidate 
biomarkers in the CGP Activity Area prediction

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

FLJ42627 Lightcyan AZD0530 0.90 90.11

PAOX Blue AZD6244 0.54 54.00

LRP5 Blue Erlotinib 0.93 93.17

NAV3 Purple Lapatinib 0.98 98.02

PAOX Blue PD0325901 0.28 28.42

CLCN7 Lightcyan PF2341066 0.92 92.12

APOD Lightcyan PLX4720 0.67 67.65

ETHE1 Purple Sorafenib 0.88 88.41
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Table 4.13 (Continued)

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

LRP5 Blue Erlotinib 0.93 93.17

PROS1 Brown TAE684 0.83 82.78

Correlation scores of any genes determined for the relevant drugs are, however, not 
significant (Table C. 9).  

4.3.1.2. Anti-cancer drug sensitivity prediction using only the CGP gene 
expression data of the shared MM cell lines between the CCLE and the CGP 
studies

Predictive ability of the single candidate biomarkers is assessed by constructing models that 
train the CCLE gene expression data of the MM cell lines, along with the CCLE drug 
sensitivity data of the nine drugs. Then, these models are tested by using the CGP gene 
expression data of the MM cell lines, along with the CGP sensitivity data of the same drugs. 
However, there could not be identified any single candidate biomarkers having a potential to 
predict drug sensitivity of any drugs. This poor performance of the models is as a result of 
inconsistency in both IC50 and Activity Area values between the CCLE and the CGP 
studies. Thus, the CGP drug sensitivity data is no longer considered in drug sensitivity 
prediction, while the CCLE drug sensitivity data is held for predictions. The reason why the 
CCLE drug sensitivity data is held is that it includes more reliable sensitivity data due to 
both its screening drugs against cancer cell lines in wider concentration ranges and higher 
sensitivity of the cytotoxicity assay it used for measuring sensitivity values (Haverty et al., 
2016). Thereby, it is decided to use only the CGP gene expression data, which is highly 
concordant to the CCLE gene expression data, in drug sensitivity prediction. In addition, 
instead of using all the MM cell lines, only the common MM cell lines between the studies 
are considered in drug sensitivity prediction. In this way, it is expected that predictive ability 
of the single candidate biomarkers might be assessed more accurately, reliably, and 
powerfully. In this scenario, the CCLE IC50 values are used in two different ways after the 
shared malignant melanoma cell lines between the studies are selected:

1. The censored CCLE IC50 values are included in the CCLE drug sensitivity data
2. The censored CCLE IC50 values are removed from the CCLE drug sensitivity data

On the other hand, the CCLE Activity Area values are used with no modification since the 
CCLE Activity Area values are neither censored nor extrapolated.
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Figure 4.11: The scatterplots which illustrate the poor correlation of IC50 and Activity 
Area values. (a) Correlation scores for IC50 values after censoring the CGP IC50 values 
to the maximum screening concentration of the drugs profiled in the CCLE study. (b)  
Correlation scores for IC50 values after censoring the CGP IC50 values to the maximum 
screening concentration of the relevant drugs in the CGP study. (c) Correlation scores for 
IC50 values after removing all the extrapolated or censored IC50 values from the drug 
sensitivity data. (d) Correlation scores for Activity Area values.
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4.3.1.2.1.  IC50 prediction results

The CCLE IC50 is predicted by including or removing the censored IC50 values in order to 
show that how the censored IC50 values affect the predictive power. It is expected that more 
powerful predictions might be performed after removing the censored IC50 values since 
repeating values might lead to inaccurate predictions. On the other hand, removing 
censoreddata decreases the sample size which might lower the efficiency of the models in 
predicting drug sensitivity. However, small sample size is assumed to be more favorable in 
IC50 prediction than having censored values in the drug sensitivity data.  

Including the censored IC50 values in the CCLE drug sensitivity data

Excluding the CGP drug sensitivity data in IC50 prediction certainly contribute to a more 
reliable assessment of predictive performance. However, it is still uncertain whether using 
only the CCLE drug sensitivity data improves the performance noteworthily. So the CCLE 
IC50 values are used with no modification in the first step.

The RMSE values determined for the best performing single candidate biomarkers of all the 
nine drugs obtained when only the CCLE drug sensitivity data is used as drug sensitivity 
data are inspected and tabulated in Table 4.14. The table shows that the RMSE values 
determined by using only the CCLE data are quite similar to the RMSE values determined 
by feeding the CGP gene expression data. Similarity in predictive performance suggests that 
excluding the CGP drug sensitivity data from predictions is an effective approach for 
assessment of predictive power. The similarity also suggests that gene expression data of the 
common MM cell lines in independent CGP study could be used powerfully to test the 
predictive ability of the candidate biomarkers. However, the predictions are still poor for the 
majority of the drugs since the censored values are not removed from the drug sensitivity 
data. So removing the censored CCLE IC50 values is assumed to improve predictions 
further and give more reliable estimate of the predictive power..

Table C. 10 shows that both Pearson and Spearman correlation scores of genes determined 
for AZD6244, Lapatinib, PD0325901, PLX4720, and TAE684 are significant. On the other 
hand, only Pearson correlation score of BAMBI gene determined for AZD0530 is 
significant.

Excluding the censored CCLE IC50 values from the CCLE drug sensitivity 
data

The CCLE drug sensitivity data contains many censored IC50 values for the drugs screened 
against the MM cell lines. This is not surprising since none of the drugs profiled in the 
CCLE study has been shown to be effective in the MM treatment. So they mostly do not 
inhibit the growth of the MM cell lines sufficiently. For this reason, the majority of the MM 
cell lines could not reach their IC50 point in the screened concentration interval. IC50 
values of these MM cell lines are censored to the maximum screening concentration in the 
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CCLE study, but the IC50 values are not accurate. These inaccurate IC50 values lead to poor 
performance of the models in IC50 prediction. Therefore, all the censored IC50 values are 
removed from the CCLE drug sensitivity data.

Table 4.14: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE IC50 prediction

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

BAMBI Lightcyan AZD0530 1.19 14.88

RAB38 Brown AZD6244 2.47 30.88

FAM172A White Erlotinib 1.38 17.25

NAV3 Purple Lapatinib 1.80 22.50

RNF125 Lightcyan PD0325901 2.57 32.13

BAMBI Lightcyan PF2341066 1.27 15.88

BAMBI Lightcyan PLX4720 3.03 37.88

HIVEP3 Darkorange Sorafenib 0.77 9.63

PROS1 Brown TAE684 1.69 21.13

After excluding the censored data, there leaves 14 MM cell lines for only three drugs, 
AZD6244, PD0325901, and TAE684. The rest of the drugs has either totally or mostly 
censored IC50 values. Thus, IC50 predictions are performed for only these drugs. The 
RMSE values determined for the best performing single candidate biomarkers of these three 
drugs are tabulated in Table 4.15. The table shows that excluding the censored data, indeed, 
improves the predictive power. The RMSE values of the three drugs are lower than the 
RMSE values determined for the case on which the censored CCLE IC50 values are 
included in predictions. This shows that censored values should be removed for accurate 
assessment of predictive performance.

Table C. 11 shows Pearson correlation score of only the genes determined for PD0325901 
and TAE684 is significant, while only Spearman correlation score of the gene determined 
for AZD6244 is significant.

Although predictive ability of the single candidate biomarkers is high when the CCLE data 
is trained, it is poor for most of the single candidate biomarkers when the CGP gene 
expression data is used to test the model. Since the gene expression data of the common 
MM cell lines are concordant between the studies, the poor performance is likely resulted 
from overfitting. The reason why the CCLE data overfits can be explained by small sample 
size. In model selection step, the LOOCV is used to tune hyperparameters, and the best 
model is selected. However, because of small sample size, the outputs of the LOOCV are 
highly correlated with each other. The mean of these highly correlated quantities has higher 
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variance, so the test error estimate resulting from the LOOCV tends to have higher variance. 
This explains why the predicted CCLE IC50 values may not correlate significantly to the 
actual CCLE IC50 values.

Table 4.15: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE IC50 prediction after excluding the censored IC50 values

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

BAMBI Lightcyan AZD6244 0.78 32.37

APOE Brown PD0325901 0.25 25.00

PROS1 Brown TAE684 1.23 17.01

4.3.1.2.2.  Activity area prediction results

Using the actual CCLE IC50 values in drug sensitivity prediction could not assess the 
predictive ability of the most of the single candidate biomarkers in the independent CGP 
data. So the CCLE Activity Area values of the drugs are chosen for assessment of predictive 
performance. The RMSE values determined for the best performing single candidate 
biomarkers of all the nine drugs are tabulated in Table 4.16. The table shows that the RMSE 
values of all the genes determined for the relevant drugs except PD0325901 are much lower 
than the RMSE values determined when the CGP Activity Area values are used as drug 
sensitivity data. This implies that the removal of the inconsistent CGP drug sensitivity data 
improves the predictive power and allows their more accurate assessment.

Table 4.16: The RMSE values determined for the best performing single candidate 
biomarkers in the CCLE Activity Area prediction

Gene Name Module Name Drug Name RMSE (CGP) Error in Prediction (%)

BAMBI Lightcyan AZD0530 0.29 29.12

MPRIP Purple AZD6244 0.22 21.77

NAV3 Purple Erlotinib 0.27 27.48

PAOX Blue Lapatinib 0.24 24.00

RNF125 Blue PD0325901 0.27 27.17

TFPI2 Black PF2341066 0.28 29.57

BAMBI Lightcyan PLX4720 0.32 32.00

MPRIP Purple Sorafenib 0.21 21.03

BAMBI Lightcyan TAE684 0.24 23.72
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Table C. 12 shows that both Pearson and Spearman correlation scores of the genes 
determined for AZD6244 and Sorafenib are significant. The table also show that only 
Pearson correlation score of the genes determined for AZD0530 and PD0325901 are 
significant

4.3.2.  Predictive ability of combined candidate biomarkers

Single candidate biomarkers are used in predicting IC50 and Activity Area values of the 
anti-cancer drugs profiled between the CCLE and the CGP studies. However, predictive 
ability of the single candidate biomarkers is determined to be not powerful in both of these 
two studies, i.e, a trained model in the CCLE mostly fails in independent CGP test data. At 
this step, combining the proper single candidate biomarkers is assumed to increase the 
predictive ability of the models. In this way, combined candidate biomarkers could predict 
drug sensitivity values both in the CCLE and the CGP studies more powerfully. However, 
there appears several important considerations at this point such as which combinations 
should be used, how many combinations should be generated, and which methods should be 
applied in identifying effective combinations. In the thesis, highly connected intramodular 
hub genes selected from different pharmacologically significant modules produced by the 
WGCNA methodology are assumed to improve the predictive performance. Thereby, using 
expression profiles of only a few genes might be sufficient to boost the predictive power and 
hence predictions significantly. However, at most five candidate biomarker combinations are 
generated to identify how many combinations are sufficient and which combinations boost 
the predictions significantly since there is no drug having more than five different 
pharmacologically significant modules. Furthermore, in contrast to the assessment of the 
predictive power by using the CGP drug sensitivity data, only the CCLE drug sensitivity 
data is used for assessment since drug sensitivity data is highly inconsistent between the two 
studies. Lastly, only the common MM cell lines between the studies are selected for 
predictions in order to validate the results obtained from one study to another study.

After selecting the CCLE drug sensitivity data as drug data and expression profiles of the 
common MM cell lines between the studies as gene expression data, IC50 prediction is 
performed in two different ways:

1. The censored CCLE IC50 values are included in the CCLE drug sensitivity data
2. The censored CCLE IC50 values are removed from the CCLE drug sensitivity data

Activity Area prediction is also performed; however, the CCLE Activity Area values are not 
processed as in the case of IC50 values since Activity Area values can be generated for any 
screening concentrations.  

Predictive performance of the combinations is assessed by the RMSE scores. In this way, 
the best performing combinations are determined for each drug. In addition, the actual drug 
sensitivity values of the best performing combinations are correlated to the predicted values, 
so Pearson and Spearman correlation scores are determined for the combinations. 
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4.3.2.1.  IC50 prediction results

IC50 prediction is first performed by training the CCLE gene expression and drug 
sensitivity data. In this way, combinations of the candidate biomarkers having significant 
predictive power are determined. Next, predictive ability of these combined candidate 
biomarkers is tested by the CGP gene expression data. Thereby, the most effective candidate 
biomarker combinations for each drug are identified. 

Including the censored IC50 values in the CCLE drug sensitivity data

The WGCNA method identifies tens of intramodular hub genes (candidate biomarkers) for 
several pharmacologically significant modules. For this reason, only the top performing 
three intramodular hub genes having the highest correlation scores and intramodular 
connectivity values are selected as candidate biomarkers. IC50 prediction is performed after 
these candidate biomarkers are selected. However, the censored IC50 values are included in 
the CCLE drug sensitivity data in order to determine how including the censored data affect 
the predictive performance. 

The best performing combinations are determined according to their RMSE scores in Table 
D. 4. This table shows that the best performing combinations for AZD0530, Erlotinib, 
Lapatinib,  PF2341066, and Sorafenib are binary, for PD0325901 and PLX4720 are triple, 
for AZD6244 and TAE684 are quadruple. It seems increasing combinations do not improve 
predictive power further for the five drugs. This is not surprising since sensitivity data of 
these five drugs mostly contain censored values that hinder powerful predictions. On the 
other hand, increasing combinations improve predictive power for the rest of the drugs since 
they mostly kill MM cell lines, and sensitivity data of the four drugs contain less censored 
values. However, predictive power for AZD6244 does not increase after quadruple 
combination even though there are five different modules determined for the drug.

Correlation scores of the predicted IC50 values to the actual IC50 values suggest that 
Pearson correlation scores of all the biomarker combinations determined for the relevant 
drugs are significant. On the other hand, Spearman correlation scores of binary combination 
determined for Sorafenib and triple combinations determined for Erlotinib, Lapatinib, 
PD0325901, and Sorafenib are not significant. (See Table C. 13). 

After the best performing combinations are determined for all the nine drugs, they are 
tabulated along with the best performing single candidate biomarkers (See Table D. 1). In 
this way, the trend of predictive power obtained by varying number of combinations is 
demonstrated. In addition, the scatterplots which illustrate the behavior of prediction errors, 
correlation scores, and R2 values determined for each combination are generated for each 
drug (See Figures D. 1 - D. 9). The barplots which display the trend of Pearson and 
Spearman correlation scores with varying number of correlations are also generated for all 
the drugs (See Figures E. 1 - E. 9). 
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The best performing single candidate biomarkers/biomarker combinations identified from 
all possible combinations for each of the nine drugs are tabulated in Table 4.17. This table 
tpoints that biomarker combinations outperform single candidate biomarkers in predictive 
power and at most quadruple combination is sufficient to obtain the highest predictive 
power. So increasing number of combinations might not improve the predictive power 
onwards quadruple combination; on the contrary, it might decrease the predictive power. 
RMSE plots are also generated to show the trend of prediction error for the possible number 
of gene combinations at this point (See Figure 4.12).

Table 4.17: List of the best performing candidate biomarker combinations for the nine 
drugs when IC50 is used as the drug sensitivity measure

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - MAP3K14 AZD0530 0.20 2.50 0.33 4.13

DAAM1 - ERBB2 - MPRIP 
- RAB38

AZD6244 1.24 15.50 1.46 18.25

ITGA5 - LRP5 Erlotinib 0.74 9.25 0.86 10.75

ITGA5 - LRP5 Lapatinib 1.19 14.88 1.12 14.00

APOE - ERBB2 - RNF125 PD0325901 1.95 24.38 2.37 29.63

BAMBI - TFPI2 PF2341066 0.84 10.50 0.80 10.00

APOE - DAAM1 - 
MAP3K14

PLX4720 2.32 29.00 2.52 31.50

ETHE1 - FAM172A - 
HIVEP3

Sorafenib 0.061 0.76 0.56 7.00

Excluding the censored IC50 values from the CCLE drug sensitivity data

The censored CCLE IC50 values in the CCLE drug sensitivity data are removed to perform 
more reliable predictions since repeating IC50 values impede the performance of models 
adversely. However, only three drugs (AZD6244, PD0325901, and TAE684) remain to have 
sufficient amount of IC50 values for predictions. So predictive performance of the combined 
candidate biomarkers is assessed only for these three drugs.

Combinations for the three drugs are generated and their predictive performances are 
tabulated in Table D. 5. This table shows that the best performing combinations are triple 
for PD0325901 and TAE684 and quadruple for AZD6244. However, statistical model 
overfits when predicting IC50 values of PD0325901 and TAE684 due to low sample size 
after removing the censored values. So predictions for these two drugs are not reliable. Only 
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the sensitivity prediction determined for AZD6244 is reliable in this scenario, and increasing 
biomarker combination count improves predictive power till quinary combination as in the 
case of prediction performed when censored IC50 values are included in the CCLE drug 
sensitivity data.

Figure 4.12: The RMSE plots which depict the trend of prediction error when the  
censored IC50 values are included in the CCLE drug sensitivity data

Correlation scores determined for the three drugs shows that Pearson correlation scores of 
all biomarker combinations of the relevant drugs are significant. Nevertheless, Spearman 
correlation scors of binary combination determined for PD0325901 and triple combinations 
determined for PD0325901 and TAE684 are not significant (See Table C. 14). The best 
performing single candidate biomarkers and biomarker combinations determined for the 
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three drugs are tabulated in Table D. 2. In addition, scatterplots for predive power and 
barplots for correlations score are generated (See Figures D. 10 - D. 12 and Figures E. 10 - 
E. 12). 

All the best performing biomarker combinations are tabulated in Table 4.18. This table 
demonstrates that biomarker combinations outperform single candidate biomarkers in 
predictive power, and at most quadruple combination is sufficient to obtain the highest 
predictive power. This means that increasing number of combinations might not improve the 
predictive power onwards quadruple combination. RMSE plots are also generated to show 
the trend of prediction error for the possible number of gene combinations (See Figure 
4.13). 

Table 4.18: List of the best performing candidate biomarker combinations for the three 
drugs when IC50 is used as the sensitivity measure

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

DAAM1 - ERBB2 - MPRIP 
- SLC23A2

AZD6244 0.40 16.60 0.38 15.77

APOE - ERBB2 - RNF125 PD0325901 6.8 x 10-5 0.0068 0.16 16.00

BAMBI - C8orf4 - 
MAP3K14 - PROS1

TAE684 0.56 7.75 0.88 12.17

4.3.2.2.  Activity Area prediction results

After IC50 predictions, Activity Area predictions are performed for the combined candidate 
biomarkers. As in the case of IC50 prediction, binary, triple, quadruple, and quinary 
combinations are generated for Activity Area prediction. 

The predictive performances of the best performing combinations determined for each drug 
are given in Table D. 6. This table shows that both the CCLE and the CGP RMSE values of 
the binary combinations generated for all the drugs are lower than that of the single 
candidate biomarkers. The best performing combinations determined for AZD0530, 
Erlotinib, Lapatinib, PD0325901, PF2341066, and Sorafenib are binary, for PLX4720 is 
triple, for TAE684 is quadruple, and for AZD6244 is quinary. Using Activity Area data 
shows the expected increasing trend in predictive power for combinations generated by 
selecting one biomarker candidate from each pharmacologically significant module. This 
behaviour could not clearly be observed with IC50 values because of repeating censored 
values. In this respect, assessment of predictive power with Activity Area values is more 
powerful.
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Correlation scores determined for biomarker combinations are tabulated in Table C. 15. 
This table shows Pearson correlation scores of all the combinations except triple 
combinations of Erlotinib and Sorafenib  are significant. On the other hand, the table shows 
Spearman correlation scores of the combinations except binary combinations of Erlotinib 
and TAE684 and triple combinations of Erlotinib, Lapatinib, and Sorafenib are significant. 
Predictive performances of the candidadate biomarkers, scatterplots for predictive power, 
and barplots for correlation scores are also given in Table D. 3, Figures D. 13 – D. 21, and 
Figures E. 13 – E. 21, respectively. 

Figure 4.13: The RMSE plots which depict the trend of prediction error when both the  
censored and extrapolated IC50 values are excluded from drug sensitivity data

The best performing single candidate biomarkers or biomarker combinations identified from 
all possible combinations for each of the three drugs are tabulated in Table 4.19. This table 
demonstrates that biomarker combinations outperform single candidate biomarkers in 
predictive power as in the case of IC50 prediction. RMSE plots are also generated to show 
the trend of prediction error for the possible number of gene combinations (See Figure 
4.14).

Table 4.19: List of the best performing biomarker combinations for the nine drugs when 
Activity Area is used as the drug sensitivity measure

Biomarker Combination Drug 
Name

RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - MAP3K14 AZD0530 0.18 17.78 0.30 30.26

BAMBI - MAP3K14 - 
MPRIP - PROS1 - RAB38

AZD6244 0.048 4.75 0.13 13.08

LRP5 - NAV3 Erlotinib 0.22 21.73 0.26 26.28
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Table 4.19 (Continued)

Biomarker Combination Drug 
Name

RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

LRP5 - PAOX Lapatinib 0.16 15.66 0.21 20.82

ERBB2 - RNF125 PD0325901 0.22 21.57 0.23 22.96

BAMBI - TFPI2 PF2341066 0.21 20.69 0.25 25.18

BAMBI - MAP3K14 - 
PROS1

PLX4720 0.20 19.56 0.24 24.43

HIVEP3 - MPRIP Sorafenib 0.14 14.27 0.20 20.00

MAP3K14 - MFSD12 - 
PAOX - PROS1

TAE684 0.13 13.38 0.15 15.13
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Figure 4.14: The RMSE plots which depict the trend of prediction error when the CCLE  
Activity Area values are used for prediction
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CHAPTER 5

DISCUSSION

5.1.  The WGCNA methodology is powerful in identification of candidate biomarkers

The WGCNA methodology identifies centrally located intramodular hub genes inside 
pharmacologically significant modules determined for the nine anti-cancer drugs among the 
fifteen anti-cancer drugs profiled both in the CCLE and the CGP studies. These hub genes 
are assumed to be candidate drug biomarkers for malignant melanoma (MM) since disease 
producing agents are known to attack the central players in a network. If that is the case, the 
hub genes identified by the WGCNA should have functions related to the development and 
progression of the MM. Indeed, the majority of the genes have been shown to be responsible 
for both the development and progression of the MM. For instance, MAP3K14 identified for 
AZD0530, AZD6244, PLX4720, and TAE684 is an important gene in the MM development. 
Its depletion lowers the expression of genes leading to tumor growth and pro-survival 
factors. Thu et al. (2012) show that MAP3K14 regulates β-catenin and NF-κβ regulated 
transcription for development and growth of the MM. it might be a candidate biomarker or 
therapeutic target for the MM. RNF125 identified for AZD0530, AZD6244, PD0325901, 
PLX4720, and TAE684 is a key gene that develops resistance to BRAF inhibitors. Kim et al. 
(2015) demonstrate that downregulation of RNF125 upregulates receptor tyrosine kinases 
via JAK1 degulation. They demonstrate that when JAK1 and EGFR signaling are blocked, 
RNF125 expression lowers, so BRAF resistance could be avoided in melanoma. ERBB2 
identified for AZD6244 and PD0325901 is a therapeutic target for BRAF/NRAS cutaneous 
melanomas when it forms a complex with ERBB3 (Capparelli et al., 2015). Even though 
most of the identified hub genes are related to the MM disease, the rest of the hub genes 
have not been shown to be associated with the MM yet. This does not show that they are not 
significant in development or progression of the disease. These genes might be involved in 
tumor development and progression, but they might not have been investigated yet. In 
addition, they seem to be irrelevant to the MM disease because of not being considered with 
other genes having high associations to the MM development or progression. So they might 
be novel therapeutic targets or biomarkers for the MM, and experimental works should be 
performed for both demonstrating their roles in the MM development or progression and 
validating them in independent studies. 
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5.2.  Combinations of candidate biomarkers improve drug sensitivity prediction

There are numerous studies conducted to identify powerful and reliable genomic predictors 
for determining anti-cancer drug sensitivity; however, most of the studies fail to identify 
such predictors. The major reason for this failure obviously emerges from the efforts aiming 
to identify single predictors. However, single predictors could not be effective in elucidation 
of drug activity since the vast majority of the drugs attack more than one targets. So 
identification of these multiple targets is extremely important for predicting drug sensitivity 
effectively. In this study, indeed, it is shown that combinations of candidate drug biomarkers 
(predictors) improve anti-cancer drug sensitivity substantially. When all the anti-cancer 
drugs for which single candidate biomarkers are identified are considered, it can be seen that 
proper combinations generated by selecting only one hub gene from each pharmacologically 
significant modules obtained by the WGCNA methodology always have higher predictive 
power than their single counterparts. Binary combinations always improve anti-cancer drug 
sensitivity prediction tremendously, but increasing combinations onwards binary 
combinations improves predictive power slightly in most cases. Interestingly, increasing 
combination counts does not improve the predictive power further after quadruple and 
quinary combinations.

The predictive power of candidate biomarkers both individually and in combinations is 
investigated for several different scenarios due to inconsistency in drug sensitivity data 
between the CCLE and the CGP studies. In this way, not only the predictive power of  
combinations is assessed but the effect of inconsistency in drug sensitivity prediction and 
possible efforts to overcome the inconsistency are inspected as well. In the first step, the 
expression profiles of the candidate biomarkers of all the MM cell lines and  
pharmacological profiles (IC50 and Activity Area) of the anti-cancer drugs screened against 
these cell lines in the CCLE study are trained with a non-linear SVR machine learning 
algorithm. Then, the predictive power of the candidate biomarkers is tested in independent 
CGP data. However, the assessment could not be performed because of inconsistency in 
drug sensitivity data between the two studies. So only common malignant MM cell lines are 
selected, and the CGP drug sensitivity data is removed from analyses. These adjustments 
lead to a more reliable assessment of predictive power. In order to determine the best 
performing biomarker combinations after the adjustments, anti-cancer drug sensitivity is 
predicted. For the drug sensitivity measure, both IC50 and Activity Area are selected as the 
drug sensitivity measures. When IC50 is selected as the drug sensitivity measure, the best 
performing combined candidate biomarkers always have higher predictive power than the 
best performing single candidate biomarkers. As IC50 values are included in the CCLE drug 
sensitivity data, the best performing candidate biomarker combinations are binary 
combination (BAMBI - MAP3K14) for AZD0530, quadruple combination (DAAM1 - 
ERBB2 - MPRIP - RAB38) for AZD6244, binary combination (ITGA5 - LRP5) for 
Erlotinib, binary combination (ITGA5 - LRP5) for Lapatinib, triple combination (APOE - 
ERBB2 - RNF125) for PD0325901, binary combination (BAMBI - TFPI2) for PF2341066, 
triple combination (APOE - DAAM1 - MAP3K14) for PLX4720, triple combination 
(ETHE1 - FAM172A - HIVEP3) for Sorafenib, and quadruple combination (BAMBI - 
C8orf4 - MAP3K14 - PROS1) for TAE684. However, as IC50 values are excluded from the 
CCLE drug sensitivity data, the best performing candidate biomarker combinations are 
quadruple combination (DAAM1 - ERBB2 - MPRIP - SLC23A2) for AZD6244, triple 
combination (APOE - ERBB2 - RNF125) for PD0325901, and quadruple combination 
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(BAMBI - C8orf4 - MAP3K14 - PROS1) for TAE684. So, IC50 removal does not change 
the best performing combinations of PD0325901 and TAE684, while it replaces RAB38 
with SLC23A2 in quadruple combination generated for AZD6244. Similar to IC50 
predictions, the candidate biomarker combinations always have higher predictive powers 
than the single candidate biomarkers when Activity Area is selected as the drug sensitivity 
measure. The best performing candidate biomarker combinations are binary combination 
(BAMBI - MAP3K14) for AZD0530, quinary combination (BAMBI - MAP3K14 - MPRIP - 
PROS1 - RAB38) for AZD6244, binary combination (LRP5 - NAV3) for Erlotinib, binary 
combination (LRP5 - PAOX) for Lapatinib, binary combination (ERBB2 - RNF125) for 
PD0325901, binary combination (BAMBI - TFPI2) for PF2341066, triple combination 
(BAMBI - MAP3K14 - PROS1) for PLX4720, binary combination (HIVEP3 - MPRIP) for 
Sorafenib, and quadruple combination (MAP3K14 - MFSD12 - PAOX - PROS1) for 
TAE684. Only combination generated for AZD0530 is same when IC50 and Activity Area 
predictions are compared. This shows that drug sensitivity measure is an important part of 
the assessment of predictive power. Activity Area is a more reliable measure since it can be 
measured in any screening concentration. Nevertheless, IC50 could not be measured when 
screening concentration is not sufficient for 50% inhibition. Unmeasured IC50 values are 
either censored to the maximum screening concentration as the CCLE reports or 
extrapolated as the CGP reports. Both of these approaches are not accurate, so the values are 
not reliable. 

5.3.  There are limitations for accurate assessment of predictors

Drug sensitivity prediction is a challenge in most cases as drug sensitivity is inconsistent 
between the studies, sample sizes are small for reliable estimation of predictive power, and 
drugs screened against the samples usually do not show a significant cytotoxic activity. In 
this study, all the three mentioned drawbacks challenge reliable and powerful estimation of 
predictive power. Even so, several strategies such as removing inconsistent drug sensitivity 
data, excluding non-measured values, and using the SVR machine learning algorithm that 
employs powerfully in small sample sizes are performed to assess the predictive power. 
However, there is still a need for further studies aiming to overcome these limitations. In 
this way, it would be possible to identify reliable drug biomarkers or therapeutic targets for 
the MM disease. 

5.3.1.  Drug sensitivity data is highly inconsistent between the studies

The CCLE and the CGP studies report common drug sensitivity measures, IC50 and 
Activity Area. However, these drug sensitivity measures are highly inconsistent between the 
studies when the shared MM cell lines and anti-cancer drugs between the studies are 
compared. There are five possible reasons for this inconsistency. First, the two studies use 
different pharmacological assays to measure drug sensitivity. In order to identify how 
different assay choice affects the consistency of drug sensitivity, Haibe-Kains et al. (2013) 
investigated the GlaxoSmithKline (GSK) data at which the pharmacological assay (Cell 
Titer-Glo Luminescent Cell Viability Assay kit from Promega) is same with the CCLE used. 
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As filtering common cell lines and drugs inspected in the CCLE, the CGP, and the GSK 
data, they identified that the GSK IC50 values were more consistent with the CCLE IC50 
values though overall consistency was still quite poor. Nonetheless, they state that which 
study gives a more realiable sensitivity measure can not be known solely by comparisons. 
Second, different experimental protocols followed in the studies impact the accuracy of drug 
sensitivity measures. Standardization of experimental protocols might improve the 
efficiency of drug sensitivity measurement; however, Garnett et al. (2013) show that even 
though the same experimental protocols were followed with the same cell lines for an anti-
cancer drug, Camptothecin, the correlation scores between the measurements increased (r < 
0.60), but the correlation was still not so high as expected. Phenotypic differences among 
cell lines and different passage counts might explain the discrepancy in drug sensitivity 
measure, yet there is no study conducted for the effects of phenotype and passage count on 
the accuracy of drug sensitivity measure. Third, the two studies measured drug sensitivity 
with different concentration ranges. The CGP study mostly screened the drugs in a narrower 
concentration range than the CCLE study. If same screening concentration ranges had been 
determined in the studies, more reliable and powerful predictions would have been 
performed. Fourth, the CGP study extrapolates the IC50 values of the cell lines which do not 
reach 50% inhibition in given concentration range. Extrapolated values are non-measured 
values, so they do not show the actual drug sensitivity measure. Fifth, genetic heterogeneity 
of the cell lines might have an impact on displaying different drug responses. This might 
explain that how anti-cancer drug response could not be measured effectively even though 
the same experimental protocols were followed with same screening concentration ranges. 
Thereof, biological factors should also be considered for obtaining accurate drug sensitivity 
measures. In conclusion, both technical and biological considerations should be taken into 
consideration when drug sensitivity is measured. In this way, consistency in drug sensitivity 
could be achieved.

5.3.2.  Small sample size precludes reliable estimation of predictive power

Small sample size is an important limitation of the study. The CCLE and the CGP studies 
investigated 62 and 42 MM cell lines respectively for expression profiling. However, anti-
cancer drugs profiled in these two studies were not screened against all the MM cell lines, 
so the count of the MM cell lines used for drug sensitivity measure is even less than the 
mentioned numbers. It is hard to predict drug sensitivity with such a low amount of cell 
lines via machine learning approaches since they require large sample sizes for learning the 
behavior of data. Otherwise, statistical model might overfit the data, so predictive power 
would not be assessed powerfully and reliably. Moreover, testing a model is more 
meaningful in large sample sizes. Nevertheless, a machine learning algortihm having 
superior performance in low sample sizes could be employed for compansating all these 
limitations. For this purpose, the SVR machine learning algorithm was chosen for 
predictions. In contrast to the SVR, most of the other machine learning algortihms are 
unfortunately poor in predictive performance in low sample sizes. From this aspect, using 
only the SVR for drug sensitivity prediction is a limitation since other algorithms were not 
applied for predictive power. Therefore, it is essential that pharmacogenomics studies should 
screen large amount of cell lines for powerful anti-cancer drug sensitivity prediction.
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5.3.3.  Anti-cancer drugs profiled in the two studies do not have remarkable cytotoxic 
activity against the MM

The common anti-cancer drugs profiled between the two studies have not been shown to 
have a significant cytotoxic activity against the MM. For this reason, the concentration 
range of these drugs required for killing the MM cell lines is mostly insufficient. Larger 
screening concentrations would give an idea about their cytotoxic activity; however, the cost 
of the studies would be extremely higher, and it would be meaningless to observe a 
cytotoxic activity in a screening concentration that human cells can not tolerate in 
chemotherapy. Thus, IC50 could not be obtained for a significant proportion of the MM cell 
lines. Activity Area, on the other hand, could be obtained for any screening concentration, 
but it does not show anything when anti-cancer drugs do not have a significant cytotoxic 
activity. If pharmacogenomics studies screened anti-cancer drugs having a high cytotoxic 
activity for the MM, it would be easier to assess the predictive power of the identified 
candidate biomarkers for drug sensitivity more powerfully. Thereof, anti-cancer drugs 
having the high cytotoxic activity for the MM should be included in future studies in order 
to identify more effective predictors (biomarkers) that could determine the ideal doses 
required for each of the MM cell lines according to their genetic background.         
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CHAPTER 6

CONCLUSION AND FUTURE STUDIES

6.1.  Conclusion

Personalized treatment of cancer according to genetic background of each patient is an 
important research topic in this era. It is widely assumed that huge amount of patient data 
produced by the high throughput sequencing technology will contribute to identify genomic 
predictors that might pave the way for choosing the right anti-cancer drugs in chemotherapy 
for each  patient in a patient-centric manner. For this purpose, numerious studies conducted 
to identify such predictors, but only a small fraction of them could be successful due to the 
lack of high quality computational studies in the field. Reductionist approaches were mostly 
followed in the past, but they were poor in understanding the complexity of the biological 
question of interest. So instead of following reductionist approaches, scientists are turning 
their attention to systems approaches, which enable them to investigate the biological 
question as a system. Systems approaches are gaining popularity in personalized medicine 
since it has been shown many times that they are highly effective in discovering the 
biological complexity. So it is considered that they might be major tools in identification of 
biomarkers or therapeutic targets in cancer.

In this study, the WGCNA systems biology based network approach is used to identify gene 
expression-based candidate drug biomarkers for the MM by using expression profiles of the 
MM cell lines and sensitivity profiles of the anti-cancer drugs screened against these cell 
lines in the CCLE study. In the first step, the expression profiles of the 38 MM cell lines 
having large amount of drug sensitivity data obtained for the 24 anti-cancer drugs profiled in 
the CCLE study are selected for constructing a gene co-expression network as to the 
correlation patterns of genes across the MM cell line samples. After network construction, 
module detection is performed by hiearchical clustering by a dynamic tree cut algorithm, 
which clusters highly co-expressed genes into distinct network modules. The modules which 
are at least 70% similar are merged into a single module since higly similar modules are 
likely to account for similar biological activitiy. Next, module eigengene value, which is the 
average expression profiles of the genes inside each module, is determined for the merged 
modules. Then, module enrichment analysis with the DAVID tool is performed to observe 
whether the modules are functional, and the functional modules are selected for further 
analyses. The eigengene values of these functional modules are correlated to the sensitivity 
profiles (IC50) of the drugs available in the CCLE study, and only highly correlated (P-
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value < 0.05) modules are filtered (Pharmacologically significant modules). After 
pharmacologically significant modules are determined, the centrally located intramodular 
hub genes having the greatest connectivity to other genes (Intramodular connectivity > 0.70) 
are identified for each pharmacologically significant module. At this step, individual 
expression profiles of these hub genes are correlated to the IC50 values of the MM cell lines 
in order to identify significantly correlated hub genes inside each of the pharmacologically 
significant modules. These hub genes are regarded to be candidate drug biomarkers or 
therapeutic targets for the MM. If the WGCNA methodology is applied powerfully for 
identifying such candidate biomarkers, they should have functions related to the MM 
development or progression. Indeed, the majority of the identified candidate biomarkers 
have already been associated with the MM disease, so it is shown that the WGCNA 
methodology works to identify MM specific candidate biomarkers powerfully.

Identification of single candidate biomarkers for the MM is an important task, but their 
predictive power for drug sensitivity is also crucial. So predictive ability of these candidate 
biomarkers is assessed by the SVR machine learning algorithm both individually and in 
combinations. Combinations of these candidate biomarkers are generated since it is assumed 
that proper combinations might improve anti-cancer drug sensitivity prediction substantially. 
Proper combinations are generated by selecting only one intramodular hub gene from each 
pharmacologically significant module as selecting only one representative gene from each 
module having a distinct biological process is assumed to be sufficient for anti-cancer drug 
sensitivity prediction. However, at most 5 gene combinations are generated since no drug 
has more than 5 pharmacologically significant modules. The predictive power of the 
candidate biomarkers is first assessed by the CCLE data with the SVR machine learning 
algorithm both individually and in combinations. LOOCV is used as model validation 
technique, and drug sensitivity measures (IC50 and Activity Area) are predicted. Here, 
RMSE is used as a model performance metric. The less the RMSE value of the models, the 
more accurate the predictions are performed. In this way, the best performing candidate 
biomarkers and biomarker combinations for each drug are determined by the CCLE data. 
After prediction of drug sensitivity measures, the actual CCLE values are correlated to the 
predicted CCLE values. Thereby, it is checked whether the predicted values for the best 
performing candidate biomarkers or biomarker combinations are significantly correlated to 
the actual values. The predictive power is also tested in an independent CGP data with the 
same model obtained by the CCLE data. Nevertheless, predictive power is low when the 
CGP data is fed into the model since high inconsistency in drug sensitivity data between the 
two studies leads to failure of accurate assessment. So the CGP IC50 values are processed in 
three different ways, but the CGP Activity Area values do not need any modification:

1. The extrapolated CGP IC50 values are censored to the maximum screening 
concentration of the drugs (8 µM) profiled in the CCLE study.

2. The extrapolated CGP IC50 values are censored to the maximum screening 
concentration of the drugs (differs among drugs) profiled in the the CGP study.

3.   The extrapolated CGP IC50 values are excluded from the CGP drug sensitivity data. 

Even though all the three processing steps are performed, none of the approaches is effective 
in the assessment of predictive power. Therefore, the CGP drug sensitivity data is removed 
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from predictions. Only the CCLE drug sensitivity data is used since drugs are screened 
against broader screening concentration ranges and IC50 values are not extrapolated. In 
addition, only the common MM cell lines between the studies are selected as it is assumed 
that highly concordant gene expression data between the studies would give clues for 
accurate assessment of predictive power if the drug sensitivity data were assumed to be 
consistent. However, the CCLE IC50 values are processed in two different ways, while the 
CCLE Activity Area values remain to be same:

1.   The censored CCLE IC50 values are included in the CCLE drug sensitivity data.
2.   The censored CCLE IC50 values are removed from the CCLE drug sensitivity data.

After the processing step, the predictive power of the best performing single candidate 
biomarkers or biomarker combinations are determined according to both IC50 and Activity 
Area values (See Table 4.21, Table 4.26, & Table 4.31). The results show that the best-
performing candidate biomarkers determined by including the IC50 values in the CCLE data 
are same with that of excluding the IC50 values from the CCLE data except for AZD6244. 
However, only the best performing candidate biomarkers determined by the CCLE Activity 
Area values of AZD0530 is same with that of determined by the CCLE IC50 values. This is 
likely have resulted from discrepancies in reported drug sensitivity measurement parameters 
(IC50 and Activity Area). In addition, the results show that combinations always have high 
predictive power than single candidate biomarkers. The results also show that only a few 
genes are sufficient to predict anti-cancer drug sensitivity powerfully. So predictive power 
reduces suddenly onwards a few gene combinations.

We select the MM as a model disease in this study to show that we have developed a 
strategy that identifies gene expression-based candidate drug biomarkers or drug targets for 
several diseases such as cancer, obesity, and neurological disorders. We believe that after the 
mentioned limitations are overcome, the identified candidate biomarkers obtained by the 
developed strategy have potential to be validated by the RT-PCR technique in both in-vitro 
and in-vivo clinical studies, so that they would be utilized in clinics to determine the most 
effective drugs in chemotherapy for each of the patients according to their genetic 
backgrounds. And so, we believe in tackling diseases more effectively, extending the life 
expectancy of the patients, and economizing health expenditures substantially.

6.2.  Future Work

Prediction of anti-cancer drug sensitivity is challenging due to the lack of available 
biological and clinical data, technical difficulties in accurate drug sensitivity measurement, 
and varying experimental procedures among current studies. For this reason, most of the 
studies could not accomplish to identify powerful predictors or biomarkers that may 
contribute to the personalized treatment of patients suffering from cancer disease. However, 
in this study, it is demonstrated that combinations of the candidate biomarkers identified by 
the WGCNA method might be effective in anti-cancer drug sensitivity prediction although 
there are several aforementioned obstacles in the identification of reliable predictors. Even 
so, several forthcoming studies should be held to identify reliable predictors and translate 
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them in clinics to decide the most appropriate chemotherapy for cancer patients according to 
their genetic profiles.

 Instead of using only the MM cell lines, several other types of cancer cell lines can 
also be used to detect whether the methodology applied in this study could be 
reproduced for different cancer types. It can also be applied to other diseases such as 
diabetes and alzheimer in order to identify biomarkers that might predict which 
patient responds to which particular drug prior to onset of therapy.

 In addition to gene expression data, other external data such mutation, copy number 
variation, and methylation can be integrated to drug sensitivity data. Thereby, the 
assessment of candidate biomarkers can be accomplished more accurately, reliably, 
and powerfully.

 Finally, predictive ability of candidate biomarkers identified for any cancer types 
can be assessed both individually and in combinations further in additional 
pharmacogenomics studies such as NCI60, gCSI, and GSK in order to accomplish 
in-silico validation of candidate biomarkers. What is more, candidate biomarkers 
can be validated by several clinical studies. In this way, both in-vitro and in-vivo 
validation of candidate biomarkers could be performed, and those validated might 
be used in clinics to determine the patients who might respond chemotherapy 
beforehand.
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APPENDIX A

THE PLOTS GENERATED BY DATA PRE-PROCESSING

Figure A. 1: Images of the CCLE microarray samples visualized for quality control
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Figure A. 2: Images of the CGP microarray samples visualized for quality control
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Figure A. 3: The density distribution plots which show the histogram of the perfect match 
intensities for the CCLE microarray samples before and after RMA normalization

Figure A. 4: The density distribution plots which show the histogram of the perfect match 
intensities for the CGP microarray samples before and after RMA normalization
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Figure A. 5: Boxplots of the CCLE microarray samples before and after RMA  
normalization

Figure A. 6: Boxplots of the CGP microarray samples before and after RMA 
normalization
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Figure A. 7: Boxplot of the gene expression levels of all the malignant melanoma cell 
lines investigated both in the CCLE and the CGP studies after setting gene expression 
levels of the cell lines to the same level to make the studies comparable 

Figure A. 8: Boxplot of the gene expression levels of the common malignant melanoma 
cell lines investigated between the CCLE and the CGP studies after setting gene  
expression levels of the cell lines to the same level to make the studies comparable
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APPENDIX B

HEATMAP PLOTS

Figure B. 1: The heatmap plot of the saddlebrown module 
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Figure B. 2:  The heatmap plot of the darkslateblue module 

Figure B. 3:  The heatmap plot of the darkolivegreen module 
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Figure B. 4:  The heatmap plot of the darkmagenta module 

Figure B. 5:  The heatmap plot of the green module
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Figure B. 6:  The heatmap plot of the purple module

Figure B. 7:  The heatmap plot of the darkturquoise module 
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Figure B. 8:  The heatmap plot of the skyblue module

Figure B. 9:  The heatmap plot of the magenta module
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Figure B. 10:  The heatmap plot of the darkgreen module 

Figure B. 11:  The heatmap plot of the darkorange module 
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Figure B. 12:  The heatmap plot of the brown module

Figure B. 13:  The heatmap plot of the blue module
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Figure B. 14:  The heatmap plot of the white module

Figure B. 15:  The heatmap plot of the black module
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APPENDIX C

CORRELATION SCORES

Table C. 1: The modules eigengene values of which are significantly correlated to the 
CCLE IC50 values

Module Name Drug Name Pearson Correlation P - value

Lightcyan AZD0530 0.53 0.00064

Darkgreen AZD0530 -0.42 0.0095

Darkturquoise AZD0530 -0.40 0.014

Darkorange AZD0530 0.34 0.031

Black AZD0530 -0.34 0.033

Brown AZD6244 -0.63 2.7 x 10-5

Black AZD6244 0.46 0.0036

Lightcyan AZD6244 -0.45 0.0044

Blue AZD6244 0.41 0.010

Purple AZD6244 0.34 0.037

Magenta AZD6244 0.33 0.038

Darkgreen AZD6244 0.33 0.045

Blue Erlotinib -0.86 8.1 x 10-12

White Erlotinib -0.54 0.00050

Purple Erlotinib 0.49 0.0019

Saddlebrown Erlotinib -0.43 0.0075

Blue Lapatinib -0.69 1.5 x 10-6

Purple Lapatinib 0.43 0.0071

White Lapatinib -0.34 0.038
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Table C. 1 (Continued)

Module Name Drug Name Pearson Correlation P - value

Blue PD0325901 0.44 0.0054

Lightcyan PD0325901 -0.38 0.028

Brown PD0325901 -0.35 0.030

Black PF2341066 -0.50 0.0029

Lightcyan PF2341066 0.47 0.0032

Magenta PF2341066 -0.43 0.0064

Lightcyan PLX4720 -0.49 0.0018

Brown PLX4720 -0.48 0.0022

Black PLX4720 0.48 0.0023

Darkmagenta PLX4720 0.35 0.033

Darkgreen PLX4720 0.34 0.038

White Sorafenib -0.51 0.0010

Purple Sorafenib 0.50 0.0013

Darkturquoise Sorafenib -0.36 0.027

Darkorange Sorafenib 0.34 0.036

Lightcyan TAE684 0.59 9.1 x 10-5

Brown TAE684 0.50 0.0014

Black TAE684 -0.39 0.015

Darkturquoise TAE684 -0.39 0.016

Blue TAE684 -0.33 0.043

Table C. 2: List of hub genes identified as candidate biomarkers for all the nine anti-
cancer drugs 

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

MAP3K14 AZD0530 Black -0.51 0.0011 0.84

TRPM8 AZD0530 Darkorange 0.44 0.0058 0.73

ARHGAP15 AZD0530 Darkorange 0.43 0.0072 0.74

TSPAN13 AZD0530 Darkorange 0.37 0.024 0.80
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

FHDC1 AZD0530 Darkorange 0.32 0.048 0.79

MRAP2 AZD0530 Darkturquoise 0.34 0.037 0.71

TRIM2 AZD0530 Lightcyan 0.73 1.7 x 10-7 0.94

BAMBI AZD0530 Lightcyan 0.45 0.0041 0.73

CHST6 AZD0530 Lightcyan 0.43 0.0068 0.74

FLJ42627 AZD0530 Lightcyan 0.40 0.014 0.83

RNF125 AZD0530 Lightcyan 0.34 0.035 0.90

DAAM1 AZD0530 Lightcyan 0.34 0.035 0.90

SLC23A2 AZD0530 Lightcyan 0.33 0.041 0.78

DPF3 AZD6244 Black 0.54 0.00045 -0.77

NTF3 AZD6244 Black 0.49 0.0020 -0.82

RGMB AZD6244 Black 0.40 0.013 -0.71

MAP3K14 AZD6244 Black 0.39 0.015 0.84

MAN2A1 AZD6244 Black 0.34 0.038 0.72

ERBB2 AZD6244 Blue 0.53 0.00058 0.81

C8orf4 AZD6244 Blue 0.45 0.0046 -0.87

LOC153546 AZD6244 Blue 0.38 0.018 0.97

C1orf198 AZD6244 Blue 0.38 0.018 -0.71

PAOX AZD6244 Blue 0.35 0.029 0.99

RAB38 AZD6244 Brown -0.73 2.2 x 10-7 0.91

APOE AZD6244 Brown -0.63 2.3 x 10-5 0.88

C17orf58 AZD6244 Brown -0.62 3.0 x 10-5 0.70

TIMM50 AZD6244 Brown -0.61 4.2 x 10-5 0.90

D4S234E AZD6244 Brown -0.61 4.4 x 10-5 0.93

LAMA1 AZD6244 Brown -0.60 5.8 x 10-5 0.80

PROS1 AZD6244 Brown -0.60 6.9 x 10-5 -0.75

TNFRSF14 AZD6244 Brown -0.58 0.00015 0.77

GALNT3 AZD6244 Brown -0.58 0.00015 0.92
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

CPOX AZD6244 Brown -0.56 0.00023 0.74

ANKRD44 AZD6244 Brown -0.56 0.00024 0.74

SETDB2 AZD6244 Brown -0.56 0.00026 0.73

CHCHD6 AZD6244 Brown -0.56 0.00030 -0.75

HELZ AZD6244 Brown -0.54 0.00048 -0.82

USP54 AZD6244 Brown -0.54 0.00052 0.73

NPAT AZD6244 Brown -0.53 0.00058 0.84

SPRY1 AZD6244 Brown -0.50 0.0013 0.81

GAPDHS AZD6244 Brown -0.50 0.0013 -0.76

SAMM50 AZD6244 Brown -0.50 0.0016 0.79

SCUBE2 AZD6244 Brown -0.49 0.0020 0.78

SLC18B1 AZD6244 Brown -0.47 0.0027 0.70

TGFB1 AZD6244 Brown 0.45 0.0044 0.78

RAB17 AZD6244 Brown -0.44 0.0058 0.73

ALDH3B2 AZD6244 Brown -0.43 0.0065 -0.79

LOC100653010 AZD6244 Brown -0.43 0.0067 -0.71

OMG AZD6244 Brown -0.42 0.0081 0.82

ST8SIA1 AZD6244 Brown -0.42 0.0087 -0.80

P2RX4 AZD6244 Brown -0.41 0.011 -0.71

C12orf66 AZD6244 Brown -0.41 0.011 -0.80

RNMT AZD6244 Brown -0.41 0.011 0.76

TMEM87A AZD6244 Brown -0.38 0.020 0.72

GANC AZD6244 Brown -0.37 0.022 0.73

REPS1 AZD6244 Brown -0.37 0.022 -0.71

CEACAM1 AZD6244 Brown -0.37 0.024 0.82

TIMP2 AZD6244 Brown -0.35 0.031 0.87

CTSH AZD6244 Brown -0.35 0.031 0.81

GMPR AZD6244 Brown -0.35 0.032 0.78
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

WFDC1 AZD6244 Brown -0.35 0.033 0.82

APOLD1 AZD6244 Brown -0.35 0.034 -0.79

CTLA4 AZD6244 Brown -0.34 0.035 0.72

BEST1 AZD6244 Brown -0.33 0.042 0.84

CA14 AZD6244 Brown -0.33 0.043 0.86

C15orf37 AZD6244 Brown -0.33 0.045 0.73

RNF125 AZD6244 Lightcyan -0.55 0.00038 0.90

DAAM1 AZD6244 Lightcyan -0.38 0.017 0.90

CHST6 AZD6244 Lightcyan -0.37 0.022 0.74

BAMBI AZD6244 Lightcyan -0.37 0.024 0.73

SLC23A2 AZD6244 Lightcyan -0.34 0.038 0.78

APOD AZD6244 Lightcyan -0.32 0.047 0.77

MPRIP AZD6244 Purple 0.51 0.0012 0.84

NGEF AZD6244 Purple 0.47 0.0032 0.78

PTPN14 AZD6244 Purple 0.45 0.0045 0.84

IRS1 AZD6244 Purple 0.36 0.025 -0.73

THAP9 Erlotinib Blue -0.61 5.2 x 10-5 -0.71

C8orf4 Erlotinib Blue -0.47 0.0028 -0.87

GAS2L1 Erlotinib Blue 0.46 0.0033 0.77

LOC100505989 Erlotinib Blue -0.43 0.0064 -0.75

LRP5 Erlotinib Blue -0.43 0.0067 0.98

PAOX Erlotinib Blue -0.43 0.0071 0.99

LRCH2 Erlotinib Blue -0.42 0.0089 0.77

C1orf198 Erlotinib Blue -0.38 0.020 -0.71

NAV3 Erlotinib Purple 0.53 0.00057 0.71

NR3C1 Erlotinib Purple 0.50 0.0014 0.87

ITGA5 Erlotinib Purple 0.48 0.0025 0.71

WDFY2 Erlotinib Purple 0.45 0.0047 0.71
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

MAML2 Erlotinib Purple 0.43 0.0064 0.76

LOC338758 Erlotinib Purple 0.41 0.011 0.80

DHRS3 Erlotinib Purple 0.40 0.013 0.75

THBS1 Erlotinib Purple 0.39 0.016 -0.79

PITPNC1 Erlotinib Purple 0.36 0.027 0.72

ARSB Erlotinib White 0.39 0.016 0.78

FAM172A Erlotinib White 0.35 0.033 0.78

THAP9 Lapatinib Blue -0.48 0.0023 -0.71

PAOX Lapatinib Blue -0.40 0.013 0.99

LRP5 Lapatinib Blue -0.37 0.024 0.98

C1orf198 Lapatinib Blue -0.36 0.026 -0.71

PITPNC1 Lapatinib Purple 0.43 0.0076 0.72

MAML2 Lapatinib Purple 0.42 0.0080 0.76

ITGA5 Lapatinib Purple 0.42 0.0082 0.71

NR3C1 Lapatinib Purple 0.42 0.0091 0.87

WDFY2 Lapatinib Purple 0.37 0.023 0.71

NAV3 Lapatinib Purple 0.36 0.026 0.71

ETHE1 Lapatinib Purple 0.36 0.027 0.80

LOC338758 Lapatinib Purple 0.35 0.032 0.80

DHRS3 Lapatinib Purple 0.34 0.037 0.75

FAM172A Lapatinib White 0.39 0.016 0.78

C8orf4 PD0325901 Blue 0.53 0.00064 -0.87

PAOX PD0325901 Blue 0.37 0.023 0.99

ERBB2 PD0325901 Blue 0.34 0.035 0.81

NPAT PD0325901 Brown -0.48 0.0022 0.84

APOE PD0325901 Brown -0.42 0.0084 0.88

D4S234E PD0325901 Brown -0.40 0.013 0.93

LAMA1 PD0325901 Brown -0.39 0.016 0.80
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

SCUBE2 PD0325901 Brown -0.38 0.017 0.78

TGFB1 PD0325901 Brown 0.38 0.018 0.78

PROS1 PD0325901 Brown -0.36 0.025 -0.75

C15orf37 PD0325901 Brown -0.36 0.026 0.73

TIMM50 PD0325901 Brown -0.36 0.026 0.90

ALDH3B2 PD0325901 Brown -0.36 0.026 -0.79

RNMT PD0325901 Brown -0.34 0.037 0.76

GALNT3 PD0325901 Brown -0.33 0.042 0.92

TNFRSF14 PD0325901 Brown -0.33 0.042 0.77

GAPDHS PD0325901 Brown -0.33 0.044 -0.76

ANKRD44 PD0325901 Brown -0.33 0.046 0.74

RNF125 PD0325901 Lightcyan -0.57 0.00018 0.9

SHC3 PF2341066 Black -0.59 0.00010 0.86

TFPI2 PF2341066 Black -0.33 0.043 0.94

SOX5 PF2341066 Lightcyan 0.47 0.0030 0.77

CHST6 PF2341066 Lightcyan 0.45 0.0047 0.74

BAMBI PF2341066 Lightcyan 0.44 0.0057 0.73

CLCN7 PF2341066 Lightcyan 0.33 0.040 0.90

C7orf31 PF2341066 Magenta 0.44 0.0052 0.90

MAN2A1 PLX4720 Black 0.46 0.0038 0.72

SHC3 PLX4720 Black 0.43 0.0074 0.86

RGMB PLX4720 Black 0.42 0.0095 -0.71

DPF3 PLX4720 Black 0.37 0.021 -0.77

NTF3 PLX4720 Black 0.35 0.030 -0.82

CYBRD1 PLX4720 Black 0.34 0.035 0.70

MAP3K14 PLX4720 Black 0.33 0.041 0.84

LAMA1 PLX4720 Brown -0.57 0.00021 0.80

RAB38 PLX4720 Brown -0.54 0.00041 0.91
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

TIMM50 PLX4720 Brown -0.54 0.00047 0.90

GAPDHS PLX4720 Brown -0.54 0.00049 -0.76

ANKRD44 PLX4720 Brown -0.52 0.00073 0.74

SPRY1 PLX4720 Brown -0.51 0.00098 0.81

LOC100653010 PLX4720 Brown -0.51 0.0010 -0.71

D4S234E PLX4720 Brown -0.5 0.0013 0.93

GALNT3 PLX4720 Brown -0.49 0.0017 0.92

PROS1 PLX4720 Brown -0.49 0.0018 -0.75

SLC18B1 PLX4720 Brown -0.48 0.0021 0.70

CHCHD6 PLX4720 Brown -0.48 0.0021 -0.75

HELZ PLX4720 Brown -0.48 0.0022 -0.82

CPOX PLX4720 Brown -0.48 0.0022 0.74

APOE PLX4720 Brown -0.48 0.0023 0.88

ALDH3B2 PLX4720 Brown -0.46 0.0036 -0.79

TMEM87A PLX4720 Brown -0.46 0.0038 0.72

C17orf58 PLX4720 Brown -0.46 0.0039 0.70

RNMT PLX4720 Brown -0.43 0.0065 0.76

GANC PLX4720 Brown -0.43 0.0070 0.73

TGFB1 PLX4720 Brown 0.43 0.0077 0.78

TNFRSF14 PLX4720 Brown -0.42 0.0079 0.77

SETDB2 PLX4720 Brown -0.42 0.0093 0.73

ST8SIA1 PLX4720 Brown -0.41 0.011 -0.8

SAMM50 PLX4720 Brown -0.41 0.011 0.79

USP54 PLX4720 Brown -0.38 0.018 0.73

C12orf66 PLX4720 Brown -0.38 0.019 -0.80

CEACAM1 PLX4720 Brown -0.37 0.023 0.82

NPAT PLX4720 Brown -0.37 0.023 0.84

SCUBE2 PLX4720 Brown -0.37 0.024 0.78
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

C15orf37 PLX4720 Brown -0.37 0.024 0.73

CTSH PLX4720 Brown -0.36 0.025 0.81

OMG PLX4720 Brown -0.36 0.027 0.82

TIMP2 PLX4720 Brown -0.35 0.030 0.87

RAB17 PLX4720 Brown -0.35 0.030 0.73

RNF125 PLX4720 Lightcyan -0.51 0.0011 0.90

BAMBI PLX4720 Lightcyan -0.39 0.014 0.73

APOD PLX4720 Lightcyan -0.39 0.016 0.77

DAAM1 PLX4720 Lightcyan -0.38 0.018 0.90

CHST6 PLX4720 Lightcyan -0.37 0.021 0.74

HIVEP3 Sorafenib Darkorange 0.37 0.023 0.77

ARHGAP15 Sorafenib Darkorange 0.33 0.044 0.74

MPRIP Sorafenib Purple 0.51 0.00094 0.84

MAML2 Sorafenib Purple 0.50 0.0015 0.76

PTPN14 Sorafenib Purple 0.46 0.0035 0.84

NR3C1 Sorafenib Purple 0.45 0.0048 0.87

WDFY2 Sorafenib Purple 0.42 0.0087 0.71

LOC338758 Sorafenib Purple 0.42 0.0088 0.80

ETHE1 Sorafenib Purple 0.41 0.010 0.80

STARD13 Sorafenib Purple 0.38 0.019 0.73

DHRS3 Sorafenib Purple 0.38 0.020 0.75

ARHGAP28 Sorafenib Purple -0.36 0.027 -0.71

ITGA5 Sorafenib Purple 0.35 0.032 0.71

MTMR11 Sorafenib Purple 0.35 0.032 0.86

PITPNC1 Sorafenib Purple 0.34 0.036 0.72

NAV3 Sorafenib Purple 0.34 0.036 0.71

HOXB5 Sorafenib Purple 0.32 0.050 0.70

FAM172A Sorafenib White 0.59 0.00011 0.78
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

ARSB Sorafenib White 0.34 0.037 0.78

MAP3K14 TAE684 Black -0.37 0.022 0.84

RGMB TAE684 Black -0.32 0.047 -0.71

PAOX TAE684 Blue -0.36 0.025 0.99

LOC153546 TAE684 Blue -0.35 0.032 0.97

C8orf4 TAE684 Blue -0.35 0.034 -0.87

ST8SIA1 TAE684 Brown 0.61 5.3 x 10-5 -0.80

ATP6V0A2 TAE684 Brown 0.57 0.00020 0.80

HEXA TAE684 Brown 0.56 0.00025 -0.76

LAMA1 TAE684 Brown 0.55 0.00040 0.80

D4S234E TAE684 Brown 0.53 0.00069 0.93

PROS1 TAE684 Brown 0.52 0.00086 -0.75

APOE TAE684 Brown 0.52 0.00087 0.88

GALNT3 TAE684 Brown 0.51 0.00095 0.92

SCUBE2 TAE684 Brown 0.51 0.00097 0.78

TIMP2 TAE684 Brown 0.50 0.0015 0.87

ANKRD44 TAE684 Brown 0.49 0.0018 0.74

RAB17 TAE684 Brown 0.48 0.0022 0.73

CTSH TAE684 Brown 0.47 0.0028 0.81

TNFRSF14 TAE684 Brown 0.46 0.0033 0.77

OMG TAE684 Brown 0.46 0.0040 0.82

CEACAM1 TAE684 Brown 0.44 0.0059 0.82

P2RX4 TAE684 Brown 0.43 0.0078 -0.71

LDB3 TAE684 Brown 0.42 0.0088 0.78

C17orf58 TAE684 Brown 0.41 0.011 0.70

CELSR1 TAE684 Brown 0.40 0.012 -0.78

GAPDHS TAE684 Brown 0.40 0.013 -0.76

SPRY1 TAE684 Brown 0.40 0.014 0.81
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Table C. 2 (Continued)

Gene
Name

Drug
Name

Module
Name

Pearson 
Correlation

P - value Intramodular 
Connectivity

ACSBG1 TAE684 Brown 0.39 0.016 0.75

RAB38 TAE684 Brown 0.38 0.018 0.91

CPOX TAE684 Brown 0.38 0.019 0.74

TIMM50 TAE684 Brown 0.38 0.020 0.90

NPAT TAE684 Brown 0.37 0.021 0.84

LOC374443 TAE684 Brown 0.37 0.023 0.87

USP54 TAE684 Brown 0.35 0.032 0.73

LOC150568 TAE684 Brown 0.35 0.033 -0.75

SETDB2 TAE684 Brown 0.34 0.037 0.73

PLEKHO2 TAE684 Brown 0.34 0.040 -0.88

CA14 TAE684 Brown 0.33 0.041 0.86

ALDH3B2 TAE684 Brown 0.33 0.042 -0.79

C22orf25 TAE684 Brown 0.32 0.048 -0.78

MRAP2 TAE684 Darkturquoise 0.44 0.0056 0.71

MIPEPP3 TAE684 Lightcyan 0.56 0.00023 -0.73

BAMBI TAE684 Lightcyan 0.56 0.00029 0.73

SLC23A2 TAE684 Lightcyan 0.45 0.0048 0.78

MFSD12 TAE684 Lightcyan 0.39 0.015 0.72

FLJ42627 TAE684 Lightcyan 0.39 0.015 0.83

CHST6 TAE684 Lightcyan 0.39 0.017 0.74

APOD TAE684 Lightcyan 0.35 0.029 0.77

CLCN7 TAE684 Lightcyan 0.35 0.029 0.90

RNF125 TAE684 Lightcyan 0.35 0.030 0.90
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Table C. 3: The correlation scores determined for the best performing single candidate 
biomarkers when the CCLE IC50 values are used for prediction

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI Lightcyan AZD0530 0.14 0.39 0.24 0.14

RAB38 Brown AZD6244 0.24 0.15 0.15 0.38

FAM172A White Erlotinib 0.18 0.29 0.32 0.052

NAV3 Purple Lapatinib 0.13 0.43 0.32 0.048

RNF125 Lightcyan PD0325901 0.44 0.0052 0.21 0.21

BAMBI Lightcyan PF2341066 0.018 0.92 0.070 0.68

BAMBI Lightcyan PLX4720 0.24 0.15 0.22 0.19

HIVEP3 Darkorange Sorafenib 0.099 0.56 0.11 0.50

PROS1 Brown TAE684 0.31 0.060 0.26 0.11

Table C. 4: The correlation scores determined for the best performing single candidate 
biomarkers after the censored IC50 values are excluded from the CCLE drug sensitivity  
data

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

DAAM1 Lightcyan AZD6244 0.78 3.6 x 10-6 0.55 0.0053

RNF125 Lightcyan PD0325901 0.27 0.13 0.27 0.14

NTF3 Black TAE684 0.67 0.00045 0.40 0.057

Table C. 5: The correlation scores determined for the best performing single candidate 
biomarkers when the CCLE Activity Area values are used for prediction

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation 

(p-value)

FLJ42627 Lightcyan AZD0530 0.57 0.00019 0.47 0.0031

PAOX Blue AZD6244 0.62 0.000030 0.54 0.00041
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Table C. 5 (Continued)

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation 

(p-value)

LRP5 Blue Erlotinib 0.69 1.8 x 10-6 0.54 0.00040

NAV3 Purple Lapatinib 0.63 2.3 x 10-5 0.52 0.00089

PAOX Blue PD0325901 0.62 3.6 x 10-5 0.56 0.00031

CLCN7 Lightcyan PF2341066 0.45 0.0049 0.32 0.052

APOD Lightcyan PLX4720 0.60 6.0 x 10-5 0.59 0.00012

HOXB5 Purple Sorafenib 0.52 0.00080 0.48 0.0024

CLCN7 Lightcyan TAE684 0.53 0.00062 0.42 0.0090

Table C. 6: The correlation scores determined for the best performing single candidate 
biomarkers after the CGP IC50 values are censored to the maximum screening 
concentration of the drugs in the CCLE study

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation 

(p-value)

DAAM1 Lightcyan AZD6244 0.058 0.77 -0.091 0.63

PAOX Blue PD0325901 0.21 0.24 0.29 0.092

BAMBI Lightcyan PLX4720 -0.085 0.62 -0.098 0.57

Table C. 7: The correlation scores determined for the best performing single candidate 
biomarkers after the CGP IC50 values are censored to the maximum screening 
concentration of the drugs in the CGP study

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation 

(p-value)

PAOX Blue AZD6244 0.19 0.30 0.20 0.29

APOE Brown PD0325901 0.11 0.55 0.20 0.25

BAMBI Lightcyan PLX4720 -0.075 0.66 -0.098 0.57

115



Table C. 8: The correlation scores determined for the best performing single candidate 
biomarkers after all the extrapolated and censored IC50 values are excluded from drug  
sensitivity data

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation 

(p-value)

PAOX Blue AZD6244 0.38 0.17 0.34 0.22

SCUBE2 Brown PD0325901 -0.10 0.62 -0.13 0.54

BAMBI Lightcyan PLX4720 -0.026 0.92 -0.23 0.35

Table C. 9: The correlation scores determined for the best performing single candidate 
biomarkers when Activity Area values are used for prediction

Gene 
Name

Module
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation 

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

FLJ42627 Lightcyan AZD0530 0.12 0.68 -0.0022 0.99

PAOX Blue AZD6244 0.22 0.23 0.15 0.43

LRP5 Blue Erlotinib -0.35 0.27 -0.27 0.39

NAV3 Purple Lapatinib -0.32 0.31 -0.31 0.32

PAOX Blue PD0325901 0.17 0.35 0.22 0.21

CLCN7 Lightcyan PF2341066 -0.17 0.56 0.015 0.96

APOD Lightcyan PLX4720 0.076 0.66 -0.042 0.81

ETHE1 Purple Sorafenib 0.20 0.50 0.016 0.96

PROS1 Brown TAE684 0.37 0.19 0.33 0.25

Table C. 10: The correlation scores determined for the best performing single candidate  
biomarkers when the extrapolated IC50 values are included in the drug sensitivity data

Gene 
Name

Module 
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI Lightcyan AZD0530 0.87 2.3 x 10-6 0.34 0.16

RAB38 Brown AZD6244 0.74 0.00046 0.51 0.032
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Table C. 10 (Continued)

Gene 
Name

Module 
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

FAM172A White Erlotinib 0.17 0.50 0.20 0.42

NAV3 Purple Lapatinib 0.51 0.031 0.54 0.022

RNF125 Lightcyan PD0325901 0.60 0.0085 0.41 0.094

BAMBI Lightcyan PF2341066 0.35 0.15 0.20 0.42

BAMBI Lightcyan PLX4720 0.59 0.011 0.53 0.025

HIVEP3 Darkorange Sorafenib 0.19 0.46 0.24 0.33

PROS1 Brown TAE684 0.64 0.0039 0.47 0.049

Table C. 11: The correlation scores determined for the best performing single candidate 
biomarkers when the extrapolated IC50 values are removed from the drug sensitivity data

Gene 
Name

Module 
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI Lightcyan AZD6244 0.27 0.35 0.64 0.015

APOE Brown PD0325901 0.54 0.040 0.032 0.91

PROS1 Brown TAE684 0.64 0.034 0.51 0.11

Table C. 12: The correlation scores determined for the best performing single candidate  
biomarkers when Activity Area values are used for prediction

Gene 
Name

Module 
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI Lightcyan AZD0530 0.60 0.0088 0.31 0.21

MPRIP Purple AZD6244 0.69 0.0017 0.69 0.0019

NAV3 Purple Erlotinib 0.16 0.52 0.18 0.47

PAOX Blue Lapatinib 0.41 0.087 0.22 0.38

RNF125 Blue PD0325901 0.51 0.032 0.33 0.18
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Table C. 12 (Continued)

Gene 
Name

Module 
Name

Drug
Name

Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

TFPI2 Black PF2341066 0.38 0.12 0.44 0.070

BAMBI Lightcyan PLX4720 0.30 0.23 0.41 0.093

MPRIP Purple Sorafenib 0.68 0.0021 0.82 2.4 x 10-5

BAMBI Lightcyan TAE684 0.31 0.21 0.28 0.26

Table C. 13: The correlation scores determined for the best performing combined 
candidate biomarkers when the CGP gene expression data is used for IC50 prediction

Gene
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI - MAP3K14 AZD0530 0.98 6.2 x 10-13 0.65 0.0035

BAMBI - MAP3K14 
- TSPAN13

AZD0530 0.97 3.1 x 10-11 0.60 0.0086

BAMBI - MPRIP AZD6244 0.81 5.6 x 10-5 0.81 4.8 x 10-5

ERBB2 - MPRIP - 
RAB38

AZD6244 0.86 4.1 x 10-6 0.92 7.1 x 10-8

DAAM1 - ERBB2 - 
MPRIP - RAB38

AZD6244 0.90 4.5 x 10-7 0.86 5.0 x 10-6

DAAM1 - ERBB2 - 
MPRIP - NTF3 - 
RAB38

AZD6244 0.87 3.3 x 10-6 0.84 1.5 x 10-5

ITGA5 - LRP5 Erlotinib 0.78 0.00014 0.57 0.013

FAM172A - ITGA5 - 
LRP5

Erlotinib 0.65 0.0037 0.34 0.16

ITGA5 - LRP5 Lapatinib 0.82 2.7 X 10-5 0.60 0.0091

FAM172A - ITGA5 - 
LRP5

Lapatinib 0.61 0.0066 0.27 0.29

C8orf4 - RNF125 PD0325901 0.65 0.0037 0.43 0.074

APOE - ERBB2 - 
RNF125

PD0325901 0.59 0.0093 0.27 0.28

BAMBI - TFPI2 PF2341066 0.82 2.7 X 10-5 0.65 0.0037
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Table C. 13 (Continued)

Gene
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI - PROS1 PLX4720 0.55 0.017 0.56 0.017

APOE - DAAM1 - 
MAP3K14

PLX4720 0.70 0.0012 0.55 0.018

ETHE1 - FAM172A Sorafenib 0.75 0.00035 0.36 0.14

ETHE1 - FAM172A - 
HIVEP3

Sorafenib 0.70 0.0012 0.24 0.34

MSFD12 - PROS1 TAE684 0.79 0.00010 0.68 0.0018

MAP3K14 - MFSD12 
- PROS1

TAE684 0.79 8.7 x 10-5 0.77 0.00017

BAMBI - C8orf4 - 
MAP3K14 - PROS1

TAE684 0.83 2.4 x 10-5 0.71 0.00093

Table C. 14: The correlation scores determined for the identified best performing 
combined candidate biomarkers when the CGP gene expression data is used for IC50  
prediction after removing the censored IC50 values

Gene
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

MPRIP - SLC23A2 AZD6244 0.85 0.00013 0.57 0.035

BAMBI - ERBB2 - 
MPRIP

AZD6244 0.84 0.00017 0.90 5.1 x 10-4

DAAM1 - ERBB2 - 
MPRIP - SLC23A2

AZD6244 0.90 1.2 x 10-5 0.57 0.037

BAMBI - ERBB2 - 
MAP3K14 - MPRIP - 
SLC23A2

AZD6244 0.89 2.5 x 10-5 0.70 0.0069

APOE - ERBB2 PD0325901 0.80 0.00033 0.26 0.35

APOE - ERBB2 - 
RNF125

PD0325901 0.81 0.00022 0.42 0.12

BAMBI - PROS1 TAE684 0.74 0.0088 0.52 0.11

BAMBI - MAP3K14 
- PROS1

TAE684 0.88 0.00038 0.71 0.019
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Table C. 14 (Continued)

Gene
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI - C8orf4 - 
MAP3K14 - PROS1

TAE684 0.82 0.0018 0.66 0.0031

Table C. 15: The correlation scores determined for the identified best performing 
combined candidate biomarkers when the CGP gene expression data is used for Activity 
Area prediction

Gene 
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI - MAP3K14 AZD0530 0.56 0.015 0.49 0.038

BAMBI - MAP3K14 
- TSPAN13

AZD0530 0.59 0.010 0.48 0.043

ERBB2 - MPRIP AZD6244 0.75 0.00029 0.81 6.2 x 10-5

BAMBI - MPRIP - 
PAOX

AZD6244 0.81 5.5 X 10-5 0.80 0.00010

BAMBI - MAP3K14 
- MPRIP - PROS1

AZD6244 0.88 1.5 x 10-6 0.91 8.5 x 10-7

BAMBI - MAP3K14 
- MPRIP - PROS1 - 
RAB38

AZD6244 0.91 1.2 x 10-7 0.95 2.7 x 10-6

LRP5 - NAV3 Erlotinib 0.40 0.099 0.25 0.32

FAM172A - GAS2L1 
- NAV3

Erlotinib 0.11 0.67 0.094 0.71

LRP5 - PAOX Lapatinib 0.65 0.0034 0.44 0.067

FAM172A - LRP5 - 
NAV3

Lapatinib 0.53 0.024 0.11 0.65

ERBB2 - RNF125 PD0325901 0.66 0.0028 0.58 0.013

ERBB2 - NPAT - 
RNF125

PD0325901 0.60 0.0079 0.55 0.020

BAMBI - TFPI2 PF2341066 0.58 0.011 0.55 0.019

BAMBI - MAP3K14 PLX4720 0.49 0.038 0.53 0.027
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Table C. 15 (Continued)

Gene 
Combination

Drug Name Pearson 
Correlation

Pearson 
Correlation

(p-value)

Spearman 
Correlation

Spearman 
Correlation

(p-value)

BAMBI - MAP3K14 
- PROS1

PLX4720 0.68 0.0018 0.58 0.014

HIVEP3 - MPRIP Sorafenib 0.66 0.0027 0.53 0.025

FAM172A - HIVEP3 
- MPRIP

Sorafenib 0.36 0.15 0.35 0.15

MFSD12 - PROS1 TAE684 0.54 0.020 0.36 0.14

MAP3K14 - MFSD12 
- PROS1

TAE684 0.70 0.0012 0.55 0.020

MAP3K14 - MFSD12 
- PAOX - PROS1

TAE684 0.80 7.7 x 10-5 0.77 0.00028
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APPENDIX D

THE TREND OF PREDICTIVE POWER WITH VARYING 
NUMBER OF COMBINATIONS

Table D. 1: Predictive power of the best performing single/combined candidate  
biomarkers when the CGP expression data is used for IC50 prediction

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI AZD0530 0.42 5.28 1.19 14.83

BAMBI - MAP3K14 AZD0530 0.20 2.50 0.33 4.13

BAMBI - MAP3K14 - TSPAN13 AZD0530 0.27 3.38 0.53 6.63

RAB38 AZD6244 1.86 23.25 2.47 30.88

BAMBI - MPRIP AZD6244 1.64 20.50 1.96 24.50

ERBB2 - MPRIP - RAB38 AZD6244 1.50 18.75 1.61 20.13

DAAM1 - ERBB2 - MPRIP - 
RAB38

AZD6244 1.24 15.50 1.46 18.25

DAAM1 - ERBB2 - MPRIP - 
NTF3 - RAB38

AZD6244 1.13 14.13 1.63 20.38

FAM172A Erlotinib 1.36 17.10 1.38 17.25

ITGA5 - LRP5 Erlotinib 0.74 9.25 0.86 10.75

FAM172A - ITGA5 - LRP5 Erlotinib 0.93 11.63 1.11 13.88

NAV3 Lapatinib 1.61 20.13 1.80 22.50

ITGA5 - LRP5 Lapatinib 1.19 14.88 1.12 14.00

FAM172A - ITGA5 - LRP5 Lapatinib 0.84 10.50 1.59 19.88

RNF125 PD0325901 2.32 28.94 2.57 32.13
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Table D. 1 (Continued)

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

C8orf4 - RNF125 PD0325901 2.29 28.63 2.40 30.00

APOE - ERBB2 - RNF125 PD0325901 1.95 24.38 2.37 29.63

BAMBI PF2341066 1.26 15.75 1.27 15.88

BAMBI - TFPI2 PF2341066 0.84 10.50 0.80 10.00

BAMBI PLX4720 2.93 36.63 3.03 37.88

BAMBI - PROS1 PLX4720 2.48 31.00 2.88 36.00

APOE - DAAM1 - MAP3K14 PLX4720 2.32 29.00 2.52 31.50

HIVEP3 Sorafenib 0.72 9.00 0.77 9.63

ETHE1 - FAM172A Sorafenib 0.085 1.06 0.55 6.88

ETHE1 - FAM172A - HIVEP3 Sorafenib 0.061 0.76 0.56 7.00

PROS1 TAE684 1.39 17.38 1.69 21.13

MSFD12 - PROS1 TAE684 1.22 15.25 1.30 16.25

MAP3K14 - MFSD12 - PROS1 TAE684 1.05 13.13 1.29 16.13

BAMBI - C8orf4 - MAP3K14 - 
PROS1

TAE684 0.69 8.63 1.19 14.88

Table D. 2: Predictive power of the best performing candidate biomarkers when the CGP 
expression data is used for IC50 prediction after removing the censored IC50 values from 
the CCLE drug sensitivity data

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, 
%)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI AZD6244 0.81 33.61 0.78 32.37

MPRIP - SLC23A2 AZD6244 0.50 20.71 0.46 19.09

BAMBI - ERBB2 - MPRIP AZD6244 0.50 20.75 0.43 17.84

DAAM1 - ERBB2 - MPRIP - 
SLC23A2

AZD6244 0.40 16.60 0.38 15.77
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Table D. 2 (Continued)

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - ERBB2 - MAP3K14 - 
MPRIP - SLC23A2

AZD6244 0.28 11.62 0.39 16.18

APOE PD0325901 0.25 25.00 0.26 26.00

APOE - ERBB2 PD0325901 0.045 4.50 0.16 16.00

APOE - ERBB2 - RNF125 PD0325901 6.8 x 10-5 0.0068 0.16 16.00

PROS1 TAE684 1.15 15.91 1.23 15.55

BAMBI - PROS1 TAE684 0.74 10.24 1.05 14.52

BAMBI - MAP3K14 - PROS1 TAE684 0.00044 0.0061 0.93 12.86

BAMBI - C8orf4 - MAP3K14 - 
PROS1

TAE684 0.56 7.75 0.88 12.17

Table D. 3: Predictive power of the best performing candidate biomarkers when the CGP 
expression data is used for Activity Area prediction

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI AZD0530 0.30 29.53 0.29 29.12

BAMBI - MAP3K14 AZD0530 0.18 17.78 0.30 30.26

BAMBI - MAP3K14 - TSPAN13 AZD0530 0.25 25.39 0.28 28.16

MPRIP AZD6244 0.26 25.95 0.22 21.77

ERBB2 - MPRIP AZD6244 0.19 19.32 0.19 19.01

BAMBI - MPRIP - PAOX AZD6244 0.17 17.74 0.18 17.85

BAMBI - MAP3K14 - MPRIP - 
PROS1

AZD6244 0.058 5.76 0.14 14.47

BAMBI - MAP3K14 - MPRIP - 
PROS1 - RAB38

AZD6244 0.048 4.75 0.13 13.08

NAV3 Erlotinib 0.24 24.40 0.27 27.48
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Table D. 3 (Continued)

Biomarker Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

LRP5 - NAV3 Erlotinib 0.22 21.73 0.26 26.28

FAM172A - GAS2L1 - NAV3 Erlotinib 0.16 15.60 0.29 29.29

PAOX Lapatinib 0.14 13.82 0.24 24.00

LRP5 - PAOX Lapatinib 0.16 15.66 0.21 20.82

FAM172A - LRP5 - NAV3 Lapatinib 0.17 16.79 0.24 23.82

RNF125 PD0325901 0.25 25.19 0.27 27.17

ERBB2 - RNF125 PD0325901 0.22 21.57 0.23 22.96

ERBB2 - NPAT - RNF125 PD0325901 0.030 2.99 0.26 26.26

TFPI2 PF2341066 0.31 30.56 0.28 29.57

BAMBI - TFPI2 PF2341066 0.21 20.69 0.25 25.18

BAMBI PLX4720 0.30 29.97 0.32 32.00

BAMBI - MAP3K14 PLX4720 0.25 24.57 0.30 30.06

BAMBI - MAP3K14 - PROS1 PLX4720 0.20 19.56 0.24 24.43

MPRIP Sorafenib 0.21 20.65 0.21 21.03

HIVEP3 - MPRIP Sorafenib 0.14 14.27 0.20 20.00

FAM172A - HIVEP3 - MPRIP Sorafenib 0.096 9.61 0.27 26.86

BAMBI TAE684 0.24 23.80 0.24 23.72

MFSD12 - PROS1 TAE684 0.15 14.94 0.21 21.39

MAP3K14 - MFSD12 - PROS1 TAE684 0.15 14.67 0.18 18.02

MAP3K14 - MFSD12 - PAOX - 
PROS1

TAE684 0.13 13.38 0.15 15.13

126



Table D. 4: The RMSE values determined for the best performing combined candidate 
biomarkers when the censored IC50 values are included in the CCLE drug sensitivity 
data

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - MAP3K14
(lightcyan - black)

AZD0530 0.20 2.50 0.33 4.13

BAMBI - MAP3K14 - 
TSPAN13
(lightcyan - black - 
darkorange)

AZD0530 0.27 3.38 0.53 6.63

BAMBI - MPRIP
(lightcyan - purple)

AZD6244 1.64 20.50 1.96 24.50

ERBB2 - MPRIP - RAB38
(blue - purple - brown)

AZD6244 1.50 18.75 1.61 20.13

DAAM1 - ERBB2 - MPRIP 
- RAB38
(lightcyan - blue - purple - 
brown)

AZD6244 1.24 15.50 1.46 18.25

BAMBI - IRS1 - MPRIP - 
NTF3 - PAOX
(Lightcyan - brown - purple - 
black - blue)

AZD6244 0.00068 0.0085 2.61 32.63

ITGA5 - LRP5
(purple - blue)

Erlotinib 0.74 9.25 0.86 10.75

FAM172A - ITGA5 - LRP5
(white - purple - blue)

Erlotinib 0.93 11.63 1.11 13.88

ITGA5 - LRP5
(purple - blue)

Lapatinib 1.19 14.88 1.12 14.00

FAM172A - ITGA5 - LRP5
(white - purple - blue)

Lapatinib 0.84 10.50 1.59 19.88

C8orf4 - RNF125
(blue - lightcyan)

PD0325901 2.29 28.63 2.40 30.00

APOE - ERBB2 - RNF125
(brown - blue - lightcyan)

PD0325901 1.95 24.38 2.37 29.63

BAMBI - TFPI2
(lightcyan - black)

PF2341066 0.84 10.50 0.80 10.00

BAMBI - PROS1
(lightcyan - brown)

PLX4720 2.48 31.00 2.88 36.00
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Table D. 4 (Continued)

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

APOE - DAAM1 - 
MAP3K14
(brown - lightcyan - black)

PLX4720 2.32 29.00 2.52 31.50

ETHE1 - FAM172A
(purple - white)

Sorafenib 0.085 1.06 0.55 6.88

ETHE1 - FAM172A - 
HIVEP3
(purple - white - darkorange)

Sorafenib 0.061 0.76 0.56 7.00

MSFD12 - PROS1
(lightcyan - brown)

TAE684 1.22 15.25 1.30 16.25

MAP3K14 - MFSD12 - 
PROS1
(black - lightcyan - brown)

TAE684 1.05 13.13 1.29 16.13

BAMBI - C8orf4 - 
MAP3K14 - PROS1
(lightcyan - blue - black - 
brown)

TAE684 0.69 8.63 1.19 14.88

Table D. 5: The RMSE values of the best performing combined candidate biomarkers 
when the censored IC50 values are excluded from the CCLE drug sensitivity data

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

MPRIP - SLC23A2
(purple - brown)

AZD6244 0.50 20.71 0.46 19.09

BAMBI - ERBB2 - MPRIP
(lightcyan - blue - purple)

AZD6244 0.50 20.75 0.43 17.84

DAAM1 - ERBB2 - MPRIP - 
SLC23A2

AZD6244 0.40 16.60 0.38 15.77

BAMBI - ERBB2 - MAP3K14 
- MPRIP - SLC23A2
(lightcyan - blue - black - 
purple - brown)

AZD6244 0.28 11.62 0.39 16.18
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Table D. 5 (Continued)

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

APOE - ERBB2
(brown - blue)

PD0325901 0.045 4.50 0.16 16.00

APOE - ERBB2 - RNF125
(brown - blue - lightcyan)

PD0325901 6.8 x 10-

5
0.0068 0.16 16.00

BAMBI - PROS1
(lightcyan - brown)

TAE684 0.74 10.24 1.05 14.52

BAMBI - MAP3K14 - PROS1
(lightcyan - black - brown)

TAE684 0.00044 0.0061 0.93 12.86

BAMBI - C8orf4 - MAP3K14 
- PROS1
(lightcyan - blue - black - 
brown)

TAE684 0.56 7.75 0.88 12.17

Table D. 6: The RMSE values of the best performing combined candidate biomarkers 
when the CCLE Activity Area values are used for prediction

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - MAP3K14
(lightcyan - black)

AZD0530 0.18 17.78 0.30 30.26

BAMBI - MAP3K14 - 
TSPAN13
(lightcyan - black - 
darkorange)

AZD0530 0.25 25.39 0.28 28.16

ERBB2 - MPRIP
(blue - purple)

AZD6244 0.19 19.32 0.19 19.01

BAMBI - MPRIP - PAOX
(lightcyan - purple - blue)

AZD6244 0.17 17.74 0.18 17.85

BAMBI - MAP3K14 - MPRIP 
- PROS1
(lightcyan - black - purple - 
brown)

AZD6244 0.058 5.76 0.14 14.47
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Table D. 6 (Continued)

Gene Combination Drug Name RMSE 
(CCLE)

Error in 
Prediction

(CCLE, %)

RMSE
(CGP)

Error in 
Prediction
(CGP, %)

BAMBI - MAP3K14 - MPRIP 
- PROS1 - RAB38
(lightcyan - black - purple - 
blue - brown)

AZD6244 0.048 4.75 0.13 13.08

LRP5 - NAV3
(blue - purple)

Erlotinib 0.22 21.73 0.26 26.28

FAM172A - GAS2L1 - NAV3
(white - blue - purple)

Erlotinib 0.16 15.60 0.29 29.29

LRP5 - PAOX
(blue - brown)

Lapatinib 0.16 15.66 0.21 20.82

FAM172A - LRP5 - NAV3
(white - blue - purple)

Lapatinib 0.17 16.79 0.24 23.82

ERBB2 - RNF125
(blue - lightcyan)

PD0325901 0.22 21.57 0.23 22.96

ERBB2 - NPAT - RNF125
(blue - brown - lightcyan)

PD0325901 0.030 2.99 0.26 26.26

BAMBI - TFPI2
(lightcyan - black)

PF2341066 0.21 20.69 0.25 25.18

BAMBI - MAP3K14
(lightcyan - black)

PLX4720 0.25 24.57 0.30 30.06

BAMBI - MAP3K14 - PROS1
(lightcyan - black - brown)

PLX4720 0.20 19.56 0.24 24.43

HIVEP3 - MPRIP
(darkorange - purple)

Sorafenib 0.14 14.27 0.20 20.00

FAM172A - HIVEP3 - MPRIP
(white - darkorange - purple)

Sorafenib 0.096 9.61 0.27 26.86

MFSD12 - PROS1
(lightcyan - brown)

TAE684 0.15 14.94 0.21 21.39

MAP3K14 - MFSD12 - 
PROS1
(black - lightcyan - brown)

TAE684 0.15 14.67 0.18 18.02

MAP3K14 - MFSD12 - PAOX 
- PROS1
(black - lightcyan - blue - 
brown)

TAE684 0.13 13.38 0.15 15.13
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Figure D. 1:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for AZD0530 when the 
censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50 
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data. 
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Figure D. 2:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for AZD6244 when the 
censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50 
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 3:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for Erlotinib when the 
censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50 
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 4:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for Lapatinib when 
the censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50  
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 5:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for PD0325901 when 
the censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50  
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 6:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for PF2341066 when  
the censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50  
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 7:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for PLX4720 when the  
censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50 
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 8:  The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for Sorafenib when  
the censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50  
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 9: The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for TAE684 when the  
censored CCLE IC50 values are included in the CCLE drug sensitivity data. (a) IC50 
prediction is performed by the CCLE data. (b) The trained model with the CCLE data is  
tested by the CGP data.
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Figure D. 10: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for AZD6244  
when both the censored CCLE IC50 values and the extrapolated CGP IC50 values are  
excluded from the CCLE and the CGP drug sensitivity data. (a) IC50 prediction is  
performed by the CCLE data. (b) The trained model with the CCLE data is tested by the  
CGP data.
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Figure D. 11: The scatterplots which depict the trend of R2, Pearson r, Spearman rho, and 
RMSE with varying number of candidate biomarker combinations for PD0325901 when 
both the censored CCLE IC50 values and the extrapolated CGP IC50 values are excluded 
from the CCLE and the CGP drug sensitivity data. (a) IC50 prediction is performed by  
the CCLE data. (b) The trained model with the CCLE data is tested by the CGP data.
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Figure D. 12: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for TAE684 when  
both the censored CCLE IC50 values and the extrapolated CGP IC50 values are excluded 
from the CCLE and the CGP drug sensitivity data. (a) IC50 prediction is performed by  
the CCLE data. (b) The trained model with the CCLE data is tested by the CGP data.
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Figure D. 13: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for AZD0530  
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 14: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for AZD6244  
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 15: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for Erlotinib 
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 16: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for Lapatinib  
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 17: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for PD0325901  
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 18: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for PF2341066 
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 19: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for PLX4720 
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 20: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for Sorafenib  
when the CCLE Activity Area values are used for prediction. (a) Activity Area prediction 
is performed by the CCLE data. (b) The trained model with the CCLE data is tested by the 
CGP data. 
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Figure D. 21: The scatterplots which depict the trend of R2, Pearson r, Spearman rho,  
and RMSE with varying number of candidate biomarker combinations for TAE684 when  
the CCLE Activity Area values are used for prediction. (a) Activity Area prediction is  
performed by the CCLE data. (b) The trained model with the CCLE data is tested by the  
CGP data. 
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APPENDIX E

TREND OF CORRELATION SCORES WITH VARYING 
NUMBER OF COMBINATIONS

Figure E. 1: The barplots which demonstrate the correlation scores for AZD0530 when  
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.
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Figure E. 2: The barplots which demonstrate the correlation scores for AZD6244 when  
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 3: The barplots which demonstrate the correlation scores for Erlotinib when 
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.
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Figure E. 4: The barplots which demonstrate the correlation scores for Lapatinib when  
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 5: The barplots which demonstrate the correlation scores for PD0325901 when 
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.
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Figure E. 6: The barplots which demonstrate the correlation scores for PF2341066 when  
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 7: The barplots which demonstrate the correlation scores for PLX4720 when 
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.
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Figure E. 8: The barplots which demonstrate the correlation scores for Sorafenib when 
the censored IC50 values are included in the CCLE drug sensitivity data. The barplot on 
the left side is generated with the CCLE data, while the barplot on the right is generated  
with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 9: The barplots which demonstrate the correlation scores for TAE684 when the 
censored IC50 values are included in the CCLE drug sensitivity data. The barplot on the 
left side is generated with the CCLE data, while the barplot on the right is generated with 
the CGP data. Star sign (*) shows that correlation is significant.
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Figure E. 10: The barplots which demonstrate the correlation scores for AZD6244 when  
both the censored and extrapolated IC50 values are excluded from drug sensitivity data.  
The barplot on the left side is generated with the CCLE data, while the barplot on the 
right is generated with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 11: The barplots which demonstrate the correlation scores for PD0325901  
when both the censored and extrapolated IC50 values are excluded from drug sensitivity  
data. The barplot on the left side is generated with the CCLE data, while the barplot on 
the right is generated with the CGP data. Star sign (*) shows that correlation is 
significant.
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Figure E. 12: The barplots which demonstrate the correlation scores for TAE684 when 
both the censored and extrapolated IC50 values are excluded from drug sensitivity data.  
The barplot on the left side is generated with the CCLE data, while the barplot on the 
right is generated with the CGP data. Star sign (*) shows that correlation is significant.

Figure E. 13: The barplots which demonstrate the correlation scores for AZD0530 when  
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.
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Figure E. 14: The barplots which demonstrate the correlation scores for AZD6244 when  
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.

Figure E. 15: The barplots which demonstrate the correlation scores for Erlotinib when 
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.
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Figure E. 16: The barplots which demonstrate the correlation scores for Lapatinib when 
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.

Figure E. 17: The barplots which demonstrate the correlation scores for PD0325901 
when the CCLE Activity Area values are used for prediction. The barplot on the left side  
is generated with the CCLE data, while the barplot on the right is generated with the CGP 
data. Star sign (*) shows that correlation is significant.
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Figure E. 18: The barplots which demonstrate the correlation scores for PF2341066  
when the CCLE Activity Area values are used for prediction. The barplot on the left side  
is generated with the CCLE data, while the barplot on the right is generated with the CGP 
data. Star sign (*) shows that correlation is significant.

Figure E. 19: The barplots which demonstrate the correlation scores for PLX4720 when 
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.
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Figure E. 20: The barplots which demonstrate the correlation scores for Sorafenib when  
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.

Figure E. 21: The barplots which demonstrate the correlation scores for TAE684 when 
the CCLE Activity Area values are used for prediction. The barplot on the left side is  
generated with the CCLE data, while the barplot on the right is generated with the CGP  
data. Star sign (*) shows that correlation is significant.
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